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Abstract

A systematic approach for evaluating and optimizing the performance of
asynchronous VLSI circuits is presented. Indez-priority simulation is intro-
duced to efficiently find minimal cycles in the state graph of a given cir-
cuit. These minimal cycles are used to determine the causality relationships
between all signal transitions in the circuit. Once these relationships are
known, the circuit is then modeled as an exrtended event-rule system, which
can be used to describe many circuits, including ones that are inherently
disjunctive. An accurate indication of the performance of the circuit is ob-
tained by analytically computing the period of the corresponding extended

event-rule system.



Contents

1 Introduction 1
1.1 Asynchronous VLSI Circuits . . . . .. ... ... ....... 1
1.2 Performance of Asynchronous Circuits . . . .. .. .. .. .. 2
1.3 Outlineof Thesis . . . .. .. ... ... ... . ....... 3
1.4 Notation and Conventions . . . ... ... ... ........ 4

2 Compilation Method 5
2.1 CSP . . . e e e 5

2.1.1 Process Decomposition . . . . . .. ... ... .. ... 7
2.1.2 Separation of Control and Datapath . . . ... .. .. 7
2.2 Handshaking Expansion . . . ... ... .. .......... 7
2.2.1 Reshuffling. . .. ... ... ... ... ......... 8
2.2.2 State Variable Insertion . . ... ... ... . ..... 9
2.3 Production Rules . . . ... . ... ... .. ..., 9
231 ResetSignal . . ... ... ... ... ... ... ... 11
2.3.2 Symmetrization and Operator Reduction . . . . . . .. 11
2.3.3 Isochronic Forks and Bubble Shuffling. . . . . . .. .. 12
24 CMOSCircuit . . . . . . . o v o v i e 14
2.4.1 Transistor Sizing . . . . .. .. .. ... ... ... 14
2.5 Datapaths . . . . .. .. .. ... oo 15
25.1 Registers. . . . . .. ... o 16
2.5.2 Completion Trees . . . . . . . ... ... ... ... 17
2.5.3 Register Transfers . . . . . . ... ... ... .. .... 18
254 FunctionBlocks . . . . .. ... ... 18
2.5.5 Zero-Checkers . . . . . .. .. ... .. ... ... 19
2.5.6 Quick-Decision Zero-Checkers . . . . .. ... ... .. 20

vi



3 Event-Rule Systems

3.1 Event-Rule Systems . . . . . .. ... ... ...........
3.2 Closed Systems . . . . . . .. ... ... e
3.3 Simple Straightline Programs . . . ... .. ... .......
3.4 Multiple Occurrences . . . . . . . ... ... ... .......
3.5 Data-Dependent Systems . . . . . . ... ... .........

3.5.1 Environmental Scenarios . . . .. ... .........
3.6 Inherently Disjunctive Systems . . ... ... .........
3.7 Arbiters and Synchronizers . . . . . ... ... ...

4 Extended Event-Rule Systems
4.1 General Extended Event-Rule Systems . . . . ... ... ...
4.1.1 Conjunctive General XER-Systems . . . ... .. ...
4.1.2 Constraint Graphs . . . . . .. ... .. ........
4.1.3 Timing Simulation . . .. ... ... ... ... ...
4.2 Repetitive XER-Systems . . . . . . ... ... ...
4.2.1 Conjunctive Repetitive XER-Systems . . . . . . .. ..
4.2.2 Collapsed-Constraint Graphs . . . . . ... ... ...
4.3 Pseudorepetitive XER-Systems . . . . ... ... ... ... .
4.3.1 Approximating Timing Simulation . .. ... .. ...
4.4 Scenarios. . . . . ... i e e e e e e e
4.4.1 Strongly Connected Scenarios . . . . ... ... ....
4.5 Linear Timing Function . . . ... ... ... ... .. ....
4.5.1 Linear Offset Functions . . . . . . . ... .. ... ...
4.6 Minimum-Period Linear Timing Functions . . . . . .. .. ..
4.6.1 Critical Scenarios, Cycles, and Transitions . . . . . . .
4.7 MPLTF’s and Timing Simulations . . . . . . . ... ... ...
471 The “Smallest” MPLOF of a Critical Scenario . . . . .
4.7.2 The “Smallest” MPLOF of an XER-System . .. . ..
4.7.3 Closeness of Approximation . . . . ... ... .. ...
4.8 SUMIATY . . . . . . o v e e e e

5 Cumulative State Graphs
5.1 Definitions . . . . . . . . . . ... e
5.1.1 Eventsand States . . . . . . ... ... ... .. ...,
5.1.2 StateChanges . . . . . . . ... ... .. ... .....
5.2 Basic Properties . . . . . . . ... . L Lo

vii



5.2.1 Weightsand Paths . . . .. ... ... ... ...... 77

522 Stable Graphs . . . . . . ... ... ... ... .... 78
5.2.3 Descendents and Ancestors . . . . . ... ... ..... 82
5.3 Cyclesand Periods . . . ... ... ............... 84
53.1 StateOffsets. . . . .. .. ... ... ... ... .... 84
532 Cycles . . ... ... 85
5.4 Sub-cycles and Minimal Periods . . . . .. .. ... ... ... 89
5.4.1 Normal Sub-cycles . . ... ... ... ......... 89
5.4.2 Minimal Periods . . ... ... ... .......... 91
5.5 Non-separable Graphs . .. ... ... ............. 94
Index-Priority Simulation 97
6.1 Uniform Graphs . . . . . .. . . ... ... ... .. ...... 97
6.2 Non-transitory States . . . . . . . . ... .. ... ... .... 103
6.3 Detecting Non-Uniform Graphs . . . . ... ... ... .. ... 105
6.3.1 Disjunctively Enabled Events . . . . . ... ... ... 107
6.3.2 Terminating Events . . . . . .. ... ... ....... 110
6.3.3 Criteria for Uniform Graphs . . . . .. ... ... ... 110
6.4 Index-Priority Simulation . . . ... .. ... ... ...... 115
6.4.1 Uniform Graphs . . . . . . ... ... ... ....... 122
6.4.2 Non-Uniform Graphs . . . . .. .. ... .. ... ... 124
6.4.3 Implementation Issues . . . .. .. ... ... ..... 124
6.4.4 Complexity . .. ... . ... ... 125
Modeling PR Sets as XER-Systems 126
7.1 Separable Graphs . . . ... ... ... ... ... ..., 126
7.2 Delay Insensitivity and Cause Sets . . . . . .. ... ... .. 129
7.3 Last-Enabled States . . . . .. ... ... ... ........ 133
7.4 Stable Disjuncts . . . . . . . .. ... L Lo 134
7.4.1 Conversion to XER-systems . . . .. ... .. ... .. 136
7.5 Unstable Disjuncts . . . . . .. . ... ... ... ... ... 140
7.5.1 Backtracking . ... ... ... ... ... ... 141
752 CauseSets. . ... ... .. ... ... 142
7.5.3 Finding Critically True States . . . . . ... ... ... 150
7.5.4 Conversion to XER-systems . . . . . ... ... .... 150
7.5.5 Implementation Issues . . . . ... .. ... ... ... 154
7.6 Complexity . . . . . . . ... 154



8 Conclusion
8.1 Summary .
8.2 Future Work

A Algorithms
A.1 Algorithm 1
A.2 Algorithm 2

............................

ix



List of Figures

2.1
2.2
2.3
24
2.5

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

Communicating sequential processes . . . . ... ... . ...
Handshaking variables . . . . ... .. .. ... ........
CMOS implementation . ... .. e e e e e e e
Transferring data . . . . . . . . ... ... L
Implementation for b:= f(a) .. ... ... ..........

Depth-first simulation . . .. ... ... ... .........

Constraint graph for Example 4.1 . . . . . ... ... ... ..
Pathological constraint graphs . . . . . . ... ... ... ..
Collapsed constraint graph for Example 4.7 . . .. ... ...
Scenarios of Example 4.12 . . . . . . .. ... oL
Timing functions for Example 4.16 . . . . ... ... ... ..
MPLOF of Example 4.17 . . . . . .. ... ... .. .....

A state graph with initial state oj;¢ = 0000 . . . . . ... ..
Stability in a state graph . . . . ... ...
Stability for paths with no common event . . . .. .. .. ..
A state graph with initial state oj,;¢ = 0010 . . . . .. .. ..

Non-uniform separable graph . . . . .. .. ... ... ....
Non-uniform separable graph with no terminating events . . .
Non-uniform non-separable graph . . . . ... ... ... ...
Non-transitory state in a compact graph . . . . ... ... ..
Examples of triggers foranevent . ... ... ... ... ...
Cumulative state graph for a zero-checker cell . . . . . .. ..
Proofof Lemma 6.24 . . . . . . . ... ... ... .. ...

Example 7.2 . . . . . . .. e



7.2 A state graph with an unstable disjunct

7.3 PR set with unstable disjuncts . . . . .

7.4 Cumulative state graph for Example 7.9

xi

............



Chapter 1

Introduction

1.1 Asynchronous VLSI Circuits

Asynchronous VLSI circuits are those that do not use global clocks. Instead,
synchronization among components is achieved through the generation and
detection of request and acknowledgement signals. Asynchronous circuits
have many advantages over traditional synchronous systems [41, 30]. Be-
sides the elimination of the clock skew and synchronization failure problems
[34], asynchronous circuits also are more tolerant to variations in physical
parameters, can be more easily synthesized using systematic and modular
approaches [31], have a higher potential for low-energy computation [42],
and yield average-case instead of worst-case performance [24].

The concept of asynchronous circuits has been around since the fifties
[18]. However, it has not gained popularity until recently because of the
difficulties involved in removing hazards from early designs [44]. Since then,
several methodologies that generate functional asynchronous circuits under
various timing assumptions have been developed (for example, [10, 35, 12,
45, 39]). In particular, the Caltech approach, invented by A. J. Martin
[30], has produced many successful CMOS circuits such as stacks, arbiters
[27], routers, a 3z + 1 special-purpose processor [19], a multiply-accumulator
[40], a memory management unit [38], and, in 1988, the first asynchronous
microprocessor [32]. The favorable statistics of the microprocessor [33} and
its portability to gallium arsenide technology [43] have contributed to the
renewed interest in asynchronous designs.



The Martin synthesis method (which will be outlined in Chapter 2)
systematically transforms a high-level specification, through a series of
semantics-preserving steps, into a network of circuit elements. By construc-
tion, the circuits produced by the method are hazard-free and operate cor-
rectly regardless of the delays in the elements and wires, provided delays
along different branches of certain forks, known as isochronic forks, are neg-
ligible. Such a circuit is said to be quasi-delay-insensitive (QDI) [28]. As
we shall see, if each branch of a non-isochronic fork is explicitly modeled by
a “wire operator” with arbitrary delay, then a QDI circuit is equivalent to
a speed-independent circuit [37], where the delays on elements are arbitrary
and those on wires are negligible. Due to the weak assumption on delays,
QDI circuits are very robust; of the designs mentioned above, those that
were fabricated functioned correctly on “first silicon” and could be operated
over wide ranges of supply voltages and temperatures. QDI circuits are also
relatively easy to test as demonstrated in [16].

1.2 Performance of Asynchronous Circuits

Though the delays of the elements in a QDI circuit do not affect its function-
ality, they do have a direct bearing on the speed at which it operates. This
thesis presents a method to evaluate and optimize the performance of a QDI
circuit by finding appropriate sizes for its transistors. As explained below,
the approach taken is fundamentally different from the one for synchronous
circuits.

Given a synchronous circuit, the speed at which it operates depends
mainly on its clock rate. Registers are used to save data from one clock
period to the next and, as long as the sub-circuits between the registers
can complete their computations faster than the clock allowance, the system
operates successfully. Consequently, optimization of synchronous systems is
achieved by selecting an appropriate placement of the registers [20] and lim-
iting the delays needed to transfer and manipulate data from one register to
the next [23]. The analysis is further simplified by the fact that most of these
stages are purely combinational and that there is no feedback [22].

In a QDI circuit, however, the occurrences of signal transitions are not
regulated by a clock. Instead, each signal transition occurs as soon as an
appropriate set of other signal transitions — either produced internally or



supplied by the environment — have occurred and a sufficient amount of
delay has elapsed. Because of the absence of clocked registers to act as
separators, each particular signal transition can have an effect, directly or
indirectly, on many other signal transitions in the system. Therefore, eval-
uating the performance of a small group of elements in isolation, as is done
for synchronous circuits, is no longer sufficient. Instead, in general, it is nec-
essary to determine the causality and delay relationships between all signal
transitions in an asynchronous circuit and its environment.

The first successful attempt to address this problem is by Burns in [6].
There, he develops the concept of Event-Rule Systems (ER-systems) where
“events” represents occurrences of signal transitions and “rules” are used
to describe their causality and delay relationships. For an ER-system that
is repetitive, he is able to compute its period and shows that it is a good
indicator of the performance of the underlying circuit.

Though ER-systems are very useful for representing and evaluating the
performance of conjunctive asynchronous systems, they cannot describe in-
herently disjunctive systems where an event has more than one set of causes.
Also, though Burns recognizes the need to simulate a data-dependent circuit
to extract the causality relationships between its signal transitions, no ex-
plicit algorithm has been given on how to systematically transform such a
circuit into a repetitive ER-system.

The purpose of this thesis is to address these two short-comings. First,
Extended ER-systems (XER-system) are introduced and shown to retain
many of the properties of ER-systems. In particular, we will demonstrate
how to compute the period of an XER-system and how this value reflects its
performance. Next, we will present an algorithm for converting any QDI cir-
cuit (without arbiters) into a repetitive XER-system. The algorithm makes
use of indez-priority simulation which guarantees that the XER-system it
produces has the minimal number of transitions.

1.3 Outline of Thesis

This thesis is organized as follows:
e Chapter 1 serves as a general introduction.

o Chapter 2 gives a brief outline of Martin’s synthesis method.

3



e Chapter 3 explains the limitations of ER-system in detail.
e Chapter 4 describes XER-systems and their properties.

e Chapter 5 presents the theoretical framework for analyzing the states
of a QDI circuit.

e Chapter 6 describes “index-priority simulation” for finding the minimal
periodic behavior of a QDI circuit.

e Chapter 7 explains how to use this behavior to convert a QDI circuit
into an XER-system.

e Chapter 8 serves as a summary and points out some directions for
future work.

1.4 Notation and Conventions

The order of precedence for logical operators, from highest to lowest, is not
(=), and (A), or (V), implies (=), and if-and-only-if (). Set difference is
denoted by “\” and has the same precedence as union (U) and intersection
(N). Set inclusion is denoted by “C” and proper set inclusion by “C.” Also,
“9” is sometimes used to denote the union of two disjoint sets.

The existential quantification “there exists z and y, with z < y, such that
x4+ y=>5" is expressed as

dr,y:z<y:x4+y=>.

The same convention holds for universal quantification (V). Also, sets are
sometimes denoted with similar notation; for example, the set of perfect

squares is

{i:i€Z:i}.
Finally, 4, j, k, I, m and n are always integer variables unless stated other-
wise.



Chapter 2
Compilation Method

In this chapter, we give a brief outline of Martin’s synthesis method and
show its application to two specific examples: a one-place buffer and a zero-
checker. Interested readers should refer to [30] for more details. Also, it
should be pointed out that the transformation steps described below can
be bypassed by using a syntax-directed compiler [5], though the results are
usually too large for practical use.

2.1 CSP

At the top-most level, the specification of the circuit to be synthesized is
written as a concurrent program, using a language that is based on Hoare’s
model of Communicating Sequential Processes (CSP) [17]. A CSP program
consists of one or more processes which operate in parallel and communicate
with each other through channels. A channel connects two processes and the
two ends of a channel are referred to as ports®.

Example 2.1: Figure 2.1 shows a set of three processes. Each process
contains an L port and an R port. Process p[0] communicates with p[1]
through the channel (p{0].R, p[1].L) and so forth. O

The operations performed by a process are described in the following
notation. An assignment of an expression e to a variable z is “z := e.”

Tn some of the larger designs, for efficiency reasons, the language has been extended
to allow shared variables and buses.
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Figure 2.1: Communicating sequential processes

For brevity, if z is a Boolean variable, then “z1” and “z|” are equivalent to
z := true and z := false, respectively.

A selection statement is of the form “[Gy — Sy 0 ... 1 G, — S,]1.” Each
Gj — S; is a guarded command [11] where Gj is a Boolean expression (the
guard of the command) and §; is a program part. The operational semantics
of the selection statement is: “Wait until one of the Gj’s is true, then non-
deterministically choose a guarded command with a true guard and execute
the corresponding program part.” The notation “[G]” is a shorthand for
“[G — skip]” and amounts to “wait until G is true.”

A loop statement is of the form “«[Gy — So 1 ... 1 G, — S,]1” and has
the operational semantics “Choose a guarded command with a true guard,
execute the corresponding program part, and repeat; if all G;’s are false,
then exit loop.” The notation “x[S]” is an abbreviation for “x[true — S]1”
and means “execute S forever.”

For a channel (p.R,q.L), “Rle” in process p denotes the communication
action of sending the value of the expression e to the channel, and “L?z” in
process ¢ denotes the communication action of receiving the value from the
channel and storing it in the variable z. Thus, the combined effect of the two
statements is to assign to the variable z in ¢ the value of e in p. Note that
channels in CSP have no slack [25]: Rle in p cannot complete and the pro-
cess suspends unless g executes the corresponding L7z, and vice versa. Thus,
dataless channels can be used to enforce synchronization between processes.
A communication action on such a channel is expressed by naming the cor-
responding port. Also, the probe of a port L, denoted L, is a Boolean value
that is true only if the communication action L can be completed without
suspension [29].

Finally, sequential composition is represented by “;” and concurrent com-
position — which is weakly fair, i.e., every non-terminating component is ex-
ecuted infinitely often — is represented by “||.” In addition, if A and B are
two communication actions, then A e B is their coincident erecution which



means that A and B are to complete together [32].

Example 2.2: A one-place buffer that receives a data value (say, an n-bit
integer) from a port named L and sends it to a port named R can be described

as x[L7z; Rlz]. O

2.1.1 Process Decompoéition

The first step of the synthesis method is process decomposition whereby at-
tempts are made to convert each process into smaller sub-processes and to
extract, if possible, common program parts. Compiling smaller processes
facilitates the rest of the synthesis procedure and sharing common program
parts reduces the area of the final circuit. Also, parts of the program that
cannot be compiled into stable production rules (see Section 2.3) are “fac-
tored out.” These program parts deal with arbitration and synchronization
of negated probes and are implemented directly as standard networks of
transistors. The one-place buffer is already simple enough so that no process
decomposition is necessary; see [26] for a larger example where this procedure
is applied.

2.1.2 Separation of Control and Datapath

As we shall see, the datapath of a process can be implemented in a fairly
standard way. In contrast, its control needs to be systematically transformed
from one level of description to the next. Hence, for the next stage of the
synthesis method, the datapath of a process is temporary removed and only
the control part is compiled. '

Example 2.3: After the removal of the datapath, the control for the one-
place buffer is x[L; R]. O

2.2 Handshaking Expansion

The next step in the synthesis method represents each communication action
with operations on Boolean variables. In order to maintain correctness, the
two ends of a channel need to obey some given protocol. The two most
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Figure 2.2: Handshaking variables

common protocols are two-phase handshaking and four-phase handshaking.
Due to space limitation, only the latter will be discussed.

For the four-phase handshaking protocol, one communication action on
a channel is chosen to be active and the corresponding one passive. If L is
an active communication action, then it is transformed into?

LTy Ly lol; [+l

and if R is a passive communication action, then it is transformed into

[ril; 7roT; [-mid; 1ol

The channel (p.L,q.R) is represented by connecting the output variable of
p.L with the input variable of ¢.R, and vice versa. See Figure 2.2 for the
transformation of Figure 2.1. In general, only passive communications can
be probed and R is compiled into r;.

Example 2.4: It turns out that it is easier to implement active input ports
(data arrive only when requested) and, therefore, the communication action
L in the one-place buffer is chosen to be active. Since we want to compose one
instance of this buffer with another, the corresponding action R is required
to be passive. The handshaking expansion for the active-passive buffer is

ap = *[ LT 15 Ll [5G Drids rols [orads rol 1

2.2.1 Reshuffling

The last half of a four-phase handshaking protocol (I,]; [-/;] or [-r;1;7,])
is not needed for synchronization and optimizations can often be made by

2By convention, input variables are subscripted with ¢ and output variables with o.
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postponing it or part of it. Such a procedure is known as reshuffling. How-
ever, care must be taken so that no deadlock ensues and data integrity is

maintained (see Chapter 6 in [6]).

Example 2.5: In the one-place buffer, there is no need to wait for /; to
become false before starting the R communication. Hence, we can postpone
the wait [—[;] so that it occurs as late as possible, i.e., just before [,T. The
resulting protocol for L becomes

[=01; LT a)s bol
and is called the lazy-active protocol [6]. The lazy-active-passive buffer is
lap = *[ [=1; L1 [LY; bl [rds rol; [-rids rol 1,

and, in general, it outperforms the active-passive buffer due to the postponed
wait. O

2.2.2 State Variable Insertion
If there are two states in a reshuffled handshaking expansion that are in-

distinguishable, then state variables need to be introduced to differentiate
them.

Example 2.6: In lap, each variable in the state after [,| may have the same
value as in the state after r,|. Hence, a state variable is needed. We have
chosen, among many others, the following state variable assignment:

lap' = [ [0L1; LT UL sT; Ll [rid; roly [omids sls rol 1

O

2.3 Production Rules

Once a handshaking expansion with all states distinguishable has been ob-
tained, the explicit sequential operators (the “semi-colons”) are removed by
transforming it into a set of production rules. A production rule (PR) is
of the form “G — S,” where G, a Boolean expression, is its guard and S,
an assignment of true or false to a Boolean variable, is its assignment or

9



output transition. A PR is enabled if its guard is true. A PR fires when its
assignment is executed — the firing is effective if it causes a state change;
else, it is vacuous. The operational semantics of a PR is that it may fire if
it is enabled. The operational semantics of a set of PR’s is the weakly fair
concurrent composition of the PR’s in the set.

A PR is stable if once it is enabled, it remains enabled until it fires.
For any variable z, a PR for zT and a PR for z| are complementary and
two complementary PR’s are non-interfering if they are never both enabled.
Many of the later results rely on the following observation made by Martin
[30]:

Under the stability of each PR and non-interference among com-
plementary PR’s, the concurrent execution of the PR’s of a set is
equivalent to the following sequential execution:

x [ select a PR with a true guard; fire the PR ]

where the selection is weakly fair.

Ignoring arbiters and synchronizers, all PR’s generated by the synthesis
method satisfy the stability and non-interference conditions above. So, from
now on, we will assume that there is only one PR for each transition since
Go — zT and G, — zT can be replaced by Gy V Gy — zT.

Example 2.7: The lap buffer is compiled into the following PR set:

=L ANsAT, — 1] riNsA-l, — 1,1
Linl, — st Ay AT, — 8]
] — -8 — 1ol

The PR set is minimal in the sense that the set of the literals in each of the
guards cannot be replaced by a smaller subset. O

Before continuing with the compilation method, several properties of PR
sets need to be listed for future reference. A self-invalidating PR is one
whose firing falsifies its own guard. An example of a self-invalidating PR is
-z — zT. Since they never occur in actual circuits, self-invalidating PR’s
will be disallowed in this paper.

Next, occasionally, it will be convenient to regard the guard of a PR as
written in disjunctive-normal-form (DNF)

ByvBV...VB,

10



with each B; being a conjunction of the form
l,;,g A li,l FANRAY li,ni

and each [;; is a literal (a variable or its negation). B; is said to contain a
literal [ if there exists j such that [ = l;;. A disjunct of a PR refers to a
conjunction in the DNF of the guard of the PR. The disjuncts of a PR are
mutually ezclusive (mutez) if at most one of them is true in any state. A
disjunct B; of a PR is a stable disjunct if, whenever B; is true, it remains
true until the PR fires. A PR set has only stable disjuncts if all disjuncts in
all of its PR’s are stable disjuncts.

2.3.1 Reset Signal

In order to put the circuit in the proper state upon power-up, a reset signal
is added to the PR set.

Example 2.8: Adding the reset signal to the PR set above yields

—Reset A-l; A=sA—r, — 1,1
li A lo - ST
Reset V s — 1]
r; ANs Al — 1l
Reset V —r; A1, — 8l
- —  Tol.

To avoid complicating the PR sets, in the sequel, the reset signal will no
longer be explicitly mentioned. 0O

2.3.2 Symmetrization and Operator Reduction

The next step of the synthesis method forms the operator for each non-input
variable y, by grouping together the two complementary PR’s with output
transitions on y. Occasionally, it is possible to change some of the guards
to yield standard operators such as OR-gates and Muller C-elements [36] —
this process is known as symmetrization.

Example 2.9: Consider the Q-element
[ L] roTy [ridy sty rols [omds LTy [-L]5 sl Lol 1.

11



If it is implemented as the following minimal PR set

-sAl; — 1, sA-r; — 1T
T — s =l - sl
s — 1ol -8 = ol

then the operator for r, is state-holding. Note, however, that the PR set still
implements the Q-element if the guard for r,| is weakened to sV —l;. In this
new PR set, the operator for r, is a two-input AND-gate, which, in CMOS,
can be more cheaply implemented than the original state-holding element.
A similar improvement results from weakening the guard for [,] to —s V r;.
O

The actual implementation of the operators depends on the target tech-
nology; the rest of this chapter assumes that CMOS has been chosen.

2.3.3 Isochronic Forks and Bubble Shuffling

Given a PR set P, let z be a variable appearing in either guard of the operator
for y. Consider the new PR set P obtained by adding the wire operator

z — z'7 -z — z']

to P and replacing each occurrence of z in the guards of the operator for y
with z/. If, when z’ is ignored, P and P behave differently, then the variable
z and operator for y are said to form an isochronic branch. Note that this
situation implies that the delay modeled by the wire operator affects the
functionality of P. Hence, P operates as specified only if the delays on its
isochronic branches are negligible. If variable z forms an isochronic branch
with any operator, then z is an isochronic fork.

Example 2.10: Let (z, y) denote the branch from variable z to the operator
for y. Then, in Example 2.7, (s,1,) and (s, ,) are non-isochronic branches
and all other branches are isochronic. So, I;, l,, ;, and r, are isochronic
forks. O

For CMOS implementation, a given PR set needs to be converted to one
that is CMOS-mappable (CM) where the literals in the guards of the PR’s
with down-going transitions are positive and the literals in the guards of the
PR’s with up-going transitions are negative. To effect this transformation,
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inverters may be needed to produce z_, the negative sense of a variable
z. However, to avoid adding assumptions on the speed of these inverters,
it is preferable that no inverter be added on any isochronic branch. This
requirement, unfortunately, cannot always be satisfied. When this situation
arises, one can either alter the original PR set or analyze the circuit to make
as weak a timing assumption as possible.

Example 2.11: Consider the PR set of Example 2.7. A CM operator for [,
is

L AsSAT, — L] s — 1l
For s, there are two choices:

—li_A=l,. — 8T ri-ATy — S}

or
LA, — s ;A re. — ST

The first choice requires an inverter on the branch (I;, l,) or (l;_, s); the second
requires an inverter on (r,, l,) or (r,-, s). Similar observations hold if we had
chosen a CM operator for [,_ instead of l,. Thus, in order to transform the
PR set into a CM one, an inverter needs to be placed on one of the isochronic
branches.

Note, however, that the original handshaking expansion, lap, can also be

implemented by

“LAmsSASTr, — LT - rs NsA=l, — 141
LA — s T AT — s}
l;Ns — 1.l =r; A s —  Tol

where two of the guards (for I, and 7,|) have been strengthened. The
branches (I;, [,) and (r;, r,) are now non-isochronic. This new PR set can be
transformed into the following CM one without introducing any inverters on
isochronic branches:
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=l; — lz—-T Ar,cADS_ AL, - 1ol
L. ANs_ANro. —  [,_] T — 1o
=l — LT o — 1ol
LN — s} =Ty A T, — S

l; — ;i Ty — 1
Al A -se — 1,7 rio A\ S_ — 1ol
lo- — Ul —-To — 71,
T — 1l To- —  Tol.

The signal _r, is an internal version of r,; _r, is needed to generate r,_ which,
in turn, generates r,, the output to the environment. O

As can be seen by the previous example, a CM PR set can be significantly
larger than its counterpart before bubble shufling. Hence, for conciseness,
PR sets that are not CM will be used for illustrative purposes, even though it
should be pointed out that transistor sizing, as described in the next section,

is relevant only for CM PR sets.

2.4 CMOS Circuit

Each CM operator for y is realized as a CMOS element so that there is a
connecting path from VDD to the output when the guard for yT is true and
one from GND to the output if the guard for y| is true. A staticizer is added
on the output if it is needed to maintain the charge when both guards are
false. Due to electrical considerations, there is an upper limit on how many
transistors can be in series on each connecting path; this limit translates into
a bound on the number of literals in each conjunction of the guards.

Example 2.12: The transistor network for the previous example, without
staticizers, is shown in Figure 2.3, where every four-way intersection repre-
sents an overlap and not a connection. O

2.4.1 Transistor Sizing

For a CMOS element, the time it takes for its output node to change value
once a connecting path to VDD or GND is established depends, to a large
degree, on R, the effective resistance of the transistors in the path, and C,
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Figure 2.3: CMOS implementation

the capacitive load on the output node. Both R and C are functions of the
transistor sizes in the network, plus parasitic wiring capacitances. One of
the goals of this paper is to develop a method to determine the appropriate
transistor sizes so that the network can operate at optimal speed. Because
of the close correspondence between a CM PR set and the CMOS circuit
that implements it, the analysis will be performed on the former using the
implicit assumption that the delays between occurrences of transitions can
be expressed as functions of the appropriate transistor sizes. Some schemes
for computing these delays are given in [13, 21, 7, 4, 9, §].

2.5 Datapaths

In contrast to the control part, the datapath of a process can usually be imple-
mented efficiently by combining members from a standard set of components
such as registers, adders, completion trees, etc. This section describes the
nature of some of these components and how they can be put together to
form a datapath.
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2.5.1 Registers

The input part of a binary register, ireg = *[P?z], can be implemented by
the handshaking expansion

*[[ pT: — z1; pol; [=pT:d; pol
I pF; — zl; pol; [-pFi; pol
1].

Note that a Boolean value is communicated in a delay-insensitive manner by
using dual-rail encoding where one data signal (pT;) is raised if a 1 is sent,
and a different data signal (pF;) is raised if a O is sent. The raised signal is
then lowered during the second half of the handshaking protocol. A dual-rail
port is said to have a valid value if exactly one of the two data signals is
high; it has a a neutral value if both signals are low [24]. For other encoding
schemes, see {2, 46].

As written above, ireg cannot be implemented without adding an inverter
on an isochronic branch. However, this problem can be removed if z is stored
in true-complement form as shown below:

*[[ pT; — z0); z17; p.T; [-pTil; pol
I pF; — z1|; z0T; poT; [-pFil; pol

11.

The corresponding PR set is
pT; —  z0} pTi ANz1V pF; AN20 —  p,_|
—Zz0A-pF; — 117 “Po- , — Dol
pF; - zl] —pTi A —pF; = Po-1
1 A-pT; — 207 Po- - pol.

Analogously, the output part of a binary register, oreg = * [@'z], can be
written as

x[[ ¢; N 21 — ¢T.1; [—qd; qT,]
0 ¢ A 20 — qF,T; [~qls gFol
1]

which is compiled into
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CONTROL

To Tl (20 T
)‘h‘ oreg EETEN
q [0] qF,—o)

$1| |$0 T
4i| oreg RETEN
0 (1] —=—

q. qF,

.’121, ) |£0

,di|  oreg 97, ,
q [n—1] —qF-—;——)

Figure 2.4: Transferring data

qi ANzl — qTo—l qi ANz0 — qFo—l
~qT,- —  qT,0 “gF,.  —  ¢Fo

~g; - qT,T —g; - qF,
qTo- - qT,] qFo— - qF,!.

2.5.2 Completion Trees

In ireg, a completion signal p, is generated after the bit has been stored.
If n registers of this form are used to store an n-bit integer, then the com-
pletion signals from these n registers need to be combined to form a single
acknowledgement signal. This task is accomplished by the C-element

pl0].po Ap[1).poA...Apln —1].p, - pol
Ap[01.po A=p[1l.poA...A-pIn—11.p, — pol

where p[j].p, is the completion signal from bit register p[7] and p, is the
combined completion signal. If n is large, this n-input C-element can be
implemented by a tree of C-elements with fewer inputs; hence, the term
completion tree is used.
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al a0 bl b0
el I zT; (0] yT,[0] el N

oreg : : ireg
— 7 gF;0] yF, [0] R
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o for f N

al a0 bl b0
AP P

oreg . ireg
zFi[n — 1] yFo,lm — 1]

Y

Y

Figure 2.5: Implementation for b := f(a)

2.5.3 Register Transfers

Figure 2.4 illustrates the most common scheme for transferring data. On the
right side of the figure, where data are sent using a passive output commu-
nication on port R, the output signal of the control part, r,, is used to cause
the registers to send out their values in dual-rail form. And, as shown on the
left side of the figure, for an active input communication on port L, data are
latched into registers and a combined completion signal is then generated to
serve as [;, the acknowledgement for the control part.

Example 2.13: The schematics for the one-place buffer x[L?z; R!z] is
shown in Figure 2.4 where the control part is the network of Figure 2.3
and, for each j, 0 < 7 < n, ply].20 is connected to ¢q[7].20 and p[j].z1 is
connected to ¢[7].2z1. O

2.5.4 Function Blocks

A function block for a given function f repeatedly accepts an argument and
produces its image under f. The assignment b := f(a), where a and b
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are lists of registers, is usually implemented by sending the values of a to a
function block for f and storing the result in b, as Figure 2.5 illustrates®. A
possible protocol [24] for a function block is

*[ [v(X)]; Yy [n(X)]; Y]

where v(X) means that input port X has a valid value, n(X) means that X
has a neutral value, Y{ means that output port Y is set to a valid value,
and Y| means that Y is reset to a neutral value. Using dual-rail encoding,
a non-binary port has a valid (or, alternatively, neutral) value when all the
ports for communicating the constituent bits have valid (neutral) values. For
the implementation of an adder function block, the reader is referred to [24].

2.5.5 Zero-Checkers

The zero-checker is an interesting function block in that it illustrates the use
of guards with disjuncts that are not mutex. Its input is an n-bit integer
X and its output is a Boolean variable Y that is false if and only if X
is identically zero. An obvious approach is to implement the n-bit zero-
checker as a tree of zero-checkers of smaller size. For example, one possible
implementation of a two-bit zero-checker is zeroA below:

aTz-/\bTiVaTi/\bF,-VaF,-/\bTi — CTOT
aF'; \ bF, —  cF,T
_laTi/\ﬁaFi/\_'bT,"/\ —'bFl — CTol
—1aFi A ﬁbF’z — CFO,L

where aT; and aF; are the dual-rail signals of one of the input bits, bT'; and
bF; are those for the other bit, and ¢T, and cF, are those of the output.
Note that all disjuncts in the guards are mutex. Also, the three disjuncts in
the guard for c¢T,T are necessary in order to test for the validity of the input.
Similarly, if ¢T, is ever raised, one needs to make sure that the appropriate
input signals have been reset before lowering ¢T.

An alternative implementation of a two-bit zero-checker is to perform the
input validity and neutrality checks explicitly as done in zeroB below:

3 At times, performance may be improved if the function block is combined with some
of the registers; to simplify the presentation, no such optimization is applied.
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al;VaF; — af —al; AN —aF; — al
aAb - g7 —a A b — gl
gNA (aT;VbT;) — T, g — cTyl
gA(aF; NbF;)) —  cF,1 g — cF,].

Note that the disjuncts in the guard for ¢T,T are no longer mutex since
both a7T; and bT; may be true. Even though zeroA has 14 literals in the
guards versus 20 for zeroB, all guards in the latter have no more than three
literals in any conjunction, most of them have fewer. Furthermore, a direct
extension of zeroA to four bits requires 76 literals, 8 of which belonging to one
conjunction, whereas similar extension to zeroB yields 36 literals, at most
5 in a conjunction. If the four-bit zero-checker is implemented by a binary
tree of three two-bit zero-checkers of type zeroA, then 42 literals, at most 4
in a conjunction, are needed. Consequently, since each literal corresponds to
a transistor, on the bases of area and power consumption, the best way to
implement a four-bit zero-checker is with the extension to zeroB. Thus, it is
sometimes profitable to have guards with disjuncts that are not mutex.

2.5.6 Quick-Decision Zero-Checkers

Even if an input bit has a valid non-zero value, a zero-checker of the previous
sub-section still waits for all other input input bits to have valid values before
issuing true as output. There are practical situations where this wait is a
serious drawback. For instance, for a memory access, one may need to add a
base address base to an offset offset and compare the sum to tag, the tag of
a cache line. Using bit-wise exclusive-or (V) as the comparison operator, a
cache miss occurs if (base+offset)¥tag is non-zero. If the adder of [24] is used,
then there is a variance in the times at which the bits of the above expression
become valid, due to the rippling effect of the carry-chains. Since a fetch from
main memory upon a cache miss should be initiated as soon as possible, it is
highly advantageous to use a quick-decision zero-checker that raises a signal
whenever one of the input bits is non-zero, without waiting for the other bits
to become valid. In order to satisfy the delay-insensitive protocol, one still
needs to wait for the validity of all input bits; however, this wait can now
proceed concurrently with operations that would otherwise be postponed.
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The PR set for a two-bit quick-decision zero-checker is zero@Q below:

al;VaF; — af -aT; A naF; —
bT;VbF; — b7 =bT; ANbF; —
alAb — g7 —a A b -~
a@; VvV bQ; — QT —a@Q; A bQ; —
gAcQo —  cTol g A-eQ, -
gNaF; ANbF; — cF,7 g —

Each data bit is now represented by three signals: c@), is true if any of the
input bits is non-zero; ¢T, is true if any of the input bits is non-zero and they
are all valid; and cF, is true if all input bits are zeros. Similar conventions
hold for the input signals if they are generated from another quick-decision
zero-checker. If the input is from a binary register, then a@); is the same

signal as aT';.

Note that, in a tree of zero@)’s, the latency between one of the input bits
assuming a non-zero value and the final ¢, becoming true is simply the
delay of a tree of OR-gates. So, zero(@) serves as another example of a useful
PR set containing a guard with disjuncts (namely, a@; and bQ);) that are

not mutex.
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Chapter 3

Event-Rule Systems

We begin this chapter by describing the Event-Rule Systems (ER-systems)
invented by Burns [6] and showing how they can be used to model simple
systems. We then point out some of the difficulties involved when ER-systems
are used to model data-dependent systems or ones with multiple-occurrences.
Finally, we will argue the need of a new abstraction to describe systems that

are inherently disjunctive.

3.1 Event-Rule Systems
Definition: A (general) event-rule system (ER-system) is a pair Y = (E, R)
where

e E is a (possibly infinite) set of events; and

e Ris a (possibly infinite) set of rules where each rule r is a triple (e, f, o),
written as e+>f, and e € E is the source of r, f € E is the target of r,
and « € [0, 00) is the delay of 7.

Definition: A timing function for an ER-system Y = (F, R) is a function ¢
from E to [0, 00) such that

Ve, f,a:er>f € R:t(f) > t(e) + a. (3.1)
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Intuitively, ¢(f) is the time at which event f occurs. If we let
C={e:(Fa:e>f€R):e}

then (3.1) specifies that f cannot occur until every event in C has occurred;
hence, C' will be referred to, in this paper, as the cause set of f.
For periodic systems, the concept of repetitive ER-systems is introduced.

Definition: A repetitive ER-system is a pair V' = (E’, R') where
e F' is a finite set of transitions; and

e R'is a finite set of rule templates where each rule template ' is a tuple
(u,v,a,¢) and R' C E' x E' x [0,00) x Z.

Each repetitive ER-system )’ = (E', R’) induces a general ER-system
Y = (E, R) where

e £ =FE' xIN; and
e R={u,v,i,a,¢e: {(u,v,0,¢) € R Ai > max{0,¢e} : (u,i — ) r>(v,i)}.

Thus, each event is an indexed occurrence of a transition. Furthermore, the
rule template 7' = (u,v,a,¢) specifies that every occurrence of v has an
occurrence of u in its cause set, with € as a constant occurrence-index offset
between the two transitions.

Many of the properties and definitions associated with ER-systems will
be extended in the next chapter and their presentation will be postponed
until then. For the rest of this chapter, we will address the issues involved
in using ER-systems to model PR sets.

3.2 Closed Systems

ER-systems are used to model closed systems, i.e., ones where every signal
is both an input and an output. For a PR set, this requirement implies that
the behavior of the environment needs to be included (see next section).
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3.3 Simple Straightline Programs

Without symmetrization, the guards of a PR set derived from a simple
straightline program — a non-terminating repetition of a fixed sequence of
different waits and transitions — are conjunctions. Hence, the conversion
of this PR set to a repetitive ER-system is straightforward as the following
example illustrates. Furthermore, a literal added by weakening a guard is
always false when the PR fires; hence, this literal can be ignored since it
does not introduce any new causality relationship.

Example 3.1: The most liberal environment for the Q-element x[[/;]; 7,7;

[ril; sT; rol; [=7id; LoT; [21]; sl 1) is

-, — LT ro — 13l
b — Ll e — Tl

The combination of this PR set and the unsymmetrized PR set in Exam-
ple 2.9 is modeled by the repetitive ER-system )’ = (F’, R') where

o F'= {lzT7 lll? lOTa loly riT? Tilv TOT? Tol, 3T7 Sl}, and

e R' = { (liT,ToT,ao,()), <5l7roT,a1a1>7 <riT73Taa2,O)’
(51,70l 03,0), (ril,loT,4,0),  (sT,0,7,0s5,0),
<lil9slya6v0>a <slalol’a730>a <lol,liT7a871>a
(loTa lzla Uy, 0>’ <T0T9 riT7 a0, O)a (Tola "'ila 11, O) }

with a’s being the delays prescribed by the timing model under use. (For
CM PR sets, these delays may be functions of transistor sizes.) Note that
the second occurrence of r,T is caused by the first occurrence of s| and so
forth. Hence, an occurrence-index offset of 1 is needed in the rule template
for the two transitions. The same observation holds for (I,{,;T, s, 1). Note
also that the same ER-system is used even if the guard of r,| is symmetrized
to —l; V s since [; is true whenever r,| occurs and, so, [;] is not a cause of

rol. O

3.4 Multiple Occurrences

Consider the toggle *[X; X; Y]. A handshaking expansion for it is

24



*x[[z:1; zoT; [zl uly ol xols [zl ul; z,T;
=z yols zols Lweds vl wol; [—wil 1.

A possible PR rule for z,7 is
TNy AoV oy, Aru Ay — z,].

One of the requirement of a repetitive ER-system is that the ¢-th occurrence
of a transition ¢ must be caused by the (i — €)-th occurrence of another
transition s, where ¢ is independent of ¢. In this example, z,T occurs twice
for each occurrence of y;| and, therefore, the system cannot be modeled
directly as a repetitive ER-system.

The remedy is obvious. For now, let us define a cycle as a sequence
of transitions whose occurrences return the system back to the state it was
before these occurrences have taken place. So, in this example, a cycle is

<$iT, -'L‘OTy mil? UT, UT) xola xiT7 Ul, xoTa zilv yoTa zola yiT7 'Ul7 ’lJol, Z/zl)

It is then sufficient to rename the transitions so that each transition in a
cycle has a distinct name. For the toggle above, let each odd occurrence of
z,T be renamed 71,7 and each even occurrence z2,7T. Then, the PR above
can be written without a disjunction as

g A-y; Av — zl,T Yo ATuAV — z2,T.

Moreover, the i-th occurrence of 1,7 is caused (in part) by the (i — 1)-th
occurrence of y;|, etc. Hence, the system can be modeled as a repetitive

ER-system. _

For this simple example, finding a cycle and determining how many times
each transition occurs is relatively easy. However, for general cases involving
programs with vacuous firings or initial transient behavior, such a task is no
longer trivial. The situation becomes even more complicated when there are
data-dependencies as described below.

3.5 Data-Dependent Systems

Consider the following PR from ireg of Sub-section 2.5.1:

pT; Az1V pF; Az0 —  p,_].
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Suppose a fixed environment which never sets both pT'i and pFi true si-
multaneously has been included. Then, a particular occurrence of p,.| is
caused by the occurrences of either p7T';T and z1T or by the occurrences of
pF;T and 20T but never both alternatives. Thus, the PR set can be mod-
eled by a repetitive ER-system provided that we know which occurrences of
Po-| are caused by occurrences of pT;T and £1T and which other occurrences
of po-| are caused by occurrences of pF;T and z0T. As another example of
complications that arise from data-dependencies, the PR for 0] in ireg is

pT; — z0].

However, depending on the sequence of actions issued by the environment,
z0 may already be false when a particular occurrence of pT';T takes place.
Hence, this occurrence does not cause any real occurrence of 0| in spite of
the PR above.

In general, the causality relationships between transitions in a PR set can
be ascertained only through simulation. However, exhaustive simulation is
usually too costly and, as the following example shows, depth-first simulation
may result in a cycle that contains more transitions than necessary. Since
the complexity in finding the performance of the corresponding repetitive
ER-system increases dramatically with the length of this cycle, in Chapter 6,
we have developed a simple algorithm which guarantees that the cycles it
finds are “minimal.” To establish this algorithm, the theoretical background
on the properties of cycles will be presented in Chapter 5.

Example 3.2: Consider the following PR set:

—a3 A\ —c —. all
al A —a3 — a2]
a2 A (-3 V b2V ¢) -  a3]
a3Ac — a2l
—a2 A a3 — al]
—al A(B3V b1V -c) — a3l
—b3 A —c -  b17
b1 A b3 — b2
b2 A (ma3ValVc) — 537
b3ANc —  b2]
-2 A b3 — b1}
-b1A(a3V—-a2V-c) — b3]
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a2 A b2 — T
—-al A=bl — ¢l

Its state graph is shown in Figure 3.1. Each circle represents a state and
is labeled with three digits ABC where A is the value of the binary vector
(a3 a2 al), B is the value of (b3 b2 b1), and C is the binary value of
c. Each edge represents the transition that causes the corresponding state
change. To avoid cluttering up the graph, only some of the edges are labeled.
It can be shown that the graph contains all states reachable from the initial
state (marked 000) where every variable is false. Furthermore, no two circles
in the graph represent the same state.

Now, in depth-first simulation, at every state, the most recently enabled
transition is fired and the algorithm proceeds to the new state that results
from that firing. When the new state is one that has been encountered
before, the algorithm terminates and reports the cycle found. So, starting at
the initial state 000, the bold edges in Figure 3.1 shows a possible cycle found
by depth-first simulation. Note that all states on the cycle are different and
yet it should be clear that there is a smaller cycle, half as long, that contains
the same set of transitions. O

3.5.1 Environmental Scenarios

As illustrated by the discussion on ireg above, the causality relationships
between occurrences in a data-dependent system depend on the particular
choices made by the environment. Hence, in general, one can evaluate the
performance of such a system only under a fixed environmental scenario. To
get a better indication of the overall performance of the system, one can
combine the performance evaluations from different environmental scenarios
by weighting each according to its probability. As we shall see, the per-
formance of a circuit can be expressed as a function of its transistor sizes;
hence, by optimizing the combination of these functions from different scenar-
ios, appropriate transistor sizes can be determined. Furthermore, by adding
constraints — such as one requiring that the transistors used in setting a
bit true have the same sizes as those for setting it false — it is possible to
obtain proper sizes even for transistors that are not exercised under a given
scenario. Consequently, in the sequel, it will be assumed that a “typical”
environmental scenario has been selected for the PR set under consideration.
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Figure 3.1: Depth-first simulation
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3.6 Inherently Disjunctive Systems

Consider zeroQ, the quick-decision zero-checker from Sub-section 2.5.6. If
the environment sets both a@; and b@Q; to true, then the subsequent occur-
rence of cQ,] is caused by either a@;T, or b@;T, or both, depending on the
delays between these transitions and cQ,T. Note that this is a fundamentally
different situation from a data-dependent system, where every occurrence
has a unique set of causes independent of the delays. Here, an event has
more than one set of causes and, consequently, cannot be modeled by an
ER-system. Such a system is said to be inherently disjunctive [6]. The gen-
eralization of ER-systems to describe such a system is the topic of the next

chapter.

3.7 Arbiters and Synchronizers

As mentioned before, program parts dealing with arbitration and synchro-
nization of negated probes cannot be described by stable PR’s. In our
approach to performance analysis, these arbiters and synchronizers are re-
garded as belonging to the environment and the user is required to specify
their non-deterministic behavior by selecting the appropriate environmental
scenarios.
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Chapter 4

Extended Event-Rule Systems

In an extended ER-system (XER-system), an event may have more than
one set of causes. Hence, XER-systems can be used to model inherently
disjunctive systems. In this chapter, we will demonstrate how to compute
the period of a repetitive XER-system and show that this period gives a good
indication of the performance of the system. Most of the definitions and
results for XER-systems have counterparts in ER-systems. Moreover, most
of the proofs in this chapter, with the notable exception of those in Section 4.4
and Section 4.7, are extensions to those given in [6].

4.1 General Extended Event-Rule Systems

The source of a rule in an XER-system is a set of events. Furthermore,
having more than one rule with f as target specifies that f has more than
one possible set of causes. Since there may be more than one delay associated
with each rule, an explicit function A is introduced to specify the delay
between two events when one is a cause of the other. These concepts are
formalized in the following definitions.

Definition: A (general) extended event-rule system (XER-system) is a triple
X = (E,R,A) where

e E is a (possibly infinite) set of events;

e R is a (possibly infinite) set of rules where each rule is a pair (C, f),
written as C+— f, with f € EAC C E and, for every f in F, there
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exists at least one rule C'+— f in R (C may be empty); and

e A is a delay function such that A : D—[0, 00) with

D={e,f,C:C—feRNecC: (e f,C—f)}

The initial event set of X is

init(X) = {f:0—~fe€R: f}.

For a rule 7 = C'— f, the source set of r is src(r) = C, and the target of r
is tar(r) & f. A rule is empty if its source set is empty. Also, C is called a
set of causes (or a cause set) of f if C'— f is a rule. The set of all cause sets
of fis {C:Cr— f e R:C}. An event f is said to be disjunctively caused if
it has more than one set of causes. An XER-system is said to be conjunctive
if none of its events is disjunctively caused.

Example 4.1: As an example of an XER-system, consider X = (E, R, A)
where

e E=1{a,b,cde};
e R={P—a, {a}b, {a}rc, {a}—d, {b,c}—e, {d}—e}; and

e Ala,b, {a}—b) =1, Ala,c,{a}—c)=1, Aa,d,{a}—d) =1,
A(b,e, {b,c}re) =2, Ac,e,{b,c}—e) =8, A(d,e,{d}re) = 3.

Then, init(X) = {a} and §+— a is the only empty rule. For the rule {b,c} e,
src({b,c}—e) = {b,c}, and tar({b,c}+e) = e. Also, {b,c} and {d} are
sets of causes of e; thus, e is disjunctively caused and A is not conjunctive.
O

Intuitively, a rule C+ f specifies the timing constraint that the event
f can occur only if all events in C' have occurred and a proper amount of
delay (as specified by A) has elapsed. When there are two or more rules
with target f, then f can occur if the timing constraint imposed by any of
these rules can be satisfied. So, in the previous example, e can occur only
if either both b and ¢ have occurred, or d has occurred. These concepts are
formalized by the following definition.
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Definition: A timing function for X = (E, R, A) is a function t : E—0, co0)
such that!

Vf:feE:(3r:r€RA f=tar(r):
(Ve : e € src(r) : t(f) > t(e) + Ale, f, 7)) ).

An XER-system is feasible if there exists a timing function for it.

(4.1)

Example 4.2: The XER-system in the previous example is feasible since ¢,
where t(a) = 0,t(b) = 1,t(c) = 1,#(d) = 1,%(e) = 4, is a timing function for
it. O

Note that in this example, the values of A are numerically given and it
can be shown that the rule {b,c}+— e can be removed without affecting the
corresponding set of timing functions. However, when one wants to optimize
the performance of an XER-system, the values of A are themselves functions
of other variables and, consequently, it cannot be decided in advance which
of the possible sets of causes for an event can be removed. Thus, in general,
an XER-system cannot be reduced to one that is conjunctive.

4.1.1 Conjunctive General XER-Systems

As the following lemma shows, any conjunctive XER-system can be trans-
formed into an equivalent ER-system.

Lemma 4.1 Let X = (E, R, A) be a conjunctive XER-system. Then, there
exists an ER-system such that the two systems have the same set of timing
functions.

Proof: Let Y = (Ey, Ry) be the ER-system where Ey = E and

Ry={e,f,r,a: (42)
re RAe€src(r)Af=tar(r) AA(e, f,r) = a:ef}. ’

Now, since X is conjunctive, for every f in E, there exists a unique rule 7
in R with target f . By the construction of Ry, e+ f € Ry if and only if
e € src(f) AA(e, f,7) = a. So, (4.1) and (3.1) are equivalent and the lemma
is established. Q.E.D.

1For succinctness, a minor liberty with the functional notation has been taken and
Ale, f,r) is used as an abbreviation for A((e, f,7)) and similarly for other functions.
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4.1.2 Constraint Graphs

Definition: The constraint graph for an XER-system X = (E,R,A) is
the directed labeled bipartite graph G = (V,A) with V = Vg & Vi and
A=A, ¥ Ay where

e Vg is the set of event vertices, one corresponding? to each event in E,
e Vj is the set of rule vertices, one corresponding to each rule in R,

o Ay ={e,f,r: 7 € RAe € src(r) A f = tar(r) : (e,1,Ale, f,7))} is
the set of conjunctive arcs, and

e Ay ={r,f:r € RAf = tar(r) : (r,f,0)} is the set of disjunctive
arcs.

For an arc (e, 7, a), « is called the weight of the arc.

Example 4.3: The constraint graph for the XER~system in Example 4.1 is
shown in Figure 4.1. The following conventions have been adopted: event
vertices are drawn as circles, rule vertices as boxes, conjunctive arcs are
drawn smooth, and disjunctive arcs are drawn with wiggles. Note that since
the labels on all disjunctive edges are zeros, they are not included in the

picture. O

Ancestors at Infinite Distances

Example 4.4: Consider the XER-system X = (E, R, A) where
e E={i:i€N:aqa;},
s R= {Z 1€ IN: {ai+1}Hai}, and

o A(ait,as, {a,-+1}r—>a,-) = .

2For succinctness, the same name is used for an event and the event vertex to which
it corresponds; the context in which the name is used should resolve any ambiguity. The
same convention is used for a rule and the corresponding rule vertex.
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O—a

{a}—b||{a}—c|]|{a}—d

{b,c}+re {d}—e

Figure 4.1: Constraint graph for Example 4.1

Figure 4.2a shows its constraint graph. If there is a path from vertex v to
vertex w in the graph, then v is an ancestor of w and the distance between
them is the number of arcs in the path. Note that every vertex in Figure 4.2a
has an ancestor at an infinite distance from it and that A is feasible only if
a=0. 0

If v and w are event vertices and w is an ancestor of v at an infinite
distance, then the occurrence of v depends on the occurrence of w, which
took place infinitely long ago. Since this situation is unrealistic, in the se-
quel, XER-systems whose constraint graphs contain vertices with ancestors
at infinite distances will be excluded from consideration. Note that the graph
itself may be infinite provided the distance between every vertex and any of
its ancestors is finite (but not necessarily bounded).
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Figure 4.2: Pathological constraint graphs

Vertices with Infinite In-degrees

In a constraint graph, if a rule vertex 7 = C'— f has an infinite in-degree (see
Figure 4.2b), then |C| = oo and the event f can occur due to this set of causes
only after the infinite number of events in C' have already occurred. Similarly,
if an event vertex f has an infinite in-degree (Figure 4.2c), then f have infinite
number of possible sets of causes. To avoid these pathological situations that
do not correspond to realistic systems, only XER-systems whose constraint
graphs contain no vertices with infinite in-degrees are considered.

Cyclic Constraint Graphs

In [6], Burns shows the analog of the fact that if an XER-system is conjunctive
and feasible, then the sum of the weights along the arcs in any cycle in
its constraint graph is zero. Furthermore, the vertices in that cycle can
then be “merged” together and be treated as a single vertex for the purpose
of defining timing simulation as presented in the next sub-section. As the
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following example shows, however, these results do not hold if the XER-
system is not conjunctive.

Example 4.5: Consider the XER-system X = (E, R, A) where
o E={a,b,c},
e R={P—a, {a}—c, {b}—c, {c}—b}, and
e Aa,c,{a}—c)=a, Albc,{b}—c) =8, Alc,b,{c}—b) =1.
Its constraint graph is shown in Figure 4.2d and a timing function for it is
tla) =0, tb)=a+1, t(c)=a.

In fact, regardless of the values of o and 3, t(c) < t(b). Thus, this system is
equivalent to one where the rule {b}+— c is removed. O

As this example demonstrates, if an XER-system is feasible, then any
cycle with non-zero weight contains an arc that arises from an unnecessary
rule. Also, an XER-system with a cyclic constraint graph implies there is an
event (like ¢ above) which, indirectly, can cause itself to occur. Since such
systems occur rarely, if at all, in practice, it is assumed that in the sequel,
all constraint graphs are acyclic.

4.1.3 Timing Simulation

Since we consider only XER-systems with acyclic constraint graphs that do
not contain vertices with ancestors at infinite distances or vertices with in-
finite in-degrees, the following function is well-defined. Note that the min-
imization is over all rules with target f and the maximization is over all
events in the source set of each of these rules.

Definition: For an XER-system X = (E, R, A), t : E—[0, 00) defined below
is called the timing simulation of X
0 if f € init(X)

{f)= ¢ min{r: (re R)A(f= tar(r)) : (4.3)
max{e : e € src(r) : t(e) + Ale, f,r)}} if f ¢ init(X).
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Example 4.6: The timing function given in Example 4.2 is the timing
simulation of the corresponding XER-system. O

Lemma 4.2 The timing simulation of X is a timing function of X and for
any timing function t of X,

Ve:e € E : t(e) < t(e).

Proof: If f is in init(X), then (4.1) holds since there exists an empty rule
with target f. If f is not in init(X), then there exists a r such that

t(f) = max{e : e € src(r) : {(e) + Ale, f,7)}

and this equality implies

Ve : e € sre(r) : E(f) > t(e) + Ale, f,7) (4.4)

and, so, £ is a timing function of X
For a given timing function ¢, let

& {e: i(e) > t(e) : e}.

If Z is not empty then let f be an event in Z such that for any event e and

rule 7 X
e € sre(r) A f =tar(r) = e ¢ Z. (4.5)

Such an event exists since the constraint graph is acyclic.

If f e _init(X), then #(f f) < #(f) = 0 which is a contradiction. Alterna-
tively, if f ¢ init(X), then by the definition of a timing function, there exists
a rule 7 such that

t(f) > max{e : e € src(?) : t(e) + Ale, f,7)}.
But, by (4.5), the right side of the above inequality is at least
max{e : e € src(F) : i(e) + Ale, f,7)} > #(f)

)

where the last inequality is due to the minimality of ti( f) in (4.3). Thus,
t(f) > #(f) in contradiction to the assumption that f € Z. Thus, Z is
empty and the lemma is established. Q.E.D.
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4.2 Repetitive XER-Systems

A general XER-system is difficult to analyze due to the fact that it may have
a large number of arbitrary timing constraints. Fortunately, the systems
that we are interested in exhibit regular behavior and can be modeled by a
“repetitive” XER-system as defined below.

Definition: A repetitive XER-system X' is a quadruple (F', R', §,0) where
e E'is a finite set of transitions;

e R is a finite set of templates where each template is a pair (C’,v),
written as C'+— v, with v € £/ A C' C E' and, for every v in E', there
exists at least one template (C',v) in R’;

e § is a delay function such that § : D'—[0, co) with
D = {u,v,C":C"—veR ANueC: (u,v,C'—wv)}; and

e 0 is an occurrence-index offset function such that 6 : D'—Z.
The mazimum occurrence-indez offset of X' is
Omax = max({u,v,q: (v,v,9) € D' : 0(u,v,q)} U {0}). (4.6)

For a template ¢ = C'+ v, the source set of q is src(q) = C', and the target
of ¢ is tar(g) € v. Also, C' is called a set of causes for v, if C'+—wv is a
template. A transition v is said to be disjunctively caused if it has more
than one set of causes. A repetitive XER~system is conjunctive if it has no
transition that is disjunctively caused.

Example 4.7: Consider the following program which waits for either of two
input channels to be activated, performs an output communication C, and
then complete both input communications:

*x[[A vV B — C; A e BI1l
One reshufled handshaking expansion for this program is

x[La; V b;1;¢oT; [ei A ai A Bi15 875 (00T || 6T | col)s
[—e; A —a; A—bid5 805 (a0l || B0l)]

which compiles into the following PR set:
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s A(ai Vb)) — ol s — ¢l
c;i N\ a; \b; — 8T -¢; A—a; Ab; — sl

s — Gl -8 = Gl
S —  bol —S — byl

Assuming that the environment is just independent processes completing the
communications on 4, B, and C, and that initially all variables are false,
this PR set can be described by the repetitive XER-system X' = (E', R/, 6,6)

where
o F'= {aiT7 a‘il, aOT’ (Ial, sz: bzla boT: bOwL? CiTa C‘il, COT7 001«7 3T7 Sl}v
o R = { {51«7 a'zT}H COTJ {Sla sz}H COT’ {CiT7 aiT; biT}l—)ST,

{sT}— a0, {sT}— 0,1, {sT}—col,
{Cil, ail, bzl}HSl, {'sl}'_)a'old {Sl}’-’bola
{aol}ail, {aoT}—ail,  {bol}rbiT,
{boT}Hbil, {COT}'_’ciTa {Coi}HCil };

e § is some function depending on the timing model being used — for
concreteness, we will assume §(u, v, q) = 6, in this example; and

* G(Sl,COT,{Sl,G,iT} = COT) = 17 H(Slv COT,{Sl7 sz} = COT) = 17
0(aol,aiT,{aol} — ai1) = 1, 0(bol,b:7,{bol} — &T) = 1, and
6(u, v, q) = 0 for any other combination of u, v, and g in the domain of
6.

Note that if §(u,v,q) = 1, then it is the occurrence of transition u in the
previous iteration that causes the occurrence of transition v in the current
iteration. Since ¢,] is disjunctively caused, X’ is not conjunctive. Also,
Omax =1. O

A repetitive XER-system X" can be viewed as a specification of a (general)
XER-system X. The events of X are of the form (u,4) where u is a transition
of X' and i is a natural number called the occurrence index of the event. The
rules of X are to be generated by the templates of X”. Intuitively, if v is the
target of a template ¢ and u is a transition in the source set of ¢, then there
is a rule r such that (v,1) is the target of r and an event (u, j) is in the source
set of 7. The difference between i and j is specified by the function ¢ and
hence its name. The following definitions formalize these notions.
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Definition: For a template ¢ = C'+—wv and a natural number ¢, the i-th
instantiation of ¢ is the rule g[i = C'+— (v, i) where

C={u:ueC' Ni>0(u,v,q): (ui—0(u,uv,4q))} (4.7)

Note that if 7 > Omax, then

u € sre(q) © (u,i — 0(u, v, q)) € src(q|i). (4.8)

Example 4.8: Let ¢ be the first template listed in the previous example.

Then,
ﬁ.:{ {(a:1,0)} = (co1,0) if i =0
1 {(sl,i—1),(a;1,3)}—(co1,3) if¢>0.
O

Definition: A repetitive XER-system X' = (E', R',6,0) induces or gener-
ates the XER-system X = (E, R, A) where

e E={u,i:u€ E ANi€N:(u,i)};

e R={q,i:q€ RN i€ N:q[t}; and

o A({u,7),{v,1),q[i) = 6(u, v, ¢) with the domain of A being
D = {u,j,v,4,q: (v,1) = tar(q[i) A (u, j) € src(q[7) :

{(u, ), (v, 2), q[9) }.

Note that this construction is well-defined since
<<u’]>’ (v’ 7’)’ QI—Z) 6 D :> <u” v’ q) G DI'

Also, by the construction described above, a conjunctive repetitive XER-
system (one set of causes per transition) induces a conjunctive general XER-
system (one set of causes per event). For brevity, a timing function (or the
timing simulation) of X is also referred to as a timing function (or the timing
simulation) of X"
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4.2.1 Conjunctive Repetitive XER-Systems

A repetitive XER-system is the analog of a repetitive ER-system defined in
the previous chapter. As expected, there is a natural correspondence between
a conjunctive repetitive XER-system and a repetitive ER-system.

Lemma 4.3 Let X' = (E', R',6,0) be a conjunctive repetitive XER-system.
Then, there exists a repetitive ER-system such that the two systems have the
same set of timing functions.

Proof: Consider the repetitive ER-system )’ = (E},, R} where Ej}, = F'
and

b ={u,v,a,6,q: ¢ € R Au € src(q) Av = tar(q) A (4.9)
6(u,v,q9) = aAN(u,v,q9) =¢: (u,v,a,€) }. )

Let X = (E, R, A) be the XER-system induced by X’ and ) = (Ey, Ry) be
the ER-system induced by )’. Then, E}, = E' implies £y = E. Let (0,3) be
an event in E. Since X’ is conjunctive, there exists a unique template § such
that § = C'— 9. Now, by construction, the only rule in R with target (9,%)
is ¢[2 = (C, (v,1)) where

C={u:uelC N> 0(u,v,q):{ui—8(u,q))}
Next, by (4.9), (v, 9, a,¢€) is in R), if and only if
wu€eC'Na=¥6wu,0,4) Ne =0(u,,q).

This relationship implies that the subset of rules in- Ry with target (0,1%) is
precisely
o(u,v,q9),. .
{u:ueC'At>0(u,0,q) : (u,i—0(u,v,q)) ( — Q)(v,z)}.

Since 6(u, 9, §) = A({u, j), (9,1), 4[7), (u,7)*>(d,1) is a rule in Ry if and only
if there exists [ such that

(u,j) € sre(g[i) A (v,1) = tar(q[?) Ao = A({w, j), (9, 2), §[%).

Since this analysis holds for any 7, Ry is related to R by (4.2). The lemma
then follows from the proof of Lemma 4.1. Q.E.D.
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4.2.2 Collapsed-Constraint Graphs

Definition: The collapsed-constraint graph for a repetitive XER-system
X' = (E', R, 5,0) is the directed doubly-labeled bipartite graph G’ = (V', A’)
with V! = V5 W Vg and A’ = A), W A|, where

e V. is the set of transition vertices, one corresponding to each transition
win F',

e V} is the set of template vertices, one corresponding to each template
gin R,

o A, = {u,v,q:q € R ANu € src(q) Av = tar(q) : (u, q, A(u,v,q),
6(u,v,q))} is the set of conjunctive arcs, and

e A, ={q,v:q€ R ANv =tar(q) : (¢,v,0,0)} is the set of disjunctive
arcs.

For an arc (w, ', a, €), @ and ¢ are called the weight and the occurrence-index
offset of the arc, respectively.

Example 4.9: The collapsed-constraint graph for the X’ of Example 4.7 is
shown in Figure 4.3 where transition vertices are drawn as circles, template
vertices as boxes, conjunctive arcs are drawn smooth, and disjunctive arcs
with wiggles. For clarity, we have adopted the convention that for the con-
junctive arc (u,q, a,¢), if € > 0, then the corresponding arc is drawn with
a number of slashes equal to €. Also, the zero labels on the disjunctive arcs
have been left out. O

For a path
p’ = <'lU(),’lU1, .. -’wl>
in a collapsed-constraint graph, the sum of the weights on the arcs in p’ will

be denoted as "

6(:0’) = Z(a in <wj’ Wj+1, &, E))’

Jj=0
and the sum of the occurrence-index offsets of the arcs as

-1

0(p") = Y (e in (wj, wjt1, @, €)).
7=0
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Figure 4.3: Collapsed constraint graph for Example 4.7
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The following results relate the collapsed-constraint graph of a repetitive
XER-system X’ to the constraint graph of the general XER-system induced

by &”.

Lemma 4.4 Let G' be the collapsed-constraint graph of X' and G be the
constraint graph of X, the XER-system induced by X'. If there exists a path
p in G from event vertez (u, j) to (v, 1), then there exists a path p' in G' from
transition vertez u to transition vertexr v.

Proof: If {{u,j),r, (v,7)) is a path of length 2 in G, then, by construction,
there exists ¢ € R’ such that 7 = ¢[i, v = tar(g), u € src(q), and j =
i — 0(u,v, q). Consequently, (u,q,v) is a path in G'. Since every non-empty
path from an event vertex to an event vertex is a concatenation of paths with
length 2, the lemma is established. Q.E.D.

Lemma 4.5 Let G and G’ be as in Lemma 4.4. If there is a path p' from
transition verter u to transition vertex v in G' then there exists an I such

that, for all i > I, there erists a path p from event vertex (u,i— 0(p')) to
event vertez (v,1) in G.

Proof: Use induction on [, the length of p'.

Base Case: (I =0) In this case, u = v; so, let p = ({(u,1)).

Inductive Step: Assume that the lemma holds for all p’ with length less
than or equal to [. Consider

o' = {(u = wy), wr, ..., (W41 = v)).

Since G is bipartite, w; is a template vertex ¢, and w;_; is a transition vertex
@. So, o' be the concatenation of a path p’ with length [ — 1 and the path
(@,q,v).

Now, by definition of G’, 4 € src(g) and v = tar(g). But, by the
construction of X, for all natural number 7 such that ¢ > 6(%,v,q), there
exists rule 7 = ¢[i in X such that (@,i— 6(4,v,q)) € src(r) and (v,4) =
tar(r). Letting € be (@, v, ¢) implies ((%,7 — €),, (v,4)) is a path in G.

By the inductive hypothesis, there exists I such that for all ¢ with (i—¢) >
I, there exists a path p from (u,7 — ¢ — 8(p')) to (i, i — €). The concatenation
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of this path and ((@,% — ¢), r, (v,1)) for sufficiently large i yields a path from
(u,i— e —0(p')) to (v,3). Since

6(0") = 8(¢') + 0(d, v, g) + 0 = 8(0)) + ¢,

the lemma is established. Q.E.D.

4.3 Pseudorepetitive XER-Systems

Sometimes, a system being modeled exhibits initial transient behavior prior
to entering its steady state. For such a system, “pseudorepetitive” XER-
systems are introduced.

Definition: A pseudorepetitive XER-system X" is a pair (Xg, X}) where

o Xy = (Ey, Ry, Ap) is a (general) XER-system with Fy and Ry finite
and is called the initial part of X”; and

o X| = (E|,R},6;,0:) is a repetitive XER-system and is called the re-
peated part of X".

Example 4.10: Consider a system where there is an initial occurrence of b,
followed the endless repetition of the sequence (a, b, ¢). Then, this system
can be described by a pseudorepetitive XER-system X" = (X, X}) where

o Xo=( {(b,0),(a,0)}, {0—(b,0), {(0,0)}—(a,0) }, Ao ); and
e X\ =( {a,bc}, {{a}—b,{b}—c, {c}—a}, b, 0 ).
Since the i-th occurrence of ¢ is caused by the (i + 1)-th occurrence of b,
61(b,c,{b} — ¢) = —1. By similar analyses, 6;(a,b,{a} +— b) = 1 and
61(c,a,{c}— a) = 1. Again, A and 6; depend on the timing model. The

way in which X" specifies the original system will be discussed after the next
definition. O

Intuitively, the XER-system generated by a pseudorepetitive XER-system
X" is the combination of its initial part and the XER-system generated by
its repeated part. If an event appears in both parts, then its constraints as
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specified in the initial part take precedence over the ones specified in the
repeated part. The construction below formalizes these notions.

Definition: Let X" be a pseudorepetitive XER-system as defined above.
Let Xy = (Eq, Ry, As) be the XER-system induced by X}. Then, the XER-
system induced or generated by X" is X = (E, R, A) where

[ ] E"—‘EQUEQ;
e R= RyU (Ry|Fy) with
Ry|Ey = {C,f:C—feRyANf¢Ey:Cwf}; and (4.10)

e A is defined by

Agle, f,r) if f€Ey

Ale, fr) = { Aole, f,1) i f ¢ B, (4.11)

Note that an event in Fy can be in the source set of a rule in Rj; hence,
events of this type serve as a link between the initial part and the repeated
part of the pseudorepetitive XER-system.

Example 4.11: Continuing with the previous example, X' induces the rules
@+ (a,0). This rule is superseded by {(b,0)}— (a,0) in X, reflecting the
transient behavior of the original system. Note that even though X7 also
induces @+ (b, 0), this rule in needed in X, so that &y is an XER-system.
0

4.3.1 Approximating Timing Simulation

Though they can be used to model a large class of systems, pseudorepeti-
tive XER-systems are cumbersome to work with. Fortunately, Lemma 4.8
shows that to get a good indication of its timing simulation, it is sufficient to
deal with the repeated part of any given pseudorepetitive XER-system. To
establish the lemma, the following properties of numbers are needed.

Lemma 4.6 For N > 0 and any number B, if
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then

Imin{: :0<i<N:z;} —min{i: 0<i< N:y} <B; (4.12)
max{i:0<i< N:z;} —max{i:0<i< N:y}/<B. (413)

Proof: Let z; = min{z;} and yx = min{y;}. If z; > y, then the minimality
of z; implies

lmin{z;} — min{y;}| = (z; — y&) < (z& — %) < B.
Alternatively, if z; < yx, then the minimality of y; implies
lmin{z;} — min{y;}| = (yx — 2;) < (y; —z;) < B.

Thus, (4.12) is established. Equation (4.13) can be verified by similar argu-
ments. Q.E.D.

Corollary 4.7 Let N >0 andVi:0<i< N : M; > 0. Let

X ¥ min{i:0<i< N:max{j:<j< M :z;}},

Y = min{i:0<i< N:max{j:<j<M:uy;}}
IfVi,j : 0<i<NAO<j<M:|zy—yy| < B, then | X -Y| < B.
Proof: Forany i, 0 < i < N, let X; = max{j : 0 < j < M, : z;;} and
Y; = max{j : 0 < j < M; : y;;}. By (4.13) of Lemma 4.6, |[X; - Y;] < B.

The corollary is established by using (4.12) of Lemma 4.6 for the sets {X;}
and {Y;}. Q.E.D.

Lemma 4.8 Let X = (E,R,A) be the XER-system induced by a pseu-
dorepetitive XER-system X" = (X, X]). Let X3 = (E3, Re,As) be the
XER-system induced by X7. If t and t, are, respectively, the timing sim-
ulations of X and Xy, then, there exists B such that

Ve:e € Ey: |t(e) — ta(e)] < B. (4.14)
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Proof: Let Xo (Eo, R(), A()) and X’ <E1, (51, 91) Let £ = E2 N EO
Since Ej is finite, so is €. Also, for any f € (E, \5 ), f ¢ Eq. So, by (4.10)

{C:C—feR:Crf}={C:Crf e (Rs|Ey):Crf} (4.15)
—{C:CfeR:Cmf} &

with the last equality due to R = Ro U (Ry| Eo) and f ¢ E.
Next, if £ is empty, then let B be 0; else,

B ¥ max{e:ec & : |t(e) —ta(e)|}- (4.16)

Suppose that
“le:ec ByAli(e) —ta(e)] > B:e}

is not empty. Then, since only XER-systems with acyclic constraint graphs
are considered, there exists an element f in Z such that

VC:C—feRy:(Ve:e€C:ed 2). (4.17)

Clearly, by (4.16), f ¢ &, which implies f ¢ Ey. So,if f € init(X') then, by
(4.15), f € init(X) and #(f) = £5(f) = 0. Alternatively, since f ¢ Ey, (4.17)
and (4.11) imply

VC:C*—’fERzl(Ve:eeC;
|(£(e) + A, f, 7)) — (f2(e) + Ale, £ )| < B. (4.18)

By (4.15), #(f) and #,(f) are obtained by taking the maximum and minimum
over the same sets of events and rules. So, by Corollary 4.7, (4.18) implies
[5(f) — £2(f)| < B which contradicts f € Z. Therefore, Z is empty and the
lemma is established. Q.E.D.

4.4 Scenarios

Definition: For a repetitive XER-system X" = (E',R',6,0), a scenario of
X' is a conjunctive repetitive XER-system X' = (E', R/, 6,0) where

e R CR,
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e ¢ is the same® as § but defined only over the restricted domain

D' = {u,v,q: ¢ € R Au € src(q) Av = tar(q) : (u,v,q)};
e 0 is the same as 0 but defined only over D'.

Thus, a scenario corresponds to an XER-system where only one of the
possible sets of causes of a transition is included. If, in XA”, the number of
sets of causes for transition u is n(u), then A’ has precisely II . g, n(u)
scenarios.

Example 4.12: Consider the repetitive XER-system X' = (E',R',5,0)
where

e E'={a,b,c,d,e};
e R ={{d}—a, {a}—b, {be}—c, {c}—d, {a,b}re, {b,d}—e};

o 5(d e, {b,d}—e) = 4, 6(a,e, {a,b}—e) = 2, and §(u,v,q) = 1 for all
other (u,v,q) in the domain of §; and

e 0(d,a,{d}—a) = 1, 6(a,b,{a}—b) = 1, 8(d,e,{b,d}—~e) = 1, and
6(u, v, q) = 0 for all other (u,v,q) in the domain of 6.

Because of the two possible sets of causes for e, X' has two scenarios: X
with template set Ry = (R’ \ {{b,d}+¢}) and X{ with template set R, =
(R'\ {{a,d}—e}). The collapsed-constraint graphs of A", X} and X] are
shown in Figure 4.4. O

4.4.1 Strongly Connected Scenarios

A scenario is said to be strongly connected if its collapsed-constraint graph
is strongly connected®. To facilitate some of the proofs given in the sequel,
only XER-systems with strongly connected scenarios are considered. The

3To reduce the cluttering of notation, when the domain of the function is obvious or
irrelevant, § and # will be used, respectively, in place of & and 8.

4For the purpose of this work, the graph containing a single vertex with no arc is
not considered to be strongly connected. This exception is needed so that all strongly
connected graphs contain at least one cycle.
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justification for this restriction is that, for our purpose, XER-systems are
used to model delay-insensitive circuits that function properly even if there
are arbitrary delays between the occurrences of transitions. In other words,
the delay function of a repetitive XER-system specifies the relative delays
among the transitions only under a given set of circumstances. In contrast,
the causality relationships embodied in the set of templates are valid under
all possible delay functions. The rest of the section shows how strongly con-
nected scenarios are necessary for delay-insensitive systems. The arguments
hinge on the observation that if, in the collapsed-constraint graph, transition
vertex W does not lead to transition vertex 9 (i.e., there is no path from & to
), then, under an appropriate set of delays, 9 can occur an arbitrary number
of times before a particular occurrence of 1 takes place. This observation is
formalized and proved in the following lemma.

Lemma 4.9 Let X' = (E', R/, 6,0) be a conjunctive repetitive XER-system
with collapsed-constraint graph G' and mazimum occurrence-inder offset
Omazr. Let w be an element in E' such that 0w ¢ R'. Let 9 be a tran-
sition such that W does not lead to 9 in G'. For any event (0,i), there
erists a conjunctive repetitive XER-system X| = (E',R',6,0) such that
t1(9,1) < t1(W, Omaz), where t is the timing simulation of X7.

Proof: Let § € R/, tar(§) = , and § € src(§) . Let ¢ be the timing
simulation of X’. Define §; to be the same as § except that 6,(§, @, §) =
£(9,7). Recall that we are dealing with conjunctive systems. So, by (4.8),

£1(, Omax) > 1(3, Omax — 6(3, @, ) + 6:(9, @, §) > 1(5,7).  (4.19)

Next, let X be the XER-system induced by X’. Let G be the constraint
graph of X. Let

U = {v,i: (Vk :: (b, k) does not lead to (v,3) in G) : (v,4)}.

Suppose Z = {v,i: (v,1) € U At(v,1) # £1(v,1) : (v,%)} is not empty. Then,
since G is acyclic, there exists (v,i) € Z such that for any (u, j) and r,

(u,j) € src(r) A (v,3) = tar(r) = (u,j) ¢ Z. (4.20)

If (v,4) € init(X), then £(v,i) = #;(v,i) = 0. Else, let (u,j) and r satisfy
the premise of (4.20). If (u, j) ¢ U, then there exists k such that (b, k) leads
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to (u,j) which implies (1, k) leads to (v, i), contradicting (v,¢) € Z. Hence,
(4.20) is equivalent to

(u,j) € sre(r) A (v, i) = tar(r) = #(u,j) = t1(u, j). (4.21)

Let r = q[i. Then, since v # @ due to (v,3) € U, §(u,v,q) = 61(v,v,¢q). So,
by the definition of timing simulations, (4.21) implies (v, 1) = £, (v, 1) which
is a contradiction. Hence, Z is empty. But, by Lemma 4.4, (9,%) € U; so,
#(9,%) = t1(9,7) and the lemma follows from (4.19). Q.E.D.

With this result, we can now argue that delay-insensitive circuits are
modeled by XER-systems with strongly connected scenarios. First, con-
sider a conjunctive repetitive XER-systems X’. Suppose G’, the collapsed-
constraint graph of X', has two strongly connected components Hy and H,.
If a transition 9 in Hy is in the cause set of a transition « in H;, then @ does
not lead to ¥ by the definition of components. But then, by Lemma, 4.9, there
exists a set of delays such that © occurs arbitrarily often before (@, fmax)
takes place. Since there is only one cause set for &, this situation implies in-
stability in the circuit being modeled. Hence, for a stable system, transitions
in one strongly connected component do not interact with those in another.
Consequently, it is sufficient to analyze each component independently and
the requirement that a conjunctive XER-system be strongly connected is
justified.

If X' is not conjunctive, then let X’ be one of its scenarios. For each
g = C'+—v where ¢ is a template in X’ but not in X”, define the delay
function of X’ so that the delay between any transition in C’ and v is very
large. In the timing simulation of X’, each event occurs as soon as the
timing constraints imposed by one of its cause sets have been fulfilled. Thus,
under the new delay function, this cause set is always induced from X" and,
therefore, the timing simulations of X’ and X' are identical. To avoid the
instabilities previously mentioned for conjunctive XER-systems, X' needs to
" be strongly connected. Since the choice of X" is arbitrary, if an XER-system
models a QDI circuit, then all of its scenarios are strongly connected.
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4.5 Linear Timing Function

Definition: A timing function ¢ of a repetitive XER-system X" is said to be
linear if it has the following form:

t(u,i) = h(u) +pi (4.22)

where & is a function of u and p does not depend on u or i. The period of
the timing function is p.

Note that this definition differs slightly from the one given in [6] where a
linear timing function has the form:

t(u,1) = h(u) + py i. (4.23)

Burns then shows that if v and v belong to the same strongly connected
component of the corresponding collapsed-constraint graph G’, then p, and
p, are identical. He then restricts his attention only to strongly connected
systems. Since this restriction has already been made in this paper, it is
more convenient to use (4.22) as the definition of linear timing function.

4.5.1 Linear Offset Functions

As Lemma 4.10 below shows, the timing constraints of (4.1) can be equiv-
alently expressed in terms of the function h as given in (4.22). In fact, the
latter expression is more convenient to work with since it is independent of
i. Thus, the following definition is made.

Definition: Let X’ be a repetitive XER-system with transition set E’. Given
a number p, a linear offset function of X' with period p is any function
h : E'—[0, 00) such that  defined by (4.22) is a linear timing function of X"
The size of h is |h| = e E h(u).

Lemma 4.10 Let X' = (E',R',6,0) be a repetitive XER-system. Let p be
any positive number and h be any function mapping elements of E' to [0, 00).
Then, h is a linear offset function of X' with period p if and only if

Yv:veE :(Jg:q€ R ANtar(q) =v:
(Vu : w € src(q) : h(v) > h(u) — pB(w, v, q) + 6(u, v, q)) ). (4.24)
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Proof: Let X = (E,R,A) be the XER-system induced by X". Let t be
defined by (4.22). Then, by the construction of R, £ is a linear timing function
if and only if

V{(v,i) : {v,3) € E: ( 3q[i: q[i € RAtar(q[i) = (v,3) :
(V{u,i— 0(u, v, 9)) : (u,i — 8(u,v,q)) € src(q[) : (4.25)
t(v,4) > t(u,i — 0(u,v,9)) + A((u,i — 0(u,v,q)), (v, 1), ¢[1)))-

Now, (u,i — 0(u,v,q)) € src(qi) = u € src(q). Hence, by the definition of
A, if (4.24) holds, then (4.25) holds and h is a linear offset function. Con-
versely, if h is a linear offset function, then (4.25) holds. In particular, if
i = Omax, then (4.25) implies (4.24) by (4.8). Hence, the lemma is estab-
lished. Q.E.D.

4.6 Minimum-Period Linear Timing Func-
tions

Definition: A minimum-period linear timing function (MPLTF) of a repet-
itive XER-system X’ is a linear timing function ¢ of A’ whose period is
minimum — i.e., X’ has no linear timing function with smaller period. The
minimum period of X', denoted period(X”), is the period of its MPLTF.

The following lemma is a rephrasing of one of the main results of [6].

Lemma 4.11 If X' is a conjunctive repetitive XER-system whose collapsed-
constraint graph G' is strongly connected, then a MPLTF of X' exists and

period(X’) is

/
p=max{p : o' is a cyclein G': ZEZ% }. (4.26)
Proof: Convert X’ into the equivalent repetitive ER-system )’ = (E', Ry)
as shown in Lemma 4.3. Then, see Section 2.4 of [6] for the rest of the proof.
Below, a brief outline of that proof is given to illustrate the approach used
and to present some intermediate results which will be needed in the sequel.
First, note that, by construction, (4.10) is equivalent to

Yo:veE : (Vu,a,e: (u,v,a,6) € Ry« h(v) > h(u) —pe + ).  (4.27)
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Next, in )’, order the elements of E' as {uj,us,...,u,} and those of R),
as {ri,72,...,Tm}. Let template r; be (uk,w,aj,€;), with ug and u; be-
ing, respectively, the source and target of r;. Let € be the transpose of
(€1,€9,.-.,6m) and a be the transpose of (a1, g, ..., ay). Construct A', the
arc-node incidence matriz of ', by

1 if ug is the target of 7,

—1 if uy is the source of 7
a,’jk =
0  otherwise.

Let z represents the vector (h(u;),h(us),...,h(u,)). Then, the constraint
expressed in (4.27) is equivalent to (4.29) below and, therefore, finding the

MPLTF for )’ is equivalent to solving

z = minp (4.28)
(A El[ﬂ > a (4.29)
z,p > O (4.30)

The fact that this solution exists and is related to the cycles by (4.26) is
given in [6]. Q.E.D.

Note that p in (4.26) is well-defined because of the following reasons. Let
u be a transition in a cycle p’. Then, by Lemma, 4.5, for all i sufficiently large,
there is a path from (u,i — 6(p')) to (u,i) in G, the constraint graph of the
XER-system induced by X’. If 8(p') = 0, then G is cyclic. If §(p’) < 0, then
G has a vertex with an ancestor at an infinite distance (See Example 4.4).
Since both these cases have been excluded, 8(p') is positive and (4.26) is

consistent.

Example 4.13: Consider X} of Example 4.12. As shown in Figure 4.4b,
there are the following three simple cycles in the collapsed-constraint graph

of X:
o po = {a,{a,b}—e, e {be}—c,c, {c}—d, d {d}+a,a),
o p, = (a,{a}—b,b,{be}—c,c, {c}—d,d,{d}—a,a), and
o py=(a,{a}—b,b{a,b}—e,e {be}rcc {c}—d d {d}—a,a)
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Since

6p0 5 5p1 4 (5,02 5
—_ 5 _ —=4_9 £ 2____
Hepo =31=79, ‘%—%0/)1 -—2—. , and p2)—2—25,

period(X}) = 5. Indeed, t defined by

)

#a,i) =5i,  &(b,3) = 5i, f(c,i) = 3 -+ 54,

#(d, i) = 4+ 56, #(e,i) =2+ 5i, (4.31)

is a MPLTF of X}. Similar analysis shows that the minimum period of X]
in Example 4.12is 6. O

To facilitate the generalization of Lemma 4.11 to non-conjunctive systems,
the following definition is made.

Definition: A minimum-period linear offset function (MPLOF) of X' is a
linear offset function h of X’ with period p such that ¢ defined by

t(u,1) = h(u) + pi (4.32)

is a MPLTF of X".

By the relationship dictated by (4.32), the MPLOF of A" is the linear
offset function whose period is minimum. '

Theorem 4.1 Let X' be a repetitive XER-system whose scenarios are
strongly connected. Then, a MPLTF of X' exists and period(X') is

p = min{X" : X is a scenario of X’ : period(X')}. (4.33)

Proof: Let the scenarios of X’ be X}, X1, ..., Xjs. For any positive number
P, let T5(X),) denote the set of linear offset functions for X!, with period p
and likewise for T5(X'). If h € T;(X},), then, by Lemma 4.10, for any v,
there exists a unique template g, in X}, such that

Yu : u € src(gy) : h(v) > h(u) — pO(u, D, ¢y) + 6(u, D, gu)- (4.34)
But g, is also a template in X”; so, h € T5(X"). Conversely, if h is in T5(X"),
then for any v, there exists a template ¢, in X’ such that (4.34) holds. Let
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X, be the scenario whose set of templates is precisely {v:vekFE:qg}
Then, h € T;(X%). So, for any positive p,

M
T3(x') = U Ts(Xm)- (4.35)

m=0
By the definition of MPLOF, p is the smallest  such that the RHS of
(4.35) is non-empty. Hence, it is also the smallest 7 such that the LHS is
non-empty. So, by the remarks after the definition of MPLOF, p is the period
of a MPLOF of X' and the theorem is established. Q.E.D.

Example 4.14: By the analysis done in Example 4.13, the minimum period
of X' of Example 4.12 is 5. In fact, (4.31) is a MPLTF of A”. O

4.6.1 Critical Scenarios, Cycles, and Transitions

Theorem 4.1 states that the minimum period of a repetitive XER-system is
determined by a particular cycle in the collapsed-constraint graph of a par-
ticular scenario. For future reference, we introduce the following definition.

Definition: A scenario X' of a repetitive XER-system X" is critical if
period(X’) = period(X’). A critical cycle in a scenario A" is a cycle i
in the collapsed-constraint graph of A’ such that

6(7') = period(X’
AL} = period )

A critical cycle in a repetitive XER-system X' is any critical cycle in any
critical scenario of X'. Also, the set of critical transitions of X" is

C(X") = {w,p :
, i 5 . - . (4.36)
¢ is a critical cycle of X' A w is a transition vertex in p’ : w}.

Example 4.15: For X’ of Example 4.12, X§ is a critical scenario. A critical
cycle of X} is

(a,{a,b} e, e, {be}—c,c,{c}—d,d,{d}+—a,a),
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and a critical cycle of X7 is
(e, {b,e}—c,c,{c}—d,d,{b,d}—e,e).

The former is also a critical cycle of X’. Furthermore, C(X}) = {a,c,d, e}
and C(X]) = {c,d,e}. O

Let p' = (uo, qo, U1, @1, - - - » Wi—1, Qi—1, o) be a critical cycle of a scenario
X!.. Note that p’ may not be a cycle in the collapsed-constraint graph of
another scenario X", if one of the g;'s belongs to the scenario X7, but not
to A'. In determining the minimum period of an XER-system, the following
lemma shows that once the critical cycles of a scenario have been found, it
is only necessary to analyze other scenarios for which none of these critical
cycles are present. By repeatedly applying this observation, the amount of
computation required may be greatly reduced.

Lemma 4.12 Let X!, be any scenario of a repetitive XER-system X'. Let
R be the set of critical cycles of Xp,. Then, period(X’) = period(X},)
unless there exists a critical scenario X', such that none of the elements in
R, is a cycle in G', the collapsed-constraint graph of X',

Proof: If any element of R, is a cycle in G', then, by Lemma 4.11,
period(X") > period(X},). Q.E.D.

4.7 MPLTF’s and Timing Simulations

Throughout this section, except in the examples or when stated other-
wise, X' = (E',R',6,0) is a repetitive XER-system with period p and
X' = (E',R',5,0) is any of its critical scenarios. The purpose of this section
is to prove that a MPLTF of X’ is a “good” approximation to its timing
simulation. The following example illustrates some of the issues involved.

Example 4.16: A linear timing function I (as defined in (4.31)) and the
timing simulation t of the repetitive XER-system X’ in Example 4.12 are

shown in Figure 4.5.

Note that the difference between #(b,i) and #(b,%) starts at 0, then in-
creases to 4, and then remains at 5, which is period(&”), for all ¢ > 2. Thus,
for large i, #(b,i +1) — t(b,3) = {(b,i+ 1) — #(b,7) = period(X”’). Hence,
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t(a,0) = 0,
£(b,0) =0,
t(e,0) = 2,
t(c,0) = 3,
(d,0) =4,
t(a,1) = 5,
t(b,1) =5,
t(e,1) =17,
t(c,1) = 8,
{(d,1) =9,
t(a,2) = 10,
#(b, 2) = 10,
f(e, 2) = 12,
t(c,2) = 13,
t(d,2) = 14,
t(a, 3) = 15,

(b, 3) = 15,

t(a,0) = 0,

£(b,0) =0,

t(e,0) = min{max{#(b,0) + 1},
max{t(a,0) + 2,#(b,0) +1}} = 1,

t(c, 0) = max{#(b,0) + 1,#(e,0) + 1} = 2,

£(d,0) = £(c,0) + 1 = 3,

t(a,1) = #(d,0) + 1 =4,

t(b,1) = #(a,0) +1=1,

t(e, 1) = min{max{#(b, 1) + 1, #(d, 0) + 4},
max{#(a,1) + 2,#(b,1) + 1}} = 6,

t(c,1) = max{#(h,1) + 1,#(e, 1) + 1} = 7,

i(d,1) = #(c,1) +1 =38,

t(a,2) =#(d;1)+1=9,

(b,2) = t(a,1) + 1 =5,

i(e,2) = min{max{#(b,2) + 1,#(d, 1) + 4},

max{#(a,2) +2,#(b,2) + 1}} =11,

#(c,2) = max{(b,2) + 1,1(e,2) + 1} = 12,

t(d,2) = t(c,2) + 1 =13,

t(a,3) = £(d,3) + 1 = 14,

#(b,3) = t(a, 1) + 1 = 10,

Figure 4.5: Timing functions for Example 4.16

at least in this example, period(X’) serves as an indicator of the periodic

performance of A"
Also, observe that gy = {b,d}+— e is the template such that

#(e, 0) = max{(u, j) : (u,5) € qo[0: &(u, ) + A((w, 5), (e, 1), %[0)} (4.37)
whereas q; = {a, b} e is the template for which
f(e’ Z) = max{(“’a]) : (’U’,J) € q1 l-Z : tA(u’]) + A(<u,.7>a <€, 7'>’ q1 [Z)} (438)

holds for all i > 0. Thus, in this example, except for some initial occurrences,
the timing simulation of X’ is dictated by the constraints of a single scenario.

O
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Our approach is to prove the existence of a critical scenario X’ — like the
one containing template ¢; in the previous example — such that, eventually,
the behavior of X’ is “close” to that of A”.

4.7.1 The “Smallest” MPLOF of a Critical Scenario

As an intermediate step in proving that a MPLTF is a good approximation of
the timing simulation, we will show that there exists a MPLOF h of X’ such
that, for any transition v and the unique template g, in X’ with tar(g,) = v,

h(v) = max{u : u € src(g,) : h(uv) — pB(u, v, ) + 6(u,v,q,)}.  (4.39)

The example below illustrates that it is not trivial to prove that such a
MPLOF exists.

Example 4.17: Consider again X} of Example 4.13. For any u in src(gy),
define the slack of the pair (u,v) as

s(u,v) = h(v) = (h(w) — pO(u, v, ¢0) + 6(u, v, g))-

Figure 4.6a depicts a MPLOF h that results from minimizing the sum of all
slacks in XY: Each transition vertex u is labeled with h(u) and the edges in
{u, gy, v) is shown in bold if u € src(g,) A s(u, v) = 0. Note that (4.39) is not
satisfied for v = b (b is the leftmost transition vertex).

Alternatively, if we find the smallest MPLOF h satisfying h(b) = 5, then
the MPLOF depicts in Figure 4.6b results; if we find the smallest MPLOF h
satisfying h(a) = 0, then the MPLOF depicts in Figure 4.6¢ results. In both

cases, (4.39) is violated by v = b.
Note, however, that if we find the smallest MPLOF h that satisfies h(a) =

5, then, as shown in Figure 4.6d, (4.39) is satisfied for all v. O

In Lemma 4.17, the existence of a MPLOF h of X’ satisfying (4.39) will
be demonstrated®. However, some results need to be established beforehand.

Lemma 4.13 Let G' be the collapsed-constraint graph of X'. Let h be a
MPLOF of X'. If

! __
p = (Uo,fh,ul,(h,---,Uz—l,(h—l,ut)

5There are simpler methods to prove that such a MPLOF exists (e.g. Lemma 4.18);
however, the MPLOF guaranteed by Lemma 4.17 satisfies several properties which are
needed in the subsequent arguments.
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Figure 4.6: MPLOF of Example 4.17
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is a path in G' where uy and v; are transition vertices, then
h(w) 2 h(uo) — pO(p") + 6(p'). (4.40)

Proof: Since G' is bipartite, each u; a transition vertex and each g; a tem-
plate vertex. Note that since X’ is conjunctive, g; is the only template with
target u;4+1. So, Lemma 4.10 implies that for all j, 0 < j < L

h(uji1) > B(u;) — pO(uj, uji1, ;) + 6(wj, w1, ¢5)-

Summing along the conjunctive edges along the path p’ and recalling that
the weight and the occurrence-index offset of the disjunctive edge (g;, Ujt1)
are zeros establish (4.40). Q.E.D.

Lemma 4.14 For any MPLOF h of X', there ezists a constant B, indepen-
dent of h, such that

Vu,v:(u€ EYA (vE€E'): h(u) —h(v) < (B-1). (4.41)

Proof: For now, assume X' is conjunctive and let G’ be its collapsed-
constraint graph. Let w be a fixed transition vertex. Since only strongly
connected graphs are considered, for every v in E', there exists in G’ a path
Py from w to v. So, by Lemma 4.13, h(w) — h(v) is bounded above by a
value that depends only on p and the sums of weights and occurrence-index
offsets along a fixed path p;,,. By setting B, to the maximum of these
bounds over all v, and B to the maximum of the B,,’s over all transitions w,

the lemma is established if X’ is conjunctive.

If X’ is not conjunctive, then, by the arguments above, for each critical
scenario X!, of X', there exists By, such that (4.41) with By, in place of B
holds. Since, by (4.35), h is a MPLOF of X’ implies & is a MPLOF of a
critical scenario of X', setting B to the maximum of the B,,’s establishes the
lemma. Q.E.D.

Lemma 4.15 In a scenario X' with period p, let
F' = (10,90, U1, Qs - - - 5 U1, Qi—1, Ur) (4.42)

be a critical cycle with u; = ug. Then, for any MPLOF h of X' and any j
such that 0 < j <,

h(uji1) = h(u;) — pO(uj, wit1, ¢5) + 6(ug, wjs1, 45)- (4.43)
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Proof: Let ¢’ be the subpath of g’ from u; to u; = up. By Lemma 4.13,

h(ug) > h(uy) — pb(c’) + 6(d’). (4.44)
By definition, 0 = pd(¢') — 6('). So, adding this identity to (4.44) yields
h(uo) > h(w1) + p(8(8") — 6(c")) — (6(8") — 6(d")). (4.45)
But (ug, go, u1) is the only difference between /' and ¢'; so,
h(uo) > h(u1) + pf(uo, u1, go) — 6(wo, U1, Go)- (4.46)

Now, since X’ is conjunctive, go is the only template whose target is u;.
Therefore, since ug € src(gg), by Lemma 4.10, (4.46) is an equality. Hence,
(4.43) holds for j = 0. Since the critical cycle can starts with any u;, the
lemma is established. Q.E.D.

Lemma 4.16 Let © be a transition of X'. Let h* be a MPLOF of X' and v
a positive number such that h*(9) > v. If

(Vu : u € sre(q) : v > h*(u) — pd(u, 0, q) + 6(u, 3, 7)), '
then h' defined by
K (u) = { Z (w) fuso (4.48)

if u=1.
is a MPLOF of X'.

Proof: Let v be a transition other than 9. For any u and ¢ such that
u € src(q) and v = tar(qg),

h*(v) > h*(u) — pf(u,v,q) + 6(u,v,q) (4.49)
implies
h'(v) > k' (u) — po(u,v, q) + 6(u, v, q) (4.50)

since the LHS of (4.49) equal the LHS of (4.50) and the RHS of (4.49) is
not less than the RHS of (4.50). This observation and (4.47) establish the
fact that (4.24) holds if & is replaced by A'. Hence, by Lemma 4.10, A" is a
MPLOF of X", Q.E.D.

We are now ready to prove the main result of this sub-section.
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Lemma 4.17 Let C(X") be as defined by ({.36). Let B satisfy ({.41). Let
h(C(X')) > B denote the predicate

Yw : w € C(X') : h(w) > B. (4.51)
Then, there exists a MPLOF h* of X' such that
h*(C(X')) > B, and (4.52)

|h*| = min{h : h is a MPLOF of X’ and h(C(X")) > B : |h|}.  (4.53)

Furthermore, for any transition 0, let q; denote the unique template in X'
with target 9. Then, for all v,

h*(9) = max{u : u € src(gs) : h*(u) — pO(u, 0, ¢5) + 6(u,D,q5)}.  (4.54)

Proof: Convert X’ into the equivalent repetitive ER-system )’ = (E', RY,)
as shown in Lemma 4.3. Let |E'| = n and |R)| = m. For ), define the arc-
node incidence matrix A’, the vector z, and the column-vectors € and « as
done in the proof of Lemma 4.11. Let # be the n-dimensional column-vector
defined by
. B ifu,€C (.X_ ’)
Be=10 ifu¢c(.

Let ¢T = (1,1,...,1). Then, since period(X’) = p is given, finding h* that
satisfies (4.52) and (4.53) is equivalent to solving

z = minctz : (4.55)
Az > a-pe (4.56)
z > p. (4.57)

Now, period(X’) = p; so, there exists MPLOF h of X’. Let w be a
transition in C(X”) such that h(w) is the minimum in the set {w : w € C(X") :
h(w)}. Let h* = h— h(w) + B. If h*(v) < 0, then h(v) — h(d) 4 B < 0 which
contradicts Lemma 4.14. Thus, h*: E'—[0,00). Also, in Lemma 4.10, for
any v and v, adding the same amount to both sides of (4.24) maintains the
inequality; consequently, i* is a MPLOF of X’. Moreover, for any w € C(X’),

h*(w) = h(w) — h(@) + B > B
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by the minimality of h(w). Hence, a feasible solution exists for the linear
program above. Furthermore, since cTz is non-negative, by the Duality
Theorem [14], an optimal solution exists. Therefore, there exists a MPLOF

h* such that (4.52) and (4.53) are satisfied.
Next, by Lemma 4.10, #* is a MPLOF implies

h*(9) > max{u : u € src(gs) : h*(u) — pO(u,d,¢5) + 6(u,D,95)}.  (4.58)

Consider the following two cases:

Case 1: (9 € C(X'))  Let @ be the transition immediately preceding 9
in a critical cycle §'. Then, i € src(g;) and, consequently, by Lemma 4.15,
(4.58) is an equality.

Case 2: (9 ¢ C(X"))  Let u be the value of the RHS of (4.58). Assume,
toward a contradiction that A*(9) > p. Let v = max{h*(¢) — 1,1} and
define A' as ) iy

. . N
o u) fus#d
hi(w) = { v if u=1. (4.59)
Let w be any transition in C(X"); then, h*(w) — B > 0 by (4.52). So, for any
9, since B — 1 > h*(w) — h*(9) by Lemma 4.14,

K(D) = v > h*(H) =1 > (h*(w) —B+1) — 1> 0.

Also, by (4.58) and v > u, (4.47) is satisfied. Thus, applying Lemma 4.16
implies that A’ is MPLOF such that (4.52) is satisfied. But, |h’| < |h*| which
contradicts the definition of h*. Q.E.D.

Before ending this sub-section, it should be pointed out that though defin-
ing h* as the MPLOF with the smallest size that satisfies (4.52) leads to the
proof of its existence, it is necessary, in Lemma 4.21, to use the fact that h*
is also the MPLOF with the smallest “norm” as defined below.

Definition: Let R be the set of templates for X’. For a MPLOF h of A7,
the norm of h in X', denoted [h, X'], is defined to be

|h| + Z_ max{u : u € src(q) : h(u) — pf(u, tar(q), q) + 6(u, tar(q), q)}.
qGR'

As a mean to showing that h* has the smallest norm, the following defi-
nition is introduced.
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Deﬁnit_ion: For a scenario X', a MPLOF h saturates a transition v if either
veC(X') or

Ju,q : u € sre(q) Av = tar(q) : (4.60
h(v) = h(w) — pf(u,v, q) + 6(u,v,q) A h saturates u. ' )

Lemma 4.18 If h is a MPLOF of X' with h(C(X")) > B, then there ezists
a MPLOF h" such that h"(C(X")) > B, h" saturates every transition in X',
and [R", X'] < [k, X'].

Proof: Let S be the set of transitions saturated by h. Let 7 be the set of
transitions not saturated by k. Let ¢, denote the unique template such that
tar(q,) = v. Then, since h is a MPLOF, by Lemma 4.10, for any v and
u € srcgy),

h(v) > h(u) — p8(u, v, @) + 6(x, v, go)- (4.61)
Let Q be defined as {u,v: u € src(gy,) Au € SAv €T : (u,v)}. By the fact
that X’ is strongly connected, Q is empty only if 7 is empty; in which case,
the lemma obviously holds. So, assume Q is not empty and define

§ = min({1}U
{u,v: (u,v) € Q: h(v) — (h(w) — p(u, v, g) + 6(u, v, q,))}- (4.62)

Note that § > 0 by (4.61). So, define A’ by

h(v) ifveS
! —
W(v) = { h(v)—§ ifveT. (4.63)
Since C(X") C S, W(C(X')) > B. Also, by Lemma 4.14, § < 1 implies
h(v)—8§>0.

Next, let v be an arbitrary transition and u be in src(g,). If u € 7, then
(4.61) implies

h'(v) > b'(u) — p8(u, v, ) + 6(u, v, ¢y) (4.64)

since 5 is subtracted from the RHS of (4.61) and at most 5 is subtracted from
its LHS. If u € § and v € 7, then

R'(v) = h(v) — § > h(v) — (h(v) — (h(w) — pbB(u, v, ¢») + 6(u, v, ¢v)))
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by the minimality of § and, so, once again (4.64) holds. Finally, if u € S
and v € S, then (4.61) implies (4.64) since the values on each side of the two
equations are the same. So, h' is a MPLOF of X’. Moreover, since k' is the
same as h for transitions saturated by h, these transitions are also saturated
by A'.

Next, assume, for now, that there exist (4,9) € Q such that

§= h’(@) - (h’('&’) - p@('ﬁ,, 'ﬁ, q'i)) + 6({"’ 17) q{))) (465)
Then, since € 7, § > 0. Also, (4.65) and (4.63) imply
h'(0) = h(D) — 8 = W'(d) — pd(a, 9, q5) + 6(2, 9, q5).

Hence, 9 is saturated by h'. So, h'(C(X")) > B, h’ saturates more transitions
than h, and [R', X'] < [k, X'] by (4.63). Alternatively, suppose that there
exists no (4, 9) that satisfies (4.65). Then, by (4.62), § = 1, and, since 7 is
not empty, (4.63) implies |A'| < |h| — 1 and [K/, X'] < [h, X7].

So, regardless of whether (@,9) for (4.65) exists, the sum of |h/| and
the number of transitions not saturated by A’ is at least one less than the
corresponding sum for h. Since this sum is bounded below by zero, repeatedly
applying this result yields A" which saturates all transitions and the lemma
is therefore established. Q.E.D.

Lemma 4.19 The MPLOF h* defined by (4.52) and (4.53) also satisfies

[r*, X'] = min{h : 4,66
h is a MPLOF of X' A h(C(X")) > B :[h, X']}. (4.66)

Proof: By Lemma 4.18, it suffices to consider only MPLOF’s that saturate
all transitions of X’. But for such a MPLOF h,

max{u : u € src(q) : h(u) — pf(u, tar(q), ¢) + 6(u, tar(q), ¢)} = h(tar(q))

holds for any template ¢ by (4.43), (4.60), and Lemma 4.10. Since every
transition is the target of a unique template, [h, X'] = 2|h|. The validity of
this lemma then follows from (4.53). Q.E.D.
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4.7.2 The “Smallest” MPLOF of an XER-System

In this sub-section, we will show that there is a MPLOF h* for any repetitive
XER-system X' such that (4.68) holds. The proof relies on the following
result.

Lemma 4.20 Let 9 be a transition that is disjunctively caused. Let §, and
G, be two templates with target 0. Let X4 and X{ be two scenarios that are
identical except that §, is a template in the former and §, is a template in
the latter. Suppose that X} is a critical scenario with MPLOF h and

h(?) > max{u : u € src(q,) : h(uv) — p0(u, v, ¢;) + 6(u,9,4,)}.  (4.67)
Then, h is a MPLOF of X and C(X}) C C(X}).

Proof: For v # 9, let ¢, be the unique template in X} with target v. Then,
¢» is also the unique template in X] with target v. Thus, h is a MPLOF
implies

h(v) > max{u : u € src(g,) : h(u) — pb(u, v, q,) + 6(u,v,¢)}

for all v # 9. This observation and (4.67) imply h is MPLOF of X since
period(X]) cannot be less than p by Theorem 4.1.

Next, suppose w is a transition in C(X}) \ C(X5). Let o’ be the critical
cycle of X} which contains w. Since w is not in C(X§), p’ contains a template
not in XY, namely, §,. So, there exists @ € src(§;) such that p’ can be written
as the concatenation of (i, ;,?) and o' that is a path from ¢ back to .

Now, by Lemma 4.13,

h(@) > h(d) — pf(a’) + 6(o").
By (4.67),

h(d) > h(a) — pO(a, 9, d,) + (2, 9,4,) > h(d) — pb(p') + 6(p).

/
But then p > g L contradicting the assumption that p’ is a critical cycle of

a critical scenario. This contradiction establishes the lemma. Q.E.D.

68



Lemma 4.21 There exists a MPLOF h* of X' such that, for any transition

v’
h*(9) = min{qg: ¢ € R' A9 = tar(q) : (4.68)
max{u : u € src(q) : h*(u) — pd(u,, q) + 6(u, 9, q)}}. '
Proof: Let the critical scenarios of X' be X}, X, ..., X}, where X!, =

(E', R, 6,0). Let B satisfy (4.41). By Lemma 4.17 and Lemma 4.19, let A,
be the MPLOF satisfying

hx(C(XL)) > B, and (4.69)
h is a MPLOF of A%, A h(C(XL)) > B : [h, Xh]}- '

Let u = min{m :: [k, X,,]}. W.lg., assume [h}, X}] = p and let h* be hj.

We will now show that (4.68) is satisfied. Let ¢ be an arbitrary transition.
Let ¢, be the unique template with target 4 in X§. Since h* is h}, by (4.54)
of Lemma 4.17,

h*(9) = max{u : u € src(gy) : h*(u) — p(u, 0, §y) + 6(u,,4y)}.  (4.71)

Suppose, toward a contradiction, that (4.68) does not hold. Then, there
exists a template ¢, in X’ with target o such that

h~(9) > max{u : u € src(q,) : B*(u) - pb(u,8,d,) +6(u,3,,)}.  (4.72)

Let X" be the scenario that is identical to X except that g, is replaced by g .
By Lemma 4.20, h* is a MPLOF of X’. Thus, X" is a critical scenario and,
w.lg., let X' be X{. Also, by the same lemma, C(X{) C C(X}). So, since
(4.69) holds with m = 0, A*(C(X})) > B. Therefore, by (4.70) with m = 1,

[r*, X1] > [A1, Xi]. (4.73)

Now, since X} and X] are identical except for the templates involving 9,
(4.71) and (4.72) imply

[r*, X8] > [, Xi]. (4.74)
This inequality and (4.73) contradict the minimality of u = [h*, X§]. Hence,
(4.68) holds for © and the lemma is established. : Q.E.D.
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4.7.3 Closeness of Approximation

Theorem 4.2 Let t be the timing simulation of a repetitive XER-system
X' = (E',R',6,0) whose scenarios are all strongly connected. Let t be any
MPLTF of X'. Then, there ezists a constant B such that

Vu,i:u € E'Ai€ N :E(u,i) - (u,i) <B (4.75)
and B does not depend on u or 1.

Proof: Let A be the XER-system induced by X”. Let the period of X’ be p
and let h* be a MPLOF of X’ that satisfies (4.68). Define

t*(u, ) = h*(u) + pi.

Recall the definition of §max and the fact that if v = tar(q), then for all 1,

¢ 2 fmax,
(u,7) € sre(qfi) € (u,i — 0(u,v,q)) € src(q). (4.76)

So, for i > fmax, (4.68) implies

t*(0,i) = min{q : ¢ € R' A9 = tar(q) :
max{u : u € src(q) : *(u,i — 0(u, 9, q)) + 6(u,9,q)}}. (4.77)

Let
B* = max{u,i:u € E' Ai < Omax : t*(u, i) — t(u,i)}. (4.78)
Suppose that
ZEZ{v,i:v€E' ANi € NAF(v,9) —i(v,5) > B*: (v,i)}

is not empty. Then, since only XER-systems with acyclic constraint graphs
are considered, there exists an element (9,%) in Z such that for any event
(u,7) in F and any rule ¢[i in R,

(u,7) € sre(qli) A (9,8) = tar(q[i) = (u,j) ¢ Z. (4.79)

Clearly, # > fmax by (4.78). If (9,%) is in init(X), then (4.76) implies any
templates with ¥ as target has an empty set of sources. This relationship
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implies that there is no edge leading into ¥ in the collapsed-constraint graph
of X', contradicting the strong connectivity of the graph.
Alternatively, if (9,3) ¢ init(.X’), then, by (4.79),

Y{(u,j),q: (u,j) € src(g[i) A (9,1) = tar(g[?) :
P () — i(u,9) < B (4.80)

So, by the definition of timing simulation and (4.77), #(%,1) and £(9,%) are
obtained by taking the minimum and maximum over the same sets of tem-
plates and source transitions. Thus, Corollary 4.7 implies

*(9,1) — 1(9,1) < B?,

which contradicts (9,7) € Z. Therefore, Z is empty and (4.75) with t* and
B* in place of ¢ and B holds.
Let £ be any other MPLTF of X’ and let h be the associated MPLOF.

Define
By = max{u: u € E' : h(u) — h*(u)}.

Then, for all (v,7) € (E' x IN),
£(v,3) — §(v,4) = #(v,1) — P (v, i) + *(v,4) — {(v,4) < Bo + B*.
So, setting B to By + B* establishes the theorem. Q.E.D.

Note that (4.75) may not hold if a critical scenario X' is not strongly con-
nected. In [15], there is no requirement of strongly connected scenarios and
Gunawardena is able to give necessary and sufficient criteria for a condition
that would imply (4.75); however, the results are valid only if there are at
most two initial events. Since we allow arbitrary number of initial events and
have already argued that the scenarios of many practical systems are strongly
connected, we believe Theorem 4.2 represents a significant contribution to
the theory of timing analysis.

4.8 Summary

We have extended the concept of ER-systems so that inherently disjunc-
tive systems, which arise from PR’s with guards that are not mutex, can
be modeled. Furthermore, we have shown that the period of a repetitive
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XER-system is a good indication of its performance. Thus, to determine the
performance of a circuit, it is sufficient to represent the circuit as a repetitive
XER-system. Chapter 7 describes how this representation can be achieved
systematically. Furthermore, if the delays between transitions in the circuit
are specified as functions of transistor sizes, then the performance of circuit
can be optimized by finding sizes that minimize the period of the correspond-
ing repetitive XER-system.

To compute this period, one can use the methods described in [6] to find
the periods of the scenarios and then select the minimum. Since, in practice,
the number of transitions with more than one set of causes and the number of
alternative sets of causes for a particular transition are both relatively small,
this approach is usually acceptable. Alternatively, when numerical values
have been given for the delays, one can start with an arbitrary scenario
and use Lemma 4.12 to selectively add and remove templates so that not
all scenarios have to be analyzed. Finally, when the delays are functions of
transistor sizes, heuristics can be used to search for the optimum period for
the entire XER-system instead of doing it for each individual scenario.
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Chapter 5

Cumulative State Graphs

We have chosen cumulative state graphs as our basic framework for analyzing
the behavior of a PR set. Many properties of these graphs will be presented
in this chapter. In particular, the notions of minimal cycles, minimal periods,
and separable graphs will play a major role in subsequent chapters.

5.1 Definitions

5.1.1 Events and States
Let P be a closed PR set with K variables. Then,

e X(P) =z, x1,...Tx—1 is the set of variables of P;
o £(P)= X(P) x I is the set of events of P;
o Y(P) = IN¥ is the set of cumulative states' of P.

For an event a = (zy,!), the variable of the event is var(a) = zj, and
the occurrence number of the event is oc(a) = I.

Intuitively, event (z,!) represents (approximately) the [-th occurrence
of a transition on the variable z;. For a state o, its k-th component? being

1For brevity, in the sequel, a state is taken to mean a cumulative state unless stated

otherwise.
2For a vector such as o € £(P), we use o[k] to denote the k-th component of the vector.
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! implies that (xy,!) has taken place in that state but (zx,!+1) has not.
These notions will be formally defined below.

The concept of cumulative states (but not indexed events) has been used
in [37] whose authors, using more abstract techniques, have established re-
sults similar to some of those given in this chapter. However, developing
these results under our approach corresponds more closely to the operational
nature of PR sets and allows for extensions that will be presented in the
subsequent chapters.

Returning to our model, in order to easily determine the value of a variable
at a given state, we have adopted the following convention:

The occurrence of the event (zx,l) causes zy in the new state
to be true if [ is odd and causes zj in the new state to be false
if [ is even.

So, for an event y = (z,l), the transition corresponding to is

if  is odd

A
tran(y) = { 1] if I is even (5.1)
and the literal corresponding to vy is
. | =z iflis odd
lit(y) = { -z, if [ is even. (5.2)

Also, we define the Boolean value of a state o, denoted by bool(c), as
the element in {true, false}* whose components satisfy

ook ={ e 14 i o 63

The value of z;, in state ¢ is then (bool(c))[k], and, by extrapolation, we
can define the value of any Boolean expression involving the variables %o, Z1,
..., Tx_1 in state o.

Example 5.1: As an illustration of the concepts of this chapter, let P be
the PR set shown in Figure 5.1. Then, at state® ¢ = 2211, bool(c) =
(false, false, true, true). Thus, the values of o and z; are both false and
the value of ~zg A -z is true at . O

3The numerical value of a state o is written as the juxtaposition o[0]o[1]...o[K —1].
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5.1.2 State Changes

Definition: An event a = (zy,!) is said to be enabled in state o, denoted
enb(a, o), if o[k] = — 1 and the guard for tran(a) is true in o.

Example 5.2: In the above example, since o[2] = 1 and the value of ~z¢ A
—z1, the guard for z,|, is true at o, enb({z,,2),0). O

Definition: A state g, changes to oy, denoted o, — 0y, if there exists an
event o = (xy,l) such that

enb(a, 0,) Aoylk] = oo [k] + 1AV E: k#k: oulk] = 04 [k].

The event « is said to effect a state change between o, and o, and this
relationship is represented by o, 2, Tp.

Note that under this definition, a transition on a variable is an atomic
action. To model the situation where there is an arbitrary delay along a
non-isochronic branch, a wire operator and a new variable need to be added
explicitly as done in Sub-section 2.3.3.

2
Example 5.3: Since enb((zs, 2),2211), 2211 22 2901, ©

Definition: The relationship leads to, denoted —x—, is the reflexive, transi-
tive closure of changes to. In other words, it is the smallest relation defined

recursively by
1. 0, % 0,.
2. 04 4*>0p N\ Oy — T = Oy %0y

In the definition below, oj,;t can be any member of ¥(P). In particular,
one can assume that

o k] = 0 if the initial value of x; is false
mitl™ =) 1 if the initial value of z;, is true.

Definition: The (cumulative) state graph of P for a given initial state ojpiy,
is a labeled directed graph I'(P, oyp;¢) = (S, C) where
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o S={0:0€X(P)Aojit *0:0};
. Cz{oa,ab,azaaES/\abES/\aeg('P)/\aaﬂ»ab:(Ua,(rb,a)}.

S is the set of states of I' and, in the sequel, unless specifically stated
otherwise, all states are those that are reachable from the initial state and
will be represented by o, 7, ¢, or p. Events will be represented by «, 3, v,
or 6. Furthermore,

(874 aq Ap1
0'0._) 0'1 —_— s e — UTL

denotes the fact that
Vi:0<i<n:{0;0i11,0;) €C

and such a set of connected edges will be referred to as a path in the graph.
The length of the path is n and a4, for i such that 0 < ¢ < n, is said to
occur in the path. Also, we will use o, 0, to denote any path from o,
to o3 (including the one with zero length), if the identities of the events and
intermediate states in the path are immaterial.

Example 5.4: Figure 5.1 shows a PR set and the beginning part of its
state graph starting at initial state ojp;4 = 0000. To avoid cluttering up the
picture, the labels of some of the edges are not given; however, they should
be obvious from context. O

5.2 Basic Properties
5.2.1 Weights and Paths

In this section, we list some basic properties of state graphs for future refer-
ence.

Definition: The weight for a state o is wt(o) = L r -y o[k].

Lemma 5.1 If o o, o1 o N on, then wt(o,) = wt(og) + n.
Proof: Use the definition of state change and induction on n. Q.E.D.
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Oty
Lemma 5.2 [fooﬂ)»al—ﬂ» v 2 and A={i:0<1i<n:qw}, then

for any k, 0 < k < K, aglk] < a,[k] and
Vi (oolk] <l < onlk] © (z,1) € A). (5.4)

Proof: Use the definition of state change and induction on 7. Q.E.D.

Lemma 5.3 Suppose there exist states and events such that

o 20, T S Too1 On-1 Oa, (5.5)
and
o ﬁ, b1 ﬁ, '[i'_".:? b1 'Bﬂ‘,l . (5.6)

Let A={i:0<i<n:a}and B={i:0<i<m:g}. Then, A=Bif
and only if o4 = 0p.

Proof: By Lemma 5.2, A is determined uniquely by a,, and vice versa. So,
A=DB & g, = 0y. Q.E.D.

As a notational shorthand, we will use o, —'4«4—>ab to denote the facts that
there is a path from o, to 0, and A is a set of events occurring along that
path. By Lemma 5.3, A is unique. In the sequel, A, B, C, and D will be
used to represent sets of events.

5.2.2 Stable Graphs

In a stable PR set P, if two transitions are enabled, then firing one does not
cause the other to become not enabled. This property is reflected in the state
graph of P by the following definition which is illustrated in Figure 5.2

Definition: A state graph I' is stable if for any a # (3,

(aa&ab/\aaﬂac):(ﬂ o4 ::abﬂadAac&Ud).

Since only stable PR sets are produced by the compilation method, from
now on, all state graphs are assumed to be stable unless stated otherwise. As
an aside, it should be pointed out that stability in a state graph is analogous
to semi-modularity in a lattice [3]. However, since some of the later results
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Figure 5.2: Stability in a state graph

apply only to state graphs and not to lattices in general, we have decided
not to employ any lattice theory and, instead, start from first principles as
given above.

The next two results apply the stability property to paths in which no
common event occurs. Lemma 5.6 and Lemma 5.7 then investigate the more
general situation.

Lemma 5.4 If

00 20 5 2, L St (5.7)
ao—ﬁro, and V¥V i:0<i<mn:aq #0, then there exists {1: 1 <i<n:7}
such that

O aq Qp—1
To—>T1— ++ —> Ty

and‘v’z’:lSign:enb(ﬁ,ai)/\ai—ﬁ»n.

Proof: Use stability and induction on n. : Q.E.D.
Lemma 5.5 If
(o7 (03] On_2 Gp_1
00— 01,0 —? — Op—1,0 — Onp
and

and {i : 0 <i<n:o}n{i:0<4<m:pf} =70 then there exists
{i,jilfiﬁ’n/\lngm:ai’j} such that

.. . . a; '
Vi,j:0<i<nA0<Lj<m:o;;—> 0it1 /\ai,j—]+ Oij41- (5.8)
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[

Figure 5.3: Stability for paths with no common event

Proof: Use Lemma 5.4 and induction on m. See Figure 5.3 where the state
changes stated in the hypothesis are shown in bold. Q.E.D.

Lemma 5.6 If (5.7) holds, and there exists i such that 0 < i < n and
enb(oy, o), then there exists {i: 0 <4 <1i:7} such that

Qo o Q-2 -1 Qi1 On—1
7—0._>T1._)...—)Ti_l—-)o'i+1——')0'i+2"' — Op. (5-9)

Proof: By definition of a state graph, enb(w;, o) implies there exists 7o
such that og G, 70. Apply Lemma 5.4 to this relationship and

o7} o1 (67 Q51
Op——> 0y — " —> 041 — 0Ot

to get the existence of {1 : 0 < ¢ < i: 7} such that

o; o aq Qi3 Qi1
Oo 5 Tg —5 T) — oo+ — T3 — Ti. (5.10)
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But since the set of events occurring in g¢ -+—7; is the same as the set of
events occurring in gg +—0;41, 3 = 0341 by Lemma 5.3 and (5.9) holds.

Q.E.D.
Lemma 5.7 If
a—f—»aa/\a—-,{iab, (5.11)
then there exists state T such that
B\ A A\ B
g, =~ TAOp, = T. (5.12)

Proof: Use induction on the size of B.

Base Case: (|B| =0) In this case, 0, = 0. So, let 7 = g,.

Inductive Step:  Suppose |B| > 0. This situation implies there exist gy,
B, and g such that

o —— 0y —ﬂ» op (5.13)

and B= By {B}. By the inductive hypothesis, there exists state 7 such that
B\ A AN\ B _

gy —x— T.

g, = TA (5.14)

Consider the following two cases:

Case 1: (6 ¢ (A\B)) This case implies 8 ¢ Aor f € B. But 8 ¢ B by
(5.13); so, B ¢ A. Furthermore, by Lemma 5.4 and the second half of (5.14),
there exists 7 such that

B A\B

T—TAOy, —* T.

So, because 8 ¢ A, the set of events occurring in g, =7 -7 is (B\ A)U
{B8}) = (B\A) and the set of events occurring in g -+ 7 is (A\B) = (A\B).

Case 2: (8€ (A\B)) This case implies 8 € A. Also, by Lemma 5.6,
(A\B)\ {8} _
O = 7.

Let 7 = 7. Then, due to 3 € A, the set of events occurring in g, =7 is
(B\A) = (B\.A) and the set of events occurring in g —+—7 is ((A\B)\{B}) =
(A\ B). Q.E.D.
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5.2.3 Descendents and Ancestors

Definition: A state ¢ is a descendent of o if ¢ -+ ¢. A state ¢ is an ancestor
of g if ¢ «—0. A state ¢ is a common descendent (or, alternatively, common
ancestor) of g, and g, if ¢ is a descendent (ancestor) of both o, and g;. A
state ¢ is a closest common descendent (c.c.d.) of o, and oy if it is a common
ancestor of ¢, and o, and

V& : & is a common descendent of o, and gy : wt(¢) > wt(4).  (5.15)

A state ¢ is a closest common ancestor (c.c.a.) of o, and oy if it is a common
ancestor of o, and o0} and

Vé : & is a common ancestor of o, and oy : wt(@) < wt(¢). (5.16)

Example 5.5: In Example 5.4, let o, = 1010 and o, = 0110. Then, 1110,
1111, 2111, etc. are their common descendents. Since 1110 has the least
weight, it is their c.c.d. This observation can be generalized by the following

lemma. O

Lemma 5.8 Any two states o, and o, have a unique c.c.d. T defined by
Vk:0 < k < K : 7[k] = max{o,[k], ou[k]}. (5.17)

Proof: Let k be an arbitrary variable index. By Lemma 5.2, if 7 is a common
descendent of ¢, and o}, then

k] > max{oa[k], o3[k} (5.18)

Thus, if any common descendent 7 satisfies (5.17), then 7 is the unique c.c.d.
Next, in Lemma 5.7, let ¢ = oj,;; and consider the state 7 guaranteed

by that lemma. First, 7 is a common descendent of o, and o;. Also, by
Lemma 5.2, {z, 7[k]) is in AU (B\ A) and BU (A\ B). So, (zx, T[k]) € AUB
which implies, by Lemma 5.2,

rlk] < oalk] V T[k] < oulK]. (5.19)

By (5.18), at least one of these two inequalities is an equality and (5.17)
holds. So, 7 is the unique c.c.d. of g, and 0. Q.E.D.
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Corollary 5.9 For any two state o and T,
o1 & Yk olk] < T[k]. (5.20)

Proof: The “if” part is from Lemma 5.2. The “only-if” part is due to 7
being the c.c.d. of o and 7. Q.E.D.

Since ojy;4 is the common ancestor of any two states and there is an upper
bound on the weight of any ancestor of a state, a c.c.a. exists for any two
states. However, an analogy to (5.17) for defining the c.c.a. does not exist as
the following example illustrates. Instead, we need to establish Lemma 5.10
in order to show that the c.c.a. of any two states is unique.

Example 5.6: Continuing with the previous example where ¢, = 1010 and
o, = 0110. Then, p = 0000 is the only common ancestor of the two states
and is therefore their c.c.a. However, p[2] # min{c,[2],0,[2]}. O

Lemma 5.10 Let p be a c.c.a. of g, and oy, with p-'é—»aa and p—é—»ab. If
enb(v, p), then v ¢ (AN B).

Proof: Assume, toward a contradiction, that enb(y, p) and v € (A N B).
By Lemma 5.6, there exist 7, and 7 such that

AN,

P Ta

B
A p ~l> Ty —\*‘{_:Y } Tp.

But then, by Lemma 5.3, 7, = 73, and therefore 7, is a common ancestor of
o, and 0. Moreover, by Lemma 5.1, wt(7,) = wt(p) + 1. This equation
violates the hypothesis that p is a c.c.a. of o, and ;. Q.E.D.

Lemma 5.11 Let p be a c.c.a. of o, and ay. If p be a common ancestor of
04 ond oy, then p——p.

Proof: Let ¢ be a c.c.a. of p and p with ¢ Lﬁ and ¢ £—>p. Suppose, toward
a contradiction, that ¢ # p. Then, there exists v and é such that v € C and
enb(y, ). By Lemma 5.10, v ¢ D and therefore, by stability, enb(v, p).
Now, v occurs in ¢ - p—+—0,; $0, it occurs in ¢ ——p—-+—>0,. Since
v ¢ D, « occurs in p - d,. Similarly, v occurs in p -+ 0. By Lemma 5.10,
these two relationships and enb(v, p) contradict the hypothesis that p is a
c.c.a. of g, and 0. Thus, ¢ = p and p—+—p. Q.E.D.
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Corollary 5.12 Two states have a unique c.c.a..

Proof: Let p and p both be c.c.a.s of the two state. By the previous lemma,
p —+—p and p——p. Thus, p =p. Q.E.D.

We conclude this section with two other consequences of Lemma 5.10 that
will be useful later. '

Lemma 5.13 Let p be the c.c.a. of g, and oy and p be any of thewr com-
mon ancestors. If o occurs in p—+—a, but not in p—+— oy, then a occurs in

p k> 0,.

Proof: Consider the two paths p-+—p -0, and p—+—p—-+—0,. Since «
occurs in the first but not the second, it occurs in p -+ g,. Q.E.D.

Lemma 5.14 Ifa—f—w, qﬁ—-;lé—vr, and BC A, then o —— ¢.

Proof: Let p be the c.c.a. of ¢ and ¢. If p # o, then let
2% pora Sr (5.21)

By Lemma 5.10, a does not occur in p—+—¢. Also, by (5.21), ¢ A which

implies o ¢ B. Therefore, a does not occur in p—*—»q&—f—»m contradicting
(5.21) and Lemma 5.3. Therefore, p = o and o —+—¢. The set of events on
the path then follows from Lemma 5.3. Q.E.D.

5.3 Cycles and Periods

5.3.1 State Offsets

Besides being a state of £(P), 7 € IN¥ can also be considered as a “state
offset” since, for any state o and any state offset =, we can define 7 =0+
as a state in X(P) by

Vi:0<i< K :7[i] =o[d] + n[d]. (5.22)
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If o554 +— 7, then 7 is also a state of I'(P, ojpjt)- The expression o — 7 is
similarly defined provided Vi : 0 < i < K : g[i] > w[k]. Likewise, for ¢ > 0,
gm denotes the state offset such that (gm)[k] = ¢ (w[k]). Also, for two state
offsets, 7 and w, m < w denotes Vk : 0 < k < K : w[k] < w[k]. and 7 < w is
equivalent to (7 < w) A (7 # w).

Next, we use the following definition to capture the notion of “adding”
and “subtracting” a state offset to an event.

Definition: For an event a = (zi,l) and a state offset 7, the (positive)
extension of a by 7 is the event (a & 7) = (zy, ! + w[k]). Similarly, provided
oinitlk] < ! — wlk], the negative extension of a by 7 is the event (a © 7) =
(xk, | — w[k]). Also, we will use (A@® m) to denote the set {a : a € A :
(o ® w)} and analogously for (A © 7).

By Lemma 5.2, for any path

o —f—l—> (o0 + ), (5.23)

the number of distinct a;’s with var(a;) = xy, is precisely (oo + 7)[k] —0o[k] =
w[k]. So, the set of variables that occur in the path is a function of 7 and
not of . Thus, for reference, we borrow the following definition from [37].

Definition: For a state offset 7, the spanning set of 7 is span(w) = {k :
wlk] £ 0: zg}.

Note that in (5.23), span(7) is determined by the events in A. So, for
convenience, we overload the meaning of span() and define the spanning set
of a set of events A as

span(A) = {k, 1 : (z, 1) € A: z1}.

With this definition, the path in (5.23) implies span(7) = span(A).
5.3.2 Cycles

Definition: The path oy —f—»an is called a cycle if A # 0 and bool(oy) =
bool(o,). The period of the cycle is the state offset 7 such that o, = oo + 7.
A state offset 7 is a period if it is the period of any cycle.
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Since the length of any cycle is at least one, its period is not the zero-
vector. Also, by the definition of the Boolean value of a state, if 7 = o + ,
then bool(c) = bool(7) if and only if 7 has only even components.

Example 5.7: Referring back to Figure 5.1, 0100 +—2322 is a cycle in the
graph with period 2222. O

The following lemma verifies the intuitive notion of what it means for two
states to have the same Boolean value. Some of its immediate consequences
are listed afterward for future reference.

Lemma 5.15 If there exist state offset ™ and states o and T such that
bool(c) =bool(t) AT =0+, (5.24)
then
(Va :: enb(a,0) = enb(a @ 7, 7)) A (5.25)
(VB :: enb(8,7) = enb(B & ,0)). '

Proof: Suppose enb(83,7). Let 8 = (zx,1). Then, by definition, 7[k] =1—1
and the guard for tran(z;) is true in state 7. But bool(r) = bool(c); so,
the guard for tran(zy) is true in state o as well. Moreover,

olk] = (r — m)[k] = 7[k] — 7 [k] = (I = 1) — =[k].

Thus, (30 ) = (zx,l — w|k]) is enabled in state o and the second half of
(5.25) is established. Alternatively, if enb(c, o), then by analogous argu-
ments to the ones above, the first half of (5.25) holds. Q.E.D.

Lemma 5.16 If there ezist state offset m and states o and T such that (5.24)
holds, then, for n > 0,

(0 =09)— 01— -+ — 0y (5.26)
if and only if
XN

(r =(0g+7) —" (01 +m) a®m  onidrm (on + ). (5.27)

Proof: Use Lemma 5.15 and induction on n. Q.E.D.
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Corollary 5.17 Given a cycle o —f—»(a + 7), for any ¢, ¢ > 0, there exists
cycle

Adr A 21 A®(¢—)m
“ e _*__)

a—f—e(a+7r) a4 (o+2m)" = (o +qm). (5.28)

Proof: Use induction on ¢ and Lemma 5.16. Q.E.D.

Note that Lemma 5.16 pertains only to “exiting” from two states with
the same Boolean value. The analog for going “backward” from two states

with the same Boolean value is not valid. More precisely, even if (5.24) holds,

Oq 2, & does not imply (g, + ) a®m 7, nor vice versa. See the following

example.

Example 5.8: Figure 5.4 shows the state graph if we start at the initial
state of 0010 for the PR set shown in Figure 5.1. Notice that even though
bool(1110) = bool(3332), 3322 — 3332 but 1100, not being a state in the
graph, does not change to 1110. Similarly, bool(1010) = bool(3232) but
0010 — 1010 while 2232 does not change to 3232. O

If a state graph contains a cycle ¢ -+ (o + 7), then 7 specifies fully the
set of transitions whose occurrences after state o leads to another state where
all the variables have the same values. By Corollary 5.17, the same set of
transitions can then occur at the new state and be repeated over and over.
Thus, this cycle, with its associated period, describes a possible steady-state
behavior of the system. Furthermore, the following results show that once a
state is reached where the transitions associated with the period 7 can occur,
then this set of transitions (with perhaps different occurrence numbers) can
occur at any subsequent state.

Lemma 5.18 Ifo —f—» (0 +7) is a cycle and o R T, then there exists cycle
r B (r 4 1) where B=((AU{(v® ™} \ {7})-
Proof: Consider the two cases:

Case 1: (y ¢ A) By Lemma 5.4, there exists 7 such that 7'—-“)«4—>7A'. By
Lemma 5.2, 7 — 7 = (¢ + 7) — 0 = m. Thus, the lemma is valid in this case.

Case 2: (y€ . A) By Lemma 5.6,
A
AV

g —

(o + 7).
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T3 — 1zl
T3 - 5
TV I — Il
AT AT — 23]
I3 — 1]
T3 —  nl
L A Iy — 1
) -  z3

Figure 5.4: A state graph with initial state oj,;; = 0010
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Also, by Lemma 5.16, o X s implies (o + ) er (t + ). Concatenating

this edge to the path above establishes the claim. Q.E.D.

Lemma 5.19 Given J-E'—-)T and a cycle o -+ (0 + w), there exists cycle
T (T + 7).
Proof: Use Lemma, 5.18 and induction on the size of C. Q.E.D.

Note that as the following example shows, in Lemma 5.19, 7 —— (7 + )
does not imply o -+ (o + 7).

Example 5.9: In Figure 5.4, the cycle 1010 +«—3232 implies the cycle
1110 +— 3332 and so on. However, it does not imply there is a cycle starting
from 0010 even though 0010 — 1010. O

5.4 Sub-cycles and Minimal Periods

Definition: The cycle _

75 E+7) (5.29)
is a sub-cycle of the cycle

o (o + 1) (5.30)
if A c A. A cycle is minimal if it has no sub-cycles.

By the transitivity of C, any sub-cycle of (5.29) is also a sub-cycle of
(5.30). Consequently, every non-minimal cycle contains a minimal sub-cycle.
Unfortunately, a sub-cycle as defined above is too unrestrictive to be useful
in many proofs. Hence, in the next subsection, we will show that any non-
minimal cycle contains a sub-cycle that satisfies certain conditions.

5.4.1 Normal Sub-cycles
Definition: A sub-cycle (5.29) of the cycle (5.30) is normal if
D _
AD :: (6 +3) A (DNA=0). (5.31)
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One useful property of a normal sub-cycle is that there is a simple rela-
tionship between its period and that of its corresponding cycle.

Lemma 5.20 Given cycles (5.29) and (5.30) that satisfy (5.31), (5.29) is a
sub-cycle of (5.30) if and only if T < .

Proof: Since AND = @, by Lemma 5.5, 5—'—1—44(& + 7). By Lemma 5.3,
A=A 7=7; by Lemma 52, ACA & 7 <. Q.E.D.

We will next show that any non-minimal cycle contains a normal sub-
cycle.

Lemma 5.21 Given a cycle 0—'—3«4—>(0 + w) and a path O'—E—VT, there exist
g >0, ¢, and D such that span(D) Nspan(r) =@ and

U—Zc)—>¢ —— T = (¢ + qT). (5.32)
Proof: Partition D into the sets
D = {a: a € D Avar(e) ¢ span(r) : a} (5.33)

and C =D \ D. Note that D N A = (. Next, choose g large enough so that
for any variable index k, (z,!) € C implies [+o[k] < gm[k]. By Lemma 5.17,
there exists cycle

o B (o +qm) (5.34)
and C C B by the choice of g. Applying Lemma, 5.7 to (5.34) and 0 +—>T
implies there exists ¢ such that

D\B. B\D.
(0 +qm) == AT = ¢. (5.35)
By (5.33) and C C B, (D\ B) = (DUC)\ B) = D and (D © g7) = D. So,

the first half of (5.35) implies & }k)—> (¢ — qm) by Lemma 5.16. Let ¢ = é—qr;
then the other paths in (5.32) follows from D C D and the second half of
(5.35). Q.E.D.
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Lemma 5.22 If
o (o +7) (5.36)

has a sub-cycle of period %, then it has a sub-cycle

B 7) (5.37)
such that o > .

Proof: Let

5 PG +7) (5.38)
be a sub-cycle of (5.36). Let 7 be the c.c.d. of 0 and & with & ~£—>T. Applying

Lemma 5.7 to & —g—»'r and (5.38) yields the existence of 7 such that
A\C
T = T.

Now, if (zx,1) € A, then ofk] < ! and &[k] < I. So, 7[k] <! by Lemma 5.8
and (xy,l) ¢ C. Hence, ANC =0 and so 7 = (7 + 7). Q.E.D.

Lemma 5.23 If a cycle has a sub-cycle of period T, then it has a normal
subcycle of period 7.

Proof: Let the cycle be (5.36) and, by Lemma 5.22, we can assume that it has

a sub-cycle (5.37) with o —2—»7. Then, by Lemma 5.2, A C A implies ¥ < 7.
Next, apply Lemma 5.21 to obtain (5.32). By Lemma 5.19, 7 -+ (¢ + ¢m)
and (5.37) imply (¢ + gr) = (¢ + gm + 7). By Lemma 5.16, ¢ = (¢ + 7).
Setting & to ¢ implies there exists the cycle & -+« (¢ + 7). By Lemma 5.20,
this is a normal sub-cycle of (5.37) since DN A =0 and 7 < 7. Q.E.D.

5.4.2 Minimal Periods

Our next goal is to establish Theorem 5.1 which states that a cycle with
period 7 is minimal implies all cycles with period 7 are minimal. Toward
that end, we need to establish some preliminary results.
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Lemma 5.24 Let ¢ —fa(ﬁ + 7) be a normal subcycle of o —'-ﬁ—) (o + ) with

o —3346. Then, the followings hold:

Gir) M Grmarm D@+ (5.39)

and ,
& - (¢ + 7 — 7) is a subcycle of o0 == (0 + 7). (5.40)

Proof: Since AND = 0, (¢ + ) is the c.c.d. of (¢ + 7) and (0 + «) and,
s0, (5.39) holds. By the first part of (5.39) and bool(d) = bool(d + 7),
Lemma 5.16 implies & - (& + 7 — #). But (7 # 0) A (¥ < 7) is equivalent
to ((m — %) # 0) A ((m — &) < 7). So, by Lemma 5.20, (5.40) holds. Q.E.D.

Lemma 5.25 If the cycle

aA lk{—»a} Oo 2 (0 +7) (5.41)

is not minimal, then it has a normal sub-cycle such that o does not occur in
the normal sub-cycle.

Proof: Let a = (zi, (0 + 7)[k]). Let & - (5 +7) be a sub-cycle of (5.41). If
o occurs in the sub-cycle, then (¢ + #)[k] = (¢ + 7)[k]. So, (¢ + 7 —7)[k] =

0 and, so, a does not occur in & - (¢ + m — ) which, by (5.40), is another
sub-cycle of (5.41). , , Q.E.D.

Lemma 5.26 Given cycles

o Lo+ 1) (5.42)

and .
T (T + 7), (5.43)

and o s 7, (5.42) is minimal if and only if (5.43) is minimal.
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Proof: By Lemma 5.18,

B=(Au{yer}\ {7} (5.44)
(<) Suppose (5.42) is not minimal. Then, there exists a normal
sub-cycle _
~ A
G (G + 7). (5.45)

Let o —E—)& and AN D = (. Also, note that 7 < 7 by Lemma 5.20.
Next, by Lemma 5.7, there exists 7 such that

I AN PR o) A (5.46)

By Lemma 5.19, (5.45) and the second part of (5.46) imply the existence of

# 8. r7). (5.47)

Now, if (zx,l) € D\ {7}, then by Lemma 5.2, (zx,!) is in D and therefore
not in A since D N A = (. Thus, «[k] = 0. So, since span(B) = span(w),
(D\ {7}) N B = 0 and the hypothesis of Lemma 5.20 is satisfied for (5.47)
and (5.43). Since 7 < , (5.47) is a sub-cycle of (5.43). Consequently, we
have demonstrated (5.42) is not minimal implies (5.43) is not minimal.

(=)  Suppose (5.43) is not minimal. Let (5.47) be one of its normal

sub-cycle. Then there exists D such that

oL 7 —E—»? (5.48)
with D N B = §. The last equality implies, by (5.44) and v ¢ D, DN A = §.
There are two cases to considered:
Case 1: (y ¢ A)  In this case, (5.44) implies B = A. So, DNB=90
implies (D U {7y}) N A = @. Thus, by (5.48) and Lemma 5.20, (5.47) is a
sub-cycle of (5.42) which is therefore not minimal.

Case 2: (y € A) In this case, by Lemma 5.6, we have o 7, 7 and

T-A_\*g’Y} Yo7

(6 +7) — (7+m). (5.49)
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Now, by definition,
(BcB)A(B=(A\{rhU{yer)).
But, by Lemma 5.25, we can assume (y @ 7) ¢ B. Consequently,
Bc(A\{7hcA

with the last inclusion due to v € A. These relationships imply (5.47) is
a sub-cycle of (5.42) which is therefore not minimal. Thus, we have also
demonstrated that (5.42) is minimal implies (5.43) is minimal. Q.E.D.

Lemma 5.27 Given cycles (5.42) and (5.43) and 0 +— 7, (5.42) is minimal
if and only if (5.48) is minimal.

Proof: Use Lemma 5.26 and induction on the length of the path o =+—7.
Q.E.D.

Theorem 5.1 A cycle with period = is minimal implies all cycles with period
7w are minimal.

Proof: Let (5.42) be a minimal cycle of period . Let (5.43) be any other
cycle of period w. Let ¢ be the c.c.d. of ¢ and 7. By Lemma 5.19, there
exists cycle

¢ (P + 7). (5.50)
By Lemma 5.27, (5.42) is minimal implies (5.50) is minimal which, in turn,
implies (5.43) is minimal. Q.E.D.

This result allows us to make the following definition:

Definition: The state offset 7 is a minimal period of a state graph, if there
exists a minimal cycle with that period.

5.5 Non-separable Graphs

Theorem 5.2 If there exist minimal cycles with periods w, and 7, then
either m, = T or span(m,) N span(m,) = 0.
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Proof: Let the two cycles be o, (0, + 7,) and o, - (0p + 7). Let 7 be
the c.c.d. of o, and 0,. Then, by Lemma 5.19,

T == (T + Ta) AT = (T + ). (5.51)

Suppose m, # ™. Let ¢ be the c.c.d. of (7t + m,) and (7 + 7). Then, by
Lemma 5.8,

Vk :: g[k] = max{(r + m,)[k], (7 + m)[k]}
— k] + max{m, k], ms[k]}. (5.52)

Also, by Lemma 5.16, (5.51) implies (7 + 7, + 7;) is a state. Since the
maximum of two non-negative numbers is no greater than their sum, by

Lemma 5.9,
(7 + mg) *—= @ = (T + 7y + 7p). (5.53)

By Lemma 5.16, this path implies
T = (¢ — 7y) (T + 7). (5.54)

Now, since bool(r + 7,) = bool(r) = bool(r + ), by (5.52), bool(¢) =
bool(7). Consequently, 7 -+ (¢ — 7,) is a sub-cycle of 7 - (7 + ), which
contradicts the hypothesis that 7, is a minimal period, unless 7 = ¢ — 7w, or
d—7q = T+7y. If (¢—7,) = 7, then due to (5.52), mp, < 7, and, by Lemma 5.9,
T = (T +mp) -— (T +7,) and 7, is not a minimal period. So, (¢ —7,) = (7+
mp) which implies, for any variable index k, max{m,[k], m[k]} = 7a[k] +o[K].
This equality implies m4[k] = 0 V my[k] = 0 and the theorem is established.

' Q.E.D.

Theorem 5.2 states that if a state graph has different minimal periods,
then the sets of variables spanned by these periods are disjoint?. Note that
by Lemma 5.16, transitions on the variables in each of these sets can occur
repeatedly. Furthermore, since the two sets have no variables in common,
if the PR set ever reached a state where both cycles are possible, then, by
Lemma 5.5, the occurrences of transitions in one set are independent of the
occurrences of transitions in another set. These observations mean that the

*In [37], it has only been shown that the sets of variables spanned by the periods of
cycles starting from a given state are disjoint.
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original PR set contains two or more sub-components which operate indepen-
dently of each other, except, perhaps, for some initial transient interactions.
Consequently, we make the following definition.

Definition: A state graph is separable if it contains minimal cyles with
different periods. It is non-separable if it is not separable.

96



Chapter 6

Index-Priority Simulation

In this chapter, we will present and prove the correctness of the indez-priority
simulation algorithm which finds all minimal periods in a state graph. It
turns out that the number of simulation steps can be greatly reduced if it is
known that the input graphs are uniform. Hence, the first part of the chapter
will study these graphs and present some criteria for identifying them. The
correctness of the actual algorithm is demonstrated in Section 6.4.

6.1 Uniform Graphs

Definition: A cycle
o (o + ) )

is uniform if it is minimal or it has a sub-cycle

0—'—)4—>(U+%). (6.2)

A graph is uniform if all its cycles are uniform.

Before giving the motivation for this definition, the following useful prop-
erty of uniform cycles should be established.

Lemma 6.1 If cycle (6.1) is uniform that there exist an integer p > 0 such
that (6.1) can be written as a concatenation of p minimal cycles. In other
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Figure 6.1: Non-uniform separable graph

words, there exists a set of minimal cycles
{i:0<i<p:o;*>0i11} (6.3)
such that og = 0 and o, = (0 + 7).

Proof: Use induction on the length of the uniform cycle. Since there are no
cycles with length zero, the base case holds. Next, assume the lemma holds
for all cycles with length less than that of (6.1). If (6.1) is minimal, then set
p =1, and we are done. Otherwise, by the above definition and Lemma 5.24,
o =+ (0+7) and (0 +7) -+ (0 + ) are cycles. By the inductive hypothesis,
each of these cycles can be written as a concatenation of minimal cycles;
therefore, (6.1) can also be so written. Q.E.D.
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The following example gives the motivation for the need of introducing
uniform graphs.

Example 6.1: Consider the following PR set:

ALV R AT = 5]
R ATV I ATy — 1]
L ABVRA-T  — ml
T A3V Iy A T3 — ]

Ty ANTyV T\ 12 - ml
ALV AT — 1
ALV Ary 13
Lo ATV IR Az — 3yl

VoV — gl
false — 1z

Its state graph is shown in Figure 6.1 where the vertical edges represent the
occurrence of (zg, 1), the bold states are those with z, false, and the bold
edges are the events effecting changes among the bold states. (It may help to
visualize the bold states and events as being “above” the rest of the graph.)

Some of the guards in the text above, such as the one for 7,7, have been
written redundantly to show that the PR set operates in either of two modes.
If xy is false, then only the state changes marked in bold can occur. Once
xo becomes true, only those (non-vertical) state changes not marked in bold
can occur. _

The graph is separable with minimal periods 02200 and 00022. Since
00000 +— 02222 is a cycle that contains the sub-cycle 10000 -+ 12200, it is
not minimal. It is also not uniform since it contains no sub-cycle starting at
00000. Note that if zy never becomes true — i.e., only the bold part of the
graph is valid — then 00000 -+ 02222 would be a minimal cycle. O

As illustrated above, it is difficult to decide if a cycle is minimal for this
example since the PR set has two “modes of operation” — one when it is in
the bolds states and another when it is not. In fact, unless extra care has
been taken to examine all possible modes, any algorithm could, conceivably,
err in regarding a non-minimal cycle as minimal because no sub-cycles can
be found in the current mode. As shown in a later section, all non-uniform
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Figure 6.2: Non-uniform separable graph with no terminating events

graphs have more than one mode of operations; thus, it is important to
investigate the properties of these graphs.

In Example 6.1, the variable associated with the “mode-switching” event,
Zg, changes value only once. However, as the next example illustrates, even
if all transitions occur infinitely often, the graph may still be non-uniform.

Example 6.2: In the PR set of Example 6.1, remove the PR’s for zg, replace
each occurrence of x4 in a guard with (z5 V 75 V z7) and add the following

PR’s:

T ATy — Tl Iy —  x]
Ts - 35l g — 25T
T ATy -zl . — Il

Now, all transitions (except those for zq) occur infinitely often. But there is
still a mode-switching event which is (z5,1) as Figure 6.2 attempts to illus-
trate. Imagine the vertical axis of Figure 6.2 as a vertical axis superimposed
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on Figure 6.1 and each horizontal line in Figure 6.2 as a path in the cross-
sectional plane of Figure 6.1. Before (zs5,1) occurs, the only possible path
corresponds to the bold edges of Figure 6.1. Once (x5, 1) have occurred, then
the PR set switches mode and cycles with minimal periods are possible. O

As our final example, we present a non-uniform non-separable graph.

Example 6.3: Consider the following PR set:

=z A-a3A-cVzA-a3A-c —  al?
“zAalA-a3VzAalA—a3 — a7
“ZAa2A(BLA-B2Ve)VEAa2A(=b3VDB2Ve) — a3l
“zAa3AcVzIAa3Ac — a2
“ZA-a2Aa3A-b3VzIA-a2A a3 — all
=z A=alA(cAbB3VDI2A-c)V

T A-al A(b3V —bl1V —c) — a3l

g A-b3A-cV I A-DB3A-C - b17
=z ADLIA-b3Aa3VzAblLA=D3 — 527
—z Ab2A (a3A-cAalVcA—al)V

T Ab2A(ma3ValVc) — 537
“ZABBAcVIAIIAC — b2}
—Z Ab2A B3V A-b2A b3 —  bl]
—TA=blA(-a3Val)Vz A-blA(a3V —a2V-c) — b3}
—zA(a3AbB3Va2AB2A-a3)VITAa2AD2 — ¢
T A-al A=blA-b3V I A=alA-bl — ¢l
true — zT
false — x|

Figure 6.3 shows its state graph with the initial state of all variables false. To
reduce cluttering, each state with z false is merged with the state that has
the same value but with = true and is indicated as a bold circle. The bold
edges represent all the events that are possible when z is false. Note that
there is only one transition on z and (z, 1) serves as a mode-switching event
whose occurrence causes the PR set to behave like the one in Example 3.2.
All minimal cycles, like the one between the initial state and the state marked
with a cross, have the same period. However, prior to (z, 1) occurring, there
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Figure 6.3: Non-uniform non-separable graph
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is no minimal cycle and any cycle containing only bold edges is non-uniform
or contains a non-uniform sub-cycle. 0O

6.2 Non-transitory States

In each of the previous examples, if we assume the firings of the PR’s are
weakly fair, then, eventually, the “mode-switching” event would occur and
the original PR set would exhibit its steady-state behavior. This section
shows that any graph contains a “non-transitory” state o such that all cy-
cles starting from a state reachable from ¢ are uniform. Furthermore, in
Chapter 7, it will be shown that the behavior of the PR set after reaching a
non-transitory state o can be modeled as a set of repetitive XER-systems, one
for each minimal period. Thus, even if a graph is non-uniform, to evaluate
its steady-state performance, it is sufficient to find and analyze its minimal
cycles.

Definition: A state o is called a non-transitory state if
Va : enb(a, o) : (37 : 7 is a period spanning var(a) : 0 -+ (o+7) ). (6.4)

The algorithm in Section 6.4 will show how to find a non-transitory state.
Below we have established some of its properties.

. . B .
Lemma 6.2 If o is a non-transitory state and o -7, then there ezists
period w such that 7 —+— (o + 7).
Proof: Use induction on the size of B. If |B| = 0, then let 7 be the zero-
vector. Suppose |B| > 0, then let
0T —T.

By the inductive hypothesis, there exists 7 such that 7-+— (o + 7) and
bool(c + %) = bool(c). If B occurs in the path 7+ (o + 7), then let
7 be ™ and we are done by Lemma 5.6. If # does not occur in the path,
then, by stability, enb(f3, 0 + 7). By Lemma 5.16, enb(8 © 7, 0), and, by
the definition of non-transitory state, there exists period 7 such that

0—£—>(0+7?)/\(ﬁ97~r)€€.
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By Lemma, 5.16,

0+ LT w17+ ApeCor).

Setting m to 7 + 7 establishes the lemma. Q.E.D.

Corollary 6.3 If o is a non-transitory state and o -7, then for any period
7, 0 (0 +7) if and only if T 4 (7 + 7).

Proof: The “only-if” part is due to Lemma 5.19; the “if” part follows from
applying that lemma to 7 - (o + 7), which is guaranteed by Lemma 6.2,
and then using Lemma 5.16. Q.E.D.

Corollary 6.4 If o is a non-transitory state, then all cycles starting at o
are uniform.

Proof: Suppose o -« (o + m) has sub-cycle 7 -+ (7 + 7). By Lemma 5.22,
we can assume w.l.g. that o 7. Then, by Corollary 6.3, ¢ +— (o + 7) is
also a sub-cycle. Q.E.D.

Corollary 6.5 A state o is a non-transitory state if and only if

Vo : enb(a,0): ( 37 : (6.5)
T 1is a minimum period spanning var(a) : 0 —+— (o + 7) ). '

Proof: Follows directly from Corollary 6.4 and Lemma 6.1. Q.E.D.

Corollary 6.6 If o is a non-transitory state, then the eristence of a cycle
with period 7 implies o —+— (o + 7).

Proof: Let 7 +—(7 + ) be the cycle. Let ¢ be the c.c.d. of o and 7. The
result then follows from Corollary 6.3. Q.E.D.

Lemma 6.7 If 0 +—7 and o is a non-transitory state, then, so is T.
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Proof: By Lemma 6.2 and Lemma 5.19, there exists a period 7 such that

a—é—»r—g—>(0+7r) B—?ifr (T + 7).

Suppose (zx,l) is enabled at 7. If z, ¢ span(w), then, by stability,
enb({z,!), o0 + m) which implies enb({z, ), s). By Corollary 6.5, there ex-
ists a minimal period 7 such that z; € span(7) and o -+ (o + 7). Then, by
Lemma 5.19, 7 —+— (7 + T). So, 7 is a non-transitory state. Q.E.D.

Note that as the following example shows, even if every cycle starting
from a state o is uniform, o may still not be a non-transitory state.

Example 6.4: Figure 6.4 shows a PR set and its state graph for the initial
state where every variable is false. The short near-vertical edges are for
(z,1) and states with = false and their connecting edges are shown in bold.
All cycles starting at the initial state are uniform. However, the initial state
is not a non-transitory state because there is no cycle containing (z, 1).

Note that for any ¢ > 0, event (c, 2i + 1) is caused by either (b,2i + 1) or
(d,2i) and (z,1). Since there is no periodic index (i.e., ) in (z,1), the PR
set cannot be modeled as a repetitive XER-system. However, if we assume
that the PR set, due to fairness, has entered a non-transitory state where
z has gone up, then z has no further bearing on the performance of the
system. Consequently, we can ignore (z,1) and regard (b, 2: + 1) and (d, 2¢)
as possible causes of (c,2i + 1). The details of these arguments will become
clearer in Chapter 7; for now, it is sufficient to realize that a non-transitory
state serves a more important purpose than the implication of uniform cycles.
0 .

6.3 Detecting Non-Uniform Graphs

The algorithm presented in the next section guarantees to return minimal
periods only if the graph is uniform. If the graph is not uniform, then the
algorithm has to be re-run starting at the non-transitory state determined
by the algorithm. Thus, for correctness, it is not necessary to determine if a
graph is uniform and this section can be skipped with little loss of continuity.
However, by recognizing a uniform graph, one can cut in half the simulation
steps needed to find its minimal periods and, thus, it maybe worthwhile to
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-d - al
—“dAcVa — bf
“dAzVb — ¢
aANbAC - d7
d —  al
dA-a — bl
d A b — ¢l
-c —  d]
true - zT
false - z|

Figure 6.4: Non-transitory state in a compact graph
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Figure 6.5: Examples of triggers for an event

ascertain whether this is the case. As can be seen from the previous examples,
non-uniform graphs are fairly hard to construct and the following results give
some easy-to-check sufficient conditions (Corollaries 6.16 to 6.18) for a graph
to be uniform. To facilitate the discussion, we make the following definitions.

6.3.1 Disjunctively Enabled Events

Definition: An event « is a trigger for another event «y at state o if
o -% 7 A —enb(v,0) A enb(y, 7).

Definition: An event v is disjunctively enabled if there exists a state o such
that there are two distinct triggers of v at 0. Each of these triggers is called
a disjunctive trigger of .

Example 6.5: Figure 6.5 gives some examples of how the triggers of the
event (xs,1) can behave. In each example, only the relevant PR’s and state
values are given (zg is just some arbitrary variable) and all states at which
(z9,1) is enabled is marked in bold. In Figure 6.5a, both (zg,1) and (z;,1)
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can occur in the initial state and they are both triggers for (z,,1). The same
observation holds in Figure 6.5b. Moreover, due to the disjunction in the
guard for 2,7, (zo,1) and (z1,1) are also disjunctive triggers of (z, 1) at
state 000. Note that the number of states at which (z, 1) is enabled is larger
for the second case. In Figure 6.5¢c, only (zg,1) can occur in the initial state
and so (z1,1) is the only trigger of (x,,1). In Figure 6.5d, (zo, 1) is the only
trigger of (3, 1) and there need not be any disjunctive trigger in spite of the
disjunction in the guard for tran((z,, 1)).

All four scenarios occur in practice. The first two are typical behavior
for conjunctive and disjunctive guards. The third arises from strengthening
a guard to prevent its misfiring at some undesirable state (i.e., state where
2y A 1; is true). Finally, the last example can be due to data-dependency
or the effect of symmetrization caused by weakening the original guard z,
with ;. O

As one may suspect from these examples, there is a correlation between
the trigger of an event and its guard.

Lemma 6.8 If o is a trigger of v and the guard of tran(v) is By V By V
...V By, then there ezists at least one disjunct B; such that B; contains the

literal lit().

Proof: By definition, there exist ¢ and 7 such that ¢ - 7 with —enb(vy, o)
and enb(v, 7). Now, enb(y, 7) implies there exists an s such that B; is true
at state 7. But, —enb(v, o) implies B; is false at 0. By the definition of
— , the only difference between o and 7 is that lit(«) is false at ¢ and is
true at 7. Thus, B; contains lit(a). Q.E.D.

Lemma 6.9 If o and B are disjunctive triggers of v at some state o, and
the guard of tran(y) is BV By V... By, then, there exist i and j, such that
B; contains lit(a) but not lit(8) and B; contains lit(B) but not lit(a).

Proof: By definition, there exist 7, and 7, such that o -2 Tay O — Ty,
—enb(v, o), enb(v,7,), and enb(y, 7). By the proof of Lemma 6.8, there
exists 7 such that B; contains lit(«), B; is false at o, and B; is true at 7,.
If B; contains lit(83), then B; can be written as lit(a) A lit(8) A C for some
Boolean expression C not containing lit(a) or lit(3). Now, by definition of
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o #84 Ty, the value of lit(J) is false at 0. So, the value of lit(J) remains false
at 7, which contradicts the fact that B; is true at 7,. Symmetric arguments
for B; establish the lemma. A Q.E.D.

The following two results concerning disjunctively enabled events will be
needed in Sub-section 6.3.3.

Lemma 6.10 Given n,m > 0, and states and events such that

Qg a1 Qp—1
Op0 — 010 *+* — Ono,

ﬂl ﬂ_m_—)l

0
gp0 —* 001 —* J0,m;

and {i:0<i<n:q}N{j:0<j<m:p;}=0, for any v, if
—enb(v,0,_10) A enb(7, 0n0) A "enb(7y, 0om-1) A enb(v,00m), (6.6)

then there ezists j and T such that 0 < j < m, goo 7, and a,_, and ;
are disjunctive triggers of v at T.

Proof: Applying Lemma 5.5 to the two paths above yields the existence of
{i,j:1<i<nAl<j< m:o;;} such that (5.8) holds. By stability,
enb(y,0; ;) if i = n or j = m. Since ~enb(v,0,_1,0) and enb(v,0n—1.m), let j
be the largest index such that —enb(v, 0,_1,;). Setting 7 to oy, ; establishes
the lemma. Q.E.D.

Lemma 6.11 Let p be the c.c.a. of o, and o, with pﬂ qﬁ—f—mb and

pi o,. Then, for any v, v € (AN B) A enb(v,¢) implies there ezists
an event a € A and a state T such that p—+—T——0,, and } and o are

disjunctive triggers of vy at 7.

Proof: By Lemma 5.10, 3 ¢ A and v € AN B implies —enb(v,p). But
v € A; so, let & be the first intermediate state in the path p - 0, such that

enb(y,&) and let

Oy Oy
(p=m0) 2o m b o 2 2T (1 = 5).

Then, it can be verified that 3 and «,_; are disjunctive triggers of v at 7,,_;.
Q.E.D.
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6.3.2 Terminating Events

Definition: Event (zy,[) is a terminating event if
Jo :: enb((zk, 1), 0) AVT :: menb({zx,l + 1), 7).

A variable z; has a terminating event if there exists [ such that (zy,l) is a
terminating event.

Lemma 6.12 Suppose there ezists a cycle with period w. If var(§) €
span(w), then there exists a minimal period T such that var(§) € span(7).

Proof: Use induction on the length of the cycle. There is no period with
zero length. For any cycle with non-zero length, if it is minimal then set 7 to
7. Else, by Lemma 5.24, there exist two sub-cycles with periods 7 and 7 — 7.
If var(6) € span(w) then var(d) € span(7) or var(§) € span(r — 7). So,
applying the inductive hypothesis on one of these sub-cycles establishes the
lemma. Q.E.D.

Lemma 6.13 If there exist event (xx,l) and state o such that enb({zy,1), o)
and xy has no terminating event, then then there exists a minimal period
span(7) such that z) € span(7).

Proof: Pick ¢ large enough so that ¢ — ojp;¢[k] > 2K, where K is the
number of variables. Since x; has no terminating event, there exists 7 such
that enb({zg,q), 7). W.l.g., assume 7 is a state with the minimum weight
such that enb({(z,q),7) is satisfied. Now, since the range of the bool()
function has at most 2% elements, by the Pigeonhole Principle, there exist
intermediate states ¢ and (¢ + 7) in the path from Oipit to 7 such that
¢ =+ (¢p+ ) is a cycle. By Lemma 5.16, enb({z, ¢) © w,7 — 7). So, by the
choice of 7, w[k] # 0. The existence of 7 then follows from Lemma 6.12.

Q.E.D.

6.3.3 Criteria for Uniform Graphs

Definition: The event ¢ is called a mode-switching event if there exists a
non-uniform cycle o - (o + ) that has a uniform sub-cycle & +— (& + 7)

and JL .
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Lemma 6.14 If a state graph is non-uniform, then there exists a mode-
switching event.

Proof: Of all the non-uniform cycles, let

o -J*4—> (o +m) (6.7)

be one with the minimal length. By definition, it is not minimal; of all of its
normal sub-cycles, let

526 +7) (6.8)

be the one such that o —?—-»5 has the shortest length. Since A C A4, (6.8) is
uniform since its length is less than that of (6.7). Now, D is not empty or
else (6.7) is uniform; so, let

~

e 2rt s (6.9)

By Lemma 5.19 and Theorem 5.1, 7 (7 + 7) exists and is not minimal.
If it is uniform, then it has a sub-cycle 7-+— (7 + @) which would then be
a normal sub-cycle of (6.7) and thereby contradict the definition of (6.8).
Thus, 7+ (7+ 7) is non-uniform and has (6.8) as a sub-cycle. Therefore, §
is a mode-switching event. Q.E.D.

Lemma 6.15 Suppose ¢ —-ﬁt—dr(a + 7) is a cycle and & —'f-l—»(& + ) is a path
such that 0——‘-5—> 5,6¢ A, and A C A. Let p be the c.c.a. of (0 + ) and
(7 +#). Then, there ezist ¢ and C C A such that

056 5G4 7), (6.10)

and, for any v € C such that enb(vy, ¢),

B, 7: € AN HoTHr(0+7): (6.11)
6 and [ are disjunctive triggers of vy at 7. '

Furthermore, either § is a terminating event or, for all v € C such that
enb(v, @), if the guard of tran(y) is By V B, V ...V By,, then there are at
least two B;’s that do not contain the literal 1it(6) and at least one B; that
contains the literal 1it(8) but is not a stable disjunct.
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Proof: Since o is a common ancestor of (¢ + 7) and (5 + #) and 6 ¢ A, by
Corollary 5.13, 6 occurs in p +—(& + @) and so, by stability, (6.10) ‘holds.
Moreover, every event v in C occurs in o -+ p = (& + 7); so, C C A. Let
7 be any event such that enb(vy,¢) A (y € C C A). Then, by Lemma 6.11,
(6.11) is valid.

For the second half of the lemma, let § and 7 be the witnesses to (6.11).
Write the cycle o +— (0 + 7) as

Qg (071 Qr_1 (7 (079N | Qp—1
O)g— 01— +++ — Op —5 Opy) — +++ — 0, (6.12)

with 0, = 7 and o, = (. Since § is a disjunctive trigger of v at o,, there

exists &, such that o, —é—} o, and enb(vy, 7,).

Next, suppose ¢ is not a terminating event. Let § = (z4,l) and 6 =
(zk,1 +1). Then, there exists 7 such that enb(8,7). Let 7 be the c.c.d. of o,
and 7; then, enb(6, 7). By Lemma 5.19, o, -+ (0, +). So, by Lemma 5.21,
there exist ¢ > 0 and a state ¢ such that

Or o ks 7 s (4 ),

and span(D) Nspan(r) = . Since § ¢ A, m[k] = 0 and so, by stability and
Lemma 5.16, enb(6,7) = enb(6,¢+qr) = enb(6,d). Letting ¢, = ¢
implies there exists ¢, such that

RN P T (6.13)

Since enb(y,5,), let By be a disjunct that is true in state &,. By
—enb(v, 0,), By contains lit(§). Note, however, that the value of lit(6) is
false at ¢, and therefore By is not a stable disjunct. Also, by Lemma 6.9,
let B; be the disjunct that contains the literal lit(c,) but not lit(§). The
value of lit(a,) is false in o, since enb(ay, g,); therefore, it remains false
at state ¢ since o, does not occur in (6.13). Also, at state ¢, the value of
lit(6) is false. Thus, the value of any disjunct containing the literal lit(§) or
lit(a,) is false. So, stability requires that there exists yet another disjunct,
By, that contains neither literals. Q.E.D.

Theorem 6.1 If a graph is not uniform, then there exists a mode-switching
event O such that 6 is a disjunctive trigger for two events a and B with
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var(a) # var(f3). Furthermore, either § is a terminating event or, if the
guard for tran(a) or tran(f8) is By V By V ...V B,,, then there are at least
two B;’s that do not contain 1it(6) and at least one B; that contains lit(6)
but is not a stable disjunct.

Proof: By Lemma 6.14, there exists a mode-switching event 8. So, let
o Lo +1) (6.14)

be a non-uniform cycle with uniform sub-cycle & -+— (6 +7) and o NS By
Lemma 5.24, there also exists cycle (& + ) = (¢ + 7). Since the lengths of
these last two cycles are less than (6.14), they are uniform and, by Lemma 6.1,
can be written a concatenation of minimal cycles. Thus, there exist an integer
p > 1 and a set of minimal cycles

{i:0<i<p: T +>Tip1}

such that 7o = o and 7, = (6 + 7). Forall¢, 0 <i<p,let m; =Tip1 — T
and observe that, by Lemma 5.2, 7; < 7.

Next, let 7 be an arbitrary integer with 0 < 7 < p. Since bool(7;) =
bool(¢), by Lemma 5.16, & -+ (¢ + ;). By Lemma 5.20, this is a sub-cycle
of (6.14). Let A be the set of events occurring in that sub-cycle and so
A C A. Let p be the c.c.a. of (¢ + 7) and (¢ + m;) and let # = m;. Then,
applying Lemma 6.15 yields the existence of ¢ and C C A such that (6.10)
is satisfied and, for any 7 € C such that enb(~, ¢), (6.11) holds.

If C is empty, then by (6.10) and JL g, (0 +m)—p=0—o0. So,
p = o + m; and o —— p is a sub-cycle of (6.14), contradicting the fact that it
is non-uniform. Thus, there exists v € C such that ¢ is a disjunctive trigger
for v by (6.11). Moreover, C C A implies var(y) is in span(7;).

Now, if there exist 7 and j such that m; # 7;, then 6 is a disjunctive trigger
for two events whose variables are in the spanning sets of different minimal
periods. By Theorem 5.2, these variables are different and the first part of
the theorem is established in this case.

Alternatively, if for all Z and j, m; = 7;, then 7 = pmy. Let 7 = 7 and let
A be the set of events occurring in & —+— (& + 7). If p is the c.c.a. of (o + )
and (& +7), then, by Lemma 6.15, there exist ¢, and C C A such that (6.10)
is satisfied and for all v € C with enb(v, ¢), (6.11) holds.
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Now, ¢ 9, &, 0 % p, and (6.10) imply
- C . .
G ¢ (0 + 7).
So, by Lemma, 5.17 and Lemma 5.16,

g+ (0 +(p—1)7) 4+ (d+ (p—1)7) co (z)k—: D (¢ + p7). (6.15)

Since (o + 7) — 9, (¢ + p7), the set of events occurring in (6.15) is exactly
A. So, if p is the c.c.a. of (¢ + 7) and (¢ + (p — 1)), then, by Lemma 6.15,
there exist ¢ and C C A such that

_ 6§ = C -
p— ¢+ (d+ (p— 1)7) (6.16)
and for all 5 € C such that enb(7, ¢),

A8,7: (B € A) A (0 F>T74=(0+7)): (6.17)
6 and f are disjunctive triggers of ¥ at . '

Now, if C is empty, then by (6.16) and (6.10), (¢ +(p— 1)7) —p=¢—p
and, therefore, 5 = p + (p — 1)7@. This equality and g —-+— (o0 + m) implies

o= p(o+m—(p—1)7)

is a sub-cycle of (6.14), contradicting the fact that it is non-uniform. There-
fore, C is not empty and contains 7 such that & is a disjunctive trigger of
.
Now, C is not empty implies 5 # (¢ + 7) and there exists 8 such that
enb(8, p) and f occurs in -+ (d + 7). By Lemma 5.10, 3 ¢ C: so, by sta-
bility, enb(8, ¢ + (p — 1)7). Also, since the set of events occurring in (6.15)
is A, 3 € (C® (p — 1)7). Consequently, there exists 7 = (8 © (p — 1)7) such
that ¥ € C and enb(%,¢). Thus, by (6.11), 6 is a disjunctive trigger of 4.
Now, if var(ﬂ) = var(7), then # = 7 since they are both enabled at ¢. How-
ever, enb(J3, ) but —enb(7, 5) due to 7 € C C A and Lemma 5.10. Thus, a
contradiction can be avoided only if var(3), which is the same as var(f), is
different from var(%). Therefore, the first part of the theorem is established.

The second part of the Theorem follows directly from the second part of

Lemma 6.15. Q.E.D.
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Corollary 6.16 A state graph that has no disjunctively enabled events is
uniform.

Proof: Obvious from Theorem 6.1. Q.E.D.

Corollary 6.17 A state graph where all variables have no terminating events
and all PR’s have stable disjuncts is uniform.

Proof: Obvious from Theorem 6.1. Q.E.D.

Corollary 6.18 All mode-switching events in a non-separable state graph
are terminating.

Proof: Suppose the graph is not uniform. Then, let o, 7, A, &, 7, and §
be defined as in Theorem 6.1. By the remarks following the definition of
a minimal cycle, (6.14) contains a sub-cycle with minimal period 7,. Since
§ ¢ A, var(6) ¢ span(r) which implies var(6) ¢ span(7,).

Next, suppose var(§) has no terminating event. Then, by Lemma 6.13,
there exists a minimal period 7, such that var(§) € span(7,). Thus, the
graph contains at least two minimal cycles with different periods and is there-
fore separable. Q.E.D.

Theorem 6.1 and its corollaries give some of the conditions that would
guarantee a uniform graph. As can be seen, a non-uniform graph can only
result from the presence of a mode-switching event that is a disjunctive trig-
ger for two transitions with distinct variables. By Lemma 6.9, this condition
can be checked syntactically. Most of the practical PR sets are non-separable
and most (if not all) of their disjuncts are stable. Furthermore, the user is
usually aware of which variables have terminating events and can then check
specifically whether it is a potential mode-switching event. Lastly, the addi-
tional conditions that a non-terminating mode-switching event has to satisfy
are quite restrictive, making it uncommon and fairly easy to spot.

6.4 Index-Priority Simulation

The algorithm for index-priority simulation is given in Section A.1. Algo-
rithm 1, with its associated procedure find_cycle(), takes a PR set with a
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stable state graph and returns a non-transitory state S[n| and a list of p
cycles, in array C[ ], that satisfies the conditions described below. In the
remainder of this chapter, for any ¢, 0 < i < p, let C[i] = g; =+ (0; + m;).
Then, the following two conditions hold for the list of cycles returned by the

algorithm:
p-1
V7 : 7 is a period : span(®) C | J span(m;), (6.18)
=0

and
Vi,j:0<i<j<p:(3k: z ¢span(m;) A z; € span(r;)). (6.19)

In addition, if the associated graph is uniform, then all of the periods are

minimal and different from each other.
Below is an illustration of how the algorithm works. The proof of its

correctness will follow.

Example 6.6: Below is a simplified version of the PR set for the zero-checker
zeroB described in Sub-section 2.5.5 — the intermediate variables a and b
have been removed:

(aTz- \ aF,) A (bT,,, \Y bFz) — gT
g A (GT, \2 sz) — CTOT
g A (aF; AN bF;) —  cF,7
(maT; A—aF;)) A (=bT; A-DF;) — gl
-g - CTol
g —  cF,].

Suppose we want to analyze its performance with respect to the following
environment:

*[aT;T; [cT, V cFol; aTsl; [=¢Ty A —cFol;
aF;T; [T,V cF,];aF;]; [-cTy A —cF,1]

| *[0TT; [cToV cF,1;0T;L; [-eTy A —cF,];
bF;1; LeT,V cFo1;bF;|; [=eTy A —cF,]].

First, the handshaking expansions above need to be converted into PR sets.
Since we are not interested in the precise implementation of the environ-
ment, this conversion need nct be performed optimally. In fact, by using a
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“program counter,” there exists a syntactic translator from arbitrary hand-
shaking expansions to PR sets. In this example, the state variables d0 and
d1 are introduced in the first handshaking expansion which is then compiled
into "

~dl1A—-d0 — aT;7 —d1A(cT,VcF,) — dO7
dO A —=d1l —  aT;| dON—-cT,AN-cF, — d17
dl A do —  aFt d1A(cT,V cF,) —  do|
din—-d0 — aF;| “dOA-cT,AN—-cF, — dl]

Similarly, the second handshaking expansion is implemented in a symmetric
fashion using state variables e0 and el.

So, let P be the union of the PR set for the zero-checker and those for
its environment; its state graph is shown in Figure 6.6. Next, suppose the
variables are indexed in reverse-alphabetical order, i.e, zg = g, z; = €l, ...,
Z10 = aF;. Then, at every state when there are more than one events enabled,
the event correspond to the alphabetically first variable will be selected in
find_cycle(). Hence, when first called from Algorithm 1, find_cycle() traces
out the path shown in bold in Figure 6.6. Since the two states marked with
crosses are the first pair to have the same Boolean value, the following cycle,
with period 42222222222, will be returned:

(bT;, 1)  (g,1) (cTo,1) (d0,1) (aT;,2)

— 0] — 03 —* 03 — 04 —>
(60,1) (bT“2> (g’2> <CT072> <d1a1>

o5 — 0 — O g —— 09 —

7 ?

(aFi1) | AeLD) (6Fs1) (9,3)  (eFo,1) (6.20)

— 13 — 014

(d0,2)  (aF;,2)  (e0,2)  (bFi,2)  (g,4)
— 0O — Oy — 0183 —* 019 —

(cF,,2) (d1,2) (aT;,3) (el,2)
O —— 021 —— 0O —— O3 — O024.

0o

010

015

Since all variables have events appearing in the cycle, V will become the set
of all variables when find_cycle() returns for the first time. Hence, the second
call of find_cycle() results in empty_cycle being returned and the algorithm
terminates with (6.20) as the only cycle found and o, = 00000000010 as a
non-transitory state.

Now, since c¢T'o and cFo are mutually exclusive due to dual-rail encoding,
the disjuncts in the guards for d07, d0|, €07, and e0| are stable. Also, if
either of the disjuncts in the guard of ¢T,1 is true, then it remains true until
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Figure 6.6: Cumulative state graph for a zero-checker cell
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cT,1 fires because of the handshake protocol in the environment. Finally,
none of the literals in the guard of g7 can change from true to false without
g7 occurring first; therefore, the disjuncts of g are stable. Note that it is
possible to conclude that the disjuncts of a guard are stable without writing
it in DNF.

Since all disjuncts are stable and there is no terminating event (each
variable appears in a cycle), the state graph is uniform. Therefore, (6.20) is
a minimal cycle and 7 = 42222222222 is the only minimal period. O

We will first establish the correctness of Algorithm 1 for the general case
where the state graph may not be uniform. The function next_state(s,a)
assumes the event a is enabled at state s and returns a new state o such that

s -2 0. (6.21)

Also, empty_cycle is a special return value which signifies that no cycle has
been found.

Lemma 6.19 The following two predicates are loop invariants of the repeat-
loop in Algorithm 1:

sjo] M9 g AL L AR g (6.22)

and
Vi,j: 0<1,j5 <n:bool(S[i]) = bool(S[j]) = i =7j. (6.23)

Proof: First, consider the procedure find_cycle(). By its topology,
E = {o: enb(a,S[n]) A var(a) ¢ V: a} (6.24)

is an invariant of the while-loop. Next, suppose that (6.22) and (6.23) hold
when find_cycle() is called. Then, by (6.24), enb(A[n], S[n]). So, by (6.21),

sjo] MY gpp A AR U g Al (6.25)

holds just before the if-statement. If the condition in the if-statement is
false, then Vi: 0 <7 < n: bool(S[i]) # bool(s). This predicate, (6.25), and
the assignments to n and S|n] imply (6.23) and (6.22) are invariants of the
while-loop.
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Alternatively, if the condition in the if-statement is true, then the pro-
cedure returns after setting n to a value that is less than its value before the
if-statement. This assignment cannot invalidate (6.22) and (6.23). So, in ei-
ther case, if (6.22) and (6.23) hold when find_cycle() is called, then they hold
when the procedure returns. This conclusion establishes the lemma since

(6.22) and (6.23) hold when the repeat-loop of Algorithm 1 is first entered.
Q.E.D.

Lemma 6.20 If find_cycle() does not return empty_cycle, then it returns a
cycle whose period has a spanning set containing a variable not in V.

Proof: If find.cycle() does not return empty_cycle, then it returns

Ali Ali+1 A
s M gpg 4 AR L A (6.26)
By (6.25) and bool(S[i]) = bool(s), (6.26) is a cycle. Finally, by construc-
tion, var(A[m]) ¢ V; thus, the lemma is established. Q.E.D.

Lemma 6.21 The following two predicates and (6.19) are invariants of the
repeat-loop in Algorithm 1:

p-1
V= | span(m), (6.27)
=0
and .
Vi:0<1i<p:Sn]=+—(S[n]+m). (6.28)

Proof: From the assignments to U and V, (6.27) is a loop invariant. Next,
consider the situation immediately after the the assignment to Cl[p]. By
Lemma 6.20, the spanning set of mp contains a variable zx not in V; so, by
(6.27), zi is not in the spanning set of any m; with 0 < 7 < p. Thus, (6.19)
is established after the increment of p.

Finally, assume that (6.28) holds at the beginning of the repeat-loop and
let 7i be the value of n at that point so that

Vi:0<i<p:S[A] +(S[A] + m). (6.29)
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Consider the situation after find_cycle() returns. If ¢ is empty_cycle, then
S[ft] +—S[n]. By Lemma 5.19, (6.29) = (6.28). Alternatively, if c is not
empty _cycle, then there exists period 7 such that c is

S[n] =+ (S[n] + 7). (6.30)
If n > 7, then, as before, S[fi] %« S|n] and (6.28) holds. Else, we have
S[n] -+ S[7] +— (S[n] + 7).

Again, (6.28) holds by applying Lemma 5.19 to the second half of the path
above and then applying Lemma 5.16. Finally, (6.30) and (6.29) establish

(6.28) as a loop invariant after the assignment to C[p] and the increment of
p- Q.E.D.

Lemma 6.22 Algorithm 1 returns with S[n] as a non-transitory state and C
as a list of cycles such that (6.18) and (6.19) are satisfied.

Proof: For now, suppose the algorithm terminates and consider the situation
afterward. Then, by Lemma 6.21, (6.19), (6.27), and (6.28) hold. Further-
more, since find_cycle() returns empty_cycle, E is empty. Thus, enb(a, S[n])
implies var(a) € V. So, by (6.27) and (6.28), S[n] is a non-transitory state.

Next, let 7 = Y"P ' m;. Then, by (6.28) and Lemma 5.16, Sn] -+ (S[n] +
7). For any period @, Corollary 6.6 implies S[n] +—(S[n] + 7). So, by
Lemma 5.21, there exist ¢, D, and ¢ such that

S[n] = (¢ — g) —— (Sn] -+ 7) 4+ 6, (6.31)

and span(D) N span(n) = @. Suppose, toward a contradiction, that there
exists a variable index k such that z; € (span(7)\span(7)). Then, D is not
empty since otherwise # < gm. Consequently, there exists an event ¢ such
that enb(6,S[n]) and ¢ ¢ span(r). By (6.27), 6 is in E and the algorithm
would not have terminated. This contradiction can be avoided only if (6.18)
holds. ~

Since there are at most 2K different values for bool(), (6.23) implies
find_cycle() terminates. Also, since the size of V increases with each iteration
through the repeat-loop and is bounded above by K, Algorithm 1 terminates
and the lemma is established. Q.E.D.
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6.4.1 Uniform Graphs

To show that only minimal periods are found by the algorithm if the graph
is uniform, several preliminary results are needed.

Lemma 6.23 Let & -+« 0 -+ (G+) be a cycle in a uniform graph. If there
ezists an event a occurring in the cycle such that enb(a, a) and

V(3 : enb(8,0) A var(f) € span(n) : § = «, (6.32)
then there ezist p > 0 and minimal period ™ such that 7 = p7.

Proof: By Lemma 5.19, 0 -+ (0 + 7). Since the graph is uniform, by
Lemma, 6.1, there exist p > 0 and a set of minimal cycles

{i:0<i<p:o;+(0;+m)} (6.33)

such that oo = o, 0iy1 = (0; + m), and 0, = (0 + 7). For any ¢, by
Lemma 5.16 and bool(s) = bool(s;), (6.32) still holds if ¢ is replaced by o;
and « is replaced by (a @ (0; — 0)). Consequently, (« @ (g; — 0)) occurs in
g; =% (0; + m;) and so var(a) € span(w;). By Theorem 5.2, all of the 7;’s
are the same and 7, being their sum, is p7yg. Q.E.D.

Lemma 6.24 In a uniform graph, if there exist p > 1, minimal period 7,

and a cycle
G = gy = 0, =+ (G + p7) (6.34)

with event « and intermediate states o, and o. such that enb(a,dy),
enb(a @ 7, 0,), ‘ '

V@3 : enb(f, o) A var(3) € span(7) : § = a, (6.35)

and
Vv : enb(vy, 0.) A var(y) € span(7) : v = (e ® 7T), (6.36)

then bool(o,) = bool(a,).

Proof: By Lemma 6.1 and Lemma 5.16, we have & —— (G + ) —+— (03 + 7).
(See Figure 6.7.) Let p be the c.c.a. of o, and (o3 + 7) with

p—§—>ac/\p—£—->(ab+7~r).
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Figure 6.7: Proof of Lemma 6.24

Note that by Lemma 5.11, & -+ p. Now, if B is not empty then there
exists # such that § € B and enb(f,p). By Lemma 5.10, § ¢ C and
therefore enb(3, 0, + ) which implies enb(3 © 7, 03). Since § occurs in
G = p =~ 0., var(f) € span(%) and, by (6.35), (6 © ) = o which means
B = (a @ 7). This equality and § € B contradict enb(a @ 7, o.); thus, B is
empty. Similarly, C is empty due to (6.36). Therefore, o, = (0 + 7) and the
lemma is proved. Q.E.D.

Theorem 6.2 For a uniform graph, Algorithm 1 returns only minimal cycles
and the periods of these cycles are all distinct and are the only minimal

periods in the graph.

Proof: By Lemma 6.22, it remains to show that find_cycle() returns only
minimal cycles since then, by (6.19) and Theorem 5.2, the periods will be
different from each other. Toward that end, let

s A spp 4 g AER L AR (6.37)

be a cycle returned by find_cycle() and let s = S[i]+7. Let A={i:1i <i<
m: A[7]}. Let k be the smallest index such that zx € span(w). Let A be one
more than the x-th component of S[i]. Then, by Lemma 5.2, & = (zx, A) is
in A. Notice that by the choice of k in find_cycle() Ala] = « only if no other
event (3, enabled at S[a], satisfies var(f) € span(w). Thus, by Lemma 6.23,
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there exists a minimal period 7 and an integer p > 0 such that 7 = p7. If
p > 1, then (a®7) € A by Lemma 5.2. Again, A[b] = (e ® 7) only if no
other event v enabled at S[b] satisfies var(y) € span(w). So, by Lemma 6.24,
bool(S[a]) = bool(S[b]) which violates the fact that (6.23) is a loop-invariant
of find_cycle(). Thus, (6.37) is a minimal cycle and the theorem is proved

Q.E.D.

6.4.2 Non-Uniform Graphs

First, note that the definition of state graphs allow for arbitrary initial state,
i.e., I'(P, o) is defined to be the state graph consisting of all states in X(P)
that are reachable from ¢ under the state change relationship specified by P.
Then, by Lemma 6.4 and Lemma, 6.7, I'(P, o) is a uniform graph whenever
o is a non-transitory state. Therefore, if it has not been determined that the
state graph corresponding to the input PR set is uniform, then re-running
Algorithm 1 starting at state S[n] will return all minimal periods in the
graph. As an extra computation-saving technique, if the input PR set is
non-separable and there exists a cycle with period 7 such that the greatest
common divisor of the elements in {k: 0 < k < K : w[k]} is 2, then = is the
unique minimal period by the following lemma.

Lemma 6.25 In a non-separable graph with minimal period 7, if m is a
non-minimal period, there exists p > 1 such that m = p7.

Proof: By Algorithm 1, there exists a non-transitory state o. The rest
follows from Lemma 6.6, Lemma 6.4, and Lemma 6.1. Q.E.D.

Note that the converse is not true. In Example 6.3, if z is set to be
identically false, then, as indicated by the bold cycle in Figure 6.3, there are
four transitions associated with every variable in the minimal period.

6.4.3 Implementation Issues

There are two observations that greatly simplify the implementation of Al-
gorithm 1. First, though in the theoretical analysis, states are considered as
vectors of integers, in the algorithm, only the Boolean values of these states
are needed for comparisons. Hence, it is only necessary to represent states

124



as Boolean vectors linked together by pointers. Similarly, an event can be
identified by its transition without its occurrence number.

The second simplification arises from stability: once an event is enabled
it remains enabled until the corresponding PR fires. Therefore, the current
value of E can be updated incrementally. Every time a transition ¢ occurs, add
to E all transitions whose PR’s become enabled because of the occurrence of
t. When new variables are added to V, remove the transitions corresponding
to these variables from E.

6.4.4 Complexity

In each simulation step, the enabled PR whose transition has the highest
index is fired, the corresponding new state is computed and checked to see
whether it has been encountered before, and, if it has not, all PR’s that are
enabled in the new state are determined. This step has similar complexity
as one for any other selective simulation algorithm that attempts to find
cycles by tracing out a single path. In particular, the amount of operations
performed per step depends mainly on the number of states encountered so
far, the number of guards affected by the firing, and the computation required
to determine which of these guards change from false to true.

As for the number of simulation steps required by Algorithm 1, it is the
sum of the lengths of the cycles found plus the steps needed to to reach a
non-transitory state. If the graph is uniform and the initial state is a non-
transitory state, then this number is optimal in the sense that any other
algorithm needs this many steps just to trace out the minimal cycles. There-
fore, as the following chapter demonstrates, Algorithm 1 provides a very
simple and efficient means to determine the information that enables one to
represent a PR set as a repetitive XER-system.
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Chapter 7

Modeling PR Sets as
XER-Systems

This chapter addresses the problem of generating an XER-system for a PR
set once its minimal periods have been determined. First, as the following
section shows, PR sets with separable graphs can be partitioned into inde-
pendent components, each represented by its own XER-system. Then, the
correspondence between the causality relationships of a PR set and those of
an XER-system will be discussed. Finally, an algorithm for converting the
former to the latter will be presented — it turns out that this conversion is
much simpler if the PR set has only stable disjuncts.

7.1 Separable Graphs

In this section, we will show that if a state graph has more than one minimal
period, then, after a non-transitory state has been reached, the correspond-
ing PR set can be partitioned into independent components, one for each
minimal period and each with its own set of variables. We need the following

intermediate result.

Lemma 7.1 Let oyt be a non-transitory state. Let ™ be a minimal cycle.
Then for any state T reachable from oy, there exist ¢, ¢ > 0, and period ™
such that

Ot oo T (6 + q), (7.1)
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and
span(w) N span(7) = @ A span(A) C span(7). (7.2)

Proof: Let the minimal periods of the graph be 7, 71, ..., and 7;. W.l.g.,
let # = %. By Lemma 6.6 and Lemma 6.7,

opt =+ (opt + T1) > (opg + T+ Ta) > -+ —— (opt + ™)

where 7 is defined as 7; +#,+. . . +7 7. By Theorem 5.2, span(w)Nspan(7) =
§. Also, by Lemma 5.21, (7.1) exists with span(4) N span(7) = §.

Now, if o occurs in opt -7, then it occurs in a cycle starting from oy
by Lemma 6.2; so, it occurs in a minimal cycle by Lemma 6.12. Hence,
var(a) € (span(w) Uspan(7)). So, span(A) Nspan(r) = @) implies the last
conjunct in (7.2). Q.E.D.

The following lemma shows how variables that are not in the spanning
set of a minimal period, can be removed from the guard of a transition whose

variable is in the spanning set.

Lemma 7.2 Let ot be a non-transitory state. Let T be a minimal period.
Let o be an event such that var(a) € span(7). Let the guard of tran(a) be

G:B()VBlVVBm

For any j such that 0 < j < m, let B; = C; A C} where

lit(8) € C; = var(f) € span(7T) A (7.3)
lit(8) € C} = var(B) ¢ span(7). ’
Let
o G with Bj replaced by C; if C} is true in oy (7.4)
| G with Bj removed if C} is false in oyy. '

Then, in any state T reachable from oy, the value of G is true if and only
if the value of H is true.

Proof: Let 7 be any state reachable from opt. By Lemma 7.1, (7.1) exists
and (7.2) holds. Since span(A) C span(7), (7.3) implies

C} is true in oy < Cj is true in ¢. (7.5)
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Next, assume that we are incrementally changing G to H by dealing with
each disjunct in sequence. Consider the following two cases:

Case 1: (C]’ is true in oyy)  Clearly, G = H. Suppose H is true in 7.
If there exists j' # j such that Bj is true in 7, then G is true in 7 and
we are done for this case. So, suppose for all j' # j, Bj is false in 7 and
Cj is true in 7. Cj; remains true in (¢ + ¢m) of (7.2) due to span(¥) N
span(n) = (. Consequently, C; is true in ¢. Also, by (7.5), C; is true in ¢.
Therefore, B; is true in ¢ and G, the guard for tran(a) is true in ¢. By
stability, G is true in 7 since « is not in B. These observations establish the
lemma, for this case.

Case 2: (C; is false in o,t) By (7.4), H = G. Suppose G is true in 7.
By stability and & ¢ B, G is true in (¢ + ¢r). So, G is true in 4. Now,
C; is false in oy implies Cj is false in ¢; hence, B; is false in ¢. So, G
is true in ¢ due to some disjunct By, j' # j, being true in ¢. Let
Bj = Cj A C} with Cj containing only literals whose variables are in
span(7) and C7 containing only literals whose variables are not. By (7.5),
Bj: is true in ¢ implies C7, is true in oyg. So, by Case 1, C} can be re-
moved. Consequently, we can assume that By contains only literals whose
variables are in span(7). But then Bj is true in ¢ implies By is true in 7
due to span(7)Nspan(7) = @. Consequently, H is true in 7 and the lemma,
is established. Q.E.D.

Example 7.1: Consider again the PR set of Example 6.1. A non-transitory
state in its state graph is oyt = 10000. In all states reachable from oy, the
behavior of the PR set is identical to the one below (See Figure 6.1):

o = nl gy — m;l
= Bl 3 — 1l
5 - x] Iy — 1zl
g 1ol “T3 — Tl

Note that once a non-transitory state has been reached, there is no further
interaction between the variables in the spanning set of the minimal period
02200 and those in the spanning set of the minimal period 00022. O

As illustrated by the previous example, Lemma 7.2 implies that each
minimal period 7 induces a PR set P consisting only of variables in the
spanning set of 7. Moreover, as far as those firings that involve variables in
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span(#) are concerned, the behavior of P is identical to the behavior of the
original PR set P once a non-transitory state has been reached.

By Theorem 5.2, the PR sets induced by two different minimal periods
do not share any variables; hence, each can be analyze independently. So,
for the rest of this chapter, all PR sets are assumed to be non-separable, each
containing only variables in the spanning set of its unique minimal period,
which will be denoted w. Moreover, unless stated otherwise, only states reach-
able from some fized non-transitory state oy are considered.

7.2 Delay Insensitivity and Cause Sets

There are several technical issues concerning the definition of a “set of causes”
(or cause set) for an event in a PR set. For convenience, we will say that an
event (zy,l) has occurred in a state o if and only if o[k] > I. Also, a set of
events, A, has occurred in o if and only if every event in .4 has occurred in
.

Intuitively, one criterion for A4 to be a cause set for « is that whenever
all the events in .4 have occurred and « has not occurred, then « is enabled
to occur. Conversely, each occurrence of o should be because one of its
cause sets has occurred. However, these criteria are not sufficient to model
delay-insensitivity as the following example illustrates.

Example 7.2: Consider the PR set and its associated state graph shown in
Figure 7.1. First, note that there is no redundancy in the guard of z3T —
7y is needed to avoid interference in state 21210, and z, is needed so that
(z3,3) can fire in state 21321. Note also that at every state where (z;,1)
has occurred, (z3,1) is enabled or has already occurred. Conversely, (3, 1)
occurs only after (z;,1) has occurred. Thus, {(z1,1)} may appear to be a
good candidate as the only cause set of (z3, 1).

This analysis, however, is inadequate in that it ignores the delays between
events. Recall that in the CMOS implementation of PR sets, if lit(a) is a
literal in the guard of tran(3), and B occurs due to an occurrence of «,
then there is a delay associated with the two events which we can denote as
A(a, 3). For instance, the event (3, 1) is enabled in state 11000 due to the
disjunct % A z; being true. Under the XER-system model, ¢({z3,1)), the
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time at which (z3, 1) occurs, satisfies

t((x3’ 1)) 2 t((xO’ 1)) + A(<x0’ 1)’ <$37 1)) A (7 6)
t((z3, 1)) = t({z1, 1)) + A((z1, 1), (23, 1)) '

Similarly, the PR for z;T implies
t({z1,1)) = t({o, 1)) + A((zo, 1), (z1,1)).

Therefore, even though (z;,1) having occurred in a state implies (xg, 1) has
also occurred, without further timing assumption, it is possible that

A(<$07 1)’ (xl, 1)) + A((xh 1)7 <CL'3, 1)) < A(("EO’ 1)’ <.’L‘3, 1))

Hence, using {(z1,1)} as a cause set for (z3, 1) would ignore the possibility
that it may be the timing constraint corresponding to (zg, 1) that determines
when (z3,1) can occur.

Next, suppose, because of the previous arguments, {{xg, 1), (z1,1)} is cho-
sen as the only cause set of (z3,1). Certainly, (x3,1) occurs or has occurred
if and only if that set has occurred. Once again, however, this choice is inad-
equate. In state 11100, both disjuncts in the guard for z3T are true. Since
Zq is in the guard of 737, (z3,1) can occur after a sufficient delay has elapsed
since the occurrence of {z,,1). Hence, t({z3,1)) needs to satisfy either (7.6)

t((z3, 1)) > ({2, 1)) + A((22, 1), (23, 1)). (7.7)

So, once again, without further timing assumption, it is possible that
A({xo, 1), {z3,1)) and A((z1,1), (z3,1)) are sufficiently large so that (3, 1)
occurs due to satisfying the timing constraint (7.7). Thus, when the delays
between events can be arbitrary, the “complete set of cause sets” for (z3,1)
in this example is {{(zo, 1), (z1,1)}, {(z2,1)}}. O

As the previous example demonstrates, for arbitrary delays, it is necessary
to consider the guard of tran(a) to determine the set of cause sets for a.
In particular, whenever there is a state where a disjunct of the guard is
true, then a cause set containing the most recent events involving all of the
variables in the disjunct needs to be included. This necessity arises from
the fact that any one such event may be the event that determines when o
can occur if the delay between them is large enough. Similarly, to have a
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complete set of cause sets, a cause set associated with every disjunct that is
true in some state where a is enabled needs to be included since, under an
appropriate set of delays, o may occur due to the timing constraint specified
by that particular disjunct.

To formalize these notions, we have the definitions below. The first is
to identify the most recent events that are responsible for the literals of a
Boolean function being true in a particular state. The next two are the
definitions of causes. Note that (7.9) and the first condition in (7.11) are the
intuitive criteria mentioned in the beginning of the section, whereas (7.10)
and the second condition in (7.11) are due to modeling arbitrary delays as
discussed in the previous paragraph.

Definition: If B is a Boolean expression, then the set of witnesses of B in
o is

wit(B, o) = {z4,1 : lit((zx, 1)) is a literal in B A o[k] =1 : (zx,1)}. (7.8)

Definition: A set of events A is a cause set for an event o if
V7 : A has occurred in 7 and « has not occurred in 7 : enb(a, 7), (7.9)

and
do, B : B is a disjunct in the guard of « : (7.10)

B is true in 0 A wit(B, o) C A.

Definition: The set of L sets of events, {Ag, A;,..., AL_1}, is a complete
set of cause sets (CSCS) for a if each A; is a cause set of «, and, for any
state o such that enb(o, o) and for any disjunct B; in the guard of o such
that B, is true in o, there exists 4; such that

A; has occurred in ¢ A wit(Bj,0) C A;. (7.11)

Definition: A cause set A for « is minimal if no proper subset of A is a
cause set of a. A CSCS S for «a is minimal if each member of S is a minimal
cause set for « and no proper subset of S is a CSCS for a.

In the next three sub-sections, we will describe how to determine the
CSCS of any event. Section 7.3 gives some general results. Section 7.4 deals
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only with PR’s with stable disjuncts, whereas Section 7.5 includes those with
unstable disjuncts.

7.3 Last-Enabled States

Definition: A last-enabled state of an event « is a state ¢ such that « is
the only event enabled at o.

Lemma 7.3 Let o be any last-enabled state for . If T is a state such that
o has not occurred, then T <—o0.

Proof: Let ¢ be the c.c.d. for 7 and o. Since o has not occurred in 7 and o,
o has not occurred in ¢ by Lemma 5.8. Consequently, 0 = ¢ since o +—¢
and the only event enabled at o is a which has not occurred in ¢. Hence,

T ——0. Q.E.D.

Corollary 7.4 For any event «, there is at most one last-enabled state for
a. This state will be denoted last(a) if it exists.

Proof: Follows from the previous lemma and the fact that « has not occurred
in any last-enabled state of a. Q.E.D.

Lemma 7.5 Let B be a disjunct in the guard for tran(a). For any o such
that enb(a, 0) and B is true in o, if wit(B,0) = wit(B, last(a)), then
wit(B, ¢) is a minimal cause set of a.

Proof: Let 7 be any state such that wit(B, o) has occurred and « has
not occurred. By Lemma 7.3, 7 +—~last(a). So, for any event (zx,!) in
wit(B, o), | = o[k] < 7[k] < last(a)[k] = I. Hence, each literal in B has the
same value in ¢ as in 7. Therefore, enb(c,7), which validates (7.9). Also,
the hypothesis implies (7.10) directly. So, wit(B, o) is a cause set of c.

Now, if wit(B, o) is not minimal then there exists another cause set A’
such that A’ C wit(B,o). But then, by definition, there exist ¢’ and a
disjunct B’ in the guard of « such that

wit(B',0') C A’ C wit(B, o).

So, every literal in B' is in B violating the fact that the guard of tran(a) is
in DNF. Q.E.D.
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7.4 Stable Disjuncts

Lemma 7.6 Let B be a stable disjunct of the PR for tran(a). If B is
true in o, 0+ ¢, enb(a,0), and enb(a,¢), then B istrue in ¢ and
wit(B, o) = wit(B, ¢).

Proof: Let (z,1) be an event in wit(B, o). If (z;,!+ 1) occurs in the path
o —+— ¢, then B becomes false in an intermediate state along that path before
the occurrence of a. Consequently, B is not a stable disjunct. So, to avoid
a contradiction, for every (zy,!) in wit(B,o), ¢[k] = o[k] and the lemma
follows. Q.E.D.

Corollary 7.7 If B is a stable disjunct of the PR for tran(a), enb(a, o),
and B is true in o, then wit(B, o) is a minimal cause set of .

Proof: Follows directly from Lemma 7.5 and the previous lemma where ¢
is replaced by last(«). Q.E.D.

Note that the condition of stable disjunct is necessary as Example 7.6 in
Section 7.5 demonstrates. That example also illustrates an unstable disjunct
that satisfies the hypothesis of Lemma 7.5.

Lemma 7.8 Let the guard for tran(a) be ByV By V...V B,,. If all the B;’s
are muter and each B; is stable, then enb(a, o) A B; is true in o implies
{wit(Bj, o)} is a minimal CSCS for .

Proof: By Corollary 7.7, wit(Bj, o) is a minimal cause set. Let 7 be a state

such that enb(a, 7). Let op¢ —E—»a and op¢ ——)Cc—w. Then by Lemma 5.7, there

exists ¢ such that
C\B B\C
(0 == @) A(T 5> @).

Since a ¢ (BUC), enb(a, ¢).

Now, enb(a,7) implies there exists i such that B;is truein r. If
¢ # j, then, by the fact that both B; and B; are stable disjuncts,
B; A Bj is true in ¢ which contradicts the hypothesis. So, i = j. Again, by
the fact that B; is a stable disjunct, wit(Bj, 7) = wit(B;, ¢) = wit(B;, o).
Hence, wit(B;, o) has occurred in 7.
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To establish the second condition in (7.11), note that if B; is true in 7,
then by the arguments above, B; = B; and so {wit(B;,0)} is a CSCS. The
fact that it is minimal follows from the fact that its only element is a minimal
cause set. ‘ Q.E.D.

Corollary 7.9 If the guard for tran(a) is a conjunction B and enb(x, o),
then a minimal CSCS for o is {wit(B,0)}.

Proof: The claim follows directly from the lemma above and the fact that
B is a stable disjunct. Q.E.D.

Lemma 7.10 Let ByV B; V...V By, be the guard for tran(ca). If all of the
B;’s are stable disjuncts, then

Q(a) = {B; : B; is true in last(a) : wit(B;, last(a))} (7.12)
s a minimal CSCS for a.

Proof: By Lemma 7.7, each wit(B;, last(a)) in Q(a) is a minimal cause set.
Let 7 be a state such that enb(a, 7). Then, by Lemma 7.3, 7 - last(a).
Now, enb(a, 7) implies there exists B; such that B; is true in 7. By stabil-
ity on B;, B; is true in last(«) and wit(B;, 7) = wit(B;, last(a)). Hence,
wit(B;, last(a)) has occurred in 7.

To establish the second condition in (7.11), suppose B’ is true in ¢’ and
enb(a, ') for some disjunct B’ in the guard of o. By the arguments
above, o' -—last(a). Hence, by Lemma 7.6, B'is true in last(a) and
wit(B',¢') = wit(B',last(a)) € Q(a); so, () is a CSCS. Furthermore,
all its members are minimal cause sets. Also, if wit(B;,last(c)) is removed
from the set, then there does not remain an element 4; in set such that

A; has occurred in last(a) A wit(B;, last(a)) C A;

because the guard of « is in DNF. Hence, Q(«) is a minimal CSCS for a.
Q.E.D.

Corollary 7.11 If { Ao, Ay, ..., A1 } is a minimal CSCS of a as
prescribed by Lemma 7.10, then for any i > 0, { Ay ®in, A1 ®im, ...,
Ap_1 @ ir } is a minimal CSCS of o @ im.
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Proof: Since for any 3 and o, enb(f, o) if and only if enb(8 & im, o + i7),
last(a @ iw) = last(a) +iw. The corollary then follows from Lemma 7.7 and
the observation that wit(B, o + im) = (wit(B, o) & ir). Q.E.D.

7.4.1 Conversion to XER-systems

Let P be a non-separable PR set with minimal period m. Further, let op¢
be a non-transitory state and suppose that the transformation described in
Section 7.1 have been performed so that all variables not in the spanning set
of 7 have been removed. Let

0'02940'1——> ce. — Op (7.13)

with o9 = oyt be a minimal cycle. Then, as will be shown later, the causality
and delay relationships of the PR set can be modeled by the repetitive XER-
system X' = (E', R, 6,0) described below. (To avoid ambiguity, events and
transitions in the state graph will be continued to be referred to as such,
while events and transitions in the XER-system will be explicitly qualified.)

e F' is a set of n XER-system transitions, one associated with each o
in (7.13). For reference, let u(o;) denote the XER-system transition of
X' that corresponds to o;. Note that u(a;) is different from tran(oy):
If (z4,1) and (xx,l+ 2) are both in the cycle, then tran((zy,l)) =
tran((zx,l + 2)). However, u({zx,!)) and u({(zy,l+ 2)) are different
XER-system transitions in X’. See Example 7.3.

e R'is the set of templates generated by Algorithm 2.

¢ 0 is the occurrence-index offset function defined over the domain
D = {{u,v,q) : ¢ € R' Au € src(q) Av = tar(q) : (u,v,q)}.
The value of each 8(u, v, q) is determined by Algorithm 2.

e § is the delay function between transitions, under some user-selected
timing model, over the domain D.

As described above, Algorithm 2, shown in Section A.2, is used to convert
a PR set into an XER-system. Note that the procedure fire_only(D, s) starts
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at state s and trace out a path firing only events in D. If and £(P) is the set
of all possible events in PR set P and enb(a, s), then fire_only(£(P)\ {a}, s),
returns last(a). To see that this is the case, if the procedure does not termi-
nate, then there exists a cycle that does not contain a. This existence implies
the graph is either separable or s is not a non-transitory state — both are
situations that having been excluded by our assumption. Hence, fire_only()
terminates. Furthermore, let o be the state returned by the procedure. By
stability, enb(a, 0); so, by construction, o = last(a).

The transformation of a PR set into an XER-system is illustrated by the
example below; arguments for its correctness will be provided afterward.

Example 7.3: Continuing with Example 6.6, since each variable transition,
except for g1 and g|, appears only once in the cycle (6.20), we can define

u((zx, 1)) as
tran((zy, 1)) ifzp # g

‘gT:O, if <xk7l> = <g’ 1)
u((xkhl)) = ‘gl:O’ if (xk7l> = (g’ 2)
‘gT:]-’ if (xk,l> = (g’3>
‘gl:l’ if <xlml> = (ga 4)

Hence, the PR set can be described by the repetitive XER-system X =
(E', R, 6,0) whose set of transitions is

E' = {aF1,aF],aT;1,aT;|,bF;1,bF;],bT;T,bT;,
cFol,cFol,cToT,cT,|, d0T,d0}, d11,d1],
e07,¢e0], el7, ell,‘gT:0°,°g|:0",g1:1’,‘g|:1’}.

To determine R’ and 0, Algorithm 2 is applied with (6.20) as the minimal
cycle. For the first event (6T, 1), its guard is conjunctive; so, gen_template()
is called with wit(guard of 6T;1,0¢) and (bT;,1) as arguments. Since
wit(—el A =e0,09) = {(e0,0), (e1,0)}, the template {{e0],ell} — bT;T}
is added to R'. Moreover, note that (b7;7,1) occurs in the cycle (6.20)
but both (e0,0) and (el,0) occur one period earlier. So, to reflect these
differences in occurrence-indices, gen_template() defines

H(GOla bT‘LT) {601, ell}H szT) = 17
0(ell, bT;T, {0, e1|} s bT,T) = 1.
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The second event in the cycle is (g, 1). All the disjuncts in its guard are
stable, so stab_disj() is called. Since the disjuncts are mutually exclusive, an
examination of the guard in o; yields aT; A bT; as the only true disjunct
in that state. Hence, gen_template() is called with {(aT;,1),(bT;,1)} and
(g,1) as arguments. The same call would have been made even if it had not
been known that the disjuncts in the guard of g1 are mutually exclusive. So,

the template
{aTi1, bT i1} — 10’

and function values

O(GTiT, ‘gT:0’7 {GT,:T, szT} = ‘gT:O,) = 1)
B(bT:T, ‘10, {aTh, T} g1:07) = 0

are added.

The third event in the cycle is (c¢T,T,1). All the disjuncts in its guard
are stable but not mutually exclusive. So, fire_only() is called to find
last({cT,T,1)) which, in this case, turns out to be oa. In that state, both
the disjuncts g A aT; and g A bT; are true. Hence, the templates

{g1:0°,aT:iT}—cTol, {g1:0°, 0T 1} > cTHT

and function values

0(gT:0, cT,T,{g1:0",aT1} = cT,oT) = 0,
0(aT:T, cToT, {‘g1:0, al;T}— cToT) =1,
B( 10, cTo1, {*g1:0°, bTiTh s e T ) = 0,
O(bT;T,cTo1,{'g1:0", 0T} —cT,T) =