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Abstract

This thesis looks at the motion of vortex filaments, which are regions in a fluid
flow where the vorticity field, equal to the curl of the velocity field, is negligible outside
a cylindrical type tube — the filament. The vortex filament is said to be thin—cored if
the radius of the tube is much smaller than any axial length scale along the filament.
This thin core assumption allows the motion of the filament to be described by the
motion of the centerline of the tube, when it is coupled to the internal core dynamics
via an asymptotic matching procedure. Our studies of the motion and dynamics of
such structures can be grouped into three topics: (1) analyses of equations of motion
for thin—cored vortex filaments, (2) an analysis of the linear stability of a vortex ring
moving along the axis of a pipe and (3) the construction of finite amplitude wave

solutions for the shape of the centerline of planar vortex filament.

Our main thrust in the first topic is to show that the “new” equations derived by
Klein and Majda (1991) are merely a reformulation of some of the more well known
equations for vortex filament motion; in particular we show that their equations can be
obtained by a linearization of the well known cut-off equation. The cut—off equation
has been used by a number of authors (e.g., Crow (1970), Widnall and Sullivan
(1973), etc.) to analyse problems in vortex motion, and a systematic justification for
the equation was provided by Moore and Saffman (1972), who showed the equation

was asymptotically correct.

With regard to the second topic, questions of stability naturally arise when one
considers coherent structures, such as vortex rings. The stability of a vortex ring
in an unbounded fluid was first examined by Thomson (1883) who found that the
ring was stable to infinitesimal perturbations (the vortex ring being a model for the
so—called indestructible atom). Widnall and Sullivan (1973) reconsidered the stability
problem, but retained terms of higher order in the small parameter (i.e., the ratio of

core radius to ring radius). Their results indicated a spurious instability where the
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only unstable perturbations were those with wavelengths that were comparable with
the core radius (a situation for which the cut—off equation is inapplicable). For the
case where the ring moves inside a cylindrical pipe, along its axis, only the effect of
the wall on the speed of the ring had been computed to date (Raja Gopal (1963) and
Brasseur (1979)). From the theoretical point of view, the effect of the wall on the
stability of the ring has, until now, been unknown. We show that the wall induces an
instability on the vortex ring characterized by a tendancy for the ring to tilt out of
its original plane.

The so-called local induction equation, for vortex filament motion, corresponds
to the zero core radius limit of the cut—off equation. Hasimoto (1972) showed that
there was a direct relationship between the local induction equation and the cubic
Schrodinger equation, a completely integrable equation. He also computed the corre-
sponding soliton solution of the equation. Kida (1981) computed a general solution
of the equation having periodic shape parameters. Both of these solutions are finite
amplitude wave solutions for vortex filaments whose motion is governed by the local
induction equation. Unfortunately, the local induction equation is known to admit
some solutions that are unphysical, a fact which lends credence to the belief that
the general solutions are also unphysical. Accordingly, it is important to see whether
equations containing more physics also admit finite amplitude wave solutions. Kelvin
(1880) obtained a solution of the linearized problem for periodic waves of infinitesimal
amplitude that lay in a rotating plane. (In fact, Kelvin’s solutions described infinites-
imal filament waves having a general three-dimensional structure.) We numerically
compute such plane wave solutions to the full nonlinear equations and continue the

solution to finite amplitude.
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Chapter 1: Thin Filament Dynamics

CHAPTER 1

VORTEX DYNAMICS FOR THIN-CORED VORTEX FILAMENTS

1.1 Introduction

There are many reasons for examining problems in vortex dynamics. From our point
of view the principal reason is that regions of intense vorticity in an otherwise calm
flow are quite often compact and remain so for a long period of time. This has
implications for the remainder of the fluid, since the fluid velocity can be thought of
as being induced completely by the vorticity field. For such a point of view we adopt
a liberal interpretation of what is meant by the vorticity field in that we assume that
any boundaries in the fluid, which induce the irrotational part of the velocity field,
can be replaced as boundaries of new fluid regions containing so—called image vorticity
(see section 2.4 of Vortez Dynamics by Saffman (1992)). Consequently, a complete
description of the evolution of the vorticity field leads to a complete description of
the evolution of the entire flow field.

To be specific, it is well known that a vorticity field w(x,t) occupying a region D

in an otherwise unbounded fluid induces a velocity field u(x, t) given by a Biot-Savart

integral
1 _ 1
u(x,t) = -/ o(x', 1) x —(—)i—}—3dx'. (1.1.1)
4r Jp x — x|

Using (1.1.1) allows us to compute the entire flow field. However, the evolution of the
vorticity field is itself highly non-trivial. Fortunately, the type of problems we are
concerned with are problems where the vorticity i1s concentrated inside some tubular
region, which may be either closed or infinitely long. If the diameter of the tube
1s small compared with some length scale along the tube, then it proves convenient
to assume that the vorticity is concentrated on the centerline of the tube and is

directed along the tangent to the centerline. Such an idealized construct is called a
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Chapter 1: Thin Filament Dynamics

thin—cored vortex filament and the centerline of the tube is simply referred to as the
vortex filament. The thin-cored vortex filament approximation assumes that the gross
motion of the vortex tube is adequately described by the motion of the centerline.
Suppose the situation being considered is as indicated in figure 1.1.1, where
the vortex tube has core radius a, strength I' and centerline X(s,?) (s is arclength
along the centerline). An intrinsic orthonormal triad {s, n, b} is associated with any
space curve, where the unit vectors are the tangent, principal normal and binormal,
respectively. These vectors, which are functions of arclength and possibly time, satisfy

a set of vector differential equations called the Frenet-Serret formulae

_0X
$= Os
9 _ tn
33 (1.1.2)
R =7b — ks
L
ds

The radius of curvature, p, indicated in figure 1.1.1, is the inverse of the curvature,
x, appearing in (1.1.2). The torsion, 7, which appears in (1.1.2), is a measure of the
rate at which the orthonormal triad {s, n, b} twists about the curve as one moves in
the direction of increasing arclength.

The thin-cored vortex filament approximation replaces the vorticity field w(x,t)

by
o(x,t) =T'6(n)é(b)s, (1.1.3)

where, as required, the vorticity is concentrated on the centerline, has strength I" and
is directed along the tangent to the centerline. Consequently, the velocity at a point
x in the fluid, according to (1.1.1) and (1.1.3), reduces to

— _F__ s’ x (X-—- X(sl,t)) 5!
u(x,t) = 4#% o X(s',t)|3d . (1.1.4)

Now the problem becomes apparent, if we replace x by a point X(s, ), on the filament,

then the integral diverges logarithmically. (To be exact, if we attempt to carry this
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Chapter 1: Thin Filament Dynamics

Figure 1.1.1 A vortex filament with core radius @ and strength I" centered

on a time dependent space curve X(s,t). The orientation of the unit vectors
s, n and b are indicated for an arbitrary point on the curve. We also indicate

the radius of curvature, p, and part of the osculating circle at X(s, ?).

out in a limiting process then we also have encounter a singularity that behaves like
1/|x — X(s,t)| and this is clearly shown in appendix B.) Consequently, (1.1.4) cannot
be used to describe the self-induced velocity of the filament. The way around this
problem is to use (1.1.4) in an asymptotic matching procedure, and we outline several

such procedures in the next few sections.

1.2 A general description of the matching procedures for vortex filaments

At the end of section 1.1, we remarked how a regular expression for the self induced
velocity can be obtained by using (1.1.4) in an asymptotic matching procedure. The
asymptotic matching procedure is based on a perturbation series of the flow field in
terms of some small dimensionless parameter, e. The assumption of a thin-cored
vortex tube leads to a natural definition for €. For thin-cored vortex filaments we

identify two length scales: a short length scale, a, corresponding to a measure for
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Chapter 1: Thin Filament Dynamics

the core radius and a much longer length scale, R, which (typically) corresponds to
a measure for the radius of curvature, p. By taking the ratio of these quantities, we

obtain a small dimensionless parameter, € = a/R.

A note about the vorticity field is in order at this point, because there are three
possible assumptions that can be made. The first assumption is that the flow is
inviscid and there is a well defined core boundary outside of which the vorticity is
identically zero. The second possible assumption that can be made is also for an
inviscid flow, but this time the core boundary is only vaguely defined, and outside the
core there is a weak vorticity field which decays exponentially fast to zero the farther
we move away from the core. The final possible assumption that can be made is that
the fluid flow is viscous and, correspondingly, the vorticity field decays smoothly to
zero outside the core. The second two assumptions mean that a well defined core
boundary does not exist and, consequently, the determination of a core boundary
does not figure in the matching procedure. Moore and Saffman (1972) use the first
assumption, Fukumoto and Miyazaki (1991), the second assumption and Callegari

and Ting (1978) adopt the third assumption.

In all of the matching procedures, an inner region is identified in the neighborhood
of the core, where the flow field is assumed to be described by the Euler equations
(or the Navier—Stokes equations in the case of viscous flows). The next step requires
the introduction of a quasi-cylindrical coordinate system, where the axial coordinate,
s, is the arclength along the filament curve and the polar coordinates, (r, ), are the
polar coordinates in a plane perpendicular to the tangent to the filament curve. By
a suitable scaling of the variables and the introduction of the perturbation series in
€, a system of hierarchical equations can be derived from the Euler or Navier—Stokes
equations. The solution to these equations provide a perturbation solution to the flow

field in the inner region. The full details of this procedure are presented in appendix

A

The outer region is taken to be far from the core, where the flow field is assumed

to be governed by the Biot—Savart integral (1.1.4). The field point x appearing in
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Chapter 1: Thin Filament Dynamics

(1.1.4) has the representation

x = X(s,t) 4+ r(ex cos + ey sin 6) (1.2.1)

in terms of the quasi—cylindrical polar coordinate system. To carry out the matching,
we require a representation for the Biot—Savart integral in the limit where r — 0.
This is a singular limit for the integral so the dominant terms will be the singular
terms. A common procedure for obtaining these terms (the procedure adopted by
Callegari and Ting and by Fukumoto and Miyazaki) is to expand the filament curve
in a Taylor series in arclength, about the singular point. This is then used to obtain
an approximation for the integrand which is integrated over some finite length, 2L,
centered on the singular point. This length is assumed to scale like R so that when
r = O(a) any contributions essentially come from an infinite section of the filament.
If the filament is closed, then L can be chosen as half the length of the filament;
however, if the filament is open then L is essentially arbitrary. (We will see that so
long as L scales like R, then the equations of motion can be written in a way that
is independent of L!) A second procedure for isolating the singular terms (adopted
by Moore and Saffman) is to subtract from the integrand in (1.1.4) a second inte-
grand having the same singular behavior. The singular behavior of the integrand is
essentially characterized by the radius of curvature. Consequently, any curve passing
through the singular point, possessing the same intrinsic orthonormal triad and hav-
ing the same radius of curvature, will exhibit the same singular behavior when used
in the Biot-Savart integrand. Any pair of such curves are said to be osculating (kiss-
ing) at the singular point. We note that the Taylor series expansion of the filament
curve, described above, osculates with the filament curve. Moore and Saffman chose
to use the osculating circle to isolate the singular terms in the Biot-Savart integral.
Moreover, they chose to carry out the matching procedure in a non-standard fashion
by first expressing the equations of motion in conservation form. The advantage of
this formulation is that it requires a less detailed knowledge of the flow to achieve a

certain degree of accuracy. The equation of motion obtained by Moore and Saffman
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Chapter 1: Thin Filament Dynamics

takes the form

oX T 2 oo
e(yi’t) = Inp [1“ (8—p> A= 61?; / éw“’)(s)wél’(s)ds} b

([ oo (252)

_ %Z UOOO g%(o)(g)w(“)(é)dé] s A % (%) +Qus,  (1.22)

where Qs is a desingularized Biot—Savart integral obtained, as described above, by
subtracting from the integrand the integrand corresponding to the osculating circular
filament. The functions v(®)(¢) and w(®)(¢) are the leading order components of the
azimuthal and axial velocities, respectively, in the vortex core (expressed as functions
of the radial distance from the centerline). The function w(()l)(f ) is the axisymmetric
component of the first order correction to the axial velocity in the core. The parameter
A is given by

472 [

A= —

o) -3 -3 [0 a2

which is —1/4 for a filament with uniform vorticity in the core and containing no
axial flow.

Callegari and Ting (1978) carry out the matching procedure for a viscous flow
by matching the first two terms of a perturbation expansion of the flow field. Their
expression for the velocity of the filament is

0X(s,t) T
ot  4np

[ln (%13) + Am} b+ Qcr (1.2.4)

where

=t (3 [[elomie] aem ()

1 8x2% [

o A GG (1.25)

is the natural extension of (1.2.3) to smooth velocity profiles. The quantity Qcr

is a desingularization of the Biot-Savart integral where the difference between the
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Chapter 1: Thin Filament Dynamics

integrand and its approximation using the Taylor series is integrated over the length

of the filament. In this case the filament is assumed to be closed so that

2L = fds'. (1.2.6)

When the filament is infinitely long, equation (1.2.4) is no longer applicable since the
integral in (1.2.6) is infinite, so the length L must then be chosen in some other way.
As long as L scales like R, the derivation of (1.2.4) ensures that Qcr contains the
term —I'In(2L)/47 R so that (1.2.4) is, in fact, independent of L.

Fukumoto and Miyazaki (1991) perform the matching for the case of an inviscid
core with a smooth vorticity profile. They match the first two terms and part of the
third term in the perturbation expansion of the flow field. In the third term of the
perturbation expansion, the components of the flow proportional to sin2¢ and cos 2¢
are not matched. (This angle ¢ is given by ¢ = 6 — ¢¢(s) where d¢o/ds = 7, the
torsion, see appendix A.) The equation they obtain for the velocity of the filament is

0X(s,t) _ T 2L 1672 [ © -
ot d4mp [m <_a—) Ao — e /0 ' (§)wy (ﬁ)dﬁ} b

- T[] sn 2 (Zet)

- eo0u©n|sh £ (B) ram a2

P

where Qs is the desingularized Biot Savart integral. As with the Callegari and Ting
analysis, the derivation of (1.2.7) assumes that L scales like R. In the next section
we will see that matching the components proportional to cos ¢ and sin¢ does not
admit a prescription for L. Also, matching these terms does not directly affect the
velocity of the filament. Finally, we note that both the Moore-Saffman equation and
the Fukumoto-Miyazaki equation contain higher order corrections (dependent on the

axial velocity) that are absent from the Callegari-Ting equation.

1.3 Completion of Fukumoto and Miyazaki’s matching procedure

In this section we match the velocity components from the third term of the per-

turbation expansion of the velocity field left unmatched by Fukumoto and Miyazaki.
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Chapter 1: Thin Filament Dynamics

Fukumoto and Miyazaki showed that the first three terms in the perturbation ex-

pansion of the external velocity, relative to the velocity of the filament, are given

vzé%w+£;{h(?v—qgm@%+PnG%Ham@%}
+ ;:;2 { [hl (2:3) - %J sin(2¢)e, + [ln (%I—’) - g] cos(2¢)eq + i%eg}

9 2 ~
+Q- > X 0(4I;rrp3). (1.3.1)

The derivation of (1.3.1) is presented in appendix B. The quantity refered to by Q is
what remains of the Biot—Savart integral.

Suppose, at this point, that the filament is a vortex ring of radius p, strength
I', and has core radius a. Equation (1.3.1) gives an expression for the velocity of the
velocity field outside the core of the ring. This velocity can also be computed using a
stream function formulation leading to an expression for the stream function in terms
of complete elliptic integrals (see section 10.1 of Vortez Dynamics by Saffman (1992)).
Employing this approach implies that the velocity field is given by

Vo = 2—£;e9 + Fp {lln (8TP> — 1] sin(¢)e, + [ln <8r )] cos(qS)eg}
;,rr,, {[ ( ) - —} sin(24)e, + [ (8—’3) - g] cos(z@ee}

T'r
e (1) 502

where the subscript o is used to signify that this expression is specifically for a vortex

ring. Equations (1.3.1) and (1.3.2) purportedly describe the same flow field, but they
have differences. First, we see that there is no Q term in (1.3.2) signifying that all
contributions have been computed to the order indicated. Secondly, we note that
there 1s no axisymmetric part in the third term of (1.3.2), while there is such a part
in the corresponding term of (1.3.1). If L satisfies (1.2.6), i.e., L = mp, and we
take Q to be what remains of the Biot—Savart integral after a length of 2L has been
removed from the range of integration, then it follows that Q = 0. Unfortunately,

the In(2L/r) terms appearing in (1.3.1) become In(27p/r) and not In(8p/r) (which
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Chapter 1: Thin Filament Dynamics

is what we require to recover (1.3.2)). This means that when L is given by (1.2.6),
then Q corresponds to the integral, over the length of the filament, of the difference
between the Biot—Savart integrand and its approximation, obtained using the Taylor
series expansion of the filament curve.

On the other hand, if L does not satisfy (1.2.6), then we must have L < mp. The

velocity field v,, given by (1.3.2), can be rewritten as

Vo = é%e + 4—17:—[)- { {m (i’: ) - 1] sin(g)e, + [ <T>] cos(¢)eg}
[0 (0) s o () Yoo )

00X, I'r?
v T o (I2) 139

where

A= (55 ) +oot (5) (1.3.4)

p= —% csc (_21;—/)) cot <§Iip—> (1.3.5)

and Q. is what remains of the Biot—Savart integral after a length of 2L, centered on
the singular point, has been removed from the range of integration (i.e., the same as

the Q of (1.3.1)). For (1.3.1) and (1.3.3) to be the same, we require 8p/\ = 2L, i.e.,

Lo (E)-om() o

The only solution to (1.3.6) for L < 7p is

we take L to satisfy

L=0. (1.3.7)

However, this violates the assumption that L scales like R = p. Consequently, we
conclude that if L scales like p, then the desingularized Biot-Savart integral, Q,
corresponds to the integral, over the length of the filament, of the difference between
the Biot—Savart integrand and H(1 — |s — s'|/L) times its approximation using the

Taylor series approximation (where H is the Heaviside step function).
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Chapter 1: Thin Filament Dynamaics

Now we turn our attention to the inner flow region where the radial coordinate is
scaled by the core radius g, i.e., we introduce v’ = r/a. As we mentioned in section 1.2,
a complete description of the equations in the inner region is provided in appendix A.
However, for the sake of continuity we repeat some of the important equations here.

The velocity field in the inner region is written as

r
vV = ——{’U(O)89 + w(O)s—f—e (u(l)er + v(l)ee + w(l)s)

2ma

+€? (u(z)er +vPey + w(2)s> + 0(63)}. (1.3.8)

We are interested in the third term in this perturbation expansion. The radial and

azimuthal velocity components have the following Fourier decomposition

u® = u(()z) + ug) cos(¢) + ug) sin(¢) + uf,";) sin(2¢) (1.3.9)

v = v(()z) + vgf) cos(¢) + vg) sin(¢) + vg) cos(29). (1.3.10)

and vg) were not matched by Fukumoto and Miyazaki, yet equation

(1.3.1) describes their asymptotic behavior. The Euler equations predict that vg)

The terms ug)

satisfies
(2) 10 2
v = 55 (M) -

and that u§22) satisfies

0 1
577 (T’zuill)) + ‘Z-T,'U‘(:}) (1311)

N

2ul? 3 Oug) 1 (0%©® 180 25\
or'? roar v\ or72 +;‘—' or' r'2 92

=F [v(o)(r'), w<°>(r')] (1.3.12)

where the right-hand side is a complicated functional of the leading order core veloci-
ties (see appendix A). The differential operator given by the left-hand side of (1.3.12)
has regular singular points at ' = 0 and r’ = co with ordinary points for 0 < r' < co.
Using the asymptotic form of v(®) (which ~ 1/r',) as r' — oo, we find one solution
ul (r) ~ r and the other solution u” (r') ~ 1/r'"® as r' — oo. Alternatively, there is

one solution u{(r') which vanishes at the origin and a second solution u{(r') which is

10



Chapter 1: Thin Filament Dynamics

singular at the origin. Consequently, the solution to (1.3.12) can be written as

ud () = 7 ui(r)

+uoo(r)/ o (5) /en uoo(n)F[ ‘°’(n),w(°)(n)] dn, (1.3.13)

which vanishes at the origin. Now it is clear we must have b and ¢ (not both zero,) such
that ul(r') = bul (r') + cul (r'). The constants b and ¢ are not free, but depend on
the form of the leading order azimuthal velocity v(®) through the differential equation

(1.3.12). According to (1.3.1) we have the following asymptotic form for the velocity

component u( )

2, 3" 2L ¢
a2 Sa[ln(r) 3
_ 3 iy S 2L\ _4 1) . (1)
=-3" 1n(r)+8r [ln (7 —-—?: (Q ‘n+ Qg -b) (1.3.14)

where the last terms come from the desingularized Biot-Savart integral. Now the

asymptotic form of (1.3.13) is

3 3 2
uf) ~ 5" "In(r') +r' {vﬁf)b+ A+ ;2 } (1.3.15)

where k' = Rk and

¢
A= lim {/0 n uoo(n)F[ ), w® ()| dn - -;—ln(C)}- (1.3.16)

(—o0

Comparing (1.3.14) and (1.3.15) we find

3 2L 4 3 1 1
2p == |1 Il -=_=C oW . ™ .p). 5

The contributions from the desingularized Biot—Savart integral provide terms that re-
move the dependence of L from the right-hand side of (1.3.17). Clearly, the matching

has provided no further information on L.

1.4 Other equations of motion used in the literature

There are three other equations of motion that are used quite frequently in the lit-

erature. These are associated with the local induction approximation, the cut—off
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Chapter 1: Thin Filament Dynamics

approximation and the Rosenhead approximation. Since we use these equations at

various points throughout this work, we provide a brief description of them here.
The equation associated with the local induction approximation is the subject of

a very large body of work, the most of the three equations. In the local induction

approximation, the equation of motion of the filament is taken to be given by
X T
X_T (3) b, (1.4.1)

l.e., it is the limit of the equations presented in section 1.2, when a/p — 0. Usually,
it is assumed further that In(p/a) varies slowly enough that it can be treated as a
constant over the length of the filament and consequently it is absorbed, along with
I'/4r, into the time to yield the following nonlinear equation

0X 90X 9 0°X
Ot,  Os Os?

(1.4.2)

where t, 1s the scaled time and the right-hand side follows from the Frenet-Serret

formulae. Hasimoto (1972) showed that if one considered the complex scalar function

¥ (s,ts) given by
Y(s,te) = K(s,t.) exp (z/ 'r(s',t*)ds') , (1.4.3)
0
then the local induction equation (1.4.2) is equivalent to the cubic Schrédinger equa-
tion

.0 1 2 _

where A(t,) is an arbitrary function of t,. This new formulation of the equation
of motion is very advantageous, since it is well known that the cubic Schrédinger
equation is completely integrable, possessing soliton solutions as well as the more
general cnoidal wave type solutions (see section 17.8 of Linear and Nonlinear Waves
by Whitham (1974)). The equation of the filament for the former case was found by
Hasimoto by integrating the Frenet—Serret formulae. The equation of the filament
for the latter case is very hard to obtain by integrating the Frenet-Serret formulae,

but Kida (1981) obtained the equation directly from (1.4.2). Since Hasimoto’s work,
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Chapter 1: Thin Filament Dynamics

there has been a profusion of papers which examine various aspects of the local in-
duction equation from the viewpoint of nonlinear wave theory. Unfortunately, the
local induction equation has some serious drawbacks since it admits unphysical fila-
ment shapes as solutions (i.e., filaments which intersect themselves). Also, from the
point of view of dynamics, the equation does not account for self-induced stretching
of vortex filaments.

The second approximation, the cut-off approximation, has been unjustly cast as
second rate by many workers in vortex dynamics over the last couple of decades. It
appeared in its first incarnation when it was proposed by Crow (1970) that the Biot—
Savart line integral could be desingularized by removing a small interval of length
2aé, centered on the singular point, from the range of integration, yielding

X(s,) T [ (Xs)=X(sut)
ot & A] X TX(o,0) = X(su )P (1:4.5)

The subscript [4], on the integral in (1.4.5), indicates that the length 2aé is omitted
from the range of integration. Crow computed the values of § which admitted the
correct speed for a vortex ring and the correct frequency of rotation for a displace-
ment wave on a columnar vortex. Both values of § were identical, although Crow
admits that due to an arithmetical error he originally believed that there was a small
discrepancy. Moore and Saffman showed that the cut-off equation was asymptotically

(1)
0

equivalent to their equation when wy ' = 0 and the cut-off length is given by

In(26) = — Ao

==t (7 [[elie] e (7))

1 8r? [ 2
tst o 0 IERGIES (1.4.6)

Essentially, this is the same prescription for § obtained by Crow. However, Moore
and Saffman’s equations are valid for arbitrary shaped filaments, so (1.4.5-6) is also
valid for arbitrary shaped filaments. It is this last fact that has been a source of
contention, since some fluid mechanicians remain under the impression that the use

of the cut-off equation for a filament of arbitrary shape is ad-hoc. This impression

13



Chapter 1: Thin Filament Dynamics

is not correct, since Moore and Saffman justified the equation to be asymptotically
valid for filaments of arbitrary shape.

The last approximation we consider, the Rosenhead approximation, is fundamen-
tally different from the other two types of approximation, since the corresponding
equation of motion cannot be considered as a formal or asymptotic limit of the equa-
tions in section 1.2. In the Rosenhead approximation the kernel of the Biot-Savart
integral is desingularized, so that the equation of motion is written as

OX(st) _ T [ _ (X(s,t) = X(s0,t) "
ot dm /{61 *X (1X(s,8) = X(s, )2 + p2)** (40

where
p=-aexp(6—1). (1.4.8)

Such a method of desingularization is usually classed as belonging to a group of
methods called “blob” type methods (Leonard (1980)). The expression (1.4.8) for
p 1s obtained by forcing (1.4.7) to be equivalent to (1.4.5). When Rosenhead (1930)
originally proposed (1.4.7) as an equation describing vortex filament motion, he simply
stated that p scaled like a. In fact, Thomson (1883) used this expression with = a
and obtained the expression (I'/47p)[In(8p/a) — 1] for the speed of a vortex ring, the
correct speed having —1/4 in place of the —1.

To summarize, we have seen that equation (1.4.2) is completely local and inte-
grable, and accordingly has been analyzed from a number of different points of view.
However, we have noted that the equation is generally accepted as providing a poor
model of vortex filament motion. Equation (1.4.5), on the other hand, contains much
more physics — the effect of the flow in the core is taken into account and vortex
filament stretching is permitted. This has lead to the equation being used in a nvmber
of analytic investigations into questions concerning the stability of vortex filaments.
In chapter 3 we use the cut-off equation to consider the stability of a vortex ring
confined to move inside a cylindrical pipe and along its axis. Unfortunately, the cut—
off equation is inconvenient to use in numerical algorithms, since the segment cut—off

from the range of integration usually interferes with the numerical grid. The Rosen-
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Chapter 1: Thin Filament Dynamics

head approximation is better suited for numerical algorithms. In chapter 4 we obtain

steady periodic planar filaments that are solutions of the Rosenhead equation.

15



Chapter 2: Ultra-Thin Filaments

CHAPTER 2

ON THE DYNAMICS OF ULTRA-THIN VORTEX FILAMENTS

2.1 Introduction

In this chapter we consider a special case for the motion of thin-cored vortex filaments.
As described in chapter 1, a vortex filament is assumed to be a concentration of
vorticity in a cylindrical type tube centered on some time dependent space curve
X(g,t), where ¢ marks position along the curve. The core radius of the filament is
denoted by a and is assumed to be small compared with some length scale associated
with the filament; typically, the length scale chosen for comparison is the radius of
curvature p. The strength of the filament is denoted by I'. We saw that the Biot—
Savart integral, while correctly giving the velocities at points away from the core, gives
a divergent answer when used to describe the velocity of a point on a non-rectilinear
filament (see also An introduction to fluid dynamics by Batchelor (1967),) and that
the actual velocity of the filament depends on the internal core structure. This is

manifested by the Kelvin (1867) formula

0- 5 (2)-]

for the speed of an inviscid uniform thin-cored vortex ring. Subsequent to Kelvin’s
work, studies of vortex filament dynamics employed ad-hoc desingularizations in the
Biot-Savart integral (e.g., the works of Thomson (1883), Rosenhead (1930) and Crow
(1970) consider various desingularization procedures, some of which are described in
section 1.6). The desingularization procedure proposed by Crow was to remove some
specified interval, about the singular point, from the range of integration. As we saw
in section 1.4, for a filament centered on the curve X with arclength 3, this procedure

gives the following cut—off integral for the equation of motion

OX(5,t) _ T [ . (X()=X() .
T /[5] . |X(§)—X(§,,)43d o (2.1.2)
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Chapter 2: Ultra-Thin Filaments

where [6] indicates that a length 2a8, centered on the point with arclength coordinate
3, is removed from the range of integration. The cut—off length was usually chosen to
yield the correct velocity for a vortex ring with the same core structure. This approach
is called the cut-off approximation. Moore and Saffman (1972) re-examined the
general problem and obtained an asymptotically valid approximation for the velocity
of an arbitrary thin—cored vortex filament, by using a force balance argument in
an asymptotic matching procedure. They then showed that this expression, for the
velocity, was asymptotically equivalent to a cut—off integral with a specific cut—off
length and thus removed the ad-hoc nature of the procedure. The prescription for
the cut—off length was, in fact, identical to that in the cut—off approximation, but to
emphasize that the procedure has been made rational we shall refer to the formulation
proposed by Moore and Saffman as the cut—off equation. The Moore and Saffman
analysis only explicitly deals with the case of inviscid flow with the vorticity in the
core having compact support, but the viscous or infinite support corrections to the
cut-off length are obviously the same as those prescribed by Saffman (1970) for the
velocity of a viscous vortex ring, so that the formula (3.5) in the Moore and Saffman

paper becomes the general formula
2 r 2 oo
In(26) = —In(a) — lim j4iT—-/ ¢v?d¢ —1In(r) | + E -+ -8—1/ Cw?d¢, (2.1.3)
r—oo \ I'? J, 2 I? J,

where v and w are the azimuthal and axial velocity, in the core, as functions of
distance, (, from the center line. The equations (2.1.2-3) can easily be shown (see
section 2.4) to be a transformation of equations (6.1-5) in the paper by Callegari and
Ting (1978) with a = pm, where v is the kinematic viscosity.
Recently, a new equation of motion has been proposed by Klein and Majda
(1991a,b) for a vortex filament centered on the following space curve
X(5,1) = §s¢ + X3 (—g-, —i—> ) (2.1.4)
e’ g(e)
where the tilde symbol is used (and will be used subsequently) to indicate non-
dimensional variables. Lengths are made non—dimensional with respect to a reference
radius of curvature pg, velocities are made non—dimensional with respect to the ref-

erence speed I'/47py and time is made non-dimensional with respect to the reference
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time 47p%/T. Scaling in this way leads to a non-dimensional radius of curvature
p = O(1). The type of filament described by (2.1.4) is a perturbation of a straight
line vortex, where the unit vector sy is parallel to the straight line and § measures
distance along the straight line. The type of situation being considered is shown in
figure 2.1.1, where we depict the filament curve as being enclosed in a tube, represent-
ing the vortex core. The amplitude of the perturbation of the curve from the straight
line is given by D, which is O(e?p). The wavelength of the perturbation is A, which
is O(ep). The perturbation parameter € is assumed to be small and is related to the
dimensionless core radius, @, through the following relation

K [m (ﬁ) + C] =1, (2.1.5)

a

where C' is an O(1) quantity, which depends on the core structure as
~ . 1 4 "~2 ~ ~ 1 1 oo -~ ~2 ~
C=In(a)+ lim [ = [ (3*d(—In(F) | — = — = Cw*d¢, (2.1.6)

where 0 and @ are dimensionless azimuthal and axial velocities in the core, scaled
on the core radius a instead of pg. Note that a is O(eexp(—1/€?)), so that such
filaments can justifiably be called ultra-thin. (In appendix C we show that for the
trailing vortex of an aircraft, assuming A scales on the wingspan of the aircraft, the
ultra—-thin requirement means that for € < 0.2 the core radius is less than the mean
free path in air, at standard atmospheric conditions.) The scaled time appearing in

(2.1.4) is related to the time ¢ by

- 2 -

f= [111 <—€-> + C] f. (2.1.7)
Finally the function g(e) is taken to be €2.

As we mentioned above, the Klein and Majda regime, which requires the scaling
specified by (2.1.5), is a special limit of the more general case of thin—cored vortex
filament motion, where it is assumed that the ratio a/p < 1. It is special because
1t assumes that an intermediate length scale is present in the filament geometry.

This intermediate length scale is the wavelength A of the perturbation, which is

assumed to be much larger than the core radius and much smaller than the radius
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Figure 2.1.1 The filament and associated dimensional parameters. The

radius of curvature, p, of the filament is O(A%2/D). A and D are related to
e by Ap=0(e), D/p = O(€?).

of curvature. From the numerical work of Chorin (1982) and Siggia (1985), Klein
and Majda suspected that filaments exhibiting this ordering of scales could develop
hairpin and kink type structures through stretching brought about by the filaments
self-induction. Inspired by this Klein and Majda considered the filament, described
above, and followed the procedure used by Callegari and Ting, where the flow inside
a viscous vortex core is matched to an external irrotational flow described by the

Biot—-Savart integral, to obtain the following asymptotic equation of motion

oX

5 = &b + €27 [5((2)} XS, (2.1.8)
where 7 is a linear integral operator given by
o h? dh
I[Y]= / (Y(a +h)=Y(h)=hY,(c +h)+ —é—H(l — Ih|)Ym,(a)> [h_lg’ (2.1.9)

with H denoting the Heaviside step function. At this point we remark that we shall
use the caret symbol to denote that the variables we are working with are those as-

sociated with the perturbed filament. Consequently, § is the arclength associated
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Chapter 2: Ultra—-Thin Filaments

with the perturbed filament curve, while s is the arclength along the straight line or
unperturbed filament curve. By a clever application of the Hasimoto (1972) trans-
form, Klein and Majda showed that (2.1.8) was equivalent to a nonlinear Schrodinger

equation which takes the form
Op % L (142 .
—gt =+ e (5|6 $-T0) (2.1.10)

where the filament function g/: depends on the. curvature, &%, and torsion, 7T, in the

% = kexp (z /0 Td§> : (2.1.11)

and the time scale 7 is t/g(€). The novel equation (2.1.10) shows explicitly how

following way,

the integral operator competes with the cubic nonlinearity (i.e., how the stretching
competes with the local induction part of the motion). Owing to the nature of the
terms contained in (2.1.10), the equation is called the filament equation with self
stretching, by Klein and Majda.

In (2.1.2) and (2.1.8), we have two apparently different equations claiming to
describe the same phenomena, and it is important to know if they are actually the
same, or if in fact they contain different physics. For this purpose, in section 2.2,
we consider the problem of the rotation rate of a helical filament of large pitch, i.e.,
one for which D < A. Moore and Saffman applied their equations and obtained an
expression for the rotation rate. This expression, obtained assuming a < p, agreed
with the results obtained for helical filaments that were infinitesimal perturbations
of a columnar vortex (i.e., filaments for which D < a). As a particular example of
the latter problem, we have the study of Kelvin (1880), who considered the situation
where the vorticity in the core was uniform and there was no axial flow in the core.
We go on to describe the work of Klein and Majda (1991b) who considered the motion
and stability of a helical filament in their regime. The expression obtained from the
Klein and Majda equation, for the rotation rate of a filament having uniform vorticity
and no axial flow in the core, differs from the Kelvin expression. It is shown, however,

that we can attribute this difference to the transcendentally small core required in
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the Klein and Majda geometry, which violates the D <« a criterion necessary for
overlap with the Kelvin analysis. After a careful reconsideration of the problem,
taking account of the transcendentally small core, we show that the cut-off equation
predicts the same rotation rate as the equation of Klein and Majda. In section 2.3 we
establish the exact relationship between (2.1.8) and the cut—off equation, and we show
that using the same filament, as used by Klein and Majda, in the cut-off equation
leads to (2.1.8), when In(26) = —C, which is obvious from (2.1.3) and (2.1.6). Thus
the filament equation with self stretching is equivalent to a special case of the cut—off
equation.

It is now useful, in order to facilitate the comparison of (2.1.2) and (2.1.8), to put
the equations of Klein and Majda into dimensional form. The relevant dimensional

quantities, according to the scalings used by Klein and Majda, are

- 47 p?
X =Xpy, a=apy, A=¢€py, t=1t 7;_,'00

. (2.1.12)

The quantity A is the wavelength of the perturbation. We note that A is defined by
(2.1.5) if a is given and the characteristic radius of curvature pg is specified. With
these scalings the equation of the perturbed filament, which was given by (2.1.4),
becomes
X(s,t) = ssq + X® (= LT 2.1.13)
S,t) = ssg + € N Imeagt) (2.1.
The asymptotic equation (2.1.8) describing the motion of a point on the filament

transforms to the dimensional equation

oX . r 2€p0 ~ r (2)
5 = I [ln( . ) +CJ kb + 47rp(2)I [X ] X Sg, (2.1.14)

where in terms of dimensional quantities, C, given by (2.1.6), transforms to

) 4rt [T 1 82 [
C:1n(a)+rlgglo <?7r2_/0 Cv2dC——ln(r)> 5= TE-/O Cw?d(¢, (2.1.15)

which is — In(24).
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2.2 The rotation rate of a helical filament of large pitch

Moore and Saffman (1972) considered the general case of the motion of a curved,
thin cored vortex filament containing axial flow. (The work of Adebiyi (1981), who
rigorously examined the existence and motion of helical filaments of small cross—
section by reformulating the problem in terms of an integral equation, ought to be
mentioned at this point. He independently confirmed that the equation of motion
for a helical filament was correctly given by the Moore-Saffman equations with the
error being the same as that given in the Moore-Saffman paper.) As mentioned in
section 2.1, they showed that their equations could be reformulated as the cut—off
equation, i.e., equations (2.1.2-3). They applied the cut—off equation to the motion
of a filament which takes the shape of a helix of large pitch and is given by

xzp(icoseﬂsina—k(a‘m)), (2.2.1)
Y

where the pitch of the helix is 1/4 and the radius of the cylinder, whose surface

contains the helix, is given by D. The radius of curvature is p = D + D/+%. Also,
{2 (to be found) is the rotation rate of the helical filament. For small v (i.e., large

pitch), the rotation rate was found to be

_Iy? 2D 1 4 D
Qpms = D [ln (%) + 3~ E-In 25} +O0(¢*In (%—)) (2.2.2)

where 6 satisfies (2.1.3) and E = 0.5772... is Euler’s number.
Klein and Majda (1991b) applied their filament equation (2.1.8) to a number

of specific problems. Their studies culminate with some numerical experiments that
indicated that some solutions to their equations developed kink or hairpin type struc-
tures in finite time. (It is worth noting that Moore (1972), Dhanak (1981), and
Dhanak and de Bernardinis (1981) carried out computations, using the Rosenhead
desingularization procedure, which showed no kinking or hairpins for the evolution
of some types of vortex filaments.) However, of interest to us is their study on the
motion and stability of a helical filament, and we now compare the results of the
cut—off equation with the Klein-Majda equation. Klein and Majda considered the

following filament function
bp(o,7) = Aexp (z (Ea - QKMT)> , (2.2.3)
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which represents a helix with constant curvature A and constant torsion £ /€. Sub-
stitution of (2.2.18) into the filament equation (2.1.10) yields the following for the

rotation rate

Qreny = €2 [1 4 @ _E- 1n(|£|))] _ %6222, (2.2.4)
which is made dimensional by multiplying by I'/4me* p2. The relationship between the
variables in (2.2.3-4) and those in (2.2.1) is easily established. Consider the following

equation for the helical filament, which at time ¢ = 0 takes the form
X = €¥Dy [icos(o) + jsin(o)] — ks, (2.2.5)

where Dy = O(po) and o is given by s/A. Now we recall that py is assumed to be a
scaling factor so that the true radius of curvature, p, satisfies p/py = O(1). We will
be more specific at this point and take pg = Dy. The filament given by (2.2.5) is of
the Klein and Majda type (i.e., it is in the same form as (2.1.13)) and is a helix of

large pitch. The non-dimensional curvature and torsion of the filament are given by

=1-¢ (2.2.6)

__1 (1-¢&) (2.2.7)

€

LN I S NN

which along with (2.2.5) yields the following for the dimensional rotation rate

QO = ) - - - ] 2.
KM 471'62D(2) [ln ( a ) 1 E+ 0(6 )] (2 2 8)

Now for the situation being considered (i.e., uniform vorticity and no axial flow

in the core) the rotation rate of the filament given by (2.2.2) reduces to

T2 2D 1
QK = 47TD2 [ln (%) + Z - E] . (2.2.9)

This is the classical Kelvin result, obtained by Kelvin through the consideration of
infinitesimal perturbations to a columnar vortex (i.e., perturbations for which D < a).

Comparison of (2.2.1) and (2.2.5) establishes the relationship between the various
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parameters; simply take D = €2D, and 7 = e. Consequently, (2.2.9) can be rewritten

as

Q 2 [m (265") 41 E] . (2.2.10)

- 4re? D} 4

Clearly, (2.2.10) differs from (2.2.8) by I'/8ne*D2.

This apparent paradox seems to indicate that the Klein and Majda equations are
somehow including some physical effect absent from the previous theories. However, as
we alluded to earlier, this is not the case. To see this we return to the filament (2.2.1)
and reconsider the application of the cut—off equation. To have an overlap between
the thin filament theory and the Kelvin analysis requires v < 1 and consequently the
Moore and Saffman calculation retained only the leading order terms in . Retaining

higher order terms in v, we obtain the following equation for the rotation rate

Iy? 2D 1 1, 2D 1
= m({Z)V+2—-E-= il IO —Z
Q2 D [n<7a>+4 E 57 (ln<7a) 4ln2 2+E)]

+0(+*In <%)). (2.2.11)

(The calculation of (2.2.11) from (2.1.2) and (2.2.1) is an involved and difficult cal-
culation, and the details are presented in appendix D.) In terms of the variables Dy

and e, this is written as

. r 2€D0 1 l 9 —];
Q_47“21)(2; [ln( a >+4 E 2(1+6 (E 1 41n2))},(2.2.12)

which agrees with the Klein-Majda result. In transforming (2.2.11) to (2.2.12) we
clearly see that the difference between (2.2.8) and (2.2.10) is due to the fact that we

have a situation where In(D/av) ~ 1/4? (the ultra-thin condition) and consequently
the error terms of (2.2.2), which were ignored in obtaining (2.2.9) (from which we
obtain (2.2.10)) are significant!

In summary we have that the rotation rate of a helical filament of large pitch
depends, from (2.2.11) and the relation p = D + D/~?, on the value of v and the
ratio a/p. In figure 2.2.1 we graphically portray this dependence. The original Kelvin

result, (2.2.8), required D < q, and is valid in a region approximately corresponding
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Figure 2.2.1 The rotation rate, §, as predicted by the cut—off equation (for
a helical filament of large pitch with uniform vorticity in the core) depends
on the values of a/p and the pitch 1/~. In regions 4 and B we have Q = Qy,,
while in region C' the cut-off equation indicates that there are corrections
that become important (as explained in the text). The Klein-Majda regime

applies on the dashed curve, near the boundary of region C.

to region A of the figure. The boundary of region A corresponds to D/a = 0.1. The
extension of Kelvin’s result, by Moore and Saffman, requires that 42 In(D/ay) < 1.
This means the extension is valid throughout a region approximately corresponding
to region B, where the boundary of region B corresponds to v2In(D/ay) = 0.1. We
depict another region C' which has a boundary corresponding to v2In(D/ay) = 1.
The equation (2.2.11) is valid throughout the region C. Clearly the error terms in
(2.2.2) neglected by Moore and Saffman, become more significant as we move deeper
into region C'. Not surprisingly, the Klein and Majda case lies near the boundary

of region C, and it is represented by the dashed curve. This curve corresponds to

25



Chapter 2: Ultra-Thin Filaments

v*[In(2vp/a)— 1/4] = 1. We also note that since the helix is of large pitch, we require
v < 1 which means we should only consider the analyses in a thin strip parallel to
the a/p axis. (However, in figure 2.2.1 we have taken a range in v from 0.0 to 0.5, so

as to allow a clear identification of the various regimes.)

The second feature of the helical motion considered by Klein and Majda was the
stability of the helical filament. The stability question has been previously studied by
Widnall (1972) and Fukumoto and Miyazaki (1991), both using the cut—off equation.
(The analysis of Fukumoto and Miyazaki is a reworking of Widnall’s analysis to
include some of the second order effects, particularly the effect of an axial velocity.)
Unfortunately, there is insufficient data available to make a direct comparison between
the two results; however, qualitative agreement can be shown to exist if we consider
figure 7 of Widnall’s paper along with figures 3.1-2 of Klein and Majda’s paper.
The values of the parameters for the unperturbed helix in the Klein-Majda case
are A = 4.0, £ = 2.0 and € = 0.5. The helix of Widnall’s paper is characterized
by two parameters R and k, where R is the cylinder radius and 1/Rk is the pitch.
Three parameters are used to characterize the helix in the Klein-Majda case, with
the additional parameter specification setting the size of the core radius. The helix in
the Klein-Majda case corresponds to a helix in Widnall’s analysis with Rk = 1 and
a/R ~ 0.0019. The perturbation wavenumber in the Widnall case is denoted by v
while the perturbation wave number relative to base helix wave number is given by
B in the Klein-Majda case: these two quantities are related by v/k' = /2, where
k' = k/(1 + k*R?). For the Widnall analysis the ratio of core radius to helix radius
ranges through the discrete set 0.01, 0.1, 0.22, 0.27, 0.33. For Rk = 1 we find two
bands of instability on the Widnall graph, where one of the bands is for long waves
and the other for short waves. The band for short waves corresponds to the so—called
spurious instability mode. Both analyses confirm that the mutual inductance modes
of instability are not present for the range of parameters considered by Klein and
Majda, and overall the results of the Klein-Majda analysis closely mirror the Widnall
results. In the Klein-Majda analysis greater detail is given of the boundaries of the

instability bands. The individual boundaries, for the different values of a/R, for the
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instability band corresponding to long waves were omitted in the Widnall analysis and
were said to be characterized by the zero core-radius limit. Fukumoto and Miyazaki
provide details of this instability band, which includes some of the effects of an axial
flow in the core. For more details of the various analyses, the reader is referred to the

respective papers.

2.3 The cut—off equation for the ultra—thin filament

We now show that the helix is not just a special case, but that the Klein and Majda
equation follows from the cut—off equation for the appropriate type of filament. We
apply the cut—off equation to the type of filament considered by Klein and Majda and
show that their equations follow directly. On one level the calculations presented in
this section are comparable to those of section 3 of Klein and Majda (1991a) since our
calculation considers a reduced Biot—-Savart type integral (the cut—off integral), while
their calculation considers the full Biot-Savart integral. The fundamental difference
between the calculations lies in the fact that our integral has no singular points, and as
a consequence, the distance from the field point to the filament can be set to zero. This
fact is vital to our calculations, since it allows us to make certain simplifications in
the course of our calculation, simplifications which cannot be made when the distance
to the filament is nonzero.

The filament Klein and Majda consider is upon suppression of the time depen-

dence written as

X = ssg + 2XD(0), (2.3.1)
where now
s

with A = epo, from (2.1.12c). Now we use this filament along with the various
assumptions to evaluate how the cut—off equation behaves. A careful consideration
of the terms in the integrand of the cut-off equation allow us to write the cut—off
equation as
JIELE
) 1X(8) = X(5.)]

* =
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</_a5u/A N /00 ) (X(2)(U +h) = X®B(o) — AXP (o + h)) X

—o0 Sp/A

/2 an

ps IR

(so + pi0x5,2>(a + h)) (1 . |x<2>(a +h)— x<2>(a)| ) 2 (23.3)

In (2.3.3) we have an exact expression for the cut—off integral. The quantity p ap-
pearing in the cut—off limits comes about since we have changed the variable of inte-
gration. A simple consideration of the relationship between the arclength along the
unperturbed filament, s, and arclength along the perturbed filament, §, tells us that
p = 14+ 0(e?). If we use the fact that we are considering a situation where a < ¢, then
we can be more precise in determining the dependence of y on e. However, for our
situation the previous representation is adequate. We now show that (2.3.3) contains
the equations of Klein and Majda. First we rewrite it as the sum of three separate

integrals

. X(§) — X(§*) . 1
§a X — dsy = = (L + L+ I3). 2.3.4)
/m 1X(3) = X(3.)F AR (

The first integral is

I = /Oo (X(2)(a +h)=XP (o) = XD (s + h) + —;—hZH(l - lhl)X§22(0)> X

€ €2 2\ ~%/2 dh
so+ —XP(o+h ) (1 + X@(g 4 h) - X® ) e
( ° 7 po (o+h) pih? (o+#) (U)I 1k
=7 [x@)} x so(1 + O(e)), (2.3.5)
where
T [X@)] -

/ B (x@)(a +h) = XO(0) = hXD(0 + h) + %h?Hu A)X2) (o )) l%}l%’ (2.3.6)

— 00

and H is the Heaviside step function. The second integral is

adp/X
I =— / (x@)(a +h)—XB(o) = kXD (s +h) + %hzx(f,,)(a)) X

—abp/A
e =32 gh
Ex@ (2) (2) ~
(s0+ =X 4 1)) (14 2 [x(o + 1) - X)) i
ad
= 0(—). 3.
() (2.3.7)
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Finally, the third integral is

—adp/A 1 1 24 (2) € )
Iy =— + —“h*X 5 (0) ) x {so+ =X, (o +h)
-1 adp/A 2 Po

32 g
|Al*

1+ ¢ ’x<2>(a+h)-x<2>(a)[2
p3h?

=Y
X)) 7 (s SXO) xXB+00. (289)
Q

A €2

Using (2.3.5) and (2.3.7-8) in (2.3.4), we find that the cut-off integral reduces to the

following expression:

/ g x = XE 4o 1o [X®] x 59+
[¢] 1X(8) — X(5.) Po

11 (A)<1+e2
Y i €
p; \aé I

Equation (2.3.9) can be simplified further by making use of the Frenet—Serret formu-

@\ € «(2) (2) aé
XU ) (So -+ ;—Xa ) X Xaa -+ O(E, —6_) (239)
0

lae. If we apply the Frenet—Serret formulae to the curve given in (2.3.2), then we find

that the curvature x and binormal b satisfy

o\ —3/2 .
) (so + ;;Xff)) x X3 (2.3.10)

Using (2.3.10), in (2.3.9) we rewrite the equation of motion for the filament given by
(2.3.1) as

ox _ T
ot 4mpd

I [X(z)} X Sg + L [ln (26p0) - 1n(26)] kb + O, EL-é) (2.3.11)
4 a €

The corresponding equation of the Klein and Majda analysis is (2.1.14). Clearly from

(2.1.3) and (2.1.15) we have that C = —In(26). This leads to the conclusion that the

cut—off equation reproduces the Klein and Majda equations upon application of their

assumptions. Indeed, it is clear from (2.3.11) that the equation derived by Klein and

Majda corresponds to the leading terms in an expansion, based on €, of the cut—off

equation. The fact that the cut—off equation reduces to the Klein and Majda equation

means that both equations prescribe the same evolution for a filament belonging to the
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Chapter 2: Ultra-Thin Filaments

Klein and Majda regime, but the Klein and Majda equation, because of its structure,
may provide a more convenient tool for describing the evolution of suitable filaments.
However, as demonstrated in Klein and Majda (1991b), filaments whose evolution
is described by the Klein and Majda equations may eventually leave the regime of
applicability of the equation. The cut—off equation, being more general, is able to
describe the evolution of the filament outside the Klein and Majda regime. Also,
1t should be noted at this point that Moore and Saffman derived further equations
which are more accurate than the cut—off equation. Needless to say, filaments that
develop radii of curvature comparable to their core radius violate the assumptions for

the applicability of any of the thin—cored filament theories.

2.4 Prescription of the cut-off length for viscous filaments

As we pointed out in section 2.1, the Klein and Majda analysis is for the viscous
situation, so we must establish that the cut—off equation is asymptotically valid for
the viscous situation. The procedure is essentially the same as that used by Moore
and Saffman for the inviscid case (described in the introduction) in that we show
that the asymptotic equations of Callegari and Ting are asymptotically equivalent to
a specific cut—off equation. The Callegari and Ting asymptotic equation of motion

takes the form

X r

5t = Qo+ g I(£)+Cilb, (24.1)

where

47 IO N | " r
C; = — li OV H(¢ #)d¢dn — —InT 4.

T—00
and where the various quantities appearing in (2.4.2) have the same meaning as their

dimensionless counterparts in (2.1.5). As before we apply L'Hépital’s rule to obtain

Cy = (_7_11% [%—2 /:( (v<°>)2dg B! I . Omg (w(0)>2 dC) . (2.4.3)

2 I?
Also, in (2.4.1) we have Q¢ = lim, ¢(Q2 + Q) where Q; is the externally induced

velocity and Qy 1s the finite part of the Biot-Savart integral

T [, (P-X(5)

= - * mdﬂ*
i | P X

Qs
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r r r P\ ¢
— (5;; 9+mcos¢e9+mln (r)b)’ (2.44)

with the point P lying at a distance r from the filament. The unit vector, €y is in
the azimuthal direction of a polar coordinate system centered on the filament and
oriented so that the radial unit vector makes an angle ¢ with the unit normal n
Essentially, the core radius a is taken to be (v/T)!/2, so we see immediately that the
concept of a nonzero inviscid vortex core is not permissible in the Callegari and Ting
formulation (the classical Kelvin formula for thé speed of a vortex ring requires such
a core). To determine the cut—off length, assume Q; = 0 (i.e., the filament motion is
self-induced) and subtract the cut-off equation from (2.4.1). After some calculation
we find that for the cut—off equation to be asymptotically equivalent to (2.4.1), we
should choose the cut—off length to satisfy

In ( ) +C=1-In (225) (2.4.5)

Solving for In(26) in (2.4.5) and using (2.4.3) we obtain

In(26) = —Ina — lim [ / ¢(v)?dC - lnr]—{-l-{- / ¢ (w)? d¢. (2.4.6)

According to (2.1.6), the right-hand side of (2.4.6) is —C and we have the result we
require. Together with (2.3.11) this shows that the cut—off equation reduces to the
equations of Klein and Majda when we use the cut—off length given by (2.4.6) and

also make the same assumptions that they make.
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CHAPTER 3

THE MOTION OF A VORTEX RING IN A PIPE
AND AN ASSOCIATED INSTABILITY

3.1 Introduction

In this chapter we consider a thin—cored vortex ring moving inside and along the axis
of a cylindrical pipe, which has a circular cross-section. We assume that the ring
radius is R, the core radius is a and the strength is I'. The pipe has radius D. The
assumption of a thin core means that the ratio a/R < 1. In figure 3.1.1 we depict

the geometry of this situation.

Figure 3.1.1 A vortex ring of radius R moving along the axis of a cylindrical

pipe of radius D. The ring has core radius a and strength T.

Problems concerning the motion of vortex rings have received a lot of attention
since the mid-eighteen hundreds. Interest in the motion of vortex rings was originally

kindled by Kelvin’s vortex-atom theory of matter. In this theory he proposed that
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Chapter 3: Vortez Ring in a Pipe

atoms were actually vortex rings in the so called ether, the ideal fluid which supposedly
filled all space. Also, in a note added to Tait’s (1867) translation of Helmholtz’s (1858)
paper, Kelvin gave an expression for the leading order velocity, U, of a vortex ring
in an unbounded fluid. The expression, which is for a ring with uniform vorticity and

no axial flow in the core, was given without proof and is

Uy = Z?FE [m (%5) - ﬂ . (3.1.1)
Amazingly, several notable fluid mechanicians attempted to derive the expression for
Uk and failed. Indeed, Thomson (1883) wrote a treatise on the motion of vortex
rings, in which he attempted to lay the groundwork for a complete mathematical
theory of matter based on vortex ring atoms. However, in the treatise he derives
an expression similar to (3.1.1), except it is of the form (I'/47R) [In(8R/a) — 1] and
when he compares this with Kelvin’s formula he claims that Kelvin’s result agrees very
approzimately with that just quoted. The reason that Thomson obtained a different
formula stems from his assumption that the core radius was symmetric about the
centerline of the ring. Hicks (1885) was the first to confirm Kelvin’s result, and
soon after Dyson (1893) computed the solution to the motion of the vortex ring to
fourth order in the small parameter a/R. The modification of (3.1.1) to include the
leading order effects of a general swirl velocity profile, in the core, were given by
Fraenkel (1970) and also by Widnall, Bliss and Zalay (1970). Saffman (1970) gave
the modifications which take account of the leading order effects of both a general
swirl velocity profile and a general axial velocity profile, the expression for the steady

speed being

Uo = 27%2- [m (%@-) - m(z&)] , (3.1.2)

where § is given by

872 [

I [ e[woe)]

~ lim (Elf_;_ /Org [v“’)(g)rdg—ln (2)) (3.1.3)
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Chapter 8: Vortez Ring in a Pipe

In chapter 1 we considered equations of motion for more general shaped vortex fila-
ments. We saw that the cut-off equation provided an asymptotically correct equation
of motion for the filament and was relatively simple to employ. The equation of

motion for a filament with centerline X(s, 1) is

X _ T (X(s,t) — X(s4,1))

o = am Jig~ T X, t) = X(sm, )

ds., (3.1.4)

where the subscript [6] indicates that a section of length 2aé centered on the point
sx = s has been removed from the range of integration. If (3.1.4) is used to compute
the speed of the vortex ring, then (3.1.2) is recovered.

Crow (1970) used the cut-off equation to examine the linear stability for the
trailing vortex pair. Widnall and Sullivan (1973) used the cut—off equation to examine
the linear stability of a vortex ring. We provide a brief description of these studies in
sections 3.2 and 3.3, respectively. The goal of our analysis, presented in section 3.4,
is to determine the effect the pipe wall has on the motion and stability. This involves
computing the motion of the ring as a function of a/R, R/D and n, where n/R is
the wavenumber of the perturbation. Accordingly, we use the cut—off equation and
build on the results derived by Widnall and Sullivan. In section 3.5 we present the
results of the computations. The main conclusion that will be drawn is that there is
a critical value of the ratio of ring radius to pipe radius, R/D, above which the ring
is subject to an instability where the ring tilts out of the plane normal to the pipe
axis. In section 3.6 we reconsider the connection that the present problem has with

the studies performed by Crow and by Widnall and Sullivan.

3.2 The stability of a pair of parallel line vortices

It 1s well known that large aircraft in flight generate a pair of strong counter rotating
vortices originating at the wingtips and trailing behind the aircraft. As it evolves, this
vortex pair undergoes a breakdown characterized by a growing sinusoidal disturbance
on both of the filaments. Eventually the peaks of the disturbance on one filament
touch those on the other filament and this is closely followed by the merging of
the cores, which takes place in such a way that a sequence of crude vortex rings

develops. Crow attempted to explain the mechanism which gives rise to the growing
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Chapter 3: Vortez Ring in a Pipe

sinusoidal disturbance. To do this he modeled the problem as the interaction between
a pair of parallel line vortices. He assumed that the originally straight vortices were
separated by a distance b, and on these he superimposed an infinitesimal sinusoidal
type perturbation of wavelength 27 /k. Although Crow allowed for either symmetrical
or antisymmetrical disturbances (in the sense that for the symmetrical case either
filament was a mirror image of the other with respect to the center plane), we shall
only consider the symmetrical case and refer the reader to the original paper for
details of the antisymmetrical case. (The reason we only consider the symmetrical
case is that the ring in the pipe has a close connection with the symmetrical case when
the ring and pipe radius are very large.) The geometry for the situation is depicted
in figure 3.2.1. Assuming a perturbation proportional to e”<!, where ¢ is the growth
rate of the disturbance, Crow used the cut—off equation and obtained the following

expression for the growth rate

o2 = ( ! ) [1 — (kb) + k*b*w(aké)] [1 + x(kb) — k*b*w(aks)], (3.2.1)

2mb?
with
P(kB) = kBK1(kB), (3.2.2)
xX(kB) = k**Ko(kB) + kBK1(kB), (3.2.3)
_ 1 [cos(aké) —1 | sin(aké) .
w(akd) = 3 RYEYT Y Ci(aké)|, (3.2.4)

where Ko(kf) and K;(kfB) are the zero and first order modified Bessel functions of
the second kind, respectively, and Ci(aké) is the cosine integral. For full details of
the derivation of (3.2.1-4), see the original paper.

The expression (3.2.1) for the growth rate can be considered to be a function
of the dimensionless parameters kb and aé/b. The boundary between stability and
instability is constructed by computing the sign of (3.2.1) for ranges of values of the
pair (kb,aéd/b). It suffices for us to say that there is a region of the (kb, ad/b)-plane
at which (3.2.1) is positive (denoting instability).

The motion and stability of the vortex pair has a tenuous connection with the

motion and stability of the ring in the pipe. To see this, consider the situation where
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Chapter 3: Vortex Ring in a Pipe

Figure 3.2.1 The geometry for the Crow problem. The originally straight
vortex pair are separated by a distance b. A sinusoidal perturbation with
wavenumber k has been superimposed on a pair of parallel vortices separated

by a distance b.

the ring radius is the same order as the pipe radius, which is assumed to be very large.
In this case the filament is straight (to first order) and is parallel to a plane wall (again
to first order). The effect the wall has on the flow is the same as that which would
be produced by an image vortex of equal and opposite strength positioned at the
same distance behind the wall. Consequently, the instability described by the Crow
analysis should occur for certain ranges of values of the ring parameters. In section

3.6 we return to this question, having fully analyzed the situation for the ring in the

pipe.

3.3 The stability of a vortex ring in an unbounded fluid

As we mentioned in the section 3.1, Kelvin’s model of the indestructible atom was a
vortex ring moving through the ubiquitous ether. In his treatise on vortex motion,
Thomson considered the stability of a vortex ring in an unbounded fluid, as a means
of demonstrating the indestructibility of such atoms. The desingularization of the
Biot-Savart integral adopted by Thomson is essentially the same as that used in the
Rosenhead equation (c.f.; equation (1.4.7)). By imposing an infinitesimal sinusoidal

type perturbation on the centerline of the core and retaining only terms of order
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In(a/R), he derived the following expression for the growth rate,

L nyv1—-n?ln (%) , (3.3.1)

0=
where n is the number of waves on the perturbed ring. Clearly (3.3.1) predicts that
for n > 1 the perturbation has a characteristic frequency of vibration or, expressed
in another way, it says that vortex rings in an unbounded fluid are linearly stable to

sinusoidal type disturbances.

Figure 3.3.1 The vortex ring geometry considered by Widnall and Sullivan.
The original ring, (a), has radius R, and the perturbed ring, (b), has a

sinusoidal perturbation with wavenumber n/R.

The terms neglected by Thomson are O(1), in terms of the small parameter a/R.
The term In(a/R) dominates the O(1) terms only if a/ R is exceedingly small. Widnall
and Sullivan (1973) performed the analysis retaining all the O(1) terms to see what
effect, if any, they had on the stability of the ring. The desingularization of the Biot—
Savart integral adopted by Widnall and Sullivan is essentially the cut—off method of

desingularization. The sinusoidally perturbed core centerline took the form
R = (R+poe™) e (6) + &ee., (3.3.2)

with respect to a cylindrical polar coordinate system. In figure 3.3.1 we depict the

relative features of the original and perturbed ring.
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The growth rate associated with the disturbance was assumed to o4, so that

0/0t(po,€0) = (Owspo, 0ws€o). Using the cut—off equation to determine the motion of

the perturbed ring leads to the following eigenvalue equation

r

TwsPo = Ws’r (6*,?1) EO
r
Uwsfo = msz (5*;n) Po,

where the self interaction terms S, and S, are given by

Sr (8im) = F(1) + 5(n — F(n +1) - S+ DF(n—1)
. (8im) = 1= SF(0) + -;-F(l) + 5 F(n)
+ %(1 —20)F(n+1)+ 7(1+ 20)F(n —1)
with

1 i -
F(m)zﬁ ) cosm#b (1 — cos b) 372 ag.

The new parameter é, is given by

Clearly, a nontrivial solution to (3.3.3-4) exists only if 0, satisfies

r \?
2 = . .
Oy = (47rR2) Sy (64;5n) S, (84;n).

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

When the right-hand side of (3.3.9) is positive, there is a corresponding instability

assoclated with the values of the parameters (6.,n). Widnall and Sullivan found that

for thin cores instability set in only at values of n which are very large. These large

values of n correspond to very small values of the wavelength of the perturbation,

which violates the assumptions needed for the application of the cut-off equation.

(This fact was pointed out by Moore and Saffman (1974), who verified that the

application of the cut—off equation predicted a spurious instability for short waves on

a hollow thin—cored vortex ring. However, an analysis which does not use the cut—off
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equation and predicts the short wave instabilities for a thin—cored vortex ring was
presented by Widnall, Bliss and Tsai (1974) and in more detail by Widnall and Tsai
(1977).) Alternatively, we may say that a thin cored vortex ring in an unbounded
fluid is stable to long wavelength perturbations (i.e., perturbations that permit the
application of the cut—off equation). Clearly, this problem has a simple connection to
the stability of a ring in a pipe — take the case where the pipe radius is very large
compared to the ring radius. In this case the ring essentially moves in an unbounded
fluid and the stability results of Widnall and Sullivan can be applied. In section 3.6
we compare (3.3.9) to a corresponding result for the stability of a ring in a pipe and
estimate the magnitude of the additional terms coming from the interaction of the

wall and the ring.

3.4 Analysis for the vortex ring in a circular pipe

Before proceeding with the analysis, we note the work of Raja Gopal (1963), who
computed the steady speed of propagation, U, of a circular ring in a cylindrical pipe.
By assuming that the wall was equivalent to an image vortex system with cylindrical

symmetry, he obtained the following expression for the speed

U= :L:—R [ln (?) - %J _ 5;5- Oootlzl((gt t)) L(ROL(ROd,  (3.4.1)

wher I, and K, are modified Bessel functions of order v. The first term on the right—
hand side of (3.4.1) is Kelvin’s expression for the self-induced speed of a vortex ring.
The second term is the component of the speed induced by the wall. The leading
order effects of general axial and swirl velocity profiles, in the core, have not been
included in (3.4.1), but will clearly only effect the self-induced part of the speed. We
confirm this in what follows since a by—product of our analysis is an expression for
the steady speed of propagation of a circular ring which includes the leading order
effects of general axial and swirl velocity profiles in the core.

Now we proceed with a description of the geometry of the problem. We assume
that the unperturbed ring moves along the axis of the pipe with a steady speed U.
We adopt a cylindrical polar coordinate system, (r, 6, z), with the z—axis coinciding

with the axis of the pipe. The frame of reference used is the frame in which the
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unperturbed ring is stationary. Superimposing an infinitesimal perturbation on the

centerline of the core leads to the following expression for a point on the filament
X =(R+er'e™e™) e (0) + ez'e™e e, (3.4.2)

Although the real part of the right-hand side of (3.4.2) is the physically meaningful
part, the linear analysis means that products of complex terms will be ignored and
so we can manipulate X as given. In figure 3.4.1 we give a sketch of the perturbed

ring inside the pipe.

2rR/n

Figure 3.4.1 A sinusoidally perturbed ring inside a pipe. The perturbation

has wavenumber n/R, where R is the original radius of the ring.

The velocity field of the fluid in the pipe is made up of two parts: the first part
1s induced by the vorticity in the ring, and the second part is induced by the wall
(or equivalent image vortex system). The part induced by the wall can be written as
the gradient of some potential field ¢ (i.e., the velocity field induced by the wall is
irrotational in the pipe). Consequently, the velocity u(P) at some point P = (r, 6, 2),
in the pipe and outside the vortex core, is given by

u(P) = gy fs* X T X*[3d8* + V. (3.4.3)
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For a point P = X on the centerline of the core, we must replace the closed integral
$ by the cut—off integral f[ -

The linearization assumption allows us to write the potential as
@ (r,0,2,t) = —Uz + po(r, 2) + epn(r, 2)e™ e + O(e?). (3.4.4)

The first term on the right-hand side of (3.4.4) signifies that the fluid velocity is —Ue,
as z goes to oo, in the frame of reference of the unperturbed ring. The remaining
parts of the potential must vanish as z — Fo0o. Since ¢ satisfies Laplaces equation

we can apply a Fourier transform and find that the potential can be rewritten as

¢=-Uz+ / Ao (K)o(kr)e™ % dk

-0

b eeinteot / An(R)Ta(kr)e™ ™ dk + (), (34.5)

The unknown functions Ay(k) and A, (k) follow from the condition that the normal

velocity component vanishes on the pipe wall, i.e.,
Op r (Pw — X,)
—(D,0,z) = —— | e, (6) - * X m———— X 4.
87'( ,0,2) yy (e( ) fs X|PW—X*|3 ds (3.4.6)

where the radial component of Py is D. To get precise expressions for the functions

Ao(k) and An(k), we linearize the Biot-Savart term

r Pw —X,) — inf ot 2
i (% Sk X mds*> e, =ug(D,z) + e’ e un(D, z) + O(e*) (3.4.7)

where

w(D.2) = TR/dx [ zcost. [+ 7] 7" do, (3.48)
un(D,z) = 3FR7“'/47r/ zcos8,e'™% [Dcosé, — R) [@? + z2]—5/2 a6,

-
™

+ FRz'/47r/ e [insin @, — cos6,] [@® + 22]-3/2

dé.

+ I‘r'/47r/ ze'™ [insin 6, + cos 6,] [@® + %)

-7

—7 48, (3.4.9)
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with
w? = D* —2DRcos b, + RZ. (3.4.10)
Applying the inverse Fourier transform to (3.4.6) yields

kAo(K)I (kD) = —51; / ug(D, z)et** dz (3.4.11)

kAn (K (kD) = _-2}; / un(D, 2)e** dz. (3.4.12)

Substituting (3.4.8-9) into (3.4.11-12) yields ekpressions containing double integrals.
Rearranging the order of integration leads to terms containing integrals of the form
2 zme**(w? + 2%)""/2dz, where m = 0, 1 or 2 and n = 3 or 5. To evaluate such
integrals we employ the Fourier transform of the order zero modified Bessel function

of the second kind

/oo et (w? + z2)‘1/2 dz = 2K, (|k|w). (3.4.13)
We manipulate this to obo':ain the following expressions for the required integrals
/°° e (w? + 22)73dz = g—l—Jk—lKl(le) (3.4.14)
/ ” ze** (w? 4 22)732dz = 2ikKo(|k|w) (3.4.15)
/°° ze'* (w? 4 22) 732, = zzzllel([Hw) (3.4.16)

/_oo 22e*(w? 4 22) 752y = %l—i—' [Ki(|k|@) — |k|oKo(lk|w)].  (3.4.17)

Equations (3.1.14-17) yield the following expressions for the coefficients A¢(k) and
An(k)
'R N

Ao(k‘) = —Zm —WCOS O*Ko(]klw)dé?* (3418)
. I'r! T Dcosf, — R
An(k’) = —Zm . (lk‘IRCOS 9* [———w-*———] Kl(]k|w)

+ [insin 8, + cosb,) KO(Iklw)> e de,

INTIEY " (. Rsiné,
" 4n2kl (kD) (m = (k=)

— kR cos O*Ko(]klw)> e dh,  (3.4.19)
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To reduce (3.4.18-19) we make use of the Gegenbauer summation expansion for Bessel
functions

Ko(kl@)e™ = > Kippm(|k|D)Im(|k|R)e™, (3.4.20)

m=—0oo

where 1) satisfies
D — Rcosb, = wcosvy
(3.4.21)
Rsiné, = wsin.

Using this expansion in (3.4.18-19) and employing the orthogonality property of the

trigonometric functions yields expressions for A¢(k) and A, (k) given by

_;TRK([F| D)L (%] R)

Ao(k) = —ig = o) (3.4.22)
_;DRr' K ([FD)L.([F[R) TRz Ky (kD)L ([kIR)
An(k) = +i—2 I' (kD) 27 I' (kD) (3-423)

Equation (3.4.3) together with (3.4.22-23) completely expresses the potential, induced
by the wall, in terms of known functions.
On account of (3.4.2) we can write the following expression for the motion of a

point on the filament

aa)t( =0 (er'e™e e, (0) + ez'e mleole.). (3.4.24)

But according to (3.4.3) we also have

oX T (x )

The analysis of Widnall and Sullivan tells us that if we use (3.1.3) in the cut—off

integral and carry out an expansion in terms of powers of €, we obtain

T (X - X,)

ar Jig xx—iﬂ?ds* = qo + eqne’™’e”" + O(e?), (3.4.26)
with
T
D = g [FO) = FU)le., (3.4.27)
A = 4521;2 Sr(bin)er + 4F gz (0n)es, (3.4.28)
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where S, and S, are given by equations (3.3.5-6) and the function F(m) is given by
(3.3.7). Using (3.4.24—25) and (3.4.4) we obtain the following leading order equation
'R [ Ki(k)

U= —[F(0)—-FQ1)] - — k

5P - Pl - 2 [T

where A = R/D. The next order terms are linear in € and yield the following eigenvalue

L(ENL (EX)dk,  (3.4.29)

equation for the growth rate

r

or' = s [Sr (6x;n) — 4/\3Ir (Xsn)] 2 (3.4.30)
r

oz = =) [S: (64;n) — 4N, (A;n)] 7' (3.4.31)

where the terms I, and I, are the terms induced by the wall, given by
= Ki(k) 2 K5 (k)
. - 2 2 1 n
I(\n) = /0 k [(Il(k)\)) Ty Qe g ae (3432)

I, (\n) = /0 iy [(Il(k/\))Z 1;1((:)) — (Lu(kX))? II‘: ((:))} dk. (3.4.33)

Solving for o, from (3.4.30-31), leads to

o? = (4&2) [Sr (83m) — 4X3 L (A;n)] [S: (8u3n) — 4L (Asn)] . (3.4.34)

The growth rate given by (3.4.34) is a function of the dimensionless parameters
(A, 64,n). Conveniently, the parameter n is discrete so it is advantageous to com-
pute the growth rate for each value of n as a function of A and é,, which is done in

the next section.

3.5 Numerical computation of the growth rate

To compute the growth rates, we need to compute the integrals given by I.(\;n),
I.(A\;n) and F(m), where m takes on several values between 0 and n 4+ 1. The
integrals corresponding to F(m) for the first few values of m can be written down

relatively easily and are

1 cos &= 1 1+cosﬁ—
F(0 - 2 -1 5.
() 4 si % 8n(1—cos‘52*> (351)
1 cos %’i 3 1+cos%‘
2 2
1 cos = LIS 15 1+cos‘5—* 6
F(2 2 = _ 2 4cos —. 5.
(2) = 48111255 81n(1—cos%)+ c052 (3.5.3)
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For higher values of m, a recurrence relation can be constructed for computing F(m)
in terms of the functions F(0) to F(m — 1). However, the recurrence relation is
extremely unstable and does not provide a reliable method for constructing the func-

tions. Widnall and Sullivan computed the integrals by first writing them as

o H(m —8) 1 le®
F = 2/ cos(méb - — dé
(m) 5. (me) (2(1 —cosf)*/? 6 86 )

* 1  1e”?
+ 2 cos(m#@) | 7T S8 de (3.5.4)

where H is the Heaviside step function. The integrand in the first integral is regular,
and consequently the integral can be computed by allowing 6, — 0 and using an
FFT to compute the corresponding Fourier transform. The second integral can be
expressed in terms of known functions

> 1 1e™? cosmé msinmé 9 .
2/5, cos(m#) (93 + gT) df = T : + m*Ci(mé)

- iCi(‘S‘/l Fm?). (3.5.5)

We adopt a slightly different tact and write

T 1 1 1e*
Fm:2/ cos(mé —— e ——— | d
(m) b ( )(2(1—c059)3/2 6> 8 40 )

i 1 le?
+ 2 [ cos(mb) @ T 39 de. (3.5.6)

Again we can allow 6, — 0 in the first integral and compute the resulting integral
using standard quadrature rules. The second integral can also be expressed in terms
of elementary functions

N 1 le™? (- 1)'” cosmé  msinmé
2/6*cos(m0)(5§+8 9)d6— = 7~ 5

+ (m + )(Cl(m5) Ci(m)).(3.5.7)

In table 3.5.1 we give values of F(n) and the self-induction terms S,(6.,n) and
S:(6«,n) for a ring with é, = 0.1 and for a range of m between 1 and 13. Examination

of the entries show a change in sign of the self-induction terms as n increases from 10
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to 11. This sign change is a result of a spurious instability associated with the cut-off
equation when the wavelength of the perturbation is O(a). Variation of the parameter
0« about the value 0.1 will allow one to find a small range of values of §, at which
the self-induction terms are the same sign, for n = 10 or 11, implying instability for
an unbounded ring. This is the instability regime obtained by Widnall and Sullivan,
but which was later shown by Moore and Saffman (1974) to be a spurious effect
associated with the cut—off equation. Also from the table we take note of the signs
on the self-induction terms, which for n < 1/6, are that S, < 0 and S, > 0.

Next we consider the integral terms induced by the wall. The integrand in I,(\;n)
is readily shown to be positive, which implies that I,(\;n) is also positive. Moreover,
it is easy to show that the integrand is asymptotic to -f:e“zk(l”\), for large k. This
means that as A — 1 the integral diverges to +o0o0. Since both S, and I, are of
opposite signs and I, increases with ), it follows that the factor S, —4A3I, undergoes
a change in sign, from positive to negative, as A increases from 0 to 1. The point at
which this sign change occurs corresponds to a point of transition from stability to
instability, or vice—versa, for the ring in the pipe. On the other hand the sign of the
integral I.(\;n) is not so easily determined, since both of the terms making up the
integrand are of opposite signs. However, the asymptotic form of the integrand can

be shown to be given by

k(L (kX))? Ifll((:)) + (L, (k) IISQ((:))] ~
2%6_2'“(1')‘) %(1 ) - 27:-;—;5 (3+3n%)1 =22 +2)|, (3.5.8)

and in figure 3.5.1 we give a plot of the integrand for a value of A = 0.5. It is obvious
from the detail insert in the figure that the integrand of I,(0.5;1) is positive for
large values of k. The general character of the integrand remains the same for other
values of A and n. Since we are really interested in A < (1 + a/R)™!, we argue that
the integral I.(A;n) will only diverge to —oco outside the range of physical interest
(i.e., for A > (1 4+ a/R)™'). Consequently, the factor S, — 4\3I, has no zeroes for
any physically meaningful value of A\. The numerics provide a confirmation of this

assertion.
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n F S, S,
0 100.880 0.0 -2.689
1 97.192 -3.689 1.250%x1073
2 90.121 -8.103 4.086
3 80.986 -12.488 8.277
4 70.562 -16.194 11.849
5 59.386 -18.778 14.332
6 47.858 -19.938 15.415
7 36.289 -19.475 14.891
8 24.922 -17.269 12.636
9 13.954 -13.263 8.592
10 3.539 -7.454 2.752
11 -6.200 1178 -4.843
12 -15.168 9.372 -14.115
13 -23.294 20.197 -24.953

Table 3.5.1 Variations in the values of the function F(n) and the self-

induction terms for various numbers of waves, n, on a vortex ring with

0, =0.1.

47



Chapter 8: Vortex Ring in a Pipe

In figure 3.4.2 we plot some of the growth rates for various values of n. From
this we see that the instability associated with the higher mode numbers comes into
play when the ring is closer to the pipe wall. However, the n = 1 mode is the most
unstable over most of the range of values of A\. The transition points for instability
are recorded in table 3.5.2, and in figure 3.5.3 we plot the regions of instability for

each mode number.

3.6 The limiting regimes of large and small pipe radius

In section 3.2 we described the stability analysis carried out by Crow for a pair of
parallel line vortices. We also described how in the limit of large ring and pipe
radius we could have a situation equivalent to a particular case of the Crow problem.
Unfortunately, the image vortex system equivalent to the pipe wall cannot simply be
taken to be a vortex ring coincident with the image curve and having an appropriate
strength. To illustrate this we shall replace the wall by a concentric ring of radius
R; and strength I'; and show that the resulting system is not equivalent to the ring

inside the pipe. The velocity induced by the coplanar vortex ring pair is
' (™ (2Rcosé, R? —rRcos®#,
u(r, o,z) = E /_" ( s e, + 3 ez) db,
| N (zRI cos @, R% — rRycosé,

T T D3

ez> o,  (3.6.1)

where
D? = R*— 2rRcosf, + 1% + 22
(3.6.2)
D} = R3 — 2rRrcos b, + % + 2%

The vortex pair must satisfy two constraints; the first is that the pair must move as
a coherent unit, i.e., the velocity of each ring should be the same, and the second
constraint is that the radial component of the velocity evaluated on the cylindrical
surface r = D must be zero. The second condition is simply the requirement that the
vortex pair is equivalent to the vortex inside the pipe.

Addressing the first constraint we find that the velocity of the inner ring is

u(R,8,0) = £ (F(0) - F(1)e.

I';R N 1
+ 4 / -db, | e.. (3.6.3)
4r - (Rr — Rcos#,)
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Figure 3.5.1 A plot of the integrand of I()\;1) for A = 0.5. This plot
illustrates the general character of the integrand for any value of A. The
only significant change is that as A tends to 1, the loop of the curve lying
above the k-axis (detail) falls below the axis.
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Figure 3.5.2 The square of the growth rate for perturbationsn =1...5 as
a function of A = R/D, the ratio of ring radius to pipe radius. The plot is
for a ring with 6, = 0.1.

50



Chapter 3: Vortex Ring in a Pipe

bu n=1 n=2 n=23
0.01 0.057 0.791 0.853
0.02 0.075 0.776 0.840
0.03 0.089 0.766 0.831
0.04 0.100 0.758 0.822
0.05 0.109 0.750 0.815
0.06 0.117 0.743 0.809
0.07 0.124 0.737 0.802
0.08 0.131 0.731 0.795
0.09 0.137 0.725 0.790
0.10 0.143 0.720 0.783

Table 3.5.2 The critical values of the parameter A = R/D, the ratio of ring
radius to pipe radius, for different values of n and é.. These critical values
mark the point of change in stability for a vortex ring characterized by 6,

perturbed by sinusoidal perturbation with wavenumber n/R.
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Figure 3.5.3 Plot of the (), é«) plane and the curves marking the location
of the transition from stability to instability for sinusoidal perturbations
with n crests on the perturbed centerline (where n = 1, 2 or 3). Each
curve is labeled with a value of n which indicates that below the curve the
corresponding perturbation is stable, while above the curve the perturbation

1s unstable.
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Similarly, the velocity of the outer ring is

u(Rn,6,0= o | | T P
4w \ J_z (R — Ry cosb,)’

N
47 Ry

n (FU )(0) — FU )(1)) e, (3.6.4)

where F()(n) is the integral appearing in (3.3.7) with the parameter 6, replaced by
aé/Ry. The other integrals which explicitly appear in (3.6.3-4) can be written as
complete elliptic integrals. Clearly, equating the velocities of the vortex rings leads
to an expression for the strength I'y in terms of I') R and Rj. In fact this situation
has been looked at by Weidman and Riley (1993). They considered, from both the
numerical and experimental point of view, the problem of a pair of concentric coplanar
vortex rings moving down a pipe of circular cross section. In the paper they present
an expression for the relationship between the strengths and the radii of the vortex
rings for the pair to propagate as a single unit. Also, in the paper they claim that
the vortex ring pair, produced in their experiments, lost its coherency through an
instability where the innermost ring tilted out of the common plane and subsequently
broke away from the outer ring moving off in a different direction. They attributed
the instability to a flexural disturbance in the apparatus used to produce the rings.
However, it may be that this is a manifestation of the same type of instability that
was predicted by the numerical results. (In appendix E we examine this possibility in
more detail and we also estimate the growth rate of the tilting instability associated
with the inner ring for one of the experimental test cases.)

Addressing the second constraint we find the radial velocity component on the

cylindrical surface 7 = D to be given by

u(D,6,2) e z [T T'Rcos ¥,
yU, 2] €p =
4™ J_x \ (D? — 2RD cos 8, + R? + 22)3/2
I'tRycos b,

B df.. (3.6.5)
(D? — 2R;D cos b, + R% + 22)3/2>

Clearly, the right-hand side of (3.6.5) cannot vanish identically if the outer ring

coincides with the image curve, i.e., R = D?/R, or any other concentric ring. The
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failure of the lone vortex ring to represent the image vorticity stems from the geometry
of the problem. When the radius of the ring and pipe become very large, the effects
of curvature are reduced so that the representation of the image vorticity as a ring,
of large radius, is quite good.

To compare our results with those of Widnall and Sullivan, we must take the
limit of infinite pipe radius. When the pipe radius is very large compared with the
ring radius, the ratio R/D (= ) is very small and we can represent the effect of the
pipe wall on the growth rate as a series in A\. To do this we make use of the formal
power series expansion for Bessel functions. For small A the leading order behavior

of the image terms is

I.(\;n) = 0.942855)2

(3.6.6)
I, (A n) = 0.942855)?
for n > 1 and
I (X 1) = 0.158272)?
(3.6.7)
I (A1) = 2.220510)\?
for n = 1. Consequently, the growth rate given by (3.4.34) reduces to
I \?
2 5
o’ = ( = R2> [5+8: = 16Cw(Sr + S:)A°] (3.6.8)

where the constant C, ~ 2.378782 when n > 1 and C ~ 1.885710. In (3.6.8) we can
simply see the effect that the wall has on the growth rate of a sinusoidal disturbance
for the case when the pipe radius is very large compared to the ring radius: the first
term in the brackets is the term derived by Widnall and Sullivan, and the second
term is the approximation for the effect of the wall when the ratio R/D <« 1. When
n > 1 both S, and S, are large and are of opposite signs. This allows us to conclude
that for small A the wall has a very small effect on the growth rate of disturbances
with mode numbers n > 1. However, for the case n = 1, we see that S, is much
smaller than §,, allowing the wall to have a stronger influence on the growth rate,
through the factor S, — 4A*I,. For example, for a ring with core radius 0.1, the
value of the Widnall and Sullivan term is S,S, = —0.00461 when n = 1. The term
~16C1 (S, + S:)A® = 0.00461 when A = 0.1329 so according to (3.6.8) o & 0. For the

same ring with a perturbation having n = 2, we have S,S, = —33.1089 and this is
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only balanced by —16C3(S, + S;)A% if A = 0.7364, which is certainly not small. To
find the point at which the ring becomes unstable to the n = 1 perturbation, we find

the approximate value of A at which the factor S, — 43I, is zero and this is

S 1/5
A= <8.882040) ' (3.6.9)

When 6, = 0.01 this yields a value of A =~ 0.065 while §, = 0.1 yields a value of
A = 0.162. Both of these values agree closely with the numerical computed values

presented in table 3.5.2.
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CHAPTER 4

PLANAR THIN-CORED VORTEX FILAMENTS
OF PERMANENT SHAPE

4.1 Introduction

In this chapter we focus on the problem of determining the shapes of thin—cored
vortex filaments which are planar, have steady periodic shapes and rotate along with
the plane about some axis fixed in space. A picture of the situation being considered

1s given in figure 4.1.1.

Figure 4.1.1 The geometry for the thin—cored planar filament.

Kelvin (1880), in his classic paper on the vibrations of a columnar vortex, stated
that for the solution of the problem, “crowds of exceedingly interesting cases present

themselves.” A member of this crowd is a planar filament of infinitesimal amplitude.
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The equation for the filament can be written as
X =ze, + eF(z,e)ey, (4.1.1)

where F(z,¢€) is a periodic function of z with period X,, as indicated in figure 4.1.1.
The pair {e;, ey} are orthonormal vectors in the rotating plane (with e, oriented
along the axis of rotation). The parameter € is a small parameter indicating that
the amplitude of the displacement of the curve from the axis is small. Using these

assumptions the leading order solution to this problem is to take F as
F(z,€) = cos(z) + O(e) (4.1.2)

from which it follows that the rotation rate is given by

2=1n(5)+7-7+009 (4.1.3)

where a is the core radius and v = 0.5772... is Euler’s constant.
We will determine the rotation rate and the curve shape to higher order in e

using the cut—off equation

0X(s,t) T / o x Xl5:1) = X(seyt) (4.1.4)
18]

ot 4m [X(s,2) = X(sa, )]
As we originally saw in chapter 1, this describes the motion of the filament curve
X(s,1), where s is arclength and t is time. The cut-off length & satisfies (1.4.6). The

equation for the filament will be taken to be given by
s
X(s,t) = (Xp(e)é—; + X (s, e)) e; +Y(s,€)ey, (4.1.5)

where X and Y are 27—periodic functions of s and X,(€) is the axial wavelength. The
time dependence, which is explicitly shown on the left-hand side of (4.1.5), resides
completely in e,. To see this consider a non-rotating cartesian coordinate system
with unit vectors {i, j, k}. Now assume that the plane containing the filament rotates

with angular speed €2(€) about the i axis. Accordingly, we must have the following
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relationships between the pair {e;, e,} in the rotating plane and the triple {i, j, k}

in the fixed cartesian frame

e, =i (4.1.6)
e, = jcos(Qt) + ksin(Qt). (4.1.7)

From (4.1.6-7) we see how the time enters on the right-hand side of (4.1.5). Substi-
tuting (4.1.5) into (4.1.4) and taking the component normal to the plane (which is the

only relevant component of the equation) leads to the following equation of motion

X2 4 X' (s, € 5,€) — Y(sy,€
Q(e)Y(s,e)=4£7r/] ( 3+ X ))DEY( ) =Y (s4,€))

Y'(ss,¢€) (X,,(e)(s—;;—*) + X(s,€) — X(s4, e))
- g ds. (4.1.8)

where the denominator in the integrand is given by

(s = s4)

D? = (X,,(e) + X(s,¢€) — X(s*,e)> + (Y (s,€) — Y(s4,€))% (4.1.9)

-3
27
and the primed superscript denotes differentiation with respect to the arclength pa-

rameter. Along with solving (4.1.8) we also impose conditions on X(s) and Y (s) at

s = 0, which are
X(0)=0
(4.1.10)
Y(0)=e

In addition we must also ensure that s is the true arclength, which follows if
X 2 |
(24 x9) +060 =1 (4.1.11)

Since we are looking for an e-expansion for the solution, we assume the following form

for the various unknown quantities

X,(€) = z0 + exy + 229 + 23 + etzy + a5 + O(e%) (4.1.12)
X (s, €) = eag sin(s)
+ €*(ay sin(s) + by sin(2s))
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+ €*(ag sin(s) + by sin(2s) + ¢, sin(3s))

+ €*(a3 sin(s) + b3 sin(2s) + c3 sin(3s) + dj sin(4s))

+ €% (ay sin(s) + by sin(2s) + c4 sin(3s) + dy sin(4s) + e sin(5s))

+ O(%) (4.1.13)
Y (s, €) = €A cos(s)

+ €2(A; cos(s) + By cos(2s))

+ €( Ay cos(s) + By cos(2s) + C cos(3s))

+ €*( A3 cos(s) + Bj cos(2s) + C3 cos(3s) + Dj cos(4s))

+ €%(Aq cos(s) + By cos(2s) + Cj cos(3s) + Dy cos(4s) + Ey cos(5s))

+ O(€°) (4.1.14)

Q=0+ e + 2 + Q3 + €'Qy 4+ O(%) (4.1.15)

Substituting (4.1.12-15) into the equations (4.1.8-11) allows us to determine all the
unknowns. We carry out this step using the symbolic manipulator Maple. The
nonzero coefficients for the rotation rate are

o (3) +1-]

1
Qz = '3“2‘(490 + 11 — 1611’12),

The nonzero coefficients for the axial coordinate are

CEO:27T
T
m2=——§
$4:_77_(—2090+3—361n3+161n2>
32 82 +9In3
1
by = 3
b3:___1_(—4Q0+3-—181n3+16ln2)
32 8 +9In3
dy = 1 <4Qo+5—36ln3+481n2)
256 8 +9In3 ’

Finally, the nonzero coefficients for Y (s, €), the displacement of a point on the filament
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from the axis, are

Ay =1
PR <4Qo+3 91n3+161n2)
32 80 + 9In3
Co = — Ay
4oL ((490 +3)2 —91n3(4Q) + 11) + 8 — 1281n2 — 1441n21n3 — 256(1n2)2>
512 1602 — 320 + 180 In 3
Ci = —Aq.

All the remaining coefficients in (4.1.12-15) are identically zero.

4.2 A numerical algorithm for finding plane wave solutions

In the previous section we saw that, in principle, Kelvin’s analysis in the case of
small amplitude could be extended to yield a solution as a regular power series in the
amplitude, and we used the symbolic manipulator Maple to compute the first 5 terms
in the expansion of the solution. Naturally, such solutions are limited to the case
where the amplitude is small. To obtain finite amplitude wave solutions, we must
solve the equations numerically. Since the solutions are periodic in the arclength, our
numerical algorithm adopts a Fourier series based pseudo-spectral approach, using
Newton’s method to converge on the Fourier coefficients of the solution.

The form of the solution is the same as that assumed for the perturbation series

X(s) = (X, par + X(s)) ez + ¥ (s)e, (4.2.1)

where we have dropped the explicit dependence on the amplitude e. We use the
Rosenhead approximation (1.4.7) to describe the self-induced motion of the filament.

For our problem, this reduces to the single equation

X
Lo (X)) V() - Y(s)
W =g | GO
Y'(s4) ( (s s,) + X(s)— X(s*)> ; 1o
- 00 w0 (22

where the denominator in the integrand is given by

2vm)

(D)) = (X,, o= S 4 X (s) - X(sn) +(Y(s) = Y(5.))" + 2 (4.2.3)
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and g = ae™3/* is the value of the Rosenhead parameter (assuming the core has
uniform vorticity and no axial flow). The remaining equations describing the solution
are (4.1.10) and (4.1.11), as in the case of the perturbation solution.

We can construct a 2p-periodic solution by scaling a 27—periodic solution. The
appropriate scaled filament is

X (0) = ;’:-x (’-'1-)‘-’-) (4.2.4)

Q= (1>2 Q, (4.2.5)

has amplitude
e=(2)e, (4.2.6)
and core radius

i=(2)a (4.2.7)

Clearly, because we can relate an arbitrary periodic filament to a 2r—periodic filament,
we need only consider the case of filaments which are 27 periodic in the arclength.

Although the form of the solution essentially remains the same as it did in section
4.1, we write the 27—periodic functions X (s) and Y'(s) in the following way:

X(s) = i Tnet™

n=-—oo

Y(s)= Z Yne'™,

n=—oo

(4.2.8)

To facilitate the use of the Fourier pseudo-spectral method, we rewrite (4.2.2) as a

finite integral

ror & (32 4X(s) (Y(s) = Y(sa))
W =gz | P2y | (p)(,,>>s
s ¥'(s) (A, 85522 4 X(s) - X (o))

-3 T ds,. (4.2.9)

v=-—00
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From (4.2.6) we see that the kernel, H(s, s.), of the integral is periodic, in both s and

S«, and consequently has the Fourier decomposition

H(s,s:) = f: i R me ™€ ™ (4.2.10)

n=-—oo m—-—00

where the Fourier coefficients hy, , are functions of X, the Fourier coefficients of
X (s) and the Fourier coefficients of Y(s).
At this point we can write down the Fourier representation of our equations.

From equation (4.1.11) we get

2 o0
(gﬂi) + Z m? (lxm|2+|ym|2)—1=0 forn=0

m=—0oo

(4.2.11)

oo

- Z m(n —m)(Tp—mTm + Yn-m¥ym) =0 forn#0, n€Z

m=—0o0

nXpTna

1
m

where Z is the set of integers. Equation (4.2.9), along with (4.2.10), yields the de-

ceivingly simple equation

r
Qyn — ’é’hn,O =0 forneZ. (4.2.12)

The conditions at the origin expressed as (4.1.10) become

oo

Z Tm =0
o (4.2.13)
Z Ym — € =0.
Our unknowns are X,, Q, {z,}22_, and {yn}32__. From (4.2.11-13) we can see

that we have the same number of equations as unknowns.

The equations, as they stand in (4.2.11-13), are infinite-~dimensional and cannot
be represented on a computer. If we truncate the Fourier series and retain the cor-
responding finite number of equations from (4.2.11-13), then we can represent this
new system on a computer. The truncation of the Fourier series allows us to use
Fast Fourier Transforms to relate sampled function values in real space to coefficients

in Fourier space and vice versa. The sampled function values in real space and the
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corresponding Fourier coefficients form a discrete transform pair. To set up a discrete
transform pair {F(s;) | 7 =0,...,N =1} and {f, | n = —N/2,...,N/2 — 1}, we
define a set of N nodal points, {s; =27j/N |j =0,...,N — 1}, in the independent
variable s. Consequently, for an arbitrary periodic function F(s), we can compute a
set of N sampled values F(s;). These can be related to the values f,, in Fourier space

by the following relation:

N
71 .
213

F(sj)= Y et (4.2.14)

n=-

2

The inversion formula is
1 N1 .
fo= % > F(sj)e™t (4.2.15)
i=0

The relations (4.2.14-15) allow us to compute representations for derivatives of the
function F'(s) at the nodal points s;. For example, the discrete spectral representation
of the first derivate F'(s) at a nodal point is

N
¥

F'(s;) = Z infne’

n=-—

2%

- (4.2.13)

This 1s the main idea behind the pseudo—spectral approach, which assumes that a
representation for the value of a nonlinear term at the nodal points can be computed
from the representations for the values of all of its factors. For our problem this allows
us to compute a discrete representation for the kernel H(s,s,) at s = s j and s, = s,
for j,k=0,...,N — 1 (the discrete Fourier coefficients follow).

In using the truncated Fourier series we require values for the 2N + 2 unknowns

Xp, Q, {:cn}f:]f__—]\}/z and {yn}nNii‘Al,/Z, which satisfy the 2N +2 equations, obtained by
taking the pseudo-spectral representations for (4.2.11-12) and truncating the series
in (4.2.13). Symbolically, this yields a nonlinear vector function g(#@), where 7 is a
2N +2 dimensional vector representing the left-hand side of our equations and #, also

a 2N + 2 dimensional vector, represents our unknowns. Newton’s method for finding

a root of g employs the following two step algorithm:
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(¢) Pick an initial guess @y
() If ||g(d,)|| < tolerance, for some chosen norm and tolerance, then @, is our

approximation of the solution.

Else compute the update vector @,4; given by

Tpis = @y — J(5)3(i,)

where J(i,) is the inverse of the jacobian of § evaluated at #,. Repeat step (ii).
If an analytic (i.e., accurate) jacobian can be calculated, then the Newton iteration
part of the algorithm converges quadratically, when the initial guess is near enough

to the actual solution.

4.3 Efficient implementation of the numerical algorithm

The numerical algorithm, as it was described in the previous section, cannot be trans-
lated simply into an efficient code. Essentially, there are three problem areas that
need to be addressed. The first concerns the kernel of the integral, which has a strong
non—uniform behavior near the singular point. The second problem area concerns the
representation of the infinite sum that makes up the kernel of the integral. The third
problem area concerns the computation of the jacobian matrix used in the Newton
iteration section of the code.

The problem associated with the non—uniform behavior of the integrand is easily
seen by approximating the kernel of the Rosenhead formula for s, close to s, which

yields
(X(s) = X(s4))
(1X(s) = X(s0) + 122)

Sy X 7~ HO(s,s,)kb (4.3.1)

where

(s — s4)?

HO(s,s,) = .
((s = s2)2 +p2)*/?

(4.3.2)

D

H©O)(s,s,)k(s) is the approximation for the kernel of (4.2.2) when s, is close to s.
In figure 4.3.1 we plot H()(s,s,), for a core radius of @ = 0.1. The non-uniform
behavior of the kernel is clearly evident in the figure by the presence of the peaks on

either side of the point s, = s, where H(®)(s, s, ) vanishes. The distance between the
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peaks scales like a and their height scales like 1/a. Consequently, the non—uniform
behavior becomes more severe for smaller values of the core radius. Moore (1974)
used the Rosenhead approximation to follow the evolution of a trailing vortex pair,
subject to an initial sinusoidal perturbation, which was unstable according to Crow’s
linear stability analysis. The geometry of the situation was somewhat similar to the
one we consider here, since both filaments had a periodic shape. To remove the strong

non—uniformity from the Rosenhead kernel, Moore chose to rewrite the integral as

I X -X() o

S*X

(1R - X )

= /oo Sk X (X(s) = X(s.)) 573~ HO(s,5,YH (21 — |s — s4|) kb | ds.
=\ (X - Xl +42)
+_10n(¢®—2ﬂ2+u”—@—2ﬂ
2 V(s +2m)2 + p2 — (s + 27)

(s—2m) _ (s+2m)
\/(s —2m)2 + u? \/(s +2m)2 + 112) b (4.3.3)

where H is the heaviside step function and the term outside the integral compensates
for making the kernel smoother. Immediately we can see that this procedure for
making the kernel smoother is not appropriate for our problem, because the smoothed
kernel is no longer periodic in s and s,. (Also, the term outside the integral in (4.3.3)
is not periodic in s.) Furthermore, the smoothing term decays like 1/|s— s,|, when s,
is far from s, so the range of s, for which the smoothing function may be subtracted
from the original integral cannot be extended from +27 to +oo.

To circumvent this problem we construct a smoothing function which has the
correct behavior for s, near s and decays faster than 1/|s — s.| for s, far from s. A

smoothing function which has these properties is

(1 — cos(s — s4))

I_J(O) S, 8% ) = .
TR

(4.3.4)

Figure 4.3.1 also contains a plot of this new smoothing function. Clearly it has

the correct behavior for s, close to s and decays like 1/|s — s,|® for s, far from s.
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H©O(s,s,)

U HO (s, s,)
-0.4 0.0 0.4 Sx — S8

Figure 4.3.1 Plot showing the behaviors of the approximations H(®(s, s, )

and H®(s,s,) of the Rosenhead kernel for s, near s.

Furthermore, if K1(z) is the first order modified Bessel function of the second kind,

then we can rewrite the integral in the Rosenhead formula as

/°° (X(s) = X(s+))

S, X ds.,

= (X = X()P +2)

_ /00 . x (X(s) = X(s4)) —— HO(s,5,)xb | ds,

=\ (%) - X )
+ % (% - Kl(u)> kb (4.3.5)

This new formulation, for the integral term, has the required periodicity for using the
Fourier series approach in solving the problem. The expression (4.3.5) also has the
advantage that it expresses the Rosenhead formula as the sum of an integral part and

a part resembling the local induction term (i.e., the part proportional to kb, outside
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the integral).

The second problem area that prohibits the effective implementation of the nu-
merical algorithm is the representation of the infinite sums that appear when an
integral over an infinite range is transformed into an integral over a finite range, as in
(4.2.6). We shall abstract things for a moment and note that the type of summations

that we require are of the form

oo

Z(aaﬁ) = 2

Petade o]

VQ

((c —2vm)? + d2)ﬁ/2

(4.3.6)

where in general ¢ and d are functions of s and s, and « and f are integers. One
approach for representing the solution is to truncate the series so that it sums from
—M to +M, for some integer M. In essence this is equivalent to ignoring the effect
that portions of the filament separated by a distance of more than M X, have on each
other. Unfortunately, the terms in the series converge rather slowly, decaying like
1/p(=2) (for the slowest converging case 8 — o = 2), and consequently M must be
very large to get an accurate representation for the sum.

One simple way of circumventing this problem is to use an asymptotic represen-

tation for the difference between the actual sum and the truncation

M a

(o, B) — V;M (c — 2um)? +d2)ﬂ/2

v

3 (=0)° ;
"2 <<<c o £ PP (e 2 4 d?)’”)

1+ (-1 Yo
N“(—2(7r_)’ﬁl_)(<(ﬂ"°‘)'zuﬂ~a)

+epl ) <C(ﬂ—a+1)~};;ﬁ7)
+ o(M—(B-atl)y (4.3.7)

where ((z) = > o2, v % is the Riemann Zeta function. By retaining higher order
terms in the asymptotic expansion, £(a, ) can be computed very accurately. The
values of the Riemann Zeta function will only be required for integer values of the

argument between 2 and 20 (at most), and the corresponding values can be assigned
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using any of the standard tables. Moreover, the partial sums that appear in the
asymptotic expansion can be computed at the same time as the truncated sum. Using
ten terms of the asymptotic expansion along with a modest value of M (10, say) yields
values of the summation with an accuracy on the order of the machine precision.
Our final problem area concerns the computation of a representation for the
jacobian to be used in the Newton iteration section of the code. Equations (4.2.13) are
linear, so their jacobian entries are trivial to compute. Equation (4.2.11) is essentially
quadratic, and the corresponding entries in the jacobian can be computed, without

4

the aliasing error, using either the “padding” technique or by using the “phase shift”
technique (see sections 3.2.2-3 of Spectral Methods in Fluid Mechanics by Canuto,
Hussaini, Quarteroni and Zang (1986)). Equation (4.2.12) is the most troublesome,
since the nonlinearity is so strong. Attempts at computing the jacobian entries using
two-sided finite differences fail miserably. We adopt a different approach based on the
pseudo-spectral representation of our problem. To illustrate this, suppose we have a
nonlinear function, V(Z(s)), of a periodic function, Z(s). Then the pseudo-spectral
representation of the situation yields the truncated Fourier series
|

Z(s) = Z zne'™*
(4.3.8)

V(s) = Z vpe'™?

no=— o

where the vector of Fourier coefficients ¥ is a nonlinear function of the vector of Fourier
coefficients 2. What we wish to compute is the jacobian of #(7), i.e., the quantities
Ovn [0z for nym = —N/2,... N/2 — 1. First we note that the jacobian entries are
the Fourier coefficients of 0V /0zy,, i.e.,

N3
ov - n ins
5 = n;ﬂ i (4.3.9)

Secondly, we note that we can also write

ov - _a_V ims
0zm 9z ¢

(4.3.10)
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Consequently, if we denote the vector of Fourier coefficients of V/8Z by #*), then
from (4.3.9) and (4.3.10) we must have

%T'_l b %r_—l
Z Un eins - Uslz)ei(n-}—m)s (4311)
O02m
n=-—2I n=—24
2 2
or
Ovn _ ()
azm - ’U[n_m] (4.3.12)
where N
[n—ml=n—-m+N if n—m< -
[n—m]=n—-—m if —ggn-—m<% (4.3.13)
N
[n—m]l=n-m-N if —Q—Sn——m.

This says that the entries in the jacobian of ¥(Z) can be found by cyclically permuting
the Fourier coefficients of 9V/0Z. Since equation (4.2.12) is a function of two periodic
functions X (s) and Y'(s), we need to extend (4.3.13). Our extension also takes account
of the fact that our nonlinear function depends on the first and second derivatives of
X(s) and Y (s). This procedure provides us with a complete representation for the

jacobian to be used in the Newton iteration.

4.4 Numerical extension of the perturbation results to finite amplitude

and comparison with the solution to the local induction equation

In this section we do two things: we compute the numerical solution for finite values
of the amplitude and we compare the results with the solution to the local induction
equation. The latter comparison tells us how the non-local terms from the integral
affect the solution. With regard to the solution to the local induction equation, Kida
(1981) derived an analytic expression for the general solution for a three dimensional
periodic filament whose motion was governed by the local induction equation. The
plane rotator is a special case of this type of solution, and we now outline the solution

procedure for this particular case. The local induction equation yields the following
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equation for the plane rotator

QY (s) = Ck(s)

Xp

=C ((5; + X’(s)> Y"(s) — Y'(s)X"(s)) (4.4.1)

where k(s) is the position dependent curvature and C is a constant of proportionality
which in our case is

= (l - Kl(ﬂ)) (4.4.2)

T 2mp \n

(see expression (4.3.5)). The prime superscripts in (4.4.1) denote differentiation with
respect to arclength. C' is positive and it follows that the rotation rate {2 is negative.
To see this we need only consider a point on the rotator where Y(s) is a maximum,
which implies that Y’ = 0 and Y is negative. Since the axial coordinate has been
assumed to increase with s, it follows that X, /7 + X' is positive and consequently
must be negative.

Equation (4.1.11), which expresses that s is the arclength for the curve, is directly
applicable in this case. Multiplying (4.4.1) by Y’ and using (4.1.11) leads to

e 2
QYY' =C ((——?i + X’) YY" - X"+ (ﬁ + X’) X") : (4.4.3)
27 2w
Differentiating (4.1.11) yields
(;‘:— + X') X"+Y'Y" =0 (4.4.4)
which upon substitution into (4.4.3) yields
QYy'=-CcXx". (4.4.5)
Integrating (4.4.5) we obtain
! Q2 2

for some arbitrary constant A. Introducing (4.4.6) into (4.1.11) leads to the following

differential equation for Y

Xp Q 2 2 12 __
(§;+§5(A—-Y )) +Y"? =1. (4.4.7)
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Multiplying by 4Y'2 and introducing y = Y2 leads to

y? = (%)2 <y— (A+ C;ré” —~ —2—5—» ((A+ Cé” + ?g-) —y) y. (44.8)

The solution to this equation is in terms of Jacobi elliptic functions

Y3(s) = y(s) = (A + i‘g” — ?-g) cn? (\/3—5—65 k) (4.4.9)

where the modulus k is

k:%\/z——&—gé (4.4.10)

Integrating (4.4.6) yields

QA [C X, QA —Q

where E(6,k) is the incomplete elliptic integral of the second kind. We have been
assuming that the linear part of the axial coordinate is represented completely by

Xps/2m and that X(s) is periodic. Consequently, we must have

QA C X, QA\E(k)
204_,/_ (1_277-20) =0 (4.4.12)

where E(k) is the complete elliptic integral of the second kind. The amplitude, ¢, of

the solution is

_ cX, 2C
e_\/A+ 0 Q

=2,/ —=k. (4.4.13)

Similarly, the period has been assumed to be 27, so we must have

2 = 24/ :%K(k) (4.4.14)

where K(k) is the complete elliptic integral of the first kind. Equations (4.4.9-14)
provide a complete prescription for the solution in the case where the local induction

equation is used as the equation of motion. We note that the constant C, which
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contains the information about the core radius, essentially has the effect of rescaling

the rotation rate.

In figure 4.4.1 we plot the axial wavelength as a function of amplitude, for the
local induction solution, the perturbation solution and the numerical solution. The
axial wavelength for the numerical and perturbation solutions is depicted for a core
radius of 0.001 — the results for core radii of 0.01 and 0.1 being indistinguishable
from the results plotted. Also, for the local induction solution, the axial wavelength is
independent of the core radius. (As we explained at the end of the previous paragraph,
changing the core radius causes a rescaling of the rotation rate.) It is clear that
the numerical solution and the perturbation solution are almost coincident for an
amplitude less than € = 0.7, but thereafter the axial wavelength for the numerical
solution contracts faster than that for the perturbation solution, indicating that higher
order terms in the perturbation solution become important. Furthermore, the axial
wavelength for both the perturbation solution and the numerical solution exhibit a
stronger dependence on the amplitude than exhibited by that for the solution to the

local induction equation.

In figure 4.4.2 we depict the results for the rotation rate scaled with respect to C.
As we described above the rotation rate, for the local induction solution, scaled with
respect to C is independent of the core radius. The scaled numerical and perturbation
solutions show that in these cases the integral term forces the dependence of the
rotation rate on the core radius to be more complicated than a simple scaling of
the rotation rate. The numerical solution for the rotation rate, when compared to
the perturbation solution for the rotation rate, has the same characteristics as the
solutions for the axial wavelength, i.e., they begin to deviate from one another for
amplitudes greater than € = 0.7. The large difference between the rotation rate for the
solution to the local induction equation and the perturbation or numerical solution
(especially for the smaller core radius) would seem to indicate that Ckb is a very
conservative measure for the local part when the Rosenhead integral is split into a

local part plus an integral term (as was done in equation (4.3.5)).

In tables 4.4.1 and 4.4.2 we present more detailed results for the axial wavelength
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Figure 4.4.1 The axial wavelength as a function of amplitude for a core

radius of 0.001. The numerical results are indicated by the open circles.
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Figure 4.4.2 The rotation rate as a function of amplitude for core radii of

0.001, 0.01 and 0.1. The numerical results are indicated by the open circles.
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and the rotation rate obtained from the numerical solution. The results for three
distinct values of the core radius are presented (a = 0.001, @ = 0.01 and a = 0.1) for
amplitudes ranging from ¢ = 0.001 to ¢ = 1.1. The entries indicated by * indicate
that no results were obtained for the corresponding values of a and ¢, i.e., the Newton
procedure failed to converge. As is typical in such situations, the rate of convergence of
the Newton procedure deteriorated as the amplitude was increased. The convergence
criterion chosen for the Newton procedure was to assume convergence if the magnitude
of the residual (the square root of the sum of the square of the Fourier coefficients) was
less than 10712, The relative error in the solution was also monitored (the relative
error, at each step of the Newton procedure, is taken to be the ratio between the
magnitude of the current update and the magnitude of the current approximation to
the solution). When the residual decreased toward the tolerance, the relative error was
driven down toward a value on the order of the machine precision. In table 4.4.3 we
detail the convergence properties for a filament with core radius @ = 0.001 for filament
amplitudes of 0.001, 0.01, 0.1 and 1.0. The magnitude of the residual associated with
the initial guess (the perturbation solution, ranges from 107® to 107!. Clearly, the
code has no difficulties converging on the numerical solution until the amplitude
gets close to e = 1.0 at which point the number of iterations required increases
dramatically. The only noticeable difference between the solutions as the amplitude
approached the limiting value was a gradual decrease in the rate of decay of the Fourier
coefficients, i.e., many of the Fourier coefficients in the upper part of spectrum (64
modes were being used) were on the order of 10713, (For the solutions that showed
no problems in converging, the Fourier coefficients of the solution exhibited a rapid
decay to values on the order of 10716 — —10717.) Doubling the number of modes once
more, provided no increase in the limiting value of the amplitude, and the Fourier

coefficients in the upper half of the spectrum still exhibited the poor decay rate.

In figure 4.4.3 we plot the filament shape for the maximum amplitude for which
a solution was obtained (i.e., e = 1.1 for a core radius a = 0.001). For comparison we
have also plotted a simple sinusoid having the same amplitude and wavelength. The

broadening of the loop is clearly evident. Such a feature should be expected, since

5



Chapter 4: Planar Rotator

the distance along the curve between two peaks has been fixed at 27. Consequently,
as the ampitude is increased, the wavelength must contract, and correspondingly the
shape must alter to account for the fact that the velocity induced by neighboring

loops is relatively stronger because the loops are physically closer.

4.5 Period doubling as a special case of a subharmonic bifurcation

A subharmonic of any wave is a wave whose wavelength is greater than the wavelength
of the fundamental wave. Clearly, a search for bifurcations of our regular solutions
to an arbitrary subharmonic is not feasible. However, with minor modifications to
our algorithm (really just the initial guess), it is possible to search for bifurcations to
subharmonic solutions that have periods equal to some integer multiple of 27. In this
section we will do this for a subharmonic (of a 2nr—periodic solution) with period 47
— a so—called period doubling bifurcation.

Suppose X(s) is a 2mm—periodic solution, where m is a prime number. This
filament rotates with angular speed €2, has axial wavelength Xp and amplitude ¢,
with an assumed core radius of @. Equations (4.2.4-7) state that there is a related
2m-periodic solution given by i(s) = ;fl—f((ms), which rotates with angular speed
Q = m2Q, has amplitude ¢ = é/m and core radius @ = a/m. Using the numerical
algorithm described in the previous sections, the solution )N((s) can be continued in the
amplitude €. Any bifurcations in the solution, including period altering bifurcations,
will be manifested by the presence of a null space for the jacobian used in the Newton
iteration.

We use a 27—periodic solution to construct a 2mm—periodic solution. Take X(s)
to be a 2m—periodic solution, with rotation rate §2, axial wavelength X,, amplitude €

and core radius a. The equation for the filament is given by
S - ins = ins
X(s) = (sz—{ + —z_: Tne ) e + ( > yne ) e, (4.5.1)

The equation for a 2mm—periodic filament is given by

oo oo

X(s) = (Xp 2:17r + Z i:neins/m> e; + ( Z Qneins/m> e,. (4.5.2)

n=-—oo =—
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€ a = 0.001 a=0.01 a=0.1
0.001 6.2831837363830 6.2831837363830 6.2831837363830
0.010 6.2830282251073 6.2830282251163 6.2830282251530
0.100 6.2674528742975 6.2674529635708 6.2674533334372
0.200 6.2199582404432 6.2199597608728 6.2199659679372
0.300 6.1397806428943 6.1397886396445 6.1398212893874
0.400 6.0252828736467 6.0253095801321 6.0254186352626
0.500 5.8739307486642 5.8740009600230 *
0.600 5.6819739870536 5.6821342150529 *
0.700 5.4438803792005 5.4442157005006 *
0.800 5.1512806255512 * *
0.900 4.7908220342149 * *
1.000 4.3390875658206 * *
1.100 3.7475792399359 * *

Table 4.4.1 The axial wavelength for a range of values of the amplitude

and the core radius.
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€ a = 0.001 a = 0.01 a=0.1
0.001 -7.2758321459987 -4.9732791692148 -2.6732869750548
0.010 -7.2759224267209 -4.9733409544451 -2.6733202433467
0.100 -7.2833694500251 -4.9795373231557 -2.6766563738745
0.200 -7.3111335792637 -4.9969326331145 -2.6856222272614
0.300 -7.3585256394153 -5.0293545567051 -2.7030527870274
0.400 -7.4273648763356 -5.0764294899765 -2.7283285600755
0.500 -7.5205201672469 -5.1400936893308 *
0.600 -7.6423426478239 -5.2232762607771 *
0.700 -7.7994477234613 -5.3304141670334 *
0.800 -8.0022036959466 * *
0.900 -8.2674514110978 * *
1.000 -8.6274068745677 * *
1.100 -9.1493242589823 * *

Table 4.4.2 The rotation rate for a range of values of the amplitude and the

core radius. The quantity C = C(a), used to scale the rotation rate in figure
4.4.2 takes the values C(0.001) = 8.273236062, C(0.01) = 5.971125566 and
C(0.1) = 3.669748820.
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amplitude e = 0.001 e =0.01 e=0.1 e=1.0
initial residual 1.596(~6) 1.596(=5) 3.750(=%) 1.939(-1)
# of iterations 1 2 3 20

final residual 2.894(-16) 1.305(=16) 5.653(—15) 5.916(—13)
relative error 5.667(—15) 1.563(—16) 6.118(—14) 3.062(—14)

Table 4.4.3 Convergence properties of the algorithm for a range of ampli-
tudes, for a filament with core radius a = 0.001. The superscripted numbers

) appearing in the table, are shorthand for = x 109.
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Figure 4.4.3 A plot of the filament shape, over one period, for a core radius
of 0.001 and amplitude of 1.1. A simple sinusoid, with the same amplitude

and wavelength, is also plotted for comparison.
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Clearly, the filament X(s) can be considered to be a 2mm-periodic filament also,

which involves taking
Tn =2Zpn/m i nmodm=0
=0 otherwise

Un = Yn/m i nmodm =0

=0 otherwise

A (4.5.3)
X, =mX,
Q=0
E=c¢€
a=a.
Finally we map this solution onto a 2r—periodic solution i(s) by taking
~ In/fm .
Ip = if nmodm =0
m
=0 otherwise
Un = Yn/m if nmodm =0
m
=0 otherwise
B (4.5.4)
X, =X,
Q= m?Q
. €
€= —
m
. a
a=—.
m

The solution i(s) really has period 27 /m, because we have mapped m periods of a
2m—periodic solution onto a 27 interval. In what follows, we take m = 2 and look for
a period doubling bifurcation.

In the previous section we showed that we could construct a 27—periodic solution
for a filament with a core radius of 0.001 for amplitudes up to € = 1.1. According to
the formulas given by (4.5.4), we can map these solutions onto m-periodic solutions.
Stated in another way, we can construct periodic solutions for a filament with core

radius of 0.0005 with amplitudes up to e = 0.55. (In fact, by relaxing the tolerance
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used in the Newton iteration section to 1071, we were able to compute solutions
for amplitudes up to € = 0.6.) Although the spectrum of the jacobian exhibited an
eigenvalue that appeared to be heading toward zero (for € = 0.5 this eigenvalue was
—0.1152 and for € = 0.6 it had changed to —0.0777), the eigenvector corresponding to
this, the smallest eigenvalue, was not of the type that would support period doubling.
Consequently, we must conclude that there is no period doubling bifurcation in the

range of amplitudes for which a solution was computed.
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CHAPTER 5

SUMMARY AND CHAPTER CONCLUSIONS

5.1 Summary

In this thesis we focused on several aspects of the dynamics associated with the motion
of thin—cored vortex filaments. Essentially, we limited ourselves to problems involving
inviscid fluid flow. When viscosity is present, the structure of the flow in the vortex
core is an important feature of the flow. In chapter 1, where we present our most
general description of thin—cored vortex filament dynamics, we have not provided any
detail of how the flow in the core evolves. A complete description of the dynamics of
thin-cored vortex filaments must supplement the material presented in the first two
sections of chapter 1 (in conjunction with the material from appendix A and appendix
B) with a description of how the core flow couples to the motion of the centerline. If
the viscous effects in the flow occur on a time scale much longer than the time scale

of interest, the assumption of an inviscid flow is justified.

5.2 Thin filament dynamics

In the first chapter we presented an overview of the type of fluid flow problems to be
considered in the thesis. We went on to detail some of the assumptions adopted in the
analysis of such flows, from the point of view of thin—cored vortex filament dynamics.
In the process we outlined some of the matching procedures used in deriving the
equations of motion. Besides providing a brief description of the equations of motion
used in the subsequent chapters, we emphasised that the cut—off equation is a formally
correct asymptotic equation of motion for thin-cored vortex filaments. This is a very
important point since many investigators have made the implicit assumption that
the application of the cut—off equation to describe the motion of a thin—cored vortex

filament, with a centerline of arbitrary shape, is ad-hoc.
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5.3 Ultra—thin filaments

The main focus of chapter 2 was to analyze the asymptotic equations of motion derived
by Klein and Majda (1991a,b). Their equations purported to provide a mathematical
description of some of the physics of the self-stretching of a vortex filament. Briefly,
their equation expressed the velocity of a point on the centerline of the filament
as the sum of the local induction term plus a nonlocal integral term. It was clear
that the nonlocal term originated with the Biot-Savart integral, but it remained
unclear exactly what had been extracted from the integral. We essentially showed
that their equation comprised the leading order terms of an expansion, based on a
small parameter, of the cut—off equation. The small parameter in this case was the
ratio of the axial wavelength to the radius of curvature, of the underlying filament.
There are two important conclusions that can be drawn from the connection that
has been established between the two equations. The first conclusion is the obvious
one, in that the origin of the terms that make up the new equation have been clearly
identified. The second conclusion is a little more subtle and concerns the claims
made by Klein and Majda that the new terms isolated in their equation account for
hairpin shaped centerlines arising during the evolution of certain filaments. We do
not dispute this claim, but assert that the hairpins that develop from filaments that
are evolved using this equation may be spurious in nature. Moore and Saffman (1974)
showed that the cut-off equation predicts a spurious instability for short waves on
a hollow thin-cored vortex ring. It is generally accepted that a prediction, by the
cut-off equation, of a short wave instability on a filament is quite likely a spurious
prediction. Unless these short waves are filtered out in the numerical evolution of the
filament (the nonlinearity will provide a seed from which these waves can grow), the
centerline may evolve into a nonphysical shape. Consequently, the hairpins observed
by Klein and Majda may be spurious, since their equation is essentially the cut—off

equation in disguise.

5.4 Vortex ring in a pipe
Chapter 3 focused on the motion of a vortex ring, a paradigm of vortex filament

motion. The thrust of the analysis was to determine the effect that a boundary had
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on the stability of a filament centerline. Such knowledge is crucial since boundaries
are present in all experimental situations. The main prediction, in the chapter, is
that the ring inside the pipe is subject to a tilting type instability. This should
not be too surprising, since in an unbounded fluid a ring tilted out of its original
plane simply propagates at the same speed in the new direction, i.e., the tilting mode
is neutrally stable. The presence of the boundary provides a preferred direction of
orientation in space (in this case it is along the axis of the pipe). Generally, it should
be expected that a boundary will induce a tilting type instability in the motion of
a vortex ring. The study carried out for the current problem may also have some
important consequences for vortex breakdown. It has been noted that when bubble-
type breakdown occurs, there is often an entrained vortex ring at the downstream
side of the bubble. If the ring is subject to the tilting mode instability, the resulting

asymmetry could lead to a transition from bubble-type to spiral-type breakdown.

5.5 Planar rotator

In chapter 4, we focused on a very interesting problem in vortex filament dynamics:
filaments that propagate without a change in shape of the centerline. Trivial exam-
ples of such filaments are the vortex ring and the helical vortex filament, which are
filaments whose centerlines have constant curvature and constant torsion (for the ring
the torsion is zero). We attempted to concentrate on the simple nontrivial example
of a filament which was planar and had steady periodic shape parameters (i.e., the
curvature and torsion). We extended the perturbation analysis (based on small am-
plitude) put forward by Kelvin and derived an expansion correct to fifth order in this
small parameter. We proposed a numerical procedure, which used Newton’s method
coupled with a pseudo-spectral representation of the equations to solve the problem
for finite amplitude waves. Unfortunately, the nonlinearities present in the problem
seem to have prohibited a complete solution to the problem and the numerical proce-
dure only provided solutions which were slightly more accurate than the perturbation
approach. A search for period doubling bifurcations merely demonstrated that there
were no such bifurcations in the range of parameters for which a solution could be

obtained.
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APPENDIX A

FLOW DESCRIPTION IN THE INNER REGION

A.1 The natural curvilinear coordinate system for the neighborhood of the
vortex filament

For an arbitrary space curve X = R(¢,t) parametrized by £ and dependent on time ¢
we can establish an arclength coordinate s = s({,t), by defining s to be the distance

along the curve between the points R(0,%) and R(¢,t). This is expressed as

s(6,8) = /

The introduction of s allows us to construct an arclength parameterization of X at

each instant, i.e., X = X(s(§,t),t). We have deliberately distinguished between the

o¢'

IR({', 1) l

parametrizations of X in terms of £ and s, because we will need an unambiguous way
of describing the velocity of a point on the filament. Such a description is available
with the Lagrangian parameterization in terms of £. The arclength parametrization
along with the Frenet—Serret formulae provide a prescription for constructing a triad
of unit vectors {s, n, b} for the space curve. These unit vectors are called the tangent,
principal normal and binormal, respectively. The Frenet—Serret formulae express the

interrelationship between X and the triad in the following way:

_ox
5= Os
% _ in
g; (A.1.1)
-8—5— =Tb—-l€S
L.
Os

The geometry of the situation is illustrated in figure A.1.1. In the figure the radius

of curvature, p, is clearly indicated, and its inverse, x, appearing in (A.1.1) is called
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the curvature. The torsion, 7, which also appears in (A.1.1) is a measure of the rate
at which the triad {s, n, b} twists about the curve as one moves in the direction of

increasing arc-length.

Figure A.1.1 A vortex filament with core radius a and strength I centered

on a time dependent space curve X(s,t). The orientation of the unit vectors
s, n and b are indicated for an arbitrary point on the curve. We also indicate

the radius of curvature, p, and part of the osculating circle at X(s,t).

We now construct a quasi—cylindrical coordinate system, (s,r,6), centered on
the space curve. This involves introducing two new unit vectors {e,, s} which span
the plane normal to the curve, i.e., they lie in the plane spanned by n and b. In
particular, the pair {e,, e} make an angle ¢ with the pair {n, b}, as indicated in
figure A.1.2.

The precise relationship between both pairs of vectors is expressed as
e, = cos ¢n + sin ¢b

(A.1.2)
eg = —sin ¢n + cos ¢.b
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€g €,

b reference line
ba

n

v

Figure A.1.2 The polar coordinate system in the normal plane.

The coordinate r, in the quasi—cylindrical coordinate system, is the perpendicular
distance from an arbitrary point x to the curve X. The coordinate 8 is the angle
made between some reference line and the unit vector e,. Both r and é are indicated
in figure A.1.2. The reference line marking the origin of the theta coordinate lies in
the plane perpendicular to the curve and makes and angle ¢¢ with the normal, n.
This angle is chosen to ensure that the curvilinear coordinate system (s,r,6) is an
orthogonal coordinate system. The pair {e,, eg} are functions of s and 6 only. An
arbitrary point x has the following representation in our quasi—cylindrical coordinate

system
x(s,r,0) = X +re,(s,0). (A.1.3)

If (s,r,0) is an orthogonal curvilinear coordinate system, then the differential dx can

be written as
dx = hysds + hre,dr + hgegdb, (A.1.4)

where hg, h, and hg are called the scale factors of the coordinated system. Using
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(A.1.1), (A.1.3) and the usual polar relations
Oe,
= e,

o6
o (A.1.5)

£

= —e,.

we find

Os
Now according to (A.1.2) and (A.1.1)

Oe,
Os

dx = (s + rQ‘ii) ds + e, dr + regds. (A.1.6)

= —K COS ¢S — (gg + T) (sin ¢n — cos ¢b). (A.1.7)

Clearly, if (A.1.6) is to correspond to (A.1.4), then we must have

9¢ _
ds

_r (A.1.8)

and it follows that the scale factors are given by
hs =1— Kkrcos¢
hr =1 (A.1.9)
hg=r
We have introduced three angles at this stage ¢, ¢o and 6, which are not independent
but are related through

9=¢— do. (A.1.9)

Since 6 and s are independent coordinates, we must have

9o

The derivatives of the triad {s, e,, ey} are easily written down using the information

accumulated so far,

56— (s,er,e9) = (K (cos pe, — sin dey) , —k cos @s, £ sin ¢s)
s
2 (s,er.0) = (0,0,0) (4.1.11)

0
50 (s,er,e9) = (eg,—e,,0)
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some of which will be needed in what follows.

We return now to a consideration of the time dependent nature of the problem.
This is necessary, since our ultimate aim is to express the Euler or Navier-Stokes
equations in terms of the quasi—cylindrical coordinate system constructed above. The
coordinates (s,r,6) are attatched to the space curve X(s,t) and are consequently
time dependent. Suppose the point x given by (A.1.3) is fixed in space, i.e., is not

dependent on time, then we can take the derivate with respect to t to find

oX Oe, Os or 0o
0= (—a—t——i—r 5 ) +(1—nrcos¢)sa+era+7‘eeg- (A~1-12)

Taking the scalar product of (A.1.12) with the individual vectors of the triad {s, e,,

ey} yields the following equations:

éﬁ__ 1 3X+ Oe, _

0t  1l—krcos¢ \ Ot "ot S

or oX

i A.1.13
5 50 e ( )
06?___1 oX Oe,

5 r\a Tam )

Now we are in a position to write down the equations of motion in terms of the
quasi—cylindrical coordinates. Suppose the velocity field of the fluid is represented by

u(x,t) and the corresponding pressure field is p(x,t), then the Euler equations are

Du
V-u=0 (A.1.15)

where D/Dt = 0/0t + u -V represents the total derivative operator. We have already
constructed a coordinate system relative to the space curve, and we can decompose
the velocity field in an analagous manner. This involves introducing a relative velocity

field V = ue, + vey + ws so that

u(x,t) = %)7( + Vi(s,r,6,t). (A.1.16)

For a scalar function ¢(s,r,,t), the total derivative is

Dy 3y 9q0s  0qr 0909

Dt ot osot oot Taea

X 1 dq 1 9q 1 9q
(_5t__ + V) . (E&-S —+ -}—L—;—a?er + "];‘;5589) . (A117)
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Using (A.1.13) this is rewritten as

Dqg Oq Oe, 1?2 Oq laq
Ei_at“L(V” at) (ha +a er + =5 (A.1.18)

We can apply (A.1.18) to the components, with respect to a fixed cartesian frame, of
the unit vectors {s, n, b}, to find

Ds Os 1 Je, Os
3{=5;+z;<’””at ) (F) (4.1.19)
Dn  On 1 Oe, on
Dt T (“’ i > (5’) (4.121)
Db ob 1 Oe, Jb
‘Jf:a‘*z(“’"‘at ) (a—> (4.1.22)

where we have used the fact that {s, n, b} are independent of r and . The compo-
nents of the velocity 0X /0t relative to the triad {s, n, b} are also independent of r
and 6, so we can write

D /90X X 1 Oe, 0 [0X

'E <—5';'> = —~——8t2 + 7{;‘ (w -Tr o . S) 5‘; (E) . (A123)

The total derivatives of the unit vectors e, and ey are given by

De, _ de; Kcosd (w “Taer _S) S+% (v_raer 'ee) s (A1.24)

Dt ot hs ot ot
Dey 0Oey ksing Oe, 1 de,
" + T (w—r 5 -s>s—- <v—rw-e9) er. (A.1.25)

Using (A.1.19) and (A.1.24-25) leads to the following expression for the total deriva-

tive of the velocity field V(s,r,6,t) (after some algebraic steps):

DV [Bw Os Os ow 1 ( Oe, ) Ow
—_— V—r - €9

Dt T Bt e Ve e tUe th o ) a6

1B (2 -
+h3 w+rat-er as—uncosqﬁ—%—vnsmqﬁ s

[Bu Os Ou 1< Oe, >8u v?
t | grtwacertug-+—|v—r "€y | mm T

ot ot or r ot 06 r
Ll (B (B
I w r@t e, ER +wkcos¢ | |e,
+ ?ﬁ_}_ Qg 4 Ov 1 Oe, ' @ uv
TR ==l i val () v
1 Os Ov )
+ W (w+r5t— -er> <5§——wnsm¢>}eg (A.1.26)
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The gradient of the pressure field is

oo Lo 00 10p

“mostatrae (A.1.27)

Equations (A.1.23) and (A.1.26-7) allow us to express the Euler equations in terms

of the quasi—cylindrical coordinates.

PX 1 o \ @ (0X\ DV
L. (w i er) 2 (_5?> + =V (4.1.28)

The continuity equation becomes

0 0 0
0= "a—s (hrhgu . S) + E (hshou . er) -+ '5-0- (hshru . eg)

_ 9 X N, 90 (. 2.9 o ( 2.9
=ras \ W 8 Ta Ut \ut g er ) ) Tgg \ e\ vt e

ow 0 (90X 0X 0 oX
:TE'*_T% (—57) -s+fcr—6—£--n+g(rhsu)+(hs—nrcos¢)§-er
0 0X . ,0X
+ 30 (hsv) — hsﬁ e+ m"smgb—at— - ey
ow 0 [0X 0 0
e 'I“—a-;- -+ T—é; (§-> -8+ E?(Thsu) + 8—0' (hsv) . (A129)

Equations (A.1.26-29) provide a complete description of the Euler equations in the

new coordinate system.

A.2 The perturbation series expansion for the flow in the neighborhood of

the vortex filament

In section A.1 we expressed the Euler equations in terms of a natural quasi—cylindrical
coordinate system fixed with respect to the filament curve. The resulting equations
are certainly no simpler than the original equations, so to get a handle on the solution,
we must appeal to another tool from the applied mathematician’s bag of tricks. Since
the filament is assumed to be a thin—cored filament, we can say that the ratio of the
core radius to the radius of curvature of the filament curve is a small quantity, and we
can look for a solution for the flow field in terms of a regular perturbation expansion
in € = a/po, the ratio of core radius to radius of curvature.

Before introducing the perturbation series for the flow field, we must perform a

scaling of the variables in the problem. The radial coordinate of the quasi—cylindrical
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coordinate system is scaled with respect to the core radius, and the remaining coordi-
nates having dimensions of length are scaled with respect to the radius of curvature.
In the neighborhood of the vortex core, the characteristic speed is the azimuthal speed
I'/2ma on the boundary of the core, and we scale all speeds relative to the velocity
of the filament with respect to this speed. The natural time scale for the problem is
given by I'/27pZ, which is a crude approxiamtion of the time required by a vortex ring
of radius py to move a distance equal to its radius. Finally, the pressure, according
to Bernoulli’s law, should scale like (I'/27a)?. These scaling rules are summarized as

follows: )
(3176,7xl’p,) = ;; (‘Sa 63x7 P)

g
a

t' = 2 t (A.2.1)
27rp% - -
2ra

Vi=—"—
r

, 472q?
p = T p

It turns out to be convenient to consider 4w2a®/T'? times each term in equation

(A.1.28). The gradient of the pressure term appearing in (A.1.28) becomes

4m2q3 op' op' 1 0p'
T2 Vp = 65;75 + 5;‘767» + ;“”—(,)—Her. (A22)
We also find
ar?a® [ 0*X + 1 4 Os 9 (90X _
T2 \ae2 TR\ e ) as\at ) ) T
X! 1 Js 0 [oX'
3 2 ', 2098 9 (oA
< e e 1—ex'r' cos ¢ (w ter ot' e,) Os' (at’ ) (4.23)

For the total derivative of V| it is easier to work with the individual components. For

the tangential component we get

4r?a® DV ,0w'  , ,0s 5 ,0s
o 5= e e
,ow' 1/, Oer ow’
T B +ﬁ(” " B e") a6

€ (w’ + 6%’@ . e,) (810 —u'k' cos ¢ +v'k'sin ¢> (A.2.4)

1 —ex'r' cos ¢
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For the radial component we get
4n%a® DV o Ou'

T Dt T e T e e
o 1, , , 0e, ou'  v'?
e T\ T e %) e T

c (w' + ezr'éi . er) (Qf‘_ + w'k' cos ¢> . (A.2.5)

1—ek'r"cos¢ as’

For the azimuthal component we get

4r%q® DV ,0v 5, 0s
e =gt g e
+ ,0v' + 1/, &2 , Oe; ov'  u'v
[r— — — T . —— ———
“ o r\" ot ) b6 r!

€ , , Os v’ .
(w + €éXr 5 -er> <§ — w'k'sin qb) . (A.2.6)

1 —ex'r' cos ¢
Equations (A.2.2-6) provide a complete description of the transformed Euler equtions

in terms of the scaled variables. Finally, the conitinuity equation (A.1.29) becomes

,Bw' 2,6 BX' a 1] [N !
er._a_s_+er5;—l<at,>~s+—67(r (1 —ex'r' cosg)u')

0
+ 2 ((1 — es'r' cos @) v") = 0. (A.2.7)

Our next step is to write perturbation series for the field quantities that appear in

our equations.
V= (w(o),O,v(o)) + e (w(l),u(l),v(l)) + € (w(z),um, v(2)) + O(3YA.2.8)
p = p(O) + epM + 2p?) 4 O(€%) (A.2.9)
X’ X! (0) X!’ (1) ax' (2)

Substituting (A.2.8-10) into the transformed equations and ignoring terms of O(e?)
and higher leads to a new system of equations. The terms that are independent of €

are given by

() Gup(®)
06
@) gp@

v o (A.2.11)
0© 9o® 1 gp
rr 98 r' 08

ov(®

26
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which come from the axial-momentum, radial-momentum, azimuthal-momentum

and continuity equations, respectively. The corresponding terms proportional to e

are
(I)Bw(") 0 ) (1) Gy (0 ) Hw ()
u + + +w
or' r' 08 r 06 os'
(0)
+ &'v@y@ gin o= ——ag p
S
v© 3 2y o (w (0))2 s = ap»
r' 06 r! or! 4912
@ p©) /gy o™ Gu® (0 (4.2.12)
0 0 Ov 0
u(l) y I +u(1) 4+ — +w(0)____.
or' r 06 08 os'

2 1 Hp»
— &' (w(0)> sing = —— i

r 08
9 (, (1)) o ,9_( 0) ¢)  0w(®
o T U 30 mrae vy’ COoS +r W

=0.
Finally, the equations proportional to €* are

) ax\ @ Ow(® Os dw
(0)_~ bl . N () Bl (1)
Y B (( Bt ) ) St TV e et

- ® Ow(® s (0 §u @ s 2 G ® N 1/ 5  0e, Oow(®
" ks _ o8
or! Y] 06 o\’ T ) 50
S (0)
+ w©® <—g; + &'vD sin ¢ — kv cos qS) + w® (Qg-*,— + £'v® sin ¢)
S

Hw®
+ k'r'w(® (——g;—,— + kK

(1)
ags, (A.2.13)

"v(® sin qS) cos¢p = —
from the axial-momentum equation,
0 0 [ (9x'\© 1 8u w® gu® (M) gy
20w — —_— e, +ulM + +
Os ot or' r 06 r 06

- —1/- ((v(l))2 + 2v(0)v(2)> + k27! (w(o))2 cos? ¢ + 26'wOw) cos ¢
T

Bu)  gp®@
<°)~67 =-—5 (4219

+ w

from the radial-momentum equation,

a [ /ax "\ v v v
0 9 [ [oX . Mo (200
20 A ((aw) ot g TU g T g
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1 (@ vV Oe v
= 1,0 (2) (1) (1) (2) _ 1 2°7 -
+r( (aa tu )“’ (aa tu >+(” " B e") 58

(1) 0(0)
+ w(® (ag — k'w® sin ¢> + wD (%.I__ — k'w® sin ¢)
s S

!

3’

(0) 1 op(»
+ &'r'w(® (8'0 — &'w(® sin d)) cos¢ = p
0 r!
from the azimuthal-momentum equations and

£ (047) < )1 B2y (1

Auw® o [ /ox\®
! l____ hataianil . —
+r 5e7 +r 59 (( 50 ) s=0 (A.2.14)

from the continuity equation.

A.3 Solution of the leading order perturbation equations

The leading order equations (A.2.11) are readily solved to yield

o (0 ()2
p? =poo—/ (—%@Ldé (A.3.1)

and
Hw
o6
ov(®)
06
ap®
06

This clearly shows that to leading order the effects of curvature are absent from the

=0 (A.3.2)

=0.

flow at infinity; the leading order flow is axisymmetric.

A.4 Solution of the order ¢ equations

To solve the order e equations, we require more information about the leading order
flow structure. We deduce from the asymptotic behavior of v(®), which being like
1/r' is independent of ', that v(®) is independent of s'. Furthermore, if we aver-

age the first order equations over the azimuthal direction (i.e., compute the integral
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1/2% f02’r(-)d9), we find

®0u® | 00uw® _ p®

Yo g ds' ~ Os'
-zv(o)v‘gl) — _6p§1)
T or' (A4.1)
0@y (0)3v<0)_0
o T T
8w ©®

9 (1)
—8_7‘7 (T‘,UO ) +T-——$—- = O
where the quantities with subscript 0 denote the azimuthal averages of the corre-

sponding quantity. Using the fact that v(®) is independent of s’ yields
ov(®

Os' -

u(()l) =0

Aw(®
os'
ap(®

ds' 0.

This allows the first order equations to be rewritten as

(A4.2)

© O gy
gr, +vr, g~ HrvOw@sing =0

(0) Hu (V) (0),,(1) 2 ap(V)
v u vy D
-2 + &' (w(o)) cos P = —
r 00 r! or'
(0) (0) 5,V (0),,(1) 2 (1)
u(l)a;, +v - age +v If — k' (w(o)) sin¢=.—l’0§6
r r r T
(1)
% (T’U(l)) + age + I‘;I'U(O) sinqb =0.

Now we look for solutions for the flow field in the following form:

L9

(A.4.3)

W = w((,l) + wg) cos ¢ + wgi) sin ¢
uV = u(()l) + ug) cos ¢ + ugi) sin ¢
(A.4.4)
v = v(()l) + vg) cos ¢ + vg) sin ¢
p® = p{" +p cos ¢ + p{}) sin ¢
A careful consideration of higher order terms in the Fourier expansion shows that

the corresponding coeflicients are identically zero. We also note that ugl) = 0 from
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(A.4.2). Substituting (A.4.4) into the reduced axial-momentum equation yields an

equation whose Fourier coefficients are

(1)3w
0
Yo T
(0) (0), (1)
L0 v Tws (A.4.5)
01 arl bl
(0) (0), (1)
uD yow ™ v we, 4 k@@ _ .
roor r!

Repeating this procedure for the radial-momentum equation yields

O ap?

r 87"
MOMMEY MCNCY 2
U _ ¥ Vo (w(")) _ 5; (A.4.6)
r T r!
oOull O )
r! r! or'
Again for the azimuthal-momentum equation
(l)av(O) ugl)v(o) o
ug =
a ! ,rl
@ O p(l)
1) 1 1 s1
uMZ_ T+ (Ugl) +“ﬁl)) =B (A4.7)
PO (1)
1 1 1 (0) Dc
v - T (o ) - (w®) = B
Finally, from the reduced first order continuity equation we get
9 (1)
ar' (’”I“O ) -
O (114 4 vV
a7 (r U, ) +v;’ =0 (A.4.8)
T
%(, O) = o) 4 w2 = 0,

We recognize that the first equations from (A.4.5), (A.4.6) and (A.4.8) vanish identi-

(1)

cally because uy’ = 0. The remaining equations from (A.4.5), the axial momentum

equation, conveniently give w( ) and w( ) in terms of u( ) and u(l) and the leading
order velocities as
W — T ucl) ow'®
Yol =T RON
A.4.9)
(1) 5, (A.4.
(1)-—/~cr (0)+T“81 w
RORF
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() (1) .

The remaining equations from (A.4.8) give the velocity components v¢,” and vs,’ in
terms of u( ) and u( ) and the leading order velocities as
NONCE (ru)
1 ! Cl
or (A.4.10)

S1

(D _,{lrlv(o)+ 2 (r'u(l))
1 or'

Now we ehmmate p( ) using (A.4.6) and (A.4.7) and find through the subsequent

elimination of v$", using (A.4.10), that v satisfies

,(maucl 00ul [ 000 5®  H©
or? o \”

o or'? + ol >US)=0. (A.4.11)

Repeating this procedure for the pressure term pcl) leads to an expression for u( )

which is

(0) (0) (0)
o (0)3 usl + 3 (0)au B (T' o%v Ov v )ugll)

“orz or! or'? + or

0 ©)
_ (0) (00v " (0) Ow
~ 3’ (v ) — o'V S — O e (44.12)

We can solve (A.4.11) and (A.4.12) by noticing that the left—-hand side of both equa-
tions is obtained by employing the same differential operator. Moreover, a homoge-

neous solution for the operator (i.e., a solution of (A.4.11)) is o /r'. Consequently,

we look for a solution of the form v(o)x(r' )/r" and find

8) _ a(l)v (T‘ ) / = + ﬂ(l) v(O)gr )
“”(f) '

ul) = (1)” (T)/ — +5(1)”( ()
“”(»:) :

»® w® (A.4.13)
o) / - E (5 )
-2
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a )

By requiring the components u¢,” and ugi) to vanish as v’ — 0, we find that the

(1) (1) 5(1)

constants a¢,’, as,”, B¢, and ﬂsl must be chosen to be zero. Consequently, we find

=0
= —5ar 0 ()(T)/015<1:<(§>)((§))) “ (A.4.14)
,U(O)(TI) o <(v(0)(77))2 -2 (w(O)(n)) )
S o Jo ¢ (1;(0)(6))2 dndt

Now we employ (A.4.9) to find

wgl) =0
(0) ©) (0) 2
wl® = (0) 1, p0w™” 0w / w ' (§)
=k'r'w (r') - SR e R i 3 U(O)(g) d¢
(A.4.15)

O / /577( (0)(77) (w(o)(n))2> it

Similarly, using (A.4.10) we find

vgi) =0
(1) (A.4.16)

o0 = k@) + a4 3(};8,1 .
The pressure terms follow from (A.4.7). Finally, we see that the first equation of
(A.4.6) relates the pressure term p( ) to the azimuthal velocity term v(()l). The axial
velocity term w (1) does not appear in the equations at this order.

To find the asymptotic form of the velocity field as r — oo, we use the fact that
0@~ 1/r" and w® ~ O(1/r'™) for any integer n. Now the only term that presents

difficulty is the double integral that appears in (A.4.14-16). This integral we write as

/OT' E—(Z(%g(—f_—))—f /05 n ((U(O)(U))2 -2 (w(o)(ﬂ)) 2) d
L UL o o) -9
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[ (o) (L (o) =) -
Lo () —2(omt)’) 5 -
[ ((&,«f@y —g) e+ [ e sarn

The fourth integral in (A.4.17) clearly integrates yielding

7,_I

r 7"2 , 2
/0 Elné d€ = —2—-lnr -5 (A.4.18)

If we examine the first integral, we see that the integrand at worst behaves like a

constant, and so we can write

[ (=) (6o ooy 2 -

= O("). (A.4.19)

The second integral we write as

/OTIE(/OE ((nv(o)(n))2 —2 (nw(o)(n))2> a;—n - 1n£> dé
-2(/ " ((0@©)" -2 (e©)") % - 1ar)
. _1_/# €2<(§v(0)(€))2 —2 (§w<o>(€))2 B 1) "

2 3 3
= .’l; ( /0 ' ((gv(°>(§))2 —2 (gw(°>(§))2> % - lnr'> +O(r"). (A.4.20)

For the third integral in (A.4.17), we have that the integrand behaves like In¢, and so

we write

/0 " (m - g) In€ d¢ = O(r'Inr"). (A.4.21)
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Using (A.4.18-21) we find that the nonzero components for the order e corrections to

the flow field have the following asymptotic forms

! r 2 e 2
ugll) ~ ——%— < lim (/ n (U(O)(U)) dn — lnr'> - 2/ L (w(O)(n)) dﬂ)
r'—oo 0 0

_ %1 o 1;_ (A.4.22)
oD ~ '_;i ( lim (/ n ('v( )(77)>2 dn — lnr'> - 2/0077 (w(o)(ﬂ))2 dn)

r'—o0 ) 0

- _1m~ + .11. (A.4.23)
w® ~ 0. (A.4.24)

A.5 Solution of the order ¢? equations

For the solution of the order €2 equations, we look for a Fourier decomposition of the

flow field in the form
w® = w(()z) + wgf) cos ¢ + wgf) sin ¢ + wgz) cos2¢ + wgz) sin 2¢

u® = ug? + uld cos ¢ +u? sing + u?) cos 26 + ul?) sin 2

v® = v((,z) + v£2) cos ¢ + v§2) sin ¢ + v§2> cos2¢ + v§2) sin2¢ S
p(2) = p(()z) + p(z) cos ¢ + p(2) sin ¢ + p(z) cos2¢ + p(z) sin 2¢.
The axial-momentum equation admits the following Fourier decomposition:
NOR: <<6X'>(0)) or O @@ goul) _ apl”
ds' o' ot! o o Os' 0s'
v(O)gi bt u (2)6w(°) N v(o)w(z) (1)wgi) - ® (’9w _ _6p8)
ot e Br r! r! 83’ 0s'
»(® g: n4 (pag’o, N ug)ﬁg_:,ﬂ _ :’)) w® — ;l) 1) 4 @)
FRC )w(() y Tpg) (A.5.2)
ul) 6;)(,) +22 v o
2 . "3 - - 4”,57) o i
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The terms containing 7 come about from taking the derivative of the angle ¢ with
respect to s', which equals —7 according to (A.1.8). As before, we will solve for the
radial components of the velocity, and so it follows that we can write the latter four
equations of (A.5.2) as equations for the axial components wgf), wgf), wg) and w(z).
Similarly, the radial-momentum equation admits the Fourier decomposition
2
ol 2 (9) (@) o

el a’l' r! r! r! : r!

+ k"% (w(0)> ’

2)
+ 2k" 0wV = 9po

or'
0
0@ 8 [ (X (0) - OMO) N MONC) , NOMO)
63, 8t’ 7" 'r" ,rl
(2),,(0)
_2”01 + 26 @D — @D = _optY
r! 37./
(0) @),,(0) (2,0
2@ 2 [ (X btal _olul (A.5.3)
s’ ot r! r!
1 2
PWOY ousy _ opf?
Os' or'
(1)
1 2 0
gl)au( ) +4u§2) S . W (vcl ) o
toor! r! r! r !
2 (2)
+&"27! (w(0)> + 2n'w(0)w(l) = ag
7‘
) 2u£§)v(°) ) 2U(O)vg) _ o
r! r! or'
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The Fourier decomposition of the azimuthal-momentum equation yields

v +ug2) ' uﬁf)v(“) w® av(()l) _
ot! or' r! os'
. (0)_6_ ox'\ (@ b (2)6U(0) N U(O)Ugf) N U(O)ug)
Y Bs ot Yer T r! r!
L@ _ P
ds' !
0 1 0 0) (2
EPORA ((_6_7(_')( )> ‘n4 L2 n L2 oD
0s' ot' o or! 1 or! r!
Ab5.4
2P, ® LW, @) 1) . o p(2) ( )
n 181 _ Y% ’01 4 Y 181 —Qn'w(o)w((,)—{—'rw( )Ugi) — __?’1_
T T T r
@ ENO) 2v(0)v§§) U(O)ug) _ 2Pgi)
Ue, or! + r! + r - r!
m)?
1 0 0) (2 0
2y B0l + o o o0 +20< W@ (vcl )
tor! 2 gr! ! r! r!
(1), (1) (2)
B @) g (u0) = g2
T r
Finally, the Fourier decomposition of the continuity equation yields
9 2 gwl 8 [[ox\©
o () 4P e () ) om0
0 ow)
o () ol 0 =0
0 9 9 1 (A.5.5)
2 () -
2 2
Ew (r'u£2)) + 2v£2) =0
2—36—, (r'ug)) — rc'g— (r'2u21)> — 40 + K,,T,Ug) = 0.
r
For convenience, we adopt the following the shorthand expressions:
p) X! (0)
o [[ox\?
o X! (0)
=— || 5 b 5.
B 5e7 ( 5 ) (A.5.8)
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()

where S, N and B depend only on s’. Solving for the radial components u.,” and

§1), in the same way that we solved for their first order counterparts, yields the

complicated expressions
(o) pr' 13 (0)
“92230'/ = 2/,75“) dn
' Jo £ (v®()) n
(0) ! r!
_ 2”_1_‘?57/ ___‘_l_f___z_/ EROMON
r' 0s' J, g(v(o)(@) Jo
(@ 7 d¢ €9 [ 0@ aulV
- ) 2 ol i) ' d?]
r Jo £ (0©@(€)" Jo On Os

v© d¢ w® o[ 30 Bu(l)
T /0 g(v(o)(g))zf an (n an o ) )1 (459

and

v©® g ¢ L ouw!”
= I / ® 2/ U
0 E(v (©) "

(0)
_2,€17.'1)___’_ __.ﬁ____z./ nv() ()dn
T Jo £ (0(0(9))

() pr' ¢
_2,@'”,/ d¢ 2/1723(”“))6177
rJo ()" Jo I
NN d¢ ¢ 9 ow® 6u§”
. 7_I , / 2/ = ,'73 ,1 dn
r o (v(o)(f)) o On On Os

(0) (1)
+ 2 ; / / (O) ; "5 ou, dn.(A.5.10)
™ Jo v((’) f)) on as'

The corresponding terms for vgl), vﬁ}), etc., follow from the equations.

(2 )

Repeating the procedure for the terms u.;’ and uﬁ? yields the following pair of

differential equations:

) 2,000 5 (0) o (0)
L0 o (0 dul? Ov (O
l 87"22 + 3v or' - (T, or'? + or' + r! ug) =0 (A'S'll)

(2) 0 0 0
10 Pusy ul? 5@ 0uss <r'32“( PO N 9 )) o

or"? or' or'? t or' r! a2
= F [U(O)(r'),w(o)(r')} (A.5.12)
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where the right-hand side of (A.5.12) is a complicated nonlinear functional of the

leading order core velocities given by

F [U(O)(r'),w(o)(r')] =
2u£1) 3, (0 + k' 9p'® + r! 821)8) + 2 ngi) 4 2v,(;:)
rropl® 5" 2 Or! 4 or'? ' or! ri2
2 duiy (3, o, £ o0 +1 ove) | vy
(0) o \2"" 4 oar 4\ o r!

21)( ) 3 1,0 + ' 9v(® + 6 + vg)
B (@ 2 2 or ar r!

usl) aug? ,01)8) k'r’ 62u§{)

rp(® Or! " or' + 2 Or?
(0) 0), (1)

K wcl) ow'®  k'w® ng) k"2r'w® dw + K'w  we,
1)(0) or' ’U(O) or' ’U(O) or' r! U(

Unfortunately, the differential operator appearing on the left~hand side of (A.5.11-12)

.(A.5.13)

has no simple homogeneous solutions. (Recall that the differential operator appearing
on the left-hand side of (A.4.11-12) had v(°)/r' as an homogeneous solution, from
which we were able to construct a general solution.) If we examine the operator, we
find that it has regular singular points at the origin and at infinity, all remaining
points are ordinary points. Furthermore, for the point at the origin there is a regular
solution, u§(r'), which vanishes at the origin and a singular solution u{(r'). For the
point at infinity, there is a regular solution u?_(r') ~ 1/r"® and a singular solution
ul (r') ~ r'. If we look for a solution proportional to u7_(r'), then we obtain solutions

of the form

uy = alluslr )/ o (5»2 +BBuL(r) (45.14)

u? = o (2) r e @)y (r
82 ( )/ 63( oo(f))2 +/B ( )

+ Ul () / e [P (1), . (4535)
o & (ucio(f))2 0 ]
Alternatively, we could use the fact that these components of the velocity must vanish

as r’ — ( to write the solutions as
(2) — 'ygf)u (r') (A.5.16)
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D = D)
() w!® 5.
uZ(r) / T s [PuF [p0), w0 an (4517

(2) (2)

where 7¢,” and 4s,” are arbitrary. For a pair of constants b and ¢, not both zero, we

must have
up(r') = bul (+') + cul (r'). (A.5.18)

The constants b and ¢ depend on the form of the leading order core velocity v(?), since
it is this velocity that determines the type of homogeneous solutions admitted by the

differential operator on the left—-hand side of (A.5.11-12).

Using (A.5.2-5) we can deduce the solutions for v&,), ng), etc., but since we will

not explicitly use these terms, we will not carry out this step. However, we do require

() (2

the asymptotic forms of the components u¢;’ and ug ). To obtain these expressions

we require the asymptotic form of the nonlinear functional, which is

3 k"2
F [U(o)(r,),w(o)(r,)] ~ oS (A.5.19)

as r' — oo. Using this fact we deduce that the asymptotic forms of (A.5.16-17) are

ul® ~ 4By (A.5.20)
3,‘6,2

W@ @y 3% (4 3PN
55 ~ Vsy bT g "o + -+ g 1 (A.5.21)

where

(—oo

¢
A= lim {/0 n*ul_(n)F [v(o)(n),w(o)(n)} dn — —Z—ln(()} . (A.5.22)

The dependence of the solutions on u7_(r') has dropped out of (A.5.20-21) since in the
asymptotic limit ul (') will be dominated by the first order terms in the asymptotic

) (2)

expansion of u®_(r'). For reference we include the asymptotic forms of us>’ and usy’;

these are by

ug) ~ —ZB/ nw(o)dn
0
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k' [% 4 (0), (0)
- = d
35’ /0 n‘v'w dn

1 [0 [ ;009 ould
-5 / ol R/ dn
2 /o On dn Os'

oo (1)
= = - 5.2
+ 2/0 w o (n 5r \ B dn (A.5.23)

and
o0
ug)~2N/ nw(o)dn
0
— n'r'/ n2v(o)w(0)d77

0
+ 2&'/ nw(o)w((,l)dn

0

1, [0 [ ;00\ oulV .
~—T/o an \" "oy ds'

C [ ) @ o [oul?
/O w(O)_a_; (7736_77 ( ;s' )) dn. (A.5.24)

3]

N =
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APPENDIX B

FLOW DESCRIPTION IN THE OUTER REGION

Dominant terms in the expansion of the Biot—Savart integral

In this appendix we determine the behavior of the Biot-Savart integral, for the ex-

ternal velocity field,

— _1:_ s’ (X — X(Slvt)) s
u(x,t) = 47rf X |x—X(s',t)|3d , (B.1)

in the limit where |x — X(s,t)| — 0. It is assumed that the point x is close enough
to the filament that there is a unique closest point X(s,t?). We adopt the curvilinear

polar coordinate system introduced in appendix A.1 and write
x(s,r,0) = X(s,t) +re.(s,6). (B.2)

In (B.2), X is explicitly shown to be a function of time. The coordinates s, r and
also are functions of time, but this dependence has been suppressed for convenience.
To find the limiting behavior of (B.1) as r — 0, we consider a Taylor series expansion

of X(s',t) about the point s' = s. The first few terms in this expansion are
X(s',t) =X(s,t) + (s —s)s+ % (s' —s)* kn
+ é— (s' = s)° (—k*s+ksn+kTbh)+ 0O ((s' — 3)4) (B.3)
where k, = 0k/0s. Accordingly, we have
x — X(s',t) =rcos¢n +rsingb — (s’ —s)s — %(3' ~ ) kn
- é(s' - 3)3 (- &%s+kn+kTb) + O ((s' - 3)4) (B.4)
where we have used (A.1.2). We also have
s'=s+4 (s —s)kn
+ 50 =9 (~Rstrmtarb) 40 (5 ~9)).  (B)
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The remaining part of the integrand is the denominator; this is obtained by taking
the inner product of (B.4) with itself, yielding
/ -3 2 4
Ix — X(s',1)] =<r +(s' — .s) ——(s'"—3s)

—2rcos¢( (s' = s)° +—( - 5)°)

If we set
D? = p? 4 (&' — )’ (B.7)
then (B.6) can be expanded to yield

- 1 3
Ix—X(s', ) P =D% + —8—fc2 (s' - 3)4 D% 4+ 5Tk cos é (s — 5)2 D~®
1 ! 3 =5 1 . ! 3.~—5
+ §rnscos¢(s —-s) D +§rm'sm¢(s -s)' D

+ —1-8-5—7“2st cos® ¢ (s' — 3)4 D"+ 0 ((3' - 3)5 D—s) - (B.8)

Assembling the integrand we obtain as a first step the cross-product

s' x (x —X(s',t)) =reg +resing (s’ —s)s

1 1
+ 3" (s' — 3)2 b — 57%2 (s" - 3)2 ey

1
) (rkTcosd —ressing) (s’ — 3)2 s

+0 ((3' —s)%). (B.9)

The effect of the denominator can be taken into account by multiplying by the right—
hand side of (B.8). This leads to the approximation of the Biot-Savart integrand,

using the Taylor series for the filament curve,

s (x = X(s',1)) = (reg+resing(s' —s)s
[ Ix — X(sft” _( ot rrsng(s —s)

1
+ 5/{(3' —5)’b-— %rmz (s' — )" e
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1 . ' 2
-3 (reTcosd —rrssing) (s’ — s) S>
. (D”3 + %;@2 (s' — 3)4 D5+ —grn cos ¢ (s’ — s)2 D5

1 1
+ —rrgcosd(s' —s)° D% + Zrersing (s' = 3)3 D~°

2 2
15 5.2 ' 4 -1
+ g 7K cos é(s'—s) D" ). (B.10)

We integrate (B.10) with respect to s’ from s — L to s + L, where L is a length
characteristic of the axial dimensions of the filament, i.e., if p is the radius of curvature

of the filament, then L = O(p). In the limit where r/L — 0, we find
s+ L
[T letexen]
s—L |x - X(s',1))?
geg + L { [ln <2L> - 1} sin(¢)e, + [ln (?-é>} cos(¢)eg}
r P r T

+ 237’" { [m (E;i) - %] sin(24)e, + [m (%) - g} cos(2¢)eq + Ilgeg}
(B.11)

Consequently, the Biot—Savart integral can be written as

T [, G=X(01)
47rf{ x — X(s', 1)

ot 1 { [1n () - 1] sintore, + [1n (2£) ] con(syen

+ 83:;2 { [m (3}) - g] sin(2)e, + [m (2:: ) - g} cos(2¢)eq + igeg}
L Q (B.12)

where Q is

L J e x=XE0) L (x=X( ) s =SV
Q"zhr%( Ix — X(s',)* [ X|x-X(s',t)|3LSH<1 L ))d
(B.13)

where H is the Heaviside step function. Equations (B.12-13) provide a convenient

representation for the Biot—Savart integral since the singular terms have effectively
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been removed from the integrand. However, we should note that the (B.12) is really
independent of L (as long as it scales like the radius of curvature) since the terms

explicitly containing L, in (B.12), are exactly balanced by equal and opposite terms

in Q.
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APPENDIX C

ULTRA-THIN TRAILING VORTICES

Estimation of the core radius for an ultra—thin trailing vortex

In chapter 2 we claimed that a vortex filament belonging to the Klein and Majda
regime was necessarily an ultra—thin filament. This claim was based on the fact that
filaments belonging to the Klein and Majda regime satisfied equation (2.1.5), which
forces the core radius of the filament to be exponentially small. In terms of the

dimensional quantities, introduced in (2.1.12), equation (2.1.5) can be written as
2A
€ [ln (———) + C] =1, (C.1)
a

where A is the wavelength of the perturbation to the filament, a is the core radius and
C contains information about the core structure (see equation (2.1.6) or its dimen-
sional counterpart (2.1.15)). The parameter C is an O(1) quantity and for the sake
of convenience we will take C = —1/4, which corresponds to the value for a filament
with uniform vorticity in the core and having no axial velocity in the core. Inverting

(C.1) we obtain the following expression for the core radius

1
a=2Aexp (——6—2— - —i—) , (C.2)

which gives the exponential behavior of a in terms of A and e.

Any waves present on a trailing vortex are most likely to be the unstable waves
predicted by Crow (1970). Crow’s results suggest that such waves have wavelengths
on the order of 8.6b, where b is the seperation of the vortices and is on the order of
the wingspan of the aircraft. If we take b = 100m, it follows that for € < 0.2 we must
have a < 1.86 x 107®m. Since the mean free path in air is 6.5 x 10™®*m (at standard
atmospheric conditions), it consequently follows that an ultra~thin filament has a core

radius less than the mean free path in air at standard atmospheric conditions.
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APPENDIX D

THE ROTATION RATE OF A HELICAL FILAMENT
OF LARGE PITCH

High order computation of the rotation rate of a helical filament of large
pitch using the Moore-Saffiman equations

In this appendix we consider the application of the Moore-Saffman equations to
compute the motion of a helical filament of large pitch. We assume that in the core
of the filament there is no axial flow and the vorticity is uniform. For such a filament
with centerline X, core radius a and circulation I', the Moore-Saffman equation (1.2.2)

reduces to

X —Qus+ [( )—-] (D.1)

In (D.1), Qums is the desingularized Biot-Savart integral

Qus = -F-{/ ¢ X(X_X')ds'-/§° X(X”X°)dso}, (D.2)

4r IX - X'|3 X — X3
where the first integral refers to the filament itself and the second, to a ring type
filament coinciding with the osculating circle to the curve X at the current position.
Of the remaining quantities in (D.1-2), b is the unit binormal, § is the unit tangent
and p is the radius of curvature, all of which are geometrical quantities associated with
X. The quantities with subscript o refer to the osculating circle which has radius p.
We note that the absence of axial flow in the core means that the Moore-Saffman
equations are the same as the cut—off equation. In fact, it would be a little less
involved to compute the rotation rate using the cut—off equation, but since we extend
the result derived in Moore and Saffman’s paper, we will use the same equations as

they use. The centerline of the filament we take to be given by
X =D (icos8 + jsind — k(6 — Qt)/7), (D.3)
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where 6 is an angular variable ranging from —oo to co. The pitch of this helix is 1/7,
so for large pitch we require v < 1. Using (D.3) in the Frenet—Serret formulae yields

the orthonormal triad of vectors §, fi and b which we now compute

. X [ox
007 | 08
=7 (——isin9 + jcosf — kl) , (D.4)
V1472 | v
with
ds _|ox
dg | 98
_D

” V1472 (D.5)

It follows that

1o
p  Os
>
= —m(icosﬁ—}—jsinﬁ), (D.6)
b=8§xn
= ———-——1——-—(——isin9 +jcosf + k7). (D.7)

VI+?

Without loss of generality we may evaluate the induced velocity at the point corre-
sponding to § = 0 and time ¢t = 0. At this point the osculating circle lies in the plane

normal to the binormal, which according to (D.7) reduces to

b= (D.8)

1
———(i+ k).
r—-—-1+72(3 7)

The radius of the circle equals the radius of curvature at the point corresponding to

6 = 0. This is easily read off from (D.6)

p= 2(—1%-&. (D.9)

Consequently, the equation for the osculating circle is
oni(l—p)+p(icos¢+<5xi> sin¢), (D.10)
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where ¢ is an angular variable ranging from —7 to 7. To evaluate the desingularized
velocity Qars, we employ a limiting process whereby an interval about the point § = 0
is removed from the range of integration, and then finally the length of the interval is
allowed to go to zero. For small values = 6y and ¢ = ¢¢, we find the following inter—
relationship (by considering how the arc-length is related to the angular variables for

both curves)

o = 6o (-ﬁ) . (D.11)

Using this limiting process we write the induced velocity at § = 0 as

-0 ol l
° §f x(X-X",,
QMS—- Eeﬁé?—»o{(/ */90 > lX.-.Xllg ds —
~¢o So X (X = X,)
(74 [)epe) @m
Using the fact that + is small allows us to write
T VI x(X-X)
([—w + /90 ) IX - X,|3 ds

zggewmh@"“”WD+M(M@—%%NW+OWﬂm(um

where

fsinf —1+4 cosb

Jo(8) = 5 , (D.14)
71(6) = (L;ﬁ) 7o(6), (D.15)
(o(0) = ___3953‘3, (D.16)
K1(6) = (1—@%359) Co(6). (D.17)
Making use of the cosine integral Ci(z) = — [~ (cosz/z)dz, we find the following:
9:0 Jo(6)do = 02 (cos 6y + Ggsinfy — 1 — 9201(90)) (D.18)

i 1
/ J1(9)d0 = m<(12+263)60800 - (3+29§)COS200
8o 0
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+ (400 - 263) sin 90 - (260 - 493) sin 290

— 94 262Ci(8y) — 8930i(290)> , (D.19)
/ Ko(6)d8 = —2%5 (1 — cos g + 0y sin by — 82Ci(6p)) , (D.20)
0o 0
K,(0)do = = —| —(12 — 263 ) cos 6y + (3 — 263 ) cos 26,
8o 246}

+ (46p — 263)sin Gy — (26, — 463) sin 26,

+ 9 4 26;Ci(6p) — 8930i(290)> . (D.21)

For small z we have Ci(z) = E + In(z) + O(2z?%). Consequently, if we use the fact that
6o is small, the integrals (D.18-21) reduce to

To(8)d6 = -1- _ lE _ -1—1n(90) +0(62), (D.22)
8o
/ J1(8)d6 = —9- _lp_ —1n(90) - ~1n2 +0(8}), (D.23)
8 48 4
/ Ko(6)db = Z - lE - 1n(90) + 0(63), (D.24)
8o
K1(6)d6 = % _ —E _1 1n(eo) _1 ln2 +0(62). (D.25)
do

(D.22-25) provide the expansion for (D.13) to O(63). Next we consider the second

group of integral terms in (D.12)

~ %o ™\ 8, x (X = X,)
ds,
(/ /) X-X.p ©

_b [ dy
Cop /4,0/2 sin ¥
2
= % (1 — g’)’? + 0(74)) (Ingo —2In2+ O(¢2)) G+ kvy). (D.26)

Recalling (D.11) which relates ¢o to 6y and using (D.22-26) in (D.12) leads to the
following expression for the induced velocity

23

I'+2 1 3
QMS_47rD[ (ln'y 21n2+-——E———2-7 (ln’y——-—-an—}—E-—E))

++k (ln7—21n2+ ;— —F - -2—72 (In'y— —In2+ 2 —E)) .(D.27)

12
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At this point we note that we can in principle determine Qs to arbitrary order in
7. If we denote the velocity of the filament at # = 0 by u, then according to (D.1)
and (D.27) we have

y2 |, 2D 1 3, 2D 4
“‘4@{’(‘“(2‘7‘%2" -3 ((37) - gmer1-n))
2D\ 5 3, 2D\ 4 3
Vy2_ g2 il I S _E))|.(D.
+7k<ln(a7>+4 57 <ln-<a7> 31112—1—2 ))} (D.28)

Now returning to (D.3) we find that the velocity at § = 0 is given by

X DO
=k (D.29)

Since the filament velocity is arbitrary up to a slipping velocity (i.e., some unknown

component parallel to the curve), we must have

—l%gk —u=a(yj—k), (D.30)

where «a is some unknown scalar quantity and vj — k is parallel to the helix at § = 0

(see Saffman (1992)). Solving for Q yields

Q=7v(u-k)+(u-j)
Ty 2D\ 1 1, 2D 1

which is what we required.
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APPENDIX E

THE GROWTH RATE OF A TILTING VORTEX RING

Estimation of the growth rate of a tilting ring using the experimental

results of Weidman and Riley

In chapter 3 we reported that the experimental work of Weidman and Riley (1993)
seems to provide some evidence that a vortex ring in a pipe may be subject to a
tilt-mode type instability. Briefly, their experimental work sought to examine the
motion of a concentric and coplanar vortex ring pair that moves inside a concentric
pipe. To generate the vortex ring pair, fluid is forced through an annular orifice in a
flat plate. The vortex rings form by roll up of the boundary layer at the sharp edges
of the orifice. For a full description of the experimental results one should examine
the original paper, but from the perspective of the stability of the vortex pair we
can state that their results indicated that the outer ring was usually subject to a
Krutsch type instability (i.e., the growth of waves on the centerline of the core, whose
wavelength is on the order of the core radius) while the inner ring usually suffered
from an irrepressible mode-one tilt! They attributed the tilt to an elastic distortion
of the inner disc, whose edge makes up the inner part of annular orifice, during the
formation process. It seems likely that any such distortion would provide a seed for the
tilt-mode type instability. In the remainder of this appendix we attempt to estimate
the growth rate of a tilting mode associated with the inner ring of experimental run
#13.

Suppose a vortex ring is subject to a tilt—-mode type instability, then the axial
position of a point on the core centerline (as measured with respect to the unperturbed
ring) is proportional to exp(ot), where ¢ is the growth rate. If (¢) is the tilt angle

then tant equals the ratio of the maximum axial perturbation to the ring radius

Zmaz
t = . .
an I (E.1)
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Consequently, for small tilt angles we can write

P(t) = 1o exp(ot), (E.2)

for some angle 1. It follows that the growth rate is given by

o= In (¢(t2)) —In (¢(fl)) (E 3)
ts — 11 ’ )

where t; and t; are two instants in time. Unfortunatly, we do not have a complete
data set which allows us to determine the tilt éngle and the corresponding time, but
the data set does allow us to determine the tilt angle and the axial position at each
instant in time. If z(¢) is the axial position of the ring at time ¢, then assuming a

constant ring speed between U, between t; and t3, we find

z(t2) — z(t1)

If we eliminate t; — t; from (E.3), using (E.4), we find
o _In((t) = In (¥(t) 53

U z(t2) — 2(t1)

The only difficulty with using (E.5) is that it assumes that the ring speed remains
constant between t; and t;. Most of the realisations have trajectories which indicate
that the core radius changes as the vortex ring moves down the tube, with a con-
commitant change in the ring speed. However, the inner ring at position numbers 3
and 4 of trajectory #13 have approximately equal diameters and so we can obtain a
reasonable estimate for the growth rate from the data at these positions. In table E.1
we present some of the data for the first five positions in run #13. (I am indebted to
Patrick Weidman for providing me with a copy of the original data for a number of
runs which exhibited a tilting inner ring. The data in table E.1 is based on measure-
ments taken from this data.) Using the data from position 3 and 4 in equation (E.5)
yields the value 0/U =~ 9.54. To compare with the theoretical results from chapter
3 we need a value of A. In this case we will take the outer vortex ring to be at the
position of an image ring so that the effective pipe radius D is given by the formula

D2
Rinner

(E.6)

Router -
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which yields a value of A given by

Rinner

A= .
Router

(E.7)

The outer ring has a radius of approximately 10.02cm so that the appropriate value
of A is 0.73. In table E.2 we present the theoretical predicted values of the speed,
the growth rate and their ratio for a range of different values of core radius (actually
the parameter that we vary is 6, = aé/R). The important entries in the table are
the values of /U = Ro/U. The corresponding value from the experimental data is
Ro /U = 50.94 (i.e., 9.54 x 5.34), which is a bit larger than the theoretical values in
table E.2. The larger value may be on account of the pipe wall, which should also

induce the tilting mode insability.

Position R (cm) Z (cm) P
1 5.30 1.05 0.0000
2 9.39 1.40 0.0019
3 5.34 1.66 0.0169
4 5.34 1.80 0.0215
5 5.43 2.01 0.0313

Table E.1 The values of the inner ring radius, R, axial position, Z, and tilt
angle, v, for the first five positions in experimental run #13 of Weidman

and Riley’s experiments.

5, U 5?2 5]0
001 | 2.90 | 12255 3.82
002 | 221 | 104.65 463
0.03 | 1.80 94.18 5.39
0.04 | 151 86.75 6.17
0.05 | 1.29 80.98 6.98
0.06 | 1.11 76.27 7.87
0.07 | 0.95 72.29 8.95
0.08 | 0.82 68.84 | 10.12
0.09 | 0.70 6580 | 11.59
0.10 | 0.60 63.08 | 13.24

Table E.2 Values of the scaled speed, U = 4rRU /T, the scaled growth rate,
& = 4wR%¢ /T, for ranges of the parameter §,. Their ratio /U = Ro/U.

121



Bibliography

BIBLIOGRAPHY

Adebiyi, A., On the existance of steady helical vortex tubes of small cross—

section, Q. J. Mech. Appl. Math. XXXIV pp 153-177 (1981)

Batchelor, G.K., An introduction to flustd dynamics, Cambridge University
Press (1967)

Callegari, A.J., Ting, L., Motion of a curved vortex filament with decaying
vortical core and axial velocity, STAM J. Appl. Math. 35 pp 148-175 (1978)

Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., Spectral Methods
in Fluid Mechanics, Springer Verlag (1986)

Chorin, A.J., The evolution of a turbulent vortex, Comm. Math. Phys. 83 pp
517-535 (1982)

Crow, S.C., Stability theory for a pair of trailing vortices, AIAA J. 8 pp 2172-
2179 (1970)

Dhanak, M.R., Interaction between a vortex filament and an approaching rigid

sphere, J. Fluid Mech. 110 pp 129-147 (1981)

Dhanak, M.R., de Bernardinis, B., The evolution of an elliptic vortex ring,

J. Fluid Mech. 109 pp 189-216 (1981)

Dyson, F.W., Potential of an anchor ring, part II, Phil. Trans. Roy. Soc. pp
1041-1106 (1893)

Fraenkel, L.E., On steady vortex ring of small cross—section in and ideal fluid,

Proc. Roy. Soc. London A316 (1970)

Fukumoto, Y., Miyazaki, T., Three-dimensional distortions of a vortex fila-

ment with axial velocity, J. Fluid Mech. 222 pp 369-416 (1991)

Hasimoto, H., A soliton on a vortex filament, J. Fluid Mech. 51 pp 477-485
(1972)

122



Bibliography

Helmholtz, H., Uber Integrale der Hydrodynamischen Gleichungen welche den
Wirbelbewegungen entsprehen Crelles J. 55 p 25 (1858)

Hicks, W.M., Researches on the theory of vortex rings — part II, Phil. Trans.
Roy. Soc. A176 pp 725-780 (1885)

Kelvin, Lord, The translatory velocity of a circular vortex ring, Phil. Mag. 33
pp 511-512 (1867)

Kelvin, Lord, Vibrations of a columnar vdrtex, Phil. Mag. 10 pp 152-165 (1880)

Klein, R., Majda, A.J., Self stretching of a perturbed vortex filament I: The
asymptotic equation for deviations from a straight line, Physica D 49 pp 323-352
(1991a)

Klein, R., Majda, A.J., Self stretching of perturbed vortex filaments II: Struc-
ture of solutions, Physica D 53 pp 267-294 (1991b)

Leonard, A., Vortex Methods for Flow Simulation J. Comp. Phys. 37 pp 289-
335 (1980)

Moore, D.W., Finite amplitude waves on aircraft trailing vortices, Aeronaut.

Quart. 23 pp 307-314 (1972)

Moore, D.W., Saffman, P.G., The motion of a vortex filament with axial

flow, Phil. Trans. Roy. Soc. London A 272 pp 403-429 (1972)

Moore, D.W., Saffman, P.G., A note on the stability of a vortex ring of small
cross-section, Proc. R. Soc. London A 338 pp 535-537 (1974)

Raja Gopal, E.S., Motion and stability of vortices in a finite channel: applica-
tion to liquid Helium II, Ann. Phys. 55 pp 196-220 (1963)

Rosenhead, L., The spread of vorticity in the wake behind a cylinder, Proc.
Roy. Soc. A 127 pp 590-612 (1930)

Saffman, P.G., The velocity of viscous vortex rings, Stud. Appl. Math. 49 pp
371-380 (1970)

Saffman, P.G., Vortez Dynamics, Cambridge University Press (1992)

123



Biblrography
Siggia, E.D., Collapse and amplification of a vortex filament Phys. Fluids 28
pp 794-805 (1985)

Tait, P.G., Translation of the Helmholtz paper “On integrals of the hydro-
dynamical equations which express vortex motion.” Phil. Mag. 33 pp 485-512
(1867)

Thomson, J.J., A treatise on the motion of vortez rings, Macmillan (1883)

Weidman, P.D., Riley, N., Vortex ring pairs: numerical simulation and ex-

periment, J. Fluid Mech. 257 pp 311-337 (1993)
Whitham, G.B., Linear and Nonlinear Waves, Wiley Interscience Series. (1974)

Widnall, S.E., The stability of a helical vortex filament, J. Fluid Mech. 54 pp
641-663 (1972)

Widnall, S.E., Bliss, D.B., Slender body analysis of the motion and stability
of a vortex filament containing axial flow, J. Fluid Mech. 50 pp 335-353 (1971)

Widnall, S.E., Bliss, D.B., Tsai, C.Y., The instability of short waves on a
vortex ring, J. Fluid Mech. 66 pp 35-47 (1974)

Widnall, S.E., Sullivan, J., On the stability of vortex rings, Proc. Roy. Soc.
London A332 pp 335-353 (1973)

Widnall, S.E., Tsai, C.Y., The instability of the thin vortex ring of constant
vorticity, Phil. Trans. Roy. Soc. London A287 pp 273-305 (1977)

124



