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Abstract

As advances in computing power forge ahead at an unparalleled rate, an increasingly

compelling question that spans nearly every discipline is how best to exploit these

advances. At one extreme, a tempting approach is to throw as much computational

power at a problem as possible. Unfortunately, this is rarely a justi�able approach

unless one has some theoretical guarantee of the e�cacy of the computations. At the

other extreme, not taking advantage of available computing power is unnecessarily

limiting. In general, it is only through a careful inspection of the strengths and

weaknesses of all available approaches that an optimal balance between analysis and

computation is achieved. This thesis addresses the delicate interaction between theory

and computation in the context of optimal control.

An exact solution to the nonlinear optimal control problem is known to be pro-

hibitively di�cult, both analytically and computationally. Nevertheless, a number of

alternative (suboptimal) approaches have been developed. Many of these techniques

approach the problem from an o�-line, analytical point of view, designing a controller

based on a detailed analysis of the system dynamics. A concept particularly amenable

to this point of view is that of a control Lyapunov function. These techniques extend

the Lyapunov methodology to control systems. In contrast, so-called receding hori-

zon techniques rely purely on on-line computation to determine a control law. While

o�ering an alternative method of attacking the optimal control problem, receding

horizon implementations often lack solid theoretical stability guarantees.

In this thesis, we uncover a synergistic relationship that holds between control Lya-

punov function based schemes and on-line receding horizon style computation. These

connections derive from the classical Hamilton-Jacobi-Bellman and Euler-Lagrange

approaches to optimal control. By returning to these roots, a broad class of con-

trol Lyapunov schemes are shown to admit natural extensions to receding horizon

schemes, bene�ting from the performance advantages of on-line computation. From
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the receding horizon point of view, the use of a control Lyapunov function is a con-

venient solution to not only the theoretical properties that receding horizon control

typically lacks, but also unexpectedly eases many of the di�cult implementation re-

quirements associated with on-line computation. After developing these schemes for

the unconstrained nonlinear optimal control problem, the entire design methodology

is illustrated on a simple model of a longitudinal 
ight control system. They are

then extended to time{varying and input constrained nonlinear systems, o�ering a

promising new paradigm for nonlinear optimal control design.
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Notation

C The set of continuous functions.

Cn The set of functions n-times continuously di�erentiable.

'(�) Terminal weight function (used in optimal control objective function).

q(�) Penalty on the state (used in optimal control problem).

IR Real numbers.

IR+ Non-negative real numbers.

� Positive de�nite parameter in the pointwise min-norm problem.

�s Pointwise min-norm parameter corresponding to Sontag's formula.

T Horizon length in receding horizon schemes.

Ts Sampling time in receding horizon schemes.

u� Optimal in�nite horizon control trajectory corresponding to V �.

ûT Optimal control trajectory from the RHC+CLF problem with horizon T .

@V
@x

The row vector of partial derivatives of V , [ @V
@x1

, @V
@x2

,..., @V
@xn

].

V � The value function (minimum cost-to-go).

V A control Lyapunov function.

x� Optimal in�nite horizon state trajectory corresponding to V �.

x̂T Optimal state trajectory from the RHC+CLF problem with horizon T .
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Chapter 1 Introduction

It is natural that when faced with a decision one would like, in some sense, to choose

the \best" among the existing available alternatives. The process of �nding the

\best" has been formalized mathematically in the �eld of optimization. The stan-

dard approach is to rank the relative worth of each alternative strategy by a single

real valued number known as the \performance index" or \objective function". Opti-

mization proceeds by selecting among the available strategies or decisions that which

produces the greatest relative worth as characterized by the \performance index".

While this approach su�ers from obvious drawbacks, its mathematical simplic-

ity and broad applicability have made it the dominant paradigm. Examples of the

usefulness of this approach to decision making are abundant and span many �elds

of interest. To name a few, problems of allocation, planning, approximation, games,

estimation, and control, spanning the interests of �elds as diverse as economics, sys-

tems engineering, operations research, statistics, business, �nance and others, are

commonly posed in this framework.

While many problems can be properly formulated in the framework of modern

optimization theory, this does not imply that the solution of these problems follows

directly. In fact, it is the search for improved tools for the solution of these problems

that comprises the current �eld of optimization. In recent decades, computers have

played an increasing role in advancing the ability to solve optimization problems. This

has also resulted in changing the face of optimization theory. Many old techniques

have been rendered obsolete, being replaced by previously impractical methods which

can now be e�ciently performed with modern computing capabilities. Currently, the

�eld has evolved into a blend of old and new, using numerical procedures, �rmly

rooted and justi�ed in modern complexity theory but resting upon the fundamentals

established by such greats as Gauss, Lagrange, Euler, the Bernoullis, Von Neumann

and others. It is this synergy between the theoretical and numerical that holds great
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promise for the future of optimization.

This thesis concentrates speci�cally on the nonlinear optimal control problem.

This problem involves the optimization of a performance index associated with a sys-

tem developing dynamically through time. Examples of such optimal control prob-

lems include: maximizing the range of a rocket, maximizing the pro�t produced by

an economic enterprise, minimizing the error in the estimation of an object's position,

minimizing the energy or cost required to achieve some speci�ed terminal state, or

any of a wide variety of similar tasks. The solution techniques for such problems,

including the face of nonlinear optimal control in general, is changing in a manner

similar to that of optimization, pushing its boundaries by reinventing techniques of

the past and coupling them with the powerful computational tools of the present.

1.1 Background

For systems whose dynamics are linear and time-invariant, optimal control theory

now has well developed tools for optimizing a number of performance indexes that

embody desirable objectives. For instance, in addition to the classical H2 theory

[AM89], there now exist not only theoretically elegant but computationally tractable

solutions to the H1 [DGKF89] and l1 [DP87] problems.

In contrast, nonlinear optimal control (optimization constrained by a nonlinear dy-

namical system) is still a developing �eld. While its roots were laid down in the 1950s

with the introduction of dynamic programming (leading to Hamilton-Jacobi-Bellman

partial di�erential equations [Bel52]) and the Pontryagin maximum principle (a gen-

eralization of the Euler-Lagrange equations deriving from the calculus of variations

[Pon59]), these were more theoretical contributions than practical design techniques.

From these beginnings, numerous design methodologies for nonlinear optimal control

have developed, often following di�erent paths and techniques. Today, it appears

as a fragmented �eld. The nonlinear optimal control problem is now attacked on

many di�erent fronts: by extending the linear theory, utilizing generalizations of the

Lyapunov methodology, and brute force computation to name a few.
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With less ambitious goals in mind than an exact solution to the nonlinear optimal

control problem, classical Lyapunov theory (see, for example, [Kha92]) was extended

to aid in the design of control laws. This led to the concept of a control Lyapunov

function (CLF). Fueled by results establishing the equivalence of a control Lyapunov

function and a continuous stabilizing control law [Art83], interest in control Lyapunov

functions for design became active. An important contribution to this theory was the

explicit construction of a stabilizing feedback control law given by Sontag [Son89].

Furthermore, systematic procedures emerged for deriving control Lyapunov functions

for systems possessing special structure (e.g., feedback linearizable, strict feedback

and feedforward systems [KKK95]).

More recently, the optimality properties of CLF based control laws have been

analyzed. A concept referred to as inverse optimality [Kal64, MA73] was used to

begin to bring optimality back into the picture of CLF based design. It was shown

that every CLF is the value function solving a Hamilton-Jacobi-Bellman equation

corresponding to a meaningful cost [FK95]. Furthermore, with the development of so-

called pointwise min-norm controllers, an entire class of inverse optimal CLF control

laws were introduced [FK95, FK96a].

At the same time, the advent of the microprocessor and the subsequent computer

revolution opened up an entirely new possibility for optimal control: solution directly

through numerical computations. While the solution of the Hamilton-Jacobi-Bellman

equation remained intractable in all but the simplest cases, Euler-Lagrange type tra-

jectory optimizations, deriving from the classical calculus of variations, provided an

alternate more computationally feasible approach. By solving trajectory optimiza-

tions (which produce open-loop control trajectories as a function of time as opposed

to a state-feedback law), computers were able to provide relatively e�cient solu-

tions. Feedback could then be incorporated by the repeated on-line solution of these

trajectory optimizations, an approach known as receding or moving horizon. This

spawned the technique of model predictive control [GPM89], which heavily exploited

the receding horizon methodology. These techniques were �rst applied to plants with
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slow dynamics where on-line intersample computation was feasible. Additionally, it

was a natural approach to constrained systems because constraints could be directly

incorporated into the optimizations. These techniques found success especially in

industrial process applications [CR79, GPM89, Ric93, RRTP78].

Today, model predictive control or receding horizon control is gaining popularity

as computers become increasingly faster. While connections with classical Euler-

Lagrange type trajectory optimizations are often not mentioned explicitly, they im-

plicitly provide the foundation for receding horizon techniques. While results from

practical applications have been promising, these techniques have struggled to estab-

lish theoretical stability properties. Considerable success has been made for linear

systems (see [GPM89] and references therein). While some of the same results hold

for nonlinear systems (e.g., end constraints [MM90], in�nite horizon [MS97, NMS98])

it is the structure of linear systems that general makes them computationally feasible.

1.2 Thesis outline

This thesis is an attempt to provide a more uni�ed framework in which to understand

the contributions of various design procedures toward nonlinear optimal control, and

to exploit previously unrecognized connections to develop improved design method-

ologies. Our framework derives from the two classical approaches to the problem of

optimal control. While only providing theoretical guidance, a deep understanding

of their fundamental properties allows us to provide a better characterization and

classi�cation of state of the art techniques.

In this thesis we focus on CLF based control laws and the receding horizon method-

ology, but beginning from the premise that they inherit properties from the classical

Hamilton-Jacobi-Bellman and Euler-Lagrange solutions to the optimal control prob-

lem. Hence, we begin by reviewing these two classical approaches to the optimal

control problem in Chapter 2, highlighting their important properties and di�erences.

Next, in Chapter 3 we introduce control Lyapunov functions and their associ-

ated control laws in the context of Hamilton-Jacobi-Bellman equations. By viewing
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a CLF as an approximation to the solution of the Hamilton-Jacobi-Bellman equation

(commonly referred to as the value function), we derive a slight variation of Son-

tag's formula [Son89] which has strong connections to an associated optimal control

problem. Furthermore, it is shown that Sontag's formula is actually a special case of

pointwise min-norm controllers [FK95], which are known to possess inverse optimal-

ity properties. Nevertheless, we show that these CLF based control laws are similar

in that they rely heavily on the shape of the level curves of the control Lyapunov

function, and this can lead to poor performance when that shape does not resemble

those of the value function.

Chapter 4 reviews the receding horizon methodology [GPM89]. This time, we

relate the properties of receding horizon control to its roots in Euler-Lagrange type

trajectory optimizations. Even though the receding horizon methodology produces a

state feedback control law, it still inherits fundamental properties of open-loop Euler-

Lagrange trajectory optimizations. We use this as a framework to review the stability

properties of receding horizon control, and show how various stabilizing formulations

have been developed to address these di�culties.

With the preceding chapters providing the foundation, in Chapter 5 we develop

previously unrecognized connections that exist between pointwise min-norm con-

trollers and the receding horizon methodology. By viewing pointwise min-norm con-

trollers as a limiting case of a receding horizon scheme, this suggests that extensions

of pointwise min-norm controllers to a receding horizon scheme should be possible.

We develop such a scheme, extending pointwise min-norm controllers to incorporate

on-line receding horizon style computation. This is presented within a new framework

for nonlinear optimal control, in which optimal control and CLF based pointwise min-

norm controllers are extreme cases of the new CLF based receding horizon scheme.

Furthermore, philosophically this approach has a satisfying interpretation as a blend

of the classical Hamilton-Jacobi-Bellman and Euler-Lagrange approaches to optimal

control. While a CLF represents a global approximation to the value function (the

solution of the Hamilton-Jacobi-Bellman equation), on-line trajectory optimizations

represent local approximations. These two points of view are combined into a single
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methodology.

In Chapter 6 the new design methodology is tested on a simple model of a lon-

gitudinal 
ight control system. We place existing techniques in a two stage design

paradigm suggested by the framework developed in the previous chapter. The �rst

stage involves the derivation of a CLF. For this task we consider techniques including

Jacobian linearization, global linearization [LP44, BGFB94], frozen Riccati equations

[CDM96], and quasi linear-parameter-varying methods [WYPB96]. The second stage

requires the selection of a CLF based control law. For this we consider not only the

standard implementation associated with each technique used in the �rst stage, but

also Sontag's formula and its receding horizon extension. Simulation results indi-

cate that our new control schemes, which fully utilize the contributions of existing

techniques, can signi�cantly outperform individual laws.

Chapter 7 extends the methodology to time-varying systems, which arise in prob-

lems of trajectory tracking, and input constrained systems. Simple examples are used

to illustrate the methodology in these cases. Finally, Chapter 8 presents conclusions

and future areas of research suggested by this thesis.
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Chapter 2 Nonlinear Optimal Control

2.1 Introduction

Historically, the background of optimal control theory shows a long stream of scien-

ti�c thought concerned with wave propagation and variational principles in physics,

beginning with Huygens, continuing with Bernoulli, and �nally achieving its matu-

rity with the work of the great masters of the nineteenth century: Hamilton, Jacobi,

and Lie. As argued by Sussmann [Sus96], perhaps the true birth of optimal control

theory was in 1696 in the Netherlands, when Johann Bernoulli challenged his contem-

poraries with the brachystochrone problem. Given two points A and B in a vertical

plane, �nd the orbit AMB of the movable point M which, starting from A and under

the in
uence of its own weight, arrives at B in the shortest possible time. Bernoulli's

brachystochrone problem was a true minimum-time problem, and the �rst to deal

with a dynamical behavior and explicitly ask for the optimal selection of the path

[Sus96].

Optimal control theory, in its modern sense, began in the 1950s with the for-

mulation of two design optimization techniques: Dynamic Programming and the

Pontryagin Maximum Principle. While the maximum principle, which represents a

far-reaching generalization of the Euler-Lagrange equations from the classical calcu-

lus of variations, may be viewed as an outgrowth of the Hamiltonian approach to

variational problems, the method of dynamic programming may be viewed as an out-

growth of the Hamilton-Jacobi approach to variational problems. In this chapter we

explore the roots of these two modern approaches. This provides an important foun-

dation for the following chapters, not in its technical detail, but rather in clarifying

the fundamental di�erences between these two points of view. Later, we will see that

many suboptimal approaches to nonlinear optimal control are aligned with one of

these two approaches, leading to inherited advantages and disadvantages.
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2.2 Dynamic Programming:

Hamilton-Jacobi-Bellman equations

The nonlinear system under consideration will be of the form

_x = f(x) + g(x)u; f(0) = 0 (2.1)

with x 2 IRn denoting the state, u 2 IRm the control, and f : IRn ! IRn and

g : IRn ! IRn�m continuously di�erentiable in all arguments.

Throughout this thesis, we will be concerned with the in�nite horizon nonlinear op-

timal control problem stated below:

min
u(�)

Z 1

0

(q(x) + uTu)dt (2.2)

s:t: _x = f(x) + g(x)u

for q : IRn ! IR positive semi-de�nite and C1 and the desired solution being a state

feedback control law. We will also assume that the system [f(x); q(x)] is zero-state

detectable. (That is, for all x 2 IRn, q(�(t; x)) = 0 ) �(t; x) ! 0 as t ! 1 where

�(t; x) is the state transition function of the system _x = f(x) from the initial condition

x(0) = x.)

The dynamic programming solution

In this section we derive the Hamilton-Jacobi-Bellman partial di�erential equation

solution to the nonlinear optimal control problem. The solution follows the technique

known as dynamic programming, popularized by Bellman [Bel52]. We �rst explain the

concept of dynamic programming, rooted in the so-called principle of optimality, then

apply this concept to the optimal control problem in order to derive the Hamilton-

Jacobi-Bellman partial di�erential equation.

The basis for the dynamic programming solution to the optimal control problem
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is the so-called principle of optimality, formally stated as follows:

De�nition 2.2.1 Principle of Optimality: If u�(�) is optimal over the interval

[t; tf ], starting at state x(t), then u�(�) is necessarily optimal over the subinterval

[t+�t; tf ] for any �t such that tf � t � �t > 0.

The basic assumption underlying the principle of optimality is that the system can

be characterized by its state x(t) at time t, which completely summarizes the e�ect of

all inputs u(�) prior to time t. This allows for a local characterization of optimality

as given in the principle of optimality. More details, as well as proof of the principle

of optimality, can be found in many references [Sag68, AF66, AM89, DAC95].

Dynamic programming is the concept of using the principle of optimality to formu-

late an optimization problem as a recurrence relation, i.e., the remaining sub-problem

has precisely the same structure as the previous sub-problem. In this way, a partic-

ular optimization problem is solved by studying a family of problems which contain

the particular problem as a member.

For instance, in the optimal control problem, if one considers a function which

associates to every point in state space the optimal cost starting from that point (such

a function is often called a value function), then it is possible to write a recurrence

relation in terms of the optimal value function which is valid for the entire state

space. If this relation can be solved, the value function obtained is associated with an

entire family of optimal control problems, each with a di�erent initial point. While

knowledge of the optimal value associated with a single initial condition provides no

way of determining the minimizing trajectory itself, knowledge of the value function

on the entire state space does allow one to determine the minimizing trajectory for

any particular member of the family of problems. We demonstrate this idea more

concretely by using it to solve the in�nite horizon optimal control problem subject to

time-invariant dynamics. More general problems (time-varying, �nite horizon, etc.)

are solved in a similar manner and can be found in the references [Nev97, Bel52,

BH75, DAC95].
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De�ne V �(x0) to be the minimum of the performance index taken over all admis-

sible trajectories (x(t); u(t)) where x starts at x0:

V �(x0) = min
u(�)

Z 1

0

(q(x(t)) + uT (t)u(t))dt

s:t: _x = f(x(t)) + g(x(t))u(t)

x(0) = x0:

(2.3)

If no such trajectory exists, then V �(�) = +1. The function V � : IRn ! IR+ [ f1g,

which determines the rule associating an optimal value with each initial point, is

called the value function or Bellman's function of the optimal control problem. An

optimal pair (often simply referred to as an \optimal trajectory") is a pair (x(t); u(t))

that has a starting point x0 and achieves the optimal cost V �(x0).

Notice that V �(x0) is independent of u(�), precisely because knowledge of the

initial state abstractly determines the particular control by the requirement that

the control minimizes the performance index. Rather than just searching for the

control minimizing (2.1) and for the value of V �(x(t)) for various x0, the problem is

approached by considering the evaluation of V �(x(t)) for all x(t), and the associated

optimal control.

Now let us apply the principle of optimality. Consider V �(x) given by (2.3), and

let u[t;1) be de�ned as the control signal over the interval [t;1). Using the additive

properties of integrals and the principle of optimality yields

V �(x(t)) = min
u[t;t+�t]

�Z t+�t

t

�
q(x(�)) + uT (�)u(�)

�
d� + V �(x(t +�t))

�
: (2.4)

That is, the optimal cost at state x(t) is given by the minimum of the cost it takes

to move to state x(t + �t) plus the optimal cost from x(t + �t). In essence, by

using the principle of optimality the problem of �nding an optimal control over the

interval [t;1) has been reduced to �nding an optimal control over the reduced interval

[t; t+�t].

Continuing further, when �t is small, the integral in (2.4) can be approximated by
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[q(x(t))+uT (t)u(t)]�t . Applying a multivariable Taylor-series expansion of V �(x(t+

�t)) about x(t), with x(t + �t) � x(t) approximated by [f(x(t)) + g(x(t))u(t)]�t,

gives

V �(x) = min
u

�
[q(x) + uTu]�t + V �(x) +

�
@V �

@x

�
[f(x) + g(x)u]�t+ o(�t)

�
;

(2.5)

where @V �

@x
denotes the gradient of V � with respect to the vector x, and o(�t) denotes

higher-order terms in �t. Cancelling V �(x) on both sides and taking the limit as �t

goes to zero yields

min
u(t)

�
[q(x(t)) + uT (t)u(t)] +

�
@V �

@x

�
[f(x(t)) + g(x(t))u(t)]

�
= 0: (2.6)

The boundary condition for this equation is given by V �(0) = 0 where V �(x) must be

positive for all x (since it corresponds to the optimal cost which must be positive).

Equation (2.6) is one form of the so-called Hamilton-Jacobi-Bellman equation. In

many cases, this is not the �nal form of the equation. Two more steps can often be

performed to reach a more convenient representation of the Hamilton-Jacobi-Bellman

equation.

1. First, the indicated minimization is performed, leading to a control law of the

form

u� = �
1

2
gT (x)

@V �

@x

T

: (2.7)

2. The second step is to substitute (2.7) back into (2.6), and solve the resulting

nonlinear partial di�erential equation

@V �

@x
f(x)�

@V �

@x
g(x)gT (x)

@V �

@x

T

+ q(x) = 0 (2.8)

for V �(x).

Equation (2.8) is what we will often refer to as the Hamilton-Jacobi-Bellman

(HJB) equation. The actual calculation of the optimal control action proceeds in an
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opposite fashion to the steps given above. First the HJB equation (2.8) is solved for

V �, then this is substituted into (2.7) where we obtain the optimal control action that

achieves this minimal performance.

Properties of the HJB solution

There are some important aspects of the HJB solution that should be highlighted for

clarity. We consider them below:

Closed Loop: The resulting solution is a state feedback control law as given in (2.7).

Global: The solution provides the optimal control trajectory from every initial con-

dition. Hence, it solves the optimal control problem for every initial condition, all at

once.

Su�cient: The solution of the HJB equation provides a su�cient condition for the

solution to the corresponding optimal control problem.

Finally, perhaps the most important remark to make about the HJB equation (2.8) is

that in general it is computationally intractable. This single fact is in large part the

reason for the existence of the discipline of nonlinear optimal control. Hence, from

one point of view, nonlinear optimal control can be thought of as the development of

computationally tractable sub-optimal solutions to the optimal control problem. This

explanation is attractive from a pedagogical viewpoint because it provides a natural

justi�cation for the tight connection between many popular approaches and the HJB

equation.

2.3 Calculus of variations:

Euler-Lagrange equations

In this section we solve an optimal control problem by the techniques of classical vari-

ational calculus, leading to a derivation of the Euler-Lagrange equations. The optimal

control problem solved in this section is not equivalent to that solved in the previous
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section by dynamic programming techniques. Nevertheless, it will be important for

two reasons. First, this problem will be used to motivate the introduction of receding

horizon control. Secondly, it helps to illustrate some of the fundamental di�erences

between the dynamic programming and calculus of variations approaches.

The Euler-Lagrange solution results by considering the optimal control problem

in the framework of a constrained optimization:

min
u(�)

Z T

0

(q(x) + uTu)dt+ '(x(T )) (2.9)

s:t: _x = f(x) + g(x)u (2.10)

x(0) = x0 (2.11)

Before proceeding, note the following two di�erences between this problem and that

solved in the previous section. The objective function is based on a �nite horizon

length with a terminal weight '(�) applied at the end of the horizon. (This cost is

equivalent to an in�nite horizon cost only when the terminal weight is chosen as the

value function, i.e., '(�) = V �(�), which can only be found from the solution to the

HJB equation.) Secondly, in addition to viewing the dynamics as a constraint, a

speci�c initial condition is imposed.

The calculus of variations solution can be thought of as a standard application

of the necessary conditions for constrained optimization, the only twist being that

the optimization is in�nite dimensional. Hence, the �rst step is to use Lagrange

multipliers to adjoin the constraints to the performance index. Since the constraints

are determined by the system di�erential equation (2.10) and represent equality con-

straints that must hold at each instant in time, an associated multiplier �(t) 2 IRn is

a function of time. Thus the augmented performance index is given by

Z T

0

(q(x(t)) + uT (t)u(t))dt+ '(x(T )) +

Z T

0

�T (t)(f(x(t)) + g(x(t))u(t)� _x)dt

= '(x(T )) +

Z T

0

[q(x(t)) + uT (t)u(t) + �T (t)(f(x(t)) + g(x(t))u(t)� _x)]dt:

(2.12)
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De�ning, for convenience, the following scalar function H, called the Hamiltonian,

H(x(t); u(t); �(t)) = q(x(t)) + uT (t)u(t) + �T (t)(f(x(t)) + g(x(t))u(t)) (2.13)

and integrating the last term on the right side of (2.12) by parts yields

'(x(T ))� �T (T )x(T ) + �T (0)x(0) +

Z T

0

[H(x(t); u(t); �(t)) + _�T (t)x(t)]dt: (2.14)

According to the theory of Lagrange multipliers, the problem of determining the

control function u(t) that minimizes the original performance index subject to the

constraints (2.10) has been converted to the problem of �nding stationary points of

(2.14) without constraints.

Now consider the equation for variations of (2.14) with respect to x(t) and u(t)

��
@'

@x
� �T

�
�x

�
t=T

+ [�T �x]t=0 +

Z tf

t0

��
@H

@x
+ _�T

�
�x +

@H

@u
�u

�
dt: (2.15)

For a stationary point, it is required that this be equal to zero for all allowable

variations. First, looking at the variation �x, in order to cause the coe�cients of �x

in (2.15) to vanish, the multiplier functions �(t) have to be chosen according to

_�T = �
@H

@x
; 0 � t � T (2.16)

with boundary condition

�T (T ) =
@'

@x

����
t=T

: (2.17)

Equation (2.15) then becomes

�T (0)�x(0) +

Z T

0

�
@H

@u
�u

�
dt: (2.18)

Now, since in this problem the initial condition is given and �xed, this implies �x(0) =

0. Finally, since for a stationary point the variation must be zero for arbitrary �u(t),
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the following must be satis�ed

@H

@u
= 0; 0 � t � T: (2.19)

The above equations, (2.16), (2.17), and (2.19), plus the original dynamics and initial

condition, represent necessary conditions for optimality known as the Euler-Lagrange

equations. These equations are used to design the control u(t) that minimizes the

performance index, and can be summarized as follows:

_x = f(x) + g(x)u (2.20)

_� = �

�
@H

@x

�T

(2.21)

@H

@u
= 0 (2.22)

with boundary conditions

x(0) given (2.23)

�(T ) =

�
@'

@x

�T
�����
t=T

: (2.24)

The optimizing control action u�(t) is determined by

u�(t) = argmin
u

H (x�(t); u; ��(t)) (2.25)

where x�(t) and ��(t) denote the solution corresponding to the optimal trajectory.

Note that the Lagrange multiplier �(t) is a dynamical variable that satis�es its

own dynamical equation (2.21), the so-called costate or adjoint equation that evolves

backward in time (by de�ning the backward time variable � = T � t it follows that

d� = �dt), with the �nal condition �(T ) given by equation (2.24).

The Euler-Lagrange equations are coupled ordinary di�erential equations with

two-point boundary conditions. That is, they are expressed by the state equation
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(2.20) with initial condition (2.23) and the costate equation (2.21) with �nal condition

(2.24). The optimal control u(t) is then generally determined in terms of x(t) and

�(t) by using the stationarity condition given by (2.22). This condition guarantees

a stationary point with respect to changes in u(t). Finally, expression (2.25) does

not yield an optimal control feedback law, but an optimal open-loop control (time

function).

Properties of the EL solution

In contrast to the HJB solution to the in�nite horizon optimal control problem, the

Euler-Lagrange solution is characterized as follows:

Open-Loop: The resulting optimal trajectory is explicitly solved for as a function of

time u(t), not as a feedback law.

Local: The resulting solution is only valid for the speci�ed initial condition x(0).

When a new initial condition is speci�ed, the problem must be resolved.

Necessary: Since the Euler-Lagrange equations specify the conditions for the existence

of a stationary point, they represent necessary conditions for an optimal trajectory.

2.4 Summary

We have outlined the two basic approaches to problems of optimal control, highlight-

ing the di�erences in their basic approach and in the properties of their solutions.

These di�erences are summarized in Figure 2.1.

A dynamic programming approach to the problem of optimal control leads to a

derivation of the Hamilton-Jacobi-Bellman equation. It provides a global control law

in the form of a state feedback controller. Unfortunately, it involves the solution of a

partial di�erential equation, which is in general computationally intractable.

The calculus of variations solution, on the other hand, only requires the solution

to a two-point boundary value ordinary di�erential equation, known as the Euler-

Lagrange equations. While still presenting a challenge, this is tractable when com-
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State Feedback
Global
Sufficient
Partial Diff. Eqn.

HJB
Open Loop
Local
Necessary
Ordinary Diff. Eqn.

E-L

Figure 2.1: Hamilton-Jacobi-Bellman vs. Euler-Lagrange Approach.

pared to the HJB partial di�erential equation. But, this solution is not equivalent to

that given by the Hamilton-Jacobi-Bellman equation. The Euler-Lagrange equations

solve instead a trajectory optimization problem. That is, they provide an open-

loop trajectory corresponding to a speci�c initial condition. Hence, computational

tractability is traded for the lack of a global solution.

A deep understanding of these two viewpoints toward the optimal control prob-

lem provides the proper background and context in which to interpret a number of

suboptimal strategies.
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Chapter 3 Control Lyapunov Function

Techniques

3.1 Introduction

The optimal control of nonlinear systems is one of the most challenging and di�cult

subjects in control theory. As detailed in the previous chapter, it is well known

that the nonlinear optimal control problem can be reduced to the Hamilton-Jacobi-

Bellman partial di�erential equation [BH75], but due to di�culties in its solution,

this is not a practical approach. Instead, the search for nonlinear control schemes

has generally been approached on less ambitious grounds than requiring the exact

solution to the Hamilton-Jacobi-Bellman partial di�erential equation.

In fact, even the problem of stabilizing a nonlinear system remains a challenging

task. Lyapunov theory, a successful and widely used tool, is a century old. Despite

this, there still do not exist systematic methods for obtaining Lyapunov functions for

general nonlinear systems. Nevertheless, the ideas put forth by Lyapunov nearly a

century ago continue to be used and exploited extensively in the modern theory of

control for nonlinear systems. One notably successful use of the Lyapunov methodol-

ogy is the concept of a control Lyapunov function (CLF) [Son83, Son89, FK95, FP96,

KKK95, FK96b, FK96a], the idea of which is to �rst choose a function which can be

made into a Lyapunov function for the closed loop system by choosing appropriate

control actions. The knowledge of such a function is then used to design control laws.

Once again, there do not exist systematic techniques for �nding CLFs for general

nonlinear systems, but this approach has been applied successfully to many classes

of systems for which CLFs can be found (feedback linearization, back-stepping, for-

warding [KKK95, FK96b, FK95]).

In this chapter we focus on methods for producing a control law once a CLF
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has been derived. Speci�cally, we explore the connection between Sontag's formula

[Son89], pointwise min-norm controllers [FK96a], and the Hamilton-Jacobi-Bellman

point of view. Since both Sontag's formula and pointwise min-norm controllers are

suboptimal, they select a control policy by prioritizing and trading-o� properties of

the optimal state feedback controller that they seek to approximate. CLF based

techniques �rst require stability. This is guaranteed completely by the fact that a

CLF exists, and leaves extra degrees of freedom in the choice of the speci�c control

policy. We show how di�erent approaches tie these extra degrees of freedom to the

HJB equation, clarifying both their strengths and limitations.

3.2 HJB equations and CLF techniques

Recall that the nonlinear system under consideration is given by

_x = f(x) + g(x)u f(0) = 0 (3.1)

with x 2 IRn denoting the state, u 2 IRm the control, and f(x) and g(x) are C1. The

objective function is

min
u(�)

Z 1

0

(q(x) + uTu)dt (3.2)

s:t: _x = f(x) + g(x)u

for q(x) 2 C1, positive semi-de�nite and the desired solution being a state feedback

control law. We have also assumed that the system [f(x); q(x)] is zero-state detectable.

The solution to this problem is

u� = �
1

2
gT

@V �

@x

T
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where V � solves the HJB equation

@V �

@x
f �

1

4

@V �

@x
ggT

@V �

@x

T

+ q = 0 (3.3)

and is the minimum \cost to go," which is commonly referred to as the value function

V �(x(0)) = min
u

Z 1

0

(q(x) + uTu)dt:

In what follows we develop connections between nonlinear control techniques based

on a control Lyapunov functions, and the HJB approach to the optimal control prob-

lem. When a CLF is viewed beyond a mere Lyapunov stability framework, as an

approximation to the value function V �, many CLF approaches have natural deriva-

tions from the HJB framework. We pursue these connections here, focusing the

majority of our attention on Sontag's formula [Son89] and pointwise min-norm con-

trollers [FK96a].

3.2.1 Control Lyapunov Functions (CLFs)

A control Lyapunov function (CLF) is a C1, proper, positive de�nite function V :

IRn ! IR+ such that

inf
u

�
@V

@x
f(x) +

@V

@x
g(x)u

�
< 0 (3.4)

for all x 6= 0 [Art83, Son83, Son89]. This de�nition is motivated by the following

consideration. Assume we are supplied with a positive de�nite function V and asked

whether this function can be used as a Lyapunov function for a system we would like

to stabilize. To determine if this is possible, we would calculate the time derivative

of this function along trajectories of the system, i.e.

_V (x) =
@V

@x
[f(x) + g(x)u]:

If it is possible to make the derivative negative at every point by an appropriate choice

of u, then we have achieved our goal and can stabilize the system with V a Lyapunov
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function for the controlled system under the chosen control actions. This is exactly

the condition given in (3.4).

Given a general system of the form (3.1), it may be di�cult to �nd a CLF or

even to determine whether one exists. Fortunately, there are signi�cant classes of

systems for which the systematic construction of a CLF is possible (back-stepping,

feedback linearization, forwarding, LPV, etc.). This has been explored extensively in

the literature ([KKK95, FK96b, FK95] and references therein). We will not concern

ourselves with this question. Instead, we will pay particular attention to techniques

for designing a stabilizing controller once a CLF has been found, and their relationship

to the nonlinear optimal control problem.

3.2.2 The value function as a CLF

First, let us understand why it is reasonable to view the value function as a CLF.

Rewriting the HJB equation (3.3) as

@V �

@x

�
f �

1

2
ggT

@V �

@x

T�
+
1

4

@V �

@x
ggT

@V �

@x

T

+ q = 0

and recalling that

u� = �
1

2
gT

@V �

@x

T

allows us to reformulate (3.3) as

@V �

@x
[f + gu�] = �

�
1

4

@V �

@x
ggT

@V �

@x

T

+ q

�
:

Note that now the left-hand side appears as in the de�nition of a control Lyapunov

function (cf. (3.4)). Hence, if the right-hand side is negative, then V � is a control

Lyapunov function. Technically, the right-hand side need only be negative semi-

de�nite1 and hence the value function may only be a so-called weak CLF. Of course,

for any positive de�nite cost parameter q, this equation shows that V � is in fact a

1This is why it is necessary to impose zero-state detectability to ensure stability of the optimal

closed loop system.
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strict CLF. It is important to keep this connection in mind as we proceed, because

many CLF based techniques can be viewed as assuming that a CLF is an estimate of

the value function, which is ideal for performance purposes.

3.2.3 CLF a substitute for the value function:

Sontag's formula

It can be shown that the existence of a CLF for the system (3.1) is equivalent to

the existence of a globally asymptotically stabilizing control law u = k(x) which is

continuous everywhere except possibly at x = 0 [Art83]. Moreover, one can calculate

such a control law k explicitly from f , g and V . Perhaps the most important formula

for producing a stabilizing controller based on the existence of a CLF was introduced

in [Son89] and has come to be known as Sontag's formula. We will consider a slight

variation of Sontag's formula (which we will continue to refer to as Sontag's formula

with slight abuse), originally introduced in [FP96]:

u�s =

8>>><
>>>:
�

2
4 @V

@x
f+

r
( @V@x f)

2

+q(x)
�
@V
@x

ggT @V
@x

T
�

@V
@x

ggT @V
@x

T

3
5 gT @V

@x

T @V
@x
g 6= 0

0 @V
@x
g = 0:

(3.5)

(The use of the notation u�s will become clear later.) While this formula enjoys

similar continuity properties to those for which Sontag's formula is known (i.e., for

q(x) positive de�nite it is continuous everywhere except possibly at x = 0 [Son89]),

for us its importance lies in its connection with optimal control. At �rst glance, one

might note that the cost parameter associated with the state, q(x) (refer to eqn.

(3.2)), appears explicitly in (3.5). In fact, the connection runs much deeper and our

version of Sontag's formula has a strong interpretation in the context of Hamilton-

Jacobi-Bellman equations.



23

Optimality, Sontag's formula and level curves

Below, we unravel some key connections between level curves of the value function

V � and Sontag's formula (3.5). It is shown that Sontag's formula, in essence, uses

the directional information supplied by a CLF, V , and scales it properly to solve the

HJB equation. In particular, if V has level curves that agree with those of the value

function, then Sontag's formula produces the optimal controller [FP96].

Assume that V is a CLF for the system (3.1). For the sake of motivation, assume

that V possesses the same shape level curves as those of the value function V �. Even

though in general V would not be the same as V �, this does imply a relationship

between their gradients. We may assert that there exists a scalar function �(x) such

that @V �

@x
= �(x)@V

@x
for every x (i.e., the gradients point in the same direction at every

point). In this case, the optimal control can also be written in terms of the CLF V ,

u� = �
1

2
gT

@V

@x

�T

= �
�(x)

2
gT

@V

@x

T

: (3.6)

Additionally, the HJB equation can be used to determine �(x) by substituting @V �

@x
=

�(x)@V
@x

into the HJB equation (3.3)

�
@V

@x
f �

�2

4

�
@V

@x
ggT

@V

@x

T�
+ q(x) = 0: (3.7)

This is a quadratic equation in �. Solving for � and taking only the positive square

root gives

� = 2

0
@ @V

@x
f +

q
[@V
@x
f ]2 + q(x)[@V

@x
ggT @V

@x

T
]

@V
@x
ggT @V

@x

T

1
A : (3.8)

Substituting this value into the control u� given in (3.6) yields

u� =

8><
>:
�

�
@V
@x

f+

q
( @V
@x

f)2+q(x)( @V
@x

ggT @V
@x

T
)

@V
@x

ggT @V
@x

T

�
gT @V

@x

T @V
@x
g 6= 0

0 @V
@x
g = 0;
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which is exactly Sontag's formula, u�s (3.5). In this case, Sontag's formula will result

in the optimal controller.

For an arbitrary CLF V , we may still follow the above procedure which results in

Sontag's formula. Hence Sontag's formula may be thought of as using the direction

given by the CLF (i.e., @V
@x
), which, by the fact that it is a CLF will result in stability,

but pointwise scaling it by � so that it will satisfy the HJB equation as in (3.7).

Then �@V
@x

is used in place of
�
@V �

@x

�
in the formula for the optimal control u�, (3.6).

Hence, we see that there is a strong connection between Sontag's formula and the

HJB equation. In fact, Sontag's formula just uses the CLF V as a substitute for the

value function in the HJB approach to optimal control.

Next, we introduce the notion of pointwise minimum norm controllers ([FK96a,

FK95, FK96b]), and demonstrate that Sontag's formula is the solution to a speci�c

pointwise minimum norm problem. It is from this framework that connections with

optimal control have generally been emphasized.

3.2.4 Pointwise min-norm controllers

Given a CLF, V > 0, by de�nition there will exist a control action u such that

_V = @V
@x
[f + gu] < 0 for every x. In general there are many such u that will satisfy

@V
@x
[f + gu] < 0. One method of determining a speci�c u is to pose the following

optimization problem [FK96a, FK95, FK96b]:

(Pointwise Min-Norm)

minimize uTu (3.9)

subject to
@V

@x
[f + gu] � ��(x) (3.10)

where �(x) is some continuous, positive de�nite function satisfying @V
@x
f(x) � ��(x)

whenever @V
@x
g(x) = 0, and the optimization is solved pointwise (i.e., for each x).

This formula pointwise minimizes the control energy used while requiring that V be

a Lyapunov function for the closed loop system and decrease by at least �(x) at
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every point. The resulting controller can be solved for o�-line and in closed form (see

[FK95] for details).

In [FK96a] it was shown that every CLF V is the value function for some mean-

ingful cost functional. In other words, it solves the HJB equation associated with a

meaningful cost. This property is commonly referred to as being \inverse optimal"

[FK96a]. Note that a CLF V does not uniquely determine a control law because

it may be the value function for many di�erent cost functions, each of which may

have a di�erent optimal control. What is important is that the pointwise min-norm

formulation always produces one of these inverse optimal control laws [FK96a].

To intuitively understand why pointwise min-norm controllers possess such strong

connections to HJB equations, let us reconsider the optimization in (3.9), but this

time use a Lagrange multiplier to deal with the constraint. Hence, we can write the

Lagrangian for the problem as

L(u; �) = uTu+ �

�
@V

@x
[f + gu]� �

�

where � is the Lagrange multiplier (required to be positive, etc., in accordance with

the Kuhn-Tucker conditions [KT61]). Lagrangian duality tells us that the optimizing

u should minimize the Lagrangian. Furthermore, we can exploit the fact that adding

or subtracting terms to the Lagrangian that do not contain u will not e�ect the

solution. So, we will add the term q(x) and subtract the ��� term to obtain

min
u

�
[q(x(t)) + uT (t)u(t)] + �(x(t))

@V

@x
[f(x(t)) + g(x(t))u(t)]

�
= 0;

which is identical to the HJB equation (2.6) except with
�
@V �

@x

�
replaced by �@V

@x
. Fur-

thermore, by performing the minimization, we �nd that the resulting state feedback

is of the form

u� = �
�

2
gT

@V

@x

T

:

This is identical to the relationship used to derive Sontag's formula. Hence, we

see that pointwise min-norm formulas are similar to Sontag's formula in that they
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substitute �@V
@x

for the true gradient of the value function
�
@V �

@x

�
. The only di�erence

is that pointwise min-norm controllers can use a di�erent criterion to select the scaling

�. This degree of freedom is basically contained in the choice of �. Therefore, we can

view pointwise min-norm formulas as a generalization of Sontag's formula.

We now explicitly derive the parameter �(x) that generates Sontag's formula in

the pointwise min-norm formulation. Let us assume that the solution to the above

pointwise min-norm problem results in Sontag's formula. It should be clear that for

@V
@x
g 6= 0, the constraint will be active, since u will be reduced as much as possible.

Knowing that u will turn out to be Sontag's formula results in the following value for

� [FP96]:

�� =
@V

@x
(f + gu�s)

=
@V

@x
f +

@V

@x
g

0
@� @V

@x
f +

q
(@V
@x
f)2 + q(x)(@V

@x
ggT @V

@x

T
)

@V
@x
ggT @V

@x

T

1
A gT

@V

@x

T

= �

s�
@V

@x
f

�2

+ q(x)

�
@V

@x
ggT

@V

@x

T�
:

Hence, the special choice of � (which we denote by �s),

�s =

s�
@V

@x
f

�2

+ q(x)

�
@V

@x
ggT

@V

@x

T�
(3.11)

in the pointwise min-norm scheme (3.9) results in Sontag's formula. This provides us

with an important alternative method for viewing Sontag's formula. It is the solution

to the above pointwise min-norm problem with parameter �s. Hence, our version of

Sontag's formula enjoys all the properties of pointwise min-norm controllers.

We have seen that these CLF based techniques share much in common with the

HJB approach to nonlinear optimal control. Nevertheless, the strong reliance on a

CLF, while providing stability, can lead to suboptimal performance when applied

naively, as demonstrated in the following example.
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3.3 Example

Throughout this thesis we will call upon the following example to illustrate key points.

Consider a two dimensional nonlinear oscillator

8<
: _x1 = x2

_x2 = �x1
�
�
2
+ arctan(5x1)

�
�

5x2
1

2(1+25x2
1
)
+ 4x2 + 3u

with performance index Z 1

0

(x22 + u2)dt:

This example was created using the so-called converse HJB method [DPSN96] so that

the optimal solution is known. For this problem, the value function is given by

V � = x21(
�

2
+ arctan(5x1)) + x22

which results in the optimal control action

u� = �3x2:

A simple technique for obtaining a CLF for this system is to exploit the fact that

it is feedback linearizable [Isi95]. In the feedback linearized coordinates, a quadratic

function may be chosen as a CLF. In order to ensure that this CLF will at least

produce a locally optimal controller, we choose the quadratic CLF to agree with the

quadratic portion of the true value function.2 This results in the following CLF

V =
�

2
x21 + x22:

(This function is actually not a CLF in the strict sense in that there exist points

where _V may only be made equal to zero and not strictly less than zero. This is

sometimes referred to as a weak CLF. Nevertheless, we will use this CLF since it is

2This can be done without knowledge of the true value function by performing Jacobian lineariza-

tion and designing an LQR optimal controller for the linearized system.
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the only quadratic function that locally agrees with our value function (which itself

is not even a strict CLF for this system). Furthermore, asymptotic stability under

Sontag's formula is guaranteed by LaSalle's invariance principle.)

We will compare Sontag's formula using this CLF to the performance of the op-

timal controller. Figure 3.1 is a plot of the level curves of the true value function V �

versus those of the CLF V . Clearly, these curves are far from the level curves of a

quadratic function. Since Sontag's formula uses the directions provided by the CLF,

one might suspect that Sontag's formula with the quadratic CLF given above will

perform poorly on this system.

−5 0 5
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−1

0

1

2

3

4

5

x
1

x 2

Value Fcn. V*

CLF V         

Figure 3.1: Contours of the value function (solid) and CLF (dashed).

This is indeed the case, as shown in Figure 3.2 where Sontag's formula (dotted)

accumulates a cost of over 250 from the initial condition [3;�2]. The costs achieved

by Sontag's formula and the optimal controller from the initial condition [3;�2] are
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summarized in Table 3.1.
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31.7

258

Optimal
Sontag 

Figure 3.2: Phase Portrait: Optimal (solid), Sontag's (dashed).

Table 3.1

Controller Cost

Sontag 258

Optimal 31.7

Table 3.1: Cost of Sontag's formula vs. the optimal from the initial condition [3;�2].

This example shows that CLF based designs can be particularly sensitive to di�er-

ences between the CLF and the value function, even for a technique such as Sontag's

formula that directly incorporates information from the optimal control problem into

the controller design process.

One might note that we have naively utilized the CLF methodology without

thought as to how to better craft a more suitable and sensible CLF for the this
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problem. In this simple example, it is not too di�cult to iterate on the selection of

parameters and �nd a controller that performs admirably. Nevertheless, it exactly

illustrates the more subtle issues involved in CLF design that often require experience

and expertise to be able to modify the methodology on a problem by problem basis.

3.4 Summary

Control Lyapunov functions are best interpreted in the context of Hamilton-Jacobi-

Bellman equations, especially a variation of Sontag's formula that naturally arises

from HJB equations and furthermore is a special case of a more general class of CLF

based controllers known as pointwise min-norm controllers. Even with strong ties to

the optimal control problem, CLF based approaches err on the side of stability and

can result in poor performance when the CLF does not closely resemble the value

function.

In terms of the overall picture of nonlinear optimal control, control Lyapunov

functions sit squarely on the side of the Hamilton-Jacobi-Bellman equation. Figure

3.3 shows this pictorially. In the following chapter we will �ll in the Euler-Lagrange

side with so-called receding horizon techniques.



31

Sontag’s Formula
Pointwise Min-Norm

HJB E-L

Control Lyapunov Fcn.

Figure 3.3: CLFs within the optimal control picture.
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Chapter 4 Receding Horizon Control

4.1 Introduction

In contrast to the emphasis on guaranteed stability that is the primary goal of CLFs,

another class of nonlinear control schemes that goes by the names receding horizon,

moving horizon, or model predictive control places importance on optimal perfor-

mance [KP77, KBK83, MM90, GPM89, KG88]. These techniques apply a receding

horizon implementation in an attempt to approximately solve the optimal control

problem through on-line computation. The receding horizon methodology is to solve

a trajectory optimization emanating from the current state, and implement the re-

sulting open-loop solution until a new state update is received and the process is

repeated. For systems under which on-line computation is feasible, receding horizon

control (RHC) has proven quite successful [RRTP78, Ric93], but guaranteed stability

has remained a concern for some time.

In this chapter we argue that some of these di�culties are rooted in the fact that

receding horizon control adopts an Euler-Lagrange framework for optimal control, but

translates it to the desired state feedback solution by employing the receding horizon

methodology. Yet, it still inherits the properties of the Euler-Lagrange solution to

trajectory optimizations, namely that each solution only provides information for

a speci�c initial condition and trajectory and hence this leads to di�culties when

attempting to establish properties such as stability. We begin our exploration by

de�ning exactly what we mean by receding horizon control.

4.2 Receding Horizon Control (RHC)

Receding horizon techniques (cf. [KP77, KBK83, GPM89, MM90, KG88, GPM89])

are based upon using on-line computation to repeatedly solve optimal control prob-
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lems emanating from the current measured state [KP77, KBK83, GPM89, MM90,

KG88, GPM89]. To be more speci�c, the current control at state x and time t is

obtained by determining on-line the optimal control û over the interval [t; t + T ]

respecting the following objective:

(Receding Horizon Control)

minimize '(x(t+ T )) +

Z t+T

t

(q(x(�)) + uT (�)u(�))d� (4.1)

subject to _x = f(x) + g(x)u (4.2)

and implementing the optimizing solution û(�) until a new state update is received.

Note that this optimization uses a �nite horizon T and a terminal weight '(�), and

hence is solved as an Euler-Lagrange type trajectory optimization with the current

state measurement x(t) serving as the initial condition. Repeating these calculations

for every new measured state yields a state feedback control law. As is evident from

this sort of control scheme, obtaining a reduced value of the performance index is of

utmost importance.

The philosophy behind receding horizon control is to exploit the simplicity of

the Euler-Lagrange approach to optimal control as compared to the HJB approach.

Unfortunately, the Euler-Lagrange solution is valid only for a single initial condition

and produces an open-loop trajectory. This is in contrast to a desired state feedback

law. Hence, this is overcome by resolving an Euler-Lagrange type optimization at

every encountered state, producing a state feedback. This is possible due to the local,

open-loop nature of the Euler-Lagrange formulation which makes it computationally

much simpler than the HJB equation. Furthermore, this methodology only requires

that the optimal control problem be solved for the states encountered along the

current trajectory, again circumventing the global nature of the HJB approach and

its associated computational intractability.

In general, the solution to each receding horizon optimization provides an ap-

proximation to the value function at the current state, as well as an accompanying

open-loop control trajectory, but this information is speci�c to the current state and
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indicates that di�culties may arise when considering properties such as stability which

are typically established for regions. In following sections we explore this and other

associated di�culties encountered in the receding horizon framework.

4.2.1 Computational issues

Despite the computational advantages of an Euler-Lagrange approach over those of

the HJB viewpoint, the on-line implementation of receding horizon control is still

computationally demanding. In fact, the practical implementation of receding hori-

zon control is often hindered by the computational burden of the on-line optimization

which, in some theoretical settings, must be solved continuously [MM90]. In reality,

the optimization is most commonly solved at discrete sampling times and the corre-

sponding control moves are applied until they can be updated at the next sampling

instance. The choice of both the sampling time and horizon are largely in
uenced by

the ability to solve the required optimization within the allowed time interval. These

considerations often limit the application of receding horizon control to systems with

su�ciently slow dynamics to be able to accommodate such on-line inter-sample com-

putation. Applications in the process industries represent the most prominent exam-

ples of the successes of the receding horizon methodology [RRTP78, Ric93, CR79].

For linear systems under quadratic objective functions, the on-line optimization

is reduced to a tractable quadratic program, even in the presence of linear input and

output constraints. This ability to incorporate constraints was the initial attraction

of receding horizon control. For nonlinear systems the optimization is in general non-

convex and hence has no e�cient solution. There are a number of di�erent approaches

to the problem of implementing nonlinear receding horizon control. Below we expound

on the most common and promising of these approaches.

Standard nonlinear receding horizon control

Nonlinear receding horizon control relies on standard techniques for solving trajectory

optimization problems of the form in (4.1-4.2). These include both direct and indirect

approaches relying typically on either shooting or collocation techniques [BH75]. Such
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an optimization is generally non-convex. Beyond this, the major di�culty is that each

evaluation of the performance index requires the simulation of nonlinear dynamics,

which is computationally burdensome.

Stabilized continuation techniques

One approach to counter the computational di�culties of the optimizations in re-

ceding horizon control is the stabilized continuation method, where the boundary

constraint from the Euler-Lagrange equations (2.24) at the end of the horizon (i.e.,

�(t + T ) = @'
@x

��
x(t+T )

) is treated as a function of the initial conditions (x(t) and

�(t)) and dynamically stabilized rather than imposed. This allows the solution to the

Euler-Lagrange equations to be propagated as a function of the initial condition x(t)

by di�erential equations. This is one approach to a continuous time implementation

of receding horizon control, in contrast to the majority of other techniques that re-

solve each receding horizon optimization at discrete sampling times. Details can be

found in [OF94b, OF94a, OF96, Oht96, RD83]. Most other approaches attempt to

ease the computational burden of the optimization by simplifying the dynamics in

some way.

Receding horizon control with feedback linearization

The idea of this approach is to transform the dynamics to those of a linear system

through feedback linearization. Since linear systems can be integrated e�ciently and

accurately, this can dramatically improve the speed of the receding horizon optimiza-

tions [DRCN93, NM95, Nev97]. Note that this also involves a transformation of the

cost and constraints, often resulting in state dependence. If desired, one may attempt

to approximate the transformed cost and constraints by a quadratic cost and linear

constraint, in which case the nonlinear receding horizon control problem is approxi-

mated completely by a linear problem [PN97b]. When the transformation to linear

coordinates is well conditioned, the approach can be quite successful, but approxi-

mations can be inaccurate when the transformation is poorly conditioned. The idea

of feedback linearization has even been found to be computationally bene�cial when

only a portion of the plant can be linearized [PN97b].
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Gain scheduled receding horizon control

Gain scheduled receding horizon control simply uses linear approximations to the

dynamics in the receding horizon optimization. With quadratic costs and linear

constraints, this reduces each optimization to the standard optimization in linear

receding horizon control (a quadratic programming problem). This approach can be

found in Garcia [Gar84].

Receding horizon control with time-varying linear models

By using the solution to the current receding horizon optimization as a candidate

trajectory for the receding horizon optimization at the next state measurement, lin-

earization about this trajectory provides a time-varying linear model. In this ap-

proach, each receding horizon optimization is computed with respect to these time-

varying linear dynamics instead of the true nonlinear dynamics. This fact can be

used to reduce the optimization (under quadratic cost and linear constraints) to a

large quadratic program which can be e�ciently solved. This idea was introduced by

Nevisti�c [Nev97].

While the numerical and practically oriented issues are compelling, there are funda-

mental issues related to the theoretical foundations of receding horizon control that

deserve equal scrutiny. The most critical of these are well illustrated by considering

the stability and performance properties of idealized receding horizon control.

4.2.2 Stability

While using a numerical optimization as an integral part of the control scheme allows

great 
exibility, especially concerning the incorporation of constraints, it complicates

the analysis of stability and performance properties of receding horizon control im-

mensely. Beyond limitations imposed by the Euler-Lagrange philosophy, additional

di�culties arise as well. Since the control action is determined through a numerical

on-line optimization at every sampling point, there is often no closed form expression

for the controller or for the resulting closed loop system.



37

The lack of a complete theory for a rigorous analysis of receding horizon stabil-

ity properties in nonlinear systems often leads to the use of intuition in the design

process. Unfortunately, this intuition can be misleading. Consider, for example, the

statement that horizon length provides a tradeo� between the issues of computation

and of stability and performance. A longer horizon, while being computationally

more intensive for the on-line optimization, will provide a better approximation to

the in�nite horizon problem and hence the controller will inherit the stability guaran-

tees and performance properties enjoyed by the in�nite horizon solution. While this

intuition is correct in the limit as the horizon tends to in�nity [PN97a], for horizon

lengths applied in practice the relationship between horizon and stability is much

more subtle and often contradicts such seemingly reasonable statements. This is best

illustrated by the example used previously in Section 3.3. Recall that the system

dynamics were given by

8<
: _x1 = x2

_x2 = �x1
�
�
2
+ arctan(5x1)

�
�

5x2
1

2(1+25x2
1
)
+ 4x2 + 3u

with performance index Z 1

0

(x22 + u2)dt:

For simplicity we will consider receding horizon controllers with no terminal weight

(i.e., '(x) = 0) and use a sampling interval of 0:1. By investigating the relationship

between horizon length and stability through simulations from the initial condition

[3;�2], a puzzling phenomena is uncovered. Beginning from the shortest horizon

simulated, T = 0:2, the closed loop system is found to be unstable (see Figure 4.1).

As the horizon is increased to T = 0:3, the results change dramatically and near

optimal performance is achieved by the receding horizon controller. At this point,

one might be tempted to assume that a su�cient horizon for stability has been reached

and longer horizons would only improve the performance. In actuality the opposite

happens and as the horizon is increased further, the performance deteriorates and

returns to instability by a horizon of T = 0:5. This instability remains present even
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past a horizon of T = 1:0. The simulation results are summarized in Table 4.1 and

Figure 4.1.
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Figure 4.1: RHC for various horizon lengths.

It is important to recognize and understand that the odd behavior we have en-

countered is not a nonlinear e�ect, nor the result of a cleverly chosen initial condition

or sampling interval, but rather inherent to the receding horizon approach. In fact,

the same phenomena takes place even for the linearized system

_x =

2
4 0 1

��
2

4

3
5 x+

2
4 0

3

3
5 u: (4.3)

In this case, a more detailed analysis of the closed loop system is possible due to

the fact that the controller and closed loop system are linear and can be computed

in closed form. Figure 4.2 shows the magnitude of the maximum eigenvalue of the
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Table 4.1

Controller Performance

T = 0:2: (dotted) unstable

T = 0:3: (dash-dot) 33.5

T = 0:5: (dashed) unstable
T = 1:0: (solid) unstable

Table 4.1: Comparison of controller performance from initial condition [3;�2].

closed loop versus the horizon length of the receding horizon controller.1 This plot

shows that stability is only achieved for a small range of horizons that include T = 0:3

and longer horizons lead to instability. It is not until a horizon of T = 3:79 that the

controller becomes stabilizing once again.

4.2.3 Approaches to guaranteed stability

The stability problems demonstrated in the previous section are not new in the re-

ceding horizon control community and related phenomena have been noted before

by Bitmead et al. in the context of Riccati di�erence equations [BGPK85]. This

delicate relationship between horizon length and stability has been addressed by var-

ious means. For linear systems, the literature is well developed (see [GPM89] and

references therein) and generally exploits computable properties of linear systems.

Nonlinear systems lack exploitable structure in terms of computation, and hence lend

themselves to fewer practical stabilizing formulations of receding horizon control.

Proving stability for nonlinear systems ultimately boils down to �nding a Lya-

punov function. In receding horizon control, the vast majority of stabilizing ap-

proaches use the optimal cost of the receding horizon optimization as a Lyapunov

function. To make this work, it is necessary to use either a constraint, or terminal

weight, or combination of the two that guarantee that each receding horizon opti-

mization has a cost less than that computed at the previous measured state.

1The receding horizon controller was computed by discretizing the continuous time system us-

ing a �rst order hold and time step of 0.001, and solving the Riccati di�erence equation. Hence

the eigenvalues correspond to a discrete-time system with stability occurring when the maximum

eigenvalue has modulus less than 1.
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Figure 4.2: Maximum eigenvalue versus horizon length for discretized linear system.

Below, we review some approaches to guaranteeing stability in receding horizon

formulations.

Finite horizon with zero end constraint

By requiring that x(t + T ) = 0 directly in each receding horizon optimization, the

control sequence û[t; t + T ] from each receding horizon optimization will drive the

system to the origin. In addition, this control sequence is feasible for the receding

horizon optimization at time t +�t (i.e., û[t +�t; t + T ]) and it achieves a cost less

than the cost of the optimization at time t. Hence, this cost can be easily shown to

be a Lyapunov function. This idea of an end constraint was �rst introduced by Kwon

and Pearson [KP77, KP78] and has been used by others [CS82, MM90] to prove the

stability of receding horizon control for nonlinear systems. There has been an attempt

to remove such end constraints due to the fact that numerically they can be di�cult
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to satisfy, and appear arti�cial since they are not achieved in closed loop. In fact,

ideally one would choose a terminal weight for each receding horizon optimization

that is equal to the value function. Heuristically, an end constraint x(t + T ) = 0 is

akin to an in�nite terminal weight, clearly a poor choice.

In�nite horizon for open-loop stable systems

The name in�nite horizon is actually a bit misleading since the control variables are

only optimized over a �nite horizon [t; t + T ]. But the name in�nite horizon comes

from the fact that the terminal weight is chosen as the open-loop in�nite horizon cost,

and hence each receding horizon optimization can be thought of as an in�nite horizon

optimization, but where the control actions can only be chosen over [t; t + T ]. That

is, the receding horizon objective is

Z t+T

t

(q(x) + uTu)dt+

Z 1

t+T

q(x)dt:

Once again stability follows from the fact that the optimal control sequence from

time t provides a feasible trajectory beginning at time t + �t and achieves a lower

cost. This idea was �rst introduced by Rawlings and Muske in the context of linear

systems [RM93]. For nonlinear systems, di�culty arises because the terminal weight

'(x(t+T )) must be the cost accumulated by the open-loop system. For linear systems,

this is easily obtained from the Lyapunov equation, but for nonlinear systems no easily

computable formula exists.

Hybrid (dual mode) receding horizon control

Hybrid receding horizon control, or dual mode MPC, is an attempt to relax the

restrictiveness of end constraints. While end constraints require that by the end of

the horizon the origin has been reached (x(t + T ) = 0), hybrid receding horizon

control only requires that x(t+T ) lie within a pre-speci�ed set W around the origin.

It is assumed that inside the set W , a stabilizing controller is known. Therefore,

the receding horizon controller only attempts to bring the state into W , from which

the controllers are switched and the local stabilizing controller takes over. In this
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case, the cost used as a Lyapunov function is the cost to arrive in the set W . This

Lyapunov function proves that the system enters W (in �nite time). This idea was

introduced by Michalska and Mayne [MM93] for nonlinear systems.

Quasi-in�nite prediction horizon

This approach is both a generalization of in�nite horizon receding horizon control,

and another approach to the dual mode concept. Once again, it is assumed that a

stabilizing controller is known locally within a set W . Instead of switching to this

controller, as is done in hybrid receding horizon control, the in�nite horizon cost of

this controller (in the set W ) is computed, o�-line, and used as a terminal weight for

the receding horizon problem (4.1{4.2). Furthermore, a constraint is added to the

receding horizon problem that requires the �nal state x(t+ T ) to lie within W . This

is basically equivalent to pre-stabilizing the system and applying the in�nite horizon

results. In this case, no switching is required, regardless of whether the states are

inside or outside of W . Chen and Allg�ower proposed this approach [CA96].

Finally, we mention one approach not based upon the idea of using the cost as a

Lyapunov function.

Contractive receding horizon control

Contractive receding horizon control simply imposes a constraint to each receding

horizon optimization that a norm of the state has contracted over the sampling in-

terval. In essence, this is imposing a Lyapunov function on the closed loop system.

This idea was introduced by De Oliveira and Morari [DOM96].

Other variations of these techniques continue to be developed, with both imple-

mentability and stability as the motivating factors.

4.3 Summary

Receding horizon control, which is based on the repeated on-line solution of open-loop

trajectory optimal control problems, closely relates to an Euler-Lagrange framework.
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The intractability of the HJB equations are overcome by solving for the optimal

control only along the current trajectory through on-line computation. This approach

chooses to err on the side of performance and in its purest form lacks guaranteed

stability properties. Stability and performance concerns become even more critical

when short horizons must be used to accommodate the extensive on-line computation

required. This has led to the development of stabilizing receding horizon formulations.

They typically involve the alteration of the receding horizon optimization to guarantee

that its optimal value can be used as a Lyapunov function, imitating the fact that

the value function is a Lyapunov function in the HJB framework.

Sontag’s Formula
Pointwise Min-Norm

Receding Horizon
Methodology

HJB E-L

Control Lyapunov Fcn. Trajectory Optimizations

Figure 4.3: RHC within the optimal control picture.

In our optimal control framework, the receding horizon methodology comes under

the Euler-Lagrange heading (Figure 4.3). It is based on trajectory optimizations,

which only provide local open-loop information. It is the repeated solution of these

optimizations, namely the receding horizon approach, that results in the desired state

feedback solution.
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Chapter 5 A Receding Horizon

Extension of Pointwise Min-Norm

Controllers

5.1 Introduction

In the previous two chapters, two popular approaches to the nonlinear optimal con-

trol problem were presented. Control Lyapunov function (CLF) based methodolo-

gies were considered �rst, where in particular they were discussed in relation to the

Hamilton-Jacobi-Bellman (HJB) optimization equation. A variation of Sontag's fa-

mous CLF formula was highlighted as resulting from a special choice of parameters

in the pointwise min-norm formulation and for possessing special optimality proper-

ties and interpretations in the context of the HJB partial di�erential equation. But

as was clearly demonstrated in the example of Chapter 3, the performance of these

controllers can be quite sensitive to the shape of the CLF and may result in poor

performance when the CLF does not resemble the value function.

In stark contrast to the global and stability oriented philosophy which is the

cornerstone of CLF techniques, the receding horizon methodology, which was reviewed

in Chapter 4, aims for optimal performance through on-line computation. It proceeds

by repeatedly solving �nite horizon open-loop control problems emanating from the

current state and applying the initial control actions until the next state measurement

is available. This approach is more analogous to Euler-Lagrange based techniques

for optimal control, which apply to �nite horizon problems for a speci�ed initial

condition and result in open-loop control trajectories. While this approach aims for

performance, guarantees on fundamental properties such as stability have generally

been lacking or di�cult to obtain. Moreover, successful implementation for nonlinear
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systems can be troublesome due to the requirement of solving a generally non-convex

optimization at each time step.

Based on their underlying connection with the optimal control problem, in this

chapter we show that both control Lyapunov function based methods and receding

horizon control can be cast in a single unifying framework where the advantages of

both can be exploited. The strong stability properties of CLFs can be carried into a

receding horizon scheme without sacri�cing the excellent performance advantages of

receding horizon control. With this 
exible new approach, computation can be used

to its fullest to approach optimality while stability is guaranteed by the presence of

the CLF. This approach in essence combines and unites the best properties of CLFs

and receding horizon control.

We begin by connecting the approaches reviewed in Chapters 3 and 4 by providing

a uni�ed framework in which to view them. From this common vantage point, we

are able to introduce a new RHC+CLF scheme which represents a receding horizon

extension of the pointwise min-norm controllers of Chapter 3. It is shown to possess

various theoretical and implementation properties, including a special choice of pa-

rameters that corresponds to Sontag's formula. Finally, this approach is tested on

our oscillator example of previous chapters.

5.2 Limits of receding horizon control

In Chapter 3 and 4, the philosophical underpinnings of two approaches (CLFs and

RHC) were shown to lie in the two classical approaches (HJB and Euler-Lagrange)

to the optimal control problem. A deeper look at the actual form of the underlying

optimization involved in the following three schemes; optimal control, pointwise min-

norm, and receding horizon; leads to an even more striking connection. In this section

we develop a heuristic framework for viewing both optimal control (2.2) and pointwise

min-norm control (3.9){(3.10) as limiting cases of receding horizon control.

Our starting point will be to consider the standard open-loop optimization that

is solved on-line at every time instance in receding horizon control, but without the
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terminal weight '(�) Z t+T

t

(q(x) + uTu)d�: (5.1)

First, we make the trivial observation that as the horizon T tends to in�nity, the

objective in the optimal control problem (2.2) is recovered,

Z 1

t

(q(x) + uTu)d�: (5.2)

At the other extreme, consider what happens as the horizon T tends to zero. First,

note that for any T an equivalent objective function is given by

1

T

Z t+T

t

(q(x) + uTu)d� (5.3)

since dividing by T has no e�ect on the optimizing u. Now, letting T ! 0 yields

q(x(t)) + uT (t)u(t): (5.4)

Since x(t) is known there is no need to include the term q(x(t)), leaving

uT (t)u(t)

which is recognized as the objective function used in the pointwise min-norm formu-

lation (3.9).

Hence, this indicates that we may heuristically view the pointwise min-norm prob-

lem as a receding horizon problem with a horizon length of zero. These considera-

tions suggest the following interpretation: optimal control and pointwise min-norm

formulations should represent extreme cases of a properly conceived receding horizon

scheme. This is pictured in Figure 5.1.

Ideally, we would hope to incorporate the best properties of each approach into a

single scheme parameterized by horizon length. These properties should include:

1. Stability for any horizon T .
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Receding Horizon

Control

T 10

Optimal

Horizon

Controlmin-norm

Pointwise

0 T

Figure 5.1: Uni�ed framework.

2. Pointwise min-norm controllers for T = 0.

3. Optimality for T =1.

Additionally, there should exist an extension of Sontag's formula that will recover

the optimal controller if the level curves of the CLF correspond to those of the value

function, regardless of the horizon length T . With these goals in mind, we present a

new class of control Lyapunov function based receding horizon control schemes.

5.3 A receding horizon generalization

of pointwise min-norm controllers

In this section a new class of control schemes is introduced that retain the global

stability properties of control Lyapunov function methods while taking advantage of

the on-line optimization techniques employed in receding horizon control. In essence

it represents a natural extension of the CLF based pointwise min-norm concept to a

receding horizon methodology, including an appropriate interpretation as a concep-

tual blend of HJB and Euler-Lagrange philosophies. This interaction of approaches

is found to inherit not only the theoretical advantages of each methodology, but

unexpectedly results in practical and advantageous implementation properties.

Let V be a CLF and let u� and x� denote the control and state trajectories
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obtained by solving the pointwise min-norm problem with parameter �(x) (cf. (3.9){

(3.10)). Consider the following receding horizon objective:

(RHC+CLF)

minimize

Z t+T

t

(q(x) + uTu)d� (5.5)

subject to _x = f(x) + g(x)u

@V

@x
[f + gu(t)] � ���(x(t)) (5.6)

V (x(t + T )) � V (x�(t+ T )) (5.7)

with 0 < � � 1 (preferably � is small).

The preceding scheme is best interpreted in the following manner. It is a standard

receding horizon formulation with two CLF constraints. The �rst constraint (5.6) is

a direct stability constraint in the spirit of that which appears in the pointwise min-

norm formulation (3.10). The parameter � is merely used to relax this constraint as

compared to its counterpart in the pointwise min-norm formulation. Note that this

constraint need only apply to the implemented control actions, which in the ideal

case of the optimization being continuously resolved is only the initial control action.

In essence, this constraint requires V to be a Lyapunov function for the closed loop

system. (In the actual implementation of receding horizon control, the constraint

should apply at least over the entire sampling time interval in which the optimizing

control solution is implemented. In fact, situations may exist where it is reasonable

to apply a constraint of this form over the entire horizon T , in which case � can even

be chosen as a function of time on [t; t+T ]. This is discussed further in Section 5.4.)

In contrast to the �rst constraint which is a direct stability constraint, the second

constraint (5.7) is oriented toward performance and replaces the terminal weight

used in the standard receding horizon formulation. As will be seen later, when the

pointwise min-norm problem corresponding to Sontag's formula is used (i.e., � = �s

(eqn. 3.11)), this constraint preserves the property that when the level curves of

the CLF (V ) correspond to those of the value function (V �), the optimal controller
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is recovered. It is obtained by �rst simulating the control from the solution to the

pointwise min-norm problem for time T , which results in a state trajectory that ends

at x�(t + T ), then evaluating the CLF at this point (V (x�(t + T ))). The constraint

then requires that all other potential sequences reach a �nal state that obtains a

smaller value of V . A nice interpretation is in terms of level curves. The constraint

(5.7) requires that the �nal state of all potential sequences lie inside the level curve

of V that passes through x�(t + T ) (see Figure 5.2). The constraint (3.10) in the

pointwise min-norm formulation can be thought of as a di�erential version of this

constraint.

x(t)

Level curve
x�(�)

x�(t + T )

V (x(t + T )) = V (x�(t + T ))

Figure 5.2: Performance constraint (5.7).

This combination of control Lyapunov functions and receding horizon control

yields a number of theoretically appealing properties, as listed below:

1. Stability is guaranteed for any horizon T .

The constraint (5.6) requires that V is a Lyapunov function for the receding

horizon controlled system and hence guarantees stability.
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2. In the limit as the horizon goes to zero (T ! 0), the pointwise min-norm

optimization problem is recovered.

It was already shown that as T ! 0, the limiting performance objective is given

by uTu. We only need to show that the constraints reduce to the pointwise min-

norm constraint (3.10).

Subtracting V (x(t)) from both sides of the performance constraint (5.7) gives

V (x(t+ T ))� V (x(t)) � V (x�(t+ T ))� V (x(t)):

Dividing by T and taking the limit as T ! 0 yields

@V

@x
[f(x) + g(x)u(t)] �

@V

@x
[f(x) + g(x)u�(x(t))]

� ��(x(t)):

In fact, it is simple to see that the constraints

@V

@x
[f(x) + g(x)u(t)] �

@V

@x
[f(x) + g(x)u�(x(t))]

and
@V

@x
[f(x) + g(x)u(t)] � ��(x(t))

produce the same control actions in the pointwise min-norm formulation.

Since we require that � � 1 in the stability constraint (5.6) the above constraint

supersedes the stability constraint in the limit. Hence, the receding horizon

optimization problem is reduced to:

minimize uT (t)u(t)

s:t:
@V

@x
[f(x) + g(x)u(t)] � ��(x):
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3. If V is a Lyapunov function for the closed loop system under the optimal control,

u�, which always satis�es the constraint (5.6), then an in�nite horizon length

will always recover the optimal controller.

With an in�nite horizon (T = 1), the objective becomes an in�nite horizon

objective Z 1

t

(q(x) + uTu)d�:

With no constraints the solution to this is the optimal control u�. We only

need to show that under the assumptions, the optimal control is feasible. By

assumption, it is feasible for the �rst constraint (5.6). For an in�nite horizon,

the performance constraint (5.7) becomes that the state must approach zero as

t approaches in�nity. Clearly this is satis�ed under the optimal control. Hence,

the optimal unconstrained control is a feasible solution and therefore optimal.

While we have been rather informal about our justi�cation of the above properties,

in the appendix a rigorous treatment is given under stringent technical conditions.

The argument above that the optimization problem reduces to the optimal in�nite

horizon problem or the pointwise min-norm formulation as the horizon tends to in�n-

ity or zero is strengthened to show that the receding horizon control action obtained

from the RHC+CLF problem will converge to the optimal control action u� or the

pointwise min-norm controller u� as the horizon extends to in�nity or shrinks to zero.

Details are contained in the appendix.

Additionally, for the parameter choice �(x) = �s(x) corresponding to Sontag's

formula in the pointwise min-norm problem (see eqn. 3.11), the optimality property

of Sontag's formula is preserved.

Theorem 5.3.1 Let �(x) = �s(x) (cf. eqn. 3.11). If V has the same level curves as

the value function V �, then the optimal control is recovered for any horizon length.

Proof: Assume that V has the same level curves as the value function V �. In this

case, Sontag's formula results in an optimal state trajectory x�s and control action
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u�s. Let us assume that x�s and u�s does not solve the optimization problem (5.5{5.7).

Hence, there exist trajectories x and u such that

Z t+T

t

(q(x) + uTu)d� <

Z t+T

t

(q(x�s) + uT�su�s)d�: (5.8)

Furthermore, since x and u satisfy the constraint (5.7), we have that

V (x(t + T )) � V (x�s(t + T ))

or using the fact that V has the same level curves as V �,

V �(x(t + T )) � V �(x�s(t+ T )): (5.9)

Combining (5.8) and (5.9) and the fact that Sontag's formula is optimal gives

Z t+T

t

(q(x) + uTu)d� + V �(x(t + T )) <

Z t+T

t

(q(x�s) + uT�su�s)d� + V �(x�s(t + T ))

= V �(x(t))

which is a contradiction, since V � is the minimum cost.

Before addressing some of the implementation issues faced in this new RHC+CLF

scheme, let us summarize the key ideas behind this approach. From a practical

viewpoint, it involves a mix of the guaranteed stability properties of control Lya-

punov functions combined with the on-line optimization and performance proper-

ties of receding horizon control. Conceptually, it blends the philosophies behind the

Hamilton-Jacobi-Bellman and Euler-Lagrange approaches to the nonlinear optimal

control problem. The control Lyapunov function represents the best approximation

to the value function in the HJB approach. The on-line optimization then proceeds in

an Euler-Lagrange fashion, optimizing over trajectories emanating from the current

state, improving the solution by using as much computation time as is available.



53

5.4 Implementation issues

In addition to the theoretical properties of the previous section, the RHC+CLF

scheme possesses a number of desirable implementation properties.

1. An initial feasible trajectory for the optimization is provided by the solution to

the pointwise min-norm problem.

For the performance constraint (5.7), it is necessary to simulate the solution to

the pointwise min-norm problem over the horizon T to obtain x�(t+T ). Addi-

tionally, the control and state trajectory from this pointwise min-norm problem

provide an initial feasible trajectory from which to begin the optimization.

2. The optimization may be preempted without loss of stability.

Since the constraint (5.6) ensures that V will be a Lyapunov function for the

closed loop system, any control that satis�es this constraint will be stabilizing.

In particular, if the optimization cannot be completed one may implement the

current best solution and proceed without any loss of stability. Hence, there is

no requirement of a global optimum to the non-convex optimization (5.5){(5.7)

to guarantee stability.

3. The horizon may be varied on-line without loss of stability.

This is again due to the stability constraint (5.6). Since stability is guaranteed

by the constraint (5.6) and is independent of the objective function, it is clear

that the horizon may be varied on-line without jeopardizing stability. In par-

ticular, one could imagine a situation where the amount of time available for

on-line computation is not constant. When more time is available, the horizon

can be extended on-line to take advantage of this. On the other hand, if at

various times no on-line computation is available, the horizon can be drawn

in to zero where the control is given by the pointwise min-norm solution. In

essence, one may use the available computation time to its fullest by adjusting

the horizon on-line, all without any concern of losing stability.
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In practice, receding horizon control is typically not implemented in continuous time

but rather at discrete sampling times. Over each sampling interval the receding hori-

zon control problem is solved and the optimizing control solution is applied until a

new state update is received at the next sampling time, in which the process repeats.

To guarantee stability, the constraint (5.6) should apply over the entire sampling in-

terval so that all control actions that are implemented conform to V being a Lyapunov

function. There may even be cases in which it is convenient to impose the constraint

(5.6) over the entire horizon [t; t+T ]. For example, this situation may occur when the

horizon length and/or sampling interval is allowed to vary dramatically, and hence

cannot be determined a priori. In any case, the parameter � need not be a �xed

constant, but rather can be a function of time �(�); � 2 [t; t+ T ] satisfying

1. �(�) � 1 for all � 2 [t; t+ T ]

2. �(�) > 0 for all � 2 [t; t + Ts]

where Ts is the sampling time. Beyond this, �(�) is a free design parameter.

In the next section we demonstrate the RHC+CLF approach on our familiar two

dimensional oscillator example.

5.5 Example

Once again we return to the two dimensional nonlinear oscillator used in Chapters

3 and 4, showing that now armed with both the stability properties of CLFs and

the performance advantages of on-line receding horizon computation, the RHC+CLF

approach provides an e�ective solution. Recall that the system dynamics are given

by 8<
: _x1 = x2

_x2 = �x1
�
�
2
+ arctan(5x1)

�
�

5x2
1

2(1+25x2
1
)
+ 4x2 + 3u

with performance index Z 1

0

(x22 + u2)dt:
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For this problem, the value function is given by

V � = x21(
�

2
+ arctan(5x1)) + x22

which results in the optimal control action

u� = �3x2

The same control Lyapunov function used in the example in Chapter 3 is also used

here,

V =
�

2
x21 + x22:

Again, it is emphasized that the level curves of this CLF are far from those of the

value function (see Fig. 3.1). As was explained in Chapter 3, this accounts for the

poor performance of Sontag's formula, which accumulates a cost of over 250 from the

initial condition [3;�2].

Building upon this Sontag's formula approach (i.e., using �s in (3.11)), a hori-

zon was introduced in accordance with the newly developed RHC+CLF scheme (as

described in Section 5.3). In our implementation we used discrete time intervals of

0:1 over which the control inputs were held constant. Furthermore, the stability

constraint (5.6) was applied over this entire 0:1 intersample time using � = 0:01.

As shown in Figure 5.3, the erratic behavior demonstrated by the receding horizon

controllers in Chapter 4 has been tamed and drastically improved performance is

achieved for each of the tested horizons. Table 5.1 summarizes the costs accumulated

for each of the horizons T = 0:2; 0:3; 0:5 and 1:0. A surprising result is that even

a short horizon dramatically reduces the cost over that of Sontag's formula alone,

demonstrating the power of the combination of CLF techniques with even a minimal

amount of on-line computation.

The fact that the cost does not decrease monotonically as a function of horizon

length is attributable to the erratic behavior that receding horizon control by itself

displays. It is interesting to observe that while alone both Sontag's formula and
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Figure 5.3: Phase portrait of receding horizon controllers.

receding horizon control perform miserably, the proper combination of them results

in consistent near optimal controllers.

5.6 Summary

The ideas behind CLF based pointwise min-norm controllers and receding horizon

control were combined to create a new class of control schemes. These new results

were facilitated by the development of a framework within which both optimal and

pointwise min-norm controllers served as limiting cases of receding horizon control.

This led us to propose a natural extension of the pointwise min-norm formulation to

allow for on-line computation in a receding horizon implementation. In particular,

this even provided a receding horizon \extension" of Sontag's formula, and resulted in

numerous theoretical and implementation advantages over present CLF and receding
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Table 5.1

Controller Cost

Sontag 258
RHC+CLF (T = 0:2) 35.3

RHC+CLF (T = 0:3) 37.9

RHC+CLF (T = 0:5) 33.6
RHC+CLF (T = 1:0) 36.8

Optimal 31.7

Table 5.1: Summary of controller costs from initial condition [3;�2].

horizon methodologies. As summarized in our picture of optimal control (Figure 5.4),

the RHC+CLF schemes complete the optimal control framework by combining both

of the classical viewpoints and their o�spring into a single uni�ed approach.

Sontag’s Formula
Pointwise Min-Norm

Receding Horizon
Methodology

RHC
+

CLF

HJB E-L

Control Lyapunov Fcn. Trajectory Optimizations

Receding Horizon
Extensions of

Pointwise Min-Norm
Controllers

Figure 5.4: The RHC+CLF scheme within the optimal control picture.

Although we illustrated some of the advantages of receding horizon extensions on

the common example used in both Chapters 3 and 4, a more thorough investigation is

undertaken next. In the following chapter we work through the details of a more con-

crete and realistic example: the control of a planar ducted fan model. That example
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more accurately illustrates the steps required to implement the design methodology

presented in this chapter.
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Appendix

In this appendix we show that the control actions from the RHC+CLF scheme con-

verge to those of the pointwise min-norm controller and the optimal in�nite horizon

controller as the horizon is brought to zero and in�nity, respectively. But �rst, we

begin by establishing some required notation and assumptions.

Let j�j and j�j1 denote the standard Euclidean and in�nity norms on IRN . We will

assume that both the CLF V and the value function V � are C1 and proper. As before,

x�(�) and u�(�) will denote the state and control corresponding to the pointwise min-

norm problem, and x�(�) and u�(�) will represent the state and control of the optimal

in�nite horizon controller. For any optimization with a non-zero horizon, the positive

semi-de�nite cost parameter q(�) will be at least C0, the initial condition will be

denoted x(0), and the optimization will be taken over all piecewise C0 functions with

the assumption that the in�mum is achieved and is unique. The notation V̂T will

be used to denote the optimal cost of the RHC+CLF problem with horizon T . The

corresponding optimizing state and control trajectories will be denoted by x̂T (�) and

ûT (�). As before the dynamics are

_x = f(x) + g(x)u = f(x) +

mX
i=1

gi(x)ui

with x 2 IRn and u = [u1; u2; :::; um]
T 2 IRm. We will assume that f : IRn ! IRn

is globally Lipschitz with Lipschitz constant Kf and each gi : IR
n ! IRn is globally

Lipschitz with common Lipschitz constant Kg.

For the pointwise min-norm problem (3.9) we will assume the parameter �(x) is

continuous, locally Lipschitz, positive de�nite and satis�es

x 6= 0;
@V

@x
g(x) = 0 )

@V

@x
f(x) < ��(x):

Under these conditions, the pointwise min-norm controller u�(x) is also continuous

and locally Lipschitz everywhere except possibly at the origin [FK95]. Hence, for
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small enough t, it satis�es

ju�(x(0))� u�(x(t))j � Kt

for some K.

To prove connections between the pointwise min-norm problem, and the RHC+CLF

problem, we will require a similar assumption on the control trajectories from the

RHC+CLF problems, stated as follows:

(A1) Given a �xed initial condition x(0), for all horizons T su�ciently small ûT (t) is

C0 and satis�es the following Lipschitz condition

jûT (0)� ûT (t)j � Kt; 8t 2 [0; T ] (5.10)

for some K.

The assumption A1 also provides some regularity on the variation of the state tra-

jectories x̂T (�). To see this consider the state trajectory x̂T (�) from the RHC+CLF

problem beginning at state x(0) and assume A1, then for small enough T :

jx̂T (t)� x(0)j = j

Z t

0

�
f(x̂T (s)) + g(x̂T (s))ûT (s)

�
dsj

�

Z t

0

�
jf(x̂T (s))j+ jg(x̂T (s))ûT (s)j

�
ds

�

Z t

0

jf(x̂T (s))jds

+

Z t

0

j[g(x̂T (s))� g(x(0)) + g(x(0))]ûT (s)jds

�

Z t

0

�
jf(x̂T (s))� f(x(0))j+ jf(x(0))j

�
ds

+

Z t

0

� mX
i=1

j[gi(x̂T (s))� gi(x(0))]ûiT (s)j
�
ds

+

Z t

0

� mX
i=1

jgi(x(0))ûiT (s)j
�
ds

�

Z t

0

�
jf(x̂T (s))� f(x(0))j+ jf(x(0))j

�
ds
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+

Z t

0

� mX
i=1

jgi(x̂T (s))� gi(x(0))j jûiT (s)j
�
ds

+

Z t

0

� mX
i=1

jgi(x(0))j jûiT (s)j
�
ds

�

Z t

0

�
jf(x̂T (s))� f(x(0))j+ jf(x(0))j

�
ds

+

Z t

0

� mX
i=1

jgi(x̂T (s))� gi(x(0))j(jûT (0)j+Ks)
�
ds

+

Z t

0

� mX
i=1

jgi(x(0))j(jûT (0)j+Ks)
�
ds

�

Z t

0

�
Kf jx̂T (s)� x(0)j+ jf(x(0))j

�
ds

+

Z t

0

� mX
i=1

Kgjx̂T (s)� x(0)j(jûT (0)j+Ks)
�
ds

+

Z t

0

� mX
i=1

jgi(x(0))j(jûT (0)j+Ks)
�
ds

�

Z t

0

�
(Kf +mKg(jûT (0)j+Ks))jx̂T (s)� x(0)j

�
ds

+

Z t

0

�
jf(x(0))j+ (jûT (0)j+Ks)

mX
i=1

jgi(x(0))j
�
ds

�

Z t

0

�
(Kf +mKg(jûT (0)j+Ks))jx̂T (s)� x(0)j

�
ds

+
�
jf(x(0))j+ jûT (0)j

mX
i=1

jgi(x(0))j
�
t+
�
K

mX
i=1

jgi(x(0))j
�t2
2
:

where we have used assumption A1 and that f and g are Lipschitz. If we let

�(t) =
�
jf(x(0))j+ jûT (0)j

mX
i=1

jgi(x(0))j
�
t+
�
K

mX
i=1

jgi(x(0))j
� t2
2

and

�(s) = (Kf +mKg(jûT (0)j+Ks))

then we have that

jx̂T (t)� x(0)j �

Z t

0

�(s)jx̂T (s)� x(0)jds+ �(t):
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An application of the Gronwall-Bellman Lemma [Kha92] gives,

jx̂T (t)� x(0)j � �(t) +

Z t

0

�(s)�(s) exp
hZ t

s

�(�)d�
i
ds: (5.11)

This provides an explicit bound for the amount by which x̂T is allowed to vary in

time t. Finally, we will implicitly assume that all limits, when stated, exist.

A further justi�cation for some of the above assumptions can be made as follows.

Optimal control problems are typically solved by representing the control trajectory

over a �nite dimensional spline space. This involves the choice of a knot sequence

(i.e., a nondecreasing sequence (ti)) which the splines are de�ned with respect to.

Most splines will allow discontinuities only on the knot sequence and can be chosen

to be smooth in between. The optimization is carried out by using the coe�cient of

each spline basis function as a decision variable. If these coe�cients are restricted

to lie in some compact set, then assumption A1 will necessarily be satis�ed. These

considerations help to make the continuity and Lipschitz assumptions a bit more

natural.

The �rst theorem shows that the control actions obtained from the RHC+CLF

problem converge to the pointwise min-norm solution as the horizon is brought to

zero.

Theorem 5.6.1 Denote the initial condition for the RHC+CLF optimization prob-

lems by x(0), and assume that lim
T!0

ûT (0) = û0. Under the assumptions stated above,

û0 = u�(x(0)) where u�(x(0)) solves the corresponding pointwise min-norm problem.

Proof: First we show that û0 is feasible for the zero horizon problem (i.e., the

pointwise min-norm problem with parameter �(x) as in (3.10)). For this purpose, it

is su�cient to show that

@V

@x
[f + gû0] �

@V

@x
[f + gu�(x(0))]: (5.12)
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Since it is known that each ûT satis�es (5.7),

V (x̂T (T )) � V (x�(T ));

subtracting V (x(0)) and dividing by T gives:

1

T

h
V (x̂T (T ))� V (x(0))

i
�

1

T

h
V (x�(T ))� V (x(0))

i
:

By the de�nition of a derivative and the chain rule, taking the limit as T ! 0 gives

(5.12). Hence û0 is feasible for the zero-horizon (pointwise min-norm) problem.

Now assume that û0 6= u�(x(0)). Since û0 is feasible, we must have that û
T
0 û0 >

uT� (x(0))u�(x(0)) (otherwise this contradicts that u�(x(0)) is the unique solution to

the zero horizon (pointwise min-norm) problem [FK95]). This means that for some

� > 0 we can �nd a horizon T 0 small enough so that

q(x(0)) + uT� (x(0))u�(x(0)) + � � q(x(0)) + ûTT 0(0)ûT 0(0):

But, by the Lipschitz condition (5.10) on ûT (�) and the bound (5.11) on the rate

of variation of the state trajectory x̂T (�) a similar inequality must hold over a small

enough horizon T 0. (Note that equation (5.11) actually depends on ûT (0) through

�(t) and �(t). Furthermore, ûT (0) is di�erent for each horizon T . Nevertheless, we

know that ûT (0) converges to û0 and hence can still guarantee a bound on the rate

of variation of x̂T which is independent of the horizon T .) Hence, there exists a T 0

su�ciently small so that,

q(x�(t)) + uT� (x�(t))u�(x�(t)) < q(x̂T 0(t)) + ûTT 0(t)ûT 0(t); t 2 [0; T 0]:

Integration from zero to T 0 completes the contradiction since ûT 0(t) was assumed op-

timal for this horizon. Hence û0 = u�.



64

Before exploring the solution to the RHC+CLF problem as the horizon is increased

to 1, we remind the reader of the following de�nition.

De�nition 5.6.1 A function W : IR+ ! IR+ is said to belong to class K1 if:

1. it is continuous.

2. W (0) = 0.

3. it is strictly increasing.

4. W (s)!1 when s!1.

We will require the nonlinear system to satisfy an additional condition. Using notation

from [KG88], we refer to the following as property C:

De�nition 5.6.2 The system _x = f(x) + g(x)u is said to satisfy property C if there

exists a time T c, and a K1 function Wc such that for any x0 2 IRn, there exist contin-

uous state and control trajectories (xc(t); uc(t)) such that xc(0) = x0 and xc(T c) = 0

with Z T c

0

j(xc(t); uc(t))j � Wc(jx0j):

We will say that the system _x = f(x)+g(x)u locally has property C if property C

holds for some neighborhood of the origin. Note that for q(�) locally Lipschitz, local

satisfaction of property C implies that

Z T c

0

q(xc(t)) + juc(t))j2 � W 0
c(jx0j) (5.13)

is also satis�ed locally for some K1 function W 0
c.

Remark: Property C can be thought of as a weak controllability condition. Consider

a linear system: _x = Ax + Bu with (A;B) controllable. Then from any initial

condition the state can be brought to the origin using the minimum energy control.

It can be shown that this will satisfy property C [KG88].
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Theorem 5.6.2 Assume that q(x) is continuous, locally Lipschitz and that q(x) �

�(jxj) where � is K1. Additionally, assume that the optimal in�nite horizon control

u� satis�es the CLF stability constraint (5.6). Furthermore, assume that the nonlinear

system _x = f(x) + g(x)u locally satis�es property C. Then over any compact set S

V̂T (x)
T!1
�! V �(x) uniformly:

Furthermore, if there exists an interval [0; �] on which ûT (�) is continuous for each

T and ûT (�)! û1(�) uniformly, then û1(�) = u�(�) for � 2 [0; �].

Proof: To establish notation, recall that V � is the value function corresponding

to the optimal cost of the unconstrained in�nite horizon optimal control problem

with state and control trajectories x� and u�. Let V �
T denote the cost of applying

the in�nite horizon optimal control action u�, but only over a horizon of length T .

Finally recall that V̂T is the optimal cost of the RHC+CLF problem with horizon T

and state and control trajectories x̂T and ûT .

Choose � > 0 and consider the set N = fx : W 0
c(jxj) � �g (withW 0

c(�) as in (5.13))

which contains a neighborhood of the origin. Furthermore, let q̂ > 0 be the in�mum

of q(x) outside of N . Now let S be any compact set and denote the maximum of V �

over S by v. Then for T > T � = v=q̂, there exists a t 2 [0; T ] such that the state

x�(t) 2 N . That is, from any initial condition in S, after T � seconds it is guaranteed

that the optimal trajectory x�(�) has intersected N . This is because if there does not

exist a t 2 [0; T ] with x�(t) 2 N then q(x�(t)) � q̂ for all t 2 [0; T ] and hence

V �(x) > V �
T (x) =

Z T

0

�
q(x�(t)) + u�T (t)u�(t)

�
dt � T q̂ > v

which is a contradiction.

Now, for the RHC+CLF problem with horizon T > T �+T c, consider the following

feasible control actions. Apply u� (this is feasible by assumption) until the state enters

N , then use uc (cf., De�nition 5.6.2) to drive the state to the origin. If TN � T �
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denotes the �rst time that x�(�) enters N , then the cost of this trajectory is less than

or equal to V �
TN

+W 0
c(jx

�(TN )j) which is less than or equal to V �
T + �. Furthermore,

this trajectory ends at the origin, and hence also provides an upper bound for the

optimal in�nite horizon cost, V �. From this we can assert the following: for every

horizon T > T � + T c, we have

V �
T + � � V � � V �

T

and

V �
T + � � V̂T � V �

T

which implies

jV � � V̂T j � �

proving the �rst part of the theorem.

The second portion of the theorem follows in three steps:

1.) x̂1 exists and is unique and continuous on [0; �].

By assumption there exists an interval [0; �] where ûT (�) is continuous and ûT (�)!

û1(�) uniformly. Hence, û1 is continuous on [0; �]. Since [0; �] is compact, û1(t) is

bounded. Let max
t2[0;�]

jû1(t)j1 = M .

Now let x̂1 be the state trajectory corresponding to the input û1 over the interval

[0; �]. If we de�ne f̂(x; t) = f(x) + g(x)û1(t) on t 2 [0; �], then f̂(x; t) is Lipschitz

since

jf̂(x; t)� f̂(y; t)j = jf(x)� f(y) + [g(x)� g(y)]û1(t)j

� jf(x)� f(y)j+ j[g(x)� g(y)]û1(t)j

� jf(x)� f(y)j+

mX
i=1

j[gi(x)� gi(y)]ûi1(t)j

� jf(x)� f(y)j+

mX
i=1

M j[gi(x)� gi(y)]j
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� jf(x)� f(y)j+

mX
i=1

MKgjx� yj

� Kf jx� yj+mMKgjx� yj

= (Kf +mMKg)jx� yj

where we have used that f and g are Lipschitz with Lipschitz constants Kf and Kg,

and that û1(�) is bounded in in�nity norm by M . Therefore, by standard existence

and uniqueness theorems for di�erential equations (see [Kha92], pg. 81), the state

trajectory x̂1 exists and is unique and continuous on [0; �].

2.) x̂T converges to x̂1 on [0; �].

Let us show that x̂T converges pointwise to x̂1 on [0; �]. This is basically an

exercise in using Lipschitz constants, and an application of the Gronwall-Bellman

lemma ([Kha92], pg. 68).

jx̂1(t)� x̂T (t)j = j

Z t

0

�
f(x̂1(s))� f(x̂T (s))

�
ds

+

Z t

0

�
g(x̂1(s))û1(s)� g(x̂T (s))ûT (s)

�
dsj

�

Z t

0

�
jf(x̂1(s))� f(x̂T (s))j

�
ds

+

Z t

0

�
jg(x̂1(s))û1(s)� g(x̂T (s))ûT (s)j

�
ds

=

Z t

0

�
jf(x̂1(s))� f(x̂T (s))j

�
ds

+

Z t

0

�
jg(x̂1(s))û1(s)� g(x̂1(s))ûT (s)j

�
ds

+

Z t

0

�
jg(x̂1(s))ûT (s)� g(x̂T (s))ûT (s)j

�
ds

�

Z t

0

�
Kf jx̂1(s)� x̂T (s)j

�
ds

+

Z t

0

� mX
i=1

jgi(x̂1(s))[ûi1(s)� ûiT (s)]j
�
ds

+

Z t

0

� mX
i=1

j[gi(x̂1(s))� gi(x̂T (s))]ûiT (s)j
�
ds
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�

Z t

0

�
Kf jx̂1(s)� x̂T (s)j

�
ds

+

Z t

0

� mX
i=1

jgi(x̂1(s))j j[ûi1(s)� ûiT (s)]j
�
ds

+

Z t

0

� mX
i=1

j[gi(x̂1(s))� gi(x̂T (s))]j jûiT (s)j
�
ds

Now note that each jgi(x̂1(s))j is bounded from above on [0; �] since it is a continuous

function over a compact set. Hence, choose anMg such that max
t2[0;�]

jgi(x̂1(t))j �Mg for

i = 1 : : :m. Furthermore, by the fact that ûT converges uniformly to û1, by choosing

T large enough we can bound max
t2[0;�]

jûT (�)j1 byM+1 (recall that max
t2[0;�]

jû1(�)j1 =M).

Hence, returning to our bound

jx̂1(t)� x̂T (t)j �

Z t

0

�
Kf jx̂1(s)� x̂T (s)j

�
ds

+

Z t

0

� mX
i=1

jgi(x̂1(s))j j[ûi1(s)� ûiT (s)]j
�
ds

+

Z t

0

� mX
i=1

j[gi(x̂1(s))� gi(x̂T (s))]j jûiT (s)j
�
ds

�

Z t

0

�
Kf jx̂1(s)� x̂T (s)j

�
ds

+

Z t

0

� mX
i=1

Mgjûi1(s)� ûiT (s)j
�
ds

+

Z t

0

� mX
i=1

(M + 1)Kgjx̂1(s)� x̂T (s)j
�
ds

�

Z t

0

�
(Kf +m(M + 1)Kg)jx̂1(s)� x̂T (s)j

�
ds

+

Z t

0

�
mMgjû1(s)� ûT (s)j1

�
ds:

Now let � = max
t2[0;�]

jû1(t)� ûT (t)j1. Since ûT converges uniformly to û1, then �! 0

as T !1. So,

jx̂1(t)� x̂T (t)j �

Z t

0

�
(Kf +m(M + 1)Kg)jx̂1(s)� x̂T (s)j

�
ds+mMg�t:
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By an application of the Gronwall-Bellman lemma, we obtain

jx̂1(t)� x̂T (t)j � mMg�t +

Z t

0

�
mMg�s(Kf +m(M + 1)Kg)e

(Kf+m(M+1)Kg)(t�s)
�
ds

= �

�
mMgt+

Z t

0

�
mMgs(Kf +m(M + 1)Kg)e

(Kf+m(M+1)Kg)(t�s)
�
ds

�

which tends to zero as � approaches zero. Hence, x̂T converges pointwise to x̂1 on

[0; �] as T !1 (in fact the convergence is uniform).

3.) (x̂1; û1) satis�es the principle of optimality.

By de�nition, the cost V̂T (x(0)) can be written in terms of x̂T and ûT as,

V̂T (x(0)) =

Z T

0

�
q(x̂T (t)) + ûTT (t)ûT (t)

�
dt

where x̂T and ûT satisfy the constraints (5.6) and (5.7). By the principle of optimality,

x̂T (�) and ûT (�) for � 2 [�; T ] solves the optimization problem:

minimize
u[�;T ]

Z T

�

(q(x) + uTu)d�

subject to _x = f(x) + g(x)u

x(�) = x̂T (�)

V (x(T )) � V (x�(T )):

(The only di�erence between this problem and the RHC+CLF problem is that the sta-

bility constraint (5.6) is absent since it applies only to the initial control action at time

zero (i.e., ûT (0)).) Let us denote the optimal cost of this problem by ~VT��(x̂T (�)).

By an argument identical to that given for V̂T , we can also prove that ~VT converges

uniformly to V � on any compact set. Furthermore, a restatement of the principle of

optimality is that

V̂T (x(0)) =

Z �

0

�
q(x̂T (t)) + ûTT (t)ûT (t)

�
dt+ ~VT��(x̂T (�)): (5.14)
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Now take the limit as T !1. On the left-hand side of (5.14), from the �rst part of

this theorem we have that

V̂T (x(0))! V �(x(0)):

Now consider the right-hand side of (5.14). We can show that the second term on

the right-hand side converges to V �(x̂1(�)) as follows

jV �(x̂1(�))� ~VT��(x̂T (�))j � jV �(x̂1(�))� V �(x̂T (�))j

+jV �(x̂T (�))� ~VT��(x̂T (�))j:

The term

jV �(x̂1(�))� V �(x̂T (�))j

tends to zero since V � is continuous and x̂T (�) converges to x̂1(�). Additionally, the

term

jV �(x̂T (�))� ~VT��(x̂T (�))j

tends to zero since by choosing T large enough we can assert that x̂T (�) lies in a

compact set (this is because x̂T (�) is a convergent sequence). As mentioned earlier,

by the same argument as for V̂T in the �rst portion of this theorem, we can assert

that ~VT�� converges uniformly to V � on any compact set. Therefore, this term also

tends to zero. So, we conclude that

~VT��(x̂T (�))! V �(x̂1(�)):

Finally, we consider the limit of the �rst term on the right-hand side of (5.14),

lim
T!1

Z �

0

�
q(x̂T (t)) + ûTT (t)ûT (t)

�
dt:

The dominated convergence theorem [Roy88] justi�es an exchange of the limit and

integral. By assumption ûT ! û1 and by step 2.) x̂T ! x̂1. Hence, this term
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converges to Z �

0

�
q(x̂1(t)) + ûT1(t)û1(t)

�
dt:

Therefore, taking the limit as T !1 of equation (5.14) gives

V �(x(0)) =

Z �

0

�
q(x̂1(t)) + ûT1(t)û1(t)

�
dt+ V �(x̂1(�))

which shows by the principle of optimality that û1 is optimal for the in�nite horizon

problem over the interval [0; �].
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Chapter 6 Control of a Ducted Fan

Model

6.1 Introduction

In the previous chapter we introduced a new paradigm for optimal control that com-

bines ideas from control Lyapunov function based schemes with an on-line receding

horizon approach. In this chapter we mesh the previous chapter's methodology with

existing nonlinear control tools by designing and comparing controllers for a simple

model of a longitudinal 
ight control system.

While the focus of this chapter is a speci�c example, we begin by clarifying the

steps involved in nonlinear optimal control design. We o�er a two stage design

paradigm that clearly separates the controller selection process into an o�-line or

analysis portion, and an on-line or implementation stage. This allows us to under-

stand the contribution of various existing techniques to the methodology proposed in

the previous chapter. This approach is then validated on the ducted fan model.

6.2 An optimal control design paradigm

We will divide the controller design process into the following two distinct steps.

1. Generation of a CLF

2. Selection of a CLF based control scheme

While this distinction is somewhat arti�cial since most existing techniques span both

steps, it helps to clarify the understanding that these techniques actually provide

two separate contributions. Furthermore, a single technique does not have to be
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used throughout the entire design process, but rather techniques can be \mixed and

matched," often resulting in improved controllers.

We will apply this methodology to the control of the ducted fan model by showing

how existing control techniques provide either a CLF, a control law from a CLF,

or both. We will compare the following methods: Jacobian Linearization, Frozen

Riccati Equations (FRE), Linear Parameter Varying methods (LPV), Control using

Global Linearization, and �nally Receding Horizon Control (RHC), including hybrid

approaches such as Receding Horizon Control combined with the CLF obtained using

LPV.

On the generation of a CLF side, we explore Jacobian Linearization, Frozen Ric-

cati Equations (FRE), Global Linearization, and Linear Parameter Varying methods

(LPV). While each of these techniques also provides a speci�c control law, we �rst

focus on the CLF that they produce. When deciding on the choice of a speci�c control

law, we consider the standard implementation of each technique above, plus Sontag's

formula and its receding horizon extension as presented in the previous chapter.

6.3 Caltech ducted fan model

The Caltech ducted fan is a small 
ight control experiment whose dynamics are

representative of either a Harrier in hover mode or a thrust vectored aircraft such

as the F18-HARV or X-31 in forward 
ight [Mur98]. This system has been used for

a number of studies and papers. In particular, a comparison of several linear and

nonlinear controllers was performed in [KBBM95, BBK96, vNM96]. In this section

we describe the simple planar model of the fan shown in Figure 6.3 which ignores

the stand dynamics. This model is useful for initial controller design and serves as a

good testbed for purposes of this chapter.

Let (x; y; �) denote the position and orientation of a point on the main axis of the

fan that is distance l from the center of mass. We assume that the forces acting on

the fan consist of a force f1 perpendicular to the axis of the fan acting at a distance

r, and a force f2 parallel to the axis of the fan. Assuming m, J , and g to be the
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(x; y)

f2

�

net thrustx

y
f1

adjustable 
aps

Figure 6.1: Planar ducted fan model.

mass of the fan, the moment of inertia, and the gravitational constant respectively,

the equations of motion can be written as follows:

m�x = �d _x + f1 cos � � f2 sin �

m�y = �d _y + f1 sin � + f2 cos � �mg (6.1)

J �� = rf1

where the drag terms are modeled as viscous friction with d being the viscous friction

coe�cient. It is convenient to rede�ne the inputs so that the origin is an equilibrium

point of the system with zero input. If we let u1 = f1 and u2 = f2 �mg, then

m�x = �mg sin � � d _x+ u1 cos � � u2 sin �

m�y = mg(cos � � 1)� d _y + u1 sin � + u2 cos � (6.2)

J �� = ru1:

These equations are referred to as the planar ducted fan equations. We chose the
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parameter values:

m = 4:25kg; r = 0:26cm; J = 0:0475kg m2; d = 0:1kg=sec; g = 9:8m=sec2:

The following quadratic cost function was used for comparison of di�erent design

techniques:

J =

Z 1

0

(�xT (t)Q�x(t) + uT (t)u(t))dt

where �x = [x; y; �; _x; _y; _�]T , and Q was chosen to be a diagonal matrix with the

following diagonal terms:

Q = diag(
h
10 10 1 1 1 1

i
) (6.3)

Hence, the desired objective was to regulate the states to the origin, or the hover

position for the fan. Associated with this optimal control problem is the corresponding

value function, de�ned as:

V �(x) = min
u(t);x0=x

J (6.4)

which is also the solution to the Hamilton-Jacobi-Bellman (HJB) partial di�erential

equation:
@V �

@x
f �

1

4

@V �

@x
ggT

@V �

@x

T

+ xTQx = 0; V �(0) = 0

6.4 Generation of CLFs

A concept that underlies many nonlinear design methodologies is that of a control

Lyapunov function. In simple terms, a control Lyapunov function is the natural

extension of the Lyapunov methodology to control systems. To review from previous

chapters, consider the following nonlinear system:

_x = f(x) + g(x)u (6.5)
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where x 2 IRn, u 2 IRm. A control Lyapunov function (CLF) is a C1, proper, positive

de�nite function V : IRn ! IR+ such that

inf
u

�
@V

@x
f(x) +

@V

@x
g(x)u

�
< 0 (6.6)

for all x 6= 0 [Art83, Son83, Son89].

As was mentioned in the introduction, nonlinear control design can be thought of

as having two stages. The �rst, and perhaps the most challenging stage, is to �nd

a control Lyapunov function. In what follows, we present some of the widely used

methods in nonlinear control design, and interpret each approach in the context of

the search for a control Lyapunov function.

6.4.1 Jacobian linearization

Perhaps the simplest method of deriving a CLF is to use the Jacobian linearization

of the system and generate a CLF by solving an LQR problem. It is a well known

result that the problem of minimizing the quadratic performance index:

J =

Z 1

0

(xT (t)Qx(t) + uT (t)u(t))dt

subject to

_x = Ax+Bu

is solved by �nding the positive de�nite solution of the following Riccati equation:

ATP + PA� PBBTP +Q = 0: (6.7)

The optimal control action is given by

u = �BTPx
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with corresponding quadratic CLF:

V (x) = xTPx:

In the case of the nonlinear system

_x = f(x) + g(x)u

A and B are assumed to be

A =
@f(x)

@x
jx=0 B =

@g(x)

@x
jx=0:

Obviously the obtained CLF V (x) = xTPx will be valid only in a region around

the equilibrium. Therefore, we should not expect good performance from initial

conditions far from the origin. This is indeed the case as simulation results show that

this method cannot stabilize the planar ducted fan model for large initial conditions.

6.4.2 Global linearization

The idea of global linearization has its roots in early works from the Soviet Union

[LP44] on the problem of absolute stability. The basic idea behind this approach

is to model a nonlinear system as a Polytopic Linear Di�erential Inclusion (PLDI)

[BGFB94]. The dynamics of the nonlinear system are approximated as a convex

hull of a set of linear models. The problem of quadratic stability of the obtained

PLDI, i.e., stability provable by a quadratic Lyapunov function, can be recast as an

LMI feasibility problem which can be solved e�ciently using interior point convex

optimization methods. The PLDI describing the planar ducted fan model can be

written as

_x =

2X
i=1

�i(t)(Aix+Biu)

u = �Kx: (6.8)
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Using the same cost function J as before, the problem of minimizing an upper bound

on the cost J can be written as the following convex optimization problem:

Minimize

tr(Z)

Subject to:

Y > 02
6664
Y AT

i + AiY �BiX �XTBT
i Y Q1=2 XT

Q1=2Y �I 0

X 0 �I

3
7775 < 0

2
4 Z xT0

x0 Y

3
5 > 0

i = 1; 2

where Y = P�1 and X = KY are the change of variables made to recast the matrix

inequalities as LMIs [BGFB94]. Q is chosen as before, and A1, B1 are obtained by

linearization of the ducted fan model at the origin and A2 and B2 are chosen such

that the dynamics lie in the convex hull described by (6.8). This method turns out to

be conservative, since there are many trajectories that are a trajectory of the PLDI,

but are not a trajectory of the nonlinear system. Using the LMI formulation of the

LQR problem for PLDIs [BGFB94], we can �nd a CLF (given by V (x) = xTPx) for

the ducted fan model for positive values of �. However, a global constant quadratic

CLF does not exist. Simulation results for this method show that the closed loop

system is stable, but may su�er from poor performance.

6.4.3 Frozen Riccati Equation (FRE) method

This method was �rst introduced by Cloutier et al. in [CDM96]. The basic idea

behind this method, sometimes called State Dependent Riccati Equations, is to solve
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the Riccati equation online, at each time step. Although results are often promising,

there is no rigorous justi�cation for even maintaining mere stability. Nevertheless,

the simplicity of the implementation makes the frozen Riccati equation approach a

plausible alternative in some applications. To apply this method, the planar ducted

fan model is written as

_x = A(x)x + g(x)u: (6.9)

At each frozen state the Riccati equation is solved, and then the resulting control

action is fed back to the system. That is, a state feedback nonlinear control law is

obtained by solving the following:

0 = A(x)TP (x) + P (x)A(x)� P (x)g(x)gT (x)P (x) +Q

u = �gT (x)P (x)x: (6.10)

The quantity V (x) = xTP (x)x generated by this technique is in general only a local

CLF. Furthermore, one of the major drawbacks of this method is the lack of a system-

atic procedure for selecting, among the in�nite possibilities, a single parameterization

for f(x) (in the form of equation (6.9)) which achieves stability and acceptable per-

formance. However, in the case of the ducted fan model, the obvious parameterization

of f(x) appears to work in simulation studies. The dynamics of the fan are written

as follows:

_�x =

2
6666666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 �g sin �
�

� d
m

0 0

0 0 g(cos ��1)

�
0 � d

m
0

0 0 0 0 0 0

3
7777777777775
�x +

2
6666666666664

0 0

0 0

0 0

cos �
m

� sin �
m

sin �
m

cos �
m

r
J

0

3
7777777777775

2
4 u1

u2

3
5 (6.11)

Results of this approach are shown in Figure 6.4 at the end of the chapter.
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6.4.4 Linear Parameter Varying (LPV) methods

In this technique, the following so-called quasi-LPV representation of a nonlinear

input-a�ne system is used to design a state feedback controller

_x = A(�(x))x +B(�(x))u (6.12)

where � is a parameter depending on the state. Hence, we have a linear parameter-

ization of the dynamics through the parameter �. Further, it is assumed that the

underlying parameter � varies in the allowable set

F�
P := f� 2 C1(IR+; IR

m) : � 2 P; �i(�) � _�i � �i(�); i = 1; � � � ; mg (6.13)

where P � IRm is a compact set. If there exists a positive de�nite X(�) such that

the following inequality is satis�ed

2
664 �

mX
i=1

�i(�)
@X
@�i

+ A(�)X(�) +X(�)AT (�)� B(�)BT (�) X(�)CT (�)

C(�)X(�) �I

3
775 < 0 (6.14)

for all � 2 P where C(�) = Q
1

2 (�(x)), then the closed loop system is stable with the

state feedback

u(x) = �BT (�(x))X�1(�(x))x:

Moreover, an upper bound on the optimal value function V �(x) (which also serves as

a CLF) is given by

V (x) = xTX�1(�(x))x � V �(x):

The notation
Pm

i=1 �i(�) in (6.14) means that every combination of �i(�) and �i(�)

should be included in the inequality. For instance, when m = 2, �1(�) + �2(�),

�1(�)+�2(�), �1(�)+�2(�) and �1(�)+�2(�) should be checked individually. In other

words, (6.14) actually represents 2m inequalities. Additionally, solving (6.14) involves

gridding the parameter space P and choosing a �nite set of basis function for X(�).
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(See [WYPB96] for details.)

For the ducted fan, � = � was chosen as the varying parameter, and the operating

range as P = [��
2
; �
2
]. The bound on the rate variation on � was set to 10, i.e.,

j _�j � 10. Both A(�) and B(�) were the same as in the model used for the frozen

Riccati equation method (eqn. 6.11). A set of basis functions was chosen to compute

X(�), i.e., X(�) =

5X
i=1

fi(�)Xi where the Xi's are symmetric coe�cient matrices and

the ffi(�)g are �fth order Legendre polynomials on P:

ffi(�)g = f1;
2

�
�; (3(

2

�
�)2� 1)=2; (5(

2

�
�)3� 3(

2

�
�))=2; (35(

2

�
�)4� 30(

2

�
�)2+3)=2g:

Simulation of the closed loop system is shown in Figure 6.5 at the end of the chapter.

6.5 CLF based control schemes

So far, we have discussed several methods for generating a CLF. Each of the above

mentioned methods have their own technique for generating a controller. However,

once a CLF is obtained there are a number of alternative methods that can be used to

implement a controller purely from the knowledge of the CLF. We will brie
y review

some of the options available from previous chapters.

6.5.1 Sontag's formula

We have analyzed Sontag's formula extensively in previous chapters. For reference,

we include it once more here:

u�s =

8>>><
>>>:
�

2
4 @V

@x
f+

r
( @V@x f)

2

+(xTQx)
�
@V
@x

ggT @V
@x

T
�

@V
@x

ggT @V
@x

T

3
5 gT @V

@x

T @V
@x
g 6= 0

0 @V
@x
g = 0

(6.15)

In Chapter 3 we learned that Sontag's formula, in essence, uses the directional in-

formation given by the CLF, V , and scales it properly to solve the Hamilton-Jacobi-
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Bellman (HJB) equation. That is, Sontag's formula can be \derived" by assuming

the control action to be of the form:

u = �
�(x)

2
gT

@V

@x

T

and determining � by solving the HJB equation pointwise with �(x)@V
@x

substituting for

the gradient of the value function. In particular, if V has level curves that agree with

those of the value function, then Sontag's formula produces the optimal controller.

On the other hand, when a CLF does not closely resemble the value function, poor

performance may result [FP96]. In the comparison section, this motivates our use of

the CLF from LPV in Sontag's formula.

6.5.2 RHC extensions of CLF formulas

In Chapter 5 we introduced an extension of the class of pointwise min-norm controllers

[FK95] to receding horizon schemes. Since Sontag's formula was shown to be a special

case of pointwise min-norm controllers, it also admitted an extension. Recall the

RHC+CLF scheme presented in Chapter 5:

(RHC+CLF)

minimize

Z t+T

t

(xTQx+ uTu)d� (6.16)

s:t: _x = f(x) + g(x)u (6.17)

@V

@x
[f + gu(t)] � ���(x) (6.18)

V (x(t+ T )) � V (x�(t+ T )) (6.19)

where 1 � � > 0 and x� represents the state trajectory from the pointwise min-norm

controller with parameter �(x). We chose the parameter � to correspond to Sontag's

formula. That is

�s =

s�
@V

@x
f

�2

+ (xTQx)

�
@V

@x
ggT

@V

@x

T�
:
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For implementation reasons, we replaced the constraint (6.18) with

@V

@x
[f + gu(�)] � 0

and applied it over the entire horizon � 2 [t; t + T ]. While this approach does not

require a �xed horizon length or even a completion of the optimization, again due to

the software at our disposal, these properties were not taken advantage of. Results

for various horizon lengths are compared in following sections, where we also detail

the exact implementation procedures.

6.6 Comparisons

In this section we present a comparison of the approaches presented in the previous

sections. By choosing a large time horizon we found the optimal cost for the quadratic

cost J from the chosen initial conditions by solving a single trajectory optimization.

This allows us to see exactly how suboptimal techniques are. Values of the cost

function for all of the methods described in this chapter are given in Table 1. These

costs correspond to the following three initial conditions:

1. [x; y; �; _x; _y; _�] = [5; 5;�0:9�
2
; 5; 0; 0]

2. [x; y; �; _x; _y; _�] = [5; 5; 0:9�
2
;�5; 0; 0]

3. [x; y; �; _x; _y; _�] = [1; 1; �
4
; 0; 0; 0]:

The �rst initial condition is the most di�cult of the three, and starts with the fan at

a large initial condition and 
ying away from the origin. The second initial condition

is slightly easier, still with a large initial condition but a simpler initial velocity. The

third initial condition is close enough to the origin and mild enough that it should

not present too di�cult a challenge for any of the tested techniques.

A review of Table 6.1 leads to some interesting observations. At the top is Jacobian

linearization plus LQR. Not surprisingly, this is found to be unstable for the �rst initial

condition. This illustrates the true nonlinear nature of the problem and indicates that
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Method 1 2 3

Jacobian Linearization+LQR unstable 574 20.6

Frozen Riccati Equation 2801 800 22.0

Global Linearization+LQR using LMIs 2688 1128 29.2

Quasi-LPV 1805 617 27.2

CLF from LPV+Sontag 1761 506 25.4

CLF from LPV+RHC (T = 0:1; Ts = 0:05) 1564 468 25.2

CLF from LPV+RHC (T = 0:3; Ts = 0:05) 1463 449 22.9

CLF from LPV+RHC (T = 0:5; Ts = 0:05) 1421 446 20.5

CLF from LPV+RHC (T = 1:0; Ts = 0:05) 1382 434 19.3

Optimal 1368 431 19.3

Table 6.1: Values of the cost function J using di�erent methods for the ducted fan
example.

nonlinear techniques are needed. On the other hand, from both the second and third

initial condition, Jacobian linearization performs admirably, even out-doing some of

the more sophisticated techniques.

Only slightly more sophisticated than Jacobian linearization plus LQR is the

frozen Riccati equation technique. Even though it also lacks global stability guaran-

tees, it is stabilizing from all three initial conditions, although with a rather poor cost.

Simulation results for the frozen Riccati equation approach are supplied in Figure 6.4.

Next, we �nd that while global linearization techniques provide a guarantee of

stability, on this example they su�er from very poor performance. To retain the

guarantee of stability, but also aim for improved performance, more o�-line compu-

tation must be thrown at the problem as in LPV techniques. The result of the LPV

simulation from the �rst initial condition is given in Figure 6.5. We found that LPV

provides reasonable levels of performance for all three initial conditions.1 This, com-

bined with the fact that it provides a global CLF, indicates that it might provide a fair

representation of the true value function. Hence, the CLF from LPV is a reasonable

choice for use in Sontag's formula.

1Note that in LPV and frozen Riccati equation techniques, a design choice is involved in the

selection of a state dependent representation. Although no systematic procedure was used, the

results obtained here were the best of the state dependent representations that were tested.
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Applying Sontag's formula with the aid of the CLF from LPV resulted in trajecto-

ries very similar to those obtained from the standard LPV implementation, although

with slightly reduced costs from all three initial conditions. It was this controller that

we decided to extend to an on-line receding horizon implementation.

Details of the implementations of the on-line RHC+CLF controllers are given

later, but at �rst glance we observe that on-line computation is quite bene�cial in

terms of the cost. As the horizon was increased from T = 0:1 to eventually T =

1:0, the cost steadily decreased, providing the lowest cost observed in any of the

simulations. Due to the similarity in results, only the optimal trajectory is supplied

in Figure 6.6 for reference.

To summarize, in general the following trends were observed. While not uniformly

true, the more detailed and sophisticated techniques, which generally involve extensive

o�-line analysis, tended to outperform the simpler, less theoretically sound techniques.

Extensive computation was also found to be extremely bene�cial, especially when

employed in an on-line manner, but only when used under the guidance of a solid

theoretical framework.

6.7 Implementation of on-line schemes

While the example provided in this chapter gives strong indication that on-line com-

putation can be extremely bene�cial, implementation issues can easily discourage its

use. Therefore, we provide some of the details of the implementation procedure used

in this chapter, pointing out potential pitfalls along the way.

The schemes involving on-line computation (RHC+CLF) were implemented with

the use of the RIOTS2 trajectory optimization software package. This package runs o�

of the nonlinear programming package NPSOL.3 RIOTS uses direct shooting methods

and parameterizes input trajectories over a �nite dimensional spline space to solve

2RIOTS stands for \Recursive Integration Optimal Trajectory Solver" and was written by Adam

Lowell Schwartz as part of his Ph.D. thesis at UC Berkeley, 1996.
3NPSOL can be purchased from Stanford Business Software, Inc., 2680 Bayshore Parkway, Suite

304, Mountain View, CA 94043.
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constrained trajectory optimization problems.

In our implementation, we �rst used the fact that Sontag's formula is a stabilizing

state feedback controller to pre-stabilize the system. We then applied RIOTS to the

pre-stabilized system. Shooting methods can have di�culty when applied to open-

loop unstable systems, so by pre-compensating the system with Sontag's formula we

removed this problem. In fact, when RIOTS was applied to the open-loop system

(which is unstable), we encountered numerous numerical di�culties. Hence, the fact

that a CLF also provides a stabilizing control law which can be used to pre-stabilize

the dynamics before performing trajectory optimizations is yet another example of

the synergies available between CLFs and receding horizon control. The resulting

optimizations appeared to be very well conditioned for shooting techniques, and no

further numerical problems were encountered.

For each of our trajectory optimizations we selected the RK45 integration option

in RIOTS and �xed the time step size at 0:025s. (The number of time steps used for

each horizon length is as given in Table 6.2.) We also chose to use the warm start

option available in RIOTS. This uses the Lagrange multipliers from the previous

RIOTS solution as an initial guess at the multipliers for the new problem. Although

the di�erence was not signi�cant, it was generally perceived that this sped up the

optimizations. All simulations were performed on a 450Mhz Pentium II processor.

6.7.1 Time considerations

The time required to solve on-line optimizations is perhaps the single most important

factor limiting the application of receding horizon techniques. Realistically, many of

the proposed receding horizon schemes, both in this thesis and elsewhere, are currently

beyond present computing capabilities. Nevertheless, in the not so distant future they

will be viable, indicating that they will represent a real alternate for control design.

There are two basic tradeo�s relating to computation time: time versus horizon

length and time versus complexity of the optimization problem. We will present rough

tradeo�s for both by comparing various implementations on the ducted fan model.
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Time versus Horizon

We begin with a comparison of the time required for implementation of the same

RHC+CLF scheme but under di�erent horizons. In Table 6.2 we list the number of

integration time steps used for each horizon, and the average time required to solve

each receding horizon optimization for more than 100 initial conditions.

Horizon (T ) # of time steps avg. time per opt.

T = 0:1 4 1:06

T = 0:3 12 6:15

T = 0:5 20 13:15

T = 1:0 40 58:42

Table 6.2: Horizon versus the number of time steps used in the integration scheme
RK45.

A more accurate picture of computation times is presented in Figure 6.2 where

we have plotted the time required by RIOTS to solve each receding horizon tra-

jectory optimization along the trajectory beginning from the �rst initial condition

[5; 5;�0:9(�=2); 5; 0; 0].

As is fairly evident, computation times rise rather dramatically as a function of

the horizon length. These results should be considered in light of the following fact.

The constraint (6.18) ( _V < 0) was imposed over the entire horizon T , not merely

over the sampling time Ts. This was forced upon us by RIOTS. This means that

the longer the horizon and the more sampling points chosen along that horizon, the

more constraints were added to the problem. This fact alone makes the optimization

numerically more di�cult for longer horizons. Below, we will see more explicitly the

e�ect that various constraints have on the overall computation time.

Time versus Constraint Complexity

Below we compare the amount of time each optimization takes for various constraints.

In order to see the e�ect of the constraints on optimization time, we implemented

three versions of receding horizon control.
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schemes with horizons of T = 0:1s (solid), T = 0:3s (dash), T = 0:5s (dash-dot),

T = 0:1s (dotted).
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1. Standard RHC+CLF

The standard RHC+CLF implementation involves two constraints

(6.18) and (6.19). Recall that we were imposing the constraint (6.18)

over the entire prediction horizon T .

2. RHC+CLF without constraint (6.18)

In this implementation we removed the constraint (6.18), but retained

the end point constraint (6.19).

3. RHC with the CLF as a terminal weight

We applied receding horizon control with no constraints, but with the

CLF as a terminal weight (i.e., '(�) = V (�)).

All three implementations used the horizon T = 0:3s. The computation times asso-

ciated with each of these implementations is plotted in Figure 6.3. It shows the time

required for RIOTS to solve each on-line optimization for the simulation from the

�rst initial condition [5; 5;�0:9(�=2); 5; 0; 0].

From these plots we see that the constraint over the entire horizon adds a sub-

stantial amount of time to each optimization. On the other hand, there is not a large

time di�erence between the implementation using an end-point constraint and the

implementation using a terminal weight. The cost obtained by the unconstrained

scheme was 1493, while the constrained approaches achieved a cost of 1463. These

results indicate that trajectory constraints may be time consuming, but a single end

point constraint does not add substantial di�culty over no constraints.

6.8 Summary

In this chapter we presented a concrete example of the framework for nonlinear opti-

mal control developed in preceding chapters. We placed existing techniques in a two

stage design procedure. The �rst is the derivation of a CLF. Potential techniques for
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this stage were: Jacobian linearization, global linearization, frozen Riccati equations,

and linear parameter varying (LPV) techniques. The second stage involves using the

CLF to produce a control scheme. In this step, one has additional choices including

Sontag's formula, pointwise min-formulas, and their extensions to receding horizon

schemes.

A ducted fan model was used as the test case for this design methodology, and

a simulation study was used to test the results. It was found that a combination of

o�-line analysis in determining a CLF and on-line computation produced the best

results. But, on-line results typically come at high implementation prices. Through

simulation examples, we analyzed the fundamental issues facing the implementation

of the proposed RHC+CLF schemes. While certain constraints and implementations

do not appear to to be numerically limiting or di�cult, trajectory constraints were

found to add considerable complexity, especially over long horizons.
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Figure 6.4: The frozen Riccati controller, initial condition [5; 5;�0:9(�=2); 5; 0; 0].
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Chapter 7 Extensions

7.1 Introduction

In this chapter we present two important extensions to the framework developed

in Chapter 5. First we extend the methodology to handle time-varying dynamics.

These results follow in a straightforward manner from those in Chapter 5. Next, we

confront the issue of input constraints. While receding horizon control can naturally

incorporate constraints directly into its on-line optimizations, pointwise min-norm

controllers must be reformulated before their receding horizon extensions will carry

through. In both cases, simple two dimensional examples are used to illustrate key

points.

7.2 Time-varying optimal control

Currently the focus of nonlinear control research is directed toward time-invariant

systems. Speci�cally, many modern approaches focus on the determination of a con-

trol Lyapunov function (CLF) [Kha96]. While the advantages of a CLF approach

have been well documented for time-invariant nonlinear systems, the time-varying

problem has received far less attention [AS97]. Yet, time-varying control problems

naturally arise by considering the error dynamics in trajectory tracking problems.

In this section we focus not on determining CLFs for time-varying dynamics, but

on the selection of stabilizing control laws from a CLF. Following the new method-

ology presented in Chapter 5 for the incorporation of CLFs into on-line receding

horizon schemes, in this section those results are extended to the time-varying case.

Finally, the new schemes are tested on a trajectory tracking problem for a simple

two-dimensional example.
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7.2.1 Optimal control for time-varying systems

Consider a time-varying nonlinear control a�ne system

_x = f(x; t) + g(x; t)u f(0; t) = 0 8t

y = h(x; t)
(7.1)

with an in�nite horizon objective

min
u(�)

Z 1

0

(q(x) + uTu)dt

s.t. _x = f(x; t) + g(x; t)u

(7.2)

where q(x) is continuously di�erentiable, positive semi-de�nite and [f; q] is zero-state

detectable.

Using a standard dynamic programming approach ([BH75] and Chapter 2), the

above optimal control problem can be reduced to the time-varying Hamilton-Jacobi-

Bellman optimization equation

�
@V �

@t
= min

u(t)

�
q(x) + uTu+

@V �

@x
[f + gu]

�
(7.3)

where once again

V �(x; t) = min
u(�)

Z 1

t

(q(x) + uTu)d�; (7.4)

i.e., V �(x; t) is the value function and can be thought of as the minimum cost to go

from the state x(t). Performing the optimization in (7.3) leads to a control law of the

form

u� = �
1

2
gT

@V �

@x

T

: (7.5)

Substituting this in (7.3) results in the time-varying Hamilton-Jacobi-Bellman (HJB)

partial di�erential equation

@V �

@t
+
@V �

@x
f �

1

4

@V �

@x
ggT

@V �

@x

T

+ q(x) = 0 (7.6)
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whose solution is the value function V �. Note that the only di�erence between the

HJB equation in the time-varying case versus the time-invariant case (see eqn. (2.8))

is the term @V
@t
.

7.2.2 CLF formulas for time-varying systems

While control Lyapunov function design is routinely applied to time-invariant nonlin-

ear systems, a somewhat less established area is the use of control Lyapunov functions

for time-varying nonlinear systems. To extend the concept of a control Lyapunov

function to time-varying systems, �rst recall the following de�nition:

De�nition 7.2.1 A continuous function � : [0; a)! [0;1) is said to belong to class

K if it is strictly increasing and �(0) = 0. It is said to belong to class K1 if a =1

and �(r)!1 as r!1.

We can then de�ne a time-varying control Lyapunov function as follows:

De�nition 7.2.2 A function V (x; t) : IRn � IR ! IR+ is a global control Lyapunov

function if:

1. V (x; t) 2 C1,

2. There exist K1 functions �1; �2 and a K function �3, such that

�1(jxj) � V (x; t) � �2(jxj); 8t

inf
u

�
@V

@t
+
@V

@x
[f + gu]

�
� ��3(jxj); 8x; t

7.2.3 A time-varying Sontag's formula

Let V (x; t) be a CLF and for pedagogical purposes assume that the value function

V �(x; t) is related to the CLF in the following manner.

V �(x; t) = �(V (x; t)) (7.7)
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where � denotes a function from IR ! IR. Then we may write the HJB equation

(7.6) in terms of the CLF as

�
@�

@V

�
@V

@t
+

�
@�

@V

�
@V

@x
f �

�
@�

@V

�2
1

4

@V

@x
ggT

@V

@x

T

+ q(x) = 0 (7.8)

which upon solving (7.8) as a quadratic equation in terms of @�
@V

yields

@�

@V
=

�
@V
@t

+ @V
@x
f
�
+

r�
@V
@t

+ @V
@x
f
�2
+ q(x)

�
@V
@x
ggT @V

@x

T
�

1
2

�
@V
@x
ggT @V

@x

T
� : (7.9)

Finally, recalling that the optimal control action is given by

u� = �
1

2
gT

@V �

@x

T

= �
1

2

�
@�

@V

�
gT

@V

@x

T

(7.10)

leads to the following form for the optimal controller upon substitution of (7.9):

u� =

8>>><
>>>:
�

0
@( @V@t +

@V
@x

f)+
r
( @V@t +

@V
@x

f)
2

+q(x)
�
@V
@x

ggT @V
@x

T
�

�
@V
@x

ggT @V
@x

T
�

1
A (gT @V

@x

T
) ; @V

@x
ggT @V

@x

T
6= 0

0 ; @V
@x
ggT @V

@x

T
= 0:

(7.11)

This is an explicit formula for a control law as a function of the CLF. One might note

that this derivation is essentially identical to that used to derive the time-invariant

version in Chapter 3. Although it was derived by assuming the relationship (7.7),

one can ask whether this is a valid stabilizing control law for an arbitrary CLF. This

is simple to check by considering the time derivative of the CLF for the closed loop

system:

_V = �

s�
@V

@t
+
@V

@x
f

�2

+ (q(x))

�
@V

@x
ggT

@V

@x

T�
:



99

Hence, it is su�cient for stability to verify that there exists a K function that bounds

s�
@V

@t
+
@V

@x
f

�2

+ (q(x))

�
@V

@x
ggT

@V

@x

T�

from below, which is almost always the case (when this is not the case, one can often

argue stability from LaSalle's invariance principle [Kha96]).

One might recognize that (7.11) is similar to Sontag's formula for time-invariant

systems [Son89] and furthermore is the direct extension of the formula presented

in Chapter 3. A simple modi�cation of Sontag's original proof [Son89] shows that it

enjoys the same continuity properties as in the time-invariant case, namely that when

q(x) is positive de�nite, it is as smooth as the data (@V
@x
f , @V

@t
, @V

@x
g and q(x)) except

possibly at the origin. Furthermore, one can note that this scheme will produce an

optimal controller for any CLF that actually satis�es the condition (7.7). Of course,

realistically this condition cannot be expected to occur except in extremely rare cases.

7.2.4 Receding horizon extensions of CLF schemes

An alternate route to the formula in (7.11) is through the solution of the following

pointwise min-norm problem:

minimize uTu (7.12)

subject to
@V

@t
+
@V

@x
[f + gu] � �� (7.13)

where

� =

s�
@V

@t
+
@V

@x
f

�2

+ (q(x))

�
@V

@x
ggT

@V

@x

T�
:

A detailed discussion of the pointwise min-normmethodology can be found in Chapter

3. This alternate perspective provides the appropriate starting point for an extension

of (7.11) to a receding horizon scheme. In Chapter 5, it was shown in the time-

invariant case that pointwise min-norm schemes can be naturally extended to on-line

receding horizon schemes that solve a �nite horizon optimal control problem at every
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encountered state. An analogous construction for time-varying systems leads to the

following CLF based receding horizon scheme:

minimize

Z t+T

t

q(x(�)) + uT (�)u(�))d� (7.14)

subject to _x = f(x; �) + g(x; �)u (7.15)

@V

@t
+

�
@V

@x

�
[f(x(t); t) + g(x(t); t)u(t)] � ��� (7.16)

V (x(t+ T ); t+ T ) � V (x�(t + T ); t+ T ) (7.17)

where x� represents the state trajectory produced by (7.12-7.13) and 0 < � � 1 is

a design parameter used to relax the constraint (7.16). This optimization is solved

at each encountered state and the resulting solution is implemented in a receding

horizon fashion.

As in the time-invariant case, this scheme possesses critical implementation prop-

erties that facilitate its e�cient use of on-line computation:

1. Equation (7.11) provides a feasible control action.

2. Guaranteed stability for any horizon length (or variable horizons).

3. No requirement of an optimizing solution for stability.

The reader is referred to Chapter 5 for details.

Before applying these techniques to an example, in the next section we brie
y

outline one method for obtaining CLFs for trajectory tracking involving feedback

linearizable systems.

7.2.5 CLFs for feedback linearizable systems

The subject of deriving CLFs is an active and vast research area in itself. Any

attempt to cover all of the various available approaches, even at a super�cial level,

could occupy an entire thesis by itself. Hence, we will limit our scope to serve our
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speci�c purpose here and brie
y demonstrate how one may determine a CLF for

trajectory tracking in feedback linearizable systems [Isi95]. There are two simplifying

reasons that we choose to focus on this class:

1. Given a desired output trajectory it is possible to compute the corresponding state

and inputs required to produce the output [Isi95].

2. There do not exist systematic techniques for �nding CLFs for general nonlinear

systems, but for feedback linearizable systems a quadratic function in the lin-

earized coordinates may be used.

More speci�cally, consider the trajectory tracking problem for full-state feedback

linearizable nonlinear control a�ne systems:

_x = f̂(x) + ĝ(x)u (7.18)

y = ĥ(x) (7.19)

where yr(t) is a desired reference trajectory and satis�es

_xr = f̂(xr) + ĝ(xr)ur (7.20)

yr = ĥ(xr): (7.21)

Since (7.18) is full state feedback linearizable, there exists a suitable change of co-

ordinates and feedback transformation such that (7.18) is transformed into a linear

and controllable system [Isi95]. In the new coordinates, z = �(x), the system will be

described by equations of the form

_z1 = z2

_z2 = z3
...

_zn�1 = zn

_zn = v

y = z1

(7.22)
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where n is the order of the system and v = b(z) + a(z)u: More compactly, we may

write the resulting linear system as

_z = Az + bv (7.23)

y = cz: (7.24)

Similarly, the reference trajectory in the z-coordinates is given by

_zr = Azr + bvr (7.25)

yr = czr: (7.26)

By de�ning error signals ~z = z � zr, ~v = v � vr, and ~y = y � yr, it follows that the

error dynamics are also linear:

_~z = A~z + b~v (7.27)

~y = c~z: (7.28)

Stabilizing these dynamics is equivalent to tracking the desired reference signal and

hence a CLF for these dynamics will also be one for the original trajectory tracking

problem. A CLF can be easily determined by solving the Riccati equation corre-

sponding to an LQR problem,

ATP + PA� PBR�1BTP +Q = 0; (7.29)

and using the resulting solution

~V (~z) = ~zTP ~z: (7.30)
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Expressing this CLF in terms of the original error coordinates ~x = x� xr leads to a

time-varying CLF:

V (~x; t) = (�(~x + xr)� zr)
T
P (�(~x + xr)� zr) : (7.31)

We can use (7.31) for the formula in (7.11), or to solve the receding horizon optimiza-

tion problem as indicated in (7.14) - (7.17).

7.2.6 Example

Consider the following two-dimensional nonlinear oscillator:

_x1 = x2

_x2 = �x1

��
2
+ arctan(5x1)

�
�

5x21
2(1 + 25x21)

+ u

with output y = x1. The problem is to track the reference signal

yr = sin(t)

while minimizing the cost functional

Z 1

0

(~x21 + 0:1~x22 + ~u2)dt

where ~x = x � xr and ~u = u � ur are the state and control \error" signals. Since

these dynamics are feedback linearizable with no coordinate change, it is easy to see

that the quadratic function:

~xT

2
4 1:45 1

1 1:45

3
5 ~x

is a CLF for the error system. This CLF results from solving the LQR problem with

the given cost and linearized dynamics.
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Both a feedback linearized controller and the CLF based controller as presented

in Section 7.2.2 were tested on this system. The results indicate that a priori there is

no advantage in one design technique over another. In fact, depending on the initial

condition chosen, either controller can outperform the other considerably. Note that

this is despite the strong connection that the CLF based formula has with the HJB

equation.

Consider, for example, the initial condition [3;�2]. From this starting point the

feedback linearized controller outperforms the CLF controller by a cost of 62 to 85.

The corresponding trajectories are shown in Figure 7.1. On the other hand, from the

initial condition [1; 6], the CLF based controller achieves a cost of 59 compared to

103 for the feedback linearized controller. These results are given in Figure 7.2.

It is important to recognize that while the feedback linearized and CLF controller

do not seem to possess inherent advantages over one another, the receding horizon

scheme produced signi�cantly improved performance over both. The results are pre-

sented in Figures 7.3 (initial condition [3;�2]) and 7.4 (initial condition [1; 6]) and

show the improvement that is possible by utilizing on-line computation in accordance

with the scheme presented in Section 7.2.4. For the same initial conditions, we tested

the horizon lengths T = 0:1 and T = 0:25 (with a sampling time of Ts = 0:05s and

� = 0:05). From both initial conditions, a horizon of only T = 0:1 improved upon

the CLF controller, but for the initial condition [3;�2] it still did not achieve a per-

formance better than the feedback linearized controller. By increasing the horizon

to T = 0:25, a dramatic improvement over the horizon of T = 0:1 was apparent,

and these controllers performed far better than either the CLF or feedback linearized

controller. For the initial condition [3;�2] it even transformed the poor performing

CLF scheme into a controller that outperformed the others by a wide margin. A

summary of the results is supplied in Table 7.1.
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Figure 7.1: State and control trajectories from initial condition [3;�2]: Reference

(dotted), CLF (dashed) and feedback linearized (dash-dot).
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(dotted), CLF (dashed) and feedback linearized (dash-dot).
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(dotted), RHC+CLF T = 0:10 (dashed) and T = 0:25 (dash-dot).
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Controller [3;�2] [1; 6]

Feedback Lin. 61.7 103.5

CLF 85.3 59.3

RHC+CLF (T = 0:10) 79.7 55.8

RHC+CLF (T = 0:25) 42.9 34.8

Table 7.1: Comparison of time-varying controller costs.

7.3 Input constrained systems

Input saturations represent an inherent limitation on actuators and arise in virtually

every problem of practical interest. Previously, constrained systems have only been

studied explicitly by a small portion of the control community. However, in recent

years there has been a renewed interest in the study of both linear and nonlinear

systems subject to input saturations.

More recently, focus has shifted toward techniques for constrained nonlinear sys-

tems that employ a control Lyapunov function point of view. This approach consists

of �rst deriving a control Lyapunov function for the constrained system, and then

determining a constrained input law consistent with the control Lyapunov function.

Research addressing the problem of determining a CLF for a constrained nonlinear

system has been quite active lately. While similar to the unconstrained case in that

no general systematic procedure exists for the derivation of a constrained CLF, pro-

cedures have emerged to construct CLFs for special classes of constrained systems. In

[Lin94] conditions are obtained which ensure global asymptotic stability for control

a�ne nonlinear systems such that their free dynamics are asymptotically stable. More

general results may be found in [MP96] for systems in the so called \forwarding" form

and in [FP98] for systems in the \backstepping" form. These references provide a

method for the construction of a constrained CLF when the system possesses special

structure.

The second stage in the control design procedure is the actual selection of a

bounded control law from the knowledge of a CLF. While most techniques for the
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determination of a constrained CLF also result in a constrained control scheme, there

has additionally been work on the selection of a control law purely from the knowledge

of a constrained CLF. For instance, Lin and Sontag [LS91] have derived a smooth

control law in which the control actions take values in the unit ball, extending the

well known results obtained in the unconstrained case [Son89].

In this section we extend the framework presented in previous chapters to handle

input constraints. This is done by �rst presenting a new pointwise min-norm scheme

for constrained nonlinear systems, then showing that it easily extends to a receding

horizon problem. Finally, a simple example demonstrates the new methodology.

7.3.1 Constrained nonlinear optimal control

We will consider nonlinear systems of the form:

_x = f(x) + g(x)u; f(0) = 0 (7.32)

with x 2 IRn denoting the state and f(x); g(x) 2 C1. The input will be constrained

to lie in a speci�ed set:

u 2 
u � IRm

where it is assumed that 
u contains a neighborhood of the origin.

Our motivation will derive from the constrained in�nite horizon nonlinear optimal

control problem, stated as follows:

minimize

Z 1

0

(q(x)) + uTu)dt

subject to _x = f(x) + g(x)u

u(�) 2 
u:

(7.33)

This is the standard nonlinear regulator problem, with the desired solution being a

state feedback controller u� = k(x).

As has been extensively outlined in previous chapters, the problem (7.33) is in general
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prohibitively di�cult, even when there are no constraints. In the constrained case

issues of feasibility complicate the problem even further, leading to questions of the

mere existence of a stabilizing controller.

While model predictive control has always been primarily motivated by con-

straints, it is only recently that methodologies for the derivation of control Lyapunov

functions have broached the subject [MP96, JSK96, FP98]. As this subject matures,

it will become increasingly useful to develop a theory analogous to that presented in

Chapter 5, but for the constrained optimal control problem. Our present aim is to

extend those results to the case of saturated inputs.

7.3.2 A stabilizing bounded feedback control law

Consider the system (7.32). Our purpose is to �nd a stabilizing state-feedback

u = k(x)

such that

k(x) 2 
u: (7.34)

Suppose that a CLF V is given for (7.32) such that

inf
u2
u

�
@V

@x
f +

@V

@x
gu

�
< 0 8x 6= 0: (7.35)

Condition (7.35) implies that for each nonzero state x one can diminish the value of V

by applying some control in the set 
u. Note that the problem of determining a CLF

for a constrained system is, by itself, much more di�cult than in the unconstrained

case. This topic has become the focus of research as of late where considerable

progress has been made [FP98, MP96, JSK96]. As a standing assumption, we will

assume both the existence and knowledge of a constrained CLF.

As in the unconstrained case, we �rst introduce a pointwise min-norm problem

based on a control Lyapunov function approach. Later, this approach will be ex-

tended to a corresponding receding horizon control problem. As a direct extension of
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the unconstrained pointwise min-norm problem in Chapter 5, consider the following

constrained formulation:

minimize uTu (7.36)

subject to
@V

@x
[f + gu] � ��̂(x(t)) (7.37)

u 2 
u (7.38)

with �̂(x(t)) > 0. In the unconstrained case, the design parameter � can be chosen

almost without restriction. It is easy to see that � is only required to satisfy @V
@x
f � ��

whenever @V
@x
g = 0 to be an admissible choice. However, the situation is now more

complicated. Since the input is bounded, the stability constraint (7.37) may make

the problem infeasible for an arbitrary choice of �. To signify that � must be chosen

with this in mind, we denote it by �̂ in the constrained problem.

In order to avoid infeasibility, �̂ must be properly chosen. We propose to accom-

plish this by solving the following optimization problem in u and �:

minimize uTu+ ��2 (7.39)

subject to
@V

@x
[f + gu] � ��(x(t)) + � (7.40)

� � 0 (7.41)

��(x(t)) + � � 0 (7.42)

u 2 
u (7.43)

and setting

�̂(x(t)) = �(x(t))� � (7.44)

with � > 0 a design knob to be properly chosen.

Note that when 
u describes linear constraints on u (e.g., magnitude saturation

constraints), the optimization in (7.39)-(7.43) is pointwise a quadratic program, which

can be e�ciently solved.
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The problem (7.39)-(7.43) can be viewed as a pointwise min-norm problem in

which the objective function contains the penalty term ��2. In fact, the stability

constraint (7.38) in the standard pointwise min-norm problem may lead to infeasibil-

ity, and thus this term is used to \soften" that constraint. Hence, one may view �

as being the desired parameter for the pointwise min-norm problem, but due to the

constraint (7.43) it must be compromised to �̂ = � � �. The parameter � measures

one's averseness to deviations from the desired �. For each arbitrarily large but �nite

�, the problem (7.39)-(7.43) is always feasible due to the condition (7.35).

Even when condition (7.35) is not known to be satis�ed, i.e., one is not sure

whether the CLF V is valid for the constrained system, the above scheme is a reason-

able approach to the design of a constrained control law. By removing the constraint

(7.42) (which ensures that _V is negative), and using a large value of �, the above

problem will select u in the constraint set 
u that makes _V as negative as possible

whenever � is not feasible for the standard problem (7.36){(7.38). In this sense, the

control law will attempt to provide a stabilizing control law in the bounded set 
u if

such a law is possible.

We have the following important connection between the pointwise min-norm prob-

lems (7.39)-(7.43) and (7.36)-(7.38):

Lemma 7.3.1 Let (u�; ��) be the optimal solution of the problem (7.39)-(7.43) for

any given state x(t), then u� is also the optimal solution of (7.36)-(7.38) with �̂(x(t)) =

�(x(t))� ��.

Proof: Set � = ��. The problem (7.39)-(7.43) is then an optimization with re-

spect to u only. With �̂(x(t)) = �(x(t)) � ��, the constraints (7.41) and (7.42)

are ine�ective. Therefore, this problem reduces to the pointwise min-norm problem

(7.36)-(7.38) with the parameter �̂(x(t)) in (7.44).

The importance of Lemma 7.3.1 lies in the fact that we do not need to solve two

optimization problems; i.e., �rst (7.39)-(7.43) to solve for the optimal � allowing the
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computation of �̂, and then (7.36)-(7.38) to obtain the pointwise min-norm control

input u using �̂. This allows us to always refer to the pointwise min-norm problem

(7.36)-(7.38), even though the problem (7.39)-(7.43) is e�ectively solved in order to

obtain a feasible solution.

By determining a feasible �̂ for the constrained pointwise min-norm problem,

this allows the approach in Chapter 5 to be used to extend the pointwise min-norm

controller to its natural receding horizon formulation.

7.3.3 Receding horizon extensions

The ability to extend pointwise min-norm controllers to receding horizon schemes is

useful in a number of respects. First of all, the advantages of on-line computation

have already been well established in techniques such as model predictive control,

especially in the handling of constraints. With the development of new CLF based

techniques for dealing with constraints, it is important to recognize that these new

approaches complement the existing receding horizon based approach.

For the constrained problem, the extension of pointwise min-norm controllers to

a receding horizon scheme takes the following form. Let u�̂ and x�̂ denote the control

and state trajectories, respectively, obtained by solving the pointwise min-norm prob-

lem (7.36)-(7.38) with parameter �̂. Consider the following receding horizon optimal

control problem:

minimize

Z t+T

t

(q(x(�)) + uT (�)u(�))d� (7.45)

subject to _x = f(x) + g(x)u (7.46)

@V

@x
(f(x(t)) + g(x(t))u(t)) � ���̂(x(t)) (7.47)

V (x(t + T )) � V (x�̂(t+ T )) (7.48)

u(�) 2 
u (7.49)

where � is chosen as in the unconstrained case. This optimization is solved on-line
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and implemented in a receding horizon fashion. Except for the constraint (7.49), this

receding horizon scheme is identical to that presented in Chapter 5. As a consequence,

it inherits the same stability and implementation properties. Again, the reader is

referred to Chapter 5 for details.

7.3.4 Example

In this section a constrained nonlinear example is presented to demonstrate the ap-

proach. Consider the following dynamics:

_x1 = �
(1 + 0:1x21)

(1 + 0:1x22)
x2 + (1 + 2x21)u1 (7.50)

_x2 =
20(1 + 0:1x21)

(1 + 0:1x22)
x1 + u2 (7.51)

with performance objective

Z 1

0

(x21 + 5x22 + u21 + u22)dt

and input constraints

ju1j � 1; ju2j � 1:

For this system, a constrained CLF is given by

V = 10x21 + 0:5x22:

We will test both a constrained pointwise min-norm controller, and its receding

horizon extension. In the pointwise min-norm scheme, we selected the parameters

� = 1� 106 and �(x) corresponding to Sontag's unconstrained formula, i.e.,

�(x) =

s�
@V

@x
f

�2

+ (x21 + 5x22)

�
@V

@x
ggT

@V

@x

T�
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where f and g correspond to the system dynamics in (7.50){(7.51). For the receding

horizon problem, we chose a horizon of 0:15 seconds (with a sampling time of 0:05s)

and an almost negligible value of � = 1� 10�6.

Simulation results from the initial condition [1; 1] are shown in the �gures. A

summary of the cost achieved by each controller is given in Table 7.2.

Table 7.2

Controller Cost

Pointwise Min-Norm 27.1

RHC+CLF (T=0.15) 22.9

Table 7.2: Cost of pointwise min-norm vs. RHC+CLF controller from initial condi-
tion [1; 1].

The control trajectories of the pointwise min-norm and RHC+CLF controllers

are contrasted in Figure 7.5. Note that the RHC+CLF controller is saturated for a

much shorter time than the pointwise min-norm controller, contributing to its smaller

cost. For reference, the state trajectories of the pointwise min-norm and RHC+CLF

controllers are shown in Figure 7.6.

The results of this example follow the general trend of those given previously.

While a pointwise min-norm controller typically displays reasonable performance,

especially under proper tuning of the parameters, the addition of a receding horizon

often leads to signi�cant improvements, even with the application of relatively short

horizons.

7.4 Summary

In this chapter we began by presenting a straightforward extension of the RHC+CLF

control scheme derived in Chapter 5 to the time-varying problem. This involved de-

riving a time-varying version of Sontag's CLF based formula, and then extending it

to a receding horizon scheme. Simulation results indicate that even though the CLF

formula was derived from the HJB equation, it does not possess any inherent per-
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Figure 7.5: Comparison of control trajectories from the pointwise min-norm and

RHC+CLF controller from the initial condition [1; 1].

formance advantages over other schemes. On the other hand, the extended receding

horizon schemes exhibit improved performance over other controllers, demonstrating

the power of on-line computation coupled with the information provided by a CLF.

Next, we extended the framework introduced in Chapter 5 to include control con-

straints. This �rst involved the development of a constrained pointwise min-norm

control scheme. This scheme is based on a modi�cation of the unconstrained point-

wise min-norm scheme, and as well as providing a controller for the constrained

system, it generates the appropriate parameters required to establish a receding hori-
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Figure 7.6: Comparison of state trajectories from the pointwise min-norm and

RHC+CLF controller from the initial condition [1; 1].

zon extension. As in the unconstrained case, in addition to providing a more 
exible

and implementable receding horizon scheme, it inherits the stability properties of the

pointwise min-norm controller. Both of the frameworks presented in this chapter pro-

vide the foundation for new contributions in CLF and RHC theory to be e�ectively

utilized.
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Chapter 8 Conclusions

8.1 Summary of main results

We began this thesis with a review of the classical approaches to the problem of

nonlinear optimal control: dynamic programming and calculus of variations. It was

emphasized that these two solutions represent distinct points of view, and lead to

Hamilton-Jacobi-Bellman partial di�erential equations, and the two point boundary

value Euler-Lagrange ordinary di�erential equations, respectively. Furthermore, these

two viewpoints acted as our guide for the rest of the thesis, providing a foundation

for the interpretation of existing control approaches.

We focused on two popular approaches: those based on control Lyapunov func-

tions, and the receding horizon methodology. While control Lyapunov functions can

be thought of as generalizations of the Lyapunov methodology, the receding horizon

methodology was made a practical reality by the computer revolution. In the context

of optimal control, these techniques were shown to relate well to the two classical ap-

proaches to optimal control. Furthermore, this viewpoint was not only bene�cial for

understanding the contributions of existing techniques, but also led to the derivation

of new control laws that exploit previously unrecognized connections.

First, we explicitly developed the connections between control Lyapunov function

based schemes, speci�cally Sontag's formula and pointwise min-norm controllers, and

the Hamilton-Jacobi-Bellman equation. For pointwise min-norm controllers, such re-

lationships had been established previously, but our new variation of Sontag's formula

was shown to couple even more tightly with the Hamilton-Jacobi-Bellman equation

and furthermore be a special case of the pointwise min-norm formulation. This led to

a deeper understanding of the pointwise min-norm controllers as well, and revealed

both their strengths and weaknesses. In general, Sontag's formula and pointwise

min-norm controllers rely on the information provided in the level curves of the CLF.
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Despite the inverse optimality properties, if these level curves are far from those of

the value function, these controllers are apt to lead to poor performance.

Next, receding horizon control was explored in the context of the Euler-Lagrange

solution to trajectory optimizations. Again, this helped to explain both the advan-

tages and disadvantages of receding horizon techniques, and it provided a clearer

picture of the existing stabilizing formulations. In essence, receding horizon con-

trol exploits the computational simplicity of the Euler-Lagrange viewpoint to avoid

the computational intractability associated with Hamilton-Jacobi-Bellman equations.

The receding horizon methodology is merely a means to produce a state feedback con-

trol law from the repeated solution of trajectory optimizations.

Chapter 5 pieced the entire picture together by presenting a new framework in

which optimal control and pointwise min-norm controllers could be interpreted as

limits of a special receding horizon scheme. This even allowed us to present a reced-

ing horizon extension of Sontag's formula. In addition to leading to a clari�cation of

the contributions of existing techniques, these new schemes demonstrated that both

the Hamilton-Jacobi-Bellman and Euler-Lagrange points of view were complementary

and could be combined in a bene�cial manner. Theoretically, these schemes inher-

ited both the stability properties of control Lyapunov functions and the performance

advantages of on-line receding horizon style computation. Additionally, they were

shown to possess desirable implementation properties, easing some of the di�culties

associated with on-line intersample computation.

This new methodology was put into practice in Chapter 6 where it was applied

to a simple model of a longitudinal 
ight control system. This example illustrated

step-by-step the construction of control laws using a new two-stage design paradigm.

The �rst stage involved the derivation of a CLF. It was shown how a number of stan-

dard and state-of-the-art techniques were natural candidates for this. The second

stage required the selection of a CLF based control law. While the techniques used

in the �rst stage o�ered their own implementations, it was recognized that Sontag's

formula, pointwise min-norm controllers, and receding horizon extensions were also

valid choices. Furthermore, simulations con�rmed that this point of view was able
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to utilize the contributions of existing approaches to produce improved control laws.

Additionally, by having receding horizon implementations available, it naturally in-

corporated on-line computation, which will undoubtedly be a crucial advantage in

the future. Finally, the framework was shown to extend to time-varying and input

constrained systems, providing the foundation to include other advances in control

theory as them become available.

8.2 Future research

Nonlinear optimal control is a vast subject and this thesis has only touched upon

limited aspects of it. In particular, we have developed a framework to understand

and utilize the contributions of existing techniques. While in one sense new control

schemes were introduced, in another the ideas were already there, merely waiting to be

formed into a coherent picture. This picture allowed us to leverage the contributions

of existing techniques to design improved controllers. On the other hand, it also

brought to the forefront those aspects of nonlinear optimal control that must be

confronted in the future.

At its essence, the nonlinear control design process contains two stages: derivation

of a CLF, and determination of a control law from the CLF. Let us outline some of

the future challenges involved in each stage.

Derivation of a control Lyapunov function for nonlinear systems is a di�cult task.

No general procedures exist except for classes of systems that possess special struc-

ture. Nevertheless, exploiting special structure represents a promising approach to

extending the ability to derive CLFs. In problems of trajectory tracking, for exam-

ple, feedback linearizability can provide answers to both the problems of planning

trajectories and determining CLFs around trajectories. Mechanical systems present

another example of a class of systems that possess exploitable structure, and energy

often provides a starting point in the derivation of a CLF.

When a CLF is desired for more than mere stability, to conform to constraints

or robustness margins, the set of plants for which known techniques exist is limited
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even further. Hence, these issues must be tackled if progress is to be made on the

CLF based approach to nonlinear optimal control. The importance of this is widely

recognized, and research on these subjects over the last couple of years has increased

dramatically, especially in the area of constrained systems.

The second stage involves the determination of a control law. The use of more on-

line computation in this step will undoubtedly occupy a large future area of research.

Clearly, a deeper understanding of the properties of control schemes based solely

upon on-line intersample optimization is needed. Currently, fundamental issues still

remain to be sorted out, especially concerning constraints and robustness. While new

analysis techniques have recently emerged for linear systems, extending results to the

nonlinear problem will be challenging, but potentially extremely rewarding.

In the end, practical questions of implementation always have the �nal say. For

control to take advantage of on-line computation, control designers must become

more familiar with the computational tools available. This will involve an increased

interaction with other communities, particularly computer science. As demonstrated

in this thesis, an open mind to the o�erings of di�erent points of view can only serve

to strengthen our ability to confront the problems of the future.
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