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The influence of radiation on a steady, one dimensional
flow is considered. Unly radiative heat transfer is taken into
account; viscosity, heat conduction and mass diffusion ave
neglected. It is further assumed that the radiative heat transfer
iz adeguately described by the guasi equilibrium theory relative

Under these conditions, the velocity of the fluid satisfies
an integral equaton which has been investigated by various
methods, [t is shown that under certain conditlons the

=

influence of radiation alone is not sufficient to smooth out the
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rofile and a discoatinuity in velocity atill appears; mass

diffusion processes ave dominant in these cases.
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LIET OF &3

A constant
< A constant measuring the ratio of radiative to

hydrodynamic ensrgy

Specific heat at constant pressure
£
) A constant measuring the total energy fux

T Integro exponential function of vank 1 or 2

- 2.4
Galv-v)
¥ A constant analogous to C when the exponential
approximation is used
k)

e & very large posiiive number
e Aate of gain of radiative energy
2 Gas constaut
5 Tnergy flux due to radiation
T Absolute temperature
£ Velocity of the fluid at zero pressure
h Futhalpy of the fluid
o Hydrodynamic pressurve
w Velocity of the fluid

@ -
Ve Reduced velocity

dy - ) .,
23 = Hate of change of the velocity

el
el Absorption coefficient

v

X Hatio of sp

¥

ecific heats
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Superscripts

Indices

A o D

vy

%)

¥

proenturmn flux
Stephan Doltzmann constant
Optical thickness

Density of the {fluid

Isentropic speed of sound
Conaitions at high velocities {toward - mw)

Conditions a low velocities (toward + oo)

Velocity at « w

Velocity at +



he interest in this work arose because of the investigation
Jobhn ¥, Clarke {Hef. 1) of "Radiation resisted shock waves'', By

&

including non linear effecty in the study of wave propagation in 2
therinally radiating gas, Clarke found that sieady disturbances,
with continuous velocity profiles which have continuous firet and
second derivatives, could exist, but that in some cases discouniinal
in the first derivative appearcd. Heaslet and Saldwin, in a papey to
be published shovrtly, showed that, in some range of the parameter

3 a

meaguring the ratio of radlative to hydrodynamic energy,
dizcontinuities in the function itself had to be introduced. BDoth of
these investigations weve made by reducing the integral eguation
involved to a differential equation, through an approximation of the

]

radiative energy integral.
The object of this paper is to investigate the Influence of

this approdmation on the results which were predicted.
Ae will be shown continuous prof

when the radiative energy fluz is high compared

energy flux. However when the radiative ener;

gsraoall, radiative dissination is not large

steepening of the wave front, and a discontinuity in the velocity

profile itself appears asport processes can no longer
be neglected, The description of 2 radiative shock including such

processes becomes rather difficult although sowme progress has been

%.3
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&

ade in this respect by 8. €. Traugott (Ref. 2).



roreover it is to be expected that as the wave strength
increases and as the velocity at the tail of the wave becomes
smaller than the isothermal speed of sound, the steepening of
the velocity profile will increase. In this case the temperalure
reaches a peak which Increases the smoothing elfect of the

radiation. Thus the character of the velocity proiile can be

expected to differ frown that found for a weaker wave.
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Che radiation pressure is asegligible compared to the

rdrostatic pressure; o the contribution of radiation

4) The gas is a calorically perfect |

mormenturn and enevrgy conservation can be written as {ollows

SOU»':) @M

B INNAB B,

citvely and




in ‘E:"*‘*fﬂamuﬁgii the opiical thickuess

%J&J
X
/
/
n = o (X)) dx
Q
where o« i the absorption coefficient

EA S S 3 g, P P
of the assumed grey gas,
we fing

S - 2 UE (n'- 2) Tty ) ey’

f (q-n) T lp)dy' @

(7(/): ‘f———gﬁ[(&{ = e f’L}——

IV. Since the gas iz as

Pt

wied calorically perfect

-

_ T_ v RT- X P
HCP_YA YA#F

jut according to equations 1 and 2

L—r\)\-:
P +



Therefore

Laud-uw)=rT )

- X — &
k'fau‘(i ~) o

w5
A,

Introducing this value of "\ in eguation 3
L] ;'

r[% Uk(;y,—\*)—(—}—*i—z—]: S—q—Ee

w- 2% lu = - 2= (6+ Es) (N
Y+ r(Y+1)

As - * o all physical quantities must remain bounded.
VZ Wiy )
The energy flux due to radiation S {£qg. 4) tends to zero and

egquations 1, 2 and 3 must be

F\)L:r
prew = T

Fu(h+%>:ﬁo

Therefore the relations between the guantities far

upstream (index 1) and far downstream (index 2) are identical



vith the normoal shock relation {uo molecular transport process,

no radiation).
The maximum of Y2 will consequently be Y-l
U, Y+ |
} moreovey

3

(Corresponding to M, infinite )

W - U - ,%—'X“‘""
! A Y+ |

alunplily the equation a rewuced velocity will

w g

In oxder ¢

now be introduced.

.ot
_ ¥ W
v, = £
AR U, + Y,
2% U,

2V -

Introducing V into equation 7w

2 (Y- G

V- \/» (\// VJ. fund -
C ) ) ;{,‘r/X¢\)

é
#w C- 4 4 & Y\ S o the equation of the problemn becomes:

Q/' Y+l
+R

(V-V) (V=Y )= C sgn('z—*z')Q(’?"Z")Q""z)éohl 9

a°
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V. ¥or the following study the function V| -2) will be assumed
bounded.

in addition

Vi(-o00)= V.

V(+oo) =V

vV, > Vg

Vl mor ‘

Vo = T (A 06T
¥t

. *, \/.-v\/;__:’/_/_ 0.5
R I €3

Zo that

o+ o - PER

Although this is not a necessary assumption, it may be
expected that V, « V < V| , All approximate solutions (Clavke,
Ref, 1 and Rosseland, Zef. 6) lead to that conclusion, Moreover
no contradiction with this assumption will avrise in the following
study.

Since the maln feature of a shock wave, with no molecular

transport processes, is a discontinuity in the velocity profile,



it is intercsting to investigate whether the introduction of the
radiative energy loss will prohibit such a discountinuity, The
following section is therefore an lnvestigation of the continuity

of eqguation 9.



CONTINUITY

I. Continuity of the Function

Let

Fln)=(¥-V)(v- V)

4
G)=(v- v)

K- ) = s~ (1) Falle)
Equation 9 can be writien
00 )
Flin)= < g K(1-2') G(lz’)a\uz
-0
gSince K ( vz-?') is an integrable function
1@ /
Lot j[% (n'+3) - K{n-7')]dv'= o
>0
~po
It will now be assumed that V (9) is discontinuous for

n=9,. Since v and therefore 5/7) are bounded

&: IF (4,5~ T 59 L CJ_[K (9, 5)- Ky =T 60y)

- C 6 /Lu',* S+E}<(v)‘-v},+§)—l<(7,‘7l~;/]6,7,:O

max Y=o

so that T  is a continuous function even though Vv is discontinuous.
Therefore, using a superscript + for guantities at Q].“’) and —

for LV),N) we shall have
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WT-v) (vr—va) = (7 -V (V=)
- ) [ty ew)d =o
This relation shows that v may be discontinuous and the

values of v on both sides of the discontinuity are related by
the following equation:
-+ - >
% vz 2V
N {10)

Tor a decreasing solution any discontinuity will jump

Il. Continuity of the Derivative

If v is continuous, the derivative of equation 9 becomeaes:

(! T .
2(v- v¥) g_zi - C fo{ G(q) +§ %%—jvj’(”}') c*)»’ ’_[’3% "13(7')"%

- 0o

8 ' + 02
* \ ) G‘ I '
2(v-v*) o.\d_l_z_ : c{ 51(7-7)3‘_7,’ dy' - Ei(%?)%ﬁ; DJ”?
1

"

3
Assuming j—@-: 4(v-v*) (1-2v) %—;—— is bounded, that is
v
av

97 is bounded, the same procedure as in paragraph I shows

that (v-v*) QjL ig always continwous. Thus when v is

continuous, its first derivatlve is always continuous, except
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poseibly at V= V",

ilI. Continuity of the Temperature

As will be shown later, an approximate solution of
equation 9 in the case of an optically dense medium (Rosseland's
approximation, Ref. &) leads to the result that the temperature
mrofile remaing continuous when the velocity profile is discontinuocus.
It is therefore interesting to note here that using the full
equation the only possible jump in velocity satisfies

2

- %= 7.

L
and since the temperature is proportional to (V- v*) a continuous

temperature profile would require that

v (1vT) = v(1-v )
ST

The last velation cannot be satisfied if v is discontinvous

since in general =¥ fo
Yt



12

BEHAVIOR AT INPINITY

I. Full Equation

4
Ry PR 2 . 3 &y 2 .
with G =(v-v ) eguation 9 can be rewritten as followa:

vy vo0) = [ S - Jv ) )4

or
/ .

W-v,) (V-vg) = © Ez“)ie(')"‘) — é/pxﬂ o % an

Hut
- -

k1 large E, (n < + O e

or x larg 2(0) [ ?L‘)

for  small E_Z[)()vl— VST ~ ,lLoax

Therefors, provided the function G is bounded {(which
has been assumed throughout this paper), the main contribution
to the integral appearing in eguation 11 will come from small
values of x

Near Y=o » if & is a continuous function of n . we

can write

G(rz x) - G| V)»«K) 0\6—)1 éV(’)X) - V(V}H)lg

[4 rv-vv?»—vv)j7§v(q—x) e
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A8 -t o0 it can be expected that v will tend continuously
towawds Vv, or V, and therefore the above appromimation is
reasonable.

Since E, (79 weights any function it multiplies most
heavily near % =0 , the further assumption that the right
hand side of equation 11 can be approximated by the following

sxpression for 71 100  will be made:
oo .
£, ( Gly-n) = Glr)]dn v
jo 200 [60y~1) 17%/]

& et o

Using this approximation for VoV, 7> -ce and then

assuning that:

DY
V-V, N e L

equation 11 can be written
W
(Vi-v) e Tl

g — A ) Ay en)
4 (\/,-V,chl_izv,/c_jbz /x)[e 7_ ]

B, . 9C  (vi-vi) [ iav) <o

V-V,

must then satisiy the following equation

S

o~ f

. DY
) = A, @Al—¢ )‘)Zje,
J

fw]

N P G R N A ot
e

e oy
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The integral is convergent only for |A |«). ¥e should note

however that the condition A, >~ | comes ivom the integration

around VY (1o+0) where the approximation is not valid.
Moreover A, = o is not a solution of eguation 12 since

for A simall the right hand side of the equation is equivalent to

3
&3_. A, A+ O(A)

For A o the equation can be written

NLo2A N 2 A oy b2 (13)

L= M. 24,)

and
A
F— A
have been plotted, shows that equation 13 has two real roots
Nz oo
A= - o, O =« ~, < |

The second root i aleo a rvoot of equation 12, Therefore

when n > - oo

*1
V. V, AV

Similar steps can be taken to find an approydmation

_/\22
V- V:\_/\/ e

when Nar0o .

In this case however, the parameter F}l is not always
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positive since

A . _ 4c ¢ \3
2 (V- V) [1-2\/4)
V-V,
Therefore:
\
V&>1 -\1: 0(_2 049(_2»{\
]
vz S 3 Apz - o, O <o, < |
‘ - %22 s
I the case vV, > 'li then (V-V,) ~ e which is
compatible with the assumption Vo V, as N~ t oo
But for V, = L
2

0(,_2

V-V, ~ &

The following interpretations are possible in this case:

al) VoV, as n-+g0 as the above relation seemas o
indicate. That means that the solution is double-valued {see
¥ig. 2); such a behavior will also appear as the result of the
investigation of the seolution near V=2 v* but should be discarded
on physical grounds,

b) Fguation 13 written for A, , ’4& has imaginary
roots with a positive real part. Further investigation is necessary
in this case.

¢) The asswmptions made to obtaln equation 13 break down,
Physically this would mean that the contribution of radiation from
points far upstream is not negligible compared with the contribution
of neiphboring points. This is certainly true in Clarke's appromi-

mation ag will be shown below.
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II. Approximate Solution

_ -bxr
Tollowing Clarke let us now replace £ () by m e .
g 2

Then equation 11, when K:=Cm , is written

oo_lﬂ.
V-")CV-Ya) = K J@/ [G/']*")~ G/7T’l)]dl {11-a)

It can readily be transformed into Clarke's differential

equation:

2 3 2
5\_1 [[v—v.)(v, v&)J ~AK(v-vY) (:—Qv)f;rl‘}f -b (v-v)(v-b )= o
1

When 7—9 T w0 . the differential equation shows that v behaves

like:
- A, 7
U-vl)j\le. Z — D
- ,\37

(V-Vy) v & ] — *t<o

where
)
AL 2Ry 2w Lk vovt) Co-)t L)

V‘_.VL

O

7 —
IK vy vt) (1-%) G- n) (r2n) Lt

\/1 "\/L LV\’VL)'/

2
b
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These resulis should also be found by using the same method as

in the previous case. The integral equation can be written:

@l‘\/_z) &—A‘Z:

/K(V.-V,’)b()-gv/ ¢ |& dy-e e o)y

-op

7 | * /
- b? G’"’\)') J L’l -Q"‘)‘)7 /f

The integrals converpe only for Al <b and the
3 o]

equation in A bacomes:

r\z*f ‘?Q«A~E>2:O (}}@9

2

or U L S W,

compared with the result found previcusly

xz_r,?ﬂ.,\: Q,on_l—r_}__
Y

(=

@7

Touation 14 is identical with the equation for ) obtained
by using the Clarke differential equation,

The resuvits can be summarized as follows:

A~ oz, 2b

MZ""‘W /\l:°<I Od/>L

\ )
Since vV, {and not infinity) as 7-9 - o0 on the root <
should be kept and this is compaiible with
the condition found frova the integral

equation .



Ay =, 0o Lx, =« b
> 1
\/z 3 ) /
>9\ :—0(2 dl >b

Here again the root <, is to be kept and is compatible

vith the relation JAl<b .

Vo>V, A, s~ oy oc =, <t
An
7"+D° vV < '72
/ 7
A, - Y ~ b

- ] .
¥ v-ov, for 2+» the root o, should bhe kept:
Ji 2 e

but here this is in contradiction with the requirement
ki;ﬁmi: IPRIPZRR

his last case can be investigated a litile further: let n —>+o°
and M be a very large positive number (of order J2 ). 8ince
AV v

L s 88 N>TO it can be assumed that

V= Vot 5(?) where £y .| when

2

p >

tion {(1l-a) can be written for T e

H
(,-Y) €= K Me g /7)42 f LG— L A04-0) (ran) ety o

'ao



¥ M by ,
(Ve-Ve = K § g e "'l [6{7')—62] dn 4+

~o?

l
Hor) (eau) [ ft’ Loy f “’”’é’mlj
H

The first integral can be evaluated by the mean value

theovers.
Let £:p -l
: z é
Themn
D L/7
petl < unwteen)]e
meawn VQ\.uT(q.
L[b (V,—Vz)
' _,\32 ..b(')-"’)"\zh —)4?
+ A J_g_,__f,e._,_,__,__._ - & J
b‘ AL A‘fAi—
f:.xe?a
C ) §
- (v-v®) - [V, -V, l
e JW-vO - (Va- V)
Then
B _AN Qc-))?-rBH
l2 ] B, - ke e LA, 2D
o RN bl— )\2
i v, >_'Z , A.>3 and choosing A <b the eguadon

2

3, 29A.) - b

(16)



20

I Vl < é— . A . < © we saw that the differentlal equation
led to ) > b ., Fauation {16) cannot he satisfied since in thi

Y “b-D + bk
Case as N- e e = o0 and e — s s thusg the

dominent term of eguation 15 becomes

AN —Q’-A)'Z*"V

™
b-2A)nab Y - b0ry)
5, e & by < 7 [6- 6_]017

we can see that the radiation due to points far upsiveam which

Tete

s measured by this integral is not negligible compared with
~b-)(p-HD
near vadiation as measured by A, &~ |
L-A
In fact, the differential equadon shows that these two

terms balance axactly (here the approximation of the upsiream

radiation involving B, is not valid). When such a balance

is vealized, the remaining eguation for M is the same as
souation 14 and both integral and differential eqguation give the

)
same value ’()f , for A

Such a siteation may alseo arise when the function E_(~
2

is kept. In that case, however, the integration of equation 16
wounld not lead to a te 09 T’_*_A— like eguation 13, The

vestriction |M <! , which avises for ) vesl because of the



o
s

logarithinic term, will disappear, and a value of |A| =) may

o =

.
02 ACIniss

oo

ble. A computer may be useful in finding what the
eguation fov A would be in this case and if such an eguation does

indeed lead to a positive valy

&

of Ax Avalue of ), >>> |

corresponding to an extremely rvapid exponential decay may explain
the result found by Resseland in the Hmit 0of C — o0 s .8,

for V< -'2- the velocity profile is discontinuous

n

and foxr p large

v = V. - 7This approximation will be discussed later,
= £y
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BEHAVIOR OF THE SOLUTION NEAR THE IBENTROPIC

SPEEL OF SOUND

i the solution and its first derivative are continuous
aguation 9 can be differentiated twice:

o0

W-V)(-Ve) = C JEZ (1) [C [7-1) - G(7+z){1 dx ()

O

Av-v*) %V—’L . ¢ g £y () [G’/7 ) - G’(»]M)J oA (26}

(&)

i/v—v*)O‘—Y{— . 2@) F;M)[C-"@‘*)- Chen)) e

NS i'; . Faguation 17 can be integrated by parts

and we get:

>0

Q{V'Vi)bé}é . Qg: ,\?C("gé) 2 -c(&‘ln) [G'/?-x)‘f' (,’/f)wt):]otl {18)
v v 7 o .

.
&
o

S

Llv.c) = ¢ JE. (1) [6'(4-7) = G fyr) ] oy

o

Cg(v/. c): - C SK;‘D/?L) [6(7_1) - &/71-}1):)0(/1

s

Kv- CO>= _C jwegi J:Gljw) - &(v)u)] ot



But E, () =

ly
A;f ° g;;% ?

&
©
|
o [

2 | x
A7k, ‘El:ge, \3/_\3_:4)@{?%0

pue Lo ) S>o  and if we assume a continuously decreasing

aolution and V, >

2
O’G e AL < ©
Av ﬂ!vz
6/(7_7L) >0 G/(7+7{)>'o

S50 that

00
Y, = ¢ g E ) (G- Clyro]enz o
Y

[o}

o
But (V- va) (v-v) = -¢C fEl(l)LG{V)Jt) —G/7+L)]OL>( > O

Tooo (45l [hn) - 6T

2 =
d* 1 > £
dr* 2

So that C’?> o and at most (5): O at V=V, ,. Equation 18

can be written
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_dy 2\@“3”““”2}7"“@*@ (19)

dv 2(v-u*)§
At V = \/*
&) A
23 _8c (v"-‘V“)s/’-fv*)@ - G e)=
53

16 C2(v* V*ﬂ)[(l~2vﬁ)2 - (u")_ c) >o

; : * . "
In this case V( Z) may cross the value V  and a continuous
profile may exist,
—bx

V. & can note that when &, [x ) is replaced by Mm<¢&

Dlarke found that

Qv. ) = b (v,-v) V%)

J

so that this case gceurs for

¢gc > T2 b U-v2) I
(v-vD 7 ave

/

and that a continuous profile exists with a fndte slope if C > 32 ¢
2=

I4

—

. ' 2 « . 23
By e et (vE v )1yt g (Q/v’}c;<o

- @ 8 o /
and an infinite slope for C o ¢ <« 3

which certainly ocecurs for (C ~» 0 since, for all C/ if the



. *
solution is contimaous at v~ &K (v¥ L) >W- Vv-va) £ o

n this case ",‘é becornes infinite.
v
It can easily be seen fvorn eguation 19 that in this case
} cannot remain finite and § [v-v*)  must remain constant
acrosa V7 {with the conetant non zero).
Therelore as v crosses V. s 3 A" must change
sign which corresponds to o locally &&mwie«v alusd solution {see
s
This iz always true in Clarke's apprommation for C < C
since Cgfl//' C)  is independent of € and of the sign of (Y, -3
VWhen the full egquation is used it has not yet been shown

C

s

SHale

&
i
¢

G
2]
s
o
1?,:5;
5
53
3
6]
iy
[v]
L
4

thar  L(v- S) sy =L
< 2

the sbove conclusion iz not necessarily true in thiz case. However

for v, > ‘z antd C spufficiently small, only a locally double-~valued
solution would be possible, and this is unacceptable. Thervefore, the

solution

pw

uat bhe discontinuous.

Uaing the same method as in Chapter II, it can easily be found

that, if v ip discontinuous at 7 » the following relation must held
\

oy 7,1'0 e
(V-v*) " i} [G:{?
7 1,0 ]i-°

4 _ gy 4
(v'-v*) %zi /(v‘_v*)o_j;f e - (-
/
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o

The two last relations, which give the conditions acrogs the
e . */ v -
digcontinuity, will deterinine the values V (7,) aud V ( 1)
iy o - a\v v & % 85 A g rELr

in o (:7a T ) plot starting at the two saddle

points (V= V, 3 °) and (v=Vz 2=0) when, by Clavke's

tH

approxdmation, the equation of the problem iz reduced to a

differential equation,



sy

The Rosseland approvimation is equivalent to teking the

firel term of a Tavlor expansion of the function | * which appears

in the radiative ensrgy lntegral
+ o0 7
- —~4 ) -
52 2¢ % Rge /')’-2) ) Jy - | Ealn
1

-

'

4 J
7') T

/
where 7 = < (x) A x
[o]
I a non dimensional length X = 2, and a non dimensional
L

absorption coelficient o« = i’_(i are introduced, an optical
o

¢

“length” 3T _ can be obtained by the following relation

An optleally dense medivm ia such that o, >> [

g%‘i
£
faid
fote
@

\Sa—b(p »

In terros of the bay variables, the energy flux becomes:

+ 0° -
—4 5 - o =4
S_3eTH 5. 5.5-8)] 1 d7 - Sef;)"sc(i- )] Tds
3 - oo

Vhen 50 >0 5 the terms

;o EQ [\'Sa’;——%l]‘: %’a & r
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—

give the main contribution for 3 - 5.
In that case it is then possible to use a Taylor expansion
. 4
ot TUy)- 80y).

Iutroducing it in the expression of 5 we find:

5. 48 T L4 L d & Ewkzw
h:e anl), So O’

Ay go - o2

~ b o8
S ONG‘Z

horefore equation 9 becomes
P=3

.

Vev) (V-v, ) = € dfuovy? (20)
v-w 2) &1‘2[( )J

2 2 hw:) ! 4 <
which iz Rosseland's approzbioation.

Fauation 20 can be slmply written

bcfv-vi)®(1-29) j—"? = (V) lv-y, (21

pel

when Vy > '1 it has a conilnuwously decreasing solution from
v, /')—b ~po) o Vs /7 "H-oo)v

Dut when V, « IZ : M vy, as -z—anp s eguation
21 shows that v = v, and thevelore the velocity must be

discontinuous., ¥auation 20 then shows that the discontinuity

-t

muat be guch that (vv VL) is continuous oy
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(V - V”)4 = (v - v=?)

_ . T 5 i . .
Thatis V:z1-Y, and the temperature is continuous,

However it bas been shown in the original exact formulation
e continuous i the velocity is dis-

that the temperature cannot be

ntinuous, This apparent contradiction can be explained by the

fact that in the true solution the discontinuity is followed by a

total

&

rapid change in velocity over a very small distance; th

appears ag the discontinuity in the Hosseland approximation,

change

Rosscland's approwimation is not uniformly valid in the case

v,< Lt . The expansion which has been used is only valid outside
z

-1 o . e s N
a region of order S avound the point where the discentinuity

appearsg. Outside the region Hosseland's approzimation remains

B
\/"\/v =~ e A. NJ___ Az)
So

This can be compared with the resulis obtained by Clarke

using a different approximation. For Vv, 2 ‘2 :
— >‘| )
V- V' VA 'L f\ v NV ”Q - L ‘
-,
V-V, w~v e 7 I PV v >>

since K {or C in the full equation) and z _ must be of the same order

2q. 21 where 0=%5,5).

According to the results found in CThapter I, within the



v osucl

&
Gl
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where the Rosseland app



'y

1w on derivatives, into the

| %]

eguations of a supevscnic one dimensional flow, remove the

integral properiy, is introduced.

Y hen the ratio of radiative to dynamic

by the constant C ) is sroall enough, and if the shock is wealk

[s

(Vf‘— v l) » the velocity profile has a syuns

The velucity reaches the

exponeniially, the decay towards v, being more rapid than the

decay away ffom Vv, («, > The Rosseland approximation, for

large values of ( , shows that continuvous profiles will cecur
; it could be expected that this result remailns true

when the full couation is used.

However, when v, becomes smalley &
speed lower than the isothermal speed of sound

3 2 el

approximation indicates that the velocity profilc

oty

for large values of (. It could then be expec

ghocks Q/,_ << Vi), however high the radiative energy, it will not be

sufficient to remove the discontinuity in the velocity profile. lorve
work siill remaing to be done in order to obtaln more information
about this case,.



dirnensional problem con be w

8o il ka8 Tl e B g o
o B is the direction along whizh the radi

observed with reference o the

Y, is the source term

o
%

Ve conside

r here a grey gas:

direction 2

s

v iz the intensity of the radiation

o s independ

A o " . &
Y . Moreover in

&4‘
X

1

N
X

3
N\

V]

v

thermodyna

ent of

ic equilib

Lae

£%

iz the absorption coefficient of the radiating gas.

freguency

rivm



Integrating over the solid angle and taking the radiation flux in

the 2 direction only:

S..« Lo (L8
:__ﬁ_-?.\ ;51 25@ ™ ﬁO/ﬁ

— T4 a[tzl J raJrj?
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Fig. 1. Solution of equation >
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Fig. 2. Bebavior of the solution at infinity for Vv, <%

and near the isentropic speed of sound when
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