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Abstract

If G is an automorphism group of a Steiner triple
system which is doubly transitive on the points, then it is
transitive on the blocks. It is shown that the converse is
false and that all counterexamples have odd order. All
Steiner triple systems which have a block-transitive but
not doubly point-transitive group of automorphisms are
described. They inclﬁde the Euclidean geometries of odd
dimension over GF(3), a class of systems first described by
Netto in 1893, and another class of systems. A system in
this third class has a group of automorphisms acting regu-
larly on the blocks, and the number of points is a prime
power congruent to 7 modulo 12. The number of such systems
(up to isomorphism) with a prime number of points p, where
p=7 (mod 12), is shown to be in the interval |
((/13- 1) 2/27, 1 +(/p + 1) 2/27).

The classification of Dblock-transitive Steiner triple
systems is applied to prove the following theorem: if G
is a doubly transitive automorphism group of a Steiner
triple system and P is a p-subgroup of G maximal subject to
the condition that it fix more than three points, then the
points fixed by P form a subsystem with a doubly transitive

automorphism group.
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1. Introduction

A Steiner triple system is an ordered pair (V,B),

where V is a finite set of elements (called points) and B
is a collection of blocks, each of which contains exactly

" three points of V. B must also satisfy the property that
for every pair of distinct points x,ye€V there exists
exéctly one block pBeB such that x,yep. The set of blocks
which contain a given point xeV will be denoted B(x). If
IV] = v, then it is not difficult to see that |B(x)|= (v-1)/2
and |B| = v(v-1)/6. In particular, a necessary condition
for the existence of such a system is v=1 or 3 (mod 6).

A subset W of V forms the points of a subsystem of
(V,B) if x,yeW and {x,y,z}eB imply zeW. This subsystem is
denoted (W,Bly). A triangle in (V,B) is a set of three
points not all contained in a single block, and the sub-
system generated by a triangle is the smallest subsystem
containing it.

If g is an automorphism of (V,B) which fixes Xx,yeV,
then it must fix z, where {x,y,z}eB. Hence (V,B) cannot
have a triply transitive automorphism group. There are
two infinite families of Steiner triple systems with
doubly transitive automorphism groups, namely the Euclidean
(or affine) geometries EG(n,3) over GF(3) and the
projective geometries PG(n,2) over GF(2), for n=2. They

can be described in terms of elementary abelian groups as



follows. (E(q) denotes the elementary abelian group of
order q.)

EG(n,3) = (V,B), where V = E(3N) and
B = {{x,y,nyz}lx,yev;x#y}. As x2(x2y2)2 =y, this is
indeed a Steiner triple system. Its automorphism group is
E(3")*GL(n,3).

PG(n,2) = (V,B), where V = E(2™1) - {1} and
B = {{x,y,xy}lx,yev, x#y}. This is a Steiner triplé sys-
tem since x(xy) = y, and its automorphism group is
GL(n+1,2).

In this thesis we will consider properties of the
automorphism group similar to double transitivity. In
particular, a slight weakening of the double transitivity
hypothesis will yield a "much larger"4infinite family of
systems.

The permutation group-theoretic terminology used is{
standard and can be found in [19], with the following
exceptions: 1if R¥% is a permutation group and A=<, then
R(p) = {reRIAr =‘A} and R, = {reRla? = a for all asA}, and
if T<R then F(T) = {xenle = x‘}. Also, what Wielandt
calls a block in [19; ch. 6 ff} will be called a get of
imprimitivity. Other group-theoretic notions are in [6].
excepts D, is the dihedral group of order n, SD, is the
semidihedral group of order n (a power of 2),

=(q) = {t—-ate + bla,b,teGF(q), a ¥ O,eeAutGF(q)} is the



group of semilinear transformations on GF(g), and Sylp(R)

is the set of Sylow p-groups of a group R.



2o Useful Lemmas

This chapter consists of a number of lemmas, mostly
from the literature, which will be applied in later chap-

ters. Only Lemma 2.13 is new.

Lemma 2.1 {1} Let ¢ and n be integers greater than 1.
Assume that for every prime p dividing cP-1 there exists a
positive integer m<n such that p|cM-1. Then either c is

a Mersenne prime and n = 2, or ¢ = 2 and n = 6.

Lemma 2.2 {4} If (W,A) is a Steiner triple system,
lwl = w, and (U,A|y) is a proper subsystem, then
lul < (w-1)/2.

Lemma 2.3 [7} Let (W,A) be a Steiner triple system such
that for every\block ce A there exists an automorphism g of
order 2 with F(g) = ao. Then either every triangle gener-
ategs a subsystem isomnrphic to PG(2,2) or every triangle

generates a subsystem isomorphic to EG(2,3).

Lemma 2.4 [8} If (W,A) is a Steiner triple system such
that |W| = 27 and every triangle génerates a subsystem

isomorphic to EG(2,3), then (W,A)=EG(3,3).

Lemma 2.5 Let (W,A) be a Steiner triple system in which
e#ery triangle generates a subsystem isomorphic to PG(2,2).

Then (W,A)=PG(n,2) for some integer n= 2.
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Proof Let V = Wu{t}, where 1 ¢ W, and define multiplica-
tion on V as follows: first, x2 = 1 and 1x = x1 = x for
all xeV, and second, if x,yeW and x#y then {x,y,xy}eA.
Since (xy)z = x(yz) in PG(2,2), it follows easily that
multiplication on V is associative, whence V is an elemen-
tury abelian 2-group. Therefore (W,A)=PG(n,2) for some

n, since A is the correct set of blocks.

Lemma 2.6 {18] Let T be a 2~-group containing an involu-

tion t such that CT(t)esZZ X Z,. Then Tx=D, or SD,.

Lemma 2.7 {15} Let R be a solvable 3/2-transitive permu-

tation group. Then one of the following situations occurs:

1. R%3is a Frobenius group;

2. 9=0GF(q), R==(a);

3., R%is a certain group of transformations on
- GF(q) x GF(q);

4. lszl5{32,52,72,112,172.3‘*}.

Lemma 2.8 [20] Let R be doubly'transitive and let
Tesylp(RXy) for some prime p. Then NR(T)F(T) is doubly

transitive.

Lemma 2.9 Let R be a permutation group and let p be a
fixed prime. Assume that for every xeQ there is a p-group

P<R with F(P) = {x}. Then R¥ is transitive.



Proof Let I'c @ be an orbit of R and let xeI. Then there
is a p-group P<R with F(P) = {x}, so || =1 (mod p). If
yeQ - T then there is a p-group Q=R such that F(Q) = {y}.
But then [I'| = 0 (mod p), a contradiction. Hence I' = Q

and R% is transitive.

Lemma 2.10 [12] If R% is faithful and doubly transitive,

and PSL(2,q)< R=<PrL(2,q), then either R% is contained in
the usual representation of Pr'L(2,q) on g+l points or one

of the following holds:

1. || = 6, Re¢PSL(2,4) or PrL(2,4);

2. |l

= 5, R*PSL(2,5) or PGL(2,5);
3. lal =7, R=PSL(2,7);
4. |@| = 28, R=PrL(2,8);
5. || =6, RPSL(2,9) or PSL(2,9)<c>, <o>= AutGF(9)
6. lal=11, R=PSL(2,11).

Lemma 2.11 [2] Let R be a primitive permutation group
such that the maximum number of fixed points of an involu-
tion is 3. Let T be a minimal normal subgroup of R. Then

one of the following cases occurs:

1. R%= E(9)*GL(2,3);

2. R%= E(9)*SDig;

3. R% = E(9)*Dg (rank 3);
. RY%=E(27)*SL(3,3);

5. R = E(27)%*S), (rank 4);
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RS2 = E(27)*Ay (rank 5);

6.

7. RE = Ss;
8. RY = Ans
9. RS = M1

10. R=As, |Q] = 15;

11. R® = GL(3,2);

12. R=PSL(2,11), 2] = 11;

13. R=PSL(2,9), |9 = 15 (rank 3);

14. T=PSL(2,9),|R:T| = 2,]9]| =15, R-T has no
involutions (rank 3);

15. R=PSL(2,13),|9] = 91 (rank 10).

Let R® be a transitive permutation group of rank r,
and let the orbits of Ry be Fo(x) = {x},rl(x),'--,rf_l(x).
We can choose the notation so that Pi(x)g‘z I; (x8) for all
xe2 and geR and for O<isr - 1., Let h; = IFi(X>|’ and
define i’ by I'y+(x) = I'j(x). The intersection numbers for

R are defined by

(k) _ ' .
ki3l = [T Ty ()| 1F yer;(x)
Clearly H§§) is independent. of the choice of x and y. The

intersection matrices for R are

_ (k)
b= 1)
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for 0sk<r - 1. (Note‘that the rows and columns are
numbered from 0 to r - 1.) By [10; 4.1 - 4.3], the follow-

ing relations hold:

(k)= (k') ) (1)

hj“ij hi“ji .

- (3) (k)
hi“k'i = hj“i'j , (2)
M, has column sum hy o (3)

Lemma 2.12 If r=4 then M; and M; commute for all

J
i,jefo,1,°++,r - 1}.

Proof By [10; 4.10], M; and M; commute if and only if the
irreducible constituents of the permutation representation
of R® are all inequivalent, which is true if and only if
the irreducible constituents of the permutation character
have multiplicity 1. As r is the sum of the squares of
these multiplicities |19; 29.2| and the identity character
has multiplicity 1, all of the multiplicities must be 1 and

all My and Mj commute.

Lemma 2.13 Let R be a 3/2-transitive rank-4 permutation
group with a suborbit which is not self-paired. Then

|| = 4 (mod 6).



Proof

orbits of Ry, where Fi = I's, and let h =

9

Let I'p(x) = {x},rl(x),rz(x), and T'3(x) be the

h1 = hzzhju

When i,j,k> 0, equations (1) and (2) above become

and the second give

d = ](1
12
- (1

f = p

As all column

M, =

0
h
1 0
0

ROIROLP
ij ji
(3) _ ., (x)
ki T B
gives
0010
adnm
y M, =
bfn vk2
cgp
S
) _ (1) _ (2)
= Foip = oy
) _ (1) _ (1)
= B T Foug

0 1
a a
b a

h-a-b h-2a-~1

010
0ahbd
hdf

Omn

_ (1)
F11

sums of Ml and M2 are h, we

0
h-2a-~1
h-a-b

3a+b+1-h

have

(&)

(5)
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0 1 0 0

0 a b ‘h-a-b
M2 =

h a a h-2a-1

0 h-2a-~1 h-a-b 3a+b+l-h

By Lemma 2.12, Ny and M, commute. Equating the (1,1)-

entries of MM, and M2M1 yields

2 2 2

h 4+ 2a +(h-2a—1)2=a + D +(h-—a‘—b)2,

whence
ob2 4 2ab - 2bh + 2ah - 4a® - ba + h -1 = 0.

Therefore h is odd and |[Q| = 3h + 1=4 (mod 6).
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3. The Main Theorem

Suppose that (V,B) is a Steiner triple system with a
doubly transitive automorphism group G. If ﬁl,@ZeB and
By = {xi,yi,zi}, then there exists geG such that x% = X,
and y® = Yo But then'ﬁ% = PBys 80 G is block-transitive.
In this chapter, we investigate the converse of this obser-
vation. Throﬁghout the chapter, (V,B) denotes a Steiner
triple system with an automorphism group G acting tran-

sitively on B. Also, we define v = | V/].

Lemma 3.1 GV is primitive, 3/2-transitive, and has

rank 2,3,4, or 7.

Proof First, Gv is transitive {3; 2.3.2]. Let peB; then
e = |G(@) t Gﬁl does not depend on the choice of B, since
GB is transitive. Let x,yeV be distinct points. Then if

{x,y,z}=:ﬁsB,

'Gx s G =IGX t Gﬁl

_ e G,‘S’I lgm + Gl _ wv=1) e elv-1)
G

x|

xy |

<}

Thus GV is 3/2-transitive. Now G(B)/GB is isomorphic to a
subgroup of 83, S0 ee{1.2,3,6} and the nontrivial orbits of
Gx'have length v - 1, (v - 1)/2, (v - 1)/3, or (v - 1)/6.

In particular, the rank of GV is 2,3,4, or 7.
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If |G| is even then there exists g= (x y)---€G for
some X,y€V. Then {x,y,z}eB for some zeV, so g=(x y)(z)+--
and e ig even. Hence, if ]G] is even then GV has rank ?
or 4.

Suppose GV were imprimitive. Then a set of imprimi-
tivity T would consist of a point xeV together with some
orbits of Gx' There are three cases to consider.

If G has rank 3 then e = 3. As |T| divides | V|, we
have 1 + (v - 1)/2]v. But this implies v + 1l2v and v = 1,
an absurdity.

If G' has rank 4 then e = 2. So 1 + (v - 1)/3]v,

v 4+ 2|3v, and v = 1 or 4. This is also impossible.

If GV has rank 7 then e = 1. The previous two cases
show that |[T] =1+ (v -1)/2and |T| =1+ (v - 1)/3 are
impossible, so lTI =14+ (v - 1)/6lv. Then v + 5|6év and
ve{1,5,10,25}. As v=1 or 3 (mod 6), the only possibility
is v = 25. But then |B| = 100, so |G| is even, which
implies that ¢" has rank 2 or 4. This contradicts the

assumption that GV had rank 7, so GV is primitive.

Lemma 3.2 If v=1 (mod 6) then one of the following holds:
1. GV is doubly transitive;

2. |G| is odd and v = pdE 7 (mod 12) for some prime p.

Proof First assume that lG| is even. Then e is even and

there exists an element g = (x)(y z)»-+€G for some block
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{x,y,z} = peB. If e = 6 then ¢’ is doubly transitive, so
assume e = 2. Then G(g) = <{x)(y z)> and by Lemma 3.1, el
is a primitive 3/2-transitive rank-4 group. Also, there
is no element of the form (x y) *+€G, since such an element
would stabilize pB. Thus the orbif of GX which contains y
is not self-paired [19; 16.4]. But now Lemma 2.13 implies
that v=4 (mod 6). This is a contradiction, so Gy is
doubly transitive if |G| is even.

Now assume that |G| is odd. Then G is solvable {5].
By Lemma 3.1, GV is primitive, so it has an elementary
abelian regular normal subgroup [19; 11.5]. Therefore
v = pd for some prime p. If v=1 (mod 12) then

|IB] = v(v - 1)/6 is even, whence |G| is even. Therefore

v=7 (mod 12).

Lemma 3.3 If v=3 (mod 6) then one of the following holds:

1. Gv'is doubly transitive;

2. Gv is a rank-3 group of odd order and

il

(V,B) = EG(s,3) where s is odd.

Pr_OOf Let {X,y,z} = BeB. If G(B) fixes x then G(B) <= G

]
W

whence v|v(v - 1)/6. But then 6|v - 1, contrary to v

(mod 6). Therefore G p is transitive and e = 3 or 6. If
(B)

it

e 6 then GV is doubly transitive, so we may assume that

3. In this case, |G| is odd and GV has rank 3. Thus

e

G is solvable [5]. By Lemma 3.1, GV is primitive, so it
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contains a regular normal subgroup N, which is elementary
abelian of order v {19; 11.5]. Since 3fv, v o= 33. If
v=9 (mod 12) then |B] = v(v - 1)/6 is even and |G| is
even, a contradiction. So v=3 (mod 12) and 38'15 1

(mod 4). This implies that s is odd.

As | N| = 3% anda | Bl = 35_1(3S - 1)/2, NP

is not semi-
regular, i.e., there exists peB such that Bn = 3 for some

n .n® |
neN#. Therefore P = {x,x » X . Now Gx acts as a group of
automorphisms on N {19: 11.2], and n and n® are in differ-
ent orbits as |G| is odd. As G, has only two orbits on

N#. it permutes the cyclic subgroups of N transitively.

2 ,
Thus {x,xn,xn }eB for every neV. If m,neN and m # n then

-1 2 2.2 -1 2
: {x,xm n ,mn }GB, S0 {xm,xn,xm n }'= {x,xm nymn }meB.

Therefore (V,B)=EG(s,3).

Theorem 3.4 One of the following conclusions holds:

1. e’ is doubly transitive;
2. &l is odd, V = GF(pd), GV:SkE(pd). and one of the.
following hdldsx |
a. p=23, dis odd, G' has rank 3, (V,B)=EG(d,3)
b, p%=7 (mod 12), G' has rank 3,{0,1,x}eB,
where x is a primitive sixth root of unity
in GF(pd);

c. pdz 7 (mod 12), ¢' has rank 7
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Proof First, consider the case v=1 (mod 6). By

Lemma 3.2, either G' is doubly transitive or |G| is odd
and v = pds’7 (mod 12). We may assume the latter. By
Lemma 3.1 and [5], GV is solvable and 3/2-transitive.
Since pda 7 (mod 12), we have p=7 (mod 12) and d odd. So
Lemma 2.7 implies that either Gv is a Frobenius group or

o’ < =(pd) and Vv = GF(p9d),

We will now show that conclusion 2 holds even if GV
is Frobenius. We have G = NGx’ where N is elementary

abelian of order pd and N G. It follows from the proof

of [14; 18.2] that G, = <a,bla” = v™ = 1,27 ba = v" >,

1,rn/h'z 1 (mod m), and n' is

where (r - 1,m) = (n,m) =

the product of the distinct prime factors of n. Clearly
8 .

Y = <:an/n »D 7 is a normal cyclic subgroup of'GX; ify

Ve 2(pd) vy

acts irreducibly on N then V = GF(pd) and G
[14; 19.8]. So assume that Y normalizes a proper subgroup
M < N, where M # 1. Then lY| = n'mlpf - 1, where

pf = IM|<:pd. GV has rank 3 or 7 by Lemmas 3.1 and 3.2.
For the moment assume that the rank of GV is 7. Then

IGX! = (pd -1)/6 and p® - 1 = émn. Let q be a prime

dividing pd - 1. Then qgl6, glm, or gln. But g|n implies

g|n*, and pfz 1 {mod 6), so qlpf - 1. This contradicts
Lemma 2.1, which says that d must be even. If the rank of
GV is 3 then pd - 1 = 2mn and the same contradiction

occurs, so conclusion 2 holds.
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As V = GF(pd) and G' < ZJde), G, = QR where R = <o>

is a group of field automorphisms normalizing Q. Let
B = {0,1,x}eB. As o fixes O and 1, it must fix x also.
Now R normalizes NQ, so it permutes the NQ-orbits in B.
In particular, since 5R = B, R stabilizes the orbit con-
taining g, whence p % = pN9 = 3% = B ana NQ is block-
transitive. By Lemma 3.1, N is 3/2-transitive; as R
permutes the Q-orbits in V and fixes 1, it stabilizes the
orbit containing 1. Now NQV and G’ are both 3/2-transitive,
and Q and GO have an orbit in common, so NQV and ¢’ have
the same rank, namely 3 or 7.

If GV has rank 7 then conclusion Zé holds, so assume
that gV (and NQV) has rank 3. Then e = 3 and there exists
an element h=(0 1 x)++€eNQ. If teV then t" = bt + c for

some b,ceGF(pd), soc=0"=1andb+c=1"= X, i.e.,

h 2

th = (x - 1)t + 1. Now O x'=x“ - x+ 1, and x ¥ -1

since p # 3. Therefore 0 = (x2 - x4+ 1)(x+ 1) = x3 + 1
and x is a primitive sixth root of unity. It is not diffi-
cult (but messy) to check that the images of {O,l,x}'undef
O(Z(pd)), which is of index two in E(pd), do form the
blocks of a Steiner triple system. Therefore the theorem
is true when v=1 (mod 6).

Second, consider the case v=3 (mod 6). By Lemma 3.3,
either conclusion 1 holds or conclusion 2a holds. To show
that G’ < Z(Bd), the same proof as in the case v=1 (mod 6)

works. This completes the proof of the theorem.
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Note that the systems of types 2a and 2b are the only
systems possessing groups of automorphisms which are flag-
transitive (i.e., transitive on the set {(X,B)[xeBeB}) but
not doubly transitive. Hence Theorem 3.4 strengthens the

following theorem of Limneburg:

Theorem 3.5 [11] There exists a Steiner triple system of
order v with a flag-transitive but not doubly transitive
automorphism group if and only if v is a prime power con-
gruent to 3 or 7 (mod 12).

The systems of type 2b were first described by Netto
[13]. For each prime power pdz 7 (mod 12), there is
exactly one Netto system, as the following‘proposition

-shows.

Proposition 3.6 Let V = GF(pd), pd=7 (mod 12),

¢ = 0(=(p%)), and let x be a primitive sixth root of unity

in GF(p%). Define B = {O,l,x}G and C = {O,l,x'l}G. Then

(v,B) = (V,C).

Proof Let s be a generator of the multiplicative group of

d.
GF(pd) such that s(p 1)/6 _ x. If hez(pd) satisfies

th = st for all tecF(p®) then h®

}Gh }hG

€G and h normalizes G.

Hence B® = {0,1,x = {0,1,x = {O.s,sx}G. But

sX = (P +5)/6 is an even power of s since pd557 (mod 12),
—(nd

so k = h™(P +5)/6€G. Now t¥ = (sx)"'t, so BP = {O,sx,s}G

- {o,ex, s} = {01, = ¢ s VR = v, (VB 2 (V,0).
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L, Block~regular Steiner Triple Systems

It can be inferred from the proof of Theorem 3.4 that
a system of type 2c has an automorphism group which acts
regularly on the blocks. A Steiner triple system which has
such an automorphism group (which need not be the full

automorphism group) will be called block-regular. The Netto

systems may or may not be block-regular; this will be dis-
cussed more explicitly later.

In this chapter, we will assume that (V,B) is a
Steiner triple system with a group G of automorphisms which

acts regularly on B. It follows from Theorem 3.4 that

6

v = ¢F(pY), p%=7 (mod 12), and G = {t ~ £%%¢ 4 vlvear(pdy,

1:sk:£(pd - 1)/6}, where f is a generator of the multipli-
cative group of GF(pd).

G

Lemma 4.1 - Let xe€V. Then {O,l,x} is the set of blocks of

a (necessarily block~regular) Steiner triple system if and

only if x, x -~ 1, and x 1 -1 are not cubes in GF(pd).

Proof We may clearly assume that x is not 0 or 1. Since
¢’ is transitive, {O,l,X}G is the set of blocks of a
Steiner triple system if and only if the union of those
blocks containing 0 is all of GF(p9). The blocks contain-

‘ing O are

{0, 0%, xe8%} {o,-£0%, (x - 1)£8%}, {o,-x£6%, (1 - x)£B¥}
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for 1=k s(pd - 1)/6, and their union is GF(pd) if and only

if none of the following equalities occur for any k and £:

6k _ 64

6k

£OK o _xgt!

£0% = (x - 1)rt!
fék = —(x - 1)f6£

6k 614

xf = -f

Xfék = (x - 1)f61Z

(1)

(2)

(3)

(4)

(5)

(6)

0% = _xr®! (7)
x¥ = _(x - 1)5% (8)
£k = -x£&! (9)
0% o (x - 1)£® (10)
(x - 1)£%F = x5! (11)
(x - 1)f%% = _(x - 1)r® (12)

First of all, equations 1, 7, and 12 are equivalent

to = -1 for some m, which 1s not the case since
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pds 7 (mod 12). So 1, 7, and 12 are impossible.
Second, 2 and 5 hold if and only if x = —f6m for some
ém

m and 9 holds if and only if x - f for some m. As -1 1is
a cube but not a sixth power in GF(pd), one of 2, 5, 9 is
true if and only if x = me for some m.

Third, 3 and 10 hold if and only if x - 1 = f6m for

-f6m for some m.

‘some m, and 4 is equivalent to x - 1 =
Hence one of 3, 4, 10 is true if and only if x - 1 is a
cube.

Finally, one of 6, 8, 11 holds if and only x1 -1 is
a cube. So the falsity of equations 1 to 12 is equivalent

-1

to the hypothesis that none of X, X - 1, - 1 are cubes,
and this completes the proof.
We can use this lemma to characterize the block-regular

Netto systems:

Proposition 4.2 A Netto system of order v = pd is block-

regular if and only if pds 7 or 31 (mod 36).

Proof Let x be a primitive sixth root of unity in GF(pd).

Ifx -~ 1= e3 for some eeGF(pd), then O = x% - x + 1

=x(x - 1) +1 = xed + 1 and x = -e 2 is a cube. Thus
Lemma 4.1 says that {O,l,x}G is the set of blocks of a
Steiner triple system if and only if x is not a cube. But
X is a cube if and only if BI(pd -1)/6, i.e., pdE 1

}G

(mod 18), so since p%=7 (mod 12), {0,1,x}7 is the set of
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blocks of a Steiner triple system if and only if p% £ 19
(mod 36). |

Let us define a basgsic element of GF(pd) to be an
element x such that (GF(pd),{O,l,X}G) is a Steiner triple

system. Consider the following three sets:

A, = 1095 1= k< (pd - 1)/3})
Ay = 4898 4 1)1 =x =(p? - 1)/3}

{% + ) ik =% - 1)/3, 225 £ -1}

=
|

Then by Lemma 4.1, the set of basic elements is GF(pd) -

(A1U.A2LJA3). This set is not empty, as the following

lemma shows.

Lemma 4.3  The number of basic elements in GF(pd) is

2 + 2|A10.A2|.

Proof First we prove that Alﬂ A2 = A1F1A3 = AzﬁA3

- \ _ g3k
= A1F1A2f1A3, as follows: let XeAlrlAZ. Then x = f

= £ 1= gk _ g3

+ 1 for some k and £, so
f3k(1—f3(l_k))=f3k(1 + me} for some m (since -1 is a cube)
and x = 2% (£ + 1) €A3. Thus A1FIA2 Alr\A204A3,

The proofs of the other equalities are similar.

The number of basic elements is therefore



22

laF(p?) - (A UA,U A
=% - [a ua,ua]
_ .4
=p" - [A] - |A,] - |A3] + [A NA ]+ [AlﬂA3|
+ IAZDABI - lAlnAzﬂAB,

=% - 0% -1/ - - 1/3 - F -/ 2[A N A,

1}

2 + 2|A10A2|

To every basgic element xeGF(pd) there corresponds a
Steiner triple system (V,B,), where {O,l,x}eBX‘. If x and
y are basic elements, then (V,B ) and (V,By) may or may not
be isomorphic. Define n(pd) to be the number of non-
isombrphic block-regular Steiner triple systems with pd

points. Then for pdz 7 (mod 12), Lemma 4.3 shows that
1(pd) =1.

Lemma 4.4 If p is a prime, p=7 (mod 12), then
(1 + !Alr\A2l)/3 if p=19 (mod 36)

n(p) =
1+ |A NnA/3 if p=7 or 31 (mod 36)

Proof Let x,y€GF(p) be basic elements and let (V,BX) and

(V,By) be the corresponding Steiner triple systems. DNote
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that G is a group of automorphisms of both systems.
Suppose that (V,By) z(V,By). Then there exists g, a per-

mutation of V, which maps By to B Let H = Aut (V,By);

v
then G=H and G®=H. Now G=K=H, where K is the nor-
malizer of a Sylow p-group of H and has order dividing

p(p - 1). As all subgroups of K of order p(p - 1)/6 are
conjugate in K, Sylow's theorem implies that G = Ggh for
some heH. Thus ghe=(p) and (V,BX)gh = (V,By).

It follows that Z(p) permutes the set of block-
regular Steiner triple systems of order p, and that two
such systems are isomorphic if and only if they are in the
same Z(p)-orbit. If (V,By) is a Netto system then
|2(p) :+ =(p)NHI = 2; otherwise, |=(p) : Z(p)NH| = 6.
Therefore the block-regular Netto systems (if any) form a
E(p)-ofbit of length 2 (see Proposition 3.6) and the rest
form orbits of length 6.

If p=19 (mod 36) then, by Proposition 4.2, all of the
(p)-orbits have length 6. As there are 2 + 2!A1r7A2|
basic elements, the number of Z(p)—orbitsvis
n(p) = (1 + IA1r1AZl)/3. If p#19 (mod 36) then there is
one Z(p)-orbit of length 2, and n(p) = 1 + [A N AI/3.

Using Lemma 4.4 and a little number theory, we can now

get a good estimate for n(p).

Theorem 4.5 Let p be prime, p=7 (mod 12), and let b and

c be integers such that 4p = c? 4 27b2 and c=1 (mod 3).
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Thens:

(p+c+ 1)/27 if p=19 (mod 36)
1. n(p) = ,
(p+c+19)/27  if p=7 or 31 (mod 36)
2. (- 1)%27 <)< 1+ (fp+ 1) 3 e
3. limn(p) = '
P—oo
Proof By [17; part I, Lemma 7}, there exists a unique
pair of integers b and ¢ (except that the sign of b is

2 4 27b2 and c=1 (mod 3), and

ambigudus) such that 4p = ¢
furthermore IAir]Agl = (p+c - 8)/9. Thus by Lemma 4.4,
result 1 holds. |

As b # 0, we have c®<lp and -2 /p < ¢ < 2 Jpo
Therefore ( J/p - 1)° é p+c+1< (/p+ 1)? and result 2
holds. Finally, result 3 follows directly from 2.

For appropriate primes less than 300, n(p) is tabu-
lated in Table I. The appearance of PG(2,2) and PG(4,2)

as block-regular systems in this table does not indicate

anything more general, as the following result shows.

Proposition L.6 No EG(n,3) is block-regular. If PG(n,2)

is block-regular then n = 2 or n = 4.

Proof EG(n,3) has 3% points, and 3"# 7 (mod 12). If

1

PG(n,2) is block—fegular then 2n+ - 1 is a prime power by

Theorem 3.4, and this must be a Mersenne prime p = 2% - 1,
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p | o 2(p) | systems | systems
7 1 1 1%

19 7 1 1

31 4 2 1 1%
43 -8 2 1 1.

67 -5 3 1 2

79 | =17 3 1 2
103 13 5 1 L
127 | -20 4 B
139 | ~-23 5 1 4
151 19 7 1 6
163 25 7 7
199 | -11 7 7
211 -14 7 1 6
223 28 10 1 9
271 -29 9 9
283 | -32 10 1 9

TABLE I

*PG(2,2)

*#%*PG(4,2)
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But the normalizer in GL(g,2) of a Sylow p-group is of
order pg, so we must have (p - 1)/6|q|p - 1; Ifg=p -1
then ¢ = 2, if g = (p - 1)/2 then q = 3, and if

0q = (p - 1)/6 then ¢ = 5. These correspond ton =1, 2,

and 4 respectively.
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5. Corollaries of the Main Theorem

"Let (V,B) be a Steiner triple system with an automcf—
phism group G acting doubly transitively on V. The only
such systems known are EG(n,3) and PG(n,2), where n=2.

They have the property that every subsystem is of the form
EG(k,3) or PG(k,2), respectively, for 2=<k=n, and therefore
every subsystem has a doubly transitive automorphism group.
In this chapter we will prove a limited version of this
property, namely that the subsystems of (V,B) formed by the
fixed points of certain subgroups of G have doubly transi-
tive automorphism groups.

If p is a prime and K=G, define

Yp(K) = {UfEKlU is a p-group, |F(U)l >3}

Let Y;(K) be the set of maximal elements of Yp(K). Then if‘
UeY;(K) and U< Uy =K, where U, is a p-group, it must follow
that IF(U )= 3.

Theorem 5.1 If p is an odd prime and UEY;(G ), then NG(U)

Xy
acts transitively on BIF(U)' Furthermore, one of the fol-

lowing two cases holds:

1. NG(U)F(U) is doubly transitive;

2. (P(U).Blg(g)) = Be(p,3) ana Hg)F(Y) = 0(2(5P)).
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Proof Define H = G, and J = Gyy» and let {x,y,z}eB. Also
define J% = H(yy ,1y. If UeSyl (J) then NG(U)F(U) is
. doubly transitive by Lemma 2.8, so we may assume that
U<:PeSylp(NJ(U)). Byvmaximality of U, F(P) = {X,y,z}, 80
NH(P)S J¥*,

Suppose P#’Sylp(NH(U)). Then P<:NQ(P)5 QeSylp(NH(U))
and P< NQ(P)sNH(P)S J¥, As p is odd and [J* : J| = 2, we
have NQ(P)fEJ and P<<NQ(P)SENJ(U), which contradicts the
assumption’that PeSyl (N (u)). Therefore PeSylp(NH(U)).

Let heH, UM=J, and let SeSylp(N (u)n Jgh~ 1). Since

G (U)n gh” 1<:NH(U), there exists kelNy (U) such that sk< p.

-1
Also USOP(NG(U)ﬂJh )s S, so U= Ukssks p. 1f U =gk

then U = S and UheSylp (N;(U")). But this implies that

)F(U)

h
NG(Uh)F(U ), and hence NG(U , is doubly transitive by

Lemma 2.8. So we may assume that U<:Sk. Then by maximality

-1
of U, F(sK) = {x,y,z}. But s=J" 7, so we have

-1 -1 -1 -1
F(S) = {X,yh ,zh } = {X,yk ,zk }

Therefore NH(U) acts transitively on B(X)IF(U)'

Similarly, NGy(U) and NGZ(U) act transitively on
B(y)!F(U) and B(Z)IF(U), respectively. Let {r,s,t}eBlF(U).
If r = x, there exists geNH(U) such that {r,s,t}g = {x,y,z}.
Otherwise, there exists geNH(U) such that r® = y or r® = gz,

Without loss of generality, say ré = y. Then

{r,s,t}& = {y,s;y,t4}€B(y)lp(y) and there exists g1eNgy(U)
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such that {r,s,t}ggi = {X,y,z}. Hence Ng(U) acts transi-
tively on B’F(U)' '

Suppose that NG(U)F(U> is not doubly transitive. Then
we may assume that U<Q=Nz(U), where |Q ¢+ Ul = p and
[F(Q)] = 3. By Theorem 3.4, Ng(U)F(U)<=x(q9) and F(U) may
be identified with GF(q%). Now (choosing x = 0 and y = 1)
NJ(U)F(U> is a subgroup of Aut(GF(qd)); in parficular,
F(Q) = GF(qd/r). Hence g = 3 and d = p. This is conclu-
sion 2a of Theorem 3.4, so case 2 holds and the proof is
complete.

When p = 2, the situation is more complicated. How-
ever, the list of possible groups NG(U)F(U) which are not

doubly transitive is finite.

Theorem 5.2 Let UGYE(G) and define F = F(U), N = Ny (U),

and D = Blp. Then one of the following seven cases occurs:

1. NF is doubly transitive;

N

(F,D)=PG(2,2) and NF= S, is the stabilizer of a
block in AutPG(2,2);
3, (F,D)=EG(2,3) and NFgE(9)*D8;

(F,D) =EG(2,3) and NT

is the subgroup of AutEG(2,3)
which stabilizes a set of three parallel lines;

5. (F,D)=PG(3,2) and NF is the subgroup of AutPG(3,2)
which stabilizes a set of five disjoint blocks;

6. (F,D)=EG(3,3) and NF is contained in the subgroup

of AutEG(3,3) which stabilizes a set of three
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parallel planes;
7. (F,D)=EG(3,3) and NY is contained in the subgroup
of AutEG(3,3) which stabilizes a set of nine paral-

lel lines.

Proof Let {x,y,z}eD. If UeSyl,(D) then N' is doubly
transitive by Lemma 2.8. So for every block peD, we may
assume that there is a 2-group P=N with F(P) = B. Also,
pF-P must be semiregular by the maximality of U, so for
every BeD there is an involution geN with F(g) = f. Thus
we are considering Steiner triple systems which satisfy the
hypothesis of Lemma 2.3.

Suppose that all involutions of N which fix three
points are conjugate in N. If Bq,pp€D then there exist
involutions g1,2.€N with F(gi) = B;. As g? = g, for some
neN, ﬁ?~= Bps SO NP is transitive. Now Theorem 3.4
implies that’NF is doubly transitive, since INF! is even.
We may therefore assume that N has at least two classes of
involutions fixing thrée points.

First let us assume that NX acts transitively on D(x).

F-{x}

Then either NX ig transitive, in which case NF is

doubly transitive, or it has two orbits of equal size. In
the latter case, either NF is primitive of rank 3 or it has
two orbits I' and A. In the primitive rank-3 case, the

only possibility from Lemma 2.11 is N = E(9)*D8, which

D(x)

< is transitive.

fails to satisfy the hypothesis that N
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So NF has two orbits, I' and A, such that xel and

Tl = |la]l + 1. Also, NI is doubly transitive. e
{x,y,z}eD and yeI' then zeA , so an involutibn in NI fixes

0 or 2’points. By {9}, either NI = Ag or IT]| = q + 1 and
PSL(2,9)= N=PrL(2,q). But Ag cannot be represented faith-
fully on 5 points, so PSL(2,q)= N and NA is transitive of
degree q. Inspecting the character tables of PSL(2,q),

g odd [16], for a possible permutation character of degree
q, we see that either q = 3 or PSL(Z,q)A is doubly tran-
sitive. Thus QE{3,5,7,11} by Lemma 2.10. But PSL(2,q) has
only one class of involutions, so N=PGL(2,q) and q = 3 or
5. If g = 5 then fFl = 11, which is impossible, so q = 3;
|Fl =7, and N=PGL(2,3)=S,. This yields case 2 of the
theoren.

2(t) is intransitive

From now on we may assume that N
for every teF. We will first prove that NF is transitive:
let x,yeF and {x,y,z}eD. If PGSylZ(NyZ) then F(P) ={x,y,z}.

If also PeSylZ(NZ), then the argument used in Theorem 4.1

D(z)

shows that NZ

is transitive, so P<NQ(P)5 Qesylz(NZ).
But now any element of NQ(P) - P must interchange x and Yy,
S0 NF is transitive.

By Lemma 2.9, there exists a block aeD(x) such thét
every 2-group P=N, which fixes a fixes another block in

D(x). Let « = {x,y,z}; then PeSylZ(NXy) is semiregular on

F - a, Now P fixes another block {x,t,u}eD(x),'so |Pl = 2
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and P = <g >, where g = (x)(y)(z)(t u):+ Also

P<No(P) = QeSyl,(Ny) as in the previous paragraph, so {y,z}
is an orbit of NQ(P) = CQ(X). Therefore ICQ(X)I = 2|P] = &4
and by Lemma 2.6, Q=D, or SD,. Note that QeSylé(N), since
F(Q) = {x}. ’

It follows that N has at most three classes of involu-
tions, and so NP has at most three orbits. Now, the fact
that Nf%) = S, for any peD implies that the N-orbits in D
are in one-to-one correspondence with the N-orbits of
ordered pairs of distinct points of F. But the latter
correspond exactly to the orbits of N other than {x}.
Hence NF has rank at most 4, and the rank equals 4 only if
N has three classes of involutions. If NF is primitive
then Lemma 2.11 gives NF = E(9)*D8, which is case 3. So
we may assume that N is imprimitive.

Let T be a minimal set of imprimitivity for NF, and
let xel. Assume for the moment that |T'|> 3. Then clearly
(T,D|p) is a subsystem of (F,D): if y,zel then there is
an involution geN with F(g) = {y,z,w}eD. But T® =T and
Tl is odd, so wer' . Similarly, if yeI and z¢I' then
w%]ﬁ . Therefore N{},) is a primitive permutation group,
with involutions fixing one or three points but no more,
which acts on a Steiner triple system. By Lemma 2.11,

T _ _ . _
N(I’) = E(9)*W, where W = Dg,SD, ¢, or GL(2,3). In particu

x

lar, lFI~=9andN§‘{ =W. Let A =F - T. IfW =Dy
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then N?I‘) has rank 3, so NQ is transitive. Otherwise, N
has only two classes of involutions, so NF has rank 3 and
again N}? is transitive. But 9vdivides | Al, whereas it
does not divide [W/|, so K = Np is nontrivial (and of odd
order). As K « Nx’ KA is 1/2—transitive._ Let geZ(W)#;
then I = <K,g > < N, so LA is also 1/2-transitive. Now
g fixes exactly 2 points in A, whence it follows that KA
and L2 have the same orbits. Furthermore, since || is
odd, g fixes a point in every K2 -orbit. Therefore K2 has
exactly two orbits, Al and Az.

Let C be the system of imprimitivity containing T,
and let T ,eC - {r}. Then r{ € a. If A; Nry is non-

:empty then L( Ty) acts transitively on it, since it is a

set of imprimitivity for LAi. Since for any ye A; there
exists an involution heL with F(h) n Az = {y}, it follows
that |A; NT 4| is odd or zero. But now as |T4] = 9 and
r, = Ay UA,, either Ty € A, or Ty € A,. Also, g has
one fixed point in Ay and one in A,, and it permutes the
elements of C - {r}, so |a4] = |a,] = 9 (mod 18). Hence
|F] =9 + ,All + ‘Agls 27 (mod 36) and |C| = |F|/9 = 3
(mod 4). TIf |C|] > 3 then N® contains involutions fixing
both one and thfee points (i.e., elements of C) but no

more, and NC is doubly transitive since N}? is transitive.

i

Thus Lemma 2.11 implies that |C| = 5 or 9. But then [C|= 1

(mod 4), a contradiction, so |C] 3 and |F| = 27. Applying
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Lemmas 2.3 and 2.4, together with the fact that (T ,D| )
has nine points, we see that (F,D) = EG(3,3), and clearly
N is a group of the kind described in case 6 of the
theorem.

We must now consider the case where |T| = 3. Evi-
dently T'eD. As before, let C be the system of imprimi-
tivity containing R Then either IC, = 3 or NC contains
involutions fixing both one and three points, but no more.
Assume that Na is primitive; then by Lemma 2.11,]0[6{3,5,9}.

First case: |C|[ =3 and |F| = 9. Here it is clear
that (F,D) = EG(2,3) and N S,NA’ the group described in
case 4 of the theorem. N4 is the normalizer in E(9)*GL(2,3)
of a cyclic subgroup of the regular normal E(9); since
there are 4 such subgroups, | E(9)*GL(2,3) ] Nul = 4 and
[N4| = 108, A Sylow 2-group of N must be of order 4 (since
otherwise Sylow's theorem would imply that N had only one
class of involutions), and hence must be a Sylow 2-group of
Ny. But Ny contains an involution fixing only one point,
so N has two classes of involutions which fix three points.
Thus NF has rank 3, and its subdegrees are those of Ni,
namely 1 + 2 + 6, so both 4 and 54 divide |N|. Therefore
M= Ny |

Second case: [C| = 5and [F|=15. By Lemma 2.2,
(F,D) cannot contain a subsystem with nine points, so

Lemmas 2.3 and 2.5 imply that (F,D) = PG(3,2). Now by
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C

Lemma 2.11, N~ = 5 If N = 85 then 1t hag two classes of

S
involutions, so NF has rank 3 and subdegrees 1 + 2 + 12.
But this is impossible, since |Ny| = 8. As involutions fix
no more than three points, NC must therefore be a nontriv-
ial 3-group, and in fact |Ng| = 3 because | GL(4,2)| =
168|S5|. Clearly N = N, the group described in case 5 of
the theorem, and 1t is not hard to see that the only ele-
ments of GL(4,2) which stabilize all five blocks of C are
in NC' Therefore N = N5.

Third case: |C| =9, |F| = 27. By Lemma 2.3, either
every triangle of (F,D) generates a subsystem isomorphic to
PG(2,2) or every triangle generates a subsystem isomorphic
to EG(2,3). In the former case, (F,D)'g PG(n,2) for some
n by Lemma 2.5. But 27 # 2n"1 - 1, so the latter case
holds, and (F,D) = EG(3,3) by Lemma 2.4. As every set of
imprimitivity in C is a block in D, N is a group of the
type described in case 7 of the theorem.

We have now eliminated every possibility except the
following situation: NF has two sets of imprimitivity T
and A where T € A, |T| =3, and | A| >3. Let the cor-
responding systems of imprimitivity be C and E, respectively. 
Then NC andiNfZ‘) are both imprimitive and have rank 3, NF
has rank 4, and NE is doubly transitive. Also, if C* is

the set of elements of C which are contained in A, then

N(‘A) acts doubly transitively on C¥.
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By the same argument as before, IC*[ and IC| are 3,5,
or 9. If either is 9 then N involves SD16; but N has at
least three classes of involutions, so its Sylow 2-groups
are dihedral. Hence |C¥*], IEle{B;S} and [F| = 3]c| =
3lc*| | Elef27, 45,75}

First case: | F| = 45. Here NF has for subdegrees
either 1 + 2+ 6 + 36 or 1 + 2 + 12 + 30. Let QeSylz(N);
as 30 = 6 = 2 (mod 4), Q must have at least two orbits of
length 2. This implies that [Q|= 4. But N involves Se
so | Q] = 8 and we have a contradiction.

Second case: IFI = 75, Here NE = S5 and NE is normal
in N and of odd order, so N/O(N) = S,. Thus N has only two
Clagses of involutions, which is a contradiction.

Last case: IF, = 27. By the same argument as before,
(F;D) ~ EG(3,3). Clearly I and A correspond to a line
and a plane, respectively, so N satisfies both case 6 and
case 7. This conpletes the proof of Theorem 5.2.

In view of the fact that PG(n,2) and EG(n,3) both have

doubly transitive automorphism groups, Theorems 5.1 and

5.2 can be combined to yield the following result.

Corollary 5.3 Let p be a prime and let UeY;(G). Then

(F(U)’BlF(U)) has a doubly transitive automorphism group.
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