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ABETRACT

Low Reynolds number flow past {inite cylinders of large
aspect ratio is considered in this thesis. The first cylinder
under consideration consists of a finite cylinder of constant
radius A with two hemispherical caps attached to each end.
The axis of the cylinder is perpendicular to uniform flow at
infinity and the half length of the cylinder is L . Thevefore,

two Reynolds numbers can be formed in the present study,

namely, Re = i‘j}" and Ke = -—%'}i . The low Reynolds
number flow is studied in the limit Re — 0 for Re = fixed.
This clearly shows that the body is of large aspect ratio,
The other cylinder under consideration is an ellipsoid
of revolution whose half-axis parallel to the flow iz A and
whose half-axis perpendicular to the flow is L. The same
limniting case as that for the first finite cylinder is studied,
Asymptotic expansions of the solution valid for the limiting
case He -~ ( are obtained by applying singular perturbation
procedures with proper use of the idea of the intermediate solu-
tion. The nature of the end source variation and the order of
magnitude of various effects are clarified in the present study.
In addition, certain general remarks have been made about the
difference between the end effects for "tapered" and "untapered"
bodies. It is found that the "taper® at the ends plays an essential

role.
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Variables and parameters for the low Reyuolds number flow
past the finite cylinder
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5) Variables and parameters for the low Reynolds number flow
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L INTRODUCTION

Viscous flow at low Reynolds numbers past two dimen-
sional or three dimensional objects has been studied extensively
in the literature with the aid of the Stokes equations and Useen
equations. Recent work by Kaplun, Lagerstrom and others
(Ref. L, 2, 3 and 4) has clarified the relation of these solutions
to asymptotic expansions of solutions of the Navier-Stokes
~equations. These solutions exhibit a marked difference between
the two dimensional and three dirmensional case. The purpose
of the present investigation is to clarify this difference, in
particular, to study in detail the transition from the three
dimensional case to the two dimensional case. For this purpose
we consider flow past bodies of large aspect ratio, i.e., bodies
whose extension transverse to the flow is much larger than that
parallel to the flow. As a typical example, we consider a body
{see Fig. 4.1) consisting of a finite cylinder of vadius M\ and axis
perpendicular to the flow which has a hemispherical cap at each
end, the extension transverse to the flow is 21, This body will be
called a finite circular cylinder. Two Reynolds numbers may be

formed, namely, Re = Ejk and Re = % . We study the limit

of Re tending to zero, Re being fixed, Clearly this is a body of
very large aspect ratio; the case Re =infinity corresponds to two

dimensional flow. As another example, we study an ellipsoid of
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revolution whose half-axis parallel to the flow is \ and whose
half-axis perpendicular to the flow is L. The same limiting
case as for the finite circular cylinder is studied. The gener-
ality of the results and difference between the two cases is
discussed; it is found that the ®taper" at the ends ﬁlaya an
essential role.

It is assumed that the flow is viscous incompressible and
stationary. The classical Navier-Stokes equations are thus the
governing equations. The domain of the fluid is infinite and it
is assumed that there are no other boundaries except that of
the given cylinder or ellipsoids,

The mathematical method used is that of singular pertur-
bations as discussed in Ref. 1, 2, 3 and 4, This invelves finding
leading terms of expansions valid in diffevent regions, using
appropriately scaled variables. From these expansions one may
form a composite expansion which is asymptotically valid uniformly
in the entire flow field as Re tends to zero.

In Chapter 2 a resume is given of the appropriate fundamental
é@ﬁuﬁ‘:mﬁs of the Stokes equations and the Oseen equations. In
addition, a rnethod for generating solutions of Stokes equations

rom the corresponding sclution of Laplace equations is discussed;

this method will later prove to be very useful. The asymptotical
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gsolution for typical cases in two and three dimensions are
reviewed in Chapter 3 essentially following the work of
Lagerstrom and Kaplun, Chapter 4 discusses solutions for
the three dimensional Laplace equation with boundary condi-
tions given on high aspect ratio bodies. These examples are
mathematical models in the sense that the essential ideas
regavrding high aspect bodies are exhibited clearly for the case
of a relatively simple equation. Actually, however, it will be
seen later that for the same high aspect ratio body, the asymp-
totical lLaplace solution furnishes an essential element ia
constructing the asymptotical Navier-Stokes solutions. These
solutions are discussed in Chapter 5 {finite cylinder) and Chapter 6
{ellipsoid). The casential results are discussed in Chapter 7.

The present problem is more complicated that that of a
three dimensional sphere or two dimensional cylinder because
the classical inner limit is not uniform even near the body. Thus,
we have to introduce several {more than two) simultaneous expan-
siaz:m/i, €., an "outer expansion®, a "shank expansion® and two
Yend expansions.” "i‘h@ proper cholce of variables for each expansion
is discussed in detail in the geometrical matching condition estab-
lished in Chapter 4. The details of expansion procedure and the

rantching between them present a certain interest, although certainly
g 14 Y
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no new principles need to be introduced. In Chapter 5, the
expansion procedures for the ellipsoid has been exhibited in
detail and higher ovrder terms are obtained, It is worth
mention that the idea of an intermediate (rather than an inner)
expansion is intimately involved and quite helpful in the present

cage.
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II. CSEEN AND 3TOKES
MENTAL SOLUTIONS

EQUATIONS AND THEIR FUNDA-
The role of the Useen and Stokes equations for the study of
flow at low Reynolds numbers will be discussed in subsequent

chapters. For future reference some relevaunt formulas relating

to these equations are given in the present chapter.

2.1 Cseen Equations and Their Fundamental Selutions

The Oseen equations may be derived by linearizing the
Navier-Stokes eguations (cf. 3-1) about the free stream velocity
Ui . The resulting equations are then

L 8g , 1 2— .
J-a;%%g Vpev Vg (2-1a)

ozl

V.gq=0 (2-1B)

%

A very useful concept in the study of linear differential
equations is that of fundamental solutions. The fundamental
solution may be defined as the response to a singular force.
The fundamental solution for Oseen equations is a solution
of Oseen equations (2-la,b) with a force term ?'adﬁed on the
right side of (2«la). No external boundaries are present and
the force per unit mass is a delta function. More precisely,
iet f be concentrated at a point Q and equal to §(P;Q) a where
a is a given constant vector and the delta iuncﬁ@n §({P;Q) is
a function of the point P which is zero for P # O, infinity for
P = Q and whose integral over any domain including O is unity.
Then the resultant velocit? field at P, in the absence of bound-

aries, is determined from the fundamental tensor [ (P;Q) by



q (P =L(mQ)a (2-3)

and the perturbation pressure p' = p - P from the fundamental

vector @ {P;Q) by
p'(p) = T (P;Q)? , (2-4)

one may consider either the two dimensional or three dirmensional
case.
From the linearity of the Oseen equations it follows easily

. — . . -
that I and 7 are linear functions of a; i.e., actually a tensor and

==

a vector respectively. If a system of coordinates is chosen ;1;3
may then be represented as a matrix (Egj). In cartesian coordi-
nates (Efﬂ, &zlg }L’gl) ig the velocity field due to a unit force directed
along the x-axis (,“; = T)

Furthermore, due to the linearity of Useen equations, super-
position of the fundamental solutions can be used to determine the
effect of distributed forces. This idea of supexrposition will be fre-
quently used in the subsequent discussion.

The following are the summarized results of the fundamental

solution for three dimensional Oseen equations.

!
T o= ‘ﬂ'a\s - %g?a@ig (2-5)

and



. 8A B8A  B8A
Iy 5z s 3% By Bz
i _ 8A
L= Ty Tz Tos = 7y 0 0
8A 8A
Fap T35 Tas 3T Y -I%
6 0 0 1o 0
‘ k(R -x)
. g 2B 8B |, e 1 0 \(2-6)
gy &z Anxv R )
95 _8B|
L O T o 0 0
Here
k:% : stxz+ y2+ 32’
PO R il
70 | 3
“(R-x), 8 )
Be - E%”Ulm& < X)) ¥ log (R-x)] {(2-7)

The correeponding two dimensional case can be obtained by

the method of descent and is summarized as follows:
Ty

T = = -5% grad (log r) (2-8)
T2
where
2’2’ = RZ’ + y2,
r r 8A 9A
. ( n 12 . | B 7y
- . i 8A _8A
i 21 22 Ty =

= . 1 0 ‘
H '2-%%7 o' Bolier) ( 3 (2-9)
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and
As %ﬁ[}.og T+ ekxé{@(k?)]

2.2 Stokes Equations and their Fundamental Solutions.

The Stokes equation may be derived formally by linearizing
the Navier-Stokes equation about the value E = 0, The resulting

equations are:
& = ;
VpespVq (2-10a)
Vegs=0 (2-10b)

Similarly the fundamental solutions for three dimensional Stokes

equations can be summarized as follows:

/l 2 \
® x %z
+
A = =
r-_| = L,y & (2-11)
2
% 2 1 .+ B
R R R g3
and
g 3 i
LI v grad T {(2-12)

The corresponding two dimensional fundamental solution may

be obtained by the method of descent as follows:

2
1 log r ~=% «%
N o ¥ " (2-13)
- E% log ¢ - -Yz—
r r



and

- 1
LA grad (log r) | {2-14)

It is worth noting that the above soluticn in (2-13,14) does not
die out as r — o and thus the meaning of the fundamental solution
is not clear. DBut we can still define it by use of three dimensiocnal
solutions and calculate it by assuming an infinite line singular force
lying along the z-axis but acting perpendicular to the z-axis. Thus
the fundamental sclutions for two dimensions are obtained as in
equations {2-13) and (2-14).

2.3 Method of Generating Solutions for Stokes Equations from
Laplace Seolutions.,

Let qp(xi) be a solution of the Laplace equation
V o=10 {(2-15)

Then the following solution generated by g;?(xi)

q=1g {2;) = = Vg lx)) (2-16a)
p = ~2u g%ei (2-16D)

is a solution of Stokes equations (2-10). This result, valid for two
or three dimensions, can easily be proved by substituting (2-16} into
the Stokes equations. The fundamental sclutions of the Stokes equa-
tions as given above may be derived from the corresponding funda-
mental solutions of the Laplace equation with the aid of (2-16) and

formulas obtained from (2-16) by replacing x by y or z.
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A stronger theorem is the following: Assume that the sur-

face of a solid is given by

%’g(xi) =1 = conatant

(2-17}
and that @ and ¢, are functions of one variable such that
2 )
v 5}@&(-’{3) = {0 (2-1%&§
2 ; .
VEx @, (n)] =0 (2-18b)
Then constants A and B may be found such that
q=1-4{i gn-x @}
-B V [x ¢y(n}] (2-19a)
&g@l
P = ank g

(2-19D)

e
is a solution of Stokes equations such that g = U on ‘?3(;{1) =7, = con=
stant.

Proof:

al) T€§ satisfies the Stokes equations (2-10a, b)

b) on the body 7 = Mg = constant, we have

e

q =1 -1 [apln,)+ Bo,ln))

-[4 9y(ny) - Bo,n )=V (2-20)

The boundary condition 2? = 0 on the bedy can be satisfied by putting

Agyln )+ Boylnd =1 (z-21a)
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A@ln ) - B@yln ) =0 (2-21b)
A and B can be determined independently if we have

@y (,) @,ln,)
# 0 {(2-22)
Q%:le@) - @;92(?3@)

K this condition is satisfied and ({91(‘?’3) and xf:;?z(?@} can be found, the
Stokes solution Z{" can be generated from the Laplace solution. In
general, for a finite three dimensional body we have n; = ?, p=0
at infinity.

Example 1} For a sphere, we have

Py(R) = % {2-23a)

and
= 2-23b
xgﬁg(ﬁ} ey Tt g‘g {2-23b)

Then by the above method, we obtain

- = 3 3 1 1 ®' 2-24a)

g=1i 3 [g-2Ve]+7V( =) (2
FLY-3 R 4 3

=2, 8 1 2-24b)

PEs P ® (2-2

and it iz obvious that

at R =1 (2-24c)

= g
e
= i

YRy

,p=0 at infinity ' (2-24d)

Example 2) Similarly for an ellipsoid (cf. ref. 7), we have
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Qo
@ (n) = abe { S (2-25a)
KE
and
At
862 nds ;
xp,(n) = 92 = 2mabe | XSS (2-25b)
2 ox o (@™ s)w(s)
whezre
= gabc 5?; x” + yz + 2 1) ds (2-25¢)
0é = (Y K ’ e 27 § & -
*;;_§ a%ts  bte cts w(s)
W(w:\/(aa-s-s) (b2+8) (c%+5) (2-25d)
and v is the positive square root of
x° + v + 2 = 1 (2-25e)
g = P
a‘2‘+m bgwfg e.:Z-M’g

¥

But in general for a semi-infinite body or a two dimensional body,
the boundary condition ? =1 at infinity is o longer satisfied and
in fact E’ grows to infinity at infinity. Even if it is so it will be
seen that the generated Stokes solution can be used to form the so-
called intermediate solution for various bodies.

Exawmple 1) For a two dimensional cylinder, we have
e;@l(r) = log r {(2-26a)

and

@g’g}. X 2
X{ﬁz(?) = -“é*‘%w = ;E (2“26@)
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Then we obtain

- T 1 % 1 %

g =1 (logzr+ -??:) - Ve - 3 V(;g} (2-26¢)
and

Q=0 atr =1 (2-264)

E‘ - @ as ¥ = w (2-26e)

This solution has been used in Ref. 2 to form the so-called inter-
mediate solutions.

Example 2) For a semi-infinite paraboleid 7 =V 22_%_2,2 -z =],

we have

@,(7) = log 7 = log V2l 22 - z) . {2-27a)
and

x,(7) = = == (2-27b)

2, &
Z T = 2

It will be shown in Chapter 6 that the following solution

?; = (logs + 1) - xViegr =V (%,}) (2-27c¢)

generated from (2-27a,b) will be used to form the intermediate solu-~
tion. Thus we have shown that there is a certain relation between

the Laplace and the Stokes solution.
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IIl. LOVW REYNOLDS NUMBER FLOW PAST A CIRCULAR CYL-
INDER AND A SPHERE '

3.1 Introduction

Ref. 1 and Ref. £ developed certain methods and ideas, such
as the use of various limits and thelr associated expansions and
matching between expansions, for the purpose of obtaining asymp-
totic sclutions for low Reynolds number flow past solids in two or
three dimensions. The idea will be briefly reviewed here, and it
will be seen later that these methods may be generalized and
adopted to the problems studied in the present thesis.

We consider viscous incompressible flow in two or three
dimmensions, past a body characterized by one length (for instance
the radius of a circular cylinder or a sphere.) The governing

equations are the Navier-Stokes eguations which in dimensional

form are
==gn | e 1 . Z, = ”
q* Vg +=Vps= vV g (3-1a)
Vege=d | (3-1b)

q =90 at body (3-2a)
q=Uiip=p, at infinity (3-2b)
where 1 is the unit vector in the x-direction. IZquation (3-la,b) may

be non-dimensionalized by use of proper non-dimensional variables

o

e b ek . 3
such as %40 Ho P o P oo 9 and Re (see the List of Symbols). This

may for instance be written



FRERACH A e (3-3a)
V.3 =0 ' (3-3b)

MNote that, in the present case, there is only one non-dimensional
parameter, namely Re. I the (;;i) variables are used as above, Re
does not appear in the eguations but it occurs in the boundary condi-
tions since the body dimension is of order Re.

The problem is to {ind an asymptotic expansion

% i hiaid r .
q ~ j;@ qg (x.l, Re) {3-4)

which is uniformly valid for the entire flow field for small value of
Re. Here ;;’ES the exact solution of equations {3-1) and (3-2). The
degree of approximation is measured with a suitable asymptotic

sequence of function of Re, ¢{Re) having the property
q propercy

ﬁ'»%-ﬁ,

c = 19 iz . _.,.é.m = 0 : (3&5)
Q oy .
Re=~0 i

we require the :@ﬁh gﬁ&?ti&i sum to be valid to order €0 i.a.
: B oep
% I g.{x,Re)
. q = j:@ AR
Lim : p
Re—=0 n

= 0 uniformly in space (3-6)

The method used in Refs. 1 and 2 consists of constructing two ex-
pansions which are not uniformly valid in the entire flow field but
which overlap and which may be combined into one uniformly valid
expansion. A principal idea is that of limits. Consider a non-

. . . = . : ~
dimensional flow quantity ¥ (such as g ) which depends on %, and
Re (or equivalently on *; and Re). Let £{Re) be a function of Rey-

nolds nurmber. We define
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Eimf F =1limF as Re =0,

o

x(ﬂ = i = constant’ {3-7)
! ﬂ?&a}
The limit obtained by choosing f(Re) = 1 is called the Oseen or cuter
limit
Um_ F = lim F as Re = 0, x, = fixed (3-8)

If {{Re) = Re we obtain the Stokes or inner limit

%
iim@ F=limF as Re =0, %, = fixed

(3-9)
If Re< < f(Re)< < 1 the corresponding limit is called intermediary.
With each limit and a suitably chosen sequence {ﬁﬁ we may

asgociate an expansion obtained by repeated application of the -

e e ) ) a W.
limit. For example, the Oseen expansion of

q is
w&* el g
q ~ "};‘,@ € g (xi) (3-10a)
3: I
= T
where 8, = hm@q
Py q = € B
Entl = lim =l d ) (3-10b)
“ntl

Similarly by a repeated application of the Stokes limit gives a
Stokes expansion

] il =
~ = ¢, {Re} b.{=,
q i=o jiRe) =)

o

TR

(3-11)

Dy insertion of these expansions into equation (3-1) (written in Oseen

and Stokes variables respectively) one cbtains the eguation for the



w7~

ez =g

gj and R For a large class of bodies, including all {inite bodies
- = - ‘g .

By = 1 and gjg then satisfies the Oseen equation. The Oseen ex-

pansion should then satisfy the outer boundary condition (3-2b). The

Stokes expansion should satisfy the inner boundary condition (3-2a).
&3

dition for the % are provided by matching principles which will be

The inner boundary condition for the and the outer boundary con-

discussed below in connection with specific examples.

3.2 Low Reynolds Number Solution for a Two Dimensional Gircu-
lar Cylinder

Let the radius of the cylinder be A. In the Oseen limit the non-
dimensional radius is then equal to Re and the cylinder shrinks to a
line with neo influence on the flow. Hence, lim 0;?*3 ?’; however, be-
cause of the boundary condition (3-2a) this liznit is non-uniform near
the body where ?:@, Similarly one can see that limg‘g‘*a Ois a
limnit which is non-uniform at infinity. Obvicusly these two limits
cannot be matchad. To overcome this difficulty Kaplun observes that
if limf is applied to the Navier-Stokes equations, then for any f(Re)<<l,
the Stokes equations result. “We then say that the Stokes equations are
formally valid for f{Re) <<1. Kaplun then assumes that there exists
a solution (which need not be a limit) of the Stokes equations which
is valid in the same domain as the equations. This means that
there exists a function go(x:,Re) such that if ;;* is the exact solu-

tion of the Navier-Stokes equations, then for any {(Re) < <1

w=go
13

88

S lim o
Re==0

3

}?c;* 0 uniformly for Re i? < fl(Re) {3-12)

We note that ¢ = Re is the surface of the circular cylinder and that

hence u, must satisfy the boundary condition on the body.
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s =i
Since qy = i is obtained by the outer limit it is expected
L
that it is valid outside of any constant value of ¢, i.e.

lim |q -2,/=0  uniformlyforcs?<em (3-13)
Re=0

where ¢ i3 a constant > 0. With the aid of Kaplun's extension theo-
rem one can show that the domain of validity of g@ is larger than

that indicated by (3-13). There must exist a function faﬁ%)@d

such that
. R | = ~
Hm |q -pg |= 0 uniformly for fy(Re)< F <  (3-14)
Re—=0

Since the only requirement on ﬁE(Re) in {3-12) was that fL(R@) <<}

we may choose it such that fa(Re) < < ﬁl(Re). The approximations

ey
U, and e have then a domain of overlap. In particular there exists

a function f(Re) such that fg(Re) < < f{Re) < < fg(R@) such that

. =gl = ‘ ]

Hmg |q - u |=0 . {3-15a)

A =t > m 2

lmg |q =g |=0 (3-15Db)
and hence

Eﬁmg 8o = Byl = 0 {3-15¢)

Thus, while the cuter limit cannot be matched with the inner Limit
it can be matched with an intermediate solution. The matching is
sxpressed by {3-15¢).

The function ?@ can be found easily. lLet

e
o = & b4 %% P%X#

&Ezi {log » %‘%)w? V e °%‘v ;?2 {3-16)
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This satisfies the inner boundary condition

R

#
}‘;al =0 forr =1 (3-17)

Actually ;:; is generated from the Laplace solution (cf. 2-26)

@ (=) =log = (3-182)
_ by '
SHEN O I S (3-18b)

We now put -
u, = €(Re) hl(xz“) (3-19)

- *
where e{Re) is to be determined from (3-15¢c). Obviously uﬁ(&%egxﬁ
satisfies the Stokes equations and the inner boundary conditions. To

apply (3-15¢c) we write E‘@ in terms of xgﬁ and we use the fact ';%: i.

Then
?a; -1 = 1(elog ?% - 1) + efiflog P 4
{£) 2 £y )
, . A£) 8) _ 1 £7(Re) o) %
+ log §(Re} - L vif) L) s v 20y (3-20)
¥ Re r

We can see that (3-15) is satisfied if ¢(Re) i3 chosen such that

lim (-¢ log Re)=1 {3-21) .
Re—0

Hence, ¢(Re) may be assumed to satisly a relation

-

. 1 . B
-¢ log Re=1+ %@1@% bzaz Y o o o o s {3-22)

Where the bn can be normalized later. DNote that in this case the

overlap domain ie very small. A sufficiently slow limit is obtained
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by taking

f{Re) =

T (3-23)

The higher order approximations are obtained by a similar

argument. Ve assume ti:at there is an intermediate expansion

ity o0 o= -3
q ~ Z_e u_(x, Re) (3-24)

n=0

which overlaps with the outer expansions. For instance, matching

to order ¢ requires
semadzy o = e
i+teg, -{u_+eu
@1 ( O € 1)

limf - = 0 (3—25)

for f(Re) in some overlap domain. For further discussion the reader
is referred to Ref. 2. FHere we only give the results. The function

fg’; muat satisfy the Oseen equation aud is
emin - .pi;g i = 3 -%;; 1 = a0
g = -2i et ’éio(jg r) +2Vie K, ($r)+ log v } (3-26)

The function u; must satisfy the Stokes equations and bave the form

N P
B

uy = Cug (3-27)

We can make the constant ¢, equal to zero by choosing b, =y = log4 - &,
1 q 4 g9 Y g Z

bn = 0 for n> 1. This gives

¢ = 1 (3-28)

4
log??é%»%—y

3.3 Low Reynolds Number Solution for a Sphere.

Ve now consider flow past a sphere of radius A and center at
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origin. In this case there exists a solution of the Stokes equations
satisfying the boundary conditions at the body as well as at infinity.

The velocity can easily be generated from Laplace solutions as

g

discussed in the preceding chapter and is given by a function A

§”=?°%%+ K’a ~ (3-29)

huf =

where
B WS S vi
%
1 g R
=g £
A .=V m;a;m(_}m

2 o R

This solution is the first term of the intermediate expansicns and

also of the Stokes expansion, i.e.

w =h = A (3-30)
=] [&] &

Due to the simple structure of TFO the matching condition (3-15c)
reduces to the boundary condition ?;0 =1 at R* = ao. The fact that
.Cz; satisfies the ""correct'’ boundary condition at infinity, i.e. the
same condition as the solution of the Navier-Stokes equations, should
be regarded as an exceptional coincidence. This shows that in the
present case, there exists an overlap domain between inner and
outer expansion and thus in the present case the inner expansion
and the intermediate expansions are the same.

gi can be determined by th_i condition that it should cancel
uQ i | i

‘1

€
1
governing equation for gl is the homogeneous Useen equation. This

the unbounded term of limf , i.e. the term - % « The

gives



g =5(-1 &+ V=) (3-31)
R R
and also
51 = Re {3-32)

Then hl or u, can be determined by the matching condition
'?b b o4 mee ==l
1%—?&@@1 - (u@ + Reul)

lxmf Bo = 0 {3-33)

for f(Re) in some overlap domain.

3.4 Intermediate Sclutions and Stokeslets.

A main underlying idea in finding the solution for the finite
cylinder under the present study is that the so-called ''Stokeslets''
forrm "'intermediate solutions'' for variocus types of bodies, e.g.
the circular cylinder, the semi-infinite cylinder, the paraboloids
of various types, etc. and hence the '""Stokeslets'' will form the
intermediate solutions needed in ocur expansion. This idea is best
explained by counsidering the circular cylinder at low Reynolds
nurnber discussed above. The governing approximate equations
for small r are then the two dimensional Stokes equations. As is
well known there exists no sclution of these equations which satis-
fies both the conditions at the body and at infinity. However the

slowly growing solution

£ ] ‘
:ﬂ}we;-i‘) 5 2@“&, b4 LI i 3 b4
hy = i {log » + g)‘-?v r -3V ;?52 {3-34)

4

is often considered as a solution for the circular cylinder and this
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=g

may be justified in several senses. hi satisfies the Stokes equa-

tions and the sxact boundary conditions at the body, i.e.

s

%
By (x}) = 0 at ¢ =1 (3-35)

and multiplying by proper ¢(Re), an intermediate solution is found

e

P
and matches to the outer solution g, = i in some overlap domain,

The part

g;l (Ki*) = T log E* - x*v* log B."* {3-36)

#e
of hl(xi) is called a ''Stokeslet'’'. Note now that the ''Stokeslet"’
itself is a solution for the circular cylinder in another sense: when

multiplied by ¢(Re) the ''Stokeslet'' forms an intermediate solution

=1
143
e

E&i = e(Re){? log - K*V* log E”*} (3-37)

which satisfies the boundary in the limit Re = 0 and it also matches
to the outer solution. It is a sclution of Stokes equations and is uni-

formly valid to order unity, i.e.

. ] e .
hmf @ - ug) = 0 {3-38)

for Re € f(Re) < < 1. This is evident from the fact that omitted

s

terms in hg are bounded and hence small after multiplication by e.

s

Equivalently the ''Stokeslet'’ hll may be described as a Stokes solu-
tion which grows slowly at infinity and instead of the exact boundary
bug |

conditions is bounded along the body; the solution a?; = ézhl there-

fore satisfies the condition at the body to order unity; Ei == 0 at



r$ =1 as Re = 0. We see therefore that the exact conditions at
the body produce effects of higher orders only and that '"inter-
mediate solutions'' may be formed with "'Stokeslets'’ which are
bounded at the bedy. It will be shown l\ates: that the idea of

‘'Stokeslets' is very useful in the present study.



LT

IV. A RELATED PROBLEM FOR LAPLACE EQUATIONS

This thesis is concerned with asymptotic expangi@ns ;mf the
solutions to certain boundary value problems for the Navier-Stokes
equations. In this chapter, we will discuss similar problems for
the Laplace equations. The purpose of this study is twa»fciéﬁi, First
of all the Laplace equation will serve as a model equation. The
problem of end effects occurs for certain béun@a?y value problems
of the Laplace equation. Since this equation is considerably sim-
pler than the Navier-Stokes equations, the nature of the end effect
may be stuﬁ%ed in detail and various limits may be discussed. Sec-
ondly, as seen in the preceding chapter, Laplace solutions may be
used for generating certain important Stokes solutions.

We shall formulate a certain boundary velue problem for a
Laplace solution outside a finite cylinder, the Vexact'' Laplace
problem. An approximation to the solution of this problem will be
obtained by solving a corresponding approximate'' problem. For
comparison, the somewhat simpler case of an ellipsoid of revolu-
tion will also be discussed. Also, certain general remarks will be
made about the difference between the end effects for Ytapered"

and "Yuntapered'' bodies.

4.1 The Exact Laplace Problem.

The exact Laplace problem we wish to study is to construct

a solution  satisfying the three dimensional Laplace equations

o2 2 2
&

*%«@;%-%@.ﬂ%g@ (4-1)

Ox oy bz
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outside of the finite cylinder shown in Fig. 4-1 and satisfying the

following boundary conditions

@e0 at infinity {4-2a)

and

p=1 on the surface S{\) {4-2Db)
of the finite cylinder

Y
S N L,
N f of . u]
-<———————O=L')\———————>l>;]-‘*
L L >
Fig. 4-1

The finite cylinder is symmetric with respect to the plane z = 0 and

¢the surface S (\) of the cylinder is defined as follows
s A / for ca €z €a

392 + {z % a%a = K‘Z for z in the interval {4-3)

[-1., -al oF {a, L]

where a = L, = A
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The exact problerm posed above is a well defined problem to which
both existence and unigqueness theorems can be proved.

The exact problem is the so-called exterior Dirichlet prob-
lem and the existence theorem of this problem: has been discussed
by I. Petrovsky in Ref. 6. The existence of a unique solution is
also physically plausible. One possible physical interpretation is
that the exterior of the cylinder is heat conducting, the tempera-

gure at infinity is Tm’ the temperature on the cylinder is T c and
T-T
P = “T”:?@; . The solution of the Laplace problem then represents
¢ o

the steady~-state temperature distribution.

4,2 The Approximate Laplace Problem.

While the exact solution to the problem just formulated may
be found in principle, we shall be concerned only with the follow-
ing approximation. We assume that the quantity L is fixed and that
N tends to zero. The exact solution then has an asymptotic expan-
sion. We seek the uniformly valid leading term of this expansion,

i.e. a function ¢ A such that ¢ is the exact solution
@ -9, =0l (4-4)

aniformly on and outside the cylinder. %ﬁerev@(l) denotes a function
which tends to zero as \ tends to zero, uvniformly in the domain de-
scribed. We note that ¢ , may depend on A. Furthermore, it is

of course not uniquely determined. We are only interested in find-
ing one P which satisfies (4-4).

An approzimation to the exact solution of (4-1, 2) may be found
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by solving the following approximate problem

V=0 (4-5)
and |

Yo = 0 at infinity {4-ba)

Pa=ltofll on the surface S(A) (4-6b)

of the cylinder
Here ofl) denotes a function whose value on the surface of t}zg cyl=
inder tends to zero uniformly as A tends to zero.

It can be seen from the well-known maxiraurm principle for
the Laplace equations that the solution of the approximate problem
gives the desirved approximation to the solution of the exact prob-
lern. The maximum or minimum value of a Laplace solution must

h:

ccecur on the boundary. Let, as before, ¢ be the solution of {4-1, 2}
and @ p the solution of (4-5,6). By assumption, for any € > 0 there
exists a A, such that for A S Jeo - @A | < € on the boundary.
Since ¢ - @, satisfies the Laplace equation it follows that ]qaec;?ﬁ;j

is also < € in the domain outside the boundary. This is exactly the

property required by the approximmation ¢ A according to (4-4).

4,3 Cuter Limit and Shank Limit.

Cuter limit: If we keep v and z f{ixed, the cylinder tends
to a line segment as \ tends to zero. We call this limit the outer
limit., It is to be expected that for any point at a finite distance
from this cylinder {r# 0 or jz&: i > a) the influence of the cylinder

is negligible and that hence the outer limit is zerc. Thus we have
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Cuter limit: r and z fixed for A == 0. {4¢-7a)
Obviously we have the outer solution
P, =0 | (4~ 7b)

Shank limit: Obvicusly the solution ¢ o is not uniformly valid
near the cylinder since e;ﬁ& = 1+ ofl) on the surface of the cylinder.
To study the behavior of @ A in the neighborhood of the cylinder we
scale the coordinate r with A. The coordinates obtained will be

called shank coordinates. The shank coordinates are

r o= %}@,nd z {4-8)

The corresponding limit is
s
Shank limit: ¢ , z fixed for A = 0 {(4-9)

In the shank limit, the boundary conditions at the surface of
the body should be satisfied as far as possible. However we observed
that the radius of cylinder is \ for |2 | € a but decreases to zero for
]z j 2 a. Thus, the scaling with the cylinder expressed by {(4-8) is
correct only for ] z | € a and we expect the method to lead to diffi-
culties near the ends of the cylinders.

Disregarding these difficulties for the moment, we find that
in the shank lLimit the three dimensional Laplace equation becomes
two dimensional. A solution of this equation satisfies the boundary

conditions {(4-6b) as follows

g =1+ alogr (4-10)
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where A so far is arbitrary. The factor A may be determined by
matching @, and @, a8 follows. We consider the limits which are

intermediate between the inner and outer solution, i.e. the limits

r = ?{% and z fixed for A ~ 0 (4-11a)
a8 i
where
<<\ <<l (4-11b)

and requires that for some range of intermediate limits ¢ - ¢

tend to zero. This gives
1+ A [log ¥y " log A+ log n{A)] — 0 {4-12)

This is satisfied by taking

1
l@g«g-%— c

A= = € (\) {4-13)

provided 7{\) is such that € < < log nand n < <l. Here ¢ is any con-

stant. Hence we obtain
&
Pg = L-€{\)log » (4-14)

The term containing log z$ is a two dimensional source. Ve
have obtained a constant source distribution for lz & < a. A solu-
tion which contains the shank solution and the outer solution is ob-
tained by putting three dimensional sources of the same strength

along the z-axis for |z | € a. Thus we have

¢ = ‘%ﬁ () % = (4-15)

-a YV (zwé;)a + rg
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Cbviously this satisfies the three ﬁimamsi@n@ Laplace esquation
A\ ¢, = ] 5 {4-16a}
and
@, = 0 at infinity | {4-16Db)

A staternent equivalent to (4-16b) is that in the outer limit it tends
to zero.
To verify the boundary conditions at the surface of the body

for g B ‘ < 8 we express ¢, in shank variables
. ,
@ =1-€eMlog v + Se(h) log 4 (a¥-2%) + o) (4-17)
#
This showsa that the b@e,mdar'y conditions are satisfied for v =1, ‘z [ <a.

4,4 Fallure of Constant Source Distribution, End Limits.

Yie note that the first two terms of (4-17) represent the solu-
tion of the two dimensional Laplace equation obtained earlier. The
third term is a constant as far as the two dimensional equation is
concerned and the inclusion of this term does not change anything

< a, However we note that for

in the preceding argument for | z |

| 2 | = a this third term becomes infinite and the boundary condition
is not satisfied. This shows indeed that the method used is not ap-
plicable near the ends of the cylinder. A discussion of the solution
for | 2 | near a is thus needed.

End limit, Because of symmetry it is suifficient to consider

the left end only. We introduce
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% % mi
End coordinates: ¥ = %, z = z{L {(4-18)
and the corresponding limit is
. % %
End limit: » and 2z fixed for A\ = 0 (4-19)

Note that in the end limit the left end retains its shape. It is a
# #
hemisphere of radius unity with center at ¥ =0, 2 =1. The co-
. . L% 2Lt N «
ordinate of the right end is 2 = B which tends to +o as A = 0,

Thus we obtain the semi-infinite cylinder shown in Fig. 4-2.

Figo %”a

We now study the end limit of (4-15), i.e. the potential due to a con-
stant source distribution of strength € (N\) for | z | € a. Introducing

end coordinates into {4-15) one finds

3 5 % %
@, = 1€ (\Mlog 4L - e (M) log M+ £€(Mlog [VAz »1)%? 2 +{z -1}]

+ Q(kzﬁ (4-20)
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o . #® .2 # #
On the hemisphere \Az -1} 4+ r 2 =land 0 €z <1 or on the cyl-

% # L.
inder v =1 and 2 = finite, we have

@ = }5?5‘L o(i) (4-21)

Thus we can see that @, does not satisfy the required boundary con-
dition ¢, =1 + ofl) on the surface of the semi-infinite cylinder. In

Y sens * #
addition, for v = fixed and 2 = oo we have

G = %'%" %é(h) log 2z + ofl) (4-22)

* %

Since log 2z is not bounded for z — oo the limit is not uniform

# . . . . . .
for 2 - . It will be shown that there exists a transition region

. . 1 , . .
where ¢ varies from 5 to 1. This can be seen by introducing the
intermediate variables {(i.e. variables which are intermediate be-
tween the end variables and shank variables}).
Intermediate limits. If we define the intermediate variables

g+ Lo \ ®_r 1
as g, = TV where A SwlA) €£land » = o P, way be expressed

in terms of intermediate variables as follows

1
@, = 1+ -Zgé (A) log wih) z&%" ofl) {4-23a)
)
=1-%+ ol (4-23b)

for w{\) = k@‘z and 0 € €1. Thus in this region, the limit is not
uniform and varies from %ﬁo 1l as ¢ varies from zero to l. It is

also interesting to know that

@.=1+o(l) (4-24)



-34a

for all w{h) such that
€{\) log w{h) = 0 {4-25)

For instance w{}) = e” satisfies equation (4-25‘5}, Thus the region
where @, = I + ofl) satisfies the required boundary condition can be

extended from the shank region to the following larger region
F o evge B n
L+ OlEV)szsl - OET) (4-26)

To summarize: the constant source distribution gives a con-
stant value for ¢ on the left hemisphere cap of the finite cylinder.
At the junction between the cap and the shank part of the cylinder,
this value changes discontinuously to a constant which is twice the
constant value of the cap. Actually a gradual transition can be found
by using the appropriate intermediate limit (i.e. the limit which is
intermediate between the end limit and shank limit). Vhat is needed
is a source distribution which gives a constant value on the cap
without discoantinuity at the junction. We shall therefore look for
a madiﬁcaﬁi@m of the constant source distribution near tz ; < a.
To clarify the nature of this end source distribution is one of the
principal objectives of this thesis. As will be seen later, the re-
sults obtained may be carried over from the Laplace to Navier-

Stokes case.

4.5 The Nature of End Source Distribution for the Finite Cylinder.

This can be clarified by studying a rather general Laplace

solution
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a
s
@, = v § £(4:0) —g5 (4-27)
=3 {z=-L) ‘%‘fa

where y(A) is a function of A to be determined and y(A) tends to zevro
as A tends to zero. Dy symmetry, it is sufficient to discuss the left
end only. Since in the end limit the cylinder becomes semi-infinite
as shown in Fig. 4-2 and the radius of the cylinder iz unity and inde-
pendent of A we require that the source distribution function f£{{,A)

when expressed in terms of end variables is independent of A. Then

we have
{%
L e Lt at, o
(i@L = y{d) 3 f(mr% SO S (4-28
-2 ANz-2)x?

Now if we express ¢ in terms of end variables, we obtain

x
a=vm 7 et (4-29)
1

\/(z*»@*)aw*g

We rewrite ¢ as follows:

2L

S -
g =y [ e’ { : - %»J at®
1 /AR RS
2L, |
-l L%
py (P Mo (¢-30)
Joot

%
We shall lock for a function {{z ) such that

b ) et e rp)~wasn—0 (4-31)
4

1

2L
A
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and such that

221
" ;g fe™) { L - j@g’“ (4-32)
1 wz*~§*)3+r*g

. 2 ;s @ s . % 5

is bounded on the surface of the semi-infinite cylinder for r = fixed
s

and z = <0,

If we put

v = ﬁgy (4-33)

we see that by definition the second term in (4-30) tends to unity.
Since F(A) = w y(A) — 0 and the first term y(A)Y tends to zero for
finite z$, that is the end limit. Since furthermore § is bounded
for zz* - o and z’# = fized, we expect @y, to be valid not only on the
left cap but also on the shank part of the cylinder.

The constant source does not satisfy these requirements. If
£(¢¥) = constant, then (4-31) is satisfied but  is unbounded for

% . ,
z =>o. Infact, inthis case

= -clog (W™ -1)%+ £*2 - (2" -1 (4-34)

i *
which is bounded for z = finite and r =1 on the surface of the cyl-

"
inder but for z - o we have
%
Y = ¢ log 2=z (4-35)

% i
Since the Y corresponding to £(z ) = constant is infinite for =

* . % :
large, f£(z ) must decrease to zero for z large if we want § to be
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&
bounded. On the other hand, {{z ) can not decrease too rapidly.

#*
If we assume, for example, {(z ) = m%}? , n» 0, then

4
2L
- 1
F (M) =§ Z;gﬁg al = 1. A (4-36)
1

and F{\) does not tend to o as A ~ 0,
*
In order to obtain the correct {(z ) we study the behavior of
% *
Y for zﬁs => @ and assume only that {(z ) =0 as z — w. We divide
the range of integration in (4-32) into intervals {l,z@} ) [z@gagfé )
7 2L e
[zl,zzﬁ [zg.zsg and [233, 5 - 1] where z, 2y, %, and 24 are defined

as follows

%

m@ constant > 1

p—
Z, = yz¥
&

2y % (1 - Bz

2y = (1+ Blz

{£-37)

% p— #
wheve p<<1]l, 83 == o and {{(vz* )log § =0 as 2z = ow. Then for

% * )
z —w, ¥ = fixed we have the asymptotic representation

LI ;
Wz o)=L+ I+ Ig+ I+ Ig+ 1, {(4-38a)
and 5 2
mg £ m®
¢ ; ¢ %
L= £(e®) dz = ﬁg VoL(L )ag® + @(%-5;
5 v &
1 ,\/(z*wé;s )2‘?_ 2 1 %
= Zp ¢ Ol | (4-35D)
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2y %
( (2" db <f(z{3)§ ag”
¥
Y A O «/*~é Yorg2

§(z@)zl

._aﬂgwm-%ﬁ

* Ol=p) =
S z

&=

B 1
+ Ot=x)
=

{(4-38¢)

22 52
1 §“’ g yar” _ ﬂzﬂg i 1 a*
l\/sﬁ wf )ZAW*Z P M *

w #
e PUTARE

3 mzz ,\/z =z +
z -zgt /(m!,zz) e 2

% %’Z
f(wz*) 3.05; @“g‘m + O "%E‘%)

< I
& Zo 4

f(v’g;g)g

= fwz*) log p+ © (m"rw-")

(4-384d)

: L
= A — Qi; =
Z 5 ,\/(z =L ) 4r

{4~3&e}

By putting t =8 -{ and by use of mean value theorem, we obtain
Z-5

, ~o22
f(z -t) * at
1,=1 de = f{z +£) o
4 > N / Py
ZeZq to% *2 Z-%4 taﬂ%f 2
%
_ 2 ezzé» {z azz)z"ez‘ 2
= f{z +t) log
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=£[(1+ n)z"] [2log 2" + 2log 2f - 2 log ¢ ]

Bsnsp
e
+ @Ef(z )E {4-381)
Bz
2L
29 1 1 .
Iggj (e ) [ = - =] dl
- %
. P L L
2L 1
AT %
Stz | : -5 | at
zbg »\/iz*-é )Z{;?*Z ¢
#
S£(zs} log (% «=l-2)-log (%«i)
“ f(ESE ‘
*log (g -z )-logz,| + 0O KWW?E»E (4-38g)
(53"5 )
sk
= (z,)| log {1 - 2%: (z -1)] + log @
a@:
rofz), ] (4-36h
@&i
z 2
Z Z
3, % & e ® P
= HE) gt (G d%ug“ (L) 40*
1 : 1 z ?
Z
.e"5’3 5,* o
since 5* ﬂﬁ;-g- d@* = f(z#) i log Zy - log = ﬁ
= = £(z") log (L+ B)

= O[f(=")] (4-38i)
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therefore
*

1, = g: f@ L at® + olez™)] (4-38j)
¥ é
1

From the above equations, if we choose B such that
JRE— %
f(ve® )log B=o{l)asz —w (4-39)

we find that terms which may not be of order ofl) come only from I‘%

and Ié, Then we have
=@e
£(¢ o
dg
*’;

Gz ,E’% = 2f[@ + ?)z ] log z § + ofl)
1

for z— o and - €1 < p | (4-40)

%
In fact, we may choose 8 = {(vz#®) = 0 as = — w and even with this
small B the condition £(vz* ) log P = o(l) is also satisfied. Ve can
%
say that (4-40) is tzue for any § such that {(Ve*) < B<1for z — .

* .
If £(z ) is emooth enough we may write
. s

L
Wiz ") = 26(2") log 2" - § 2o ag* 1 oy (4-41)
[ é .
1

%
The sum of the first two terms should be bounded for z large. This

#
can be easily obtained by letting f(z ) decrease to zeroc as m}?g . How=
z
ever as we have seen in this case the corresponding F(\) does not
_ , -
tend to infinity. Thus we shall try to find a f{z ) for which the sum

of the first two terms are bounded without actually going to zero

* . . L
for z large. We therefore consider the equation
z¥ .

Zf(zg) log za%e - % f__(;%_) ﬁgj = consgtant (4-42)
: £



-4l

By differentiation, we obtain

£ .
daf "
Hz )y 225 1oga® =0 (4-43)

3 dz

This equation has a solution

£fz7) = —=2

3 /lagz*

The constant A has no significance because it will be absorbed into

{(4-44)

¥ {\). Thus we can put A =1 and

%
flz7) = b (4-45)
/ #
logz
Substituting into (4-31), we have
% ! 1 a L [ an
F(\) = & ——— 2= 24 log (2 - 1) (4-46)
J e Ly
1 logt
tends to infinity as A — 0 as required. Then from (4-33), we have
YN =5 e (4-47)
2L
A/ logi==-1)
For simplicity, we can take
1
1 ‘Z 3 : o
Y(\) = = e{\)” + O\ {4-48a)
or
1
e = ! (4-48D)

log %% log2L

Thus the constant ¢ in {(4-13) is chosen to be log 2L. Therefore @



is determined as

1 -1
3 1 ag”

4
é '\/i.ogéf ,\Az*«- aeg)245- r*a

" _
As expected, the f(z ) obtained does indeed tend to zero more slowly

(4-49)

than -%;_ for any n > 0. For comparison we shall also consider the

effect of choosing
f(z") = =2, n>0 (4-50)

% %
This gives according to (4-41) for 2 = o and r = fixed

z

z*ﬁpi B_{

dftogl’) 1,
3m§r—-— ofl) (4-51)

¢ = 2{log
y [ogg7}®

The integral diverges for n21. For 0< n< ] one finds
b =252 10g &)+ o) | (4-52)

which tends to infinity with z* except for the casen = % This justi-
fies the solution of £(z") in (4-45).

The heuristic argument used in finding @, a8 given in (4-49)
would end up that Py, = 1+ ofl) on the left end cap as well as in the
shank region. "e shall now investigate in detail how it behaves on
the surface of the finite cylinder. From (4-30), (4-438) and (4-48)
it is obvious that @y, = 1+ ofl) on the left end cap and on the surface
of the cylinder where z* is finite. For z$ large, we can, in addi-
tion, easily show that @, = 1+ ofl) is satisfied in the shank region
too. The terms in {4-38) depending on how z* — o with respect to

the upper limit of integration as A == 0 are Iéla lg, and Ip. As long
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as z$ is in the shank region and far from the right end, we have

z$ = 52%:& - f% where 0 < A < 2L,. Then 1%9 Iy and I, are unchanged.
By substituting f(z*)«@btainsé in (4-45) into (4-38), it is obvious

@, = 1+ ofl) as A = 0 on the surface of the cylinder. Thus @Lzﬁ.—%e@(l)
is satisfied on the surface of the finite cylinder, not only on the left
end but also in the shank region. DBut when zﬁa is in the right end
region, @, = 1+ ofl) is no longer true. In the right end region

z’ag = %‘i +b where b is any finite cmms;mto In this case, we have

to put z, = % =1 in (£-38) and we find I is no longer needed and

I, = £z} log = + ofl) (4-53)
and
%
& ,
I = %%.J ag® (4-54)
L

Then from (4-30) and (4-41l), we obtain
g, =Ly y[1, - 1] + ofl)
L6
=1-=y0) I, + oft)
1 ; p o
=gzt ol (4-55)

The same result will bs obtained in the right end region if @ =@,
where ¢, is defined in (4-15). Thus in the right end region, @, has
the same boundary value as if the source distribution is constant.
This can be further justified by expanding the obtained ¢ (cf. 4-49)

$ - = R g
for ¢ = fixed and 2 > -L,., Thus we obtain
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@L s 1+ 1
and 1
Zeg?
L
anflog B fla-0)5a2e*e
by
Z=c®
Lo/
= ’% {"é i: 1 d% @(E%
-a i@gé%%g
z»eé
~
-<-§_ i dt ofl)
=2 1@3 :I:%.:g_
2
1 &0 1 df
I, =3 ¢® i‘g - : Z*g
Zﬁé’gﬁ@g ma—*'é I\AZ §.§
a :
=5el de + ofl)
[V Y )
zw€3«/45v§)2+-k2r 2
i 2_%2
& =N
%&1@& < et hr + ofl)

Z=a -t—«/(z a) «H\ r

= 1%%—@ log 2 (z-a) + ofl)

Thus in the ghank region, we have

Py, = 1+ ofl)

as discussed previously. I is worth noting that @, =

shank region too.

{¢-56)

{(4-57a)

{4-57b)

(4-57c)

(4-5€)

14 ofl) in the
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In the right end region, if we choose the right end variables as

=%zl ¥ _r
<4 -ng r -—-“g’ (%“'%(3;

then from (4-60b) we have

.
- % ¢ log ?\[ﬁ’%ﬁ l+.\Az 'M.)g % E‘$2 ] + olt)

%»% ¢ log [(EF + 1) “/@* + 1%+ 2% 1 o)

1]

P

i

i

-%«% ofl) f@r“’f = finite

it

%-%* %- ¢ log 2(»’2’*) + ofl) fox E#-*- w (2-60)

Thus @ = %%- ofl) in the right end region and (4-60) is the same as
{(4-22) due to @, In the transition region near the right end, if we

put L =« 2z = szﬂ we have

@ =1l-5+ o) {4-61)

This is the same as equation (4-23) for é;@c in the transition region.
Since both @, and ¢, are equal to 1 + ofl) in the shank region, we

can say. that on the right half of the surface of the cylinder we have
Py, =P ofl) as A = 0. From this result, we can easily construct

gﬁ%(P;,?\) defined in (4-5) and (4-6) for the finite cylinder in Fig. 4-1.

4.6 The Solution ¢, (B\) for the Finite Cylinder.

From the preceding discussion, we can conclude
@ =1+ ofl) on the left half of S(\) {4-62)

and



e
@y, =@, t oll) on the right half of S(\) (4-63)

By symmetry, a new Laplace solution symmetric to Py, with respect

to the plane z = 0 can be constructed and it is

p«f“b I

RS U 3 1 dag
Rz T 53
-a 4 /log 5= {z-0) +r

(4-64)

The syminetry can be shown as follows:

& @R(g) {£-65)

Therefore it is obvious that

i

Yn 1+ ofl) on the right half of S{\) (4-66)

A

and

P =@, * o(l) on the left half of S{\) {4-67)
Therefore i,ﬁA(P;K) is easily obtained as follows

PN =G 7 O - %

- (4-68)
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Obviously ¢, (P;)\) satisfies the required boundary conditions
Py = l1+o(l)y as A —0 (4-69)

uniformly everywhere on the surface s{)\) of the finite cylinder shown
in Fig., 4-1.

The solution QA(P;M obtained is essgentially constructed by su-
perposition of source distribution. The variation of source strength

can be sketched as shown in Fig. 4-3.

L-2

| log

Y
~N

Fig. 4-3

The source strength has an inverse logarithmic variation near cach
end and in the limit A = 0 the source @%feng@h between the two ends
is approximately of constant strength ¢ ¢. This shows by A gives
the correct boundary value in the shank region.

In addition to source distribution, it is also interesting to know

the total source strength of the solution e;;)%(P;M. The total source
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strength can be obtained by studying the following integral for M=o

2
I= 2 mgiwa {4-70)
@e/ oy
~a4/log L-t
I we put v = 4/log ﬁ%% and 7 =4+flog é%ﬁ we get
kg
¢
I=2\§ e dy (4-Tla)
90

and v} = oo a8 A~ 0. The following asymptotic expansion is obtained

for n oo
e S,
4 oe dywmz{; oot . {£-71b})

The mathematical proof of this asymptotic formula is given in

Appendix A, Therefore we obtain

ro1 i 1
I = (g}iﬁ"k; j + 3/2 + e s & o o %
Lz 2L-h 2L J
og —g—  2lleg —y—)
a 3 5
s 2Le? 4 Lela @(@z) (4-72)

The same results can be obtained by expanding the integrand in termns

of series asymptotically

Fra 3, Lt
Is.:‘; J{@éwé %log(ZL)+.,,,.} ar .
-a
L33 |
s 2Lef+ L "+ Ole ™) (4-73}

This justifies the expansion of the integrand in terms of series. The



total source strength is then easily obtained {rom (4-68) as

2

s =gt e L+ @(63)
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4.7 The Solution for an Ellipsoid Cylinder.

{4-74)

In the above, we have shown that the constant source disgtri-

bution is not correct for the finite cylinder shown in Fig. 4-1.

this section, we want to show that the solution for an ellipsoid

In

cylinder can be obtained by use of constant source distribution.

Let the ellipsoid be defined as follows:

SYCN
]

rZ
- +
2

Then the following constant source distribution

C

Py = cz(?»,)}

satisfies

and

Pe = 0 at infinity

~cA/lz- %)
where ¢ =, /szkz and e€(\) =

. log %% log 2L,

1

(4-75)

(4-76})

(4-77)

{4-78)

On the surface of the ellipsoid cylinder @, can be studied by intro-

ducing the following proper limits:
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a) Shank limit. This limit is e‘i@fi&eé as the limit A ~ o for
z‘* = %an@ z fizxed and -L. € z < L. As ) tends to zero with L fixed,
the body shrinks to a line r = 0, -L € } z | € L. However, in the
shank limit a point in epace (z,r) approaches (z,0) in such a way
that % retains the same value. Thus in shank coordinates, the body

remains an ellipsoid as can be seen from (4-75) which may be

written

Undsr this lirnit, we obtain

z + c%»\/z%» c)a-% kzr*z

5
{z - ¢)+a/{z - c)2+ KE'E: 2

1
g@@=§élag

1 i 1 2B *e 2
3¢ log 2{z+c) -FE legm% O{A)

%2

I | r 2
= ¢ log *?€1@§’W+@€K?
N2 4{c”=2")
#2_ 2
=1- %g log = &L + op?) (4=50)
g L -

A comparison of (4-80) and the equation for the ellipsoid in shank

coordinates shows that on the surface of the body
2 .
¢, =1+ O\7) (4-81)

b} End limits. An inspection of (4-80) shows that the term in

B
e{\) is not uniformly small for r large. Furthermore the argument
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#
for finite fixed r in this term also tends to infinity as | z | tends
&
to L., Thus even for finite r we need a different approximation
near the ends of the cylinder. We shall therefore introduce ap-

propriate end limits. By symmetry, we will discuss the left end

only. The left end liznit is defined as N = 0 for z = -%-%i and
A

r = % fized. Under this limit, we have
1

_ lelog '(ZDC}Z% # - (z-¢)

%=z «/__2_5

(gre)™+2” = {2+ c)

Z

- i ,
\/(k‘“z*" ¥ gg R AR Fur L %: - 2L)

3%@«:1@%
4, + 1.2 4 +2 2, + 1
\/R(E-Zt)-%k.x’ - A {2 '"E'ié)
=%§ log 4L «%sl@g )\2 [\/(z%” »%.:;%-gﬁa - (3%. w-%ﬁm
«z»@(xg’)

2

2, 42
v ¥

3&*%@1@@L°%€30g['/(3%”z%;0} w(g+m~§i)ﬁ
+ o) (4-52)
Under this end limit, the body in the end coordinates becomes
S ié«z» o(?) | (4-83a)

Thus to @(kg), the end body ie a paraboloid defined by

r o Ee {(4-23b}

or

'\/f‘i"zé- (2" - o-)? - (2" - -g%_j) géz (4-83¢)
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A comparigon of {4-82) and (4-83¢c) shows that on the surface of the

body
= % 2 oo
@, =1+ OO (4-834d)

Therefore from (4-81) and (4-63d) we have shown that ¢_ = 1+ G(A%)
on the surface of the ellipsoid cylinder. Thus ¢, is the approximate
solution for the case of an ellipsoid cylinder. This kind of cylinder
with paraboloid ends is classified as '"'tapered'’ body. The cylinder
shown in Fig. 4-1 is classified as '"untapered'' body. The definition
of ''tapered'’ and ""untapered'' body will be discussed in the follow-
ing section.

Finally, from (4-76), the source distribution for the ellipsoid

of revolution is constant and the total source strength is

s =Le+ 3(8) (4-54)

4,8 Discussion of the Geometrical Maﬁching Condition.

In this chapter, solutions have been obtained for the finite cyl-
inder shown in Fig. 4-1 and the ellipsoid cylinder defined in (4-75).
In each case several limits have been introduced. From a purely
geometric point of view, the body under both the shank limit and the
end limits must be non-degenerate. In thie section the geometrical
matching condition between the shank and the end limits will be dis-

cussed.

1) Shank limit. The shank variables are defined as zz:* = %,

z = z where M is the maximum radius of the cylinders. The shank
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%
lirnit is the limit A = 0 for r and z fixed and -L.< 3 < L. Under
this limit, the finite cylinder with hemispherical caps and the ellip-
soid cylinder becomes xﬁ ! and r* _‘TL%Q?’ respectively. Both
= ingae ; me = = V.
L
of them are non-degenerate bodies and this shows that the shank

limit is correctly introduced. Now if we define r = E under the

shank limit, we have

r = A zg(z) {4-85)
where £8§z) = 1 for the finite cylinder (4-85a)
¥ 2’@ 2
£.(2) = me“; 2. for the ellipscid (4-£5b)

2) The end limit: In order that proper three dimensional egua-

tions can be obtained, the end variables can, in general, be defined

as ¥, = %, 2, = za’ff for the left end. By symmetry, it is suffi-

A S
cient to discuss the left end only. The end limit is then the limit

A= 0for r,, 3, fixed where @ will be determined from the pure
geometrical consideration that the end body under this limit is non-

degenerate.

a) The finite cylinder with hemispherical caps: From (4-3)

and z = z + L, we have

A R L LI for T <\ (4-563)

re i for z=\ (4-86b)

Expressing interms of 2, and ¢, (4-86) gives
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(%;g ) 7\,‘”(& -, 2z R(&"M = 0 for z, S k(l“@) (4-878)
_ y(l-c) (1-a) -
a= N for z,, 2 \ (4-87D)

Now the only non-degenerate end body which can be obtained undes

this limit is for @ = 1 and (4-87) gives

ré ¥ (z@«}.)z =1 for 7, < 1 (4-582)
£y = 1 for Zy 21 (%»88@3)

Then the end variables for the finite cylinder shown in Fig. 4-1 are

fatW ot W (4-£9)

b) The ellipsoid cylinder. The ellipsoid is defined in (4-75)

and if we express it in terms of »

p
2.2(@1)_2 _.e_ %o .2

o and B We have

T
The only non-degenerate end body which can be obtained is for
2{a-1) = ¢ or = 2 {4-91)

which gives

x, z}% 2, | (4-92)

a semi-infinite paraboloid. Thus the proper end variables in this
case are

3;% ] B s%ﬂ—%j‘ﬁ (%“%3)
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If we define r = ¥, under the end limit, then in general we can

express it in the following form
r, =N £ (z,) (4-94)

Then for the finite cylinder, we have 02 = 1 and

- _ 2 _ o8
fe(zﬁ) =4/1 - (z& Iy for ey =1 {4-95a)

fe (z&) =] for 2, 21 {4-95b)

and for the ellipsoid, we have @ = 2
= e : - O
fe 2oy {4-96)

3) Geometrical matching: From pure geometrical considera-

tion, the following matching condition must be fulfilled between the

shank and énd Limnit

" £y iy Mg(zg(h}) . (4-97)
ixny, e B LN - = Q7
int e N0 k@f ( , A

4 ﬁsﬁxed e ‘;&@ ‘

where % sa% = %%%T and \* < < n{\) < < 1.

This limit is the intermediate Eixﬁziﬁ between the end limit and the
shank limit and i{s defined as the limit A = 0 for zﬁ fixed. This match-
ing condition also helps to check whether the end limit is properly
chosen. In the present case, we can easily show that ’(é»@%) ig fulfilied
for both cylinders.

a) The finite cvlinder. (4-85) and (£-95) give

£(z) = EEE% A\ ] =1 {(4-98a)
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and
z,. 1(N)
folag) = £ [——m]
=f ()=l {4-9EDb)

Then it ie obvious that we have

r

. g _ 4. Axl _
h’miﬂﬁ 'K'f» = lim m = 1 (4‘“@9)
e A==0 . _
zgﬁ:ﬁxed

It can easily be shown that this matching condition can not be satis-
fied if we choose ¢ # 1 for the end limit.

b) The ellipsoid cylinder. (4-85) and (4-96) give

2 2
k\/ziﬁﬁ?%(h} i 2y 7i{A)

fg L Lé
Him, , === {4-100)
int Yo 2 2z wi\}
A a,
AL
k .
= lim 1 w-%;fi;ﬁ = 1 (4-101)
A0 g
=fixed
Z‘ﬂ ixe

Thus the geometrical matching is also fulfilled. It can also easily
be seen that this geometrical matching condition can not be satisfied
if we choose & #% 2 for the ellipsoid cylinder.

4) The ''tapered'’ body and the ''untapered'' body., From the

two spécific finite cylinders under study here we can see that under
the proper end limits, the cylinders, in general, become semi-
infinite cylinders and furthermore there are only two kinds of such

semi-infinite cylinders, i.e.
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a) The semi-infinite cylinders have the character that P,
as z, ~ 0. For instance, the semi-infinite paraboloid obtained from
the end limit for the ellipscid cylinder belongs to this kind. In this
thesis, we will define those finite cylinders which have this kind of
end bodies under the proper end limit as the '""tapered'' body. For
instance, the ellipsoid cylinder is a ""tapered'' body.

b) The semi-infinite cylinders have the character that v a®
finite as Zipy T OO For instance, the semi-infinite cylinder shown
in Fig. 4-2, cbtained from the end limit for the finite cylinder with
hemispherical caps belongs to ﬂmi@ kind., In this thesis, we will de-
fine those finite cylinders which have this kind of end bodies under
the proper end limit as the "'untapered'’ body. From this defini-
tion, it is obvious that the solution @ A obtained for the finite cyl-

wder shown in Fig. 4-1 is in fact valid for any kind of '"'untapered"
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V. LOW REYNOLDS NUMBER FLOW PAST A FINITE CIRCULAR
CYLINDER OF LARGE ASPECT RATIO WITH TWO SPRERICAL
CAPS ATTACHED TO EACH END

5.1 Introduction

In this chapter, the problem of viscous incompressible flow
past a circular finite cylinder of large aspect ratio will be discussed.
The finite cylinder under study is assumed to have circular cross
section with two hemispherical caps attached to each end. The axis
of the cylinder is perpendicular to the uniform fi@“ﬁi at infinity.

The cylinder is shown in Fig. 4~1.

In the present study, two non-dimensional parameters, namely,
Re = %& and He = Eéﬁ where A is the radius of the cylinder and L
iz the half length of the given cylinder, can be formed. The low Rey-
nolds number is understood in the sense Re—0, Be = fixed. This
may be thought of as letting A— 0 with all other parameters (i.e.

U, L, v){fizxed. Thus % ~> gp and this implies the finite cylinder is
of large aspect ratio.  Under this limit, the cylinder shrinks to a
needle of zero radius and the principal limit (i.e. outer limit) is
obviously g@?- 1. Thus the outer limit is the Useen limit discussed
in Chapter 3. The principal limit does not satisfy the boundary con-
dition near the body. Therefore different limits must be introduced
near the body. As we know that in the limit Re—0, there is a very
viscous region near the body and Stokes flow are expected.

The present problem is more difficult than the corresponding
problem for a sphere in three dimensions or a two dimensional

circular cylinder. The reason is that in the present case, the inner
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limit is not uniform even near the body. This has been discussed
in detail in the Laplace problem in Chapter 4. A similar shank
limit will be introduced for flow far from the two ends. This limit
corresponds to the inner limit for a two dimensional cylinder and
the two dimensional Stokes equations are expected. Two end limits
will be introduced for flow near two ends and they are simnilar to
the corresponding limits in the Laplace case. These limits are
introduced with the help of the fact that under these limits, three
dirmensional Stokes eguations are expected and the cylinder be-
comes a non-degenerate semi-infinite cylinder. The proper end
variables which will be introduced have been discussed in the
geometrical matching in Chapter 4. In the present case, the fol-
lowing limits will be introduced

1} outer limit

2} shank limit

3} left end limit

4} right end limit

The necessity for introducing the above limits are also die-
cussed in detail in the related Laplace problem in Chapter 4. The
main underlying idea for obtaining solution in the present case is
the idea of ''Stokeslet' discussed in Chapter 3. The same idea
should apply to other shapes, i.e. the semi-infinite cylinder, etc.
For the finite cylinder the solution in the shank region (i.e. r small

and -L < z < L) is sirnply given by the simplest ''Stokeslet’’

= 1

e % & # '
B =T logr -x V logr (5-1)
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This is simply the fundamental solution as shown in equation (2-13).
The shank sclution fails to be valid near the end. This is obvious
from the fact that near the end, the flow is three dimensional. There-
fore the end limit process must be introduced and under this limit

the end body becomes a non-degenerate semi-infinite body. One ob-
vious se@luﬁ:iozz for semi-infinite body is the Stokes solution for a

paraboloid and is found as

%
i — @ %
£, = i %{lag;m'%' 1} -$x Vilegr
o :
T@ *3&*
-5 \Y% - {5-2a)
7
where
%
T =

3 *2 L @) - 2 -

% {\/ r “+ (= T@) (z ‘rﬁ)}

This solution satisfies the exact boundary coadition.
2 1 =0 onT = 7’0‘2 constant

and grows slowly at infinity. This shows that the idea of Stokeslets
can be applied for a semi-infinite body and a ''Stokeslet'' is easily

found to be

— e £ g% &
T'=Thiogr -4xVilegr (5-2b)

This is a correct ''Stokeslet'’ for the end body of an ellipsoid but is
not the correct ''Stokeslet'’ for the finite circular cylinder shown
in Fig. 4-1. For the {finite cylinder the end body is a semi-infinite

cylinder with a hemispherical cap attached to the end. It can easily
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be shown that ?% is not the correct Stokeslet for this semi-infinite
cylinder because it is not bounded on the surface of the cylinder.
For the finite cylinder, it will be shown that the "'Stokeslets’ can
be generated from the corresponding solution for the related La-
place problem. The nature of source distribution for the semi-
infinite end cylinder can easily be clarified with the help of the solu-
tion for the L.aplace case. Then a uniformly valid expansion to

order unity can be obtained.

5.2 Limits, Expansions and Associated Equations:

In this section, we will define the various limits needed in
various regions discussed above. Then proper expansions will
be introduced and the associated equations or the governing egua-
tions will be established in the corresponding regions.

a) Outer. As independent variables (outer variables) we use

U,
%, & —
i v

{(5-3a)

The depsndent variables are %ﬁ = < and gf = P Pew {see list
T e

of symbols). The cuter limit is defined as the limit Re—0 for Ke,

o

g fixed. Thus Navier-Stokes equations can be written in terms of

outer variables as

em8E -~

(@ e +Vp =V a (5-3b)
V.a =0 (5-3c)

y & .22 . - :
where Vand V' are in terms of outer variablea. The outer expan-

sion of velocity and pressure are assumed to have the form
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Bl g gaﬂ&
q = g@+ é gl‘% é g2+ e © o 8 o (5‘»3@)

2

£ % %
p f‘.;é pl+é ?Z'ﬁ'coooa (%“’3@?

The outer limit is 'g@ = 1 in the present study. Therefore the

governing eguations for °§1 are the Oseen equations

og

1 % . 2,
m.?-%» @plze gl
8%

V . g = 0

and the governing equations for gn (n 22) ave

n I - g"a& =
-a-f:-w‘? ﬁpm =V gn“" gn(xi)

\ g, = 0
where
z’%:l
G = \) . s
fn(xi) > (gi V) Bn-i
i=l

{5-4a)

(5-4b)

{5-5a}

{(5-5b)

b) Shank. Inthe shank region -Ke< Zﬁ; E‘é, we use the follow-

ing independent variables.

4 ot
® x_x #® ~ U=z
* =3cEz. Y "@g . P

{5-6a)

: $ # o~
The shank limit is defined as the limit Re = O forx , vy , 2 and Re

fixed.

The dependent variables are
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ool g =l L3 i b e

q =%= iU+ j V*+E§W {5-6b)
., Mp-p_)
v [}

p = maﬁm {5-6¢})

The Navier-Stokes equations in terms of shank variables are as fol-

iows.
# * .
Re U ==+ ReV ==+ Re” W S 2By
B oy Bz Ox
2, . 2 % 2
8"U 8°u 2 87U
= oE t Re” —z3 (5-7a)
&% e 8V$z 8z
b I +
ge 0¥ 2L+ re v* A 4 R W L 4
2 8y 8z oy
b3
I A S AN L _—
e o 8y 8z 2
® o _— 4
Re U* B+ Re v¥ B+ Re? w* L + Re B
& %
m’rz&a% + m»ng»aaw + R z«%aw* (5-7c)
- -
9x &y 9z
% #
ot DprRe e 0 (5-74)
O 8y 8z

he limiting equations for Re—0 are

e2u® 8%yt _ ep’

ARSI (5-8a)
ox 8y 8%
A 8%v* _ ap (5-2b)
8z 8y E gy

2. % 2. %
T

+ = 0 (5-8¢)

§X$Z §y$2 '



and
L L2
LU LA (5-84)
% oy ~

As in the case of low Reynolds number flow past a circular cyl-
inder discussed in Chapter 3, the intermediate limits between the
outer limit and the shank limit can be introduced here and are called
the intermediate shank limits. The significance of the intermediate
limits have been discussed in Chapter 2 and will not be repeated here.
The intermediate shank expansions of velocity and pressure are as-

sumed to have the form

? = ?@ "%' e .ﬁl ‘%‘ s @ o e o (%"%&)
+ ' g
P = P@ + & g}l + e o o o o (5-9b)

where T@, p@, etec, are intermediate shank solutions which are func-
tions of % y*, Z, 6 and Re. The governing equation for u _ and P,
are equations {5-8}.

¢} Left End. In the left end region, as independent variables,

we use

® wx ® v % wi+ Be
x =gz, v =ggs B =g (5-10)

This corresponds to using the left end as origin for the rec-

& & %
tangular cartesian coordinates x , ¥ , 2 .

* % %
The left end limit is defined as the limit Re = Oforx , v , z
and Te fized. The Navier-Stokes equation can be written in terms

of left end variables as



Rt %
Re(q « V) g +Vip =97 (5-1la)
=0 (5-11b)

Similarly we can introduce an intermediate limit between the
puter limit and the left end limit. These intermediate limits will
be called the intermediate left end limits. The intermediate left

end expansions of velocity and pressure are

g eV tEv ..., (5-12a)
+ + + b
P =P, + € 2 L U . (5-12b)

where v, and P, are intermediate left end solutions in the same
sense of the intermediate solutions discussed in Chapter 3. The

g 4.
governing equations for Ve and Po

{5-13a)
VAT (5-13b)

The above equations are the familiar three dimensional Stokes equa-
tions and thus the intermediate left end solution may be formed by
proper use of the idea of Stokeslet discussed in Chapter 3.

d) Right Znd. In the right end region we use the right end

variable

% %y —% p.He
%

%
b4 :’E%é y ¥ = T {5~-14}

' # %
The right end limit is defined as the limit Re = 0 for x ,vy ,



wbfm

-

% and Be fixed. Similarly an intermediate limit between the outcr
and the right end limit can be introduced and is called the intermediate
right end limit. The intermediate right end solution of velocity and

the pressure are assumed to have the form

q W rEW . ... (5-15a)
phepi et (5-15b)

Since the cylinder has two similar ends and is symmetrical with re-

i s o o= e
spect to the xy-plane W Wy will be similar to Ve and vy respectively.

The governing equations are three dimensional Stokes equations.

5.3 Determination of Solutions

Determination Of-go; In the present problem, it is obvious
i.

that the principal limit is 8o = The main idea is that in the limit
Re == 0, the cylinder shrinks to a three dimensional needle of zero
radius, has no arresting power and therefore it can not cause finite

R Lad
disturbances. In this sense, g = i is the correct principal limit.

——p
Then the intermmediate shank solution u, and the intermediate end

L

i i e
solution v_ and W can be determined by matching to g = i.

Determination of :;D: Under the shank limit, the cylinder be-

comes infinite. The following simplest Stokeslet

P iy E %
hi = i log z‘$ - % ‘V*}.cg T {5-16}

can be used. In fact, this Stokes solution can be generated directly
from the corresponding Laplace solution (4-14) by use of the same

source distribution. Then as in the case of two dimensional low



b

Reynolds number flow past a circular cylinder discussed in Chapter
3, the intermediate solution ©_ can be formed by multiplying by

by a srnall parameter 61(Re) — (0 as Re = 0 and is

u_= El(Re) {ilog e - X*Vf; log ¢ } (5-17)

pree
It is obvious that u satisfies the governing equation {5-8&) and
Zl?@‘“ 0 on the cylinder as Re-=0., GI(Re) can be determined by the

matching condition

w-o1]=0 (5-18)

in the limit Re=0 for order { in some domain. The matching condi-
tion is satisfied if we choose
€, = —toe = € (Re) | {5-19)
| i
log Te ‘

Therefore we have

s

o se{Tlogr" -V log s’} (5-20)

Determination of v 0" vé may be constructed by use of the same

source distribution for the function Py, established in (4-49). From

9y, We know that the following Laplace solution

2Re _,
i ﬁ@
r0*, %) = s@ 1

1 {
.Jlogl \/(z$~§f§zﬁ_r$g

is bounded over the surface of the semi-infinite end cylinder under

- Lyadt sea
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the present study. Therefore by the method of generating Stokes

solution from Laplace solution, the following Stokes solution

=7 ) %) - OVIEDGT, ) (5-22)

is obtained. “.é; will be a ''Stokeslet' if we can show that ?@ is
bounded on the surface of the semi-infinite cylinder. This can be

shown as follows:

e,
T 1 xar
= } & 3 % §’7§
° ‘"f VIGETE [(2' -1 ) e ]
2Re _,
- ~ Re 1 # & a %
£ ey
1 gl [tz -t )+ 7]
2KE _,
~Ke @ k%
A ! EEME ST
i Viogl* [(z -4 )"+ ¢ 7] /
s TrFMs Ta+rTBrEC ' (5-23)

We can easily see that EZ is bounded on the surface of the cylinder
for {inite z*. The asymptotic represem;ati@n of ?@ for z* == @D can
be studied by the same method as in Chapter 4. We will divide the
range of integration into the same intervals as before (1,2 QE

'- - 10 ; 2Re
Ezeaﬁlﬁ ] {Zlggaﬁ 3 €22’,Z3} am@ LZ3, “ﬁ”g?“” s EE

where Bye By Z,, %4 BTG defined as follows



Zy = constant > 1
2, = V¥
% {5-24)
z, = (L - Pz
= {1+ Bz
53 = | ﬁ)g

In fact, we can choose [ to be any finite positive constant smaller

% %
than unity. Then for & = o and r ' = fixed, we have

=
E‘m(%*,r*) . . Blogr . o (__%i@..) (5-25)
: ¥ logz*® Yiogz®

# %
The detail evaluation of E\"m(z , ¥ ) was shown in (4-38) and will not

be repeated here. g(B) in (5-25) is a function of B and is a finite
1

. & ogz*
bounded on the surface of the cylinder for 2 = w. In the shank

£ %
constant. Thus we can see that F‘l)(z ¥ ) = Of )} =0 and is

region, we have

— - . (5-26)
viegz#® / 1 ~
\Jlog gz + loglz+ Re]
1 3 5
= ¢ -LeZ 10z + Ka)r O(D) (5-27)
or
1 1
1

1

Viogi/Re * "
in the shank region. As the only relation between r and z used in

which is of the order of ez = on the surface of the cylinder



%
is g = 0, we k
is —p , we have
Z

1)

obtaining the representation of F

1

; )
pl) 2. 2 e? jog TFBe),

z
r o) , {5-29)

for ord Re < ord {(Re) < 1 in the intermediate shank reglon. The
second term 2’% the shank region and the intermediate shank region
is always C{€”) and the leading has the above expression for not
only inner shank region but also all the intermnediate shank regions.
It is also interesting to know that in the inner shank region,

i.e. f{(Re) = Re), we have

1

U 2 oed {5-30}

but in the intermediate shank region f(Re) = Re , 0 < @< 1, we have

1
o 208 o ?) (5-31)

¢ ?

This shows why the first term must separate from the second term.

% %
Similarly for » = fixed and 2 > ¢, Wwe have

AsA T A tALt A+ At A {5-32a)
and
g
. 2,
a =2l L ag” ) 22+ ok (5320
A = L - - = Clegr) (5321
1 E,} JiogL® {(s#w{;)z'*“ *%@7’? % g 0
.,,ZE' Xs%eg;@
w2001 az” 1 5.32
A =gl - {5-32c)
s H & =
¢ -;( vtm E (gﬁkw?*)g *Eﬁi 3/ & 5/2
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4
"2 % 2 2
#2(° 1 3% < % “(1-87) (5-324)
A,=x =
3 7 %2
ii viogt* [(z -{ )“+r 3372 gzg*gﬁklegz*

4
w2 { 1 4t
Bg=xE ) FE

Toglr [(z' -0 )ore 2] /2

4
3
%2 »
x §[
4

- | ag
Yiog (L + %) =¥ )

(- 5"2; g*%"’é/"g

-psnsp

# %
=7 x { Z =23 _ z2 -2 }
ijz = 172
® % o, B 2 %2
x’#g'e!logw*m) z# 1[(3 -33)2*%’? 2} [(= »zzi +r O}

%2 i %2

% . ! r o

= 124+ O ¢ ) {5-32e)
e ¢ Jloglrna* L PO

r Re . #®
A, =x 1 d%

<= —
5 Tost (% (2 Be Vo

(5-32f)

= (5-32g)
Ay = 0

Therefore we have

e
A= 2 ) 4 ‘%’@{ 1 }

Jlog(l+n) 2% z’*z ﬁz;a

log z#
g {5-33)

%
- asz ~>@



In the shank region, we have 2 = iz%-g—e- and
i . 3
T Rl 2 ’
A=262 24 069 (5-34)
¥

Thus we have shown that A is bounded on the surface of the semi-
infinite cylinder. In addition, it is bounded on the surface of the
cylinder in the shank region too.

Since we have

L d
B=Lp (5-35)
&

4
Therefore for rﬁ = fizxed and 2 — o, we have

* %
2 X i
B= —w% + Q[ Fo 3
vieg{ltn)z® = @Zz Zw‘i@gz@‘
{5-36)

%
=0 as z o

Thus B is also bounded on the surface of the semi-infinite cylinder.

In the shank region, we have
1 e %
e & % :
B = 2¢ «-3%»-%- Ofe™) {(5-37)
E

as expected.
#
Lastly the asymptotical expression of C for r = fixed and

#
z > o, can be obtained by the same method as

C?—Cl-%- Cz%— 634* C%i’ CS%- Cé {(5-38a)

and



o (5-38b)
éfi 1 e -ghar M |
C, = | - . S - {5-38c)
2 " J 7= 372 %2
) 2@ 1@@3%* [( L z$)2%' '&33 Z
& 32
2 o ~ *
1 {z -C )di 1 1 d%_?
C. = A o] < ‘
37 Togtr L -5 er 178 43721052'*% - )
1 ¥
-41721ng* z -2y 2 -z,
SR S I Y : )_1 (5-38d)
- V372
Vi?&i@g z%# Pz - / %W
2 oo e
3 ’ 2 % % ' e %
R A S AT A -1 4 < 1 at
) '2 Viegl® [(* 1*)2, %2 372 fogu-pren - E iit w%—g” z
A ,
_ 1 2
¥log(l-B)e* (ﬁza*g Wﬁ)l/ ¢
2 L, O fgg—) (5-38e)
»ﬁég(i plz* B z ~ flogz®
%3
(5-38f)

Cs = |
5
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C, = 0 (5-38g)

Thus we obtain

SIPR pum—
" Bz Ylog z*®

) -0 as z* - o {5-39)

and C iec bounded on the surface of the semi-infinite cylinder. In
the shaunk region, we have
i

C =0 (Re€”) (5-40)
Therefore we have shown that ?@ is a Stokes solution which is
bounded on the surface of the semi-infinite cylinder and ?@ is a
correct ''Stokeslet'' for the specific semi-infinite end cylinder
under the present study.

The intermediate left end solution ?@ can be formed by mul-
tiplying ?@ by ez(Re). él(Re) tends to zero as Re tends to zero and

will be determined by matching with outer solution .é; = i. Now

we have

e

v, = ¢ (Re) (TrME*, 5 - ST 2

= 1 ¢(Re) z.-.\‘f-mg (%;5 - 1)
2Fe _,
e e Re o
+ i %(Re) % 1 ab
1 ogL®  Viz -LN)rre

rRe *

-y (Rek V" | _1 g (5-41)
f ‘vllsgg*
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' %
If we express Ve in terms of intermediate variables xéﬁf(:‘&@? = xiRe

we have

‘;}’@ = - i2¢,(Re)V/log (%EE - 1)

2Fe Re
THE) © TRe) giﬁ)
4 i éL(R@)
%{%} \/lag .LR&__.‘V 14
2Re _ Re
x(f)Vigp € (Re) *g ¥ 1 a6

V108 @%' (210 f(ff; 2, )7

It can easily be shown that

28e Re

A(Ke) §(Re) ag® g |
J | W Rel
Re , Rl e
Re) He o
Geey)

Therefore the second and the third terms of v@ tend to zero as Re .

> 2 . 3 .
tends to zero for '\/(z{f)ui,.(g))z’% r(f) firiite and ord ¢® <cordf(Re)sl

ord 1. Thus the matching condition

limg |1 v, | =0 (5-44)
Re—o

is satisfied for ord { in some overlap domain if we choose

@E(Re} - o L 1 .1

3
7 = ="z
VA & -r

(5«%5}



2
i ei(R@) = - -%- €® is chosen, we have

— L Y
v = - 4 it %) s Lk viElEt, oY (5-46)

and from equations {5-28, 34, 37, 40), :;; in the shank region be-

Comes

=it g % o qg*g @ X$$
vaﬁﬁzagrwieiﬁege«%ﬂvﬁ-ﬁ(@%
r r

= %{m&l@% PV log z‘se} + Ofe) {(5-47)

The last term is of ord ¢ for all order of intermediate shanik

regions. The above representation ie also valid in all intermediate

o~ (),
shank regions (i.e. -Re < z < Re, and rﬁ = %J for ord Re =

ord £ < ordl). Thus in the intermediate shank region, we have

| 2
:;m = ‘;ez 1o gf)ﬂﬂ@? - ?é }g(ﬁ
o ® ()
¥

{£)_ (&)

- e Edo ¢ Ofe)

D)

=1 [l+e log f{Re)] + ¢ (1 log ¢

2

w L8 (B () |
-3 ""’:&f;’é -3 --&)%m + Ofe) : (5-48)
r T

el

Determination of %&2: By symmetry, W is easily determined

to be
- FR Y O Low_w & %
w, = «-m?;-;a €% E‘(g)(z T ) % €4 x V E‘qa}(z 5T ) {(5-49a)
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and

-1
rlEG* 4 - 1

L ]
‘%,.
2fe, Viog-Th) (W@ T2 T
Re

ar” (5-49b)

Similarly we can show that W o is the required intermediate solution
and the detail will not be repeated here. Similarly in the shank

region, we have

A

- - {f)g S
W, = i élagg—uﬁgﬁﬂ— i @E—mﬁ»

(£)

r
- i), () |
-je i—&%f + Ofe) (5-50)
r

for -Be < z < He and ord Re < ord { < ord 1. ;:;;G can also easily
be shown to match g@ = 1 and satisfies the boundary condition

in the limit Re — 0,

Matching between ;;0 and ;; {oz :?;@): By symmetry, we will

discuss only the matching between E@aand ;;. Now naturally the
question arises whether ge matches with ;@. But it is cbvious

from equations (5-47) we can see that the matching condition

lim |u -v.|] =0 (5-51)
R;“@@i © 0‘

holds for any -Re < z < Re. They match each other not only in the

~ P
inner shank region (i.e. -Re < z < Re and r = O{l) but also in all

E(f)f(i%e)
e

~ *
intermediate shank regions (i.e. -Re<z< Heandz = :

for ord Re < ord £< ord 1). Furthermore, we can see that ?@
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contains i&; in the shank region. Thus a uniformly valid expansion
which is uniformly valid in the shank and in the left end region can
be constructed and is :;;. Similarly from equation {5»5@), :23@
matches :% in the shank region. A uniformly valid expansion which
is uniformly valid in the shank region and in the right end region

can easily be constructed and is W

An Expansion Uniformly Valid near the Body. Since 7\;@ and

?@ are overlapping in the shank region, an expansion a;@ which is
uniformly valid near the body can be constructed in principle. We

can easily see that

= v 5-5
T -%.- - @ .
8 W c { 2)

where ?@ is going to be determined. In the shank region, ;; under
shanlk limit must be equal to ':i; in the limit Re = 0. In the right
end, ‘Z; must cancel the right end limit of ;;. It has been shown
in the Laplace problem that Fm is not bounded on the surface of
the cylinder near the right end of the cyli&dér and therefore ?@ is
also not bounded near the right end of the cylinder. Thus ‘Z:; under
the right end limit should cancel :}2. Similarly the same condition
must be satisfied in the left end. In the related Laplace problem,
it was found that by use of constant source distribution, all condi-

tions are satisfied. This suggests to us to investigate the following

o
Stokes solution c@.
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ele 2Re
- Re “Re &
— & & i
ggm%c% db %%XV%‘% s
© ® 2, %2 ® 2 2
L\z =0 )+ 1 iz - ) +
2Re _, 2Re
=7 ~=e€ | at L at
A -gex T
] R w [ 3
LSt 2 B (PR A LA L
2FE
He "
e ® ®( ay,
B W %2 %2.3/2
[{z -4 )7+r 7]
2Re _,
/_Ba.gﬁ@ & % *
qﬁg{a%* ; (z -C )4t -
rgx 4 ‘ 37
v % %
1 212+ 278

{5-53)

-t R == ey LA
23 A-1H-40C-1D

3 &
a) Under the shank limit (i.e. Re—0 for z, r = fixed) in the

shank region (-Ke < z< Re) we have

g -
Asl-%e at , p=Ts - Re

RN e

= ¢ Eiﬁg gﬁg - %l@g (?fé-% ,;) - %i@g (m ..,E)E

+ O (e Re®) (5-54a)
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B -
B e % € R@gxﬂ‘g d
-8 i&«%)aé’ R@Zf*z} 3/2
#2 ~
1 {z + B) . (z- ﬁ)
"z {{ > wa 172 / }
| ("”‘@) + Re“r “)] {E-p) 2, Re?s™®
g%égﬁj; E»% Rer & _%‘l“‘l‘%ezr*g ’ }
$ Py r ooy ” e o a o ®
. G+ p) 26 - o J
*ﬁ:ﬂ
= @ + Ofe Re ) ‘ {5-54b)
% £ @
ce=BL = e £+ Ole Re?) ' (5-54¢)
% r
@s%@%@xﬁz (z-£)dE 573
/ 2 %2/
5 [E-D%Re%r ¢)
= ‘;3; ¢ Re *e;;ﬁ 1 - 1 }
SEEEES 172 > wp. 1/2
[(z “%”ﬁ) + Rele" § [(sa B) 2, Re’r !
= O(c Re) (5-544)
Therefore

#2

=t

#
c@ggimgr*wei ngg»ej %
r 24
+ Gle) o {5-55}

= haa
and o equale to & in the shank region in the limit Re—0, as required.
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%
B) In the right end region: For z 2 % - % or the right half

cylinder, and in texms of right end vaz*i,am@@g and divide interval of

integration into two parts [- -gé% i, - ~§v§=é } and [~ %%, -1}, we
obtain
-1 1
AP i S G S o 3. T
o
wggg\/(ﬁ Tl 3 e’\/@ﬁf)aﬂ‘ @
zm Q@
L . sl
Teat* ( il per [ E-THdl
4 2 1%
3 (@ -THe 213/2 e [ETHELS2
ZRe ZRe
+ Ofe) (5-56)

iy
Now let us investigate Vo in the same region. By expreasing in
terms of the right end variables and dividing the interval of inte-

gration into two parts, we have

I
veT-IZ 1 T
Q B ad >
_3He «/E@ggﬁrf—?gﬁ W/(E’?in*)”?’w%
ZRe
: B
i 2_%2 ‘% ‘ gi?;

372

3
-5 € X%
, 3?5 Vl Zﬁ"@‘?’?ﬁ@ {(-” ?&E 4 ?*

s+ Ole) (B5-57)
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In this new interval of integration, we can expand
A 1 3 i
! = ef - L Z1og 2mas T Re)+ O(cD) (5-58)

= = -3 €
/}E.@gg Z’%:é%i @g Re

Thus we have

Vo = €t Ofe}

(5-59)

in the right end region. By symmetry we can easily show that in the

left end region and under the left end limit we have

y m{ (g ﬁm;
g = b - Y e (B457 1
W, =C, T O €) 5-60

eman
Thus we bave shown that ¢ fulfillis all the requirements and is the
'waa-
correct part. A uniformly valid expansion 8, which is uniformly
valid to order unity everywhere near the body is found as in equation

. R 3
{(5-52). U we express 8, in termasa of cuter variables, we have

e
8

where 8 = Re - Re

Uniformly Valld Expansion: In the above, we have shown that

o a4 e s e R R N .
the expansions 8gr Bgr Voo Vg satisfy the governing equations in

each region respectively and the domains of validity overlap with each
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other. Thus they have covered the whole domain of interest and

in principle a uniformly valid sclution ?;0 containing g@, E;, ?0
and *\;Z in each corresponding region such that
lim | q - q | =0 ’ (5-62)

Re-=o

uniformly valid everywhere can be obtained.

Since a uniformly valid expansion s near the body is obtained,
:;; can in principle be obtained by use of gﬁ and Sn' But in practice,
as the governing equation in the outer region is an Oseen equation,
z;; can easily be constructed by use of an Oseen solution which con-
tains ?ﬂ for -Re <2 S Re and ¥ = 0. This can be done by use of
the idea of source distribution. The Oseen solution constructed by
use of the same source distribution for ?@ will contain the Stokes
solution ?o near the body. The general idea has been discussed in
Ref. 5. In the present case, E@ can easlly be found as follows:

1 gp ~§<\/(§~’é)2+§2-§>
= i ?‘e f~

L d

V(z 7) e -X)
re «1,R 1 }a’i (5-63a)
ﬁ g) + 78 (;-g) +T
where
£(z,Re) = 1 + 1 - —t (5-63b)

and
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1

2o L anap=Te- Re (5-63¢)
log %:é

This can be justified by expanding the E; in various different regions

as follows:

1) Outer region: In the outer region, if we expand E; in

power of ¢, we obtain

[# 3] {iﬁe ‘%< (;QZ)2+;Z - g)
e =1 -1 2 a & (s, TS af
© Ly By B . D

==l = %e WACREE S

e LY R AR

g ngf = e 1 i
+ 2 a eVl £ (Re, ) at
nsl & J B ~ =2 ~2 ~ =2 2

R (z-8) +x (z-L)"+r
(5-64)
3 g n
where a_ is generated by = & a %
- = n=l *
- , . D=1 ., @oFl
f (Ke, )= [log (Re-0]  + [log (Re+ L) (5-65)
or
q, = 1 + Ofe) (5-66)
Thus in the outer region E; contains g@ =1 and
lim |q,~g,l* 0 {5-67)

Re—0

in the outer region.
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2) Near the body: For r— 0 and -Ke € z = K& we have

~ - %gﬁ i
q, =1 -3 € | f(L.,Re) T
. w,; (z-8) "+ r
r 29 | tlRe)
. z-T)% + 7
-V w Jm7E=2 a-l .,
-1 *?E%% £(Z,Re) = (,ﬁz%&) % at
f@ n=l
i ,53 -
- ~ = o = 2 2.7 0.y
-k eg Y £(L,Re) k}(z é)n Z (- MT““}(Z_;) tr %%
1 g {(Z-é@%;&;} 3/2 =n=2
«gszgﬁf(i,ae) (2-8) % (.Y ‘%’% vr )4t
(2-1)%rz" n=1 | "
«@ ;
- 1 {? .
7T ane
1 -p (z-1)%3°
z Lo d
+ 5 % @Qﬁ £(T,Re) —=E
| -p (z-T)%3°
"ﬁ’m 0 o= e @ 1 o~ B ‘ b.
tiwe £(2)r k e gyla) (5-68)
n=l n=l : ‘.

.
s

<

Thus we have ghown that near the body ,q@'@quam to in the limit
_ , :
Re — 0, This justifies that q_is a uniformly, valid expansion.

Computation of the drag force: The drag force can be com-

e

puted from the uniformly valid expansion q . By comparing q,
with the fundamental solutions in equation (2-6) and the integral

discussed in equation {4-71), we have
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D=8rpUL[e+ (L-log 2Ke) @Z + @(gB)

4 &
Cp = gy [e + (1-log 2Re) € + ote’)]

(5-69)

(5-70)
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VI. LOW REYNOLDS NUMBER FLOW PAST AN ELLIPS0ID OF
REVOLUTION OF LARGE ASPECT RATIO

6.1 Introduction

In this chapter we consider the problem of viscous incom-
pressible flow past an ellipsoid of revolution of large aspect ratio.
The axis of the ellipsoid is perpenéic&lar to the uniform flow ui

at infinity.. The ellipsoid is defined as

ra '52
.._2.-%- ) = 1 ; (é"l)

A L

uL

Then two similar non-dimensional parameters Re = %ﬁi and Re = =

can also be formed as in Chapter 5. In the present study, the low
Reynolds number flow is also understood in the sense Re =0 by
keeping Ke = fixed. This may be thought of as letting X — 0 with
all other parameters {i.e. U, L, v) fixed. Under this limit, the
ellipsoid cylinder shrinks to a needle of zero radius and the prin-
cipal limit {i.e. outer limit) is obviously ’é; = ‘? Thus the ocuter
limit is the Oseen limit discussed in Chapter 3. This principal
limit does not satisfy the boundary condition near the body {i.e.
;;: 0). Therefore different limits must be introduced near the body.
One limit introduced to study the inner region far from the ends is
the ''shank limit.'' This limit is similar to the boundary layer
limit in the high Reynolds number flow by distorting the r-coordi-
nate or viscous layer. Under this limit, the body becomes a finite
ellipsoid and the governing equation is the Stokes equation with no
derivatives with respect to z. But this ''shank limit'' is not valid

at the both ends because near the end the flow ie obviously three



dimensional and the three dimensional Stckes equations are ex-
pected. Therefore two end limits have to be introduced. The
proper end limit is imtr@ﬁme& with the help of the fact that under
this limit the cylinder has to be a proper sermi-infinite body and the
three dimensional Stokes equation can be obtained. The proper
end variables have been discussed in the geometrical matching in
Chapter 4. The deta‘.ﬂﬁ will not be repeated here. In the present
case, not only the Stokes solutions which satiafy the exact bound-
ary conditions in the shank regions and in the end regions can be
obtained but also the solutions are in a simpler form in compari-
son to the solution for the finite cylinder in Chapter 5. Thus
higher order terms can be obtained and the matching between
them becomes interesting in detail. It is also the purpose of this
chapter to exhibit in detail the expansion procedure and the match-
ing between these expansions. The matching in the present case
is much more complicated than that of two dimensional cylinders
or a sphere discussed in Chapter 3 because four expansions are

involved in the present case.

6,2 Limits, Expansions and Associated Equations.

Quter Expansions: The outer variables and lirnit are defined

as the same as (5-3a). The expansions for velocity and pressure
are assumed to have the same form as (5-3d,e). In terms of outer
variables, the body is of the form

;Z ~g

s B s (6-2)
Re? Ret :
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Thus in the limit Re tending to zero for Re fixed, the body shrinks
to a finite needle of zero rvadius. The outer limit E;; =1 is justified
in the present study. Therefore the governing equations for é;(n 21)
are the same as (5-4) and (5-5).

Shank Expansion: Shank variables and shank limits are the

same as (5-6). In addition the expansion and governing equations
for G; are the same as (5-7) and (5-£).

In terms of shank variables, the body can be expressed as

~2

e 1 {6-3)
Re
or

2 Fe? .37

&

Under the shank limit, the body is then a finite ellipsoid of revolu-
tiow.

Left End Expansion: The left end region iz much smaller

than that of the finite cylinder discussed in Chapter 5. By sym-
metry, we will concentrate on discussing the left end. The left end

variables are defined as

@ fad

+ vy v gk z
b4 ==“-§?=.V g—"l'z“pz 3ZR§= ZZ (6-5)
Re” Re Re Re

The loft end limit is defined as the limit Re = 0 for He, x , V\k and
; fized. In terms of left end variables, the body is of the form

2 _22 _Refs?

= = (6=6a)
Re Re
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or

+2

=22 4 omed) | (6-6b)
=

Thus under the left end limit, the body becomes a semi-infinite parabo-

loid. ¥ we define

. z% 'WALE er@)g SEUEERY (6-72)
and
R (6-7b)
2Re

then to the order of Rsz, the body is

i

T=T = {6-8)
ZRe
The intermediate left end expansion is
sl e == =i
q =V@%€v1+€av2+..... {(6-9a)
4 1 & 1
B gpgli‘éplw'ré Pyt e (6-9b)

el
The governing equations for Vo (n > 0) are three dimensional Stokes

2

: »
equations and p | = Re o’ = Rep .

Right End Esxpansion: By symmetry, the right end variables

are defined as

o ~ o

Q=ﬁ?,f=ﬁ%,§g§§% (6-10)
Re Re Re

Then the body may be expressed in terms of right end variables as



«3l-

ot .
+2 - . &z + @(Eezﬁ
@

If we define

L=ty \/%» E
7 s-?:{(g R (z ) 3

o=

° ZRe

then the body is

The intermediate right end expansion is

ol = PN 2.,,.@,
g BW L€ W, b E Wt o e o e e
o 1 2

dod il 11 2 11
2] gp@»&épl-ﬁ-& p2+ .....

6.3 Determination of Solutions

{6-11)

(6-12a)

{6-12b)

(6-13)

(6-14a)

(6-14Db)

Determination aﬁ;gez As discussed previocusly, we know that

the principal limit is

By = 1

(6-15)

=
Determination of By The intermediate shank solution is de-

termined as



-gz&»

u, = €{Re) h&

= w32
_ s w1 e -3 1
=€{Re) {1 (log » e-?;l@gmﬁm«%g)
— ™2 %
v log E’*«% i%i:_:gm V$-%§} {6-16a)
He ¥

The corresponding pressure term p is obtained as
2z
p, = ~€ (Re) =g (6-16D)
r

It is obvious that u satisfies the governing equations (5-8) and

the boundary condition

%, = 0 on the body (i.e e sﬁ‘gé - E‘g) (6-17)
1 £ : y (i.e. ey

Then by the matehing condition

e e

P [ i
Re—0

z 0 {6-18)

for ord f in sorne overlap domain, we obtain

-¢ log Re =1+ bé + b2@2+ s e e s (6-19)

R . ey R D .{,
Determination of Vo In the present case, a solution él(sgi)

which satisfies the three dimensional Stokes equations and the bound-

ary condition Tél(xz) =0on 7= 7,0 can be obtained as

T R | T 1 4ot 1 —
L,6e) = i -g/ﬂ@gg?;% 1] -5xVileg7=-57V =) (6-20)

Then the intermediste left end solution is determined as

?@ = € (Re) ’E} (x‘zg : ‘ (6-21a)
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where the matching condition

limg |1 - v |= 0 (6-21b)
Re—o

—
for ord £ in some overlap dornain is also satisfied. Thus Ve i the
correct intermediate solution.

The corresponding pressure term
is easily determined as

pi = =-€ m%» log 7 (6-22)
B

Matching Detween g@ and :;;: The matching between E; and g;
can be studied by expressing both of them in terms of intermediate

variables {i.a. E’ﬁ, zﬁ) which are intermediate between shank and
the left end variables.

o= R@ﬁr@ o= E“wﬁ'x
(6-23)
% = Re2P zg z = zg re2(B-1)

+ +tZ T ¢ Be
They are supposed to match at z = w and along ———=

g e
B z
constant. DBy expressing in terms of intermediate variables, the body

is a semi-infinite paraboloid and 0< < 1. Thus

2
el 2B+ of RePU-PY (6-24)
4 zg

Bz@ + 1) - xgg Vﬁ log z@
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m-ﬂ v@-—%}w PR g

- giw} ¢ Rt P
me:f

p
+ Ofe ?E%eleﬁ) {6-25)
and
- ] Hor,’
&@ z ¢ {1 ?(AQE.T? + 1) - ngﬁl@&f zg
z e
- B vgw%} + Ofe ReP) (6-26)
Re ¥ o
p
Therefore
Wmg |ug v [= 0 (6-27)
Re==0
for f{(Re) = Re@ and 0< B< 1. In fact they are matched to @(R@ﬁ'
gaﬁé).
Determination of W Simﬂaﬂy, m easily determined as
- ‘f’ +
w o=els {lcﬂm-i-l]mw-xv log 7
7o
BNV (6-28a)
z i b
The corrvesponding pressure term is obtained as
pos - e =Splog 7 (6-28b)
The matching between w
and v .

and w_ is exactly the same as between u
The details will not be repeated here
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Uniformly Valid Expansion Near the Body. Since T;@ matches

to Q}; and ?@, a uniformly valid expansion ;; near the body can, in

principle, be obtained. In the present case, we can easily obtain

aln
8, as follows:

o el , o %‘. G = m@@
g B4R v VY W= ¥ - W
[+ G & ] (¢] O

iy ¥ ol s R
where vz is the shank limit of v, and wj is the shank limit of W

Determination of g;. gl must satisfy the governing equation (5-4)

and can be determined by the matching condition that it cancels to the

unbounded terms of

w4 mz - ;Z
lim = i {log r - = log + ot b
=g, Tl 2" "
-x Vieg ¥ (6-29)

for * =0 and -K& < z< He. Similarly g}; is supposed to cancel the

unbounded term of

owlp e

v -3 -
. l/ ~2 L 2 o
1 ¢ e; {1@% { Sy 2;?@1»%- log 2Re + 1}

2

~mﬁ€’ log Vr r + zz -27) {6-30)

for ¥ and 7 + Re small. Similarly g;_ has to cancel the unbounded
w_ = 1

termseﬁlm§ f@r;wO,andwga':;»RewO. From all

these maﬁckmg conditions, gl ia é@te&*mmad as followsa:



Fo -3 WE-DHF - %) “
§ T (6-31)

iz 7 “w g@+ '
42,852y 5 852
-1 [Re-2) o - (et 2)
LT oge 1 . 1 e
Fe- z Re-z TFet g Ret »
+ O(F log ¥) (6-32)
The function E‘i’si(ﬁﬁ {cf. Ref. 8) is defined as
‘ L oot
&’l(x) = -« Bi{-xn) = 5 < dt
x
% g 1 Ly s
E = + = d sesse hodl Bawvinr{ - 338
lﬂgg"yesg ézm:l(l«%»g %zm)ml (6-33a)
where y = el = 1,781
or y = log ¥y, 2 0.5772 = Euler's constant
For large value of x, an asymptotic expansion for E£<X) is
e L2, ) (6-33b)
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Thus El(x) ~ 0 as ¢ = o and Es}.éx} — log Y % a8 x = 0.
Therefore equation {6-32) shows g; cancels the unbounded
terms in equation (6-29) for 7 = 0and -Be<z<He. If we choose

all bm = 0 except
by = - L4y -log 4 (6-34a)

we have the same ¢ as for two dimensional case and it is

¢ = 1 (6-34b)

- 4 1
loggz ~ Yt 3

In addition, for ¢ — 0 and z = 0, we have (see Appendix B)
e "? . ""a , mz — N
gy ==z (log (VE"+ 7 -2)+ y - log 4+ E,(Re)}

i) P, _,g, ”%
CE oy (WEt s 32 e T K (B - )
2Fe 2Ke

+ Oz log z) {6-35})

paf i 2

Thus it cancels the unbounded term in equation {6-30). Similarly by

expanding fg} for ¥ == 0 and 2 — 0, it will cancel the unbounded term

i

g
of lim £ im;;%; and the details will not be repeated here. This shows
that E% is correctly determined as in equation {6-31),

The corresponding pressure term is
‘Re -
® 2 db

“Rellz-0)+ ¢

bl

Determination of ;i: u; can be determined by the matching con-

{6-36)

dition
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?é* ezg - (T; + e?)
lim, 1 o Ll 2o (6-37)
1 € '
Be-+0

for ord fl in some overlap domain. In the present case, E; is then

easily determined as

4=ty (6-38)
and
ul =@,
{6-39)
-u-a’lln e |
4y = gl{ﬂ Yo
where
- = % 1, e -zt
uczekimgr --zlng} (6-40)
He- = Herz ~
f,(z) = 5 [B, () + E, (=) + log (Fe- z)
+ log (Ke + z) - 2 log He ] (6-41a)
1 ﬁ‘- ~
- s{Re - z) .
and g (E) =& - - -
1 Re - = Re - 2z
-% (Fe + z)
Pt _E - (6-41b)
Re+ z Re+ =z

It can easily be shown that ?i satisfies the governing equation (5-8c)
and that ‘:1 gatisfies the governing equations (5-8) and;;i = § on the

body. By expressing uy in terms of outer variables, the matching
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L

condition is obviously satisfied and therefore oy is correctly deter-
mined. Thus we have

zil(;)x*
pl S » g W*& (éﬁ%&)
¥

Determination of vy and wy ¢ ;z can be determined by the match-

ing condition that

T+eg ~(v.+ ev)
lim 1 o LI (6-43)
f =z

Re==0

for ord fz in some overlap domain. In the present case, z}z can easily

be obtained as follows:

v, = ;‘"“i 4 ;”? (6-44)
and
VeV, = %{El(ﬁ‘é) -log e - y+ log 4} v, (6-45a)
i =y ‘m el
o 1. -
© 2Re 2Ke ©
o _
= (€ L2 e (Ko - (6-45b)
2Re 2Re o

v (7‘«7010g 7) }

It can easily be shown that :s;: satisfies the three dimensional Stokes
equations and the matching condition (6-43).

The corresponding pressure term is easily obtained as
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..« [Ex(ﬁé)al@g%-y%-mgé} -»-@irleg?
, Ox

PB=-z
+ £ 1. e-%} 8 log T {6-46)
2TE: IHs oz
Similarly by the matching condition that
?%’ eg - (:; + e ‘{;)

lim, L2 L= (6-47)
£ e
2 € :

Re==0 -

s

for ord iz in some overlap domain, wy is easily determined as follows:

v - %"% + Q’i’- (6-48)

and
atel e (2 - 1og W -y + log 4} W, (6-49a)
12 ' Y o
;;»u_,m,e“m R S
1 ! o
2Re 2Re
s +
1,8 1 - + ot +
2 - - ) {klog =~ -V (7 -7_log T )}
2 me oW To °
£ - E}l W@ {6-49b)
e L £ (B (RS) - log 2F5 - y + log 4] - log 7'
1 PR Bsc
-Re
€ E@ - l j 8;-4- l@g 7"%. (6“56)

TZV,me  2me oz

g

Wi): ¥ we write g and vy

.

Matching Between u; and ;’; (oz

{or wl) in terms of intermediate variables, we can easily show that
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they are matched to @(Re&e’) and 0 < @< 1l. The details will not be
repeated here. Since Ezz maiches to ;;_ {ozx ’g}:}; gz can be determined
by matching with them.

Determination of gzz It ean be seen from equation (5-5) that

—
the governing equation for g, is a non-homogeneous Oseen equation.

In general, gg can be divided into three parts to be determined.

Pa e B “
2% B3 gg%gz {6-51)

};%ﬁ is the particular solution of OUseen equations and is

— ro

gé‘&% ARRY &, - B £ B oF oF, dF, ~ (6-52a)
where

?(%) = Q"Z . @’)w: = «g] s curl g? + ¥ E—g {6-52b)

and tij;é ig the fundamental solution ﬂiacass@d in Chapter 2.

géu’ defined by the above integral is obviously continuous for

=0 and -He <z <Ko

Ep =T @®rEgy @ (6-53)

-y

and for

g; ie the solution of the homogeneous Useen solution and is deter-

mined by the matching condition that it cancels the unbounded term of
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?’% g'fé:-» E&;% g?%)

Lim% gg = §L(z) {1 Q(log =
Re—0
| et | o2
m%l@gm‘%i_;zw+%+b)«x%l@%r} {(6-54)
) [5]

b it L3 &
for r=0 and -Re <z < Re and ord ﬁl in some overlap domain. For

L

% =0 and r — 0 ;fé has to cancel the unbounded terms of

PN ez e -ae»l
) i+eg, ~(v_+ev)) o o o
lzimf 1 5 2 1 =< %[E@g( 22’4» rg-m?

2 €
Re==0 ;
+ 2b) + log 2Re + "J -3V 10g (\/g +TE.8)) (6-55)

Similarly for ¥ =0 and z ~ 0, it cancels the unbounded terms of
l‘%’égzw(w -é’@%::%) -
lim R . By these matching conditions, 8o is
; & :
determined as follows

et 3 ‘f‘a . ﬁ +§ E§ "N T
B = -3 ’i"* )+ ! 254+ log (Fs - D)

.Be —_—
%(’\/(zaéﬁz+rz~x)

o\/(g = E?Q * ;2

at

+ log (Re + ¢ }walegﬁmﬁé}

T
e s 7
2 ﬁa%@%’i” E (“z“%‘” log (RE + 1)+ log (R - T)
L 5% e - -
e AYEDE R T
- magﬁ‘éﬂ JEp— 14T (6-56)
-0°+ 7 -T2+ 72

]
It can be shown (see Appendix C) é@:z!aﬁgé is correctly determined

such that
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3+ @%Z%' éggg o ("&2+ %gl)

, v _ U W
11m£1 2 =i fég (z) + k g,lz) (6-57)
Re=0 '
and
mrp» il B "?e«»}_ =g w&l
o dregretgyelvorev) oy
i, 24 ¢tk D (éwgw
fz 2 2 2
: €
Re~=0
and
Teegtefay-rew) )
limf = = § ¢y = k E:?a ) {6-59)
Z €
Re~=0

Similarly gz can be determined by the matching conditions as follows

1) For ¥ = 0 and -Re< z< B8, it satisfics

f teg,teg,-(u_+euy) o e -
Lim, L2 o L -Tde+«wdl@  (6-60)
Re~0 - €
2) For 2 = o and 7 - o, it satisfies
Theg refEy - Wt ev) Loy oy
Lim =4 ¢tk D {(6-61)
{ » 2 2 2
Rewoa ¢
3) For = = o, T~ o, it satisfies
1+ Egéeagél»(ga% é;;?) w1 = 11
limn - =i ¢, -k D (6-62)
52; 2 2 2
Re=—0 €

Since ég?, ??, and '%;’?1 are symmetrical with respect to the axis of

the cylinder, E? will have no contribution to drag calculation. Thus

the detail of determination of ?g will not be repeated here.
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el = = '
Determination of Uy Yy and w,: They can easily be deter-

2
mined by the matching conditions

_ i+ @%E*f 6252—(?5%@% eiaz%’ éz’:;{z) '
lﬁnf ) = 0
i €
Re==0
i+ e-:gz-% gz gg - (;;% éﬁ'z;z%" ég:%}
Eim§ ) ‘ =
Ra*@Oz ¢
iteg 6252 - w_+ew @2,%};;
lim§ ) =0
2 €
Re-=0

and are easily found as

o
i

e e x 2 wi»l
f% {=) u, 4 ga(g) ug

S
]
[e]
- @ g
4
'y
)]
4

and

4
<
%]
[
[£)
)
J
€

2 Ve " P2V,
where
SRS R | 11~
£,(5) = £; (2) + £ (2) + % (z)
~ 1~ i~ i1l ~
gz(z) = gg(zﬁ-’f g; {z) + &85 {z)

i, il

o
ab
)

(6-63a)

(6-63b)

{6-63c)
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The higher ovder solution can be obtained by use of the similar
matching procedure discussed above.

Uniformly Valid Expansion: From the intermediate expansions

and the outer expansions one can construct an expansion which is
uniformly valid for the entire flow field. Now the first term

Z;(%,Re), uniformly valid to order unity can be constructed by con-

ep em® e o

sidering Ve Bgs W, g, and g» From (6-12, 20, 21) and (6-55),

E@a(%i.Re) can be constructed into the following simple form:

-+ WE-DE+ F2 15

c
(G..Re)=T-eTh 2 az
g . (x.,Re)=1-¢1i} 14
Q i %j °r “2 “’2
g 2 =L}  + ¢
ME o
¢ -5z TR -5
e 1 -
+ eV ) [ | - - ] ag {6-064)
IRV R @0
Re
WheTe ¢ & RE = —— ,
2Re

. E
The same %, €§i,§e) can be generated from the corresponding
.y

potential solution P by use of the same metiod for obtaining q, for
the finite cylinder in Chapter 5. This justifies tue method for ob-
taining the leading term of the uniformly valid expansion for the
finite cylinder with two hemispherical caps.

It is also interesting to note that in the present case the source

® . 2 - o » I3 .

distribution for 4, 8 constant and uniformly distributed from

w5, Re ~ He - N ; .
-Re + <3z S Re - =—— ., The sources are inside the ellipsoid
Z2Re ZRle

cylinder. DBut in the outer limit, the source is then uniformly dis-

tributed from -Re € z € Re and the source comes to the surface of
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the ellipsoid at two ends. This shows that the outer limit can not
be valid near two ends and two end limits must be introduced.

Cormputation of Drag Force: The drag force on the cylinder

can be obtained either by calculating viscous stress on the cylinder
or by momenturn integral. In the present case, it can be obtained
by comparison with the fundamental solutions of Oseen equations

{cf. equation 2-6). The drag force is found to be of order € and

1

€= Z 1
10g‘§§;='\gv§

(6-65)

From jgz, it can be seen that to the order of ¢, the drag force is
constant along the cylinder. The drag per unit length is the same

as that of a two dimensional cylinder

Dl = 8qp ULe (6-66)
and
Dy
m—— B g (6-67)
“8rpUL

From EZ, we can see that the drag force is no longer constant along
the cylinder to the order of ez. The variation of singular force is

found as

fﬂfé; sé {:ﬁ (i%%i;e» E, (ﬁi’zw log (Be + z)

-1
i

+ log (Ko - z) - 2 log ﬁ?_‘ (6-68)

The drag force 3:92 can be obtained by integration. Since we know



~-107-

T Fe e

B
12N
© Seppr o
15
ot
G
[e N
r)
B
i
ol
ool
o
-
OL__—_Q;Q
4
i
P
@
[
o
o
>

= 45 (KS) K + 4 - 40" Re

Thus the total drag of order @2 ig

D, = 8apUL {El(ﬁié)% (log 2-1)

sl e"”?@’)}

He

{6-69)
Thus the total drag is

D= 8ypl {e+ [zﬁ;l(ﬁ’fé) + (log 2-1)

-Re

s Lo emRey 2y oy . {6-70)

Re

or
Cp = g {c+ ¢ [E,(Fe)+ log 2-1
s Lo Y oy (6-71)
Re :
The corresponding CQ for a two dimensional cykindér {cf. Ref. 2) is

C =§g {e -0.87 3+ oY) (6-72)
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VII. CONCLUDING REMARKS

In this section, we will briefly surnmarize the results and
discuss their significance. From some properties of low Reynolds
number flow, we will draw some additional conclusions. Finally
we ghall consider some related problems which might be solved by

the method illustrated here.

7.1 Nature of End Source Distributions

One of the most important results obtaiz;ed in this thesis is
the clarification of the source distribution near the end of the cyl-
inder. Tﬁey are the same for both potential problems and MNavier-
Stokas problems discussed above. The source distribution for the
two finite cylinders under study can be summarized as follows:

a) The finite cylinder with hemispherical ends: The obtained

uniformly valid expansion to order unity for the finite cylinder is
1

@wTwm
1og m‘%’ C

constant. For comparison we will choose ¢ =

unchanged if we choose ¢ = where ¢ is any arbitrary

log gg - ¥z
same as the ¢ for the ellipsoid and the 2-D circular cylinder. The

source distributions with the origin at the left end of the cyﬁ.iﬁeﬁa?

in terms of left end Stokes variables is
1
Z

€

2vlogz®

This shows that for the semi-infinite end cylinder obtained by the

sg_ﬂ(ﬁ) = (7-1)

end limit the source distribution has an inverse logarithmic vari-

ation. The source strength sL(z*) decreases to er0 as 2% tends
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to infinity and the rate of decrease is which is much slower

1 viogs*
than —¢ . It is also interesting to note that the source distribution

| EY
is of order €° near the end while the source streagth for the ellip-
soid cylinder or a 2-D cylinder is of order ¢. If we express it in

terms of outer variables, we have
L

= 1 €

6L(z_2_m 23/*::"_?“

18 Re

where z = z + Re. This shows that the source strength SL(E? de-

(7-2)

creases very rapidly to order of € which is the source strength
of a two dimmeunsional cylinder as 2> 0 in the limit Re = 0. The
largest variation occurs near the end. The total variation for the

{inite cylinder is found to be

5 |
~ L L
e e - %)

&
V' log Ef%w? vV log KO—%@;E

The variation was shown in Fig. 4-3. It is worth mentioning that

s(;) is integrable. As we discussed before, the obtained holds
for any '‘untapered' body, and we can conclude the existence of
this "‘untapered'’ end canmegythe source distribution to have a
variation near the end as defined in (73).

b) The ellipsoid cylinder: The end body for the ellipsoid is

a semi-infinite paraboloid and from the variables introduced in
equation (6-5), we can see the end region is rnuch smaller than

that of the finite cylinder with hemispherical ends. From Ve We
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can see that the source distribution is & a@nsﬁ:az'z@ semi-infinite line
source distribution. Similarly, from Zéz we can see that the singular
force acting on the &llipsoid cylinder is constant. Thus we have
clarified that to O{€) the source distribution for the ellipsoid cylin-
der in Navier-Stokes flow is constant. For the potentizl case, a
better result {(a uniformly valid expansion to @(}@2) y has been ob-
tained. We can conclude the existence of this kind of end causes

no variation of scurce distribution near the end.

7.2 The Magnitude of Various Effects

In this section, we will discuss the order of magnitude of
various effects for the two finite cylinders discussed.

a) The finite cylinder with hemispherical caps: Physically

the cylinder under present study is of constant radius but near the
end the radius varies from r = A to r = 0. Therefore even if we
can assume the source distribution in the shank region is constant
near the end we must have the variation of source distributions.
In the present case, the variation is shown in Fig. 4-3. But the
source distribution for an infinite cylinder is constant along the
cylinder (cf. Ref. 2}). Thus the order of magnitude of the end ef-
fect can be determined by calculating its effect on drag.

For the Navier-Stokes flow past this finite cylinder, the drag
can be obtained by comparing the outer expansion of Ego with the
fundamental solution of Useen equations and the result is @*@tvained
in equation (5-69). To the order of €, the drag can be obtained by

assuming that the source distribution is constant and has the same
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strength per unit length as that of a two dimensional cylinder. But
to @(@a), the obtained result shows that the drag is no longer con-
stant and is different from that of a two dimensional cylinder. The
result also shows that the drag has a logarithmic singularity near
the ends. It is obvious that this singularity is integrable and thus
the drag is finite on the cylinder. From the obtained result, we

can conclude that the order of magnitude of the end effect is of Q(ea)
and the existence of end produces a logarithmic variation near the
end at this order of gz.

b) The ellipsoid cylinder: From the obtained result in Chap-

ter 6, it i2 obvious that to O(¢), the source distribution from gggl
is constant. This shows the end and the variation of radius along

the cylinder have no effect on drag to this order. But to E;}(@g)e the
drag distribution is no longer comnstant and has the following varia-

tion from 85-
Z,(z) = ""”E& ("‘“‘“‘“Z’m) + B (“““z"’m) + log (Re - z) (7-4)
+ log (Fe + z) - log 2H&]

The source distribution is finite near both ends and has no large
variation near the end as that of the finite cylinder. The total drag
of @(@Z} is obtained in equation (6-69). In Chapter 6 we can see
that the same outer solutions will be obtained by matching between
outer and shank only without taking the end into consideration.
Thus the end has no effect to @(e ) and we may even say no effect

to (™). The present variation of drag distribution along the
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cylinder is due to the variation of radius r along the cylinder. This
can easily be seen from the matching between shank and outer. U
the body is = £(z) instead of ellipsoid but has the same type of
ends as ellipscid, we will have the singular force variation of @(ez)

as

o, =die, B 5 B8 . i) (7-5)

Thus we can conclude that the variation of diameters of this finite
cylinder causes an effect of Q(fg). From equation (7-5), it is worth

mentioning that the cylinder which makes the drag of () equal to

Zero is
ué%‘“ (?i_é%-z z,.., (ﬁg-?)
# ~ e A )
e fZ)=e (7-6)
Forz — -Heorz=HRe+ z =0, we have
Y. % 3
-iE (W8) llog ——
% ) ] )
r =e 1 e + Q(Eg} (7-7a)
or
3
% - —2.
r = AVE + OF %) (7-70)
or
*2 2 425" 4 oReD (7-7¢)

JYQ “%Eﬁ%)
where A= -5 e

This cylinder also has a paraboloid end. By actual numerical plot-
ting for large Re, this cylinder has a constant radius in the center

region. Since the drag of @(52) is zero for this cylinder, and from
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(6-72) the drag per unit length agrees to the value of. the two dimen-
sional cylinder to @(@3). This suggests that this cylinder may be
the best one for studying the nature of the passage from the typi-
cally two dimensional case to the typically three dimensional case
{especially concerning the drag formula). Finally, we can conclude
from equation (7-5), the variation of diameter will always cause an
effect of G(gg) and the only exceptional cylinder is defined by equa-
tion (7-6).

Thus we have clarified the order of mé,gnimée of various

effects.

7.3 Expansion Procedures.

In the present study, we have introduced four expansions.

It is worth mentioning that for the finite cylinder with hemispheri-
cal ends the idea of an intermediate (rather than inner) expansion
is intirnately involved and quite helpful in the present case., In
fact, these intermediate solutions, effectively, make the solutions
of our problem possible in practice. As pointed out by 8. Kaplun
(cf. Ref. 9), the intermediate solutions alao bring out a number of
“¢ypical'’ low Reynolds phenomena.

The successful use of the idea of the intermediate solutions
in the present study show that the similar expansion procedure can
be applied to other péablems of low Re flow.

For the ellipsoid cylinder, the matching between the four
introduced expansions are exhibited in detail. This example also

shows how to treat several expansions {more than two). Although
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certainly no new principles need to be introduced, it becomes
interesting in detail. In the present case, we first construct a
uniformly valid expansion near the body and then the outer so-
lution is determined by matching with this uniformly valid expan-
sion near the body or by matching each of the intermediate
sclutions which have already been matched with each other.

It is worth mentioning that the low Reynolds flow is under-
stood as the flow about a very small object, that is, the flow
obtained when the characteristic length (i.e. radius of the cyl-
inder) tends to zero with the length % fixed and the obaerver
fixed in space. Note that this intuitive definition of low Reynolds
aumber flow has meaning only in connection with specific prob-
lexns, but then it has the advantage that the resulting limit is

a unique solution of the full equations and uniform at infinity.

7.4 Related Probleme

It would be useful in obtaining the overall picture of low
Reynolds number flow to solve the present problem considering
some of the features which have been removed for simplicity.

For example, it would be interesting to consider the effect of
compressibility. The effect of compressibility at low Reynolds
number is discussed in Ref., 5. However this discussion is not
complete and there remain many unanswered questions in the area
of compressible low Reynolds number flow. Another extension

of the example which might prove interesting and could be handled
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by the methods discussed here would be in the extension to the
finite cylinder with its axis parallel to the direction of the flow
or with some angle of attack by introducing certain suitable co-

ordinate systems, to finite wires with different curvatures.
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APPENDIX A. AN ASYMPTOTIC INTEGRAL

The following asymptotic expression

A ?_Z e"e”’ga e%’ga
m/ e dym"g’ré“%’ Zﬁz‘? e © e o @
0 it

can be established for n~* w.

Proof: I we let

2 4 2 A 2 .2
f=e" j e® ds = % e"(ﬂ -s )é%s
0 D

and let uz = *:32 - 529 we have mz 2 0 because *fgz 2 s2

udu
ds = :

= e

N - u

Therefore for n— ¢, we obtain

_%g vdu

2 2
A

-u® 1.1 o + Judu
‘ﬁ H Z ;:33 @ o o s ¢

e

@

& {_M,ﬁ,ﬁmt}w:g [ Qmﬁﬁ.e}u’j

1 1
“ppwae '% % '%’ ' o e ° °
en %ﬂﬁ

1]

This concludes the proof.

and

(A1)

(A-2)

(A-3)

(5-4)
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APPENDIX B. ASYMPTOTIC EXPANSION OF “’Z&i)

Asyraptotic expansions of %z (cf. 6-31) for v—0, -Ke<z<Ke

and for r — 0, z + Re = 0 are established in detail here. From

{6-31) and for T =0 and z finite, we can write }2} in the following

form

He AV(G-7)%+52

g =-144 & at
1 2 J =2  ~3
«Rea/(z=-8)" +
=x“ dg
- 372

.. Re -
o oxy | =14
I Q‘“ w2 a3 372
-Re [(2-0)% + 74
[ @2 o a P ~
e -3(1z-T)%+ 3% &
vk 2 [2 - L

+ O(; log ;)

g
=
i

=-5A-iB-jJC+ED

(B-1)

The asymptotic expansion of A can easily be obtained by introducing

Lo d g g . o
L =3+ r sinho,
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a) For r — 0 and -Ke< z< Re, let us divide the integral into

three intervals [-Hs, z-v (r)] , [ z-v(7); z+v(r)] and [Z+v(r),Ee]

and let us consider

1t At Ay (5-2)
for E; ~ 0, v{r) = 0as r — 0,
vir)

Then we have

;"Vg%) “"&% \/(E“Z)z + ’;Z ;a;;;(;) “%(E”Z)

Al=% < @.Z 333%“3 iﬁmfwﬂ @Z"%’ ‘Q(;)
-Re \/(; T g (-t
¥ (7] Retz ~
s = Log — El (T) + Ofv,7) {B-3)
3 Ay Z ma v -
. g{%u(r)e-a {z2-C) +e _ sinh §) ~%?$in}m’
Ag : df = ‘% e de
m\‘w" g o8 e Z wz L% .
2@V E -0 7 ot 2)
T
= 2 1og 248 + oy, I) (B-4)

®

Similar to A’}a’ we get

L4/~ 502, 2
Re -3V (z-0)%r

ﬁég g 3 g d;
S A mup s =
v VG - D2+ 72

vy ) > ~
- - 1og 2 - £,E5E) + o0 F),5) (8-5)
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Thus for r =0 and -Re < z< fle, we have

= -2 (log ¥ - log 4+ 'Y) - B (g%i)

~=F L
et =

- £ E&5 2+ o, ) (B-6)

b) For F = 0andz = z+ Re == 0, the asymptotic expansion of
A can easily be obtained by use of the same method by dividing the
integral into two intervals [0, z+ v(r)] and [T+ v(z), 2Ke] and

let us consider

A=Ayt Ag , (B-7)
now
grv(F)  -2VE-D)%+ 7
By 5§ = dat
¢ — o2, <2
0 »\/(Z = Z) + ¥
v
Smﬁ(g) -4rsinh o
= g @ . de
J 3
sinn (- 2)
Tr
2v 3 2 7 P
=log 2 - log (J&) + 1+ 2} s 0w, £) (5-5)
¥ g ¥
ZHe  3(@-2) "y
ot e . o lop 2 . m
Ay =) _ — at log —— | E(‘R“é")
ztv({r) i
+Olv, =) | | (B-9)

Therefore we have for r =0 and gz — 0
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As-log (Val+ 32+ 3)+ log 4 - y - E,(K8)

+ O(v, &) ' (B-10)

T @ ReAFRE [-Re)kid e
For ¢ = 0 and -He <z <E&, we have
:’2 ma
B =X+ 0FY (B-12)
T
Forr =0 and Z = 2+ Ke — 0, we can sasily see
~3 . -
sedf 2 i]vom
o Lf-2 =2 -
z + ¥
.1 5 1
4V 3Rl L g
e 5] A o~ e, o
= %}; «%E@g Wzgﬂ%- rz - z)+ Oz} (B-13)
T 8=

The asymptotical expansion of C can easily be obtained by the rela-

tion
C= (B-14)
x

The ecasiest way for obtaining the asymptotical expansion for D is by

use of series,
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pet [Az=fe z-£)
J —~
He (G0 YA [(3-T)23213/2
R 1Y I
L (z-§ 7
+ = == o, P ﬁ‘g
S @Dt

P ;gfﬂ @ el %
- f%wj RN Vi (4 +H
i / n
U ean dm L 27 (mr 1)1
& b ~2 n Re
£ 1 (;fg [E-D)% ¢ 77 ] + O{F log T)
L ;@ nt 2" -Re
Re

8

g‘m 1 % ]
-3
SOWVEATR R ims
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+l.e - 1 |+ OFlog?) (B-15)

| L«/(g ST+ T8 VE-H%+ 7% Ee

Thus for r = 0 and -Re<z <Re , we have

$(Fe-z) -4(Retz)
D=8 . l‘w _e —t 1 -
Re = Re-z Fe+ = Re+z

+ @(E log ;)

and for r =0, g2 =2+ Re — 0, we have

D= ~%w§~=% log (‘\/'Z?2 + 72

Oz
I CHE L
t am— - + O(z log z)
2Re 2Re

(B-16)

(B

-17)

Thus the asymptotic evaluation of %} (%) can be summarized as fol-

lows:

=2 pra— ~ g
a) For » == 0 and -Re<z< Re, wg obtain

%(Qi)sﬁ(iag;wigg 4+ y)ogeﬁag;

T (. Ttz Fo-z
R e e Lo .
ai(% ‘;) ' 9%(@%5)
s R le a 1 + 1 e
He -2 ‘R?é-; Retz Te+ z

+ Ofr log T)

b) Forr =0 and Z=2z+ Re — 0, we obtain
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"g’l&i) = éf-{i@g W22+ 2.3 - y+ log 4
+ El(’ﬁ“?é*’)}« =¥ 10g WE%+ 32 .3)

-Re

+ &2 -l )+ 0F10g D) (B-19)

exgu

2Re 2Re

It is worth noting that the same results can be obtained by differen-
tiating the asymptotic expansion of A. This justifies the differentia-
tion of the asymptotic expansion. Thus in evaluating of gé(gi) in
Appendix C, we will not repeat the detail and will only discuss the

corresponding essential term.
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APPENDIX C. ASYMPTOTIC EXPANSION OF %‘%’

gé‘ is defined in equation (6-56) and the asymptotic expansion
@fgé(%) for ¥ =0, »Tﬁfé<§<§ﬂ§ and for v — 0, 2 =2+ Re — 0 can
proceed in the same manner as for gl in Appendix B. The details
will not be repeated here. We only consider the evaluation of the

following essential part

e -3
1z.5 = | e i (G-1)
-Re (;—l;)z + 78

a) For ¥ — 0, -Re< z< Re, we can divide the integral into

three parts as we did in Appendix B. Then we have

12114» L, + I (C-2)

(C-3)

= £(2)%, (5) - {(-Ke)E, 6@;@

z=v{r)

= [

+ 4 o (.%2&} daf dt + O(v, 3) (C-4)
1V 2 at v

L =lv
ginh"HZ)
o]

. ( - aé?;sinhﬁ

f(z + © sinhe)e do

’&JS
sinh (- 2)
z
= 26() log 2+ Olv, I) (C-5)
¥
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{§E o "%(N"Z) -
133%\, f(g)im dz+@(v' %,:.)
z+v(T) -2
?E
- 16 5,65) - 1(%e) £, B2 + g g;«g af g7
T v
+ Ofv, ;i;) . (C-6)
Thus

I=-26(z) [log®+ vy - log 4]

?E Z . daf (g z-L
A d - J z=-L . df
+ 4 d(wg"z af - | EE52) &oal
% s dg
Z
Raos ‘ﬁfém ‘ T
-f(Re) & g =) - £(-Re) E, (= + O(v, 3) (C-7)

The above evaluation is possible if {(Re) and £(-Fe) are finite and
the integrals in (C-7) are integrable.
b)For T —0andz=Re+ z = 0, we can divide the integration

into two parts.

I=1,+1g | . A{C-8)

and v (®) V(z-T) 72

I, = f{E)e at

4
0 VGE-T)2 + 72

= 2v — “2’
= {(z) log — - £(z) log ( w‘%“ i -
?

~t

r
+Q (E,v)

e

(C-9)
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ZRe -3(T-2) -
el KB a0 bE, 2]
zrv{r) z-z v{z)

= - 125 £, 522 + 16) By ()

AR &2 & oareop, Iy
Zrv(r) dt

IR S D

= -f(z) [ log (\EZ P33+ y -~ log 4] + f(aﬁéml@%‘%;

=, (%) -3{ dT+o &, Elog 5 (C-10)

The above evaluation holds for any £(z) such that £(0) and f(2Re) are
finite and the last integral in the above equation exists. For gi(gi)s
f(Z) = fk(;) defined in {6-4la) which satisfies all the requirements in
the above evaluation. Thus, by the above results, the asymptotic
expansion can easily be summarized as follows.

1) For ¥ — 0, -Re<z< Ke, we have
T%(;Zi) ~£(z) {1 [log T+ y - log 4] - %V log ¥}
+ 1 k() e K ky(z) + O (¥ log 7) {C-11)

where li(g) and E€2€§) are functions of z only and are finite for

-Re<z< Re.
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2)Forr =0, z=Re+ z — 0, we have

=L~y ey [=2 =2 - :
g, (dgi) f(z)i-z» {log (2" + 2% - 2) + vy - log 4]

r & /-»»2 ~2 - = L T
»ivmg(z%»f ag)}%°a€z~rkaz

w1

{C-12)

where SZ and 3‘32 are finite constants. The detailed evaluation will

not be repeated here.



