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ABSTRACT

The continuum equations describing the motion of a fluid con-
taining small solid particles are discussed and stated. The examples
considered fall into two categories: (1) when the fluid is incompressi~
ble and viscous, with simultaneous occurrence of particle-fluid mo~
mentum relaxation and fluid viscous diffusion; and (2) when the fluid
can be considered as "inviscid" but compressible, with simultaneous
occurrence of coupled particle=fluid momentum and thermal relaxa-
tions and fluid compressibility.

Under (1), the low Mach~number Rayleigh problem is studied.
Many of the physical features of the non-linear steady (constant pres=
sure) laminar boundary~layer problem are recovered from appropri-
ate expansions from this exact solution. One obtains answers to
questions about the modifications on the boundary layer growth and
skin friction; particularly their transition from the "frozen'" value
near the leading edge, where the viscous layer is "thin" and the fluid
viscous diffusion behaves as if in the absence of particles with the
ordinary fluid kinematic viscosity, + = -’;— s to the ultimate "equi-
libriqm" value far downstream where the mixture then behaves as a
single heavier fluid and viscous diffusinn takes place with the "equi~

librium" kinematic viscosity augmented by the particle density

= A
Y= PR

relative temperature differences) is directly inferred, and this

. The uncoupled thermal Rayleigh problem (small

answers questions about the modifications on the surface heat~transfer
rates and particularly about the possibility of similarity with the ve~

locity boundary layer. Similarity of the two boundary layers is
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.possible when, in addition to lateral diffusion effects being similar as
indicated by Prandtl number unity, the streamwise relaxation pro-
cesses must also be similar. The infinite flat plate oscillating in its
own plane is studied, and appropriate expansions from the exact solu-
tions point out how approximate treatment of periodic boundary layers
in the absence of a mean flow may be made.

Under (2), the first-order small perturbation theory is dis-
cussed, leading from the equation for acoustic propagation to that for
linearized supersonic flow. The two~dimensional steady case, or the
Ackeret problem, is considered in détail. The Mach wave structure
induced by a thin obstacle is deduced and shows a rapid damping of
the disturbance aiong the "frozen'" Mach wave (based on the sound
speed of a gas in the absence of particles), both damping and diffu-
siveness along an intermediary Mach wave, and diffusiveness along
the "equilibrium" Mach wave (based on the sound speed of an equi-
librium mixture of gas and particles) and along which the bulk of the
disturbance is carried to regions far from the obstacle. An exact
form of the pressure coefficient is obtained for any surface shape
{(consistent with the line ar theory), and involves a convolution inte-
gral of two Bessel functions with imaginary argument which is ana-
lytically evaluated. When the particle-ﬂuid density ratic is small,
the "frozen' and "equilibrium'" Mach waves are very closely clustei'eci
together. A '"boundary layer technique', based on the fact that
changes across the Mach waves are rapid compared to changes along

Mach waves, is then applied to obtain a simplified version of the lin=-



earized equation that describes Mach waves inclined toward the down-
stream direction only. While the Mach wave structure is consistent
with the exact treatment, the pressure coefficient takes on the much
simpler form of decreasing exponentials, The transition is, again,
from the 'frozen' value at the leading edge towards the ""equilibrium"
value in the downstream direction insofar as the surface shape

permits.
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I. INTRODUCTION

istorically, the study of the motion of a fluid containing
small, solid particles has taken on numerous aspects of interest by
many scientific and engineering disciplines since the turn of the cen-
tury. The interest in this subject within the discipline of fluid
mechanics is, however, only recent. In his 1947 paper on sand rip-

(1)

ples in the desert, the late Professor von Kdrméin' ' made an invita~-
tion as well as pointed out the challenge to workers in fluid mechanics
for the elucidation of problems in this field.

One is referred to existing comprehensive reviews con-

cerning the earlier WOI‘_ks(Z’ 3,4, 5)

, largely empirical, on such prob-
lems as atomization of liquids, fluidization, powder beds, and smoke,
to mention a few; and on problems of raindrop impingement and icing

on airfoils(é’ 7, 8)

that are mainly concerned with trajectories of a
single droplet in an undisturbed aerodynamic flow field.

The recent aeronautical interest has been motivated by the
use of high-energy solid rocket propellants which stimulated the study
of rocket-nozzle exhaust gases containing finely distributed solid par~
ticles. Other aspects that may be of aeronautical interest, which are
not entirely speculative, concern the aerodynamics of a dusty plane~
tary atmosphere. Aside from the evidence of the presence of fine -
dust particles of micron size in the atmosphcres of Mare and

9 . . . .
Venus( ), however, various other essential information concerning

the order of the particle number density, the question as to their
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charge, and even the detailed gaseous atmospheric properties are not
as yet available,

The various significant papers on the nozzle problem were
recently reviewed by Hoglund(lo); these are largely concerned with
tedious numerical procedures. Recent analytical formulations of the
nozile problem are given by Rannie(”) and by Marble(lz). The prob«
lem of a normal shock wave in a gas containing small solid particles
is studied by Carrie.r(13). The stability of laminar flow of an incom-
pressible fluid containing particles is studied by Saffman(14) from the
small disturbance point of view. Consideration of the turbulent bound-
ary layer is made by Soo(15),‘ however, unaccompanied by the neces-
sary extensive experimental program that has lent success in the
understanding of turbulent boundary layers in ordinary fluid mechan-
ics.

Only in recent years has the study of the motion of a fluid
containing small solid particles departed from association with indi-
vidual problems,and efforts have been made for its introduction as a
new borderline area in the general discipline of fluid mecha.nics(lé—zo)
to which the description as '"particle~fluid mechanics" may be appro-
priately assigned. In this context, the inter~particle distances are
large compared to the sizes of the particles, whose presence in the
fluid renders a fluid-like behavior on their own part. This will be
discussed in more detail in Chapter II on the general conservation
equations, and where a review of the more general approaches, dis-

cussions of our ranges of interest, and the implications of "incom-

pressible! and "inviscid! flow in the present context are also given.
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Several examples that are typical fluid-mechanical problems
encountered in aeronautics are studied to which the conservation
equations are specialized. As an example of the competing effects of
fluid viscous diffusion and its inhibition by the force exerted on the
fluid by the particle cloud, the subsequent motions of the fluid and the
particle cloud after an infinite flat plate is impulsively set into motion
in its own plane are studied in Chapter III. This is the corresponding
incompressible Rayleigh problem in particle-~fluid mechanics, and ex-
cept for details, possesses nearly all the physical features of the non~
1ineé.r (constant pressure) laminar boundary layer problem(lg). The
corresponding uncoupled heat transfer problem can be directly infer-
red. These answer important questions, with mathematical simplicity,
such as the modifications of the surface shearing stress and surface
heat transfer rate as a result of distortions of the fluid velocity and
temperature profiles due to particle~fluid interactions, and also on
boundary layer growth and particularly on the possibility of similarity.
As a resemblance to a class of periodic boundary layers, the infinite
flat plate oscillating in its own plane is studied in Chapter IV. These
comprise the incompressible viscous flows studied and take their
place as exact solutions, within the particular assumptions of the
form of the particle-fluid interaction, in the discipline of particle~
fluid mechanics.
As an example of the simultaneous occurrence of fluid com=~

pressibility and particle~fluid momentum and thermal interactions in
regions of the flow field outside of fluid boundary layers subjected to

small disturbances, linearized supersonic flow is considered in
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Chapter V. The resulting Mach wave structure, common to flows of
relaxing gases, is studied and the exact form of the pressure coeffi~
cient is derived. It is noticed that when the mass content of the
particle cloud is small compared to that of the fluid in a unit volume,
a physical approximation which is equivalent to the more formal
"boundary layer technique' may be used to obtain a considerably
simpler form for the pressure coefficient ,while the flow [ield charac=

teristics are consistent with the exact approach.
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II. GENERAL CONSERVATION EQUATIONS FOR A GAS
CONTAINING SMALL SOLID PARTICLES

1. General Discussion

The motion of a gas containing small solid particles is dis~
cussed in rather general terms in the pioneering work of Kiely(l6),
who stated the necessary equations of change and subsequently applied
the techniques in the theory of irreversible processes for small depar-~
tures from thermodynamic equilibrium to deduce the forms of the
particle-fluid interaction "forces'., However, Kiely does not make
clear the existence of a dissipation arising as a result of the work
done due to particle~fluid momentum interaction, and this essentially
perpetrated into his subsequent calculations of entropy sources.

More recently, and independently, Chu and Pa.rlange(zo) discussed the
conservation equations,and reference is made to the theory of irrever-
sible processes in deducing the particle~fluid interaction "forces',
The interaction laws obtained are linear in the velocity difference be-
tween the two phases for momentum interaction and linear in the tem-~
perature difference for thermal interaction, which is the forms which
Stokes'! law takes. In this situation, the linear interaction '"forces'
are placed in the same footing as the Newtonian and Fourier linear
relation between the fluxes of momentum and heat and the gradient of
velocity and temperature, respectively, for small departures from -
thermodynamic equilibrium.

The conservation equations are also discussed by Van Deemter

(16) (r7).

and Van Der Lann and by Hinze These authors discussed only

the conservation equations of mass, momentum, and kinetic energy
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and are incomplete in the sense that the thermal energy conservations
are omitted from their discussion.

The gencral conservation equations obtained on the basis of a
particle distribution function are given by Marble(lg). Prior to stating
the result of his derivation, however, we first discuss some aspects
of our range of interest in terms of the number, mass, and size of the
particles as compared to that of the fluid medium in which they are
immersed. This points to the way in which the conservation equations
are obtained and the form which they take.

When the solid particles are metallic, the ratio of the mass
density of the solids to the mass density of a gas at standard condi-
tions %/Jp » 18 of the order of 103. Our interest falls in the range
when the total mass content of the particles is of the same order as
that of the total mass content of the gas in a unit volume of mixture,
that is, £, /Jo = O(1). In this situation, the ratio of the total volume oc-
cupied by the particles to that of the gas in the unit volume of mixture
is then of the order of 10-3, Hence, one now speaks of a quantity in
terms of per unit volume of mixture synonymously as per unit volume
of gas due to the negligible volume occupied by the solids. Further-
more, when Pp/,P =0 , if all the particles are of radius v, = 1
micromn, t-he number of particles present in a cubic millimeter is of
the order of 105, and the inter-particle distance is about 10”% mimj
when vp = 10 microns, then they are 103 and 10-1, respectively. In
this situation, one can certainly define a macroscopic "point' of the

order of a fraction of a millimeter over which an average quantity of

the particle cloud may be suitably defined., At the same time, the
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interparticle distance is sufficiently large compared to the sizes of the
particles themselves so as to render particle~particle interaction* (if
at all present) secondary when compared to the particle~fluid interac=
tion. The latter interaction is a continuous one, since the mean free
path of a gas at standard conditions is about 5 X 10-5 mm. Finally,
the ratio of the mass of a single particle to that of a gas molecule is of
the order of 1011 for rp = 1 micron and 10'14 for Yp = 10 microns.

From the above discussion, we can now proceed to discuss a
distribution of fine particles, which we assume to be spheres of uni-
form radius, immersed in a perfect gas, and are sufficiently rare
and are non~interacting. Within a macroscopic "point", in general,
the individual particles may have different velocities and directions of
motion and at different temperatures. However, due to the large num-~
ber of particles present in a small volume, which we consider as a
macroscopic "point'", one can certainly define averaged local quanti~
ties on the basis of a particle distribution function and consider the
particle cloud as a continuum. The conservation equations for the
particle cloud were obtained by Marble(lg) from an appropriate form
of the Boltzmann equation for the distribution function of non-
interacting particles by taking appropriate moments over the individu-
al particle velocities, temperatures, and sizes. Here, we consider
particles of a single family. When differences in particle sizes are

present, however, we shall then assume that the differences are

‘ Particle~particle interaction is important when particles of extreme
difference in sizes are present, and forms a separate discussion. In
this paper, we only consider particles of the same size.
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negligible to the extent that particle~particle interactions are negli-
gible. Since the particles are non~interacting with themselves and
are extremely massive compared with a gas molecule, the randomiz=~
ing tendencies of the properties of the particles are ahsent. In the
follpwing, the appropriate conservation equations will be stated,

adopting the notation of Marble(lg)o

2, Conservation Equations

Conservation of Mass., - In the absence of mass exchange be~

tween the two phases and the negligible volume occupied by the solid

particles, the continuity equation for the gas phase is

2 2PV
o 20V
x T 3%} o (2. 1)

and for the particle cloud,

afp B(PP"p-)
T _—_*ax’-, =0 (2. 2)

which is analogous to that for the gas.

Conservation of Momentum. =~ The momentum equation for

the gas phase takes the usual Navier~Stokes form, but is augmented by
the force per unit volume exerted on the gas by the particle cloud in

that volume

ov; V; 3® - aTiy F
—_— 4 P — = em e e — * .
Pat P Yoxy o%y oxy P (2. 3)
Here, T;‘-, is the usual viscous stress tensor. The gas strain ten-

sor, to which it is linearly related, refers to "smooth! derivatives of
the gas velocity vector. 1In this case, the detailed disturbances on the

gas velocity duc to the passage of particles are neglected. The
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- momentum equation for the particle cloud is

Vp; Vp; 3 Siy 2.4
y —_—t + ? v, ,.._‘ T — + - F . ( ° )
PIE a2 2250 ()

The particle ""slip'" stress tensor Sij > analogous to the gas stress
tensor, is the momentum flux due to deviations of the individual parti-
cle motions from the mean particle velocity Vp; . This is negligible
compared to the corresponding gas stress tensor T;j. since the ran-
domizing tendency of the particle velocity is absent or negligible if
present. (-Fp;) is the force per unit volume exerted on the particles
in that volume by the gas.

Conservation of Energy. =~ The energy equation for the gas in

the form of the First Law of thermodynamics for the gas internal en=

ergy per unit mass of the gas is

*

ae v-a—e ﬁ‘.’= --3—1-"‘ +§ + Q 2.5
oY P t i ¢ . ? P (2. 5)

which is augmented by the rate in which work is being done per unit
volume on the gas by the particles in that volume,; §P= l\fpi-\fg) E’i .
and the rate in which heat is transferred per unit volume to the gas Qp
from the particles in that volume. §® is the usual viscous dissipation
and i’k the usual Fourier heat flux vector linearly related to the gas
lemperalure gradient. By analogy with the discussion of the viscous
stress tensor, the gas temperature gradient referred to is the
""smooth' one. The energy equation for the particle cloud, in terms of

the particle-cloud internal energy €p=¢&T, , is
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3T e _ W
P 5%t T VR, gt (%) (2. 6)

H'Pi denotes the particle 'slip" heat flux vector, which is due to de-
viations in the individual particle motion and temperature from the
mean particle velocity U'P.\ and temperature Tp respectively. By
analogy with the particle "slip!' stress tensor, this is negligible com-~
pared to the corresponding gas heat flux vector :%k .+ {(-Qp) is the
rate in which heat is transferred per unit volume to the particle cloud
in that volume from the gas.

Equation of State. -~ The equation of state for the gas at

moderate temperatures and pressures is simply that of a perfect gas,

P= pRT (2.7)
The particle cloud, however, is not constrained by an equation of state
due to its lack of volume and randomizing tendencies.

Interaction Force and Heat Transfer. -~ Since the particle

cloud occupies negligible volume, the force exerted on the particle
cloud due to the pressure gradient in the gas,as well as that due to
virtual mass, is neglected. We assume that the interaction force is

given by a linear relation in the relative velocity,

Fe.

i

= f - (2. 8)
._.trv(\rpi_ i)

In particular, if we assume Stokes' law holds, then the velocity relax-

ation time is given by the relation

Ty = mp/@'“'f"rP

which is order of the time required for the particle cloud and the gas
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to come into local velocity equilibrium. Similarly, we assume the
:Eate at which heat is transferred to a unit volume of gas from the
particle cloud in that volume depends on a linear relation in the rela=

tive temperature,

[x)

1]

f ——
Qp = 7 (Te-T) 2.9)

For particles obeying the Stokes' law, the temperature relaxation time

is then

(o]

Ty = % Pr E‘; Ty

which is the order of the time required for the particle cloud and the
gas to come into local temperature equilibrium. For metallic parti-
cles in a gaseous medium, Ty and Ty are of the same order.

We have tacitly assumed, since the interparticle distance in
our range of interest is much larger than the particle size, that the
total interaction of the particle cloud on the gas in a unit volume is the
numb}er of particles in that volume times the corresponding effect of a
single particle.

Rubinow and Keller(ZI) showed that the transverse force on a
sphere in éhear flow is solely due to its spin; however, when the
sphere originally has zero spin, it remains so thereafter. These
apply to our range of interest in small departures from thermody-
namic equilibrium where the particle-fluid interaction is describable
by a linear relation in the relative velocity,and the transverse force

will not be included in our subsequent considerations.
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3. '"Incompressible' Flow

In the classical sense, when one considers the special fluid
that is called "incompressible', one restricts considerations to small
relative temperature differences in the fluid, in which case the fluid
density and properties variations are negligible. Simultaneously, the
flow Mach number has to be much less than unity, in which case the
heat source in the fluid due to viscous dissipation can be neglected. In
particle-fluid mechanics, the additional restrictions are that the re-
lative temperature difference and that the Mach number based on the
relative velocity difference between the fluid and the particle cloud be
small, The first in keeping the variations of fluid density and pro-
perties negligible, the second in keeping the heat source in the fluid
due to the work done on the fluid by the force exerted from the par-
ticle cloud negligible. In this situation, the momentum and thermal
considerations are uncoupled. Since the particle cloud is not subjected
to an equation of state, the variation of particle cloud density, §, , is
then governed solely by mass conservation considerations. In this
sense the particle-cloud continuity equation does not have an "in-
compressible! form. .

For the "incompressible' problem, the fundamental equations

reduce to the following form:

vy _ '
= = 0 (2.10)

® J%_(ﬂqm) + L F,.
~ 1

= Tt F (2.11)
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% * 3%, $ =0 (2.12)
WMo, w2 o L (-R 2.13
(14)

These equations are in the form given by Saffman , which forms the
basis of his study of the "incompressible' laminar stability in particle-
fluid mechanics.

Entirely uncoupled from the dynamical problem, the '"incom-

pressible' form, in the context discussed, of the energy equations are:

T = 2P _ ;2P aT
PCP"E + P }3}‘ = _3t ;ax ax}; + @ QP é (2°14)
3T
Rl "P = (~Qp) (2.15)

In the consideration of the heat transfer problem, the dissipation
terms are neglected; while in the thermometer problem, they are re-

tained as the only sources contributing to temperature variations.

4, "Inviscid" Flow

In the study of flow fields of aeronautical interest in particle-
fluid mechanics, i._e. , those which result from the presence of an ob-
stacle placed in the stream, the classification of certain regions in
the flow field is similar to that in classical fluid mechanics for fluids

with negligible friction, since here the only transport effects are
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those of the fluid phase. In other words, shearing stresses within the
.ﬂuid itself are confined to certain thin boundary~layer regions in space
and adjacent to solid boundaries when the flow Reynolds number,
based on some characteristic length, is la,rge.. Outside such reglons,
the particle-fluid momentum interaction, which arises due to fluid
viscosity, is more important compared to the viscous forces within
the fluid itself, Similarly, for other transport effects, such as
fluid heat conductivity and mass diffusivity, this is also true. I.oose~
ly speaking, then, outside of certain thin boundary~layer regions, we
may consider the inviscid" flow in particle-fluid mechanics.

The conservation equations for "inviscid" flow, in the context
just discussed, is simply the corresponding Euler equations in
particle-fluid mechanics. For the fluid, which can be compressible,

the equations take the form

s T (2. 16)
¥
Vi v _ _af
PG Py, T v e (2. 17)
AV;
pae o rv;i—‘—j.’ w5 = Gy (v VDT (2.18)

Alternative forms of the fluid energy equation may be written in terms

of the gas static en_thalpy per unit of its own mass h=e -\—1’/_}:

p2h _ P P

. — — . . 2.1
Poe + 7Y t;x, at +"rax; * @y + Wemvd Fey (2.19)

and in terms of the gas entropy per unit mass:
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38 2s
3+, = Sl e o
=‘-T'(QP*“’?€""¢’F"«') (2. 20)

The corresponding equations for the particle cloud are

3Py A PpVpp) (2. 21)
s{ + 3Xi =Q
I Vyp, Ve,
I A = (CFR) (2. 22)

T Ay
fols a: + £pCs VP‘—B‘I’ (- Qy) (2. 23)

where CsTe= €p '-"g\p . In terms of the particle cloud entropy per
unit of its own mass, the energy equation takes the form
S aSp

o’y Vp, = == |¢ ?+PVP )
f?at + Pp P‘,ax (P P ;

; (2. 24)

Lo(-
+ tap
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III. THE RAYLEIGH PROBLEM

1. General Discussion

In classical fluid mechanics, the most enlightening arguments
concerning the existéﬁce and nature of boundary layers were derived
frofn considerations of the diffusion of vorticity(zz). The equation
satisfied by the vorticity appears in the same form as the heat diffu-
sion equation, the analogy with which implies that vorticity cannot
originate in an infinitesimal part of the fluid which is entirely en~
closed by fluid without vorticity. Like heat, vorticity must be diffused
into the interior of the fluid from the boundaries from which it must
originate. Finally, the analogy implies that the total amount of vor-
ticity which was originally produced at the boundaries must remain
conserved in the fluid. The simplest example is the infinite flat plate
started from rest impulsively, now commonly known as the Rayleigh
problem, was first considcrced by Stokes('zzs),, and its experimental
verification is only recent(24). In this case, concentrated vorticity is
produced at the plate at t= 0 and after some time, ¥ , the extent of
its penetration into the interior of the fluid is of the order m where
4 is the.kinema.tic viscosity of the fluid. It was suggested by Ray~
1eigh(25) that when a moving stream of fluid with velocity Wwp reaches
the leading edge of a plate, the situation is somewhat similar in that a
concentrated vortex sheet is then produced. The time required for a
fluid element to travel a distance % from the leading edge is ap~-

proximately t~ x/u,o by which time the extent in which vorticity

has diffused into the interior of the fluid is of the order of JVx/uo
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which is the order Of, the classical laminar boundary-layer thickness.
.The resemblance of the two problems, except for details, arises from
the nature of high-Reynolds-number viscous flow where diffusion ef-
fects are in a direction normal to the plate only. Rayleigh inferred
from the infinite flat plate impulsively started f{rom rest the shear
stress at the wall of a semi~infinite flat plate moving in a stream of
small viscosity by applying the transformation + =2 /v.g . Although
approximate, this lead to a result for the shear stress at the wall dif-
fering only by a modest numerical factor from the more exact calcula-

22)

tions of Bla.sius(

In classical fluid mechanics, the insight gained from the Ray-
leigh problem ({for a recent review of a variety of Rayleigh's problem
in fluid mechanics, see Stewartson(Z())v) in understanding the boundary
layer concept renders the motivation of the present chapter rather ob-
vious. However, in particle-fluid mechanics, the Rayleigh problem
can only be considered as possessing features of a more restrictive
number of physically important high-Reynolds~number viscous flow
problems, For instance, one must exclude those problems where
particle-boundary collisions and relatively large deviations of solid
particle paths from fluid streamlines due to centrifugal acceleration
become appreciably important.. Hence, the Rayleigh problem in
particle-~fluid mechanics is then limited to an idealization of the con~
stant-pressure laminar boundary layer or nearly parallel flows. For
a general discussion of the implications of Prandtl's boundary layer

concept in particle-fluid mechanics, one is referred to Marble(lg).
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2. The "Relaxation-Diffusion Equation'

We consider a special fluid that can be treated as "incompres-
sible'',as discussed in Chapter II, where the special case of the con~
servation equations for an "incompressible' fluid is stated. Here, we
further reduce the equations to an appropriate form for the description
of the Rayleigh problem. In the present problem, the mixture of fluid
and particles is bounded by a flat plate, infinite in extent, at the 4 = 0
plane, as shown in Figure 1. We consider the motions of the plate to
be in its own plane so that there is no displacement of fluid in the ¥~
direction due to the plate motion. Neglecting viscous dissipation for
our Incompressible fluid, there is no expansion of the fluid near the
plate, hence v=vp=0 . Furthermore, since the plate extends to
infinity in the +x directions, there are no changes in the x~direction
of any property. The streamlines of the fluid now coincide with that
of the particles and are parallel to the plate. In this situation, the
density of the particles £, 1is fixed according to its initial value
along streamlincs which we take as constant throughout. This is es=~
sentially the main difference from the boundary layer problem con-
sidered by Marble(lg_) where the particle density is variable due to
the vé.riation of the particle velocity in the direction vertical to the
plate. Now the quantities w and W are functions of Y and %
only. The momentum equations (2. 11) and (2. 13), with the force
law given by equation (2. 8), then appear in the form

w o oy AR K a—w (3. 1)
at"va‘f- T, T )
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Uy = - L (wo-w) (3. 2)
P33 Ty T
where ¥ = P /P is constant. The equations are rendered linear

by virtue of the geometry of the problem and within the restrictions of
an incompressible fluid. Within the assumption of the linear force
law in the particle-fluid momentum interaction, these are the '"exact"
Navier~Stokes equations governing the problem in particle~fluid
mechanics. Differentiating equation (3. 1) with respect to + and
using equation (3. 2), we obtain the following "relaxation diffusion

equation” for w (or for we )

o% 3 2w _ W u _ v\ _ o
W R(5E - Iy “'(at Iy (3.3)

where T_\’; = ty/\.ﬂo is an effective velocity equilibration time, and
Y= 1’/H—Kr is the kinematic viscosity based on the density of the mix-
ture and has the physical significance of being the "equilibrium'' kine-
matic viscosity, and 4 is the "frozen'" kinematic viscosity, The
fluid vorticity L =- a-a-\; obeys the samse equation. Xquation (3. 3)
appears in the same form as that governing elastic wave propagation
in a visco-elastic solid for a three-parameter model with one elastic

and two viscous elements derived by Morrison(27), and as that for the

Rayvleigh problem in a visco~elastic fluid considered by Tanner(zs). 8

Unfortunately, Tanner's exact solution is incorrect due to a mis-
take in making branch~cuts for the inversion of the LaPlace transfor-
mation.
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3. Mechanical Energy Dissipation

In clas sical. fluid mechanics, the diésipation of fluid kinetic en-
ergy arises due to the presence of viscosity which is ultimately de~
graded into heat. Due to the presence of particles, a new mechanism
for the dissipation of kinetic or mechanical energy arises which is the
result of the work done due to the particle-fluid interaction. This may
be simply demonstrated in the following.

Let us consider the total kinetic energy of the mixture, which
is the sum of the fluid and the particle kinetic energies per unit volume

of space integrated over a unit width of space:

-}

Epin = I(P%I+Pp%%’)dtf, (3. 4)

o
2
where Ekin is the total kinetic energy of the mixture and P%_— s
S ‘%"P are the fluid and particle kinetic energies per unit volume
of space, respectively. Now the rate of increase of the total kinetic

energy is then
00

Ein "SFCJ (P + R %Py

]

-]

- al ok
= [ (sa3 0 e 3i)te (3. 5)

/]

Using the momentum equations of the fluid and of the particles given

in equations (3. 1) and (3. 2) respectively, then equation (3. 5) becomes:

ad e
- R
Ep, = _uo(P%)7=o—[Pl(%)le’ . %’J‘“"’“’”’] (3. 6)

(-]
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Since we are crmsideﬂ‘n_g the plate suddenly set into motion at velocity
| = ~ du .
We  then uy T, , where Tw——rb(—a_‘;)'po’ is the rate at which

work is done on the fluid by the plate. Rewriting,

[+ ] o«

P *

WoTy = E i+ j j (b—;‘;)z&ty + %Ev I(up—u.)"c\ly (3.7)

o o

(where >0, Ty, >0). We see that not all of this work goes to in-
creasing the kinetic energy of the mixture. The loss is given by the
rate at which fluid kinetic energy is dissipated through viscosity,
which is represented by the second term on the right where the inte~-
gral is positive definite, and by the rate of particle and fluid kinetic
energy dissipation due to particle-fluid momentum interaction, which
is represented by the third term on the right where again the integral
is positive definite. Hence, rate of increase of the total kinetic ener-
gy of the mixture is equal to the rate of work done on the fluid by the
plate motion subtracted By that which is dissipated into heat., Of
course, in the incompressible fluid which we consgider, this heat is
rapidly conducted away and gives rise to a negligible increase in tem-

perature of the mixture.

4. The Rayleigh Problem

The Rayleigh problem in the classical sense considAers the
state of a viscous fluid at subsequent times after an infinite plate has
been set into motion in its own plane. In our present context, the
fluid contains small solid particles, and we consider the Rayleigh
problem for such a mixture. Here, we encounter the competing effect

between the two types of forces acting on the fluid. First is the fluid
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viscosity which, after the plate has been set into motion, transmits
momentum in a normal direction, tending to accelerate adjacent layers
of fluid increasingly outwards. On the other hand, there is the force
acting on the fluid by the particles. Because of their inertia, the par-
ticles tend to remain still immediately after the plate has been set in-
to motion, and this tends to hold back the fluid acceleration.

It is physically clear that our Rayleigh problem has two near
limiting regimes of particle~fluid momentum interaction. This is
mesasured by the ratio t /T, , where t is the time measured from
the start of the plate motion. Initially, the fluid near the wall acceler~
ates to the plate motion immesadiately. However, the particles in this
region take a time of the order of Ty, before they are accelerated to
the fluid velocity at the plate. So when t/'cv £ %) , the slip be-
tween the particles and the fluid is relatively large. At times much
larger than the particle velocity equilibration time, Ty , the parti-
cles themselves are very nearly following the fluid velocity. How~-
ever, due to fluid viscosity effects, the fluid is being continuously
accelerated by the momentum transmitted from the plate, and the
particles are hence prevented from attaining the velocity of the fluid
exactly.

In the range when t/'C'V << | the particle~fluid interaction
is in the 'Y'strong'' interaction regime, and the particle motion is de-
termined by the initial condition. In the range when t/'tv >7 |
the particle~fluid interaction is in the "weak' interaction regime, and
particles are very nearly following the fluid motion. In the transition

regime when 't/,cv = BQ) , both the initial conditions and the
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local conditions are of importance.

 Fortunately, the Rayleigh problem here is amenable to an ex~
act solution for the entire range of t/TV . However, asymptotic
forms of the solution can be deduced from appropriate expansions of
the exact solution for the near limiting cases. This is particularly
useful in that they suggest the form of expansion that can be made in
closely related but nevertheless more complicated situations when an
exact solution is not available. For instance, the laminar boundary
layer is an example, When t/'fv << | » the form of the expansion

for the fluid velocity is recovered as

U(N ey = Rl + % U0 U“%V’)
Wo v

Uy Ue v
where M= “)z/zm is the similarity variable in the near "frozen'
limit appropriately defined with ¢ as the '"frozen!'" kinematic vis=
cosity. The particles are very nearly stationary, and the interaction
with the fluid, which has a tendency to hold it back, is everywhere
"strong'" when the fluid is in motion. Thus, the first~order connection
term %ﬁ'(m is everywhere negative. %:(vl} is, of
course, the "frozen' solution of the classical Rayleigh problem. The
effect on the shear stress is to prevent it from falling off like ‘/E .
The effect on the growth of the effective diffusion layer thickness is to
thin down the thickness from the "frozen! parabolic behavior fDT:: .

In the opposite near-limiting case, when f/fv >> | , the

form of the expansion for the fluid velocity is

Wil b)) o UeolD | T Ue() o 3 (Tuy2)
Uy Ug t U, 1
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where YT = "}/lm is the simijlarity variable in the near "equi=

| librium" limit appropriate defined with J = 1)/11—|<, » the "equilibri-
um'' kinematic viscosity. %90(7() is just the "equilibrium!' classical
Rayleigh solution. We are p;rticularly interested in the shape of the
fluid velocity profile near the plate which determines the shear stress
at the wall. We have previously suggested that the fluid velocity is
being continuously accclecrated, duc to viscosity, which transmits the
momentum of the plate motion to the layers of fluid in the direction
away from the plate. In other words, the diffusion of this momentum
of plate motion accelerates the fluid locally. In this case, the diffu-
sion takes place with 4 , and the fluid behaves nearly like EN%«C _Y-]-
according to the classical Rayleigh solution. However, in the imme-~-
diate vicinity of the plate, when the particle~fluid momentum interac-
tion force is the largest and the particles tend to drag the fluid back,
in this situation 1%‘-’;(”—1) is expected to be negative, at least in the
neighborhood near the plate. Hence, the shear stress at the plate
approaches the final equilibrium value asymptotically from above.
The effect on the effective diffusion-layer thickness is to approach the
final parabolic equilibrium form [Tt from below.

| In this section, the application of the method of Laplace trans~
formation to find the solution for the Rayleigh problem is presented.
We fix the coordinate system in space,and the plate is suddenly set in
motion. A simple transformation can be made leading to the solution
with coordinates fixed on the plate with the fluid suddenly set into mo-
tion with velocity We by taking |- = where = is our solu-

U, u,o

tion. We will consider the problem in terms of nondimensional
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! u .
quantities denoted by a primes. Let W= o where W, 1is the

velocity of the plate motion in the Rayleigh problem, t'= ¢ /’C\’; ,

y = '?/ijf . Hence, equation (3. 3) becomes
2(2&'_2’;&' wm 3.3'._"5‘)?,0 3,8
'\ at! a\;~’~>+ ('5? Tt oyt (3.8)

where we have used the fact that /% = | /(H-\o)

4. 1. Fluid Velocity Profile. = We shall now consider obtain=

ing the solution for W' from equation (3.8). Initially, the fluid and
the particles are in equilibrium and are at rest, so that W(4,0)=0 ,
33_‘:"(‘3’,0): O . The boundary conditions are U'(0,t') = 0 when
t'¢0 and W' (o, t')=] when t'2p . The fluid remains undis-
turbed far away from the plate, and U.'(‘g’, t')=0 as y'—» % or at
least the disturbance far away should remain finite.

Denote U(Y',¢) as the Laplace transformation of u'(4/t')

which is defined as

L |

-st
U= [ e wiygit de

o]

With the use of the initial conditions, the transformed differential

equation for the fluid velocity then becomes

d*u 2
‘;‘5;,, -WisyU=0
where Q(s)= ;éﬁé—}‘?- and the boundary conditions become
+
1+
v{o,s) = SL and _ U(w3) =0 . The appropriate solution is
simply

l ~Wesr 4
Ueyisy= ¢ €
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The final solution in the (»a‘,'\;‘) plane is obtained formally from the

inversion integral

, \ st
Uiy, ) = -0 U (4,s) € ds
L

where L, is the Bromwich path parallel to the imaginary axis and
to the right of all singularities of U(Y,S) . For the details of the
conditions assumed to be satisfied by U(y,$) leading to the validity
of the inversion integral and the differentiation and integration under
the contour integral, one is referred to, for instance, Carslaw and
Jaeger(zg) or Churchill(30). Our desired solution is then reduced to
an appropriate evaluation of a contour integral in the complex g~plane.
A brief discussion of obtaining the solution by contour integration is
provided in Appendix III-A. Here, we will just state our final result,

which appears in the form of real, definite integrals:

. Pt oA \dp S AN oy
Utyt)=1-21 € an j‘ﬁ‘ VoL _Z e i (p Bl y)dP

0 ]

Of course, when the particle concentration vanishes and f is iden-
tically zero, we obtain oo

- Z_tl
Wiyt = 1—%—}6/3 oy dp

I
= orfe ( %ﬁ_,)

which is the solution to the classical Rayleigh problem,and the com~

bination of the non~dimmensional independent variables Y4’ t' in the

, .
form ‘7/1[5 becomes just '#/q_ ‘}vt in the actual physical variables
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where the particle relaxation time, Ty , does not appear, as indeed
it should not.

The fluid velocity profile given by equation (3. 9} is in an appro~
priate form for numerical evaluation if desired. It is also in a form
appropriate for asymptotic approximation for -t/‘tv »> |, and the dis=
cussion of applying Watson's lemma for such an approximation is

provided in Appendix III-B. It is found that the fluid velocity profile

can be expressed in the form:
WT,E) = Ueo(T) + 2 up, (7)) + U((Zx)*)
q' €o q + T uel q + (( 'C')

when t/l'v >> | s, which is the weak particle~fluid interaction re-
gime. Here, V_[= '1’/2{5? » and is just the similarity variable ap-
propriately based on the 'equilibrium!' kinematic viscosity Y . The
zmeroth order function is just the Rayleigh solution for the fully devel-

oped profile

Ue () = srfe 7] (3. 10)
The first order function is
-2
Wo(iy= o L f(aft-pe (3.11)
o) = Tog Zma ! '
and %‘9 Ug,(n) is a universal function of ;{ independent of

explicitly, and is shown in Figure 2.

When {/['V << |, it is expected that the approximation is of

the form

WO = Up )+ T b ) ¢ DUEYY)

starting from the 'frozen!' limit as the zeroth order term, and
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n= LJ'/Z [V is the similarity variable using the "frozen' kinematic
viscosity, 4 . The appropriate approximations found in Appendix

III-C for t/TV << | gives
U (g) = wfe (3. 12)

which is the classical Rayleigh solution in the absence of particles, or

the "frozen' solution. The first order term is
) ¢ "/ -})1 1
bLﬁﬁ,):-—-i-(LI"'ﬁ *ne '~ 44 u{cn) (3. 13)

which is a negative quantity. We note that here, -'% M*’/U() is a

universal function of N » independent of I and is shown in Figure 3

4. 2. Particle Velocity Profile. ~ The momentum equation for

the nondimensional particle velocity u.;, = uP/uo from equation (3. 2)

appears in the form:

§_"£'P = — U
(+i) SEF = — (Up - L) (3. 14)
and it is recalled that t'=t/7,*=(+k)t /T, . Initially, the parti-

cles are at rest and in equilibrium with the fluid at rest, M;:(‘;', 0)=0.
The Laplace transformation of Ug (4}t') will be denoted as Up(y)s)

which is, by definition,
00

UP(%S) = ] u?(‘a’,t') e

o

1

st

dt

!
With the use of the initial condition for Wp  the transformed mo-

mentum equation for UP (9’, s} then appears in the form:

—Wiesy !
€

| 4
I+(itk) s S

Up(3)8) =
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S{S+1)

1
S+ Tvw

Again, formally, the inversion integral giving the solution in the (y4,t')

where we have used the results of paragraph 4.1 and W(s)=

plane is

st’
Uy, t)-——— UP(‘;}',S) e ds
L,

and |, is the Bromwich path. The equivalent path along which the
consideration of the contour integral is made is the same as that for
u'cy,t) with the exception of an additional contribution of a pole of
-t

v

order one at § =—Iﬂ+g<, in UP('?I'S)’ which is found to be £

The result in terms of real, definite integrals is then:

e

-t JTFT&- 2
Up(y,t) = | - e ,%/ e Pt . (/s =) de
A P p(1-twapt)

00
- Z_tl
-+ e P A ﬁ‘ f (3. 15)
" P‘Jﬂ- ¢ (lam) )
f B

At the plate itself, the particle velocity responds to the fluid velocity
u'co,t')= | in the manner:
! -t|
u'.P(O,'t') = ‘ - €
The corresponding asymptotic approximation for bl;, when

't/rv =>> | » discussed in Appendix III-~-B , is written in terms of

the slip velocity
! 1 -t T ey TV
wigt)-up(yt) = €+ 3 %) + ?9((-;)2)

-t!

We have retained the term e s even for f/l' << | s since it
) v

is important near the plate and gives the correct value of the slip
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velocity at the plate:

UWeot)— u)l(ot) = e

The first-order slip velocity profile is given as

-ify —-ﬁz‘

Je, (M) = =" T e (3. 16)

which is a universal function of 7 independent of I1¢ , and is shown
in Figure 4. One notes that the local acceleration of the zeroth-order

equilibrium flow is proportional to

_n."/z - -7

B_Ueaﬁﬁ) Uo IT_ e
o< T 2 i

ot

which implies that the first-order slip velocity, except for the term

é—t' which is only important near the plate, is proportional to
the local acceleration. This useful concept has been utilized by
Marble(lg) in an approximate treatment of the laminar boundary-
layer problem, Here, however, it is recovered from the exact solu~
tion.

Initially, the situation is quite different, and the slip velocity

is no longer small compared with the velocity of the plate motion,
since the particles are very nearly standing still when t/TV <<} .

Instead of writing the particle velocity in terms of the slip velocity,

we write directly

! ) -t ! .-.é_, 2
w,(n,t') = 3 Up, (1) + B ((F) )
From Appendix [II-C, it was found that

| - 2
u;f,(q)zﬂa&cq—%(#n'/‘;,e” - byt safen) (3. 17)
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This is shown in Figure 5. At the plate itself, U"Pfi(o) = | and

| u,,’(o,t-)z.if +B((£)r) . which is an incipient acceleration of the
v v

particles towards the velocity of the plate motion in which the fluid

possesses at the plate itself. When t/’t‘v << | , the particle motion

depends on the initial condition, which is LL'P (n,0)=0 .

4, 3. Vorticity Thickness. Shear Stress at the Plate. - Recal-

ling the results in paragraph 4.1, we can define the fluid vorticity in

the transformed plane (Y4,s) as

1 ~Wis) %
B == - Lw(s)e
Ty, = o s W

and the total content of vorticity is

o] 0 i
~W Y
[Resoirs [ s~ 4

and, formally, in the (Y4'+') plane, it is simply unity. The initial
amount of vorticity produced by the sudden motion of the plate is

(2]

©
J_o.‘w',t')d«;' = —J%‘%:ch;.' = ~[ut®)-uor]

= |

Hence, we conclude that vorticity is conserved,as we would expect.
We can now define an Yeffective!' vorticity thickness, as in the classi~

cal Rayleigh problem, in the form
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0
§'(t") “"T)“, /n' dy = ! (3. 18)
nN(ot) 'fo,t)
where ('(0,4') =~ (%? y=0 and §'= 5/41/?: . Again, using

the result of paragraph 4. 1, we find that the "effective'' vorticity

thickness in actual physical coordinates is

w T ttgy g2 —_——'I—/s" N_F,t. P ; -1 5. 19)
6(t')~ - e j - Ld + 1 ] *
2] © e =

It is particularly interesting to observe the transition of the

vortiéity layer thickness from the '"frozen'' parabolic growth ’771/1: to
the final "equilibrium' parabolic growth ﬂl:’&'t . When t/l'u =>] ,
the near=-equilibrium asymptotic behavior is obtained from Appendix

O1-B:
5(t) ~ fTTE [ 1 e, T+ O] (3. 20)

which approaches the equilibrium layer thickness from below. Initial-

ly, the near-frozen asymptotic behavior is obtained from Appendix

III-C:
§(t') ~ATIE [l- '9%, + 7}((;%,)")] (3. 21)

in which thinning from the frozen layer thickness takes place. The
discussion of the physical interpretation of the results is delayed to
section 5 in connection with the laminar boundary layer.

The shear stress at the plate is defined as
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and we have

. T %
G Tw o _ [V 2 P i Ay (3. 22)
2 £ ué uZT Tf [ H«fﬂ Jp T[ ﬂz ,,Im F

]

i . s IS . '
which is in a convenient form for numerical evaluation with t as a

parameter. One obtains similarly asymptotic approximations when

t/Tv >3 | from Appendix III-R , the near-equilibrium bhehavior
Tw o=y Lk B lry2 3,23
oz =-T i Jitk [ 1+ e Tt 6(( )) (3. 23)

Tale _ ~hfd_
The equilibrium valie is —(———Vili,_ =T L%‘ =T %K: which is the first
(1+6)p Ug Ut ust

term in the expansion. When 't/,[.v << | , the near-frozen behavior of

the shear stress on the plate is obtained from Appendix III-C,

w \
’;uo = 1/1’ []Ho.;r_v + UL ))] (3. 24)

(T ~ifo [
The frozen value in the absence of particles is just ftw)\c = ‘/2' e
0 o

Again, the discussmn of the physical interpretation of our results will

be given in section 5 in connection with the laminar boundary layer.

5. Relation to the Constant Pressure Laminar Boundary Layer

We have discussed much of the formalisms involved in obtaining
the solution of the Rayleigh problem in section 4. In classical fluid

mechanics, many of the features of the laminar boundary layer are
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exhibited in the Rayleigh problem. The simplicity of the latter enables
.one to derive a physical picture easily for the high~Reynolds~number
viscous flow problem. Here, we will follow a similar procedure and
discuss the features of the laminar boundary layer in particle-fluid
mechanics as derived from our Rayleigh problem.

Let us fix our coordinates on a sime=~infinite flat plate with %
measuring from the leading edge and Y% normal to the plate. Con=~
sider the flow to be steady and the oncoming stream, where the parti-
cles and fluid are in equilibrium, moves with velocity u, in the
positive %~ direction. The t in our unsteady Rayleigh problem will
be replaced by %x/u, for our steady boundary-layer coordina.fces.
Now the observer is moving downstream of the plate with the velocity

U - The resemblance in both cases, except for details, lies in the
fact that viscous diffusion takes place in the normal 4 -direction only
and in addition, the particle-fluld momentum interaction is <t -like in
the Rayleigh problem and x=like in the boundary layer problem.

Now,immediately when the fluid reaches the leading edge, it is
stopped at the plate, but in an immeadiate outside layer, the fluid is
still moving at velocity Wy and a concentrated vortex sheet is set up.
The tendency of viscosity is to smooth out the steepness in the velocity
profile and diffusion takes place. Initially, the viscous diffusion takes
place without knowing that the particles are present, since the viscous
layer is very thin., - Hence the zeroth order terms in the "frozen' limit
do not contain any parameters indicating the presence of the particles.
On the other hand, when the particles reach the leading edge of the

plate, they slip completely and travel at Wo , not knowing the
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presence of the viscous layer. In the next instant, however, when the
viscous layer has contained sufficient particles, the force as a result
of the difference in velocity of the particles that are slipping and that
of the fluid that is being slowed down by viscosity is to tend to acceler=~
ate the fluid and prevent its velocity profile from being smoothed

by viscous diffusion and to decelerate the particles. The result is
then to prevent the shear stress at the plate f{rom decreasing like '4-" .
Friction in this case is only partially effective in preventing the ten-~
dency of changes in the fluld velocity profile due to the particle~fluid

momentum interaction near the wall. The shear stress at the plate

behaves like

_Qi= Tw _ T\
* Pug JQC

when ’%L <<| . Atfirst, the boundary layer tends to grow in the
v

[ 1+ w—”—i—v + ‘5‘(‘%;’1)] (3. 25)

usual parabolic manner JW with the "frozen' kinematic viscosity,
now knowing the particles are present. At some distance slightly
downstream, the acceleration of the fluid caused by the particles then
contributes to a thinning of the fluid stream-~tube and decreases the

boundary layer thickness:

§(x) ~ “%} |- “’XT\, + V(] (3. 26)

when 1/7\" << | . Here, in the limiting casec of the Yfrozen' situa-

tion, the shear stress is the familiar Rayleigh problem solution

(Tw){. — T-“/L/ s Y%
—PTL—’; =T ’RQX and the boundary thickness 54 ~ ’ o

When X/Av >> | , the particles and the fluid are very nearly

moving together. 1In this regime, the thickening of the fluid boundary
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layer caused by viscous diffusion continuously decelerates the fluid in
the boundary layer. Here, the controlling factor is the "equilibrium?!"
diffusivity and the fluid tends to behave like the equilibrium profile in
its stretching, and the dominant force is the shearing stress. How-
ever, because the fluid velocity is continuously changing due to vis=~
cosity, the particles never quite attain the actual fluid velocity.
Particularly near the wall, where the particle~fluid interaction is
relatively the largest, the fluid velocity will suffer from this interac-
tion with the faster-moving particles by becoming fuller than the
equilibrium profile. In this case, if the particles follow identically
the fluid motion, the mixture behaves as a single fluid with an in-

creased density (1+k)f , and the "equilibrium!'' shear stress at the

: Tw) -/ .
wall is simpl E__‘i’..ﬁ = 1'/ , or simpl
> Gmapuy =T JoReg i
(?W)e= e T‘__t/z/‘(-—-—‘&x . According to our reasoning, then the

shear stress at the wall approaches its equilibrium value from above:

_1/1
¢ T L A A
3= '_f’%' = 4 i ITw [Hﬁ%@% 1.0((_*\1)1)] 3.2

(19) _-ta

In the incompressible laminar boundary layer problem . here
is replaced by the familiar Blasius factor 0.332, and the factor 1/4 is
replaced by 0. 49 obtained through numerical integration. In the equi-

librium limit, the boundary layer grows in the parabolic manner

‘I‘{Tijx/un determined by the "equilibrium'" kinematic diffu-
sivity 4 = 1)/( 1tk) -+ Since the boundary layer thickness is inversely
proportional to the shear stress at the wall, it then approaches the

final equilibrium value from below:
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5(x)~Jf—§—f— -5 2w ()] (3. 28)

The shearing stress at the plate and the boundary layer growth are

shown in Figures 6 and 7, respectively.

6. The Thermal Rayleigh Problem. Thermal Boundary Layer in

Laminar Flow

In our incompressible problem, the momentum and energy
equations are uncoupled. In this section, we consider the thermal
Rayleigh problem for small temperature differences and the solutions
are easily obtalned by a generalization of the results of section 4. We
are particularly interested in deriving from this the physical picture
of the behavior of the thermal boundary layer in a laminar flow, and of
special interest is Lthe behavior of the surface heatl transfer rate and
the thermal boundary-layer thickness. This essentially has as its
counterpart the Pohlhausen problem in boundary layer the ory(?’%).

The energy equations can be similarly obtained for our prob-

lem as the momentum equations in section 4 from section 3 of Chapter

II. The energy equation for the fluid is

s
X _ ,RT | vk 3
it 3Ei+ _¥; (TP'T) (3.29)

and for low Mach numbers we have neglected the fluid viscous dissipa~
tion and the work done on the fluid due to particle~fluid interactions.
X_: ’%GP is the thermal diffusivity of the fluid, Jk the thermal con=

ductivity, and Cp the heat capacity per unit mass of the fluid , ¢g the
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heat capacity per unit mass of the solid particles. Ty is the temper-
ature relaxation time of the particles, and TT= %_‘Pr % TV for parti~
cles obeying the Stokes law. Here, K/cs/cp is the corresponding ther-
mal equilibration parameceter and is a measurce of the relative tempera-
ture changes during the process of equilibration. The energy equation

for the particles is

aTe _ _ L -
Friii T (Tp-T) (3.30)

We can combine the two energy equations to form a single, but
one order higher, differential equation in a similar manner as for the
momentum equation of section 4, However, we now define the non-
dimensional quantities as Y'"= Y ox = *

4 Y L*/JPrTT St =t
@: (T-T, )/(TW_TO ) . It is noted that we can write the '"frozen'

thermal diffusivity as A= v Pr  and the "equilibrium'" thermal diffu-
y

dvity as Yot oA (L * :

sivity as )('— -P; = Pr <""K’cs/cf,) and ’CT = Ty /( \+ \QCS/CP) . Hence, the

single differential equation appears in the form
i(a@_@).‘.(é@_;—@)zo \(3 31)
"\ At gt A" tm‘gP gt )

Initially, the fluid and particles are in equilibrium at temperature To
so that ®(4'0)=0 and %{(-?:(l%“: 0) _o . The boundary condi~
tions are that when t“<o , the plate is at T, so @(ot*)=0 .
When " >0 , the plate is heated to temperature T,, so that

® (o,t"Y=| . Far from the wall the disturbances vanish so that
®(=,t")=0 . If is implicit that the particles adjacent to the plate

have a temperature slip as in our momentum problem where the parti-

cles have a velocity slip at the plate, The temperature rise of the
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particles next to the plate is then solely due to the heat received from
the fluid surrounding the particles in that region.
In particle~fluid mechanics, the existence of the Crocco par~

ticular integral, which in the presenl problem is simply @@= W' , re-

quires, in addition to Py = |, that TT/TV":\ and that " k’% =1 .
‘ C
However, for particles obeying the Stokes' law when TT/@, = —3; r EE‘;" 3

the conditions necessary for Crocco’s integral cannot be all simultane~
ously satisfled, However, for gases and for metal particles, the con~
ditions are very nearly satisfied.

Drawing upon the results of section 4, we can write the fluid

temperature profile in the form:

41+1c‘5/F

O .t= |- 2 ¢ (P”' ) ”:f & ‘”‘(/,:' "£(3 32)
+K

/]

The surface heat transfer rate is

I+k.
..Ta :. wf, - 7-
b= -4 (3 )5' % f «‘-{'f-" 4,3 ﬁ /P, = 4,9] (3. 33)
oSty e

In a similar fashion, the heat diffusion-layer thickness may be esti=~

mated from the expression:

5y ~ R(Tw=Te) (3. 34)
Fw

Other quantities can also be as easily obtained. Here, we kept Pr ,
Tr /’fv , and o k%P arbitrary but constant. It is then interest-
ing to discuss the thermal boundary layer in a laminar flow using the

information we have obtained from the thermal Rayleigh problem.
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Both situations, except for details, are again similar in that heat dif=
fusion takes place in the Y ~direction only,. particle~fluid thermal
interaction is t-like in the Rayleigh problem, and x-like in the
boundary layer problem. We again replace t by X/Mo and the ob=
server of the course of events travels at velocity u, towards the down-
stream direction of the plate., The resemblance, again, is to a con~
stant pressure boundary layer in low speed flow where the frictional
heating due to fluid viscous dissipation and the work done on the fluid
due to particle~fluid momentum interaction are neglected. The heat
diffusion problem arises then only as the result of a temperature dif~
ference between the plate and the free stream, but {|TyTa \/Tu << | in
our problem. For the purpose of fixing our ideas, let us consider the
plate is cooled to below the free stream temperature (T, <To) 50
that heat will flow from the fluid to the plate. When the stream of
fluid reaches the vleading edge of the plate, the fluid at the plate itself
then is at temperature Tw ., while the laver immediately next to it
remains at the stream temperature, To . Immediately, thén, the
usual heat diffusién takes place with the "frozen' thermal diffusivity
X= */Pcp not knowing the presence of the particles in the region
very close to the leading edge (X/M‘<< 1) since the boundary
layer is very thin, On the other hand, the particles remain at the
Nhot!! stream temperature T, . Subsequently, the heat received
by the fluid from the particles is to tend to steepen the fluid tempera~
ture profile and to prevent it being smoothed by the mechanism of heat

diffusion when the boundary layer has become sufficiently thick so as

to contain sufficient particles for interaction. Conduction in the fluid
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in this case is then only partially effective in preventing the changes in
the fluid temperature profile due to particle~fluid interaction near the
wall. Hence, in the region x/}ﬂ_ 441 close to the leading edge, the

local surface heat-transfer rate behaves like:

: k(T - ) 'l/l— s Cs X a
%w = _._J__r“';____ v o [t+ VgL of %T)l)] (3. 35)
Wo

where XT: U Ty - We can define a local Nusselt number as

4
T = 2FW
M R
-if2 pr o /2 s X Xy
=R R 1w 1 0(5))] 5. 36)

The steepening effect of the particle-fluid interaction is, of course,
determined by the thermal interaction parameter k,C,/cP which is
a measure of the extent of relative temperature changes during the
process of interaction. The zerocoth order term is the solution of the
classical Rayleigh problem with the "frozen' thermal diffusivity

7(‘—_-"}/1)’. . The steepening effect of the particles on the fluid tem-
perature profile is then to confine the extent of fluid heat diffusion
closer to the plate itself, and the thermal boundary~layer thickness
behaves like:

-/ s -
b00) ~ ,.'Ei-’oi P [l- k'-c-;%r + 0((%1)1)] (3. 37)

. In

which is thinned from the "frozen' layer thickness Ir_lli’-‘- P,,f'/=L
0

the thermal boundary-layer problem, the scaling of the distance from

the leading edge is by A7 , the temperature equilibration lengthj in
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the momentum boundary layer , it is by Ay , the velocity equilibra=-
tion length. Also, a measure of the relative temperature changes in
the former is by the thermal interaction parameter &-C-CE; ; in the
latter, the measure of the relative acceleration or deceleration gained
by the fluid and particles is by the momentum interaction parame-
ter ¥ . Hence, physically, the temperature and the velocity equili-
bration processes are not expected to have the possibility of being
similar unless K1=K4C*‘/CP and Ay =XAg . The ratio of the two bound~
ary layer thicknesses is of the form which exhibits the dependence of

the history of the interaction processes:

-if x
%T; ~ Pr z[|+(l(,{;-|<,%s;-§})+ U((—,—L-)l)] (3. 38)

When K = |<,C5/CP and A,=At , the ratio ST/éV reduces to a similar

behavior as in the classical boundary=~layver theory.

When -%—T.>> | + we have the opposite limiting case of nearly
complete equilibrium. ZFor the usual physical cases, %: B (0) and
this implies % >> | as well. In this case, then, one has thé"equi-

v

oy oV A
librium' thermal diffusivity X=%: = B ok R

1imit of the surface heat-transfer rate is

. s 512 ,U-o -
(?w)e =TT P- 3; ‘k(Tw To )

and the temperature boundary layer then grows parabolically in the

» and the equilibrium

mannerJTT'X_X /uc . The ratio of the two boundary layer thick-

— —i/a =
nesses then behaves like (61/511 )e ~ P = ".1}/5( » and
P.= 'E/;C is the "equilibrium'" Prandtl number. When P = | , the

two layers in the equilibrium limit are then the same in thickness.
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However, like the velocity boundary layer, here the particle
temperature never actually attains the fluid temperature. The fluid
temperature profile is stretched continuously through the process of
heat diffusion which is the dominant mechanism of heat transfer in the
near=equilibrium regime, with the thermal diffusivity X . Here, the
fluid temperature tends to behave very nearly like the local equilibri=
um profile. On th_e other hand, the particles are always hotter (here,
we keep Tw < Ve as discussed previously); hence, particularly
near the plate, they tend to give rise to a fuller fluid-temperature
profile near the wall. Thus the fluid temperature gradient near the
wall exceeds the local equilibrium-temperature gradient. The local
surface heat-transfer rate then approaches the final equilibrium limit

from above:

s
* k(Tw-Te) 2 Ih—= YT A
fom ME TR o] o
o °

and the local Nussgelt numbher is

Tlu»xz Tr-,/l P"'lh H'“‘ REx [.‘ Cs % .(9((17)1)] (3. 40)

In a corresponding manner, the temperature boundary~layer thickness

approaches the equilibrium behavior from below:

e p

s [BE W g2 en@] e

The comparison with the velocity boundary=layer behavior near the

equilibrium limit gives the history depending ratio;
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P |

St i v LA % Aok ks
T Pr ———m‘%[w“(x rreol l+kf’) SO(AM] (3.42)

- l/;L -
When = \Q—- s ’\V=7"T , then BT/(SV~ B « The behavior of ?w(x)
and of éTLx) is qualitatively like T, (x) and 5v(x) as shown in Fig-
ures 6 and 7, respecitvely, except that the scale is modified by Ay

instead of 7LV .
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APPENDIX IIi-A

Consideration of a Contour Integral

Here we will consider the inversion integral as obtained in

paragraph 4, 1:

Wiy = g :

< €

where

is a double~valued function,and a pole of order one at $=0 exists in

the integrand. We can rewrite the function W(s) in the form

Wiy = BB axp {L el-e,ﬁa;}

R 2
which has branch points located at S=o0 , - ‘/l+l</ , and =\ .
Since k>0 , the point "‘/H-k, lies between © and —-{ . Itcan be

shown that S=-o00 is a branch point also by taking the arbitrary
point S, to circumscribe all three points o, “/H-K/ ’ -i ac=-
cording to the sense of the angles shown in Figure 8, and the value of
W¢s) itself changes. The angles 6, , 6, ,» and ©; vary from
© to 2w in the sense shown. The branch cuts for the purpose of
evaluating the contour integral are: a cut connecting o and -‘/H-K/ N
and a cut connecting -t and -o , all on the negative real axis.
It can easily be Ve;riﬁed that W(s) 1is then made single~valued by
these branch cuts.

A remark concerning the sense of ©3 is appropriate. The
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function W) as 63> T% ahove the cut will be denoted by
wv*_(s;) , and as 63—;-[:‘ below the cut by \,J“-(S\,) . As we
cross the cut, W<(s) on the lower side of the branch between -| and
— oo is obtalued by analytic continuation, namely, W“-(Sr)=—\/\}“+ (S¢)s
Consider now the closed contour shown in Figure 9 where the
large circular arc of radius R >| with center at the origin intersects
. ' . . ) Sti- Wy
AA and is open at CC' . Since the integrand z € is an~
alytic in the region enclosed by the contour, then by Cauchy's theorem,
the integral taken around the entire contour vanishes., Furthermore,
- Wis)w
YT <]

on the circular arcs [ls-e s the contribution of the

integral on the arcs AB , BC , and C'B'y B'A' vanishes (t'>0) as
(29)

R+ (see Carslaw and Jaeger ). Hence, as R-—>o the Bromwich

path AA'  can be replaced by the equivalent paths C'D' DC and EF FE
in the opposite sense shown in Figure 9.
Consider first the integral taken over path C'D'DC. The inte=~

gral around the small circle at S=-~1 of radius I

_. is of the order

of ¥, and vanishes as ¥, - O . Then the integral over C'D'DC is con-~
tributed from the sum of the integrals taken over DC and over C'D'

as Y, =0 and is found to be

o

-dt' .
Js=_.__(__ Xe Mon &(d'l) ')(]d
i) R ‘3 —t;(_

i

st'~ Wy
\ i
— | 5 ¢
T

¢'poc I

Consider now the integral taken over the path E'F'FE . The

integral around the small circle at S=- —'—J:_-‘; of radius V:TQTR, is a-

gain of the order of Y'__»‘_‘_ and vanishes as we take Y:_;;_ —~0 . The
21,7 137}

integral around the small circle at the origin gives a contribution of
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5:—‘—‘. (2mi) =\ as ¥,70 from the pole of order one at $=0 .,
Finally, the sum of the integrals taken along FE and along E'F'
together with the contribution of the pole of order one at s=o0 ,

gives
\

[ Y

o [ e [T i [ ) 8
zw;g-z S ds = “F?J ¢ A g} By
E'FFE °

If we make the substitution d =ﬁ1 for the variable of integra~
tion, then finally, the desired solution may be written in the form as
equation (3. 9) of paragraph 4. 1.

The vanishing of the particle concentration, i.e., k>0 , im~
plies that the branch point “I/H-(O moves closer and closer towards -|,
and as K becomes identically zero the two points coincide and neu~

tralize each other as branch points. The cut is then from © to —%

and we recover the classical Rayleigh solution.

APPENDIX III-B

Asymptotic Approximations for Large Jc/’l‘v

Here, we will obtain approximate representations directly from
the exact solution obtained in section 4 when 't/'cv is large for quan~
titiee such as the fluid vclocity W' , particle velocity LL'P » and the
shearing stress at the wall Ty . The exact solutions are given in

terms of definite integrals of the form
ﬁ‘ 2.
~p°t

[ € tginde

[+
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in which "t/fpv enters as a (large) parameter. f3 is real and posi-
tive. When J%t'v >>| » the main contribution to the value of the integral
comes from the immediate vicinity of [3=0 . However, here {-({5;\3')
involves 4' as a parameter; the appropriate consideration will be
discussed when the actual approximations are made in B. 1l and B. 2.
Here, it suffices to say that {-((s;\a') is then expanded, in the man~
ner appropriate, in the nieghborhood of =0 and the series is then
integrated term by term with the upper limit takento w . The
change in the upper limit contributes only an exponentially small error
to the value of the integral. The resuliing approximation is in the
form of an asymptotic series in inverse powers of (t/‘(“) . This is
essentially the spirit of Watson's lemma, and according to H. Jef-
freys(32), its remarkable property is that it does not require specific

conditions for its truthfulness provided that the result is, and in ocur

case physically, meaningful.

B. 1 Fluid Velocity Profile

Let us consider W as a function of t' and of

A e
n ZEI-\-K,

Zivt

where 4= 1//11-!0 . The similarity variable ﬁ is appropriately de=~
fined in terms of the Vequilibrium® kinematic viscosity # . The
integral to be considered from paragraph 4.1, equation (3.9), is then

of the form

l_

<

2 e-ﬁ‘t‘m( -8 l*iﬁ/?)i‘/—f?

l—(H'IO)ﬁ"'

[+
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There are several ways to approximate the sine function, but all re-
quire specifying the order of 9| . Sincc the cffcctive diffusion region
is of the order Y~ J—'D—t—l s it is then appropriate to take N=00) in
this case. Now for -t/Tv > > » the main contribution comes from
p uear zero, bul we now need to consider the order of the factor
((S;ET) before approximating the sine function. When (AE >>| the
sine function oscillates rapidly but is nevertheless submerged by the
'
overwhelmingly small exponential factor e ' . The sine function
behaves smoothly when ﬁJF <<| , and a Taylor series expansion
can be made. However, contributions to the value of the integral
when /A,FCT = 3 () are also important. Hence we will approximate
the sine function by taking !QE:_' < 81 » 4£00) and pg->0

;i (| 31 p50) = L i (27 I 18 4% 067

_ —;-M(zﬁ(,sﬁ?‘) +Ioﬁﬂ(/3'/?)cﬂ(?-ﬁfﬁm)
+ U(p3)

One then obtains the well-known error function from first term,

%je-ﬁ’tlw(z‘i(,g‘[?))ipé = V"fﬁ

(33)

The second term is, from Grdbner and Hofreiter s

® _alt _ -1z =2 .
""}%/Fl(ﬂﬁ‘)eﬂtc"“@ﬁ%ﬁ)}‘?’f=—“/’?’WL,T e (T )

(2]

where the Hermite polynomsial H-,_ is
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d(m)"
- %l (251—")
Finally, the fluid velocity profile when ‘t/l.v >> | appears in
the form
Ly - , ‘ _ Tv J - Tv 28
wm,t)= Ue (M) Y Ue, (Q) + O(LT )
wh e = n
~here Ue, () = %y‘
~ifa eyy -RT
and = X T p a2
Ue,{7) ey n(i-2q%)e

It is noted that L-‘_T-L,g Ue, (ﬁ) is a universal function of ﬁ and ex~

plicitly independent of ¥

B. 2 Particle Velocity Profile

The various aspects discussed in B. 1 concerning the approxi-
mation for W' also apply here, namely, that V_{ &S0 .
(pdei) £ 6 » and p->0 . The integral to be considered

from paragraph 4. 2, equation (3. 15), is of the form:

e

2 -Bt .

ﬁ[ eﬂ’tﬂm(/————‘“ﬁz 2 (51 ) L
L l‘(lﬂajﬁ" ﬁ(’—(,f&)[sl)

We expand

[
p(1- (HeIEs)

and simlilarly expand the sine function as in B.1 . Hence,

='F [ I+ (v ) p? o+ 15([33)]
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| N}n(«' z»,(pf)) (QY](ﬁJ-'))-i'k/qﬁ(ﬁ4t/)m(27(/3r,))

ﬁ(‘- (l.‘.&\ﬂl) i (lﬂ‘l)rs

+ (1) B e (29 @)

tB(8%)
It is recognized that the first two terms are those obtained for u'
in B. 1. The integral involving the third term is obtained from

Grdbner and Hofreite r(3 3 ):
o

(a+.o)%—[e'ﬁ /BM(lq(th'))JP— T"'? (%) 7: ($.45-7%)

-!/2
where F(% ) =3 « The confluent hypergeometric function
a}r (%, -z- 5= "'11> in this case is recognized to be simply the repre~
sentation for the exponential function(34):

F(:23-1Y

& (-7%)"

n= ni

]
= e—ﬁl

Finally, we will write the particle velocity IA\’: in terms of

the slip velocity (L'~ u'r) » combining the asymptotic forms of W'

and of W for ¢ »| s oObtainin
/TV >> | g

3 i - ‘t 2.
wW-ul = e +T—§3/e,"1“ S (=5%)
S - _p* -
where ‘}Q'(V))= v———g:— ne " is a universal function of » .

B. 3 Shear Stress at the Plate

The integral to be considered from paragraph 4.3, equation

(3. 22),is of the form:
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%—J et t - e dp
|~u+lo)(e7-

[}

A simple and direct application of Watson’s lemma can be made. The

Taylor expansion about P of the function in the integrand is:
=p>  _ i 3 3 4
o =+ ZpH IO((\-EK/)[-} + 0(F )

and the resulting integration by taking the upper limit to ® gives the
asymptotic form for the shear stress from equation (3. 22) for JC/W >> |

as

T -if2 gk (Suy o3 ko3 Ty Tvy3
T |4 R FR R ()]

APPENDIX IIi~C

Asymptotic Approximations for Small /Ty

C.1 Fluid Velocity Profile

When t/T'v <<| we obtain the relevant approximations directly
from the t.ransformed'quantities by keeping St' fixed and expanding
in powers of t' . Here, as in Appendix III-B, we keep %'~ {t'
fixed, or namely, M= ‘1/1[7{. < 8(() .

Hznce we may write the fluid velocity from paragraph 4. 1,

in the transformed plane, as



“53-

0, sy = A3 e,x/r{_lyl T (1+%Y) }
3 b+ Lt
my /3

where Y= st . Then for t'44} . JEOLY) . e

Utq,s) = ! e
T
LY
_e o K 3 M
=5& -3 Mp. e+ 0w
SIS s 3
T3e i e rUe™

The inverse transformation gives
) ) — 1 _t ] + 2
U (Vz,‘t )= U.,;o('z) “+ ‘;FV U..f’(rn + ?9'((‘{-;) )
where W/ ()= ‘q,\,{,c n is the cla;ssic:i Rayleigh solution with
o T - 2 :
thpr @ Veou=-E[ATTe T -t anden] ie a

negative quantity. -l'; u};'(rl) is a universal function of Tl .

C. 2 Particle Velocity Profile

From paragraph 4. 2, the transformed particle velocity profile

may be approximated in a similar manner:

1}

Upli9) = £ [1- w4 0(+)] Uty
JN: \ _l*"\r; -3
¢ g 52 € + U (s7)

)
st

with M= "JAR“ £ &) . The inverse transform then becomes
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' 1 1 !
We (£ = e W) + V()
where
¢ - -
Upe () = den - £ [ hm '/’“-qe " ~untade ]
is a universal function of n . independent of I .

C.3 Shear Stress at the Plate

The function to be approximated becomes, from paragraph 4. 3,

-LW(S)_-. _.S_*’J___ = 3 + _‘._5'.— _.l-. + w(S—S/z
S s(s+ i) s T 2 g 2 )

which gives

T N '1) t g
_;_-_- P:(,” = T v [_H-\q %, t 0((11))]-
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IV. THE OSCILLATING INFINITE FLAT PLATE

1. General Discussion

Previously we have discussed impulsive motions of an infinite
flat plate, or the Rayleigh problem, and brought out certain physical
features of the laminar boundary layer. Here, we consider the in~-
finite flat plate in periodic oscillations. This is the simplest problem
which involves periodic boundary layers in the absence of a mean flow.
The corresponding classical problem, being an exact solution of the
Navier=Stokes equations, was first given by Stokes(ZS). The periodic
vorticity produced at the plate diffuses into the interior of the fluid
and gives rise to a boundary layer whose thickness is of the order

Y/ o , where W is the frequency of the plate motion., Hence,
when the frequency of oscillation becomes larger, the viscous layer
becomes confined closer to the plate. In particular, the amplitude of

e“‘/ Wiy ¥

where U, is the amplitude of plate motion. By the time that the

the fluid motion falls off in the interior of the fluid as W, ’
vorticity generated at the plate at one instant is diffused to the outer
layers of the fluid, the inner layers will have already responded to the
vorticity generated at the plate at the next instant; consequently, the
fluid at the layers far away lags behind the fluid in the layers near the
plate. This lag is }%1) %Y  with respect to the plate,

In particle~fluid mechanics, the questions that naturally arise
are the modifications of the boundary layer thickness, fluid vorticity,
and the shear stress at the plate due to the particle-fluid momentum

interaction. Of course, the particle motions and their "slip' relative
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to the fluid are of interest also. The presence of the particle cloud on
the viscous layer.thickness is somewhat similar to the Rayleigh prob-
lem in that the inertia of the particles distorts the fluid profile through
momentum interaction, and part of the momentum generated by the
plate that would otherwise diffuse into the interior of the mixture now
is a;bsorbed by the particle cloud, thereby confining the periodic mo~
mentum produced at the wall in a region closer to the wall than in the
absence of the particles, Since the particles do not follow the fluid
motions precisely, it is then expected that the phase lag of the fluid
layers with respect to the plate is augmented by the presence of the
particle cloud. Of course, the distortion of the fluid velocity due to
particle inertia gives rise to a relatively higher instantaneous shear
stress at the plate.

The controlling parameter indicating the extent of particle-
fluid equilibration is the fluid characteristic time, W™ , over the
particle velocity equilibration time, Ty . It is then physically clear
that there are two near-~limiting regimes characterized by Uf'/’[‘v << |
which is the near~frozen regime, and by "‘;%fv >> ]| which is the near=
equilibrium regime. This is:in contrast to the Rayleigh problem,
where the fluid characteristic time is the time T measured from the
start of the impulsive plate motion. However, as in the Rayleigh prob~
lem, expansions about these two limiting regimes from the exact solu~
tion will provide suggestions for the approximate treatment of similar

problems which are not amenable to an exact solution.
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2. Fluid Velocity Profile

| Let us now consider the problem of an infinite flat plate oscil~
lating parallel to its own plane, with frequency w , as shown in Figure
10, in a mixture of fluid and particles otherwise at rest., Our interest
is in the induced motions as a result of the transmission of momentum
produced at the plate into the interior of the mixture through the action
of fluid viscosity and interaction between the fluid and the particle
cloud, The differential equation, which is the exact Navier~Stokes
equation in particle~fluid mechanics within the particular assumption
of the particle~fluid interaction law, as derived in Chapter III, is re=

peated here for convenience:

¥ (M _ AU w5 Ru ) _
w5 (5 "W)*(n Y 592)=0 (4 1)

where T, =Ty f+w and 9=4/)y, .+ We restrict our attention to
the 4> 0 plane. The motion of the plate is given as U(0,t)=y,Colwt

=R(u,etwt) s and U0 as Y40 ., For periodic oscillations,

u(y,t) is proportional to R( e'wt) and a solution is given by
the form
_dy  iwt
Wiy t) = R{uoe e ) (4. 2)
Then equation (4, 1) gives
d¥= X +iY, (4. 3)

where we have denoted the real and positive quantities X, and Y, by:

(WDTYIK . oW () 4 (WTO
X =5 —— Y= : (4. 4)

J+ (WTy) > Vot (et >

Now the complex quantity o may be written as
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oL=X1_+i\{z (4.5)
where X; and Yz_ are real qua.ntitie‘s. The solution of equation
(4. 3) is then obtained by the elementary means of equating the real

parts and imaginary parts of the same complex number:

Y=Xo-Yr 5 Y= a2X Yy (4. 6)

and it is found that

T s IR AR N oy BT

Since A/)(ll.;.‘("* > X, and both )(:L and Y:L are real, we choose
the positive sign under the root. For the signs outside the root, we
choose the positive one for X, in the 4 >0 plane,and this gives
the solution which vanishes as Y =% as physically required. Since
Y‘-—" ZXL\(,_ >0 , this requires the same sign outside the root

for Y?. as that for X, , namely, the positive one. Thus, finally,

“ !
(WwTY K (14 + (LTy)* 2
X =+"L2‘ -+
2 le H(WTy)* t+ (WT>

| (4. 8)

Ya

o (ot (T

YF: * P _s+(u‘t,)* I+ (LT
The solution for the fluid velocity profile is
%Y iwt-Y2 %)
ut) = R (( us € ) )
X
= U, € 7 e (wt-Yoy) (4. 9)

As in the classical problem of Stokes(za), this result represents a

transverse wave, one which propagates into the interior of the
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particle~fluid mixtur‘e from the plate in the direction perpendicular to
‘the motion of the plate. The wave velocity in this case is w Y; and
the wave length is aTm Y: . The solution also exhibits the boundary
layer property; the motion of the plate becomes insignificant when
Xx"j reaches some value, X: is that distance which the am-
plitude of W drops off by a factor of € and is known as the depth of

benetration, of the order of the boundary layer thickness §

_1/

Ty) W 2 4 (wTy)? 2 '

6 (wTy) L2 AN (142 4+ (WTy (4. 10)
4 1t (WTy) 1+ (WTy)>

Of course, when the particle concentration by mass vanishes and K

is identically zero, both X, and Y;L become AJw/zv and we re=-

cover the classical solution

- =y
Y ")
U= U € Lot (wt- A‘-{;‘&)
with the boundary layer thickness § ~ 3—3— .

Although equation (4. 9) for the fluid velocity profile is in a
form suitable for numerical calenlation for any value of the eqﬁilibra-
tion parameter w"/’(‘v » it is instructive to study the near-limiting
cases, When W™'/T, >>| , which corresponds to the "weak"
particle~fluid interaction regime; or the near~equilibrium regime, one

can expand X, and Y, as follows:

<&

K= 2 [rdae o5+ o(E0Y)]
(4. 12)
A A R IR (el

1y

In this case, it is found that the fluid velocity profile can be expressed
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(V'l',(mt-\'q)) and independent of . As in the Rayleigh problem, we
note here that the local acceleration of the zeroth order equilibrium
flow is proportional to %.\%' e-;TM(wt— ) and we recover from
the exact solution the useful concept that the first~order "alip" veloci~
ty is proportional to the local acceleration. This, again, is not sur-
prising. The particle of mass m 1is subjected to an inertia force of
-1

order vn u"/m.,-l , where w is the only characteristic inertia tima,

This must be balanced by the force exerted on the particle by the fluid,
which is m uS/Tv and U is the "slip" velocity. Hence, E&Ow :%:‘ .
Thus, when “% >> | , the "'slip" velocity is small compared to
the amplitude of plate motion. This is not unlike the similar feature
recovered by the Rayleigh problem, which substantiates the approxi-
mation used by Marble( 19 for the steady laminar boundary~layer
problem. The similar feature here will then provide the suggestion
concerning approximate considerations of those periodic boundary lay~-
ers that are mathematically less accessible.

In the opposite situation, when % <<y , the near-frozen
regime, it is more convenient to write the particle velocity instead of

the '"'slip'" velocity as

Up = = \,«'&'(q,cwt—m)+ 19((%)’*)
where :
u‘Ph("l,(Lut-V()) = e"{ A (wk-n) (4. 25)
and Y(="3% is the similarity variable based on the frozen kine-
matic viscosity 4/ . The particle oscillations lag behind the fluid
by TT/L in the first approximation. The amplitude of particle

oscillation is simply proportional to ""-‘/’[‘V and is nearly standing
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in the form

W (7], wt-7)) = We, (T, (wt-) + - ‘lfe.("—l,twt-ﬁ))+ 19((%,)‘)

-1

when %v > | . Here W=Y Iz“_)__ is the similarity variable
v

based on the "equilibrium' kinematic viscosity ¥ . The zeroth

order function is simply the Stokes solution(23) for the oscillating

plate when the particle cloud and the fluid are moving together:

-

u’e‘)(ﬁ,(wt-ﬁ)) = e-vl tod (wt-1) (4. 13)

The first order function is

- -
We, (R, wt-7) = --&E 3he [Am(wt )+ coa(wt- '2)] (4. 14)
As in the Rayleigh problem in Chapter III, ‘.Z".“(-‘/- '2. is a universal

function here of 7\ for the amplitude and of (wt-R) for the periodic
part, and is independent of . The presence of the particle serves
the purpose of augmenting the damping of the action of the plate, since
the momentum generated by the plate that would otherwise diffuse in-
to the interior of the mixture is now absorbed by particle inertia.
Since thg particle cloud lags behind, the fluid lag with respect to the
plate is also augmented. This is more obviously seen when equation

(4. 12) is directly substituted into equation (4. 9):

(‘liﬁrv

%t u" kT '
wey e m(w’c-ﬂ%% 53w (4, 15)

fie

The boundary layer thickness is then

2 ¥ T
6~ A (1-42 =) (4. 16)
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L
which approaches the equilibrium wvalue ‘% from below, similar
to that discussed for the Rayleigh problem.
When T, <<| » which is the near-frozen regime, the time
it takes the particle cloud to adjust itsell to come into equilibrium
with the local surrounding fluid is long compared with the time it

takes the plate to go through one period of its motion. Omne can now

expand X, and Y, as

w5

Y= B - o]

In this case, one expects that the fluid velocity can be expressed as

IOES

% + l}((%)l)]
(4. 17)

W, wt-n) = Ug (1, (wt-n) + % Wy, (1, (k=) + B((45)%)

where M =Y % is the similarity variable based on 4 and
1 ~N
U, (M, (wt-p) = € Cot (wi-n) © (4. 18)
. 1 . {23) . .
is the "frozen! Stokes' solution . The first order function is

| e
W, (M tim) = - ke Jamwt-pactwt-p] - (4.19)

_Lk/ Uif-. is a universal function of (f,(wt-v)) independent of Kk .

‘I'he boundary layer thickness, similar to the Rayleigh problem, now

breaks away from its frozen value

6 ~Ji_£-— [~ -ﬁi% ()] (4. 20)

The transition from '"frozen'' to "equilibrium!'' is similar to the Ray-
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leigh problem, except that the parameter here is “’-./Tv instead of

t/’fv , and is shown in Figure 11.

3. Particle Velocity Profile

The momentum equation for the particle cloud is repeated here

for convenience

U P
Po —ﬁ" =——,t£v<up-bt> (4. 21)

Since the fluid velocity is proportional to R(eiwt) , we set

and obtain

X  (wt- Y2 - ¥)
z.l?mqle( 2% )

uP=R(HP(‘3)€iwt)

U.P = R (er
-X2%

= U, e cntp cor (wt-Yay-¥)

It is noted that the particle lag :M‘(%J is the same for all lay=-

(4. 22)

ers of % . This is what is physically expected, since the particles
are non~interacting and respond only to the momentum exchange with
the fluid along each streamline. It is of interest to consider the

particle~fluid ''slip" velocity, which is

X
U-up = & om P pin (wt-Ya%-4) (4. 23)

In the near-equilibrium regime, the approximation for the "slip" ve~

locity when w%v > | may be written in the form

w-up = L e (T,00-) + BT

where

—

n

Ye,(T/(wt-]) = & ' pom(wt-i) (4. 24)

and Y-’( =Y I{% is the similarity variable based on the equilibrium

kinematic viscosity 5 . Here, ‘}gl is a universal function of
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still when <, << | , Since in this case, the equilibration time is

much longer than the fluid characteristic time (o' .

4, Shear Stress at the Plate

The frictional force exerted on a unit area of the plate is

Tw = r‘(%)*po

Substituting equation (4. 4), and forming the coefficient of skin fric~

tion, we have
C‘F‘ _ TW ( f 2 2

i
2 'Ev__l 1R
oy | (s () J et wit®)

A
LR P

il

H{wt+e) )

(4. 26)

where P = tn,,,,—‘ ( \;_1) . When the particles are absent and kw=0 ,
P

& becomes T/4; and we have

S+ oo 22 coa(wt+ T)
2 Ut

which is the classical expression for C+/2. » showing that the max~
imum of the shear stress occurs at intervals of 1/8 of a period be-

hind the mean position of the plate. For the near equilibrium limit in

: W™ [T T .
which =z >> | , then Q: % —'liﬁ-t? m-‘+19((—é..)") and the addition=
al lag —iT\iTv Ty due to the inertia oi the particle cloud now rend-

u .

ers the maximum of the shear stress to take place at intervals of

(-& - Klﬁ_—l%z —a—’:, ) of a period behind the mean position of the

plate. Expanding the cosine function, we have
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8 fu

& o 2w W[m(wh )4 bt M(wtw)us((fv,y)] (4 27)

the first term of which corresponds to the equilibrium value with the

modified density (1+K)p .

- W'k ! .
When 2‘%; << | , 9’%'?}I+d((%)z) , and the maximum
of the shear stress takes place at (.‘. -ty & of a period be~-
g u4m Tv

hind the mean position of the plate, and

“
fug

rIo
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Vo  LINEARIZED SUPERSONIC FLOW

1. General Discussion

(35)

The pioneering work of Ackeret , von Karman and N. B.

Moore(36), and the lectures of Prandtl(37), von Kérmé.n(Bs), and
' (39)

Busemann at the Fifth Volta Congress for High Speed Aeronautics
held in 1935 in Rome essentially established the foundations of the
linearized theory of supersonic flow. One need only consult the two
subsequent general lectures of von Kirman, the Tenth Wright Brothers
Lectures of 1947(40), and the Fifth Guggenheim Memorial Lecture of
1958(41), to gain perception of the subsequent developments of the
linearized theory of supersonic flow,which has now become an im-
portant branch of fluid machanics. In considering supersonic flows in
particle~fluid mechanics, it is then natural to ingquire as to how the
concepts of the linearized theory, which has seen such fruitful service
in the classical fluid mechanics, may be extended to thie new border-
line area of fluid mechanics.

We have discussed in Chapter II the significance of "inviscid"
but compressible flow. The appropriate conservation equations were
also stated. These #re the so~called Euler equations in particle=
fluid mechanics, from which linearization is to be made leading to the
formulation of the small perturbation theory. This is discussed in
detail in éection 2, where the corresponding Prandtl~Glauert equa=
tion in particle~fluid mechanics is obtained., This, in fact, has been
derived by MarbleHz) through the perturbation of a uniform stream

familiar in aerodynamics, and applied to the two-dimensional steady
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_ﬂow over a wavy wall for both subsonic and supersonic free-stream
velociﬁes. On the other hand, Chu and Parlange(ZO) obtained the cor=-
responding equation for acoustic propagation in particle~fluid mechan=
ics in which the particles and gas are initially at rest and in thermal
equilibrium. The latter is essentially the counterpart of Rayleigh's
theory(43) of acoustics, Here, however, we begin from the equation
of acoustics and invoke the well-known physical interpretation of the
linearization process in the classical high-speed, thin~airfoil theory
that, in the reference frame fixed on an observer moving with the air-
foil, the flow is described by the equation of acoustic propagation.

We obtain the fundamental equations for thin-airfoil theory in particle-~
fluid mechanics. These include the equation for non~uniform maotion,
the equation for harmonic motion, and the equation for steady motion
in the reference frame fixed on the airfoil. The last is the corre~
sponding Prandtl~-Glauert equation, and the alternate derivation of

this essentially connects the acoustics and aerodynamic concepts of
small perturbation theory in particle-fluid mechanics. This idea is
emphasized by Sears(44) in his discussion of the classical theory of
small perturbations.. We also discuss in section 2, in terms of the
small perturbation theory, the role of entropy and the cxistence of the
velocity potential for, respectively, the gas and particles. Some
limiting cases are discussed, and finally, in order that the linearized
theory can be of fruitful service, one must be aware of and hence

discuss its limitations or shortcomings.

In section 3, the two~-dimensional, steady supersonic flow, or
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the Ackeret problem, is discussed in detail. The consideration is
made from the exact form of the Prandtl-Glauert equation derived in
section 2. The wave structure, particularly the far-field behavior, is
deduced. An exact form of the pressure coefficient is obtained from
which the aerodynamic forces and moments could be obtained when
the airfoil shape is specified.

The consideration of two-dimensional, linearized supersonic
flow with the additional restriction and simplification of small particle~

fluid density ratio (K << 1) is given in Chapter VL

2. Small Perturbation Theory

Prior to obtaining the equations for thin-airfoil theory, some
preliminary discussions are desired which will enhance our later con=
siderations. The first of these concerns the role of entropy produc-
tion, if any, in the small perturbation theory and the question of its
relevance in the problem of drag. The second of these demonstrates
an important theorem due to Marble(42) and its application to the
small perturbation theory, and concerns the possibility of expressing
the perturbation velocities of the gas and of the particle cloud as
gradients of their respective potential functions. The existence of the
potential functions is apparently overlooked in Chu and Parlange,’s(zo)
consideration of the acoustic situation. We first quote the equations
for the small perturbations about a gas and particle cloud at rest and
in thermal equilibrium, denoting the stationary coordinate system as

~

(%, %) oras (X,%,%,%) . The original undisturbed value
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of the gas pressure is g, , gas density P » and the original
tempeArature of the gas and particle cloud is T ; the undisturbed
particle~cloud density is PPo . We denote the first order departures
from equilibrium by 'z P-f, » P'=p-p P,;: Po- $r o T=T-T, >
and T,=Te-To . Neglecting higher order terms in the perturbation
quantities and their derivatives, then the Euler equations given in
section 4 of Chapter II take the following form.

The continuity equation for the gas becomes

LA e/ (5. 1)
ot 81-’

and the momentum for the gas becomes

Wy _ P s 5,2
ﬁ,a{ = ai’,; + Tvc( P‘.' 6) (° )

with the use of the linear momentum interaction law. The energy

equation for the gas in terms of the static enthalpy f= Cpl  is:

W, et 5
ek = 7 Tl ) (5. 3)

with the use of the linear thermal interaction law, and the equation of

state ' |
r.E, L
?o Po TO (5. 4)

The corresponding small perturbation forms of the conserva~

tion equations for the particle cloud become;

the continuity equation is

£ Ve,
2.0 %% _ o (5. 5)
It ° a.x];

the particle~cloud momentum equation is
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‘a‘-rP 9 PPo

L.k - V. 5.6
P"oﬁ - Tv,(ur‘. v:) { )

and the energy equation is

PXEACHNL R § O (5.7)
3% Ty,

The small perturbation equations in their individual forms

will facilitate our subsequent discussions.

2.1, The Role of Entropy. - It is particularly important to

discuss the meché.nism for net entropy production, if at all, in terms
of the small perturbation theory, This will clarify the situation of
whether one could attribute a rise in drag of an obstacle to mechan~
isms for entropv increase.

There are, in general, two sources for the net production of
entropy when there are particle~fluid momentum and thermal inter=
actions present. The firat of these is the work done on the fluid as a
result of the particle-fluid equilibration process, which contributes

to the increase in the fluid entropy per unit volume, and is

L (vp, - Vi) Fp,
as given by the second term on the right hand side of equation (2.20),
and this also contributes to a net entropy increase of the mixture.
Since F?‘. = %v( Ve, - Vi) and Ty > 0 , itis a positive-definite
quantity. However, in the first~order small~perturbation theory,

this dissipative work is absent, and it enters into a second order

consideration only.
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Now Qp is the local heat transferred to a unit volume of fluid
from the particle cloud in that volume, which contributes to an in-
crease or decrease of the fluid entropy per unit volume depending on
whether the fluid temperature is lower or higher than the local tem-~
perature of the particle cloud. Tuls is given by the first term on the
right side of equation (2, 20), and normally, the heat transfer to the
fluid is received by the fluid at its local temperature T ; the local
increase or decrease of fluid entropy per unit volume is Qp /T .
Similarly, the local decrease or increase of the particle cloud entropy
per unit volume is —QP/TP ; the transfer of heat to or from the
particle cloud takes place at its local temperature Te . Inorder to
fix our ideas, suppose now 1 > Tp and locally heat is transfer~-
red from the fluid to the particle cloud. The transference of heat
from the fluid takes place at T , and is received by the particle cloud
at a lower temperature, TF . In this process, net entropy production
results, However, in the small perturbation theory, the transfer pro-
cess takes place at the same temperature T, , and the mechanism for
net entropy production is absent and enters only in a second order con-
sideration.

Denoting the first-order heat transfer by Q", , the local en~-

tropy increase or decrease of the fluid obeys the equation

s _ Qe
P°7: To

o

for the acoustic situation in a gas and particle cloud originally at rest,

obtained from esquation (2. 20). Similarly, for the particle cloud:



obtained from equation (4. 44).

In the first~order small~perturbation theory to follow, there-~
fore, there is no net production of entropy. Hence, when a symmetri~-
cal, thin obstacle or thin airfoil is moving at supersonic speeds in a
particle~fluid mixture, the resistance it experiences other than
particle~boundary collisions, which are of second order importance,
is the analogous ""wave drag' in ordinary gas dynamics. There is, of
course, no drag rise due to mechanisms for a net entropy increase,
since such mechanisms are absent in the first-order small~perturba-~
tion theory regardless of subsonic or supersonic velocities. The
expectation of the appearance of a drag rise of a nonlifting, symmetri«
cal obstacle moving at subsonic velocities, for instance, is solely at~
tributed to the destruction, due to particle-fluid interaction, of the
symmetry of pressure distribution between the fore and aft sections on
the obstacle.

Precisely, in the absence of net entropy production in the
streamwise direction in the first-order small-perturbation theory, the
periodic solution for the flow over a wave~shaped wall is possible(42)

2. 2. Velocity Potentials -~ In this section, we examine the

possibility, in terms of the first-order small~perturbation theory,  of
expressing both the gas velocity and particle cloud velocity as the
gradient of their respective potential functions. We proceed, again,
from the case when the particle cloud and the gas are initially at rest

and in thermal equilibrium, i.e., we proceed from the acoustical
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situation.
The dynamical equation of the gas, equation (5. 2), may be re-

written in the vector form as:

W _ L Ty XM (F-T)
% 7 VP Ty, " (5. 8)

where V() 1is the gradient operator in the stationary coordinate
system (%,%,%, ) and we have denoted k= PPo/ﬁ: which is the
initial undisturbed mass ratio of the particle cloud to the gas in a unit
volume. Similarly, the dynamical equation of the particle cloud,

equation (5. 6), may be rewritten in the vector form as:

}

2
?

s

(Vp=1T) (5.9)

!

—

A
Ty,

feid

Let us denote the gas vorticity vector as N which indicates

the intrinsic rotation of an element of the gas,

e

A= VxV (5. 10)
Similarly, we introduce the analogous vorticity vector Ep as indi-
cating the intrinsic rotation of an element of the particle cloud as

Flp= V2 (5.11)
where ¥x( ) is the rotation operator in the stationary coordinate
system (')7,71,3‘.,'{) . If we take the ¥x( ) of both sides of equa-
tions (5. 9) and (5. 10), respectively, and noling that $x(Fp)= 0O

we then arrive at

W _ K (A_- ) (5. 12)
ot Tv,

and
alp_ _ L (B.P-_?‘x) (5. 13)
2% Tvp
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respectively. With these equations, the behavior of vorticity in the
motion due to small disturbances in particle-fluid mechanics can now
be studied. Combining equations (5. 12) and (5. 13), we see that

_ﬁ: + K ﬁ? = constant along the path following an element of the
mixture. If at some point Q= _ﬁ.? = O , then f1=0 and .ﬁ-?= O
along such paths. Hence, when motions originate from a state of uni-
form rest,- then n= ﬁP = O subsequently everywhere. The gas
velocity V¥ and the particle cloud velocity '\FP can then be repre~-

sented as the gradient of their respective potentials:

$ (5.14)

QL

—
v =

and

G- T, (5. 15)
This demonstrates an important theorem due to Marble(42):for the
case of small perturbation theory, the first-order perturbation poten-
tials ¢ and C(JP exist. In our subsequent considerations, the po-
tential functions will be used throughout, and the representation of
other properties of the gas and of the particle cloud can be simply re-
lated through equations (5. 1) to (5. 7).

2.3. The Equation for Acoustic Propagation. - In this section

we state the equations for acoustic propagation, which are obtained

from equations (5. 1) through (5. 7):

3 (a _a:."'z.) _\_t_‘?_+lme-i Q_(g_i_ -a (ww)(“"”‘cr)() Q’j"’? =0 (5. 16)
[av(w 2V ¥ Tv, T, )% V) T, Tr, OB 2V)¢=0

(20)

The form of the wave operator was obtained by Chu and Parlange
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for the acoustical situation. However, they appear to have overlooked
the existence of the potential functions. Here, we write the acoustic

equation in terms of the velocity potential ¢ of the gas. ¥* 1is the
Laplacian operator in the stationary coordinate system (X, %,Z2,t) .
The acoustic propagation speed in the undisturbed state of the gas, as

if no particles were present, is
o
fo

and is appropriately called the '"frozen'" speed of sound. The acoustic

at = v (5. 17)
propagation speed when the particle cloud and the gas are in ultimate
equilibrium, after momentum and thermal equilibration processes

have subsided, is interpreted as

(5. 18)

| ol

a, =7

where ¥ is the '"equilibrium' heat capacity ratio and is correspond-

ingly defined as

<s

— G+ L W,
g2 S P.?=__H~<:c:Y (5. 19)

s + [ H—rk,-c::-’

The equilibrium density of the mixture is simply = f‘,-rPPo = P (Vv ) ;
the pressure of the mixture is still the same gas pressure ¢, ,
since the particle cloud does not contribute to a partial pressure. We

then have the interpretation of the '"equilibrium' speed of sound:

Cs
I+ Wes
a; = 4 —ff a2 (5. 20)
AL SNV X
cp

The propagation speed associated with an intermediary wave is
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Lo+ = (1+ &SE‘
L T g < L
a’ = 1»:0 Tfo c_s" G, (5. 21)
tVo 'C‘\"o
. < N s oY) [
Since ¥, E‘;, Y, Tv,, Ly all are positive quantities, it is then

observed that

The domain of dependence is characterized by the highest order wave.
The equation for the perturbation pressure P’ follows from

the dynamical equation of the gas

d ' K
5% =% +—i.;a(¢,,-¢) (5. 22)

which is coupled through d)P with the dynamical equation of the

particle cloud

¢ -
_g:tp = - -%“’,n(¢P ¢) (5' 23)

The forms of equations (5. 22) and (5. 23) are purposely retained here
to exhibit their physical significance. Equations (5.16), (5.22), and
(5. 23) play the same role here as Rayleigh's(43) acoustic propagation
equations in ordinary aerodynamics. That is, they describe those
flows that are generated by small perturbations external to fluid-
boundary layers and in the absence of shock waves. As in the ordinary
aerodynamics, if shock waves exist, our approximations are valid
provided that the shocks are weak., We shall accordingly obtain, in
the following sections, the fundamental equations of the linear theory.

2.4. The Equation for Unsteady, Thin-Airfoil Theory. - We

use the acoustic propagation equations of section 2.3 as the starting
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point, together with the well-known physical interpretation of the
linearization process in the classical high-speed, thin-airfoil theory.
This states that, in the reference frame fixed on an observer moving
with the airfoil, the flow is described by Lhe acouslic propagation
equations. We then derive the appropriate equations for the linear
theory in particle-fluid mechanics.

The -thin obstacle is considered as a source of small disturb~
ances, or acoustic disturbances, and the resulting flow field is built
up of superpositions of such small disturbances. The flow field in the
absence of the obstacle is a steady, uniform, parallel stream of ve=
locity We along the positive x ~direction. The reference frame
fixed on the obstacle will be represented by (x,4,2,t) . The
Galilean transformation fixing the reference frame on the obstacle is

~ ~

related to the stationary frame (¥,%,%,%) by:

x= X+u,E, 4=, =z2=%, t=1 (5. 24)
and
- 2 _2 2.2 2 _ 3 3 (5. 25)
W ox | gy w ¥’ T T 5 T Y%

Of course, the corresponding gradient and rotation operators are
related as
V=V Vx() = Vx( )|
' (5. 26)

invariant in the transformation. In the moving reference frame, equa-

tion (5. 16) then becomes
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(—La'f—) (oM o B 2 pMe® 4 P
odt = x e apt 3T e, et T az e
Cy
( xlT (l a Nk > ?_: Mg 1 3%
* WAt )“ Ty bx (=M )ax‘ 3‘31+;;’- za At~ az Her

\+\<:¢P [( ?_... ?;1..,.2:...1'“\19 _.‘._.._. o (5. 27)
¢)~T a ay  ar* a, 93t ary* ‘P

where we have introduced M°= uo/aa as the "frozen'' Mach num-
ber, M= uo/a, as the '"intermediary' Mach number, and M,.-_: u,/qz
as the "equilibrium'" Mach number. Since G,7Q,? ., then
Mo<M, < Mo . Here, the "zone of action' is determined by char-
acteristics of the highest order wave. We also introduced the velocity
equilibration distance A, = Ty, Uo and the temperature equilibration
distance Ay=T,Uo .

The corresponding equations for the perturbation pressure

from equations (5. 22) and (5. 23) are:

l

Jo'& ax)¢'“;'; +—-(¢ $) (5. 28)
and
\
CEREILEEE L Bl 520

respectively. Equations (5. 27), (5.28), and (5. 29) constitute the
fundamental equations for an unsteady thin-airfoil theory in particle-
fluid mechanics. The form of the individual wave operators in equa-
tion (5. 27) is the familiar one in ordinary aerodynamics of unsteady

airfoil theory(45).
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If the obstacle exerts harmonic oscillations with frequency «
while in a uniform stream with steady constant velocity w, , the

perturbation potentials are then of the form:

wt
$(x,q,2,1) = @ CICHRD (5. 30)

(wt
¢xy,2,t) = et

B x, ®) (5. 31)
s
and similarly, the perturbation pressure is then of the form:

wt
Pty = € By (5.32)

Hence the fundamental equations for harmonic motions of thin airfoil

theory become

2 s
)[( 2L _iwMe2 2
ua ay* - Go 3X a2

L 2
._‘_ IER) "P)( u.d [~ 1 2 3 _1i M| ? w
*'(xv+ ™ ax ( M ) 1* UL TR N AP

\+w¢P[_ 38 3 0 Mad Wt _ (5. 33)
YT LT A aptaeeT B A §s’o
9 _-_‘2_
%) 8= ! Ug'_ -%) (5. 34)
w 3 I -
*ax)§i’s“ M(§Ps %) (5. 35)

Unlike equation (5. 27), equation (5.33) is hyperbolic only when Mg >1,
in which case, the "zone of action' is again determined by the charac~

teristics of the highest order wave and is just the 'frozen' Mach
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conoid of semivertex angle given by tan™( \/JH‘,‘-l ).

2.5. The Equation for Steady Thin-Airfoil Theory, - When the

motion is steady in the reference frame fixed on the obstacle, we then
obtain the fundamental equation for steady flow in the linear theory in

particle~fluid mechanics:

Cy L L 2
DR N OLAL Y b It l chp[ WD _
{Bx’- M )ax* " n]J'(Tu*TP)ax( Mi)ax»*a;» apx +“{v’ﬁ *)W*;.}*" $=0(5. 36)

which has, as its counterpart in ordinary aerodynamics, the Prandtl-
Glauert equation. Again, equation (5.36) is hyperbolic only when

Mo ¥ I and the "zone of action' is determined by the characteristics
of the highest order wave, which is the '"frozen' Mach conoid of semi~-

vertex angle tow™ (\/[R7Z=7)

The corresponding equations for the perturbation pressure P’

become:
P %o 5. 37
o pu, | lv(q’P ) (5.37)
and
?_i?__.l_. - -
= 1 (P -F) (5. 38)

Equations (5.36), (5.37), and (5. 38) are obtained by Marble!*!)
directly by applying the Prandtl-Glauert type of perturbation of a uni-

form, steady, parallel stream. In the present context, however, the

alternate derivation essentially connects the acoustic and aerodynamic
concepts of the small perturbation theory in particle~fluid mechanics.

This idea is emphasized by Sears(44) in his discussion of the classical
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small perturbation theory.

As in the Prandtl-Glauert problem, our system of equations
here holds for both subsonic and supersonic free~stream Mach num-
bers Mo . In section 3, we will discuss in detail application to
two~dimensional, supersonic thin~airfoil theory, or the correspond-
ing Ackeret(35) problem. This is essentially the simplest problem,
and one wishes to follow the way of simplification, which leads to an
understanding of the phenomena and from which subsequent exten-
sions and improvements can be made.

It is necessary to remark that the equations for the perturba-
tion pressure given in sections 2.4 and 2. 5 need to be improved, as
in the classical problems, when one discusses slender bodies of
revolution, particularly the pressure in the vicinity of the body sur-
face. where the perturbation velocities are not of the same order of
magnitude. However, the pressure relations given in sections 2. 4

and 2.5 can be applied to planar systems.

2. 6. Some Limiting Cases, -~ There are two equilibration

proccsscs that enter into our consideration. They are exhibited in
the linearized equation by the simultaneous occurrence of the veloci-
ty equilibration time 7Ty, and the temperature equilibration time
Tro . In general, for solid particles immersed in a gas, the ratio
Tvo / T1o is of the order unity, and this will be taken as the case
in our detailed consideration of linearized supersonic flow in section
3. In this section, we consider three limiting situations in which the

linearized equation reduces to the form familiar in the consideration
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of relaxation processes or finite chemical reactions in a gas involv-
ing a single characteristic time.

Again, we proceed from the equation of acoustic propagation
in the consideration of limiting cases, and the forms of the equations
in a moving coordinate system follow after a Galilean transformation.
To enhance our consideration, let us rewrite equation (5.16) in the
form:

3 = 2 YL S\~

BG2)3=28) - )i stoheo o0

When the actions of the two particle-fluid relaxation pro-
cesses are entirely similar, that is, when the momentum and thermal
interaction parameters are the same m::lo%‘-‘—’ , and when the velocity
and temperature equilibration times are the same ‘t\,o:'cro, the entire
relaxation process is then accomplished by a single mechanism and is
governed by a single equilibration time T . Equation (5.39) then

reduces to

T 3 aa.“'z) (y_ Y ~,.)} - o (5.40)
{Hm T o V') * % 1e V ¢

for wave motions. Where the "equilibrium'' sound speed in this limit-

ing case is

L = Po _ ao,~
Qg =7 — = TRE (5.41)

<
and the ratio of specific heats of the mixture when K,;-K,-cs—‘; is simply

)

n

¥y :::1 s P=(+0)f; The equations for the perturbation pressure are

still given by the dynamical equations (5.22) and (5.33),
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v,
For the case when TL:TL — o , equation (5.39) then reduces
o

to

tVoa—. 23'.__ "~7~) (-——Qz )}

In this situation, while the particle=fluid momentum equilibration
process is taking place, the particle cloud remains 'thermally fro=-
zen' at the initial undisturbed temperature T, . In the absence of
the thermal equilibration process, the heat capacity ratio of the ulti-
mate (momentum) equilibrium mixture is ¥ , that of the gas alone.
However, since the particle cloud and the gas are in final equilibri-
um dynamically, the density of the equilibrium mixture is then

F = (14x) £ . Hence we now have the interpretation of the
"“thermally frozen, dynamical equilibrium'" acoustic=propagation

speed:

o = ¥y (5. 43)
™
I+ i<

The equations for the perturbation pressure ' are again given by
equations (5.22) and (5. 23).
In the opposite limiting case, when T ,» equation

Ty,
(5. 39) reduces to

{’tro _3_(31_ oV) (__{_a,q.v )}QD:O (5. 44)

Mrss AT \IT>

In this situation, while the particle-fluid thermal equilibration pro-
cess is taking place, the particle cloud remains ""dynamically frozen"
at its initial zero velocity. In the absence of the momentum equili-

bration process, the density of the ultimate (thermal) equilibrium
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mixture is £, that of the gas alone, while the heat capacity ratio
is ¥ as interpreted in equation (5.19). In this situation, we now
have the interpretation of the opposite limiting case of '"dynamically

frozen, thermal equilibrium' acoustic~-propagation speed:

Y

S
2 - P K
0f=7 1 = e ok (5. 45)
S
(] ‘*’K/T-C—P-

The equations for the perturbation pressure 'p' for this ""dynamic~-

ally frozen' case reduce to the simple form

g,aé = - P (5. 46)

it

For small departures from the last two limiting cases, that
is, when either of the ratios Vo /IT., or /Ty, is very
small but not identically zero, one then has a '"boundary layer' re-
gion similar to that discussed by Marble(lg). For instance, for the
near ''thermally-frozen' case, the ""rapid'" momentum equilibration
process appears as a boundary layer zone imbedded in a "slow"
thermal equilibration zone. Similarly, the opposite takes place in
the near '"dynamically~frozen' case.

The forms of the limiting cases exhibited in equations (5. 40),
(5. 42), and (5. 44) are identical to the acoustical propagation situation
in a relaxing or reacting gas involving a single characteristic time.
The equation in this form appears to have been first derived by
Stokes(46) in his consideration of the effect of radiation of heat, using

the linear Newtonian relation, on the propagation of sound. Stokes

also gave the periodic solution to his equation. One is also referred
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(48, 49)

to its discussion by Chu(47) and Moore and Gibson . An exten-

sive discussion of more general forms of the relaxation wave equa-
tion involving a single characteristic time is given by Whitham(SO).
The limiting forms of the equation for the perturbation poten-
tial in the moving coordinate system, or the airfoil coordinates, fol-
lows immediately. When Kk = lq%i and Tv,=Ty,= T ,» We

have, for unsteady motions in the airfoil coordinates, with A=U,T :

. DL _aMed 1 91]
u Rt ax [" Mo ax* a\;t 32+ @, it arat

» 3 _2Mwedt  _
+ [(‘ Mle)ax:. ;‘,1*'327. E;e '3;51 a L ;t‘- } ¢ 0 (5. 47)

where we have defined the "equilibrium!' Mach number as

Mie= U, / Qa¢ . The perturbation pressure is still given by
equations (5. 28) and (5. 29). For harmonic motions in the airfoil
coordinates with the perturbation potentials expressed in the forms
given by equations (5.30) and (5.31), the equation for the potential

@s(x.‘},i) becomes

Mo d w*
-—- -“2‘-&) 0___ —
{ LU\) b)[(l Mo); 2 3‘},_ )zz ao ;x l ag.]

* M W _
+ [(l Mw)w o 'a'zt’l i 1e5;+ me]késﬂ 0 (5. 48)

with the perturbation pressure given by equations (5.34) and (5. 35).

For steady flow in airfoil coordinates, we have

3t -al.
{kg—;{(l-f“\o)aﬁ. ;.;,,'«51;] [(\ Mle)axt a-’t 31,_]} $ = O (5. 49)
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For the '"thermally-frozen' case, we have the following cor-

responding equation for unsteady motions in airfoil coordinates, with

lvz uo’tva
IR (PR, A T R
T apTar T g, st apat
* 3’" 3” lem?‘ 1t
¥ [(' M D3 32T Ta .t apat? ¢=0 (5. 50)

where we have defined the "thermally~frozen, dynamical equilibrium"
Mach number as Mj,, = U / Qi . The perturbation pressure
is again given by equations (5. 28) and (5. 29). For harmonic mo-

tions:

A N Mod
W & —250M

Fid MLn) ,‘f}_ _
[(' Mo x‘ 3‘:‘ ik it §§S_ 0 (5. 51)

with perturbation pressure given by equations (5. 34) and (5.35)., For

steady motion in the airfoil coordinates:

* I 5. 52)
2 - .
{ Vax[(‘ My )3!" 9y 32"} [( Mz"‘)ax:. 3‘31, 31" E ¢ =0 (
with perturbation pressure given by equations (5. 37) and (5. 38).

For the "dynamically-frozen' case, with Ay= u,TTo , the

equation for unsteady motions is:
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v (‘ 3 (‘-Mz)_i L _AMpt
v \Upat ax) YL oy Yo Qg X3t aXat*
p
¥ 2Mupdt | 3‘] =
+ l f— ~ _______T_,,.. ——— — O
( M’-T>w e*;L az* 7 Mt Qppdt” ¢

(5. 53)

with the ""dynamically-frozen, thermal equilibrium' Mach number as
Mzr = Uo /a,_T . Here, the perturbation pressure is modified

from equation (5. 44) and is

\ 3 -
uoat Q@ f,uo (5. 54)

For harmonic motions:

Ay fiw 2 * Pl Mod &
——— | o o ~M2 — e =2 0 +._.-
{uk,% ( Uo +ax>B’ Md)axe® w*'ul UwT o

}l a?_ MZ wl
+ |0-M2) + 5, - 240 BT o =0
T ax‘ 3\31- 9% A, 3% Qi S

(5. 55)
with

(39 ,2\f = - = (5. 56)

Lu°+ax)QS oo ' !

where the perturbation pressure ' is expressed in equation (5. 32)

in terms of Pstx,v;, 2) . For steady motions:

3 3 3
{H“‘& ax[(‘ -Mg )ux aua), ay.] [(l MZT)M" 3‘3:_4- 32]%4) = 0 (5. 57)

and
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W _ 7P
% - R, (5. 58)

The forms of the three limiting cases for steady motions in
the airfoil coordinates appear identical to the corresponding linear-
ized steady, small-perturbation theory in a relaxing or reacting gas
with a single characteristic time. One ié referred to the discussions

(48, 49), Vincenti(Sl), and Wegener and Cole(SZ).

by Moore and Gibson
The linearized equation for unsteady motions in the airfoil coordinates
involving a single characteristic relaxation time, however, does not

appear to have been previously considered.

2.7. Limitations of the Linear Theory. - Similar to the

situation in ordinary aerodynamics, the linear theory can only be of
fruitful service when an understanding of its shortcomings and of the
actual flow situation which it is intended to simulate is kept in mind.
Many of the shortcomings of the linear theory in particle-fluid me~
chanics are, however, carried over from the similar situation in
ordinary aerodynamics. Hence, we must exclude all problems in
which viscosity and heat conduction within the fluid itself play an im=
portant role. It is further necessary that the magnitude of the in-
duced velocities due to an obstacle in the flow field be small com-
pared to the free strcam vclocity. We know from ordinary aerody-
namics that the linear theory cannot describe situations close to the
transonic and hypersonic flow regimes; in such cases, even the de~-
scription of the flow due to small disturbances is of a nonlinear

nature. When the flow is unsteady, the magnitude of the accelera-
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tions produced must be small compared to the ratio of the square of
the free stream velocity to the characteristic length of the obstacle.

The relatively small magnitude required of the disturbance
velocities familiar in ordinary aerodynamics then restricts our con=-
sideration of thin obstacles or airfoils with sharp leading edges and
at small angles of inclination to the oncoming free stream. In fact,
Ackeret(35-) suggested that the tangent lines of the leading edge lie in
the direction of the free stream. In this sense, the formulation of
the linear theory in particle-fluid mechanics implies that the pres-
sure distribution on an airfoil is primarily modified by the particle-
fluid equilibration processes and that particle~-boundary collisions
are of much less importance. The latter will be discussed in detail
in section 3.1 and is indeed a second order effect. Oa the other
hand, in the flow in the vicinity of the stagnation point of a blunt-
nosed body, where the linear theory does not apply, particle~-
boundary collisions are much more significant.

It is also well known in ordinary aerodynamics, in particular
for supersonic flows, that the linear theory is not expected to de-
scribe the actual flow pattern in the far-field with any great ac-
curacy, even for small disturbances, although it predicts the surface
pressures fairly well within the limitations of the linear theory. In
the linear theory, the inclinations of the individual Mach waves are
approximated by a constant value; hence, the mechanism for over~-
taking of the Mach wave front by later Mach waves leading to the

formation of shocks is precluded from the linear theory. If one is
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interested in a more realistic flow pattern far from the obstacle, the
linear theory needs to be improved according to the spirit of "higher
53)

approximations' in ordinary aerodynamics discussed by Whitham(‘

and by Lighthill‘®%),

3. Two-Dimensional Steady Supersonic Flow

Up to now we have discussed in rather general terms the
linearized <theory in particle~fluid mechanics. In this section, the
two-dimensional form of equation (5. 36) will be applied in the spe-
cific discussion of steady, supersonic flow past a thin obstacle,

(35)

which is the corresponding Ackeret problem.

In the ordinary two~dimensional supersonic flow, it is well
known that its simplicity lies on the fact that the pressure acting on
an element of surface depends only on the local surface deflection
itself. In this situation, the aerodynamic forces on a two-dimension-
al, thin obstacle are thereby easily obtained through a simple inte-
gration when the local slope is prescribed as a function of the
streamwise distance. The fact that this simplicity no longer exists
in particle-fluid mechanics is due to the particle-fluid equilibration
processes which render thelocal pressure acting on an element of
of surface to depend on its upstream history. In this situation, the
aerodynamic forces then depend on the extent in which the equilibra~
tion processes take place over the surface of the obstacle. Hence,
the natural non-dimensional parameters which arise as a consequence

of the problem are the ratios of some characteristic length of the

obstacle to the equilibration distances; C/Ay and C/N7 . We
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have already discussed in section 2. 6 the opposite limiting cases of

Av _ Ty, Av Ty
— = =% - and — = =2° 00 in which
LT ‘tT (o) l-r T~ — ¢ 1iC cases one

°

recovers a form of the perturbation potential equation that is well
known in the corresponding problem of a relaxing or reacting gas
with a single characteristic time. For the consideration of small

solid particles in a gas, we retain the ratio lv/}w to be of order

unity. In fact, for particles obeying Stokes' law, -);'\—‘i = 2'3- %2 F’,.'l .

Hence the two equilibration processes in our problem take place over

approximately the same streamwise distance.

When % >> | , where X is either N\, or Xy since we
regard .);‘.‘.’. = 8 » the equilibration processes are very nearly
T

confined to the distance over the surface of the airfoil,and the particle
cloud adjusts itself relatively quickiy to the local environment, pro=
vided, of course, the shape of the surface of the airfoil is ""slowly
varying'', When %— << | , the disturbances induced by the airfoil
make themselves felt, through the equilibration processes, far into
the downstream regions of the wake. However, as far as the calcu~
lation of the surface pressures are concerned, one need only consid-
er the changes in the flow field due to the presence of the obstacle in
the region bounded by the '"frozen' Mach lines, which determine the
""zone of action', emanating from the leading and trailing edges of
the obstacle., The upper and lower surfaces do not enter into each
other's '"'zone of action' and hence may be considered independently.

The situation is similar, for instance, for a finite wing of uniform

cross section in the region away from the tip "frozen'" Mach conoids
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where the flow is essentially of a two~dimensional nature,

It is well known in ordinary aerodynamics that the well de=
veloped theory of sound of Lord Rayleigh(43) is utilized to great
advantage in deriving and interpreting the physical aspects of the
linearized theory of supersonic thin airfoils. The situation in
particle-fluid mechanics, however, does not have in its possession
this advantageous counterpart, since the development of the acousti~
cal situation is recent and rudimentary. Chu and Parla.nge(zo) dis-~
cussed the one~dimensional unsteady motion in which a piston is
suddenly set into motion and is subsequently maintained in steady
motion. This would correspond to the situation of a simple semi~
infinite wedge in the steady, two-dimensional supersonic flow, where
the streamwise distance plays the role of time., They showed that
the disturbance, while it decays along the wave front defined by the
"frozen' speed of sound @G, , is ultimately propagated with the
"equilibrium'' sound speed @, . However, the pressure on the
piston face for finite times is not given, and their consideration of
the wave structure for 'large'' times does not yield a physically
recognizable form. Soo's Work(ss), which did not proceed system-
atically from the fundamental equations, unfortunately contains
misconceptions of a fundamental nature, such as writing the energy
equation of the mixture as total enthalpy(in the form inconsistent
with '""small disturbances') equals constant for an unsteady flow.

The subsequent discussions of the linearized supersonic flow

will be from the aerodynamic point of view. This can be regarded
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as simultaneously providing a complementary depiction of the
acoustical situation in particle-fluid mechanics, reversing the order
of the corresponding depiction in the classical fluid mechanics.

3.1. Boundary Conditions. Particle~-Boundary Collisions. =~

The linearized equation obtained exhibits sccond order in the Y-
derivative, and the discussions on boundary conditions in the linear-
ized theory in ordinary aerodynamics are carried over to particle~
fluid mechanics, Namely, the solutions of the airfoil problem may
be split into a thickness problem and a lifting problem(56), and the
condition at the airfoil may be satisfied on the Y =0 plane. Hence,
at 4= 0 , the condition is that the fluid is tangent to the surface
along the airfoil. The condition far from the airfoil requires that
the disturbance produced by the airfoil be at least bounded if it does
not vanish. When the airfoil is present in a channel instead of being
in a flow field of infinite extent, the same condition may also be ap~
plied provided that the reflection of Mach waves produced by the air=-
foil from the channel walls does not intersect the airfoil itself. The
linearized equation exhibits fourth order in the x -derivative, and
this requires that the disturbance quantity considered together with
its first three x - derivatives be specified at X=0  as initial
conditions. When the particle cloud is in equilibrium with the fluid
in the oncoming uniform stream, then initially all four initial condi-
tions vanish.

Within the linear theory, collisions of the particles with the

boundary have a particularly simple consideration. In the first
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place, all considerations are referred to the Y=0 plane and are
separable from the main problem of considering the particle-fluid
interaction and its modification of the surface pressure. According
to the linear theory, the surface pressure is proportional to the local
deflection angle. On the other hand, the superimposable normal
force per unit area due to particle-boundary collisions is a second
order effect due to its Newtonian nature, and is proportional to the
square of the angle between the particle streamline and the boundary

at the point of impact:

Fo2 f ug ($0x) - SP)L (Newtonian)

ne

(5. 59)
2 26, ud (Fu) - 0p)* (elastic)
with the usual approximation consistent with the linear theory. The

geometry is shown in Figure 12, in which the surface inclination is

highly exaggerated. The normal force coefficient is

e i 5 2 k(- 0" E— ‘
afu} (5. 60)
o Lo (§60 - GP)L (elastic)

Here, GP is the local particle streamline inclination at the bound~
ary and is determined by the particle-fluid interaction from the

particle y -momentum equation in the 4=0 plane:

X
V) ~(x'-3)
GP’-; - _ Se $ ‘Hi)‘lf (5. 61)
Uo
[+

The particle streamline trajectory up to the point of collision is
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1

X

=y 34 5, 62
Yo= Yp + | 69 (5. 62)
y o
where ;,or— -X!" is the non-dimensional initial location of the particle.
v
The point of collision XL:% is obtained implicitly from the intersec~-
v

tion of the particle trajectory with the curve of the boundary:

Xe Xe
ar,+ | opds = [ ds (5. 63)
Q0 ]

In the above, we have assumed the obstacle to be a pointed nosed one
as required by the linear theory. The particle trajectory after col=~
lision with the boundary falls within the two limiting cases in which
we obtained the normal force. In the Newtonian situation, the parti~
cle immediately follows the wall. This forms the initial condition
for the subsequent particle motion subjected to the relaxation by the
local boundary shape or fluid velocity at the boundary. In the op-
posite limiting case of an elastic collision, the initial condition is
furnished by a reflection of the fictitious particle trajectory con-
tinued into the boundary surface at the point of collision. The limit~
ing particle streamline, adjacent to a particle vacuum on one side in
the aft portion of a curved boundary, is of interest in a second-order
linear theory where the effect onthe flow and the surface pressure
due to particle vacuum near curved boundaries must be considered,

3. 2. Mach Wave Structure. - The two~dimensional form of

the equation for thin airfoil theory is obtained from equation (5. 36):
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{3;(‘[9 at 5\}] 71 lW’CP)?»c['M‘ 3‘3*] lwc [ﬁ‘ﬁ"s‘i‘ﬁ‘bzo (5. 64)

where we have denoted

pl=Mz2-1, Ppr=M2I-t, pI=MI-| (5.65)
and are positive quantities for supersonic flow, and A >p, > Ro .
The geom—etry is shown in Figure 13.

The exact solutions for the flow over a wavy wall, that is,
the periodic solutions, have been obtained by Marble(4l). Here,
we make some considerations of the airfoil problem, which is an
initial value problem with vanishing disturbances at x=0 and con~

ditions prescribed on y =0 .

Let us introduce the following non-dimensional quantities:

' ¢ A Cg
)('::-x- s :i, = — ‘r-'—"-—v'(l"'K;—" (5'66)
Ay ‘1 Ay ¢ A Mo AT cp)
so that
w29, oL ¢
U = W = ‘—;—I U a‘.&l (5. 67)

o in our subsequent considerations is regarded as of order unity.

Substituting the quantities in (5. 66) into (5. 64), we then have:

* ¥ 2 T2 L
{ 8-;7“[ }'a';,z"é"'w;] + (14 6')5;.[911“,1. 3y ] [P:Bx 3‘3":{} =0 (5. 68)

The appropriate initial and boundary conditions are

1 . ‘ ’ )
¢=¢xl=¢xlxp=¢x"'x-=0, X=0 "3">O

v'= CP":‘

(5. 69)
= fo y=ot x'>o0
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Here, we consider the upper surface of the airfoil in the Y4 > 0O
plane, which is independent of the lower surface, and the "frozen'
Mach waves which determine the '""zone of action' are inclined to-
wards the downstream direction x'-p.‘g' = Constanl . fGy  is the
local inclination of the surface of the airfoil.

Dznote @'(S,\k') as the Laplace transformation of §'(x'y")

which is defined as
o0

@'(s,ta-) = J e_g’< &' (x, ) dx’
[}

With the use of the initial conditions of vanishing disturbances, the

transformed equation for the perturbation potential becomes

¥ _gnd = o (5.70)
dy
and
. - S,(si\a' -GSy’
@(5,‘3') = A€ + Bes) e (5.71)

where it is found that S,Cﬁ) and S,,CS) are the roots

=+ s"+(%°)"(i+6)5+(%i)"6' *

. 8,9

Ss)
(5. 72)

Sus) Sta(i+€)s v &

Now for large s we have S,(S)~+P,S and S,CSD-V—P,S . Hence
the appropriate solution which gives Mach waves inclining towards
the downstream directlon only is represented by the first term in
equation (5. 71), which is essentially the 'outgoing wave'. The
second term in equation (5. 71) is; deleted, since it represents Mach

waves inclined towards the upstream direction or the !"incoming
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wave' from infinity where no disturbances originate. The solution

satisfying the condition @;av(s,o’k Fesy on Y =o* is then

[l _,,S '
besyy = - & e % (5. 73)
S
where
m 1
~-SX
F(s) = S e fxy dx’
(<]

and the solution in the (x',y4') plane is

e ds (5. 74)

y) =
P L S,

“Fes)  sx'- S
Wi
where L, is the Bromwich path parallel to the imaginary axis and

Fes) N Sy’
5,¢5)

wave structure is concerned, the behavior can be deduced directly

to the right of all singularities of . As far as the

in the (s,4') plane. In what follows, the standard procedures in
treating wave propagation problems will be followed(57).

It is convenient to discuss the behavior of the wave structure
in terms of the induced normal velocity

‘ ~Sy
Visyr= @, 640 =Fere (5. 75)

from which the relevant behavior may be deduced. Itis desired to
examine first,the beha.viur in the vicinity of the '"frozen' Mach wave,
which is the "wave front'" and defines the zone of action; second, the
location of the wave along which the main disturbance will ultimately

be carried out, and the behavior in the vicinity of this wave. The

behavior near the "frozen'" Mach wave is obtained by expanding S,(s)
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in the exponential for large s
1+a R
- 5‘(5) = ‘ﬁos "‘Pn “i"’ [(%0)"] + 29‘(—'3')
which gives the interpretation, keeping y' fixed:

ELAR e X
BJ | Pe ,
vy = fo-pyy e ] [ so x-pog] (5.76)

describing-the exponential decay of signals along the '"'frozen' Mach
wave. Referring to equation (5. 68), the '"frozen' wave opcrator
characterized by B, 1is one order higher in the x'- derivative
than the "intermediary' wave operator characterized by p, which
in turn is one order higher than the "equilibrium' wave operator
characterized by f, . An examination of the damping factor in
equation (5. 76) shows that the decay of the highest order waves,

X'z P v , is attributed by the presence of waves of one order
lower, X'z B,y . This is the familiar situation in wave motions
in a relaxing gas involving only a single characteristic time(5 ). The
effect of the lowest order waves, X' = {%,_ "J" , on the behavior of
the wave structure in the vicinity of the frozen Mach wave is con-
tained in the factor 13 (t'-p,y') in equation (5. 76) and is evidently
negligible compared with the effect of the "intermediary' waves. One
notes that the linearization process replaced the actual inclination of
the "frozen'" Mach waves {Am.‘ (7‘5;;) by the constant value term
{""—‘(7;‘:) ; hence, the mechanism for wave steepening due to the
overtaking of the most forward wave by waves from the rear, which

eventually leads to shock formation, is thereby ruled out in this
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approximation.

Since the signals are dampved along the frozen Mach wave, it
is obvious that the bulk of the disturbance is going to be propagated
along waves other than the most forward wave, even though it actu-
ally determines the '"zone of action'. In this case, we again follow
standard procedure(57) to study the behavior of the disturbance
represented by equation (5. 75) for large x' . However, for the
study of wave motions, 9'/x is kept fixed in order that one follows
along the various waves to study the behavior in their vicinity as
x'—» 00 ., We will consider a simple physical situation which en=
ables us to show the relevant features,and the conclusions can be
easily generalized to the general case. For instance, consider the
disturbances generated by a simple semi-infinite wedge of half angle

o, in which case

Fx) = dg Hix)
where H(X) 1is the unit Heaviside function. Furthermore, let us
consider the behavior of V,.(x,4') instead of V'(XY}') itself.

Thus the representation for \fx'.(x', 4 in terms of a contour inte-

gral is

v 4y = o (5.77)

ML

sx'-S.ry
je ‘ tacls

Ly
The behavior of \rx'.(x',ta‘)for X'=» o  can now be deduced by an appli-

cation of the saddle point method. ILet us write ™ =4'/x' in which
we keep m fixed. The dominant contribution to the value of the

integral in equation (5. 77) comes from the vicinity of the saddle



-101-

point, through which the contour is chosen to pass, when the ex~

ponential factor

ex‘{s_mg'm} (5.78)

is a maximum. The location of the saddle point $= S5 1is therefore

obtained from

= m 43160 _ 4 (5.79)
ds

and from which, in principle, one can solve for S, in terms of wm,
that is, S, = So(m) . This, in general, does not yield the asymp-
totic representation with the desired relevant simple physical fea~-
tures which we seek. Instead, we first seek to determine at what
value of m does \J;,(x'}j) attain a maximum. In other words, we seek
to locate the particular Mach wave in which the exponential factor in

equation (5, 78) is a maximum. This condition is simply

dfsemm S} =0 (5. 80)

m

Now since g_sr“”) =1 dSe from equation (5. 79), the above
m m ™

condition then implies that Sitsa=0 . Upon examining equation
(5.72) for 5,(5) , the value of S, for this case is S,=0

Hence, equation (5.80) gives

' \
" TIse TR o

dm
as the location of the maximum of the disturbance v, (x| y) s which is
the equilibrium Mach wave, x'= f, 4’ . Hence, the disturbance
is ultimately propagated along the lowest order waves. In this situ-

ation, we need only to study the wave structure for large x’ in the

vicinity of the "equilibrium!' Mach wave, = that is, in the vicinity of
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the relevant saddle point S,=0 . Since S,(s is analytic at
s=0 , we expand S,(8) about s$=o0 in a Taylor series of the
form:
~m S5 = - &S + et - A8 (5. 82)
The contour is chosen to pass through s=zo0 and the Bromwich path
now is simply along the imaginary axis and $=1%; along the path.

1o

nas

T B
ne 10rimn

(A

In this case, equation {5.77)

o0
ixe-apsi+ oys2e]  -x[a r .

PRI o 5. 83
Ve = =1 € e ds; ( )
- o0
where
a =p, 4
=p i
(5. 84)
_ o B2 Bl 4
=5 7 ["('ﬁ;)]"’
B. Bovz] (1+&)* Bl ¥
Az= — Y Lah of EERLSALEAN SUSA il 2
3 1 {D (ﬁz)J s D (ﬁa)] X
The dominant term in equation (5. 83) is
o0
4 I \ (lx'(r-a{,)s,; ~@,S5; %' ] 1
ritw)= 2! —=1& e S; (5.85)
X q ﬁlﬁj
-

The interpretation of the integral in the bracket in equation (5. 85) is

the familiar one in Fourier transforms(Ss), and is simply
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_ -yt
(W) . X
‘ 1w Jza;x'
(x'~ Ba ‘}')l
olg e 2 ‘—;-.i—PzD-(%L)‘LJ |3|

) 6‘ ; 5. 86

The last expression is obtained upon substituting for &, and o,
from equation (5. 84). Hence, 1&:(":‘1') i1s a Gaussian centered about
the equilibrium Mach wave, «x'= Pa ‘3. » and is interpreted as

representing a diffusion~like behavior with the effective diffusivity

given by
- (_-q-__g_‘_/g:. 1~ ﬁ.)l (1 u)
B, =& T [-(5) [ (5. 87)
Since fa> ﬁa » then Gu » O . In the physical variables,

the maximum of Vi decreases like

doUo

and the extent in which the diffusion-like region spreads out from

the equilibrium Mach wave is

8.y,

Since the intermediary Mach wave extends to infinity like X=8,% ,
the growth of the diffusion~like region ahead of the equilibrium Mach

wave never reaches x= Py - The behavior of the smooth step
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itself is obtained from equation (5, 86) through a simple integration:

v'o= Lo e—ildi = de oy, and () (5. 88)
2

where

x-Pa %

Y2 T

In the integration, use is made of the fact that the disturbances "far
ahead'' have become negligible through decay far upstream of the
equilibrium Mach wave.

An examination of the effective diffusivity &,, shows that
the diffusion of the lowest order waves X'=f,4%' is effected by
the presence of waves of one order higher: x'= ;%4 . This is al-
so the familiar situation in wave motions in a relaxing gas with only
a single characteristic time(so). The effect of the highest order
waves X = Bo la.' on the behavior of the wave structure in the
vicinity of the equilibrium Mach wave is contained in the neglected
higher order terms in equation (5. 83), and they will be examined
later.

The saddle point S for the intcrmediary Mach wave, for
deducing the wave structure in its vicinity, is not easily obtainable.
However, from heuristic arguments, one expects a simultaneous
damping effected by the lower order wave x'= [3,,‘1' with the decay
factor containing [(%’-:)1.. [J , and diffusion effected by the higher
order wave x'= B,4' Wwith the effective diffusivity containing
[\~ (%‘:)"] . Following the approximate treatment suggested

by Whitham(SO), one obtains
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(X|— ﬁl ‘3')2‘ 6' E_ ) 1‘3
Vx,(x ‘1)_ Ko | e lWWP‘ E_(%,’)z la. . Y 1

e '/ Tre 7. (Eo)zh'

for the structure in the vicinity of the intermediary Mach wave,
=pY .

Thus far we have only considered the wave structure in the
far field due to a smooth step in the normal velocity. When we con-
sider disturbances generated by the presence of a thin, finite obsta-
cle placed in the flow field, a characteristic length then enters. This
is some characteristic length of the obstacle C . Some conclusions
of a rather general nature can be drawn from the consideration of the
far field behavior due to a flat-plate airfoil of finite length C ata
small negative angle of attack «, . In this case, then

fiy = 4, [H(x') - H (r—C’)]

where C'=C/lv , and

, C'sy sx'- Sy’
v () =do } {‘— e }e‘ ds (5. 89)
ame :
L
The far field behavior is deduced in a similar manner

Gy = M e Wathe o Ml (5. 90)

,lm 9"‘%0
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which is the superposition of two Gaussians, one centered about the
equilibrium Mach wave emanating from the leading edge of the air-
foil, and the other centered about the equilibrium Mach wave ema-
nating from the trailing edge. The behavior of the normal velocity

is similarly obtained:

e - ]

where

(-Pat) and A = oGPy

B (8. < FeE

which is the superposition of two smooth steps whose maximum slopes
are centered about the leading and trailing edge equilibrium Mach
waves, respectively. The situation gives a physical picture which is
rather simple. The controlling factor is the ratio of the plate length
C to the extent of the diffusion-like region, ,H-Tl ‘9‘*%‘, cen~
tered about the equilibrium Mach waves from the leading and trailing
edges, respectively. First, suppose the far field behavior is such
that C l’ 4T @ﬂ-%‘o >> ; the extent of the diffusion-like region
is very close about the equilibrium Mach wave compared to the length
of the plate. In this situation, the activity of particle~fluid interac-
tions takes place relatively rapidly in the regions about «= B4 and
about x-C = P" Y ; and in the region between the leading and
trailing edge equilibrium Mach waves the flow is very nearly in
equilibrium. In fact, the diffusion=like region is so thin that one
could write approximately

v'=d, [H ('-pyy—H <x'-C‘—ﬁm')]
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as if the disturbances are concentrated at the equilibrium Mach

waves, This situation is illustrated in the left of Figure 14. More
generally, when C mli—iu': > |, we can write

v'i= fui- By
provided, however, that the shape of the airfoil surface is ""slowly
varying'.

In the opposite limiting case, when C *l ‘i-‘ﬂ}gn%-a << | , the dif-
fusion-like regions will have merged to form a single diffusion~like
region, and the far field behavior then spreads out like

l’-ﬂi R, '?I,
centered about an equilibrium Mach wave emanating from the center

of the plate. The amplitude of the disturbance decreases like
' Av

o Jw@,,‘f&;

The situation is illustrated in the right of Figure 14, which is the

ultimate far field behavior.
We have shown, as far as the far field behavior is concerned,

by example of a flat-plate airfoil at an angle of attack, that the dis-

rounding them is a diffusion-~like structure with the effective diffu-
sivity &n. . We could interpret the far field behavior in terms of,
for instance, a momentum source P,u,,V]\}: o » which is ulti-
mately diffused about and propagated along equilibrium Mach lines.
Hence , when the airfoil has a variable surface, we may think of the

far field behavior as the superposition of such diffusion-like sources

that lie in the region 0« x< C at y=0 where the source strength
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per unit length is § u"v]‘g:o = Po"*ok") and is zero elsewhere. By
(59)

analogy with the conduction of heat , we may write, heuristically,

Q

_r?
P.,uOV=-’3f.—T‘;if Fa-pysarfo.d)e dr

-— x"ﬁz‘f’ ;
Y % C=(x-f%
W0, A
R'g; 2
~-r
sl f(x-py+2r [0 E)E dr  (5.92)
J‘Tt

)
for the far field behavior. When -F(x) = Conston’t , as for the flat-

plate airfoil at an angle of attack, this reduces to equation (5. 91).
We conclude also that, although the disturbances are no longer con-
centrated but are spread out about the equilibrium Mach waves far
from the airfoil, by analogy with the conduction of heat, the totality
of the disturbances is nevertheless pre served.

So far, we have only considered the ultimate far field behavi-
or by retaining the dominant term in the asymptotic approximation,
and where the effect on the ultimate structure that surrounds the
equilibrium Mach wave is a diffusion-like behavior contributed by
the presence of the intermediary Mach wave, Now the frozen Mach
wave, which is two orders higher than the equilibrium Mach wave in
the fundamental equation (5. 64), is expected at first to exert a dis~
persion~like behavior on the structure about the equilibrium Mach
wave. However, the presence of th: intermediary Mach wave gives

'
rise to the damping factor e“ o in equation (5. 83) in our

examination of the asymptotic behavior, and essentially submerges



-109-

the oscillatory tendency contributed by the frozen Mach wave, whose
ix'd, s}

effect is imbedded in the factor e . The overwhelming
effect of the exponential damping in equation (5. 83) renders the re-
sult that not even local approximate oscillations are exhibited. In
fact, the result is monotonic. We can obtain estimates of the effect
of the frozen Mach wave on the ultimate wave behavior by consider-
ing higher-order terms in the asymptotic approximation. The
formal aspects of the above discussion are as follows.

We may write the exponential, using equation (5.82),in the
form

' ' ' 2
_xmgcn -Xa@s+xa,S$
] e L] 2 ‘-x|a353+11' .

w

In our consideration of the simple semi-infinite wedge of half angle
dy s for instance, we already have obtained the interpretation of
what corresponds to the first term. The second term has the formal
interpretation, except for a multiplicative factor (x'@y) , as being
the third '~ derivative of the already known first term in the (x4
plane, since the initial conditions in x' vanish. This is similar

for other higher order terms. In this case,

2
! Av -X 1+6¢ Ay Doz 3 |
v yy= 22t e .{|--—————— = 61 +29‘(’.‘)} (5. 93)
o8, E T8I (‘9'1 ) ¢
where
X-P2 %

and we have denoted
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Ba Bo\2
m’o:\: T}ET[‘_(E) 1(KVUO) ) (5 94)

J
Hence the term of order ('1,')/’” gives rise to a skewness in the

Gaussian. The behavior of ¥' itself is then

_ To(““"‘“) do l+o’_ Ay (%_:i_g(%x_‘)é‘ +2}(—%;) (5. 95)

1Tl~9;,,-?—"—°

which shows the approach to the ultimate form of the wave structure.
The situation is similar for the airfoil of finite length,and the higher
order effect of the frozen Mach wave is in the term with the coeffi~
cient Xy /»jTHS,,L .‘%’l_o » which ultimately becomes unimportant.
The dominant effect is the diffusive effect exerted by the presence
of the intermediary Mach wave.

3.3. Pressure Coefficient. -~ In this section, we are con-~

cerned primarily with obtaining the operational solution for the
pressure coefficient

L7 14=0

fo “0172~

from which subsequent calculations of aerodynamic forces, if de-

—

sired, can be made. Let us denote Cp(s) as the Laplace trans-~

formation of CP(X') and

— ~$X
CPCS) = E C (x )dx

Q

in which the desired solution is obtained from

C (x* =i.._-j [ORTY) e. As_ (5. 96)

T
l
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Applying the transformation to the dynamical equation of the

gas, cquation (5. 37) gives for the pressure coefficient:
L c $) = — ' ' - &
7~Cl',c ) s <§ (5,0) + 1(,[ @P(s,o) §( ,0)] (5. 97)

where @(s,o) is the Laplace transformation of ¢ (x,0) , and

from equation (5. 73),

$is,0 = - Z‘; (5. 98)

where F(s) is the Laplace transformation of fx'y and S,(s) is
defined by equation (5. 72). The dynamical equation for the particle

cloud, equation (5. 38), gives
) ‘ 1
3.(s0) = — B(s,0) (5. 99)

Combining equations (5. 97) through (5. 99), we then have for the pres-

sure coefficient

— sFeso )
—;CPm: —_ % N—-—if—(—s————— (5.100)
S,¢s) (1+sy S8)

Recalling the definition of $,s) given by equation (5.72),

and letting $+5,=(1+€) (.%'.)1 and s, = r(&:)z , we can write
] ]
Sty = [{3¥30(sts5) fos (5.101)
(s+1) (s+6)
where
S 1+ o /B2l + we  (Buyr/Bo)2
= —2 ([ - (2} = 5.102
Sa 2 (ﬂ‘) b=y (l+c)’*(f5|) (F:) ( :

are real quantities.

Let us first discuss the situation for a simple wedge in
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o
which Fesy = —59- , where do is the half angle. The general
case is then related to that of the simvple wedge through Duhamel's
formula, as will be shown subsequently. Equation (5. 100), special-

ized for a wedge, appears in the form:

= 3y (5.103)
%3. [Cp“)] =65 %'(s) f}l(s.) 4+t )to) %(s)%fs}-& (lﬂows ‘}fs)f}gﬁ
° WEDGE
where we have denoted
.—.‘.‘;.lil x!
2 - ' .
s = \ = e Ia(f’_-_’._' ) = G, (5. 104)
ﬁl(s-n)(s-ks,)
-S,*f xl 5. 105
= e L(EEx)= 6 (5-10)

(}J.( )= :
/J(s+s)(s+ $2)

and I, is the Bessel function with imaginary argument of order
zero(éo). The symbol == implies the corresponding interpreta-

tion of the Laplace transform of the function, which is ocbtained from

known results(61>. The interpretation of the pressure coefficient for

the wedge is simply

X
% [Cpcm] - %_\_f(x') + (tmw)\f(x') +(m<,)o'j\((;)43 (5. 106)
° WEDGE X :

where

xl

St 6 0 ~Sat6 . -5~
fYeor N R RNE I "[es““‘“‘”z RIEDINCSER
"
0

X

S8, S,'«-c‘-s,—\), . '
coe Ke z I‘(‘.-;.'r)]o fbf—‘(x-n) dy (5.107)

2
o
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o
ju
fl

S+ 6,

- X S.:*G‘-S,—l). _ - ‘
Yoy = € = (€ *  L&al,GEf«m)dy (5. 108)

Q

The representation of the pressure coefficient given in the above
form is amenable to study of the forms for %'=»o' and x'> ® .
When x'->ot , the value is simply unity since I,(0) = | , which
corresponds to a 'frozen' jump from the free-stream value of zero.
When x'= ® , the first two terms in equation (5. 106) have decayed
to zero, and the asymptotic value of the pressure coefficient comes

from the last term in the form of

-}
_S.x€

|3
z.*"sn
(lm)o—&e [ g 2 ]_(2.__3)1 (Sz. (x'- ,,) Ax]&g (5.109)

o °

and the interpretation of which is simply (+w)e~ times the Laplace
transform of the convolution integral in the bracket from the

¥ - plane to the (5_1_*.’;: ) - plane. This is then

o @
€ 51. 6'
-2 3 :.+6~S ~1
(mc)c-&e : [ §I (3 })] (52 ﬂ 3 (5.110)
0 0
. , (61)
which, from known results , gives
e [C <°°>1 = (14K)E : =(+t0) - Po (5.111)
4 WEDGE A5 T Pa
using the fact that ss, = a‘(%& ) 2 . Now from ordinary aero~-

dynamics, it is well known that the pressure coefficient is simply
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[Cp]weoef 1;:

the particle cloud and the gas are in ultimate equilibrium is

i

. The pressure coefficient far downstream when

P)y-
p] = (Ply=o,e (5.112)
WEDGE, e  (1+Kk)p Us/L
and corresponds to our asymptotic value, equation (5.111), since we
normalized the pressure by gu’;/l instead of (l+k) POU:/Z .
Returning to equation (5. 100) for the general shape of the

boundary, the pressure coefficient may be written in the form:

B sy = sF { Bo [‘C" <s>:l } (5.113)
2 P 2d, b 7 dyepcE
which may be interpreted simply, according to the Duhamel formula:
xl
Poc (xy = 4 -394 Be [C (x):l ‘] 5.114
2 P dx' tod-m 2ol P IEDGE a1 ( )

[}

This may also be written in the form
xl

ﬁo C.(x) = JI‘(X') ;,(xl { po d C (3—) }A
e = S PR R 3 5.115
2 F + 5 2d, 43[ P ]wEDGE ( )
Q
since £ [CPLO)] = | . A third form may be written as
2o WEDGE ‘

X
Boc xy = B e Loyl Pe Teo (s
A S L L X R P

In this situation, the pressure coefficient can be determined for arbi-
trary boundary shapes from that for the wedge. The pressure coeffi-
cient for the wedge given by equation (5. 106) is determined when the

integral Y(x), as defined in equation (5. 108), is evaluated. This is

discussed in Appendix V-A.
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A numerical example is considered, and we lave taken M=
1.414, ¥ =1.40, % =0.25 <¢,/c, =1.10, and A,/Ay = 0.819.
1.30984, B, /f. =

1. 15444, and f,=1; 5= 1.61523, $,= 1.10917. The function

The calculated parameters are then ﬂa/ﬂo

1]

Yx) is more conveniently evaluated by directly calculating the in-
tegrals given in equation (5. 119) through the use of a computer. The
result of such a calculation, which will be used throughout, is shown
as the solid line in Figure 15. For comparison purposes only, a
three-term approximation with Y,, Y,, and Ys , given by equa-
tions (5. 121) through (5. 123), is also shown in Figure 15 with the
Bessel functions obtained from tables(6o).

The first and third terms in the pressure coefficier}t given in

X
equation (5. 106) for the simple wedge are g. Yex) and IY(S) dy
xl

-]
respectively, and are more conveniently obtained by performing such
namerical operations on Y(x) directly. All three terms occurring
in the pressure coefficient, equation (5. 106), are shown as solid

lines in Figure 16. They are subtracted by their respective "frozen'

counterparts ( k=0, with ¢ = 1)
(‘ﬂ) = (1-x')e‘
dx $

((l-no«\ro') YL = 1x €

t

X

-x!

t

((xm)o’f‘{m‘l})* = |- (14x) €

o

X

for purposes of facilitating comparison with the results of Chapter
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ﬁo C‘P)

VI. The sum of all three '"frozen' counterparts gives (_220 ¢
which is, of course, unity. The final form of the pressure coeffi-
cient for a simple wedge is shown as the solid line in Figure 17.

The perturbation pressure coefficient EB::- Co at the
leading edge of the wedge is attributed to the abrtj.pt tufning of the
gas, and jumps from the zero free-stream value to the "frozen"
value of unity. Since the turning of the gas is accomplished abruptly
and is hence much shorter than the particle velocity and temperature
equilibration distances, the particles there possess its free-stream
| velocity and temperature. Subsequently, the relaxations take place:
the compressed gas is being accelerated and cooled by the particle

cloud, which decreases the pressure coefficient. Both the gas and

particle cloud then come to final equilibrium corresponding to the

Po

2

wedge flow of a single heavier gas with (% Cp)e = (tew)
]
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APPENDIX V-A

Consideration of a Convolution Integral of Two Bessel

Functions with Imaginary Argument

The integral that needs to be evaluated in the exact form of

the pressure coefficient for a wedge, given by equation (5. 106), is

X

-ay N A EL3 )] .
Ny = Je Io(b,r) e L(\plcxtn)d’s (5.117)
0
S.tl Sute b= , b= 52 C

) 2

2. 2

where we have denoted a =1, a, =
2 2

for simplicity. The form of the integral Yy does not appear to have

been previously considered in the discussions of integrals of Bessel

(60),

functions(éz). The procedure to be followed here is the following
we replace the two Bessel functions with imaginary argument by their

respective representation in terms oisson's in ral,
s tive representat t of Poisson's integral

L

[,)= 22— 1(,;) (eime— éime)ﬁ‘““}vﬂe- (5.118)

M@+2)0E)

(]

Change the order of integrations and carry out the integration involv-
ing x' first, giving

T T v . -
(~Q,+Q,+b,wlo-b, 10 Ix
Y(x = Z [ e - \
(w) (-0,+01+5,c2 B - b,0nF)
00

(_d‘*dt-ﬁ,me-ﬁzmé)x' N, (,04_5))(!
¢ — ]e‘ KA oda

+
(-a+a5-b,ca 6 - b 1 E)
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(-a + Q'+ b 001 0 +,C0a 8 )X’

(-6+0,4b o2 0+ b 2 3)

i )| [

O‘——-—"ﬁd

(.a+a,-bme+bm§) x! b coa B
5 ~ ]ec Lty d5. (5. 119)
- ("a|+az' b:me +b',f-4n %)

The function involving the ecxponcntial in the bracketed terms

is of the form

R N @x)* w(x')3
_-(e, —-[) = (dx < e A S )
& 2 31

and the radius of convergence of the series is unlimited. Our inte-

gral can now be written
L)

[ + ’ ’ — m-‘
{ [ (-a,+ Q,+ b3~ b,_me)

s

Yooy = £

1 \

‘qlx 00 m

(an

O

, _m- o020 )x
+(_c1i‘+q'1-5'me-b,_ca9)m t]e( )
+[(-a',+a;+y,co¢e*ﬁ,_mé)m"

m=i

~b,cn 6)X' —_
Te de ds.

+(-d|+a‘,_-5,me+b',~mé) (5. 120)

The form of the integral is
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o0
Y,
«®y = Z m
¥ o (5.121)
When w= | R
-a, X'
\{'(x.) = x' Io(b;x') e (5.122)

is simply obtained through use of the definition given by equation
(5.118). For terms higher than w = » the following representa-
tion of Bessel functions with imaginary argument of integral order is
required:

ZColB

e coane de

e Coane 48

where n is an integer. A few higher terms are given in the fol-
lowing:
..alle

tl ] ‘ r
Yoo = % i<~d.+dz>1‘,tbzx'> - IoLL“%*')} e (5. 123)

3
Y3 = -’3-‘-‘- {[(sa:+a',,)"+ 6] 1o(bx) = [2b, (-a+a] T ¢6,x)

oy x'
N I, (bx) } o (5. 124)
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I# [ . .
Y, = %‘—{ [(-a;+a;)’+%(-a;+a',,)(b}— biy] L, (b x)

"[3 BL( —Q',+O.‘;.)L+ ‘32: ‘b’; B:\.*‘% BJB. ] I‘(le')

-aX
+ [%(-q:m‘,)bi] I, - H b:1 13“;1,(.) Ee (5.125)
Generalizations to convolution integrals when the Bessel functions

are of higher order can be made easily according to procedures

similar to those described here. Here, it is sufficient to consider
Y(x") ; its derivative and integral that occur in the pressure coeffi-
cient can be more conveniently obtained numerically from Yxt)

itself.
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VI. LINEARIZED SUPERSONIC FLOW FOR SMALL

PARTICLE-FLUID DENSITY RATIO (K << 1)

1. General Discussion

In this chapter, we consider the steady supersonic flow in
terms of a '"dilute'" particle cloud. In this context, it is meant that
the particle;cloud density, 9P°= nom, , where N, 1is the number
of particles per unit volume of space and m, is the mass of a single
particle, is small relative to the fluid density f, . In this situa~-
tion, it means that either the individual particles are '"light weighted"
or that the number density of the particles is small, or both. How=-
ever, we always regard that there are sufficient numbers of particles
present in the unit volume so that our consideration of the particle
cloud as a continuum is still meaningful.

The ratio of the equilibration times Ty, / Tr, and the ratio
of the heat capacities ¢s /CP are considered as of order unity in
this study, as is expected in the actual situation.

In this context, the inclinations of the frozen Mach wave
o (—PL") , the intermediary Mach wave tan™ (‘)%;) , and the

equilibrium Mach wave lan™ (~!!3- ) , are not significantly differ-
a

ent from one another. In fact, when K = i’:" << , it is
o
found that
8L Cs Ay
I+ (¥-1
e‘a%' |k P e T (6.1)
° Afie 2y
p I+ N

and



~-122-

. B ~Mo _\iﬁﬂ’: D...(x_;)c_’.]
61: ""'"‘ = 2ﬁ° C’P (6. 2)

where use is made of the definitions of the sound speeds given in
Chapter V, from which the expansions for K <«<| aremade. For
the range of the free-stream Mach number M, consistent with the
linearized theory, the factor (Hfs,")/lpo is of order unity. Hence
e, =Ye) and &=0(x) . Of course, Ee‘_,, - Q1) .

The physical consequence of this situation is that the Mach
waves emanating from the same point, bounded by the frozen Mach
wave and the equilibrium Mach wave, are very closely clustered
together. If this is a point disturbance, then the particle-fluid
equilibration processes essentially take place in this small angular
region. This physical situation will be explored to our advantage in
a further simplification of the linearized supersonic flow involving a
""dilute' particle cloud.

However, one most naturally is inclined to apply higher
order corrections to a zeroth order approximation in which k is
identically zero beginning with

[e’oz ¢xx - ¢‘f‘r =0
On the other hand, one recognizes that in this approximation the
mutual effect of the waves of various orders is lost. Hence, the
scheme of this type of perturbation is then obviously a singular one;

it does not provide us with the smooth transition from the frozen to

the final equilibrium state.
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In deriving a simplified but uniformly valid differential equa-
tion from the full equation for the ''dilute' particle cloud situation,
we shall begin first from a physically intuitive approach. Subse-
quently, we shall show that by properly applying the "boundary layer"
concept(63’ 64) in a transformed coordinate system, the resulting
zeroth order equation is the same as that obtained from physical

arguments.” However, the formal perturbation scheme enables us

to demonstrate how systematic higher corrections could be obtained.

2. The Simplified Linearized Equation for Two~Dimensional Steady

Supersonic Flow.

Within the limitations placed on the linearized theory that the
free-stream Mach number must be sufficiently larger than unity and
the disturbances must be sufficiently small, the flow is everywhere
supersonic. In the two-~dimensional case or in the three-dimensional
case away from the tip frozen Mach conoids, the upper surface of a
thin airfoil is then independent of the lower surface. For the pur-
pose of fixing our ideas, consider the upper surface of an airfoil in
a stream of infinite extent. The disturbances produced by the air-
foil are carried along Mach waves inclined towards the downstream
direction, i.e., waves of the x=ﬁ;_13. family. Since disturbances
are absent in the stream at infinity, in the consideration of the upper
surface we need only to focus our attention on waves of a single
family. This principle is well known in the ordinary supersonic

aerodynamics in which the single function 4?(&—@5 %) is retained
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from the general solution for the upper surface, while ¢(x+Po %)
for the lower surface. It certainly suggests a similar isolation of
Mach waves of a single family in our present problem, i.e., the
family of downstream-running Mach waves. In fact, in Chapter V,.
this principle is already applied to the general solution in the La-
place transformed plane. However, here we take advantage of the
""dilute'' particle-cloud situation and apply this principle to simplify
the full linearized equation (5. 68).

2.1. Physical Derivation. - We essentially follow the
(50)

spirit of Whitham's approximate treatment of wave motions. The
point of departure here is that instead of focusing our attention on the
immediate vicinity of an individual downstream-running Mach wave,
we make use of the physical fact that the various waves of one family
are very closely clustered together, and hence to a good approxima-
tion the focusing of our attention on the downstream-running Mach
waves holds for the entire structure enclosed in between the frozen
and the equilibrium Mach waves emanating from the same point.

The simplified equation which emerges from this approximation then
enables one to obtain the pressure coefficient essential in thin air-

’

foil theory. These ideas are interpreted more formally in the fol-
lowing.

Let us rewrite the full non-dimensional form of the linearized
equation (5. 68) in the form which exhibits the wave operators corre-

sponding to the two families =¥ By of waves:
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{?x"'(P"BX' aq)(%ax' ﬂ) + (”’)g;-(ﬁlg}:'g—«a.)(pn‘g},"'gg,)

bRl e

Consider now the upper surface of the airfoil (y'y o) » and the

relevant wave operators that are to be retained are

(B Yk

which describe waves inclined toward the downstream direction.

We now make use of the principle(SO) that for waves with Mach angles

given by fon™ ( P'»> , then

Pl -2
In addition, we make use of the fact that when K << | , then
{ﬁ’ 1) << | and (%:-\) << | . Hence

P o . a2 2
“'ﬁb.”ﬁos;,”(gtsj.d’fg*‘ax’ -

These approximations are to be made on the wave operators

(P %;, - %;a.
that are approximately insensitive as far as the description of waves
that are inclined toward the do&nstream direction is concerned.
The resulting equation, after integrating omce with respect to X'
and discarding the integration constant (function of 13 ) for wave

motions, then has the form:
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{%-’-(e°§1'+§73-) + U*‘”%;.(Pug;.*' -2—30 + 6(@1%,-1-:—\6)}4)‘:0 (6. 4)

which describes Mach waves inclined towards the downstream direc-

tion.

2.2. Derivation by a "Boundary Layer Technique'. - Impli~

cit in the previous intuitive derivation is that the changes across the

downstream-running Mach waves, that is, changes with respect to

the variable x'-{€, ' , are rapid compared with changes in the
other independent variable, say t}' . This, in fact, is the spirit of
(48, 49)

the "boundary layer' concept suggested by Moore and Gibson
in their consideration of the non-equilibrium, linearized supersonic
flow involving only a single characteristic time. The fact that
changes with respect to 4 are "slowly varying' is indicated by the
behavior along the frozen Mach wave expressed by the exponential

decaying factor from our exact considerations in equation (5. 76):

-G -0

which, for W<< | , is approximately

~(1+&) o '
Q(t-ns € Bo ¥ (6. 5)

where €, 1is defined by equation (6.1). The '"boundary layer' is
more readily demonstrated after a transformation of the full
linearized equation (5. 68) from the physical plane (x',4') to the

characteristic variable defined by
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Fol - x'- Pe 'ﬁ'
and ' (6. 6)
Poll =

is made. With the transformation rules

s _ 9 2.

2
i r';‘?’ ag-”é’(%"a;) (6.7)

Then equation (5. 68) takes the form:

{(-— + (oo + ‘F#)(‘z:_;a'q—'%}%
+((H-6”)Po + ‘Po)(e l(‘*e € (1+ ))%" & $=0 (6.8)

€
where €,<< | when ¥ << and _é‘.*: = BN . Itis clear
l

that, as in our previous discussion, the perturbation scheme using
€, identically zero as a starting point is a singular one. If we let
T= €' and W= ebn (6. 9)
in order that the coordinates be stretched or contracted, we then
determine a and b such that the resulting '"boundary laye r!
(63, 64)

equation becomes a uniformly valid one. It is found that

this is obtained when @& =0 and = |

3 [2® )
E[Sé—a—i;‘\'(“’ )Po_a ) Po eaz aq]q)

B _€9°
5% L+ O )(3., 55 3'11 -a-}- Pe *33,_]q> . (6.10)

Hence a systematic approximation for 4)' can be made by expan-
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sion in ascending powers of the small parameter €,
' (@) ) 2)
¢ = 9 4+ e 9 4 T (6.11)

Substituting equation (6. 11) into equation (6. 10) gives, except for a
function of ﬁ which is discarded for wave motions, for the zeroth

order equation:

? . (©)
{aﬁa‘i*”” (3} Y + ofs (“Ta; bq)}¢ : (6-12)

If we transform equation (6. 12) back to the variables (x,4') , we
obtain identically equation (6.4). This essentially demonstrates the
equivalence of the more formal procedure with the earlier physically
intuitive derivation. However, the more formal scheme enables one
to obtain higher order corrections, if desired, from the non-

homogeneous differential equations of the form

2 2 3 (3 .23 (m)
S:}: 5.":!3;3-1-\-“-&0')?03.;(3{*'5:'.{)‘\'(& (e 33 aq):{d)

4 2
3 ? P _& ¢ (n-1)
=32 [ﬁ‘é?H +6)B, a3(3- —§-x> + B ’°'1‘ aa?)} ¢ (6.13)
where h= 1,2, .., indicates the order of the approximation. The
appropriate conditionat 4 =0 , i.e., Y4'=p , is to be satis-

field by the zeroth order (be;’) approximation, and all higher cor~
(n=~

rections then satisfy homogeneous conditions 43,; =0 at ¥'=0.

In what follows, we only consider the zeroth order approximation

exhibited by the equation given in the form of equation (6. 4).
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3. Mach Wave Structure

W= now proceed to consider the wave structure as obtained
from the simplified linear equation,and the problem is otherwise
similar to that in section 3. 2 of Chapter V. We drop the superscript
on ¢, and it is understood that we are considering the zeroth
order approximation. Equation (6. 4) is repeated here for conveni-~

ence:
{3:,,.({30”, 9‘3) + (oS (ﬁ'ax ,a) + 0‘(@;%;|+%§,)‘¢l =0 (6. 14)

and the initial and boundary conditions are

¢'=¢Ix-= ¢’x'x'=°: x'=o Y yo
(6. 15)

1]

vi= = fo, Y=ot x>0
and we consider the 4'>o plane for the upper surface of the air~

foil. We again apply the Laplace transformation and define
©
! —sx' ! [ ] '
Besyd = | e Plxy)dx
o

The transformed equation for the perturbation potential becomes

d® ¥ = o (6. 16)
dy
and
\ -—SLs;lf
Py = Ay € (6. 17)
where

p Ba
s? +—ﬁ'—°(t+r)s + —p“"

Sy =

Bos (6. 18)

st 4+ Qive)s 4+ o

For large s we then have Sy ~ +F,s . Hence the solution ex-
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pressed by equation (6. 17) describes waves inclined towards the
downstream direction. The boundary condition on 4'=o0% is then

é"ﬂ' (s,0t) = F(so) in the transformed plane and
(2]

~sx' .
Fesy = j e +undx

[*]
Hence, the appropriate solution is then

~Sey'
Fs) o 4

Bs.y = - (6. 19)
i Ses
and is interpreted as
v | -F(s) 8%~ Sery’
(P(x,ta') = — e Js (6. 20)
T S
Ly
in the (X,y4') plane, where L, is the Bromwich path parallel to the
imaci . d . . s Fesy =Sy
ginary axis and to the right of all singularities of — @ .
)

It is again convenient to study the wave structure in terms of

the normal velocity
-~ Sy

Visy = <§'\3.(s,l3') = F(sr € . (6.21)

Prior to deducing the asymptotic behavior of the wave structure, we
first obtain the operational solution for v'(x',4" from equation
(6.21). It can be shown that S¢s) , as defined in equation (6. 18),

can be rewritten in the form

o €
Sty = (1+0)& By + P, — /\l_sf‘l:;‘ —/\z%e;‘_' (6.22)

with the use of partial fractions, where
A -.:-—-—-«l [53'---0-\-5-)] and A =-'—[(I+G)-—-§-1'o' (6. 23)
I -0 L e, 2 ‘- €, ]
are both positive quantities. We now rewrite equation (6. 21) in the

form:
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~U+)E oY —sBY'
Vis,yy = e e F Fo [\ + Wcs,»ﬁ] (6. 24)
where

A RS S AS
Wesyy = ( )+( —-) (&' %)™ <), (6.25)

Again, let the symbol == denote the corresponding interpretation

(61)

of the Laplace transform of a function, and from known results

)
W= s = €7 MEEH o) T )
o

¢ 7 BT (o)

é.Xl,\//l%ﬂ' I.(ZJ/\zP"e“‘I"') (6. 26)

where, in the first term, use is made of the convolution theorem, and

(60)

I| is the Bessel function with imaginary argument of first order

Now, with the use of the convolution theorem, we can write
xl

FeorWesyy = [ fexy wixi-x,y) dy (6. 27)
0
~SRo%’ . . .
and the factor € in equation (6. 24) lends itself to the

tshiflt rule", and our operational solution for v'(x,4') is then
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xR’

r s g U
i+ €,Po'y

k Fagy wix-Boy' -3, 4)dYy

0

Vis,gy = vin, gy = @

NTTOLN A U
+ € fx ~fe%) (6. 28)
where W(x',Y4') is defined by equation (6. 26). Along the frozen
Mach wave, X'= F, ‘1' , we recover the decay of signals:
—(146)E,Bo 4
e P feod

We can interpret equation (6. 28) in a similar manner as in
the ordinary linearized supersonic flow as the result of the super-
position of a sequence of small disturbances located on the Y= o*
plane, i.e., along the x'- axis. The distribution of sources is
represented by Foxn) . In supersonic flow, the induced velocity
at any point (x| y4') in the flow field is then determined by the
superposition of those disturbances that are situated upstream from
the point Y= x'- 8,4’ in accordance with the '"zone of action'
determined by the frozen Mach wave, as indicated by the upper limit
of the integral in equation (6. 28).

The behavior of the ultimate wave structure is more readily
deduced by considering V(s,\t') in equation (6. 21). The standard
procedure, which will not be repeated here, is identical to that de -
scribed in section 3. 2 of Chapter V, except that the discussion now
refers to the function 9¢s> defined by equation (6. 18) instead of

S,(s) . Instead, we will show the consistency of the wave structure
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which emerges from the approximated equation with that from the
full linearized equation of section 3. 2 of Chapter V. It is found
here that the relevant saddle point is again $S,= O énd that the dis-
turbances are ultimately propagated along the lowest order waves,
i.e., the equilibrium Mach waves x'-f.Y% = constont | Sy s
analtyic at the saddle point §,=0 and its Taylor expansion about
$=0 is-then

" gt = 3
-mS(sy = - Q,s + Q8" — Q35" + (6. 29)

where m = ‘?'/X' and

a,=p 4
q. = 1xo _By
= ﬁ;[l ﬁ;] X (6. 30)

o 2{0-51- 2 0-51

A comparison with equation (5. 84) of the corresponding coefficients

in the Taylor series expansion for S,(s) in section 3. 2 of Chapter
V shows the consistency. For instance, when (i- %*) << as in

our consideration of the ''dilute'' particle cloud (<< }) , the co-
efficient Q, in equation (5.84) reduces to that in equation (6.30) in
the zeroth order. The situation is similar for Q3 , and other
higher coefficients in the expansion. The situation is also similar
for the structure about the intermediary Mach wave. The consistency
is demonstratcd, and our subsequent discussions from this point on
in section 3. 2 of Chapter V holds for the ''dilute' particle~cloud ap-
proximation as well. The advantage of the approximate treatment
starting from a simpler differential equation, however, will be ex-

hibited in our derivation of the pressure coefficient which is essential
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in airfoil theory.

4. Pressure Coefficient

In this section, the pressure coefficient

CP — [?;] 4Y=0
Poub/z,

will be deduced for a thin airfoil in supersonic flow according to the
"dilute" par‘ticle-cloud approximation. Again, we are concerned with
obtaining its operational solution. For convenience, some of the
general formulas given in section 3. 2 of Chapter V will be repeated

here. The dynamical equation of the gas in the Laplace transformed

plane (5,0) is
éEp(S) = —sPis0+ k,[é;(S,o) - §'(s,o)] . (6.31)
From equation (6. 19), we have
dsoy = - =2, (6.32)

The dynamical equation of the particle cloud then becomes

b s.00= S0 (6. 33)
S+1

Hence the equation for the pressure coefficient becomes

LT = sF@ o sFe 6.34
2P S¢s) k'(sﬂ)S(s) ( )

after inserting equations (6.32) and (6.33) into (6. 31). Recalling the
B

definition of S¢s) defined in equation (6. 18), let 43, = (H-c*)-?é-
-]

3S,= © Px , then we can write

—

Fo

S - (S+5)(s+3) S
s3 (s+1)(s+6) Po (6‘35)
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where

K =‘_t.£f_'[\+ﬁ__‘ts_ f:.ﬁ_v] (6. 36)
s, 2 B[ T e £y B

are real quantities. They differ from the results of our exact treat-

ment, equation (5.102) through the absence of the square power at-

tached to the ratios E—’ s ﬁi‘- . Again, we first discuss
P. P &
'

the simple §;vedge; the more general case can be expressed through

Duhamel's formula. Now, equation (6. 34) specialized for a wedge,
in which F(s)= ."_‘éi’- » becomes

_P_g [E (s)] = S p\,(sﬂ\,ﬁs) + (i+ \v+c‘)‘9\,(5)‘8l,_($) + (H—\o)c’-;- e\,(s)Qu(s) (6.37)
220 WEDGE

where
“$x' -;;,X'
- ' = = s
her=gte o€ =Hu hisr= Sz=e =HW (638
x' e_‘il‘xr ..5',_3('
'RlCS)a,(s)zs Yx") =(Ha(3')Hz("'T)JI= —_ —,_,e‘ (6.39)
p S-S,
from known results(él). The interpretation of the pressure coefficient
then becomes
~ _ x'
%‘3 [Cp(x’)] = ‘-j—’Y"") + Geers) Yoo + (lﬂo)rJY(})Js . (6. 40)
° WEDGE x A

Comparison with the form of the exact pressure coefficient in equa~
tion (5. 106) shows the correspondence of the terms, and this can be

seen more readily by writing the approximate relation in the form



- '§,x ! =5, x' (‘5,_.‘§,)x'
B [Cp(x'ﬂ = {e -Se S
2do WEDGE 273

-~ ¢5=5)x'
~Sx' @ty
+(rw+s){@ - 5.3,

, e (6. 41)
4 () Tz + — .

s|gl- 5,2;_ (‘S‘L" A

When x'-ot , we again have the '"frozen'" jump from the free-

stream zero value to unity. When x'—»oco » the exponentials die
s . ' .
out and the surviving term is (1+!<:)6,-;——§- = (m:.)_fi"_ , which is the
19 a

equilibrium value. The following form is more convenient for nu-

merical calculations:

-~y

Ji [CP(")J = [l— k65, (v 3, }és‘x*,[Hmc-“s'._@.m\c ?.,]e-sa" (6. 42)
24 3 7-3) .
WEDGE

o (‘5_1—5,) 3., ;x. (5:.“;1 Gb—gl) ’5"'{‘_(?;‘:;—;)
+0%wle
5 gl.

For the general boundary shape, it can be shown that the

pressure coefficient can be written in the form
= Be 1T (s
_chp(s) = SF(S){ —l-zo[CP ]WEDGE (6. 43)

which is interpreted, as in the previous chapter, as
x'
b ,-é_Ip_ {2 1co0], 0 )¢
CCpur = T o«?x 9] uo[ p ]wE%E s (6.44)

Other general forms are given at the end of section 3.3 of Chapter V.
For purposes of comparison with the exact form of the pres~
sure coefficient in Chapter V, a similar numerical example is con~

sidered here: M, =1.414, ¥=1.40, k=0.25 /¢ =1.10,
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and Ay /l-‘- = 0.819. The calculated parameters are again

B./P. = 1.30984, B,/ B, =1.15444, and  f,= 1 ; with modi~
fied 3, = 1.33666, 3, = 1.02329. The function ”\?(i) of our approxi-
mate trcatment given by cquation {6.39) is shown as a dashed curve in
Figure 16, compared with the corresponding function from the exact
treatment of Chapter V. The remf}ining two functions occurring in the
pressure coefficient, 3—;\.{“') and IYH)JZ , are similarly shown as
dashed curves in Figure 16, Althnough the approximate treatment of
the present chapter requires k <<{ , the comparisons shown in Fig-~
ure 16 for the individual functions when K = 0,25 is rather encour-
aging. However, the net result of the sum of all three terms, which
gives the pressure coefficient shown in Figure 17, shows a difference
of approximately 10% from the exact treatment within the range of
variation of the pressure coefficient itself. This corresponds approxi-
mately an error of order k* as is expected.

The results for the pressure coefficient on a simple wedge of
this chapter is used to illustrate the effect of the equilibration parame-
ter C/kv (here XV/ILT =) ). The pressure distribution on a
double -wedge airfoil is shown in Figure 18. When %v«] , the pressure
distribution very nearly corresponds to the frozen value on the front
part of the airfoil. When %v »>| » equilibrium is reached rapidly. In
any case, the abrupt change in body shape at mid-chord (—é— = 0.5)
gives rise to an immediate expansion of the gas, which is accom-

plished in a distance much smaller than the particle equilibration

distance, and the jump in pressure coefficient is then a frozen one of
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two units from whatever its previous value prior to the abrupt sur-
face change. Subsequent equilibration then takes place in the aft
portion of the airfoil, the extent of which is governed by the value of
the parameter %v . Hence, even when %v >>| , the pressure coef-

ficient is very nearly the equilibrium value only when the surface

shape is "'slowly varying''.
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VII. CONCLUDING REMARKS

Some problems of aeronautical interest in the motion of a
fluid containing small solid particles have been studied. The exam-
ples considered fall into two categories: (l) incompressible viscous
flow, with simultaneous occurrence of particle-~fluid momentum re-
laxation and fluid viscous diffusion; (2) inviscid compressible flow,
with simultaneous occurrence of coupled particle-fluid momentum
and thermal relaxations and fluid compressibility.

Under the first category, the incompressible Rayleigh problem
is studied. As in the classical fluid mechanics, the Rayleigh problem
furnishes the physical insight for the more complicated problem of
the laminar boundary layer. Thus, the relaxation-diffusion equation
derived exhibits the manner in which the viscous diffusion process
transits from 'frozen' with the usual (frozen) diffusivity 4/ near
/Ty << | when the viscous layer is so thin that it contains negli-
gible amounts of particles for interaction to "equilibrium" for

tfty >> | with the diffusivity ¥ referred to the density of the
mixture (1+)p as if the particle cloud and fluid were acting as a
single heavier fluid. An exact solution is obtained, and the asymp-
totic behavior deduced for the two limiting regimes qualitatively

confirms the expansion procedures used for the non~linear laminar
boundary-layer problem where an exact solution is not available.

The distortion of the fluid velocity due to particle-fluid interaction,

particularly near the wall, gives rise to a new shear law as well as
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boundary layer growth, both indicating the transition from the '"frozen!
to the "equilibrium' regimes. The corresponding uncoupled (low
Mach number) incompressible thermal Rayleigh problem is directly

inferred. Just as Prandtl number unity indicates similarity of vis=-

cous and thermal diffusive effects across streamlines, then %!
T
and -Kl%;- being unity indicates similarity of the relaxation histo-
Cp

ries in tge_ streamwise direction. Only when these are simultaneously
satisfied can the velocity and temperature boundary layers be entirely
similar.

The infinite flat plate oscillating in its own plane is also
studied and periodic solutions of the relaxation~diffusion equation
obtained. Here, the parameter indicating the extent of relaxation is

Uow™ / Ay » where W, w™ is the wave length of the plate
motion. The amplitude and phase lag of the particle-fluid slip-
velocity is the same for all layers in the interior of the fluid, since
the particles are non~interacting and respond to fluid motions only
along their individual streamlines. The extent of the amplitude and
lag is relatively large near the "frozen' regime when Upw™ Iny <<
and the particles are nearly standing still, and transits to the ''equi-
librium" regime when u,w™t/Ay >> | and the particles very
nearly follow the fluid motion.

Under the second category, inviscid compressible flow, the
first-order small perturbation theory is studied. Starting from the
acoustical situation in a compressible fluid and particle cloud origi=-
nally at rest and in thermal equilibrium, the relaxation-wave equa-

tions in airfoil coordinates are derived through a Galilean transfor-



mation, and essentially connect the acoustical and aerodynamical
points of view in the small perturbation theory for a fluid containing
small solid particles. It is shown that there is no net entropy gene-
ration due to particle-fluid interaction and that velocity potentials

can be defined for both the fluid and the particle cloud in the first
order theory. Two~dimensional steady supersonic flow is studied in
detail; the wave structure deduced shows a rapid damping of dis-
turbances along the 'frozen'' Mach wave which is the wave front, both
damping and diffusiveness along an intermediate Mach wave, and
siveness along the "equilibrium!'" Mach wave which carries
the bulk of the disturbance to regions far from the airfoil. An exact
form of the pressure coefficient is obtained for arbitrary surface
shape. The simple wedge, for instance, shows the transition from
the "'frozen' pressure jump at the leading edge to ultimate equilibri-
um far downstream. When the body is finite and of length ¢ , then

C/lv indicates the extent to which equilibration is possible over

the surface of the body. In the study of linearized supersonic flow,

For two-dimensional supersonic flow or for planar problems
of a quasi-two-dimensional nature, a simplification is afforded when
K< | . In this situation, the various Mach waves from a single
point are very closely clustered together, and physical approximations
can be applied to the full linearized equation to retain those wave
operators that describe Mach waves inclined to the downstream di-

rection only. A more formal "boundary layer technique'' is applied
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and the resulting zeroth order equation is the same as that obtained
from physical arguments. The Mach wave structure is consistent

with the exact treatment. The pressure coefficient, however, takes

on a much simpler form.
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Figure 2. Coefficient of first-order expansion term for

fluid velocity: t/ty large.
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Figure 3, Coefficient of first-order expansion term for

fluid velocity: t /T, small.
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Figure 4. Coefficient of first-order expansion term for

particle-fluid slip velocity: 1/Ty large.
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particle velocity: t/Ty small.
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Figure 10. The oscillating infinite flat plate.
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Figyre 13. Linearized supersonic flow, schematic.
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Figure 15. An integral occurring in the pressure coefficient

from exact treatment of linearized theory.
My=1. 414, ¥v=1.4, k=0,25, ¢ /fCp=1,1, AyAT=0.819,
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Figure 16, Integrals occurring in the pressure coefficient

from exact and approximate treatments of line~
arized theory., My=1, 414, Y=1. 4, ¥=0. 25,
Cs/Cp=1.1, Ay/A7=0.819.
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Figure 18. Pressure coefficient for a double~-wedge airfoil
from approx:tma.te treatment of linearized theory.
Mg=1, 414, ¥ =1, 4, k=0, 25, Cs /¢p =1.1, Ay/Ay=0.819.





