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ABSTRACT

The construction of synthetic gene regulatory circuits inside living cells has illuminated

how organisms process environmental signals, and has suggested that biological systems

can be engineered for useful purposes. However, these lines of inquiry are limited by a

lack of technologies for programming gene expression and an understanding of the

adaptive or ecological consequences of manipulating gene expression. Here, I describe

the design of noncoding RNA regulators of gene expression in Saccharomyces

cerevisiae. These regulators are able to regulate gene expression in response to a small

molecule ligand, which offers the ability to tailor control devices for a variety of

applications. In light of this, an open question is the dependence of organism fitness on

the levels of a regulator, which has seldom been measured. I found that the expression

level of a transcriptional regulator of nitrogen metabolism mediates a trade-off between

growth in resource abundant and resource limited environments in S. cerevisiae.

Redundancy in the metabolic pathways of ammonia assimilation allowed noise, or

random fluctuations in the amount of protein present, to dictate whether cells specialized

in maximizing fitness in abundant or limiting environments. These results show how

gene expression may be programmed via noncoding RNA regulators, and that the

manipulation of regulator levels can affect the strategy by which organisms adapt to their

environments.
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The construction of synthetic circuits has illuminated how cells process and respond to

environmental signals, and how cells can be engineered to perform useful functions.

Recent progress in the regulatory functions of noncoding RNAs suggests that nucleic

acids can be employed as a design substrate for programming cellular function. However,

as discussed below, the construction of increasingly complex systems will require an

appreciation and understanding of trade-offs between biological functions. An

understanding of how organisms tolerate and manage trade-offs in function between

different environments could provide design principles for building robust systems. In

addition, such work could lead to an understanding of whether the architecture of genetic

circuits can shape the organization of larger-scale ecological networks.
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1. Synthetic strategies for understanding genetic regulation

1.1 Reconstruction of genetic circuits to understand regulation

The complex functions of biological systems such as organisms, metabolic and

developmental pathways, and proteins are ordinarily studied by analysis of genetic and

biochemical perturbations. The modularity of biological components like genes and

proteins enables a complementary approach: one can construct and analyze synthetic

systems such as genetic circuits, organisms, and proteins with unnatural monomers

inspired by their natural counterparts. Synthetic biology is the construction of existing or

novel biological function from constituent components. Researchers may desire to do this

for several reasons – one is to manipulate or measure existing biological systems in more

sophisticated ways, leading to a greater understanding of biology. The study of how the

structure of synthetic circuits relates to their behavior can potentially illuminate Nature’s

“design principles,” or rules for how evolution has solved the adaptive challenges faced

by an organism, although very few studies have yet linked network architecture to

adaptive strategy for a given organism and environment. However, several examples of

building genetic circuits to understand the biological significance of these architectures

are noted below.

An examination of the adaptive and functional significance of network architecture is a

daunting task given the complexity and diversity of examples from the natural world.

One strategy to tackle this problem is not to break down the complexity of natural
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networks, but to construct such systems from the bottom-up. The construction of

biological regulatory circuits is at the heart of synthetic biology, and can be envisioned as

a physical model of circuit architecture for testing hypotheses about the information

processing, adaptive, and functional significance of such architectures.

Observations of the structure of genetic regulatory networks in yeast, bacteria, and other

organisms have shown that these networks are comprised of repeated patterns of

interaction between genes, knows as motifs.1 Negative feedback, multi-input motifs, and

feedforward loops are among the motifs that are observed far more often than would be

expected for a random network. Several groups have tested the functional and adaptive

significance of these motifs using a combination of theory, modeling, and construction of

synthetic motifs. One example comes from the work on transcriptional feed-forward

loops from the Alon lab. Feed-forward loops (FFLs) are three-gene motifs, where a first

gene regulates a second, and the two in turn co-regulate a third gene. Two widely

observed types are the coherent and incoherent FFL. Coherent FFLs consist of two

activators that regulate a third component, while incoherent FFLs consist of one activator

and one repressor.2 Modeling these motifs with simple differential equations suggested

that they have different information processing capabilities: signals that activate the

expression of the first gene (the “input”) are propagated with different temporal dynamics

and strengths. For example, coherent FFLs act as signal delays and are able to filter

transient inputs from affecting output gene expression. Incoherent FFLs can act as signal

accelerators, showing faster induction of output gene expression than simple regulation

by a single transcription factor. To test these models, Mangan and Alon examined the
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arabinose utilization system of Escherichia coli, which shows FFL topology.3 They found

that the motif displayed “sign-sensitive” kinetics: the induction of motif output was

slower than the signal decay after input was removed. This function could be employed

by cells to filter noisy inputs (to avoid spurious gene expression, which is metabolically

costly), while still being able to turn genes off rapidly when the input signal is removed.

Thus, experimental evidence confirms the functional and potentially adaptive

significance of a highly abundant feature of network organization.

Another example of the biological insight gained by constructing synthetic circuits comes

from post-translational signaling pathways. Eukaryotes utilize mitogen-activated protein

kinases (MAPKs) for a variety of signaling functions. In yeast, environmental signals

initiate a cascade of phosphorylation events between kinases, ultimately resulting in

changes in gene expression of a number of pathways, such as osmolarity responses and

mating pathways. The MAPKs are associated with “scaffold” proteins of uncertain

function: does the scaffold merely bring kinases in close physical proximity, or does it

regulate, activate, and otherwise provide an additional point of control on the cascade?

To test this, the Lim group replaced native protein-protein interactions between the

kinase and scaffold with heterologous interaction domains from other proteins and found

that the cascade was able to function properly.4 The researchers extended these findings

by creating synthetic scaffolds that brought together kinases that are not naturally

associated. The synthetic scaffolds possessed novel input-output properties,

demonstrating that scaffold proteins could be useful in evolving or engineering new

cellular behaviors. In addition, these results convincingly showed that simple tethering is
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sufficient to explain MAPK cascade behavior. This work demonstrates how synthetic

approaches can complement and extend analytical approaches for biological discovery.

One underlying question in each of these cases is whether the observed network features

represent functional units of information processing in the cell, or are merely

evolutionary “artifacts” without functional significance. As discussed in section 4.3,

general and global network topology and architecture can often be mistakenly ascribed to

adaptive origins. A challenge for researchers is to test the functional and adaptive

significance of observed patterns in genetic networks.

1.2 Construction of genetic circuits as an engineering discipline

Synthetic genetic circuits are valuable tools for understanding the natural world, and also

have shown great utility in the engineering of biology. One advantage to a theoretical and

practical understanding of biological circuit behavior is the ability to both design and

evolve applications to many pressing technological problems such as therapeutics,

energy, bioremediation, and material synthesis. Several examples of synthetic biology as

an engineering discipline are described below.

Therapeutics and Human Disease

The diversity of chemical compounds made by biological systems found in Nature is

staggering. Many natural compounds have historically been utilized as antibiotics and
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other therapeutics.5 Several groups have engineered microbes to produce fine chemicals

for therapeutic purposes.6 The Keasling group at UC Berkeley has engineered

Saccharomyces cerevisiae to produce arteminisic acid, a precursor to artemisinin, a

potent anti-malarial naturally found in the plant Artemisia annua.7 Currently, the

chemical synthesis of artemisinin is cost prohibitive to the population of the Third World,

where it is needed most. The researchers were able to use an engineered mevalonate

pathway, an amorphadiene synthase, and a cytochrome P450 monooxygenase from A.

annua to produce artemisinic acid. The engineered yeast produced higher artemisin yields

that A. annua, although the authors note that industrial scale-up and optimization will be

required to make this route to production cost-effective.

In addition to engineering microbes to produce therapeutics, several groups are exploring

the use of live cells as therapeutics.6, 8, 9 Microbes in their natural state are endowed with

many functions that could be utilized to discriminate between healthy and disease states

(such as receptors and environmental sensing components) and act in a therapeutic

manner (such as synthesizing therapeutic proteins, invading disease cells, or synthesizing

chemicals, as above). Towards these aims, the Voigt group at UC San Francisco

engineered E. coli to sense and destroy cancer cells by environment-dependent control of

invasion.10 The authors used invasin from the pathogen Yersinia pseudotuberculosis as an

output that allowed E. coli to invade mammalian cells. To render the bacteria cancer cell-

specific, invasin expression was controlled by several heterologous sensors: the Vibrio

fisheri quorum sensing circuit, the hypoxia responsive fdhF promoter, or the arabinose-

responsive araBAD promoter. Each of these is designed to induce invasin expression and
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bacterial invasion only in the presence of tumor cell environments (for example, tumors

are highly hypoxic) or via external, researcher-inducible control. The authors were able to

demonstrate invasion of several cancer-derived cell lines with these engineered bacteria,

demonstrating that cells can be programmed with sensors and outputs to achieve

therapeutic functionality. Taken together, this work shows that natural functions of

bacteria can be re-engineered and augmented to construct useful functions.

Biological Pattern Formation

The coordinated organization of cells in specific patterns is a classic example of complex

function in many organisms and is central to the development of multicellular organisms

from a single fertilized oocyte. Pattern formation typically involves signaling and

communication between cells, processing of these signals, and modulation of the

expression of a variety of genes. The ability to design pattern formation could hold great

utility in applications such as tissue engineering and biomaterials. Towards these aims,

several groups have explored how collections of cells can be programmed to form user

specified patterns. In one example, researchers enabled E. coli cells to communicate with

each other using the quorum sensing system from Vibrio cholerae.11 Engineered

“receiver cells” were designed to express fluorescent proteins based on the concentration

of the signaling molecule synthesized by a “sender” cell. The receiver cells were

designed such that they were responsive only to a defined range of signaling molecules,

analogous to a bandpass filter. The range of signaling molecule the receiver cells was

responsive to could be tuned by changing the kinetic parameters of the underlying
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information processing circuit. The authors were able to use combinations of sender and

receiver cells to create two-dimensional patterns on a lawn of cells such as a bulls-eye,

ellipses, and clovers. Thus, the engineering of underlying functionality (i.e., quorum

sensing) and gene circuits allowed spontaneous pattern formation in a population of cells.

Other approaches have been used to program pattern formation that are inspired more

from lithographic and printing techniques rather than developmental pattern formation. In

a stunning example of engineering synthetic functions into organisms, the Voigt and

Ellington groups constructed a strain of bacteria that could sense red light and control

gene expression accordingly.12 To accomplish this, the researchers constructed a chimeric

two-component photorhodopsin system from the cyanobacteria Synechocystis in E. coli.

When coupled to the expression of a chemical output, this function allowed a lawn of

bacteria to act as a photographic film – projection of an image onto the lawn results in the

recording of a high-definition two-dimensional chemical image at resolutions up to 100

megapixels per square inch. The control of pattern formation in living cells could have

important applications in constructing complex patterned biomaterials, tissue

engineering, and parallel biological computation. In an extension of this work, Tabor and

Voigt (personal communication) have enabled massively parallel ‘edge detection’ of a

projected image such that cells communicate to discriminate and delineate boundaries

between cells sensing light and dark regions of the image. These efforts hold great

potential to explore how biology uses large numbers of computational elements (in this

case, cells) to compute complex problems and to combine “top-down” lithographic-style

patterning with “bottom-up” parallel computation to specify patterns.
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1.3 Nucleic acids as a substrate for designing circuits

The success of rational design of desired function in an engineering discipline is largely

determined by the design substrate(s) available. One strategy to design component-level

function in biology is to use nucleic acids as a substrate. The recognition that RNA plays

a central role as not only an information carrier but as a catalyst of biochemical reactions

and of genetic regulation has driven the development of diverse strategies for using RNA

and DNA in multiple applications.

Roles of RNA in contemporary biology and in the evolution of life

RNA is pervasive in fundamental biological processes. As an information-rich molecule,

it is responsible for carrying information between DNA and the translational machinery

and guiding the processing and editing of ribosomal RNA (rRNA). In addition, RNA

primes the process of DNA replication and individual nucleotides are used as cofactors in

enzymatic reactions. Although RNA naturally is composed of only 4 nucleotides (in

contrast to the 20 amino acids that make up proteins), it is able to fold into diverse

tertiary structures that can display binding and catalytic activity. The crystal structure of

the ribosome revealed that the catalyst of protein synthesis is in fact RNA – a function

that likely doomed the RNA world to extinction, replaced by the protein universe. In

1980, Cech and Inoue discovered that the splicing reaction of a rRNA intermediate in

Tetrahymena was able to proceed in the absence of a protein enzyme via a specific



1.11

Chapter 1: Synthetic approaches to understanding biology

tertiary structure in the RNA able to perform the catalysis, which they termed a

ribozyme.13 Several other naturally occurring cleavase ribozymes have been discovered

in central roles in biological functions, including RNA processing and viral genome

replication. The biochemical functionality of RNA is highlighted by the recent discovery

of RNA regulatory elements in prokaryotic metabolic genes.14 Breaker and co-workers

discovered conserved RNA structures in the 5’ untranslated regions (UTR) of genes

involved in cofactor metabolism in Bacillus subtilis15. These structures were able to

directly bind the small molecule cofactor, and by virtue of a conformational change upon

binding, occlude the ribosome-binding site (RBS) of the mRNA and control translation.

These riboswitches have now been observed in prokaryotes, archaea, and eukaryotes and

have been found to regulate translation, transcript stability, and alternative splicing in

response to metabolite effectors.

In the past 10 years, the discovery and characterization of a highly conserved RNA-based

regulatory mechanism has fundamentally altered the conception of the biological function

of RNA in cells. RNA interference (RNAi) was first described in Caenohabditis elegans

and later shown to be present in many eukaryotes such as fission yeast and mammalian

cells16. In RNAi, a small (21 nt) double-stranded RNA effector guides the sequence-

specific silencing of genes. RNAi silencing is guided either by exogenously delivered

small interfering RNAs (siRNAs) or by endogenously produced microRNAs (miRNAs).

These RNAs silence the expression of target genes in several ways: one is by base-

pairing complementarity to a target transcript, mediated by a multi-protein complex

known as RISC (RNA-induced silencing complex). Catalysis is performed by the
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endonuclease Argonaute 2 in the complex. RNAi has been used as a tool for targeted

gene knockdown in mammalian cells, but has also been shown to be a significant

mechanism for cellular regulation. miRNAs are able to fine-tune gene expression during

differentiation and development by recognizing the 3’ UTR of target genes. The loss of

miRNA-mediated regulation in mutants has been linked to oncogenesis as well as

developmental defects.17

Taken together, these discoveries clearly demonstrate the importance of RNA in

biological systems far beyond the original conception that RNA was merely an

information carrier. One way that the powerful biochemical, regulatory, and

informational properties of RNA can be expanded upon is by directed evolution in the

laboratory - recapitulating Darwinian selection on populations of functional RNAs.

Evolving function from populations of RNA

Contemporary theories on biological origins suggest that life arose via a self-replicating

molecule or assembly of self-replicating molecules. Because of the almost unique

complementarity inherent in nucleobases, it has been suggested that nucleic acids or

nucleic acid-like molecules were the first self-replicators, although some researchers hold

that self-replicating peptides or lipid systems may have preceded or emerged in parallel

with nucleic acids.18 An early nucleic acid replicator is also tempting because of the

prevalence of molecular fossils in modern cells that are related to nucleic acids, such as

ATP and other cofactors. Given the fact that the ribosome is at its core a ribozyme, it
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seems highly likely that there was a complex RNA world that preceded the modern world

of protein catalysts.19 This RNA world may have in turn descended from an early nucleic

acid replicator by duplication, parasitism, and diversification.

Researchers have recapitulated the Darwinian evolution of RNA self-replicators as well

as other functional RNAs.20 One of the earliest examples of extracellular evolution of

molecules is the work done by the Spiegelman group.21 In this work, the  researchers

discovered that the bacteriophage Qβ utilized a RNA-dependent RNA polymerase to

replicate its RNA genome. In this simple system (containing replicase, template RNA,

and nucleotides) the researchers found that the system showed autocatalytic kinetics,

indicating that self-propagation of the viral genome was occurring and could do so in

vitro with the necessary components. Furthermore, the Qβ system was used to set-up an

extracellular evolution experiment where mutant templates could “compete” with one

another for the limited pool of replicases and nucleotides, eventually selecting for

template sequences that were able to replicate faster than the original (parent) template22.

The strategy of competing populations of diverse RNA molecules (analogous to

Darwinian evolution) was used by Ellington and Szostak to evolve ligand-binding

species. The authors termed the evolved ligand-binding RNAs “aptamers” (from the

Greek aptus, to fit). This work23 demonstrated how randomized pools of molecules could

be selected to bind organic dyes. Further work demonstrated that aptamers could be

evolved to bind other small molecules, proteins, oligosaccharides, as well as cells,

tissues, and organisms (by virtue of molecular recognition on the cellular surface).24
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Aptamers rival protein antibodies in binding specificity and affinity, and have been

shown to elicit minimal immunological responses25. These properties have led to the

development of aptamer therapeutics25. The first such therapy to gain FDA approval is an

aptamer that binds the vascular endothelial growth factor (VEGF), used in the treatment

of age-related macular degeneration.26

The success of aptamer selections has enabled several groups to explore the unique

structural biochemistry of binding between aptamer and ligand. Because aptamers are

evolved solely for binding functionality, the resulting structures are not optimized for

other functionality and can provide insight into the universe of possible chemical

solutions for RNA-ligand binding. Three-dimensional structural analyses have provided

insights into the nature of recognition by nucleic acid-aptamer complexes.24 The

enclosure of large regions of the ligand by the nucleic acid is the basis for specific

recognition of the ligand in aptamer complexes. Multiple intermolecular contacts between

the nucleic acid and ligand provide specificity. For example, steric occlusion of a methyl

group prevents binding of caffeine to the theophylline aptamer.27 Specific hydrogen

bonding creates an interaction with the ligand similar to a base-pair in the AMP

aptamer.28, 29 Aminoglycoside antibiotics are bound by their aptamers by a combination of

both electrostatic and hydrogen bonds that create complementarity between ligand and

aptamer.30 Aptamers selected to bind peptides and proteins from HIV-Rev and other

viruses often involve stacking, electrostatic contacts, and induced fit of both the peptide

and the aptamer.31, 32 In nucleic acid - ligand binding, the structurally similar nucleotides

are limited in the number of ways that they can be structured around a given ligand. The
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interaction of ligands into aptamer binding sites often displays imperfect

complementarity, which can be compensated for by adaptive recognition – structural

rearrangement of the ligand and/or the aptamer.33, 34 Furthermore, many aptamers contain

disordered loop regions that acquire an ordered structure upon ligand binding. Adaptive

recognition and the formation of specific contacts between aptamer and ligand are

responsible for a general trade-off between binding affinity and an inability of several

aptamers to bind variant forms of their specified ligand. For example, aptamers selected

to bind the HIV Rev peptide with high affinity are unable to bind even single mutant

forms of the peptide, limiting their use as therapeutics for the rapidly mutating HIV

virus.35

In parallel with the evolution of binding functionality in aptamers, several groups

developed schemes for the evolution of catalytic ability from randomized nucleic acid

pools. Catalytic RNAs are found throughout biology, as in the protein translation

machinery (the ribosome), as well as controlling gene expression36 and carrying out

splicing.37 Using similar methods to the in vitro selection of aptamers (creating pool

diversity, partitioning higher fitness molecules, and amplification) researchers have been

able to discover RNAs that catalyze a wide range of reactions, including ligation of other

nucleic acids,38 cleavage of nucleic acids,39 and even a ribozyme that catalyzes an alcohol

dehydrogenase reaction,40 showing that ribozymes could perform redox chemistry.

Catalytic nucleic acids have allowed structural insights to nucleic acid function and have

played roles in engineering new functions, as described below.
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The crystal structures of several natural and in vitro selected ribozymes have been solved,

giving insights on structural design principles for RNA catalysis.41 One of the more

general themes that emerges from this body of work is that ribozymes catalyze reactions

in the same ways that proteins do: by forming substrate-binding sites to decrease the

entropic cost of attaining the transition state, having more favorable interactions with the

transition state structure versus the ground state, enabling chemistries that involve the

movement of protons, and raising the energy of the bound substrate relative to the

transition state. Ribozymes are not limited to using only metal ions as functional groups

in catalysis (as was proposed in the infancy of ribozyme research), but can use nucleotide

bases, sugar hydroxyls and phosphate backbone to accomplish chemical functions41. Due

to limitations in the diversity of side chains, ribozymes are not as adept at catalyzing the

wide variety of reactions that protein enzymes can, which may be one reason that the

protein-based biology we observe today triumphed over its RNA-based ancestors.

A recently published ribozyme structure highlights the ability of directed evolution to

find novel biochemical “solutions” to a particular catalytic “problem”. The L1 ligase was

isolated by in vitro selection to catalyze the ligation of two RNA molecules.42 The

ribozyme catalyzes a nucleophilic attack by a 3'-hydroxyl group on the phosphorus of the

ribozyme's 5'-triphosphate, creating a new phosphodiester linkage and releasing the

pyrophosphate. The ligase creates a catalytic pocket by a unique triple base interaction,

with contributing residues from invariant nucleotides on each of three helices43. This

catalytic core juxtaposes the ends of the ligation reactants with a Mg2+ ion. Although this

structure and mechanism share some features with that of the hammerhead ribozyme, the
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nucleotide geometry involved in catalysis in this ligase has not been observed before, but

was “discovered” by directed evolution of ligase function from a random pool. This

suggests that even with an incomplete understanding of biophysical principles, directed

evolution remains a powerful approach to creating functional nucleic acids. The directed

evolution of nucleic acid functionality has enabled the construction of useful

biotechnological tools.

Harnessing evolution and design of RNA to engineer function

RNA has two properties that enable researchers to engineer and evolve novel and useful

functions for biotechnological applications. One is the above noted biochemical

functionality of RNA, such as binding and catalysis. Another is the informational

functionality of RNA, the ability of the primary sequence of nucleotides to be “read off”,

amplified, and manipulated with available enzymes and techniques in a test tube. While

all biological molecules can be said to possess information content in the sequences of

monomers or chemical structures composing the molecule, the ability to transform or

amplify this chemical information (such as protein sequence or metabolite functional

groups) has not been demonstrated. In contrast, the information for a particular ribozyme-

catalyzed reaction is embodied in the sequence of the RNA molecule, which can be

reverse transcribed and PCR amplified to create millions of copies of the ribozyme

information. Researchers have exploited this dual informational/biochemical property to

develop strategies for biosensing, genetic regulation, cell-specific targeting, and other

applications.
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An example of combining directed evolution with rational design to create functional

nucleic acids is work done by the Sullenger lab on reversible aptamer-based

anticoagulants. Sullenger and colleagues first selected an aptamer to bind the clotting

factor Ixa.44 Blood plasma based screening revealed that the aptamer was a potent

anticoagulant that acts by blocking further activation of the clotting factor zymogen

cascade. The authors then introduced “antidote control” to the aptamer through addition

of a complementary oligonucleotide that hybridizes to the aptamer. Thus, the design of an

aptamer-antidote pair is intuitive: each aptamer sequence inherently carries the

prescription for its antidote. The authors further demonstrated the power of nucleic acid

engineering by demonstrating the use of this anticoagulant – antidote pair in a mouse

model.45 To overcome the inherent instability of nucleic acids in the bloodstream,

chemically modified nucleotides were introduced together with a pendant cholesterol

group to improve bloodstream retention time.

In another example of the dual roles of selection and design in creating functional nucleic

acids, several groups have created cell-targeting RNA molecules towards the goal of

disease-cell specific drug delivery. The Levy group at Albert Einstein College of

Medicine used aptamers selected to the known cancer biomarker prostate-specific

membrane antigen (PSMA) that displayed high affinity and specificity.46 They then

conjugated these aptamers to the drug gelonin – due to receptor cycling to and from the

membrane, the aptamer-drug conjugate bound PSMA on the cancer cell surface and was

internalized, killing the cell through the action of gelonin.47 The aptamer-drug conjugates
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showed 600-fold increased potency compared to cells that did not express PSMA. These

results demonstrate how selection can be used to create “magic bullet” therapeutics that

target disease cells while leaving healthy cells unharmed, lowering the dose of drug

needed and mitigating side-effects to the patient. In separate studies the same PMSA

aptamer was used to deliver gene-targeting siRNAs to prostate cancer cells,48, 49

extending the therapeutic possibilities of that aptamer delivery method. One promising

possibility for the creation of cell targeting conjugates is the advent of whole-cell

selection procedures. In the above example, PSMA, a known cancer marker, was purified

to select aptamers against. However, in many cases extracellular markers of disease are

not known. In these cases, selection of aptamers to living cells can be used to

discriminate differences on the cell surface. In a recent study,50 aptamers were generated

by selecting against entire leukemia cells. Specificity was achieved by performing a

“negative selection” against healthy cells. A negative selection partitions and discards

aptamers that bind the negative target (in this case healthy cells) after the selection step

(in this case, partitioning of aptamers that bind leukemia cells). Cell-based aptamer

selections can be used to evolve aptamers to discriminate between any cell types, and can

show utility as cell-specific therapeutics when coupled with drugs or toxins as above.

Information processing with nucleic acids

The dual functions of nucleic acids observed in biology of information carrier and

biochemical actuator have been coupled to demonstrate how sets of biomolecules can

perform elementary computation with molecular inputs and outputs. A seminal paper by
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Adelman demonstrated that nucleic acids can be used not only to encode information but

could perform elementary computational operations that could theoretically scaled to

yield massive computational power.51 These efforts can aid in creating complex circuits

for nanoscale computation and in understanding how biological systems process

information given the constraints of physics at the molecular scale. Several examples are

described below.

Stojanovic and Stefanovic used deoxyribozymes to demonstrate the computational

abilities of nucleic acids could interpret multiple simultaneous inputs by designing a

DNA automaton that could play a game of “tic-tac-toe” against a human player.52 The

outputs of the device were deoxyribozyme cleavage events that yielded single-stranded

oligonucleotides. The user-supplied inputs were also single-stranded DNA. Boolean logic

linking inputs to outputs was accomplished by engineering allostery into the

deoxyribozymes – upon addition of input oligos, the catalysts cleave, yielding an

output.53 The authors were able to incorporate allosteric domains in such a way that the

higher order logic functions required to play the game against a human were

accomplished. The automaton strategy is thus “hard-wired” in the structures and

arrangements of the deoxyribozymes. While this work required a large amount of

empirical tuning (to achieve reasonable signal-to-noise ratios, for example), it remains as

one of the first examples of building a complex, predictable network from programmable

enzymes.



1.21

Chapter 1: Synthetic approaches to understanding biology

In recent work, Winfree and colleagues demonstrated how cascades of logic functions

can be implemented using strand displacement of DNA, without catalysis.54 The authors

were able to show that DNA-based logic gates using their design (based completely on

base-pair hybridization) showed the hallmarks of digital abstraction employed in silicon-

based electronics such as logic, cascading, signal restoration, fan-out, and modularity.

Because of these features, the authors were able to build a complex device using 11 logic

gates and performing complex computational tasks such as signal amplification,

restoration, and threshold behavior. This work establishes design principles for

information processing by nucleic acids, and could be used to control nanoscale devices

in vitro, to analyze complex chemical samples, or to interface with existing biological

circuits inside living cells.

Genetic regulation: information processing and biochemical functionality inside cells

Several groups have begun to use the ease of RNA directed evolution and rational RNA

design to construct components for the regulation of gene expression programs inside

cells. Researchers have used the ability to rationally design interaction energetics

between RNA molecules (via base-pairing) to construct a post-translational regulation

system in E. coli.55 Translation in prokaryotes requires the interaction of the ribosome

with a (RBS), and as such, translation can be inhibited by occluding the RBS. The

researchers used a cis stem-loop structure that binds the RBS to silence gene expression.

In an elegant demonstration of the power of base-pairing specificity and binding

energetics between RNA molecules, the authors then used a trans RNA molecule to
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activate gene expression. The trans RNA targets the cis repressive stem-loop via base-

pairing, causing a conformational change that activates translation. The interactions of cis

and trans elements are highly specific due to the combinatorial nature of base-pairing,

and as such the same design schemes could be used to construct a large number of

orthoganal cis-trans riboregulator pairs to build increasingly complex networks.

Several groups have utilized the ligand-binding properties of RNA as well as sequence

specificity to engineer novel behaviors in living cells. The theophylline-binding aptamer

was inserted in the 5’ UTR of a reporter gene in S. cerevisiae to achieve ligand-dependent

regulation of the target gene.56 Another group then used this scheme to control gene

expression in E. coli and evolved the dynamic range of this system, from 12-fold

difference in gene expression with and without theophylline to a 36-fold difference.57 The

evolved riboswitch was then cloned upstream of the CheZ gene which led to control of

bacterial motility in the presence of theophylline58. Cells were able to “follow” a trail of

theophylline arranged specifically on a plate. Although the engineered chemotactic

system differs from the normal control mechanism in several ways (for example,

regulation is based on slow changes in gene expression rather than the wildtype protein

phosphorylation cascade), the “phenotype level” function is the same – cells sense and

move towards a user-specified chemo-attractant. These studies show how RNA can be

designed, evolved, and engineered to meet the functional demands for engineering

complex behaviors and functions in living cells.
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Finally, several qualitative and quantitative differences between regulation of gene

expression with noncoding RNA and regulation with proteins have recently been

elucidated. Hwa and colleagues combined theoretical and experimental approaches to

study regulation by a class of trans-acting noncoding RNAs in E. coli, small RNA

(sRNA). There are over 70 identified sRNAs in E. coli that have been implicated in

regulating diverse functions such as osmotic response, quorum sensing oxidative stress,

DNA damage, and others59. This work found that regulation by sRNAs involved a

“threshold-linear” response where repression is tight under a threshold of sRNA synthesis

rates and is linear depending on target gene and sRNA synthesis above the threshold. In

addition, compared with protein regulation, sRNA regulation displayed characteristic

noise resistance and a capability for “hierarchical cross-talk” - many sRNAs bind several

targets, and because target mRNAs can titrate sRNA by binding them, two target genes

can thus have an indirect affect on each other. These results demonstrate that in addition

to “programmability” and ease of design, engineering genetic regulation with noncoding

RNAs may allow engineers to build novel quantitative and qualitative modes of

regulation in living cells.

2. Constraints and trade-offs with increasing complexity

As we begin to assemble components to create functional devices, a new understanding

of potential trade-offs and design criteria for optimization will be necessary. Trade-offs

and constraints can bias the design criteria of natural and engineered systems. The
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engineering of more complex systems will require an understanding and appreciation of

the trade-offs between biological functions.

2.1 Trade-offs shape circuit design and function

An understanding of constraints and trade-offs in system function is critical for

understanding how to construct more complex biological devices. Design principles will

hold the greatest utility if underlying complexity can be effectively “hidden” from users

at higher levels. An understanding of the foundations of trade-offs and constraints will

enable biological engineers to have a set of “rules” for composing modules and a

guideline for expected behavior. Recent work in circuit analysis suggests that trade-offs

between system functions may require a greater appreciation of trade-offs at the cellular

scale.

Recent work has described how the architecture of the E. coli heat-shock response is able

to balance a trade-off between temporal response and efficiency. Heat shock causes the

rapid unfolding and aggregation of many proteins in the cell, compromising normal

function. Cells respond to heat shock by inducing the expression of heat-shock proteins

(Hsp), chaperones that enable unfolded proteins to fold to their native structure, as well as

proteases that degrade misfolded protein that are beyond repair.60 Because the effects of

heat shock occur on the order of seconds, the heat shock response must be activated

quickly. However, the spurious induction of this massive cellular response is
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metabolically costly for the cell, requiring tight regulation of its induction. Thus, the

system must be optimized for several functionalities such as robustness, efficiency,

response speed, and rejection of noise. Given limited cellular resources and energy, these

demands are often contradictory – for example, high turnover rates in heat shock

regulator production are necessary for a fast response, but come at a cost to metabolic

efficiency.61 Recent work has demonstrated how the architecture of the heat shock system

balances such trade-offs.62 For example, numerous feedback and feed-forward loops were

identified that couple the induction dynamics, steady-state levels, and decay of multiple

regulators of the heat shock response. Interestingly, the researchers note that the

evolution of control architectures to balance these trade-offs results in new fragilities and

constraints in the system, a recurring theme in the analysis of biological and man-made

systems. The inherent trade-offs and constraints between biological functions and traits

are also a significant determinant in shaping how organisms adapt and evolve.

2.2 Trade-offs in life history evolution

The recognition that trade-offs and intrinsic constraints can play a large role in

determining the composition of systems has a lengthy precedent in evolutionary biology

and ecology. A central assumption in many theories of trait evolution is the existence of

trade-offs between functions. Trade-offs are based in fundamental mechanical,

physiological, or thermodynamic constraints in metabolism, behavior, morphology, and

other functions. One clear example of such constraints is the widely observed trade-off is

the trade-off between fertility and survival. To take one case, the survival versus fertility
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trade-off in the guppy Trinidata sp. is determined by fluid mechanics of swimming.63

Because guppies are viviparous (give birth to live offspring rather than laying eggs)

individuals with large litter/clutch sizes tend to be larger and more rotund than

individuals with small litter sizes. The difference in size creates more drag in the water,

making it more difficult for the individual to avoid predators. This trade-off can shape

adaptive strategies available to a population and can reveal “signatures” of adaptation in

the field due to selection determining the optimal balance of traits along the trade-off

(from high fertility to high survival). Thus, populations that experience low predation

would tend to optimize fertility over survivability, while populations experiencing high

predation would tend to optimize survivability. The knowledge of mechanistic

determinants of a trade-off can thus illuminate the ecological and evolutionary history of

populations in the wild.

A related and prominent trade-off theory in biology is that of r versus K selection.64

Organisms under K selection are predicted to optimize utilization of resources, such as

when the population is near its carrying capacity and resources are scarce. r selection

occurs when resources are abundant and organisms maximize per capita growth rate. For

example, organisms generally face a trade-off between two modes of ATP production,

respiration and fermentation – fermentation is faster but less efficient than respiration.

Environmental conditions can select for organisms displaying a rate or yield strategy in

this case, as is detailed below.65 Although a given organism may employ more than one

ecological strategy, the hypothesis of a general trade-off between growth rate and yield
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(the efficiency of resource utilization) remains central to theories regarding the evolution

of cooperation and evolution of generalists versus specialists.

Similar, but importantly distinct, trade-offs are well established in metabolic function.

The laws of thermodynamics imply a trade-off between the rate of ATP production

(moles ATP / time) and the yield (moles ATP / moles substrate) for any catabolic

reaction.66 This trade-off has been experimentally demonstrated in E. coli and S .

cerevisiae.65 One example is the rate-yield trade-off in two ubiquitous modes of sugar

degradation, respiration and fermentation. Respiration is rapidly saturated at high levels

of substrate or limiting oxygen, such that organisms can increase the rate of ATP

synthesis by fermentation in addition to respiration. However, the yield for fermentation

is much lower than respiration (2 moles ATP / mol glucose for fermentation, 32 moles

ATP / mol glucose for respiration). Thus, cells can either “choose” to produce ATP

rapidly (fermentation) or to extract a higher yield of ATP from a given amount of

substrate (respiration). Pfeiffer and Bonhoeffer66 showed that high yield ATP production

can be viewed as cooperation between cells and can evolve in spatially structured

environments.

An understanding of potential design constraints comes from an intimate knowledge of

the (often) conflicting strategies of coping with environmental challenges. One recent

example that has been elucidated is the trade-off between multiplication inside a host and

survival outside a host in E. coli infecting bacteriophage.67 Here, the authors found that

phage mortality rate outside the bacterial host is inversely correlated with multiplication
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rate for the viruses inside the host. Survival time outside of a host is a critical phase of the

life cycle for parasites transmitted via the environment. Coliphages can have significant

variability in the period between hosts – for example, a phage may be able to infect other

E. coli cells in the same animal gut (short time between infection), or may be excreted

into the external environment (long time between infection). The authors were able to

propose and support a mechanism for the trade-off between reproduction and survival.

The major determinant of viral survival is the stability of the capsid shell. This study

found that the surfactic mass of the capsid as well as the density of the packaged phage

genome was positively correlated with survival67. However, the energetic and temporal

demands for stronger and more densely packed capsids resulted in slower virion

production rates inside the host. In this case, evolving population are forced to optimize

and balance a trade-off between fitness benefits in two different environments. Human

engineers designing a system such as a bacteriophage would need a mechanistic

understanding of capsid thickness and genome packaging to determine which function to

optimize (reproduction or survival) or how to balance functionality in their engineered

system.

3. Genome-scale organization

As we move towards an understanding of how constraints, trade-offs, and optimization

drives the evolution of biological function, an open question is whether there are

overarching principles or themes that accurately depict the organization of entire

biological systems. Such “systems design principles” would be valuable in genome-scale
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engineering. The capability to chemically synthesize large DNA sequences is rapidly

becoming faster, cheaper, and more reliable such that the synthesis of entire genomes

could be feasible for academic or industrial labs.68 At this point, the rate-limiting step of

engineering biology will not be fabrication (i.e., cloning), but will be design. In addition,

the existence of fundamental genome-scale design themes could enable a deep

understanding of adaptation at the systems level.

3.1 Organizing biology: engineering perspectives

One paradigm for designing biological systems is the use of an abstraction hierarchy for

managing complexity.68 Abstraction hierarchies are widely used in software engineering.

For example, high-level programming languages (such as C++) enable programmers to

read and write code in a form that is understandable to humans. The high level language

is translated into machine-level instructions, which are in turn translated into bit strings

for interpretation by the machine. Thus, software engineers can work on specific parts of

the hierarchy such as high-level languages or machine-level instructions.

The effect is two-fold, and has many potential similarities in biology and evolution. The

first is that the abstraction allows ease of design. Specialists in designing instruction sets

(machine-level) do not have to create novel machine-level methods for each new high-

level application, whereas high-level programmers do not need to concern themselves

with the detail of machine-level operations when writing new code. Another effect of an

abstraction hierarchy is the promotion of diversity in high-level applications. Software
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engineers are able to use, re-use, and combine high-level functions (specified at the

machine-level) to create a myriad of applications. The concept of the recombination of

functional modules to create novel systems has parallels in protein evolution. Recent

work with eukaryotic signaling proteins has shown how the recombination of a common

set of domains can create novel input-output functionality such as allosteric gating, signal

integration, and ultrasensitivity.69

Several abstraction hierarchies for synthetic biology have been proposed. One is the

“parts-devices-systems” hierarchy.70 In this concept, at the lowest level of complexity,

are parts – discrete sequences of DNA that encode for functional units such as (but not

limited to) genes, RBS, transcriptional terminators, and promoters. These parts can be

characterized and assembled into devices. Devices include multiple parts with a specified

function, such as a transcriptional inverter, a signal amplifier, or a toggle switch. At a

higher level, devices can be assembled into functional systems. Some examples include

oscillators, pattern-forming cells, and tumor-invading bacteria described previously. One

goal of synthetic biology is to explore the utility of such abstraction hierarchies in the

pursuit of engineering biological function.

3.2 Optimality principles in network organization

Optimal function is a fundamental and shared idea between engineering and evolutionary

biology. One open question is toward what functions evolution has optimized metabolic

networks. Organisms face multiple challenges from their environments, including
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fluctuating nutrient sources, a battery of stress conditions, and potentially deleterious

(and beneficial) interactions with other organisms. The optimal organization of metabolic

networks would shed insight on the evolutionary forces that have shaped networks as

well as provide “design principles” for the forward engineering of organisms for

metabolic engineering. The Palsson group has shown that the “object” of metabolic

network organization (the “objective function” in their parlance) is to maximize growth,

and as such, potential fluxes through a metabolic network can be derived.71 For example,

microbes have evolved to efficiently convert carbon and energy into biomass, the

creation of more cells. In an elegant demonstration of this objective function, Fong and

Palsson grew E. coli on glycerol (a non-preferred carbon source for this organism) and

observed that metabolic fluxes did not operate according to the optimality principle.72

However, after applying selective pressure by repeated growth on glycerol, the network

evolved to maximize its growth rate on this substrate according to the predictions

described by an in silico model. The utility of this simple evolutionary principle has been

validated by its use to predict essential genes in metabolic networks, as well as its use to

optimize ethanol production in S. cerevisiae.

However, alternative selective pressures may result in metabolic networks that are

optimized for other functions besides growth. The Sauer group analyzed metabolic gene

knockouts in Bacillus subtilis and found that several mutants grew faster than wildtype,

showing that bacteria does not operate solely according to maximized biomass

production.73 The authors found that B. subtilis has suboptimal metabolism because it

invests a significant amount of resources in anticipation of changing environmental
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conditions, which the authors term a “stand-by mode”. For example, most identified

knockout mutants displaying increased biomass production were regulators of alternative

phenotypic states of B. subtilis, such as sporulation and competence. These

developmental pathways are activated in starvation conditions and are repressed in

nutrient rich environments. Thus, network organization is a compromise between rapid

growth in resource abundant environments and the anticipation of environmental change.

These results demonstrate how multiple selective pressures can shape metabolic networks

and suggest that human engineers will similarly have to balance multiple functions in

designing useful biological systems.

3.3 Game theoretic strategies for maximizing competitive ability

Optimality principles such as those described above often make the implicit assumption

that populations gradually ascend peaks in a fitness landscape, and as such, gradually

increase in fitness over time. However, fitness is often determined and dependent on the

fitness of other members of an organism’s population or on other interacting species. For

example, the selective advantage of a particular tree height depends on the height of

surrounding trees. The evolution of a successful immune response to a pathogen will

elicit selection pressure leading to enhanced variants of the pathogen. Thus, while

optimization theory is useful in describing gradual adaptation, game theoretic

explanations have been utilized to describe evolution among interdependent agents.

Game theory originated to describe interactions among independent economic agents,

and was quickly applied to evolutionary biology. The success of a given strategy in a
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game theoretic setting is dependent on the strategies of other players. The biological

analog is that the success of a given genome is dependent on the make-up of the

population.

The classic example of game theory is the Prisoner’s Dilemma.74 In this game, players

receive a benefit if they cooperate (W), but a larger benefit if they act selfishly (X, the so-

called “temptation to defect”) when the other player cooperates (with Y being the penalty

for cooperating when the other player defects). When both players defect, each receives a

penalty Z. The Prisoner’s Dilemma arises when the payoffs for each action are ranked

X > W > Z > Y

Thus, strategies that always cooperate can be exploited by strategies that always defect.

However, populations of defectors are less fit than populations of cooperators. The

Prisoner’s Dilemma highlights the difficulty of understanding how cooperation arises

from populations of organisms and is captured in the “tragedy of the commons” – how

can groups of cooperating individuals resist invasion by selfish individuals? In recent

work, MacLean and Gudelj demonstrate mechanisms that can enable cooperators to

coexist with selfish individuals: spatial and temporal heterogeneity can allow either

coexistence or competitive exclusion, depending on trade-offs in metabolism.65

Interestingly, observations of classical Prisoner’s Dilemma situations in Nature are

lacking. One clear example comes from the work of Turner and Chao on the

bacteriophage φ-6.75 The authors were able to measure the payoff matrix associated with

cooperation (the manufacture of diffusible products inside the bacterium during infection)
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and defection (the sequestration of these products). In this study, selfishness (defection)

evolved in viral populations with high multiplicity of infection (MOI, the number of

independent viruses infecting a single bacterium) and actually lowered the fitness of the

evolved viruses relative to the ancestral virus. Spatial segregation of viral genomes via

infection at low MOI evolved clones that showed high fitness and cooperative behavior.

Thus, the outcome of simple evolution experiments was heavily dependent on the

frequency of other viral genomes in the environment, showing how game theory can

complement optimization theory for describing adapting populations.

The fitness of a given network feature may in fact be frequency-dependent: like the

success of rare alleles, specific regulatory features may be selected for depending on their

relative abundance in a population. An intriguing hypothesis is that regulatory and

metabolic architectures are organized to promote cooperation among individuals.

Investigations along these lines are only now beginning to be explored.

3.4 Robustness as an organizing principle

One potential recurring design theme in biology may be the organization of cellular

networks to be robust to perturbation (both genetic and non-genetic perturbation).

Robustness has a long precedent in both engineering disciplines as well as biology. As far

back as 50 years ago, Waddington described the robustness of morphological features of

organisms to perturbations during development, and ascribed this robustness to natural

selection operating to produce organisms that were optimized to some intermediate form
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(i.e., stabilizing selection).76 The idea that robustness is a dominant organizing principle

in biological networks is intriguing and continues to be investigated today.

Robustness to non-genetic change

Evolving populations undoubtedly face perturbation and uncertainty from their

environments. Organisms have evolved countless mechanisms to maintain function

during changes in external (and internal) conditions. For example, the maintenance of

osmotic balance, metabolite concentrations, and other homeostatic mechanisms can be

considered mechanisms for robustness to non-genetic change, as can thermoregulation in

endothermic organisms, flight stabilization in birds, and predator avoidance behavior in

higher organisms. The robustness of cellular networks has been explored as well. Barkai

and Leibler used a simple two-state model to show how the connectivity of the

components of the bacterial chemotaxis network confers robust adaptation.77 Chemotaxis

is a process by which bacteria are able to move toward or away from certain chemicals in

the environment by a series of “smooth runs” of motility in one direction punctuated by

events of “tumbling” where the direction for a next run is chosen randomly. By adjusting

tumbling frequency, the cell is able to bias this random walk behavior and direct its

motion toward or away from chemical gradients. Adaptation in this system refers to the

invariance of tumbling frequency in environments with homogenous chemical gradients.

This adaptation is robust to variations in the environment as well as the levels of

chemotaxis regulators and the biochemical parameters of interactions between those
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components.78 This model and further experimental observations show that robustness in

adaptation is a direct outcome of the organization of the network.

Recent work has highlighted the importance of robustness to changes in the internal

environment of the cell. The presence of noise and the fundamental limits of

deterministic behavior at the molecular level suggest that biological systems have

evolved to cope with and exploit stochastic behavior in gene expression. Noise in gene

expression is a ubiquitous feature of the natural world at the molecular scale and has been

demonstrated to arise from the small numbers of molecules involved in the process.79

Noise intrinsic to gene expression is thought to be dictated by fluctuations in mRNA

levels, which may arise from fluctuations in promoter states or the random births and

deaths of mRNAs themselves, and has also been shown to result from fluctuations in

factors extrinsic to the genes themselves (including pathway specific and global factors of

gene expression such as the levels of transcription factors, nucleic acid polymerases, and

ribosomes80). Noise has been shown to be critical in several biological processes,

including determination of competence in B. subtilis81, eye color-vision development in

Drosophila melanogaster82, and in viral latency.83 One future challenge is to demonstrate

whether the control of noise is used by biological systems to adapt to specific

environments.

Several organizational features of biological networks have been suggested to enable

cells to cope with or exploit noise in their internal environment. Negative feedback loops

have been demonstrated theoretically and experimentally to reduce noise in gene
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expression by damping large fluctuations above the mean.84 Recently, the Serrano group

demonstrated that self-repression reduces noise compared to an unregulated gene, and

was effective in reducing both intrinsic and extrinsic noise.85 The organization of the

genome could play a role in reducing gene expression noise as well. Swain showed that

genes organized in operons strongly reduced variation between the genes via simulations

and analytical derivations.86 Noise attenuation by operons was effective even in the

presence of multiple RBS. Later, experimental work by Tabor and Ellington at the

University of Texas at Austin (personal communication) was able to confirm that the

organization of genes in operons was an effective means to reduce variation between two

genes. Nature, as well as engineers, may be able to utilize genomic organization of this

kind to design systems with lower variability between two genes. The importance of

these types of noise control with respect to biological function is a central question for

future study.

Robustness to mutation

The robustness of the phenotype to underlying mutational change can be central to

shaping the emergence of traits and phenotypes in evolution as well as disease, especially

in the context of a “genetic capacitor”. Mechanisms that confer robustness can act as

capacitors for phenotypic change by masking the expression of genetic variation and

suddenly revealing this variation when the robustness mechanism is impaired.87, 88 Recent

work in Candida albicans has demonstrated how the chaperone Hsp90 acts as a

molecular buffering mechanism and can affect the evolution of drug resistance by
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enabling novel mutations to have immediate physiological consequences. In addition, the

effects of mutant Src kinases can be masked by Hsp90 in mammalian cells, leading to

oncogenic phenotypes when Hsp90 is impaired. Thus, Hsp90 can act as a capacitor for

phenotypic diversity from genetic variance.

Recent studies have suggested that buffering and genetic capacitance may be a general

feature of complex regulatory networks87. Several patterns have emerged from studies of

gene regulatory networks such as scale-free architecture, small-world structure, and the

abundance of regulatory motifs – small “building-blocks” of larger networks. One central

question for the engineering of biological systems is if these concepts of robustness can

be extended into a set of design principles for specifying the degree of robustness to

genetic and non-genetic change. Further work is needed to explore whether such systems-

level features in biology are emergent properties of the organization of simpler units

(devices and components). In addition, any systems-level property or design themes of

regulatory architecture will undoubtedly be shaped by trade-offs between different

functions. One example is the trade-off between robustness and fragility in biological and

technological systems: the observation that a system robust to one class or type of

perturbation is often sensitive or fragile with respect to another. The general occurrence

of trade-offs between robustness and fragility 89 has been suggested in diverse complex

systems such as the Internet,90 the immune system,91 and diseases such as metabolic

syndrome 92 and cancer. 93 The “robust yet fragile” nature of biological systems may be a

unifying force shaping the evolution of network architecture across the molecular,

cellular, organismal, and ecological scales.
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Robustness and power-law distributions: a cautionary tale

As discussed above, many biological networks display power-law distributions of

connections per node. Albert et al.94 found that networks with power-law distributions are

robust to random perturbations: upon removal of random nodes, the average path length

(the distance between any two nodes) changes very little. Power-law networks thus tend

to retain overall topology by virtue of alternate paths between nodes, and act to minimize

the cascading effects of node removal.95 These and other theoretical examinations of

power-law networks have led to the hypothesis that networks have evolved power-law

distributions precisely because of this robustness to node removal and perturbation, and

the ubiquity of power-law distributions in biological networks represents a deep and

shared evolutionary pressure towards robust function.95 However, several bodies of

evidence contradict this intriguing hypothesis. An examination of networks in biological

and physical systems and across spatial scales found that power-law structures exist in a

wide spectrum of networks, including networks that have never been under any sort of

natural or functional selection96. For example, the chemical reaction networks of

planetary atmospheres (including Earth, Venus, and Jupiter) found power-law

distributions in these systems. The power-law distribution may thus be a general feature

of networks (both natural and human-engineered), much like the Gaussian distribution is

a general feature of distributions in Nature. While this observation is fascinating, it

explains little about the evolution of robustness or the adaptive significance of such

global features of cellular network architecture. Thus, the construction and analysis of the
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ecological and evolutionary consequences of regulatory mechanisms and architectures is

a central area of study for systems and synthetic biology.

4. Open questions: from cellular to ecological networks

Understanding how regulatory architecture affects fitness and how network structure has

adapted to cope with noise highlights central themes in systems biology. One current

challenge is to understand population genetic parameters (such as fitness and diversity) in

terms of cellular network architecture and dynamics, or how metabolic, regulatory, and

molecular interaction networks combine to produce the phenotypes observed in Nature. A

complementary goal is to understand the adaptive significance of network architecture

and how genetic regulation in single cells may shape higher-order ecological interactions.

Open questions and outline of work

Several lines of inquiry at increasing levels of organization (molecular to ecological) will

enable researchers to better engineer biology.

(1) How can we use the biochemical and informational functions of nucleic acids to

regulate cellular circuits and networks?
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(2) How do regulatory circuits regulate trade-offs between cellular functions? Can

circuits be engineered to produce new optimal phenotypes, (for example, in terms of

fitness in new environments)?

(3) How can ecology-scale interactions between organisms and their environment be

understood in terms of regulatory networks? Are there systems-level design principles

that suggest adaptation to given ecological strategies?

Progress towards answering these questions should provide insight into how adaptation

has shaped the organization of genetic regulatory systems, and illuminate strategies for

designing and constructing useful biological technologies as well. Ideally, this and other

work will contribute to emerging themes for understanding the emergence of biological

function in complex systems, from molecules to organisms.
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Recent studies have demonstrated the importance of non-coding RNA elements in

regulating gene expression networks.1, 2 We describe the design of a novel class of small

trans-acting RNAs that directly regulate gene expression in a ligand-dependent manner.

These allosteric riboregulators, which we call antiswitches, are fully tunable and modular

by rational design and offer uniquely flexible control strategies by self-regulating to

active or inactive forms in response to ligand binding, depending on the platform design.

Antiswitches offer “programmable” genetic control and can be tailor-made to control the

expression of target transcripts in response to different cellular effectors. Coupled with in

vitro selection technologies for generating nucleic acid ligand binding species,3, 4

antiswitches present a powerful platform for designing targeted regulators to program

cellular behavior and genetic networks with respect to cellular state and environmental

stimuli.
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In recent years, cis and trans RNA elements have become well recognized as

important regulators of gene expression. Cells use diverse non-coding RNA-based

elements to regulate complex genetic networks such as those involved in developmental

timing and circadian clocks.1, 2 Antisense RNAs are small trans-acting RNAs (taRNAs)

that bind to complementary segments of a target messenger RNA (mRNA) and regulate

gene expression through mechanisms such as targeting decay, blocking translation, and

altering splicing patterns.5-7 MicroRNAs (miRNAs), small taRNAs that affect either

translation or RNA decay by interacting with complementary sequences in mRNA and

the genome, are likely widespread in metazoan gene regulation.8 Small interfering RNAs

(siRNAs) and double-stranded RNAs (dsRNAs) are able to precisely target mRNAs and

inhibit their expression through the RNA interference (RNAi) pathway in metazoans, and

are thought to be part of the cell’s host defense system.9 Ribozymes are RNA molecules

exhibiting catalytic function and have been shown to be used by viruses to regulate gene

expression.10 Riboswitches, cis-acting metabolite binding structures in mRNAs, control

gene expression by modulating translation initiation, disruption of transcriptional

termination, or cleavage of mRNA by ribozyme mechanisms.11-13 Recent studies have

demonstrated the prevalence of these RNA-based regulators across diverse groups of

organisms from prokaryotes to humans.14-16

Researchers have taken advantage of the relative ease with which RNA libraries

can be generated and searched to create synthetic RNA-based molecules with novel

functional properties. Aptamers are nucleic acid binding species that interact with high
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affinity and specificity to selected ligands. These molecules are generated through

iterative cycles of selection and amplification known as in vitro selection or systematic

evolution of ligands by exponential enrichment (SELEX).3, 4 Aptamers have been

selected to bind diverse targets such as dyes, proteins, peptides, aromatic small

molecules, antibiotics, and other biomolecules.17 High-throughput methods and

laboratory automation have been developed to generate aptamers in a rapid and parallel

manner18. Researchers have demonstrated that aptamers can impart allosteric control

properties onto other functional RNA molecules. Such allosteric control strategies have

been employed to construct and select in vitro signaling aptamers, in vitro sensors, and in

vitro allosterically controlled ribozymes.19-21

In addition to the widespread occurrence of RNA-based regulator elements in

natural systems, researchers have recently described engineered riboregulator systems.

Cis-acting RNA elements were described that regulate relative expression levels in

Escherichia coli from a two gene transcript by controlling RNA processing and decay.22

In another example, a combined cis/trans riboregulator system was described in E. coli in

which cis-acting RNA elements mask the ribosome binding site of a transcript, thereby

inhibiting translation, and trans-activating RNAs bind to the cis-acting elements to allow

translation.23 Cis-acting elements were recently described that control gene expression in

mammalian cells and mice by acting through RNA cleavage and whose activity can be

regulated by a small molecule drug and antisense oligonucleotides.24 Finally, an allosteric

aptamer construct was recently described that upon binding the dye tetramethylrosamine,

interacts with protein-based transcriptional activators to induce transcription.25
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Riboregulators present powerful tools for flexible genetic regulation. However,

there is a need to couple the ability of RNA-based regulators that can directly target

transcripts with allosteric control typically associated with protein-based regulators. We

have engineered ligand responsive riboregulators in Saccharomyces cerevisiae. These

riboregulators, which we call antiswitches, utilize an antisense domain to control gene

expression6 and an aptamer domain to recognize specific effector ligands. Ligand binding

at the aptamer domain mediates a change in the conformational dynamics of these

molecules that allows the antisense domain to interact with a target mRNA to affect

translation. Antiswitches act as programmable genetic switches, affecting target

transcripts only in the presence of a specific ligand. We have developed a modular,

tunable class of small RNAs that can be used to achieve sensor-based gene expression

control. Because antiswitches are designed on a modular platform, in principle these

riboregulators can be tailor-made to regulate the expression of any target transcript in

response to any ligand.

Antisense technologies have been widely utilized to regulate gene expression.26, 27

We sought to engineer allosteric regulatory functionality by designing a platform on

which ligand binding structures were appended to the antisense molecule. In this

platform, the antisense domain is sequestered in an “antisense stem” in the absence of

ligand. Ligand binding to the aptamer domain mediates a change in the conformational

dynamics of the antisense stem that results in the antisense domain being in a more

single-stranded form (Fig. 1a). Such mechanisms have been described in the construction

of signaling aptamers and other allosterically-controlled RNAs.28
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We constructed an initial antiswitch, s1, using a previously selected aptamer that

binds the xanthine derivative theophylline with high affinity (Kd = 0.29 µM) and

specificity.29 The antisense RNA domain is designed to base pair with a 15 nucleotide

region around the start codon of a target mRNA encoding green fluorescent protein

(GFP). The stem of the theophylline aptamer is redesigned so that the antisense portion

base pairs in a stable stem, the antisense stem, in the absence of ligand, but so that

another, overlapping stem forms upon ligand binding, the “aptamer stem”, forcing the

antisense portion into a more single-stranded state (Fig. 1a, b). The aptamer stem and

antisense stem are designed such that the antisense stem is slightly more stable than the

aptamer stem. Previous work has demonstrated that the sequence of the lower

theophylline aptamer stem is not critical for ligand binding,30 and this sequence was

altered to interact with the antisense stem upon ligand binding. It is anticipated that these

molecules will function through alterations in conformational dynamics, such that in the

absence of ligand and presence of target transcript, the stem sequestering the antisense is

more likely to form; whereas in the presence of both ligand and target transcript, the free

energy associated with binding of theophylline (approximately 8.9 kcal/mol31) and RNA

stabilization in the aptamer structure enables the aptamer stem to form, freeing the

antisense domain to bind its target transcript. RNAstructure32 was used to predict the

stability of the RNA secondary structures formed. Due to the dual-stem design of the

antiswitch, it is anticipated that the free energies of the aptamer binding to its ligand and

the antisense binding to its target mRNA will contribute in a cooperative manner to the

structural switching of the antiswitch molecule.
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The expression of antiswitches in S. cerevisiae was accomplished using a novel

non-coding RNA (ncRNA) expression construct similar to a previously described

system33 (Fig. 1c). Briefly, the RNA to be expressed is cloned between two hammerhead

ribozymes known to self-cleave in vivo.34 This dual hammerhead construct can be placed

under the control of Pol II promoters, and when transcribed the flanking hammerhead

ribozymes cleave out from the desired RNA at an efficiency greater than 99% (Table 1).

The construct enables creation of ncRNAs with defined 5’ and 3’ ends that are free of

potentially interfering flanking sequences. Antiswitch s1 was expressed in this construct

under control of a galactose-inducible (GAL1) promoter in yeast cells. A plasmid

containing a yeast enhanced GFP (yEGFP)35 under the control of a GAL1 promoter was

transformed into the same cells (Fig. 1a).

Results from protein expression assays demonstrate ligand specific in vivo activity

of s1 (Fig. 2a). Expression of antiswitch s1 in the absence of theophylline decreases GFP

expression from control levels by approximately 30%, where addition of greater than 0.8

mM theophylline decreases expression to background levels. The antisense and aptamer

domains were expressed separately as controls and had expected effects on GFP

expression levels. It is interesting to note the rapid change in expression levels between

0.75 mM and 0.8 mM theophylline. The antiswitch s1 displays binary, on/off behavior

rather than linearly modulating expression over a range of theophylline concentrations.

This response supports the anticipated cooperative mechanism of structural switching

dependent on both ligand and target mRNA. It has been previously demonstrated that the

aptamer used in this antiswitch does not bind caffeine,29 which differs from theophylline

by a single methyl group. The addition of caffeine does not change expression levels



2.8

Chapter 2: Novel antiswitch regulators

from those of an inactive switch, demonstrating that specific ligand-aptamer interactions

are necessary to activate the antiswitch and free the antisense domain to decrease gene

expression of GFP.

Quantitative real-time PCR (qRT-PCR) was performed on antiswitch s1 and

target mRNA extracted from cells grown under different conditions to determine relative

RNA levels (Table 1). Relative levels of target transcript did not change significantly

between cells harboring s1 grown in the absence and high levels of theophylline,

indicating that antiswitches function through translational inhibition rather than affecting

target RNA levels. In addition, the steady-state relative level of s1 was approximately

1,000-fold that of target levels, although both antiswitch and target were expressed from

the same promoter. This indicates that antiswitch molecules may have higher intracellular

stabilities than mRNA potentially due to stabilizing secondary structures or are

synthesized more efficiently. The temporal response of antiswitch regulation was

determined by inducing antiswitch activation by the addition of theophylline to cells

expressing steady-state levels of GFP and s1 in the “off” state (Fig. 2b). GFP levels

began decreasing shortly after the addition of theophylline at a rate corresponding to a

half-life of approximately .5 to 1 hour, which is consistent with the half-life of the GFP

variant used in these experiments.35 This data supports that antiswitch molecules act

rapidly to inhibit translation from their target mRNAs in the presence of activating levels

of effector and that the time required for target protein levels to decrease is determined by

the protein’s half-life.



2.9

Chapter 2: Novel antiswitch regulators

In vitro characterization studies were conducted to examine antiswitch ligand

affinity and conformational changes associated with antiswitch response. Gel shift

experiments were conducted in the presence of equimolar amounts of a short target

transcript (200 nucleotides), containing regions upstream and downstream of the start

codon, and labeled s1 and varying concentrations of theophylline to examine antiswitch

ligand affinity (Fig. 2c). A sharp shift in antiswitch mobility is detected between 2 and 10

µM theophylline, presumably due to binding of both theophylline and target. Nuclease

mapping in the presence of ligand alone was also conducted to investigate antiswitch

conformational changes (Fig. 2d). This data supports that antiswitch molecules exhibit

conformational changes at much higher concentrations of ligand than in the presence of

ligand and target (between 200 µM and 2 mM versus 2 µM and 10 µM), supporting the

cooperative effects of ligand and target on antiswitch conformational dynamics. The in

vivo data report the concentration of effector molecule in the media and it is anticipated

that the intracellular concentration of these molecules will be much lower due to transport

limitations across the membrane. One study reported over a 1,000-fold drop in

theophylline concentration across the E. coli membrane36. The in vitro experiments

indicate that ligand binding and structural switching occur over narrow concentration

ranges, much lower than the extracellular concentrations reported in the in vivo studies.

This data indicates that in the presence of target in vitro antiswitch conformational

changes display a sharp binary response to ligand concentrations in the low micromolar

range, which is probably indicative of the intracellular concentrations of theophylline in

these studies.
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The switching behavior of the antiswitch platform is dependent on conformational

dynamics of the RNA structures; therefore it is possible to tune switching behavior in a

straightforward manner by altering thermodynamic properties of the antiswitch. It is

anticipated that the absolute and relative stabilities of the antisense stem and the aptamer

stem will be important design parameters in tuning the switch behavior of an antiswitch.

To explore the dynamic range of switch behavior, we created several antiswitches

(s2−s4) with varying antisense and aptamer stem stabilities (Fig. 3a). It was anticipated

that these altered antiswitches would expand the concentration range over which the

switch in gene expression was observed and increase the dynamic range of GFP

expression.

In general, it was observed that increasing antisense stem stability by the addition

of base pairs created switches that required higher concentrations of theophylline to affect

a switch, whereas decreasing stem stabilities created switches that inhibit GFP expression

at lower theophylline concentrations. For example, antiswitch s2 differs from antiswitch

s1 by a single nucleotide (A21 to C) (Fig. 3a). This mutation introduces a mismatched

pair in the antisense stem so that in the absence of ligand, the construct is less

thermodynamically stable. As a result, s2 exhibits altered switching dynamics:

theophylline concentrations greater than 0.2 mM inhibit gene expression, compared to 0.8

mM for construct s1 (Fig. 3b). Alternately, increasing the stability of the antisense stem

creates a switch that requires higher concentrations of theophylline to inhibit expression.

Antiswitch s3 is designed with an antisense stem five nucleotides longer than s1 and an

aptamer stem with 3 bp of the lower stem formed, increasing the absolute stem stabilities.

As a result of this increased stability, s3 switches from GFP expression to inhibition of
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GFP at approximately 1.25 mM theophylline (Fig. 3b), roughly 1.5-fold the

concentration required to switch s1 and 6-fold of that required to switch s2. Furthermore,

s3 exhibits higher levels of GFP expression in the “off” state, 10% versus 30% inhibition

from full expression. Antiswitch s4 was constructed to examine the effects of further

destabilizing the antisense stem. This antiswitch includes an altered loop sequence (U18

to C), which further destabilizes the antisense stem from s2. Assays indicate that s4

further expands the dynamic switching behavior of the antiswitch construct, exhibiting

switching at 0.1 mM theophylline (Fig. 3b).

To demonstrate the modularity of the antiswitch design platform, we constructed

and characterized several different antiswitch molecules by swapping in different aptamer

domains (Fig. 4). These changes in the aptamer domain were designed to keep the

antisense stem and the switching aptamer stem identical to previous designs since the

target transcript was kept the same, while swapping out the remainder of the aptamer

module. To further explore the range of ligand responsiveness in designed antiswitches,

we constructed a switch s5 employing a previously characterized aptamer exhibiting

lower affinity to theophylline.29 This aptamer has a Kd approximately ten-fold higher than

the aptamer used in s1−s4. In addition, the response of this antiswitch was tuned by

destabilizing the antisense stem in a manner identical to s2, creating s6. To further test

the modularity of this platform, an antiswitch was also constructed with a previously

characterized aptamer to tetracycline.37 This aptamer has an affinity to tetracycline

similar to that of the theophylline aptamer used in s1−4 (Kd = 1 _M).
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The data in Figure 3 support the modularity of the antiswitch platform to

different aptamer domains. The modified theophylline aptamers exhibit an altered

response to ligand concentrations from s1−4. As expected, the switching for s5 and s6

occurs at higher theophylline concentrations (Fig. 5a). Significantly, s5, which contains

an aptamer domain with a 10-fold higher Kd than the aptamer domain in s1, switches at

approximately a 10-fold higher theophylline concentration. In addition, the tetracycline

antiswitch s7 shows similar switch dynamics as s1−4, suggesting that the response curve

observed is a general feature of designed antiswitches (Fig. 5b).

To further examine the flexibility of the antiswitch platform, we redesigned the

platform in an attempt to construct an “on” antiswitch from the aptamer and antisense

domains used in the design of s1. An antiswitch s8 that inhibits expression in the absence

of theophylline, but allows expression in the presence of theophylline, was constructed

using similar design principles. This switch displays its antisense domain in the absence

of ligand, leaving it free to interact with the target mRNA, while sequestering the

antisense in the aptamer stem when ligand is present (Fig. 6a). s8 displays similar

dynamic behavior to s1 (switching around 1 mM theophylline), as is expected due to

similar base pairing energetics (Fig. 6b). This functional “on” switch demonstrates the

flexibility of the antiswitch platform and the generality of the design themes.

The modular nature of the antiswitch platform allows for systems exhibiting

combinatorial control over gene expression. To illustrate this, we introduced into cells

two switches each responsive to a different effector molecule and each regulating the

protein expression of a different mRNA target: s1, a theophylline responsive GFP
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regulator, and s9 (see Fig. 7a online), a tetracycline responsive yellow fluorescent variant

protein (Venus)38 regulator (Fig. 7b). Changes in the targeting capabilities of these

molecules were made by swapping out the antisense stem and switching aptamer stem

while keeping the remainder of the aptamer module the same. Concurrent expression of

these two antiswitches with a plasmid carrying both GFP and Venus allowed for an assay

of the simultaneous regulation of gene expression by modular antiswitch design. As

shown in Fig.7c, addition of theophylline decreased expression of GFP, while Venus

expression remained unaffected and addition of tetracycline decreased Venus while not

affecting GFP. Furthermore, the addition of both ligands decreased expression of both

GFP and Venus. This simple system illustrates the potential of building more complex

genetic circuits that are precisely regulated by multiple antiswitch constructs.

This work demonstrates that engineered, ligand controlled antisense RNAs, or

antiswitches, are powerful, allosteric regulators of gene expression. The general design of

an antiswitch is based on conformational dynamics of RNA folding to create a dual stem

molecule comprised of an antisense stem and an aptamer stem. These stems are designed

such that in the absence of ligand, the free energy of the antisense stem is lower than that

of the aptamer stem. Ligand and target act cooperatively to alter the conformational

dynamics of these molecules and stabilize the formation of the aptamer stem and the

binding of the antisense domain to its target transcript. The antiswitch platform is

flexible, enabling both positive and negative regulation. The “on” switch is designed

using the same energetics on an altered platform such that in the absence or low levels of

ligand, the antisense domain is free to bind to the target; however, ligand binding changes
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the conformational dynamics of these molecules so that the antisense domain is bound in

the aptamer stem.

The switching dynamics of antiswitch regulators are amenable to tuning by

forward engineering design strategies based on thermodynamic properties of RNA.

Altering the free energy of the antisense domain alters the conformational dynamics of

these molecules in a predictable fashion. Specifically, decreasing the stability of the

antisense stem decreases the ligand concentration necessary to switch the antiswitch

conformation, and increasing the stability of the antisense stem increases the ligand

concentration necessary to switch the conformation as well as shifts the dynamics to

favor the “off” state at low ligand levels.

In addition, the antiswitch platform is fully modular, enabling ligand response and

transcript targeting to be engineered by swapping domains within the antiswitch

molecule. The ligand detection capability of antiswitches is designed separately from the

targeting capability by swapping only the aptamer domain. Likewise, the targeting

capability of these molecules can be designed separately from the ligand detection

capability by swapping both the antisense stem and the switching aptamer stem to

recognize a different target sequence, while not affecting the aptamer domain.

Antiswitch molecules are novel, RNA-based, allosteric regulators of gene

expression that can potentially function across a diverse range of organisms, from

prokaryotes to humans, making them extremely useful in many different applications.

Their design provides a foundation upon which to build other ligand controlled

riboregulators for different systems. This type of allosteric riboregulator presents a
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powerful tool for gene therapy applications, where one would like to target specific

transcripts in response to specific cellular environments that are indicative of a diseased

state39. One can also anticipate exogenously delivered antiswitches acting as therapeutic

molecules, similar to exogenously delivered antisense oligonucleotides, thereby

extending the functionality of current antisense therapies by introducing cell-specific

action to an already highly targeted therapy. Antiswitch technology can be used to

engineer novel regulatory pathways and control loops for applications in metabolic

engineering40 and synthetic circuit design41 by enabling the cell to sense and respond to

intracellular metabolite levels and environmental signals. Finally, antiswitches present

new tools for cellular imaging, measuring, and detection strategies, enabling

programmable concentration-specific detection of intracellular molecules. Antiswitches

offer a unique platform to create tailor-made cellular sensors and “smart” regulators that

potentially can target any gene in response to any target ligand, creating new avenues for

cellular control and engineering.
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Figure 1 Design and function of a novel antiswitch regulator. (a) General illustration

of the mechanism by which an antiswitch molecule acts to regulate gene expression in

vivo. The antisense sequence is indicated in red; switching “aptamer stem” is shown in

blue. In the absence of effector, the antisense domain is bound in a double-stranded

region of the RNA referred to as the “antisense stem” and the antiswitch is in the “off”

state. In this state the antiswitch is unable to bind to its target transcript, which encodes a

gfp coding region, and as a result, GFP production is on. In the presence of effector, the

antiswitch binds the molecule, forcing the aptamer stem to form, switching its

confirmation to the “on” state. In this state the antisense domain of the antiswitch will

bind to its target transcript and through an antisense mechanism turn the production of

GFP off. (b) Sequence and predicted structural switching of a theophylline-responsive

1c
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antiswitch, s1, and its target mRNA. On s1, the antisense sequence is indicated in red;

switching aptamer stem sequence is indicated in blue, the stability of each switching stem

is indicated. On the target mRNA, the start codon is indicated in green. (c) Sequence and

cleavage mechanism of ncRNA expression construct. The expression construct enables

cloning of general sequences between two hammerhead ribozyme sequences through

unique restriction sites BamHI, EcoRI, SalI, and XhoI (indicated in green). Predicted

cleavage sites are indicated by red arrows. General ncRNA insert is indicated by a blue

line or lettering. Following cleavage, the resulting ncRNA has defined 3’ and 5’ ends.
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Figure 2 (a) In vivo GFP regulation activity of s1 and controls across different effector

concentrations: aptamer construct (negative control) in the presence of theophylline

(green); antisense construct (positive control) in the presence of theophylline (red); s1 in

the presence of caffeine (negative control, orange); s1 in the presence of theophylline

(blue). Data is presented as relative, normalized GFP expression in cells harboring these

constructs against expression levels from induced and uninduced cells harboring only the

GFP expression construct. (b) In vivo temporal response of s1 inhibiting GFP expression

upon addition of effector to cells that have accumulated steady-state levels of GFP and

antiswitch s1: no theophylline (blue); 2 mM theophylline (red). (c) In vitro affinity assays

of s1 to target and effector molecules. The mobility of radiolabeled s1 was monitored in

the presence of equimolar concentrations of target transcript and varying concentrations

of theophylline as indicated. (d) Structural probing of antiswitch s1 through nuclease

mapping. Samples correspond to fluorescently labeled s1 incubated in the presence of

RNase T1 and varying concentrations of theophylline. Fragments generated by RNase T1

cleavage 3’ of single-stranded G’s were separated by capillary electrophoresis. Peak 1

corresponds to the antisense domain, and peak 2 corresponds to the switching aptamer

stem. In both the absence of theophylline and 200 µM theophylline, the switching

aptamer stem is cleaved (peak 2), indicating that this domain is in a single-stranded form,

accessible to the nuclease. In 2 mM theophylline this peak is absent, indicating that the

aptamer stem is protected in a double-stranded stem. Furthermore, in 2 mM theophylline

the disappearance of peak 2 occurs simultaneously with the appearance of peak 1,

indicating that the antisense domain is in a single-stranded form accessible to the



2.25

Chapter 2: Novel antiswitch regulators

nuclease. This peak is not present in lower levels of theophylline, supporting a change in

accessibility of this region of the antiswitch under these concentrations. Unlabeled peaks

between 1 and 2 correspond to cleavage within the region connecting the antisense and

aptamer stems. Peaks after 2 correspond to full-length constructs.
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Figure 3 Tuning and expanding the switch response of an antiswitch regulator. (a)

Predicted structures of tuned antiswitches (s2−s4), based on s1, in the absence of

theophylline binding. The antisense sequences are indicated in red; switching aptamer

stem sequences are indicated in blue; modified sequences are indicated in green, the

stability of each switching stem is indicated. (b) In vivo GFP regulation activity of s1s4

across different theophylline concentrations: s1- initial antiswitch construct (blue); s2-

destabilized antiswitch construct (red); s3- stabilized antiswitch construct (orange); s4-

destabilized antiswitch construct (green).

3b
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Figure 4. Sequences and predicted structures of antiswitches s5, s6, and s7 in the absence

of ligand binding. The antisense sequences are indicated in red; switching aptamer stem

sequences are indicated in blue; modified sequences are indicated in green; the stability

of each switching stem is indicated: s5- modified theophylline aptamer antiswitch based

on s1; s6- destabilized modified theophylline aptamer antiswitch; s7- tetracycline aptamer

antiswitch based on s1.
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Figure 5. (a) In vivo GFP regulation activity of modified aptamer-antiswitch constructs

(s5−s6) across different theophylline concentrations: s1- initial antiswitch construct

(blue); s5- antiswitch construct with an aptamer domain having 10-fold lower affinity to

theophylline than that used in s1 (green); s6- destabilized modified aptamer-antiswitch

construct, based on s5 (red). (b) In vivo GFP regulation activity of antiswitch constructs

responsive to different small molecule effectors (s1, s7) across different effector

concentrations: s1- initial antiswitch construct responsive to theophylline (blue); s7-

antiswitch construct modified with a tetracycline aptamer domain, based on s1,

responsive to tetracycline (red).
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Figure 6 Redesign and characterization of a novel “on” antiswitch regulator. (a)

Sequence and structural switching of an “on” antiswitch regulator (s8) responsive to

theophylline. The antisense sequence is indicated in red; switching aptamer stem

sequence is indicated in blue; the stability of each switching stem is indicated. On the

target mRNA, the start codon is indicated in green. s8 is designed such that in the absence

of theophylline, the antiswitch is “on” or the antisense domain is free to bind to its target.

In the presence of theophylline, the antiswitch undergoes a conformational change to the

“off” state such that the antisense domain is bound in a double-stranded RNA stem that is

part of the aptamer stem. (b) In vivo GFP regulation activity of “on” and “off” antiswitch

constructs across different theophylline concentrations: s1- initial ‘off’ antiswitch

construct (blue); s8- redesigned “on” antiswitch construct, based on s1 (red).
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Figure 7.  (a) Sequence and structural switching of a tetracycline-responsive Venus

(YFP) regulator, s9, and its target mRNA. On s9, the antisense sequence is indicated in

red; switching aptamer stem sequence is indicated in blue, the stability of switching stem

is indicated. On the target mRNA, the start codon is indicated in green. (b) Illustration of

the mechanism by which two independent antiswitch molecules act to regulate the

expression of multiple target genes in vivo. In the absence of their respective effectors,

the antiswitches are in the “off” state and are unable to bind to their target transcripts. In

this state, both GFP and YFP production is on. In the presence of theophylline, one

antiswitch switches its conformation to the “on” state and turns off GFP production. In

the presence of tetracycline, the second antiswitch switches its conformation to the “on”

7c
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state and turns off YFP production. These antiswitches act independently of each other to

provide combinatorial control over genetic circuits. (c) In vivo regulation activity of two

antiswitch constructs (s1, s9) against their respective targets (GFP, YFP) in the presence

or absence of their respective effector molecules (theophylline, tetracycline). Relative

YFP expression (black); relative GFP expression (white).
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Table 1 Relative RNA levels of target mRNA and antiswitch s1. Relative levels are

normalized to GFP mRNA levels in the absence of theophylline.

0.149±0.0080.158±0.009Uncleaved hammerhead

971±47.1990±46.2Antiswitch s1

1.1±0.0521±0.048GFP mRNA

2 mM theophylline0 mM theophyllineRNA

TAGCGGATCCAGGTCTGATGAGTCCGTGAGGACGs1/2ham.qpcr.
fwd

CTGGCAATTTACCAGTAGTACAAAgfp.qpcr.rev

ATTTTGGTTGAATTAGATGGTGAgfp.qpcr.fwd

CTAAAGGTGCTGCCAAGGGs1.qpcr.rev

ACCAGACAACCCAAAGCAAs1.qpcr.fwd

AGGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACCUTheophylline
aptamer

ACCUUUAGACAUUUAGFP antisense

UUGCUCACCAUGGUCCUCACCAUGGUGAGCAAAAAACAUACCAGAUCGCCACCCGCGCUUUAAUCUGGAGAGGUGAAGAAUAC
GACCACCUUUGCUCAC

s9

ACCUUUAGACAUUUAGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCUAAAUGUCs8

ACCUUUAGACAUUUACCUCUAAAUGUCUAAAGGUAAAACAUACCAGAUCGCCACCCGCGCUUUAAUCUGGAGAGGUGAAGAAU
ACGACCACCUACCUUUAG

s7

ACCUUUAGACAUUUACCUCUACAUGUCUAAAGGUGAUACCACGCGAAAGCGCCUUGGCAGCACCUUUAGs6

ACCUUUAGACAUUUACCUCUAAAUGUCUAAAGGUGAUACCACGCGAAAGCGCCUUGGCAGCACCUUUAGs5

ACCUUUAGACAUUUACCCCUACAUGUCUAAAGGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACCUUUAGs4

ACCUUUAGACAUUUAAUUAACCUCUUAAUUAAAUGUCUAAAGGUGAAGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCUUCA
CCUUUAG

s3

ACCUUUAGACAUUUACCUCUACAUGUCUAAAGGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACCUUUAGs2

ACCUUUAGACAUUUACCUCUAAAUGUCUAAAGGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACCUUUAGs1

RNA sequenceAntiswitch
construct
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pRS316-GalGAL1 / ribozyme construct expressing theophylline aptamerpSWITCH1.aptamer

pRS316-GalGAL1 / ribozyme construct expressing GFP antisensepSWITCH1.anti

pRS316-GalGAL1 / ribozyme construct expressing s1 and s9pSWITCH2.s1/9

pRS316-GalGAL1 / ribozyme construct expressing s8pSWITCH1.s8

pRS316-GalGAL1 / ribozyme construct expressing s7pSWITCH1.s7

pRS316-GalGAL1 / ribozyme construct expressing s6pSWITCH1.s6

pRS316-GalGAL1 / ribozyme construct expressing s5pSWITCH1.s5

pRS316-GalGAL1 / ribozyme construct expressing s4pSWITCH1.s4

pRS316-GalGAL1 / ribozyme construct expressing s3pSWITCH1.s3

pRS316-GalGAL1 / ribozyme construct expressing s2pSWITCH1.s2

pRS316-GalGAL1 / ribozyme construct expressing s1pSWITCH1.s1

pRS314-GalpRS314-Gal expressing yEGFP and VenuspTARGET2.gfp/V

pRS314-GalpRS314-Gal expressing yEGFPpTARGET1.gfp

Parent plasmidDescriptionPlasmid
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Evolutionary theory suggests that genetic regulatory circuits optimize protein expression

levels to maximize fitness.1, 2 However, the dependence of fitness on levels of a regulator

protein across varying environmental conditions has seldom been measured. Here, we

found that varying the expression of a transcriptional regulator of nitrogen metabolism,

Dal80p3, mediates a trade-off in fitness between resource-abundant and resource-limiting

environments in Saccharomyces cerevisiae by modulating noise in the expression of a

nitrogen metabolic enzyme, glutamate dehydrogenase (Gdh1p). Redundancy in the

metabolic pathways and the regulatory network structure of ammonia assimilation

allowed noise rather than abundance of Gdh1p to determine a classic dichotomy in

ecological strategies: whether to specialize in maximizing fitness in resource abundant

(rate strategy), or to specialize in maximizing fitness in resource limiting environments

(yield strategy).4, 5 Our results suggest that the optimization of protein noise may be as

important as the optimization of protein expression levels for crafting ecological

strategies to environmental demands.
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The ability to assimilate and utilize nitrogen is a significant component of fitness in S.

cerevisiae, and yeast display considerable strain-to-strain variation in the utilization of

this key resource.6 Nitrogen metabolism is largely controlled by a complex network of

auto- and cross-regulation of four transcriptional regulators: Gln3p, Gat1p, Gzf3p, and

Dal80p7 (Fig. 1). We replaced the endogenous promoter of DAL80 with the GAL1-10

promoter by chromosomal integration (Fig. 2a) to achieve galactose-tunable control8 of

Dal80p (Fig. 2b). We then measured fitness of the PGAL-DAL80 strain at various Dal80p

levels across a range of ammonia concentrations (spanning near growth limiting to near

toxic conditions)9 by direct competition with a reference strain.10 At low expression of

Dal80p, the engineered strain displayed lower fitness than the parent strain at low

ammonia concentrations, and higher fitness with increasing ammonia concentrations

(Fig. 3a). Conversely, high Dal80p expression led to high relative fitness of the

engineered strain at low ammonia and progressively lower fitness as ammonia

concentration increased. To parameterize the fitness effects, we defined an environment-

dependent fitness term, Wenv, as the ratio of fitness in high ammonia (556 mM) to fitness

in low ammonia (8.6 mM). Wenv values greater than 1 indicate strains that are more

competitive at high ammonia, where values less than 1 indicate strains more competitive

at low ammonia (Fig. 3b).

Depending on the level of Dal80p expression, strains are either superior

competitors in high or low ammonia concentrations, demonstrating a trade-off in fitness

across environments. This fitness trade-off is specific to ammonia as a nitrogen source

(Fig. 4a) and is dependent on all three ammonia assimilation pathways (Fig. 4b). Trade-

offs have been demonstrated between traits such as reproduction and growth, longevity
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and fecundity, and competitive ability and resistance to invasion.11-13 One of the most

prominent trade-off theories in biology is that of r versus K strategists.4 Organisms

displaying a K strategy are predicted to optimize utilization of resources, such as when

the population is near its carrying capacity and resources are scarce, while r strategists

are predicted to dominate when resources are abundant. These trade-offs are often

underpinned by trade-offs in cellular biochemistry such as rate and yield of enzymatic

reactions14 and substrate uptake and affinity of resource transport.15 We next examined

the effect of changing Dal80p levels on the primary route of ammonia assimilation in

yeast, glutamate dehydrogenase (Gdh1p). Analysis of single-cell expression of a

Gdh1p:GFP fusion protein via flow cytometry in the PGAL-DAL80 strain revealed that

increasing levels of Dal80p had little effect on mean Gdh1p abundance (Fig. 5a), but

changed the noise in Gdh1p expression. Noise, or stochastic fluctuations in the

abundance of proteins, can be enhanced or attenuated by regulatory circuits16 and has

been shown to be critical in biological functions such as determining viral latency17 and

competence in Bacillus subtilis.18 In our engineered strain, low levels of Dal80p resulted

in higher noise in Gdh1p expression (15% higher than the parent), while high levels of

Dal80p reduced noise relative to the parent strain (20% lower than the parent) (Fig. 5c).

Mean Gdh1p abundances remained relatively constant across all Dal80p levels (Fig. 5d).

To test whether noise in Gdh1p expression was correlated with the observed

fitness trends independently of other Dal80p targets or galactose inducer effects, we

generated a set of mutants with varying Gdh1p abundance and noise values by mutating

the GDH1 promoter. We identified sets of mutants having similar abundances and

variable noise in Gdh1p expression (Fig. 6a), such that the contribution of either noise or
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abundance could be parsed. We measured Wenv in these mutant sets and observed a

stronger positive correlation with noise in Gdh1p expression (correlation coefficient =

0.83, R2 = 0.69) than abundance (correlation coefficient = 0.079, R2 = 0.0062) (Fig. 6b).

To examine whether stochastic fluctuations in the expression of an enzyme can

affect the total rate of product formation, we used the Gillespie algorithm to perform a

stochastic simulation of the expression of an enzyme that converts a substrate into a

single product (Fig. 7a). The simulation results show a classic hyperbolic enzyme

titration curve (Fig. 7b). To examine the effect of noise on this system, we repeated the

simulations, keeping the mean abundance of the enzyme constant while varying noise in

enzyme expression (Fig. 8a). We then performed a series of simulations for different

enzyme abundance values and calculated the noise dependence of the effective rate for

each mean enzyme value (Fig. 8b). Noise dependence passes through a maximum value

in these simulations, corresponding to the “cusp” of the enzyme titration plateau (Fig.

7b), indicating that there is a region of enzyme abundance where the system is most

susceptible to noise. One qualitative prediction of this simulation is that noise will have a

lower impact on product formation rates at high enzyme levels.

The above simulations and data suggest that noisy enzyme expression can

decrease the rate of product formation from Gdh1p. Thus, a strain with lower rates of

Gdh1p catalysis should show similar fitness trends as a high noise strain, whereas a strain

with higher rates of Gdh1p catalysis should show fitness trends similar to a low noise

strain. To test this, we replaced the endogenous copy of Gdh1p with previously

characterized Gdh1p rate-enhanced and rate-deficient mutants. The D150H mutant was

shown to have a 1000-fold lower rate measured in vitro, while the C313S mutant showed
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a 0.4-fold increase in rate.19 The catalytic rate-deficient D150H mutant was more

competitive than the parent strain in high concentrations of ammonia (NH4
+ > 278 mM)

and was lower fitness than the parent strain in low ammonia concentrations (Fig. 9). In

contrast, the catalytic rate-enhanced C313S mutant was less fit than the parent strain in

high ammonia environments and displayed higher fitness in low ammonia concentrations.

Taken together, the simulations and data suggest that Gdh1p rates are correlated

with fitness in different ways in high and low ammonia environments. For example, at

low ammonia concentrations, fitness is positively correlated with Gdh1p rate: the

catalytic mutant with high rate showed higher fitness as observed with strains with low

noise, which confers higher effective rates according to simulations. A positive

correlation of metabolic pathway rates with growth rate has been highlighted in ATP

synthesis in microbes.20 Conversely, in rich ammonia environments, Gdh1p rate is

negatively correlated with fitness: the catalytic mutant with high rate showed low fitness,

whereas the mutant with lower catalytic rate showed higher fitness. We speculate that the

accumulation of downstream metabolites may have deleterious effects on fitness, as has

been observed in the perturbation of AdoMet synthesis and methionine

hyperaccumulation in yeast.21

Regardless of the mechanism through which Gdh1p rate affects fitness, the

catalytic point mutants show that the rate of Gdh1p catalysis can impact fitness in

different ammonia environments, while the simulations demonstrate how noise can affect

the effective rate of reaction, drawing a causal link between Gdh1p noise and fitness

trends. However, one would also expect changes in mean Gdh1p abundance to affect

effective catalytic rates. Yeast possess an alternate route through which to synthesize
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glutamate from ammonia, the NAD-dependent glutamate synthase Glt1p22. Glt1p has

been shown to be upregulated 3-fold in Gdh1p deletion strains,22 and titration studies

with Dal80p and Gdh1p indicate that GLT1 transcript levels are inversely correlated with

Gdh1p abundance but not noise (Figs. 10a,b). These results indicate that regulatory

networks controlling levels of Glt1p may provide a mechanism to buffer large-scale

changes in Gdh1p expression. Deletion of GLT1 may remove this “balancing” and impact

how Wenv trends correlate with Gdh1p abundance and noise.

We measured the relationship between noise, abundance, and Wenv in the absence

of this redundant pathway by constructing a GDH1 promoter library (as before) in a

GLT1Δ background strain. For these mutants, Wenv shows stronger negative correlation

with Gdh1p abundance (Fig. 11a, correlation coefficient = -0.41, R2 = 0.48), than Gdh1p

noise (Fig. 11b, correlation coefficient = 0.02, R2 = 10-5). These trends are in contrast to

those observed previously (Fig. 6b) and to a similar experiment with wildtype GLT1

(Fig. 12a, Wenv versus noise: correlation coefficient = 0.52, R2 = 0.27; Fig.12b, Wenv

versus abundance: correlation coefficient = 0.19, R2 = 0.03). In the GLT1Δ background,

mutants with low Gdh1p levels show high Wenv values, as would be expected from

canonical enzyme titration (less enzyme results in lower product formation rates, showing

similar fitness trends to the rate-deficient D150H mutant). The presence or absence of

Glt1p, an alternate route for ammonia assimilation, determines whether noise (in the

presence of Glt1p) or abundance (in the absence of Glt1p) of Gdh1p determines

phenotypic behavior in a sampling of mutants (Fig. 13). As an additional control for this

model, we overexpressed Glt1p in a set of GDH1 promoter mutants. Increasing the

amount of this enzyme should push the system into a regime where rates (and, therefore,
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fitness) are not as sensitive to Gdh1p noise, according to the above simulation. We found

that GLT1 overexpression diminished the effect Gdh1p noise had on Wenv (Fig. 14),

supporting that wildtype Gdh1p and Glt1p abundances are in a regime where fitness is

susceptible to noise.

Because noise in Gdh1p expression determines an ecological strategy, then

environmental conditions should select for members of a population showing high or low

noise depending on the favored strategy. To test this hypothesis, we competed the GDH1

promoter library in two batch culture ammonia environments (139 mM and 556 mM) to

impose different selection pressures. Here, higher ammonia is predicted to have stronger

selection pressure for rate strategists.5 After 36 generations of competition, a sampling of

individuals from each environment revealed populations that were largely clustered

around the noise and Wenv values of the initial library (Fig. 15a, b). At 60 generations,

both populations show enrichment for rate strategists (Wenv > 1) versus the initial library

(Fig. 15c). Interestingly, each population is composed of a mixture of rate and yield

strategists. Importantly, the 556 mM environment enriched for mutants with higher

average noise in Gdh1p expression than the parent strain (CV2
initial = 0.61, CV2

evolved =

0.65, P = 0.007), as well as rate strategists (Wenv, initial = 0.91, Wenv, evolved = 1.69, P = 0.01).

The 139 mM environment enriched for mutants displaying lower noise than the parent

strain (CV2
initial = 0.61, CV2

evolved = 0.56, P = 1.5 x 10-6). No such enrichment was

observed when comparing mean Gdh1p abundance from each evolved population (Fig.

16, p139mM = 0.85, p556mM = 0.86, P = 0.72). Thus, because noise in Gdh1p expression is

linked with the r and K phenotypes, it can be shaped by environments that select for those
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phenotypes. To our knowledge, this is the first demonstration that gene expression noise

is a selectable trait.

One of the more concrete definitions of r and K strategies is the notion of density-

dependent selection: r strategists show fitness advantage at low population density, while

K strategists show advantage at high density. To test if strains differing only in Gdh1p

noise displayed this behavior, we designated two clones that displayed high and low

noise values from the evolved populations (at 60 generations) but similar abundance

values as r and K, respectively (Fig. 17a). We then competed these strains versus a

reference strain as above at varying initial densities for 24 hours to simulate a “season” of

competition.23 Competitions were performed in the lowest (8.6 mM) and highest (556

mM) ammonia concentrations measured to simulate a resource-poor and resource-

abundant environment, respectively. The fitness of the high noise r strategist is negative

density-dependent, implying that this strain is a better competitor in low-density

environments (Fig. 17b). The density-dependence in the high ammonia environment is

not as severe, suggesting that the abundance of ammonia determines how stringent

competition will be for a given population density. Conversely, the K strategist is more

competitive than the r strain at high population densities, demonstrating that strains

differing in Gdh1p expression noise can recapitulate canonical ecological strategies.24

By measuring an environment-dependent fitness as a function of a regulator level,

we were able to uncover a r/K trade-off in ammonia metabolism that is modulated by

noise in the expression of a metabolic gene, GDH1, and not mean abundance of this

enzyme by virtue of cross-regulation with a redundant pathway. The expression of

Dal80p itself is known to be sensitive to nitrogen catabolite repression (NCR), where
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expression is upregulated in nitrogen starvation, environments with non-preferred

nitrogen sources, or addition of the small molecule rapamycin.3 The strategy of Gdh1p

noise regulation in varying nitrogen environments is an interesting topic for future study

in that strains that differed only in Gdh1p expression noise showed canonical r and K

density-dependent behavior, indicating that noise is able to shape an ecological strategy

in nitrogen assimilation. The results presented here may be relevant to other metabolic

pathways and organisms, as metabolic redundancy is widespread throughout Nature.

While it may be advantageous to harbor duplicate and/or redundant genes and pathways

to buffer the effects of gene loss, redundant pathways may also present additional

opportunities for the regulation of metabolism and fitness. Regulatory mechanisms that

buffer noise in gene expression, such as negative feedback, may be indicative of ancestral

adaptation towards specific environments. An exploration of the network architectures

regulating such systems will reveal whether the emergence of alternative routes for

metabolic processes has presented evolution with a design opportunity for modulating

ecological strategy. Taken together, these results illustrate that regulatory networks may

optimize noise in gene expression in addition to protein levels to fashion adaptive

solutions to environmental challenges, and suggest a link between networks of genetic

regulation and networks of ecological interactions.

Methods Summary

Strains and media. All manipulations were performed with derivatives of the S288c

background from the University of California San Francisco GFP-tag collection
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(Invitrogen).25 Yeast were grown in synthetic complete media (1.7 g/L yeast nitrogen

base, nitrogen source as specified).

Competitions and fitness assays. Fitness was assayed by direct competition versus a

common reference strain10. The competitor and reference strain constitutively express

different fluorescent proteins (GFP and CFP, respectively) from the ADH1 promoter

integrated into the chromosome. The frequency of competitor and reference strain were

quantitated before and after the growth period by counting the numbers of GFP

expressing cells to non-GFP expressing cells. Fitness (w) of the competitor strain is

reported as the natural log of the change in frequency of the strain versus the reference

strain during the competitive growth period over the change in frequency of the parent

strain versus the reference strain over the same growth period:

w = ln (fold change of the engineered strain after competition with reference strain

/ fold change of the parent strain after competition with reference strain)

Calculation of noise. Noise was calculated as the square of the coefficient of variation of

the distribution26.

Mutagenic PCR and construction of promoter libraries. A construct comprising the

region approximately 500 nucleotides upstream of the GDH1  coding region was

subjected to error-prone PCR, assembled with a selectable marker, and transformed into

the specified strain background.

Gillespie simulations. Simulations were performed as previously described,27 with the

probability of reaction occurring in a given time interval proportional to the reaction rate.

Noise was introduced by varying the ratio of mRNA decay rate to protein synthesis rate
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(burst size of protein production). Compensatory changes in mRNA synthesis rate were

adjusted to simulate expression with varying noise and similar abundance.

Experimental evolution. Aliquots from the GDH1 promoter library were diluted into 2

mL synthetic complete with either 139 mM ammonia or 556 mM ammonia. Populations

were grown in batch culture and diluted 103-fold into respective fresh media every 24

hours.

Statistical analysis. Pearson correlation coefficients were calculated with either Gdh1p

noise or abundance as the dependent variable and Wenv as the independent variable,

respectively. Significance of population averaged Wenv and noise values in evolution

experiments was calculated with a two-tailed t-test. Data was tested for normality using

the Kolmogorov-Smirnov test. The mean ±s.d. from at least three independent

experiments is shown for all data.

Detailed methods can be found in Appendix B.
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Figure 1. Schematic of nitrogen regulation circuit in yeast. Diagram of known

interactions between four transcriptional regulators of nitrogen metabolism: Gln3p,

Gat1p, Dal80p, and Gzf3p. Upstream kinases and other signals (from both the

environment and inside the cell) of excess nitrogen and high nitrogen quality repress

Gln3p and Gat1p by sequestering the transcription factors outside the nucleus with the

Ure2p protein. In response to changes in nitrogen availability or quality, Gln3p and

Gat1p induce the expression of Gzf3p and Dal80p, which in turn cross-regulate and auto-

regulate the other factors as shown. These four regulators in turn regulate the set of

nitrogen utilization genes (approximately 500). Due to complex and combinatorial

interactions in the circuit as illustrated, as well as at the individual promoters of nitrogen

utilization genes, expression can be up-regulated or down-regulated depending on the

environment, and can be adjusted to meet environmental demands.
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Figure 2 Expression level of a transcriptional regulator determines competitive

ability in varying ammonia concentrations. a, The parent strain and engineered PGAL-

DAL80 strain, where the endogenous DAL80 promoter is replaced with the GAL1-10

promoter. b, Tunable Dal80p expression as a function of galactose concentration for the

engineered PGAL-DAL80 strain. Cells were grown overnight in non-inducing/non-

repressing media (synthetic complete with 2% (wt/vol) sucrose, 1% raffinose), diluted

50-fold in the specified galactose concentration, and grown for 6 hours. Cells were

harvested and total RNA was extracted as specified. Relative transcript levels were

measured by reverse transcription and quantitative PCR (qRT-PCR). Relative DAL80

transcript levels were normalized to relative ACT1 transcript levels for each sample and

are reported relative to the parent strain. The mean ±s.d. from at least three independent

experiments is shown.
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3a, Fitness of the engineered strain across varying ammonia concentrations at different

Dal80p expression levels. Dal80p expression was varied by altering the concentration of

galactose in the media and measured by qRT-PCR, and is reported relative to parent

Dal80p levels for each set of fitness data. Equal amounts of the reference and PGAL-

DAL80 or parent strains were mixed and grown in the indicated ammonia and galactose

concentrations. Numbers of each strain were quantitated through flow cytometry and

fitness of the PGAL-DAL80 strain is reported as the natural log of the change in frequency

over the growth period relative to the parent strain. b, Environment-dependent fitness

parameter, Wenv, of the PGAL-DAL80 strain as a function of Dal80p expression. Wenv is

calculated as the ratio of fitness in high ammonia (556 mM) to fitness in low ammonia

(8.6 mM) relative to the parent strain.
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Figure 4a Fitness trends are specific to ammonia as the nitrogen source. Relative

fitness of the engineered PGAL-DAL80 strain in alternative nitrogen sources at different

Dal80p expression levels. Fitness trends are reported across varying concentrations of

preferred nitrogen sources (asparagine and glutamine) and non-preferred nitrogen sources

(proline and urea). Colors represent relative Dal80p expression levels as indicated in

Figure 1b. Competitive fitness shows little change relative to the parent strain in either

preferred or non-preferred nitrogen sources. The mean ±s.d. from at least three

independent experiments is shown for all data.
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Figure 4b Fitness trends require all three ammonia assimilation pathways. Fitness

trends for the PGAL-DAL80 gdh1Δ, PGAL-DAL80 glt1Δ, and PGAL-DAL80 gdh3Δ strains

across varying ammonia concentrations at different Dal80p expression levels. Dashed

lines represent relative fitness of the engineered strain (PGAL-DAL80) across varying

ammonia concentrations for low Dal80p (squares, 0.5-fold parent strain) and high Dal80p

(circles, 3.5-fold parent strain) expression levels for comparison. The observed fitness

trends are abolished in the PGAL-DAL80 gdh1Δ strain, and fitness across all ammonia

concentrations is lower than the parent strain. Fitness trends are absent in the PGAL-DAL80

glt1Δ strain similar to the Gdh1p deletion. Fitness values slightly increase with ammonia

concentration in the PGAL-DAL80 gdh3Δ strain, although fitness trends are similarly

abolished. The mean ±s.d. from at least three independent experiments is shown for all

data.
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Figure 5a, Representative histogram of Gdh1p expression at 0% in wildtype (green),

PGAL-DAL80 cells at 0% galactose (red), and cellular autofluorescence (W303α, blue). b,

Representative histogram of Gdh1p expression at 0% in wildtype (green), PGAL-DAL80

cells at 0% galactose (red), and cellular autofluorescence (W303α, blue).    c, Noise in

Gdh1p:GFP expression in the PGAL-DAL80 strain (black) and parent strain (grey) with

varying Dal80p levels. Noise values are reported relative to the parent strain at 0%

galactose. d, Gdh1p expression levels in the PGAL-DAL80 strain with varying Dal80p

levels. The arithmetic mean of the fluorescence population distribution relative to the

parent strain is shown, and displays little change as Dal80p levels are increased.
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Figure 6 GDH1 promoter mutants show a range of Gdh1p abundance versus noise

values. a, Noise in Gdh1p expression versus mean Gdh1p abundance for a set of

randomly selected GDH1 promoter mutants (n = 91). Red, blue, and green bars indicate

mutant sets having similar Gdh1p abundances (low, medium, and high, respectively) over

a range of noise values. All errors are within 5% of the reported values. b, Wenv versus

noise in Gdh1p expression for the highlighted mutant sets. Mutant sets with low (red),

medium (blue), and high (green) Gdh1p abundance levels are indicated.
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Figure 7 Schematic of enzyme reaction simulation. a, schematic for the simulated

enzyme reactions is shown. In the specified system, mRNA is produced at a constant rate

and decays at a rate proportional to its concentration. Enzyme is produced at a rate

proportional to the mRNA concentration and decays at a rate proportional to its

concentration. Substrate is imported at a constant rate and is converted to product at a rate

dependent on the substrate and enzyme concentrations. The rate of product formation in

this system can be determined from the amount of product formed over the run time of

the simulation. b, Simulation results showing product formation as a function of enzyme

abundance with other parameters held constant. Product formation shows canonical

hyperbolic dependence on enzyme levels with a plateau region at mean enzyme levels

greater than 80.
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Figure 8 The dependence of product formation on the noise in enzyme expression in

a simulated enzyme reaction system. a, the dependence of product formation on noise

in enzyme expression at different enzyme abundances for the simulated system is shown.

Noise was varied by changing the ratio of δR (mRNA decay rate) to kE (enzyme

translation rate), which varies the average number of proteins translated from a single

mRNA (burst size), and mRNA synthesis rates were adjusted accordingly to have similar

enzyme abundances between simulations. The slope of the product formation versus

noise trend represents the noise susceptibility at this enzyme concentration. Simulations

are shown for three mean enzyme abundances ([E] = 50, 100, and 150). b , Noise

dependence of product formation as a function of enzyme expression for the simulated

enzyme system. Noise was varied by changing the average number of proteins translated

from a single mRNA (burst size), while compensating the rate of RNA production to

retain similar mean abundances between simulations. The slope of the product formed

versus noise trend for each abundance level represents the noise dependence at this

enzyme abundance.
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Figure 9. Fitness of the rate-deficient D150H (red) and rate-enhanced C313S (blue)

strains relative to the parent strain across varying ammonia concentrations. Fitness was

assayed as above.
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Figure 10a Tunable Gdh1p expression as a function of galactose concentration for

the engineered PGAL-GDH1 strain. Relative Gdh1p:GFP levels were measured as before

and are reported relative to the parent strain. The mean ±s.d. from at least three

independent experiments is shown. b, Glt1p expression varies with Gdh1p abundance

rather than noise. Top, Abundance of GLT1 mRNA as a function of Gdh1p abundance.

The endogenous GDH1 promoter was replaced with the GAL1-10 promoter to achieve

galactose tunable expression of Gdh1p. Cells were grown in varying galactose

concentrations and Gdh1p:GFP expression was measured by flow cytometry as above.

Cells were then harvested and GLT1 mRNA was measured by qRT-PCR. GLT1 transcript

levels show an inverse relationship with Gdh1p abundance, suggesting that cellular

regulatory mechanisms act to balance the expression of Gdh1p and Glt1p. Bottom,

Abundance of GLT1 mRNA as a function of noise in Gdh1p expression. The engineered

galactose tunable Dal80p strain (PGAL-DAL80), was used to modulate noise in Gdh1p

expression while keeping abundance levels relatively unchanged. GLT1 transcript levels

show little change with varying Gdh1p noise. The mean ±s.d. from at least three

independent experiments is shown.
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Figure 11 The alternate assimilation enzyme Glt1p determines the effect of Gdh1p

noise and abundance on fitness. a, Abundance in Wenv versus Gdh1p expression for a

sampling of strains harboring the GDH1 promoter library in a Gdh1p:GFP GLT1Δ

background. Wenv shows a negative correlation with abundance. b, Wenv versus noise in

Gdh1p expression for the same mutant set. Wenv shows little correlation with noise in this

mutant set.
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Figure 12 Wenv versus noise and abundance for GDH1 promoter mutants in the

wildtype background. a, Abundance in Wenv versus Gdh1p expression for a sampling of

strains harboring the GDH1 promoter library in a Gdh1p:GFP background. Wenv shows

little correlation with abundance. The mean ±s.d. from at least three independent

experiments is shown. b, Wenv versus noise in Gdh1p expression for the same mutant set.

Wenv shows stronger correlation with noise in this mutant set.  
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Figure 13. Representation of the effects of Gdh1p noise and abundance in the presence

or absence of Glt1p. In the presence of both pathways noise in Gdh1p affects fitness

because (uncharacterized) regulatory networks enable Glt1p to compensate for changes in

Gdh1p abundance. In the absence of Glt1p the mean abundance of Gdh1p determines

fitness.
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Figure 14 Overexpression of Glt1p lowers Wenv dependence on noise. Wenv as a

function of Gdh1p noise in a set of GDH1 promoter mutants transformed with a Glt1p

overexpression plasmid (grey). This mutant promoter set transformed with an empty

plasmid is shown for comparison (black). The trend of Wenv with noise observed in the

mutant set under wildtype Glt1p expression levels is diminished under Glt1p

overexpression. The mean ±s.d. from at least three independent experiments is shown.
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Figure 15 Environmental selection pressure shapes Gdh1p noise in adapted

populations. a, Wenv versus noise for the initial library (t = 0). Mean Wenv and Gdh1p

noise values for the population are shown (n = 30). b, Wenv versus noise for the Day 3

population (~36 generations) from the 139 mM ammonia (grey, n = 48) and 556 mM

ammonia (black, n = 45) selection conditions. c, Noise versus Wenv for the Day 5

population (~60 generations, n = 48 for both conditions). All errors are within 5% of the

reported values.
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Figure 16 Environmental selection pressure does not affect Gdh1p abundance. Mean

Gdh1p abundance versus Wenv for the Day 5 adapted populations (~60 generations)

selected in ammonia-abundant (grey) and ammonia-limited (black) conditions. The

population-averaged Gdh1p abundance for individual clones from each environment is

shown. Differences in average Gdh1p abundance for each population are not significant

(mean Gdh1p = 0.86 relative to the parent strain for the abundant environment, mean

Gdh1p = 0.86 relative to the parent strain for the limited environment, P = 0.72), in

contrast to the differences observed in average Gdh1p noise. Each point was measured in

triplicate and error was within 5% of the reported value.
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Figure 17. a, Representative histogram of Gdh1p expression in the r (red) and K (blue)

strains. Abundance is reported relative to the parent strain. b, Density-dependent fitness

for the r and K strains in poor and abundant ammonia environments. Fitness is reported

as the natural log ratio of r strain fitness to K strain fitness and is represented as red and

blue shading. Experiments were performed in triplicate and error is within 5% of the

reported values.



4.1

Chapter 4: Yeast use a tit-for-tat strategy to enhance cooperation

Chapter 4.

Yeast Use a Tit-For-Tat Strategy in Ammonia Metabolism to

Establish Cooperation
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Explaining the emergence of cooperation is a major goal of evolutionary biology.1-3 Most

explanations rely on kin selection,4 spatial isolation,5 or rational policing.6 However, recent

theoretical work7 has suggested that cooperation can evolve via the game theoretic tit-for-tat

(TFT) strategy,8-12 which is able to invade a population of cheaters and is itself resistant to

invasion. Here, we found that yeast use a strategy resembling tit-for-tat in regulation of ammonia

assimilation.13 We first identified a tradeoff between maximum growth rate and ammonia

utilization efficiency, which creates an opportunity for social conflict in microbial populations.14-

18 Efficient use of resources with a correlated tradeoff in growth rate is regarded as cooperation

in microbes, while inefficient use of resources with high growth rate is regarded as cheating.19, 20

We found that yeast use ammonia efficiently when ammonia is abundant (e.g., they cooperate

when resources are abundant, which would indicate cooperation from other cells) and switch to

inefficient growth in low ammonia (e.g., they defect when resources are limited, which indicates

that other cells may be competing for ammonia). Competition experiments in batch culture with

a cheater mutant confirmed that no special conditions (such as spatial isolation) is needed for the

TFT strain to invade a cheater population. This data shows that the TFT strategy is a viable

mechanism for the emergence of cooperation, even in simple organisms. In addition, this is one

of the first demonstrations that microbes use genetic regulation of metabolism to play a game

theory strategy.
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Cooperation is widespread in nature, yet it remains difficult to explain how it might have

emerged in populations via natural selection. This is demonstrated in the “tragedy of the

commons”: efficient use of a common resource at a cost to an individual can benefit selfish

individuals (who incur no costs). Game theory has modeled this situation as the Prisoner’s

Dilemma, where a player is faced with either cooperation with another player or defection. Both

obtain a payoff for mutual cooperation and a lower payoff for mututal defection. If one player

defects while the other cooperates, the defector (also known as the cheater) receives the highest

payoff while the cooperator receives the lowest payoff (the “sucker’s payoff”).  Thus, the matrix

of fitness payoffs in a Prisoner’s Dilemma dictates that defection will overcome cooperation in a

population with both strategies. Alternative strategies become possible in the repeated Prisoner’s

Dilemma, yielding a variety of cooperation and defection decisions depending on the strategy

encountered.

While cooperation and social interactions are usually considered in rational agents, microbes

have proven valuable model systems for understanding how the use of resources may (or may

not) lead to cooperation.15, 16, 18, 21 Thermodynamic first principles dictate that organisms

generally face a tradeoff between rate and yield in metabolic pathways.15, 18, 22 For example,

Pfeiffer and Bonhoeffer have described the tradeoff between the rate of adenosine triphosphate

(ATP) production and the yield of ATP production in heterotrophic organisms, and how

organisms that produce ATP efficiently can be considered altruistic cooperators. The ATP

rate/yield tradeoff is apparent in many microorganisms that use both fermentation and respiration

to metabolize glucose. Fermentation of glucose proceeds faster than respiration, but yields less
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ATP per glucose (2 versus 32 ATP), meaning that inefficient fermenting strains will be able to

outcompete slower but altruistic respiring strains. MacLean and Gudelj15 have used fermentation

and respiration mutants in Saccharomyces cerevisiae to demonstrate how competition and

cooperation between strain can be influenced by the spatial and temporal parameters of the

environment. These and other experimental studies have shown that tradeoffs between rate and

efficiency of resource metabolism drive the emergence of metabolic strategies such as

cooperation or defection. However, more complex strategies have not been seen observed, which

is somewhat surprising given the complexity of metabolic regulatory circuits.23 As noted by

MacLean and Gudelj, the ability to regulate metabolic pathways according to environmental

conditions could allow for more complex competitive strategies to arise.

We sought to investigate how the ability to switch metabolic strategies depending on the

environment could affect fitness in competition with other strategies. We had previously

characterized the fitness of S. cerevisiae GDH1 promoter mutants that showed tradeoffs between

fitness in abundant ammonia and fitness in limiting ammonia. GDH1 is a glutamate

dehydrogenase that is responsible for the majority of ammonia assimilation in yeast.13 We

hypothesized that the wildtype strain could use genetic regulation to optimize metabolism for

specific ammonia environments. We first examined maximum growth rates (µmax) in continuous

culture24, 25 for the wildtype laboratory strain and two mutants: a strain that showed high fitness

in abundant ammonia (denoted as A), and one that showed low fitness in abundant ammonia

(denoted as B). In abundant ammonia (> 2.5 g/L), the wildtype and B strain showed similar

growth rates, while the growth rate of the A strain was several fold higher (Fig.1a). Growth rate
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decreased with ammonia concentration for all strains, although the wildtype strain switched from

a B-like to A-like rate as ammonia decreased.

We next examined the efficiency of ammonia utilization for each strain at different ammonia

concentrations. Utilization efficiency is calculated as the one over the amount of ammonia

consumed per unit biomass (Methods) such that high efficiency values indicate efficient use of

ammonia per organism. We found that the efficiency of all strains increased with decreasing

ammonia concentrations, although the A strain was consistently lower efficiency than the B

strain (Fig.1b). At high ammonia concentrations the wildtype strain showed an efficiency similar

to the B strain. At low ammonia concentrations the wildtype strain switched to relatively low

efficiency, similar to the A strain. The tradeoff between growth rate and resource utilization

efficiency is a clear situation for social conflict.15, 18 The A strain shows the hallmarks of defector

(or cheater) strains in that it has a high growth rate at the expense of efficiency. The B strain

displays cooperator characteristic in that it uses ammonia efficiently (to the benefit of other cells)

at a cost to itself (lower growth rate). We will thus refer to the A strain as the defector strain and

the B strain as the cooperator strain.

As was previously observed, assays of Gdh1p gene expression variability26-29 (noise) suggest a

mechanistic link to growth rate-efficiency phenotypes. The cooperator strain showed low Gdh1p

noise across each ammonia concentration, while the defector strain showed high noise (Fig.1c).

The wildtype strain varied noise in Gdh1p expression according to ammonia concentration – in

abundant ammonia it showed low noise, with increasing noise as external ammonia decreased.
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This data further suggests that the wildtype strain switches from cooperator-similar growth to

defector-similar growth.

We were surprised that the wildtype strain did not show a growth rate and efficiency profile

similar to the defector strain. In studies of glucose metabolism, yeast are found to ferment any

excess glucose to achieve high rates of ATP production in spite of ATP yield, likely to

outcompete neighboring cells.30-32 In contrast, the wildtype strain in abundant ammonia utilizes

ammonia with high efficiency at a cost to growth rate, indicating cooperative behavior.

According to evolutionary game theory, the existsence of this cooperation should be

overwhelmed by the emergence of defecting mutants (such as the defector strain here). We

propose that the wildtype strategy is analogous to the tit-for-tat (TFT) strategy in the Prisoner’s

Dilemma. TFT players cooperate in the first round of the Prisoner’s Dilemma, and for each

subsequent round does whatever its opponent did such that cooperation is met with cooperation

and defection is met with defection (Fig.2a). Although several superior strategies have since

been described,11, 33 TFT remains a primary model for understanding reciprocal altruism. The

wildtype strain cooperates when ammonia is abundant (>2.5 g/L), which could be an indicator

that either there are no competitors in the environment or that there are other cooperators in the

environment using ammonia efficiently (Fig.2b). The wildtype strain defects when ammonia is

low (< 1.25 g/L) which could indicate that other strains are rapidly consuming ammonia. We

note several caveats, such as the fact that yeast in this context are not engaged in a pair-wise

contest and that there is a continuum of growth rates and efficiencies instead of a binary division

between cooperation and defection. However, because microbes are rarely involved in pair-wise
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competitions the wildtype strain and mutants may be a valuable system for understanding how

cooperation can persist in populations.

There are several general theoretical predictions for the TFT strategy in competition with

alternative strategies: that the strategy is resistant to invasion by a population of defectors, and

that TFT is able to invade defectors in finite populations.7 In particular, the ability of a TFT

strategy to invade a population of defectors would be a clear demonstration that TFT is a route

for the emergence of cooperation.7 We were able to experimentally test these predictions by

examining frequency dependent selection in batch culture. We chose a batch culture (or

“seasonal”15) environment so that the dynamic fitness (as ammonia is consumed) could be

assessed. We inoculated varying frequencies of wildtype (without the GDH1:GFP fusion) and

defector strain at low density (103 cfu/mL) in batch culture and allowed the culture to reach

stationary phase (48 hours of growth). We quantitated the frequencies of the wildtype and

defector strain by plating the cultures on solid media and assaying for fluorescence (Methods).

We found that at high initial wildtype frequencies (> 0.5) the defector strain showed little ability

to invade, evidenced by the nearly neutral wildtype fitness (w) observed in these competitions

(Fig.3). At low initial wildtype frequencies (< 0.3), the wildtype strain showed positive fitness

values, indicating that it was able to invade the population of defectors. These conditions are

analogous to the immigration or emergence of a small subpopulation of TFT players into a

population of defectors, and show that TFT can indeed invade a population of individuals

selfishly using resources.
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The above data shows that yeast are able to play a TFT-like strategy by adjusting the growth rate

and ammonia utilization efficiency according to external ammonia concentrations. This strategy

is notable because the wildtype strain does not have the optimal growth rate (compared to the

defector mutant) or the optimal efficiency (compared to the cooperator mutant) for a wide range

of ammonia environments. Instead, the wildtype strain has a regulatory scheme well suited for

competing with alternative metabolic strategies in dynamic fitness landscapes.34 We believe that

this is the first demonstration of a game theoretic strategy being played in a microbial population.

In addition, this work suggests that the control of metabolism in response to environmental

conditions is a route for the emergence of cooperation.

Methods Summary

Strains and media. All strains were derivatives of the GDH1:GFP fusion strain of the S288C

background. Cells were grown in synthetic complete media with 2% glucose and the indicated

amount of ammonia by addition of ammonium sulfate. Construction and selection of the low-

noise and high-noise GDH1 mutants were described previously. Briefly, primers flanking 500

nucleotides upstream of the GDH1 coding region (1043500 - 1043050, chromosome XV) were

used to amplify the fragment from yeast genomic DNA. The fragment was diluted into

mutagenic PCR buffer35. The GDH1  fragment was assembled with a LEU2 gene fragment

transformed into yeast strains using a standard lithium acetate procedure.36

Continuous growth conditions and growth rate assay. Cells were inoculated in synthetic

complete media with the appropriate ammonia concentration in a well-stirred vessel with a
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working volume of 250mL maintained at 30 degrees. Cells were allowed to stabilize for 12 hours

at a dilution rate of 0.2 hr-1. To measure maximum growth rates (µmax) the washout method24, 25

was used: when the dilution rate of the chemostat is greater than µmax the cell number decreases

by the expression lnX = (µmax – D)t + lnX0 ; where X is the cell number after time t, X0 is the

initial cell number and D is the dilution rate. We increased the dilution rate to 4.0 hr-1 and

collected samples at regular time points. Cell number was quantified by OD600 and by serial

dilution and plating on YPD-agar.

Ammonia utilization assays. Cells were grown in continuos culture as above at low dilution

(0.1 hr-1) to standardize growth rates. Cells were collected from the outflow spun down. The

supernatant was decanted into 14mL tubes, capped with a rubber stopper, and incubated at room

temperature for 30 minutes. Ammonia was quantitated by gas chromatography – mass

spectrometry (GC-MS) which can be used for accurately assaying volatile compounds such as

ammonia.37 The GC-MS system consisted of a model 6850 Series II Network GC system

(Agilent) and model 5973 Network mass selective system (Agilent). Oven temperature was

programmed from 50 degrees (1 min) to 70 degrees (10 degrees / min). 100 µL of culture

headspace was withdrawn through the rubber stopper with a syringe and manually injected into

the GC-MS. Samples were confirmed as ammonia by comparison with commercially obtained

standard, which had a retention time of 1.50 minutes. Ammonia in the headspace was correlated

to ammonia in the supernatant by a standard curve. Efficiency is reported as one over the

milligrams of ammonia consumed per 106 cells.
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Measurement of abundance and noise values through flow cytometry. Two gates were used

to standardize each cell population. The first gate isolated cells displaying regular morphology

based on electronic volume and side-scatter, while the second gate removed non-fluorescent cells

from the distribution. This gating method was compared against other methods previously

described and the abundance and noise trends observed were consistent between methods.38, 39

Noise was calculated as the square of the coefficient of variation (σ2/p2) of the distribution26.

Abundance was calculated as the mean of the distribution. 50,000 events were analyzed to

calculate noise for each sample. Noise trends were similar when calculated as the coefficient of

variation (σ/p) and the variance (σ2).

Competition assays and fitness. The defector strain and a wildtype S288c strain without the

GDH1:GFP fusion were grown overnight and diluted to 103 cells/mL. The GDH1:GFP

construct was found to have no fitness effect (data not shown) Cultures were mixed in varying

ratios in 2mL of synthetic complete media with 5 g/L ammonium sulfate. Cultures were

incubated at 30 degrees with 250 rpm shaking for 48 hours. Cultures were diluted and plated

onto YPD-agar and grown for 48 hours. Individual colonies were resuspended in 100µL media

and GFP fluorescence was assayed using a Tecan plate reader. 96 colonies were assayed for each

competition. Fitness of the wildtype strain is reported as the natural log of the ratio of its final

frequency to its initial frequency, w = ln(ffinal/finitial),15, 40 such that a values > 0 imply that the

wildtype strain increased in frequency versus the defector strain over the competition, while

values < 0 imply that it decreased in frequency.
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Figure 1. Characterization of wildtype and mutant strains. a, growth rate in continuous

culture for the wildtype strain (open squares), A strain (black squares, previously selected for

high fitness in 5 g/L ammonia), and B strain (gray squares, selected for low fitness in 5 g/L

ammonia). Growth was measured using the washout method24, 25 at each ammonia concentration.

The A strain showed the highest growth rate in all concentrations while the B strain was

consistently low. The wildtype strain showed rates similar to the B strain at high ammonia and

rates similar to the A strain at low ammonia. b, ammonia utilization efficiency, as measured by

ammonia consumption per biomass. Data is shown on a log scale for clarity. The A strain and B

strain show low and high efficiencies, respectively, while the wildtype strain switches between
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high and low efficiency as ammonia decreases. c, assays of Gdh1p gene expression noise in each

strain. The A strain and B strain display high and low noise, respectively, while the wildtype

strain displays low noise at high ammonia and high noise at low ammonia. All measurements

were performed at least three times and s.d. is shown.

Figure 2. Conceptual model of TFT-like strategy in the wildtype strain. a, TFT strategy in

the idealized Prisoner’s Dilemma game. After cooperating in the first round, the TFT player does

exactly as its opponent did in the last round. b, growth and ammonia efficiency strategy in the

wildtype strain described here. In high ammonia the strain shows altruistic behavior with high

utilization efficiency at expense of growth rate. In low ammonia the strain shows cheater

behavior with high growth rate and low efficiency of ammonia utilization.
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Figure 3. Direct competitions between the wildtype and defector strains. The frequency-

dependence of the wildtype strain in competition with the defector strain (B strain) was measured

by direct competition in batch culture. Relative frequencies were measured after competition and

fitness is reported as w, the natural log of the ratio between final and initial wildtype frequency

(Methods). At low initial frequencies (< 0.3) the wildtype strain showed w > 1 indicating that it

was able to invade the defector population. In contrast, the defector strain was unable to invade a

large population of the wildtype strain (wildtype frequency > 0.5) indicated by the non-negative

w values for wildtype in those competitions. All measurements were performed in triplicate and

s.d. is shown.
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All references are in Chapter 2.

Plasmid construction, cell strains, reagents. Standard molecular biology techniques

were employed to construct all plasmids.42 Four different plasmid constructs were

generated by cloning into the pRS314-Gal and pRS316-Gal shuttle plasmids.43 Genes and

antiswitch constructs were cloned into multi-cloning sites, downstream of a GAL1

promoter. These plasmids contain an E. coli origin of replication (f1) and selection

marker for ampicillin resistance, as well as a S. cerevisiae origin of replication (CEN6-

ARSH4) and selection markers for tryptophan (TRP1-pRS314) and uracil (URA3-

pRS316) biosynthetic genes in order to select cells harboring these plasmids in synthetic

complete media supplemented with the appropriate amino acid dropout solution.42 In the

first plasmid system, pTARGET1, yEGFP was cloned into the multi-cloning site and is

located between a GAL1 promoter and ADH1 terminator. In the second plasmid system,

pSWITCH1, various antiswitches were cloned between two hammerhead ribozymes

which are located between a GAL1 promoter and ADH1 terminator. In the third plasmid

system, pTARGET2, a PGAL-Venus-ADH1term construct was cloned downstream of the

PGAL-yEGFP-ADH1term construct in pTARGET1. Therefore, pTARGET2 produces two

target transcripts when induced with galactose. In the fourth system, pSWITCH2, a PGAL-

antiswitch-ADH1term construct was cloned downstream of the PGAL-antiswitch-ADH1term

construct in pSWITCH1. Therefore, pSWITCH2 produces two antiswitch constructs

when induced by the presence of galactose. Two sets of plasmids, pTARGET1 and

pSWITCH1 or pTARGET2 and pSWITCH2, were transformed into S. cerevisiae

simultaneously and maintained with the appropriate nutrient selection pressure. In these
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two plasmid sets, expression of antiswitch constructs and their targets was induced upon

the addition of galactose to the media. Oligonucleotide primers were purchased from

Integrated DNA Technologies. All genes and antiswitches were PCR amplified in a Dyad

PCR machine (MJ Research) with Taq DNA polymerase (Roche). The yegfp gene was

obtained from pSVA15,35 and the venus gene was obtained from pCS2/Venus38. All

antiswitch sequences were obtained using custom oligonucleotide design.

All plasmids were constructed using restriction endonucleases and T4 DNA ligase

from New England Biolabs. Plasmids were screened by transforming into an

electrocompetent E. coli strain, DH10B (Invitrogen; F- mcrA Δ(mrr-hsdRMS-mcrBC)

φ80dlacZΔM15 ΔlacX74 deoR recA1 endA1 araD139 Δ(ara, leu)7697 galU galK λ-

rpsL nupG), using a Gene Pulser Xcell System (BioRAD) according to manufacturer’s

instructions. Subcloning was confirmed by restriction analysis. Confirmed plasmids were

then transformed into the wild-type W303α S. cerevisiae strain (MATα his3-11,15 trp1-1

leu2-3 ura3-1 ade2-1) using standard lithium acetate procedures.44 E. coli cells were

grown on Luria-Bertani media (DIFCO) with 100 µg/ml ampicillin (EMD Chemicals) for

plasmid selection, and S. cerevisiae cells were grown in synthetic complete media

(DIFCO) supplemented with the appropriate dropout solution (Calbiochem). Plasmid

isolation was done using Perfectprep Plasmid Isolation Kits (Eppendorf).

Protein expression assays. Yeast cells were inoculated into synthetic complete media

supplemented with the appropriate drop out solution and sugar source (2% raffinose, 1%

sucrose) and grown overnight at 30 °C. Cells were back diluted into fresh media to an

OD600 of 0.1 and grown at 30 °C. For assaying antiswitch activity, this fresh media
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contained appropriate concentrations of theophylline (Sigma), caffeine (Sigma),

tetracycline (Sigma), or water (negative control), and expression was induced to a final

concentration of 2% galactose, or an equivalent volume of water was added (noninduced

control). After growing for 3 hours, the GFP and Venus levels were assayed on a Safire

(Tecan) fluorescent plate reader set to the appropriate excitation (GFP- 485 nm; Venus-

515 nm) and emission (GFP- 515 nm; Venus- 508) wavelengths. For assaying the

antiswitch temporal response, cells were back-diluted into fresh media containing 2%

galactose. After growing in inducing media for 3 h, theophylline or water was added and

fluorescence was monitored over time. Fluorescence was normalized for cell number by

dividing relative fluorescence units (RFUs) by the OD600 of the culture.

RNA quantification. Yeast cells were grown according to methods detailed in protein

expression assays. Total RNA was extracted using standard acid phenol extraction

procedures.45 Briefly, cells were pelleted and frozen in liquid nitrogen. Pellets were

resuspended in a 50 mM NaOAc (pH 5.2) and 10 mM EDTA buffer. Cells were lysed by

the addition of SDS to a final concentration of 1.6% and equal volume of acid phenol.

Solutions were kept at 65 °C with intermittent vortexing for 10 min. Following cooling

on ice, the aqueous phase was extracted, and further extraction was carried out with an

equal volume of chloroform. RNA samples were ethanol precipitated and resuspended in

water. Total RNA was quantified by OD260 readings. RNA samples were DNased

(Invitrogen) according to manufacturer’s instructions. cDNA was synthesized using gene-

specific primers and Superscript III reverse transciptase (Invitrogen) according to the

manufacturer’s instructions. qRT-PCR was performed on this cDNA using an iCycler iQ

system (BioRAD). Samples were prepared using the iQ SYBR green supermix and
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primer pairs specific for different templates on dilution series of the cDNA, according to

the manufacturer’s instructions. Data was analyzed using the iCycler iQ software.

In vitro antiswitch affinity experiments. Antiswitch and target sequences were

amplified with primers containing a T7 polymerase promoter. RNA was transcribed using

Ampliscribe T7 transcription kits (Epicentre) according to manufacture’s instructions,

except that transcription was carried out at 42 °C, and for gel-shift assays, antiswitches

were radiolabeled by the addition of [α-32P]-UTP to the transcription mix. The RNA was

purified on a 15% denaturing gel, eluted, ethanol precipitated, and resuspended in water.

RNA was quantified by OD260 readings. For nuclease mapping, antiswitches were 5’ end

labeled with fluorescein (Molecular Probes) by incubating 25 µg of RNA with phosphate

reactive label in labeling buffer (0.12 M methylimidazole pH 9.0, 0.16 M EDAC) for 4

hours, according to manufacturer’s instructions. Labeled RNA was purified by ethanol

precipitation and run on a 12% denaturing gel. Fluorescent bands were excised from the

gel, eluted into water for 3 hours at 37 °C, and ethanol precipitated.

For gel shift assays, equimolar amounts (5 nM) of radiolabeled antiswitches and

target RNA were incubated in varying concentrations of theophylline at room

temperature for 30 min in 15 µL buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 5 mM

MgCl2). Following the incubation, 10% glycerol was added to the RNA-target-ligand

mixtures, and RNA complexes were separated from free RNA by electrophoresis at 125

V on an 8% polyacrylamide gel in 1X Tris-borate buffer at room temperature for several

hours. Gels were dried, and antiswitch mobility was imaged on a FX phosphorimager

(BioRAD).
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For nuclease mapping, fluorescein-labeled antiswitch RNA was resuspended in

buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 5 mM MgCl2), denatured at 65 °C for 3

min, and allowed to slow cool to room temperature. Antiswitch RNA was incubated with

varying concentrations of theophylline at room temperature for 15 min. RNase T1

(Ambion) was added to the antiswitch-ligand mixture and incubated at room temperature

for 15 min. Cleavage products were visualized using laser-induced fluorescence capillary

electrophoresis on a P/ACE MDQ machine (Beckman) using a single-stranded nucleic

acid analysis kit (Beckman) according to manufacturer’s instructions.

RNA free energy calculations. RNA free energy was calculated with RNAstructure

version 3.71.32
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PCR, transformations, and DNA extraction. Integration and deletion constructs were

PCR amplified using KOD polymerase as per manufacturer’s instructions (Novagen).

Standard lithium acetate transformations for homologous recombination were performed

as previously described.28 Integration of the GAL promoter was performed by amplifying

the GAL1-10 promoter sequence from pRS314-Gal.29 This fragment was PCR assembled

with the kanamycin resistance gene from pFA6a-ZZ-TEV-S-kanMX630 along with

flanking homologous regions to the DAL80 upstream region (506000 - 504030 and

506500 - 506530 on chromosome XI). The construct was transformed, and colonies were

selected on 400 ng/mL G418 YPD-agar plates. Integration was confirmed by colony PCR

with primers flanking and internal to the integrated construct. Yeast DNA extraction was

performed as previously described using the “bust n’ grab” method.31 Primer sequences

are available upon request. Similar techniques were employed to integrate the GAL1-10

promoter upstream of the GDH1 coding sequence. Gene deletions were performed by

amplifying the kanamycin resistance gene from pFA6a-ZZ-TEV-S-kanMX630 along with

flanking homologous regions for the entire coding region of GDH1,  GDH3, or GLT1.

The D150H and C313S catalytic rate mutants were constructed by amplifying genomic

DNA from the GDH1 coding region with primers carrying the appropriate nucleotide

substitution, assembled with the LEU2 gene from pRS315,29 and transformed as above.

The GLT1 overexpression plasmid was constructed by cloning the GLT1 coding region in

front of an ADH1 promoter on a 2µm plasmid.

Quantitative RT-PCR. Cells were pelleted and frozen in liquid nitrogen. Pellets were

resuspended in a 50 mM NaOAc (pH 5.2), 10 mM EDTA buffer. Cells were lysed by the
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addition of SDS to a final concentration of 1.6% and an equal volume of acid phenol.

Solutions were kept at 65 °C with intermittent vortexing for 10 min. After cooling on ice,

the aqueous phase was extracted, and further extraction was carried out with an equal

volume of chloroform. RNA was further isolated and concentrated by use of RNeasy

columns (Qiagen) according to manufacturer’s instructions. Total RNA was quantified by

OD260 readings. RNA samples were treated with DNase (Invitrogen) according to

manufacturer's instructions. cDNA was synthesized using gene-specific primers and

Superscript III reverse transcriptase (Invitrogen) according to the manufacturer's

instructions. qRT-PCR was carried out on this cDNA using an iCycler iQ system

(BioRAD). Samples were prepared using the iQ SYBR green supermix and primer pairs

specific for different templates. Data were analyzed using the iCycler iQ software.

Competitions and fitness assays. All competitor strains were derivatives of the S288C

background, while the reference strain was derived from the W303 background. These

strains showed different electronic volume versus side-scatter distributions that was also

used to quantitate population numbers, in good agreement with the values obtained from

fluorescent measurements. Equal amounts of competitor and reference strain were mixed

and grown in indicated liquid media for 3 generations (approximately 6 hours). The

frequency of competitor and reference strain were quantitated before and after the growth

period by counting the numbers of GFP expressing cells to non-GFP expressing cells by

flow cytometry using a Quanta SC flow cytometer (Beckman Coulter) equipped with the

MPL system. Samples were excited with a 488 nm laser, and GFP fluorescence was

detected with a 525 nm bandpass filter. A gate was set above the non-GFP expressing
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cells in the Quanta analysis software to partition fluorescent from non-fluorescent cells.

Samples of only reference or competitor strains and serial dilutions of ratios of

competitor to reference strains were run in parallel as quantitation controls. 5,000 events

were collected per sample.

Flow cytometry and calculation of noise. Two gates were used to standardize each cell

population for analysis using “magnetic gating” in FlowJo flow cytometry analysis

software (Tree Star, Inc.). The first gate isolated cells displaying regular morphology

based on electronic volume and side-scatter, while the second gate removed non-

fluorescent cells from the distribution. This gating method was compared against other

methods previously described and the abundance and noise trends observed were

consistent between methods.32,33 Noise was calculated as the square of the coefficient of

variation (σ2/p2) of the distribution.26 50,000 events were analyzed to calculate noise for

each sample. Noise trends were similar when calculated as the coefficient of variation

(σ/p) and the variance (σ2).

Mutagenic PCR and construction of promoter libraries. To construct mutant libraries

of the GDH1 promoter, primers flanking 500 nucleotides upstream of the GDH1 coding

region (1043500 - 1043050, chromosome XV) were used to amplify the fragment from

yeast genomic DNA using KOD polymerase. The fragment was then diluted into

mutagenic PCR buffer34 (7 mM MgCl2, 0.5 mM MnCl2, 50mM KCl, 10mM Tris pH 8.3

with 1mM dGTP, 0.2 mM dCTP, 0.2 mM dTTP, 0.2 mM dATP) and further amplified

using Taq polymerase (Roche). Separately, the kanamycin resistance gene was amplified
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from pFA6a-ZZ-TEV-S-kanMX630 using KOD polymerase. The kanr gene fragment and

the promoter library were then ethanol precipitated, resuspended in water, and PCR

assembled together by virtue of overlapping primer sequences. The resulting large

fragment was then transformed into yeast strains using a standard lithium acetate

procedure. Transformants were selected in liquid YPD media supplemented with 400

ng/mL G418. The resulting library was grown to stationary phase and frozen in 15%

glycerol at –80 °C.

Gillespie simulations. The reactions shown in Supplementary Fig. S6 were simulated

using the Gillespie algorithm as described previously.27 The probability of a reaction

occurring in a given amount of time was proportional to the reaction rate. Briefly, birth

and death rates of mRNAs are denoted by kR and δR, respectively; enzyme is made with

translation rate kE and degraded with decay rate δE; substrate is created with rate kS and

product was allowed to accumulate. Noise was introduced by varying the “burst size” of

translation events by modulating the ratio of kE and δR while adjusting kR to yield similar

enzyme abundance between simulations.

Experimental evolution. A 50 µL aliquot from the GDH1 promoter library freezer stock

was inoculated into liquid YPD and allowed to acclimate overnight. 2 µL of the

acclimated population was diluted into 2 mL synthetic complete media with two

ammonia concentrations at 139 mM ammonia and 556 mM ammonia. Populations were

grown in batch culture and diluted 103-fold into respective fresh media every 24 hours.

Aliquots from the competitions were diluted 4,000-fold, and 50 µL of this dilution was
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plated on YPD-agar plates. Single colonies were inoculated in synthetic complete media

and grown overnight for further analysis.

Density-dependent fitness assays. Strains were grown overnight in YPD media. Serial

10-fold dilutions of each strain were performed and cell density of the overnight culture

was measured using flow cytometry as described above. Competitor and reference strains

were mixed in equal ratios in synthetic complete media at the density specified in Figure

4e. Cells were grown for 24 hours and fitness was assayed as described above. 5,000

events were collected for each sample.

Nitrogen utilization efficiency assay. Cells were back diluted and grown to mid-log

phase (OD600 ~ 0.5), spun down, dried and weighed.35 The amount of ammonia in the

media before and after growth was quantitated via enzymatic assay (Megazyme).
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