Semantics of VLSI Synthesis

Thesis by
Marcel René van der Goot

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
1995

(Submitted 26 May 1995)

© 1995
Marcel René van der Goot
All rights reserved

ii

A cknowledgements

Many people have contributed directly or indirectly to my work and this thesis. A few are
listed below. My thanks, and apologies, to anyone I forgot to mention.

First of all, I would like to thank my research adviser, Alain Martin, for accepting me
as a student, for letting me stay all these years, and for creating an atmosphere where I've
always felt free to speak my mind.

I would like to thank the members of my thesis defense committee, Alain, Mani Chandy,
Beverly Sanders, Yaser Abu-Mostafa, and Peter Hofstee, for agreeing to meet on short
notice, and for the time spent reviewing this text.

My thanks to Alain and the past and current members of his research group, especially
Steve Burns, Pieter Hazewindus, Tony Lee, Drazen Borkovic, and José Tierno, for devel-
oping the VLSI synthesis method which provides the background for this thesis, and for
many useful discussions.

Christian Nielsen deserves thanks for convincing me that a semantics for the VLSI
synthesis method would indeed be a good thesis topic. I thank Ralph Back for introducing
me to formal operational semantics: this opened up a whole new world for me.

José, Peter, and Jessie Xu read early drafts of the first few chapters; their comments
led to great improvements in the presentation. Rajit Manohar, Peter, and Alain read the
complete final draft, finding several errors and mistakes in the process. Any remaining
errors can only be blamed on me.

This research was sponsored by the Advanced Research Projects Agency; their support
is greatfully acknowledged.

My eight years at Caltech have been pleasant ones thanks to many friends. Special
thanks go to Jan van de Snepscheut, my undergraduate adviser, who suggested a graduate
study at Caltech; to Arlene DesJardins, who helped me settle in here in Pasadena; to John
Ngai, who helped me through the first few years; to Mike Pertel, who helped explore Los
Angeles, introduced me to skiing, and set a great example of courage; to Drazen and José,
who never tired of explaining to me how things work; to Tony, who is a great companion
both on and off campus; and to Peter, who was always willing to listen, and often gave
useful advice. Thanks to all my other friends as well.

I thank my parents and my family for their love, their never wavering support, and
the many pleasant vacations spent together. I thank my late sister, Ingrid, for the many
things she taught me about life. I especially thank my wife, Claire, for making my life a
happy one, and for enduring my much longer than expected tenure as a graduate student.
Finally, I thank my daughter, Denise, for never failing to brighten my day.

iii

To my parents, and to Ingrid, Claire, and Denise

iv

Abstract

We develop a new form of formal operational semantics, suitable for concurrent program-
ming languages. The semantics directly supports sequential and parallel composition, ren-
dezvous synchronization, shared variables, and non-determinism. Based on an abstract
notion of program execution, a refinement relation is defined. We show how the refinement
relation can be used to prove that one program implements another.

We use the operational semantics as a semantic framework for a synthesis method
for asynchronous VLSI circuits. We define the semantics of the programming notations
that are used, and use the refinement relation to prove the correctness of the program
transformations that form the basis of the synthesis method. Among other transformations,
we proof the correctness of the replacement of atomic synchronization actions by handshake
protocols, and the transformation of a sequence of actions into a network of concurrently

executing gates.

Contents

1 Introduction @ @ i i i i it e e e e e e e e e e

1.1 Semantics
1.2 VLSI
1.3 Outline

2.1 Data
2.2 Computations
2.3 Programs

Semantics: Computations and Programs

2.4 Standard Programming Constructs

3.1 Program Execution

3.2 Interleaving

3.3 Environments

3.4 The Implementation Relation

4 Analysis of Program Execution
4.1 Observations about ezec
4.2 Changing Nodes
4.3 Changing Guards
4.4 Changing Synchronization Nodes
4.5 Process Decomposition
4.6 Process Factorization

5 Synchronization
5.1 Handshake Expausion
5.2 Probes
5.3 Handshake Reshuffling

Semantics: Execution and Refinement

oooooooooooooooooooooooo

vi

ooooooooooooooooooo

10
16
24

32
39
50
53

56
64
70
73
76
80

83
90
92

Production Rule Expansion vt v vt v v n v e en e 102

6.1 Production Rules 102
6.2 Straight-Line Programs 108
6.3 Implementation with Production Rules 112
Conclusionttt e, 121
7.1 Summary 121
7.2 Future Work 122
Abstract Data Types . . v v v v v v i v v v e et e e e e e 124
A.1 The List ADT 124
A.2 Normal Forms 126
A.3 Models 129
A.4 Notes 130
Bibliography ¢ 0 i i e e e e e e e e e e e e e e e 131

vii

Chapter 1
Introduction

For more than a decade, the Caltech research group led by A.J. Martin has been designing
VLSI circuits using a systematic synthesis method. This method is refinement-based: a
correct but potentially inefficient program (the specification) is repeatedly transformed until
a design is obtained that is both efficient and in a form that directly describes a circuit (a
gate description). Hence, circuit design using this method resembles program design, with
a compilation stage that transforms the programming notation to a circuit description.
If each of the transformations is semantics-preserving, then the correctness of the initial
design implies the correctness of the eventual implementation. Although many working
circuits have been designed using this method [13, 15, 18, 25], there was no uniform formal
framework for proving that the transformations are indeed semantics-preserving. In this
text, we describe such a framework, and use it to prove the correctness of most standard
transformations used in the design method.

1.1 Semantics

A transformation maps a program to a different program. In order to prove that a transfor-
mation preserves a program’s semantics, this semantics must first be defined. A semantics
assigns a meaning to programs; for instance, this can be done by mapping programs to
objects of which the meaning is already known. We are interested in a formal semantics
for our programs. Formal means that the semantic description uses precise formulas. Qur
desire for formality is based on our desire for precision: it is nearly impossible to decide
whether a proof is precise and, especially, complete, if there is no precise and complete
description of the proof requirements.

In terms of choosing a suitable program semantics, the programs we are interested in
have several features that pose problems. In particular, the semantics must be able to
define

e concurrency;

e rendezvous synchronization;

e shared variables; and

e non-terminating computations.

Many methods for defining semantics only support a subset of these features. For instance,
traditional predicate transformer semantics [5] does not directly support concurrency; an
extension like action systems [1] can be used to define concurrency, but cannot express
synchronization; trace theory [23] supports synchronization, but no shared variables. Since
we want to use the semantics as part of an existing method, rather than to develop a new
language, it is not useful to omit any of these problem features from consideration.

Support of the necessary language features is not the only issue when choosing a se-
mantics. Although no formal framework for the VLSI design method existed, there are of
course informal arguments justifying the transformations. It is preferable if formal proofs
can be created by formalizing these existing arguments (possible making them more precise
and complete), rather than by following an entirely different line of reasoning. For instance,
process algebra [2, 9, 16] is a popular formal method for proofs (and derivations) of VLSI
circuits [6, 10]. But proofs and derivations in such algebras seem very far removed from our
usual programming and design methods. This is not unique to VLSI design. Much work
in programming language semantics and formal derivations shares this property that the
formal method is entirely different from the informal method that is used in practice, even
if that informal method is systematic and precise. As a result, formal methods are only
rarely used in practical applications. In VLSI design, where the use of systematic design
and formal methods is less common than in programming, this problem seems likely to be
worse. Since we would like VLSI designers to use our semantics and proofs, we prefer a
semantics that uses the notations and concepts of existing practical design methods, and
that allows proofs to mirror the lines of informal reasoning used to justify transformations.

Because of this preference, we decided to use operational semantics. A semantics is
operational if it defines an (abstract) notion of program ezecution, and defines the meaning
of programs through the result of such executions. Note that whether a semantics is
operational or not is independent of whether it is formal or not: the latter attribute refers
only to the way the semantics is presented. Informal reasoning is often based on operational
arguments, so that there is hope that proofs in an operational semantics can mirror the
informal reasoning. /

Our goal is not just to assign meaning to programs: we want to prove that transfor-
mations preserve these meanings. If a program S is transformed into another program T,
preserving the meaning means that T' ¢émplements (or refines) S. Hence, our purpose in
defining a semantics is to define what it means for one program to implement another. The
standard method for describing operational semantics, [19, 20], does not quite do this: it
defines a notion of program execution, but does not really define what the result of such
execution is. Therefore, it is hard to use the result of execution to compare programs.
Other methods, usually called refinement calculi, do define an implementation relation,
but not one based on operational semantics.

Based on these considerations, we decided to develop our own method of operational
semantics, designed to support all the language features needed, and with the express
purpose of defining an implementation relation. The semantics gives precise definitions of

such familiar concepts as programs, program execution, and computations, and uses these
concepts to define an implementation relation.

1.2 VLSI

Abstraction is an important tool to build correct systems of increasing complexity. Ab-
straction is mainly a method of separation of concerns: it allows part of a design to be done
without concern for every issue that is relevant in the final implementation. For instance,
high-level programming languages allow one to write correct programs largely without con-
cern for execution time and memory usage. Abstraction not only enables designs of larger
complexity, it also increases the portability of such designs.

These arguments are as true for VLSI design as for program design. Since the com-
plexity of VLSI circuits is on the same scale as the complexity of large programs, it makes
sense to employ similar techniques to manage that complexity. In particular, it is useful
if a circuit can be described as a program in a more or less conventional programming
language. This requires that many physical properties of circuits are abstracted from the
correctness concerns. Examples of such physical properties are layout, voltages of signals,
switching speed, and energy usage. However, the implementation method must support
such abstraction. For instance, although it may be possible to show the “logical correct-
ness” of a design by simply ignoring timing issues, if the actual implementation critically
depends on timing properties for correctness, such a method is of limited use for correctness
proofs: at some point, the abstract design must match with the physical reality [21].

Although most VLSI design methods abstract from layout properties, not all allow
abstraction from timing issues. In particular, timing plays an important role in traditional
clocked designs (also called synchronous designs). Asynchronous design methods, on the
other hand, allow a large degree of abstraction from timing issues: rather than using a
clock, they rely on request and acknowledgement signals to enforce the proper order of
actions. In the past, few designs were asynchronous, mostly because no effective method
for designing large asynchronous circuits was known. As mentioned, by building many
successful circuits, the Martin synthesis method has been shown to be an effective method
for asynchronous circuit design. It overcomes many traditional problems, such as hazards
and races, by using the proper abstraction and implementation methods. By abstraction of
timing issues and by the use of a systematic refinement method, it reduces the complexity
of the design process, thus enabling faster design of larger circuits than more traditional
methods. Because of the large degree of abstraction, the method is a suitable candidate for
formalization. Although there is no inherent reason why timing issues cannot be formalized,
the bulk of the work on programming semantics and formal derivations does not take time
into account, suggesting that there is still a long way to go before correctness proofs for
synchronous systems can be given.

The existence of a systematic stepwise refinement method, the larger degree of abstrac-

tion, and, with this text, the existence of a formal semantic framework, are not the only
reasons to prefer asynchronous design over synchronous systems. In particular, the speed of
an asynchronous circuit is determined by the average case delay, rather than by the worst
case delay as in a synchronous circuit. Hence, asynchronous circuits have the potential to
be faster than their synchronous counterparts. Furthermore, only the parts of an asyn-
chronous circuit that contribute to a computation are switching, whereas in a synchronous
circuit all parts that are reached by the clock signal switch, regardless of whether that con-
tributes to the result. Hence, asynchronous circuits also have the potential for lower energy
usage than synchronous circuits. It is important to realize that abstraction does not mean
that issues like speed and energy cannot be taken into account: rather, it means that each
issue can be considered in separation. For instance, each transformation applied to a design
must be correct (i.e., semantics-preserving), but the choice of which correct transformation
to apply is normally guided by efficiency concerns. In particular, [3] and [11] describe how
optimization for speed can be integrated with the design process, whereas [26] introduces
a method to make early design decisions guided by energy consumption concerns. Finally,
the increased abstraction increases the portability of designs. For instance, the design of
the Caltech Asynchronous Microprocessor was implemented in both CMOS [15] and GaAs
[25], with virtually identical gate descriptions.

The Martin synthesis method, on which this text is based, starts a design with a
program, often sequential, written in a CSP-like notation. The CSP notation supports
the concurrent operation of sequential processes, which communicate and synchronize us-
ing rendezvous communication over channels. This initial program is transformed several
times, until a program with a large degree of concurrency, and of the proper form, is ob-
tained. The transformations that are applied during this part of the design often depend
on the particular program. The transformations are intended to increase efficiency (e.g.,
by introducing pipelining) and to obtain a program of the proper form for the next design
stage. This part of the design corresponds to what is usually called program refinement.
The following figure illustrates the design process, with each triangle corresponding to one
or more transformations. The program refinement stage corresponds to the horizontal

(CSP > CSP) transformations.

CSP > CSP > ... > CSP
v
HE
v
PRS
v
CMOS

When an appropriate CSP program has been achieved, it is transformed to a different
notation, call Handshaking Expansion (HSE). The main purpose of this transformation is to

replace all rendezvous synchronizations by protocols using shared variables. Eventually, the
HSE program is transformed to a gate-level description in a notation called Production Rule
Sets (PRS). The gate-level description is then mapped to the implementation medium, for
instance, CMOS. The transformations used in this stage of the design, depicted vertically in
the above figure, come from a relatively small collection and are quite systematic. Therefore,
this stage of the design closely resembles compilation (silicon compilation, in this case).

Because there is considerable effort involved in proving each transformation, we restrict
ourselves to proving the correctness of the more systematic transformations used during
the compilation phase. (ILe., the transformations that transform a CSP program into a
PRS program.) That does not mean that the formal framework cannot be used to prove
the ‘horizontal transformations.” But due to the large variety of those transformations, this
may be better done as part of each individual design. We should point out that the formal
semantic framework is used to prove the correctness of the transformations, not to guide
in chosing which transformation to apply. The power of abstraction is exactly that these
concerns can be separated.

Some of the transformations that are used in the Martin synthesis method have been
proven by Smith and Zwarico in [22]. Their approach is based on process algebra, where the
rules of the algebra are related to an operational semantics. Although their goals are similar
to ours, the use of process algebra makes the proofs quite different, and, in our opinion, less
closely related to the way the design method is usually applied (which, in turn, makes the
proofs harder to understand). Another important difference is that our implementation
relation is based on arbitrary environments, whereas their definition requires the use of

special testing environments.

1.3 Outline

This text consists of two parts. The first half gives a formal description of the semantic
framework, and uses it to define the meaning of the CSP and HSE programming notations
(the PRS programming notation is defined later, using the same framework). As explained,
the purpose of the semantics is to define an implementation relation. This part of the text
is quite independent of any VLSI design method, except that the choice of features for the
semantics (concurrency, rendezvous synchronization, etc.) is guided by the features of the
languages we want to use it for. Because we develop a new form of semantics, no knowledge
of other semantics is needed, but familiarity with formal methods will be an advantage.
The second part uses the implementation relation to prove transformations used in
the Martin synthesis method. Since the synthesis method uses rather standard program-
ming notations, and has abstracted from physical circuit properties, no knowledge of VLSI
technology is needed to understand this part of the text. However, familiarity with the
synthesis method will lead to a better understanding of the relevance of the proved trans-
formations. In this text we restrict ourselves to mentioning the approximate purpose of the

transformations; for a description of the complete synthesis method, see [14].

e Chapter 2 starts the description of the semantics, by formally defining what pro-
grams and computations are.

e Chapter 3 continues the description by defining how programs are executed, thus
establishing a relation between programs and computations. The chapter ends
with the definition of the implementation relation.

o Chapter 4 provides the transition between the semantics and the proofs of trans-
formations. Here we introduce techniques for proving transformations with the
formal semantics, and illustrates this by proving several general transformations.

e Chapter 5 proves the correctness of the transformations used to transform a CSP
program to a HSE program. In particular, we concentrate on replacing rendezvous
synchronization by handshake protocols using shared variables.

e Chapter 6 defines the semantics of PRS programs, and proves under which condi-
tions a PRS program implements a HSE program.

e Chapter 7 summarizes the results and lists some directions for future research.

e Appendix A explains the way we use abstract data types in our semantics. It shows
how the use of abstract data types in Chapter 2 can be made more rigorous.

On a final note, recall that one of our goals is to provide a semantic framework that
can be easily understood, uses familiar notations, and has a clear relation to the existing
design method. To further this goal, we often use conventional names for formal concepts,
such as ‘computation,’ ‘execution,’ and ‘environment’; use of easily understood terms does
not imply informality or imprecision. The reader should be careful to base proofs on
the formal definitions, not on assumed properties of the informal name. We also have
attempted to make the text easier to read by reducing the amount of formal notation. In
general, whenever a notation does not seem to contribute to the understanding of a proof,
it has been simplified, after first explaining the complete concept. For instance, a program
corresponds to a tuple (£, V(¢),Z(t)). But since ¢, which describes the code, is by far the
most important, we usually equate programs with just the first field of the tuple. Otherwise
we would have to start each argument with a phrase of the form “let T = (¢, V(¢),Z(t)) be
a program,” which does not contain essentially more information then “consider program
t.” Finally, we sometimes omit the braces around the elements of a set or bag. E.g., we
write ext((;t1,t) instead of ext(0; {t1,22}) (see Chapter 2), and T U ¢ instead of T'U {t}.

Chapter 2

Semantics:
Computations and Programs

In this chapter and the next one we define our semantic method. As explained in Section
1.1, the purpose of the semantics is to define when a program implements another. In this
chapter we describe how programs* and computations are represented in the semantics.
Both concepts are represented by certain mathematical objects. However, rather than
choosing existing mathematical data types (such as sets or lists), we define new abstract
data types. This allows us to tailor the data types to support exactly the language features
we want. This is important, because if a formal semantics is given for a language that
is already in use, it is necessary to convince oneself that the new formal description is
equivalent to the existing descriptions. Naturally, this cannot be formally proven if the
existing descriptions are not within a formal framework.

Convincing oneself of a semantic’s correctness is easier if language features map directly
to constructs of the semantics. For instance, in Chapter 5 we prove that rendezvous syn-
chronization can be implemented using a handshake protocol with shared variables. Hence,
a semantic framework that supports shared variables can also express synchronization, by
defining it as a handshake protocol. However, it is unclear how one should then convince
oneself that the semantics indeed defines synchronization. Likewise, in Chapter 6 we show
how sequential programs are implemented in a concurrent language without sequencing,
called PRS. The PRS language resembles Unity [4], hence it is tempting to use the Unity
proof methods. However, since Unity does not directly support sequencing, we would have
to use the methods of Chapter 6 to define sequential composition for the other notations
that we use. This would again make it hard to show the correctness of the semantics.
Therefore, we choose the semantics so that it can directly support the language features of
interest to us.

In the last section of this chapter we define the semantics of standard programming
constructs by mapping them to the earlier defined abstract data type for programs.

* In this text, the term program always refers to a program part; for instance, a single
assignment, a loop, and a sequence of statements, are all examples of programs.

The use of abstract data :cypes in semantics is not new. For instance, action semantics
[17] uses ADTs for the same reason we do, namely that that way programs can be mapped
to mathematical objects in a natural way. Apart from the use of ADTSs, however, there is
not much relation between action semantics and our semantics.

2.1 Data

It is often useful to separate the aspects of a program or programming language into data
and control. With data we refer to the values of variables and expressions, as well as
to components of the programming language that are directly related, such as operators,
declarations, and assignments. With control we refer to the constructs that determine
which operations are performed on the data and in which order, and to constructs that
build larger programs out of smaller parts. Control includes composition methods such as
sequential and parallel composition, as well as constructs such as loops and choices. Of
course, there are interactions between data and control: for instance, choices (which are
control constructs) are normally based on the value of data. Also, some variables, such
as a program counter, may be more properly considered part of the control than part of
the data. Nevertheless, the separation of concerns provided by distinguishing between data
and control is a useful principle that one encounters in many areas of computer science: in
software (algorithms and data structures), in hardware (control circuitry and datapaths),
as well as in semantics. This section describes how data aspects are represented in our
semantics; control is described in Section 2.3.

We call the set of program variables with their values the state of the program. During
the execution of a program, the state changes. (Note that we do not include the ‘current
position’ during execution of a program in the state, unless explicitly represented by a
program variable.) A state then is simply a mapping from variables to values. We will
not be particularly concerned with the types of variables, although in most cases we use
only booleans. We assume that all expressions are proper, in the sense that they obey type
restrictions and that they only involve variables that are in the domain of the state. We
call the set of all states, or the type of states, ‘State’.

In addition to the standard function notation for states, we use the following notation
to specify changes in states. Let o be a state, u and v variables, and a an expression of the
type of u. Then ofu — a] is also a state, defined by
a ifvisu

olu s al(v) = {a(v) if v is not u

and with domain D(o{u — a]) = D(c) U {u},

EXAMPLE 2.1
Let w and v be integer variables. Assume ¢ is a state such that o(u) = 1 and
o(v) =2.

® Let 7 =ofu ~ 3]. Then 7(u) = 3 and 7(v) = o(v) = 2.
® Let p = ow — 4]. Then p(w) = 4, regardless of whether o(w) is even
defined.
O

It is convenient to extend the domain of states from variables to expressions; this also
serves as the semantics of expressions. For instance, the meaning of the ‘+’ operator is
defined by

(a1 + az) = o(a1) + o(az)

The other operators are defined in a similar way; since the method is obvious, we will not
state those definitions. (Others sometimes use the notation ‘c[a]’ instead of ‘o(a)’ when a
is an expression.)

States can be used to define the effect of assignments. Let a be an expression of the
type of variable u, such that o(a) is defined. If we use conventional Hoare triples, the effect
of an assignment is

{o}u:=0a{olur o(a)]}

Since a is an expression in terms of program variables, it must be evaluated with respect
to a state, o in this case; we cannot just write ofu — a.

A variant of the assignment is the multiple assignment: (let b be an expression of the
type of variable v, such that o(b) is defined)

{o}u,v:=a,b{ofur o(a)][v— a®)]}

Note that b is evaluated with respect to o, not with respect to o[u — o(a)]. This means
that a and b are evaluated before any assignment is performed. Programming notations
that allow multiple assignments usually require that u and v are different variables, so that
the order of the assignments is irrelevant.

In this text we often use boolean assignments 41 and u |, defined by

{o} ul {o[u — true]}

{o}ul {o[u+ false] }

It follows that assignments can be seen as mappings from a state to a state, called state
transformers. Our semantics therefore equates assignments with state transformers, which
have type State — State. Consequently, we will often write u := a for the mapping that
changes o to o{u — o(a)], and likewise for the other assignments.

Note that state transformers can be specified independently of the domains of states
they are applied to. However, if the state transformer applies its argument state to some
variables, we will assume that those variables are in the state’s domain. For instance, if

= v+ w is applied to o, we assume that the domain of o, D(0), contains v and w, but
not necessarily u; the domain of the resulting state o[u — o(v + w)] does contain w.

9

We often encounter functions of type State — Boolean, which map states to truth
values. We call such functions guaerds (in other contexts they are often called predicates).
The guard that maps o to o(e) is written as simply the expression e (hence, e(g) = o(e)).
As with state transformers, if a guard is applied to state o, we assume that D(c") contains
all variables that o is applied to.

It is often useful to restrict the domain of a state to a given set of variables. This is
called the projection of the state onto that set.

DEFINITION 2.2 (Projection)
If o is a state and A a set of variables, then the projection of o on A, written o|A4,
is the state with domain D(c) N A and (c]A)(u) = o(u).

O

A useful property of projection is that if A C B, then o|A = (¢|B)|A.

We extend projection to sets of states by applying the projection to each element. If
X and Y are sets of states, then X CY implies that X |4 C Y |A.

2.2 Computations

We are concerned with the observable behavior of a program when it is executed. This
behavior we call a computation. Hence, a computation is the result of program execution.
In order to define computations, we must first decide which aspects of program execution
are observable. For purpose of this text, we decide that only variables and their values are
observable; hence, computations are built from states. This is not the only possible choice
of observable behavior: in other contexts it may be appropriate to consider execution
time, memory usage, or energy usage as relevant to the computation. We will ignore
those quantities — in particular, we will not make timing assumptions. (We do, however,
distinguish between finite and infinite time, i.e., between termination and non-termination.)

A second question is, who or what does the observing, and how is this done? In our
case, the observations are made by an enwvironment of the program. Environments, which
are described in detail in Section 3.3, can be composed with programs to form new programs
that can then be executed. Usually, there are restrictions on which environments can be
composed with which programs. The exact ways in which program and environment can be
composed are described in Section 3.3; here we only distinguish between two major classes,
sequential and parallel composition. Environment and program interact in two possible
ways: through data, i.e., by observing and changing the state, and through control, i.e., by
affecting the way in which execution progresses.

If an environment is composed sequentially with a program, the execution will consist
of partial execution of the environment, followed by execution of the program, followed by
partial execution of the environment (and maybe a repetition of this process). Hence, the
data interaction is simple: during the execution there are only two states that are shared
between environment and program, namely the initial and final states of the program.

10

Therefore, the program’s computation can be described by just listing those two states, as
we did in the previous section with a Hoare triple. The program can also interact with the
environment through control: if the program does not terminate, then the environment will
never be executed once the program is started. (We ignore the control interactions between
the part of the environment executed before the program is started and the program,
because our focus is on the program’s behavior rather than the environment’s behavior.) If
we want to describe a non-terminating computation with a Hoare triple, we can introduce
a special state, ‘0o’ say, to use as ‘post condition’ for such a computation. It is also possible
that a program attempts to perform an illegal operation, such as division by zero. Since
we are interested in program transformations, we will assume that the initial program is
free of such errors. If needed, it can be handled by adding an extra ‘error variable’ to the
state, or by introducing a special error state. In many theories of sequential programming,
non-termination is considered equivalent to an error.

In summary, a sequential program can have the following types of interaction with its

environment:

e Data interaction: initial and final state
o Control interaction: non-termination

We call a program that is intended to be composed sequentially with its environment a
sequential program, even though the program may very well have internal parallelism.

EXAMPLE 2.3

® An interactive Pascal program is not a sequential program, since the environment
(i.e., the user) is supposed to ‘execute’ simultaneously with the program.

e A program executed as a batch job is a sequential program (with respect to the
user as environment), even if it is executed on a parallel computer, because it does
not interact with the user while executing.

O

In this text we do not restrict ourselves to sequential composition, but also allow the
environment to be composed in parallel with a program: By analogy with the term se-
quential program, a program that may be composed in parallel with its environment is
called a parallel program. If the environment and program are composed in parallel, the
environment is executed simultaneously with the execution of the program. As a result,
the data interaction is more complex than for sequential programs, since the environment
can potentially observe and change any state during the program’s execution. Therefore, to
describe the computation, we list all states that occur during the execution. Such a list of
states is called a trace. The control interaction of parallel programs is also more complex.
Since we still allow sequential composition, non-termination is one way of control interac-
tion. However, now it is useful to distinguish two types of non-termination. The first occurs
when a program keeps producing states forever; this results in an infinite computation and
therefore in an infinite trace. Unlike the situation with sequential programs, for parallel

11

programs this type of non-termination is not considered an error; in fact, in many situations
it is the rule rather than the exception. The second type of non-termination occurs when
the execution can only continue if a certain state occurs, and that state does in fact not
occur. In particular, this happens if the program is waiting for the environment to change
the state, while the environment is waiting for the program to do the same thing. This
second form of non-termination is called deadlock. Deadlock does not lead to an infinite
trace. To distinguish between termination and deadlock, we introduce a special deadlock
state ‘L’; whenever a computation gets into a deadlock (in other words, the computation
blocks), we add L as last element of the trace.

Most parallel programming languages have some construct to synchronize between pro-
gram and environment, which introduces an additional form of control interaction. Syn-
chronization between program and environment does not change the state. But since syn-
chronization requires a cooperative effort of program and environment, it can potentially
fail. If program and environment attempt to synchronize in incompatible ways, a situation
similar to the above deadlock arises: the execution cannot continue because a certain syn-
chronization condition has not been established. This situation is also called deadlock, and
is indicated by the same L state in the trace.

Hence, a. parallel program can have the following types of interaction with its environ-

ment.

¢ Data interaction: any state
e Control interaction: non-termination
e infinite computation/trace
e deadlock (1)
e Control interaction: synchronization
e successful synchronization is not observable
e unsuccessful synchronization leads to deadlock (L)

Next we give a formal definition of traces. This definition is in the form of an abstract
data type (ADT). The ADT defines a set of objects with certain properties. Such a set of
objects is called a type. For instance, the type of states is State, the set of all states; the
type of real numbers is JR. Some types are constructed from one or more other types, such
as a set of states. We denote the type ‘set of states’ by set of (State). To discuss properties
of sets that do not depend on the particular type of elements of the set, we use set of (4),
where A is an arbitrary type. Traces are also constructed from another, arbitrary, type;
hence, below we define a type traceof (X). At the end of this section we will make a
specific choice for X to represent computations. We define the ADT by first describing
what the form is of elements of the ADT (i.e., we describe the constants and constructors),
and then stating some axioms about these elements. More details about ADTs are given
in Appendix A; in particular, that appendix lists some implicit assumptions we make to
simplify the definition. It should be pointed out that the purpose of the ADT is to formally
define traces, so that later we can refer to them; we have no intention of using the given

12

axioms to prove lots of properties of traces. The most important part of the definition is
axiom t5.

Let Trace = trace of (X). For any = € X and any p,q,r € Trace, the following axioms
hold.
e Constants and constructors

tl. @€ Trace
oo € Trace
z € Trace

t2. p+Hq € Trace

e Equivalence axioms
t3. pHO=0+p=p
td. (pHg)Hr=p+(g+r)

th, zHz ==z

o Infinite traces
t6. z#HxHx+ ... =z + oo (for an infinite sequence of z’s)
t7. coHp=o0

t8. p=gq & (Vr : ris finite : r prefix of p < r prefix of ¢)
where r prefix of p= (3p’ : : p=1+p').

We briefly discuss the definition.

Axioms t1 and t2 describe how traces are constructed. There are three types of ‘prim-
itive’ traces: an empty trace, ‘0’; a special infinite trace, ‘co’; and traces consisting of a
single element. (It is assumed that) and co are not in X.) More complex traces can be
constructed through the ‘4’ operator, called concatenation.

According to axiom t3, @ is the (left and right) neutral element of concatenation.
Furthermore, concatenation is associative according to axiom t4.

As mentioned before, we do not make timing assumptions. Therefore, consecutive
observations of the same state do not contain any more information than a single observation
of that state. Hence, we may just as well collapse consecutive identical elements into a
single instance of that element; this is expressed by axiom t5. The presence of consecutive
identical states is called stuttering, and we refer to this axiom as the stuttering aziom.

We do not want to collapse infinite sequences (generated by non-terminating compu-
tations) into single elements; therefore, we introduce a special symbol ‘co’ and axiom t6.
This axiom can be considered a technicality.

Finally, although we can observe an execution for an arbitrarily long time period, we
cannot spend ‘infinite time.” Therefore, if a computation is already infinite, we do not

13

care what happens afterwards. This is captured by axiom t8, which says that two traces
are equal if all their finite prefixes are equal. Hence, if p is an infinite trace, then pHq
is equal to p + 7. In this context, an infinite trace is one that requires infinitely many
construction steps. ‘oo’ represents an infinite trace, but requires only a single construction
step; therefore, it has its own variant of this axiom, t7.

Here is a normal form for finite traces.

Let Trace = traceof (X). A trace representation is in normal form if it has one of the
following forms, for arbitrary z,y € X and p € Trace. (0,00 g X)

t1. 0, oo, z.
t2. z +y, where = # y.
t3. z ++ (y + p), where z # y and y + p is in normal form.

t4. xz +o0.

Hence, in the normal form, traces are written in right-associative form, z + p; repeating
elements are removed; and empty traces are removed as much as possible. This normal
form follows the standard procedure: The ‘primitive’ traces constructed by t1 (note the
typographical distinction between t1 and t1) are always in normal form; for other traces
(those constructed by t2), the normal form is obtained by favoring the right-hand side of
t3-t7, until none of these axioms can be applied. It is straightforward to check that none
of the left-hand sides of t3-t7 match traces of the form t1-t4. That every finite trace can
indeed be written in a unique normal form requires a somewhat tedious, but not difficult,
proof; we do not give this proof, because it is not important for our purposes, but an
example of a similar proof is given in Appendix A.

We will not give a formal description of a model for the ADT, but only an informal
description to make it plausible that such a model exists. Model a trace by a list of elements,
but assume that the elements can only be observed by ‘walking through’ the list from the
beginning. Then it is straightforward to only report an element when it differs from its
predecessor, as in axiom t5. Also, that way, traces can only be distinguished if they differ
in a finite prefix, as in t8. Finally, reporting only new elements does not work if there is an
infinite sequence of identical elements; if such a sequence can be detected, we can report
the oo trace. However, depending on how traces are specified, it is not necessarily possible
to determine whether a trace can be written with oo or not.

The above ADT defines a type traceof (X) for arbitrary type X. We have already
said that we wanted to represent computations by traces of states, hence the following
definition.

DEFINITION 2.4 (Computation)
The type of computations is Trace = trace of (State).
O

14

(State is the set of all states, including L.) Unless otherwise stated, the term trace refers

to an element of Trace.
EXAMPLE 2.5

(|

Although we have not yet formally specified what the relation between programs
and traces is, we can give an informal example. Consider program

ul;vTsul; vl ul
Recall that an assignment like uT is a state transformer that takes a state o and
changes it to o[u + true]. If the initial state of the execution is o, this program
generates the following trace (we have written ou] for o[u — true| and o[—u] for
olu — false]):
olu] + ofu][v] +# ou][v][u] + ou][v][ul[~v] + o u][v][u][~v][~u]
Observing that o[u][—u] = o[-u] etc., this is equivalent to
olu] + ofu][v] + olu][v] + o[u][-v] + o[-~u][~]
Since the second and third states in this trace are identical, we can remove one of
them using the stuttering axiom, resulting in
olu] + ofu][v] + oful[w] + o[~u][-]

Hence, according to the definition of traces, the second u] does not contribute
to the computation: it might as well be removed. This is indeed what we would
intuitively expect from this program. If o # o[v], the last representation of the

trace is in normal form.

We extend projection to traces, by applying the projection to each state in the trace.

(Le., (c #+p)|A = (c]A) + (p|A), etc.) The projection of L onto any set is just L, so that
projection can never remove L from a trace. Furthermore, projection is extended to sets
of traces by applying the projection to each element trace.

EXAMPLE 2.6

Take the trace from the previous example. Assume that o(v) = false. Then, if we

project on {u,v}, we get
[u][=0] + [u][v] # [u][-v] + [~u][-v]

where 7 = [u] stands for the function with domain D(7) = {u} and 7(u) = true.

If we project on just {u}, we get
[u] + [u] + [u] + [-u]

which, by t5, is
[u] + [~u]

15

2.3 Programs

Normally, the syntax and type rules of a programming language define which objects are
programs. However, in this section we define a special Program data type, independently of
a specific programming language. A programming language can then be seen as a special
notation for objects of Program type. Using this data type has the obvious advantage
that we can talk about programs without reference to the language they are written in; in
particular, it allows us to compare programs written in different languages. The Program
data type is also convenient when we define environments. Programs can be executed, and
then produce computations (traces); execution of programs is the subject of Chapter 3.

Although the Program data type is independent of a specific programming language,
we have chosen a data type that can support the constructs that are of interest to us in this
text; there may very well be programming languages that do not easily map to the Program
data type. Since we have already introduced a data type for the data aspects of programs
(namely, State), we now concentrate on the control aspects of programs. In particular, we
want our data type to support the following control aspects.

e sequential composition;

e choices;

e non-determinism;

e parallel composition; and

e rendezvous synchronization.
Below we define an ADT ‘tree of (Nt, Et),” which supports these operations. Here, Nt and
Et are arbitrary types on which the ADT depends; later we make specific choices for Nt
and Et to represent programs. (Why we call the ADT a tree is explained below.) Actually,
the ADT depends on another arbitrary type called Label. But since the only important
property of Label is that its elements can be distinguished from one another, we will mostly
ignore it. The ADT uses some sets and bags; a bag (also called a multiset) is similar to a
set, but can contain more than one copy of an element. As mentioned in Section 1.3, to
simplify notation, we sometimes omit the braces around elements of a set or a bag. E.g.,
we write ext((; t) instead of ext(@; {¢t}), and T Ut or T, ¢t instead of T U {t}.

As with the ADT for traces, we point out that the purpose of the ADT is to enable us
to refer unambiguously to trees; we have no intention of using the axioms to give formal
proofs for lots of properties of trees. In fact, we will almost never compare trees directly,
but instead ‘execute’ them and compare the resulting computations.

16

Let Tree = treeof (Nt, Et). The following axioms hold for any f,g € Nt; e € Et
t,to,t1,... € Tree; S, T € set of (Tree); U,V € bagof (Tree); and £ € Label.
¢ Constants and constructors

T1. 0 € Tree
f € Tree
sync,(f;g) € Tree

T2. ext(t; T) € Tree, if T # {}.
T3.e >t € Tree
T4. par(U) € Tree, if U # {}.

e Equivalence axioms

T5. ext(ext(to; T'); S) = ext(to; (Ut : t € T : {ext(t; 5)}))
or, in its simplified form:
ext(ext(to; t1,..-,tk); S) = ext(to; ext(t;; S),. .. ext(ty; 9))

T6. ext(e — t;5) = e — ext(t; S)

T7. ext(0;t) =t

T8. ext(t; T U ext(d; S)) = ext(t; T U S)
T9. par(U Upar(V)) = par(UUV)
T10. par(t) =t

First we explain the ADT without reference to programs. The ADT is easiest explained
in terms of a model for it. As the name suggests, we choose trees (with some special
properties) as model. Since trees are often more easily understood with a picture, we
present graphical descriptions of some of the trees we use. The pictures are for purpose of
illustration only: the actual description of trees is with the constructors T1-T4.

Any tree t can be drawn as simply: ¢ A

The trees are labeled: node labels have type Nt, edge labels have type Et. (Some
nodes have an additional identifying label of type Label.)
Axiom T1 defines the nodes of the tree.

e ‘(" is a special empty node (or empty tree). As before, we assume that § ¢ Nt.
The graphical representation is
o

e A node label by itself forms a node. We show it as
fe

17

e The third, and last, type of node is called a ‘sync’ node. This type of node, written
as syncy(f; g), has two node labels (f and g) and an extra identifying label (¢). It
is drawn as

fi 93¢

According to T1, a single node is considered a tree. We point out that in sync,(f; g)
the parentheses and the semi-colon are part of the notation: the node depends on three
elements, £ € Label and f,g € Nt. In particular, there is no special meaning attached to
the use of a semicolon — any other separator could have been used.

The ext constructor of T2 extends the tree, i.e., it adds any number of children to the
tree. Graphically this is shown as

ext(?; 81,...,8) =

This differs from more ‘standard’ definitions of trees, where children can only be added to
nodes, not to whole trees. Axiom T5 specifies what it means to add children (which are
trees) to a tree: duplicates of the children are added to each leaf of the tree. For instance,

if
_ f
tA - g1 /\ g2

then

a1 g2

51 52 s s2 81 89

with two instances each of s; and s3. In other words, T5 describes the associativity of
ext. Recall that ext(t; s1, s2) is short for ext(t; {s1,s2}). It is significant that the second
argument of ext is a set: it means that we do not distinguish between identical children
(i.e., all children are different), and that children are unordered. As with sync nodes, the
parentheses and semicolon in ext(¢; S) are part of the notation.

The ‘=’ constructor of T3 adds an edge label to the root of a tree.

18

A tree with an edge label is itself a tree (to which another edge label can be added). Because
of the types of its arguments, ‘—’ must be right-associative: e; — ey —t =¢; — (e2 — t).
An edge label can be considered a ‘dangling’ edge. Hence

€1 i

e1— e —t = e and ext(t;e —s) = e

t L)

According to axiom T6, it does not matter whether edge labels or children are added first:

(k8N) = e) =

The par constructor of T4 allows us to consider a bag of trees as a single tree. In the
graphical representation we draw a box around the bag of trees:

par(ty,..., &) = tlA <. Atk

Since this is a single tree, it can be used together with other constructors; for instance
i

ext(f; ext(par(t1, t2); 51, 52)) = tlA At2

s $2

Again, the elements of par are unordered, but they need not all be distinct. We do not
distinguish between a bag of a single tree and the tree by itself, as specified by axiom T10.

t/\ | = ¢\

19

Axiom T9 specifies associativity of the par constructor. For instance

t/\
ty A Atg = 4] /\ /\tz /\ts

Finally, T7 and T8 say that empty nodes don’t count: they can be inserted or removed
anywhere in a tree. Basically, we use empty nodes as place holders if we do not yet know
which normal node will be used. Examples of T7:

e e
= ¢ and =
A= d -2

/ f
5] =
12 13

In contrast with our definition of traces, we have no special axioms for infinite trees, al-
though we will use some infinite trees (namely, trees with infinitely many extensions). In
particular, we have no equivalent of t8 saying that only finite ‘prefixes’ of trees can be
observed. The reason is that we do not observe trees directly at all: instead, in the next
chapter we describe a procedure that associates certain traces with trees; these traces are
then observed. The result is that only finite prefixes of trees can be observed, since they
correspond to finite prefixes of traces. Hence, there is no need to complicate the definition
of trees with axioms that specify this restriction explicitly.

An example of T8:

20

Here is a normal form for trees.

Let Tree = treeof (Nt,Et); f,g € Nt; e € Et; t € Tree; S € set of (Tree); U,V €
bag of (Tree); and £ € Label.

o A tree representation is in normal form if it has one of the following forms.

T1. 0, f, sync,(f; 9).

T2. ext(; S), where S has more than one element and ¢ € S is in internal normal
form.

T3. ext(n; S), where ¢ € S is in internal normal form and n is f or sync,(f; g).

T4. ext(par(U); §), where ¢ € S is in internal normal form and par(U) is in normal
form.

T6. e — t, where { is in normal form.
T6. par(U), where U has more than one element and ¢ € U is in normal form and
t # par(V).

e A tree representation is in internal normal form if it is in normal form and not of
the form described by T2.

Hence, in the normal form, extension is written in right-associative form: ext(n;S) with
n a node, or ext(par(U); S), but never ext(t; S) for other forms of ¢; nested par constructs
are removed; and empty nodes are removed as much as possible. In what is called internal
normal form, no trees of the form ext(9;...) are allowed. Therefore, if ext(n; S) is in normal
form, no t € S can start with a @ node. Hence, §§ nodes can only occur as the root of a
tree, following a labeled edge, or as the root of a tree in a par construct; in each of these
cases, the () node must have more than one child. In addition, # nodes can occur as leaves,
i.e., without any children at all.

EXAMPLE 2.7 (B Nodes)

The normal form of is g g2

i @ 92 bl f

a

As before, the normal form is constructed by application of two rules: Trees of a form
described by T1 are in normal form; for all other trees (those constructed by T2-T4), the
normal form is obtained by favoring the right-hand side of T5-T10. Once again, the proof
that this is a normal form is omitted, because it is lengthy but straightforward, and not
very important for our purposes.

21

The above ADT defines a type tree of (Nt, Et) for arbitrary types Nt and Et. In order
to represent programs with trees, we make the following choices for Nt and Et.
DEFINITION 2.8 (Program)

The type of programs is Program = tree of (State — State, State — Boolean).

O ‘

We refer to elements of Program as programs or program trees, or, occasionally, if the con-
text is clear, just trees (however, in the next chapter we will use trees with different choices
for Nt and Et). State — State is the type of state transformers (mappings from states
to states). As we have already seen, assignments can be considered state transformers.
Because state transformers are used as nodes in program trees, we sometimes refer to them
simply as nodes. State — Boolean is the type of guards. Hence, programs are trees with

state transformers as node labels and guards as edge labels.
In the remainder of this section we define some terms that are useful when dealing with

trees.
DEFINITION 2.9

* A tree of the form ¢ or ext(¢;...) is called a tree starting with t; in particular, f
and ext(f;...) are trees starting with f.

e A tree of the form e — ¢t is called a guarded tree.
a
The following definitions characterize what part of a state is important with respect to
a guard or state transformer.

DEFINITION 2.10 (changes)
e If f is a state transformer, changes(f) is defined as the set of variables u for which

u € changes(f) =
(F0 : o € State : (u & D(o) Au € D(f(0))) Vo(u) # (f(o))(u))

o If f and g are state transformers, changes(sync(f39)) is defined as
changes(sync,(f; g)) = changes(f) U changes(g)

O

changes(f) is the set of variables that f assigns to and changes. This includes variables
that are assigned a new value, as well as variables that previously were not part of the

state.
DEFINITION 2.11 (depends)

e If e is a guard, depends(e) is defined as the set of variables u for which

u € depends(e) = (Ela,‘a : 0 € State A a € type(u) : e(o) # e(o[u — a]))

22

e If f is a state transformer, depends(f) is defined as the set of variables u for which

u € depends(f) =(Jo,a : o € State A a € type(u) :
(o0 € D(f) Aour— a] € D(f))V
(f(o)lchanges(f) # f(olu — a])|changes(f)
)

e If f and g are state transformers, depends(sync,(f;g)) is defined as
depends(syncy(f; g)) = {€} U depends(f) U depends(g)

]

depends(f) is the set of variables on which the assignment performed by f depends; its
definition is clarified by the example below. £ € Label is not a variable but nevertheless
part of depends(sync,(f;g)), because, as we will see later, the execution of sync nodes
depends on these labels.

EXAMPLE 2.12
e fisu:=v+w: changes(f) = {u} and depends(f) = {v, w}.
o fisu := u: changes(f) = {} and depends(f) = {} (note that, by convention,
u € D(0) if o € D(f), because f refers to o(u)).
e fisu:=u+1: changes(f) = {u} and depends(f) = {u}.
e fis u:=c where c is a constant: changes(f) = {u} and depends(f) = {}.
e fisu = L where v and w can only be 0 or 1: changes(f) = {u} and

v—w

depends(f) = {v,w}. Note that if o € D(f), then o(v) # o(w) (to avoid divi-
sion by 0). Hence, changing a single variable, as in the definition of depends(f),
results in ¢’ € D(f). This is the reason for the first disjunct in the definition of

depends(f).

a

We extend depends and changes to program trees by taking the union of the corre-
sponding sets for each guard and each node. This is easily formalizable with rules like

depends(ext(f;t1,...,t)) = depends(f) U depends(t1) U. ..U depends(t;)

We omit the remainder of that formalization.

DEFINITION 2.13 (var)
For a program t the set of its variables is defined as

var(t) = depends(t) U changes(t)

23

As we pointed out at the beginning of this section, a programming language can be
seen as a special notation for objects of type Program. Hence, now that we have defined
what type Program is, we should define how programming language constructs correspond
to program trees. This is the subject of the next section.

2.4 Standard Programming Constructs

In the previous section we defined that programs are trees with state transformers as node
labels and guards as edge labels:

Program = tree of (State — State, State — Boolean)

In this section we describe how standard programming constructs, like assignments and
sequential composition, correspond to such program trees. Since programs are trees, and
because this is an operational semantics, there must be some way to ‘execute’ trees. The
formal definition of program execution is the topic of Chapter 3; for the time being, we
use an informal notion of execution to motivate the correspondence between programming
constructs and trees. For the description below, recall that we write u := a for the state
transformer that maps o to o[u + o(a)|. Likewise, if e is a boolean expression, we write e
for the guard that maps o to o(e). Below, let t; and #; be programs.

Informally, the idea of program execution is that a computation corresponds to a path
through the tree, starting at the root and moving in the direction of leaves. We start the
path with the initial state of the computation. Whenever we encounter a state transformer,
we apply it to the state to get a new state. Hence, the simplest statements, such as skip

and assignments, correspond to nodes.

e A skip is a node with the identity function as label:
skip = zw— =z o skip

By analogy with the notation for assignments, we write skip to denote the identity
state transformer.

e An assignment maps to a single node with the appropriate state transformer as label:
ui=a = u:=a eu:=a

(The first assignment is the notation used in programs, the second and third denote

state transformers.)

Empty nodes, @, should have no effect on the computation whatsoever, because we
want to use them merely as place holders. Although a skip does not modify the state, we

24

have equated it with a state transformer rather than with @. The reason is that we do not
want to remove statements from the tree, like we can often do with @ nodes; if a statement
has no effect on the computation, then that should follow from the result of its execution,
not from its a priori removal.

Once the state has been modified by a node, the execution moves to a child of the node.
If there is more than one child, there is more than one way to continue the computation:
the execution has reached a choice. Since there is no ordering among the children of a tree,
the choice is non-deterministic.

e Since execution of a tree is followed by execution of a child, sequential composition
corresponds to the ordering between parent and child:

3]
ti;te = ext(t;)
9]

e The ext constructor can also be used to denote a non-deterministic choice between #

and fy:

tillt, = ext(B;t1,)
t b2

However, this non-deterministic branch is not a statement that we actually use in our

notation.

From the definition of sequential composition it follows that sequential composition is as-

sociative:
(t13t2);t3
= {definition}
ext(ext(t1;t2); t3)
= {T5}
ext(ty; ext(tz; t3))
= {definition}
t1; (t2; 3)

Whenever the execution encounters a guard, the guard is evaluated, i.e., applied to
the current state. Only if the guard yields true can the computation continue beyond the

guard.

25

e A wait [e] is a statement that cannot be passed unless e holds:
le] = e—9 el

e By combining guarded trees with non-deterministic branching, we obtain the standard
selection statement with guarded commands:

[e — t1
Des—s t, = ext(Bier —t1,e—)
] 3] 12

€1 €2

Note that the intention is that the guards are evaluated before the choice between
the children is made; after guard evaluation, we can only choose between guards that
yielded true.

It is possible that the execution reaches a point where all continuations start with a false
guard; in that case the computation ends with deadlock (L), as explained in Section 2.2.

If a choice is made non-deterministically, potentially the worst possible choice can be
made. Therefore, this type of non-determinism is sometimes referred to as demomnic non-
determinism. The opposite of demonic non-determinism is angelic non-determinism, where
we can count on the best possible choice being made. Angelic non-determinism cannot easily
be implemented, so that it is unlikely to be found in an operational semantics. However,
from our definition of the selection statement it follows that the non-determinism provided
by the choice between multiple children is not quite demonic either: a child starting with
a false guard cannot be selected. Even without a definition of what constitutes a good or
a bad choice, a choice for a false guard would certainly be rather bad, as it would lead
to deadlock immediately. Hence, our form of non-determinism is more ‘benevolent’ than
demonic non-determinism; we call it guarded non-determinism.

Above, we gave an example definition of a non-deterministic branch, t;{ty. If ‘[’ is
supposed to express a demonic choice, the given definition, ext(®;¢;,¢s), is not correct,
because guarded non-determinism is used to make the choice. We can force a demonic
choice by making sure that neither of the alternatives is guarded by a false guard. Here
are two ways to achieve that. (If both alternatives are guarded by a false guard the choice
is also demonic, because either choice is equally bad. However, we cannot enforce this
situation without changing the meaning of the program.)

e Assuming that the presence of a skip does not alter the meaning of a program, the
following defines a demonic choice between #; and t,:

ki ki
tlita = ext(D;ext(skip; 1), ext(skip; t2)) SKip skip

t 12)

26

o The same effect is obtained by insertion of extra true guards:

true frue

4 ta

tllt, = ext(d;true — t;,true — t3)

For convenience when discussing program trees, we define the following terms.
DEFINITION 2.14

e A tree of the form ext(f;t1,...,%) is called a choice if k > 1. ti,...,t; are called
alternatives.

® A guarded choice is a choice where each alternative is a guarded tree or a tree
starting with a sync node; an unguarded choice is a choice where at least one
alternative is not guarded and does not start with a sync node.

* A guarded tree that is not part of a choice (e.g., ext(f;e — t) is not a choice) is
called a wait.

We often write non-terminating programs. Since a computation corresponds to a path
through the tree, a non-terminating computation must correspond to a non-terminating
path, which requires a non-terminating sequence of extensions (ext constructors). In other
words, a non-terminating loop is represented by its infinite unrolling. As mentioned before,
only finite prefixes of a trace, i.e., of a computation, can be observed. Therefore, since trees
are observed only by observing their computations, only finite ‘prefixes’ of infinite trees
are observable. This is what allows us to treat infinite trees somewhat informally (see also

Appendix A).
o Infinite loops correspond to infinite trees:
*[1] = ext(t;ext(t;ext(t;...))...)

e A guarded loop can terminate after any number of iterations, or never terminate.
Therefore, a guarded loop is also an infinite tree, but there are leaves at finite depth:

*[e —t] = ext(d;—e—0,e — ext(t;—e — 0, e — ext(t;...)...)
t
-e/\e
[
i
~e/\e
*[t] = *[6 E— t] =
t
t
=0 -e/ \e

27

Considering the name we gave it, it should hardly come as a surprise that par constructs
are used to express parallel composition.

e Parallel composition:

t//te = par(ty,ty) tlA Atz

We have chosen to model parallel execution with non-deterministic interleaving, meaning
that we non-deterministically choose between the trees, execute one ‘step’ of that tree,
and repeat the process. The details are not important here, and are explained in the next
chapter.

From the associativity of par, as expressed by axiom T9, it follows immediately that
parallel composition is associative. Since par takes a bag as argument, the elements of
which are not ordered, it also follows that parallel composition is commutative.

The execution of sync nodes differs from the execution of regular nodes: sync nodes can
only be executed in pairs, formed by sync actions with identical £ labels (as in sync,(f; g)).
With a pair of sync nodes, we associate a state transformer called the match. The execution
of a pair of sync nodes is then the execution of the corresponding match.

DEFINITION 2.15 (Matching sync Nodes)
The match of sync,(fi; f2) and sync,(g;; g2) is the state transformer

fraogao fiog

g

The result of the match depends on which sync node is taken first. If, however, f 0 gy =
g20 fa and fi0g; = g0 f1, then the match is independent of the ordering of the sync nodes;
in that case we say that the match is commutative.

In our programming notation we use rendezvous synchronization (also called syn-
chronous or slack-less synchronization), where a synchronization action can only complete
when executed simultaneously with another (matched) synchronization action. If synchro-
nization actions end with a sync node, they indeed exhibit this rendezvous behavior, because
sync nodes are executed as a pair in a single step. It is possible to combine synchronization
with exchange of data; in that case, the synchronization actions are called communication
actions. The two state transformer labels of sync nodes can be used to represent such an
exchange of data.

The programming notation must identify which synchronization actions can be matched;
often an object called a channel is used for this. However, the exact mechanism for this

28

in the programming language is not important for our purposes; therefore, in this text we
usually identify pairs by using a label £ as subscript of each synchronization action, as in
Cy. This same label is then used for the corresponding sync nodes.

e Let C; be a synchronization action that can be matched with another, identical, C,
action. Since there is no data involved, both state transformer labels are identity
functions:

Ce = sync,(skip;skip) ¢xskip; skip

Obviously, the match of two of these actions is commutative and equal to skip.

e Let Cyla be a communication action, called a send, that can be matched with a com-
munication action Cp?u, called a receive. Here, u is a variable and @ is an expression
of the type of u. To represent these actions with trees we introduce an extra variable
Cy in the state:

Cila = sync,(C, := a;skip) {%Cy := a;skip

Ce?u = syncy(skip;u := Cp) ¢x¢skip; u 1= C,

The match of these two actions is commutative (because each pair of functions involves
an identity function) and equal to

(u:=CposkipoCp:=aoskip) = (u:=CpoCyp:=a)

This has the same effect on u as u := a (the effect on Cy is irrelevant because Cy is not
used anywhere else). For this reason, a communication is sometimes called a remote

assignment.

The send and receive are the standard CSP communication actions. They move data
from the sender to the receiver. It is possible to define more complex exchanges of data,
such as a swap. In a swap, data is moved in both directions; hence, it is somewhat like
the combination of a send and a receive. We’ll use here the notation C'a?u, but we could
just as well have used C?ula or C!?(a,u) or so — this denotes a new type of action, not a
special case of the earlier send and receive actions.

e Let Cyla;?uy and Cylag?uy denote swap actions that can be matched with one another.
We introduce two extra variables in the state, Cel and CE.

Cila?uy = syncy(C} := ar;up := C}) (% C} = a5 u = C?
Colag?uy = syncg(Ce2 1= ag; Uug 1= Cel) % G£2 = ag; ug = C’,_,l

29

The match is again commutative (because a; and ay do not depend on C} and C?),
and equal to
ur:=C}ouy:=CloC} := a1 0 C} = ay

The effect on u; and uy is that of the multiple assignment

U, U2 = az,a;

Let Cy! and C,? be matching synchronization actions. If Cy! is executed but no matching
Cy? is available, the Cy! action cannot complete — it suspends. In a program it is sometimes
desirable to avoid this situation. For this, an operator called the probe [12] can be used.
The probe of Cy!, which we write as #Cy!, is an expression that evaluates to true if it is
guaranteed that Cy! will complete rather than suspend; this guarantee can be given if and
only if a Cy? action has already been reached. The meaning of #C,? is symmetric: it is
true if a Cy! action has been reached. (Note: more common notations for the probe are Cy
and #CY, where the context makes clear whether it is the sending (!) or the receiving (?)

side of the channel that is being probed.)
‘The definitions of synchronization and communication actions given above do not allow

for probing. However, they are easily modified to make a probe possible.

e Let Cy! be a synchronization action that can be matched with Ce?. (‘" and ‘?’ are
used so that we can distinguish the two probes, even though no data is exchanged.)
To represent probes in a program tree, we consider ‘#Cp!” and ‘#C,?’ variables (with
admittedly unusual names) rather than expressions. The following definitions of C!
and Cy? give these variables the values corresponding to the probe:

Cel = ext(#C,?1;syncy(skip; # Co?]))
Ce? = ext(#CplT; syncy(skip; #Ce!l))
#Ce?1 #Ce!TT

C! = Ce? =
skip; #Ce?| 3¢ skip; #Cpl] ¢

e Communication actions are extended to allow probing in exactly the same way:
Cila = ext(#Cp?1;syncy(Cy := a; #Ce?)))

Co?lu = ext(#Cp!T; syncy(skip;u := Cpo #Cp!l))

30

Cy? 1
Cla = e Cotu = e
Cr:=a;#Cp?| 3¢ skip; v := Cpo #Cp!| % ¢

These definitions still exhibit the desired rendezvous synchronization, because they end
with a sync. In both cases, the match of the synchronization actions is still commutative.
Note that, for instance, #C,? is only used in Cy!, not in Cp?. Other parts of the program
can read #C¢?, but cannot assign to it. It follows that if #Cp? is not read anywhere,
then it may just as well be omitted, meaning that the old definition (without probe) of
Ce! can be used. This is independent of whether the old or new definition of C,? is used.
(That an unused variable can be omitted seems intuitively correct; we will formally prove
it in Chapter 4.) In practice, our programs always have the property that at most one of
#Cy? and #Cy! is used, never both. Therefore, we can always use at least one of the old
definitions. . B

This completes the definition of standard programming constructs in terms of program
trees, thus establishing conventional programming language constructs as alternative nota-
tions for trees. Indeed, we will often use programming notation to denote trees, just as we
write assignments for state transformers.

EXAMPLE 2.16
ul; [vl; wl; [-v]

denotes the tree

ul

e*t(uT; v — ext(ul;—v — 0)) ul
-

a

Note that all data aspects of a program are captured by state transformers and guards,
whereas the structure of the tree captures the control aspects, thus providing the separation
of data and control we mentioned at the beginning of this chapter. Together with the seman-
tics of expressions (i.e., definitions like o(a; +a2) = o(a;) +o(az)) given in Section 2.1, this
section is the only part of the semantics that refers to a particular programming language.
All other parts of this and the next chapter are concerned with language-independent ob-
jects such as traces and trees. Hence, to use our semantics to define the meaning of a
particular programming language, one need only define the mappings from expressions to
states and guards, from assignments to state transformers, and from program construcis

to trees.

31

Chapter 3

Semantics:
Execution and Refinement

In the previous chapter we defined programs and computations, but not the relationship be-
tween them. In this chapter we define program execution as a function that maps programs
to sets of computations. We also define how programs can be composed with environments,
before they are executed. Finally, the result of program execution is used to define an im-
plementation relation between programs.

3.1 Program Execution

In the previous chapter we have equated programs with trees, and computations with traces.
As mentioned before, when a program is executed, the result is one or more computations.
In this section we define how a set of traces is generated from a program tree. We begin
by defining a function ezec of the following type:

exec : Program, State — tree of (State, Boolean)

Hence, ezec takes two arguments, a program and a state; the state is the initial state of
the execution. Evaluation of ezec(t, x) yields a tree with states as node labels and truth
values as edge labels; this tree is called an ezecution tree. The execution tree is not the
computation itself, but an intermediate step; later we define the correspondence between
execution trees and traces.

We now define for each form of tree (in normal form) how it is transformed into an
execution tree. The reader may want to compare this with the informal description in Sec-
tion 2.4, where program execution was described as following a path through the program
tree, applying state transformers and evaluating guards along the way. ezec does indeed
do that, except that all paths are generated at once.

Below, let z € State be the initial state. Each item discusses a particular form of tree.

o {

Empty nodes should have no effect on the execution at all. Therefore, the result of

32

execution is just an empty node again.
El exec(B,z) = 0

o —= O

ext(0;t1,...,t%)
If the empty node has children, the execution tree has corresponding children.

E2 ezec(ext(;t1,...,t),2) = ext(D; ezec(ts,z),. .., ezec(ty, z))

h c e te exec(t,) c .. ezec(lg, T)

f

A state transformer, i.e., a node in the program tree, is applied to the current state (z)
to yield a new state, which forms a node in the execution tree.

E3 ezec(f,x) = f(z)
feo — ef(z)

ext(f;t1,.. ., tk)
If the program continues after f, the execution continues with the modified state, f (z).

E4 ezec(ext(fit1,-..,t),x) = ext(f(z); ezec(ts, f(z)),..., exec(ty, f(x)))
f(z

exec(ty, f(x)) SR ezec(ty, f(z))

e—t

When a guard is encountered, it should be applied to the current state, yielding a
boolean that forms an edge label in the execution tree. If e(x) holds, the execution
continues with ¢ with the same state x; if —e(z) holds, t cannot be reached.

E5 ezec(e — t,x)

_ true — ezec(t,z) if e(x)
| false — 0 if —e(x)

t
rue if e(z)

€ exec(t,)

falsel if ~e(x)

33

Note that we cannot just define ezec(e — t,2) = e(x) — ezec(t, z), because, if —e(z),
then ezec(t, z) may contain function evaluations that should not be reached because
they are undefined. For instance, if z(u) = 0,

u # Ol cannot be defined equal to falsel

v:i=0/u ezec(v := v/u,)

because the last tree has no meaning.

* syncy(f;g)
Execution of sync nodes must occur in pairs. Hence, encountering only a single sync

node is just like encountering a false guard. Let sync stand for sync,(f; g).
E6 ezec(sync,z) = false —

xX — falsel

s eXt(S)’"Ce(f; g); t1yeees tk)
As with false edges, whatever follows a single sync node should not be executed.

E6' exec(ext(sync;ti,...,t),z) = false —

— falsel
t ... te

For both false guards and single sync nodes we have inserted a false edge in the
execution tree, and omitted any children because they should not be reachable. When
a trace is formed from the execution tree, it should not pass any edges labeled false.
Therefore, if all edges leading out of a node are labeled false, the path cannot continue, a
situation we have earlier called deadlock. When we describe how traces are formed from
the execution tree, this will be formalized by adding a deadlock state, L, to the trace.

EXAMPLE 3.1
Consider program

ul; ul

[v — skip v/ \—w
t = f-v— ul = skip ul

5 wle ewl

wl

34

For brevity, write a state z[v ~— true][u — false| as [v, ~u]. Here are two execution
trees, resulting from ezec(t, [v, ~u]) and ezec(t, [-v, ~u)), respectively. Assume w &

D(z).
['v’ u] [_"U’ u]
true/ \false false/ \true
v, u) [~v, ~u]
[v, u, w] [y, ~u, w]
exec(t, [v, u]) ezec(t, [~v, —u])

Note that these execution trees do not start with the initial state.
O

EXAMPLE 3.2
Consider the following program ¢, where Cy is a synchronization action.

-
[v— v|; G vl vl

¢ = Du — o7 _
1 s
s
s
Execution with initial states [-u] and [u] results in

false/ \true
[trlie false [u, v]
-y, v
false
exec(s, [u, v])

exec(t, [-u]) exec(t, [u])

The empty node at the root remains an empty node, thus having no effect on the ex-
-u, v
ecution. Note that the execution tree exec(t, [-u]) has a subtree [, =] Ifalse

If a path reaches this subtree, it cannot continue because a path cannot pass a false
edge and there are no other edges; hence, such a path would end with deadlock.
The other false edge does not lead to deadlock, because there is another edge that
is not labeled false.

35

There are still two forms of tree for which we have not defined the corresponding
execution trees, both involving a par construct. There is no obvious direct way to follow
a path through a par construct. Therefore, instead of executing the par, we execute a
different tree called its non-deterministic interleaving. We cannot Just replace the par by
its interleaving before we execute the tree, because we do not want to interleave parts of
the tree that cannot be reached because of false edges; hence, the interleaving depends on
the state.

Informally, interleaving a bag {¢1,...,#;} means that we choose one of the trees ¢;,
execute a single action of it, put the remaining part of ¢; back in the bag, and repeat this
process until the bag is empty. Here, an action corresponds to a single node or to a guard.
We can make the choice of ¢; with the normal non-deterministic choice provided by an ext
construct. To take the first action of ¢; and put the remainder back in the bag, we will use
a function ileave(t;; U), where U is the original bag of programs without #;. Hence, if t;
starts with a node f, the result of ileave(t;; U) typically has the form

i

Note that ileave(t;; U) does not perform a complete interleaving: it only takes out the first
action of ¢; and creates a bag, i.e., a par, with the remaining trees (unless the new bag
is empty). This is done because it isn’t known whether the remaining trees are reachable
until the first action of ¢; has been executed. The definition of ileave is given in the next
section; here we only need to know that ileave(t; U) yields either a guarded tree or a tree
starting with @, a node, or a sync. Hence, ileave(t; U) has a form for which we have already
discussed the result of ezec. To recap, to interleave U = {#1,...,%x}, choose a t; and replace
it by deave(t;; U — t;).

DEFINITION 3.3 (Non-Deterministic Interleaving)

The non-deterministic interleaving of par(ty,...,#) is

ext(Q; idleave(ti; U —t1), ..., ileave(ty; U — ty))

3] . e tr —
A A leave(ty; U — t1) « .. ileave(ty; U — 1)

where U = {t1,...,t;}.

36

Using this formula, it is straightforward to define ezec for the remaining two forms of
trees: replace the par by its non-deterministic interleaving, and apply ezec to the resulting
tree, with the same initial state.

o par(ty,...,)
Let bag U = {t1,...,t}.

E7 exec(par(ti,...,tg),z) =
ezec(ext(B; dleave(ty; U ~ t1), . . ., ileave(ty; U — t)), z)

t A « .. Atk — exec(interleaving,)

e ext(par(ti,...,#); S)
Let bag U= {tl, v ,tk}.

E8 exec(ext(par(ti,...,t);S),z) =
ezec(ext(ext((; sdleave(t;; U — t1),. .., dleave(ty; U — t)); S), z)

interleaving

4 A ce At’“
— ezec(

$1
51 . e . 3!

Examples of interleaving are given in the next section.

For easier reference, we repeat the complete definition of ezec.

37

Let z € State; f,g € State — State; e € State — Boolean; t,t;,... € Program;
S € set of (Program); and £ € Label.

El.
B2.
E3.
E4.
ES.

E6.
ET7.

E8.

exec(,z) =0
exec(ext(B;t1, ..., 1), x) = ext(0; ezec(ts, z),. . ., exec(ty, x))
ezec(f,z) = f(z)

exec(ext(f; L3 P tk)7 .’L') = ext(f(x), exec(th f(m))7 teey ezec(tk, f(.’l))))

true — ezec(t,z) if e(x)
t,x) =

esecle ¢, 7) {false — 0 if —e(z)

ezec(ext(sync;ty,. .., t),) = ezec(sync, z) = false — (),

where sync is sync,(f; g)-

ezec(par(t,. .., 1), z) = exec(ext(l; ideave(ts; U —t1),. .., tleave(ty; U — tx)), x)

where bag U = {t1,...,t;}-

ezec(ext(par(ty,...,t);S),z) =
exec(ext(ext(; ileave(ti; U—~t1), . .., idleave(ty; U—tx)); S), x)

where bag U = {t1,...,t,}.

From the above definition it follows that an execution tree ezec(t,z) has no sync nodes
and no par constructs. Furthermore, the only tree of the form false — ¢ is false —). Next
we define a relation, written ‘€,” between traces and execution trees: If p is a trace and ¢
an execution tree, p € t means that p is the sequence of states on a path through the tree.
As discussed, @ nodes should not contribute to p, and false edges cannot be passed. In the
definition, assume the tree is in normal form.

Let Tree = tree of (State, Boolean); x € State; p € Trace; t € Tree; S € set of (Tree).
el. '
e2.
ed.
ed.
eb.
e6.

Ded

TET

peEt=>pcEtrue—t

1 € false — 0

(p €t At # false — @) = n+p € ext(n; SUt), where n is z or {).

n+ L € ext(n; false — (), where n is z or 0.

No node in the execution tree can have more than one outgoing edge labeled false, because
then that node would have two children of the form false — @), and by definition all children
of a node must be different (because they form a set).

38

DEFINITION 3.4 (Associated Trace-Set)
If X has the form of an execution tree, then its associated trace-set is the set

<Up:p€ Tracenp € X : p>

O
We will use ezec(t,z) to denote the execution tree as well as its associated trace-set.

EXAMPLE 3.5

I
false/ \true
T
The associated trace-set of is {x1Hzo+y, TiHITIHZH 1}
) z
false
y

(We have used the property that y +y =1v.)
a

As we have seen in earlier examples, the execution tree ezrec(t,z) need not start with
the initial state z: If ¢ starts with node f, then ezec(t, z) starts with f(z) rather than with
z. However, generally it is convenient to have the initial state as part of the computations
of a program. Hence the following definition, which formalizes the concept of program
execution.

DEFINITION 3.6 (Program Ezecution)
The execution of program ¢ from initial state = yields the set of computations

associated with the following execution tree:
Ezec(t, x) = ext(z; exec(t, x))

]

As with ezec, Ezec(t,z) denotes both the execution tree and the associated trace-set.

3.2 Interleaving

In the previous section we defined the non-deterministic interleaving of par(ty,...,t;) as
ext(Q; sleave(ty; U — t1),. .., ileave(ty; U —)

where U = {t,...,tr}. We specified that ileave(t; U) is a tree starting with the first action
(i-e., node or guard) of ¢, followed by a par(U,t') where # is the remainder of ¢. In this
section we give the precise definition of ileave.

It is clear that to define #leave, we must define what the first action and remainder of

a tree are. If ¢ is a single node, these definitions are obvious:

39

e The first action of f is f; the first action of 0 is @; the first action of sync,(f;g) is
syncy(f;g). In all three cases there is no remainder.

fe + first: fe noremainder

o — first: o no remainder

» +— first: » no remainder

If t is a guarded tree e — ¢, the first action is the guard:

e The first action of ¢ — ¢ is e —), the remainder is ¢.

e
— first: el remainder: At
t

(e — @ is used because e by itself is not a tree.)

If ¢ has the form ext(f;ti,...,tx) the first action is obviously f, but for the remainder we
have the choice between a number of trees. Since we want the remainder to be a single
tree, we add an @ node as place holder (if k = 1, the §) node is removed again with axiom
T7).

e The first action of ext(f;t1,...,t) is f; the first action of ext(sync;ty,...,) is sync.
In both cases, the remainder is ext(®; ¢1,. ..,).

S

— first: fe remainder:

t1 172 5] SR i

— first: ¢ remainder:
t ... t 4 . e te

We cannot treat t = ext(@;¢y,...,%) in the same way, because the remainder would be ¢
again. In fact, the () node is not a real action, because it has no effect on the execution.
Rather, we should make a choice between %1, ..., ¢ and take the first action and remainder

40

of the selected tree. (In the case of ¢ = () we do say that @ is the first action, because there
is simply no other choice.) A similar problem occurs with ¢ = par(t;,...,#): there is more
than one possible first node, and the remainder depends on which first node is chosen.

To simplify the definition of ileave in cases where there is such a choice between trees,
we first define a function choices of type

choices : Program — set of (Program)

choices(t) is the set of trees with which the execution can continue if ¢ is reached. We define
choices in such a way that each ¢; € choices(t) has one of the forms mentioned above, for
which the first action and remainder are well-defined.

If t has only one possible first action, then choices(t) = {t}.

For ¢ = ext((;ty,...,%) we have a choice between each of the subtrees. However, a
subtree ¢; may still have more than one choice of first node, namely if it starts with a par
(it cannot start with () because ¢ is in normal form). Therefore, we define

choices(ext(;t1,...,tx)) = choices(t1) U ... U choices(ik)

Suppose that, in an execution of ext(@;t1,...,%), tree ¢; is chosen; then, after the
choice has been made, %9, ...,%; are no longer relevant to the execution. This is in contrast
with par(t1,...,tx): if the first action of ¢; is chosen, t9,...,t; (plus the remainder of #;)
must still be executed. Hence, for choices(par(ti,...,t;)) we must make a choice between
the first actions only, not simply between t,...,{;. Fortunately, we have already defined
how this choice is made: replace the par construct by its interleaving. Hence,

choices(par(ti, ..., tx)) = choices(ext(®; ileave(t1; U — t1), ..., dleave(ty; U — t)))

where U = {t1,...,1}.
For the last possible form of ¢, ext(par(ty,...,%);S), we do of course exactly the same:
replace the par by its interleaving. The complete definition of choices is surnmarized in the

following table.

41

Let f,g € State — State; e € State — Boolean; t,t1,...,t; € Program;
S € set of (Program); £ € Label.

cl. choices(n) = {n} where n is @, f, or sync,(f; g).
c2. choices(e — t) = {e — t}
c3. choices(ext(n; S)) = {ext(n;S)} where n is f or sync,(f;g), but not 0.
c4. choices(ext(D;t1,...,tx)) = choices(ti) U. ..U choices(tk)
c5. choices(par(ty,...,t)) = choices(ext(0; ileave(t;; U—t1),. .., deave(ty; U—tx)))
where bag U = {t1,...,t}
c6. choices(ext(par(ty,...,tg); S)) =
choices(ext(ext(D; ileave(ty; U—1t1),. .., dleave(ty; U —1tk)); S))

where bag U = {t1,...,tk}

In some cases choices is recursive or involves ileave (which, as we will see in a moment, can
involve choices again). But in these cases the argument of the recursive call is always a
subtree of the original, so that the recursion ends as long as there is no infinite nesting of sub-
trees. The only infinite nesting of subtrees we use is of the form ext(f; ext(f;ext(f;...))...),
which is covered by ¢3 and does not require recursion to compute choices.

From the definition it follows that ¢; € choices(t) does indeed have one of the forms for
which the first node and remaining tree are well-defined. Once a ¢; € choices(t) has been
selected, the other choices are no longer relevant to the execution.

EXAMPLE 3.7

e
The choices of are) , , and the

choices of

a

The main idea of ileave(t;U) is to create a tree starting with the first action of £,
followed by a par construct containing U and the remainder of £:

ileave(t; U) = ext(first action of ¢; par(remainder of ¢,U))

42

Hence, for the simple cases where there is only one choice of first action of £, we have the
following (based on our earlier discussion of first action and remainder).

o0
I1 deave(B; U) = ext(9; par(U))
ileave(o ;...) =
o f
11 deave(f;U) = ext(f;par(V))
i
ileave(fe ;...) =
e c—1
2 ileave(e — t;U) = e — par(t,U)

ileave(tA Pee.) = tA

o ext(fit1,...,tk)
3 ileave(ext(f; S);U) = ext(f;par(ext(d;S),U))

ileave(Pee.) =
1 o

43

Note that we have omitted trees of the forms sync and ext(sync;...), even though for these
trees there is only one possible first action, namely the sync node. The reason is that sync
nodes are interleaved in a special way, which we will get to in a moment.

i
ileave(feo ; tA } = A{ruleIl above} =

74N

EXAMPLE 3.8

{axiom T10}

O

There are three types of trees ¢ where there is a choice between possible first actions,
as indicated by choices(t). Each s; € choices(t) represents a possible first action of ¢
together with the corresponding remainder of ¢. Hence, ileave(s;; U) is a possible value for
ileave(t; U). Since s; has a form for which the first action and remainder are well-defined,
ileave(s;; U) can be computed without further recursion. As usual, the choice between the
s; is made non-deterministically.

e ext(P;...), par(...), ext(par(...);...)
If t has one of these forms, then

5 ileave(t;U) = ext(0; ileave(s1;U),. .., ileave(s; U))

ileave(tA Pee.) =))

leave(sy;. .. ileave(sy; . ..

where {s1,...,s1} = choices(t).

This last formula looks quite similar to the non-deterministic interleaving. However, if
t = par(ty,...,1), the non-deterministic interleaving has subtrees ileave(t;;...), whereas

the above formula has subtrees ileave(s;; .. .). Here, s; includes the actions of all of ¢4,.. ., t,
S0 S; # t;.
ExAMPLE 3.9
e
) f f e
choices(t») hastwoelements,s; = and s =
51 5

151

44

Therefore, ileave(/ tr tA) =

ileave(sy; t') ileave(sq; t')

which is to A At/
ANWAY

(]

ExampPLE 3.10

fe
Let ty = ext(; g1, 92) and ¢ = par(f,t,) = /\
)1 g2

The non-deterministic interleaving of ¢ is
ileave(f; tg) ileave(ty; f)

I
e The first interleaving is simple: ileave(fe ; /\) = A
5 92 g1 92

(the @ node is removed using axiom T8).

e The second interleaving involves a choice between first actions, as in the pre-

vious example:

ileave(/\ i fe) = =
a1 g2 ileave(gr; f) ileave(go; f)

9 92

/ f

Hence, after combining the two interleavings and removing superfluous @ nodes

45

(using T8), we find that the non-deterministic interleaving of ¢ is

f g Deg2
g1 g2 eof f

Usually the non-deterministic interleaving contains par constructs, but in this ex-
ample these have the form par(s), which is equal to s (by axiom T10).
a
As already explained in Section 2.4, when two sync actions with identical £ labels are ex-
ecuted in parallel, they must be executed simultaneously in order to implement rendezvous
style synchronization. Clearly, simultaneous execution of actions and interleaving of actions
are contradictory techniques. Therefore, ileave treats sync nodes quite differently from nor-
mal nodes: Suppose the first action of ¢ in ileave(t; U) is sync,(f1; f2). Then, if there is an
s € U that has as a first action sync,(g;; g2), with the same label ¢, both sync actions are
combined and replaced by their match; the match is then the first action of ileave(t; U).
Recall from Definition 2.15 that the match is the state transformer foogso fi0g;1. Note that
not only the first action of ¢ is removed, but the first action of s as well.

e syncy(fi1; f2)
Let s € U such that syncy(g1;g2) € choices(s).

I4 dleave(sync,(f1; f2);U) = ext(faogao fiogi;par(U —s))

Tf2°92 ofioq

ileave(fi; /o3¢0 ..., £X91592) =

e syncy(f1; fa)
Let s € U such that ext(sync,(g1; 92); S) € choices(s).

14 ileave(syncy(fi; f2);U) = ext(faogyo fiogr;par(U — s,ext(d; S)))
Tf2 og2ofiog
£3€91; 92
ileave(fi; ot ...,) =
51 89
81 89

46

Of course, there are two more combinations, with ¢ of the form ext(sync,(fi; f2); T); they
are completely analogous.

If ¢ starts with sync, and there is no s € U that has a matching sync, as first action,
the sync node is treated as a normal node.

* syncy(f1; f2)
Let there be no s € U such that s’ € choices(s) starts with sync,(g1; g2).

4 deave(syncy(f1; f2);U) = ext(sync,(f1; fa); par(U))

fisfaxd

|

deave(fi;faxe ;...) =

Again, the case with ¢ = ext(sync,(f1; f2); T) is completely analogous.

If there is more than one s € U that can start with a matching sync,, the above defini-
tion is ambiguous. Therefore, we require that there is at most one such s. In other words, we
require that, during the execution, a sync node is either uniquely matched or not matched
at all. In a programming language where synchronization is done over single-sender, single-
receiver channels, as is the case in our version of CSP, this condition is already imposed by
the programming language. Note that, by definition, ezec is applied to trees in normal form.
Therefore, the execution can never encounter a tree of the form par(par(sync,, sync,), sync,);
instead, the tree par(sync,, sync,, sync,) must be used. This latter tree violates the restric-
tion that sync nodes must be uniquely matched. The restriction on unique matching could
be removed by defining the interleaving to yield a non-deterministic choice between all
possible matching pairs. However, that is unnecessarily complicated for our purposes.

ExaMPLE 3.11

fii oxd
gly92
Let t = and s = . We want to compute

5]

ileave(t; s). Since t starts with sync,, we check chozces(s) to see whether s can

g
start with a matching sync,. Since choices(s) has two elements, and
51
915 925/
, this is indeed the case. Therefore
82

47

sz ogaofiog

deave(t;s) =

t/\ [\

Note that the presence of the matched sync, nodes forces a choice in s: it is not
possible to leave sync,(fi; f2) unmatched and make the other choice in s.

On the other hand, consider ileave(s; t). Since choices(s) has two elements, we
must compute two interleavings,

9 fis fa>et 915 92¢¢ fi;f23¢¢
ileave(;) and ileave(;)
81 t 52 t

The result is

g g2ofrogiof

ileave(s;t) = X115 b

SIAA

t

W\

Combining ileave(t; s) and ileave(s;t), we find that the non-deterministic interleav-
ing of par(t, s) is

hogofiom 9 g2ofhogiofi

t1A Asz SIA Exhi t1A Asz

If we assume that the match is commutative (as it is for the constructs we have
defined in Section 2.4), the left and right subtree are equal. In that case, the
non-deterministic interleaving of par(t, s) happens to be equal to tleave(s; t).

a

The ileave function would be easier if sync nodes could be interleaved as normal nodes,
with the matching done in ezec. However, that is not possible, because after interleaving
there is not enough information left to perform the matching: If sync nodes were interleaved
as normal nodes, the interleaving of par(sync,, sync,) would be ext(syncy; sync,):

14

x
X/ X — |
x/¢

In the erec function, these two sync, nodes would then have to be matched. But this
interleaving cannot be distinguished from the sequential composition of two sync, nodes,

which should not lead to a match.
We have now defined ileave(t; U) for every form of ¢. The following table summarizes

the definition.

Let f, f1,f2,91,92 € State — State; e € State — Boolean; t,ty,...,tx € Program;
S, T € set of (Program); U € bag of (Program).

I1. ideave(n;U) = ext(n; par(U)), where n is @ or f.

12. ileave(e — t;U) = e — par(t,U)

I3. ileave(ext(f; S); U) = ext(f;par(ext(d; S),U))

I4. Here, let s € U such that sync,(g1;g2) € choices(s) or ext(syncy(g1;g2); S) €
choices(s), if such an s exists. If there is a set S, let s’ = ext(d; S); otherwise,
s' = {} (i.e., ' is the remainder of). Let m = fy 0 gy 0 f; 0 g;.

ileave(sync,(f1; f2); U) } {ext(m; par(t, U — s,5')) if s exists
ileave(ext(sync,(fi; f); T):; U)J ext(sync,(fi1; f2); par(t',U)) otherwise

where ¢ = ext(@; T') if there is a set T’; otherwise ¢ = {}.
We require that there is at most one s € U with the given property. Also, the
bag ¢’ UU — sU s’ might be empty; in that case the par construct is omitted.

I5. In all other cases (i.e., t is ext(@;...), par(...), or ext(par(...);...)), the follow-
ing rule applies:
ileave(t; U) = ext(Q; ileave(sy; U), .. . , ileave(sy; U))
where {s1,...,s;} = choices(t).

49

We conclude the section with an example showing a subtlety of the interleaving.

EXAMPLE 3.12
At the beginning of the section, we decided that the remainder of ext(f;¢1,..., tr)
was ext(0; t1,...,t), because we wanted it to be a single tree. However, we might
consider having a set of remainders instead, and changing I3 to

13 dleave(ext(fitr, ..., t);U) = ext(f;par(ts,U),...,par(ty,U))

f /\
ileave(c) =

t ta tlA"' t2A"'

This alternative definition may appear simpler and therefore preferable. However,
suppose t; is a guarded tree, e — t|. Then par(¢;,U) should only be executed if
evaluation of e yields true. But since par(¢;,U) need not start with e, part of U
can be executed before the guard is reached. Furthermore, even if e is true when
the choice is made (i.e., immediately after execution of f), when the execution
actually reaches e in par(t;,U), e may be false and, for instance, lead to deadlock.

In short, this alternative definition is wrong because the choice between t1,. .., t;
is made before any guards are evaluated; hence the choice is made using demonic
rather than guarded non-determinism. (If, however, none of ti,...,# is guarded,
both definitions are equivalent.) '

3.3 Environments

At the beginning of Chapter 2 we remarked that we use the term program also to indi-
cate a program part. This was later formalized by equating programs with trees, since
a tree is built from smaller trees. The previous section described how a program can be
executed from an initial state. However, most program parts are not intended to be ex-
ecuted in isolation, but only in combination with other program parts; these other parts
together are called the enwvironment of the program. This section gives a formal definition
of environments.
DEFINITION 3.13 (Tree Template)

A tree template is a tree constructed with the standard constructors of the ADT,

but which may contain unknown subtrees, i.e., subtrees that are only identified by

name.

a0

Hence, a tree template is a function from trees to trees, but not every function from trees
to trees is a template.
EXAMPLE 3.14

Let ¢ be an arbitrary (unknown) tree. Then

ext(ul;ext(t;ul)) = ¢

is a tree template.
O

ExXAMPLE 3.15
Function f; defined by

ext(n;t) ift=s
fs (t) — (?) .
e—t ift#s
is not a template, because there is no { T li """ constructor in the tree ADT.
e 1 ..

O

DEFINITION 3.16 (Environment)
An environment is a function

Program, Program, ... — Program

that can be described by a template.
O
An environment can have any number of parameters, but usually has just one or two.
Say FE is a one-parameter environment, and s and ¢ are programs. We write E[s] for the
application of F to s. We often want to compare E[s] with E[t] by comparing s with .
However, this only makes sense if F uses s ‘in the same way’ as t. This is the reason
to restrict environments to be templates, so that examples like f; in Example 3.15 are
excluded. This corresponds to saying that an environment can observe what a program
does, but cannot observe the form of the program in any other way. Note that if £ and F
are one-parameter environments, then so is E o F.
ExXAMPLE 3.17

Let £ be an unknown tree. Then

z

par(t, ext(@u — o, ~u - al)) = | t/\ Tuj\w
x

51

is a parallel environment for ¢. The value of u that is observed by the environment
may depend on assignments made by t. Likewise, the behavior of ¢ may depend
on the environment’s assignment to z.
The template of Example 3.14 is a sequential environment for #.
a

Most environments have restrictions on their parameters, i.e., not every program is in their
domain. However, since we are usually interested in programs rather than environments, it
is more convenient to express this as a property of programs, as follows. With ¢ € Program
we associate a set V(t) of valid environments of ¢, and a set Z(¢) of initial states for ¢. If
E € V(t), then E[t] is a proper application of the environment, i.e., t € D(E). Likewise, if
x € I(t), then Ezec(t,) is a proper expression, i.e., z is in the domain of the function that
maps state z to Ezec(t, z). Note that V(t) and Z(t) are not functions of : they are sets that
can be more or less arbitrarily chosen. In particular, we usually restrict V(t) to exclude
any environments we are not interested in. It follows that a complete program description
is a triple (¢, V(t),Z(t)); t itself corresponds to the code of the program. However, we will
continue to refer to ¢ as the program, and mention any properties of V(t) and Z(t) only when
relevant. (This is similar to the common practice when discussing functions: a function is
a pair (f, D(f)), but usually f is also referred to as the function.)
DEFINITION 3.18 (Valid Environments of F|[t])

If F € V(t), then F[t] is a program, and hence has its own sets V(F[t]) and Z(F[¢]).

However, we do not want to choose these sets arbitrarily; instead, we restrict them

to have a certain relationship with V(t) and Z(¢).

Since E[F[t]] = (E o F)[t], we require that

V(FJt]) = <UE . EoF e V(t) : E>

For y € I(F[t]) we require the following. Let ¢ stand for a tree starting with
t (Definition 2.9). Suppose ezec(F[t],y) is evaluated by repeatedly using rules
E1-E8. If that evaluation involves ezec(t’, z) or ezec(par(t/,...)), then = € Z(¢).
O
If E is a two-parameter environment, and we want to use E[s,], then it must be that
Ele,t] € V(s) and Els,] € V(t) (where the « denotes a parameter).

DEFINITION 3.19 (changes, depends, and var for Environments)
For a one-parameter environment F we define

changes(E) = <ﬂt :te€DE) : changes(E[t])>

and likewise for depends(E) and var(E). The definition is extended in the obvious
way for environments with more than one parameter.

52

DEFINITION 3.20 (changes, depends, and var for Valid Sets)
changes(V(t)) = <UE : EeV() : changes(E[t])>

and likewise for depends(V(t)) and var(V(t)).
|

Hence, for instance, var(E) consists of the variables that are always in var(E[t]) regardless
of .

3.4 The Implementation Relation

We are now ready to define what it means for a program s to implement a program ¢. We
want ‘¢ is implemented by s’ to mean that if ¢ is used as part of some program, it can be
replaced by s, and the difference will not be observable. As mentioned before, observations
are made by environments, and what is observed are computations. Since we want to
replace ¢t by s, the environments in question are the environments of t, V(t). How do we
know whether an environment observes a difference between s and ¢? It seems reasonable
to say that if the environment observes a difference, then that should be reflected in the
state of the environment. Therefore, when we compare a computation involving s with one
involving ¢, we project the states in the trace onto the variables of the environment. This
allows s and ¢ to differ in the way they use their internal variables.

DEFINITION 3.21 (Implementation)
t is implemented by s means

t<s = V() CV(s)
AN EeV(t) = I(E[t]) CI(E[s])
A (VE : EeV(t) :
(Vz : z € Z(E[t]) :
Ezec(E|[t],z)|var(E) DO Ezec(E[s], z)|var(E)

]

The first two conjuncts are usually obvious, and we concentrate on the last one.

Note that there can be computations of E[t] that cannot be generated by F[s]. But
since the choice between computations of E[t] is non-deterministic, the fact that E[s] never
makes some of the choices cannot be used to observe that s is not ¢. Hence, ¢ is implemented
by s, t < s, means that for all environments and initial states (of t), s behaves like ¢, but
is possibly more deterministic. (Sometimes, ¢ < s is pronounced as ‘s is better than t.”)

Equality between programs can be defined similarly, by replacing all C and D symbols
with = signs. We will write this as ¢ = s to distinguish it from the = operation on trees:

= s does certainly not mean that ¢ and s are identical trees, i.e., that t = s (it does not
even mean that Ezec(E[t],z) = Ezec(E[s],z)). Although for most transformations from ¢
to s in this text we have in fact ¢ = s, it may simplify proofs to prove just ¢ < s.

33

Since C is a partial ordering, it is straightforward to show that the implementation
relation < is a partial ordering as well. In particular, transitivity of < means that complex
transformations can be done (and proven) in several smaller steps. Another important
property is that environments are monotonic with respect to <, i.e., that

t<s= Ft] < Fls]
assuming F' € V(t).
Proof: We prove each conjunct of Definition 3.21
1. F e V(F[t]) = E € V(F[s]):
E e V(F[t])
= {Definition 3.18}
EoF e V(t)
= {s>t}
EoF €V(s)
= {F € V(s),Definition 3.18}
E € V(F[s])
2. E € V(FIY) = Z(BIFIH]) C Z(B[F[s])):
Z(EF)

I((E o F)[t])
C A{EoFeV(@)AtLK s}
Z((E o F)[s])

Z(E[F[s]])

3. Let E € V(F[t]) and € Z(E[F[t]]) = Z((E o F)[t]). Since Eo F € V(t) and t < s,
it follows that

Ezec((E o F)[t],z)|var(E o F) D Ezec((E o F)[s],) var(E o F)
which is equivalent to
Egzec(E[F[t]],z)|var(E o F) D Evec(E[F|s]], z)|var(E o F)
Since var(E) C var(E o F), we know that, for trace p,
(plvar(E o F))|var(E) = ploar(E)

54

(see Section 2.1). Another property of projection is that both sides of a D symbol
can be projected without changing the superset relation. Therefore, projecting
both sides of the above equation on var(E), we get

Ezec(E[F[t]], z)|var(E) D Ezec(E[F[s]], z)|var(E)

which proves the third conjunct.

a

This monotonicity property is called the compositionality of the implementation rela-
tion, or of the semantics.

THEOREM 3.22 (Compositionality)
For programs s and ¢, and F € V(t):

t < s= Ft] < Fls]

O

Compositionality means that we can replace part of a program by an equivalent part,
and get an equivalent program. Given the compositionality and transitivity of < we can

give proofs of the following form:
Flty, 2]
< {t1 <51}
F[s1,ta]
< {t2 < 52}
F(sq, s9]

from which we conclude, by transitivity, F[t1,t2] < F{s1, s3]
This completes the definition of our semantic framework. See the remaining chapters

of this text for examples of proofs of ¢ < s.

95

Chapter 4
Analysis of Program Execution

In the previous two chapters we have defined what programs are and how they are executed.
Program execution is important because it is the basis of the implementation relation.
However, the ezec function is rather complex, so that it is hard to see immediately what
effect even a small change in a program has on the implementation relation. Therefore, in
this chapter, we study the effect of such changes in general, to be used later when proving
program transformations. In the first section we analyze the execution of a single program,
and introduce some terms we use later. Following that there is a section each on the
elementary changes to a tree: changing nodes, changing guards, and changing sync nodes.

We prove several small, but useful, program transformations in this chapter. Section
4.5 and Section 4.6 each describe a somewhat more complex transformation.

4.1 Observations about ezec

Recall that if ¢ € Program and z € State then ezec(t,x) is a tree of type
tree of (State, Boolean); this tree, which we call the execution tree, is associated with a set
of traces corresponding to the different possible computations. A natural way to study the
effect of ezec is to apply ezec ‘one step at a time,” where a step is an application of one of
the rules E1-E8. We call this the stepwise evaluation of exec, or sometimes the stepwise
execution of the program. Note that, given ¢ in normal form, there is always exactly one
rule that can be applied as first step in ezec(t, z).

We are interested in the way the execution tree is constructed by the steps of the

execution. For instance, say we apply E4:

ezec(ext(f;ti,...,tg), z) = ext(f(z); exec(ts, f(x)), ..., evec(ty, f(x)))

Without evaluating the recursive calls, i.e., without performing any more steps, we can see
that the execution tree has the form ext(f(z);...). We say that execution of ext(f;...)
contributes (or adds) node f(z) to the execution tree. Conversely, we say that node f(z)
in the execution tree corresponds to f in the argument of ezec.

We consider what the origin is of each possible constructor in the execution tree.

o6

la. Empty nodes, @, can occur as a result of E1 and E2. In that case, the empty
node corresponds to an empty node in the argument of exec. These empty nodes
are of little consequence, since, by t3, they are not observable in the associated
traces. Empty nodes can also occur in the form false — @, resulting from E5
or E6. According to el-e6, these empty nodes do not occur in the associated
computations.

1b. Nodes that are states occur as a result of E3 or E4. In either case, a node f(z)
corresponds to a node f in the argument of ezec. In addition, the initial state of the
execution occurs as a node in the execution tree, because Ezec(t,z) = ext(z;...).

lc. sync nodes do not occur, because none of E1-ES8 results in them.

2. ext constructors result from E2 or E4: an ext in the execution tree is the result of
the execution of an ext. Additionally, the rule Ezec(t,z) = ext(z;...) (Definition
3.6) also adds an ext.

3. A tree of the form true — ¢ results from rule E5. Hence, a true edge is the result
of execution of a guard. The only possible tree with a false guard is false — 0,
the result of the execution of a guard (E5) or of the execution of an unmatched
sync node (E6).

4. par constructors do not occur in the execution tree.

Rules E7 and E8 do not directly add constructors to the execution tree; instead, they
transform the argument of ezec, so that one of the rules E1-E6 can be applied. For
instance, according to point 1b above, a node in the execution tree corresponds to a node
in the argument of erec. However, that argument may have been modified by the ileave
function, through E7 or E8. Let us consider under which circumstances the ileave function
results in a tree of the form f or ext(f;...). We see that I1, I3, and I4 can result in such
trees. In case of I1 and I3, f is already a node in the argument of ileave. Only 14 creates
a new node, namely by matching two sync nodes from the original tree. Hence, a node
f(z) (a state) in the execution tree corresponds to a node f (a state transformer) in the
program or to the match of two sync nodes in the program.

Likewise, #leave can only result in a tree e — ¢ by application of I2, which requires that
the guard e is already present in the program. Hence, a true edge in the execution tree
corresponds to a guard in the program. ileave can result in trees sync(...) or ext(sync;...)
through I4, if there is no matching sync in the interleaving. In that case the sync node
must already be present in the program. Therefore, a false edge in the execution tree
corresponds to a guard in the program or to an unmatched sync in the program.

However, the result of ileave can have ext constructors that are not present in the
program: I1, 14, and I5 (together with ¢5 and c6) create new ext constructors; rules E7
and E8 do the same. Hence, an ext constructor in the execution tree is the result of an ext
constructor in the program or of the interleaving of a par constructor in the program. Of
particular interest in this context are choices (Definition 2.14): A program usually has few,
if any, unguarded choices. But the interleaving of a single par in the program can result

o7

in many unguarded choices, mostly through E7 and ES. Unguarded choices are important,
because they can never lead to a L in a trace.
From the above the following lemma follows.
LEMMA 4.1
e Each node (state) in the execution tree corresponds either to a unique node (state
transformer) in the program, or to a unique pair of matched sync nodes in the
program, or to the initial state.

e Each labeled edge in the execution tree corresponds either to a unique guard in
the program, or to a unique unmatched sync in the program.
a

The converse of this lemma is not true: not every program node or guard corresponds to a
node or guard in the execution tree. For instance, if, in E5, —e(z) holds, ezec(e — t,x) =
false — 0, so that state transformers and guards in ¢ do not contribute to the execution
tree. We say that the execution does not reach these state transformers and guards. An
unmatched sync has the same effect as a false guard, according to E6, and can make parts
of the tree unreachable. It is easy to verify that no other rule from E1-E8 and I1-I5 puts
state transformers or guards out of reach of the execution.

EXAMPLE 4.2

Suppose —e; (f(z)) A ea(f(z)). Then

T

Ezec(e{/&ez ,r) = f(z)
91 g2 false/ \true
92(f ()

In the execution tree, z corresponds to the initial state; f(z) corresponds to f;
the false guard corresponds to e;; the true guard corresponds to ez; and go(f(x))
corresponds to g2. Node g; of the program is out of reach of the execution, and
does not contribute to the execution tree.

(]

In the definition of the implements relation, the set of traces associated with Ezec(t,)
is used, rather than the execution tree itself. A trace in that set is a path through the
execution tree, as described by rules el-e6. Clearly, every state in a trace, except L,
corresponds to a node in the execution tree. However, this node is not necessarily unique,
because of the stuttering axiom for traces, t5.

EXAMPLE 4.3
T
The trace set associated with A has an element = + z, but this trace can
z y

also be written as just z; in this latter form (which is the normal form) it is unclear
which of the two z nodes in the tree should be associated with state z in the trace.

58

]

In practice, which node we choose depends on which node we are interested in. For
instance, we can say that the second z node contributes = to the trace, but that
this state is not observable because it is preceded by an identical state.

Note that this phenomenon only occurs with sequences of identical states.
Later we analyze when such sequences occur. In this example, y does not occur in
trace = + = at all; we say that y does not contribute to that trace.

Next we derive a useful property of states traces. Suppose the stepwise evaluation of
ezec(t,) involves evaluation of ezec(s,y). Let exec(s,y) = r. Necessarily, r either is equal
to exec(t,z), or it is a proper subtree. If 7 is a subtree, then, according to T1-T4, r must
occur as ext(r;...), ext(n;r,...), e — 7, or par(r,...). But the first and last cases never
occur during the evaluation of ezxec, and the third case only occurs as true — r. Hence,
we have three possible cases:

1.
2.
3.

T = exec(s,y) = erec(t,).
T = ezec(s,y) occurs as ext(n;r,...).
r = ezec(s,y) occurs as true — 7.

We analyze each case.

1.

2a.

2b.

Since ezec is only evaluated as part of Ezec, if ezec(s,y) is not a proper subtree of

some evaluation ezec(t, z), then it must be the evaluation occurring in Ezec(s,y) =

ext(y; ezec(s,y)). Hence, ezec(s,y) occurs in the execution tree as ext(y; exzec(s, y)):
Y

ezec(s, y)
Such a subtree occurs as result of application of E2 or E4. If it results from E2,

the execution tree has the form r' = ext({); exzec(s,y),...). This tree corresponds
to s’ = ext(B;s,...) (i.e., the left-hand side of E2), executed in the same state y.

Hence, repeat the argument with ezec(s’,y).

ezec(s,y) cee 5 <o

If this case results from E4, then (in E4) f(z) =y, and the execution tree has the
)

form ext(y; ezec(s, y),...):
exec(s, y)

. An execution tree of the form 7' = true — ezec(s,y) can only result from ES5.

Therefore, it corresponds to a tree s’ = e — s executed in the same state y (for

59

which e(y) holds). Hence, repeat the argument with ezec(s’ Y-

true , e

|
fl
Cn
fl

ezec(s, y) s

Since the execution tree starts with case 1, cases 2a and 3 will always eventually lead to
case 1 or 2b. Now consider the contribution to the traces of each case.

1. According to e5, the contribution of ezec(s,y) to a trace is immediately preceded
by state y.
2a. According to e5 and t3, the contribution of 7 = exec(s,y) to a trace is indistin-
guishable from the contribution of r'.
2b. This is the same as case 1.
3. According to e3, the contribution of r = ezec(s,y) to a trace is identical to the
contribution of r'.

It follows that in a trace to which ezec(s,y) contributes, that contribution is immediately
preceded by state y. In particular

f f(y)

ezec(yY) =

which means that in the trace f(y) is preceded by y. Because this is a useful result, we
state it as a theorem.
THEOREM 4.4 (Precondition Theorem)
Let trace p € Ezec(t,).
o If p = g+ r where r € exec(s,y) is contributed to p by ezec(s,y), then r is
immediately preceded by y: p=q+y+7.

o If p =g+ f(y) +r, where f(y) is contributed to p by state transformer f in state
y, then that contribution is immediately preceded by y: p = ¢ +y + f(y) +r.
O

Two remarks about this theorem: (1) If g+ = g+ y+r, then either q ends in y or r starts
with y, due to the stuttering axiom t5. (2) We say explicitly that f(y) is contributed to
the trace by f. This is because there may be another state transformer g which happens
to contribute g(z) = f(y); this contribution is preceded by z, not by y. Furthermore, we
say explicitly that f was executed in state y. This is because there may be a z such that
f(2) = f(y), in which case f(z) may be preceded by z rather than by y. Normally, when
we write f(y), we assume that this state was contributed by f in state .

60

We mentioned before that a sequence z + z in a trace is equal to Jjust z, so that there is
no unique state transformer that corresponds to z (Example 4.3). From the precondition
theorem we see that a sequence = + z occurs exactly when the second z is contributed
by execution of f in state z with f(z) = z. Note however that the definition of the
implementation relation has a projection on var(E). Hence, the same phenomenon occurs
in the projection under a weaker condition, namely when f(z) lvar(F) = z|var(E).

Next we define two well-known concepts in the context of our semantics.

DEFINITION 4.5 (Pre- and Postcondition)

o If f is a state transformer, and ezec(f,x) or ezec(ext(f;...),z) is evaluated (as part
of a stepwise evaluation), then the set pre(f) = {z} is called the precondition of
f in that evaluation; the set post(f) = {f(z)} is called the postcondition of f in
that evaluation.

e If e is a guard, and ezec(e — t,z) is evaluated, the precondition of e in that
evaluation is the set pre(e) = {z}. The postcondition of e is defined as post(e) =
(Uz : = € pre(e) : {z}).
O
Hence, the contribution of f to a trace is f’s postcondition, and, by Theorem 4.4, is
immediately preceded by f’s precondition.

We have chosen singleton sets for the pre- and postconditions because of the following
generalizations: If f occurs as part of a par, then ezec(f,z) can occur in the interleaving
with different values of z. We define pre(f) for that node f as the union of the preconditions
in the different evaluations; likewise for post(f). Furthermore, a tree E[t] can contain many
instances of node f. When Ezec(E[t], z) is evaluated, not all these instances need have the
same precondition. We define the precondition of f in Ezec(E[t],z) as the union of all
preconditions of instances of f in E[t]; likewise for post(f). Generalizing further, pre(f) in
E[t] stands for the union of all pre(f) in Ezec(E|[t],z), where the union is taken over all
z € Z(E[t]). Finally, pre(f) in ¢ stands for the union of all pre(f) in E[t], taken over all
E € V(t). Unless otherwise stated, pre(f) refers to this last generalization, i.e., the union
over all environments, initial states, and instances of f. In other words, pre(f) is the set of
all states in which f can be executed. pre(e) and post(e) are generalized in the same way.

We often use the abbreviation ‘pre(f) = P’, defined as

pre(fy=P = (Vz:z € pre(f) : P(z))

where P is a guard (a boolean expression on the variables of the state).

If t = ext(f;g), then if exec(t,z) is evaluated, pre(g) = post(f). However, if ¢/ =
par(t, s), then the same is not necessarily true for ezec(t’,), because the interleaving can
produce trees like ext(f;ext(h; g)) where h is a node of s. In such cases, sometimes we can
show that pre(g)lA = post(f)|A for some set A, and then use pre(g)|A = P instead of
pre(g) = P. In this context, the concept of interference is significant.

61

DEFINITION 4.6 (Conflicting Assignments)
State transformers f and g are conflicting if

(3z,u : = € State Au € changes(f) Au € changes(g) : (f(z))(u) # (9(x))(u))

d

For instance, 4T and | are conflicting assignments. The situation where conflicting as-
signments are interleaved is called interference.

DEFINITION 4.7 (Interference)
An execution Ezec(t,z) has interference if its stepwise evaluation involves
deave(t; s, ...) where ¢ starts with f and there is a tree in choices(s) starting with

g, such that f and g are conflicting.
|

This is generalized to programs in the obvious way: ¢ has interference if there are E € V(t)
and x € I(E[t]) such that Ezec(E[t],z) has interference. In many cases, interference must
be avoided.

A program ¢ often has conflicting (but not interfering) assignments, for instance, ¢t =
u7;...;ul. When environment E is applied to ¢, many occurrences of ¢ can exist in Elt];
in particular, E[t] can contain par(t, t). Since ¢ has conflicting assignments, it is quite likely
that par(t,t) has interference. For this reason, among others, such constructs must often
be avoided.

DEFINITION 4.8 (Parallel Duplication)
E[t] has parallel duplication of ¢ if, for any x € I(E[t]), the stepwise evaluation of
Ezec(E[t], z) involves ileave(t'; s, ...) where t' starts with a node of ¢ and there is
a tree in choices(s) starting with a node of t.

t

Parallel duplication of ¢ simply means that two instances of ¢ are interleaved during an
execution.

We conclude this section with some remarks about interleaving. Whenever
ezec(par(U’),z) is encountered, step E7 (or E8) requires evaluation of a number of inter-
leavings of the form dleave(t;; U). If one of I1-13 is applied, the result will be a tree to which
one evaluation step of E1-E5 can be applied, but always of such a form that after this first
step the execution again reaches a par construct, namely ezec(par(U, t),y). (This process
can only terminate if U U] is a singleton, because then axiom T10 removes the par.) The
important point is that, although ¢; differs from t; (or maybe does not exist), the bag U is

unchanged:

ezec(ti/\ ul/\ /\uz yT)

62

ezec(t-i,A UIA Auz oo)

Rule 14, on the other hand, can change one of the trees in U , namely one that starts
with a matched sync node. Even then, the other trees in U are not changed, and the
changed tree is only affected to the extent that the sync node is removed.

Next, consider, as an example, ileave(t; U) where t = ext(f;e — s).

i

deave(¢ ;... ={I3}

Hence, the first step of ezec(ileave(t; U), z) contributes f(z) to the execution tree; this is
exactly what ezec(t;z) would contribute. Let ' = e — s, 2’ = f(x). If we continue the
execution (using E7), one of the possible choices is ileave(t'; U).

el

ileave(¢ ;... = {12}

s SA

Hence, ezec(ileave(t';U),x') results in ezec(e — ...,z'), which, in the first step, again
contributes the same as exec(t’,2') would contribute. It is straightforward to generalize
this, leading to the following lemma.
LEMMA 4.9
For any ¢ that does not start with a sync node matched by a tree in U, the con-
tribution of the first step of ezec(ileave(t; U), z) is exactly the contribution of the
first step of ezec(t,).
If ¢ = ext(sync;) where the sync node is matched in U, resulting in match f,
the contribution of the first step of ezec(ileave(t; U), z) is exactly the contribution
of the first step of ezec(ext(f;S),).

63

Going back to the example, ileave(t’; U) is not the only possible choice; execution can
also continue with tleave(s; U — s,t’). However, as we have seen above, such an interleaving
leaves t' unchanged (if t' does not start with a matched sync). Hence, if the execution
involves once again a node from ¢, it will be in the form ezec(ileave(t'; U'),y), which con-
tributes in the same way as ezec(t’,y). We see therefore that, if we restrict our attention
to steps involving ¢, evaluation of exec(par(t,U), z) involves the ‘same’ steps as ezec(t,...),
except that the state can change between steps. This statement is not exact, however,
because, due to the changing states, guards can evaluate to different values in both exe-
cutions. Since a false guard removes part of the tree from consideration, we cannot quite
say that both evaluations perform the same steps. But, keeping the changing states in
mind, the analysis does show how the stepwise evaluation of ezec(par(t,U),z) progresses
with respect to ¢, namely similar to ezec(t,...). We express this principle (the interleaving
principle) by saying that interleaving maintains the execution order of individual trees.

4.2 Changing Nodes

In the previous section we related the form of the execution tree Ezec(t,z) to the form
of t. Our goal in this text is to prove transformations from tree ¢; into tree {3 such
that t; < ty. Therefore, we have to relate the differences between two execution trees,
Ezec(ty,z) and Ezec(ty,z), to the differences between ¢; and ¢;. Obviously, large changes
in a transformation are harder to analyze than simple changes. Therefore, in this section
we consider the effect of changing just one node f; to fo.

More precisely, let fi and f2 be nodes, and E € V(f1) and E € V(f2) be an environment
for both nodes. We want to compare X1 = Ezec(E|f1),z) with Xy = Ezec(E|[fs), z), for
some suitable initial state z. As before, we analyze the execution trees using stepwise
evaluation. This time, we apply a step to each of the two trees we are comparing, then
check what the differences between the resulting execution trees are. Whenever a step shows
a difference between the two execution trees, we say that that step ezposes a difference
between X; and Xs.

The first step is the expansion of Ezec, giving us ext(z; ezec(E[fi],z)) and
ext(z; exec(E[f2),z)). Without evaluating the recursive calls, we can only conclude that
both execution trees have the form ext(z;...), and hence that all traces of both executions
start with z; therefore, this step does not expose any differences between X; and Xs.

Now we make use of the fact that environment E must be a template. Therefore,
the only difference between E[fi] and E[f] is that a node f; in the first program can be
replaced by f» in the second program. (It is possible that E[t] has a node f; for every
argument ¢, so that this particular node is not replaced by fy. Generally, we only consider
those nodes fi that are in fact replaced by f».) For instance, say E[fi] = ext(g; E'[f1])

64

where g # fi. Then necessarily E[f2] = ext(g; E'[f2]).

9 g

Elfi]l = = E[fs] =
E'[fi] E'[f]

In this case, only step E4 is applicable to both evaluations. The result, ext(g(z);...), does
not expose any differences between the execution trees. A similar argument applies to the
other constructors, as well as to the recursive calls of ezec.

Say X1 involves an evaluation ezec(F[fi],y) corresponding to exec(F[fs],y) in the eval-
uation of X. It is clear that at this point only steps E3 or E4 can expose a difference
between the trees: E3 if F(fi] = fi and F[fs] = f;, and E4 if F[fi] = ext(f1;...) and
F[f2] = ext(fa;...). In either case, this step contributes fi(y) to X; and f2(y) to Xo, so
that a difference is exposed unless fi(y) = f2(y).

fi fi(y) f A(y)
ezec(A , Y) = A exec(A ,Y) = A

Because this difference involves the difference between f; and f; themselves, we call this
a direct difference caused by the transformation from f; to fo. The presence of a direct
difference does not necessarily mean that the implementation relation does not hold between
the trees we are comparing. In particular, a direct difference can only involve variables in
changes(fi) or in changes(fa). If these variables are not in var(E), then the direct difference
between the traces is not observable after projection on var(FE).
EXAMPLE 4.10
Suppose we compare Ezec(E[skip],z) with Ezec(E[ul],z). Then the direct dif-
ference is the difference between skip(y) and u7(y) for some y, i.e., the difference
between y and y[u — true].
changes(skip) = {} and changes(ul) = {u}. Therefore, if u ¢ var(E) then
the direct difference may exist but is not observable after projection of the traces.
If, in Ezec(E[u1],z), we have pre(ul) = u, then y[u — true] = y and there is
in fact no direct difference.
O

Continuing the analysis, suppose we evaluated ezec(ext(fi; F'[f1]),y) and
ezec(ext(fz; F'(fa]), y), exposing a direct difference because f1(y) # fa(y). Let y1 = fi(y)
and y2 = f2(y). Since environments are templates, F'[f;] and F’[f2] once again have similar
shapes, and the same step from E1-E8 applies to both trees. However, now the executions
continue with different states: ezec(F'[fi],y1) versus ezec(F'[f2],y2). Since the states are
different, each of E3, E4, and E5 can now expose a difference. For instance, if both F'[f;]

65

and F'[f,] have the form ext(g;...), application of rule E4 adds states g(y:) and g(y2)
to X; and Xo, respectively. If both states are indeed different, we call this an indirect
difference (because it does not directly involve the transformed nodes f; and f3). Note
that g(y1) # g(y2) is only possible if y; and y; differ in a variable of depends(g). Also, an
indirect difference in a trace must be preceded by a direct difference, although the latter
need not be observable after projection.

E3 exposes indirect differences in the same way as E4. Rule E5 can also expose an
indirect difference, namely if e(y;) # e(yz) for guard e. Say e(y;) but —e(yz). Then
exec(e — t,y1) involves the recursive call ezec(t,y;) after step E3; but ezec(e — t,y2) =
false — @, and involves no further steps. Differences caused by guard evaluations are
discussed in more detail in the next section.

EXAMPLE 4.11 (Vacuous Assignment)
Suppose in Ezec(E[skip], z) we have pre(skip) = u. Then there are no differences
between Ezec(E[skip],z) and Ezec(E[ul],z).
Proof: We have already seen, in Example 4.10, that there is no direct difference
between the executions. Therefore, there can be no indirect differences either, so
that both executions must be the same.
Such an assignment, which does not change the state, is called a vacuous

assignment.

a

Define a new variable as follows.

DEFINITION 4.12 (New Variable)
A variable u is a new variable for program ¢ if

u & var(t) Au & var(V(t))
A variable u is an unused variable for program t if
u & depends(t) A u ¢ depends(V(t))

Hence, there may be assignments to an unused variable.
O
We use the expression “t has only new variables” to denote that var(t) N var(V(t)) = {}.

EXAMPLE 4.13 (New Variable Insertion)
Let u be a new variable for F[skip]. Then

F[skip] = Fluf]

Proof: Take an arbitrary environment E € V(F[skip]) and appropriate initial
state z. Then compare Ezec(E[F[skip]],z) with Ezec(E[F[u1]],).

66

A direct difference caused by T can only involve variable u. But since u ¢
var(E), this direct difference is no longer observable after projection of the trace.
Furthermore, since u ¢ var(E o F), there are no nodes or edges that depend on v,
so there can be no indirect differences. Hence, after projection, both sets of traces
are equal.

a

In the previous examples, we replaced a node skip by a different node. Such transfor-
mations are of little use unless there is a way to insert skip nodes in a program. Suppose
we replace some node f by ext(skip; f).

skip
X1 = Ezec(E]| of |,x) Xy = Ezec(E]| If], z)

The comparison of X; and X, is quite similar to the earlier comparison of the replace-
ment of fi by fi, except with respect to the direct difference. Say X involves evaluation
of ezec(F|[f],y) corresponding to ezec(F[ext(skip; f)],y) in X,. Once again, a difference
can only be exposed if F[f] = f and Flext(skip; f)] = ext(skip; f) or F{f] = ext(f;...)
and Flext(skip; f)] = ext(skip;ext(f;...)). Say we have the latter situation (the other is
similar).

skip

Flf] = Flext(skip; f)] = 1/

Instead of applying a step to both executions, we now apply E4 to the evaluation of X,
only. This contributes state y to the tree, because skip(y) = y, and results in an execution

tree of the form
)

ezec(ext(f;...),y)

Following this step, both executions continue as before, both with execution trees of the
form ezec(ext(f;...),y). Hence, the direct difference is the extra node y in X». Since the
state has not changed, there will be no indirect differences.

LEMMA 4.14 (Skip Insertion)
Let f be a node.
f = ext(skip; f)

Proof: Let E be an appropriate environment and z an initial state. Compare
Ezec(E[f],) with Ezec(Elext(skip; f)],z). From the analysis above it follows

67

that the only differences between the execution trees are the extra states y in the
second execution, occurring as

exec(ext(f;...),y)

Hence, by eb, the traces of the second execution have an extra y immediately

preceding the contribution f(y) of f. But by the precondition theorem (Theorem

4.4), the traces of the first execution have the same state y preceding f(y). Since
lj y + y = v, the traces of both executions are identical.
Since ext(skip; f) corresponds to the sequential composition skip; f, this result is of
course exactly what one would expect. However, in terms of the formal semantics, the result
is not trivial. In particular, it hinges on the stuttering axiom for traces, t5, and on the
precondition theorem; if we only used ezec instead of Ezec, the precondition theorem would
not hold. Another subtlety is that we cannot change any arbitrary tree t to ext(skip;t):
Say t = false — t/, and the execution reaches ext(g;t,s) for X; and ext(g;ext(skip;t), s)

for Xs.
g
s

g
ki
Xt f :'éalse X2 s fals[:a
s #
tl

Say g contributes state y. Then the execution trees will be

Y Y
false and y
s s false

respectively. If s’ does not have the form false — (), the false edge in X; will not contribute
to any trace. But in X, there is the subtree ext(y; false — @), which corresponds to trace
y+ L. Although the extra y is not observable, the L is, so that X; and X3 are observably
different. A similar situation occurs with insertion of skip before sync nodes. However, it
is not hard to check that these are the only cases with this problem. Therefore, Lemma
4.14 can be generalized as follows.

LEMMA 4.15 (Skip Insertion)
For f € State — State; t € Program; U € bagof Program:

f = ext(skip; f)
t = ext(t; skip)
par(t,U) = par(ext(skip;t),U)
par(U) = ext(skip; par(U))

68

a

We now combine the skip insertion lemma with a slight generalization of Example
4.13, to get a very useful transformation.
THEOREM 4.16 (State Variable Insertion)
Let f be a node and F|[f] a program such that u ¢ depends(F|[f]) and u ¢
var(V(F[f])). Then
F(f] = Fluf; f]
Flf] = Flul; f]

(where uT; f stands for ext(u; f).)
Proof: We do the case with u]. First we apply the skip insertion lemma, giving
us F|[f] = F[skip; f]. Next we replace skip by «{. As in Example 4.13, the direct
difference can only involve u. Since v ¢ var(E) for environment E, the direct
difference is not observable. Furthermore, v ¢ depends(E[F[f]]), so there can be
no indirect differences.

a

Of course, the position of insertion of 4T can be generalized in the same way skip insertion

was generalized.

The requirement that v ¢ depends(F|[f]) is weaker than requiring that w is a new
variable. In particular, u ¢ depends(uT), so that the theorem can be used several times to
insert u1 in different places, or to insert both uT and u|.

State variable insertion is used in the proof of some more complex transformations,
such as those discussed in Chapter 5. It is also used as a transformation by itself in order
to distinguish between otherwise identical states in a computation; in this case the inserted
variable is called a state variable. This transformation igs performed prior to production
rule expansion (see Chapter 6).

By now it should be clear that a proof of ¢ < s using stepwise evaluation follows a
standard pattern. First we define X; = Ezec(E[t],z) and Xy = Ezec(E[s],z). Then,
using the fact that E is a template, we conclude that no difference can be exposed until
X1 evaluates ezec(F[t],y) corresponding to ezec(F|[s],y), where F[t] = t and Fl[s] = s,
or F[t] = ext(t;...) and F[s] = ext(s;...). Up to this point of the proof, the difference
between s and t has played no role whatsoever. Therefore, we simplify this preamble to

the following.

“Let X; (with t) and X, (with s) be the usual stepwise evaluations. Suppose t is
reached in X3, corresponding to s in X9, both with state y.”

This way, several fewer identifiers need to be introduced, no complex formulas need to be
written, and we do not need to deal separately with both ¢ and ext(¢;...). Following this
preamble, we can immediately consider the differences between t and s. The goal is to show
that any contribution to a trace by s can also be made by ¢. This usually means showing
that any step in X5 is either not observable (e.g., because of projection on war(E)), or can

69

also be taken in Xj. Once both s and ¢ have been passed in the executions, we can proceed
immediately to the next point where s and ¢ are reached. In addition to the simplified
preamble, we will often use program notations rather than trees, following Section 2.4.

4.3 Changing Guards

Next we consider the effect of changing a guard. Let e; and e, be guards, { some tree, and
E € V(e; — t) an environment for both e; — ¢ and ey — ¢. (We need t because a guard
by itself is not a tree, and E takes a tree as argument.) We compare the usual stepwise
evaluations X, (with e; — ¢) and X, (with ey — t).

Suppose e; — t is reached in X, and es — ¢ is reached in X3, both with state y. This
is the first point where a difference can be exposed, namely by ES5. Clearly, if e1(y) = ea(y),
no difference will be exposed by this step (according to E5). But suppose e; (y) A —es(y)
holds. Then X; contains true — &' (for some t'), corresponding to false — @ in Xo.
According to el-e6, a true edge never contributes anything to a trace. A false edge, on
the other hand, can contribute L, but only in certain situations. If the false edge occurs
as ext(y;false — @,¢1,...,%;) and at least one of the tj is not false — @, the false edge
does not contribute L. In that case, the difference between X; and X9 is that X; contains
traces ending with contributions of ¢’ which do not correspond to any traces in X,. If our
goal is to prove e; — t < ey — ¢, such differences are fine: we only need a subset relation,
X3 lvar(E) C Xi|var(E), not equality. As we have pointed out before (in Section 4.1), if
ez occurs in an unguarded choice, it can never contribute L. In particular, interleaving of
par(e — t,ext(f; S)) yields the unguarded choice ext(d;e — ..., ext(f;.. J):

Ak -

If, on the other hand, all t; above have the form false — §, a trace ending in 1 is
generated. Recall that a wait is a guard that appears outside a choice (Definition 2.14).
Therefore, if e; is a wait and not part of a par construct, it will contribute L. This by
itself does not mean that the implements relation does not hold, because X; may also have
traces ending in L.

Naturally, the situation where —e;(y) A ea(y) is entirely symmetrical, except that the
presence of extra traces is mere of a problem when we want to prove that e; — ¢ < ey — t.

Since a guard does not change the state, we do not distinguish between direct and

70

indirect differences; instea,d; we have changes in the number of traces, and the possibility
of L insertion.
EXAMPLE 4.17 (Vacuous Wait)
Suppose in Ezec(E[true — t],z) we have pre(true) = d. Then there are no
differences between Ezec(E[true — t],z) and Ezec(E[d — t), x).
Proof: In the analysis above we found that no difference is exposed whenever

e1(y) = e2(y).
Such a wait that always yields true is called a vacuous wait.
|

EXAMPLE 4.18
true true € e
K 2] t
Proof: Since for any state y only one of e(y) and —e(y) can hold, the tree on the

right-hand side contributes fewer traces than the tree with true guards (unless

both trees do not contribute to any trace).
On the other hand, e(y) and —e(y) cannot both be false, so that no L is

inserted.
O

Instead of using expressions like e;(y) A —ea(y), we often refer to the value of e; A —es in
state y.

LEMMA 4.19 (Strengthening Guards)
If pre(e;) implies that e; A ey => a then

Proof: Call the program on the left-hand side ry, the other 5. As before, 79 may
have fewer traces than ri. Furthermore, ro can contribute L if ~(e; A a) A —es:

—'(61 A a) A —eg

(ﬁel A —162) \ (-wa A —162)
= {-a= —-e; Vey}

(‘161 A ﬁ62) AV ((—|el \Y 62) A ﬂ&g)

—e; A\ —eg

Hence, r2 can only contribute L if —e; A —ez, in which case r; also contributes L.

71

Guard strengthening is often done during production rule generation to make combina-
tional gates. It is also used to make the guards of selection statements mutually exclusive
(Theorem 6.12).

We can insert true guards in a program in the same way we can insert skip nodes. Sup-
pose we replace node f by true — f, and compare the usual X; and X5. When f is reached
in X3, true — f is reached in X, say in the forms ext(f;...) and true — ext(f;...). Sup-
pose the state is y. We apply E5 to X3 only, resulting in true — ezec(ext(f;...),y).
Following this step, both executions continue as before, both with execution of ext(f;...)
in state y. Therefore, the only difference between X; and X3 is that f(y) in X} is replaced
by true — f(y) in X,. According to el—e6, the presence of the true label has no effect on
the traces, so that the change from f to true — f is not observable.

As with skip node insertion, a true guard cannot be inserted before every tree. Since
the same example suffices to illustrate this, we will not repeat the argument here. We
conclude that true guards can be inserted in exactly those places where skip can be
inserted.

LEMMA 4.20 (True Guard Insertion)
For f € State — State; t € Program; U € bag of Program:

f=true — f
t = ext(t; true — 0)
par(t,U) = par(true — t,U)
par(U) = true — par(U)

a

EXAMPLE 4.21
Suppose u] does not occur within a par construct in E[u1], for any E € V(ul).

Then
u] = ul; [(ul

where u1; [u] stands for ext(uf;u — 0).
Proof: First we use Lemma 4.20 (the second clause), to get «T = uT; [truel. Since
1T does not occur within a par, uT; [true] is not involved in any interleaving, which
allows us to conclude that pre(true) = post(u1). Hence, pre(true) = u, and, as
in Example 4.17, we can change true to u.

O

The restriction that T cannot occur within a par can be weakened a bit, as follows.

LEMMA 4.22 (State Variable Wait Insertion)
Let F be an environment of T such that «{ does not occur within a par construct.
Suppose, for all E € V(F[u1]), there is no parallel duplication of F[uf] in E[F[u1]]
and u ¢ var(E). Then
Flul] = Flul; [ul]

72

Proof: From Lemma 4.20 we get F[ul] = F[ul; [truel]. Let E be an environment
of F[uT]. If nodes are interleaved with u1; [true], they must be nodes from E, be-
cause F'[u1] is not interleaved with itself and within F[«1], T does not occur within
a par construct. Since v ¢ var(E), we know that post(ul)|{u} = pre(true)|{u}.
Hence, pre(true) = u, and we can replace true by u.

(|

Often, we first use the state variable insertion theorem (Theorem 4.16) to insert assignments
uT and] in a program F, then use the above lemma to insert appropriate waits (%] and
[—u]. It is straightforward to generalize the lemma to sequences like u{;¢; [u], where
u & changes(t).
We conclude this section with a lemma about insertion of false guards.
LEMMA 4.23 (False Guard Insertion)
For f € State — State; t € Program; S € set of (Program):

ext(f; S) = ext(f; S, false — t)

Proof: A difference between the execution trees can only be exposed when both
trees are reached, say with state z. This yields execution trees ext(f(z);S’) and
ext(f(z); §',false — @), where S’ depends on S and f(z) only. This shows im-
mediately that ¢ does not contribute at all. Furthermore, the only way in which
false — 0 can be observed in a trace is if all trees in S’ have the form false —
as well; in that case, the trace of the second execution would end with f(z) + L.
But if all trees in S’ are false — (J, then the first execution of course also ends in
f(z) + L, so that no differences can be observed.

4.4 Changing Synchronization Nodes

If in some execution sync,(fi; f2) is matched with sync,(g1; g2), the actual contribution to
the execution tree is the execution of the match fo 0 gg o f; 0 g;. Hence, if we change any
of the state transformers fi, fa, g1, g2, the effect is just that of changing the match. Since
the match is a node, there is no need to analyze this type of change any further: it is
covered by Section 4.2. If we change the state transformers of an unmatched sync, no effect
is observable, since execution of unmatched sync nodes always results in false — § (by rule
E6).

In practice, we seldom insert a single sync node, unless it is not reached during any
execution. Because, if the new sync were matched during the execution, then it is likely
that before the insertion there was an unmatched sync resulting in some trace ending in
1. Not only would the L no longer be generated, thus invalidating the implementation

73

relationship, but also, programs that generate L are usually considered erroneous; there is
not much need to implement programs that are already wrong. If, on the other hand, the
new sync is not matched, it has the same effect as insertion of a false guard. Practically the
only case in which this is correct is the one expressed by the false guard insertion lemma,
Lemma, 4.23.

Therefore, we consider the effect of insertion of two sync nodes. Since we want the two
nodes to be matched, they must naturally occur within a par construct. Consider

ANWAY . % %tl
= and 719 = xX{ (%

A N\

Le., r1 is (s1 // t1); (s2 // t2) and 73 is (s1;syncy; s2) // (t1;syncy; t2). Here, sync, stands for
sync,(skip; skip).

Compare 1 and 73, using the usual stepwise evaluations X; and X3. Once r; and
T9 are reached, both evaluations start with a choice between two interleavings. X; has
a choice between ileave(s1;t;) and ileave(t;;s1), and X5 likewise has a choice between an
interleaving starting with s; and one starting with ¢;. Because interleaving maintains the
order of execution (the interleaving principle), it is clear that no differences between X;
and X, are exposed until X; has reached the end of sy or ¢;. Say that the end of s; is
reached first, with state y. Then the remaining evaluations have the form (X; is obtained

by applying axiom T10)
4/\ <t A
52
and Xz :

£%

A [\ Ae

Further evaluation of X; will contribute the same to the execution tree as ezec(#},y) would,
after which exec(par(sy, t2), z) remains. Evaluation of X5, however, involves again an inter-
leaving. There is a choice between a tree starting with sync, and a tree starting with the

74

first action of ¢#{. We assume that ¢{ has no sync, node, so that the first choice contributes
false — @ (by E6). The second choice, however, contributes in the same way as exec(t,y)
would (Lemma 4.9). According to the false guard insertion lemma (Lemma 4.23), the
false edge does not contribute to the trace. Therefore, the first step of both X; and Xy is
identical to the first step of ezec(t{,y), and exposes no difference.

The same argument applies to all following steps, until either the sync, node in X is
matched, or the end of ¢ is reached. Since the sync, node can only be matched by a node
following t}, no differences are exposed until) is finished. When that happens, X; and X,

Xi: | s A Atz and X : . A Atz

both with the same state, say, z. Applying I4 to X, yields the (commutative) match
skip o skip o skip o skip = skip. Hence, X, has reached ext(skip; par(ss,t2)). According
to the skip insertion lemma (Lemma 4.15), this is equivalent to par(ss,t3), so that both
X3 and X» continue with identical evaluations ezec(par(sa,ts), 2).
The above, admittedly somewhat complex, argument shows that sync nodes indeed
synchronize. We summarize this in a theorem.
THEOREM 4.24 (Synchronization Property)
Let sync, stand for sync,(skip;skip). If s; // t; does not contain any unmatched
sync, node, and £ ¢ var(E) for any appropriate environment, then

have reached

(s1 /] t1); (52 /] t2) = (s155Yncy; s2) // (t155yncy; to)

Proof: Since s; // t1 does not contain unmatched sync, nodes, in the above argu-
ment we can indeed make the assumption that ¢; does not contain any sync, nodes.
Furthermore, since ¢ ¢ var(E), the interleaving is not affected by the environment
(i.e., the inserted sync, nodes cannot be matched with a sync, in the environment).
The above argument then proves the theorem.
a
Since the above argument is completely independent of sy and t3, they can be omitted,
giving us the following corollary.

COROLLARY 4.25
s1 /f t1 = (s1;5yncy) // (t1; synce)

75

EXAMPLE 4.26 (Sync Duplication)
Let sync stand for sync,(skip;skip). Then

(s158ync; sg) // (t1;sync; ta) = (s1;sync; sync; s3) // (t1; sync; sync; tg)

Proof:
(s1;sync; s2) // (t1;sync; ta)
= {synchronization property, Theorem 4.24}
(s1 // t1);(s2 /] t2)
{Corollary 4.25}
((s158ync) // (t13sync)); (s2 // t2)

{synchronization property, Theorem 4.24}

(s1; sync; sync; s2) // (215 sync;sync; tg)
O

EXAMPLE 4.27
We can of course apply the synchronization theorem any number of times. In

particular, we have the following (sync = sync,(skip; skip)).

*x[s /] t]

(s//t) (s//t); *Ls /1]

i

(s;sync; s) // (t;sync;t); *[s // t]

I

(s;sync;s) // (t;sync;t); (s // t); *[s // t]

(s;sync; s;sync; s) // (t;sync; t;sync;t); *[s // t]

It

* [s;syncl // *[¢;sync]

4.5 Process Decomposition

In this section we discuss a transformation that is often performed at CSP level, called
process decomposition. It is used to break up a process with a complex structure into two

76

processes with simpler structures; the operation is akin to replacing a program part» by a
procedure call.
DEFINITION 4.28 (Non-Terminating Process)

If for all f € State — State
t=t;f

then program ¢ is called a non-terminating process.
a
We use ‘process’ instead of ‘program’ to avoid potential confusion between non-terminating
processes and infinite programs: the latter are merely infinite trees. For instance, every
loop is an infinite tree. If ¢ = ¢; f for arbitrary f, this means that f never contributes
to any trace. In practice, there are three situations in which f does not contribute to
Ezec(Et; f],z): (1) t itself is never reached in the evaluation, for instance because E[t]
contains false — ¢; (2) evaluation of ezrec(t,y) takes infinitely many steps; (3) ¢t ends in
deadlock, contributing false — @) to the execution tree. In case (3), t contributes L to the
trace, unless there is always another choice of action available (in which case the trace is
infinite).
EXAMPLE 4.29

For an arbitrary program ¢,

*[¢]
is an infinite process.
Proof: *[t] = t;t;t;.... Hence, *[{] either contributes infinitely many states to

a trace, or contributes false — @) to the execution tree. An infinite trace p followed
by a contribution of f is just p, according to the trace axioms (t7, t8). If *[¢]
contributes false — (), then f is not reached and certainly does not contribute to

any trace.
0

Recall that synchronization and communication actions can be defined with or without
the possibility of probing. In the following we use two synchronization actions, C? and C',
the first one of which can be probed. (No data is exchanged, the ? and ! are only used to
distinguish between the two actions.)

C? = sync,(skip; skip)
C! = ext(#C1; syncy(skip; #C1))

‘#C" is a boolean variable; we require that it is false in the initial state.

Consider a non-terminating process F'[t] for which #C and £ are new variables. Assume
that for all E € V(F([t]) there is no parallel duplication of ¢ in E[F[t]]. We transform F[t]
in two steps, starting with

Flt] = (Flt] [/ *[[#C — t; C711)

7

If we compare process decomposition with using procedures, this step corresponds to defin-
ing, but not calling, a procedure.

Proof: Let ry = F[t], s = *[[#C — t;C?11, and 73 = F[t] // s. Consider the usual
stepwise evaluations, X; with 71 and X3 with ry, and assume 7; and 7y are reached.

In X, interleaving of r7 yields a choice between two alternatives. One alternative has
the form #C — ..., which evaluates to false — @ (#C is initially false, and, since it is
a new variable, no assignments to it are present). The other alternative starts with the
first action of r1, and therefore is identical to the first step of X;. Hence, at this point of
the evaluation, the only difference between X; and X5 is the insertion of an alternative
false — 0. According to the false guard insertion lemma (Lemma 4.23), this difference is
not observable.

The same argument applies to all following steps. In each case, if X; has reached I,
then X5 has reached F' // s, and —#C holds. This process can only change if I1 can be
applied to ileave(F'; s), because that results in par(s) = s in X5. Since then there is no
longer a choice of actions, the false guard contributed by s can contribute L. However,
if I1 can be applied to ileave(F'; s), then apparently F' is a single node, and certainly the
evaluation of ileave(ext(F’; f); s) can reach f in a finite number of steps. Since r; is a
non-terminating process, this situation cannot occur (in a finite number of steps), so that
no differences between X and X9 can be observed.

O

The second step of the transformation is
(F[t] // *[[#C — t;CN]) = (F[C"] J/ *[[#C — t; C?1])

In terms of procedures, this corresponds to replacing code (in this case t) by procedure
calls.

Proof: Compare the usual executions X; and X3. A difference can first be exposed when
evaluation of X; reaches ¢ (in F[t]). This must occur as part of the evaluation of a par
construct, because F'[t] occurs within a par. Note that =4 C still holds at this point. Hence,

suppose we have reached

TANWAY A

x/

X1 : X2 :
r r

(where s = *[[#C — t; C71]). In X,, we have the choice between the false guard of s,
which does not contribute to the trace, and the assignment # CT; perform this assignment.

78

Because #C ¢ var(FE), no direct difference from #C1 can be observed. For the next step
of X3, we have the choice between a sync and #C — Since the sync is unmatched, it
yields false — , which is not observable, because the other alternative yields true —
The true edge does not contribute to the traces. Hence, following this step, no differences
have yet been exposed, and the evaluations have reached

(WA X, T'X 4&

t
£
T

S

From the previous proof, we know that X; starts with the contributions of ¢, except that
at each point there is an alternative false — (). In X5, there is the choice for an action
of ¢, or for the sync, node. Since the sync, node is not matched, it contributes false — .
This is true for every step until a matching sync, is reached, which only happens when
¢ is finished. Hence, X, also starts with the contributions of ¢, with at each point an
alternative false — (). Therefore, X; and X3 are identical until the end of £. At that point,
the executions have reached

Xi:

skip; #C | %¢ ¢3¢

wlas] =L

Applying I4 to X3 yields the commutative match #C|. As with #C1, no direct difference
from this assignment can be observed. Following #C|, X; has reached par(r, s) and X,
has reached par(r',s). If r = F'[t] for some F’, then 7' = F'[C!], and we are back to the
starting situation (since =#C holds again).

|

We summarize this result in a theorem.
THEOREM 4.30 (Process Decomposition)
Let F[t] be a non-terminating process for which #C and ¢ are new variables.

Assume that for no E € V(F[t]) there is parallel duplication of ¢ in E[F[t]]. Then
Flt] = (F[C] [/ *[[#C — t;CM1)
where C! = ext(#C1;sync,(skip; #C|)) and C? = sync,(skip; skip).

79

" 4.6 Process Factorization

Like process decomposition, process factorization transforms a single process into the par-
allel composition of two simpler processes. However, this transformation is normally per-
formed at HSE level. Process factorization can be used as a transformation by itself, but
is especially useful in the proofs of more complex transformations.

In this transformation we take a program of the form

t = Led; so; Lead; s1; . .. [el; 85

where each e; is a guard and each s; a program. For ¢; in this program, define condition
Cj as

Cj = (VYn : n is guard e;_1 V n a node, guard, or sync in s;_; : pre(n) = —e;)

In words, Cj means that —e; holds when the wait [ej_1] is reached, and continues to hold
during execution of s;_j:
Leod; s0; . - . sj—25 [ej_11; s—1; [ed;
G = 1 1
“"vej

We call C; the factorization condition for e;.

Assume that for every j > 0, C; holds for all computations of . Then we can implement
this program by the parallel composition of two programs, teyen and t,qq:

teven = Leol; so; [eal; so; . . . [e2j]; 825 - . -

toad = Led; s1; lesl; s3; . . . Legjpals sojyr - - .

Note that Cp is satisfied trivially; in fact ep can be just true. Also, C; implies that —e;
holds initially.

Proof: Define tJ as the prefix of ¢ ending with s;; likewise for tf;yen and tid 4+ The proof
uses induction on j.

Basis:

This is trivially true, because both programs are identical, namely [eg]; sp.

Induction: There are two induction steps, one for extending tlyen and one for extending
tf, 44+ Both proofs are completely analoggus; here we present the extension of tf)dd. In this
argument, the understanding is that if ¢/ does not exist because j < 0, then the execution
of ¢/ is trivially finished; likewise for s;. Also, t3,., // t--} is just £2,,,.

Given the induction hypothesis (for j > 0)

2j — 425-2, I P 2j-1
¥ = 8272 Leajl; 895 /) t27

80

prove that
9t = (U2, Ceal; sa; /) 23775 Lenjials saj4
(the latter is of course the same as t¥+1 = 2], // t241).

Consider the stepwise evaluations of the usual executions, X; (with t2¥+1) and X,
(with the parallel construct). According to the induction hypothesis, no difference can be
observed until the execution of tfgd_l as part of Xy is finished. That means that execution
of 91 is finished, both in X; and X,. Because of the form of t%, if execution of S35 is
finished in X, then certainly execution of 829 is finished in X;. Since no difference has
yet been observed, execution of sy;_ must also be finished in X5, meaning that execution
of tez,’,.e_n2 must be finished in X3. We conclude then that the first difference can only be

observed if the evaluation of X; has reached
Lea;1; 5255 Leajv1l; saj41
and the evaluation of X5 has reached
Leajl;sa5 [/ Leaj1l; s2i41

In X5 there is a choice between two interleavings, one of which has the form €241 = - - ..
Now, according to Cy;11, we have pre(es;) = —egjq1. Since we have reached ey in X7,
without differences, we must indeed have —epj; in both X; and X,. Therefore, in X5, the
interleaving starting with ey;+1 evaluates to false — (). The other interleaving starts in the
same way as the remaining program in X;. Therefore, in this first step the only difference
between X; and X is an extra false guard, which, according to the false guard insertion
lemma, is not observable. The same is true for all following steps, as long as —€g;41 holds.
According to Cy;t1, this can only change after the execution of s95. Once execution of
sg; is finished, the parallel construct in X, reduces to just [egj11]; 525+1 (by axiom T10).
In X7, once execution of sy; is finished, exactly the same program remains. Hence, both
executions are identical.

a

We summarize this result in a theorem.
THEOREM 4.31 (Process Factorization)
Define t, topen, and t,4q as

t = [eol; so; [Led; s1; .. . [egl; s5 . ..
teven = Leol; so; [e2d; so;5 . . . [egd; s95 . . .
todid = Leid; s1; [esl; s3; . . . Legjp1d; sojq1 - - -

Define the factorization condition C; for ej in ¢ as

Cj =(Vn : nis guard e;_;1 Vn a node, guard, or sync in s;_; : pre(n) = —e;)

81

If for all j > 0 the factorization condition C; holds, then

t = leyen // todd
O

Process factorization is usually applied to processes of the form *[s]. If s = seyen //
S0dd, then certainly *[s] = * [Seyen // Sodd] (by Theorem 3.22). The following two examples

show when the more interesting
*[s] = *[Seyenl // * [S544]

holds.
EXAMPLE 4.32

Let ¢t = *[s] be of the form

¢ = x[[eg]; s0; [e1d; . . . [eax—11; s25—1 1
= Leol; so; Lerd; . . . leax—11; sak—1; [eod; so; [edd; . ..

Hence, we can apply process factorization if Cy; holds for ey; this results in

teven = Leol; so; [ead; . . . [ear—2]; sok—2; Leol; so; [e2d . . .
= *[[epd; so; [e2l; . . . [ear—21; 525211

and

toaa = Lleld; s1; [esl; . . . lesk—11; s2k—1; [eals s1; [esl . . .
= *[[e1]; 515 le3d; . . . Leap—11; 526111

It is important that £ ends with an odd index, so that the second instance of ey

corresponds to an even index and occurs in fepen instead of ¢y44.
O

EXAMPLE 4.33
In the process factorization theorem, Cjy is trivially true, meaning that ey can be
just true; in that case, by the true guard insertion lemma, [e] can be omitted
from £. The same can be done with a process of the form *[s]:

t = *[sp; [erd; . . . s9p—1; [egl]
= so; [e1d; . . . sok—1; [erl; so; [erl;

Process factorization can be applied if pre(eqr) = —ej, resulting in

teven = so; [e2l; . . . sak—2; [eard; so; [eal;
= [sp; [epd; . . . sop—2; [eaxl]

and

todd = Cerd; s1;5 Lesds . . . sop—1; [e1d; s1;
= *[[e1]; s1; lesl; . . . s9p-1 1

82

Chapter 5

Synchronization

As explained in Section 1.2, the high-level design of a circuit is done in a CSP-like language.
At some point of the design, CSP programs are converted to the more primitive HSE
language. The main difference between CSP and HSE is that HSE has no synchronization
actions. In this chapter we discuss transformations that replace synchronization actions by
protocols using shared variables.

5.1 Handshake Expansion

In this section we study a transformation that replaces sync nodes with sequences of normal
nodes (assignments) and waits; this transformation is called handshake expansion. The
proof relies on the process factorization theorem, which was proven in the previous chapter.
However, we start out by proving two lemmas about the behavior of programs when used
as part of a larger program.

Consider a program t in an execution of E[t]. If the stepwise execution involves
ezec(ext(t; S); z), the states contributed to the trace by this instance of ¢ are exactly the
states of ezec(t,). If t occurs within a par construct, the actions of ¢ will be interleaved with
other actions. According to Lemma 4.9 and the interleaving principle, the only difference
between the execution of ¢ actions in the interleaving ezec(ileave(t; U),z) and ezec(t,) is
that the state is changed in between ¢ actions.

Suppose that var(t) N var(E) = {}, and that E[t] has no parallel duplication of t. We
compare the stepwise executions of X = Ezec(E[t],z) and X9 = Erec(*[t],z), where we
are interested in the projection of states on var(t). The stepwise execution is applied to X
only, until the first action of ¢ is encountered; i.e., until an evaluation ezec(ext(t;S),y) or
ezxec(ileave(t; U),y) is reached. Since var(t) and var(E) are disjoint, ylvar(t) = z|var(t).
Hence, since ¢ actions only depend on variables in war(¢). the next step in X is exactly
the same as the next step in X5, In case of an interleaving, the following step in X; may
not be a t action, in which case it will not affect the part of the state concerned with
var(t). Hence, steps of X; are taken until the next ¢ action is encountered. Since there
is no parallel duplication of ¢, this must be identical to the next action of X5. Since the

83

relevant part of the state has not changed, both actions have the same effect. The same
argument applies to all following steps involving ¢. The only way in which a difference
between the executions can be observed is when no instance of ¢ can be reached anymore
in X1, for instance because X; is finite.

So far, we have shown that the contributions of ¢ actions to the ezecution trees are
identical in Xy and Xs. That is not quite the same as saying that the contributions to
the traces are identical, in case of the presence of L. Suppose a guard in ¢ is evaluated to
false at a point where there is no other choice of ¢t action available. This causes a | in
the trace of X3. But in X; it is possible that there is a choice available of an action that
is not part of t. Hence, the same false guard does not contribute L to the trace of X;.
However, in this case the trace of X; cannot contain any more contributions by ¢ actions.
(The situation for unmatched sync nodes is identical to that for false guards.)

From this argument follows the following lemma.

LEMMA 5.1
If var(t) N var(E) = {}, and if E[t] has no parallel duplication of ¢, then:

For any p € Ezec(E|[t],z) there is a p’ € Ezec(*[t],z), such that
plvar(t) is a prefix of p'|var(t), or
p=q+ L and q|var(t) is a prefix of p'|var(t).

g

Note that p can end with a L state that is not contributed by a ¢ action. Since L does not
disappear in the projection, we have to make a special provision for 1 in the lemma.

Essentially the same argument can be used to extend the lemma to an environment
with two arguments. Compare the stepwise executions of X; = Ezec(E|[s,t],z) and Xy =
Ezec(*[s] // *[t1,x). We assume that var(E) N var(s) = var(E) N var(t) = {}, and that
there is no parallel duplication of s or ¢ in Els,] (meaning that s // s cannot occur, but
s // t can). In X, there is at any step a choice between an s action and a t action. Hence,
whenever in X one of these actions is reached, the same action is reached in X5, with the
same relevant part of the state. So certainly any states contributed to the computations
by a node from s or t is identical in X; and X».

The situation with false guards (or unmatched sync nodes) is somewhat more com-
plicated. As before, it is possible for a computation of X, to end with L while the corre-
sponding computation of X; can continue with actions that are not part of s or ¢£. But in
this case there is another asymmetry between the two executions: Suppose in X; a guard
from s is reached, and evaluated to false. The same then also happens in X5. In X; this
leads to deadlock if there is no other choice of action available. But in X3 there is always
at least a choice for an action from ¢, so that X2 can only end in L if this ¢ action is also a
false guard. Hence, if X ends in deadlock caused by an s or ¢ action, this does not mean
that X7 ends in deadlock.

LEMMA 5.2
Let V = var(s)Uvar(t). If VNvar(E) = {}, and if E[s, t] has no parallel duplication

84

of s nor of ¢, then:

For any p € Ezec(E|s, t],z) there is a p’ € Ezec(*[s] // *[t],z), such that
plV is a prefix of p'|V, or
p=gq+ L and q|V is a prefix of p'|V.

O

We now go back to our goal of proving the handshake expansion transformation. This
transformation relies on special program sequences called handshake sequences.

DEFINITION 5.3 (Handshake Sequence)
A handshake sequence is a program of the form

t = [eol; s0; Le1d; s15 . . . [exd; sk

where each e; is a guard and each s; a program, such that
1. k> 2
by the process factorization theorem, t = teyen // toad;
*[1] = *[teyenl // *[to4d];
*[t] has no deadlock;
all variables of ¢ are new variables;
for all appropriate environments E, E[teyen, toga] does not have parallel
duplication of tgyen nor of ty4q4.

o s W

a

At the end of this section we present several examples of handshake sequences, but for

the proofs we use the general description of ¢ from the definition. Programs satisfying

requirement 3 were discussed at the end of Section 4.6 (Example 4.32 and Example 4.33).
Because feyen // todd = t, we have the following lemma.

LEMMA 5.4
Let ¢ be a handshake sequence. Consider a stepwise execution involving teye, and

todd.
® teyen is finished = £,54 has started;
® t,qq is finished = f.yen, has started.
Proof:

e Since k > 2, the last action of feye;, must be or follow [es]. Since in ¢
this action follows s;, which is part of ¢,44, the execution of ¢,44 must have
started before #,4., can finish.

e Since k > 2, t,qq contains at least [e;]. Since in ¢ this action follows s,
which is part of feyen, the execution of t.ye, must have started before ¢,44
can finish.

85

Let C4 and CF be matching sync nodes of the form sync,(skip; skip). Let F be a
two-parameter environment for which £ is a new variable, and for which ¢ is a handshake
sequence. (It follows that in F[C4,CP], C4 can only be matched by CP, and vice versa.)
The transformation consists of two steps, starting with

F[CA’CP] = F[(CA; teven)’ (CP3todd)]

Proof: Consider the usual X; and X5. All variables in feye, and t,g; are new variables,
so assignments to them are not observable. Hence, the only possible difference between X3
and X3 can be the occurrence of deadlock in X5 caused by feyen 0r toqq. We show that such
deadlock cannot occur.

From Lemma, 5.2 it follows that, as far as teyen and t,44 is concerned, X, behaves as a
prefix of *[teyen] // *[fo44]. Since ¢ is a handshake sequence, we know that

*[teven] // *[todd] = *[t] = *[teuen // todd]

Now consider only ¢ actions, and compare Xy with X3 = exec(* [teven // todal,z). In Xo,
when ¢.yen is reached, it must be following the execution of C4; according to rule I4, this
means that CF was executed simultaneously, so that ¢,44 has been reached as well. Hence,
at this point X3 involves execution of t.yen // todq, just as X3. Since X3 has no deadlock,
this execution cannot cause deadlock in X either, assuming that no other instances of ¢eyen
and t,44 are reached. (This assumption is correct because otherwise another matched pair
of C4 and C? must have been executed, which would imply parallel duplication of at least
one of teyen and fo44.) The same holds for all further occurrences of teyen and to44, leading
to the conclusion that ¢ actions cannot cause deadlock in Xs.

O

Note that, in the above proof, using * [{eyen] // *[{044] for X3 would not be sufficient,
because absence of deadlock in that program might require a sequence of, for instance, one

tefuen and tWO tOdd ’S.
The second step of the transformation is

F[(CA§ teven), (CP; todd)] = F[tevena todd]

Proof: Consider the usual stepwise executions X; and X5. If, in X;, C4 is reached and a
match with CF is possible, the match is made without observable effect (since the match is
skip), and both executions continue equivalently. If however C4 is reached in X; and no
match is yet possible, {.yen is reached in X, but not in X;. Since the actions of teyen itself
are not observable, the first observable difference can occur when an action following teyes
is reached in X3. But according to Lemma 5.4, if such an action following #y., is reached,
then to44 must have been reached as well. If ¢,44 is reached in X5, then C* must have been

86

reached in X, so that a match is now possible, and the earlier situation is reached, where
no differences can be observed.

If CF is reached before CA, the equivalent argument for ¢,44 holds.
O

This completes the proof of the handshake expansion transformation.

THEOREM 5.5 (Handshake Ezpansion)
If CA and CF are matching sync nodes of the form sync,(skip;skip), and F is
a two-parameter environment for which £ is a new variable, and for which ¢ is a
handshake sequence, then

F[CA, CP] = F[te'uen, todd]

a

In t,' the first action is one of t.yen. Therefore, feyen is said to initiate the handshake,
and is called the active half of the handshake sequence; similarly, t,44 is called passive.
This is why we chose the particular superscripts in C# and CP. In Section 5.2 we will see
that the choice of passive or active has important consequences.

As examples, we present the three handshake sequences that are used most often. Since
it is straightforward to check that they do indeed form handshake sequences (i.e., they
satisfy requirements 1-4), we omit that proof. E.g., each sequence ¢ can be constructed
using state variables insertion (Theorem 4.16) and state variable wait insertion (Lemma
4.22), showing that it is deadlock-free. The initial values follow from the requirements of

process factorization.

EXAMPLE 5.6 (Four-Phase Handshake)

t = T [ed; LTy [L); 1ol [5l); L =]
teven = loT; 15 1l [=;]
todd = Lol; LiT; (-5 1]

Initial values: —l, A —l;. For this handshake sequence, k = 4.
a

A phase in this context is an assignment followed by a wait. We count the number of phases
that occur in sequence; e.g., a four-phase handshake sequence has four phases in sequence.

87

EXAMPLE 5.7 (Lazy Four-Phase Handshake)

¢ = [=L1; LT Ued; LTy L1 Ll [=1.1; Ul
teven = [0I]; 1T; (15 1l
todd = Uols LiT; (=15 4]

Initial values: —l, A —l;. For this handshake sequence, k¥ = 3. The reason why it is
called ‘lazy’ will be made clear in Section 5.3.

O
EXAMPLE 5.8 (Two-Phase Handshake)
¢ = b=l Lo # L5 =10 i =1]
teven = lo:="l;; [=1,]
todd = Uo# L] =1,
Initial values: [, = [;. This handshake sequence has k = 2, the minimum possible
value.
g

Since the two-phase handshake sequence has fewer actions in sequence, it is potentially
more efficient than the four-phase variants. However, it also has a more complex form,
which may negate that advantage. Typically, this handshake sequence is only used when

the following simplification can be applied.
Suppose that in F[C4,CF], the C# actions can be numbered C14 and C24 so that

in the execution C14 and C2# always alternate, and likewise for CF. We now apply
handshake expansion with the two-phase handshake, which we’ll write as

FI[ClAv ClP’ C2A’ C2P] = Fl[t;vem t;dd’ tezven, tgdd]

Because of the alternation between C1 and C2 actions, we then find that (assuming that

initially —l, A —1;)

pre(t,}ven) = =, A l; pre(t(}dd) = —l;

pre(t2,e,) = lo Al pre(tgdd) = 1;

Using these properties, the handshake can be simplified as

tgven = I,T; ;]
t(}dd = [lo] 3 llT
te2'ven = Il; [—1;]

88

Note that, using sync duplication (Example 4.26), we can replace a single instance of
C by C;C, which can then be numbered C1; C2. Of course, if we then use the two-phase
handshake expansion, the result is identical to using a four-phase handshake expansion for
C directly. However, it may be useful to apply this transformation in cases where there is
an alternation of three C actions:

*[C; ... C .. 0L 0] = x[C;C; ... C; ... 05 ..]
The latter program can be written as
*[C1l; C2; ... C1; ... C2 ...]1

so that the simplified two-phase handshake expansion can be applied.

If we consider the proof of the Handshake Expansion theorem, we may observe that the
important properties of ¢ are that *[t] = * [tcyen] // *[t,44], that *[£] has no deadlock,
and that Lemma 5.4 holds. It is possible to find programs that satisfy the same require-
ments, but that are not obtained by process factorization. Handshake expansion can also
be performed with such programs. For instance, [24] presents the following alternative
two-phase handshake.

= loi=xlp; [o=16]; 1o:= —ro; [ro =1l

o = li=-l; Ue=U6); =1y [ro= 1]

Using the usual stepwise evaluation argument, we can show that |
*x[t1] [/ *[t] = *[t]

where

[t = (lp:==l, J] ;= 1)
*L((Clo = L5 1o := 7o) J] (Lo =115 ri:=—ry));
([ro=1rid; lo:="l) [] ([ro =115 i := 1))
]

(Initial values are I, = I; A 7, = 7;.) Since *[¢] has no deadlock, and Lemma 5.4 can be
proven for {; and 3, we have as a variant of the Handshake Expansion theorem that

F[C',C?) = Flty, 1]

Note that, based on the form of ¢, there is no distinction between active and passive halves
of the handshake sequence. ¢; and ¢3 can be simplified under the same conditions as given
for the two-phase handshake expansion. Like the two-phase handshake sequence, ¢ has only
four actions in sequence. On the other hand, it uses twice as many variables. Nevertheless,
a potential advantage (as explained in the next section) is that both #; and f, can be
considered active.

89

As a refinement of this alternative two-phase handshake, consider that #; = t;t! and
ty = ty; t5 where

] = loytoi=-Tolp; loZToNlo=1)V (Io=r1oATs= ;)]

ty = lyri=-ryly Wi#EriANlo=L)V({i=riAT,=r1;)]
if the initial values are I, = l; = r, = r;. The corresponding *[t] is

*[t'] = (lo,ro:= o, 1o /] liy1i := =1y, ;);
*[([Ho#FroNl=1)V (o =ToATo=T1)1; lo, 10 := 7o, L) //
([(lz # ri Ny, = li) \Y (li =r; N1 = 'ri)]; li,ri := =T, li)
]

It follows that ¢] and t; form a one-phase handshake. ' has only two actions in sequence, an
assignment and a wait, which seems the minimum possible for a synchronization. Hence,
this is potentially a very fast handshake, at the cost of two extra variables. A similar
simplification as for the two-phase handshake can be applied, but this time if sync nodes
can be numbered C1, C2, C3, C4. As with the alternative two-phase handshake, both
halves of the one-phase handshake are active.

5.2 Probes

In the previous section we only considered sync actions where the match is equal to skip.
Thus, the presented handshake sequences implement only the synchronization behavior of
sync actions. If we transform F[C4,CT] into Flteyen, toqa] when the match of C4 and CF
is m # skip, we must make sure that the handshake sequence t includes m. Furthermore,
if we compare the usual stepwise evaluations X; and X3, it is clear that m must occur after
both fepen and t,qq have been started, and before either one has finished. In terms of a

handshake sequence
t = leod; s0; lead; s15 - . . lek—11; sk—15 Lexl; si

(k > 2), this means that m must occur in one or more of s;...s5_;. Depending on which
effects of m can be observed by the environment, it may be possible to perform m in several
steps. In particular, if C* = sync,(f1; f2) and C¥ = sync,(g1; ¢2) it may be desirable to
make f; and fy part of teyen and g1 and go part of ¢y44.

A non-skip match occurs with communication actions and with probed synchronization

actions. In this section we discuss the latter.
Suppose C4 can be probed, but CF cannot. That is,

cA = #CAT; sync,(skip; #CAU
cP = sync,(skip; skip)

90

In that case, the match is #C“|. We can use the above argument, and insert #C4| in
one of si,...,s,_1. For instance, in the four-phase handshake sequence, we can use so:

twen = Lol (1, #CA; 1,1 [—2;]

even

todd = Y H A H [=lo; 6l

We can then transform C4 into #C41;1.,.,.. However, in the particular case of the probe
#C4, a more efficient implementation exists.
The assignment # C41 must be performed by C4 regardless of whether CF is reached.
If we consider handshake ¢, then we see that sy is performed by feyer regardless of whether
toda is reached. Hence, the assignment #C“41 can be part of sy. So, if there is a condition
that is set to true by sy and set to false by one of s,...,s;_1, then this condition can be
used instead of the probe #C4. Regardless of what sq is, we know that certainly it makes
condition e; true, since the factorization conditions require pre(sq) = —e;, and absence of
deadlock requires post(sp) = e;. Furthermore, the synchronization conditions also require
that post(s;) = —e;. Hence, e; can be used as translation of the probe #C4, provided
that we can show that post(si—1) => —e; and that e; remains false during execution of sj.
Fortunately, this is the case for each of the standard handshake sequences.
EXAMPLE 5.9
Because *[t] = *[teyen] // *[t,q4]1, there are only two possible forms of ¢, as
discussed at the end of Section 4.6. If k£ is even (Example 4.32), there is no s, and
the factorization conditions already require that post(s;_;) = —ej, so that there
are no additional proof obligations.
Hence, for the four-phase handshake (k = 4), I, implements the probe #C4.
For the two-phase handshake (k = 2), I, # I; implements the probe #C4. In
cases where the two-phase handshake can be simplified, I, # [; simplifies likewise.
O

EXAMPLE 5.10
If k£ is odd (Example 4.33), we have to prove that e; is set to false by s;_; rather

than by s;. Indeed, in the lazy four-phase handshake (k = 3), e; is equivalent to
lo, and sx—1 is {,}, whereas s; does not involve [,.
Hence, for the lazy four-phase handshake, just as for the normal four-phase
handshake, [, implements the probe #C4.
O

As a result, for the standard handshake sequences, we get the probe #C4 “for free,’
without any additional steps. The same method cannot be used for #CF, because no part
of t,qq is executed before teyen is reached. Therefore, it is prudent to choose a passive
implementation for those synchronization actions that need to be probed. As we have
mentioned before, in practice our programs always use at most one of #C4 and #C¥F, not
both, so that this choice poses no problems. On the other hand, if we have alternative

91

handshakes where both halves are active, it may be possible to use a similar argument to

get both probes for free, so that this choice need not be made at all.

ExAMPLE 5.11
In the alternative two-phase handshake, the first step (corresponding to sg) has
the effect of making I, # I; true, and the second step (s1) makes it false again.
Furthermore, sg is performed by whichever of ¢; and ¢ is reached first, regardless
of whether the other is reached. Hence, [, # I; implements both probes #C'! and
#C7.

N

EXAMPLE 5.12
"The one-phase handshake is quite similar to the alternative two-phase handshake,

and consequently the negations of the waits implement the probes.
]
To close this section we point out that if pre(CFT) = #CA4, then, after replacement
with a normal handshake sequence, pre(t,qq) = e;. Since t,4q starts with [e;], this wait
is vacuous (Example 4.17), and can be omitted.

EXAMPLE 5.13
The process decomposition transformation (Theorem 4.30) results in a program of

the form
F[CA) J/ x[[#C* — t; CP1]

The choice of active and passive synchronizations is made because one of the two
is probed. Since there is only one CF action, we choose a four-phase handshake
rather than a two-phase handshake, resulting in

Fllo1; U500 [=01) J) * LU, — 65115 [-,151:11]

Here we have applied the above optimization of omitting [I,] when pre(CF) =
#CA.

5.3 Handshake Reshuffling

The handshake expansion theorem can be applied with any handshake sequence
t = [eol; s0; [erd; s15 . - . [exd; sk

with k& > 2. Although our semantics does not model time, it nevertheless seems reasonable
that longer sequences of actions take more time and are therefore less efficient. This would
be a good reason to always use k = 2. However, as we have seen, among the standard

92

handshake sequences, the two-phase (k = 2) handshake is harder to use than the normal
and lazy four-phase handshakes (k > 2). In this section, we discuss a transformation,
called handshake reshuffling, which, in practice, greatly increases the efficiency of handshake
sequences with k > 2. In addition, handshake reshuffling often helps in distinguishing states
of the computation, which is important for the transformations described in Chapter 6.

The proof of the handshake expansion theorem consists of two parts: that there is no
deadlock introduced by waits of the handshake, and that the handshake sequence imple-
ments the desired synchronization. The synchronization part of this proof relies on Lemma,
5.4, which says that one half of the handshake cannot finish before the other half has
started. This lemma is true whenever k > 2; in fact, it is true that no action of 82y ..y Sk
can be reached unless both halves of the handshake have been started. Therefore, the se-
quence sp;...; [ex]; s plays no role in the synchronization part of the handshake expansion
theorem. Hence, as far as that part of the proof is concerned, the actions of this sequence
may just as well be omitted or at least postponed.

Of course, sy;...; [er]; s has its purpose, so it cannot be just omitted. In particular,
this part of the sequence is used to prove that *[t] = *[teyen] // *[toqq]. This property
in turn proves absence of deadlock, through the projection property of Lemma 5.2. This
lemma essentially says that Flteyen,toqq] behaves as *[teyen] // *[toqq] with respect to
actions from ¢. From the proof of that lemma it is immediately clear that it still holds if
there are non-t actions in between the ¢ actions, since that is exactly what happens during
an interleaving. Therefore, the projection lemma still holds if ¢ actions are postponed,
provided that their relative order is not changed.

DEFINITION 5.14 (Handshake Reshuffling)
Given a handshake sequence

t = led; so5 Lead; s15 - . . Lexl; s
that, by application of the handshake expansion theorem, occurs as

Leod; so; Cead; so5 [eal; 845 . . . [eml; Sm; up; 745 sy . . . T U

Ledd; 15 Lesl; s3; [esl; ss; . .. Lend; sny T35 w3y 755 us; . . . T Un

(m=kandn=k—-1ifkiseven, m=k—1and n = k if k is odd). If none of the
programs 7; and u; contain an action from ¢, then the replacement of the above

sequences by

Ceod; so; [eod; wa; s2; 145 [ead; wa; sa5 . - . ™my [eml; wm; Sm

Leaal; s1; m; Leal; us; s3; 755 [esl; us; s55 - . - 7oy Lenl; n; 8

is called a reshuffling of the handshake.

93

In words, a reshuffling consists of postponing the actions of s;...; [e]; s; while maintain-
ing their relative order. The term reshuffling has traditionally been used for this transfor-
mation, but is actually a misnomer, because the transformation only involves postponing
certain parts of the handshake. Specifically, reordering of parts is not allowed. Note also
that the above is just a definition; there is no claim that all reshufflings are correct.

EXAMPLE 5.15
For the four-phase handshake, the actions lo}; [=l;] 0f teyen and [—1,]1; ;] of toug
are candidates for postponement.
For the lazy four-phase handshake, only l,| of feyen, as well as [—l,]; ;| of
todq can be postponed.
The two-phase handshake cannot be reshuffled, since the last action is [es].

]

EXAMPLE 5.16
The alternative two-phase handshake consists of two consecutive one-phase hand-

shakes. Obviously, synchronization is established as soon as the first one-phase
handshake has finished, so that the remaining actions are candidates for postpone-
ment. Actions ro 1= —ry; [ry = 73] of ¢ and r; := —r;; [r, = ;] of ¢ can be
postponed. With such postponement, the alternative two-phase handshake may
be more efficient than the standard two-phase handshake.

The one-phase handshake cannot be reshuffled, since it consists of the minimal
sequences that can establish synchronization.

|

Now reconsider the proof of the handshake expansion theorem for a reshufled hand-
shake sequence. As pointed out, since the sequence [eg];so; [e1];s1; [e2] has not been
changed, the synchronizing behavior of the handshake sequence is unchanged. In the proof
of absence of deadlock, we use the projection property that, as far as t actions are concerned,
a program containing handshake sequences behaves as a prefix of *[teyen] // * [t,q4]. This
is still true for reshufled handshakes, provided there is no parallel duplication between
actions of feyen Or f,44. We then point out that

* [teven] // *[toqa] = *[t] = *[teyen // todal

which is also still true (since we have not changed t). Next we consider an execution
involving handshakes, looking at ¢ actions only. We conclude that whenever teyen Or to44
is reached, the stepwise evaluation continues exactly like * [teen // togal, which proves
absence of deadlock. This last step can no longer be applied, because it is only true for the
initial part of the sequence that is not postponed; for any of the postponed actions we must
prove separately that they cannot cause deadlock. Since only waits can cause deadlock, the
proof requirement for a reshuffling is then to show that none of the postponed waits can
cause deadlock. It turns out that this cannot be done for all reshufflings.

94

Let F[C4,CF | be a deadlock-free program. We compare the stepwise evaluations of
X involving F(teyen, todgd], and Xo containing reshuffled versions of feyen and t,55. Note
that X; has no deadlock. Both evaluations are identical until the first handshake action in
X, that has been postponed in X3 (i.e., at least until [ez] has been passed). In X, this
point is followed by execution of the remaining handshake actions. Since these actions are
not observable by the environment, and since X; has no deadlock, this does not expose any
differences. Following s in X, both evaluations continue identically until the first post-
poned handshake wait is reached (a postponed handshake assignment is not observable),
say [e;]1. If e; is true, no difference is exposed, and both evaluations continue till the next
postponed wait. But if —e; holds, this is similar to a false guard insertion, meaning that
there are fewer traces in Xy than in X;. Since [e;] is part of a handshake sequence, —e;
holds if and only if sj_1 has not been reached (in X2). We continue the stepwise evalu-
ations; clearly, any step of X3 can be matched by Xj, until either s;_; is reached in Xo,
or until X, deadlocks. If s;_; is reached, e; becomes true, and both evaluations continue
without exposed differences. Hence, to avoid deadlock, we must make sure that s;_; can
be reached.

Suppose, in Xy, Le;j] occurs as [e;]; u;, and s;_1 as uj_1;5;_1;7;j+1. Then deadlock
corresponds to a situation in X; where rj;; cannot be reached unless u; is started. If no
such interleaving exists in X;, then there is no deadlock at [e;] in X2 (and vice versa).
(rj41 is reached is equivalent to u;_; has finished.) This gives us the following theorem.

THEOREM 5.17 (Handshake Reshuffling)
Using the same notation as in the handshake reshuffling definition, let ¢ be a

handshake sequence, let

i = feven; U2; T4; U4 . - . Tmi Um

ty = todd; T3; U3 Ty U5 - . . Tnj Up

and let ¢} and t, be the corresponding reshuffling.
If Flt;,12) is obtained by handshake expansion, and if, in an execution of
Flt1,12], uj—1 can always be finished before u; has started (for all j > 2), then

Flty,ts] < F[t),)]

provided that there is no parallel duplication between any actions from fyen, nor
between any actions from ¢,44.
d
(In this theorem, ‘always’ means that at any step during the stepwise evaluation there
is a choice of interleaving that finishes u;_; before it starts uj.) Although the theorem
accurately describes when a reshuffling is possible, it is not so easy to use in practice.
Therefore, we describe some lemmas that are easier to apply and are usually sufficient to
prove the correctness of a reshuffiing.

95

To simplify the problem, we consider a situation where we have a number of non-
terminating processes ti,...,1,, executed in parallel:

par(ti, - .- tn)

We assume that for a pair of matching synchronizations C# and C¥, all instances of C4
occur in one non-terminating process, and all instances of C¥ in another. We also assume
that all instances of C4 can be ordered before executing the program, and likewise for C?.
Furthermore, we assume that all interaction between processes is through sync actions.
Although these assumptions are more strict than our usual ones, they are in fact satisfied by
standard CSP programs without shared variables. (Assuming that either C4 corresponds
to C? and G¥ to C!, or vice versa.) Hence, we’ll refer to this set of assumptions as the
CSP process model. In addition to this model, we also assume that there is no deadlock,
since if there is already deadlock, there is not much point in proving that reshufflings are
deadlock-free.

Note: The restriction that C4 actions can be ordered before execution does not exclude

programs of the form
[e; — CAlleg — skipl; c4

because in the tree the C4 actions along each path can be ordered. What is excluded is a

situation like
par(e; — C4, e; —» C4)

where the environment non-deterministically determines the order in which e; and ey are
made true. Excluding this situation is hardly restrictive, and helps avoid parallel duplica-
tion of handshakes.

DEFINITION 5.18 (Dependency)
An action n (a node, guard, or sync), depends on another action m, if, in the

execution there is a point where m must be executed before n can finish. n depends
on m is written as m - n.
n directly depends on m if m <% n and there is no other action p such that
m % p A p > n; in that case we write m — n.
[

Clearly, dependencies impose ordering constraints on the execution of actions. Since
circular orderings do not exist, the dependencies m % n and n % m together cannot
be satisfied. A program that contains this combination of dependencies can never execute
either m or n, which usually implies that the program has deadlock. There is one exception:
if both dependencies are direct, they can be satisfied by executing m and n simultaneously.
This, of course, is only possible with sync actions.

Apart from sync actions, which always depend on each other, dependencies are formed
by sequencing within a program (in ext(f;g), f = g), and by a wait and the assignment

that makes the wait true. (Both these dependencies may, but need not, be direct.) In the

96

CSP process model we denote an action n in process ¢; by t;:n. From the assumptions
it follows that any dependency t;: m tj:m with ¢ # j must involve a sync dependency.
After handshaking expansion, these sync nodes are replaced by handshake sequences, and
the dependencies involve the waits of this sequence. In particular, if

t = Leod; so; [erl; si; Lead; . . . [exd; sg

is a handshake sequence, then sj_; % [e;]. Since sj—1 and [e;]1 are in different halves of
the handshake sequence, this establishes a dependency between different processes.

The handshake reshuffling theorem says that a reshuffling is valid if there is no de-
pendency m - n where m is a node in u; and n a node in uj_1. In the program with
the reshuffied handshake, this simply means there is no dependency [e;] % sj_j. The
converse is then also clear: if [e;] % s;_; then there is a circular dependency (since always
sj—1 = [¢;1), and the handshake sequence cannot be completed. To verify that the reshuf-
fling does not deadlock at [e;], we must verify that there is no dependency [e;] = s;j_;.
Since this is a dependency between two different processes, it must involve either a sync,
or an assignment and wait of a handshake sequence. Hence, to find such a dependency, we
need only consider sync nodes and handshake assignments that follow [e;] in the reshuffling,.
From such nodes we need only consider a dependency to another process.

EXAMPLE 5.19
Let variables I, and {; form a four-phase handshake, and r, and r; form another
four-phase handshake. Variable z is not a handshake variable. Suppose processes
p and q contain the following reshuffled sequences.

p: lol; [ll; lol; [-E); z7; [rol; ity [—rol; ril

qg: [lod; ULt; [—lod; rol; [ril; Ll; rol; [-ri]

(Only one action has been postponed, namely l;].) To check whether [—/;] might
cause deadlock, we consider the assignments following it, namely ;1 and r;|;
assignment z7 need not be considered since it is not part of a handshake sequence.
There is no need to consider r;T % [-r,], since this dependency is within the
same process. Hence, we start creating a dependency with p: r;T % ¢: [;], which
holds according to the handshake sequence. Since [r;] is in ¢ and precedes I;|, it
follows immediately that there is a dependency

which is not allowed by the handshake reshuffling theorem. Hence, this is not a
valid reshuffling.

97

Most examples are not as simple as the one above. In particular, it might have been
that [r;] was not part of process g, but of some third process. In that case we would repeat
the search with assignments following [r;], until we reach process q. Since there is only a
finite number of processes, we know that eventually we must either reach ¢, or a process
must occur twice within the chain of dependencies. In particular, if the chain gets back to
p, we can stop with this chain of dependencies and try and find another.

ExaMPLE 5.20
(1o, ;) form a four-phase handshake, and (r,, r;) and (k,, k;) each form a two-phase
handshake. Suppose the following sequences occur.

pl: loT; [li1; lol; [—1; rol; [re]
p2: [ol; LT; [-lol; kof; [kil; &Ll
p3: [rol; mit; [kol; kit

Again, only ;] has been postponed, and we check whether [—I;] causes deadlock.
As before, we must avoid a dependency p2: ;] % pl: [-l;]. Starting at 7,7 we find
pl:T,T % p3: [1,]. Since we are interested in chains ending in p2, we continue the
search with assignments following p3: [r,]. The first, r;T leads back to p1, hence we

need not consider it any further. The second, k;1 has dependency k;1 = p2: [k;],
which precedes [;|. Hence, we find that

(=61 5 rl 5 [red S kil = [k 5 1)
which shows that the reshuffling is not correct.

Using this method, we find the following lemma, which, for the CSP process model, is
equivalent to the handshake reshuffling theorem.

98

LEMMA 5.21

0

To check the correctness of a reshuffling of a handshake sequence
t = [ed; s0; [ed; s1; [eads .. [exd; sk

do the following. Assume s;_; is part of process g. For p: [e;] (j > 2), construct
a chain of dependencies of the form

p:fi Brlid)] Sl fa Hr2:[dy] S ...

where each f; is an assignment from a handshake sequence, and each [d;] is the
following wait from the same handshake sequence. (The chain can also contain
sync nodes if handshake expansion has not been done completely.) Each chain
ends if either process p is reached or process q is reached. If there is no such chain
that ends in g before s;_;, then [e;] does not cause deadlock. The handshake
expansion is correct if this is true for all j > 2. '

As the examples illustrate, this lemma is convenient for showing that a reshuffling is wrong.
But because all chains following [e;] must be considered, it is in this form not very practical
to prove that a reshuffling is correct. The following two lemmas restrict how many chains

need to be considered.
LEMMA 5.22

When using Lemma 5.21 to check a reshuffling of handshake sequence ¢, no chains
starting at assignments from ¢ need to be considered.

Proof: Suppose we are checking for deadlock at [ej]. Regardless of whether
reshuffling is done or not, an assignment from ¢ that follows [e;] can never be
reached before [e;] is passed. If that fact causes deadlock, then the deadlock
is independent of the reshuffling and always part of ¢, which means ¢ is not a

handshake sequence.

|

LEMMA 5.23
Suppose, using Lemma 5.21, we are searching for a chain that would prove that
p: [ej] = ¢:sj1. Let q: f be an assignment following sj_1, and let p: [d] be a
wait following [e;]. If we can show that f % [d], then we need not consider any
chains starting beyond [d].
Proof: 1f a chain starting at p: g beyond p: [d] shows that p: [e;]1 = g¢:sj_1, then
there is a cyclic dependency

[dl & g5 s = f-5 [d]

which does not involve [e;]. Hence, even if there is such a chain, it will be found
when the search is done for the other parts of the reshufled handshakes.

a

99

Note that, using this lemma, we may not find the guard that actually causes deadlock, only
a guard that would cause deadlock if it could be reached.
COROLLARY 5.24

O

Let [e;] be part of a handshake expansion replacing synchronization action C. If
we are searching for a dependency p: [ej] * g¢:sj_;, we need not consider any
chains starting after the next occurrence of p: C' (or the handshake sequence that
replaces it).

Proof: Because of the CSP process model, p: C can only be matched by the cor-
responding synchronization C’ in ¢. Since instances of C' can be ordered, ¢: C’
follows g:sj—1. Hence, there is a dependency ¢:C’ % p:C, so that the above
lemma, applies.

If there are no more occurrences of C, Corollary 5.24 does not help. But in that unlikely

‘case, the sequence [ep];...; [ex]; s, can simply be omitted, because, as explained at the

beginning of this section, the very purpose of this sequence is to prevent deadlock and
interference when the next instance of C is reached.

The remainder of this section is devoted to some examples of reshufflings.

LEMMA 5.25 (Lazy Reshuffling)

O

Let t be a handshake sequence used to replace synchronization actions C' and C'.
The lazy reshuffling of the handshake is the reshuffling where [e;]; s;, is postponed
till immediately preceding the next instance of C (or C’), and no other handshake
actions are postponed. (This is called lazy because [eg]; s is postponed as far as
possible.)
The lazy reshuffling is always correct.

Proof: According to Corollary 5.24, only chains starting between [e;] and C need
to be considered. The only action between them is sx (if it exists). But since s
is the last action (or sequence of actions) of the handshake sequence, it does not

start any chain.

EXAMPLE 5.26

a

The four-phase handshake ends with [-/;] (corresponding to [e;]), hence the lazy
reshuffling, which postpones [—l;] as far as possible, is correct.

We already knew this, because the result is exactly the lazy four-phase hand-
shake, except that the latter has [—/;] before the first instance of C. Since this
first wait is vacuous, there is no difference.

EXAMPLE 5.27

We have already pointed out that the alternative two-phase handshake can be
reshuffled. In particular, it has a lazy reshuffling. Since ¢ ends with two waits in
parallel, both can be postponed. The lazy version of this handshake is

100

o= [ro=ril; loi==ly; Up=11; roi=-r,

tp = Iro=rd; Li==l; Uo=11; ri:=-r
O

EXAMPLE 5.28 (Independent Synchronization)
Let t; and {2 be halves of a handshake sequence. Suppose that #; only occurs in
the non-terminating process *[#]. Then any reshuffling of ¢, is correct, because
there are no dependencies with *[#;] other than those of the handshake sequence
¢ itself, and ¢ itself does not have deadlock. In this case, we call t1 an independent
synchronization.

When the environment of a program is not (yet) known, in particular for large
programs (e.g., a whole chip), it is often assumed that all synchronizations in the
environment are independent. It is then the task of the designer of the environment
(e.g., the designer of a circuit board) to make sure that the synchronizations are

‘independent enough.’

101

Chapter 6

Production Rule Expansion

In this chapter we define the semantics of the PRS language, which is the target of the VLSI
design method. The PRS language has no sequential composition; instead, sequencing must
be enforced by explicitly waiting for appropriate program states. After having defined the
language, we describe under which conditions a HSE program can be transformed into a
PRS program. This transformation is called production rule expansion.

6.1 Production Rules

A program in the PRS language is written with production rules. A production rule de-
scribes part of a gate, and is usually written as

e—f

where e is a guard and f an assignment. (Production rules derive their name from their
notational similarity with the productions of a grammar.) Usually, f is a constant assign-
ment to a boolean variable, i.e., uT or u}|. A program written with production rules is
called a production rule set, and is indeed described by a set of production rules. Parallel
composition of such programs is equivalent to the use of set union. Performing the assign-
ment f is called the firing of the production rule. A production rule can only fire when its
guard is true. The execution of a production rule set is usually described as the continuous
concurrent firing of all production rules with true guards. In order to describe transfor-
mations involving production rules, we must first express the meaning of production rules
within the framework of our semantics. There are several ways in which this can be done.

The first method is called the gate model of production rules. A gate is a program of

the form
*[[ege— filee—f0...0eg—fll

such that {()j : 0<j <k : changes(f;)) # {}. If ¢t is such a gate, we require that
chenges(V(t)) N changes(t) = {}. In words, there is at least one variable to which all
assignments in a gate assign, and the environment cannot change any variable that is

102

changed by a gate. Normally, a gate changes exactly one boolean varia,t;le, and has the
form

*[[ey — ul I eg — ul 1]

This would be the gate of variable u; the environment can use u, but is not allowed to
change it. Here, e, is called the up-guard or pull-up of u; e4 is called the down-guard
or pull-down of u. The gate can have more than one pull-up or pull-down, but this can
always be rewritten: if el, and e2, are pull-ups, they can be replaced by the single pull-up
el, Ve2,.
ExXAMPLE 6.1

A gate of the form

*[[aAb—ul | naV-b— ul 1]

is called a nand gate (with inputs @ and b, and output u). It has the special
property that e, = —eq; gates with this property are called combinational.
A gate of the form

*[[L aAb—ul | "aA-b— uT]]

is called a Muller C element (or simply ‘C element’). It is not combinational: there
are states where —e, A —~eq holds. Gates with this property are called state-holding.

In the gate model, a production rule set has the form
par(tl’ reey tn)

where each ¢; is a gate. Since each gate is part of the environment of the other gates, no two
gates can assign to the same variable. Hence, t1,...,¢, forms indeed a set, even though the
par operator allows for a bag. Note that a production rule set is a non-terminating process.
Because production rules are intended to be mapped directly to a VLSI technology such
as CMOS, and also to make programming with production rules easier, some restrictions
are imposed on the form of production rules. However, we start with a definition that
applies to all programs, not just to production rule sets.
DEFINITION 6.2 (Stability)
A guard e is called stable, if, whenever the stepwise execution reaches a point where
e is a possible next action and e holds, then e stays true until the execution has
passed the guard.
a

Typically, all waits in a program are stable. It is hard to deal with an unstable wait
[e], because an execution may never pass the guard, even if the environment makes it
occasionally true. However, unstable guards are occasionally used in choices. Because

103

passing a guard has no effect on the state, and because an environment can only observe
the state of a program, in practice the environment is prevented from falsifying a stable
guard -until the completion of the first observable assignment following the guard.
EXAMPLE 6.3
The guards from a (factorized) handshake sequence are stable. For instance, in the
four-phase handshake sequence

teven = o5 L35 1 (=]

todd = Uol; UiT; [=ll; 1]

we know that, if [-[,] evaluates to true, it will stay true until after execution
of I;|, which is the first assignment following the wait. If the handshake sequence
is reshuffled, other assignments may occur between [—l,] and I;], so that in that
case an even stronger property than stability holds.
a
In a production rule e — f, there is only one assignment that follows guard e, namely
f. Suppose we want e to be stable. Then, if at some point of the execution e is reachable
and holds, the environment may not falsify e until f has been executed. But following that
execution e is immediately reachable again, which would again prevent the environment
from falsifying it. Hence, the only way in which e can become false is if it is falsified by
f itself. A production rule e — f where f falsifies e is called self-invalidating. Because it
is undesirable to restrict production rules to be self-invalidating, we have a slightly weaker
definition of stability for production rules.
DEFINITION 6.4 (Stability of Production Rules)
A production rule e — f is stable if e can only be changed from true to false by
f orin a state x where f(z) = .
O
Normally, we require that all guards in a production rule set are stable under this definition
(unstable guards are discussed in Section 6.2). In fact, the VLSI implementation may
require this in order to work correctly. If f(z) = z, the assignment (i.e., the firing) is
vacuous (Example 4.11); a firing that is not vacuous is called effective.
The second method for defining the meaning of production rules is called the single
selection model of production rules. Here a production rule set with rules

el""fl cen en— fn

is modeled by the program
*[Len—nAD...0e —frll
Again, if ¢ is a program of this form, we require that charges(V(t)) N changes(t) = {},

i.e., that the environment does not change any variable that is changed by the production

104

rule set. Unlike the gate model, there is no restriction on the relation between Ji and fis
other than that the rules must form a set (by definition of the tree which this program
represents). The obvious difference between the gate model and the single selection model
is that in the latter there is no concurrency between production rules. This makes it easier
to work with the single selection model, but makes it also (seemingly) less realistic, since
most VLSI implementations do in fact exhibit such concurrency. However, the following
theorem explains the usefulness of this model.
THEOREM 6.5
If all guards in a production rule set are stable, and all assignments are single
constant assignments to booleans (i.e., of the form uT or u]), then the gate model
and the single selection model are equivalent.
Proof: Consider a production rule set with rules ¢; — f;. Let t; be the single
selection model implementation of that set, and let t; be the same set expressed
in the gate model. Let X; and X, be the respective stepwise evaluations.

Clearly, t1 > t2, because any step taken by ¢; can also be taken by ts (i.e.,
the production rules in the gate model can be executed in sequence, instead of
interleaved). Hence, we must prove that any step taken by ¢3 can also be taken
by t;. Suppose both evaluations are in state z, X; has reached (but not made)
the choice between all production rules, and X3 next executes f;. We distinguish
three cases.

e ¢j(z). Then in X; the guard e; can be selected, followed by the execution
of f;. No differences are observed.

e —¢;j(z) A fij(z) = z. Simply do nothing in X, since the effect of f; in X,
is not observable.

e —¢j(z) A fj(z) # z. Since f; is reached in X3, e; must have been true in
some earlier state, and must have been falsified after the guard in X, was
passed. Because e; is stable, it can only have been falsified in a state '
where f;(z') = z’. Since now f(z) # z, an assignment g must have been
executed that changed the state from z; to zo such that

filw)) =21 AN g(z1) =22 A fi(z2) # 22

Say f; = ul. Then apparently z;(u) A ~z(u), so that the only possible g is
u|. But then changes(f;) N changes(g) = {u}, so that f and g are part of
the same gate, which means that g cannot be reached while the execution
has passed e; but not f;. Hence, this case cannot occur.

8

For arbitrary f; and g satisfying the relationships with x; and x> mentioned in the proof,
it can be shown that chonges(g) C changes(f;) U depends(f;). Hence, the theorem holds
as long as depends(f;) C changes(f;). In particular, in the theorem we assumed that f;

105

was a constant assignment, so that depends(f;) = {} (Example 2.12). From now on we
will always assume that f in a production rule e — f is a single constant assignment to a
boolean variable.

From the theorem it follows that we can write a program in the form of the single
selection model, then, assuming all guards are stable, convert it to a program in the form
of the gate model, and map that program to a VLSI implementation.

DEFINITION 6.6 (Interference of Production Rules)
"Two production rules e, — uf and eq — u| are interfering if during the program’s
execution a state x occurs such that e,(z) A eg(x).

d0

Note that this definition differs from the normal definition of interference, Definition 4.7.
Since conflicting assignments are always part of the same gate, no interference according
to the standard definition can occur. We usually require that production rules are non-
interfering, since this is required by most VLSI implementations. Also, there is hardly ever
a use for interfering production rules in a program.

Considering the difference between the single selection model and the gate model,
it may appear that a more general, and maybe more obvious, model is one where each
production rule e — f is modeled by

*[[e — f1]

and a production rule set corresponds to the parallel composition of such programs. How-
ever, this is in fact a much more restrictive definition of production rules, because of the
following. Consider a firing of a production rule e, — uf. Suppose that after the firing
ey still holds, the guard is passed again, but uT is not executed. Since in this state u
holds, e, may be falsified and eventually e; can become true. At that point, both «| and
u] are reachable, causing interference, even though the non-interference requirement for
production rules has not been violated. With this model there is only one possible way to
avoid such interference, namely by defining each production rule e — f so that f falsifies
the guard e. As mentioned before, restricting ourselves to such self-invalidating production
rules is undesirable. Therefore, this is not a useful way to define production rules.

We present one more method of defining production rules, called the atomic assignment
model of production rules. This definition has concurrency between all production rules,
and does not suffer from the interference problem described above. Here, rules e, — ul
and e; — u] are modeled by

ui=e,Vu [/ u:=-eAu

Hence, each production rule corresponds to a single assignment, and a production rule
set is the parallel composition of these assignments. The above problem does not occur,
because there are no actions between the evaluation of e, and the assignment to u (single

106

assignments are always atomic in our semantics). If —e,, the first assignment reduces to
the vacuous u := u, and likewise for the second assignment when —e4. If at some point
ey N\ €4, then the first assignment corresponds to 41 and the second to u|. Hence, in this
model, interference of production rules is identical to the standard definition of interference.
Stability, on the other hand, is not clearly expressed in this model. If production rules are
stable and nop-interfering, the gate model and the atomic assignment model are equivalent
(and hence equivalent to the single selection model). We tend to use the single selection
and gate models.

In addition to stability and non-interference, a particular technology often imposes
additional constraints on the form of production rules. For instance, the standard CMOS
implementation of production rules [?] allows only pull-ups where, when written in disjunc-
tive normal form, all literals occur in negated form. Hence, —a A ~b — %7 can be directly
implemented, but a A b — uT cannot. Likewise, pull-downs can only have positive literals.

Another example is the length of feedback chains. Say guard e, of e, — «T becomes
true. Because of the stability requirement, e, can only be changed when u7 is reached.
This implies that there is some chain of variable transitions, started by u{, that eventually
falsifies e,. A technology may impose a minimum length (in terms of number of variable
transitions) on the length of such a feedback chain. (This minimum length is determined
by the gain as well as the delay of circuit components.) In a self-invalidating gate, the
transition u1 itself invalidates e,, giving a chain of length one. In, for instance, the standard
CMOS implementation, feedback chains of length one are not allowed. Because of the
earlier requirement about the use of negated literals, a feedback chain in CMOS must have
odd length; it turns out that length 3 is sufficient for CMOS. Hence, for the standard
CMOS implementation, to meet the requirements on the minimum length of feedback
chains, it is sufficient to exclude self-invalidating production rules. This is often done by
strengthening the definition of stability (Definition 6.4), by only allowing e to become false
when f(z) = z.

EXAMPLE 6.7
The single-gate program

*[[~u—ul I u— ul 1]

cannot be implemented directly in CMOS, because it contains self-invalidating
production rules. In terms of the program semantics, this program corresponds to
*[uT;4]|]. Note that this gate can also be written as

*x[[true — u] | true — u} 1]

which does not have self-invalidating production rules, but instead violates the

non-interference requirement.

g

If a production rule set with self-invalidating production rules is generated, it can be imple-
mented by first inserting extra state variable transitions in the feedback chains. However, it

107

is usually better to insert these state variables at an earlier stage of program development,
when still working with sequential program sequences, so that the same state variables
may be of use when generating the other production rules. The use of state variables for
generating production rules is explained in Section 6.3.

6.2 Straight-Line Programs

It is easiest to implement a program with production rules if the program does not have
any choices. Such a program is called a straight-line program.

DEFINITION 6.8 (Straight-Line Program)
A straight-line program is a program without any choices (i.e., every node in the
tree has at most one child).

O

Note that a straight-line program can include par constructs. In order to implement a
program with production rules, the program is first written as the parallel composition
of a number of straight-line programs. Normally, each straight-line program is a non-
terminating process.

For the implementation with production rules, we require that all waits in a straight-line
program are stable, as defined in Definition 6.2. This enables two simple transformations.

LEMMA 6.9
If [e;] and [eg] are stable, then

[eid:[e2] = [eg A eyl

Proof: If [e1] is passed, stability requires that e; remains true until the first
assignment that follows it. Since that assignment also follows [e2], we conclude
that when [eg] is passed, e; A ez holds. Hence, [ey]; [e2] is equivalent to

[e1]; [er A ea]. 1t is then straightforward to see that the first [e;] can be omitted.

O
LEMMA 6.10
If [e;] and [ey] are stable, then
[e] // [ee] = L[eg Aead
Proof: The parallel interleaving leads to the two sequences [e;]1; [ea] and {e2]; [e1].
. According to the previous lemma each is equivalent to [e; A es].
a

108

Next we discuss a transformation that replaces choices by the parallel composition of
straight-line programs. Consider a program (a non-terminating process) of the form

*[[eg— &
0 eg— 1t
1]
Assume that for every node, guard, and sync n; in ¢, and for every node, guard, and sync
7o in tg,
pre(ni) = —~eg A pre(ng) = —e;

Recall that post(e;) is the subset of pre(e;) consisting of all states where e; holds. Therefore
z € pre(e1) Az & post(e)) = —e;

Furthermore, post(e1) C pre(t1), so that, by the above assumption, post(e;) = —es. Hence,
from the assumption, it follows that

pre(er) => —e1 V —ey

(and, of course, pre(e;) = pre(ez)). In words, —e; V ey means that e; and ey are mutually
exclusive (at least, when they are reached by the execution).
Under the assumption, we can replace the above program by

*[[e1]; 0] /] *[Lexd; t2]

(this transformation is called choice decomposition).

Proof: Consider the usual stepwise evaluations, X; and X3. When the choice in X is first
reached, the interleaving in X3 results in a choice between the same two guards. Suppose
e1 holds (and, therefore, —ez). Both evaluations reach ¢;. The difference is that, in X,, at
every step there is a choice guarded by es. As long as ¢; is not finished, —es holds, and
therefore this choice does not expose any differences (by the false guard insertion lemma).
Once t; is finished, we are back in the original state, where both evaluations are at the
choice between e; and es.

O

We summarize this result in a theorem.
THEOREM 6.11 (Choice Decomposition)
If, for every node, guard, and sync n; in ¢;, and for every node, guard, and sync

ng in tq,
pre(n1) = —ey A pre(ng) = —ep
then
*[[Leg— ¢ *[[e1]; 4 1]
le—t = [/
1] *[[e2]; 13]

109

The condition that pre(n;) = —es, etc., is not always satisfied. If it is not, we can apply
the following transformation.

*[[e; — tilleg — t]]
= {state variable insertion}
*Lley — uliti;ullles — o156 v]1]
= {guard strengthening, Lemma 4.19}
*[[e; A—v — ulst;ullles A ~u — vt 0v]]]

Here, for any node, guard, or sync n; in ¢j;ul, we have pre(n;) = u = —(ey A ~u).
If we assume that e is stable, then pre(u]) = e;. If we also assume that pre(e;) =
—e; V —eg, then we can conclude that pre(u]) = —e;. Hence, for any ny in uf;t;u],
pre(ni) = —(ea A —~u). Using the same argument for the other alternative, this establishes
the conditions necessary to apply the previous theorem. We combine these transformations
in a single theorem:.

THEOREM 6.12 (Choice Decomposition)
If e; and ey are stable, and if pre(e;) = —e; V —ey, then

*[[g — # *[ley A—vl; ul; 5 ul]
leo— o = /)
1] *[[eg A —ul; vy to; v]]

where © and v are new variables.
O

It is not always possible to guarantee that guards are mutually exclusive (i.e., that
pre(e1) = —er V —ep). For instance, a selection between two channels (using probes)
coming from independent processes, as in a channel merge, can find both probes true
simultaneously. Define

arbiter(ey, e2) = *[[g A-v — ul
0 eaA-u— o1
l —e1 — ul
0 —eg—]

iy

If u and v are only assigned by this program, and initially -« A =, then always —u V —w.
Furthermore, assuming e; and ey are stable, it is straightforward to show that

*[[e — & _ *Lv— 4
legms & = arbiter(er,e2) [/ [v — t
11 1]

110

where the last program has mutually exclusive guards. Of course, this has merely shifted
the problem. However, this is acceptable if the arbiter can be implemented as a single circuit
element (with two outputs). [14] presents a CMOS implementation of such an element. (A
circuit element is usually called a gate, but the arbiter does not satisfy our definition of
gates.)

A similar solution exists for the case where guards are mutually exclusive but not stable.
This happens normally only when a guard contains a negated probe, —#C. Since #C can
become true at any moment, this guard is unstable (although #C is stable). We present
the following transformations without proof. Let U and V be synchronization actions.

*[Le— U —e— V1]
= {use active half of lazy four-phase handshake}
*[Le — [ud; woly [ud; w,l
0 ~e— [-9]; vol; [wil; wol

1]

(L eA-v, — [-ud; uol
0 meA—uo — [-v3]; v,
0 vi— ol
0 vi— ol
1]

*[[eENWo AUy — u,l
0 e A—-ugA—v; — w,1
I uwi— wuol
I vi— wol

1]

This last program is called synchronizer(e). With the synchronizer, we can replace *[[e —
til-e — 1] by

*[[#U — U; 44 1 #V — V; £ 1]
= Jother half of lazy four-phase handshake}
[wo — wily [Huol; wils 4
I vo— wvil; [-vid; wils b
1]
{reshuffling; other half is independent handshake}
L uo — wil; 5 [Dued; ugl
I vo— wil; B [-wid; vyl

1]

Note that #U and #V are stable (positive probes always are), and, because of the way
the synchronizer is written, mutually exclusive. From the second program it follows that

111

u; and v; are mutually exclusive, which means they can be replaced by a single variable 2.
Renaming u, to » and v, to v, this gives us

synchronizer(e) =*[[eA-vA-2z — ul
I meA-uA—-2— o7
02— ul
0 2z— w|

1]
(initially —z). Hence
*[[e — # . *[[u— 20; t; [-ul; z]
0 —e— t, = synchronizer(e)// | y-— 21 by [l; z)
1] 1]

This last program in fact satisfies the conditions of Theorem 6.11. As with the arbiter,
this solution is acceptable if the synchronizer can be implemented as a single element (the
synchronizer is rather similar to the arbiter).

6.3 Implementation with Production Rules

Before a program is implemented with production rules, it is first transformed into a paral-
lel composition of straight-line programs. This is done with process decomposition (Section
4.5) and the transformations presented in the previous section. We also assume that all
synchronizations have been removed (using handshake sequences), that all variables are
booleans and all assignments constant assignments, and that all guards are stable (with
the exception of the arbiter and synchronizer elements discussed in the previous section).
In this section we describe the implementation of a straight-line program with a produc-
tion rule set. The parallel composition of straight-line programs is then just the parallel
composition (union) of such production rule sets.

Recall that a vacuous firing of a production rule e — f can occur in states z where
e(z) A f(z) = z. Since a vacuous firing does not change the state, it can be repeated
any number of times, as long as the environment does not change the state. Normally,
such firings do not contribute to the trace, because of the stuttering axiom. However, if
an infinite number of vacuous firings occurs in sequence, without state changes, then the
trace ends with the special symbol oo. Say we want to implement straight-line program
t; with production rule set {3. Normally, ¢; does not generate traces ending in oo, which
would mean that t; is not allowed to contain any vacuous firings. As pointed out before,
this requires that all production rules are self-invalidating, which is undesirable. Because
of the way production rules are mapped to circuits, it is acceptable if there can be vacuous
firings, as long as there is always at least a state change possible. An execution where a

112

state change is possible, but does not occur because at every step a vacuous firing is chosen,
is called unfair. Fairness is a complex issue [7], and is mostly beyond the scope of this text.
"To enable us to deal with the issue of vacuous firings, we define a function fair that removes
unfair traces from a set of traces.

fair : set of (Trace) — set of (Trace)

An unfair trace, for our purposes, has the form p + co. But it is only unfair if, after
generating trace p, another state change was possible, i.e., if there is a ¢ such that p + ¢ is
in the trace set.

DEFINITION 6.13 (Fair Traces)
Function fair: set of (Trace) — set of (Trace) is defined as

fair(R) = <Up :pERA(Vg ::p# g+ o) : {p}>

U<Up ipHOERA(NVg:: pHgd RVpHqg=p+oo) : {p*oo}>

g

Using fair we define a modified version of the implementation relation, which only requires
that fair traces cannot be distinguished. Except for the addition of fair, this definition is
identical to Definition 3.21.
DEFINITION 6.14 (Fair Implementation)

t is implemented by s under fair execution means

t<s = V() CV(s)
A EeV(t) = ZI(E[t]) CI(E[s])
A (VE : E € V(t) :
(Vz : z € Z(E[t]) :
fair(Ezec(E[s|, z}|var(E)) D fair(Ezec(E[s], z)|var(E))
))
|

The corresponding equivalence is the fair equivalence, =¢. The above definition also ex-
cludes executions where the state does change, but this state change is not observable by
the environment (this is not essential for the problem with the vacuous firings).

Note that fair is introduced mainly to deal with production rules. In particular, fair is
intended to remove unfair interleavings, not to make arbitrary choices fair. For instance,

consider

[true — uT
[true — *[skip]
]

113

If the initial state is o, and o [41] = 7 such that o # 7, then this program generates two
traces, o + 7 and o + 0co. According to the definition of fair, the latter trace is unfair.
However, since only a single choice is made, fairness is not an issue for this program, and
both traces are equally valid. This problem is avoided if every non-deterministic choice
is either a result of interleaving, or each alternative of the choice can be identified by a
different state change. (E.g., the above example does not cause problems if the second
alternative is changed to v := —v; *[skip].)

When we implement program #; with production rule set ¢, we usually want ¢; =; ¢
rather than ¢, <; t2, because if equivalence does not hold, that usually means that the
number of interleavings has been reduced. Since interleavings often affect the efficiency of
a program, and since most efficiency-based design decisions are made before production
rules are generated, we do not want to change the interleavings.

EXAMPLE 6.15
Assume [, and /; form a four-phase handshake sequence, and consider

lot; [kl lol; [-k1; 4

If the other half of the handshake is independent, the following reshuffling is pos-
sible.

lot; [K1; lol; t; [~Ul;

It may well be that this reshuffling is more efficient than the original, because
it allows actions from t before the environment performs [;]. Therefore, we do
not want an implementation with production rules to be equivalent to the first
program, because that would remove interleavings where ¢ happens before [;].

To avoid such unwanted implementations, we tend to use as little information
about the environment as possible when generating production rules. In particular,
we assume that the environment obeys the handshake protocol, but do not assume
anything about how the environment interleaves handshake sequences, other than
that the given straight-line program does not deadlock

a

Next, we consider the implementation of a program ¢; with production rule set 3, such
that £; =y . We describe the necessary conditions in two parts, safety and progress. Let
t1 be a straight-line program. We assume that there are no sync nodes, that all guards are
stable, and that all assignments are constant assignments. Assume that if par(si, s2,...)
occurs in ¢1, then no assignment f occurs in both s; and s;. We also assume that #; is a
non-terminating process that does not cause deadlock and does not create traces ending
in co. Let t; be a production rule set with production rules ¢; — f. For convenience, we
assume stability of the production rules, although that is not strictly necessary for this part
of the proof. Since we assume stability, we will use the single selection model for ¢3. Let n
be a guard or node of t;, z € pre(n), and e — f a production rule. The safety condition

114

for n, z, and e — f is the disjunction of three parts (let g stand for a node and w for a
guard):

1. me(z)Vf(z)=zVn=fV
2. (n=gAglz)=z)V(n=wAw(z))V
3. the stepwise execution of ¢; contains ezec(par(ext(n;...),t,...)) where ¢ contains

f.

If this condition is satisfied for all n and z, the assignment f in ¢, cannot expose a difference
between t; and #;. (If firing a production rule exposes a difference, this is called a misfiring.)

Proof: Consider the usual stepwise evaluations of X; (with ;) and X, (with ¢;). Suppose
in X5 the next action is f in state x, and so far no differences have been exposed. Since ¢,
is a non-terminating process, X; must be at a node or guard n of ¢, and z € pre(n). We
consider each of the disjuncts of the above condition.

la. If —e(z), then, since we are at f, e must have changed from true to false. Because
the production rules are stable, this can only have happened in a state 2’ where
f(z') = z'. Even if the environment has changed =’ to z, then still f(z) = «,
because only a production rule, and not the environment, can change that (see the
proof of Theorem 6.5). Hence, this case reduces to the next case.

1b. If f(z) = z, then performing the assignment does not expose a difference.

lc. If n = f, then execute f in both X; and Xy; no difference is exposed.

2a. If n = g A g(z) = =z, then execute g in X, reaching node or guard n'. Since
execution of g does not change the state, x € pre(n'), and the safety condition
must hold for n' and z. Repeat this process until one of the other cases is reached.

2b. If » = w A w(z), then pass guard [w] in X, reaching node or guard n’. Since
passing [w] does not cause a state change, z € pre(n’). Repeat this process until
one of the other cases is reached. .

3. One of the possible interleavings is ileave(t; ext(n;...),...). Therefore, z € pre(t),
and one of the other cases must apply. (It cannot be that case 3 applies to ¢, be-
cause we have excluded occurrences of par(sy, s3,...) where s; and sy both contain
assignment f.)

Since t; does not generate traces ending in oo, there cannot be an infinite sequence of nodes
and waits without state change; therefore case 2 always reduces to another case. If, in case
2 or 3, e(z) A f(z) # =z, then these cases always reduce to case lc, where f is reached in
Xi1.

(]

Suppose for some z € pre(n) the safety condition is not satisfied. Then, if n is a node
g, it must be different from f and not vacuous. Since #; is a straight-line program, if g does
not occur within a par, the only possible action in X, is g, so that firing f in X5 exposes a
difference. If g is part of a par, there may be several possible actions in X;, but none equal

115

to f (otherwise case 3 would apply), so that firing f exposes a difference. (It is not possible
that g # f A g(z) = f(z), because g and f are constant assignments.) If n is a wait [w],
then apparently ~w(z), and [w] cannot be passed. Since ¢; is a straight-line program, if
[w] does not occur within a par, no assignment from ¢; can be reached, so that firing f in -
X2 exposes a difference. If [w] occurs within a par, there may some assignments reachable,
but none equal to f. We conclude that the safety condition is both sufficient and necessary
to prevent misfirings by ¢5. Note that this does not allow us to conclude #; < f t2, because
t2 may cause deadlock or have a fair trace ending in oc.

We postpone that part of the proof, and first consider when ¢; can expose a difference.
Let f be a node in ¢;. We make the same assumptions about ¢; and ¢, as before. Suppose
the following condition holds, which we refer to as the progress condition.

zepre(f)=f(z)=zVvV(@e:e— finty : e(z))

Then execution of f in ¢; cannot expose a difference between ¢; and t,.

Proof: Consider X; and X3, as before. Suppose f is reached in X, with state z, and no
differences have been exposed. Assume in Xy the execution is at a choice, but the choice
has not yet been made (this assumption is valid because making the choice does not change
the state). If f(z) = =z, then executing f does not expose a difference. If f(z) # z, then
let e — f be a production rule such that e(z). Then clearly e can be passed in X5 without
state change, and f is reached in both X; and Xy, so that no difference is exposed.

a

Suppose that for some node f in ¢; the progress condition does not hold. Since pre(f) #
{}, f can be reached in Xi, say with state z such that f(z) # z and that there is no rule
e — f with e(z). Even if there is a rule of the form e — f, the guard of this rule cannot
be passed, so that f cannot be reached. (It is not possible that X3 has already reached
f, because, by the argument under la before, then e(z) V f(z) = z.) Hence, executing f
in X; exposes a difference. Therefore, the progress condition is sufficient and necessary to
prevent state changes in ¢; that expose a difference. Unlike the earlier case, this allows us
to conclude that 1 > o, because t; cannot cause deadlock or generate traces ending in oo.
Consider the remaining cases for t. For t3 to cause deadlock, all guards must be false.
For 15 to generate a fair trace ending with oo, a situation must be reached where no state
changes can occur, i.e., where all guards of effective (non-vacuous) production rules remain
false. However, we know that ¢; cannot cause deadlock and will always eventually reach an
effective assignment. Since ¢, > 5, this assignment can also occur in #5, implying that an
effective production rule has a true guard. Hence, the progress condition prevents deadlock
and fair traces without state changes. Therefore, the safety and progress conditions together
are necessary and sufficient for ¢; = t5.
THEOREM 6.16 (Production Rule Ezpansion)
Let t; be a straight-line program such that there are no sync nodes, all guards
are stable, and all assignments are constant assignments. Also assume that #;

116

cannot cause deadlock or generate traces ending with oo. Finally, assume that, if
par(si, 83, ...) occurs in ¢;, then no assignment f occurs in both s; and s,.
Let 3 be a production rule set with stable production rules.

For node or guard n in ¢; and production rule e — f in ty, define safety(n, e — f)
as: (let g stand for an arbitrary node and w for an arbitrary guard)

z € pre(n) =
1. me(z)Vf(z)=zVn=fV
2. (n=gAg(z)=z)V(n=wAw(z)V
3. the stepwise execution of £; contains ezec(par(ext(n; s),t,...)) where ¢ con-
tains f.

For node f in t; define progress(f) as:
repre(f)=f(z)=zV@e:e—finty : e(z))
Then,

(Vn,e, f : n anode or guard in t; Ae — fin ty : safety(n, e — f))
AVf : f anodein ¢ : progress(f))

is necessary and sufficient for
L1 =ty

a

Even if ¢; has the proper form (straight-line etc.), it may not always be possible to find
a production rule set that satisfies the safety and progress conditions.
EXAMPLE 6.17 f
Let f and g be two different assignments in ¢; (as in Theorem 6.16) that do not
occur within a par. Suppose there is a state = such that z € pre(f) Az € pre(g) A
f(z) # 2 A g(z) # z. Then progress(f) requires a production rule e — f with
e(z), whereas safety(g, e — f) requires that —e(z). Hence, there is no production
rule set that satisfies both conditions. Since these conditions are necessary, the
conclusion is that there is no production rule set ¢ty (with stable guards) that is

equivalent to t;.
O

To implement a situation as in this example, extra state variables are inserted in ¢;. For
instance, if the sequence f;...g occurs, changing this to uT;f;u];... ¢ means that now
z Au € pre(f) whereas z A —u € pre(g), so that the above problem does not occur. With
sufficiently many state variables all such problems can be removed: Certainly, using this
technique, all problems with the original assignments can be removed, by essentially imple-
menting a program counter with state variables. The only interesting question is whether

117

the state variables themselves may suffer from the same problem. Consider insertion of ut
and u| such that z € pre(u]) Az € pre(ul). Then replace u1;...u| by

ul; vl ul;vl

As a result, z A —v € pre(ul), z A u € pre(vl), z Av € pre(ul), and z A ~u € pre(v]), so
that all four states are different.

The following analysis shows that inserting state variables to distinguish between pre-
conditions is sufficient to guarantee the existence of a production rule set. Define #; and to
as before. From the progress condition it follows that if T occurs in ¢;, then there must be
a production rule e, — uT in t3 (unless u] is always vacuous in ¢;). Assume that this is the
only production rule for uf. progress(ul) says that z € pre(ul) = z(u) V e,(z). Hence,

z € pre(ul) A —z(u) = ey(x)
Define guard e as e(z) = z € pre(u]) A ~z(u); then we must have
e(z) = ey(x)

Next, consider safety(n,e, — ul). Let n be a node or guard in ¢, and let z be a state,
such that z € pre(n) An # ul A -z(u) A =2 A =3 (where =2 means case 2 from the
definition of safety does not apply). Then safety(n,e, — ul) = -ey(z). Any e, that
satifies this, satisfies the safety condition. In particular, from the earlier implication we
have —e.(z) = —e(z). Hence, e satisfies the safety condition. Since e also satisfies the
progress condition, it follows that e is a valid guard for u]. Furthermore, it follows that
if e does not satisfy the safety condition, then neither does e, (assuming e(z) = e,(z)).
Hence, we have the following corollary to Theorem 6.16.
COROLLARY 6.18
Let t; be defined as in Theorem 6.16. Suppose u1 is a, potentially effective (i.e.,
non-vacuous), assignment in ¢;. There exists a single production rule e, — w7 for
u] (with stable guard) if and only if the guard

z € pre(ul) A ~z(u)

satisfies the safety condition.
O

(Stability follows from Lemma 6.19 below.) In the above analysis, say safety(n,e — ul)
does not hold for some node or guard n and state z. Then it must be that z € pre(ul)Az €
pre(n) An # ul A ~z(u) A -2 A -3. We have already shown how state variables can be
inserted to make sure that pre(uT) N pre(n) = {}, which prevents this situation. Hence,
insertion of state variables is sufficient to guarantee the existence of a production rule

implementation.

118

Generally, we are only interested in production rules with stable guards, because sta-
bility is required by most VLSI implementations. The following lemma shows that it is
straightforward to satisfy this requirement.

LEMMA 6.19
Let t; have the form defined in Theorem 6.16. Let £, be a production rule set
where each gate has the form

*[[ey — ul 0 eg— ul 1]

If the safety and progress conditions described in Theorem 6.16 are satisfied, then
all production rules in ¢3 are stable.

Proof: Consider when e, can be falsified; the case for ey is identical. Let eq(z) for
z € pre(n) for some node or guard n in ¢;. «

We know that safety(n, e, — u1) holds. From the earlier proof we know that,
after a number of steps, case 2 always reduces to another case without changing
the state. Hence, if e, can be falsified before these steps, it can also be falsified
after these steps. Form the same proof, we also know that case 3 always reduces
to another case (without any steps). Hence, we only need to consider case 1. Since
we assume e, (z), we must have uf(z) =z V n = ul, ie., z(u) Vn = ul. If z(u),
ey may be falsified without violating the stability requirement (Definition 6.4).

Assume —z(u) An = u] (note that —u can only be changed by firing e, — u1).
From progress(ut), it then follows that

(e : e > ulin fp : e(z))

However, there is only one rule e — 7 in #5, namely e, — uT. Hence, as long as
the execution is in a state x € pre(n), e,(z) must continue to hold. The only step
that can change this is execution of n itself, that is, execution of u1. That execution
itself may falsify e, without violating the stability requirement, and following the
assignment v holds, so that e, may be falsified as well.
O _
This is a useful lemma: Suppose an algorithm is designed to generate production rules
satisfying the safety and progress conditions. According to the lemma, this algorithm is
then automatically guaranteed to only generate stable production rules.

Theorem 6.16 does not exclude interfering and self-invalidating production rules. Con-
sider a pair of interfering production rules e, — 47 and e; — u|. The interference can
be removed by strengthening the guards. In particular, e, A ~u — ©7 and eg A u — ul
have no interference; instead, these production rules are self-invalidating. Although, in
general, this may not be the best strengthening of the guards (since it removes all vacuous
firings), it shows that the problem of interfering production rules can be reduced to that
of self-invalidating production rules.

Normally, a self-invalidating production rule can be changed to one that is not self-
invalidating without affecting the conditions of the theorem. Suppose a self-invalidating

119

production rule of the form e, A =u — w1 is really needed to satisfy the conditions. Then
apparently the conjunct ~u has been added to distinguish e, A—u from a state where ex N\,
to prevent a firing in the latter state. But in that state the firing would be vacuous. The
only reason to exclude a vacuous firing is when the vacuous firing would cause interference.
Hence, the only reason to use this guard is if e, —] can fire in state e, A u. But ul
would change that state to ey A —u, so that «| can be immediately followed by u1. Hence,
we conclude that the only reason to choose a self-invalidating rule for u{ is the presence
of ul;uT in the straight-line program. This is essentially the same as Example 6.7. The
solution is to insert state variable assignments between u] and »]. Observe also that after
ul; uT the same state holds as before this sequence, so that u| can fire again. Therefore, the
straight-line program must in fact contain sequences uf;ul; ul;ul;... of arbitrary length
(the sequence can be terminated because of assignments by the environment). Hence, if the
straight-line program does not contain such a sequence, self-invalidating production rules
(and, therefore, interfering production rules) can always be avoided.

120

Chapter 7
Conclusion

7.1 Summary

In this text we have defined a new form of formal operational semantics. The seman-
tics formally defines familiar concepts such as programs, environments, program execution,
and computation. It goes beyond the usual formal operational semantics by defining an
implementation relation (also called refinement relation) based on the result of program
execution. We have shown how stepwise evaluation of the execution function (based on the
structure of its definition) can be used to prove an implementation relationship between
two programs. The definition of implementation is based on observation by an arbitrary
environment. In particular, there is no need for special testing environments with suc-
cess and failure states. This way, the semantics naturally includes the means to prove
transformations that are only allowed in restricted contexts.

Because the semantics is operational and based on definitions of familiar concepts, the
proofs can often follow the informal lines of reasoning that are commonly used in practice,
thus making the formal method easier to use. Furthermore, the semantics directly sup-
ports many features found in programming languages, including sequential and concurrent
composition, non-determinism, shared variables, infinite computations, and the simultane-
ous completion of synchronization actions. This makes it straightforward to express the
semantics of languages that contain these features.

Although the semantics was developed to be used with a VLSI synthesis method, it
is reasonably general and may be useful for the definition of general-purpose concurrent
programming languages as well.

After defining the method of operational semantics, we have demonstrated its use as a
semantic framework for Martin synthesis, a synthesis method for asynchronous VLSI cir-
cuits. We have defined the semantics of each of the languages used in the synthesis method,
CSP, Handshaking Expansions (HSE), and Production Rule Sets (PRS). We have used the
semantic framework to describe many of the method’s transformations, and used the im-
plementation relation to prove their correctness. This not only increases the confidence in
the synthesis method, but may also give insight into the exact workings of transformations

121

and help develop new transformations. For transformations that are not proven in this
text, in particular, for the problem-specific transformations used in the early stages of a
design, the semantic framework establishes the proof requirements.

Among the proven transformations are process decomposition, process factorization,
handshake expansion, handshake reshuffling, choice decomposition, and production rule
expansion. In particular the proof of handshake expansion is generic, and can be applied
to many variations of handshake protocols. Using this generic proof, a new protocol (the
one-phase handshake) was discovered.

Because of the generality of the semantic framework, which was designed with this
application in mind, we could deal with the synthesis method in its full generality, without
restrictions or assumptions which are not satisfied by actual designs. For instance, we allow
the use of shared variables, local parallelism within a process, multiple handshake protocols,

and arbitration.

7.2 Future Work

Although we introduced a fair implementation relation in Section 6.3, the fairness constraint
it imposes is very weak. It would be useful if other fairness constraints could be included as
well. Also, in Section 6.3 we add fairness by removing unfair traces from the trace set. Since
fairness is a property of the interleaving, it would be better if the fairness constraint could be
added to the interleaving function. That may not be straightforward, however, because the
interleaving function performs a local transformation using only local information, whereas
fairness is a global constraint.

The semantics includes data (variables and expressions), and most proven transfor-
mations do involve data aspects. Nevertheless, we have not really done data refinement,
i.e., changing the representation of data, such as replacing an integer by its binary rep-
resentation. Inclusion of such transformations is especially useful in the early stages of a
design. Naturally, if the representation of variables in a trace is changed, the traces will
be different, invalidating the implementation relation. One solution is to apply a mapping
to the traces that replaces the new representation by its original form. A problem with
that solution is that it often creates intermediate values that are not part of the origi-
nal trace. For instance, an integer can be changed in a single assignment, but its binary
representation must be changed one bit at a time, generating many intermediate values.
Since an underlying assumption of the semantics is that the environment can observe any
state, we cannot easily hide the intermediate values. A better solution is to only change
the representation of local variables, and add assignments to the program that explicitly
convert the representation before it is assigned to an environment variable. This method
does not require any change of the semantics, but requires that data refinement is done in
several steps.

We believe the semantics can be useful for general-purpose programming languages.

122

However, such applications may require some changes to the semantics. For instance, the
current semantics does not easily support jumps such as goto or return statements. To
add direct support for these statements, the tree ADT may need to be extended.

Finally, the proofs in this text form only the first application of the semantic framework.
It would be useful to describe the complete compilation procedure using the notations
developed in this text. Furthermore, it is worthwhile to attempt to prove, for specific
designs, the problem-specific transformations that are part of the refinement stage.

123

Appendix A
Abstract Data Types

To describe our semantics, we need some ‘new’ data types. One way to define a new
data type is to express it in terms of ‘standard’ data types, such as integers, sets, and
functions. For instance, one can define a list of elements as a function from indices to
elements. Theorems involving lists can then be proven by translating them to theorems
about functions and proving those theorems using properties of functions. One might call
a type defined in this way a concrete data type, because it is defined in terms of concrete
mathematical objects. An alternative method of data type definition is to give a set of
equations that specify the properties we want the new type to have. Theorems involving
the data type can then be proven by using the properties expressed by the equations. A
type defined with this method is called an abstract data type (ADT).

Concrete data types are suitable for simple types. Their main advantage is that many
properties of the new type follow immediately from properties of the underlying data types.
However, many new types are hard to map onto existing types. It then becomes hard to
work with the new data type because of the complex translation to the underlying types. In
those cases, abstract data types are preferred, because they do not involve such translations.
In addition, abstract data types have the advantage that they don’t rely on other types
already being known. A well-known example of an abstract data type is the natural numbers
as defined by the Peano axioms. In Chapter 2 we define traces and trees as abstract data
types. In this appendix, we give a simple example of an ADT, and discuss some of the

issues involved.

A.1 The List ADT

As an example, we define a type ‘list of elements of E’ as abstract data type. The defining
equations are usually divided into ‘constants and constructors,” which describe the form of
elements of the type, and other axioms, which give additional properties of the type. In
particular, axioms may be used to define when two elements are considered equal. Here is
a simple set of equations (or axioms) defining the dbstract data type list of (E).

124

Let List = list of (E). For any e € E and any r,s,t € List, the following axioms hold.

o Constants and constructors

L1. @ € List
e € List

L2. s+t € List
e Equivalence axioms
L3. sH@=s5s=0+s

L4. (sHi)Hr=s+(t+H7T)

(Parentheses are not considered part of the type definition; they have their usual meaning.)

Let us consider each axiom in turn. Axiom L1 says that there is a list ‘@’; we’ll call this
the empty list. The second part of L1 specifies that a single element is a list by itself. We
could have chosen a different notation for single-element lists, such as ‘[e].” But if there is
usually no confusion between elements and single-element lists, or if the distinction is not
important, we may as well keep the notation as simple as possible.

Axiom L2 says that, if s and t are lists, then s+ is a list as well. The ‘“+’ constructor is
called concatenation. In addition to the construction axioms, we make a hidden assumption
that there are no other constants or constructors. From this assumption it follows that a
list must have one of the three forms ‘W, ‘¢’, or ‘s +¢.” This assumption allows us to
use two important techniques, structural induction and structural definition. Structural
induction is induction on the number of construction steps, i.e., the number of applications
of L1 and L2 necessary to construct a list. Structural definition (or definition by structural
induction) is a similar technique to define functions (or relations) on lists: the function
value on a list is specified by specifying the function values on the component lists, which
have fewer construction steps. An alternative to making this assumption is to add an axiom
that explicitly specifies structural induction as a proof method. For convenience, we will
always make the assumption, but not write it out explicitly.

Two lists are obviously equal if they are constructed in the same way. However, the
equivalence axioms specify that there may be more than one way to construct the same
list. In particular, L3 specifies that the empty list is the (left and right) neutral element
of concatenation, and L4 says that concatenation is associative. What L3 and L4 really

do is to define a relation ‘=,” which we intend to be an equivalence relation. Hence, we
must assume that ‘=’ is reflexive (s = s), transitive (s = t At = r = s = r), and
symmetric (s = t = t = s), and that the constructors are monotonous over ‘=’, i.e.,

s =8 At =1t = s+t = s'+t. Again, we will not state these additional properties explicitly,
but take it that the choice of the ‘=" symbol is sufficient indication of our intentions. Finally,
we make the assumption that there are no other equivalence axioms, i.e., if s = ¢ then either

125

s and ¢ are identically constructed, or they can be proven equal by the given axioms and
assumptions. If we need to distinguish between the two types of equality, we will write
sist to mean that s and ¢ are identically constructed.

A.2 Normal Forms

The equivalence axioms cause a problem when we want to define functions by structural
definition. Say we define f as follows: f(0) =0, f(e) = e, f(s+t) = t + 5. Unfortunately,
with this definition, s = ¢ does not imply that f(s) = f(¢). For instance, f((ej+e3)+e3) =
e3+(e; +Hey), whereas f(e; + (ea+e3)) = (eg +e3) +e;. Generally, we only want to define
functions for which s = ¢ implies f(s) = f(t). One solution is to prove for each function
we define that this is the case (such proofs can be given because we know all rules that
can prove two lists to be equal). Another method is to define a normal form. Choosing
a normal form amounts to choosing a unique representative for each equivalence class of
the ‘=’ relation. If s and ¢ are in normal form, i.e., they are such representatives, then
s = t implies s is t. If f is defined by structural definition, then certainly s is ¢ implies
f(s) = f(t). Hence, if we specify that f can only be applied to lists in normal form, we
automatically get the desired monotonicity:

s=t=>sist= f(s) = f(¢)

It is particularly convenient if we can specify representatives by specifying the form of their
construction. In that case, a function f need only be defined by structural definition on
the construction of lists in normal form.

The following is a possible normal form for lists.

Let e € E and s € listof (F). A list is in normal form (NF), if it has one of the
following forms: :

Nl.Qore

N2. e + s where s is in NF and s ig 0.

Hence, a list is in normal form if it is written in a right-associative way and without

superfluous empty lists.
We must now prove that this is indeed a normal form, i.e., that each list can be written

in normal form and that normal forms are unique. We restrict ourselves to finite lists.

e Lemma: If ¢ and r are in NF, then £ + r can be written in NF.
We prove this by structural induction on the form of ¢ (which is described by rules
N1 and N2). Let s < ¢ stand for ‘s has fewer construction steps than ¢.’

126

Basis: Assume t is described by N1. If £ is §, then ¢ + 7 = r, which is in NF. If ¢ is e;
then ¢ + r is in NF if r i$ §; otherwise, if 7 is 0, then ¢ +r = ¢, which is in NF.
Induction: The induction hypothesis (IH) is: for any s < ¢: if s is in NF then s + r
can be written in NF. We prove that ¢ + r can be written in NF.

Let tis e +t', where t' is in NF. Then

tHris(ett)Hr=e+ (' +r7)

Since ¢’ < ¢, t' +r can be written in NF, say as s (which is not 0). Then t+r = e+ s,
which is in NF.

e Every finite s can be written in NF. Again, we use structural induction; this time, the
form of s is described by L1 and L2.
Basis: If s is constructed by L1, s is in NF.
Induction: The IH is: every s’ < s can be written in NF.
Say sist+ 7. According to the IH, t and r can be written in NF, say as ¢ and 7/
respectively. Then s = ¢/ ++ ¢/, which, according to the above lemma, can be written in

NF.

We still need to prove that normal forms are unique. For this proof we need to use
the implicit assumption that there are no other ways of proving s = ¢ than with the given
axioms. For convenience, we give two consequences of this assumption, without proof (these
rules could have been given as additional axioms):

Fore, f € F and s,t € List:

e Uniqueness axioms
Ls.eHs=f+Ht=>e=fAs=t
L6. etts#0

¢ Proving uniqueness of the normal form corresponds to proving
If s and £ are in NF, then s =¢ = s is t.

Since we are only concerned with the normal form for lists, we assume that elements
from E are unique (or that they are written in a suitable normal form). We use
structural induction on the form of s. Assume s = ¢; in each case, we show that either
this is a contradiction, or that s is ¢. '
Basis: s is described by N1.

Let s is 0.

127

(1) tis @: then sis ¢.

(2) tise:t=e=e+0#{L6}0=s,s0s+# ¢

(3) tise+1': again, by L6, ¢ # @ and hence s # ¢.

Hence, 0 is unique in NF.

Let sise.

(1) tis@: as (2) above.

(2) tis f: elements from E are unique, so e = f = e is f and hence s is £.

(3) tis f+t', where t' is in NF and #' i§ 0: From s = ¢ it follows that s = e —

e+ @ = f+¢ from which we get, by L5, that ¢ = (. But since 0 is unique in
NF, either ¢’ is @ or # is not in NF, both contradictions.
Induction: The IH is: if p < s and if p and q are in NF, then p = qg=7pisq.

Assume s = e+ s, with s’ in NF. The cases ¢ is @ and ¢ is f lead to contradictions,
as shown above. Hence, assume ¢ is f +¢'. From s = ¢, it then follows (by L5 and
uniqueness of E) that e is f and ' =t'. But s’ < s, so according to the IH we have
s'is ¢/, and hence s is t.

The proofs showing that N1 and N2 do indeed describe a normal form are not difficult,
but rather elaborate. And since the proofs are based on structural induction, they increase
in size as there are more constructors. Therefore, elsewhere in this thesis, we will present
normal forms, but not the proofs that they are indeed that. Also, we will not explicitly
state uniqueness axioms, but make the implicit assumption that elements are only equal if
that can be proven with the given axioms.

The above proofs were restricted to finite lists because we cannot simply use structural
induction to talk about infinite lists. In this thesis, we do allow infinite data structures,
i.e., objects that are constructed from infinitely many constructors. A method to specify an
infinite object is to define it as the solution of some recursive equation (often, as the least
fixpoint of an equation). In that case, the axioms should be extended to postulate that
such a solution indeed exists. However, in this thesis we are not particularly interested in
the technicalities arising from the infinite nature of some objects; on the contrary, generally
we are only interested in finite parts of objects. Since furthermore our infinite structures
tend to be quite regular, we treat them somewhat informally, by saying that infinite objects
exist and by writing them with a ‘...’ notation. E.g., we could write e+ (e+(e...)...) to
denote a particular infinite list and deal with it by looking at all its finite prefixes.

As a final word about normal forms we should remark that there are several alternative
ways of defining ADTs that avoid them. First, we could consider only the ‘is’ relation as
equality, and have L3 and L4 define a new relation ‘~’ instead of ‘=’. Then we could for
each function on the ADT consider separately whether it is monotonous over ‘~’ or not.
Second, we could attempt to define the constructors in such a way that the ADT consists of
only elements in normal form. (In fact, that is how lists are usually defined in programming
languages.) General concatenation could then be defined as a function on lists. Each of the
methods has its pros and cons, and the choice is to a certain extent arbitrary. Incidentally,

128

the method of choosing a normal form should be clear: mainly, it consist of applying each
axiom in one direction, until it can no longer be applied.

A.3 Models

The specification of an abstract data type is just a set of equations. Hence, it could
be inconsistent, meaning that it does not have a solution. The easiest way of showing
consistency is by giving a solution, called a model. A model should be described in terms
of an ‘accepted’ theory, such as set theory. (When the accepted theory is a programming
language, a model is usually called an implementation of the ADT.) Hence, a model of an
abstract data type is a concrete data type that satisfies the given axioms. The existence of
a model for an ADT shows that the ADT is at least as consistent as the theory in which

the model is described.
As an example, we give a concrete data type that models the lists defined above. We

model a list by a pair (n, f) where n is a natural number and f is a function mapping from
the interval [0...n) to the element type E. ([0...n) is the subset of IV starting with 0 and

ending with n — 1.)
(neIN,f:[0...n) - E)

For L1 we have to specify how the lists § and e are modeled. We assume functions have
the proper domain; function ‘0’ has empty domain.

0= (0,0)

e=(l,e)

To model L2, we must express the concatenation constructor as an operation on pairs

(n, f):
_ f(z) ifzelo...s)
<3,f>+"(t,g>—<s+t,{g(w_s) ifme[s...s+t)>

As can be seen, both f and g are only applied to elements from their respective domains.
Next we must prove that axioms L3 and L4 are indeed satisfied. Each of these proofs is
straightforward; as an example, we give the first part of L3:

_ f(=z) ifa:E[O...s) _
(s, f) +(0,0) = <s+0,{0($_3) ifxe [s...s+0)> B

({4 E2eb)t

Likewise, the uniqueness axioms can be proven, for instance L6:

e ifx=0 ,
(l,e)*<s,f)=<s+1,{f(x_1) if:z:e[l...s+1)> # {0, 9)

129

Although models have their uses (e.g., they can help ‘visualize’ properties of the ADT)
we generally do not use them in our calculations. Therefore, in chapter Chapter 2 we only
give an informal sketch of the models, omitting their precise specifications and proofs.

A.4 Notes

In practice, often a model is known, and an ADT is designed to formally express the
properties of that model. Such axiomatic definitions are common in mathematics, dating
all the way back to Euclid (300 BC). A well-known example of an ADT is the natural
numbers as defined by the Peano axioms (in 1889). That axiomatization does not use our
implicit assumptions, but explicitly states the principle of induction as well as uniqueness
axioms. Also, it does not contain equivalence axioms, meaning that all elements of the ADT
can be considered to be in normal form (as described in the second alternative at the end of
section Section A.2). A common model for the Peano axioms is provided by (abstract) set
theory, by equating number 0 with the empty set {}, and the successor of n with n U {n}.
Our treatment of ADTs is not as thorough and precise as the usual axiomatizations in
mathematics. We feel this is justified because we do not intend to perform an in-depth
analysis of the types we introduce; rather, we give ADTs to justify our use of the new types
in the definition of our semantics.

The term ‘abstract data type’ is commonly used in computer science. However, there it
is sometimes confused with concrete data types that are expressed in standard mathematics,
as contrasted with implementations that are expressed in a programming language; as
mentioned above, an implementation is just a model of an ADT. Programming language
support for the use of ADTs first appeared in Simula 67, and forms the core of what is now

called object-oriented programming.

130

Bibliography

[1] R.J.R. Back, K. Sere
Stepwise refinement of parallel algorithms
Science of Computer Programming 13, 133-180, 1990

(2] J.A. Bergstra, J.W. Klop
Process algebra for synchronous communication
Information and Control, 60, 109-137, 1984

[3] S.M. Burns
Performance Analysis and Optimization of Asynchronous Circuits
Ph.D. thesis, CS-TR-91-01, California Institute of Technology, 1991

[4] K.M. Chandy, J. Misra
Parallel Program Design: A Foundation
Addison-Wesley, Reading, MA, 1988

[5] E.W. Dijkstra, C.S. Scholten
Predicate Calculus and Program Semantics
Springer-Verlag, New York, NY, 1990

[6] J.C. Ebergen
A formal approach to designing delay-insensitive circuits
Distributed Computing, 5, 107-119, 1991

[7] N. Francez
Fairness
Springer-Verlag, New York, 1986

131

(8]

(10]

(11]

[12]

[13]

[14]

C.A.R. Hoare
Communicating Sequential Processes
Communications of the ACM, 21:8, 666-677, 1978

C.A.R. Hoare
Communicating Sequential Processes
Prentice-Hall International, Englewood Cliffs, N.J., 1985

M.B. Josephs, J.T. Udding

An algebra for delay-insensitive circuits

pp. 147-175 in: E.M. Clarke, R.P. Kurshan, editors
Computer-Aided Verification 90
International Workshop on Computer Aided Verification
DIMACS series, 3
American Mathematical Society, Providence, RI, 1991

T.K. Lee
A General Approach to Performance Analysis and Optimization of Asynchronous

Circuits
Ph.D. thesis, California Institute of Technology, 1995

A.J. Martin
The probe: An addition to communication primitives.
Information Processing Letters, 20:3, 125-130, 1985

A.J. Martin
The design of a self-timed circuit for distributed mutual exclusion

pp. 247260 in: H. Fuchs, editor
1985 Chapel Hill Conference on VLSI
Computer Science Press, Rockville, MD, 1985

A.J. Martin

Programming in VLSI: From communicating processes to delay-insensitive circusts.

Chapter 1 in: C.A.R. Hoare, editor
Developments in Concurrency and Communication

UT Year of Programming Series
Addison-Wesley, Reading, MA, 1990

132

[15]

[16)

(17]

[18]

(19]

[20]

[21]

[22]

A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, P.J. Hazewindus

The design of an asynchronous microprocessor

pp. 351-373 in: C.L. Seitz, editor
Advanced Research in VLSI: Proceedings of the Decennial Caltech Conference on
VLSI
MIT Press, Cambridge, MA 1989

R. Milner
Commaunication and Concurrency
Prentice-Hall International, Englewood Cliffs, N.J., 1989

P.D. Mosses
Action Semantics
Cambridge University Press, Cambridge, 1992

C.D. Nielsen, A.J. Martin
Design of a delay-insensitive multiply-accumulate unit
Integration, the VLSI Journal 15:3, pp. 291-311, 1993

G.D. Plotkin
A Structural Approach to Operational Semantics
Report no. DAIMI FN-19, Aarhus University, C.S. Department, 1981

G.D. Plotkin
An operational semantics for CSP
pp- 250-252 in: A. Salwicki
Logics of Programs and Their Applications
Lecture Notes in Computer Science 148
Springer-Verlag, Berlin, 1983

C.L. Seitz

System Timing

Chapter 7 in: C.A. Mead, L.A. Conway
Introduction to VLSI Systems
Addison-Wesley, Reading, MA, 1980

S.F. Smith, A.E. Zwarico
Provably correct synthesis of asynchronous circuits
pp. 237-260 in: J. Staunstrup, R. Sharp, editors
Designing Correct Circuils
Formal Methods in System Design, 3:3 and 4:1

133

[23]

24]

25]

[26]

J.L.A. van de Snepscheut

Trace Theory and VLSI Design

Lecture Notes in Computer Science, 200
Springer-Verlag, Berlin, 1985

J.L.A. van de Snepscheut, J.T. Udding
An alternative implementation of communication primitives
Information Processing Letters, 23, 231238, 1986

J.A. Tierno, A.J. Martin, D. Borkovic, T.K. Lee
A 100-MIPS GaAs asynchronous microprocessor
IEEE Design & Test of Computers, 11:2, 43-49, 1994

J.A. Tierno
An energy complezity model for VLSI Computations
Ph.D. thesis, CS-TR-95-02, California Institute of Technology, 1995

134

