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Abstract

This thesis focuses primarily on two techniques often used for low level analysis
of motion in image sequences, the computation of optical flow fields and the de-
termination of the spatio-temporal frequencies present. The complexity, cost and
accuracy of image sequence processing is shown to be related to the manner in which
the information is represented. The optical flow problem is formulated in terms of
the basis functions underlying the discrete representation of images. Besides giving
good results for a wide variety of inputs, this formalism highlights the benefits of
a redundant representation of the input image in terms of reducing the overall cost
of analysis. The spatio-temporal filter banks are analyzed using information theory.
This approach makes explicit use of the input prior and provides an objective way of
comparing the cost effectiveness of filter banks of different sizes. The output is used
to generate a probability distribution over selected parameters in order to provide
higher visual modules with a richer input. The formalism developed here provides a
means of measuring the redundancy in filter bank outputs. This redundancy is shown
to provide robustness to noise within the system. Likewise, a redundant representa-

tion of the image can also be used for error correction in case of corruption during
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storage or transmission. An algorithm for using the Burt Laplacian pyramid for such

error correction is also developed and demonstrated.
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Chapter 1

Introduction

1.1 Effects of Redundancy

With the rapid expdnsion of the field of image processing, it has become necessary to
differentiate between the requirements of various tasks. This is partly due to the ever
increasing sizes of the image sequences and partly due to the increased sophistication
of analysis that is demanded. In order to meet all these requirements with available
resources it is important to optimize each type of operation to utilize resources as
efficiently as possible. For archival and transmission systems, this would mean using
the most compact representation in order to save storage costs and bandwidth. For
computational tasks, it is the amount of computation that must be minimized. This
thesis examines the cost for the two different types of computation most frequently
carried out by low level image processing or visual systems.

An unfortunate side effect of compactly representing an image by sampling at the
critical (Nyquist) rate is that the information is encoded globally. The information
about the highest frequency features in any part of the image is encoded in pixels dis-

tributed over a wider area about that point. This poses problems even for static (single



frame) analysis since feature matching routines must use bigger kernels. The prob-
lem is worse for motion since the movement of a small feature, over a relatively small
distance, can cause global changes in the resulting new representation. This property
is best seen for wavelet representations where a small shift in the input can com-
pletely change the representation. Thus, motion analysis in such a context acquires
a huge computational cost. This problem was pointed out in [Simoncelli et al., 1992]
where the authors stressed the need for having representations that were shiftable.
One conclusion of that work was that since critically sampled representations like the
wavelets typically violates the Nyquist criterion for individual subbands, the informa-
tion moves from one band to another under translation. The steerable pyramids they
designed to overcome this problem turned out to be less compact than the wavelet
but were considered computationally more desirable. In this thesis, this issue is stud-
ied further in the context of calculating optical flow from an image sequence and
estimating the cost of obtaining results of a given accuracy as a function of the input
frequency, since the (digital) input frequency depends on the sampling rate. How
far can computation costs be reduced by using more redundant representations and
what are the consequences of the redundancy in natural images 7 These questions
are answered with the help of an analysis based on the explicit use of basis functions.

The use of basis functions is shown to be the key to interpolation and the estima-
tion of derivatives in images. The estimation of derivatives in a discrete representation
can be justified analytically by performing the derivative operation on the underlying
continuous basis. The extent to which information is encoded locally, reflected in
the compactness of the basis functions, determines the cost of estimating derivatives
with a given precision. The use of different basis functions allows the interpolation
and calculation of derivatives with varying precision. These are essential capabilities
for a variety of low level tasks. Since it is the low level operations that need to be

performed directly on the image, the image representation can be expected to have its



biggest effect on the cost and accuracy of such systems. The higher levels of analyses
based on identified features, tokens, edges and flow fields should remain unaffected.
An alternative to the computation of optical flow is the use of a bank of spatiotem-
poral filters, the underlying idea being that a moving pattern would have its energy in
the fourier domain concentrated about a line through the origin. The cost of building
a filter bank to cover all scales, speeds and orientation is huge. An attempt to reduce
this cost by requiring only a few filters was made by the introduction of steerable
kernels that allowed one to use a finite set of filters to compute the outputs of filters
distributed over a continuum of orientation and/or scale. Given two families of ker-
nels, one of which is spanned by n filters and the other by m filters, how does one
compare the cost effectiveness of the two families? Since the filter outputs usually
undergo a nonlinear operation and are used for making decisions about the image
content, they can be regarded as detectors of analog features. The analysis of their
cost effectiveness is best done in terms of information delivered. To this end, an infor-
mation theoretic analysis can be done to quantify the effectiveness of a set of filters.
The output can be characterized by its expected information content, redundancy
and cost. When continuous variables are being estimated, it is often desirable to cast
the output in terms of a probability distribution. A probability measure is developed
on the output to this end and the ability to incorporate top down constrains and pool
information across multiple parameters is demonstrated. The issue of hyperacuity can
also be addressed in this framework. It is well known that overlapping broadly tuned
filters are used by biological systems to make fine judgements. How fine can this get
and what kind of tuning curve is best suited for such applications? These are relevant
questions for engineering applications as well since they could reduce the number of
filters required to estimate input image parameters with a certain precision. Finally,

there ought to be a way of incorporating prior knowledge about the inputs into the

filter bank design.



The effect of redundancy in the output of an analysis system is less straightfor-
ward but no less important. Redundancy in the output of filters (feature detectors)
is shunned since it is taken to imply that the system is not optimally designed and
computational costs can be reduced by making the filters more independent. While
that is true to a certain extent, it is not true that making the filters completely in-
dependent would necessarily make the system optimal. If the information content of
the filter bank is maximized at a fixed computational cost, the output still contains
a significant amount of redundancy. In this context, the redundancy can be consid-
ered to be benign, if not desirable. On the other hand, the redundancy does make
a big difference in the presence of noise within the system, as would be the case for
computers if there were no error correcting facilities built into the disk read/write
mechanisms. The omnipresence of such systems in modern computers enables engi-
neers to design algorithms on the assumption that results can be stored, transmitted
and retrieved without errors. Biological systems, on the other hand, are noisy and
hence the evolution of biological visual systems may be expected to be influenced by
the need to have redundant encoding of their outputs. While detailed case studies
of biological systems will not be a part of this thesis, it is a topic of further research
and serves to highlight the importance of understanding the role of redundancy in
the output.

Since redundancy in the output can be used for error correction in the presence of
noise, it is natural to ask if the same cannot be done for the input. Given the need for
a redundant representation of the input as outlined earlier, is it possible to use such a
representation for error correction ? It will be shown how that promise can actually
be realized for one such redundant representation, the Burt laplacian pyramid. This
multiresolution representation of an image can be considered to be one huge codeword
and noise added to this representation can be detected and removed. It is worth

emphasizing that the decoding scheme for this system as well as the one developed for



decoding the redundant outputs of filters have the property of degrading gracefully in
the presence of excessive noise. This follows from the fact that similar inputs produce

similar codewords. Such a property is extremely desirable for applications where it

is better to make the best guess than to give up completely.

1.2 Thesis Overview

In Chapter 2 the standard problem of calculating optical flow from two successive
frames is addressed making explicit use of the underlying basis functions associated
with the discrete representation of images and flow fields. The basis functions provide
an accurate way of evaluating derivatives of images and performing interpolation,
both of which are essential for the motion estimation process. A given precision
can be obtained by trading off basis function complexity with the sampling rate.
Computational costs are shown to have a minimum at a sampling rate above the
Nyquist limit, indicating the desirability of overcomplete representations for motion
estimation. These results are utilized to construct a multiresolution motion estimation
procedure that was tested using artificial and réal images with non-rigid motion and
large displacements. The major conclusion is that linear basis functions are adequate
for motion estimation using Gaussian pyramid representations of natural images,
except possibly at the highest resolution. The use of Laplacian pyramids or the
presence of high frequency features moving independent of any low frequency features
at the highest resolution requires the use of larger basis functions. In such cases, a
less expensive alternative is to use a costly interpolating function to expand the
image thereby lowering its spatial frequencies and then use linear basis to analyze
this expanded image. This chapter shows why the redundant encoding of the input
to an image sequence analyzer is desirable. Brief descriptions of pyramid formation

will be given in Chapter 3 and Chapter 4. For a comprehensive description of Gaussian



and Laplacian pyramids, see [Burt, 1983], [Burt and Adelson, 1983].

In Chapter 3 the use of spatiotemporal filters to characterize an image sequence
by its frequency contents is studied and the effect of redundancy in the output is
examined. The approach here is to design filters such that the filter banks, regarded
as detectors of analog quantities, are maximally informative about their input. An
information theoretic analysis shows that for a fixed cost the optimum filters are not
necessarily the most narrowly tuned. For the task of estimating a single value for
each input parameter (like orientation) there is an incremental gain in information
at huge increase in cost for filter banks using a set of filters tuned narrower than a
certain filter width. This calls into question the advisability of building filter banks
with a large number of very narrowly tuned filters for increasing the estimation accu-
racy for simple inputs. Hyperacuity in orientaion can be achieved by a collection of
moderately tuned filters so long as the input has only one dominant orientation. The
effects of filter tuning widths, number of filters and bits of precision in the output are
explored. The output of a filter bank of moderately tuned filters is shown to encode
information in a redundant manner, and the right decoding process not only extracts
the most information from the output but is also robust to noise in the system. The
analysis shows the relationship between computation cost and information extracted
for different filter banks, and the relationship between estimation accuracy and input
complexity. The role of the prior in the filter design shows how the design process
may take advantage of prior information about the input in order to maximize the
expected information content of the outputs. An efficient pyramid based implemen-
tation for orientation, spatial frequency and temporal frequency estimation is given
and the results discussed. This chapter shows how the maximally informative output
is one that encodes the information in a redundant format and how this output can
be decoded to both provide estimates of maximally probable input parameters as well

as probability distributions covering the entire input range.



In Chapter 4 the error correcting properties of one particular redundant repre-
sentation is explored. The Burt pyramid was developed as a means of decomposing
images into multiscale representations. Unlike the wavelet transform, which is a
complete orthonormal transformation, the pyramid transforms are overcomplete. In
addition, the Burt pyramid has an exact reconstruction rule. The consequences of
the redundancy and exact reconstruction are examined and a way to characterize the
pyramids is given. The issue of error detection is addressed next, followed by the
development of an error correction algorithm. Several examples are given to show the

performance for different amounts and types of noise.



Chapter 2

Computation of Optical Flow

Using Basis Functions

2.1 Introduction

The problem of estimating optical flow from a sequence of images has been studied ex-
tensively. Beginning with the work of Horn [Horn and Schunck, 1981], [Horn, 1986],
one approach has been to impose a constant brightness assumption to the image
sequence and then use spatial and temporal derivatives of the gray-scale images
to solve for the displacement. Since this left the problem underconstrained, fur-
ther constraints were imposed by way of regularization of the optical flow field.
Many variations on the original scheme for solving the resultant equations have been
proposed [Haralick and Lee, 1983], [Tretiak and Pastor, 1984], [Nagel, 1987]. Mo-
tion estimation algorithms using a multiresolution framework [Bergen et al., 1992],
[Weber and Malik, 1992] have also been based on the computation of optical flow.
All these techniques require the calculation of spatial derivatives and a first-order ap-

proximation. This leads to large errors in the presence of high spatial frequencies and



large displacements. Some methods, in an attempt to overcome the aperture problem,
invoke second derivatives and are thus even more sensitive to errors in estimation of
derivatives [Tretiak and Pastor, 1984], [Nagel, 1987].

The development here is based on the continuoﬁs basis functions that underlie
the discrete representation of images. The optical flow field is regarded as a con-
tinuum represented by its own basis functions and their coefficients. The constant
brightness assumption then leads to a system of coupled differential equations where
the derivative operation has to be performed only on the continuous basis functions.
A multiresolution approach allows a coarse to fine estimation with an image reregis-
tration at each stage which keeps the first-order approximation valid even for large
displacements (> 30 pixels). By chosing the appropriate basis function, one can
handle high spatial frequencies and irregular flow fields.

In this chapter, we will first derive the standard equations for the optical flow
field and then introduce the basis functions. An examination of the resulting equa-
tions and similarities with previous work will be made. Next, we take a look at the
various candidate basis functions and evaluate their strengths and weaknesses. The
relationship between image spectrum and cost of analysis is used to derive an opti-

mum sampling rate for image processing. Finally, results for synthetic and real image

sequences will be presented.

2.2 Gradient Based Optical Flow Field

Given two images separated by a time interval At, the constant brightness assumption
implies that all changes in the image are due to motion of image components and
not due to altered lighting conditions or occlusion. Hence, there exists a warping
Ax(z,y), Ay(z,y) that will map the first image onto the second. In the absence of

a perfect solution, the problem can be formulated as an optimization problem in Az
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and Ay.
E= / z,y,t+ At) — Iz + Az, y + Ay, 1)) dzdy (2.1)

In order to do the minimization of £ w.r.t. Az, Ay by gradient descent, it is

necessary to express E as an explicit function of Az, Ay. This can be done by

making the first-order approximation

I(x 4+ Az,y + Ay) = [(z,y) + Aw.L(z,y) + Ay. 1, (z,y).

This gives
E= ] / [AI(z,y) — AzLo(z,y) + Ay.L(z,y)2dedy, (2.2)

where

Al(z,y) = 1(z,y,t + At) — I(z,y,1).

In order to regularize the flow field, a cost term —log P can be added where P is the

probability of the flow field given by

P = // exp(_((A:cm(:cn ) — Aac(:c7y))2 + (Ayaue(x,y) . Ay(m,y))z)/a2)da:dy

AZape(2,Y), AYave(z, y) are local averages.

In going from Eq(1), which would have required a random search or blockwise
quadratic fit [Anandan, 1989],to Eq(2) which can be solved by gradient descent, we
have committed ourselves to calculating derivatives on images and limiting the anal-
ysis to displacements that are small enough for the first-order Taylor series to be
accurate. The calculation of derivatives is a problem not only because of its noise
sensitivity but also due to the fact that the images stored in computers are discretized
versions of continuous functions. By performing the derivative operation on the un-

derlying continuous basis functions, derivatives of images can be calculated in an
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analytic fashion. The problem of large displacements can be partly solved by using a
multiresolution approach, [Burt et al., 1992], [Simoncelli, 1993]. Since displacements
need to be small with respect to the “local” frequency, if the motion estimates for
the lowest frequency components in an image are used to re-register the image before
estimating the motion of features at the next level of resolution, then large displace-
ments can also be estimated accurately. The requirement of re-registration leads to

the problem of interpolation and this requires the use of a continuous basis function

as well.

2.3 Basis Function Formulation

The discrete image I(m, n) and the continuous image /(xz,y) are related by the anal-

ysis and synthesis functions

I(m,n) = // I(z,y)¢mn(z,y)dedy Analysis (2.3)
I(z,y) =>_> I(m,n)®nn(z,y) Synthesis (2.4)
DY bmn(@ s y)Pmn(z,y) = 6(z — 2’y — ), (2.5)

Equality in eqns(2.3,4) holds if the functions are a complete set and eqn(2.5) assures
perfect reconstruction. Our chief interest here is in eqn(2.4) which relates the discrete
I(m,n) to the continuous I(z,y), for detailed discussion of analysis and synthesis
functions and filter banks see [Simoncelli and Adelson, 1991}, [Oppenhiem and

Schafer, 1975]. For a choice of ®,,, that does not satisfy eqn(2.5), eqn(2.4) can still
be a good approximation. As will be seen, considerations of computational cost and

time will restrict choice of ®,,, so as to rule out the use of sinc and other nonlocal

functions.
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Differentiating eqn(2.4) w.r.t ¢ and y yields
ZZI m, ) ( Prn(2,9))s (2.6a)

ZZ[ My, ) ( Pon(2,Y))y- (2.6b)

The derivatives of the basis function @,,, thus give the appropriate coupling coeffi-
cients for using the image pixels I(m,n) to estimate the derivative of the image. It
should be noted that eqn(2.6) can also be used to estimate the derivatives off grid
points, 7.e., interpolate the derivatives.

The desired displacement field can also be expressed in a similar manner. Since
the displacement field may be smoother (or more irregular) than the image, one may
assume that it has a different basis function, W,,,. If this distinction is not required,

one can always set ¥ = ®. The displacement fields Az and Ay are

ZZP m, ) Va2, y) (2.7a)

ZZQ (m,n)Wpn(z,y). (2.70)

The estimation of displacement requires the estimation of P(m,n) and Q(m,n).

2.3.1 Displacement Field Estimation

The added assumption shall now be made that the basis has the property
rn(z,y) = P (2)Pn(y) (2.8a)

Q. (z) = ®o(z — m). (2.80)
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This leads to significant computational simplification without imposing undue con-
straints since all widely used basis functions have the above property. Eqn(2.2) can
now be reformulated in terms of the basis functions and their coefficients. For conve-

nience, let us denote I(z,y,t) as I(z,y) and I(z,y,t + At) as L(z,y).

Hzyy) = D 1(m,n)®u(z)®u(y)
Al(m,n) =  I(m,n) — L{m,n)
Li(z,y) = ;I(mm)%(w)@n(y)
L(z,y) = ;Hm,n)@m(@@;(w
Ax(z,y) = ;P(m,n)‘?m(aﬂ‘yn(y)

Ay(:c,y) - ZQ(m,n)‘I’m(m)\Dn(y)

Eqn(2.2) can now be used to express E in terms of the unknowns P(m,n), Q(m,n).
Differentiating w.r.t P(M,N),Q(M,N) gives us the required updating rules for it-
eratively minimizing £ and finding the desired P(m,n), Q(m,n). The regularization

terms arising from —/logP are shown only in the update equations.

E :ff[ > AI(m,n) Py, (2)8,(y)

mn

=2 P(m,n) W (2)Wn(y) D 1(p, )0 ()04 (y)

~ZQ(m>n)\I'm(w)‘Ifn(y)Zf(p,q)@p(x)@;(y)]2 dedy  (2.9a)

=3 P 2 2 (W W, 0, 0,0, Wp Uy ) I(p, )] (s, 1)

mn rq st
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= Qe 3 (U 0, 0, 0L, U Uy ) I(p,q) [ (5,8)  (2.9B)

pg st
oF
= 35 (0,0,9,9, WUy ) Al(m,n)I(p,q)
aQMN mn pg
3 P Y (0, 0,0,8,8,0,0 U x ) 1(p, g) (s, 1)
mn pq st
mn rg st
oF —
Pyn = P — 6——8[)MN + MPun — Pun)?
0E S—
MN = U o~ € + MQmN — Qun)?
0Qun

where < . > denotes the integral over the entire image. Note that the integration
has to be done over the continuous variables z,y and involves only the continuous
basis functions. The discrete quantities like I(m,n) are only involved in discrete
operations like summation, addition and subtraction. The basis functions provide an
analytic method for deriving coupling constants (or convolution kernels) that yield
solutions of any desired accuracy. The question of how much computation has to be

done, and when, is addressed in the next section. The issue of accuracy is discussed

subsequently.

2.3.2 Computational Issues

In eqns(2.9), the unknowns are P(m,n),Q(m,n). Of the rest, the images will vary
from frame to frame while the basis functions will always remain the same. Thus
quantities that depend only on the basis functions can be precomputed (to keep open
the option of different basis functions, one may compute more than one set). Since
this is a once in a lifetime calculation and involves only file 1/O, this constitutes a
memory cost rather than a computation cost. After the images have been input,

the quantities that depend only on the basis functions and I(m,n), AI(m,n) can be
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computed. These are computations that do not involve iteration and will be called
overhead costs. The final summations that include P(m,n),Q(m,n) will have to
be iterated as P(m,n),Q(m,n) get updated and this will be called cost of solving
eqn(2.9). The integrals and summations in eqn(2.9) extend over the entire image area.
However, if the basis functions are localized, then the summations and integrals need
to be evaluated over local regions since the rest of the coupling coefficients will be
zero. Hence the computation costs are dependent on the width of the basis functions.

Let the functions ®, ¥ be such that

Bo(z)= 0 |z|| > k/2 (2.10)
Uo(z)= 0 ||| > h/2. (2.11)

Due to the choice of separable basis functions, the inner products of eqn(2.9) can be

expressed as a product of an z integration and a y integration. For brevity let us

label them as

il

(0,0, 0,0y Ty (0@ W) (2,0, UN) = Alzmpns A22gy
)

(@@, 0,0, Wy Ty

i

<(Dm(bpl1,M <Q) ! \I}N> = AlympM-AQynqN

U U, 00,0, U Uy ) = (V@0 Uy ). (U, 0,8,Uy) = Blampon. B2Tugiy
{ )

U@, W0) . (U @0, W) = Clitgpans C22ngen

i

W, W, 00, D, 0, WUy

i

)
)
)
U, U, B, @ 0,0, Uy )
)
)

T T T

(V@0 Upr) (0,004 0x) = Blympors. B2ngen
{

U, 00,0 0,80,y U@, @, W) . (U@L UN) = Clyiport-C2yngen-

Using eqn(2.8b) yields

AlxmpM = Ali[:m_M, p—M, 0 (212)
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Since the functions have widths =k, h it follows ({ = A+ k — 1)
Alzmpn =0 if |M —p|| > L or [M—m| > L

Thus ? integrals each for Alz, A2z, Aly, A2y need to be calculated. Using similar
arguments, one finds that for Blz etc. one needs to precompute and store [k integrals
each. These memory costs are small compared to the memory cost for the images.
The bulk of the overhead computation costs consist of performing the summations
of the above matrices with the image (first frame). If the image size is D x D and

C =2h —1, (h = k) then a summation of the form

Z Blzpsm B22pgun I(M — p, N — q) I(M — s, N — 1)

Pags5t
will produce a 4 dimensional array of size D?C? requiring C* multiplication per
element for a total cost of D*C®. There are 4 such summations (Bz, By, Cz,Cy)
and 2 much smaller summations (Az, Ay). The indices M, N assume D values each
and m,n,p,q,s,t assume C different values. However, using the fact that we have a
separable kernels like Blz. B2z, the computation per element reduces to 2C? bringing
the total cost down to 2D?C*. Since there are 4 such summations, the overhead

computation requires 8D2C* multiplications.

B(m,n,M,N) = > Blamp; B2tnu I(M—p,N—q)I(M—s,N—t)
p,q,s,t
= Y Blamys »_ B2tpg [(M—p,N—q)I(M—s,N—t)
P, qt

T(n,M—p,M—s,N) = > B2z, I(M—p,N—q)I(M—s,N—t)
t

q7
B(m,n,M,N) = > Blay,,T(n,M—p,M—s,N)
p?

where  m,n € [1...C]
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q,t,p,s € [=C[2...C/2]
M, N, M—p € [1...D]

M—s € [M—-p-C/2...M—-p+C/2].

Once the above type of summations have been done, solution of eqn(2.9) requires
performing the summations over m,n for each P(M, N),Q(M, N) at each iteration.
Thus the computational cost per iteration (Loop) is D?*C?. For the smallest value
of h (h = 3) this cost dominates the overhead costs. For larger values of h, (h = 7,
11), 4D?C® (the unseparable basis overhead cost) may dominate Loop x D?C?, where
Loop is the number of iterations required for convergence. Hence, having a separable
basis and keeping the overhead costs down to 8 D*C* means that when wider basis
functions are used the computational cost goes up as C? initially and then as C*. On
the other hand, with a nonseparable basis, the cost goes up as C'® since the overhead
costs begin to dominate. Note that arrays like B(m,n, M, N) cannot be separable

since the image I(p,q) is not generally separable. Hence the final summation over

m,n cannot be reduced to 2D?C multiplications/iteration.

2.4 Choice of Basis Function

The choice of basis functions is guided by two considerations - accuracy of repre-
sentation and computational cost of solving eqn(2.9). While considering the issue
of accuracy, one must not only keep in mind the accuracy with which a set of basis
functions can represent the image as in eqn(2.4) but also the accuracy with which it
can represent the derivatives as in eqn(2.6). The two requirements are not identical

since the process of taking derivatives accentuates the high frequencies and attenuates

the low frequencies.



18
2.4.1 Sampling Rate

To a good approximation, the digitized images may be considered to be formed from
continuous real images by sampling with an array of delta functions. So long as
the image is bandlimited and the sampling meets the Nyquist criterion, a perfect
reconstruction is possible using sinc basis functions. The disadvantage with the sinc
function is that the amplitude only decays as 1/z leading to global coupling and too
high a cost for solving eqn(2.9). As a result, one is forced to consider more compact
functions, like (windowed) truncated sinc functions and functions underlying linear
and cubic spline interpolations. In [Anderson and Rakshit, 1992] we have given an
analysis of the interpolation accuracy of the above basis functions as a function of
frequency. It was observed that as the sampling frequency approached the Nyquist
limit (and the digital frequency approached =) it became necessary to use wider
functions to obtain accurate interpolations. This is of greater concern in the present
context since we are also interested in calculating derivatives of images, which are
strongly dependent on the higher frequency components.

The Nyquist sampling rate is the minimum rate that assures an exact reconstruc-
tion and no aliasing. It represents the result of optimizing memory requirement for no
aliasing. If, after the sampling process, subsequent processing requires interpolation,
reconstruction or shift invariant analysis, then our criterion for chosing a sampling
rate should also take into account the computational complexity of these processes.
As Simoncelli et al. have shown ([Simoncelli et al., 1992]), a critically sampled repre-
sentation like wavelets cannot be shift invariant since the Nyquist criterion is violated.
In [Anderson and Rakshit, 1992] we went beyond existence and addressed the issue
of optimal sampling rate to minimize the computational cost. That argument shall

be repeated here in the context of image motion estimation.
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If a sinusoidal signal f(z) with frequency f, is sampled at f;, the samples are

f(n) = cos(2xfun/fs) = cos(nm —nw(fs —2fa)/fs)
= cos(nn) cos(w(fs — 2f.)n/ fs).

Thus f(n) has values of alternating sign with an envelope of frequency f. = (fs—27.).
In order to estimate f, from f(n) one needs to know f; and f.. To know the latter
one must have samples of f(n) over a width of 1/ f. and only basis functions of width
1/ f. or more will be able to pool information from region that wide while performing
the interpolation. A basis function of that width, sampled at the same frequency as
the image (f;s), will have f,/(fs — 2f,) coefficients. An image of size L x L when
sampled at f; will have L?f? pixels and as many P(M, N) and Q(M, N). Hence the

cost will scale as

Total number of Coefficients = L*f?
Cost per Coeff per iteration = [f./(fs — 2f.)]?
Total cost per iteration C; = L*f2[fs/(fs — 2f.)]°

Minimizing Cy wrt fs  foor = 4fa-

Thus while the Nyquist limit is necessary, it is not the optimal from a computational
point of view. Oversampling by a factor of 2 above the Nyquist limit in each dimension
trades off computational cost for excess memory requirements by allowing the use
of more compact basis functions on larger images. In most cases, a linear basis
is implicitly used (®;, as defined subsequently) and for these algorithms the error
could be decreased by oversampling. For a given sampled image I(m,n), if there is
significant energy above 7/2, it will pay to first upsample the image by interpolating
with a big filter (e.g., 20 tap FIR) and then do the motion analysis with a compact
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basis. The usual practise of prefiltering images by Gaussian lowpass filters tries to
achieve a similar effect by discarding the high frequency information together with
high frequency noise. This is unwarranted for our algorithm since the coupled system
of eqn(2.9) ignores the random local motions generated by noise and locks into the
motion of the true image and the higher levels of a pyramid representation tend to

be immune from high frequency noise.

2.4.2 Derivatives

The question of calculating derivatives has only recently been given significant atten-
tion. In [Simoncelli, 1993], Simoncelli addresses the problem of designing prefilter-
derivative filter design by minimizing a weighted least square error in the frequency
domain for constant phase separable lowpass filters. He then used a bi-cubic spline
to interpolate the image and to estimate derivatives at fractional pixel locations. The
consistent way to calculate derivatives and interpolate the image and derivatives is
to use eqn(2.4) and eqn(2.6). For a choice of ® that is separable and localized, &'
is also separable and localized. It is easy to see that the first-order difference, the
most popular choice for derivatives, amounts to using eqn(2.6) with the basis function
underlying the linear interpolation. Hence, the use of first-order difference for deriva-
tives is certainly consistent with using linear interpolation. The linear interpolation
has the advantage that its associated basis function has width = 2 making this choice
of basis function computationally the least expensive. If computational resources are
available, is it possible to make better estimates of derivatives in images, or does the

discrete nature of images impose a limit 7

Consider the process of calculating derivatives of sinusoids f(z) = sin(27 fox)

f@) = lim{f(z + B) — [(2)]/h (2.13)
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For a discretized image, the smallest h is considered to be 1/f; leading to

flln) = fln+1)—f(n)
= sin(27 foz)[cos(27 fo/ fs) — 11/ (1/[s)
+ cos(2x foz) sin(27 fo/ f5) /(1] fs)-

Two points are worth noting:

e The error is frequency dependent. Various attempts have been made to com-
pensate for this error [Weber and Malik, 1992], [Anderson and Rakshit, 1992]

by using a multiplicative correction factor that best approximates the error in

a given frequency range.

o Using 0.5%[f(n+1)— f(n—1)] will increase the error by increasing the deviation
from A — 0. (The error being considered here is the systematic error, not error

due to noise in the input.) The high frequency performance cannot be improved

by a smoother filter.

The systematic way to improve the estimate of derivatives is to use eqn(2.6) with
better choice of ®. Just as interpolation can be improved to any desired accuracy by
using bigger (windowed) truncated sincs, so too for estimation of derivatives. The
derivative of the sinc also has a 1/z envelope and hence performance for derivatives
improves no slower than for interpolation.

! sin(rz)

. , — -
sinc'(z) = - cos(mz) —

(2.14a)

f'(n) = sinc'(n —m)f(m). (2.14b)

At the first glance, eqn(2.14) would seem to be against the spirit of eqn(2.13)

- calculation of local difference. The discrepancy is due to the fact that a sampled
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representation encodes information about a continuous signal at off grid points in a
distributed way. Recall that during reconstruction (or interpolation), for z = n we
have f(z = n) = f(n) but for 2 # n the sinc interpolation has to pool in information
stored in many pixels. As was seen earlier, when the sampling frequency approaches
the Nyquist limit and creates digital frequencies close to 7, the distributed nature
of the representation becomes increasingly important for computational purposes.
Since the calculation of derivative requires information about the function at two
points close together, it always requires information about at least one off grid point.
Hence, unlike sinc, the sinc’ has nonzero values at other grid points even for x = m.
If eqn(2.14b) is used to generate a T-tap filter to estimate derivatives at grid points,
one gets {0.33,-0.5,1.0,0.0, —1.0,0.5,—0.33}. The process of convolution will flip
the filter around and give the leading term f(n+1) — f(n —1). Note that the higher
order terms alternate in sign - this is essential to capturing the high frequencies.
Derivatives off grid points can be directly computed by eqn(2.14b) and will be of
equal accuracy as on grid points. In [Simoncelli, 1993], the 5-tap filter had the form
{—0.09,—0.31,0.0,0.31,0.09} which does not have the alternating behavior. This was
due to the fact that the filter was optimized to match the derivative of a low-pass
prefilter, not that of a true derivative response. An added source of error for that
approach was the necessity of using an interpolation on derivatives calculated at grid
points to estimate derivatives off grid points.

If the goal was just the calculation of derivatives, large filters (basis functions
with wide support) could have been used for accurately estimating image gradients.
However, the goal here is to pick a set of basis functions and solve the coupled system
of equations, eqn(2.9). Since the computational cost grows as h?, where 2h is the
width of the basis functions, the choice will be restricted to linear, cubic, 5-tap and
7-tap sinc (henceforth called sinch, sinc7) bases. The cubic basis is also a 5-tap basis

but has better low frequency response than a sinch. The low frequency dominated
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power spectrum of natural images, the coarse to fine approach using pyramids and
the inherent coupling in eqn(2.9) lead to accurate results for real images even for
linear basis. However, it will be shown how the wider cubic, sinc7 outperform the

linear basis in the presence of high frequencies and large displacement. The choice of

basis functions will be

4

14z —l<az<0
Opp(z) = § 1-2 0<az<l1
0 otherwise

(20 32 41+ s[X%+2X24+X] 0<a<1 X=g—1

s[X3 —2X?% 4+ 1] l<z<2 X=z-1
Peyplz) =

0 2<z

(I)Cub(—:c) z <0

Dincs(z) = sinc(z).Ws(x)

Bgincrl(z) = sinc(z).We(z)

TR T 2>2>0
Ws(z) = 0 x> 2
W(-=z) z <0
SR 55250
Wi(z) = (0 >3
W(-z) z <0

The window is essential to remove ringing from the interpolation of low frequency
and dc signals. While ringing is just a nuisance for interpolation, it can seriously
corrupt the calculation of derivatives. However, the more conventional windows like

the Hann window lead to such excessive smoothing that the high frequency response
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of the bigger basis functions show only marginal improvement. The above type of
window is a good compromise that leaves one with two free parameters to adjust the
trade off between suppressing ringing and high frequency response. ®,;,, does not have
a derivative defined at z = 0. However, we can define it to be 0 and the derivative,
being piecewise smooth, is integrable. For simplicity, we will use ¥ = @, i.e., the

same basis for the image and displacement field.

2.4.3 Equivalent Formulations

The formulation of the optical flow problem as given by eqn(2.9) can be related to
previous work under suitable choice of ¥, ® and approximations. This is easier to see
if we rewrite eqn(2.9) without expanding I(m,n), I,(m,n), I,(m,n) (consider these

the new 9a,9b,9¢)

E = / / (AT =3 Pm,n)Umals = 3 Q(myn)Ual,|” dada

OPun - / Vynl, [AI - ZP(mm)qjmn]x -2 Q(m,n)‘l’mnly] dedz

0E / UynI, [AL =3 P(m,n) ¥l — 3 Q(m,n) ¥y, 1| duda.
OQmN

If the ¥ are chosen to be constant over a rectangular region and nonoverlapping,
then one is working under the assumption of constant displacement inside each block

and the equation reduces to the familiar (Az = P, Ay = Q)

Az

<I!> <II,>
v Y (2.15)
Ay

<LI,> <II>

< AIl >
< AlLL >

where < . > denotes an averaging process over the extent of the block. It may be
noted that the various Az(m,n), Ay(m,n) decouple only if the ¥ are nonoverlapping.

The use of overlapping windows to get a more dense estimate of Az,y from the above
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amounts to the approximation of ignoring the coupling.

For any ® and ¥ the equations for P, @ for neighboring pixels are coupled due to
the nonzero diagonal terms in the matrices Blz. B2z as defined in Sec 2.3.2. However,
for the choice of ® = U = ®,, the ratio of the diagonal terms to the off diagonal
terms in the product Blz.B2z is about 10:1 . If these off diagonal terms are ignored,
then one gets an independent set of equations for each pixel. This amounts to remov-
ing the spatial averaging process in the above matrix formulation, eq(2.15), and the
determinant becomes singular. There is only one equation for every set of two vari-
ables and the system of equations reduces to that of Horn [Horn and Schunck, 1981].
Thus the choice of basis function automatically results in a choice of averaging kernel
for eqn(2.15) via the coefficients of matrices like Blz etc.

The W,,, is usually introduced in an ad hoc manner in many formulations as a
window function in the integral (9b). Its purpose is usually to give more weight to
the center than to the periphery during the process of averaging the derivatives and
the difference image. In our formulation, it occurs naturally and serves a similar
purpose. Besides being a weighting function, it also determines the coupling between
neighboring Az, Ay and serves as the appropriate basis function if the displacement
field needs to be interpolated to off grid points. By explicitly choosing ¥ as a basis
for the displacement field, one can be aware of the amount of detail the result will
have.

The regularization term in Eq(9) was derived from a prior distribution for P, Q.
The coupled equations in (9) can have a large number of local minima. The term
arising from —log”P can be viewed as a term that drives the solution towards a
particular minima. Thus even when W is chosen much wider than ® and there are only
as many unknowns as equations, it is still advantageous to include the regularization
term. Thus in our formulation, the regularization term has a justification independent,

of the aperture problem.
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2.4.4 Multiresolution

For reasons of both accuracy and computational efficiency, motion algorithms are best
implemented in a multiresolution format. In this work, a 2D version of the Gaussian
pyramid was used. The set of original images is designated level g0. From this gl is
constructed by forming the next level Gaussian images for each frame independently.
Thus our pyramids were pyramids in space only and involved no time averaging and
subsampling. This approach was adopted since it was observed that most image
sequences are acquired with low sampling rates in time and hence not conducive
to averaging and subsampling in time. Moreover, most of the computational cost is
incurred while working on g0 and the subsampling in time to reduce the size of higher
Gaussian levels does not lead to significant savings. On the other hand, an accurate
motion estimation by the low resolution (higher nlevels) can significantly reduce the
amount of computation needed at the high resolution levels leading to big savings in
computation.

The first-order approximation underlying eqn(2.2) limits displacement estimates
to a fraction of the wavelength of the local frequency. For very low frequency features
like the overall outline of an object, this can be a large displacement. However,
finer features within the object would dominate the calculation of derivatives in the
original images making large displacement estimation error prone. A multiresolution
framework overcomes this problem by allowing one to first work on an image from
which all high frequency has been removed. In practise, these blurred images are
subsampled so that their spectrum once again has some high frequencies but the
process of subsampling reduces the frame to frame displacements as well. Hence, small
displacements need to be estimated in the high pyramid levels. Once this is done,
this information can be used to reregister the next level. In this way multiresolution

increases the estimation accuracy for large displacements.
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The question often arises as to the choice of representations : the low-pass Gaus-
sians or the band-pass Laplacians. The Gaussian pyramids were used for two reasons -
robustness of derivative calculation and use of prior estimates in the pyramid. As will
be shown in the next section, the accuracy of derivative estimation is much better for
low frequencies than for mid to high frequencies. Hence any approach that requires
the use of derivatives will be better off using Gaussian pyramids. The argument in
favor of the band-pass Laplacians is that they constitute the new (independent) infor-
mation at each level and only their motion should need to be calculated at each level.
While that argument is true, it can be implemented by using a Gaussian pyramid as
well. At each level, we have used the motion estimate from the previous level (scaled
appropriately by a factor of 2) to reregister the Gaussians. The motion estimation
at each level was done for this reregistered pair, thereby incorporating the knowledge
gained so far. All calculation done at a level was done to accommodate only the new
information injected at that level. The Gaussian pyramid has an added advantage -
all the image information that was used at the higher pyramid levels is still present in
the images. This means that the motion estimate at level g(n-1) will be consistent
with gn. If the motion estimation is done with truly independent bands-pass images,
then either an added cost term must be incorporated in the equations to combine
information across bands or final results from the different bands must be combined
using some weighted means approach. It may be noted that our implementation does

not require iteration across levels, i.e., calculations at each level are done just once.

2.5 Results

In [Anderson and Rakshit, 1992] we showed the performance of various basis func-
tions for interpolation. Here we shall concentrate on the linear, cubic and sinc7 basis

functions. The performance of these functions for interpolation and derivative esti-
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mation is tested for sinusoids over a wide frequency range. Next we shall look at
the accuracy of motion estimation for sinusoidal inputs to see how this relates to the
ability of the underlying basis to represent the sampled input. Motion estimation for
an artificially generated sequence from a single natural image demonstrates how the
spectrum of natural images allows the use of the linear basis in most cases. Finally,
we shall look at a pseudo motion sequence generated by looking at a stack of brain
cross sections where rigidity, constant brightness and small displacement assumptions
are all violated. We show the ability of our system to handle rotations, dilations and
shears under such circumstances as the change between frames is modelled as a set of
local affine motions. For this reason, our algorithm was designed to examine a small
window (32 x 32) at a time and fit the final flow field, in a least square error sense, to
a superposition of translations, rotation, dilation and shears. We did this in order to
get a compact description of the flow field. If the concern was determination of mo-
tion boundaries, then we could have used a different regularization like Multiwindow

Least-squares [Bartolini et al., 1993].

2.5.1 Synthetic Images

The first set of results we present are for synthetic patterns and motion, namely
travelling sinusoidal gratings. The motivation for this exercise is to characterize the
performance of our method for various well defined inputs. Before trying to estimate
motion in real images, we would like to get a feel for the types of inputs that lead to
accurate results and those which cause large errors. A set of well designed inputs will
also serve to illustrate the pros and cons of using large basis functions.

The coupled system of eqn(2.9) was based on eqn(2.4) and eqn(2.6), our ability to
use a set of basis functions to reconstruct the original image and its derivatives. It is

thus natural to expect that our motion estimation accuracy will be dependent on the
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Estimation Error: Iinterpolation & Derivatives
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Figure 2.1: Linear and sinch basis performance: interpolation and derivative estima-
tion for sinusoidal inputs

extent that those equations are a good approximation for a given image. Given the
noise in real images and other sources of error in motion estimation like occlusion, it
does not matter a great deal if the systematic errors are reduced below some point,
say -20 dB. Thus a basis with -25dB error for pure sinusoids at a certain frequency
fo will do as well for real image sequence (bandlimited around fy) as a basis with
-45dB error for pure sinusoids. On the other hand if the errors increase above -10dB
at any frequency, there will be large errors in motion estimation if the input has
significant energy near that frequency. Hence, before looking at motion estimation,
we first look at the results of interpolation and derivative estimation for sinusoids. The
problems were posed as follows : Given a set of points f(n) = sin(wkn), estimate the
function and its derivatives at nine points between consecutive points and estimate
the derivatives at the given points as well. This was done for various values of k,
0 < k <1 and with three different basis functions, @, @ ines and ®oup. The results
are shown in Fig. 2.1 for linear and sinc5 bases and in Fig. 2.2 for cubic bases of
s = 0.7,1.0.

The interpolation errors for the linear and cubic bases get arbitrarily small as the
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Estimation Error: Interpolation & Derivatives
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Figure 2.2: Cubic spline basis performance: interpolation and derivative estimation
for sinusoidal inputs

input frequency approaches 0 (dc), as is to be expected since these interpolations
would give perfect results for dc or ramped inputs. The error for interpolation with
sinch does not go to 0 for de, but it is still low, less than -20dB. The functionally
relevant difference between interpolating with @, and ®,c5, Pewp is in the mid to
high frequency regions. The error using sinch remains below -15dB till f = 0.87
while the error from linear basis rises above -15dB at f = 0.457. At the highest
frequencies (near 7) both basis functions become inadequate. Wider basis functions
would push the -15dB mark closer to = ([Anderson and Rakshit, 1992]). For the
choice of s = —0.7, the cubic basis gives a low frequency response as good as a linear
basis while outperforming the sinc5 in mid frequency regions.

The derivative estimation errors are, in general, bigger than the interpolation
errors. It must be noted that the absolute value (rms amplitude) of the derivatives
decreased with frequency. For the lowest frequencies, the ratio of error to signal
becomes very large for sinch even though the power in the error does not grow large
since the signal (derivative) goes to 0 at dc. The cubic basis with s = —0.7 does much

better than sinch in the low to mid frequency region. Since both these functions,
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oy and Pynes, have the same width (= 4) we shall not use the ®@g,05 for further
analysis. Hence our choice of functions will be ®;,, ®.,5 and ®;,.7 for bases of width
2,4, 6 respectively. Referring to Sec 3.2, eqn(2.10), these functions have h, k = 2,4, 6
respectively yielding C' = 3,7, 11.

The three basis functions were used to estimate motion for a range of sinusoidal
gratings. The inputs varied in frequency and frame-to-frame displacement. Since
the first-order approximation is sensitive to the smoothness of the image, the dis-
placements were characterized as fractions of the input wavelength. Thus we gave
sinusoidal inputs at frequencies ranging from 0.057 to 0.87 and with frame-to-frame
displacements of A/10, A/6 and A/4. The input was analytically calculated for each of
five successive frames and the displacement estimated between four consecutive pairs.
The errors for the four frames were used to calculate an rms error which was then ex-
pressed, in dB, as a fraction of the true displacement. Four frames were used in order
to remove artifacts arising due to sampling of the sine wave at a particular phase. The
results are shown in Table 2.1. The first two columns gives the frequency (units of =)
and displacement (pix/frame), the subsequent columns give motion estimation error
in dB. For each frequency, the displacements correspond to A/10,A/6 and A/4. The
wavelengths corresponding to the frequencies shown are 25,15,10,5,3.5,3.0,2.5. Two
differences between the linear and bigger bases functions are of future importance.

One difference is in the f > 0.57 frequencies where the linear system does very
poorly, falling below -12dB for all displacements. The cubic and sinc7 basis gives good
results for small displacements even at high frequencies but the performance declines
for large displacements. At A/4 displacement /frame the sinc7 at high frequencies does
only 4dB better than the linear basis. These results are to be expected since by using
bigger basis functions one can better approximate the high frequency behavior of the
input but not improve upon the first-order Taylor approximation. Hence the @,z

gives better results than ®y;, only if the @, fails due to the high frequency in the input
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Table 2.1: Motion estimation fractional error in dB for sinusoidal inputs

| freq (f/x), disp = A/10 || Linear Basis | Cubic Basis | Sinc7 Basis |

0.80 0.250 -10.2 -17.8 -22.6
0.67 0.300 -9.7 -17.8 -22.7
0.57 0.350 -11.5 -20.2 -24.9
0.40 0.500 -27.8 -55.2 -51.5
0.20 1.000 -51.2 -57.6 -60.0
0.13 1.500 -62.6 -42.7 -39.4
0.08 2.500 -51.8 -39.0 -35.3

| freq (f/x), disp = A/6 | Linear Basis | Cubic Basis | Sinc7 Basis |

0.80 0.417 -6.0 -10.7 -14.5
0.67 0.500 -6.7 -11.8 -14.7
0.57 0.580 -8.6 -13.6 -18.6
0.40 0.833 -30.1 -50.0 -44.8
0.20 1.667 -49.0 -37.8 -38.8
0.13 2.500 -64.0 -52.7 -43.7
0.08 4.167 -57.3 -42.9 -37.9

| freq (f/7), disp = A/4 | Linear Basis | Cubic Basis | Sinc7 Basis |

0.80 0.625 -4.5 -7.2 -8.5
0.67 0.750 -4.9 -7.4 -9.0
0.57 0.825 -5.9 -9.0 -10.5
0.40 1.250 -21.0 -31.4 -38.8
0.20 2.500 -51.1 -45.6 -41.4
0.13 3.750 -50.2 -53.4 -41.2
0.08 6.250 -45.5 -46.9 -37.7
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but not due to large displacements. Motion estimation in a multiresolution framework
using three level Burt pyramids to deal with large displacements works only if there
are low frequency features undergoing large displacements coherently with the high
frequency details so that the displacement estimates from the higher pyramid levels
can be used to reregister the lower levels leaving only small residual displacements
to be calculated from the high frequency features. For inputs that are purely high
frequency sinusoids, the higher pyramid levels are devoid of signal and hence useless.
The pyramid scheme used, the 5-tap Burt pyramid, produces aliasing for high input
frequencies. Since for these inputs the higher pyramids do not help, motion estimates
were done without using multilevel pyramids for & = 0.577,0.677,0.87. These results
are shown in Table 2.1. On the other hand, for low frequency inputs, the pyramid
structure did help. The actual A/4 displacements were in fact much larger for the
lower frequencies (and longer wavelengths) but these displacements were calculated
very accurately, better than -20dB for @, and -30dB for ®;,.; at frequencies below
0.57.

The second difference is in the very low frequencies. Here the linear basis, with
its near perfect ability to represent low frequencies, does better than cubic or sinc7
bases. In real images, this feature plays a key role since real images have a 1/f
power spectrum and hence biased towards the low frequencies. This is fortunate
since it implies that &, can be used for the majority of natural images and the
computationally expensive wider functions are needed only for special inputs.

Table 2.1 was for inputs with a translation along x direction only. Due to the
coupled nature of eqns(2.9), the presense of motion along both = and y axis leads to
increased error. This increase is mainly for the motion component corresponding to
the higher frequency. Results for one such input are shown in Table 2.2. The input
was a plaid composed of two sinusoidal gratings as shown in cols 2, 3. The error for

the plaid motion estimation is to be contrasted with the error for the corresponding



34

Table 2.2: Motion estimation fractional error in dB for plaid input. Corresponding
result for pure sinusoid in brackets
| Direction freq/m disp (pix/fr) || Linear Basis | Cubic Basis | Sinc7 Basis |

along x 0.2 1.0 -52.6 (-51.2) | -63.0 (-57.6) | -52.0 (-60.0)
alongy 04 0.5 7.6 (-27.8) | -32.4 (-55.2) | -41.4 (-51.5)

single gratings shown alongside in brackets.

2.5.2 Real Image, Synthetic Motion

In this section, we look at the motion estimation performance for pseudo motion
sequences generated from a single natural image. The test images were chosen to
demonstrate the issues discussed earlier: large displacements and high frequencies.

Our first test consisted of estimating motion in sequences of moving face (the Lena
image) where the four sequences had frame to frame displacements varying from 1 to 4
pixels per frame. The sequences will be labelled as LENASEQ1.G0 ... LENASEQ4.G()
respectively. Each sequence had 5 frames of size 160 x 160 and motion was estimated
for a 32 x 32 window at the center. A three level Gaussian pyramid was used with the
algorithm first estimating motion at level g2 and finally g0. The 4 frame-to-frame
estimated translations were used to calculate an rms error in dB as in Sec 2.5.1, table
2.1. The object of this test was to see how well the multiresolution format could
cope with increasing displacements. The result, shown in Table 2.3, shows that large
displacements like 4 pix/fr can be estimated as accurately as 1 pix/fr. where the
error is measured as a fraction of the actual displacement. The absolute value of the
error does increase. The Lena image, like most natural images, is dominated by low
frequency. For such images, the most suitable basis function is one with very good
low frequency response irrespective of its high frequency response.

The ability to handle high frequencies becomes important when dealing with tex-
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tured surfaces. One such texture, denim, was used to test the functions @y, ®eup, Psiner-
In order to test high frequency performance, we picked the denim texture image which
has only mid to high frequency components. The simulated motion direction was left
to right, at right angles to the dominant orientation of the texture. The result is
shown in Table 2.4, col 1. As can be seen from this motion sequence (labelled DEN-
IMSEQ) even the denim texture was not of sufficiently high frequency to cause the
@y, to give a poor result. Referring to Table 2.1, the error stays small up to f = 0.5,
i.e., for features bigger than 4 pixels wide. The vertical stripes in the denim are about
that wide. This result shows, along with Table 2.3, why various techniques based on
linear basis assumptions have given good results for natural images where most of the
energy is in the lower frequencies. Often the high frequencies present move coherently
with the surrounding low frequency features. Under such circumstances, the motion
estimation from the higher Gaussian levels captures the motion in the image. Thus
it is only the presence of high spatial frequencies in the absence of low frequencies or
motion of high frequency features independent of the motion of coarser features that
will require the use of @, or ®yper.

A second texture was created from the denim texture by subsampling by factor of
2 to further bias the image towards the high frequencies. Two tests were carried out
on this new pattern: a) the pattern was moved by 0.5 pix/frame (DENIM2SEQ) b)
the pattern was expanded by a factor of 2 and then displaced by 1 pix/frame. The
motivation for (b) was to demonstrate that even for the occasional input that has very
high frequencies in it, the optimum strategy is to use ®;, on an expanded version
of the input. For our test, this expansion was done using a 41-tap FIR (truncated
sinc with Blackman Window) to interpolate in x and y directions successively. The
separability of this filter and the D?*C? factor in computational cost and a D?C*
factor in overhead computation cost makes this approach cheaper for even though D

increases by a factor of 2, C' decreases by 2.3 (®.up) or 3.7 (®sin07). The results for the
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Table 2.3: Motion estimation fractional error in dB for Lena sequences. Frame to
frame displacements were 1, 2, 3, 4 pix/fr for the four sequences.

| Basis Function | LENASEQL | LENASEQ2 | LENASEQ3 | LENASEQ4 |

Linear -13.3 -14.9 -16.1 -16.7
Cubic -10.9 -12.8 -12.8 -12.2
Sine7 -10.3 -10.4 -9.5 -9.1

Table 2.4: Motion estimation fractional error in dB for denim sequences. Displace-
ments were 1 pix/fr for DENIMSEQ, DENIM2SEQ and 2 pix/fr for DENIMSEQ3

| Basis Function | DENIMSEQ | DENIM2SEQ | DENIM3SEQ |

Linear -32.0 -15.6 -27.1
Cubic -33.2 -22.8 -32.2
Sinc? -30.9 -21.7 -29.5

subsampled denim (DENIM2SEQ) and the magnified version of the subsampled denim
(DENIM3SEQ) are shown in Table 2.4 cols 2,3. The three textures are displayed in
Fig 2.3. The top frame shows the original denim texture, the middle frame is the result
of demagnification by 2.0 and the bottom frame shows the result of magnifying the
demagnified texture back to original scale. It no longer has the very high frequencies
that are present in the original. It must be pointed out that expansion by 2 not only
reduces the high frequencies but also doubles the frame-to-frame displacements in

pixels. Thus, this approach is best suited for inputs with only high frequencies but

small displacements.

2.5.3 Real Image Sequence, NonRigid Motion

The optical flow estimation by eqn(2.9) gives a pixelwise estimation of v,, v,. For most
32 x 32 windows, the flow field does not require 1024 free parameters to describe
it. Since motion usually segments images into large coherently moving parts, it is

often possible to represent the flow field with much fewer than 1024 parameters.
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Here, this approach has been taken to an extreme by postulating that the motion
observed within each window can be modelled by just 6 parameters : x translation,
y translation, dilation, rotation, shear along = and shear along y. For irregular flow
fields, we used 10 x 10 windows for more accuracy.

To study how well our algorithm was able to handle really large displacements
and magnification changes, we picked a sequence of monkey cortex cross sections as
our data, BRAIN [Coogan et al., 1993]. When viewed as a sequence, this set gives
the appearance of an irregularly shaped object uﬁdergoing complex elastic transfor-
mation. Any local region can therefore be modelled as undergoing nonrigid motion
and the appearance/disappearance of various features can be regarded as occlusion.
The task for our algorithm was to use every 5 frame as a reference and describe
the other frames as warped versions of the nearest reference frame. Each frame was
640 x 480 in size and was analyzed as 64 x 48 blocks of 10 x 10 each. For each block the
optical flow field was estimated and then the 6 parameters calculated. In the absence
of ground truth, we checked our results by using them to regenerate the intermediate
frames from the reference frames. By looking at the difference between the original
sequence and the regenerated sequence one can see how well the system has been able
to capture the large displacements and transformations.

Since this is an unconventional data set and an unconventional performance mea-
sure, we also show the following. In order to see how much the warping algorithm has
accomplished, we subtracted the reference frames from the others to see how much
difference there would have been between frames in the absence of any warpings.
Thus for any sequence DUMMY, we have DIFF-DUMMY as the sequence formed by
subtracting the nearest 5** frame from each frame and ERR-DUMMY as the sequence
formed by subtracting the regenerated version of DUMMY from the original. By look-
ing at the pixel intensity distribution in these two sequences we get a clearer picture

of how well our algorithm has captured the frame-to-frame motion. A similar test
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was carried out by Namazi and Lipp in [Namazi and Lipp, 1992] but for a simpler
data set, namely uniform translation. In order to make a comparison, we artificially
generated a sequence LENASEQ which consisted of 160 x 160 images with the frame-
to-frame displacements being translations. However, unlike [Namazi and Lipp, 1992],
our sequence had a motion boundary with an inset of 90 x 90 moving independently
of the outer border. In spite of that, our NMSE was also 0.1. [Normalized Mean
Square Error is defined as (residual error/initial error)].

Sixteen frames from the sequence LENASEQ and BRAIN are shown in Fig 2.4
and Fig 2.5 respectively. Since these sequences were of natural images with most of
the power in the low frequencies we used ®;,.The pixel intensity distributions for
Dirr-LENASEQ and ERR-LENASEQ are shown in Table 2.5. We show the minimum,
maximum, the standard deviation for 10 frames. The last four columns show how
many pixels in that frame had a magnitude greater that 4,8,16,32. The LENASEQ
images had 25600 pixels/frame, ranging from 0 to 255. Table 2.6 and Table 2.7
gives the corresponding results for the BRAIN sequence where each frame had 307200
pixels. The reconstructed sequences and their differences from the originals are shown
in Fig 2.6 and Fig 2.7 for LENASEQ and in Fig 2.8 and Fig 2.9 for BRAIN. The images
shown in the figures are of the level g2 for BRAIN related sequences, i.e., Mag x0.25.
The contrasts in all the image sequences were scaled to match the 8 bit dynamic
range of the display.

The sequences in Fig 2.4 and Fig 2.5 are displayed such that the reference frames
appear in the center and the four frames that are warped relative to it appear to its
left and right on the same row. The same convention is followed for the DIFF and
ERR sequences accounting for the null image in the middle of each row in Fig 2.7 and
Iig 2.9. These null images also account for every fifth row in Table 2.5 and Table 2.6
and Table 2.7 being 0.

In Fig 2.7 it can be seen that most of the errors are close to the motion boundary



Table 2.5: Dirr-LENASEQ and ERR-LENASEQ pixel intensity distribution.
results corresponding to the first 10 frames shown in Fig.2.4 are displayed.

DiFr-LENASEQ

39

Only

Ifrno[ max[ min 1mean] sd [pix>4[pix>8lpix>16{pix>32!

0 0.0 0.0 0.000 0.0 0 0 0 0
1 158.0 | -134.0 |-0.300 | 16.4 | 11388 6882 3618 1511
2 230.0 | -185.0 | -0.581 | 24.0 | 13273 8690 5152 2593
3 185.0 | -184.0 | 0.532 | 24.2 | 13531 8917 5254 2650
4 134.0 | -113.0 | 0.259 | 16.5 | 11683 7080 3708 1555
5 0.0 0.0 0.000 0.0 0 0 0 0
6 113.0 | -134.0 | -0.240 | 16.5 | 11771 7151 3741 1563
7 184.0 | -185.0 | -0.491 | 24.3 | 13719 9069 5338 2686
8 185.0 | -184.0 | 0.602 | 24.5 | 13975 9282 5449 2732
9 134.0 | -113.0 | 0.285 | 16.7 | 12050 7356 3846 1593
10 0.0 0.0 0.000 0.0 0 0 0 0
ERR-LENASEQ
|frno| max | min | mean | sd | pix >4 ] pix > 8 | pix > 16 | pix > 32 |

0 0.0 0.0 0.000 0.0 0 0 0 0

1 72.0 -98.0 0.523 5.4 5554 1974 431 61

2 107.0 | -135.0 | 0.561 7.7 7452 3112 1038 220
3 116.0 | -98.0 0.431 7.4 7349 3100 946 219
4 75.0 -70.0 0.480 5.3 5700 1979 431 53
5) 0.0 0.0 0.000 0.0 0 0 0 0

6 69.0 -64.0 0.535 5.4 5742 2035 488 68
7 73.0 | -101.0 | 0.566 7.5 7643 3258 1021 232
8 116.0 | -78.0 0.424 7.3 7659 3218 985 193
9 90.0 -80.0 0.450 5.4 5963 2057 456 45
10 0.0 0.0 0.000 0.0 0 0 0 0
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Table 2.6: DIFF-BRAIN sequence’s pixel intensity distribution. This sequence was
created from BRAIN sequence by subtracting the nearest fifth frame from each frame.
Some of the frame to frame differences are due to shape changes and some due to
intensity changes. See Fig.2.5 for the actual images in the sequence.

l fr no | max ' min [ mean ] sd } pix >4 | pix > 8 I pix > 16 [ pix > 32 !

0 0.0 0.0 0.000 | 0.0 0 0 0 0

1 152.0 | -95.0 | -0.194 | 9.4 | 65234 | 43349 21586 6586
2 126.0 | -116.0 | -0.541 | 15.7 | 76284 | 58997 36792 18108
3 156.0 | -136.0 | 2.166 | 17.1 | 76046 | 57911 37375 20285
4 132.0 | -110.0 | 0.514 | 10.5 | 68764 | 46838 23950 7515
5 0.0 0.0 0.000 | 0.0 0 0 0 0

6 212.0 | -103.0 | 0.346 | 11.1 | 61398 | 40446 20868 7813
7 239.0 | -229.0 | 0.248 | 17.4 | 75411 | 56662 36490 18983
8 148.0 | -166.0 | 1.047 | 15.8 | 78501 | 59206 38176 18867
9 92.0 | -139.0 | 0.104 | 8.9 | 68442 | 43269 19875 5277
10 0.0 0.0 0.000 | 0.0 0 0 0 0
11 168.0 | -125.0 | -0.167 | 11.7 | 74062 | 49767 26535 10917
12 179.0 | -125.0 | -0.171 | 16.1 | 83267 | 61930 37929 18835
13 104.0 | -196.0 | -2.244 | 17.3 | 95726 | 80139 48236 21594
14 92.0 | -156.0 | -0.918 | 10.7 | 69948 | 46733 26010 9548
15 0.0 0.0 0.000 | 0.0 0 0 0 0




Table 2.7: ERR-BRAIN sequence’s pixel intensity distribution. See Fig.2.9 for the

corresponding images.
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lfrnotmaxl min ]meanl sd [piX>4]piX>8lpix>16lpix>32|

0 0.0 0.0 0.000 | 0.0 0 0 0 0

1 62.0 | -138.0 | 0.091 | 4.1 | 40389 | 15821 3362 384
2 83.0 -118.0 0.136 4.9 48729 22246 5177 691
3 91.0 -83.0 -0.141 | 5.3 48465 22887 6309 1151
4 76.0 | -111.0 | 0.096 | 4.9 | 49854 | 22724 5673 607
5 0.0 0.0 0.000 | 0.0 0 0 0 0

6 77.0 | -112.0 | 0.010 | 4.5 | 42558 | 18236 4638 631
7 1230.0 | -98.0 0.006 | 6.0 | 52838 | 26495 8538 1609
8 136.0 | -100.0 | -0.106 | 6.5 | 55249 | 28010 9435 2182
9 93.0 -79.0 0.095 | 4.6 | 49707 | 20555 4643 494
10 0.0 0.0 0.000 0.0 0 0 0 0

11 130.0 -89.0 0.108 5.4 50790 22744 6503 1206
12 1 130.0 | -149.0 | 0.188 | 6.5 | 57010 | 28554 9353 2126
13 | 105.0 | -108.0 | 1.154 | 8.2 | 79393 | 54489 18478 3310
14 87.0 -65.0 0.379 | 5.6 | 53089 | 26751 9109 1053
15 0.0 0.0 0.000 | 0.0 0 0 0 0
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or at high frequency regions like the feathers. The errors in Fig 2.9 are due to large
changes in shape and violation of constant brightness. Some of the gray matter stripes
appear as faint stripes and progressively darken through the sequence. The motion
algorithm tries to fit the shape of the stripe from the reference frame to the other
frames but is unable to compensate for the change in intensity. This causes the large
error for frame 13. The BRAIN sequence was analyzed using a 6-level pyramid in order
to deal with the large image size and big frame to frame displacements required. At
the level g0, displacements at some points were of the order of 50 pixels/frame which
is close to 10% of the image dimension. Since every 5 frame was used as reference,
frames 1,4,6,9 etc were just one frame removed from their nearest reference frame
while frames 2,3,7,8 etc were two frames removed. This means that these frames
needed to be warped more and were most likely to have larger intensity changes.
This is reflected in the tables where it can be seen that frames closest to the reference

frames tend to have much smaller errors than those further away.

2.6 Summary

In this chapter it was shown how the use of basis functions could lead to a formulation
of the optical flow estimation problem that was more analytic and insightful. The
use of the basis functions is the easiest way to apply operations defined on continuous
functions to discrete representations. This approach indicates the way for calculating
better derivatives in images which have high frequencies. In doing so we have tried
to illustrate our view that one must use the underlying basis functions to determine
the coeflicients or rules that one uses to deal with any discrete representation.

The issue of varying the sampling rate to trade off memory versus computational
cost/accuracy was also emphasized. Too often, the sampling rate is chosen keeping

in mind only the input frequency and the desire to minimize the storage requirement.
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When significant image processing is anticipated, it is important to factor in the role
that the sampling frequency plays on computational cost. In Sec 2.4.1 a computa-
tional cost optimization was done for the sampling rate to find fopr = 2fnyquist. It
was implicitly assumed that the input spectrum had significant energy up to the
maximum frequency, other assumptions can give slightly different results. However,
the bias towards oversampling is clear. This can be an important factor in chosing
between overcomplete representations like (oriented) pyramids and wavelets. Our
choice, in this chapter, has been the 4/3 overcomplete Gaussian pyramids.

The proposed formulation of the optical flow problem allows the user to choose a
desired balance between speed and accuracy by selecting an appropriate basis. The
estimation results for different frequencies enables one to make a choice of basis given
an image sequence and desired accuracy. Finally, it was shown how the algorithm
can handle a difficult image sequence like BRAIN where there are large translations,

nonrigid deformations and intensity level changes.
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Figure 2.3: Sample images from DENIMSEQ, DENIM2SEQ, DENIM3SEQ are shown
top, middle and bottom respectively. The DENIM2SEQ is a subsampled version of
DENIMSEQ and DENIM3SEQ is an expanded version of DENIM2SEQ
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Figure 2.4: 16 frames of the original LENASEQ in 4 rows of 5 cols. The border moves
1 pix/fr up for the first 11 frames and then 1 pix/fr to the left. Inset moves 1 pix/fr
to the left for the first 11 frames and then 1 pix/fr up.



46

Figure 2.5: The BRAIN sequence. 16 consecutive cross sections arranged in 4 rows of
5 cols. The four images in the center column were used as reference while calculating

the flow-fields for the images in each row. Note the appearance and disappearance of
some gray matter stripes.
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Figure 2.6: The LENASEQ reconstructed using center column images and estimated
flow fields. The flow field was estimated in 10 x 10 blocks for these 160 x 160 images.
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Figure 2.7: The ERR-LENASEQ images: the difference between Fig.2.4 and Fig.2.6.
Note that most errors are at motion boundaries (flow-field estimation error) and at
hard edges of the image (interpolation errors during reconstruction).
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Figure 2.8: The BRAIN reconstructed using center column images. The algorithm
tries to match the shapes of all the stripes but has no way of adjusting the intensity.

Hence the big horizontal stripe in the bottom row has the right shape but wrong
intensity.
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Chapter 3

Image Analysis Using Maximally

Informative Filters

3.1 Introduction

The objective of analyzing image sequences with spatio-temporal filters is to de-
termine the spatial and temporal frequencies present in a region of the image and
estimate the velocity. This relatively straightforward idea has been well explored
and the main problems faced have been the design of narrowly tuned filters and the
overall computation cost. The earliest work in this field was driven by the idea that
one had to have very narrowly tuned filters since the input frequency could only be
localized to the extent that the individual filters were localized in frequency This idea
was best articulated by Fleet in [Fleet and Jepson, 1989] : “the filter should be tun-
able to a narrow range of orientation or normal velocity, with its amplitude spectrum
concentrated about a line through the origin in frequency space.” Even if this can
be achieved, it immediately leads to the next problem - computation cost. As noted

in [Fleet and Jepson, 1989], if each of the three parameters (frequencies in x,y,t) are
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discretized into n samples, then there are n? filters requiring m® multiplications each.
For very narrowly tuned filters, the filter size m can be large. While Fleet has de-
veloped efficient ways to implement filter banks of narrowly tuned filters, it will be
shown here that it is not necessary to have n filters to discretize the input parameter
into n samples or design very narrowly tuned filters. Previous work on steerable filters
had already shown that a finite number of filters could be used to define filters tuned
over a continuum [Perona, 1994] and that these ideas could be incorporated into a
multiresolution framework [Freeman and Adelson, 1991], [Greenspan et al., 1994]. In
the presence of quantization, noise and approximation errors, how accurately can dif-
ferent finite bases estimate a continuous input parameter like orientation? Since the
constraint of steerability does not define a unique family of kernels, additional con-
straints can be imposed. One such constrain could be a constant cost, i.e., given a
limit on the computation (and hence on the number of filters) what kind of kernel
generates the best family of filters? The answers to these questions require a quantita-
tive measure or figure of merit defined on the output of the filter bank. The approach
adopted here is to estimate the information content of the filter bank output.

It will be shown that the combined output of a set of broadly tuned spatio-
temporal filters can localize parameters for a single input more narrowly than the
tuning widths of the filters. A single input implies an input with a single dominant
orientation, spatial frequency and speed. In that sense, the present work is similar
to that of Heeger [Heeger, 1987] and Ogata [Oagata and Sato, 1992]. Heeger used a
least square fit to the output of the entire filter bank, a collection of Gabor filters,
to estimate a single set of input parameters. The trade off between the amount
of information extracted (as measured by the accuracy of estimation) versus the
computation cost (as the number of filters increased with narrower tuning of the
filters) was not addressed. The standard approach to this issue has been to arrange

the amplitude spectra of the filters so as to avoid an overlap [Heeger, 1987]. The
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issue is not quite so simple, however. Firstly, a filter that has its support partially
overlapping another does provide some extra information. Secondly, overlaps lead
to redundancy and that is not necessarily bad. Redundancy in the filter outputs
could enable robust coding and decoding of the information in the presence of noise
in the system. While this may not be an important issue for computers, it may have
influenced the evolution of biological systems. The nature and role of this redundancy
could therefore be important for understanding biological systems. An information
theoretic approach allows one to calculate the amount of information and the amount
of redundancy that a filter bank composed of a certain number of filters, of a certain
type, will have for a given prior. The most common prior is the assumption of a
single dominant input pattern. The increase in cost to estimate multiple values for
each parameter at each point for complex inputs turns out to be exponential. So
long as the dominant pattern has at least a 2 : 1 contrast ratio over the others, its
parameters can be estimated with the single input prior. A family of curves can be
generated for this prior showing the information output for various filter widths and
various filter bank size. These can be used to design the optimal filter bank for a
fixed computation cost. It will be shown that such a system can tolerate system noise
large enough to reduce the signal quality of the filter outputs to 16dB, an essential
capability for systems like the brain that must transmit signals as spike trains.

Any encoding algorithm is useful only if there exists a viable decoding algorithm.
A robust decoding algorithm will be presented that gives the input parameters for
any given filter bank output. The creation of the codebook and the robustness of
the decoded output to noise will be illustrated with reference to a particular imple-
mentation. The issues of accuracy and multiple inputs will also be addressed in the
context of codebook creation and information available. It will be shown that there
is actually more information in the filter bank output than implicitly assumed by

Ogata in [Oagata and Sato, 1992] where each filter was used independently to con-
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strain the local velocity. As a result even 10 filters could only localize the orientation
to +£90degs. It will be shown that 8 filters can be used to determine orientation to
+12degs in the presence of a single dominant input. The issue of handling multiple
inputs will be shown to be a matter of trading off the accuracy in measuring each
input versus the number of different inputs that must be simultaneously measured.
This multiple input detection can be done with any filter bank, not just by one with
narrowly tuned filters as is usually suggested. This decision regarding the trade off
between accuracy and multiple inputs can be made after the filtering process by us-
ing a different codebook for decoding. The decoding algorithm will be found to be
invariant to input contrast. Coupled with a Laplacian pyramid representation, the

system can thus be optimal with respect to information/cost and invariant to input

bias and contrast.

3.2 Information Content of Filter Output

The role of filters in motion detection is different from that in noise removal or
blurring. For noise removal or blurring, the aim is to produce an image with an
altered spectrum that is in some way more desirable than the original. In that context
it is convenient to analyze filters and filtering operations in terms of their frequency
response and their effect on the input spectrum. For motion detection, however,
the aim is extraction of specific information, namely orientation, spatial frequency
and temporal frequency. The filters operate on images not to produce new images
but to produce outputs that will help one decide on the nature of the input. The
information content of a filter output is of primary interest in this context while the
frequency response is relevant only so far as it influences the output’s information
content. The design of filters for motion detection should thus deal directly with the

information content of the filter outputs and an information theoretic approach to
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the problem is the most instructive. Due to the rapid increase in cost for trying to
estimate parameters for multiple patterns at each point, it should be attempted only
when necessary. In the presence of a significant contrast difference, the task may
be decomposed serially: the dominant pattern can be analyzed first and the result
incorporated into the prior for the next pattern. Most of the development here will

be for the single dominant input only and the extension to multiple inputs will be

discussed in a separate section.

3.2.1 The Single Filter, Single Input

Suppose there is a filter F' that acts on an input z to give F(z). The information
content of any analog measurement is dependent on the noise in the output. Let us
assume that given the noise in F(z), the dynamic range of the output can be divided
into N distinct significant levels. The quantization of the output could also result
from the fact that the input is quantized (say to 256 levels) and hence the output is
to be regarded as significant only up to a certain precision. Let the output levels be
denoted as fi, fa,...fn. If for a particular input the output is F/(z) = fx, then what
is the information content of this output 7 Information theory tells us that the bits

of information, I, is given by (all log are base 2)

I'= —log[P(F(z) = fi)]. (3.1)

Having quantized the output to reflect its precision, let us now use the filter response
F(z) to correspondingly divide the input range into partitions A; such that each

partition represents the range of inputs that will give the output f;. If the quantization

is coarse enough
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The quantization of the output and the corresponding partitioning of the input space
will not form a part of the actual algorithm. They are constructs that are useful
in the analysis of the problem. The information content of F(z) = fi can now be

expressed as

I = —log[P(z € A})]. (3.3)

This is the information for those cases where z € A, something that happens with

a probability py = P(z € Ay). The expected information output from the filter can

now be expressed in terms of the probabilities { p; } as

N
I = Z —p; log(p;). (3.4)

The same result can be derived more formally by calculating the conditional en-
tropy H(X | F) (see [McEliece, 1977]) and calculating the mutual information be-

tween f, and z; where let X denote the set {z;}, the set of exemplars from each

partition.

H(X) = Z —p; log(p;) ( Entropy of X )

7

N
HX|F) = Y ~Ple €Ay, f;)log[P(z € Ay, f))

2%

N N
= Y —1.0log[1.0] + > —0.01log[0.0]
= ;)_J ( Conditiorzlji Entropy of X given F)
I(X;F) = H(X)— H(X|F) ( Mutual Information, by def )
= H(X).

The information content of the filter depends on the way the various distinct output

levels divide the input space. It can be shown that the maximum for I can be achieved
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if and only if p; = 1/N for all ¢ [McEliece, 1977] and the maximum is
I = log[N] (3.5)

where N can only be so large as to still keep eqn(3.2) valid. If N is too large for
eqn(3.2) to hold, H(X) and H(X | F') both increase. In such a case the estimation
of H(X | ) and the interpretation of the output get considerably more complex.

In terms of the filter output, the optimum filter is one that has an equal probability
of giving an output over its dynamic range, {f1, f2,...fn}. In terms of the filter
response and its input, the optimum filter is one that assigns an equally probable
partition of the input to each of its possible output states. This means that the prior
for the input is important in designing a filter. For a continuous input z with a prior

probability density p(z), an optimal filter must satisfy

L

/ " o(e)dz =1/N  for all i (3.6)

where the output has N levels and it makes the transition from f; to fiy1 at Z;44, the
boundary between A; and A;4; in the absence of noise.

The role of the filter width can now be described as follows. If the filter is tuned
too narrowly, then it very rarely gives an informative output. For those inputs that do
fall within its support, the output is very informative since it says where the input was
with great precision. On the other hand, a filter that is too widely tuned always gives
a response that is not very informative since it does not localize the input narrowly.
In this context, a filter can be looked upon as a quantizer of the input space and the
optimal filter is an entropy constrained quantizer. The response curve of the optimal
filter is determined by the input prior and independent of how many quantized output

levels, N, are chosen for subsequent analysis. What does depend on N is the amount
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of information that the optimal filter can provide.

3.2.2 Filter Bank, Single Input

It may be argued that while a single filter should not be narrowly tuned, a filter bank
having many narrowly tuned filters could surpass the performance of one broadly
tuned filter. However, each individual narrowly tuned filter’s output will still give
very little information for most of the values of the input. The filter bank output
will be more informative because there will always be at least one filter output that
will be very informative for any input. Clearly, going from a single filter to a filter
bank does nothing to increase the eficiency of each filter and the extra information is
gained at the expense of additional computation. What the bank of narrowly tuned
filters provides is a way to get more information if the computational resources are
available. If the resources are available, could a bank of broadly tuned filters be just
as informative? This clearly depends on how correlated the outputs of the filters are
and on how much new information is being added with every additional filter. Since
the first optimally tuned filter will be more informative than the first very narrowly
tuned filter (filter bank of size 1), a certain amount of correlation in the output of
each filter added to the filter bank could still leave the bank of very narrowly tuned
filters less informative upto a certain filter bank size.

To analyze filter bank outputs, the output of all the filters will be analyzed both
collectively and separately. Let there be M filters Fi(z), Fo(z),...Fp(z) and let the
output of each filter be quantized to N levels as before. The output of the filter
bank can be regarded as an M dimensional vector {f}, f7,...fM}. This filter bank
will have MY possible outputs and the input space can once again be divided into
partitions corresponding to the different output states. It may be noted that many

of these partitions will have measure 0 if no single input could possibly produce these
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output states. The easiest way to generate all the nonzero sections is as follows. For
each filter Fi(z), let S be the set of all transition points £¥ as defined for eqn(3.6).
Let S be the union of all these sets. The ordered sequence of all elements of S forms
the ordered sequence of transition points for the filter bank output and each region
between two consecutive  forms a distinct partition of the input. Within each
partition, no transition points for any of the filters are traversed and hence the filter
bank output stays fixed. While going from any partition to the next, at least one
such point is traversed and so at least one of the filters changes its output state. If
this partitioning of the input range for the filter bank output produces N (nonzero)

partitions, then the information content of the filter bank output, I°, is given by

&
I'=%" —pllogp} (3.7)

where p? = P(z € Al) and A? are the partitions of the input for the filter bank as
defined by S.

One can also partition the input using any one of the Sy to calculate the informa-

tion content of an individual filter output, I, as

N
I =Y —pflogp}. (3.8)

The information in the output can be regarded as the number of bits it would take
to specify it. If the output of all the filters was regarded as a concatenation of
independent filter outputs, then one would require I; + ... 4+ Ijs bits to describe it.
However, eqn(3.7) tells us how many independent bits are really required to specify
the collective output. The excess of the sum over I® thus gives the redundancy of the

filter bank output, R°.

R=3"1 -1 (3.9)
k
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Thus given the filter response F(z), the number of filters M and their placement
over the input range, it is possible to calculate the total information content and the
redundancy in the filter bank output. Note that the different placements of the filters
over the input range could make the [ unequal even if all the filters have similar
tuning widths.

The relevant figure of merit for a filter bank depends on the amount of post-
filtering noise in the system. If this is almost zero, as in a computer, then R’ is
irrelevant and I° should be the figure of merit. (If computers did not use error
correcting codes and had high bit error rate, then it would be necessary to encode
filter outputs.) On the other hand, if one uses a front end to do the filtering and
transmits the filter outputs back to a system via a noisy channel for further analysis,
as in [Burt et al., 1992] or the brain, then the redundancy is required to protect the
information. The figure of merit must then include R®. As will be seen later, the
choice of filters that maximize I® always has an R* > 0. Since increases in R? beyond
a certain point will not make a meaningful difference, the figure of merit can be
taken to be I° with the additional constraint that R® > R,.;, where R,.;, is to be
determined by the noise level. The optimization problem at a fixed cost now becomes
one of chosing a tuning curve for individual filters that will maximize the figure of
merit at a constant M. This is a more objective way to choose the sigma for Gabor
filters than to say that the filter spectra should not significantly overlap. The more
significant contribution of eqn(3.7) is to provide a relationship between information
gained and cost incurred since the cost varies at least linearly with M, the number of

filters. (In practice, larger M imply narrower filter responses in the frequency domain

and thus more expensive filters.)
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3.2.3 Outputs of Gaussian Filter Banks

In order to see the variation of I® and R® with M, it is necessary to pick a certain
input prior and a family of filter responses. In this section, the behavior of filter
banks composed of Gaussian filters acting on a single input with a flat prior will
be examined. The analysis of orientation using oriented Gabor filters or oriented
pyramids [Greenspan et al., 1994] would correspond to such a situation. It must
be noted that for a flat prior, the optimum filter would be one that has a linear
response and hence evenly spaced &;. However, a filter with a linear response to input
orientation cannot be easily synthesized and so the best possible Gaussian filter must
be found.

The information content of a filter bank depends on three parameters of the filter
bank - the number and placement of filters, the filter response and the accuracy
attributed to the outputs. As will be seen, the first two are relevant to the design
process since a filter bank having an optimum combination of filter responses and
number of filters will continue to be optimum when the number of output levels
is changed. Since a family of Gaussian tuned filters was considered, the different

responses were characterized by the sigma of the response functions
Fi(z) = exp(—(z — z;)?/0?). (3.10)

The input range was 0 < # < 1 and the filter centers were evenly spaced in this range.
For all subsequent analysis in this section, the ¢ values must be seen in the context
of this range.

Fig. 3.1 shows I’ as a function of M, the number of filters in the filter bank,
for six different values of ¢ = 0.01,0.05,0.10,0.20,0.40,0.60. I° was calculated for
M =1,2,4,8,16,32,64 and for N = 16, a 4 bit output for each filter. For the lowest

values of M, the narrowest filters are least informative but even the most informative
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Bits of Information in Filter Bank Output
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Figure 3.1: Increase in information in filter bank output with number of Gaussian
filters for different sigma

single filter (o = 0.4) has I = 3.2, not the theoretical maximum of 4 given the 4
bit output. This is so because a Gaussian filter can never really achieve the linear
response that would be necessary to satisfy eqn(3.6). As the number of filters is
increased, the I® for the broader filters begin to saturate faster due to their increased
overlap. Eventually even the filter bank with the narrowest filters begins to saturate
giving less than an extra bit of information as the number of filters is doubled from
32 to 64. Beyond a filter bank of M = 8, one is clearly in a region of diminishing
returns. At M = 8, the optimum ¢ =~ 0.1 ~ 1/M. Fig. 3.2 shows the redundancy R’
for filter banks in the range M = 1..16. For M = 8, ¢ = 0.1, the filter bank output
can be seen to have R® = 10 and I* = 5.2.

The graphs for Fig. 3.1 and Fig. 3.2 were calculated for N = 16. This was an

arbitrary choice and it is certainly feasible to have finer quantizations of the output.
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The variation of I* with o at a fixed M = 8 is shown for various N in Fig. 3.3.
The values of N were chosen to correspond to outputs of 3,4, ...,8 bits of precision.
Two features worth noting are the constant shape of the curves for changing N and
the systematic increase in I® by approximately 1 bit for every additional bit in the
outputs. An a prioriestimation of the maximum N that creates A; to satisfy eqn(3.2)
is not required for the estimation of ¢,,;. One can evaluate I® with any arbitrary N to
generate Fig. 3.1 in order to estimate Goptimar. It will be shown how the performance

of the filter bank can be used to estimate N in the absence of any knowledge about

noise and quantization effects.

3.3 Decoding Filter Bank Outputs

3.3.1 Decoding Algorithms

What would have come as a surprise to many in the previous section is that Fig. 3.1
indicates that a large filter bank (M = 64) composed of broadly tuned filters, ¢ = 0.6,
is almost as informative as one composed of narrowly tuned filters, ¢ = 0.01. One
would intuitively feel that narrowly tuned filters ought to provide a more accurate
estimate of the input parameter. This bias is the result of assuming that the output
should be analyzed with a winner-take-all strategy. For narrowly tuned filters this is
an appropriate decoding scheme since a set of narrowly tuned filters encodes informa-
tion sparsely. At any given time, for a single input, only a single filter output should
be high. Broadly tuned filters, by contrast, encode the information densely. A single
input significantly activates multiple outputs. Since the information is in the pattern
of activation, the decoding process must be suitably modified. If a winner-take-all
strategy on the output of broadly tuned filters fails to estimate the input accurately,

it is due to a failure of the decoding mechanism, not due to the encoding of less in-
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formation by the filters themselves. The virtue of the analysis in the previous section
is that it determines the amount of information being encoded independent of the
presence of a good decoding algorithm. The issues can thus be studied separately.
The output of a filter bank with M filters can be regarded as a vector 0 =
{fi---fam}. The required decoding mechanism should try to differentiate between
vectors based on all the components. It would also be desirable that the measure
of similarity be independent of the vector magnitude since that would give contrast
invariance in the case of frequency and orientation discrimination. The cosine of the
angle between two vectors is one such measure. Denoting the vectors corresponding

to two different filter bank outputs as A and B

This measure normalizes for the output magnitude and pools together all the filter
outputs. It is a measure of similarity, not difference, and the numerator is linear
in Ay, Br. Thus a large difference in the output of a single filter cannot dominate
the measure. Similarly, if two vectors both have the largest value for one of the
components, that alone will not give a large cos(6). That will depend on the pattern
of activity across all the components. Note that a winner-take-all scheme would have
classified two such vectors as similar irrespective of the other components.

The output vectors corresponding to known selected inputs are the codewords for
this system. Given a codebook composed of the output vectors for known inputs, the
decoding scheme consists of calculating cos(#) between the given output vector and
each of the codewords. The codeword with the largest cos(6) would be judged closest
to the output and the input parameter that produced that codeword would be the
estimate of the input. The calculation of cos(6) does not require that the components

of the vectors be quantized, an analog or floating point number will do just as well
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as an integer. In that sense, it is not really necessary to explicitly form the quantized
levels { f1,...fn} and their corresponding transition points #; in the input. However,
the existence of N implies that there is only a certain amount of information in the
output vectors, = I. This determines the size of the codebook since there can only
be 2! distingnishable codewords. The issue of resolution can now be addressed. If
the input range is Ay, and the accuracy of the system is A, then in order to have a

codeword for every resulting section of the input it is necessary that

A75016
A,

=2l (3.11)

In practice N may not be known accurately and the estimate of I could be off. One
solution then is to try out bigger and bigger codebook sizes (smaller sections A, )
until a certain error rate is reached.

Since the decoding algorithm does make errors, it is important to know how and
why. The codewords are output vectors, (Z, corresponding to inputs z; that are
chosen to be exemplars of their partition, A;. If too big a codebook is constructed, it
will have vectors corresponding to very nearby inputs. Since the filter outputs vary
smoothly with the input, similar inputs will produce similar output vectors. A certain

amount of noise in the system would then lead to
Pz € Aixy | O5) = Pz e A | §)).

Fortunately, the converse is also true. Since all codewords close to a given codeword

correspond to similar inputs, most decoding errors will be small. This will be seen in

the numerical examples.
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3.3.2 Multiple Inputs

It is easy to generalize to multiple inputs. If the prior for single input is flat and the
multiple inputs are independent, then the prior for the joint distribution will also be
flat. However, the information content of the filter bank output will change since N,
the number of partitions of measure > 0, will increase. Thus the A; will have to be
recalculated and I revaluated using eqn(3.7). The possibility of multiple (D) inputs
can be thought of as extending the 1 dimensional input space into a D dimensional
space where the coordinates of each point in this space represents the values of the
D separate inputs. The optimal filter bank, by the principle of entropy constrained
quantization, is one that assigns to each possible output state a volume element in
the D dimensional space such that the input has an equal probability of occurring
in any one of the volume elements. Let the information content of the output in the

presence of D possible inputs be I;. If each of the inputs are to be estimated up to
A4 then
(Awt)D — 9l
Ard

= 2l/D (3.12)

The accuracy decreases rapidly in the presence of multiple inputs. To achieve com-
parable accuracy for multiple inputs, I; must be drastically increased. This can be
done by increasing N (reducing the noise) or by increasing M (more computation).
It may not be necessary to build even more sharply tuned filters while increasing M.
In fact Fig. 3.1 shows that narrower tuning would provide only marginal gains even
over a decade of sigma (o = 0.1,0.01) though this difference will increase with D. A
convenient feature of the angle based decoding is that when the input space changes
from single to multiple inputs, the filter bank and the decoding algorithm can stay

unchanged. It is only necessary to pick a new set of exemplars from the input (sepa-
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rated from each other by A,4) and recalculating the codebook. Thus for a given filter
bank one could have a set of precomputed codebooks that could be swapped into
a LUT as required. This will enable systems to operate under a constant resource
constraint (fixed M) while switching back and forth between a high accuracy single

input mode and a low accuracy multiple input mode. An example with plaids will

illustrate this point later.

3.3.3 Multiple Parameters and Probability Measures

Filter banks are often used to measure multiple independent parameters for each in-
put. For velocity estimation they are orientation, speed and spatial scale (or k, k,,w).
The filter banks are composed of a number of filters each of which has a certain re-
sponse characteristic for each parameter. Let the parameters be {a, b, c}. If the filters
are separable F'(a,b,c) = F*(a).F*(b).F¢(c). Depending on the desired allocation of
resources to the different parameters, one could factorize the total number of filters,
M, into M = M,.My.M,. The three types of filters can then be independently op-
timized to match the priors for the corresponding parameters. The final filter bank
would be composed of M filters {F(a,b,¢)} = {F7} x {F!} x {F¢}. As in the case of
multiple inputs, the principle of entropy constrained quantization of the joint input
space would apply for the optimum filter bank for any given M,, My, M,.

The decoding process for such a system can be made very flexible. The filter bank
output can once again be considered an M dimensional vector and the codebook
composed of vectors corresponding to inputs of the type (ai, by, c,) where ¢; is an
exemplar from the partition A} of a. If the goal is to measure a,b and ¢ then the
decoding process is simply that of finding the codeword closest to the output vector.
Suppose, however, for a particular input it is only required to estimate a. The op-

timum decoder should pool together information from all codewords corresponding



69

to a particular ¢; in the absence of any knowledge of b,c. In the presence of knowl-
edge, the pooling must be restricted to a subset and a weighted mean used. These
kinds of operations require the definition of a conditional probability measure for each
codeword for any given output vector.

Let I(A,B,C) denote an input with parameters a = A, b = B, ¢ = C and
corresponding to the output O. The codebook consists of outputs for a set of chosen
inputs, I(am,bs,c,), and will be labelled as é(m,n,p). Given an output O what
is the probability that the input belonged to a partition of the input space A

m?”!p

represented by [(an, b,,¢,) 7 Using Bayes Rule for the conditional gives
P g

PO T € Apnp) Pl € Amny)

Pl € Appy | O] = PG

. (3.13)

For an optimally partitioned input space, P[I(A, B,C) € Ay, ) is constant for all
m,n,p. The denominator is a normalization factor, also independent of m,n, p. Thus

for the purpose of searching for the best (m,n, p)
PU(A,B,C) € Ay | Ol x PIO | I(A, B,C) € A,

Denoting the cosine of the angle between two vectors as C(él, 62), the conditional

probability on the RHS can be defined as C(é, 6(m, n,p)).
PlI(A, B,C) € Ay | O] < C(O,0(m, n, p)). (3.14)

The cosine is an admissible probability measure of conditional probability since with
the vector components all positive, C(@l, 62) 2> 0. Moreover, it is finite (< 1) and

uniquely defined for any given 51,62 and attains its maximum for (31 = 62. A
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normalization has to be done to ensure
Z’P(@ | O;) =1, where ¢ sums over all possibilities.

Any power of the cosine would also satisfy all the requirements of being a measure
of probability and the choice of a power will reflect on the a priori confidence that
I(A,B,C) € Apn, will produce a vector closer to 6(m,n,p) than to any other
codeword. This can be incorporated into the definition of C as C(él, 62) = cos”(9).
For the idealized case where eqn(3.2) holds, v — oco. The estimates for any one

parameter can now be expressed as (Af, is a partition in the input range of a)
PlI(A, B,C) € A%, | 0] o< 32 (0,0(m,n, p)). (3.15)
?p

The sum can be restricted to certain regions of the input space to incorporate any

information about b or ¢. The proper normalization assures that the sum of the

conditionals over m add up to 1.

3.4 Results using Pyramid Implementation

The Laplacian pyramid representation is an overcomplete subband decomposition
that has been used by Anderson to design a bank of orientation tuned filters. The
kernels underlying these filters, which create an 8/3 overcomplete oriented pyramid,
were shown to be steerable by Greenspan in [Greenspan et al., 1994]. The oriented
pyramid used 4 directionally tuned filters at each level (subband) of a single image
frame. This has been generalized in the present context to 60 filters operating at each
level of an image sequence, with the filters spanning orientation, spatial frequency

magnitude and temporal frequency. The purpose here is to show that an image
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sequence can be analyzed for orientation, scale and temporal frequency using a set of
filters and the mean values of these parameters can be estimated with greater precision
than the inter-filter spacings in the frequency domain. Though each subband has
energy concentrated around the midfrequency, the filters will span spatial frequency
magnitude from 7 /4 to 37x/4 so that fine estimates for spatial scale can be done
independently within each subband. The pyramids built on image sequences are a
sequence of pyramids built on individual frames, involving no averaging or subtracting
across frames. Hence temporal frequencies in any subband are not restricted and the
filters will span it from —37/4 to 37 /4. The main difference from prior work will be
that the ensuing bank of 60 filters will be used to discriminate up to 1296 different
spatio-temporal input frequencies.

If the spatio-temporal filters are the last stage of an analysis system, it makes sense
to calculate a unique velocity. It is more likely, however, that they are a lower stage
of a hierarchical system. In such a case, it is preferable that they do not make a hard
decision but instead provide the next level with a probability measure over the range of
each parameter. The results of Sec 3.3.3 make it possible to compute probabilities for
various parameter values at a point or to compute the relative probability of finding
certain parameter values across the image. Both algorithms were implemented and

their results will be shown.

3.4.1 Pyramid Filters

Spatio-temporal filtering at a particular orientation, scale and temporal frequency was
done by modulating the bandpass Laplacian image sequence with a quadrature pair
of traveling sinusoids, lowpass filtering the results and computing their sum square
over a fixed window size. The modulation has the effect of demodulating the input

image spectrum so as to bring the desired part of the spectrum over the origin in
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the frequency space. The lowpass filter then rejects the rest of the spectrum and
the summing and squaring measures the power by adding together the quadrature
phase components. The information being extracted here is the amplitude, which
is consistent with the fact that the amplitude response of the filters was used to
calculate the information content of the bank. If one wished to use phase, then the
optimization would have to be done based on the equipartitioning of the input phase
space by the distinct filter outputs and the outputs of the quadrature pairs would be
combined to provide phase information.

Using the notation (7, = Gaussian image, L, = Laplacian image, both at level n
Goyy =W Gy Ly=Gn =G5 Guyq = subsampled Gy .

The W is a Gaussian shaped lowpass filter. Once the L, have been formed, they are

modulated and filtered to produce oriented Laplacians

O°(F,t,k,w) = LPF[cos(k.F — wt).Ln(F,1)] (3.16)
O*(Ft,k,w) = LPF[sin(k.7 — wt).L,(F,t)] (3.17)
O(F 1, kyw) = (O(F,t, k,w)? + O°(F, 1, k,w)?) | (3.18)
where k = k[: cos(8) + 7sin(f)] determines the orientation and spatial frequency

magnitude of the filter O(r: k,w). A bank of filters is created by setting

ko= k i=1.M,
0 = 0; j=1.M,

w = w, p=1.M, .

This creates a bank of M = M;.M,.M, filters spanning scale, orientation and tem-
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poral frequency as in Sec3.3.3. Since Fig. 3.1 indicates diminishing returns above
M = 8 for a flat prior, filters were tuned 45 degrees apart in order to span the circle
in 8 steps. Since scale could also be measured across subbands, M} was set to 3. M,,
was also set to 3 since the accuracy of speed estimation depends on both k£ and w.
The stationary state, w = 0, for two opposite directions being equivalent, the filters
were implemented with 4 orientations and 5 different w with w going from positive

to negative. This gave 3 x 4 x 5 = 60 filters that were centered around the points in

frequency space defined by

k = =/4, /2, 3n/4
6 = 0, r/4, n/2, 3x/4

w = —27/3, —x/3, 0, n/3, 27 /3.

For each point 7,¢, there are 60 O(F,t, E, w) forming a 60 element vector G(F,t).
This creates an overly redundant representation of the input since the elements of an
O would be highly correlated with O of neighboring pixels. The vectors can hence
be subsampled in 7 depending on the window used in eqn(3.18). The present work
used a 8 x 8 x 4 window for eqn(3.18) and O was evaluated only on a 4 x 4 x 2
sampling grid. Given this subsampling, the memory requirement of the post-filtering
representation with respect to the input to the filters (L,) is about a factor of 2
(60/(4 x4 x2) = 1.875). Given the 4/3 increase in going from an image to a
nonoriented Laplacian pyramid, the overall memory requirement for all the Ois 8 /3
that for the original image sequence. Note that there are two different issues of
redundancy: redundancy across the elements of a vector O and redundancy of a
given vector element across vectors defined at neighboring pixels. The former was
dealt with in Sec 3.2.3 and shown in Fig 3.2 while the latter has been the motivation

for the subsampling just mentioned.
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As has been discussed in [Greenspan et al., 1994], the LPF used in eqn(3.16,17)
determines the tuning of the filter. Pyramid filters constructed using 3 x 3 tap, 5 x5
tap and 7 x 7 tap filters will be designated PF3, PF5, PFT respectively. The tuning
curves for these filters were determined numerically by looking at the response to
oriented sine waves of a fixed amplitude and they are compared to the optimal tuning
curve of ¢ & 0.1. In order to make the comparison, the tuning curve over 360 degs
was mapped onto the [0, 1] interval and all curves were centered on 0.5. The result,
shown in Fig 3.4, shows that PF) filters are almost optimally tuned for orientation
discrimination. These orientation tuning curves for the pyramids were obtained for
k = n/2,w = n /3. The steerability of the PF3, PF5 and PF7 was shown only for
k = 7 /2 in [Greenspan et al., 1994] and does not hold quite so well for the wider range
of frequencies being considered here. This can be seen in Fig.3.5 where the response
of the entire filter bank is plotted against frequency. Here, the curves represent
an average over the range of k,w. The fluctuations for PF5 are clearly noticeable.
Since the decoding algorithm has been designed to be contrast invariant, such small
fluctuations in the magnitude of the vector O will not affect the final output since the
dot products C can be evaluated. If, however, some of the inputs were to give very

little signal, then accuracy and robustness to noise would be affected.

3.4.2 The Exemplars and Their Outputs

Having selected the shape and distribution of the filters, the next task is to select a
set of exemplars from the input space and create the codebook. The codebook size
was so chosen that while doing a single parameter estimation using eqn(3.15) not
more than 1/3 of the exemplars would be misclassified for any of the parameters.
Even though each codeword can be uniquely identified as itself, the summation in

eqn(3.15) can lead to errors if there are too many similar codewords. A codebook size
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Pyramid Filter Tuning Curves and Optimal Gaussian Curve
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Figure 3.4: The orientation tuning curve of filters PF3, PF5, PF7 and the optimum
Gaussian curve. PF5 is clearly the best of the three.
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Figure 3.5: The response to different orientations, averaged over scale and speed, for
PF3 and PF5. The more informative PF5 does not have the flatter response.
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of 1296 was found to have such an error rate. The distribution of the exemplars was

k = 4n/16,57/16,...,127/16 (9 exemplars, ko..., ks)
6 = 0,7/16,...,157/16 (16 exemplars, 0p...015)

w = —4n/6,—-37/6,...,37/16,47/6 (9 exemplars, we...ws).

Thus 60 filters are being used to divide the input space into 1296 partitions.

It was argued in Sec3.3.1 that the system would be most likely to make small
errors since neighboring code words would represent similar inputs. One would also
wish that the 1296 codewords be evenly distributed in the 60 dimensional space. To
see how far this was true in the present case, the cosine was calculated between every
pair of codewords and a certain threshold (of the cosine value) was used to define
a neighborhood around each codeword. The average, over all the codewords, of the
number of codewords in the neighborhood was calculated. The mean difference (ab-
solute) between the value of an input represented by a codeword in the neighborhood
with that represented by the codeword itself was also calculated for each of the three
parameters. The results, plotted as a function of the threshold on cos(6) used to define
the neighborhood, is shown in Fig 3.6. The curve for the population of nhds expresses
the nhd population as a fraction of 1296, the total. The figures for orientation and
temporal frequency are fractions of 27 and for k it is .

The redundancy in the filter outputs, as indicated by Fig. 3.2, makes the system
very robust to noise added to the outputs. Since the codebook size was chosen big
enough to force a certain error rate, what needs to be seen is how big these errors are
and how the error rate is affected by noise in the system. This is shown in Fig. 3.7
where the solid lines indicate the error rates for the noiseless case and the dotted lines
indicate the error rates for 16dB noise. The noise was injected into the system as a

random addition to each filter output, up to +30% of the output. As can be seen,
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Figure 3.6: The average population of codewords around each codeword and the
variation in the input parameters represented by them as a function of neighborhood

radius

all the errors are misclassifications to the nearest partition. This means that with
8 filters separated by 45deg each, the input orientation can be determined correct
to an accuracy of 12deg most of the time, and up to 23 all the time. This degree
of robustness to noise in the outputs arises due to the fact that the information is
encoded as a relative pattern of activity across 60 outputs and this pattern is not
significantly altered by random fluctuation of the individual outputs. However, any
decoding measure that depends on a single output (e.g., a winner-take-all) would be
severely degraded by such noise. The presence of such robust encoding and decoding
schemes may explain why biological systems with their noisy spike train based signals
can be so robust. Gallant [Gallant et al., 1993] has shown how a cosine measure
defined on a 90 dimensional output vector of neuron responses to a 90 stimuli input
set can lead to robust classification of cells.

The three parameters were estimated separately using eqn(3.15). Orientation and



78

Increase in Errors due to Noise in Filter Outputs
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Figure 3.7: The system is robust to additive noise in the filter outputs. There were
1296 outputs: 16 partitions for orientation, 9 for scale and 9 for temporal frequency.
The addition of noise leads to no significant increase in the error rate. The 3 curves
for each case show the errors for o, &k and w separately.

temporal frequency were estimated first and the summation for estimating k& was
restricted in the orientation space. This was necessary since the low frequency filters
for various orientations in the frequency domain are clustered around the origin while
the high frequency filters are far apart on the periphery. As a result, a summation
across orientation biases the estimate of k towards low frequency. It is being assumed
that separate estimates of o, k and w can be combined to give ¥ at each point. Given
eqn(3.15), a set constrains can be imposed on the range of summation if the presence
of certain o, k, w or ¥ is to be determined. The output then is a probability map

showing the likelihood of the presence of the selected parameters.
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3.4.3 Nonsinusoidal Inputs and Noise

The exemplars chosen while forming the codebook were all single frequency travelling
sinusoids. Such a codebook can only be used to determine the parameters of a single
input. In the case of multiple inputs, the result will closely match the dominant
input. This can be seen by using the codebook to analyze outputs of travelling
square waves. These inputs still have a unique orientation and speed but there is
more than one spatial frequency harmonic present. The system’s performance to
square waves is shown in Fig 3.8 where the error for £ was measured in terms of
identifying the fundamental frequency. Since the filters incorporate a low-pass filter,
high-frequency (random) noise in the inputs have little effect on the error rate. This
was demonstrated by adding white noise to the square wave input. The result is
shown in Fig 3.8. As was to be expected, the estimates for the spatial scale suffers
an increase in error as compared to the noiseless sinusoids. However, most of the
errors are just one partition away which is #/16 for k. The estimation accuracy for
orientation, which could only have be affected by the noise, remains unchanged.
The LPF in eqn(3.16-17) had a 5x 5 x5 support and there was a summation over
8 x 8 x 4 in eqn(3.18) for 0. While such a system could work well for inputs whose
characteristics were constant over space, it could have problems dealing with inputs
whose parameters varied within each 8 X 8 x 4 window. The system was tested using
an image sequence of a rotating radial pattern of which one frame, 32 x 32, is shown in
Fig 3.9. The image shown is the first bandpass level, Ly, and has the low frequencies
attenuated. The center of rotation is at the bottom right corner, the radial ridges are
24degs apart and the motion is a rotation of 2degs/frame anticlockwise. The estimates
of 0, k and w were made using eqn(3.15) to generate a probability distribution. The
+w were used to define two orientations and the result gave the probabilities of finding

each of 32 orientations, 9 spatial frequency magnitudes and 5 temporal frequencies at
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Input Waveform Distortions: Square Waves
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Figure 3.8: A noisy square wave input tests the systems ability to handle nonsinu-
soidal inputs with noise. The presence of harmonics in the square wave led to scale
estimation errors. Note that most errors are 1 partition while the spacing between
the filters in scale is 3.
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a point. The estimates for the point (7,7, 5) are shown in Fig 3.10 and the 8 x 8 region
about that point is shown bordered in Fig 3.9. The orientation was measured from
the z-axis in an anticlockwise manner and the pattern was also rotating anticlockwise.
The selected point was on the diagonal corresponding to 135 degs, or 012. At a radius
of 9.9, the spatial frequency of the pattern was 87/16 = k4. The angular velocity
being constant, the temporal frequency was a constant 7 /6 = w, over the whole image
even though the spatial frequency was not. The results in Fig. 3.10 reflect these fact.
The probability of w is peaked sharply at wy. The spatial frequency varied within
the area examined and the curve for k is broadly tuned with the maximum at ks
with k4 a close second. The orientation estimate is peaked at 015 but the presence of
two other ridges widened the curve to give comparable probabilities to 0;; and o;a.
If forced to make a decision at this point, the system would correctly identify the w
and o but be off by 7/16 in its estimation of k.

A different way of analyzing the filter outputs is to query for the presence of
certain parameter values in the image. The final output is a probability estimate for
each point in the image. Two such maps are shown, Fig 3.11 shows the map for 0,5
and Fig 3.12 shows the map for k3. The map for orientation is diffused at the top
left since a 8 x 8 window cannot be confident about the orientation of wide ridges.
The bottom right is partly aliased and contains multiple orientations. Hence the
system was most confident about the presence of a 135deg orientation in the middle.
The map for k highlights an arc since the spatial frequency in the radial pattern was
constant at a given radius. The fall off for the higher frequencies towards the center of
the pattern is sharper than the fall off for the lower frequencies towards the periphery.
The spatial frequency falls of as 1/R along each ridge and so the fall off towards the

lower frequencies is slower.
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Figure 3.9: The first frame of the rotating pinwheel sequence, 32x32x10. The spokes
are 24degs and motion was 2deg/frame. The box shows the area analyzed in Fig.3.10
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Figure 3.10: The probabilities estimated for orientation, spatial freq and temporal

freq within the box in Fig.3.9. The true temporal freq was wl, spatial freq was ks
and orientation was 0;3.
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Figure 3.11: The probability map for orientation at 45 deg. There was aliasing near
the bottom right. The spatial freq was too small at the top left to be determined by
a 12x12 window. Hence the middle region of the diagonal is brightest.

Figure 3.12: The probability map for spatial frequency magnitude 77 /16. The filter
bank had filters at three spatial frequency magnitudes.
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3.4.4 Multiple Inputs

In this section, performance issues related to multiple inputs are briefly discussed. As
stated before, to simultaneously estimate multiple inputs in the same region in the
image with high accuracy involves a big increase in cost. The effort here is therefore
to show how the system performs at constant cost. Given the bank of filters with 8
sets of filters tuned 45 degs apart, what can be done for complex inputs? The example
with square waves showed how the dominant scale could be detected. In this section
moving plaids will be used to test the accuracy for orientation estimation.

The three plaids that will be used are shown in Fig 3.13. The top left pattern
consists of a horizontal grating and a diagonal grating, both of equal contrast. The
top right plaid consists of a horizontal grating and a weaker diagonal grating, the
contrast ratio being 2 : 1. The bottom plaid consists of a horizontal grating and
a vertical grating, both of equal contrast. According to the discussion for multiple
inputs, the accuracy for two inputs should go as the square root of the accuracy for
single inputs. Since for single inputs the system could partition the input into 32
sections, for two inputs it should be able to partition each input into about 5 sections
which is an accuracy of 65 degs. Hence for two orientations separated by 45 degs, the
system should not be able to resolve the two inputs. Once one orientation becomes
dominant, the system should be able to estimate that to within 412 degs. For two
inputs separated by more than 65 degs, like the third plaid, the system should be
able to resolve the two orientations and estimate them accurately. The results for
the three plaids are shown in Fig 3.14. For the top left plaid, the system combines
the two orientations at o1 and oy to produce a single sharp peak at 0;5. For the top
right plaid, the system ignores diagonal at 0,9 and estimates the orientation between
016 and o0y7. For the bottom plaid with its two orthogonal orientations, the system

resolves the two orientations and estimates them accurate to 12 degs - with peaks at
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017 instead of 016 and o0y3 instead of 094.

3.5 Summary

Filters used for detection and estimation of parameters in an image sequence should
be regarded as information gathering entities. Their design should be governed by
the principle of maximizing the information content of their output. The incremental
cost incurred to get each incremental amount of information is an important quantity
to consider while designing filter banks. When used collectively as a bank, filters not
only extract information but encode it in a certain way depending on the design of
the filter bank. An understanding of this process is necessary in order to use the
correct decoding process at the output. An incorrect method can severely reduce the
information gained. Thus even for noise free systems, the proper design of filter banks
and output analyzer is necessary to extract maximum information for a given cost.
The present approach can be easily extended to the design of noisy systems as well.
In this context, the issue of redundancy in the output and its role in robustness to
noise in the system is highlighted. Another issue emphasized here is the importance
of the prior for the inputs. A nonuniform prior would require nonuniform shapes and
placements of filters, even if this results in a departure from complete coverage or
steerability.

The present work gives a way of evaluating the information content of filter banks
independent of the decoding method. This is important since the overall performance
of the bank depends on the encoding and decoding. An evaluation of the overall
performance alone cannot determine the merits of the two processes separately. By
first evaluating the comparative information content of the various filter bank outputs
it becomes possible to decouple the filter design problem from the output analyzer

design problem. Once the filter design is done, the decoder can be designed by
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Figure 3.13: The top left plaid has orientations 016 and o0y at equal contrast. The

top right plaid has orientations o6 and 0y at 2 : 1 contrast. The bottom plaid has
orientations 016 and 0,4 at equal contrast.
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Figure 3.14: The orientations estimated for the three plaids. The presense of a
dominant pattern or a large separation of the input parameters is required for an
accurate estimation at a fixed cost.
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checking the system performance for known inputs. The issue of handling multiple
inputs is shown to be linked to the issue of accuracy. A constant cost system is

proposed that could trade off accuracy for multiple inputs with minor modifications

at the output.

Spatio-temporal filters are often the front end of more complex systems. Their out-
puts can be made more compatible with the requirements of higher levels of processing
if they can be made to give probabilistic outputs. A way of doing that is demonstrated
here by developing a probability measure on the filter outputs. A flexible system that
can pool information across multiple parameters and handle constraints is ideal for
incorporating top down instructions while doing a low level analysis. It has been
shown that all this can be done with a representation that is 8/3 bigger than the in-
put sequence. Once this representation is created, all queries regarding parameters at
a point or presence of parameters within a range can be answered without additional

filtering operations. The system is thus cost effective and versatile.
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Chapter 4

The Burt Pyramid as an Error

Correcting Code for Images

4.1 Introduction

The study of multiresolution representations of images led to the development of the
pyramid [Burt, 1983], [Burt and Adelson, 1983]and wavelet representations [Mallat,

1989], [Daubechies, 1990]. The chief difference between them was the fact that the
wavelet representation was a just complete, orthogonormal representation while the
pyramids were overcomplete and nonorthogonal. While the overcompleteness was
initially regarded as a disadvantage of the pyramid representations, it has been shown
that it leads to more compact kernels for interpolation [Anderson and Rakshit, 1992]
while Simoncelli et al. [Simoncelli et al., 1992] have shown that the critically sampled
wavelet representations have no simple interpolation rules. The overcompleteness of
the pyramids also make them a redundant representation, i.e., there are more possible
pyramids than there are images. This fact bestows on the pyramid representations

the properties of an error correcting code. It is worth emphasizing that the error



90

recting properties of the pyramids studied in this paper are a property of the pyramid
representation itself and not a result of making any assumptions about the original
images. The use of pyramids as error correcting codes is thus not limited to low-pass
or bandlimited images. This feature distinguishes the present work from the prior
work on using pyramids for image compression and noise filtering. While the energy
in the natural images may be mostly in the low frequencies, the important informa-
tion is usually in the high frequencies. For example, since in military and medical
applications the end user is often looking for differences in small detail or texture in
the images, the preservation of high frequencies is important.

The use of the pyramid representation for image compression was studied by Burt
and Adelson [Burt and Adelson, 1983]. Their technique was based on the fact that
when decomposed into its bandpass components, the values were clustered around 0
for the lower levels of the Laplacian pyramid. Image compression was obtained by
quantizing the Laplacian values and degradation of the reconstructed image was made
imperceptable by the proper choice of the number and distribution of quantization
levels. While the quantization errors in the compression stage were minimized, no
effort was made to remove the errors at the decompression stage. Thus their technique
could not be generalised to error correction.

A useful technique for noise removal is coring. It is based on the assumption that
the noise is mostly high frequency and low amplitude. In the context of pyramids, it
amounts to thresholding the lowest Laplacian band (Lo) and reconstructing the image.
While removing the noise, it also attenuates the low amplitude high frequency signal.
If the noise has a high amplitude and frequency or has a low frequency then coring is
ineffective. It will be argued later that noise introduced during digital transmission

or analog storage is usually of this type.
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4.2 The Burt Laplacian Pyramid

The Burt Laplacian pyramid is described in detail in [Burt, 1983], [Burt and Adelson,
1983]. Here we review the rules for the formation and reconstruction of the pyramid
and image respectively. The Burt pyramid has an exact reconstruction rule, unlike the
FSD pyramid [Anderson, 1990]. Since the exact reconstruction property is essential

for error correction we shall restrict all further discussions to the Burt pyramid.

4.2.1 Pyramid Formation and Reconstruction

The rules for the formation of the pyramid are recursive, with the original image being
defined as Gig. The rules require two types of operations on the images, Reduce and
Expand. The Reduce operation is a low-pass filtering followed by subsampling by a
factor of 2 along each dimension. The Expand operation is the opposite, it consists

of enlarging the image by inserting a zero between neighboring pixels, multiplying by

4 and low-pass filtering.

Construction: Gny1 = Reduce G,
L, = G,—Expand G,1 .
Reconstruction: G, = Expand G,y + L.

A Gaussian pyramid is formed (G,) along with the Laplacian one (L,). The re-
construction rule, however, requires only the top level of the Gaussian pyramid and
the entire Laplacian pyramid. Hence, for purposes of storage, transmission and er-
ror correction, the Gaussian pyramid (except for the top level) can be discarded. A
Laplacian pyramid corresponding to an image refers to all the bandpass components

L, and the top level Gaussian G .
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4.2.2 Redundancy

The pyramid representation of an image is a redundant representation. The subsam-
pling by a factor of 2 along each dimension means that each successive pyramid level
will have only 1/4 as many pixels as the present level. Since the lowest level, Lg, has
as many pixels as the original image, the total number of pixels in the pyramid will
be less than 4/3N. The limit of 4/3N is never attained since the pyramid is built
upto a finite level only, usually till the top Gaussian image is =~ 8 x 8. On the other
hand, the dynamic range of the Laplacian bands needs to be twice that of the image.
To see why this is necessary, consider the case where images are restricted to 0..255.
An isolated 255 in a region of 0s will require a ~ 255 pixel in the Laplacian while an
isolated 0 in a region of 255 will require a & —255 pixel. The doubling of the dynamic
range requires only an additional bit per pixel and since most images have byte sized
pixels or larger this does not lead to a significant increase in redundancy. The factor
of 4/3 is thus a good approximation of the redundancy in pyramid representation in
2D.

The consequence of this redundancy is that there are many more possible pyramids
than there are images. Suppose we consider images with a dynamic range of B, i.e.,
image pixels can have any one of B values. Since no restrictions are being placed on
the nature of images, any array of pixels will be considered as a possible image. An
image with N pixels will be referred to as an image of size N, and its corresponding
pyramid will be a pyramid of size M where M = N4/3. For N = 256 x 256 and
B = 256 the total number of images and pyramids are given by

Total number of Images = 2524288

Total number of Pyramids = 2786432,

The convention in this paper will be image size = N, corresponding pyramid size =



93

M and number of gray levels in image = B.
The huge excess of pyramids over images indicates that there exists the possibility
of using pyramids as a 2D error correcting code for images. In order to realize that

goal it is necessary to understand the nature of the mapping between images and

pyramids and to characterize the pyramids.

4.3 Properties of Pyramids

The choice of Burt pyramids was motivated by the presence of an exact reconstruction
rule, a pyramid constructed on an image always gives back the same image upon
reconstruction. It will now be shown that this exact reconstruction gives rise to a
special class of pyramids, called Stable pyramids, that are related one-to-one with
images. Further, the entire space of pyramids will be characterized with the help of

these and two other classes of pyramids called the Null and Constrained pyramids.

4.3.1 Definitions

For the sake of brevity, we shall define two operators R and C as the reconstruction
and construction operators respectively. R operates on pyramids to yield images

while C operates on images to yield pyramids. The exact reconstruction rule can

now be stated as RC(I) = I where I is any image.
Definition 1 (Stable pyramid) A pyramid P is stable if CR(P) = P.

Definition 2 (Null pyramid) A pyramid P is a null pyramid if R(P) =0, i.c., a

zero image.

Remark 1 The 0 pyramid is both null and stable.
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Definition 3 (Constrained pyramid) A pyramid P is constrained if R(P) does

not involve an overflow at any level.

Remark 2 The dynamic range of the image and all Gaussian levels is half that of
the Laplacian bands. It is thus possible that during the addition involved in the recon-

struction algorithm there may be an overflow.

4.3.2 Linearity

The operators C and R will be treated as linear operators with respect to images and
pyramids. While this is true for C it is not strictly true for R due to the possibility
of overflow. Even when restricted to constrained pyramids, it is possible that the
addition of two constrained pyramids will produce an unconstrained pyramid. (Note:
Here addition and subtraction of images and pyramids implies a pixel-wise addition
or subtraction.) In most cases, however, the deviations from linearity produced by
overflows is small enough to be ignored. This will be illustrated by the construction
of null pyramids.

Since there are many more pyramids than images, R has to be a many-to-one
mapping. This fact can be used to create null pyramids as follows. A 512x512
random image was generated and its L; calculated. Random sections of this was
taken to form a pyramid P;. This pyramid was reconstructed to produce an image I
= R(P;). This is shown in the left pyramid in Fig. 4.1. (Each pyramid is shown as
G on top, Lonext, followed by G, flush to left and L, next to it on the right at each
row.) A second pyramid is now constructed as P, = C(I;). The difference of these

two pyramids, Ps, should be a null pyramid by linearity since

R(P3):R(P1)“R(P2):Il-]1:0
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The middle pyramid of Fig. 4.1 shows the formation of P, while the rightmost pyramid
shows the reconstruction of Ps. Since P, was not stable (chances of a random pyramid
being stable are almost zero) P; has nonzero Laplacian bands and even nonzero
intermediate Gaussian bands. However the final Gy was zero. Moreover, when this
null pyramid P; was added to a pyramid P, constructed on yet another random image

it resulted in a pyramid Ps that reconstructed to the same image as P;. Thus the

following is also true :

Figure 4.2 shows the above result. The Gaussian pyramid to the left corresponds
to the reconstruction of P4, the middle to that of Ps and the rightmost shows the
difference between the two. Once again, it is the difference of Gps that is zero while
the intermediate levels have nonzero energy. There are a few isolated nonzero pixels

in Gy but they are too small to be seen (+6, full range 0..255).

4.3.3 Stable Pyramids

Stable pyramids are a special set of pyramids that constitute a small fraction of all

pyramids. They are the codewords for our error correction code. They are character-

ized by the following properties :

Theorem 4.1 A pyramid P, is stable if and only if there is an image Iy such that
PQ - C(]O)
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Figure 4.1: Null pyramid created by subtraction of two pyramids
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of adding a null pyramid
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Proof 1

If given Py, = C(h)
R(F,) = RC(l) =1y Perfect Reconstruction
= CR(F) = C(I)
= CR(F) = K Hence stable by definition
If Py is stable CR(F) = B
= C(l) = P where Iy = R(P)

a

Corollary 1 There are BY stable pyramids since stable pyramids are in 1-to-1 cor-

resp to images.
Theorem 4.2 All stable pyramids are constrained.

Proof 2 By Theorem 4.1 stable pyramids are those that are produced by the process
C(1). By the construction rules, the subtraction during formation of L, cannot lead to
an overflow because the L, were given twice the range to explicitly avoid this problem.
Moreover, if G, is € {0,B} then Gy being a (subsampled) low-pass filtered version
of G, must also be € {0,B}. Hence during reconstruction the equality G, = L, +Gpri1

will hold exactly and never involve an overflow. O

While all stable pyramids are constrained, not all constrained pyramids are stable.
It is possible to count the number of constrained pyramids by counting the different

ways that the M pixels in the pyramid may be selected.

o The coeff of Gy can each have one of B possible values, that being the range

of the Gaussians ({0,B}).
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o The Laplacians have a range of {-B,B}, but the pixels have to be chosen to
avoid any overflow during G, = L, + ExpandG, ;. At each pixel, for any
value that the Expand(,, 1 pixel € {0,B} assumes, there are B possible values

¢ {-B,B} that the L, pixel can assume and still keep the G, pixel ¢ {0,B}.

Since each of the M pixels of the pyramid may be picked in B possible ways, there
are BM different constrained pyramids. Since M = N .4/3, constrained pyramids far
outnumber stable pyramids.

As has been noted earlier, addition (or subtraction) of two constrained pyramids
can give rise to an unconstrained pyramid. However, any such unconstrained pyramid

can be rendered constrained in a deterministic manner by adopting the following rules:

e If during reconstruction a G, pixel should exceed B, reduce the corresponding

L,, pixel such that the G,, pixel equals B.

o If a (&), pixel should go below 0, increase the L, pixel such that it equals 0.

With the above convention, the unconstrained pyramids are transformed into con-
strained pyramids such that the two have identical reconstructions assuming that
overflows are treated as saturation. In particular, an unconstrained null pyramid

produced by subtraction of two pyramids as in Sect. 4.3.2 will converted into a con-

strained null pyramid.

4.3.4 Null Pyramids

We have seen in the previous section that the stable pyramids are a small subset
of the set of constrained pyramids. We will now count the number of constrained
null pyramids and then go on to show that all constrained pyramids can be uniquely

characterized in terms of their stable and null components.
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The problem of constructing constrained null pyramids is identical to that of
constructing constrained pyramids, except that we have the additional constraint that
Go must be 0. Thus we can chose all pyramid coefficients from Gy to L; as before, but
then have no choice in selecting Lo since it must be set equal to —Expand(;. Since
G is € {0,B}, the required pixels for Ly will be € {-B,0} which is within the allowed
range for L,. Since there are N pixels in Ly and M total pixels in the pyramid, we

can chose M — N pixels - each in B ways. Hence there are BM~ null pyramids.

Theorem 4.3 Every pyramid can be expressed as the sum of a stable and null pyra-

mid and this decomposition is unique.

Proof 3 Given any pyramid P, construct P, = CR(P) and P, = P — P,. P, is
stable by Theorem 4.1 as it is formed as C(I) where I = RP. P, is a null pyramid
as R(P,) = R(P)—R(P;) = I -1 = 0. The uniqueness of this decomposition follows
from Corr 5. Since any given P reconstructs to a unique I and the stable pyramids
are related 1-to-1 with the images, P, is unique. This forces P, = P — P, to be unique

since no other pyramid would satisfy P = P, + P,. O

The presence of so many null pyramids raises several interesting questions regard-
ing the choice of pyramids. Any image will give rise to a unique stable pyramid but
there are a large number of unstable pyramids that will reconstruct to the image and
these pyramids can be generated by adding null pyramids to the given stable pyramid.
Depending on the application, one of these pyramids may be better suited. For the
compression scheme given in [Burt and Adelson, 1983], the “best” pyramid would be
one where the Lo pixels are most clustered around 0. For other applications, it may

be desirable to try to equalize the dynamic ranges or energies of various bands.
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4.4 Error Detection and Correction

We have seen that the process of pyramid construction, C, maps images onto a
special set of pyramids, the stable pyramids. If during the process of transmission or
storage/retrieval these pyramids get corrupted by noise then they will no longer be
stable. Strictly speaking, there is a non-zero probability of being transformed into
another stable pyramid but for any significant amount of noise this probability is
close to zero. As will be shown shortly, stability is a global property of a pyramid.
This means that it is not possible to alter isolated pixels in a stable pyramid and still
keep it stable. The pixels in a stable pyramid are not just related to the neighboring

pixels in their band but to pixels in the bands above and below them.

4.4.1 Pyramid Instability

Why are some pyramids stable and others unstable 7 Theorem 4.3 provides one
answer : The null pyramid associated with most pyramids is not the 0 pyramid.
However, knowing the null pyramid associated with an unstable pyramid does not
help us determine the stable pyramid that is “closest” to it, Theorem 4.3 only gives
us a stable pyramid that has the same reconstruction as the given pyramid. Since a
noise corrupted pyramid would produce a noisy image, this is not the stable pyramid
we will want while decoding. Since there are too many stable pyramids to use a LUT,
it is necessary to gain a qualitative understanding of pyramid stability and instability
in order to develop a decoding algorithm.

Since pyramids are a multiresolution decomposition, each band encodes a different
bandpass section of the image subsampled at the appropriate rate. This makes the
Laplacian bands have a band-pass spectrum as can be seen in Fig. 4.1 where the
band-pass components of the pyramid in the middle look distinctly different from the

Gaussians. It turns out, however, that the band-pass spectrum of the Laplacians is
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necessary but not sufficient for pyramid stability. If the various bands of a stable
pyramid are taken in isolation they are no longer stable. This is shown in Fig. 4.3.
Each of the four top Gaussian images were created by replacing any one band of a
0 pyramid with a band from a stable pyramid, Ly for the left most, Ly for the next
and so on, and reconstructing. When pyramids were constructed on these images,
the energy was spread over all the bands. This demonstrates the fact that stability
is not a local property or a property of individual levels of a pyramid. This feature
makes the pyramid code a robust error correcting code for images.

Those working with complete orthonormal representations like the wavelets often
overlook the consequences of redundancy in the pyramid representation. It was stated
in [Daubechies, 1990] that the input that would lead to L, = 0 and a Gy = 6, ,, could
be generated by reconstructing this pyramid. Such is not the case, however, since

this pyramid is unstable. In fact, since it is an unstable pyramid, there is no possible

input that can generate it.

4.4.2 Error Detection

We can now address the issue of error detection, namely when and how can we
detect errors 7 The obvious way to check for errors is to check for stability of the
received (or retrieved) pyramid. This test will fail only if the noise added to the stable
pyramid transforms it into another stable pyramid. The probability of this happening
decreases with increase in the magnitude of noise added. Let the magnitude or weight
of a pyramid (or image) be defined as }_ ||pixel||. If we consider sets of pyramids of
increasing weight, the fraction of pyramids that are stable decreases. One way to see
this is to recall that the ratio of stable pyramids to all pyramids goes as B~?M=N) and
for all constrained pyramids it goes as B~M=N)_ We can generate sets of pyramids

of increasing maximum weight by starting with M = 1,B = 1 and letting M and B
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Instability of single band pyramids

Figure 4.3
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increase, and the ratio will decrease rapidly. The implication for error detection is
that while small errors may go undetected, the probability of significant errors being
undetected is virtually zero.

We have thus far talked in terms of the error introduced into the pyramid. What
we are really interested in is the residual error that may be left in the image. In
general, small perturbations introduced into a pyramid can have a large effect on the
image if it is done at a high level of the pyramid. Fortunately, as seen in Fig. 4.3,
energy at any level cannot be stable unless it is accompanied by suitably distributed
energy in other (esp lower) bands. Thus all the low weight stable pyramids are ones
with energy mostly in Ly and a little in L; and these are the possible undetectable
error patterns. Consequently, they will produce an error in the image of weight ap-
proximately equal to themselves. Hence the small undetectable errors in the pyramids
will translate only into small errors in the images. In practice the errors due to the

limitation of the error correction algorithm far outweigh the errors undetected by the

error detection step.

4.4.3 FError Correction

Error correction for the pyramid code is an iterative algorithm based on the fact
that the noise pixels are unmatched to pixels in their neighborhood and to pixels in
adjacent bands. Under the operation CR they will have to redistribute their energy
both locally and across bands. This will happen just once since the first application
of CR will produce a stable pyramid, though not the original stable pyramid. Let P?*
be the original and P" the noise pyramid added to it to produce P!, the transmitted
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pyramid. By Theorem 4.3

P = P*4+0 P? is stable, its null part is O
P = P+ P? P™’s stable and null parts
= P°+P* = {P°+ P!+ P
= P! = P4 pr P*" is a stable pyramid
= CR(P!) = p= # P° the desired stable pyr.

The noise pixels may be seen as sources from which energy diffuses out to the neigh-
boring pixels and to pixels in adjacent bands until they are at equilibrium with the
other pixels. This means that if a pixel changes its value due to CR it could be a
noisy pixel or a purely signal pixel picking up the redistributed noise energy. Hence
we cannot identify noise contaminated pixels purely on account of their undergoing
a change, nor can we use the direction of change since the noise is bipolar. However,
since the excess or deficiency of energy from a noisy pixel gets distributed over many
neighboring pixel, the magnitude of the change will be larger for the noisy pixel than
for its neighbors. Based on this we can iteratively correct the errors by the following

procedure: (the superscript is the iteration index)

Pl = CR(P)

AP = ||P' - P\
P, = Pl HAPL < th
Pil,j,k ifAPZl’J’k 2 th’

where P ;1 is the pixel at (z,7) in level k of the pyramid P. The key step in this
procedure is the resetting of the pixels in P! to that of P~ when they do not change
by more than th. This means that the noise energy that had diffused out is being

removed. As a result the noisy pixels, even though they are now less noisy, are once
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again at inequilibrium with their neighborhood. Thus at the next iteration they will
diffuse out some more energy and the process iteratively removes most of the noise
as the value of th is gradually reduced.

In principle one could correct all errors by the above technique by chosing a small
enough decrement for th. The trade-off is the decoding accuracy versus computational
cost, which translates to an accuracy versus speed trade-off. In practise, the severest
restrictions on th come from isolated noise pixels in Ly. The Ly band encodes the
top half of the frequency spectrum and has only one adjacent band (L;). Hence high
frequency noise in Lg loses very little of its energy due to CR. Performance and speed
can both be improved by using a slightly different approach to correcting all isolated

errors from Lo and then using the general procedure outlined above. The details are

given in App A.

4.5 Results

The algorithm was tested on different images and for varying types and amounts of
noise. In each case, a pyramid was constructed on the image and then the pyramid
was corrupted by noise. The noise added to the Lo band is reproduced identically
in the image (Gp) and thus for any given type of noise, this unblurred version of
the noise is indicative of the noise that the image would have picked up had it been
transmitted without pyramid encoding. Two types of noise were studied, keeping in
mind two potential applications - digital transmission and analog storage.

For the case of digital transmission, a pyramid would be built on an image and
then the pyramid would be transmitted over a noisy channel. Since the pixels are
byte size or larger, an error in a transmitted bit could cause a pixel to be in error
by 1 or any 2". Hence the noise was modelled by picking pixels at random with a

certain probability and then adding a certain amount of noise, the amount being a
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random number between -128 and 128. The noise added to the pyramid was thus
sparse and high frequency but since it was added to all levels of the pyramid the re-
constructed image (of the noisy pyramid) shows noise at all frequencies. The results
for this kind of noise are shown in Fig. 4.4 and Fig. 4.5. The top pictures show the
original image, the middle pictures show the reconstruction of the noisy pyramids
and the bottom pictures show the reconstruction of the decoded pyramids. The F18
image was 320x240 and 0.2 % of its pyramid’s pixels ( about 200) were corrupted
by noise. While the noise has been almost completely removed, all high frequency
details of the original image have been preserved. Figure. 4.5 shows the deteriora-
tion of performance with increasing noise, here 0.5 % of the pyramids pixels were
altered. While a complete removal of noise was not achieved in this case, a significant
noise reduction was achieved without compromising the sharpness of the image or
introducing artifacts.

Images are often stored as 2D images in analog media like films and holograms.
In particular, 3D holographic media like photorefractive crystals hold the promise
of dense storage. These media are noisy and conventional error correcting codes
developed for 1D digital data streams are not suitable. These encoding schemes
would essentially unraster 2D images, encode the resulting 1D data stream and then
raster it back into a 2D image. This would render even the smooth natural images
into high frequence random dot images greatly increasing their bandwidth, thereby
increasing the errors made during storage and retrieval by any optical or analog
system. Encoding images as pyramids would retain their 2 dimensional structure and
never introduce any high frequencies. The errors or noise would tend to be blobs
rather than dots, produced as a result of local defects in the media or defects in the
recording system. This kind of noise was modelled by selecting a few random pixels
as before, but then introducing a blob of noise centered around the chosen pixel. The

size (spread) of the blob was made proportional to the peak value. The results with
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Figure 4.4: Sparse high freq noise in pyramid
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Figure 4.5: Dense high freq noise in pyramid



110

Figure 4.6: Sparse low freq noise in pyramid
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Figure 4.7: Dense low freq noise in pyramid
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this type of noise is shown in Fig. 4.6 and Fig. 4.7. In the first case (Lena) 0.1 % of
the pixels were made blob centers and average size of blobs was 5 x 5 thereby altering
about 0.25 % of the pixels (about 217) while for Fig. 4.7 (Phobos) 0.3 % of the pixels
were made blob centers. In the Phobos image, the noise blobs look identical to some
of the genuine features in the image thereby ruling out filter based techniques for
noise removal.

The speed of decoding depends on the number of iterations required, which in
turn depends on the rate at which ¢h is reduced. For the results shown in this
paper, the overall time for decoding a pyramid corresponding to a 320x240 image and

generating the clean image was 2.5mins on a Sparc2. The decoding algorithm allows

one to trade-off accuracy for speed depending on the application.

4.6 Summary

The Burt pyramid is a robust 2D error correcting code with a 33% redundancy. The
error correcting properties of the pyramid is based on this redundancy and not on a
priori assumptions about the image spectrum. This makes it possible to detect and
correct errors even if they are frequency matched with the image. Sharp details in
the images are preserved since the error correcting process does not remove part of
the signal spectrum and blur the images. Moreover, the errors that are detected are
removed by subtraction and not smeared by a low-pass filter. As was pointed out in
the introduction, this is an imortant feature for many image processing applications.

The error correction algorithm is an iterative algorithm that performs well for
bit error rates of about 107°. For noisier channels, the pyramid encoding can be
used in conjunction with other conventional error correcting codes by using them to
reduce the BER for transmission of the pyramid pixels to about 10~2 or the number

of iterations can be increased thereby trading off speed for accuracy. The pyramid
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code can also be used for analog storage or transmission of 2D images as images, i.e.,
without having to unraster them into 1D data stream. The Burt pyramid can also be
generalized to arrays of images by creating a 3D pyramid by a process of filtering and
decimation along x,y, z. These 3D pyramids could then be used to transmit or store
large arrays of images as are generated by MRI and PET scans. Since the redundancy

of the 3D pyramid is only 14% this makes it a very compact code.
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Chapter 5
Conclusions

The desirability of redundancy in image processing has often been underestimated.
The traditional approach has been to look upon the redundancy of natural images as
scope for data compression and this outlook has carried over to the design of image
analysis systems like filter banks which were usually designed to make the output
of each filter as independent of the others as possible. The format of input images
was set by the needs of storing and transmitting with minimum cost, which meant
critically sampled representations like the wavelet representations. Motion detection
algorithms or other image analyses were expected to work best within this framework
since it was the most compact. However, the key issue for image analysis is not the
size of any representation but the manner in which information is encoded in it.
The estimation of optical flow field using derivatives provides a dense estimate of
the flow field for a variety of inputs, like shaded objects, textures and diffuse blobs.
The algorithm requires interpolation and estimation of derivatives but no feature
extraction or recognition. The cost of interpolating images, estimating derivatives and
optical flow fields was analyzed using the basis function formalism. This formalism

makes explicit the relationships between frequency, computation cost and accuracy of
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results. Since the (digital) frequency of the sampled image depends on the ratio of the
sampling rate to the highest frequency in the analog image, the result links the cost
and accuracy of estimation to the redundancy in the representation. It was shown
how oversampling and reducing the frequency content of the images greatly reduces
computation costs and increases accuracy. The difference is significant enough to
justify interpolating and resampling a critically sampled image by a large separable
kernel before doing a flow field estimation. This indicates that the optimum overall
strategy for handling huge image sequences would be to use wavelets to store and
transmit the images. When motion estimation is required, the desired sections can
be interpolated and upsampled before being passed on to the flow field estimation
algorithm.

The use of a multiresolution framework like the gaussian pyramids can enhance the
performance of an optical flow field estimation algorithm. The coarse to fine approach
serves two purposes: it reduces the computation costs by doing much of the analysis
on smaller versions of an image and it increases the range of displacements that can
be estimated by a first-order model. The gaussian pyramids are to be preferred over
the band pass laplacian pyramids since their low frequency dominated spectra are
more conducive to estimating derivatives and they incorporate all the information
of the higher levels of the pyramid. This eliminates the need to iterate through the
levels of the pyramid. Any level of a gaussian pyramid can be constructed given the
laplacian pyramid, which is an overcomplete representation. It was shown how this
pyramid could be used as an error correcting code for images. Low frequency and
high frequency noise added to the pyramid can be detected and corrected. The results
for different images show how the noise can be removed without attenuating similar
looking image features.

The issues of information extracted and cost are central to the design of filter

banks whose purpose is to estimate the frequencies present in the input. A method
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for designing filter banks under such constraints, given the type of filters and the prior
for the inputs, is presented. The decoding of filter outputs was treated as a distinct
problem. This allows the design of the filters to be governed by the above constraints
while the codebook creation and decoding can be tailored to the desired trade off
between handling multiple inputs and achieving high accuracy. The implementation
of such a filter bank showed how 60 filters could be used to discriminate 1296 different
inputs. A probability measure was developed for the filter outputs so that information
could be integrated across parameters and the higher levels of the system could be
given a more informative description of the inputs than just the maximally probable

input parameter value.
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Appendix A
Decoding L

Decoding the first laplacian band requires special care since it is the widest band
(width = 7 /2). Isolated noise pixels added to Lo will thus have most of their energy
within the frequency range natural to this band. Moreover, being the first band, it
has only one neighboring band, the L. The net result is that isolated noise pixels in
Lo do not decay significantly after CR.

The reconstruction process adds the Ly to expGy to create Gg. All the single
pixel noise in Ly thus gets translated into single pixel noise in Gy. Now consider
a Gp with an isolated non-zero pixel. During construction, this pixel will produce a
characteristic pattern in Lo with a peak value close to the pixel value in (Gy. Since the
loss for the center pixel is not much more than the gain by the neighboring pixels, the
usual decoding algorithm fails to single out the center pixel as the sole cause for noise.
However, if we consider the difference of the two Lo then all the isolated errors show
up as the characteristic center-surround pattern. The center of the pattern indicates
the position of the noise pixel and the peak value can be used to calculate the value
of the noise pixel. The decoding of single pixel noise in Ly can be done using this

single step process before using the more general technique for the whole pyramid.
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The subsampling process in the construction phase creates four different sub-
lattices and each of these have their own characteristic center-surround pattern. The
detection of the patterns in Logisf = Looriy — Locr must be done with four different
templates, with each template operating on one fourth of the pixels. The size of these
kernels is dependent on the size of the low-pass filter used during C : theoretically it
should be twice that but practically a center extract of equal size does as good a job.
This approach fails if there are two or more isolated noise pixels closer to each other
than the size of the kernel being used and, aside from considerations of time, this
provides an incentive for using smaller kernels. On the other hand, the kernel size
cannot be made too small as it would not be able to reliably identify the characteristic

center-surround patterns from other patterns that will be present due to the noise in

other bands.
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