Toward Reliable
Modular Programs

Thesis by
K. Rustan M. Leino

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1995
(Submitted 5 January 1995)

©1995
K.R.M. Leino
All rights reserved

1

Abstract

Software is being applied in an ever-increasing number of areas. Computer programs
and systems are becoming more complex and consisting of more delicately intercon-
nected components. Errors surfacing in programs are still a conspicuous and costly
problem. It’s about time we employ some techniques that guide us toward higher
reliability of practical programs. The goal of this thesis is just that.

This thesis presents a theory for verifying programs based on Dijkstra’s weakest-
precondition calculus. A variety of program paradigms used in practice, such as
exceptions, procedures, object orientation, and modularity, are dealt with.

The thesis sheds new light on the theory behind programs with exceptions. It
develops an elegant algebra, and shows it to be the foundation on which the semantics
of exceptions rests. It develops a trace semantics for programs with exceptions, from
which the weakest-precondition semantics is derived. It also proves a theorem on
programming methodology relating to exceptions, and applies this theorem in the
novel derivation of a simple program.

The thesis presents a simple model for object-oriented data types, in which con-
cerns have been separated, resulting in the simplicity of the model.

To deal with large programs, this thesis takes a practical look at modularity and
abstraction. It reveals a problem that arises in writing specifications for modular
programs where previous techniques fail. The thesis introduces a new specification
construct that solves that problem, and gives a formal proof of soundness for modular
verification using that construct. The model is a generalization of Hoare’s classical
data refinement. However, there are more problems to be solved. The thesis reports
on some of these problems and suggests some future directions toward more reliable
modular programs.

111

v

Preface

I'm Rustan Leino. I'll be your host through this thesis. During the last three and a
half years, I've been advised, in different capacities, by three people. Jan van de Snep-
scheut led me through my Master’s thesis [49]. His taste and skill for elegant solutions
to practical problems put me on the path that has led to the present thesis. I hope
we will be able to keep up his enthusiasm. Mani Chandy with his slogan of “Bringing
theory to the marketplace” guided me from there. His apt ability to authoritatively
sieve the important from the unimportant, resulting in a focus on the road and not
on the curbside distractions, was instrumental in making the journey expeditious. At
Digital’s Systems Research Center (DEC SRC), Greg Nelson, a champ in applying
his (and others’) theory in practice, directed me to problems yearning for my solu-
tions. His ample support and fruitful collaboration have had a great impact on the
destination of this thesis. I'm indebted to each of these individuals for his inspiration
and guidance.

As a Microsoftee —before becoming a graduate student and starting a research
career—, | learned the craft of programming in the large, and became more aware of
the challenges involved in producing correct software and the discipline that requires.
I also learned the importance of the run-time check as a device for more quickly
detecting errors in a program. This thesis applies to verification in general, but has
been motivated by the hope of proving statically that no run-time check will fail
during run-time, an area known as extended static checking.

In addition to the people mentioned above, numerous other people at Caltech and
DEC SRC have been of great help during discussions and in reviewing my thesis. Of
these colleagues, I mention Dave Detlefs, Robert Harley, Allan Heydon, Peter Hofstee,
Rajit Manohar, Berna Massingill, Adam Rifkin, Paul Sivilotti, John Thornley, and,
of course, the members of my thesis committee: Mani Chandy, Alain Martin, Greg
Nelson, Beverly Sanders, and Rick Wilson. I am grateful to them all for their stimulus
and loyal support. I am particularly grateful to Rajit and Paul for their various
contributions to proofs, Berna for her careful proofreading of my thesis, and Dave for
his putting these formulas to work in the SRC Extended Static Checker. I'd also like
to express much appreciation to DEC SRC for their financial support.

These pages have been prepared in IATEX, using many useful macros by Marcel
van der Goot and Rajit Manohar. The fancy font used in various headers is a public
domain PosTSCRIPT font called Civitype, developed by S.G. Moye. All figures were
made from POSTSCRIPT programs [wrote. I have written the thesis in a personal

style so that I may get to know my readers better.
Last, but not least, I want to thank Ind{ for her never-ending loving support.
You’ve been of tremendous help in every way during this time.

TIOFLOIT, K.R.M.L.
January 1995
Pasadena, CA, U.S.A.

This thesis is available as Technical Report Caltech-CS-TR-95-03.

Vi

Contents

0 Introduction

0.0 Motivation
0.1 Contents
0.2 Preliminaries e,

I Control Structures|
Imperative programming languages
Outline o

1 Semantics of programs with exceptions

1.0 Weakest precondition
1.1 Assignment L
1.2 Unit statements and compositions
1.3 Block.
1.4 Partial commands oL
1.5 Choice compositions
1.6 Iteration
1.7 Specification statement L. L.
1.8 Refinement

2 Functions of two arguments and their compositions

2.0 Function compositions L L
2.1 Left and right composition oL
2.2 Double composition L
23 Ceilingandfloor oo oL Lo
24 Transposition
2.5 The connection with programs
2.6 Concluding remarks oL

3 Trace semantics for exceptions

3.0 Introduction
3.1 Tracesets
3.2 Program constructs as tracesets

Vil

o o O

12
12

14
14
16
16
17
18
20
21
22
24

26
26
27
28
30
32
33
34

3.3 Weakest preconditions of trace sets
3.4 Calculating the weakest preconditions

4 A theorem on programming methodology

4.0 Hoare triples.
4.1 Free occurrencesof mise L.
4.2 Usageof exceptions

5 Constructing a program with exceptions
5.0 A program derivation L L
5.1 Discussion e e

6 Modeling common programming languages

6.0 Procedures.
6.1 Alternative statements L oL
6.2 Statements that “go wrong”
6.3 Expressions

|[II Data Structures|

Data structures
Outline

7 Data types

7.0 Types . . . o
7.1 Types in common programming languages
7.2 Declaring new types
7.3 Maps and specifications oL Lo
8 Objects
8.0 Subtypes
81 Datafields.
82 Methods
8.3 Method implementations
8.4 Object simplicity
8.5 Language implementations of objects
8.6 Objects in common programming languages

9 Abstraction

9.0 Abstract variables
0.1 Abstract variables and refinement
9.2 Abstract data fields

viii

48
48
49
51

52
32
a3

56
56
59
60
61

64
66
66

68
68
70
73
75

78
78
79
79
79
80
81
81

IIT Modularity

Modules and modular verification . . .
Outline

10 Specifications in modular programs

11

12

13

10.0 Motivation
10.1 Problem
10.2 Solution
10.3 Enforcing the requirements
10.4 Soundness of modular verification

....................

10.5 A generalization of classical data refinement

10.6 Other specification languages . .

Generating verification conditions
11.0 A notation for modular programs
11.1 Definitions
11.2 Proving refinements
11.3 The importance of residues

Soundness of modular verification
12.0 Requirements
12.1 Soundness

depends in perspective

13.0 Specification of a consumer
13.1 Shortcomings of depends
13.2 Private values

IV Epilogue

14

Summary

X

92

94
94

96
96
97
101
104
105
106
108

110
110
112
122
124

128
128
128
129
132
135
141

144
144
146
148

152

154

@ga]::fer

O

Introduction

In this chapter, I present an introduction to, and the motivation for, this thesis. I
also provide an outline of the contents of the thesis, show the dependencies between
the chapters, and discuss some preliminaries such as notation.

0.0 Motivation

Today, computer programs are being written for an ever-growing number of purposes.
Unfortunately, not all of this software is correct. Programmers introduce errors into
programs for a variety of reasons. The errors may be the result of, e.g., typos, logical
mistakes, incorrect assumptions, vague or changing specifications, or lack of specifi-
cations. Whatever the cause, the effect of software errors can be very costly, e.g., a
malfunctioning computerized radiation therapy machine has claimed the lives of hu-
mans [52], a broken telephone switch has resulted in loss of service [44], problems with
an anfomated baggage-handling system have delayed the opening of an airport [27],
an erroneous word processor can cause the loss of important information, and an
error-prone program can degrade the reputation of a software company. Even the
errors that are found prior to the shipping of or use of a software product are costly,
primarily in terms of man-hours spent finding and correcting errors, and in terms of
delayed time to market, resulting in loss of market share and revenues.

To reduce the number of errors in a program, or to increase one’s confidence in a
program, one can test the program on a given test suite. If the program is observed
to behave correctly for these test cases, the program is shipped to the customer. One
then hopes there will be other cases that customers try for which the program also
behaves correctly.

Another way to reduce the number of errors in and increase one’s confidence in a
program is to write precise specifications and mathematically verify that the program
meets those specifications.

Remark 0.0. Notice that I said “reduce the number of errors” and
“increase one’s confidence”, as opposed to “eliminate all errors”, because
the specifications, too, can be written incorrectly, or the program could

0

be used incorrectly by the customer. However, specifications are generally
concerned with fewer details than programs, and may thus be easier to
get right. Moreover, the probability of making the same error in both
specification and program is much lower than just making an error in the
program text itself.

Mathematically proving a program correct shows the program will work not just for
one test suite, but for all permitted uses of the program. This technique also has
the advantage over testing in that it can be applied prior to the completion of an
implementation; thus, errors can be found earlier, which reduces costs.

To sustain mathematical proofs of program correctness, programs must be given
a mathematical meaning, a semantics. An example thereof is Dijkstra’s weakest-
precondition semantics [17], which has achieved considerable success in modeling pro-
grams mathematically, because of its high level of expressivity (using predicates over
the state space) and its simplicity.

Weakest preconditions have been around for almost two decades, and other tech-
niques for reasoning about programs (e.g., Hoare triples [36]) for over two decades.
So why is it that not every programmer uses these techniques every day? Part of the
answer is that programmers actually do, implicitly—the study of semantics has had
a profound influence on the design of programming languages that programmers use,
and programmers may have firmed their understanding of programs through learning
about semantics as undergraduates.

A major reason these techniques have not penetrated the everyday life of pro-
grammers more Vvisibly is the challenges that the proving of large programs poses.
For example, a large program gives rise to large formulas to be proven. Proving all
of these by hand would be a virtually impossible task, especially for large programs
that undergo change—one small change in the program may necessitate reproving
the entire program. Instead, we may consider receiving assistance from automatic
theorem provers (see, e.g., [69, 74]). This is an area that still needs more work.

Another task that presents challenges is the mathematical modeling of programs.
Although their design is influenced by semantics, common programming languages
provide some features whose mathematical meanings are difficult to capture concisely,
e.g., arbitrary pointers.

Yet another area that presents challenges is the writing of precise specifications!
If we don’t know how to write specifications, how can we expect to be able to verify
that a program behaves correctly?

A step toward the (full) verification of programs is an area called exztended static
checking. The idea is to prove programs correct, but only with respect to certain prop-
erties. In particular, a program is given enough specifications to prove the absence
of checked run-time errors, like nil-dereferencing, array index out-of-bounds errors,
and failing assertions. This is likely to lighten the burden in the areas of (automatic)
theorem proving and specification writing. For example, rather than needing a means
to express and reason about “permutation of” in the full specification and verification
of a sorting routine, the specification would only need to be strong enough to show

1

that the implementation never indexes the given array outside its bounds. Despite
the fact that the verification of the latter does not guarantee the array to be sorted
upon termination of the sorting routine, such a verification removes the possibility of
a program execution resulting in a checked run-time error and greatly increases our
confidence in the program.

Remark 0.1. Drawing from my personal experience with develop-
ing programs at Microsoft, and also since then (e.g., the implementation
in [49]), I have found that almost all errors ever detected were detected as
results of failing run-time checks. Proving the absence of checked run-time
errors would thus have shown the absence of most errors detected in these
programs.

The technique also offers the benefit of detecting errors earlier. As a bonus, run-time
checks can be removed from the executable code, making the executable smaller and
faster [26] (see also [78]).

Extended static checking gets its name from the idea that it is to be incorporated
into a compiler, much like static type checkers in today’s compilers. This would
indeed bring the direct benefit of the science of program correctness to programmers,
an event one may expect to do marvels for the correctness of their programs.

0.1 Contents

This thesis concerns the specification and verification of modular programs that fea-
ture exceptions and objects. “Modular” means that programs are divided into pieces
that can be compiled separately. Moreover, through the application of modular veri-
fication, the modules of such programs can be verified separately. This is important,
because it is modularity and modular verification that allow us to tackle large pro-
grams. An ezception is a form of a structured jump and is sometimes convenient
in programming. A small example thereof is given in Chapter 5, but exceptions are
more frequently used in large programs. Objects are a means of organizing data in a
program and facilitate the sharing of code. Object-oriented programming is gaining
popularity. Its utility is most visible when programming in the large.

The main contributions of this thesis are several aspects of reasoning about pro-
grams with exceptions, a separation of concerns in the meaning of objects, and the
invention of a new specification construct for the specification and verification of mod-
ular programs. Of these three main contributions, the last mentioned, which in some
sense is an extension of classical data refinement [38], is bound to have the great-
est impact on making the specification and verification of large programs feasible in
practice.

Although they work independently of each other, these three contributions, col-
lectively, are steps toward making modular programs more reliable.

2

Ch. 0

Part] Part I1 Part II1
——>| Ch. 1|—{Ch. 6]|—i[Ch. 7] MICh. 10— |Ch. 13]

v v
/\\ [Ch. &]i / {[Ch. 11]
v v

[Ch.2][Ch.3][Ch.4][Ch.5]i i[Ch. 9 i[Ch.12]

Figure 0.0: Roadmap to dependencies between chapters

0.1.0 OUTLINE

Compiled from sources like [17, 70, 67, 51], I kick off Part I, Control Structures, by
presenting a mathematical semantics, based on weakest preconditions, of sequential
imperative programming constructs for languages with exceptions (Chapter 1). Then,
for the duration of a few chapters, I devote my attention to the control flow of pro-
grams with exceptions (so-called ezceptional programs, no pun intended). I show that
the weakest preconditions of the basic exceptional statements and compositions have
their foundation in a beautiful algebra over functions of two arguments (Chapter 2).
I show an operational semantics of programs with exceptions and its connection with
the weakest precondition semantics (Chapter 3). I also prove a theorem that suggests
a use for exceptions (Chapter 4), and from it show a heuristic for program construc-
tion applied to the derivation of a simple program (Chapter 5). With an eye to “real”
programming languages and their common usage, I present procedures, and show how
run-time errors, partial expressions, short-circuit boolean operators, and expressions
with side effects are modeled mathematically (Chapter 6).

In Part II, Data Structures, I turn my attention to the data structures of programs
and show how common data structures are modeled mathematically (Chapter 7).
The most interesting of these concerns objects (Chapter 8), for which I propose a
simple mathematical treatment that separates the concerns involved. As a warm-up
to Part III, I also present data abstraction in its classical form [38] (Chapter 9).

Part I1I, Modularity, concerns modular specification and verification of programs.
I demonstrate our lack of understanding of writing specifications in modular programs
(with an emphasis on object-oriented programs), and contribute a new specification
construct, depends, as a necessary aid in writing such specifications (Chapter 10). I
define a precise interpretation of modular programs and their specifications (Chap-
ter 11), and prove that this interpretation lends itself to sound modular verification
of programs (Chapter 12). Finally, I show some remaining problems in the area of
writing specifications of modular programs (Chapter 13).

Chapter 14 summarizes the thesis and offers some concluding remarks.

Figure 0.0 shows the dependencies between the chapters. I recommend reading
the chapters in any order suggested by the partial order in that figure.

3

0.1.1 ORIGINALITY AND COLLABORATION

Roughly speaking, it is Chapters 2-5, 8, and 10-12 that contain the new work pre-
sented in this thesis. The other chapters present pertinent material from the liter-
ature, composed and presented in such a way as to set the stage for the chapters
containing new material.

Most of Chapters 1 and 6 is a composition of well-known work in semantics
(¢f. [17, 51, 70, 67, 2, 40, 29, 33]). Chapters 2-4 contain joint work with Jan L.A.
van de Snepscheut, and are published in [51]. Although the program in Chapter 5
occurs in [51], the derivation of this program and the heuristic used in that process
appear first in [50]. Chapter 7 is based on [40, 37, 17, 58], and the first part of Chap-
ter 8 is from [15]. The portion of Chapter 8 that concerns object simplicity, however,
resulted from work I did with Greg Nelson at Digital’s Systems Research Center. The
ideas in Chapter 9 are mostly from [38]. Chapters 10-12 stem from joint work with
Greg Nelson. Chapter 13 presents my assessment of the consequences of the work in
Chapters 10-12, and some future directions for that work.

0.2 Preliminaries

In this section, I explain the notation I use in this thesis. I take most of the notation
and proof format from [21]. T assume familiarity with the predicate calculus (see, e.g.,
[21, 31, 19]).

Functions

Function application is written with an infix dot. For example, a function f applied
to a value 4 is denoted f.r2. Function application is left associative. Thus, wp.S.Q

means (wp.S).Q.

Substitution

For a list of identifiers x and an (equally long) list of expressions y, I use [x:=y] as
the postfix, left-associative substitution function. The expression

denotes Q in which all free occurrences of (each identifier in) x are replaced by (the
corresponding expression in) y.

Operators and binding powers

Function application (.) and substitution ([:=]) have the highest binding power.
Then comes negation (-), followed by the arithmetic and set operators whose relative
binding powers are the usual ones. Next are relations like = (when used in predicates
and arithmetic expressions), <, and <.

The remaining boolean connectives are given lower binding power. Among them,
A and V bind the strongest, then = and < ,andlast =
The operators of statement compositions bind weaker than the boolean connec-
tives. Of these, ; and < have the strongest binding power, then — , and last 0 and
¥. Refinement (C) is given lower binding power than all of these.
In the equality among programs or among predicates, = binds weaker than any
other operator.

Predicates

A predicate is a boolean function over some state space. Conjunction (A , “and”)
and disjunction (V , “or”) are examples of operators on predicates. The unijversal
quantification, V (conjunction), of an expression T over the values of a list of variables
x constrained by a predicate R, is written

(Vx| Ro T)

The expression can be read as “for all x such that R holds, T holds” or “the con-
junction over x such that R of T”. For example,

(VOl0<O<mv 0<sind)

expresses that for all values of 6 satisfying 0 < § < 7, the sine of 0 is at least 0.
In the general expression, x is called the dummy, R the range of the dummy, and T
the term of the quantified expression.

Existential quantification, 3 (disjunction), and union quantification, U, are writ-
ten similarly.

If the range is true or if it is understood from the context, then it is often omitted
for brevity. The quantified expression is then written

(Vx> T) ,

and similarly for the other quantifiers. Rules for manipulating quantifiers can be
found in, e.g., [21, 31].
A function from predicates to predicates is called a predicate transformer.

Everywhere and lifting

For any predicate P, [P] (pronounced “P everywhere”) denotes that P holds in every
state. The brackets [] are called everywhere brackets. Thus, for a predicate on the
state space whose variables are denoted by z, [P] is a shorthand for

(Vzv> Pz)

In general, [P] is preferred to (Vz o P.z), because it allows expressions to omit
irrelevant details. Similarly, I often write

(P = Q).z

instead of
Pz = Q.z ,

and similarly for operators other than = . This process is called lifting. A special
case is P = Q, which denotes the predicate that is true in exactly those states where
P and Q yield the same value. Consequently, [P = Q] means that P and Q are
equal as predicates, a fact that is frequently expressed as P = Q.

A predicate whose value, as a function, equals the predicate true or the predicate
false is called a boolean scalar. For example, [P] is a boolean scalar.

Junctivity, distributivity, and monotonicity
A function f is conjunctive if it distributes over conjunction, that is,
f(VXIX€eBpr X) = (VX|XEBv fX) . (0.0)

A description of the bags (multisets) B of predicates for which this property holds
is usually used as a prefix of “conjunctive”. For example, f is said to be universally
conjunctive if (0.0) holds for any B, positively conjunctive if (0.0) holds for nonempty
bags B (“positively” refers to the positive cardinality of B), and so on.

Similarly, a function is disjunctive if it distributes over disjunction.

As junctivity is simply distributivity, “universally distributive over conjunction” or
“universally conjunction-distributive” are synonymous to “universally conjunctive”.
This notion then also extends to, for example, a function being positively union-
distributive, meaning that it distributes over any nonempty bag of sets.

A function is positively, finitely, and linearly conjunctive (disjunctive), i.e., it dis-
tributes over any nonempty finite conjunction (disjunction, respectively) of predicates
totally ordered by [= |, exactly when it is monotonic [21]. Thus, conjunctivity (or
disjunctivity) implies monotonicity. Monotonicity of a predicate transformer f is
often written

(VX,Y> X=Y] = [fX=fY])

In proof hints (see below), I often abbreviate “distribution of V over V” by
“ V over V", and similarly for other operators.

Sets

I use standard mathematical notation for sets and pairs. Operator ~ denotes asym-
metric set difference, defined for any sets A and B as

(Vxo xEANB=x€EAANXxEB)

Deviating from standard mathematical notation, I write a quantified set constructor
in a notation similar to that of other quantifiers. For example,

{n10<n<N»vn}

6

is the set of the first N squares.
The definition of the set constructor can be written

(Vy> ye{xIR>o T} = (3IxIR> y=T))
Alternatively, the definition can be written
{xIRe T} = (Ux|IR> {T}) ,

where the latter is a quantification over set union. Quantified set constructors can be
used, for example, in expressing properties like

ANB = {x|x€AANx¢ZBob> x}

As for other quantified expressions, if the range is true or is understood, I omit the
range and simply write

{x\> T}

Proof format

[use an explicit proof format proposed by W.H.J. Feijen. It gives a hint for each step.
Let me give an example. For any positive integer x, let P.x denote the (unique) bag
of prime factors whose product equals x. Then, the calculation, for all x,

even.(x?)

= { eeny = 2€ Py, with y:=%* }
2 € P.(x%)

= { P.yz)=PyUPz, with y,z:=xx }
2€ PxUPx

= { yEXUY = yeX VyeY,with y,X,Y:=2,Px,Px }
2€PxV 2€Px
= { V isidempotent }
2¢€Px
= { eveny = 2€ Py, with y:=x }
even.x
demonstrates
(Vx> even.(x?) = even.x)

For predicates, a calculation like

A

= { hint why [A = B] }
B

= { hint why [B = C] }
C

= { hint why [C = D] }
D

shows that [A = DJ.

Programming languages

I often make references to common programming languages. I refer more often to
Modula-3 [71] than to other languages. However, principles and techniques generally
extend to other languages like Ada {1], Modula-2 [81], Pascal [42], C [45], or C++ [23]

as well.

Nomenclature

I do not make any distinction between the terms statement, command, and guarded
command. Each refers to a component of a program. I use these terms interchange-
ably.

A client of an interface is another module or interface that makes use of the first
interface.

Verification process refers to the process of verifying a program. The process may
be conducted by a human or by a machine.

8

9

Part 1

@om‘vof vaucfuves

10

11

Imperative programming languages

My goal is to reason about the correctness of programs. 1 focus our attention on
sequential imperative languages, where I have in mind some language like (the se-
quential subset of) Modula-3, Ada, Modula-2, Pascal, or maybe even a disciplined
subset of C or C++. These languages provide a variety of program constructs. Since
many of these constructs are but variations of, or shorthands for, other constructs,
we find that we can write most of the constructs in Dijkstra’s guarded command
language [17], with some extensions [51, 70, 67].

The advantage of using guarded commands as the programming notation is that
we have a simple, precise, and concise mathematical meaning, or semantics, for such
programs. The idea is to map each program to a predicate transformer [17]. A
predicate is a boolean function on the state space of a program, and a predicate
transformer is a function from predicates to predicates. Predicate transformers, as do
predicates, draw their mathematical properties from complete boolean lattices [82, 7,
76]. The particular mappings from programs to predicate transformers that I use are
called weakest precondition and weakest liberal precondition [17].

Outline

The structure of Part I is as follows. Chapter 1 introduces the program constructs
and their weakest-precondition semantics.

Chapters 2 through 5 are concerned with ezceptions—a form of structured jumps.
Motivated by the weakest preconditions of exceptional statements, I show a nice al-
gebra over functions of two arguments in Chapter 2. In Chapter 3, I justify the
particular weakest preconditions given to the basic exceptional statements and com-
positions. I do that by showing a more concrete semantics (viz., a trace semantics)
for exceptions, from which I derive the weakest preconditions. In Chapter 4, I deal
with the use of exceptions, and develop a theorem that suggests a method for us-
ing exceptions in program development. An example application of that theorem is
presented in Chapter 5, where I show a novel derivation of a simple program.

Chapters 2 through 5 are quite independent of each other, and also of the subse-
quent material in this thesis. Thus, the reader can study those chapters according to
interest. To guide in that selection, the following table associates these chapters with
interest areas.

Chapter 2 Algebra

Chapter 3 Semantics

Chapter 4 Programming methodology
Chapter 5 Program derivation

The material presented in Chapters 2 through 5 appears in modified form in [51]
and [50].

I end this Part with Chapter 6, which concerns the use of the semantics from
Chapter 1 to model popular programming constructs in common programming lan-
guages.

13

@gapfev

1

Semantics of programs with
exceptions

In this chapter, I define the control structures of the programming notation (guarded
commands) I use in this thesis. I define each statement in terms of its mathemati-
cal interpretation, wiz., its weakest precondition and weakest liberal precondition. In
Chapter 6, I deal with the relation between these statements and those found in com-
mon programming languages, whenever this relation is not immediately apparent. 1
conclude the present chapter by defining the notion of refinement.

1.0 Weakest precondition

For any statement S and predicate Q on the final state of S, Dijkstra [17] defines
wp.S.Q to be a predicate on the initial state of §:

wp.S.Q is true of exactly those initial states from which execution of § is
guaranteed to terminate and to terminate in a state satisfying Q.

I consider program statements that have two ways of terminating, normally and
exceptionally. Therefore, the weakest precondition of a statement maps a pair of
predicates on the final state to a predicate on the initial state. I use the notation
wp.S.(P,Q) and present the following interpretation [13, 60, 51].

wp.S.(P,Q) is true of exactly those initial states from which execution of
S is guaranteed to terminate and to either terminate exceptionally in a
state satisfying P or normally in a state satisfying Q.

So, for example, if, for some statement S,
wp.S.(false, true) = true)

then S always terminates normally, never exceptionally, because no state satisfies
false .

14

I am restricting my attention to programs with one exceptional outcome. A gen-
eralization to an arbitrary number of outcomes is straightforward (see the aforemen-
tioned references, [61], Section 2.6, or Section 6.2).

1.0.0 TERMINATION OR LACK THEREOF

The fact that the weakest precondition captures that programs do terminate is re-
ferred to as total correctness. However, when verifying nontrivial programs, we are
often willing to settle for less or to prove termination separately. For that purpose,
we can consider another attribute of a program statement: its weakest liberal precon-
dition (wlp) [17]. Like wp, wlp maps a program to a predicate transformer, but wip
only guarantees that the postcondition will be reached if the program terminates.
This is called partial correctness.

I introduce wlp for exceptional program S and postcondition pair (P,Q) as fol-
lows.

wlp.S.(P,Q) is true of exactly those initial states from which execution
of S is guaranteed to terminate exceptionally in a state satisfying P or
normally in a state satisfying Q or to not terminate at all.

Stated differently, wp.S.(P,Q) guarantees that S terminates exceptionally in P or
normally in Q, whereas wip.S.(P,Q) only guarantees that S will not terminate ex-
ceptionally in =P nor normally in —Q.

Note that wp.S and wip.S differ only if § might not terminate. For brevity, I
introduce only wp in this chapter. Except for the iterative statement, the equation
defining the wlp of each statement I introduce is the same as the equation defining
the wp of the statement but with every occurrence of wp replaced by wip.

1.0.1 MONOTONICITY

In the next several sections, I introduce the program statements and compositions of
a simple programming notation. Two kinds of monotonicity are of importance. First
is the monotonicity of wp.S, for each statement S. wp.S is monotonic (with respect
to [=]—“implication everywhere”) if for all predicates P,P’,Q,Q’, we have

P= PIA[Q = Q] = [wp.S.(P,Q) = wp.S.(P,Q)]

The importance of this monotonicity will be clear in Section 1.6.

There is an ordering on commands called the refinement ordering, explained in
Section 1.8. The other important kind of monotonicity is that every statement com-
position is monotonic with respect to this refinement ordering in its constituent state-
ments. The importance of this monotonicity is explained in Section 1.8.

Every statement composition I introduce satisfies the second kind of monotonic-
ity, and every simple statement I introduce satisfies the first kind of monotonicity.
Consequently, every command that can be constructed from my simple statements
and statement compositions satisfies the first kind of monotonicity.

15

1.1 Assignment

The state of a program consists of a number of independent coordinates called vari-
ables. The assignment statement updates the values of these variables.

I now define the assignment statement. As previously advertised, I do so by giving
its weakest precondition. For any list v of program variables and an (equally long)
list E of expressions, | define v:=E by

wp.(v:=E).(P,Q) = Qlv:=E] . (1.0)

The right-hand side of this formula is the predicate Q with every free occurrence of
v replaced by E (see Section 0.2). The operational interpretation of v := E is that
the list of expressions E is computed, after which variables v are updated with the
respective computed values of E. For example,

x7y:: y’x

has the effect of swapping the values of variables x and y.

I assume that E is fotal, meaning that E is defined in every state in which the
command is ever executed. I discuss partial expressions in Section 6.3.

Here, and throughout this thesis, I assume the evaluation of expressions to have
no effect on the program state. Programs written in common programming languages
often contain expressions with such so-called side effects, a topic I treat in Section 6.3.

We calculate,

wp.(x := E).(false, true)

{ =}
true[x := E|

{ substitution }
true

This calculation lets us conclude that the assignment statement always terminates
normally.

1.2 Unit statements and compositions

I now define two statements that do not modify the program state, skip and raise.
The former always terminates normally, the latter always exceptionally.

wp.skip.(P,Q) = Q (1.1)
wp.raise.(P,Q) = P (1.2)

Sequential (normal) composition of two statements S and T, written S;T (and
pronounced “S semi T7), is defined as

wp.(S;T).(P,Q) = wp.S.(P,wp.T.(P,Q)) . (1.3)

16

In words, wp.(S;T).(P,Q) is true of those initial states from which either S terminates
exceptionally in P (then T isignored), or S terminates normally in a state from which
T either terminates exceptionally in P or terminates normally in Q.

I also define exceptional composition, also known as the exception handler. It is
written S <4 T (and pronounced “S try T”—that’s “try”, almost as in “tri-angle”).
The idea is that T “handles” any exception raised by §.

wp.(5 < T).(P, Q) = wp.S.(wp.T.(P, Q), Q) (1.4)

Hence, wp.(S<1T).(P,Q) is true of those initial states from which either S terminates
normally in Q (then the handler T is ignored), or S terminates exceptionally in a
state from which the handler T terminates exceptionally in P or normally in Q.

Remark 1.0. If it were not clear from the above English descriptions
of ; and <, it is certainly clear from formulas (1.3) and (1.4) that there is
some duality between the two program compositions. Reviewing (1.1) and
(1.2), we also detect a duality. Indeed, by identifying a program with its
weakest precondition, we find that functions skip and rise project to one
of the two components of a pair. I will write these functions as R and L,
respectively. Furthermore, we can write ; as right composition and < as
left composition, denoted o) and (o, respectively, over functions of some
type D x D — D. That is, for any domain D, functions f,¢:Dx D — D,
and elements p,q € D, we have

Propelled by this discovery, I explore the phenomenon in Chapter 2.

Other convenient statements that can be defined in terms of skip, raise, ;, and
are presented in Section 2.5.

1.3 Block

The block statement, written
[ves]

where v is a list of identifiers, introduces local variables v for use in S, the body of
the block statement.

wp.(Joes]).(P,Q) = (Yo wp.S.(P,Q)) (1.5)

In words, the block statement guarantees (P,Q) upon termination exactly when
wp.S.(P, Q) holds initially, for any value of v. Thus, § must not depend on v having
any particular initial value.

17

1.4 Partial commands

The weakest precondition of a command S is said to be strict just when
wp.S.(false, false) = false

In [17], this property is referred to as the (Law of the) Excluded Miracle, because
statements that lack this property do not, in general, lend themselves to a practical
implementation—wp.S.(false, false) characterizes those initial states from which S is
guaranteed to terminate in a state satisfying false!

A statement S whose weakest precondition is not strict is called partial [60, 70]
(or miraculous or feasible [67]), because one may think of it as being executable only
from the initial states satisfying

—wp.S. (false, false)

(See also Remark 1.1 below.) A command that is not partial is said to be total.

Despite the fact that they do not always admit a realistic implementation, partial
commands are important and useful when handled with care [70, 67, 66]. I give some
examples below.

1.4.0 THE GUARD STATEMENT

A primitive partial command is the guard statement, ¢ — S, where g is a predicate
and S is a command. Operator — binds stronger than ; and <, but weaker than
logical connectives. The non-exceptional definition of the guard statement is

wp.(§—5).Q = —gVuwp.S.Q
I extend this definition in the obvious way.

wp.(¢ — 5).(P,Q) = —gV wp.S.(P,Q) (1.6)
Note that (1.6) can also be written

wp.(g — 5).(P,Q) = g = wp.S.(P,Q) ,

which has appeal because — and = look similar.

An operational interpretation of the guard statement is that ¢ — § is like §,
except that in addition to the states from which S cannot be started, ¢ — S cannot
be started in states where ¢ does not hold. An alternative operational interpretation
is that ¢ = S “invokes a miracle” when g does not hold and invokes S otherwise.

Remark 1.1. In the first of these interpretations, one can let the
execution of a partial command from a state in which it cannot begin cause
the entire program to backtrack. This is what the text processing language
LIM does [10]. Nevertheless, I will continue to use the terminology “invoke
a miracle”.

18

For a total command S, g is called the guard of the command ¢ — S. This
concept can be generalized: The guard of any (total or partial) command S, denoted
guard.S , 1s defined by

guard.S = —wp.S.(false, false)

This is, the guard of a statement characterizes those initial states from which execu-
tion of S can start.
Note that

guard.S—S = S

In fact, for any g such that [guard.S = g,
g—S5 =S

This shows, for example, that ¢ — is idempotent, :.e.,
g+ (@g—=S) = g—=5s

It also shows that true is a left identity of — .

true S = §

1.4.1 EXAMPLES

I give a few examples. I make use of the assert statement, which I discuss in Sec-
tion 6.2.0. For now, all we need to know is that assert ¢ terminates normally just
when g holds initially.
wp.(assert §).(P,Q) = g A Q
If S is total, then g — S invokes a miracle precisely when ¢ does not hold initially.
Thus, despite its use of —,
assert g ; ¢ — S .

is total, because the statement ¢ — S is only reached if ¢ holds. In general, for any
5,

assert guard.S ; S

is total.
Using a guard statement as the body of a block proves convenient. For example,
for a total command S, executing

][xox2:9—+5]|

has the effect of executing S from a state where x =3 V x = —3 holds. The reader
is invited to prove

wp.([x @ 2 =9 — assert x = 3V x = —3|).(false, true) = true

19

Remark 1.2. Juno-2 [35] is a language that achieves expressive power
by taking advantage of partial commands in this way.

Other convenient uses of blocks with partial commands are described in [70].
Partial commands come in handy also when developing programs through refine-
ments, as is shown, for example, in [67, 66].

1.5 Choice compositions

Next, I introduce two choice compositions, 0 (“boz”) and B (“else”) [70], each with
lower binding power than — .

wp.(SOT).P,Q) = wp.5.(P,Q) Awp.T.(P,Q)
SHT = guard.S — SO0 —~gquard.S - T

We have that 0 is associative and so is B (the fact that 0 is follows directly from
its definition; the fact that M is makes a nice exercise for the reader). Beware that,
contrary to what the appearance of its symbol suggests, ¥ is not symmetric.

The execution of S 0 T consists of the execution of exactly one of § and T,
and so does the execution of S B T. The difference is that while S 0 T guarantees
nothing about which of S and T is chosen for execution, execution of S B T reduces
to execution of S whenever S B T is started in a state where execution of S can
begin (i.e., does not invoke a miracle) and reduces to T otherwise.

An example of a choice composition is

g0—>S00g1—S10g2—52 . (1.7)

If S0,S1,52 are total commands, execution of (1.7) can result in the execution of S0
if g0 holds (initially), S1 if g1 holds, and S2 if g2 holds. If g0 V g1 V g2 holds
initially, exactly one of $0, 51,52 is executed; if —g0 A —g1 A —g2 holds initially, then
(1.7) invokes a miracle.

The statement

g0 — SO M gl — S1 K g2— 52 (1.8)

is like (1.7), except that SO is chosen just when g0 holds, SI just when —g¢0 A g1
holds, and S2 just when —g0 A —¢1 A ¢2 holds. The statement

g0 — SO B g1 — S1 B g2 — 52 B skip (1.9)

is similar to (1.8), except that it terminates without changing the state (it “skips”)
where (1.8) invokes a miracle. (Note that, since true is a left identity element of —,
the last skip can also be written as true — skip .)

For similarity with common notation, I permit myself to surround total commands
with if fi brackets. So that I don’t need to attach any meaning to these brackets, I
will refrain from the use of if Sfi if S is partial. So, I may write (1.9) equivalently as

if g0 — SO B g1 — S1 B g2 — S2 K true — skip fi . (1.10)

20

1.6 Iteration

Iteration of a statement S is written do g+ S od.

Remark 1.3. The symbol — is not to be confused with the guard
operator — . The construct do g+ S od is a construct parameterized by
a predicate ¢ and a statement S.

Let this iterative statement (or loop) be denoted by DO. Operationally, the execution
of DO consists of repeated executions of S for as long as ¢ holds. We think of DO
as satisfying

DO = g— S$;DO U —~g — skip
Inspired by this, I define wp.DO.(P,Q) as the least fixed point of the equation
X = (g= wpS.X)A(~g = Q) , (1.11)

solved for X. Because wp.S is monotonic (cf. Section 1.0.1), the right-hand side of
(1.11) is a monotonic function of X; hence, due to the Knaster-Tarski Theorem (see,
e.g., [76]), (1.11) does indeed have a least fixed point, so wp.DO.(P,Q) is well-defined.
It is for this reason that the first kind of monotonicity mentioned in Section 1.0.1 is
important.

Remark 1.4. The fact that the loop satisfies the second kind of mono-
tonicity mentioned in that section follows from the fact that the right-hand
side of (1.11) is monotonic in S (see, e.g., (130) in [76]). Note that this
property holds even for partial statements S.

Similarly, wip.DO.(P,Q) is defined as the greatest fixed point of
X = (g= wpSX)A (g = Q) ,
solved for X (cf. [21]).

The fact that the definition of DO involves a fixed point may appear worrisome—
if proving something about a loop would require computing a particular fixed point,
the practical application of the semantics of the loop would be hampered. However,
the Invariance Theorem [21] shows a sufficient condition for proving that a loop
establishes a particular postcondition. It states that

[Pre = wp.(do g+ S 0d).(P,Q)] (1.12)
follows from
(7o Pe=> JIANAg = wpS. (P, A[JA-g = Q]) (1.13)

and a proof that the loop eventually terminates. The J in (1.13) is called the loop
invarient. Equation (1.13) states that there exists an invariant | that satisfies three
conditions. First, the invariant holds prior to the execution of the loop. Second,

21

provided the invariant holds initially, an execution of the loop body terminates ex-
ceptionally in a state satisfying P (upon which the loop terminates) or normally in
a state satisfying, once again, the invariant. Third, the invariant conjoined with the
negation of the guard imply Q, the desired normal postcondition of the loop.

The existential quantification in (1.13) may look intimidating because | ranges
over all predicates. However, the programmer who writes the loop has a good idea of
what an invariant of the loop may be. Having the programmer supply that invariant
(1) simplifies (1.13) to the satisfiability of each of the conjuncts in the term of its
quantification.

Remark 1.5. Instead of having the programmer provide the invariant,
methods of “widening” and “narrowing” can be used in an attempt to
synthesize a proper invariant (see [12, §8]).

Termination can be handled in a similar way by letting the programmer supply
a bound function [17]. If termination is not of concern, wlp can be used. The wip
equation corresponding to (1.12) follows from the wlp equation corresponding to
(1.13) alone, without any further proof of termination.

The loop that never terminates, in its simplest form written as do true — skip od,
is often referred to as abort [17].

1.7 Specification statement

As a final statement, I introduce the specification statement [67]. Its non-exceptional
form takes the shape

w : [Pre, Post] ,

where w (called the frame) is an (unordered) list of variables, and Pre (the precondi-
tion) and Post (the postcondition) are predicates. If started in a state satisfying Pre,
the statement will terminate in a state satisfying Post, having modified the values
only of variables w. The weakest precondition of this statement is thus given by

wp.(w : [Pre, Post]).Q = Pre A{(Vw]l Post > Q) : (1.14)

That is, for w : [Pre, Post] to establish Q, Pre must hold initially. In addition, the
following must hold initially: For any values of variables w that satisfy Post, Q
holds. (I defer until Section 6.2 describing what the operational interpretation of the
statement is when Pre does not hold initially.)

We often want to specify the final values of w in terms of their initial values. We
can then think of “saving” the initial values of some variables v (admittedly usually
a subset of w), as in

[voew:=v; w: [Pre,b Post] || : (1.15)

22

Then, Post can refer to vy. I abbreviate (1.15) simply as
w : [Pre, Post| ,

where Post may subscript the name of any variable with 0 to refer to the initial value
of that variable. I assume that actual names of program variables never end with
a subscripted 0. I refer to a variable subscripted with 0 as an initial-value variable.
(The terms entry, logical, and mathematical variables are also in use.) Post can be
thought of as a two-state predicate, since it is a predicate on both the initial and final
states.

Note that w and Pre do not mention any initial-value variables. Also note that
it doesn’t change the semantics of the specification statement if more variables are
saved in (1.15) than are needed in Post; hence, when referring to the initial-value
variables in Post , we may safely consider any superset of those initial-value variables
that actually occur in Post.

Let v, be (any superset of) the initial-value variables in Post. The following
calculation arrives at the definition of the specification statement that permits initial-
value variables.

wp.(w :[Pre, Post]).Q
= { shorthand for (1.15) }
wp.([vo @ vo :=1v ; w:[Pre, Post] |).Q
= () wpof[e])
(Yvg > wp.(vo:=v; w:[Pre, Post]).Q)
= { (1.3,1.0): wp of ; and := }
(Yvg > (wp.(w: [Pre, Post]).Q)[vy := 1])
= { vy does not occur free in term of quantification }
(wp.(w : [Pre, Post]).Q)[vo := 1]
= { (L.14): wp of specification statement without initial-value variables }
(Pre A (Yw | Post > Q))[vg := 1)
= { o does not occur free in Pre }
Pre A (Yw | Post > Q)vg := 1] (1.16)

Remark 1.6. The observation about v, := v is one I thought to be
folklore. Later, I traced it back to having been a discovery [18, pp. 217~
219]. Maybe this attests how the general understanding of semantics has
grown during the last two decades.

In the realm of exceptional programs, I extend the postcondition in the specifica-
tion statement to be a pair of predicates.

wp.(w : [Pre, (ePost,nPost)]).(P,Q) =

Pre A (Vw > (ePost = P) A (nPost = Q))[vy := v] (1.17)

Note that the specification statement can be a partial command, e.g.,
w : [true, (false, false)] .

23

1.8 Refinement

The specification statement offers a high-level notation that conveniently expresses
what the command does. However, not only does it have the possibility of being par-
tial, the specification statement cannot easily be compiled automatically into more
primitive statements, because it does not give any clues as to how the command is
to arrive at the specified final state. The statement thus lends itself well to writing
a specification, the implementation of which requires guidance from the program-
mer. We want to be able to prove that the implementation meets the specification.
This leads to the concept of program refinement, first proposed by Dijkstra [16] and
Wirth [80], and first given a mathematical foundation by Back [2].

Informally, a statement S is refined by a statement T, denoted S C T, just when
T meets any specification that S does. Formally, the non-exceptional form of C is

defined by
(SET) = (VR> [wp.S.R = wp.T.R]) , (1.18)

where R ranges over all predicates on the final state. In the complete boolean lattice
of predicate transformers, elements are ordered by T, which is the lifting of [=]
in the complete boolean lattice of predicates [82]. If wip, not wp, is of interest, then
(1.18) is written with wp replaced by wip.

Examples of refinements are

x:[true, xo<x] E x:=x+3
and
sOT C s

In both of these examples, the left-hand sides allow a greater degree of nondetermin-
ism than the respective right-hand sides.

So, given S T T, we can always replace the program S by the program T. T
is therefore sometimes said to be “better than” S [39]. Note, however, that some
commands are “too good”. For example, wp.(false — skip).R = true, so false — skip
refines (or “is better than”) any command. However, false — skip is a partial command
that usually cannot realistically be implemented (the exception is again backtracking,
see Remark 1.1). This shows that when refining a program, there is a risk of ending
up with a non-implementable program [39, 68].

We may wonder if S T T allows us to replace S by T in any context. That is,
if S is a subcomponent of a larger program P, does replacing S by T in P result
in a refinement of P? Because this is important in program development, I require
that this property hold for all programs under consideration. The fact that S is a
subcomponent of P is captured by writing P as a function of §, say f.S. Then, the
requirement can be written down as

(SCT) = (fSCfT) ,

24

a formula we recognize as expressing the monotonicity of f. It is primarily for this
reason that I consider only those statement compositions that are monotonic in their
constituent statements (see Section 1.0.1).

For exceptional programs S and T, I define refinement by

(SET) = (VP,Q> [wpS.(P,Q) = wp.T.(P,Q)]) (1.19)

and similar for the wlp counterpart.

25

@gaffev

2

Functions of two arguments and
their compositions

To show that program constructs in a language with exceptions are not appreciably
more difficult to reason about than those in a language without exceptions, I show that
the weakest preconditions of these constructs make up a nice algebra over functions
of two arguments.

I first introduce the algebra, and then, as alluded to in Remark 1.0 in Section 1.2,
make the connection with program statements.

2.0 Function compositions

Consider functions f and g of type D — D, for any domain D. We are accustomed
to composing these functions, that is, applying one after the other. We use o to
denote function composition, and recognize its familiar definition, for any element x
of D,

(fog)x = f.(gx)

Now, consider functions f and g of type D x D — D. These cannot be composed
in the same way as the previous functions, because the expression

f(g(xy)

where (x,y) is a pair of type D x D, doesn’t make any sense since the types don’t
match up: the expression g¢.(x,y) has type D, whereas the domain of f is D x D.

From this, we conclude that composing functions of two arguments requires an
operator different from o. In fact, such functions can be composed in several different
ways.

In the rest of this chapter, I use f, ¢, and h to denote any functions of type
D x D — D for any domain D, and p and g4 to denote any elementsin D. As before,
an ordered pair with components p and ¢ is written (p,q).

26

2.1 Left and right composition

Of the different ways functions from pairs to elements can be composed, we first
consider left and right composition, written (0 and o) , respectively. I define these
as follows.

(flg)-(p,9) = £-(s-(p,9),4) (2.0)
(F99)-(,8) = 7.0, 3.(7,1) (2.1)
Theorem
(0 is associative. (2.2)
o) is associative. (2.3)
Proof.
(fl(gln)-(r,9)
= { (2.0): def.of © }
f-((geh)-(p;49),9)
= { (2.0): def.of 0 }
f-(8-(h-(p,49),49),49)
= { (2.0): def.of o }
(Flg)-(n(p,q),9)
= { (2.0): def.of o }
((f g) eh)-(p,9)
I omit the proof of the other case as it is similar to the present case (and will do so
in many more proofs). a
Two functions of special interest are L and R, defined as follows.
L(p,q) = p (24)
R(p,q) = q (2.5)
Theorem
L is the identity of (0. (2.6)
R is the identity of o). (2.7)
Proof.
(Llf)-(p,9)
= { (2.0): def.of o }
L.(f-(p,4),9)
= { (24): def.of L }
f(ps9)
= { (24): def.of L }
f-(Lp,9),4q)
= { (2.0): def.of o }
(feL)-(pq) O

27

Theorem

Lis a left zero of o). (2.8)
R is a left zero of (0. (2.9)
Proof.
(L9)8)-(p:4)
= { (2.1): def.of 0 }
L.(p,g-(p,9))
= { (24): def.of L }
= ' { (24): def.of L }
L.(p,9) 0

2.2 Double composition

As a different way to compose functions of two arguments, I define double composition,
written (o) .

f@g)-r,9) = f-(s:(r,9),8(r,9)) (2.10)

We have the following correspondences between single (left and right) compositions
and double composition.

Theorem

fOg = (flR)Ig (
fOg = (faL) g (2.12)
Proof.

((feR)9g).(p,q)

{ (2.1): def.of o) }
(f ©R).(p,g-(r,9))

{ 0): def. of (0 }
(r.&-(p,1)),8-(p,9))
= { 5): def. of R}

f(8-(p,2),8-(p,9))

= { (2.10): def. of (0 }

(f @ 38)-(p,9) 0O

Remark 2.0. [stated this property as an equality between functions;
however, its proof applies those functions to an arbitrary pair (p,q). I
strive toward calculations at the level of functions, since they tend to
be more concise and easier to read. As it turns out, having shown the
above relation between single and double compositions, I am now able to
carry out the calculations at the level of functions. This phenomenon is
commonly referred to as lifting (Section 0.2).

):
(v,
):

(2.
f-(R(p,8-(
(2.

28

I continue with some theorems regarding the associativity and distributivity of

the composition operators.

Theorem

(Fe)g)oh =) (sh)
Ok =10 (g9h)

Proof.
(fe)g)lhn

(fo)L) egoh

= { (2.12): double/single trade, and (2.2): (o is associative }

ACNCLCION

{ (2.12): double/single trade, and (2.2): (o is associative }

(2.13)
(2.14)

O

Now for a useful theorem whose proof is rather curious—maybe the most inter-

esting proof in this chapter.

Theorem

(0) is associative.

= { (2.11): double/single trade }
(

fE((gbR)In)
= { (2.14): mutual associativity of (o)
(f@(g©R)) o) h
= { (2.13): mutual associativity of (o)
((f g) ©R) o) I
.11): double/single trade }

Theorem

L and R are left identities of (o).

Proof.
LE)sg

- { (2.11): double/single trade }
(LER)9g

(2.6): L is identity of o }

(2.7): R is identity of o 1}

29

9

©

}
}

(2.15)

(2.16)

= { (2.6): L isidentity of o }

Lig
= { (2.7): R isidentity of o) }
(R)L) g
= { (2.12): double/single trade }
R@ g C

A consequence of this theorem, since L and R differ, is that {9 lacks a right identity.
However, (9 with L or R as a second argument is still interesting, as is shown by
the next theorem.

Theorem

A o
Proof.

fOL

{ (2.12): double/single trade }
(L) oL
{ (2.6): L isidentity of (o }
folL 0

0

fl

I find these instances where (o) equals o) or (o curious—in fact, so curious that
I will devote the next section to it.

2.3 Ceiling and floor

Intrigued by (2.17) and (2.18), I introduce some special notation, [] and | |, defined
as follows.

[£1
/)

This leads us to the following theorems.

FOL
fFOR

Theorem

[L
[—_

30

Proof.
[L]
L{)

(2.19): def. of [] }

{
L
{ (2.16): L is left identity of () }
L
= { (2.16): R is left identity of (0} }
R{OL A
{ (2.19): def.of [T }
[R] m

How we think about an operator influences the notation we choose. This is im-
portant, because the notation we choose in turn inspires how we think about the
operator! For example, we know well not to make the mistake of writing + and - for

V and A , respectively; doing that effectively hides the fact that Vv distributes
over A , a property not enjoyed by the arithmetic operators + and - [25]. The
following theorem justifies the use of ceiling and floor. These ceiling and floor opera-
tors can also be shown to be monotonic (with respect to any ordering over functions
of two arguments), just like the ones operating on real numbers.

Theorem
[] and | | are idempotent. (2.23)
Proof.

[
{ (2.19): def. of [], twice, and (2.15): (9 is associative }

fFOLEL
{ (2.16): L is left identity of () }

foL
(2.19): def. of [] }
[;

i
—_—

Theorem

fllg = Iflg (2.
fes = 1lf]9s (2.25

Proof.

fOs
{ (2.12): double/single trade }
L
{

(fo)L) g
(2.17): oL and (L }

31

(fOL) g
{ (2.19): def.of [] }

ifles 0

Theorem

[Fgl = [F10 [s] 2.
lf sl = f] @ 5] (2.27
Proof. Using the associativity of (0) in every step, we calculate,
[F e gl
{ (2.19): def.of [] }

fOs0L

{ (2.16): L is left identity of (o) }
L

{

fOLESOL
(2.19): def. of [], twice }
1

[F10 (s

Theorem

2.23): idempotenceof [] }

2.4 Transposition

I introduce operator ~ with higher binding power than composition and function
application, defined as follows.

~fpq) = f(q,p) (2.28)

Clearly, ~ is an involution, that is, ~~ is the identity function (~~ f =f).

Remark 2.1. Having introduced a new operator, defined at the level of
pairs, the proof of the next theorem is done at the point level.

Theorem

~(flg) = ~fo ~g
~(fog) = ~fl ~g
~(fOg) = ~f0 ~g

Proof. For left composition, we have,

~ (fg)-(r,9)

= { (2.28): def.of ~ }
(f8)-(a,p)

= { (2.0): def.of 0 }
f.(-(a,p),p)

(2.28): def. of ~ }

(2.28): def. of ~ }

= { (2.1): def. of o) }
(~fo) ~g)-ma)

and similar for right composition. For double composition, we have,

~(f @

): def. of ~, twice }

g-(p4))
: def. of ~ '}

)
,4),~ 8-(p, 1))
10): def. of ©© }
(~f0) ~s

)-(p0) =
This theorem shows the duality between (0 and o) .

2.5 The connection with programs

Section 1.2 motivated this chapter. By identifying a program with its weakest pre-
condition, the connection between programs and functions of two arguments is sum-
marized as follows.

skip = R

raise = L

$ST = SoT or more succinctly: ;= o
SAT = ST or more succinctly: 4 = (o

33

I proceed to explain the connections between the other operators in the algebra
and programs. Using (2.25) and (2.24), we have

SOT = (S<skip);T
SET = (S;raise) A T

From the definitions of | | and [], and from (2.18) and (2.17), we have

[S] = S skip
[S] = S;raise

In words, the execution of [S| is like that of S, except that when S terminates at
all, [S| terminates normally. Similarly, the execution of [S] is like that of S, except
that when S terminates at all, [S] terminates exceptionally. The execution of S{o) T
consists of the execution of S followed by, provided S terminates at all, the execution
of T.

Transposition ~ S is the statement that terminates just when S does, and upon
termination complements the outcome. We can implement ~ S as

[V e ((S;b:=true) A b:= false) ; if b — raise O —b — skip fi |

As a program construct, ~ seems to be of limited use, but maybe that’s just our lack
of imagination. In the algebra, however, it allows us to prove the duality between (o
and o .

Modula-3 is an example of a programming language with exceptions. In addition
to the < construct, it has a so-called try finally statement. Execution of

TRY S FINALLY T END

consists of the execution of S followed by the execution of T. If the execution of §
terminates exceptionally, then execution of T is followed by reraising the exception.
This construct can be captured by

(S < (T;raise)); T

Finally, I remark on the relation between the theory presented herein and existing
programming languages. We find that usual programming languages introduce an
asymmetry between left and right composition. For example, statements begin their
execution in a normal state, < is often much longer to type than ;, and < may not
be as efficient as ; (see, e.g., [71]). However, the properties presented in this chapter
suggest a more symmetric treatment of ; and <.

2.6 Concluding remarks

We have seen that the algebra over functions of two arguments and their compositions
—the algebra that underlies weakest preconditions for programs with exceptions—
is simple and elegant. Consequently, there is good hope of getting a computer to

34

perform calculations within this algebra, as is needed to do automatic verification of
programs with exceptions.

A generalization of the present algebra to functions of type D" — D for any n is
found in [61]—in fact, the generalization does not even require that n be finite. [61]
also presents a way, via partitioned predicates (see Remark 3.3), to handle exceptions
without requiring wp.S be a function from a pair of predicates to a predicate, but
instead allowing it to remain a function from one predicate to another.

In previous studies of exceptions (and mathematics in general), this algebra has
gone unnoticed. One reason for this has been suboptimal choices of notation for
exceptional weakest preconditions. Where I write wp.S.(P,Q), [60] writes wp(S, Q,P)
and [13] uses the two functions wp(S,e,P) and wp(S,;,Q). My notation has the
advantage over the others of permitting the separation of the function wp.S from
its argument (P,Q). Only then does the opportunity to discover the algebra over
functions of type D x D — D arise.

Remark 2.2. Dijkstra came to the same conclusion regarding his non-
exceptional wp, as is witnessed by contrasting the notation in [17] with
that in [21].

The notation in [13] is readily extensible to more than one exception. However,
to specify that a program does not raise any exceptions, one needs information about
all declared exceptions, so the notation is not as extensible as it may first appear.

One of two other approaches to allowing more than one exception is to add a
special variable which indicates which exception is raised. The variable would be
updated immediate preceding a raise statement. The other possibility is to extend
the pair to an arbitrary tuple. This is done in [4] and [61].

Application of the present algebra is not limited to the semantics of programs
with exceptions—it can be used for any functions of type D x D — D. Another
appearance of such functions in computer science is [22]. Also, [61] considers some
other application areas, including relational databases and embedded systems.

35

@galofen

Trace semantics for exceptions

In Chapter 1, I introduced the weakest preconditions for exceptional program con-
structs. More precisely, I let the weakest preconditions (and weakest liberal pre-
conditions) define these programs constructs. In Section 2.5, I described constructs
like <, | |, and try finally operationally. We may thus ask, “Does our operational
interpretation of these constructs correspond to their mathematical weakest precon-
dition definitions?”. Not only is this issue relevant when using the constructs to
write programs, but it becomes unavoidable when we try to implement the program
constructs.

So, the question is, “Are these constructs the ones we think they are?”. Focusing
on assignment, the unit statements, and normal and exceptional composition, I lead
us in this chapter to come to grips with the answer to that question.

3.0 Introduction

One approach to convincing ourselves that we have indeed defined the intended con-
structs is taken by Manasse and Nelson in [60], where exceptional programs are trans-
lated into simpler constructs. The implementation of these simpler constructs is more
familiar to us, and is discussed in [21, Ch. 10]. In the present chapter, | take an ap-
proach different from that in [60]—in some sense, I approach the problem from the
other end. To understand my approach, let’s start by contrasting different semantics
of a program.

3.0.0 CONCRETENESS OF A SEMANTICS

One reason the weakest-precondition semantics is so useful is that it provides a high-
level view of programs—only initial and final states play a réle.

In contrast, the advantage of a more concrete semantics is that it gets us closer to
the implementation of the construct under consideration. On the other hand, a more
concrete semantics suffers from being unwieldy to work with when proving programs.

36

Exceptional ,
states T ¢

oct

Normal
states 1 —
a a
Figure 3.0: Normal state space Figure 3.1: Exceptional state space

Since a goal in this thesis is to make the prevailing mathematics as simple as pos-
sible, a more concrete semantics does not appear desirable. However, by defining our
program constructs more concretely, and then from that concrete definition deriving
the weakest preconditions, we get the best of both worlds: We are better convinced
that we are modeling the statements that we have in mind, and we get a calculus
that is abstract enough to work with.

Notice that once we have established the connection between the more concrete
semantics and the weakest-precondition semantics, we are no longer interested in the
more concrete semantics.

3.0.1 OUTLINE OF CHAPTER

As the more concrete semantics, I choose a trace semantics (cf. [75]). In the rest of
this chapter, I take programs that can raise and handle exceptions along the path of
Lukkien [59], which describes first an operational semantics in terms of traces and
then derives a weakest-precondition semantics from it.

Section 3.1 describes my trace semantics model. In Section 3.2, I start off with
a clean slate and define the basic exceptional statements and compositions by their
trace semantics. Section 3.3 defines the meaning of weakest preconditions (wp) in
the trace semantics setting. Section 3.4 calculates wp for the statements defined
in Section 3.2. We can then compare the wp in this chapter with the wp from
Chapter 1, and will find the two equal. Thus, the definitions in Chapter 1 do match
our operational interpretation of the commands.

3.1 Trace sets

For a program without exceptions, the program state space is the Cartesian product
of the program variables. For example, the state space of a program with two program
variables, a4 and b say, can be thought of as a two-dimensional space, as depicted in
Figure 3.0.

To model exceptional programs, I augment the state space with a binary “out-
come” coordinate, oc, depicted for the two-variable example in Figure 3.1. Coordinate
oc partitions the resulting state space into normal (oc = L) and exceptional (oc = T)

37

Figure 3.2: Example trace Figure 3.3: Example trace of raise

states. For state x, I write nor.x to indicate that the outcome is normal, and exc.x to
indicate that the outcome is exceptional. I write X for the set of all states, including
those with an exceptional outcome.

The semantics of a program is defined via traces. In this chapter, a trace is a
nonempty sequence of states that starts in a normal state; no actions are recorded
in the traces. A trace set is a (possibly infinite) set of (possibly infinite) traces. For
program S, [identify S with the set of all traces that can be the result of executing
S. Figure 3.2 depicts a sample trace.

Catenation, which binds stronger than function application, will be denoted by
Juxtaposition. Variables s and t range over (possibly empty) sequences of states,
and x and y over states. I define fin.s to hold just when the length of s is finite,
and inf.s to hold otherwise. For nonempty sequence s, I let first.s denote the first
state in s, and, if s is finite, last.s the last state in s. For state x, I write |x] for
xloc := 1] and [x] for x[oc := T], that is, x in which the value of coordinate oc
has been replaced by L and T, respectively. Stated differently, |x] and [x] are
the two states that are the projections of x onto the normal and exceptional planes,
respectively.

Remark 3.0. The given trace semantics models programs with one
exception. To model n distinct exceptions directly in the trace semantics,
one can change oc from being a binary-valued coordinate to a coordinate
that can assume 1+4n values: the normal value plus one for each exception.

3.2 Program constructs as trace sets

In this section, I define each program construct as a trace set.

3.2.0 PRIMITIVE STATEMENTS

By way of introduction, I define the trace semantics of the assignment statement. Let
v be a regular program variable and E be a total expression (see Section 1.1). Then,
in the absence of exceptions, one would write

v:=E = {xv x(xfv:=Ex]) })

38

in which every trace has length two: it consists of initial state x and final state
x[v := E.x], that is, state x in which the value of coordinate » has been replaced by
the value of expression E evaluated in state x. The set v:= E contains such a trace
for every state x € X. In the presence of exceptions, I restrict x to be a normal state
and write

v:=E = {x| norx > x (x[v:=Ex]) } . (3.0)
Statement skip is defined as
skip = {x | norx v x} (3.1)
in which the latter occurrence of x denotes a trace of length one. I could have chosen
skip = {x | norx > xx}

to get traces of length two, but, for reasons discussed below, I prefer (3.1).
I write the raising of an exception as the statement rise, and define its trace
semantics as

raise = {x | norx > x[x] } , (3.2)

that is, the set of all traces of length two starting with a normal state and ending
with an exceptional state; the two states are equal in all other coordinates. Figure 3.3
shows a sample trace from set raise. Alternatively, I might have written

raise = oc 1= T ,

except that oc is not a regular program variable; it is a variable that I have introduced
for describing the trace semantics only.

3.2.1 NORMAL COMPOSITION

The definition of sequential composition is changed to accommodate exceptional out-
comes. If there were no exceptions, one could define

S$;T = {s,x,t | sx ESAxt € TA fins > sxt } U
{slseSAinfs> s} .

which distinguishes between those traces in which execution of S does or does not
terminate. In words, S;T contain the set of traces that start with a finite trace from
S (sx) and continue with a trace from T (xt), where the last state in the trace from
S (x) is the same as the first state of T (x). S;T also contains the infinite traces in
S.

In the presence of exceptions, I refine the definition to

S$;T = {s,x,t| sx € SAxtE€TA fins Anorx > sxt } U
{s1s€SA(infsV exc(last.s)) > s} . (3.3)

39

What distinguishes this definition from the previous one is that the connecting state
(x) is restricted to be a normal state. The infinite traces of S and the finite traces
of S that end with an exceptional state are not joined with any trace from T. This
definition captures the fact that execution of S;T reduces to execution of S in the
case where that execution terminates exceptionally.

We have

Theorem
; is associative. (3.4)

I omit the proof of this theorem.

Theorem
skip is the left identity of ;. (3.5)
Proof.

skip; T
= { (3.3): def. of ; }
{s,x,t | sx Eskip A xt €T A fin.s A nor.x > sxt } U
{slse&skip A (infs V exc.(last.s)) > s}
= { (8.1): def. of skip }
{x,t | xt €T A norx v xt}
= { each trace starts in a normal state }

T 0
Theorem

skip is the right identity of ;. (3.6)
Proof.

S; skip

= { (3.3): def. of ; }
{s,x,tl sx €S A xt € skip A fins A norx > sxt } U
{slse€S A (infs V exc.(last.s)) > s }
= { (3.1): def. of skip }
{s,x | sx €S A fins A nor.x > sx } U
{sls€S A (infs V exc.(last.s)) > s }
= { fin and inf are each other’s complements, and ditto for nor and exc }
{slsesSv s}

S o

For the above two theorems to hold, it is essential that skip does not duplicate the
state in a trace when joined by a semicolon with another statement. This is why the
trace set of skip contains traces of length one instead of traces of length two.

In the next theorem, I consider ; applied to arbitrary trace sets.

Theorem

; is positively U-distributive in both arguments. (3.7)

Remark 3.1. In its left argument, ; is even universally U-distributive,
as the proof shows, but that property is not needed in the present discus-
sion.

Proof. With S ranging over any bag of trace sets, we calculate,

(US> S);T

= { (3.3): def.of ; }
{s,x,t|sxe (US> S) Axt€T A fins A\ nors > sxt } U
{slse (US> S) A (infs V exc.(last.s)) > s }

= { interchange unions }
{S,s,x,t 1 sx €S N xt €T A fin.s A nor.s > sxt } U
{S,s1s€S A (inf.s V exc.(last.s)) > s }

= { nesting }
(US> {s,x,tlsx €S AxtET A fins A nors > sxt }) U
(US> {sls€S A (inf.s V exc.(last.s)) > s })

= { combine terms }
(US> {s,x,tlsx €S A xtET A fins A nors > sxt } U

{sls€S A (infs V exc.(last.s)) > s })

= { (3.3): def.of ; }

(US> §;T)

For the other argument, and with T ranging over any nonempty bag of trace sets, we
calculate,

S;(UT o> T)

= { (3.3): def. of ; }
{s,x,t| sx €S Axte(UT> T) A fins A nor.s > sxt } U
{sls€S A (infs V exc.(last.s)) > s }

= { interchange union }
{T,s,x,t | sx €S AN xt €T A fins A\ nors > sxt } U
{sts€eSs A (inf.s V exc.(last.s)) > s}

= { nesting }
(UT > {s,x,tl sx €S A xtE€T A fins A nor.s > sxt }) U
{slseS A (infs V exc.(last.s)) > s }

= { range of T is nonempty }

41

(UTo {s,x,tlsx €S A xtE€T A fins A\ nor.s > sxt} U
{slseS A (infs V exc.(lasts)) > s })
= { (3.3): def. of ; }
(UT o ST) . O

3.2.2 EXCEPTIONAL COMPOSITION

Next, I define the trace semantics of the exception handler.

SAT = {s,x,t| sx ESA |x|t € T A fins Aexcx > sx|x|t } U
{s1s€SA(inf.sV nor.(last.s)) > s } (3.8)

This set is similar to S;T, but has some important differences. Finite traces of S
where the last state is exceptional (sx) are joined with traces from T that begin with
the normal projection (|x]|) of the last state of the trace from S. Moreover, unlike
normal composition, no state is dropped here, so both the last state in the trace from
S (x) and the first state in the trace from T (|x]) appear in the traces in S< T.
Also, infinite traces of S and finite traces of S that end with a normal state are
included in S <1 T, but are not joined with any trace from T.

Remark 3.2. It would be nice to have
raise 1s the left and right identity of < ,

but neither part of this property holds, because the traces of raise have
length two, and therefore add an extra state to the traces of the exception
handler. Furthermore, the exception handler, too, repeats the connecting
state, x, with oc := L in the second occurrence.

3.2.3 OTHER STATEMENTS

I omit discussion of the remaining statements; aside from differences noted in this
section, their definitions are as in [59].

Compared to [59], the definitions of abort and of the if-statement need not be
changed because the initial state is always normal. The definition of the do-statement
need not be changed because it 1s defined in terms of the if-statement, sequential com-
position, and skip. The latter two have already been redefined to cater for exceptional
states, and the only properties used in the context of the do-statement are that se-
quential composition is associative (which it still is—see (3.4)), that skip is its identity
element (which it still is—see (3.5) and (3.6)), and that sequential composition is pos-
itively U-distributive in both arguments (which it still is—see (3.7)). For the purpose
of defining the do-statement, [59] introduces a partial command g7, which can be
seen as the command ¢ — skip. However, this command is not recognized as a partial
command in [59].

3.3 Weakest preconditions of trace sets

I define function wp.S.(P, Q) to be the weakest condition on the initial state such that:
execution of program S terminates, every exceptional terminating state satisfies P,
and every normal terminating state satisfies Q. Since the oc coordinate is not part of
the program but of the trace semantics only, I require that P, Q, and wp.S.(P,Q) be
independent of the oc coordinate, that is, Q.x = Q.|x| = Q.[x]. I do so by restricting
P and Q to predicates in which oc does not occur, and by designing wp carefully
(see (3.11) below). As a result, wp.S.(false, Q) in this chapter coincides with Dijkstra’s
wp.S.Q [17].

In the sequel, I often need to distinguish between conditions on the exceptional
and on the normal states. I write a pair of conditions to capture this distinction.

(P,Q).x = (excx = P.x) A (nor.x = Q.x) (3.9)

Remark 3.3. In [61], the generalization of such a pair to any tuple is
called a partition predicate.

This construction is universally conjunctive, that is,
<V1D (Pi,Qi)> = ((VID P,‘>,<Vil> Q >) y (310)
as is shown by the calculation

(Vieo (Pi,Q))x
= { lifting }

(Vio (P, Qi).x) _
= { (8.9): def. of a pair predicate }

(Vive (excx = Pux) A (norx = Qix))
= { pred. calc. }

(excx = (Vi Pux)) A (norx = (Vi> Qux))
= { lifting }

(excx = (Viv Pi)x) A (norx = (Vi> Qi).x)
= { (3.9): def. of a pair predicate }

((Vie P),(Vi> Qi))x

The definition of wp.S.(P,Q) for state x is a condition on x such that every trace
t of S that begins with initial state |x]| is of finite length and satisfies (P, Q).(last.t).

wp.S.(P,Q)x = (Vtlfirstt= x| At€ S fint A(P,Q).(last.t)) (3.11)

Above, I said that this definition needed to be designed with care. The trick is to
define wp.S.(P,Q).x for any x, not just for normal states x, despite the fact that a
trace always begins with a normal state. Since x can be any state, |x] is needed in
the definition (see, e.g., the second step in the calculation leading to (3.18)).

I continue with some theorems regarding wp.

43

Theorem
wp.S is positively conjunctive. (3.12)
Proof. With K ranging over any nonempty bag of pairs, we calculate,

wp.S.(VKv> K)x
= { (3.11): def. of wp }

(Vtlfirstt=|x] A teSo fint A (VKo K).(last.t))
= { lifting }

(Vtlfirstt = |x] AN teSv fint A (VKo K(last.t)))
= { A over V, since range is nonempty }

(Vi firstt = |x] A teSve (VKo fint A K(last.t))
= { interchange of quantifications }

(VKo (Vtl firstt=[x] A t€S v fint A K.(last.t)))
= { (3.11): def. of wp }

(VK> wp.S.Kx)
= { lifting }

(VKb wp.S.K).x : 0

A consequence of this theorem (cf. [21]) is

wp.S is monotonic. (3.13)
Theorem

wp.S.(P,Q) = wp.S.(P,true) A wp.S.(true, Q) (3.14)
Proof. Follows from (3.10) and (3.12). D

Using the “everywhere” operator, written [] (¢f. [21]), I can state the next theo-
rems.

Theorem

R = wp.5.(P,Q)] = [R = wp.S.(P,true)] A [R = wp.S.(true, Q)] (3.15)
Proof. Follows from (3.14) and predicate calculus. u
Theorem

R = wp.S.(P,Q)] = (IMo> [R = wp.S.(M,Q)]A[M= P]) (3.16)

R = wp.5.(P,Q)] = (IM> [R = wp.S.(P,M)]A M= Q]) (3.17)

44

Proof.

[R = wp.S.(P,Q)]
= { one-point rule }
(IMI M = Pl > [R = wp.S.(M,Q)])

= { weakening }
(IM> M = P] A [R = wp.S.(M,Q)])
= { (3.13): wp.S is monotonic }

(IM > [R = wp.S.(P,Q)])
= { range is nonempty }
[R = wp.5.(P,Q)]

The proof of the other is similar.]

3.4 Calculating the weakest preconditions

I calculate wp for the various program constructs, arriving at a link with the wp
definitions of Chapter 1. First, I look at skip. For any state x,

wp.skip.(P, Q).x

{ (3.11): def. of wp }
(Vtlfirstt = |x| A tE€skip> fint A (P,Q).(lnst.t))
= { (3.1): def. of skip }

(P, Q) [x]
= { nor.|x|,and (3.9): def. of (P,Q) }
Q|x]
= { Q isindependent of oc }
Qx ;
and hence
wp.skip.(P,Q) = Q . (3.18)

By a similar calculation, we obtain, for any state x,

wp.raise.(P, Q).x

{ (3.11): def. of wp }
(Vtlfirstt = |x| At € raise > fint A (P,Q).(last.t))
= { (3.2): def. of raise }

(P,Q)-[1x]]

= [1{ [[x]1 = [x], and exc.[x], and (3.9): def. of (P,Q) }
P.x

= { P is independent of oc }
P.x ,

45

and hence

wp.raise.(P,Q) = P . (3.19)
Similarly,
wp.(v:=E).(P,Q) = Qv:=E| (3.20)

can be shown.
More involved are the calculations for sequential and exceptional composition. For
the latter, we calculate,

wp.(S<AT).(P,Q).x
= { (3.11): def. of wp }

(Vtlfirstt=|x] NtESAT> ﬁnt A (P,Q).(last.t))
= { (3.8): def. of <, with t:=sy|y|t and t:=s }

(Vs,y, t| firstsyly|t=[x] A sy€S A |y|t ET A fins A excyv

finsyly]t A (P.Q).(Inst.syly]t)) A

(Vs firsts=|x] A s€S A (inf.s V nor.(last.s)) > fins A (P,Q).(last.s))
= { first.syly|t = first.sy, and fin.s = finsy, and last.sy|y|t = last.|y]t }

(Vs,y,t| first.sy = LxJ Asy€S A |ylteT A finsy A excyv

fnsylylt A (2.Q)-last.Ly]6)) A

(Vs firsts=|x] A s€S A (inf.s V nor.(last.s)) > fins A (P,Q).(last.s))
= { rename s and t as sy:=s and [y|t:=t in first quantification }

(Vs,t| firsts=|x| N s€S A first.t = |lasts| ANt €T A fins A exc.(last.s) v

finst A (P.Q).(last.t)) A

(Vs | firsts=|x] ANs€S A (infs V nor.(last.s)) > fins A (P,Q).(last.s))
= { mnesting, and fin.s = (fin.st = fin.t) }

(Vs firsts=|x| ANs&€S A fins A exc.(last.s) >

(Vtl first.t = |lasts| At €T o fint A (P.Q).(last.t))) A

(Vs first.s=|x] A s€S A (infs V nor.(last.s)) > fin.s A (P,Q).(last.s))
= { shunting twice, and (3.11): def. of wp }

(Vs firsts = |x] AN s€S> infs V nor.(last.s) V wp.T.(P,Q).(last.s)) A

(Vs firsts=|x] As€Sv> (fins A exc.(last.s)) V (fin.s A (P,Q).(last.s)))

Leaving the range first.s = |x] A s € § as understood, we continue the calculation,

(Vs> inf.s V nor.(last.s) V wp.T.(P,Q).(last.s)) A
(Vs> (fins A exc.(last.s)) V (fins A (P,Q).(last.s)))
= { combine terms, and factor }
(Vsv (inf.s V nor.(last.s) V wp.T.(P,Q).(last.s)) A
fin.s A (exc.(last.s) V (P,Q).(last.s)))
= { absorption, and pred. calc. }
(Vs> fins A (exc.(last.s) = wp.T.(P,Q).(last.s)) A
(nor.(last.s) = (P,Q).(last.s)))
= { mnor.(last.s) = ((P,Q). (laqt s) = Q.(last.s)) }

46

(Vs o fins A (exc.(last.s) = wp.T.(P,Q).(last.s)) A (nor.(last.s) = Q.(last.s)))
= { (8.9): def. of a pair }

(Vs fins A (wp.T.(P,Q),Q).(Iast.s))
= { (3.11): def. of wp (recall the understood range) }

wp.S.(wp.T.(P,Q),Q).x ,

and obtain
wp.(S<AT).(P,Q) = wp.S.(wp.T.(P,Q),Q) . (3.21)
For sequential composition, we can show
wp.($;T).(P,Q) = wp.S.(P,wp.T.(P,Q)) , (3.22)

using a calculation very similar to that of exceptional composition, if slightly easier.

Comparing the present wp of the assignment statement (3.20), skip (3.18),
raise (3.19), ; (3.22), < (3.21) with the Chapter 1 wp definitions of these state-
ments (1.0, 1.1, 1.2) and statement compositions (1.3, 1.4), we conclude the two wp’s
to be equal. Hence, I have justified the definitions of wp for these constructs.

Remark 3.4. With reference to Remark 3.2, note that in the weakest-
precondition semantics, raise ¢s an identity of <1. We saw this not to be
the case in the trace semantics because of repeated states. This comes
back to the fact that the trace semantics is more concrete than the wp
semantics, which only concerns itself with the first and last states of traces.

47

@gaf:fer

A theorem on programming
methodology

From the weakest-precondition semantics given for a programming notation, one of-
ten derives some theorems that are used in reasoning about programs. Ideally, they
suggest hints for methodical program construction. An example of that is the Invari-
ance Theorem for iterative statements (¢f. [21] and Section 1.6). 1 give a theorem
that suggests using exception handlers in a way similar to split binary semaphores
(cf. [63]). The theorem is in terms of Hoare triples for normal termination, and free
occurrences of raise for exceptional termination.

4.0 Hoare triples

Inspired by [36], I define the Hoare triple of exceptional programs by
{R}S{Q} = [R = wp.5.(true, Q)] , (4.0)

from which the Hoare triple for each of the basic statements can be calculated.

{R}v:=E{Q} = [R=Qlv:=E]

{R} skip {Q} = [R=Q]
{R} raise {Q} = true
{R}s0;s1{Q} = (IMo {R}so{M} A {M}ST{Q}) (4.1)
{R}so<s1{Q} = {R}so{Q} A
(IM > [R = wp.S0.(M, true)] A {M} S1{Q}) (4.2)

I prove the last two of these. For sequential composition,

{R} s0;51{Q}
= { (4.0): def. of triple }
[R = wp.(S0; S1).(true, Q)]
= { (1.3): wp of; }
[R = wp.S0.(true, wp.S1.(true, Q))]
= { (3.17) with S,P,Q := S0, true, wp.S1.(true, Q) }

48

(IM o [R = wp.S0.(true,M)] A [M = wp.S1.(true, Q)])
= { (4.0): def. of triple, twice }
(IM > {R}so{m} A {M}sS1{Q}))

and for exceptional composition,

{R}s0 < s1{Q}
= { (4.0): def. of triple }

[R = wp.(S0 <1 S1).(true, Q)]
= { (1.4): wp of 4 }

[R = wp.S0.(wp.S1.(true, Q), Q)]
= { (3.16) with S,P := S0,wp.S1.(true,Q) }

(IM > [R= wp.S0.(M, Q)] A [M = wp.S1.(true, Q)])
= { (3.15) with P:=M }

(IM > [R= wp.S0.(M, true)] A [R = wp.S0.(true, Q)] A [M = wp.S1.(true, Q)])
= { (4.0): def. of triple, twice }

(IM > [R = wp.S0.(M, true)] A {R}S0{Q} A {M}S1{Q})
= { A (distributes over 3 }

{R}S0{Q} A (IM > [R= wp.S0.(M, true)] A {M}S1{Q})

4.1 Free occurrences of raise

I now give the definition of free occurrence of raise. Statement raise occurs free in
® raise
e S0;S1 just when it occurs free in S0 or in §1
e S0 <1 S1 just when it occurs free in 1

e the other statements when it occurs free in one or more of their constituent
statements.

If every execution of a free occurrence of raise in a statement S starts in a state
satisfying a predicate P whenever the execution of S starts in a state satisfying the
predicate R, then I say “every free occurrence of mise in S has precondition P in
context R”. The next theorem establishes the correspondence between this informal
statement and a mathematical formula.

Theorem

Every free (occurrence of) raise in S has precondition P in context R

[R = wp.S.(P, true)] (4.3)

49

Proof. The proof is by induction over the syntax of S. For assignment, we calculate,

every free raise in v:= E has precondition P in context R
= { there are no free occurrences of mise in v:=E }
true
= { (1.0): wp of v:=E; pred. calc. }
[R = wp.(v:= E).(P, true)]

The proof for skip is similar. For raise,

every free raise in raise has precondition P in context R
= { rise is a free occurrence of mise }

[R = P
= { (1.2): wp of rise }

[R = wp.raise.(P, true)]

Now the compositions, beginning with normal.

every free raise in S0;S1 has precondition P in context R
= { def. of free occurrences of mise in S0;S1, and
notion of “context” for ; }
every free raise in SO has precondition P in context R, and
every free raise in S1 has precondition P in context M
for some M satisfying {R} S0{M}
= { induction hypothesis, twice }
[R = wp.S0.(P, true)] A
(IM > [M = wp.S1.(P, true)] A {R} S0{M})
= { (4.0): def. of triple }
[R = wp.S0.(P, true)] A (IM > [M = wp.S1.(P, true)] A [R = wp.S0.(true, M)])
= { A over 3 }
(IM > [M = wp.S1.(P, true)] A [R = wp.S0.(P, true)] A [R = wp.S0.(true, M)])
= { (3.15) with Q:=M }
(IM > [R= wp.S0.(P,M)] A [M = wp.S1.(P, true)])
= { (3.17) with S,Q := S0, wp.S1.(P, true) }
[R = wp.S0.(P, wp.S1.(P, true))]
= { (1.3): wp of ; }
[R = wp.(S0; S1).(P, true))

Finally, for exceptional composition,

every free raise in S0 <1 S1 has precondition P in context R
{ def. of free occurrences of rise in S0 < S1, and
notion of “context” for 4 }
every free raise in S1 has precondition P in the context of
some exceptional postcondition of S0 from R
= { induction hypothesis }

(IM > [M = wp.S1.(P, true)] A [R = wp.S0.(M, true)])
{ (3.16) with S,P,Q := S0, wp.S1.(P, true), true }
[R = wp.S0.(wp.S1.(P, true), true)]
= { (1.4): wpof « }
[R = wp.(S0 < S1).(P, true)] . O

4.2 Usage of exceptions

As a consequence of (4.2) and (4.3), we have

Theorem

{R}s0 < s1{Q}

{R}S0{Q} A
(IM> {M}S1{Q} A

every free occurrence of raise in S0 has precondition M in context R)

This theorem suggests that, when constructing S0 in S0 <1 S1, one should have in
mind a precondition M for all riise statements that occur free in S0; the benefit is
then that one may assume that same precondition in the construction of S1.

In the next chapter, I put this theorem into action in the construction of a simple
program. The theorem is also quite useful in large programs, because it shapes the
way we think about using exceptions: If a particular exception is raised only when
some particular global condition holds, then the theorem tells us that every handler
of that exception can assume that condition upon entry. This suggests that the
declaration of an exception in a programming notation provide a way to state this
condition.

Finally, I remark on exception parameters, as featured, e.g., in Modula-3 and
CLU [54]. The values of these parameters can be considered part of the “global
condition” to which I alluded above, since they are accessible both where the exception
is raised and where it is handled. Thus, the theorem suggests that these parameters
be initialized, at the time the exception is being raised, to satisfy some particular
condition. Like the case for other global values, the exception handler can then
depend on that condition upon entry.

@ga}vfev

Constructing a program with
exceptions

In Chapter 4, I developed a theorem regarding the use of exceptions. In this chapter,
I employ that theorem in a novel construction of a simple program.
5.0 A program derivation

Equipped with exceptions, the task in this section is to design a program that, given
value x and two-dimensional array a of size M x N, computes b,i,j to satisfy

Q: (b = QO) A (-0 = Q1) ,
where
Q: 0<i<M A 0<j<N A dfi,j]=x
Q1 : (Vm,nl 0<m<MAOL<n<Nv amn] #x)

It is understood that the values of x and a4 may not be changed. As our guide,
we will use the theorem from Chapter 4, which states that if, in a proof, every free
occurrence of raise in S has precondition K, then K can be used as the precondition
for handler T in a proof of S T.

To get us started, 1 suggest we make use of the fact that control sometimes flows
through T and sometimes not. I let these two cases correspond to the cases b and
—b. But which goes with which? In order to conclude that x is not present in a,
every element of a needs to be tested. This can be done using two nested loops. In
order to set i and j to a coordinate of 4 whose value is x, the program first needs to
find such a coordinate. This, too, can be done using two nested loops, but there is no
reason to continue the search once an x has been encountered. Exceptions provide
a means of breaking out of such loops prematurely. For this reason, I write the first
approximation of our program as

(S;b := false) <1 b := true

for some S to be developed.

Let us now develop program S, whose normal postcondition we want to be Q1.
Moreover, the theorem from Chapter 4 tells us that any raise statement in S must
have precondition Q0. Twice using the well-known technique of replacing a constant
by a variable (see, e.g., [17], [29, Ch. 16], [20], [77, Ch. 8], or [5, Ch. 4]), we find

invariants

Po: 0<i<M A (Ym,nl 0<m<iNO<n<Nov amn]#x)
P1: POANIi#EMANOS]SNA(VnlO<n<jo> ali,n]#x)

for the outer and inner loops, respectively, and calculate S as

i:=20;

doi#Mw j:=0;
do j # N+ “establish afi,j]#x” ; j:=j+1od;
ir=i41

od

The program segment “establish a[i,j] # x” concerns us since we are not allowed to
modify any of these variables at this stage. Were it not for the presence of exceptions,
we would need a miracle at this time. But, since we do have exceptions at our disposal,
we just need to verify that one can be raised if ali,j] # x does not hold. We observe
that P1 A j # N A afi,j] = x implies Q0, so we can use a riise here. Replacing
“establish afi,j] # x” with

if afi,j] = x — raise O ali,j] # x — skip fi ,

we are done, and write the entire program as

(i:=0;
doi#Ml—) ji=0;
doj';éNr——)
if ali,j] = x — mise 0 afi,j] # x — skip fi ;
=it
od ;
i=i+1
od ;
b := false
)
<
b := true

5.1 Discussion

To prove the correctness of our program, we only needed to show that normal termi-
nation of the loops maintains the invariants. The rest follows from the invariants, the
guards, and the theorem from Chapter 4. The proof of this program is thus simple.

33

Looking back at the program through operational spectacles, we see the loops
followed by b := false as trying to establish the absence of x in a. However, should
an x be present, an exception is raised when an x is first encountered. The operation
of this program is thus easy to understand.

Finally, consider a similar program that, without exceptions, uses stronger guards
to facilitate exiting the loops before i = M and j = N, respectively. For example,
twice applying the Bounded Linear Search Theorem [17, 20], we arrive at the program

b,m := false, 0 ;
do b A m#Mw—s
c,n = false, 0 ;
do—c An#Nr
¢,iyj,ni=almmn] =x,mnn+1
od ;
bym:=c,m+41
od

In addition to having more complicated invariants (because the invariants need to
record the information to prove the postcondition for both conjuncts of Q), this
program is arguably less efficient than the one that uses exceptions (because of the
extra tests). Thus, we consider our program efficient. The point, however, is not to
show that a structured jump can produce a more efficient program; the point is that
we have an easy way of constructing such a program hand in hand with its proof.

The heated forum discussion [73] discusses programs that attempt to solve a re-
lated programming problem. The above problem can also efficiently be solved using
recursion or goto statements, as [34] demonstrates with a nice derivation. How ex-
ception handling can simplify the structure of certain programs is also discussed in, for
example, [13]. More recently, [46] shows exceptions in the construction of programs
through refinements.

54

@gaffer

Modeling common programming
languages

In this chapter, I discuss the relation between the program semantics given in Chap-
ter 1 and the mathematical modeling of popular features found in common program-
ming languages like Modula-3, Ada, or C. I discuss procedures, conditional state-
ments, checked run-time errors, and expressions.

6.0 Procedures

Imperative programming languages provide a mechanism to encapsulate and reuse
code, viz., procedures. Most languages allow a procedure’s declaration (or prototype)
to be given separately from its implementation (or body). The purpose of the dec-
laration is to convey the information needed to call the procedure; this information
also circumscribes the implementation. In Modula-3, Ada, and C, the declaration
gives the signature of the procedure, i.e., a declaration of its parameters, result val-
ues, and set of exceptions that it may raise. The separation between declaration
and implementation is important when verifying programs. However, the signature
does not suffice for this purpose; the declaration must also give a specification of the
procedure. Calls to the procedure get their semantics from this specification, and the
implementation needs to be verified to meet the specification.

6.0.0 PROCEDURE SPECIFICATIONS

A simple procedure is declared and specified by

spec P() isspec

56

where P names the new procedure and spec is its specification. The specification is
Larch-like [33] and consists of a set of clauses of the forms

modifies w
requires Pre (6.0)

ensures nPost
except-ensures ePost)

where w is a list of variables, and Pre, nPost, ePost are predicates. nPost and ePost are
two-state predicates, and thus may mention initial-value variables (see Section 1.7).
The specification may contain any number of the clauses in any order. This is equiv-
alent to listing all w’s in one modifies clause and taking the conjunction of Pre’s,
nPost’s, and ePost s, respectively, for the other clauses. For example, the specification

modifies x requires < x modifies y
except-ensures yy < y requires x + y = 10

is the same as

modifies x,y requires() < x Ax-+y =10
ensures frue except-ensures i, < Y

The one exception to the given rule is that the absence of except-ensures clauses is
treated as except-ensures false rather than except-ensures true. This way, a specification
must explicitly advertise the fact that it may have an exceptional outcome. (Pene-
lope [62] provides some convenient shorthands for writing specifications of exceptional
behaviors.)

The meaning of specification (6.0) is that of the specification statement

w : [Pre, (ePost, nPost)] (6.1)

(see Section 1.7).

6.0.1 PARAMETERS AND RESULT VALUES
Procedures can take parameters and can return result values. The specification
specr := P(x) is spec (6.2)

declares and specifies a procedure P. P takes a list of parameters, here named x,
and returns a list of result values, here named r. x and r are names that may
be mentioned in spec. x may be read (used) by the procedure but not written
(updated). Thus, x may not appear in the modifies list in spec. Each procedure call
of P (described below) instantiates x with some value. r, on the other hand, may
be written by P, but its initial value is unspecified. Consequently, the modifies list
in spec is treated as always containing r, and r may not appear initial-valued in the
postconditions in spec.

The described behavior of x and r model copy-in (or value) and copy-out param-
eters.

57

6.0.2 PROCEDURE CALLS
A procedure like (6.2) is invoked by the program statement
call v := P(E) , (6.3)

where v is a list of variables and E is a list of expressions. The lengths of r and v
are to be equal, and so are those of x and E. The semantics of this procedure call is

defined by
[x,7®x:=E; w,r:[Pre, (ePost,nPost)] ; v:=r] . (6.4)
When a result value r is involved, I write spec for the command
w,r : [Pre, (ePost, nPost)] (6.5)
rather than for the command (6.1). Thus, (6.4) can be rendered as

[x,r@x:=E; spec; v:=r]

6.0.3 PROCEDURE IMPLEMENTATION

Since procedures are essentially given as specification statements, we don’t expect
compilers to produce executable code from them (see Sections 1.7 and 1.8). Instead,
a programmer supplies an implementation of the procedure. A call statement is
compiled into a subroutine call to the implementation, but the piece of code that
contains the call statement is verified using the specification of the procedure. In
order for this transformation to be correct, an implementation must be a refinement
of the specification (see Section 1.8). Exactly then (well, see Section 6.0.4 below) do
we say that the implementation meets its specification.

The notation I use for introducing the implementation of a procedure like (6.2) is

impl r := P(x) is gc)

where gc is a guarded command. The signature r := P(x) is repeated here (as
opposed to just listing the name P) to emphasize that x and r are identifiers that
may be referred to in gc. A procedure has exactly one implementation. P meets its
specification just when

w,r :[Pre, (ePost,nPost)] C gc . (6.6)
Applying the definition of T (1.19), this proof obligation is
(VP,Q > [wp.(w,r:[Pre, (ePost, nPost)]).(P,Q) = wp.gc.(P,Q)]) , (6.7)

where P and Q range over all predicates on the final state. This quantification may
appear overwhelming to a verification process. As a cure, I present an alternative
rendering of this proof obligation in Chapter 11, where I also prove the two renderings
equivalent. The alternative rendering does not quantify over all predicates and is
therefore sometimes preferable to (6.7), especially when doing automatic verification.

a8

6.0.4 TERMINATION

I left one important detail out of the discussion of when an implementation meets its
specification: termination. Since the guarded command gc may contain procedure
calls, it may, for example, recursively call itself. One must therefore ensure that
such recursion eventually ends, so that gc may be shown to terminate. For example,
consider the following procedure specification and implementation.

spec P() is spec ;

impl P() is call P()
Here, we find that the implementation of P is indeed a refinement of its specification
(in fact, the two are equal). Nevertheless, as programmers we know the call to P will
not establish what is prescribed by spec, but will instead result in infinite recursion.

Proving, in the presence of mutually recursive procedures (and also replaceable

methods, see Section 8.2), that all procedure calls in an implementation terminate
can be quite tricky. This proof obligation may be dealt with separately from the proof
obligation of the refinement. If termination is of no concern, wip (as opposed to wp)
can be used. Then, the refinement (6.6) is the only proof obligation for showing that

a procedure implementation meets its specification. This is what I use in Part III,
Chapter 11.

6.1 Alternative statements

In languages like Modula-3, Ada, and C, we find the presence of alternative state-
ments like IF. The modeling of these is straightforward. For example, the Modula-3
statement

IF b0 THEN S0 ELSIF b1 THEN S1 ELSE S2 END
1s modeled as
b0 — SO B b1 — S1 B 52

Since all statements in Modula-3, Ada, and C are total (cf. Section 1.4), I may write
this statement as

i£00 — SOB b1 — ST R S2 fi
(¢f. (1.10)).

The simpler statement
IF b THEN S END
is modeled as
if b — S M skip fi
Because this statement occurs so frequently, I introduce
if b then S fi

as a shorthand for it.

59

6.2 Statements that “go wrong”

When reasoning about a program, it is often useful to subdivide the notion of non-
termination into cases where the program results in a failure caused by a checked
run-time error like a nil-dereference or an array index out-of-bounds error vs. cases
where the program does not terminate because of, for example, an infinite loop. I
will refer to the former as the program “going wrong”.

This is important, for example, when verifying a run-time system-—the execution
of a run-time may never terminate, yet one wants to be certain it does not result in
a checked run-time error. Note that neither wp nor wip caters for this distinction.

The distinction can be captured by viewing programs as having three possible
outcomes: normal, exceptional, and erroneous. This is a straightforward extension
of having only two outcomes (cf. Section 2.6). The wlp of a program is now

wlp.S.(P,Q,E) is true of exactly those initial states from which execution
of S is guaranteed

e to terminate exceptionally in a state satisfying P, or
e to terminate normally in a state satisfying Q, or
e to terminate erroneously (go wrong) in a state satisfying E, or

e to not terminate at all.

The interpretation of wp is extended similarly.
With these triples, I define a third unit statement, wrong (cf. Section 1.2),

wp.wrong.(P,Q,E) = E wlp.wrong.(P,Q,E) = E . (6.8)

Statement wrong is used to model a run-time error. Note that execution of wrong
actually does terminate.

In some programming languages, like Ada, a programmer can provide a handler
for run-time errors. That calls for a third type of statement composition (the other
two being ; and <, see Section 1.2). Alternatively, if checked run-time errors are
to be avoided at all costs, perhaps because they may result in the operating system
aborting program execution (c¢f. Modula-3), no additional statement composition is
needed. This is the view I take in this thesis. Hence, when computing the weakest
(liberal) precondition of a statement, we are always interested in using false as the
third component in the postcondition triple. To avoid cluttering formulas, I thus show
only the first two components, the third component always being false implicitly.

Rewriting (6.8) with the convention of omitting the third component, we have

wp.wrong.(P,Q) = false wlp.wrong.(P,Q) = false . (6.9)

Remark 6.0. A desirable property of a program S is that wlp.S be
universally conjunctive. Although (6.9) seems to indicate that wip.wrong
is not universally conjunctive (since wlp.wrong.(true, true) is not true),

60

Q) in (6.9) is only a shorthand for

one should remember that wip.S.(P,
(6.8) is indeed universally conjunctive,

wlp.S.(P, Q, false) . The general form
so, for example, we have

wlp.wrong.(true, true, true) = true

With the convention of omitting the third component, all statement definitions
given in Chapter 1 remain unchanged. Of those statements, only the specification
statement introduces a way for a statement to go wrong. In Section 1.7, I deferred
discussing the operational interpretation of the specification statement started in a
state that does not satisfy the precondition. I give that interpretation now: If Pre
does not hold in the state from which w :[Pre, (ePost,nPost)] is executed, the program
goes wrong. Hence, the full definition of the specification statement is given by

wp.(w : [Pre, (ePost,nPost)]).(P,Q,E) =
(Pre A(Yw > (ePost = P) A (nPost = Q))[vg:=1v]) V (—Pre A E)

Since the statement always terminates, its wlp coincides with its wp. With E := false,

we have definition (1.17), as given originally.

6.2.0 ASSERT STATEMENT

The wrong statement always goes wrong. The assert statement is a statement that
goes wrong only under a parameterized condition. For any predicate b, the assert
statement is defined as

assert b = if —b then wrong fi
The weakest precondition of assert thus satisfies
wp.(assert b).(P,Q) = bAQ , (6.10)

and similarly for its weakest liberal precondition. Interpreted operationally, assert b
goes wrong just when executed in a state where b does not hold. If b does hold,
assert b terminates normally and does not alter the program state. Note that assert false
coincides with wrong .

6.3 Expressions

Expressions in many programming languages allow conveniences like short-circuit (or
conditional) operators. Calls to procedures with one result value are also allowed in
expressions. Another issue is that some expressions are not always defined. In this
section, I treat the modeling of such expressions.

61

The first step in this modeling is to break complex expressions up into smaller
ones. This is a well-known technique in, for example, the generation of intermediate
three-address code in compiler design [0]. For example,

x:=y+ P(z,Q(w)) -
is elaborated into

[to0,t1

e call t0 := Q(w)

; call t1 := P(z, t0)
;o xi=yttl

] ,

where t0 and t1 are temporary local variables with fresh names. This example shows

how to model procedure calls in expressions. (Alternatively, one can view this as the

definition of procedure calls occurring in expressions.) Note that, since procedures P

and Q may have side effects, so may the evaluation of the expression y+ P(z,Q(w)) .
Short-circuit operators are handled similarly. For example,

x:=Bcand C ,

where cand denotes the conditional-and operator, is elaborated into (or, gets its
definition from)

[tet:=B; iftthent:=Cfi; x:=t])

where t:= B and t:= C may require further elaboration.

Some operators are not defined for all operands. For example, division is not
defined for a second argument of 0, and the array indexing operator (introduced in
Chapter 7) is not defined for indices outside the index set of the array. Expressions
involving such operators are called partial.

Sometimes “not defined” means the value of the expression in unspecified; more
frequently, “not defined” means evaluation of the expression results in a checked
run-time error. In the case of the latter, a statement

x:=adivh
1s elaborated into
assert b % 0 ; x :=adivb ,

which incorporates the prescribed run-time check.

In the examples above, I have only shown expressions that occur in assignment
statements. Expressions that occur elsewhere are handled in a similar way. For
example,

WHILE B DO S END

62

is elaborated into

[beb:=B
; dob—S; b:=Bod

]I)

where the two occurrences of b:= B may require further elaboration.

As a final concern, I discuss the order of evaluation of parameters. For example,
a programming language may not specify the order of evaluation of the operands of
+. The order makes a difference when the operands may have side effects. Thus, a
statement like x := A + B can be elaborated into

[to,t1
o (10:=A; t1:=B0tl:=B; t0:=A)
;ox = t04t1

]

The price of this elaboration —exponentially longer formulas in its verification—
compares unfavorably to the marginal value of this elaboration over one like

[t0,t10t0:=A; t1:=B; x:=1t0+ |

Instead, one can disallow expressions for which different permitted orders have an
effect on the result of the computation. Ada, for example, defines such code to
be erroneous, meaning that it causes an wunchecked run-time error. It only seems
fair that a verification process should catch such programming errors. To detect
such possibilities, procedure specifications need to mention not only the variables
a procedure writes (recall, these are given in the modifies clause), but also those
it reads. Such information is facilitated, for example, by the globalin construct in
Penelope [62].

63

Part 11

@ ata ‘vaucfut’es

64

Data structures

In Chapter 1 of Part I, I described statements of an imperative programming notation
and gave their semantics. Two of these statements, the assignment and specification
statements, modify the state of a program, whereas the others deal only with the flow
of control of the program. The particular types and internal structure of the variables
are of no importance in Part I; I use only the fact that the variables are independent
of each other, so that the update of one variable does not affect the values of other
variables (see Section 1.1).

In practical settings, the state space of a program is more complicated. A program
may update only some portion of a variable, e.g., an element of an array or a field
of a record. A program may also have several ways of referring to the same piece of
data, e.g., through two identical indices into an array or through references (pointers).
Object-oriented languages provide an even fancier mechanism, known as subtyping,
for organizing the data of a program.

In this Part, I describe the data structures most commonly provided by imperative
languages: subranges, enumerations, arrays, records, sets, references, and objects. I
show how these are modeled in the programming notation from Chapter 1.

Outline

In Chapter 7, I introduce types and describe how to model the most common data
types using the constructs I define. In Chapter 8, I introduce into my programming
notation the mechanisms necessary to deal with objects. Readers familiar with no-
tions of subtyping such as [48, 56] may be in for a pleasant surprise: separation of
concerns and thus simplicity. In Chapter 9, I show how to make sense of this simplicity
when specifying and implementing objects. In that chapter, I present data abstraction
and data refinement as these are known in the literature (c¢f. [38, 30, 43, 3, 11, 24]).
As I show in Part III, this view of data refinement is not sound except in very re-
strictive modular programs. Nevertheless, Chapter 9 gives a flavor of the kinds of
abstractions in which I am interested, and provides a nice coverage of the concepts
used in Part III.

66

67

@ga Ffer'

Data types

In this chapter, I introduce types and global variables. I then explain how to model
data types from common programming languages, like arrays and records, in the
programming notation from Chapter 1. I also define a construct that introduces a
new type into a program, and show how 1t can be used in the modeling of references.

I assume some familiarity with these data types from a language like Modula-3,

Ada, or C.

7.0 Types

A variable may be of a certain type. A typeis a possibly empty, possibly infinite set of
values. Examples of types are int, the set of integers, and bool, the set {false, true} .
Variables can only be declared to be of nonempty types.

7.0.0 COMPOSITE TYPES

Types can be composed in two ways to form new types. These compositions are
familiar from set theory.

For any types S and T, S x T is the type consisting of pairs of values, one from
S and one from T.

Much more important 1s the map type S — T. Type S in § — T is called the
index type (or set), and T is called the element type. Values of map types, called
maps, can be applied to values of their index type, called indices. Every map is total,
i.e., it can be applied to any element of its index set. Consider a variable a of type
S — T. Given an expression i of type S, a[i] is an expression of type T. The value
of this expression is the value of a applied to i. Because I often think of maps and
arrays as being synonymous, [often say “a af index i” or “a indezed with i” instead
of “a applied to i”. I will also refer to this operation as array dereferencing.

A map can be updated at a particular index using the assignment statement

ali] :=E : (7.0)

68

This is shorthand for
a := subst.a.(i : E) , (7.1)

where subst.a.(i : E) is the map that differs from a only in that, applied to i,
subst.a.(i : E) yields E [37, 40, 17].

Remark 7.0. Fortunately, in spite of its shape, we know of an efficient
implementation of (7.1), viz., the one that (7.0) suggests: Just change the
state of a[i], element i of array a.

Formally, the meaning of subst is given by the following two axioms.

subst.a.(i: E) [j] = E ifi=j (7.2)
subst.a.(i: E) [j] = alj] if ij (7.3)

Axiom (7.2) states that indexing subst.a.(i : E) with i yields E. Axiom (7.3) states
that indexing subst.a.(i : E) with j, where i # j, yields the same result as indexing a
with j. (See [69] on how these axioms are used in automatic theorem proving.)

7.0.1 'TYPED VARIABLES

When writing a variable, I will sometimes write its type following the variable iden-
tifier, separated by a colon. A variable x of type T is thus denoted

x: T

This requires that T be nonempty.

I distinguish between local and global variables. Local variables are declared by
block statements (see Section 1.3). They are created at the beginning of execution of
the block and perish as control leaves the block.

Global variables, on the other hand, are created at the beginning of a program
execution and survive all changes of the current control point in the execution. (In a
modular program, variables may or may not be visible at the current control point,
but that doesn’t play a réle until Part IIL.)

I'introduce each global variable with a var declaration, as in

varx : T

Similarly, a local variable may be given a type at the point of declaration. As the
semantics of blocks suggests, I assume the initial value of a variable to be any value of
its type. (This matches Modula-3’s definition, but not Ada’s or C’s, neither of which
provides this guarantee.)

Remark 7.1. The Ada language [1] does not require that the lan-
guage implementation initialize variables, and defines programs that use
an uninitialized variable as erroneous. The rationale behind this may be
the fact that Ada is designed to support systems programming. This

69

means that a variable can be mapped to a register in a machine, and
any write to such a variable may have a hardware side effect such as dis-
abling interrupts or sending a packet. However, Ada does require that the
language implementation initialize pointers to nil. So much for allowing
variables to be mapped to registers.

The C programming language [45] contains three simple types: integers,
reals, and pointers, each grouped into possibly different sizes. Since any
values of the bits that represent an integer make up some integer value,
an integer always contains a value of its type, and similarly for reals on
many machines. The bits representing a pointer, however, may denote
an invalid address, ¢.e., an address that cannot be dereferenced, because
of, for example, memory protection. C does not guarantee any particular
initialization of pointer variables.

7.0.2 NARROWING

Let v be a variable of type S and E an expression of type T. If T C S, then an
assignment

v:=E (7.4)

is always legal. If S C T, the assignment is also allowed; however, since some potential
values of E are not assignable to v, a run-time check, called a narrow check, is
necessitated. Assignment (7.4) is thus treated as

[t:Tet:=E; assertt €S; v:=1t] ,

where t denotes a temporary variable with a fresh name (cf. partial expressions,
Section 6.3).

Remember that parameters and result values of procedures are defined via assign-
ments (Section 6.0); thus, narrowing applies there, too. For example, for S C T,

spec P(x : S) is
requires ()

is equivalent to
spec P(x : T)is
requiresx €S A Q
7.1 Types in common programming languages

In this section, I describe the correspondence between the previous section and data
structures in programming languages like Modula-3.

70

7.1.0 SUBRANGES

In Modula-3, a subrange is a type like [M..N], where M and N are integer constants.
It contains the (possibly empty) inclusive range of integers from M to N.

Subranges need not be treated as separate types in my formalism. Consider a
variable x of type [M..N]. Like all other variables, x is initialized to a value of its
type. Values assigned to x (i.e., E in x := E) are checked at compile-time to be
integers. However, the restriction of E being in the correct range of the integers is
checked at run-time by narrowing. Hence, x := E is treated as

[t:intet:=E; assert M <t At <N x:=t]

Consequently, M < x A x <N is an invariant of the program. This fact can then be
used in proofs, as required, for example, in showing that

[y:[2M..2-N] ey :=2-x]

does not go wrong.

7.1.1 ENUMERATIONS
In Modula-3,
TYPE E = {egy, sugar, flour};

is an example of a declaration of an enumeration type E. This particular type has
three elements, written E.egg, E.sugar, and E.flour. These names may have a meaning
to a programmer. Mathematically, however, I treat them simply as an alternate
notation for 0, 1, and 2, respectively. This renders unnecessary the introduction of
a new domain of values and an order thereon. Hence, the type E is treated as the
subrange [0..2].

A programming language may impose additional restrictions regarding the use of
these types. For example, a variable of type E cannot be assigned to a variable of
type int. These restrictions enforce a disciplined use of the types and do not pose
any problem in the theory.

7.1.2 ARRAYS
An array type
ARRAY S OF T

is treated as the map S — T. The expression a[i] is partial (Section 6.3) and can only
be evaluated if i is in the index set of a, something that in general needs a narrow
check at run-time (for example, if S is a subrange and i is an integer).

Commonly, programming languages like Modula-3 define

ARRAY S0,S1 OF T

71

to be a shorthand for
ARRAY SO OF ARRAY S1 QOF T ,

(or, in the theory, S0 — (S1 — T)), and similarly afi,j] for ali][j]. Thus,

ali,jl :==E
= { Modula-3 shorthand }
ali[j] := E
= { (7.1): array update shorthand }
ali] := subst. (a[l])(E)
{ (7.1): array update shorthand }
a := subst.a. (1 subst.(a[i]).(j : E))

This allows afi] to be treated as an array in its own right. If that feature is not
needed, one may prefer to treat this array type as

(SO0xS81) =T

Then, an index is a pair, and thus afi,j] := E is simply

a := subst.a.((i,) : E) ,

that is, a gets a in which element (i,j) has been replaced by E.

7.1.3 RECORDS

An example Modula-3 record type is
TYPE R = RECORD f0:T0; fI:T1 END;

f0 and f1 are distinct identifiers known as the fields of R. They have the respective
types T0 and TI1. For a value r: R, rf0, called a field dereference, denotes field f0
of r.

This record type can be thought of as an array type with index set {f0,f1}. Thus,
rf0 means r[f0]. By treating records as arrays, no additional theory is required; the
array axioms suffice.

Note that r[f0] and r[fI] have types T0 and TI, respectively, and that these types
may differ. This causes no problem, even in languages that do typing at compile-time,
because the only way to index r is by the constants f0 and fI themselves. The type
of a field dereference is thus immediately available.

72

7.1.4 SETS

Modula-3 writes a set of elements of a type T as
SET OF T

It, too, can be treated as a map, viz.,
T — bool

Hence, a set operation like
t INs ,

where s is of type SET OF T and ¢t is of type T, is taken to be the boolean expression

s[t]

7.2 Declaring new types

Just as variables can be declared by var declarations, my programming notation
allows new types to be defined by type declarations, as in

type R

This introduces a new name R, and declares it to be a type. R contains an infinite
number of elements, all but one of which differ from the elements of other types
declared by type. The one exception is a special constant called nil,, which is part of
every type declared by type.

I will use use the names reference type or object type when referring to a type
declared by type. Similarly, I will call elements of such a type references or objects.
The inspiration for these names is discussed below and in the next chapter.

7.2.0 REFERENCES

In common imperative languages, a reference type is sometimes called a pointer type.
(Ada calls them access types.) Every reference type has a referent type, that is, the
type to which the reference type is a reference. A reference is usually implemented
as the address of its referent, a piece of data residing in the heap of a program. In

Modula-3,
REF T

is a reference type whose referent typeis T.
A reference r is dereferenced by r». This maps r to its referent, a fact that
reveals the need for a map of type (REF T) — T [40].

73

Let R be a unique name for a particular reference type with referent type T. R
is then modeled by

type R ;
varmapxR : R — T)

where R~ denotes R~ {nil} and * is a reserved character so that mapxR is a name
uniquely determined by R. mapxR is called a dereference map (or collection). A
dereference " is then simply the array dereference mapxR[r]. Note that the index
type of mapxR is R™, so mapxR[r] is a partial expression that can be evaluated only
for references r other than nil (see Section 6.3).

Remark 7.2. Dereference maps are explicitly declared and manipu-
lated in the programming language Euclid [47] and in an early version of

Pascal [79].

The crux with modeling pointers in a theory is the aliasing they introduce. Using
maps (arrays) to model references reduces the problem to the aliasing problem of
indices into arrays; this, in turn, is handled by the axioms (7.2) and (7.3). This
assumes that all access of referents go via references, i.e., there is no way other than
A to alias a referent. This is true in Modula-3 and Ada, where all references point
into the heap, but not in C or C4++, where one can take the address of variables (and
of just about everything else). Thus, only a disciplined subset of C and C++ can be
modeled directly by the techniques I have described here.

7.2.1 ALLOCATION AND DEALLOCATION

Languages like Modula-3, Ada, and C++ that provide references also provide a mech-
anism to create new references and referents. In Modula-3,

NEW(R)

where R is a reference type, returns a new reference of type R. In effect, NEW also
allocates a referent in the program heap to which the new reference points. This can
be modeled by introducing a map

var allocated*R : R~ — bool ,
initialized so that
(Yr:R™ > —allocated*R[r])

NEW(R) is the only construct that modifies allocated*R. The specification of NEW(R)
as a procedure is given as

spec r:R™ := NEW(R) is
modifies allocated*R

ensures —allocated*Ry[r] A allocatedxR[r] A
(Vs:R™ | s r v allocatedxRo[s| = allocated*R([s])

74

Remark 7.3. Recall from Section 1.7 that a variable subscripted with
0 refers to the initial value of that variable. So, allocatedxR, refers to the
value of allocated*R on entry to the procedure.

This assumes there is always enough memory for new referents.
Deallocation of a referent is modeled similarly. A map

var deallocated*R : R~ — bool ,

initialized like allocatedxR , is introduced. Then, a procedure FREE is defined.

spec FREE(r : R™) is
modifies deallocated*R
requires allocated*R[r] A —deallocated*R][r]
ensures deallocated*R][r] A
(Vs:R™ | s#r v deallocatedxRo[s| = deallocated%R][s])

This introduces another requirement on evaluating the expression mapxR[r] , viz.,

—deallocated*R[r]

Because NEW(R) and FREE are the only procedures that modify allocatedxR and
deallocatedxR —these map variables are not accessible like regular program variables—,
we can prove

(Yr:R™ o deallocatedxR[r] = allocated*R[r])

to be an invariant of any program execution.

The reason for providing a procedure like FREE is to gain (if “gain” is really the
right word) programmer-defined control of storage efficiency. A pleasant alternative
is for the run-time system to assume control of this, an effort realized by a garbage
collector. The run-time system then reclaims the storage of referents to which no
reference exists. This choice is pursued by, for example, Modula-3, thus rendering
deallocated*R and FREE unnecessary.

7.3 Maps and specifications
Consider a simple procedure, call it Update, whose effect is

afi] ==y

for some global map variable a and appropriately typed parameters i and y. Since
Update updates a,

modifies a
is part of Update’s specification. The final value of ali] is specified by

ensures afi] = y

Since no other elements of a are updated, the clause
ensures (Vk | ki ay[k] = a[k])

is also part or Update’s specification.
Updating a map variable at one given index is quite common, as examples through-
out the rest of this thesis show. Therefore, I introduce the shorthand

modifies a[i]
Roughly speaking, this means
modifies 7 ensures (Vk| k# i > ay[k] = a[k])

I say “roughly” because of some subtle and messy details, described next.
Consider a procedure Swap(i,j) that swaps a[i] and afj]. It would be convenient
to be able to write its specification as

spec Swap(i, j) is
modifies ali], alj]
ensures a[i] = ag[j] A alj] = ay[j]

However, applying the rough formulation of the shorthand, we get

spec Swap(i,) is
modifies a,a
ensures afi] = a[j] A a[j] = ay[j] A
(Vkl k#£iv> alk] =alk]) A
(VkIk#] > aofk] = ald])

For i=j, this ensures condition simplifies to
ensures dp = a)

and for i # j, it simplifies to
ensures dp = a A ag[i] = aglj] ,

which makes the specification a partial command (Section 1.4)—if i # j A afi] # a[j]
holds initially, Swap needs a miracle to establish ay[i] = ay[j]. This is not the intended
specification, a fact for which I blame the formulation of the shorthand. Instead,

modifiesa ensures (Vk| k# i Ak #jo> ak] = a[k])

does the trick. I leave it to the reader to write the straightforward but messy gener-
alization of this rule.

There is another detail to be discussed. In the examples above, i and j are
expressions whose values are unchanged by the procedure. Consider a variation of

76

procedure Update where i 1s not a parameter but a global variable. Then consider
the specification

spec UipdateAnd Advance(y) is
modifies afi], i
ensures afig]| =y N i=1ip+ 1

This specifies UpdateAndAdvance to write y at afi] and then to increment i by 1. Here,
the intention is that the modifies clause be a shorthand for

modifies a,i ensures (Vk | k % iy > ao[k] = alk])
as opposed to
modifies 7,i ensures (Vk | k#i v ap[k] =alk]) . (7.5)

The same holds true for many other examples, but it is conceivable that one may
sometimes want (7.5). Yet another choice is to allow the shorthand only for constant
indices.

7

@gapfev

Objects

In this chapter, I discuss object types. These are similar to reference types, but
cannot be dereferenced using ", and thus lack the mapxR map that every reference
type R has. Instead of that one map, object types can have several maps, called data
fields. In addition, object types feature subtyping and methods. 1 describe each of
these features, and conclude by relating objects in my notation to those in common
programming languages.

Remark 8.0. Since C++ terminology of objects differs from the usual
ones [28, 64], readers familiar with C++ but with no other object-oriented
language may want to read Section 8.6.1 before reading this chapter from
the start.

8.0 Subtypes

Every object type has an infinite number of elements, one of which is nil (see Sec-
tion 7.2). S is called a subtype of an object type T just when S, too, is an object
type and S is a subset of T. T is then called a supertype of S.

As described in the previous chapter, an object type T is declared by

type T
I now define a way to declare one object type from another. For any object type T,
typeS <: T

introduces a new name S, and declares it to be a subtype of T different from T
itself, i.e., a proper subtype of T. T is called the immediate supertype of S (see also
Remark 8.1).

If T0 is a subtype of T, then any T0 object, t say, is also a T object (because
t € T0 C T). The smallest subtype Tn such that t € Tn is called the dynamic or
allocated type of t. For any object type T, NEW(T) is guaranteed to return an object
whose allocated type is T.

78

8.1 Data fields

For any object type T, I call a map
varx : T~ — X

a data field of type T (or of some T object). x (or x applied to some T object) can
be thought of as an attribute or property of T (or of that T object).

Note that a subtype shares (or inherits) the properties of its supertypes: For T0
a subtype of T and t a (non-nil) TO object, x can be applied to ¢, because t is in
the index set of x (x € TO” C T7).

8.2 Methods

Like values of any other type, objects can be passed as parameters to procedures.
In addition, objects have special procedures, called methods, that can be applied to
them. An object type T declares a method m by

method t : T specr := m(x) is spec . (8.0)

This is similar to a procedure specification (6.2) except for the prefixed “ method t : T”.
The “method...T” shows that the method is declared for object type T. T is called
the declaring type of m. The “t:” introduces a name for a special parameter; this
parameter is called the receiver and is often referred to as self [28, 64] or this [54, 23].
Consequently, ¢+ abides by the same rules as x, with regard to being mentioned in
spec (see Section 6.0).

An invocation of a method like (8.0) is written

call v := 0.m(E)) (8.1)

where v is a variable, o is an expression of type T, and E is a list of expressions
(c¢f. (6.3)). This invokes method m on object o. The semantics of this method
invocation (cf. (6.4)) is

[t,x,ret,x:=0,E; w,r:[Pre, (ePost,nPost)] ; v:=r] ,

where w,r : [Pre, (ePost,nPost)] is the method specification spec interpreted as a speci-
fication statement (cf. (6.1,6.5)).

8.3 Method implementations

Unlike procedures, which are restricted to one implementation, a method can have
one implementation per subtype of the declaring type. Let T denote the allocated
type of o. Then, the method invocation (8.1) is implemented as a subroutine call to
T’s implementation of m.

79

If no explicit implementation is given for a particular subtype in a program, the
method implementation defaults to that of the immediate supertype. For simplicity,
I assume this definition leads to some implementation for every method invocation of
every execution of a program.

Remark 8.1. This is the only place where the notion of an immediate
supertype comes into play. Everywhere else,

typeS <: T

can be interpreted as declaring S as any proper subtype of T—T need
not be the immediate supertype. Before one can link and execute such
a program, the name of the S’s immediate supertype must be given, so
that methods can be implemented as described above. Modula-3 features
so-called partially opaque types, which take advantage of this.

Let T0 be a subtype of T. Then, the notation used for associating with T0 an
implementation of method m (8.0) is

method ¢ : TO impl 7 := m(x) is gc

t,r,x are identifiers that may be used in the guarded command gc. For the imple-
mentation to meet its specification, the condition

w, t : [Pre, (ePost,nPost)] T gc

must be established for t of type T0.

8.4 Object simplicity

This is all there is to objects. Note that the notion of a subtype is as simple as the
notion of a subset. Unlike [48, 56], the data fields have nothing to do with the subtype
relation. Each data field is introduced independently, and I never mention that the
fields of a subtype data refine or simulate those of a subtype. These concepts have
to do with abstraction (see next chapter), not subtyping.

And nowhere do I need to consider the complete set of methods of an object
type (though, admittedly, unlike [56], I am only considering properties of sequential
programs). Instead, methods are declared independently of each other. A method
implementation for a particular subtype has very little to do with the subtype itself.
Instead, refinement is what matters. Notice also that the refinement is always between
an implementation and the (one and only) specification of a method, not between the
implementation at one type and the implementation at the immediate supertype.

Finally, note that the semantics of a method invocation depends only on the
method specification. Thus, this, too, is independent of subtypes.

Both [48] and [56] seem to treat the issue of what it means for a collection of data
fields and methods to form a data type, and the relation between such types. Thus,

80

they consider all properties of the behavior of such types. When reasoning about
the correctness of a program (as opposed to reasoning about properties of a type),
different properties of a type can be considered in isolation —for example, reasoning
about the effect of one method is orthogonal to the effects of other methods—; in
fact, considering them in isolation may be preferable, because it may simplify the
verification conditions. Nevertheless, techniques like those in [48, 56] provide some
utility in the design of object types and object-type hierarchies.

In summary, by separating the concepts of subtyping and abstraction, I achieve
simplicity.

8.5 Language implementations of objects

The fact that data fields are introduced separately and are maps whose index sets are
infinite poses no problems in language implementations. At any point in a program
execution, only a finite number of objects have been allocated, and only the allocated
portion of an index set will ever be used to dereference a map. Instead of placing a
data field next in memory to the same data field for each object (as the map notation
may suggest), all data fields for one object are placed next to each other. Thus, for
a data field x and an object t, x[t] is stored at some offset —a function of the name
x— into t’s data record, not at index t of array x as the notation may suggest.

Most object-oriented programming languages use a notation like t.x instead of
x[t]. This has appeal, especially to object-orientation buffs—“t’s attribute x” puts
the stress on t, whereas “x at t” puts x in the spotlight. My focus, however, is on
the mathematical meaning of objects.

An implementation makes sure that accessible from an object is an identification
of its allocated type. This type identification makes it possible to dispatch to the
right method implementation in a method invocation.

8.6 Objects in common programming languages

In this section, I describe the correspondence between the object types presented here
and those in common programming languages. I focus on Modula-3 and C++; other
languages are similar.

8.6.0 MobuLAa-3

In Modula-3, an object type T is declared by

TYPE T = SuperT OBJECT
fieldlist
METHODS
methodlist

OVERRIDES
overridelist
END;

SuperT gives the name of the immediate supertype of T. Hence, in my notation, T
is declared by

type T <: SuperT

fieldlist is a list of field declarations. In my notation, each such field x of type X is
declared by

varx . T — X

Similarly, every method in the method list is declared with a method T spec dec-
laration. Note, though, that my notation requires a specification, whereas Modula-3
provides no way to state a specification (except, of course, informally as a comment).

In Modula-3, an implementation P for a method m is specified by appending
“:=P” to m’s declaration in methodlist for T, if T is the declaring type of m. If m is
declared in a proper supertype of T, then m := P is given as an element in overridelist .
This P must name a procedure. For a method m specified by (8.0), the specification
of P must have the form

specr := P(t: T0', x) is pspec ,

where T0' names some supertype of T0. (The names r, t, and x are allowed to
differ in spec and pspec, since they are local to each specification. For simplicity, I
assume them to be the same.) For P to be a valid implementation of m, one must
then prove, for t of type TO0,

spec C callr := P(t,x) :
or stated differently,
spec L pspec

Since Modula-3 uses structural equivalence among types, a unique name for T
should be used when translating to my notation. For a discussion of Modula-3’s
partially opaque types, see Remark 8.1.

8.6.1 C++

Modeling C++ in my notation is similar to modeling Modula-3. However, C++ uses
some different terminology that is worth explaining in order to avoid confusion.

In C++, an object type, called a cluss, is a record type (a “struct”) with extra
features. Thus, what I consider an object is, in C++, a pointer to a C++ class.
Then, my objects are like C++ class pointers as long as all such pointers are obtained
via new. A class declared as a local variable is modeled as a record. But taking the

82

address of such a variable, like taking the address of anything else, introduces aliasing
that I don’t handle (see Section 7.2.0).

So, as my objects correspond to pointers to records in C+4, why do I not model
objects and data fields that way, too? Subtypes may increase the number of data
fields that an object has, and different subtypes may have different data fields. Using
a map for each data field provides the flexibility required for this task—data fields
can be added arbitrarily and can be added only to those subtypes for which they
exist. Simplicity is another reason, because having the index set of the data record
vary as a function of the object that is used to get to the data record becomes clumsy
and awkward.

What I have called a method, C++ calls a virtual method. What C++ calls a
(non-virtual) method, I simply view as a procedure, because it cannot be replaced in
subtypes.

Finally, a note on protection levels. ~C++ features three data field protection
levels, private, protected, and public. These levels enforce an access discipline
and do not affect the semantics of the data fields and methods that can be accessed.

@ga}afer

Abstraction

In this chapter, I introduce the concept of data abstraction, first for general variables
and later for data fields. In Section 9.1, I introduce date refinement, an introduction
that stays close to the way it was done originally by Hoare [38]. In Part III, however,
where programs consist of modules, the techniques discussed in Section 9.1 will not
suffice. Nevertheless, this chapter provides a flavor of what data abstraction and
refinement are all about and why they are of interest.

9.0 Abstract variables

So far, each variable we have seen has represented one coordinate in the program
state space. Let us now consider functions over these variables. For example, if x
and y are program variables, we may consider the function x + 2-y. We may name
such a function by introducing an abstract (or specification) variable.

The declaration

spec var 4
introduces an identifier z, and declares it to be an abstract variable.

Remark 9.0. I only introduce global abstract variables, because
they are the ones that are needed when writing modular specifications
(see Part III). All concepts apply to local abstract variables as well—all
that’s needed is a notation for declaring such variables.

An abstract variable is not a coordinate in the state space that is changed inde-
pendently of other variables (¢f. Section 1.1). Rather, it is simply a function of regular
variables (the latter hereinafter called program or concrete variables). When the val-
ues of these program variables change, so does the value of the abstract variable, and
vice versda.

Remark 9.1. A program variable, too, is a function. It abstracts a
meaningful value from the bits that physical machines have. However,

84

since the program variables are independent of each other, one such bit
represents part of only one program variable. (Each bit, also, is a function
of more concrete entities such as the components of a virtual memory
system, and they, in turn, are functions of voltages, and so on; in this
thesis, I do not get more concrete than program variables.)

To specify what the value of z is, with respect to other variables, a rep declaration
is used. It has the form

rep zis R ,

where z names an abstract variable and R, called the representation of z, is a
predicate involving z. The representation specifies the value of z. For example,

repzisz=ux+ 2y

defines z to be the function x +2-y.
For expressiveness, R is a predicate rather than the function itself. This allows a
declaration like

rep Fis 9-(C+ 40) = 5-(F + 40)
instead of forcing the formula to be written as
F=9/5C+ 32

Nevertheless, I require that R specify z uniquely from the program variables. The
jargon is that R is an abstraction function, as opposed to an abstraction relation (or
nondeterministic function [72]), which would only specify z down to a set of possible

values. I restrict my attention to abstraction functions so as to avoid issues such as,
“Does z =1z hold?”.

Remark 9.2. Interestingly enough, the formal proof of soundness
in Chapter 12 does not rely on representations being abstraction func-
tions; abstraction relations work just as well. However, with abstraction
relations, Chapter 11 needs revamping,.

It is common, however, for several values of the concrete variables to yield the same
value of the abstract variable. This justifies the name abstract variable, since it
abstracts away from some details of particular states.

Remark 9.3. The names specification variable vs. program variable
stem from the fact that the former typically exists only in specifications
whereas the latter is compiled and takes up memory like the rest of the
program.

[also assume that R is total in the variables that represent z. That is, I assume
that for every state that ever occurs in an execution of a program, the value of z is
defined.

An abstract variable need not be defined only in terms of program variables; it
can also be defined in terms of other abstract variables. For example, for abstract
variables 4 and b,

repaisa=3-b+42-x ;
repbisb=x+y

in effect defines a to satisfy

a=5x+3y

9.1 Abstract variables and refinement

In this section, I treat refinements involving abstract variables. Consider the following
example.

varc ;
specvara ;
repaisa = ¢’

The statement a := 9 thus has the effect of setting ¢ to either -3 or 3. Therefore,
the statement ¢ := 3, which always sets ¢ to 3 and never to -3, is a refinement of
a:=9 (cf Section 1.8).

A refinement like this is called a date refinement [38]. I proceed to show how
such a refinement is often proven (cf. {38, 30, 43, 3]). Then, I briefly mention why
data abstraction and refinement are important, and why the classical view of data
refinement is too restrictive for doing abstraction in modular programs.

9.1.0 CLASSICAL DATA REFINEMENT

The idea is to consider two state spaces, one containing the abstract variables and
the other containing the concrete variables. Within each state space, the respective
variables are considered to be independent coordinates. The two state spaces are
related by the predicate that defines the representation of the abstract variables.

A new command, SwitchToAbstract, is introduced. It is defined by the following
weakest precondition. (The presence of exceptions is tangential to this discussion, so
I assume programs whose outcome is always normal.)

wp.SwitchToAbstract.Q = (Yal R> Q)

where a is the list of abstract variables whose representation is prescribed by R, and
Q 1s a predicate over the abstract variables.

86

Informally, SwitchToAbstract switches from the concrete partition to the abstract
partition, and thus sets the values of the abstract variables according the values of
the concrete variables and the representation predicate R. SwitchToAbstract establishes
(abstract) postcondition Q from those (concrete) initial states in which, for each value
of a that satisfies R, Q holds. Since I assume that R determines a uniquely, there
is at most one such value for a. Moreover, since I assume R to be total in the
representation of a, there is at least one value for a that satisfies R. Thus, the
interpretation of SwitchToAbstract can be reformulated: SwitchToAbstract establishes Q
from those initial states in which Q holds for the value of a that satisfies R.

A concrete program C is defined to data refine an abstract program A just when

SwitchToAbstract ; A T C; SwitchToAbstract ,

where C is defined as in Section 1.8. Both sides of T show a program that starts
in the concrete state space and ends in the abstract state space. The refinement thus
compares the left- and right-hand sides with respect to their outcomes in the abstract
state space. In other words, the details of the concrete state space matter not; only
the abstract representation of these states do.

Remark 9.4. Unlike the data refinement found in the literature,
the SwitchToAbstract command does not appear in Part III, despite the fact
that (or maybe, because) a more general form of abstraction is considered
there.

Let’s now prove that ¢ := 3 refines a:= 9 in our example. We need to show
SwitchToAbstract ; a:=9 T c:= 3 ; SwitchToAbstract
For any predicate Q, we calculate,

wp.(c 1= 3 ; SwitchToAbstract).Q

= { ; and SwitchToAbstract }
wp.(c:=3)(Vala=cv Q)

= { one-point rule }

wp.(c := 3).(Qa := %))
=}

Qla := e := 3]
{ substitution, since Q is a predicate over the abstract
variables and thus does not contain ¢}

Qa:=9

and

wp.(SwitchToAbstract 5 a := 9).Q
= { ;and = }

wp.SwitchToAbstract.(Q[a := 9])
= { SwitchToAbstract }

0
3

(Vala=c* > Qa:=9])
= { one-point rule, since a does not occur free in Qa:=9] }

Qla:= 9]

This proves the data refinement.

9.1.1 ADVANTAGES AND SHORTCOMINGS

Data abstraction and refinement are important because they allow us to introduce
abstract variables to describe the abstract behavior of the procedures and methods
in a module. They also admit a way to represent the properties of objects abstractly,
independently of the details of the particular subtypes (see Section 9.2 below).

For example, consider the procedures of a module that implements a file system.
Abstract variables are introduced to be used in the procedure specifications that
describe the intended behavior of the file system. Later, in the implementation,
design decisions are made as to how to represent the file system. At that time,
concrete variables are introduced and the representation for each abstract variable is
given.

Notice that the abstract variables, which are functions of the concrete variables,
are introduced before the exact function definitions are given. In fact, the exact
functions of the concrete variables that the abstract variables make up are not known
at the time the abstract variables are introduced. The exact mapping is given only
later; nevertheless, the mere naming of the abstract variables allows specifications to
be written in terms of them.

Also mnote that any mapping to concrete variables (that admits an
implementation—and even those that do not [66]) will do, because the details of
the concrete representation do not matter to the callers of the procedures. This
allows an implementation to change without radiating a new abstract behavior.

Classical data refinement does not permit reasoning about programs where ab-
stract and concrete variables exist together. For example, neither of the programs

a:=9;c=c+1
and
a:=4-c
makes any sense in the classical data refinement model.

Remark 9.5. When doing data refinement via so-called auziliary
variables, statements like these are allowed (see, e.g., [65]).

Instead, the world is divided: either the abstract variables are present or the concrete
variables are, but never both at the same time. This gives the view of the program
as having exactly two modules, one with access only to abstract variables, the other
with access only to concrete ones. My view of a modular program in Part IIT allows

88

any number of modules. Furthermore, my modules are not separated from each
other; rather, a module can include (import) others. (This corresponds to the use
of interfaces and modules in Modula-3 and Modula-2, and to the use of packages in
Ada.) This means that abstract and concrete variables do exist together, a situation
that yearns for a solution.

Before entering Part III, let me discuss abstract data fields and partial represen-
tations.

9.2 Abstract data fields

In Section 9.0, I introduced abstract variables without saying anything about types.
Now, I consider a specific kind of abstract variables—those whose types make them
data fields (see Section 8.1).

Consider an object type T and an abstract data field declared by

specvara: T — A

for some type A. Let TO and TI be two subtypes of T, neither a subtype of the
other. I allow the representation of a to be different for these two subtypes. For
example, if

varp: T — A

is a data field of T and A denotes some numeric type, then a can be represented by
a = 1.12-p for TO objects and a = 1.08-p for T1 objects. Each of these is called a
partial representation of a. They are written

repaft : T0]isalt] = 1.12-p[t] ;

rep aft : T1) is alt] = 1.08-p[t] (9.0)

The “[...T0]” shows that the rep declaration only gives the representation of a for
T0 objects, and the “t :” introduces a name (of type T0) that can be used in the
representing expression, and similarly for [¢: T1].

Remark 9.6. It would be more accurate to write “[t : T07]” instead
of “[t: T0]”, but since the index set of a is T7, i.e., T ~ {nil}, I take
“[t:T0]” to mean “[t: T0™]”, which simplifies the notation slightly.

Remark 9.7. Aun alternative way of viewing the representation of a

(9.0) is

1.12-p[t] ,ifteTO
repais (Vt:T™ o aft] = 1.08-p[t] ,ift € T1)

89

Figure 9.0: Example of partial representations in a type hierarchy

I say that a[t] = 1.12-p[t] is the representation of a at type T0.
The representation of a can also be in terms of the data fields of the respective
subtypes. For example, if

varx : T0” — A ;
vary : T1- — A

are data fields of T0 and T1, respectively, and A denotes the integers, then a can
be represented by a4 = 2-x for T0 objects and a =y~ 7 for T1 objects.

rep aft : T0]isalt] = 2-x[t] ;
repat : T1]isalt] = y[t] — 7

The flexibility of stating different representations for different subtypes comes with
a restriction. If a subtype T0 provides a representation, then no subtype of T0 may
provide a different representation. That is, unlike methods, the subtypes of T0 may
not override the representation provided at T0. This can be illustrated with a picture.
In Figure 9.0, types are represented as nodes in a tree. Edges connect a subtype with
its immediate supertype, and the convention is that supertypes are placed above
their subtypes in the picture. Circled nodes indicate that a representation is given at
this node. Thus, the shaded regions show subtypes that may not provide their own
representation.

This restriction is pronounced in the interest of modular verification (see Part III),
where all information about a program may not be available at the time of verifica-
tion. The restriction then prevents the verification process (be it performed by a
human or by a machine) from using the wrong representation. For example, if both
T0 and Tk (cf. Figure 9.0) were to provide representations, then for a scope where
types T, T0, and Tn are visible, and only T0’s (and not Tk’s) representation is
visible, the verification process might use the representation provided at T0 as the
prevailing representation for Tn, whereas with full information about the program,
the representation Tk would be used.

The object model in [56] does not have this restriction. There, a subtype provides
all of its own data fields, i.e., it does not inherit any data fields —and, in particular,

90

inherits no abstract data fields— from its supertypes. The model herein comes closer
to objects provided by languages like Modula-3 and C++.

The restriction does not so much restrict as it does provide a guiding methodology
for the construction of object-type hierarchies. Consider a type T that declares a
data field ¢. Some supertype of T declares an abstract data field a, and T gives its
representation of a in terms of c¢. If, for some reason, it is expected that subtypes
of T would want to provide different representations of a, then one can often split
type T into two types, T' and TImpl, say, where Thmpl <: T'. The representation of
a previously given at T is now given at Thnpl. This usually means that ¢ should
be declared at TImpl, but declaring it at T’ is sometimes also a possibility. The
aforementioned subtypes of T are now declared subtypes of T', which means they
are free to give their own representations of a.

To recap, subtypes of a type that declares an abstract data field can provide
their own representations of that field. Each such representation is called a partial
representation. Usage of partial representations is restricted to avoid that an object
would have more than one representation of some data field. This restriction provides
guidance in the design of object-type hierarchies. '

91

Part 111

Q/\/\oéu{)avifz

93

Modules and modular verification

In Parts I and II, I treated the semantics of control structures of programs and of
data structures that those programs manipulate. In this Part, I consider making the
verification of large programs feasible.

The verification of a program consists of the verification of a set of refinements.
Each such refinement can be verified independently. In what I have presented, it is
always specifications that are refined. To make the mathematics work for us in a
large program, it is therefore crucial that we know how to write specifications in a
large program. For example, just because one procedure calls several others, need the
specification of one involve all the details of the others being called? We hope not,
because if this were the case, writing the specification for a procedure in a program
with tens or hundreds of thousands of lines of code would be too complex a task for us
to manage. Luckily, we are armed with the tool of abstraction (see Chapter 9), with
which there is hope to hide the complexity of the implementation details at various
levels.

A mechanism used as an aid in abstraction and data hiding is modularity. By
organizing the code into separate modules, we are able to hide implementation details
of that module from other parts of the program.

Modularity lends itself to separate compilation of modules. Not only can this be
a time-saving device when a small change is made in a program, but it also allows
code to be written by different groups or vendors and collected into libraries without
these groups knowing the details of the code in the other groups’ modules.

Similar to the concept of separate compilation of modules is the concept of modular
verification—that each module can be verified in isolation from the verification of
other modules. Modular verification not only saves time, but is essential to enable
libraries to be verified without knowing the details of the programs into which they
eventually will be linked. To perform modular verification, we need to learn how to
write specifications for procedures that appear in modules.

In this Part, I deal with specifications and modular verification. Having these
under control is vital to making the verification of large programs feasible.

Outline

In Chapter 10, I describe the basic problem with abstraction within a setting of an
arbitrary number of modules when modular verification is important. I also give a
solution to this problem, and discuss related work. In Chapter 11, I give a formal
description of this solution for a simple language with modules. In Chapter 12, I prove
that the solution in Chapter 11 is sound with respect to modular verification, i.e.,
that a module verified to be correct using the detailed technique shown in Chapter 11
would also be verified to be correct had all information about the program been taken
into account in the verification. In Chapter 13, I discuss some remaining problems.
Chapters 10 and 13 are of interest to those readers concerned with abstraction,

94

multiple modules, and modular verification. Chapter 11 is of interest to those readers
who want to apply the methods of Chapter 10 in practice, for example by building a
formal verification system that is unforgiving when it comes to having all the details.
Chapter 12 targets a smaller audience, and is provided for completeness. It is intended
for semanticists with a thirst for detailed understanding, possibly because they are
facing similar proof obligations, and for those who like formal proofs in their own
right. However, even the readers with an interest in only Chapters 10 and 13 may be
curious to read Section 12.5, which comments on the shape of the proof.

@ga]:fev

10

Specifications in modular
programs

In this chapter, I describe a specification problem that arises in the context of modular
verification of programs with many modules. 1 proceed concretely by showing a
programming example in which the problem surfaces. Since the goal in this Part is to
make program verification feasible in practice, I draw my example from an attempt to
write the specification for a real library of input/output streams [9], a library written
in a modular, object-oriented style.

After some motivation, I describe the problem, introducing the necessary concepts
along the way. Then, I describe a solution to the problem, followed by some discussion.
The solution can be viewed as a generalization of classical data refinement [38]. I
conclude this chapter by making a connection between the two, and by comparing
my solution with other specification languages.

I try to keep the discussion at as high a level as possible while exposing enough
details to reveal the problem. A precise description of the solution is given in the
next chapter. I assume some familiarity with the concepts of modules and interfaces
(or packages) from languages like Modula-3 and Modula-2 (or Ada, respectively).

10.0 Motivation

Programs written in a programming language like Modula-3 are divided into modules
and interfaces. A module or interface imports another interface in order to gain access
to the entities declared in that interface.

A procedure is declared in an interface, and its implementation is given in a
module. This hides the private data of the module from the clients of the interface.
The implementation of a procedure declared in an interface may have an effect on
the private data in the module. I use data abstraction to combat this problem: The
interface describes an abstract view of the behavior of the procedure; the module
provides the implementation and prescribes the relation between the abstract view
and the concrete one.

96

As described in the preface to Part III, we are interested in modular verification.
That means that one should be able to verify an implementation given only its module
and the module’s imported interfaces. Having the entire program in view at one time
simplifies verification, but is unreasonable to require, because, for example, then a
library could not be verified until it were linked with a complete program.

Specifications play a central role in this chapter. Recall from Sections 6.0.0
(and 1.7) that a specification includes a frame (given by a modifies clause), which
lists those variables that are allowed to be modified. Without modifies clauses, a pro-
cedure would be able to modify anything, just as long as the postcondition were met.
For example, consider the specification given by Q,Q0,Q1 in Chapter 5. Without any
notion of what the program to be developed is allowed to modify, a perfectly valid
implementation would be

al0, 0], x,i,j,b:=0,0,0,0, true ,
or, if M and N were not given as constants,
M,N,b := 0,0, false

The lack of a construct like modifies yields specifications that are too weak to be
useful in the setting of an entire program. Hence, modifies clauses are important.

Remark 10.0. The specification language Anna [57] does not fea-
ture modifies clauses. When specifications are interpreted by a person
(rather than by an unforgiving machine), several conventions are under-
stood (or misunderstood, as it may be). For example, maybe if Swap from
Section7.3 were specified only by

ensures ali] = ay[j] A a[j] = ay[i] ,

a programmer “knows” not to modify a at any index other than i and
j. Thus, Anna is useful for formal documentation of a program. Anna
annotations admit translation into checks that can be executed at run-
time. These are an important and useful aid in finding errors already
introduced into a program. They do not, however, establish the absence
of errors in a program. For that, verification is needed, so for that, Anna
1s not, without further restrictions, suitable.

10.1 Problem

The problem I'm about to show arises in the presence of three things: data abstrac-
tion, friends interfaces —which 1 will describe below—, and modular verification.
I won’t discriminate between modules and interfaces, because their distinguishing
characteristics are not material to the discussion. Instead, I will refer to either as a
unit.

97

10.1.0 WRITER EXAMPLE

The example consists of four units. The first, named Wr, shows the declaration of a
writer class. A writer is an output stream. Examples of writers —that is, of writer
subtypes— are file writers, which write their output stream to a file in a file system,
and text writers, which write their output to a text string in memory.

Here’s the first unit.

unit Wris
type T;
spec var target : T~ — seq|char];
spec PutChar(wr : T ; ch : char) is
modifies target[wr]
ensures target{wr| = targeto[wr] 4 ch
end

Unit Wr introduces a type T (see Section 7.2), and declares a specification (ab-
stract) variable target (see Chapter 9). target is of type T~ — seq[char]; hence, it
designates an (abstract) data field (see Sections 8.1 and 9.2).

seq[char| is a type whose values are sequences of characters. Readers familiar with
Modula-3 may think of seq[char] as Modula-3’s TEXT type, but the exact nature of
seq[char] is not central to the discussion. I use 4 to denote concatenation.

Unit Wr also shows the specification of a procedure, PutChar, which takes as
parameters a writer and a character. The procedure modifies the target of the writer
and ensures that the target, upon termination of the procedure, equals the initial
target extended with the given character.

Here’s the second unit.

unit WrFriends import Wr is
var buff : Wr.T~ — seq|char]

(* Wr.targetfwr] = flushed characters of wr 4 buff[wr] *)

end

Unit WrFriends is what is known as a friends interface. It gets that name from
the fact that the unit is intended for import by other units with a close tie to the
implementation of writers—a tie only “good friends” are thought to have. (In [9],
WrFriends 1s called WrClass.)

Unit WrFriends imports unit Wr to make the declarations in Wr visible in
WrFriends. The import relation is transitive—that is, by importing Wr, WrEriends
also imports all units imported by Wr (if there were any). The scope of a unit is the
set of declarations given in that unit and the units that it imports.

WrFriends declares a data field buff . Note that I have prefixed type T from unit
Wr with “Wr.” since it is imported from another unit, a practice common among
languages with modules. Note also that buf is not a specification variable, but a
program variable.

98

The unit ends with a comment describing to programmers the intended usage of
field buff . This comment is vital to the discussion; in a sense, the problem I am
describing is the problem of formalizing this comment. The idea is the following.
The target of each writer is made up of a flushed portion and a buffered portion.
Different writers store their flushed portion in different ways. For example, a file
writer keeps the flushed portion on disk, whereas a text writer keeps it in a string
in memory. This is the essence of object-oriented programming; different subtypes
define their own ways of dealing with this aspect of being a writer. All subtypes share
a mechanism for the buffered portion. For that purpose, buff has been introduced.
Procedure PutChar, then, simply adds the given character to the end of buff for the
given writer. If buff becomes too large as the result of such an operation, PutChar calls
out to the particular subtype to perform a flush, i.e., to copy the value of buff into
the flushed portion of the writer and clear buff. The call to the particular subtype is
done via a method invocation to some flush method, not shown here.

Now, let’s move on to a unit declaring a particular kind of writer: text writers.

unit TextWr import Wr is
type T <: Wr.T;

spec Init(wr : T) is
modifies Wr‘target[wr]

ensures Wr.target[wr] = 7 ;

spec result : seq[char] := Target(wr : T) is
ensures result = Wr.target|wr]|
end

Unit TextWr declares a type T as a subtype of Wr.T (see Section 8.0). That is,
objects of type TextWr.T make up some of the objects of type Wr.T.

Unit TextWr also declares two procedures, Init and Target. Init clears the target
of a text writer. Its specification states that the target of the given text writer is
modified to ensure that it equals the empty string upon termination. Procedure
Target returns the target for a given text writer. It does not modify anything in the
process.

The fourth and final unit shows the implementation of text writers. In a language
like Modula-3, this unit would be a module. However, since I do not distinguish
between modules and interfaces, this is simply another unit, whose name I choose to
be TextWrlmpl .

unit TextWrImpl import Wr, WrFriends, TextWr is
var flushed : TextWr.T~™ — seq[char];
rep Wr.target[wr : TextWr.T] is
Wr.target{wr] = flushed[wr] -+ WrFriends.buff [wr] ;

impl TextWr.Init(wr : TextWr.T) is
flushed[wr] := " ; WrFriends.buff [wr] := 7 :

99

impl result : seq|char] := TextWr.Target(wr : TextWr.T) is
result := flushed[wr] H+ WrFriends.buff [wr]

end

This unit imports all of the previously introduced units. It declares a variable
flushed , whose purpose is to contain the flushed portion of text writers. Hence, the
representation of target for text writers can be given, as stated by the rep clause (see
Section 9.0): target of a text writer is the concatenation of flushed and buff for that
writer.

Unit TextWrlmpl also gives the implementation of procedures Init and Target. Init,
which is supposed to set target to the empty string, sets both flushed and buff to
the empty string for that writer, the concatenation of which is the empty string.
Procedure Target, which is supposed to return target of the given text writer, simply
returns the concatenation of flushed and buff for that writer.

10.1.1 FRAMES AND ABSTRACT VARIABLES

Now that I've shown the example, I am able to raise a question. Why is it that
procedure Init, which is specified to only modify Wr.target , is allowed to modify vari-
ables flushed and WrFriends.buff 7 From Chapter 9, we answer, “Because flushed and
WrFriends.buff are part of the representation of Wr.target”.

Having decided that, we find ourselves at the edge of the problem. Consider the
following client unit, which imports Wr, WrFriends, and TextWr—that is, all the units
seen so far except the text writer implementation.

unit FaultyClient import Wr, WrFriends, TextWr is

TextWr.Init(wr); (% Wr.targetfwr] = 7 %)
WrFriends.buff [wr] := ... ;
if TextWr.Target(wr) # “” then wrong fi

end

This faulty client calls TextWr.Init for some text writer wr. After that call, we
can conclude that the target of this writer is the empty string. To remind ourselves
of that, I have shown this as a comment in the code. Although it is not visible
in this scope, the fact that the representation of target equals, for text writers, the
concatenation of flushed and buff means that flushed and buff each equals the empty
string at this point in any execution.

The next statement mucks with this writer’s buff field. Hence, this statement
actually affects the value of target[wr]. But this fact goes unnoticed to the verification
process, to which target’s rep clause is not visible. Therefore, the modular-verification
process treats the update of buff as having no effect on target .

The last line of the code compares the result value of TextWr.Target(wr) , i.e., the
value target{wr], with the empty string. If the update of buff has no effect on target,

100

which, recall, is what a modular-verification process would conclude from the given
information, then targetfwr] and “” will be equal, and the branch that goes wrong
is not taken. However, full information about the program —in particular, having
full information about the representation of target for text writers— reveals that the
update of buff does affect the value of target, and thus the program will go wrong.

We have reached the climax of the exposition. The question we’re facing is:
What, in a modular verification of this program, should prevent the program from
being verified to be correct?

10.2 Solution

Now that we understand what the problem is, let me move on to its solution.

The solution is to introduce a new specification construct called depends. This will
allow dependencies between variables —that one variable is part of the representation
of another— to be revealed. The clause

depends a onc¢

reveals that abstract variable 2 may be represented in terms of variable c.

The depends construct allows a programmer to give part of the representation of
an abstract variable. depends does not state what the representation is, but reveals
a variable on which it depends.

Remark 10.1. Modula-3 programmers familiar with partially opaque
types may find that the relation between partial and full type revelations
is similar to that of depends and rep clauses.

The use of an abstract variable in a frame can now be defined. I define an abstract
variable listed in a modifies clause to be a shorthand for also listing the variables on
which the abstract variable depends. In other words, the actual frame is the reflexive
transitive closure of the frame given by the programmer. It is sometimes convenient
to call this closure the downward closure, to indicate that the closure goes toward the
more concrete (or down-to-earth) representation.

I require that all variables on which an abstract variable’s representation depends
be given in depends clauses. Thus, in order to mention a variable ¢ in the rep of an
abstract variable a,

depends g on ¢

must be visible (or deducible by transitivity) in the scope in which the rep appears.

Finally, a predicate Pred that mentions an abstract variable a (here written
Pred(a)) is interpreted as the same predicate with a replaced by a function instantia-
tion. The function, which here I shall call 4’ is a function of its dependencies. Thus,
Pred(a) is defined to mean

Pred(a'(c,...))

101

Remark 10.2. There is an important detail, coined residues, that plays
a role here. I postpone discussing this detail until Chapter 11.

10.2.0 CORRECTING THE EXAMPLE

Let me illustrate how depends solves the problem in the example I introduced earlier.
Since the representation of Wr.target involves WrFriends.buff , i.e., Wr.target depends on
WrFriends.buff , we add the line

depends Wr.target[t : Wr.T] on buff|[t]

in unit WrFriends. This states that, for every writer ¢, target[t] depends on buff[t].
Similarly, in unit TextWrImpl , we add the line

depends Wr.target(t : TextWr.T] on flushed|t]

It discloses that, for every text writer t, target]t] depends on flushed[t].

As these dependencies are in the scope of TextWrimpl, the rep clause there is
permitted to mention buff and flushed. Furthermore, because of the depends clause
in WrFriends, the faulty client’s update of buff is perceived as an update of target.
The precise effect on target is, however, unknown in the scope of TextWrlmpl —all that
is known is that an update of buff may cause the value of target to change. Hence,
the faulty client will no longer verify.

10.2.1 VISIBILITY REQUIREMENT

Let us consider some restrictions that apply in the use of depends clauses. Certainly,
there must be some restriction, because otherwise all depends clauses could be written
in some distant unit that almost never is imported, and then these clauses would do
no good given our goal of modular verification.

To withstand this problem, I require that the dependency between two variables
be visible wherever both of those two variables are. I call this rule the wisibility
requirement.

10.2.2 BENEVOLENT SIDE EFFECTS

Consider the following couple of units.

unit D is unit DImpl import D is
spec var valid ; var hash_table, start, n, . .. ;
spec var state ; depends valid on hash_table, start, n, ... ;
spec P() is depends state on hash_table, start, n, . .. ;
requires valid -orep ... ;
modifies state impl P()is ...
end end

These two units show a common paradigm (see also Chapter 13), viz., using, in
addition to specification variables describing the values provided by interface D (here,
simply and generally called state), a specification variable valid. valid is true just when
the values of the internal implementation are in a state that “makes sense”, i.e., a
state which represents a value of state. An example of when this might not be the
case is before that state is initialized. walid is set by some initialization procedure
(not shown here) and is required as a precondition by all procedures in the interface.

Remark 10.3. Some consider walid the object or module invariant
and make it implicit (¢f. [38, 64, 57, 56]). In the presence of operations
that involve many objects, it is not always clear when the object invariant
is supposed to hold. At the expense of verbosity, giving walid explicitly
makes it clear at what points the invariant must hold.

Let’s discuss the value of walid upon exit from P. The specification of P requires
that wvalid hold upon entry to P; it also states that only state, not walid, is modified.
Hence, we conclude that walid holds upon exit from P.

Very well, let’s now focus on the implementation in DImpl. Here, the modifies
clause of P is interpreted by taking the downward closure of state, which shows
that the variables hash_table,start,n,... are allowed to be modified. Note that these
variables are the representation also of walid, and the value of wvalid is not allowed
to be changed. This means that the implementation of P is constrained to modify
hash_table, start,n, ... only in such ways that the value of wvalid is preserved. In the
parlance, P’s side effects must be benevolent. A way to view this is to add

ensures validy = valid

to the specification of P.

10.2.3 AUTHENTIC ABSTRACTIONS AND VARIABLES
Now that I've introduced benevolent side effects, consider the following program unit.

unit AuthenticityProblem import Wr, WrFriends is
spec var a;
depends a on WrFriends.buff;

(* a= A *) Wr.PutChar(wr,ch) (xa=A7 %)

end

This unit declares a specification variable called a, and reveals that a depends on
buff . For simplicity, I have left subscripts off.

From the specification of PutChar (Section 10.1.0), we determine that any side
effect on a is benevolent. That is, despite the fact that both target (which is in the

103

modifies clause of Wr.PutChar) and a (which is not) depend on buff, PutChar does
not alter the value of a. But to ensure this, 4 (and its representation) must be
available at the time the implementation of Wr.PutChar is verified. How is this to be
guaranteed?

In general, such a guarantee cannot be made. However, if a is visible anywhere
buff is, then the implementation (if it modifies buff at all) has both buff and a in
scope. Due to the visibility requirement, the dependency of a on buff is thus also
visible.

Remark 10.4. We don’t need to worry about whether or not a’s
representation is in scope; if it is not, verification of code that modifies
buff but that must not modify the value of a will not go through.

If a is indeed visible anywhere buff is, then I say that this dependency is an au-
thentic abstraction. A specification variable is authentic just when all its (downward)
dependencies are authentic abstractions. A variable that is authentic is also said to
satisfy the authenticity property.

Hence, the condition of benevolent side effects can be guaranteed only for au-
thentic variables. Distinguishing between authentic and unauthentic variables can be
done (see next section); however, the distinction is maybe more easily detected by a
machine than by a programmer. An option is therefore to simply rule out unauthentic
variables, a rule I give the name authenticity requirement. That is, the authenticity
requirement states that all variables satisfy the authenticity property.

Remark 10.5. The soundness proof in Chapter 12 uses the authentic-
ity requirement. However, the proof can easily be modified to also allow
unauthentic variables. To do this, the definition of benevolent side effects
in Section 11.1.4 is changed to project not to specification variables but
to authentic specification variables. The proof is then modified in Sec-
tions 12.3.1 and 12.4.1 to use, instead of the authenticity requirement,
the fact that all variables in bb satisfy the authenticity property.

10.3 Enforcing the requirements

Having posed two requirements on modular programs, a natural concern is: Can these
requirements be enforced? The answer is simple: By following a simple convention,
both of the requirements follow.

Let me recap the two requirements and state them with respect to two variables
a and c.

Visibility requirement If 2 depends on ¢, then this dependency must be visible
anywhere both a and ¢ are.

Authenticity requirement If a depends on c, then a must be visible anywhere ¢
is.

104

Observe that, if the dependency of a on ¢ is declared either in the unit that
declares 4 or in the unit that declares ¢, then the visibility requirement follows—
then, any unit that imports both a’s unit and c¢’s unit also imports the dependency.
If declared in a’s unit, the dependency is not authentic; if declared in ¢’s unit, the
dependency ¢s authentic. Thus, in conjunction, the two requirements can be stated
as one.

Declaration dependsaonc is placed in the unit that declares c.

This is a condition that is easy to check using the declarations only of the unit being
verified and its imports.

Remark 10.6. The convention is a sufficient condition for the two
requirements to hold. However, in languages where cyclic imports are
allowed (this excludes, e.g., Modula-3), the requirements can be satisfied
without adhering to the convention.

Remark 10.7. Not only does the convention capture the two require-
ments concisely, it is also easier to teach to a programmer than the two
requirements are separately. However, | do not regret having introduced
the two requirements separately, because of the now manifest opportunity
to replace each independently (see, e.g., Remark 10.8) and because of their
separate 16les in the soundness proof (see Section 12.5 and Remark 10.5).

10.4 Soundness of modular verification

I introduced depends and motivated two requirements for its use. This invites the
question: Are these two requirements enough? To answer that question positively, we
must prove the soundness of modular verification with respect to these requirements.
This means that if the verification of each unit goes through, then the verification of
the whole program would go through, provided the program satisfies the two require-
ments.

Such a result allows the verification of a procedure implementation with respect to
its specification to be performed in the scope of the unit in which the implementation
occurs, 7.e., using only the information from that unit and its imports.

Since soundness does hold (see Chapter 12), one may wonder about completeness.
Completeness means that if the program could be verified correct given all its units
at once, then each unit can be verified correct by itself. There is no hope of achieving
this. For example, in the faulty client example I showed, if the line that mucks with
buff actually sets buff to the empty string, then target remains unchanged. But the
only way to determine that target indeed remains unchanged is to have a’s rep clause
in scope, and requiring that violates the essence of data hiding.

So, it is not completeness in which we're interested. Instead, we’re interested in
adequacy. That is, we want to be able to specify and verify programs we care about.
I revisit the issue of adequacy in Chapter 13.

105

T s
e R

® (ii) (ii1)

Figure 10.0: Example dependency graphs

Remark 10.8. For the record, this remark discusses a predecessor of
the authenticity requirement that proved to be inadequate.

Before inventing the authenticity requirement, I was using what I called
the forest requirement. Consider the graph whose vertices are the variables
and whose directed edges correspond to the given dependencies among
variables. Then, the forest requirement states that this graph is acyclic
and that the transitive reduction of the graph is a forest. The transitive
reduction of a directed graph G is the graph with the fewest edges among
those graphs whose transitive closure equals the transitive closure of G.

Remark 10.9. A transitive reduction of a graph is unique if
the graph is acyclic.

A forest is a set of trees, and a tree is a directed graph in which every
vertex has in-degree at most one (see, e.g., [53]).

For example, Figure 10.0 shows three graphs. Graph (ii) is the transitive
reduction of graph (i), and graph (iii) is its own transitive reduction.
Graphs (i) and (ii) satisfy the forest requirement, whereas graph (iii) does
not.

I had to give up the forest requirement, because it proved inadequate.
For example, the dependencies of the common paradigm explained in Sec-
tion 10.2.2 take the form of Figure 10.0(iii). (The specification language
Aspect [41], in some sense, can only handle dependencies satisfying the
forest requirement—see its Section 8.1.)

10.5 A generalization of classical data refinement

In this section, I compare my depends solution with classical data refinement [38]
(see also Section 9.1).

10.5.0 MODELING CLASSICAL DATA REFINEMENT

Any program specified and refined with the techniques of [38] can also be specified
and refined in my model, because [38] is essentially just a restriction on my model:

106

There are just two units, one for the specification and one for the implementation.
Call these S and M, respectively. S then declares all abstract variables, and gives
the specifications in terms of those. M imports S, declares the concrete variables,
and specifies the representation of the abstract variables. In this simple world, the
dependencies can be inferred from the rep clause. Finally, the implementation only
refers to concrete variables

10.5.1 EXPLICIT FUNCTIONS

Like [38], I treat abstract variables as functions. However, an important distinction is
that I prove refinements by making these functions explicit. Classical data refinement
instead introduces the program SwitchToAbstract and does the dance with two state
spaces. It is also crucial that the visible dependencies are shown explicitly. (The
fact that dependencies that are not in scope need not be present is proven by the
soundness proof in Chapter 12.)

For example, consider variables a and ¢, where a depends on c¢. If dependencies
are not shown explicitly, then calculating the weakest precondition of a statement
¢ := 2 with respect to a postcondition a > 0 is done as follows. (For simplicity, I
leave off the exceptional postcondition in this discussion.)

wp.(c:=2).(a > 0)
{ =1
(a>0)[c:=2]
= { substitution }
az 0

Notice that, without any further information, the substitution in the last step is
performed on the basis that ¢ does not appear the expression a > 0. The last line of
the calculation is not the desired result, because an update of ¢ affects the value of
a. Thus, proving a refinement this way calls for some other measure, like the business
with SwitchToAbstract .

In contrast, translating a into a function 4’ with dependencies shown explicitly
yields the following calculation.

wp.(c:=2).(d(c,...) > 0)
- =)
(@(c,...) = 0)[c:= 2]
= { substitution }
a(2,...)>0

Note that not only is the last line the expression we want, but both the weakest
precondition of an assignment and the rules for substitution are the same as those we
would use to prove programs without abstraction.

So, in summary, instead of changing the notion of refinement, predicates are con-
verted with respect to visible dependencies. Then, refinement, assignment, and sub-
stitution are those that we are used to.

107

10.5.2 INFERRING DEPENDENCIES

Languages like Modula-3, Ada, and Modula-2 provide a more flexible model of units
than Simula [14], on which [38] is based. These languages allow the state of an imple-
mentation to be distributed across multiple units. Only when all of these units and
the representation function of an abstract variable are visible can the dependencies
of the abstract variable be inferred. Since a unit, in general, imports but a proper
subset of these units, automatically inferring dependencies is no longer possible. The
depends construct solves this problem.

10.6 Other specification languages

In this section, I discuss how some existing specification and programming languages
deal with the problem I have described.

10.6.0 ANNA

The Anna specification language [57] does not provide a construct like modifies ; hence,
it is not equipped, as is, to handle the kind of verification that I have described (see
Remark 10.0).

Moreover, Anna allows the body of a procedure to use a different specification than
the so-called visible declaration given at the procedure declaration. The motivation
for this is that the procedure declaration appears in the package declaration and the
procedure body appears in the package body. Since the scope of the body contains
the private data of the package, one may want in the package body to extend the
visible specification so that it also specifies the behavior in terms of the private data.
Anna lets the conjunction of the postconditions appearing in these two specifications
be the prevailing postcondition. This is sound, because the implementation is allowed
to provide a more specific behavior than originally specified. Stated differently, this
is sound because a specification, as a predicate transformer, is antimonotonic in its
postcondition. However, Anna also takes the prevailing precondition to be the con-
junction of the two given preconditions. That is not sound, because the specification
is monotonic in its precondition, not antimonotonic—external clients of the procedure
have no way to establish the strengthened postcondition, let alone know what it is.

Finally, Anna provides a mechanism called package states. It is used as an ab-
straction mechanism. Anna requires that package states be used only for packages
that satisfy the Hidden State Principle, which essentially states that the package im-
plementation cannot make use of the program state outside the package (this includes
using, directly or indirectly, global variables declared in other packages). Thus, this
kind of data abstraction is like that in classical data refinement.

Any one of these three shortcomings means that Anna does not provide a solution
for the problem I describe in this chapter.

108

10.6.1 PENELOPE

Penelope [32, 62] is an interactive environment for developing and verifying Ada pro-
grams. It is based on Larch [33] but borrows much of its syntax from Anna. Penelope’s
verification is sound across modules. However, in addition to not supporting pointer
types (and Ada doesn’t feature object types), Penelope does not support abstraction
and thus ducks the problem altogether.

10.6.2 CLU

Abstraction in CLU (see [55]) is done under the assumption that the implementation
does not “share” its values (so-called objects) with clients of the interface. Such
sharing is referred to as rep exposure. That phenomenon is easily produced, however,
and then verification is no longer sound. Similar issues are treated in Section 13.2.

CLU, like Simula and classical data refinement, does not provide language fea-
tures that allow an implementation to be distributed across modules; hence, friends
interfaces are not even a possibility.

10.6.3 SUMMARY

Both Anna and Penelope dodge the problem I have described, because they do not
even provide the necessary specification features in the presence of which the problem
arises. Both Anna and Penelope are, of course, useful in their own rights, but neither
can claim to provide an answer to specifying and verifying modular programs.
What both Anna and Penelope provide, however, which I have not discussed,
is the theory packages (see [33]) one needs to write elaborate specifications, e.g., a
library of axioms and theorems regarding tree structures. These issues, and the issues
of how theorems are proven automatically in the presence of these, are orthogonal to
my discussions. Both Anna and Penelope aim at achieving full specifications. With
extended static checking as one’s goal, theory packages play a diminished role.

109

@ga Ffev

Generating verification conditions

In this chapter, I formalize the idea of depends. I do so by first introducing a simple
programming notation for units (modules and interfaces). Then, I define the relation
Refine, which is true just when a program implements (refines) its specification. The
Prolog-style definition of Refine suggests a precise operational way to generate the
formulas, known as verification conditions, that need to be proven in order to establish
the correctness of the refinement.

The previous chapter provides an informal discussion of what this chapter for-
malizes, but with one notable exception: residues. Residues are swept under the rug
in Chapter 10, because they would have diverted attention from the central ideas in
that chapter. In this chapter, I do include residues; in fact, I conclude this chapter by
showing the importance of residues. The next chapter, which proves the soundness
of modular verification, builds on the definitions presented in this chapter.

The reader will notice that this chapter changes gears to more formality from
the previous chapter. In that sense, this chapter also serves as a preparation for the
next chapter, which contains the formal proof of soundness. Another change from
the previous chapter is that, in order to focus on the relevant details, I have left out
many bells and whistles from the richer notation used in Chapter 10.

11.0 A notation for modular programs

In this section, I present the syntax of a programming notation with units. I also give
some definitions, many of which are review from previous chapters. The reason for
showing the syntax of the notation is that this makes everything explicit and lends
itself to inductive definitions of some of the relations defined in the rest of the chapter.

A program consists of a number of units.

Remark 11.0. Programming languages like Modula-3 typically provide
two kinds of units, modules and interfaces. Since I do not distinguish
between the two, a Modula-3 program is a restriction of what I present.

110

The syntax of each unit is given by the grammar

<Unit> = unit <id> [import <idlist>] is {<Decl>} end

<Decl> .=
var <idlist>
| specvar <idlist>
| spec <id> is modifies <idlist> requires <Pred> ensures <Pred>
| impl <id> is <Command>
| depends <id> on <idlist>
| rep <id> is <Pred>)

where {<Decl>} means any number of occurrences of <Decl> , separated by semi-
colons.

An <id> is an identifier, and an <idlist> is a nonempty, comma-delimited list of
<id>’s. The declarations unit, var, specvar, and spec introduce new <id>’s. The
declared <id>’s in a program must be unique.

Remark 11.1. Modular programming languages typically require that
top-level identifiers within one unit be unique. Identifiers declared in
imported units are then prefixed by the name of the unit in which they
are declared, like “Wr.” in the examples from the previous chapter. For
local variables, variables are distinguished by scope rules. In this chapter,
however, I assume that such resolutions have already been done, and that
all identifiers are unique.

unit declares the succeeding identifier to be a unit. The <idlist> after import
must list only units. The set of units reachable via imports from a unit A is called
the import closure of A, denoted ImportClosure(A). Note that A € ImportClosure(A).
Every identifier mentioned in a unit A must be visible in A, meaning that it has its
declaration in some unit in ImportClosure(A) .

Identifiers introduced by var or specvar are called variables. I distinguish between
the two kinds of variables by referring to the former as program variables and the latter
as specification variables (see Section 9.0). Identifiers introduced by spec are called
procedures.

The <idlists> in spec and depends must list only variables. The <id> in the
impl clause must be a procedure, and the <id>’s in the depends and rep clauses
must be specification variables.

The <idlist> in the spec clause is called the frame, and the two <Pred> s are called
the precondition and postcondition, respectively. The postcondition may mention a
variable subscripted with 0, an initicl-value variable. This refers to the value of the
variable upon entry to the procedure (see Section 1.7).

The impl declaration gives an implementation of a procedure. A procedure has
exactly one implementation. Note that the name of a procedure is declared by a spec
clause, whereas impl just associates an implementation with an already declared

111

procedure identifier. Consequently, the specification of a procedure must be visible
in the unit that gives the implementation.

The depends and rep declarations are described later. For each of these, <id>
must be a specification variable. Only one rep clause per specification variable is
allowed. Note that, as with impl, the (spec var) declaration of the identifier to which
depends and rep pertain must be visible in the unit that declares the depends or rep
clause.

As in Chapter 7, I reserve the character % in identifiers, so that new unique
identifiers needed in the proof can easily be constructed.

Because exceptions are orthogonal to the present discussion, I omit them and
consider programs with only one postcondition.

Remark 11.2. Using as that postcondition a partitioned predicate
(see [61] or Remark 3.3), the discussion also applies to exceptional pro-

grams. The addition of raise and <1 then only affects the proof of property
(12.12), found in Section 12.4.2.

A guarded command has the following syntax.

<Command> ::=
skip

| wrong

| <id> “:=" <expr>

| call <id>
| <Command> “;” <Command>
| <Command> “ 07 <Command>
| <bool-expr> “ — 7 <Command>
| “I” <id> “e” <Command> “]”

The <id> in the assignment statement and the identifiers mentioned in <expr> and
<bool-expr> must be program variables. The <id> in the procedure call must denote
a procedure. The <id> in the block statement introduces a new identifier that can
be used in the subsequent <Command>. This <id> must be distinct from all other
<id>’s in the program.

Remark 11.3. One of the simplifications made from the richer notation
previously presented is the absence of loops. Note that programmers can
still declare and call tail-recursive procedures.

11.1 Definitions

I now give all the definitions necessary to define Refine. I start bottom-up, and will
end with the definition of Refine itself.

I define an environment to be the set of declarations in a set of units closed under
imports. Stated differently, an environment is the union of a set of units closed under
mmports. Most of the definitions take an environment as a parameter.

112

I treat sets and lists of variables to be synonymous, and do not distinguish between
single variables and lists of variables. So, for example, for a list of variables w, the
expression wy = w is a shorthand for

(Volv€Ew> vp=10v)

11.1.0 DEPENDENCIES

I start by defining the dependency relation, named Depends. For any variables a and
¢ and environment E,

Depends(a, c, E)

holds just when a depends on ¢ in E. This means that E contains enough depends
declarations so that the dependency of a on ¢ is deducible by reflexivity and transi-
tivity.

Note that every variable depends on itself. Also, note that Depends is monotonic
in its last argument, i.e., for any a,c,E, E’,

ECE = (Depends(a,c,E) = Depends(a,c,E')) . (11.0)

11.1.1 Resolve

Resolve of a list of variables w and an environment E is the downward closure (or
resolve set) of the variables in w, as is visible in E.

Resolve(w, E) =
{v,x | v € w A Depends(v,x,E) > x } U
{v,x | vo € w A Depends(v,x,E) > x, }

It will be convenient to allow Resolve(wy = w, E) as a shorthand for
Resolve(wg, E) = Resolve(w, E) :
i.e., the formula that states that the value of each variable in Resolve(w,E) is un-
changed.
Properties of Resolve

From the monotonicity of Depends (11.0), we have that Resolve is monotonic in both
arguments, i.e., for any w,w’,E,E',

ECE AwCw = Resolve(w,E) C Resolve(w', E')) (11.1)

In rewriting an expression describing an element of a resolve set, the following prop-
erty will come in handy. For any c,w,E,

(¢ € Resolve(w,E)) = (3Jala € wr> Depends(a,c,E)) . (11.2)

113

We also have, for any w visible in some environment E,
w C Resolve(w,E) C E . (11.3)

The fact that Resolve is a closure is reflected in the following property. For any
a7 C’ w7E7

Depends(a,c,E) A a € Resolve(w, E) = ¢ € Resolve(w, E) . (11.4)

11.1.2 Functionalize

I now formally explain the interpretation of specification variables. A specification
variable is a function on the program variables. For every specification variable a, I
introduce a function fxa. (Recall that x is a special character, so that fxa is just an
identifier. This identifier is distinct from all programmer-declared identifiers and is
uniquely determined from the name a.)

Example
Let me start with an example. Consider the following declarations.
specvara ; varc ; dependsaonc ; repaisa=c’

Let’s ponder the interpretation of expression a = 9. The a in this expression is
functionalized into

fa(a,c)
and a’s rep declaration is functionalized into
(Va,c v fra(a,c) =c*)

Thus, the expression a = 9 is shorthand for f*a(a,c) = 9, which, using the function-
alized representation of a, simplifies to ¢ = 9. Hence, a guarded command ¢ := 3
will establish a = 9, and so will ¢:= —3.

Notice the occurrence of the symbol a as a parameter in the instantiation of fxa.
This a is called the residue of the specification variable a. The inclusion of residues
is important for soundness; they must not be left out, as I show in Section 11.3.

Definition

Functionalize distributes over all connectives. I show its effect on atomic formulas,
quantifiers, and substitution functions.

Functionalize has no effect on constants or program variables. Hence, for any con-
stant ¢ and (possibly initial-value) program variable v, we have the following rules.

Functionalize(c, E) =
c

114

Functionalize(v, E) =
v

For specification variables a, Functionalize is more interesting.

Functionalize(a, E) =
f*a(Resolve(a, E))

Functionalize(ag, E) =
f*a(Resolve(ag, E))

The order of the arguments in f*xa’s argument list is a function of E. That is, if
specification variable a is functionalized more than once with respect to the same
environment, the order of the arguments of function fxa remains the same. For
a different environment, however, the order may be different, and the number of
arguments may also differ since different environments provide different visibility of
dependencies. In the next chapter, I consider the functionalization with respect to two
environments, one of which is a subset of the other. I then assume that the common
dependencies are listed first, and are listed in the same order for both environments.
Now for quantifiers.

Functionalize((Qw | R> T),E) =
(Q Resolve(w, E) | Functionalize(R, E) > Functionalize(T,E))

Finally, for the substitution function,

Functionalize(Q[x := y],E) =
Functionalize(Q, E)[Resolve(x, E) := Resolve(y, E)] ,

where the first of the two occurrences of Resolve takes a list of variables x and produces
x in which each variable is replaced by its list of dependencies, and similarly for Resolve
of the list of expressions y. Thus, for example, given

specvara,b ; varc,d,e ; dependsaonc,d ; dependsbond,e
in E, Functionalize(Q[ap, by := a,b], E) simplifies to
Functionalize(Q)|ap, co, do, bo, do, €0 := a,¢,d, b, d, e]

Note that this expression contains two occurrences of dy := d. Instead of complicating
the definition to avoid this, I simply take its meaning to be

Functionalize(Q)[ag, co, bo, do, €0 := a,c, b, d,] ,

that is, duplicate substitutions are ignored. Note that, provided the original substi-
tution contains no duplicate symbols on the left-hand side, the functionalized substi-
tution will contain no conflicting substitutions (by a conflicting substitution, I mean,
e.g., x,x:=y,z, where y and z differ).

Functionalize and substitutions

Recall from the meaning of units and imports, that if a unit A imports another unit
B, then A may reference identifiers declared in B. Conversely, if A does not import
B, then A cannot reference any identifiers declared in B. I use this fact implicitly.

In a similar way, I implicitly use the fact that the representation of a specification
variable a refers only to those variables on which a depends. It is this fact that
justifies the correctness of the definition of Functionalize: Since a specification variable
a is replaced by an expression that explicitly shows all visible variables on which a
depends, substitution in functionalized expressions works properly.

To illustrate my point, let me offer an example. Consider the expression a =
9 appearing in the example earlier in this section. The functionalization of that
expression is fa(a,c) = 9. Applying the substitution ¢ := 3 (i.e., calculating the
weakest precondition of ¢ := 3 with respect to postcondition f*a(a,c) = 9), we then
get fxa(a,3) = 9. Subsequently applying the representation of a, we get 3% = 9,
which simplifies to true.

Now consider what happens if, hypothetically, the representation of a also men-
tioned a variable d, e.g.,

repaisa=c’ +d ,
where a is not declared to depend on d. Then, the functionalization of a = 9 would
still be fxa(a,c) = 9. Thus, a substitution d :=d+1 has no effect on this expression,

since d does not occur in it. However, the update of d does have an effect on the value
of a, so, here, substitution in the functionalized expression does not work properly.

In short, the restriction that a rep clause for a variable a can only refer to those
variables on which a depends, justifies why performing substitutions in functionalized
expressions 1s correct.

Leibniz

Note that for any environment E that contains a representation of a specification
variable a,

[Functionalize(ay = a,E) < Resolve(ay = a, E)] : (11.5)

That is, if all variables on which a depends are unchanged, then the value of a
functionalized is unchanged, too. Applied to the example above, this line reads

fra(ag, co) = fra(a,c) < ag=alc=c

This phenomenon is known as Leibniz’s Rule.

116

11.1.3 RepPreds

RepPreds of an environment E is the conjunction of “axioms” formed from the rep
declarations in E. For each

repais P
occurring in E, the corresponding axiom is
(Yw > Functionalize(P,E)) ,

where w = Resolve(a, E) .
We can rewrite this expression as follows.

(V Resolve(a, E) > Functionalize(P,E))
= { Functionalize over quantification }
Functionalize((Va > P), E)

Let the first argument to Functionalize in the last line be denoted by RepAxiom(a,E),
and let RepAxioms(E) be the conjunction of RepAxiom(a,E) for each a for which a rep
is declared in E. Since Functionalize distributes over conjunction, we thus have

RepPreds(E) =
Functionalize(RepAxioms(E), E)

11.1.4 GetSpec

Given a procedure id and an environment E, GetSpec(id,E) denotes the specification
of id, desugared according to E.

GetSpec(id, E) =
w : [Pre, Post]|
where
(modifies frame requires P ensures Q) = Lookup(id, E) A
w = Resolve(frame, E) N
Pre = Functionalize(P, E) A
Post = Functionalize(Q A BenSideEffects(w, E), E)

For a procedure id, Lookup(id, E) returns the specification of id as declared in E.

BenSideEffects is the conjunct added to the postcondition when desugaring a speci-
fication. This ensures that the procedure’s effect on specification variables not listed
in the resolved frame can be described as benevolent side effects (see Section 10.2.2),
meaning their values do not change.

Before giving the exact definition of BenSideEffects, let me illustrate the idea with
an example. Consider the declarations

specvara,b ; varc ; dependsaonc ; dependsbonc

117

and the procedure specification
spec p is modifies 2 requires true ensures 1 = 9

GetSpec of p in this environment desugars the specification of p into
a, ¢ : [true, Functionalize(a = 9 A\ by = b, E)) ,

which simplifies to
a,c :[true, fxa(a,c) =9 A fxb(bg,co) = fxb(D,c)]

Here, a has been replaced by its resolve set a,c, and the pre- and postconditions
have been functionalized. Moreover, the postcondition has an extra conjunct which,
in effect, states that the procedure may only modify ¢ in such a way as to preserve
the value of b, that is, preserve the value of f*b(b,c).

Now for the definition of BenSideEffects .

BenSideEffects(w, E) =
b() = b
where

b = SpecVarProjection(BenSideSet(w, E))

In words, BenSideEffects states that b is unchanged, where b denotes the list of variables
prescribed by BenSideSet. In the following, v ranges over variables.

BenSideSet(w, E) =
{vivEeE~wr v}

Stated differently, if V is the set of variables in E, then BenSideSet(w,E) is simply
Vsw.

Remark 11.4. The set BenSideSet can be quite large. Its size can be
reduced by using (11.9). Then, BenSideSet(w,E) can be simply those vari-
ables whose downward closure overlaps with w. For an already resolved
list w, the definition is then written

BenSideSet(w, E) =
{vlveE~w AN wnNr#{}v v}
where

v = Resolve(v, E)

Finally, SpecVarProjection of a set s is the set of specification variables in s.

SpecVarProjection(s) =
{al a€sAaisa specification variable > a }

Note that SpecVarProjection, being a projection, is monotonic in its argument, i.e., for
any sets of variables s and s,

s Cs' = SpecVarProjection(s) C SpecVarProjection(s')

118

11.1.5 WEAKEST LIBERAL PRECONDITION

Commands are modeled by their weakest liberal preconditions. The variables men-
tioned in program statements are all program variables, so their interpretation does
not depend on the environment. However, procedure calls are defined in terms of
their specifications, which may refer to specification variables. Therefore, the inter-
pretation of procedure calls is affected by the environment.

For any command gc and predicate Q written in an environment E, wlp(gc, Q, E)
gives the weakest liberal precondition of the command interpreted in E.

wlp(ge, Q, E) =
wlp.Env(gc, E).Q

where the second occurrence of wlp denotes the weakest liberal precondition from
Chapter 1 but dropping the exceptional postcondition (i.e., implicitly letting it be
false; cf. Section 6.2).

Env(gc, E) is the interpretation of a command gc in an environment E. Env(gc, E)
is defined as gc in which all occurrences of procedure calls callp are replaced by the
specification statement w :[P, Q], where w : [P, Q] = GetSpec(p, E) .

From the definition of wlp for each statement, we can show that wip is positively
finitely conjunctive (in its second argument), i.e., for any predicates P and Q and
environment E,

wip(ge,P N Q,E) = wip(ge, P, E) A wip(ge, Q, E) . (11.6)

(wlp is actually universally conjunctive in general (see also Remark 6.0), but we only
need conjunctivity for nonempty finite bags of predicates.) Note that conjunctivity
implies monotonicity [21].

11.1.6 Target

The set of targets of a command is the set of all variables that, according to a naive
syntactic inspection of the command, are potentially updated by an execution of the
command.

In Target(gc,E) , gc is a guarded command and E is an environment. It equals the
resolve set of RawTarget(gc,E) .

Target(gc,E) =
Resolve(RawTurget(gc, E), E)

On account of (11.3), we thus have
RawTarget(gc, E) C Target(gc, E) . (11.7)

RawTarget 1s defined inductively over the syntax of the command. Only two com-
mands update variables: the assignment statement and the procedure call.

119

RawTarget is the unfunctionalized set of variables that are possibly updated by a
command.

RawTarget(v := e,E) =

{v}

RawTarget(call p, E) =
fr
where
(modifies fr requires P ensures Q) = Lookup(p, E)

I also show the definition of RawTarget for a block statement.

RawTurget([x ® s ||, E) =
RawTarget(s, E) ~ {x}

For all other primitive statements, RawTarget equals the empty set. RawTarget of other
statement compositions equals the union of RawTarget for the constituent statements.

Note that since RawTarget does not perform functionalization (the environment is
used only to retrieve the raw specification of procedures), RawTarget(gc,E) is the same
for all environments E in which gc can be written.

11.1.7 Refine
Finally, I get to the definition of Refine.

Refine(implid is gc,E) =
Rep = (w :[Pre, Post] T impl)
where
w : [Pre, Post] = GetSpec(id, E) A
impl = Env(gc,E) A
Rep = RepPreds(E)

Remember from (1.18) that s C ¢ (here for wip) is defined as
(YR v [wlp.s.R = wip.t.R]) ,

where R ranges over all predicates. This formula may look a bit intimidating, since
it involves a quantification over all predicates. Using a result from the next section,
I now transform this expression into an equivalent one. This alternative formulation
may be preferable to work with in certain circumstances, e.g., in automated theorem
proving. It is also the formulation I use in the proof in Chapter 12.

First, note that Rep has no free variables, i.e., it is a boolean scalar. We calculate,

Rep = (w:[Pre, Post] C impl)
{ (1.18): def.of C }

120

Rep = (VR o> [wlp.(w:[Pre, Post]).R = wlp.impl.R])

= { (1.16): wlp of specification statement, where v, denotes the
initial-value variables in Post }

Rp = (VR [Pre A (Yw]l Post > R)[vp:=v] = wip.impl.R])
= { = over VY, since Rep is a boolean scalar }

(VRo> Rep = [Pre A (Yw | Post > R)[vg:=v] = wip.impl.R])
= { = over [], since Rep is a boolean scalar }

(VR> [Rep = (Pre A (VYw | Post > R)vg:=v] = wip.impl.R)])
= { pred. cale. }

(VR [Rep A Pre A (Yw | Post > R)[vg:=v] = wip.impl.R])
= { (1.16): wlp of specification statement }

(VR > [wlp.(w:[Rep A Pre, Post]).R = wlp.impl.R])
= { (1.18): def.of T }

w :[Rep A Pre, Post] C impl

Define t and m by
t = Target(impl,E) AN m=t~w ,

and let z denote the list of all variables. m is the list of variables that, from a
syntactic inspection of gc, are possible targets of gc, but which, according to the
procedure specification, are not allowed to be modified. We then have,

w :[Rep A Pre, Post] T impl
= { (11.9), since w and m are disjoint }
w,m :[Rep A Pre, Post N\ my = m] C impl
= { w and m partition ¢t }
t:[Rep A Pre, Post A mg = m) C impl
= { t is the set of targets of impl, i.e., t is a conservative
estimate of the variables that are possibly modified by impl }
z:[Rep A Pre, Post A my = m] C impl

Let vy denote a list of initial-value variables, such that v, is a superset of the initial-
value variables in Post A my = m. Then, from the above and (11.10), we have

Refine(implidisgc,E) = [Rep A Pre A vy = v = wip.impl.(Post A my = m)] .(11.8)

In the above calculation, I used the fact that, for any disjoint lists of variables w
and m, and predicates P and Q,

w:P, Q] = w,m:[P, QA my=m] . (11.9)

I end this section by discharging that proof obligation.
Recall that the weakest (liberal) precondition of a specification w : [P, Q] with
respect to a postcondition R is

PA(Yw!| Q> R)vy:= 1] ,

121

where v, is the list of initial-value variables that occur in Q. Since neither w nor
R contain initial-value variables —initial-value variables can only be written in the
postcondition of specifications—, this expression equals

PA(Ywl| Q> R)z:=7] ,

where z is any superset of v (¢f. Section 1.7).
Let z denote any superset of v Um (which, of course, is also a superset of v).
Then, we calculate,

wlp.(w,m : [P, Q A my =m]).R

= { (1.16): wlp of specification, using z instead of v }
PA (Vwml QA my=mv R)z =2

= { one-point rule, since m and m, are disjoint }
PA(Ywl Q[m:=mg) v Rlm:=my))|z := 7]

= { substitution distributes over V, since m and w are disjoint }
PA(Ywl Qv R)m:=mpllz:= 2]

= { substitution, since m C z and thus m, C zy, and since

m and zp are disjoint }

PA(Ywl Qv R)m:=m]z:= 7]

= { [m:=m] is the identity function }
PA{(Ywl Qv R)z:=7]

= { (1.16): wlp of specification, using z instead of v }
wlp.(w : [P, Q]).R

11.2 Proving refinements
In this section, I give a proof of
(z :[Pre, Post] C S) = [Pre A vy = v = wip.S.Post] , (11.10)

where z denotes the list of all variables and v, is a list of initial-value variables such
that v, is a superset of the set of initial-value variables in Post. This property allows
a refinement of this form to be proven using a simple implication.

I define a z-predicate to be a predicate over a state space whose variables are z.
For the S in (11.10), wip.S is thus a z-predicate transformer, i.e., a function from
one z-predicate to another. Hence, for any z-predicate R, wlp.S.R is a z-predicate.

We calculate,

z :[Pre, Post] £ S
= { (1.18): def. of C, and (1.16): wlp of specification statement }
(VR [Pre A (Vz| Post > R)[vg:=0v] = wlp.S.R])
= { substitution, since v, does not occur free in Pre or wlp.S.R }
(VR [(Pre A (¥z| Post > R) = wlp.S.R)[vg:=0]])
{ below }

Il

[(Pre = wip.S.Post)[vp :=]

{ substitution, since v, does not occur free in Pre }
[Pre = wip.S.Post[vg := v]]

{ one-point rule, since v, does not appear in

Pre = wip.S.Postlvg :=v] }

[Pre A vo=v = wlp.S.Post[vg := v]]

{ equality and substitution }
[Pre A vp=1v = wlp.S.Post]

The deferred step is proved by mutual implication. For one direction,

&=

=

(VR [(Pre A (Vz| Post > R) = wlp.S.R)[vg:=v]])
{ monotonicity, since Vz quantifies over all free variables of R,
and wip.S is a z-predicate transformer }
(VYR> [(Pre A (Vz] Post > R) = wip.S.Post)[vy:=v]])
{ monotonicity }
(VR > [(Pre = wlp.S.Post)[vy :=1]])
{ range in nonempty }
[(Pre = wlp.S.Post)[vy := v]] ,

and the other,

(VR [(Pre A (V2| Post > R) = wlp.S.R)[vy:=0]])
{ [] over V }

[(VRo (Pre A (Vz| Post > R) = wilp.S.R)[vy:= 0])]
{ instantiate with R:= Post }

[(Pre A (¥z| Post > Post) = wlp.S.Post)[vy := v]]
{ pred. calec. }

[(Pre = wlip.S.Post)[vy :=]

Remark 11.5. A proof of (11.10) appears in [67]. However, that proof
contains a step whose hint is rather vague. In my notation, using symbols
similar to those above, and with wlp instead of wp (but remember that wp
and wip coincide for the specification statement—see Sections 1.7 and 6.2),
that step is

Pre = wlp.S.Post
= { by distributivity of = over weakest preconditions }
Pre A (Vz > Post = R) = wlp.S.R ,

where R is an arbitrary predicate. The step is correct, but the hint seems
to suggest that a step like

Pre = wlp.S.Post

= { by distributivity of = over weakest preconditions }
Pre A (Post = R) = wlp.S.R)

123

would also be correct, which it is not! wlp.S is a monotonic function from
z-predicates to z-predicates. This monotonicity is used in the proof step.
However, in order to apply monotonicity, the two predicates involved (Post
and R above) must be ordered by implication at every value of z. This
subtle point is not visible from the hint in [67].

In my first proof of the above theorem, which I constructed with Paul
Sivilotti not knowing of the proof in [67], we fell into the trap of writing
a vague hint like the one in [67]. Only later did I realize the subtlety
described here.

As another remark on this step, (Vz | Post > R) can be written with ev-
erywhere brackets as [Post = R|, where the everywhere brackets quantify
over all values of z. Then the hint in my proof can be stated as

[Post = R} = [wlp.S.Post = wip.S.R] :

which clearly expresses the property being used. However, there is another
set of everywhere brackets in the proof, and those everywhere brackets
quantify over all values of z and z,. To avoid confusion between the two
different pairs of everywhere brackets, I kept the explicit quantification
over z.

11.3 The importance of residues

I conclude this chapter by giving an example that shows the importance of the pres-
ence of residues. Consider the following unit.

unit A is
specvara ; varc ; dependsaonc;
spec pc is modifies ¢ requires true ensures true |
spec pa is modifies a requires frie ensures ¢y = ¢ ;
end

Procedure pc is specified to play havoc with ¢, but with no other variable and, in

particular, without affecting the value of a. Procedure pa plays havoc with a (i.e., it

plays havoc with the resolve set of a), but ensures that the value of ¢ is unchanged.
Contemplate the following (incorrect) argument.

pe is specified to only modify ¢, whereas pa can modify a. In the scope of
A, the downward closure of a contains only one concrete variable, viz., c.
Thus, both pc and pa are constrained to modifying only c¢. Furthermore,
pc can change ¢ to any value, whereas pa must leave its value unchanged.
Hence, pa refines pc.

124

As I show in this section, pa does not refine pc, so the above argument is incorrect. It
is incorrect because the downward closure of 4 may contain concrete variables other
than c—concrete variables that are not visible in A. Residues are what catch the
erroneous reasoning demonstrated in the above argument. Let’s take a look at how
this works.

Consider another unit.

unit B import A is
vard ; dependsaond ;
implpaisd :=d+1;

co.d:=0; callpc; assertd =0 ... (11.11)
end

This unit introduces another of a’s dependencies, d. The unit defines the implemen-
tation of pa, which I will show to be a correct refinement of its specification. In the
unit, I show another little code segment, (11.11) T will demonstrate that this code
segment does not go wrong.

First, the refinement of pa.

Refine(implpaisd :=d + 1, B)
= { (11.8): Refine }
co=c = wip.(d:=d+1).(co = c)]
= { (1.0): wip of := }
[co=c = =]
= { pred. cale. }
true

This shows that pa is indeed implemented correctly. Note that, as suggested immedi-
ately following the incorrect argument above, this shows that pa really does have an
effect on a concrete variable other than ¢. (Thus far, we have not used the presence
of residues.)

Let’s prove that the code segment (11.11) in unit B does not go wrong.

wlp(d := 0 ; callpc ; assert d = 0, true, B)

= { (L.3,6.10): wlp of ; and assert }
wip.(d := 0).(wlp.Env(call pc, B).(d = 0))

= { Env, using Remark 11.4 }
wlp.(d := 0).(wlp.(c : [true, true]).(d = 0))

= { (1.14): wlp of specification statement }
wip.(d:=0).(Vev d=10)

= { pred. calc. }
wip.(d := 0).(d = 0)

= { (1.0): wilp of :=, and pred. cale. }
trie

(This calculation, too, is independent of the presence of residues.) We conclude that
pa is correctly implemented and that (11.11) does not go wrong regardless of whether
or not residues are included.

Now, let’s look at one more unit. This unit provides the implementation of pc.

unit C import A is
impl pc is call pa
end

Does this implementation of pc meet pc’s specification? It would if pa were a refine-
ment of pc. Let’s find out.

Refine(impl pc is call pa, C) (11.12)
= { (11.8): Refine }
lto=1a A co=c = wlp.Env(call pa, C).(f*a(ay, co) = fxa(a,c))]
= { Emo }
[a0=1a A co=c = wip.(a,c:[true, co = c]).(f*a(ag, co) = f*a(a,c))]
= { (11.9), with w,m:=a,c }
lo=1a N co=c = wip.(a:][true, true]).(fxa(ay, co) = f*a(a,c))]
= { (1.14): wip of specification statement }
[io=a N co=c = (Var fralag,co) = f*a(a,c))]

Since nothing is known about function fxa, we say it is uninterpreted; thus, we
understand fxa as being universally quantified over all functions. By instantiating
f*a with 4, i.e., fxa(x,y) = x+y for all x and y, the right-hand side of = reads

(Yav ap+cpy=a+c))

which simplifies to false. We conclude that, with residues, we are not able to establish
that unit C provides a correct implementation of pc. This is good, because by
tracing the procedure call in that implementation, we find that pc has the effect of
incrementing d, even though its specification constrains it to modify only ¢. Hence,
the code segment (11.11) will go wrong, and we are pleased that we were not able to
conclude otherwise.

Let’s then compare what happens if residues are not used. Not using residues
means that the downward closure of a does not contain the residue a. The calculation
embarked on at (11.12) then arrives at the expression

[co = ¢ = f*a(co) = fxa(c)] ,

which simplifies to true on account of Leibniz. So, without residues, a verification
process would incorrectly verify the implementation of pc to be correct.

In modular verification, one unit can never be certain that it has information
about all dependencies. Therefore, the downward closure of a variable includes a
residue that represents all dependencies that are not in scope.

126

Ounly if the representation of an abstract variable is in scope is there a way to
eliminate residues from expressions. For example, the representation

repaisa =c+d
is functionalized (see Section 11.1.3) into the axiom
(Va,c,d > fxa(a,c,d) =c+d)

Note that, despite the presence of a’s rep clause, 4 may have dependencies that are
not in scope—nothing prevents another unit from declaring other (unused) depen-
dencies. Since such other dependencies do not affect the value of abstract variable a,
it is sound to use the above axiom.

In conclusion, I showed in this section that without residues, modular verification
would not be sound. In the next chapter, I show that with residues, and with the
visibility and authenticity requirements, modular verification is sound.

127

@galafen

12

Soundness of modular verification

In this chapter, I give a formal proof of the soundness of modular verification with
respect to my depends solution. Using the notation and definitions from the previous
chapter, I define the visibility and authenticity requirements formally. Then, I state
and prove the soundness theorem. I close the chapter with some remarks on the proof.

12.0 Requirements

An environment Prog satisfies the visibility requirement exactly when for every envi-
ronment E that is a subset of Prog, and for every two variables a and ¢,

(FE' | E' C Prog > Depends(a,c,E'Y) Na € EAc € E = Depends(a,c,E)

In words, the visibility requirement states that if a depends on ¢, and both 4 and ¢
are visible in E, then the dependency of a on ¢ is visible in E.

An environment Prog satisfies the authenticity requirement exactly when for every
environment E that is a subset of Prog, and for every two variables a and c,

(AE' | E' C Prog > Depends(a,c,E)) ANc€E = a€E

That is, a variable a that depends on a variable ¢ is visible anywhere ¢ is.

12.1 Soundness

I now state the soundness theorem.

Refine(impl id is gc, E) = Refine(impl id is gc, Prog)
&=
(implidisgc) € EA E C Prog A
E is an environment A
Prog is an environment that satisfies the
visibility and authenticity requirements

128

The theorem states that implidis gc is deemed a correct implementation (of procedure
id with respect to its specification) in the environment E only if it would be deemed
a correct implementation in the entire program Prog. That is, the implementation
of id is verified to be correct in light of the information contained in E, a subset of
Prog , only if it would be verified to be correct in light of all information in Prog.

This theorem is what allows a verification process to make use of only the infor-
mation in the scope of a unit U, i.e., E := ImportClosure(U) , when verifying that an
implementation in U refines its specification.

Stated differently, to show that a procedure implementation meets its specification,
one needs to establish

Refine(impl id is gc, Prog) : (12.0)

Since this involves the entire program Prog, and the entire program may not be
available at the time the procedure is to be verified, this proof obligation seems
difficult to meet. The soundness theorem states that Refine is monotonic with respect
to its second argument, the environment. Hence, to show (12.0), it suffices to show

Refine(impl id is gc, E) (12.1)

for any subset E of Prog. E can then be picked as the import closure of the unit that
contains the procedure implementation, and the proof of (12.1) can be carried out as
a modular verification.

In the next few sections, I give the proof of this theorem.

12.2 Proof outline

Let id,gc, E, Prog satisfy the antecedent of the theorem.

(implidis gc) € EA E C Prog A

E is an environment A

Prog is an environment that satisfies the
visibility and authenticity requirements

We need to prove
Refine(impl id is gc, E) => Refine(impl id is gc, Prog)
I introduce symbols frame, pre, post, b, ', m,m’, rep, reprep , satisfying (cf. Section 11.1)

(modifies frame requires pre ensures post) = Lookup(id, E)

b = SpecVarProjection(BenSideSet(Resolve(frame, E), E))

V' = SpecVarProjection(BenSideSet(Resolve(frame, Prog), Prog))
m = Target(gc, E) ~ Resolve(frame, E)

m’ = Target(gc, Prog) ~ Resolve(frame, Prog)

129

rep = RepAxioms(E)
reprep = RepAxioms(Prog ~ E)

We thus have

RepPreds(E) = Functionalize(rep, E)
RepPreds(Prog) = Functionalize(rep, Prog) A Functionalize(reprep, Prog)

Let rp be a shorthand for rep A pre.
For brevity, I will use R synonymously with Resolve and define F and F' as follows.

F(Q) = Functionalize(Q, E)
F(Q) = Functionalize(Q, Prog)

In the sequel, I will implicitly use the fact that F and F' distribute over logical
connectives.

Let z denote the list of all variables in Prog. In terms of the above shorthands,
we now have (cf. 11.8),

Refine(impl id is g¢, E) = (12.2)
[F(rep) A F(pre) AN zy = z =
wlp(ge, F(post A by = b) A my = m, E)]
Refine(impl id is gc, Prog) = (12.3)
[F'(rep) N F'(reprep) A F'(pre) AN zp = z =
wip(ge, F'(post A by =1V") A mly =m', Prog)]

I will make use of the property
bCv , (12.4)

which I will prove later. In light of this, I let bb denote b ~ b, and partition bb into
bx and by. The exact nature of this partition won’t be revealed until Section 12.3.1.
We calculate,

Refine(impl id is gc, Prog)
= (23))

[F'(rep) N F(reprep) A F'(pre) A zp =z =

wlp(ge, F'(post N by =1) A my =m', Prog)]

= { strengthen, m, and distribute F'}

[F(rp) N zo=12 = wip(ge, Fpost A Uy =1V) A my=m', Prog)]
= { partition ¥ into b,bx,by (see (12.4) above) }

[F(rp) N zo =z = wip(ge, Fpost A by =b) A F(bxyg = bx) A

F'(byo = by) A my = m', Prog)]

= { (11.6): wlp is conjunctive, and pred. calc. }
[F(rp) N z0=2 = wip(ge,F'(post A by =1b) A F(bxg=bx) A mly=m', Prog)] A
[F(rp) A zo =2z = wip(gc, F'(byo = by), Prog)]

130

The latter of these conjuncts follows from
[z0 = z = wip(gc, F(byo = by), Prog)]) (12.5)

which I will prove later.

For the former, I will use a function X. The idea is that X syntactically translates
from E-expressions to Prog-expressions. Applied to a predicate, X provides a way
to re-functionalize the predicate with respect to a larger environment (see (12.6));
applied to a list of variables (¢f. (12.11)), X provides a way to re-resolve that list.
For any predicate Q over the variables in E, and any guarded command S in E, X
enjoys the following properties.

F(Q) = X(F(Q)) (126)
z = X(z) (12.7)
X distributes over logical connectives (12.8)
X(Q)] < [(12.9)
Resolve(bx, Prog) C X(m) (12.10)
m' C X(m) (12.11)

)

wip(S, X(Q), Prog) < X(wip(S,Q,E)) (12.12

I postpone the precise definition of X and the proofs that show that X does have
these properties. ,

Note that X is monotonic: For any predicates Q0 and QI over the variables of
E,

[X(Q0) = x(Q1)]
{ (12.8) }
[x(Q0 = Q1)]
“= { (12.9) }
[Q0 = Q1]

We calculate,

F(post A by =b) A F(bxg=Dbx) N mh=m'

< { (1211 }
F(post A by =1b) A F(bxo=1bx) N X(my = m)

= { Leibniz (11.5): F'(bxy = bx) < R(bxy = bx,Prog) }
F'(post A by =1b) A R(bxg = bx, Prog) A X(my = m)

= { (12.10) }

F(post A by =b) A X(mg = m)
Now, we have,

[F(rp) A 2o =2 = wip(ge, F'(post N by =1b) A F(bxg=bx) A mly=m', Prog)]
= { above calculation, and wip is monotonic }

[F(rp) AN zo =2z = wip(ge, Fpost A by =b) A X(my = m), Prog)]
= { (12.6), and (12.7), and (12.8) }

131

[(X(F(rp) A 20 =z) = wip(ge, X(F(post A\ by =1b) A mo=m), Prog)]

= { (212) }
[X(F(rp) A z0=12) = X(wlp(gc, F(post A bo=1b) A my = m, E))]
& { X is monotonic }

[F(rp) N zo =2z = wip(ge, F(post A by =1b) N\ my=m, E)]

- { (122))

Refine(impl id is gc, E)

That was the soundness proof! Well, only an outline thereof—I still need to
produce the proofs of the properties (12.4)—(12.12) that were used in this proof outline.
I will do these in order.

12.3 All side effects are benevolent

In this section, I discharge proof obligations (12.4) and (12.5).

12.3.0 bCV
I now prove (12.4), that is, b C V'.

bCv
= { band vV }
SpecVarProjection(BenSideSet(R(frane, E), E))
C SpecVarProjection(BenSideSet(R(frame, Prog), Prog))

= { SpecVarProjection is monotonic }
BenSideSet(R(frame, E), E) C BenSideSet(R(frame, Prog), Prog)
&= { ECPrg }
BenSideSet(R(frame, E), E) is monotonic is E (12.13)

I prove this monotonicity. Let E and E' be two environments such that E C F',
and let w be any list of variables visible in E. Letting v range over variables, we
calculate,

BenSideSet(R(w, E), E) C BenSideSet(R(w, E'), E')
{ BenSideSet }
{vlv€EE~NRwWE)> v} C{vlveEE~NRuwE)> v}
= { sets }
(VolveEANvgRwE)> vEE A vdRwE))
= { ECE }
(Volv€eEA vg R(w,E) > v ¢ R(w,E))
= { trading }
(Volv€E AN ve€R(wE) > véER(w,E))

For any variable v, we calculate,

132

v € E A v € Resolve(w, E')
= { (11.2): property of Resolve }
v€E A (3ala€ wv> Depends(a,v,E'))
= { visibility requirement,
since a is visiblein E (s € w CE),
and v is visiblein E (v € E) }
v€E A (Jala€ wv Depends(a,v,E))
= { (11.2): property of Resolve }
v € Resolve(w, E) ,

which concludes the proof.

12.3.1 bx AND by

In this section, I define bx and by. As advertised before, bx and by partition bb.
From the definition of bx, I calculate the necessary ingredient in the upcoming proof
of (12.10). From the definition of by, I prove (12.5).

For any specification variable d, we calculate,

debb
= { b, ~ }
deb ANbgl

= { b, v }
d € Prog ~ R(frame,Prog) A d & E ~ R(frame, E)
= { ~,twice }
d & R(framne, Prog) A (d ¢ E V d € R(frame,E))
= { (11.1): Resolve is monotonic, since E C Prog }
d & R(frame,Prog) A d & E . (12.14)

Treatment of bx

I now define bx, a subset of bb: For every d in bb, d € bx exactly when there is a
procedure call callp in gc and a g in the frame of the specification of p such that

Depends(g, d, Prog)
Thus,

true
= { g is in frame of specification of p }
¢ € RawTarget(call p, E)

= { «callp is a substatement of gc }
g € RawTarget(gc, E)
= { (11.7): RawTarget(gc,E) C Target(gc,E) }

g € Target(gc, E)

133

We calculate,

Depends(g, d, Prog)

- { (12.14))

Depends(g,d, Prog) A d & R(frame, Prog)

= { (11.4): Depends(g,d,Prog) N g € R(frame, Prog) = d € R(frame, Prog) }
g & R(frame, Prog)
= { (11.1): Resolve is monotonic, since E C Prog }

g & R(frame, E)

From the last two calculations, we conclude,
g € Target(gc, E) ~ R(frame, E) ,
i.e., § € m. From this and from (12.14), every element d of bx enjoys the property

d¢EA(3g| g€ mv Depends(g,d, Prog)) . (12.15)

Treatment of by

I define by as b ~ bx. Hence, bx and by do indeed partition bb. For every d in by, no
procedure call in gc has a frame that mentions a g such that Depends(g,d, Prog) . Thus,
no procedure call in gc modifies any variable which depends on d; stated differently,
d does not appear in the downward closure of the frame of the specification of any
procedure call in gc. So, no procedure call in gc has any effect on the value of d.

Let y be a variable updated by an assignment statement in gc. y is visible in E,
because gc is contained in E. We calculate,

y€eE
= { (12.14) }
YEEAdGZE
= { authenticity requirement }

—Depends(d, y, Prog)

Since the only statements that may have an effect on the state are assignment state-
ments and procedure calls, we conclude that no statement in gc has an effect on the
value of d. This is so for every d in by, and thus,

wlp(ge, F(byo =by), Prog) = F(byo=tby)
the right-hand side of which, by Leibniz, follows from
R(byo = by, Prog)
Since R(by,Prog) is a subset of z, the set of all variables, (12.5) follows.

134

124 X
I define function X, which implicitly is a function of E and Prog.

X(Q) =
Q in which every occurrence (not just free occurrences) of x is
replaced by y
where
x 1s the list of specification variables in E and their initial-value
forms, and
for each a in x, the corresponding term in y is:
a and the symbols in Resolve(a, Prog) ~ Resolve(a, E)

This substitution is a rather curious one in that one identifier may be replaced by a
list of identifiers. This causes no problem textually, but one may question the meaning
of the resulting expression. If Q is a functionalized expression, then all occurrences
in Q of the identifiers in list x appear as residues (I assume that identifiers are not
renamed from the way they were produced as per Chapter 11). This means that they
appear as parameters to fx functions or as dummies of quantifications. Replacing
an identifier of the first kind with a list of identifiers thus alters the arity of the
function. It is important that every occurrence of x, not just free occurrences, be
replaced, so that the arity of each fx function is changed consistently; also replacing
the identifiers of the second kind takes care of making y bound whenever x was.

Let me illustrate with an example. Let E be the environment

specvara ;, varc ; dependsaonc ,
and Prog the environment E extended with

vard ; dependsaond

Then,

X(Functionalize({(Vala < 00> a=0),E))
{ Functionalize with respect to E }
X((Ya,c | fxa(a,c) <0 v fra(a,c) =0))
= { x }
((Va,c | fxa(a,c) < 0> fra(a,c) = 0))[a:= (a,d)]
{ substitution }
(Va,c,d | fxa(a,c,d) < 0> fxa(a,c,d) =0) : (12.16)

I assume the order of the symbols returned by Resolve ensures that Resolve(a,E) is
a prefix of Resolve(a,Prog). I also assume operator ™ to preserve ordering. If the
insertion of new symbols is then always done appropriately at the end of lists (as the
example shows), then, for any list of variables w visible in E, we have

Resolve(w, Prog) = X(Resolve(w, E)) . (12.17)

135

Consequently, we have, for any Q built from symbols visible in E,
Functionalize(Q, Prog) = X(Functionalize(Q, E))

This shows (12.6). For example, note that (12.16) equals
Functionalize((Val a <0 v a=0),Prog)

As another consequence of (12.17), we have, for any variable v and list of variables
w b

(Jalacwrv veR(a,Prg)~R(a,E)) = ve X(w) . (12.18)

For any expression e in which every variable is a program variable, e = X(e). X
does not introduce identifiers not found in Prog; hence, for the set z of all variables,
z = X(z), justifying (12.7). Note that X, like regular substitution, distributes over
logical connectives, justifying (12.8). For quantifications, we have

X(QuwlRe T)) = (QX(w) | X(R) » X(T)) . (12.19)
For the substitution function,

X(Qwo :=w]) = X(Q)[X(wo) := X(w)] , (12.20)

provided Q does not contain any occurrences of X(wg) ~ wy.

12.4.0 SUBSTITUTION THEOREM

A well-known rule in the predicate calculus, referred to as instantiation, is
7] = [Tls:==4]

where s denotes a list of program variables and t denotes a list of expressions. The
substitution function [s:=t] only replaces free occurrences of s. If we instead let it
replace bound occurrences, too, we will still find the implication shown above.

So what about the substitution function X? We could apply the above observa-
tions to X, if it weren’t for the fact that X may replace one symbol with a list of
other symbols. Hence, the following argument.

Focusing back on (12.9) and the definition of X, note that no symbol in y ~ x
appears in Q. Moreover, since x is a list of residues, Q contains no information
about the values of the identifiers in x; the identifiers in x occur only as parameters
to fx functions or as bound variables in Q. Thus, the value of [Q] does not depend
on the exact values of x; the variables in x can be thought of as just place holders.
In the same way, y will just be place holders in [X(Q)], place holders appearing in
the same places in [X(Q)] that x does in [Q].

It thus follows that [X(Q)] is true if [Q] is, proving (12.9).

136

12.4.1 X AND m
In this section, I prove (12.10) and (12.11).

Treatment of Resolve(bx, Prog) C X(im)

I prove (12.10) from (12.15). We calculate, for any x,

x € Resolve(bx, Prog)
= { (11.2): property of Resolve }
(3d | d € bx > Depends(d, x, Prog))
= { (12.15): property of elements of bx }
(ddldebx A d¢E > Depends(d, x, Prog))
= { by authenticity requirement, Depends(d,x,Prog) A x €E = d€E }
(3d | d € bx > Depends(d,x,Prog) A x € E)
= { (12.15): property of elements of bx }
(3d,g1 d€bx A g€ m > Depends(g,d,Prog) A Depends(d,x,Prog) A x € E)
= { transitivity of Depends }
(g | g € mv> Depends(g,x,Prog) N x ¢ E)
= { (11.2): Depends(g,x,Prog) = x € Resolve(g, Prog) }
(dJglgemv x€R(g,Prog) N x € E)

= { Resolve(¢,E) CE }
(dglgemv x € R(g,Prog) ~R(g,E))
= { (12.18): property of X }
x € X(m)

Treatment of ' C X(im)

I let rt stand for RawTrget(gc,E); then, rt also equals RawTarget(gc, Prog) . Thus, m
and m' can be written as
m = R(rt, E) ~ R(frame, E)
m' = R(rt, Prog) ~ R(frame, Prog)
Since we have m € X(in) , consider any v € m’ ~ m; I will show v € X(m). We have

v € m
= { m and ~ }

v & R(frame, Prog) (12.21)
= { (11.1): Resolve is monotonic, since E C Prog }

v & R(frame, E) (12.22)

v m
= { mand v }
v & R(rt,E) V v € R(frame,E)
= { (12.22) }
v & R(rt, E) . (12.23)

137

I complete the proof with the following calculation.

veEm
= { m and ~ }
v € R(rt, Prog)
= { (11.2): property of Resolve }
(3al a€rtv> Depends(a,v, Prog))
= { (11.3): nt C R(rt,E) }
(Jala€&rtv a€R(rt,E) A Depends(a,v,Prog))
= { (12.24) below: Depends(a,v,Prog) = a ¢ R(frame, Prog) }
(Jala€rtv a€R(rt,E) A a¢ R(frame, Prog) A Depends(a, v, Prog))
= { (11.1): Resolve is monotonic }
(Jalaert> a€R(rt,E) A a¢ R(frame,E) A Depends(a, v, Prog))
= { m }

(Jalaert> a€m A Depends(a,v,Prog))

= { (12.25) below: a € rt A Depends(a,v, Prog) = v € R(a, Prog) ~ R(a,E) }
(Jav> a€m A v €R(a,Prog) ~ R(a,E))

= { (12.18): property of X }
v € X(m)

The deferred proof obligations are shown by

true
= { (11.4): closure property of Resolve }

Depends(a, v, Prog) A a € R{frame, Prog) = v € R(frame, Prog)
= { shunting }

Depends(a, v, Prog) => a & R(frame, Prog) V v € R(frame, Prog)
- { (12.21) }

Depends(a,v, Prog) = a ¢ R(frame, Prog) (12.24)

v € R(a, Prog) ~ R(a, E) (12.25)
= { ~ 3}
v € R(a,Prog) A v ¢ R(a,E)
= { (11.2): v € Resolve(a, Prog) = Depends(a,v, Prog) }
Depends(a, v, Prog) A v & R(a,E)
&= { (11.1): Resolve is monotonic }
Depends(a, v, Prog) A a € rt N v & R(rt,E)
= { (12.23) }

Depends(a,v, Prog) A a € rt

Remark 12.0. For the record, here is an example that shows
that equality between m' and X(m) does not hold. Let rt consist
of specification variables a,b, and let frame be b. Let these be the
only things visible in E. In Prog, let both a and b depend on c¢.

138

Then, Resolve(rt,E) ~ Resolve(frame,E) is a, and X(a) is a,c. However,
Resolve(rt, Prog) ~ Resolve(frame, Prog) is simply a.

12.4.2 X AND wlp

Coping with the last proof obligation, I will now show (12.12), that is,

wip(gc, X(Q), Prog) <= X(wip(gc, Q, E))

by induction over the structure of gc.
For skip,

wlp(skip, X(Q), Prog)
{ skip }
x(Q)
{ skip }

X(wlp(skip, Q, E)) ,

and for wrong,

wip(wrong, X(Q), Prog)

= { wrong
false

= { x }
X(false)

= { wrong }

X(wlp(wrong, Q, E))

For assignment,

wip(v := expr, X(Q), Prog)
= =)
X(Qp = ewr
= { substitution involving only program variables distributes
over X, since v := expr can be written in E }
X(Qlo = expr]
= =)
X(wip(v := expr, Q, E))

Next, for the hardest one, the procedure call. Let p denote a procedure declared
(in E) by

spec p is modifies fr requires Pr ensures Po

139

Let t,¢,u,u’,B,B' satisfy

t = Resolve(fr, E)

t' = Resolve(fr, Prog)

u = list of initial-value variables from F(Po)
u' = list of initial-value variables from F'(Po)
bs = BenSideEffects(t, E)

bs' = BenSideEffects(t', Prog)

Then, realize that + = X(t) (from (12.17)), v’ = X(u) (from (12.6)), and bs <« bs'
(from (12.13)).

wlp(call p, X(Q), Prog)
= { cllp }

F'(Pr) A (¥ Resolve(fr, Prog) | F'(bs' A Po) v X(Q) Mub := u/']
& { bs < b, and monotonicity }

F(Pr) A (Y Resolve(fr, Prog) | F'(bs A Po) & X(Q))[ub := 1]
= { (12.6), and ¢ }
X(F(Pr)) N (Y1 X(F(bs A Po)) o X(Q) Mub := /]
= { realizations about t and u
X(F(Pr)) A (YX(t) | X(F(bs A Po)) o X(Q))[X(u0) := X(u)]
= { (12.19): distribution of X over quantification }
X(F(Pr)) A X((Yt] F(bs A Po) > Q))[X(uo) := X(u)]
= { within the quantification, only F(bs A Po) can contain initial-value
variables, and
F(bs A Po) contains no reference to any variable in ' ~ u, and
(12.20): distribution of X over substitution }
X(F(Pr)) A X((Vt1 F(bs A Po) > Q)up:= u])
= { distribution of X over A ,and ¢t }
X(F(Pr) N (V Resolve(fr,E) | F(bs A Po) v Q)[up := 1))
= { cllp }
X(wip(callp, Q, E))

Now for sequential composition,

wlp(s; t, X(Q), Prog)
= { :

wlp(s, wip(t, X(Q), Prog), Prog)

= { induction hypothesis, and wip is monotonic }
wip(s, X(wip(t, Q, E)), Prog)
&= { induction hypothesis, with Q := wip(t,Q,E) }

X(wl;z(s, wlp(}t, Q,E),E)
 Xwip(s;t, O, E))

For choice,

140

wip(s O ¢, X(Q), Prog)

= { 0}
wip(s, X(Q), Prog) A wlp(t, X(Q), Prog)

= { induction hypothesis, twice }
X(wip(s,Q,E)) A X(wip(t,Q,E))

= { (12.8): X distributes over A }
X(wlp(s, Q,E) A wip(t,Q,E))

= {03}
X(wlp(s 0 t,Q,E))

For the guard statement,

wip(g — s, X(Q), Prog)
= { = }
g = wip(s, X(Q), Prog)
&= { induction hypothesis }
§ = X(wip(s,Q,E))
= { X distributes over logical connectives, and
g only mentions program variables }
X(g = wip(s,Q,E))
= { = }
X(wlp(g — 5,Q,E))

Finally, for block,

wip([y ® s], X(Q), Prog)

= { [e) }
(Vy > wip(s, X(Q), Prog))

&= { induction hypothesis }
(Vy o Xulp(s,0,)))

= { X distributes over universal quantification where dummy is
not name of specification variable }
X((Vy o wip(s,Q,E)))
= { [e1 }
X(wip([y » 5], Q,E))

It’s a wrap.

12.5 Epilogue

Now that I have proven the soundness theorem, let’s look back at the proof to see

what is used where.
Firstly, note that residues are used with every occurrence of X, and thus appear
everywhere in the proof. If instead of residues some extra requirements were used,

141

the proof that those requirements ensure soundness would require quite a different
proof.

Secondly, as foretold by Remark 9.2, the proof does not make use of the structure
of representations of specification variables. In particular, the choice of abstraction
functions vs. abstraction relations does not surface as being important to the proof.
Realize that the soundness proof just provides a bridge between a “one”-module proof
and an all-modules proof; hence, Remark 9.2 does not imply anything positive about
the effects of using abstraction relations, thus letting fx functions be nondeterminis-
tic, in a “one”-module proof.

Thirdly, the proof does not rely on whether or not dependencies are cyclic. It is
not clear, however, for what purpose cyclic dependencies are useful.

Remark 12.1. If imports are acyclic, then the visibility and authen-
ticity requirements dictate that all cycles among dependencies be placed
in one unit.

Finally, the visibility requirement plays a roéle in proving the monotonicity prop-
erty (12.13). This property is used in the proofs of b C ¥’ (12.4) and in the distribution
of X over wip for procedure calls (12.12).

The authenticity requirement comes into play in showing that program variables
updated by assignment statements in gc have only benevolent side effects, i.e., do not
alter the value of, any specification variable in ¥ ~ b. The authenticity requirement
is applied twice in the proof, once for each partition of ¥ ~ b, by and bx.

Notice that the visibility and authenticity requirements are used in separate places
in the proof. Hence, for the proof, it is preferable to have a division between visibility
and authenticity requirements, rather than making use of the convention presented
in Section 10.3.

143

@ga}afev

1

depends in perspective

In this chapter, I give a flavor of the successes and shortcomings of depends. I start by
showing how depends can be used to specify consumer objects. Then, I discuss some
problems for which depends is not the whole solution. I don’t solve these problems
here, but I conclude the chapter with some insights into the problems.

13.0 Specification of a consumer

In this section, I describe a difficult specification problem for which I then show a
solution in my formalism.

13.0.0 CONSUMERS

Consider the following unit, which provides a type of so-called consumer objects.

unit Constmer is
type T ;
spec Consume(s : seq|char] ; t:T)is
(* for each character in s, invoke t.consume *) ;
method t : T spec consime(ch : char) is

end

The idea is to call Consume with a character sequence and an object t of some subtype
of T. This invokes t.consume for each character of the given string. (In functional
programming, an operation like Consume is called a map (see, e.g., [6]).)

Another example of a consumer takes a reader, i.e., an input stream (cf. [9] and
Chapter 10), and passes character sequences read from the reader to t.consume in
arbitrary-size pieces.

The task is to write the specification of procedure Consume and method consume .
The problem is —and 1t is for this reason that I earlier referred to this problem
as being difficult— doing so without knowing what t.consume requires, modifies, or
ensures for all subtypes of T.

144

Remark 13.0. In his thesis, Jackson says for Aspect that “it is not clear
how to solve this problem” [41, Sec. 8.3], and leaves the problem without
a solution.

The specification must admit a provably correct implementation and must be flexible
enough to be useful for subtypes of T.

13.0.1 A SOLUTION

I present a solution to the problem. For simplicity, I let the postcondition of the
consume method be true. Other postconditions can be handled similarly to the way
I handle the precondition.

Remark 13.1. For the purposes of extended static checking (see
Section 0.0}, using a postcondition of true in cases like this is quite com-
mon. The precondition, and the fact that some invariant properties are
preserved, are more important.

I introduce two properties of consumers, valid and state.

spec varvalid : T~ — bool ;
spec varstate : T~ — any

The type any indicates that the particular value of state[t] is not relevant. Conse-
quently, no rep is given for state[t], but depends clauses are still used to declare the
concrete variables on which state[t] depends. This allows subtypes of T to declare the
variables that make up their states. These concrete variables can then be modified
when state is allowed to be modified. This important mechanism is not available in
classical data refinement [38].

I write a specification of the consume method in terms of the properties wvalid and
state .

method ¢ : T spec consume(ch : char) is
requires valid|t]
modifies state[t]

An invocation of consume requires that ¢ be valid. This essentially means that ¢
satisfies its object invariant (cf. [64] or type constraints in [57]). Unlike [64, 57],
I make it explicit when the invariant should hold by explicitly stating valid[t] as a
precondition. Since walid[t] is not mentioned in the modifies clause, the value of
valid[t) must not be changed by the method; hence, the object will be valid upon exit,
too. This makes object invariants a convention rather than a canned feature of the
specification language (see also Remark 10.3).

The specification of consume allows the state of object t to be modified. The only
restriction on this modification is that the values of properties like walid that are not
listed in the modifies clause are unchanged.

145

The specification of Consume can now be written. As it turns out, this specification
coincides with that of method consume .

spec Consurne(s : seqchar] ; t: T)is
requires valid|t]
modifies state[t]

These specifications allow an implementation of Consume to iterate over the char-
acters of s, passing each one, in sequence, to t.consume .

impl Consume(s : seq[char] ; t: T)is
if s # “” then t.consume(first(s)) ; Consume(rest(s),t) fi

Without stating a stronger postcondition, this particular specification is not strong
enough for full verification. For example, an implementation of Consume meets its
specification even if it invokes the method twice for some characters of s, never for
others, and the invocations of consume for different characters of s are not in the same
order as the order in which they appear in s. Other correct implementations may
invoke consume with characters not in s, or may never call consume at all. However,
for extended static checking, this specification may still be strong enough, depending
on the assumptions made about the consumer after the call to Consume.

Each subtype defines for itself what it means for one of its object to be valid and
what the state of one of its objects is. Hence, the solution works for any consumer
subtype.

13.1 Shortcomings of depends

From what we have seen, depends is promising, but it is not the end of the story.
There are more problems to be solved, because the visibility and authenticity require-
ments are too strong for the solution to be adequate.

The solution is adequate as long as there is only one level of specification variables,
i.e., so long as no specification variable depends on another specification variable.
However, when one module is implemented in terms of another, there is usually more
than one level.

Let me give an example of a problem where the visibility and authenticity re-
quirements are too strict. The TextWrlinpl unit in Chapter 10 declares the flushed data
field of each text writer to be of type seq[char]. The seq[char] type available through
the programming language at hand (e.g., TEXT in Modula-3) may not provide the
most efficient implementation for the task in TextWrlmpl, or the language may not
directly provide this type at all. We may then want to use a custom-programmed
implementation of sequences of characters.

146

Consider a unit FastSeq, declared as follows.

unit FastSeq is
type T,
spec contents : T~ — seq|char];
spec Init(t : T) is
modifies contents|t]
ensures contents[t] = 7 ;

spec result : seq[char] := Contents(t : T) is
ensures result = contents(t] ;

spec Append(t : T ; ch : char) is
modifies contents|t] ‘
ensures contents[t] = contentsy[t] +H ch
end

Such a unit allows a change of unit TextWrlmpl to

unit TextWrlimpl import Wr, WrFriends, TextWr, FastSeq is
var flushed : TextWr. T~ — FastSeq.T ;
depends Wr.target[t : TextWr.T] on FastSeq.contents|flushed|t]] ;
rep Wr.target[t : TextWr.T] is
Wr.target(t| = FastSeq.contents|flushed([t]] ++ Wr.buff[t] ;

end

Here, Wr.target is declared to depend on FastSeq.contents. But according to the (con-
vention suggested by the) two requirements, this dependency must be declared in unit
FastSeq. That means that FastSeq needs to import Wr and give the dependency. The
same holds for any other similar client of FastSey. Thus, FastSeq needs to import all
of these clients! That is unreasonable, because the implementor of FastSeq cannot an-
ticipate all of FastSeq’s clients, so with every new client, FastSeq needs to be updated.
This makes it practically impossible to put FastSeq in a library.

Furthermore, in order for FastSeg to be able to declare the dependency shown in
TextWrlmpl above, the data field flushed must be visible in FastSey. This goes beyond
the notion of “friends” interfaces and violates the notion of data hiding.

The problem described also surfaces, for example, in the consumer example in Sec-
tion 13.0 if a consumer subtype depends on a data field like Wr.target or FastSeq.contents .

Let us take a closer look at the shape of the depends clause that’s causing prob-
lems. In examples, I have freely used depends clauses of the form

depends a[t : T} on c[t]

I call this a pointwise dependency, because a at a particular index depends on ¢
at some particular index. Here, the two indices are the same. Chapters 11 and 12
explore dependencies only between entire variables, as in

depends g onc

147

Understanding pointwise dependencies and developing a methodology for their use
are on the path to a solution to the problem I’ve described in this section.

Another closer look at the shape of the depends clause that presents the challenge
shows

depends a[t : T] on c[b[t]]

That is, 2 depends on ¢ pointwise, but not at the same points. Instead, b serves
as a function from the point of a to the dependent point of c. All three of a,b,c
need to be visible in order to state the dependency. This reminds us of the visibility
requirements. Furthermore, the intermediary variable b is declared in the same unit
as the dependency itself. This leaves us with a scent of the authenticity requirement.
These observations give us hope that there may be a way to modify the visibility and
authenticity requirements to fit the needs described here. This is an open problem.
In the next section, I discuss some considerations of its solution.

13.2 Private values

In the example presented in the previous section, the FastSeq.T value of flushed[t] can
be thought of as being “private” to the unit (or to the object ¢). In this section, I
develop the idea of private values further. I do not present a solution to the problem
of writing specifications involving private values, but I discuss some issues that a
solution should take into account.

Values may be “private” not just to modules, but also to procedures (as I show
later in this chapter) and possibly also to objects or object types (not shown here).

13.2.0 A GIVEN SPECIFICATION
Consider a unit A and its friends interface AFriends.
unit A is
typeT ;
spec varvalid : T~ — bool ;
spec var state : T~ — any
spec Init(t : T) is
modifies state[t], valid[t]
ensures valid[t] ;
spec Update(t : T) is
requires valid[t]
modifies state[t] ;
spec Destroy(t : T) is
modifies state[t], valid[t]
end

148

unit AFriends import A is
var previous : A.T ;
depends A.state on previous ;
depends A.valid on previous
end

Also consider B, a unit declared as follows.

unit Bis
typeT ;
specvarvalid : T~ — bool ;
specvarstate : T~ — any ;
specInit(t: T) is
modifies state(t], valid|t]
ensures valid[t] ;
spec Update(t : T) is
requires valid|[t]
modifies statet]
end

The implementation of B reveals one of type B.T’s data fields.

unit Blmpl import B, A is
private varx : B.T™ — A.T ;

end

Notice that B is a regular client of A that does not import AFriends.

The keyword private is intended to indicate that field x is never “imported” into
or “leaked” from this module. (I intentionally omit the exact definitions of those
terms—the inclusion of these words is just supposed to convey a flavor of the full
meaning.) The motivation for this is as follows. The state and validity of a B.T
object depends on the state and validity of the fields of a B.T. Thus, Blmpl gives the
following information about its specification variables.

depends B.valid[t : B.T] on A.valid[x[t]] ;
depends B.state[t : B.T] on A.valid[x[t]] ;
rep B.valid(t : B.T| is valid[t] = A.valid[x[t]]

But this violates the visibility and authenticity requirements. Our first reaction is
that the violation is for silly reasons; if B.T happens to use an A.T in its private
implementation, why does this need to be advertised in A, which knows nothing
about B? The private keyword used in conjunction with the declaration of field
x 1s an attempt at allowing the implementation to depart from the visibility and
authenticity requirements. The details of private are still under experimentation.

149

Unit Blinpl also includes the implementation of the procedures declared in B.

impl B.Init(t : B.T) is
call A.init(x[t]) ;

impl B.Update(t : B.T) is
call A.Update(x[t])

13.2.1 A VIOLATION OF SOUNDNESS

Let’s take a look at how a client may use A and B.

unit Client import A, AFriends, B is

spec P() is
modifies A.state, A.valid, B.valid, B.state ;

impl P() is
[b:B.T eb:=new(B.T)
; B.Init(b)
; if AFriends.previous # nil then A.Destroy(AFriends.previous) fi
; B.Update(D)
]

end

The question here is: Does P’s call to B.Update meet its required precondition? From
the information given and the rules from Chapter 11, the verification would indeed
verify P as having the required precondition of B.Update. But consider an implemen-
tation of A.init(t) that, in addition to initializing t, sets AFriends.previous to t. Then
we do not want the verification process to deem the implementation of procedure
P correct, because there is no guarantee that the call to B.Update actually meets its
precondition.

The problem seems to be that although BlImpl vowed (by using the keyword
private) not to leak a value of an x field, BImpl passed such a value to the procedures
of A, and A never made a promise not to leak such values. Hence, we don’t want
BImpl to get away with declaring x as private unless A guarantees that instances of
A.T are “privatizable”.

To recap, I am discussing the circumstances under which the declaration of de-
pendencies of a specification variable are allowed to depart from the visibility and
authenticity requirements. In the above, in order for B.walid[t] to be declared to de-
pend on A.valid[x[t)], A.valid must have been declared to be privatizable. If A.valid[t]
Is privatizable, its potential dependencies are restricted. A research goal is to find
a good set of rules for this. For example, one may require that A.ovalid[f] must only
depend on entities of the form w[t] where w is also privatizable. As a base case of
the definition of privatizable, all programn (i.e., non-abstract) data fields of a type are
privatizable.

150

13.2.2 PRIVATE VALUES AND new

I present an issue related to the one above. Consider a unit S and its implementation.

unit S is unit SIinpl import S is
spec kip() is impl kip() is
modifies (* nothing *) [aea:=new(AT); A.nit(a))
end end

A question to ask is: Does Slmpl contain a correct refinement of S.kip? Since it has an

effect on A.state and A.valid, the implementation would not be considered correct by

the rules from Chapter 11. Nevertheless, one may be inclined to answer, “Yes, this is

a correct refinement, because the value of a is conceived within this procedure (i.e.,

it is not imported, and since the procedure has no return value, a is also not leaked

from the procedure) and should thus be considered a private value of the procedure”.
In response to this answer, let me define another unit.

unit M import S, A, AFriends is
spec P() is
ensures true |
impl P() is
[p:A.T e p:= AFriends.previous

i Skip()
; if p # AFriends.previous then wrong fi

]

end

Using the rules from Chapter 11, the implementation of M.P is considered correct.
Thus, also validating S.kip would not be sound, because then a trace of M.P would
actually go wrong.

Therefore, the quoted claim above is flawed. The problem, as with B and Blmpl
above, is that A.state and A.valid are not guaranteed to be privatizable.

13.2.3 SUMMARY

In this section, I have argued for a notion of “privatizable”. If w is privatizable and ¢
is a private value of a procedure, then modification of w[t] is allowed, even if w is not
mentioned in the frame. Similarly, if ¢ is a private value of a unit, then dependencies
on w(t] declared in that unit are allowed, even if w is declared elsewhere. The exact
details of “private values” and “privatizable” are still under experimentation, and
soundness will be a function of these details.

151

Part IV

152

€Fi{)ogue

153

@ga]::fev

Summary

In summary, this thesis is about the correctness of programs, and is in the direction
of making the specification and verification of large programs —of the kinds that are
written in practice— feasible. In particular, I deal with sequential programs that
can raise and handle exceptions; programs whose expressions can be partial, can
contain short-circuit boolean operators, and can have side effects; programs whose
data structures include arrays, sets, records, references (pointers), and objects with
methods and inheritance; and programs that achieve data hiding by being organized
into modules.

The thesis explores several aspects of the semantics of programs with exceptions,
and unveils the algebraic cosmos on which the foundation of this semantics rests.
The thesis also takes a fresh look at object-oriented programs, and proposes a simple
notion of their mathematical meaning.

Striving toward making large programs more reliable, I confront the specification
and verification of modular programs, with the goal of achieving sound modular
verification. This thesis solves one of the problems and reports on others that are
still open.

There is more work to be done before practical tools that aid in the construction
of large programs that are correct are used routinely by programmers. Type-checking
compilers have become commonplace, and it seems only natural that a compiler or
other tool for extended static checking will be next. Through something like extended
static checking, it is my hope that it won’t be too long before the science of program
correctness will become a practical aid in the everyday life of programmers, so that
we all will write correct programs more often.

154

155

Bibliography

[0] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[1] American National Standards Institute, Inc. The Programming Language Ada
Reference Manual, volume 155 of Lecture Notes in Computer Science. Springer-

Verlag, Berlin, Germany, 1983. ANSI/MIL-STD-1815A-1983.

[2] R.-J.R. Back. On the Correctness of Refinement Steps in Program Development.
Ph.D. thesis, University of Helsinki, 1978. Report A-1978-4.

[3] R.-J.R. Back. Data refinement in the refinement calculus. In Proceedings
22nd Hawaii International Conference of System Sciences, Kailua-Kona, Jan-
uary 1989.

[4] R.-J.R. Back and M. Karttunen. A predicate transformer semantics for state-
ments with multiple exits. University of Helsinki, unpublished manuscript.

5 R,C Backhouse. Program C’onstruction and Ver: cation. Series in CO[II uter
) P
Science. I rentice-Hall Intel'na,tiona,l, 1986.

[6] R.J. Bird and P. Wadler. Introduction to Functional Programming. Series in
Computer Science. Prentice-Hall International, 1988.

[7] G. Birkhoff. Lattice Theory. Colloquium Publications, Volume 25. American
Mathematical Society, 1967.

[8] F. Bourdoncle. Interprocedural abstract interpretation of block structured lan-
guages with nested procedures, aliasing and recursivity. In P. Deransart and
J. Maluszyiiski, editors, Programming Language Implementations and Logic Pro-
gramming: Proceedings / International Workshop PLILP °90, Linképing, Swe-
den, August 20-22, 1990, volume 456 of Lecture Notes in Computer Science,
pages 307-323. Springer-Verlag, 1990.

[9] M.R. Brown and G. Nelson. I/O streams: Abstract types, real programs. In
G. Nelson, editor, Systems Programming with Modula-3, Series in Innovative
Technology, pages 130-169. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[10] M. Burrows and G. Nelson. LIM. Private communications, 1993.

156

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

W. Chen and J.T. Udding. Towards a calculus of data refinement. In J.L.A.
van de Snepscheut, editor, Mathematics of Program Construction, volume 375 of
Lecture Notes in Computer Science. Springer-Verlag, June 1989.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the 4th ACM Symposium on Principles of Programming
Languages, pages 238-252, Los Angeles, 1977.

F. Cristian. Correct and robust programs. IFEE Transactions on Software
Engineering, 10:163-174, 1984.

0.-J. Dahl, B. Myhrhaug, and K. Nygaard. The Simula 67 common base lan-
guage. Technical Report S-22, Norwegian Computing Centre, Oslo, 1970.

D. Detlefs and G. Nelson. The BOLT specification language. Internal note, DEC
SRC, 1994.

E.W. Dijkstra. A constructive approach to the problem of program correctness.

BIT, 8:174-186, 1968.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
NJ, 1976.

E.W. Dijkstra. Selected Writings on Computing: A Personal Perspective. Texts
and Monographs in Computer Science. Springer-Verlag, 1982.

E.W. Dijkstra. The unification of three calculi. In M. Broy, editor, Program
Design Calculi, NATO ASI Series F. Springer-Verlag, 1993.

E.W. Dijkstra and W.H.J. Feijen. A Method of Programming. Addison-Wesley,
1988.

E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Texts and Monographs in Computer Science. Springer-Verlag, 1990.

R.M. Dijkstra. DUALITY: A simple formalism for the analysis of UNITY. Tech-
nical Report CS-R9404, University of Groningen, April 1994.

M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Company, 1990.

P.H.B. Gardiner and C.C. Morgan. Data refinement of predicate transformers.
Theoretical Computer Science, 87:143-162, 1991.

A.J.M. van Gasteren. On the Shape of Mathematical Arquments, volume 445 of
Lecture Notes in Computer Science. Springer-Verlag, 1990.

1587

[26]

[27]

[28]

[29]

[30]

[36]

37]

S.M. German. Verifying the Absence of Common Runtime Errors in Computer
Programs. Ph.D. thesis, Harvard University, 1981. Also available as Technical
Report STAN-CS-81-8G6, Stanford University, 1981.

W.W. Gibbs. Software’s chronic crisis. Scientific American, pages 86-95, Septem-
ber 1994.

A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implemen-
tation. Addison-Wesley Series in Computer Science. Addison-Wesley, Reading,
MA, 1983.

D. Gries. The Science of Programming. Texts and Monographs in Computer
Science. Springer-Verlag, 1981.

D. Gries and J. Prins. A new notion of encapsulation. In Proceedings of the ACM
SIGPLAN 85 Symposium on Language Issues in Programming Environments,
Seattle, WA, 25-28 June 1985. ACM SIGPLAN Notices, 20(7):131-139, July
1985.

D. Gries and F.B. Schneider. A Logical Approach to Discrete Math. Texts and
Monographs in Computer Science. Springer-Verlag, 1994.

D. Guaspari, C. Marceau, and W. Polak. Formal verification of Ada programs.
IEEE Transactions on Software Engineering, 16(9):1058-1075, September 1990.

J.V. Guttag, J.J. Horning, and J.M. Wing. The Larch family of specification
languages. IFEE Software, 2(5):24-36, September 1985.

E.C.R. Hehner. A Practical Theory of Programming. Texts and Monographs in
Computer Science. Springer-Verlag, 1993.

A. Heydon and G. Nelson. The Juno-2 constraint-based drawing editor. Re-
search Report 131a, DEC SRC, 130 Lytton Ave., Palo Alto, CA 94301, U.S.A.,
December 1994.

C.A.R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576-580,583, October 1969.

C.A.R. Hoare. Notes on data structuring. In O.-J. Dahl, E.W. Dijkstra, and
C.A.R. Hoare, editors, Structured Programming, pages 83-174. Academic Press,
1972.

C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica,

1(4):271-81, 1972.

C.A.R. Hoare and J. He. The weakest prespecification. Fundamenta Informati-
cae, IX:51-84, 1986.

158

[40] C.A.R. Hoare and N. Wirth. An axiomatic definition the programming language
PASCAL. Acta Informatica, 2(4):335-355, 1973.

[41] D. Jackson. Aspect: A Formal Specification Language for Detecting Bugs.
Ph.D. thesis, Massachusetts Institute of Technology, 1992. Technical Report
MIT/LCS/TR-543.

[42] K. Jensen, N. Wirth, A.B. Mickel, and J.F. Miner. PASCAL: User Manual and
Report. Springer-Verlag, 4th edition, 1991. ISO Pascal Standard.

[43] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall, 1986.

[44] D.H. Kemp and G. Goodfellow. AT&T crash, 15 Jan 90: The official report.
ACM SIGSOFT Software Engineering Notes, 15(2):11-12, April 1990.

[45] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-
Hall, 1978,

[46] S. King and C.C. Morgan. Exits in the refinement calculus. Technical Report
PRG-TR-6-93, Programming Research Group, Oxford, 1993.

[47] B.W. Lampson, J.J. Horning, R.L. London, J.G. Mitchell, and G.J. Popek. Re-
port on the programming language Euclid. Technical Report CSL-81-12, Xerox
PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304, U.S.A., October 1981. An
earlier version of this report appeared in ACM SIGPLAN Notices, 12(2), Febru-
ary 1977.

[48] G.T. Leavens. Modular specification and verification of object-oriented programs.

IEEFE Software, pages 72-80, July 1991.

[49] K.R.M. Leino. Multicomputer programming with Modula-3D. Technical Report
Caltech-CS-TR-93-15, California Institute of Technology, 1993. Master thesis.

[50] K.R.M. Leino. Constructing a program with exceptions. Information Processing
Letters, 53(3), 1995.

[561] K.R.M. Leino and J.L.A. van de Snepscheut. Semantics of exceptions. In E.-
R. Olderog, editor, Proceedings of the IFIP WG2.1/WG2.2/WG2.8 Working
Conference on Programming Concepts, Methods, and Calculi, San Miniato, Italy,
6-10 June 1994, pages 447-466. Elsevier, 1994.

[52] N.G. Leveson and C.S. Turner. An investigation of the Therac-25 accidents.
IEEE Computer, 26(7):18-41, July 1993.

[563] J.H. van Lint and R.M. Wilson. A Course in Combinatorics. Cambridge Uni-
versity Press, New York, 1992.

159

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C. Schaffert, R. Scheifler, and
A. Snyder. CLU Reference Manual. Springer-Verlag, 1981.

B. Liskov and J. Guttag. Abstraction and Specification in Program Development.
The MIT Electrical Engineering and Computer Science Series. MIT Press, Cam-
bridge, MA, 1986.

B.H. Liskov and J.M. Wing. A behavioral notion of subtyping. ACM Transac-

tions on Programming Languages and Systems, To appear.

D.C. Luckham. Programming with Specifications: An Introduction to Anna, a
Language for Specifying Ada Programs. Texts and Monographs in Computer
Science. Springer-Verlag, 1990.

D.C. Luckham, S.M. German, F.W. von Henke, R.A. Karp, P.W. Milne, D.C.
Oppen, W. Polak, and W.L. Scherlis. Stanford Pascal Verifier user manual.
Technical Report STAN-CS-79-731, Stanford University, 1979.

J.J. Lukkien. An operational semantics for the guarded command language. In
R.S. Bird, C.C. Morgan, and J.C.P. Woodcock, editors, Mathematics of Program
Construction, volume 669 of Lecture Notes in Computer Science, pages 233-249.
Springer-Verlag, 1993.

M.S. Manasse and C.G. Nelson. Correct compilation of control structures. Tech-
nical report, AT&T Bell Laboratories, September 1984.

R. Manohar and K.R.M. Leino. Theory and use of conditional composition.
Technical Report Caltech-CS-TR-94-12, California Institute of Technology, 1994.

C. Marceau. Penelope reference manual, version 3-3. Technical Report TM-94-
0040, Odyssey Research Associates, Inc., 301 Dates Drive, Ithaca, NY 14850-
1326, U.S.A., July 1994.

A.J. Martin and J.L.A. van de Snepscheut. Design of synchronization algorithms.
In M. Broy, editor, Constructive Methods in Computing Science, volume 55 of
NATO ASI Series F: Computers and Systems Sciences, pages 447-478. Springer-
Verlag, 1989.

B. Meyer. Object-oriented Software Construction. Series in Computer Science.
Prentice-Hall International, New York, 1988.

C.C. Morgan. Auxiliary variables in data refinement. Information Processing
Letters, 29(6):293-296, December 1988.

C.C. Morgan. Data refinement using miracles. Information Processing Letters,
26(5):243-246, January 1988.

160

[67] C.C. Morgan. The specification statement. ACM Transactions on Programming
Languages and Systems, 10(3):403-419, July 1988.

[68] C.C. Morgan and K.A. Robinson. Specification statements and refinement. IBM
Journal of Research and Development, 31(5):546-555, September 1987.

[69] G. Nelson. Techniques for program verification. Technical Report CSL-81-10,
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304, U.S.A., June 1981.
Ph.D. thesis.

[70] G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517-561, 1989.

[71] G. Nelson, editor. Systems Programming with Modula-3. Series in Innovative
Technology. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[72] T. Nipkow. Non-deterministic data types. Acta Informatica, 22:629-661, 1986.

[73] F. Rubin. “GOTO considered harmful” considered harmful. Communications
of the ACM, 30(3):195-196, March 1987. See also responses to this letter in the

May through August, November, and December issues.

[74] N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Checker: A Reference
Manual (Draft). Computer Science Laboratory, SRI International, Menlo Park,
CA, February 1993.

[75] J.L.A. van de Snepscheut. Trace Theory and VLSI Design. Ph.D. thesis, Tech-
nische Hogeschool Eindhoven, 1983.

[76] J.L.A. van de Snepscheut. On lattice theory and program semantics. Technical
Report Caltech-CS-TR-93-19, California Institute of Technology, 1993.

[77} J.L.A. van de Snepscheut. What Computing Is All About. Texts and Monographs
in Computer Science. Springer-Verlag, 1993.

[78] M. T. Vandevoorde. Exploiting Specifications to Improve Program Performance.
Ph.D. thesis, Massachusetts Institute of Technology, 1994. Technical Report
MIT/LCS/TR-598.

[79] N. Wirth. The programming language PASCAL. Acta Informatica, 1(1):35-63,
1970.

[80] N. Wirth. Program development by stepwise refinement. Communications of the
ACM, 14:221-227, 1971.

[81] N. Wirth. Programming in Modula-2. Texts and Monographs in Computer
Science. Springer-Verlag, 1983.

[82] J. von Wright. A Lattice- Theoretical Basis for Program Refinement. Ph.D. thesis,
Abo Akademi, 1990.

161

Index

;, see sequential composition
[:=], see substitution
[], see everywhere operator
A (conjunction), 5
0, see box operator
+ (concatenation), 98
N, see else operator
- (multiplication), 7
- (negation), 4
V (disjunction), 5
(1 >), see quantifications
L, see refinement
{ | » }, see set constructor
<: (subtype relation), 78
(© , see double composition
=, 21
[1, see ceiling
(© , see left composition
| |, see floor
o) , see right composition
~ , see transposition

x , 68
— (guard), 18
— (map), 68

<, see exceptional composition

*, 74,112, 114

~ shorthand, 74

0, subscripting a variable by, see initial-
value variables

abort , 22, 42
abstract interpretation, 22
abstract variables, 84, 111
and assignment (:=), 107
and refinement, 86
definition of usage in frames, 101

interpretation of, in predicates, 101
interpreted as explicit functions,
107
local, 84
mixed with program variables, 88
origin of name, 85
representation of, 85
abstraction, see data abstraction
abstraction functions, 85, 142
and subtyping, 89
axioms resulting from, 117
in scope vs. out of scope, 104
partial, 89
totality of, 86
vs. abstraction relations, 85, 142
abstraction relations, 85, 142
acknowledgements, v
Ada [1], 8, 12, 56, 59, 60, 68, 69, 74, 89,
96, 108
initialization of variables in, 69
references in, 69, 74
algebra over functions of two argu-
ments, 12, 17, 26-35
applications of, 17, 35
generalization of, 35
motivation for, 17
unit elements in, 27
aliasing, 74, 83
allocated type, see dynamic type
allocation, 74, 150, 151
alternative statements (IF THEN), 59
Anna [57], 97, 108, 109
arity
change of, 135
array dereferencing, 68
array index out-of-bounds errors, see

run-time errors
array types, 71
arrays, 66
multi-dimensional, 72
Aspect [41], 106, 145
assert statement (assert), 19, 61
assertions
failing, see run-time errors
assignment (:=), 16, 38, 112
and abstract variables, 107
narrowing in, 70
shorthand for maps (arrays), 68
AT&T crash, 1990, 0
authentic abstractions, 103
authentic variables, 103
authenticity property, 104
authenticity requirement,
128, 134, 137, 146
deviating from, 150
dispensing with, 104
enforcing, 104
generalizing, 150
AuthenticityProblein unit, 103
auxiliary variables, 88

104,

Back, R.-J.R., 24
backtracking, 18
benevolent side effects, 102, 103, 117
examples, 102, 117
BenSideEffects , 117
BenSideSet , 118
reducing size of, 118
binary semaphores, 48
binding powers, 4
bits, 84
blatant hand waving,
block statement ([o]), 17, 112
body
of block statement, 17
using guard statement in, 19
of iterative statement, 22
of procedure, 56
bool , 68
boolean scalar, 6, 120

106,

163

bound function, 22
box operator (0), 20, 112
buff data field, 98-102

comment describing usage of, 99

C++ [23], 8, 12, 74, 78, 81, 82, 91
references in, 74
terminology, 78, 82—-83

calculations
format of, see proof format

call, 58, 112

Caltech, v

cand , 62

ceiling ([1)
of functions, 30
of programs, 34
of states, 38

Chandy, K. Mani, v

chapter dependencies, 3

choice compositions, 20

choice operators, 20

Civitype, v

classical data refinement, 2, 3, 86
and Simula, 108
generalization of, 87, 106
shortcomings of, 88

client, 8, 96, 100, 102, 105, 108, 109,

147, 149, 150

CLU [54], 51, 109
code reuse, 56
collaboration, 4
collections, 74
command, 8
compositions

duality between, 33

exceptional, 17, 42

normal, 16, 39

conditional operators, see short-circuit

operators
conjunction { A), 5
conjunctivity, 6

monotonicity implied by, 6, 44, 119

of wip, 119
of wp, 44

consume method, 144
Consume procedure, 144
consumer example, 144
problem with, 147
Consumer unit, 144
consumers, 144
contents (of FastSeq.T), 147
contributions, see thesis contributions
control structures, 14
convention, see requirements, conven-
tion
correctness
partial, 15
total, 15
cyclic index entries, see index entries,
cyclic
C [45], 8, 12, 56, 59, 68-70
initialization of variables in, 70
references in, 74
types in, 70

data abstraction, 66, 84
importance of, 88
in modular programs, 96
data fields, 78
abstract, 89
in record types, 72
of objects, 79
on notation of, 81
protection levels, 83
data hiding, 94, 96, 105, 147
data refinement, 66, 84, 86
and partial commands, 88
classical, see classical data refine-
ment
in modular programs, 66
in subtypes, 80
data structures, 66
data types, see also types
declaring new, 73
in common
languages, 70
meaning of, 80
relation between, 80

programming

164

deallocation, 74
DEC SRC, see Digital
declaring type, 79
demonic choice, see box operator
Denver International Airport, 0
dependencies, 101
cyclic, 142
inferring, 108
pointwise, 147
dependency graph, 106
dependency relation, 113
Depends , 113
depends, 3, 101, 112
formalization of, 110
placement of, 102
restrictions on usage of, 102
enforcing, 104
shortcomings of, 146
successes of, 144
dereference ("), 73, 78
dereference map, 74
Detlefs, David, v
Digital
SRC Extended Static Checker, v
Systems Research Center, v, 4
Dijkstra, Edsger W., iii, 1, 12, 24, 35,
43
disjunction (V), 5
disjunctivity, 6
distributivity, 6
double composition (()), 28
downward closure, 101, 113
dynamic type, 78

element type, 68
ELSE, 59

else operator (K), 20
ELSIF, 59

ensures, 57

entry variables, see initial-value vari-

ables
enumerations, 66, 71
Env, 119

environment, 112

erroneous (Ada lingo), 63
errors

in software, see software errors
Euclid [47], 74
everywhere operator ([]), 5

for different state spaces, 124
except-ensures , 57
exception

definition, 2
exception handler,

composition

exceptional composition (), 17
exceptional programs

definition, 3
exceptional projection, see ceiling
exceptional semantics

previous work, 35

see exceptional

exceptions, 12
in program construction, 52, 54
more than one, 35, 38, 60
theorem regarding usage of, 51
Excluded Middle, Law of, 18
explicit functions, 107
expressions, 61-63
and compilers, 62
evaluation of, 16, 61-63
extended static checking, v, 1, 2, 145,
154
vs. full verification, 1

idea of, 1

f* functions, 114
false , 6
outcome component implicitly be-

ing, 60, 119

FastSeq unit, 147

FaultyClient unit, 100

feasible statements, see partial com-
mands

Feijen, Wim H.J., 7

fields, see data fields

file writers, see writers, file

fin, 38

fixed points, 21

165

floor (| |)

of functions, 30
of programs, 34
of states, 38
flush method, 99
flushed data field, 100, 146
forest requirement, 106
frame, see specifications, frame of
FREE, 75
friends interfaces, 97, 98, 147
function application, 4
function compositions, 26
programs as, 33
functionalization, 114
Functionalize , 114
functions, 4
nondeterministic, 85
of two arguments, 17, 26
uninterpreted, 126

GetSpec , 117

global in, 63

global variables, see variables, global
van der Goot, Marcel R., v

guard function, 19

guard of a command, 19

guard statement (—), 18, 112
guarded commands, 8, 12, 14

Harley, Robert J., v

heuristic for program construction, 52
Heydon, Allan, v

Hoare triples, 1, 48

Hoare, C.A.R., i1, 1, 84

Hofstee, H. Peter, v

identifiers

naming of, 111
if fi brackets, 20
IF THEN , 59
if then fi, 59
impl, 58, 111
import, 96
import, 111

import closure, 111
ImportClosure , 111
imported values, 149
index entries
cyclic, see cyclic index entries
index set, 68
infinite, 81
index type, 68
indices of maps, 68
inf , 38
ingrown toenails?, see physician
inheritance, 79
initial-value variables, 22, 23, 57, 75,
111, 121
input stream, 144
input/output streams, 96, 98, 144
instantiation, 136
int, 68
interfaces, 89, 96, 97, 110
intermediate code, 62
Invariance Theorem, 21, 48
iteration, 21
iterative statement (do + od), 21
absence of, 112

Jackson, Daniel, 145

joke (getting to know my readers), vi
junctivity, 6

Juno-2 [35], 20

Knaster-Tarski Theorem, 21

L projection, 17, 27
Larch [33], 57
last , 38
IATEX, v
lattices, 12, 24
leaked values, 149
left composition ((0), 17, 27
Leibniz’s Rule, 116, 126, 131, 134
Leino, India Jane, vi
libraries, 94
of axioms, 109

lifting, 5, 28

166

LIM [10], 18
logical variables, see initial-value vari-
ables
Lookup , 117
loop, see iterative statement
infinite, 22
Lukkien, Johan J., 37

Manasse, Mark S., 36
Manohar, Rajit, v
map (in functional programming), 144
map types, 68
mapx maps, 74, 78
maps, 68
axioms for, 69
data fields, see data fields
implementation of, 69, 81
in specifications, 75
totality of, 68
updating, 68
Martin, Alain J., v
Massingill, Berna L., v
mathematical variables,
value variables
method , 79, 80

see 1nitial-

impl, 80
spec, 79

methods, 78, 79
C++ lingo for, 83
declaration of, 79
implementations, 79
invocation of, 79
protection levels, 83
virtual (C++ lingo), 83
Microsoft, v, 2
personal experiences at, 2
miracle
invoking, 18
miraculous statements, see partial
commands
modifies , 57
abstract variables listed by, 101
and maps, 75

in modular specifications, 97

Modula-2 [81], 8, 12, 89, 96, 108
Modula-3 [71], 8, 12, 34, 51, 56, 59, 60,
68-74, 80-82, 89, 91, 96, 98, 99,
101, 105, 108, 110, 146
object types in, 81-82
partially opaque types in, 101
references in, 74
structural equivalence in, 82
modular programs
and SwitchToAbstract , 87
definition, 2
precise interpretation of, 3
modular specifications
problem of writing, 97
modular verification, 2, 3, 94, 97
soundness of, 3
adequacy of, 105
completeness of, 105
example of inadequacy of, 106
problem in, 94
soundness of, 94, 105, 128
modularity, 94
module invariant, 103
modules, 89, 96, 97, 110
monotonicity, 6, 15, 21, 25, 44
Moye, S.G., v

name qualifier (.), 98, 111
narrowing, 70, 71

in abstract interpretation, 22
Nelson, Greg, v, 4, 36
new, 74, 150, 151
nil, 73, 78
nil -dereferencing, see run-time errors
nondeterminism, 20, 24
nondeterministic functions, 85

normal composition, see sequential
composition

normal projection, see floor

notation

explanation of, 4
how it inspires us, 31
on the choice of, 35

167

object invariant, 103, 145
object simplicity, 80
object types, 73, 78
object-oriented programming
essence of, 99
objects, 66
attributes of, 79
creating new, 74
implementation of, 81
properties of, 79
simplicity in modeling, 66
oc, see outcome coordinate
operators
binding powers, see binding powers
originality, 4
outcome, 15, 38, 60
erroneous, 60
exceptional, 15
outcome coordinate (oc), 37
outline
of Part I, 12
of Part II, 66
of Part III, 94
of thesis, 3
output stream, 98

packages (Ada lingo), 89
parameters

evaluation of, 63

narrowing of, 70

of methods, 79

of procedures, 57

special, 79
partial commands, 18

examples of, 19

operational interpretation of, 18
partial correctness,

partial

partial representations, 89

reason for restriction on, 90

see correctness,

restriction on, 90
partially opaque types, 80, 101
partitioned predicates, 35, 43, 112
Pascal [42], 8, 12

early version of [79], 74
Penelope [62], 57, 63, 109
pointers, see references
pointwise dependencies, 147
postcondition
in specifications, 22
specify-
ing for procedure, see ensures
oT except-ensures
PoSTSCRIPT, v
precondition
in specifications, 22
specifying for
requires
weakest, see weakest preconditions
weakest liberal, see weakest liberal
preconditions
predicate transformers, 5, 12
predicates, 5, 12
interpretation of abstract variables
in, 101
over two states, see two-state pred-

procedure, see

icates
prime factor example, 7
private, 149, 150
private, 83
private values, 148, 151
privatizable, 151
procedures, 56, 111
calls to, 58
implementation of, 58
parameters, 57
evaluation of, 63
narrowing of, 70
result values, 57
narrowing of, 70
signature of, 56
specification of, 56
tail-recursive, 112
termination of, 59
program constructs
implementation of, 81
implementing, 24, 36

168

program derivation, 12, 52
program state space, 16, 37
program statement, 8
program variables, 84, 111
as functions, 84
mixed with abstract variables, 88
programming methodology, 12, 81, 91,
148
programming notation, 14, 56, 110
for programs with units, 110
programming tools, 154
projections
L and R, 27
on states, 38
proof format, 7
proof hints, 7
vague, 123
protected, 83
protection levels, 83
public, 83
PutChar procedure, 98

quantifications, 5
dummy of, 5
existential (3), 5
notation for, 5
range of dummy in, 5
range omitted in, 5, 7
set constructor, see set constructor
term of, 5
union (U), 5
universal (V), 5

R projection, 17, 27
raise , 16, 39
free occurrences of, 49
RawTarget , 119
readers, 144
receiver, 79
record types, 66, 72
REF, 73
reference types, 73, 78
references, 66, 73
creating new, 7

crux with modeling, 74
dereferencing, 73
Refine,, 110, 112, 120
monotonicity of, 129
refinement (C), 15, 24, 58, 94, 120
and abstract variables, 86
data, see data refinement
proving, 122
rep, 85, 112
RepAxiom , 117
RepAxioms , 117
RepPreds , 117
representation function, see abstrac-
tion function
requirements, 102
convention, 104, 105, 142
necessity of, 105
deviating from, 150
enforcing, 104
explaining to programmers, 105
generalizing, 150
too strict, 146
requires , 57
reserved character, see *
residues, 102, 110, 124
importance of, 124
Resolve , 113
shorthand for equalities, 113
resolve set, see downward closure
Rifkin, Adam F, v
right composition (o)), 17, 27
run-time checks, 62
run-time errors, 60
checked, 1, 62
proving absence of, 1
checks for, 62
unchecked, 63

S.kip procedure, 151
Sanders, Beverly A., v
saving variables

observation regarding, 23
scope, 98
self, 79

169

semantics, 1, 3, 12
concreteness of, 36, 47
correctness of, 36
influence of, 1
operational, 3, 37
separate compilation, 94
seq[char], 98, 146
sequential composition (;), 16, 112
set constructor, 6
set difference (%), 6
set types, 73
sets
as data types, 66
explanation of notation, 6
short-circuit operators, 61
side effects
benevolent, see benevolent side ef-
fects
in expressions, 16
signature of procedures, 56
simulation of types, 80
Simula [14], 108, 109
Sivilotti, Paclo A.G., v, 124
skip , 16, 39, 112
van de Snepscheut, Jan L.A., 1953-
1994, v, 4
software
today, iii, 0
software errors, 0
possible causes of, 0
soundness
violation of, 100, 103, 105, 150, 151
soundness of modular verification, see
modular verification
soundness proof
in retrospect, 141
soundness theorem, see modular verifi-
cation, soundness of
spec, 56, 111
specvar, 84, 111
specification languages
related work, 108
specification statement, 22, 57, 79

being partial, 23, 24
implementation of, 24
operational interpretation of, 22
specification variables, abstract
variables
specifications, 1, 97
frame of, 22, 97, 111
full, 1
lack of understanding of writing, 3
modular, 96
basic problem with, 100
solution that problem, 101
of a consumer, 144
of modular programs, 3
of procedures, 56
of streams library, 96
postcondition in, 22, 111
precondition in, 22, 111
SpecVarProjection , 118
state, see program state space
state, 102, 145
state space, 66
statement, 8
statement compositions, 16
asymmetry between, 34
statements
that “go wrong”, 60
states
normal and exceptional, 38
streams library, 96
strict commands, 18
subrange types, 66, 71
subscripting a variable by 0, see initial-

S€EE

value variables

subst , 69

substitution ([:=1]), 4
X, see X

substitution theorem, 136

substitutions

duplicate, 115
subtype relation (<:), 78, 80, 99
subtypes, 78

proper, 78

170

purpose of, 99
subtyping, 66, 78, 80
considered independently of ab-
straction, 80
methodology, 81, 91
notion of, 66
summary, 154
supertype, 78
immediate, 78, 80
SwitchToAbstract , 86, 107
and modular programs, 87

tail recursion, 112
target , 98
buffered portion of, 99
flushed portion of, 99
representation of, 100
Target (function), 119
Target (procedure), 99
target set, 119

temperature unit conversion example,

85
termination, 14, 15, 21, 22, 59, 60
normal, 14

proving, 15, 22
testing, 0
TEXT, 98, 146
text writers, see writers, text
TextWr, 99
TextWr. T, 99
TextWrImpl , 99, 146
then , 59
theorem provers (a,utomatic), 1
theorem proving
automatic, 1
theory packages, 109
Therac-25, 0
thesis contributions, 2, 4, 154
this, 79
Thornley, John, v
three-address code, 62
tools, 154
total commands, 18
total correctness, see correctness, total

trace, 38
trace semantics, 36
trace sets, 37
programs as, 38
transitive reduction, 106
transposition (~), 32
implementation of, 34
true, 6
as postcondition, 145
range, omitted, 7

TRY FINALLY END, 34
two-state predicates, 23, 57, 124
type

declaring, see declaring type
type, 73, 78
type checking, 2, 154
type constraints, 145
types, 68
allocated, see dynamic type
composite, 68
data, see data types
dynamic, see dynamic type
element, see element type
enumeration, see enumerations
index, see index type
map, see map types
nonempty, 68
of variables, 68, 69
record, see record types
set, see set types
structural equivalence among, 82
subrange, see subrange types
subtyping, see subtyping

unit, 111
unit statements, 16, 39, 60, 112
raise , see raise
skip , see skip
wrong , see wrong
units, 97
convention of naming, 99

valid paradigm, 103, 145
implicit vs. explicit, 103, 145

171

var, (69, 111
variables, 16, 111
abstract, see abstract variables
authentic, 103
auxiliary, 88
concrete, see program variables
dependencies between, see depen-
dencies
functions over, 84
global, 68, 69
abstract, 84
local, 17, 69, 84
abstract, 84
scope rules for, 111
program, see program variables
structure of, 66
visibility of, 69
variant function, see bound function
verification, 0
and refinements, 94
challenges of, 1
feasibility of, 2, 94, 96
full, 1, 146
verification conditions, 110
generating, 110
verification process, 8
verification system
building of, 95
virtual memory, 85
visibility requirement, 102, 104, 128,
133, 142, 146
deviating from, 150
enforcing, 104
generalizing, 150
visible declaration (Anna lingo), 108
voltages, 85

weakest liberal preconditions, 12, 14,
15, 60, 119
weakest preconditions, 1, 3, 12, 14, 43,
45, 60
in trace semantics, 43, 45
widening, 22

Wilson, Richard M., v

Wirth, Niklaus, 24
wlp, see weakest liberal preconditions
universal conjunctivity of, 60, 119
wp , see weakest preconditions
positive conjunctivity of, 44
Wr, 98
Wr.T, 98
WrClass, 98
WrFriends , 98
writer example, 98
writers, 98
file, 98, 99
idea behind subtypes of, 99
text, 98, 99
wrong , 60, 112

X, 131, 135-141

172

