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"ABSTRACT

Electromagnetic wave propagation and depolarization in an
inhomogeneous medium having random fluctuations in its permittivity
are studied. The continuous space-time permittivity fluctuations are
taken to be frozen-in, homogeneous, and isotropic. We find that the
essential effect of the random permittivity is to destroy the time
coherence and spatial orthogonality of the vector components of an
electromagnetic wave penetrating the medium,

To study this problem, we develop a unique discrete model for
the continuous random medium by dividing the volume occupied by the
random inhomogeneities‘into independent elementary scattering volumes.
Scattering by each of these elementary volumes is analyzed to obtain
the complex amplitude and polarization of the single scattered field.
Then multiple scattering among the many elementary volumes is used to
estimate the composite values for scattering per unit length and de-
polarization per unit 1ehgth of the medium. The manifestation of
scattering in the medium is the generation of an incoherent or fluctu-
ating electric wavefield and a coherent or average electric wavefield.
It is shown that the total electric wavefield propagating in the medium
satisfies an integral equation which is directly reducible to the clas-
sical equation for radiation transfer.

A novel result of this study is that only two phenomenological
parameters are needed to describe the penetration of the wave into a
plane-parallel medium, when a polarized plane wave is normally incident,

These two parameters appear as diffusion constants in expressions for



the solution for the coherency and Stokes matrices, These solutions
simply describe how wave energy is progressively converted from the
initially coherent and polarized field to an incoherent and unpolarized
field as the wave propagates. An initially polarized wave is gradually
depolarized, yielding a completely unpolarized wave deep into the

medium.
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I. INTRODUCTION

Electromagnetic wave propagation and scattering in random media
have become increasingly important in recent years. In general, a ran-
dom medium varying in space and time will cause the amplitude, phase,
polarization, and direction of propagation of an e]ectromagnetic field
to fluctuate in a random manner. Such fluctuations in the wave param-
eters are important in many practical situations. For instance, random
fluctuations may 1imit the coherent bandwidth of communication signals
propagated through the medium, or cause signal fading beyond system
margin capabilities. In other communication systems, scattering by a
random medium may be utilized, as with over-the-horizon communication
links. Remote sensing of geophysical and meteorological parameters is
also an important application for the study of wave propagation in
random media. Geophysicists and astronomers are interested in the use
of wave fluctuations to remotely determine the dynamic and constituent
characteristics of planetary atmospheres. And, subsurface exploration
for hydrocarbons requireé an understanding of statistical wave propaga-
tion characteristics in random media.

There are two general categories of random media: discrete
random media and continuous random media. Both these categories are
reviewed by Ishimaru (1). Discrete random media refers to a collection
of discrete scdtterers, such as rain, fog, molecules, or suspended
particles in otherwise homogeneous media. Procedures for studying
discrete random media can be divided into two principal steps. First,
the scattering characteristics of a single scatterer is considered, and

second, the characteristics of a wave scattered among many randomly



2

distributed scatterers is considered. Historically, these steps have
been undertaken using two distinct approaches; radiative transfer theory
and multiple scattering theory. Schuster (2) initiated radiative trans-
fer theory or "transport" theory in 1905 to study radiation in foggy
atmospheres in order to explain absorption and emission lines in stellar
spectra. This transfer theory is based upon the phenomenological occur-
rence of sources and sinks of wave energy or intensity, and its basic
differential equation is equivalent to Boltzmann's equation in the
kinetic theory of gases (3) and in neutron transport theory (4). In
1945, Chandrasekhar (5) developed a systematic approach to radiative
transfer. His work has since become the foundation of modern radiative
transfer theories. Alternatively, in multiple scattering theory, one
begins with a wave equation, obtains solutions for a single particle,
then rigorously introduces the interaction effects of many particles.
Twersky (6,7) and Foldy (8) have provided some of the most useful
multiple scattering theories.

In contrast, a "cdntinuous random medium" is used to describe
the medium whose constitutive parameters (permittivity, index of re-
fraction, impedance, etc.) vary randomly yet continuously in space and
time. Such media are the subject of this thesis. Primary examples are
atmospheric turbulence, biological media and turbulent wakes and
plumes of aircraft engines. Continuous random media have traditionally
been treated using the Born approximation, wherein the effective field
incident at any point in the medium is approximated with the free-space
propagating incident field. However, much of the recent work in this

area is based upon techniques employed by Tatarski (9), such as the
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method of smooth perturbations (Rytov's method). Other techniques and
methods utilized for continuous random media are reviewed in a recent
article by Lawrence and Strohbehn (10).

For continuous random media, a major shortcoming of much of the
previous research is that polarization effects on electromagnetic waves
have been neglected. The typical procedure is to begin with the vector
wave equation, then invoke physical reasons to justify neglecting the
change in polarization of the scattered field. The result is a scalar
wave equation for each of the decoupled scalar components of the elec-
tromagnetic field. In general, no attempt is made to compute the mag-
nitude of the neglected depolarized field. One notable exception is
the quantitative discussion using an entropy argument given by Papas
(11). Also, Chandrasekhar's work in discrete random media using trans-
port theory involved polarization effects explicitly. In fact,
Chandrasekhar noted that a scalar wave theory is never reliable and
requires careful interpretation when compared with measured data.

The subject considered herein is electromagnetic wave propaga-
tion and scattering in a continuous random medium. The random varia-
tions in the medium's permittivity are assumed to arise from turbulence.
This work is novel, however, in that discrete random media techniques
are utilized by subdividing the continuous medium into discrete ele-
mentary scattering volumes. Propagation or scattering in the con-
tinuous medium is accounted for by multiple scattering among many ele-
mentary volumes. Also, the polarization of the waves in the random
‘medium is consistently accounted for; no a priori assumption regarding

the magnitude of the depolarized field is made.
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The procedure is to first obtain the far-zone vector electric
field from an elementary volume of the continuous random medium. Then
rigorous multiple scattering among the elementary volumes using the
Foldy-Twersky theory is used to find the average electric field propa-
gating in the medium as well as the bulk effective refractive index of
the random medium. The fluctuating part of the electric field is con-
structed from multiply scattered field contributions generated through-
out the entire medium. Finally, by defining the total electric field
as the sum of the average electric field and the fluctuating electric
field, an integral equation for the total field is derived. This in-
tegral equation is then used to construct equations satisfied by the
coherency and Stokes matrices. An approximate solution for the integral
equation describing propagation of the coherence matrix of the field is
obtained when a completely polarized plane wave is incident upon a slab
of random medium. This approximate solution is then utilized to develop
a solution which describes the diffusion of the coherency and Stokes
matrices in the random medium.

An essential part of this thesis is to provide estimates of the
polarization behavior of the electromagnetic field as it penetrates the

medium.
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IT. GENERAL PROPERTIES OF ELECTROMAGNETIC WAVES IN RANDOM MEDIA
Consider a completely polarized and monochromatic plane wave
initially traveling in the Z direction. As this wave penetrates a
random medium, its amplitude, phase, and polarization fluctuate ran-
domly with time and position. If the frequency spectrum of the wave
fluctuations is confined to a narrow bandwidth (quasi-monochromatic

with mean frequency w), then the electric field vector of the wave may

be represented as
E,(r.t) = Re[E(r,t)exp(-iwt)].

Throughout this study, the primary time dependence exp(-iwt) is as-
sumed. In general, the field E is complex, and due to its narrow band-
width, is a slowly varying function of time. In accord with the vector

nature of the wave, the Cartesian components of Ejr}t) are

E, = U (r.t)explio, (r.t)]
E, = Uy(_v:,t)exp[wy(g,t)]
E, =0,

where Ux’ Uy, Py and ¢y are also slowly varying functions of time.

2.1 Coherent and Incoherent Fields
Each of the scalar field components, EX and Ey, is a random
function of position and time and can be expressed as a sum of the

average field, <E>, and the fluctuating field Ef(l):
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E(r,t) = <E(r,t)> + Eg(r,t) (2.1.1)

<Ef(£}t)> =0 , (2.1.2)

where E represents either of the field components EX and Ey and the
angle brackets denote the ensemble average discussed in Appendix A.
The average field is also called the coherent field EC and the fluctu-
ating field is called the incoherent field. The energy density, J, of

the total field is separated into coherent and incoherent parts also,

yielding
J(r) = 3.(r) + 3;(r) (2.1.3)
3. (r) = |<E »|? (2.1.4)
3;(r) = <|Eg[% . (2.1.5)

As the wave propagates in a random medium, its coherent intensity de-
creases due to scattering and absorption in the medium. The portion of
the coherent wave which fs scattered travels in all directions accord-
ing to the scattering properties of each elementary scattering volume
comprising the medium. These scattered waves represent the incoherent
field. It is evident that as the wave propagates, wave energy is con-
tinuously transferred from the coherent field to the incoherent field
by scattering. These scattered waves comprising the incoherent field
also exchange energy but this incoherent energy cannot be converted
into coherent energy. The total energy density of the wave, (2.1.3),
decreases due to absorption only. If the medium is lossless (no ab-

sorption), the total energy density of the wave penetrating the medium
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is conserved except for backscattering.

The above description of propagation in random media applies
generally to each scalar component of the vector electric field. How-
ever, when electromagnetic waves are multiply scattered, coupling
between the orthogonal scalar components of the field occurs. This
coupling causes a progressive depolarization of the electromagnetic
wave propagating in a random medium. Because thé depolarization 1is a
random phenomenon affecting a polychromatic wave, the incoherent field
is only partially polarized. This means that the energy is not only
transferred from the coherent component of the field to an incoherent
component but also from a polarized field to a partially polarized
field. In the 1imit as the waves penetrate deep into the random medium,

the total field becomes completely incoherent and unpolarized.

2.2 Coherency Matrix and Stokes Parameters

To describe the polarization and coherence of the polychromatic
wavefield, Papas (12) has shown that the state of polarization can be
specified by means of a matrix whose elements characterize the degree
of coherency between the transverse components EX and Ey of the wave.

The elements of this coherency matrix J are defined by
T

2 lim 1 * -
Ipg = Towo 27 f Aphq dt (P>q = X,y) - (2.2.1)

Equation (2.2.1) represents a time averaging integration, where

Ap(p = X,Y) represents either of the electric field components EX or Ey.
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*
By invoking Taylor's frozen-in turbulence hypothesis , it is evident
that the time average and ensemble average of the wavefield are identi-

cally the same quantity. Thus (2.2.1) is replaced with

J AASS (2.2.2)
= < . L.
pq pq

Taylor's frozen-in hypothesis is discussed in detail in Appendix A. If

Ap and Aq are independent waves, then Jpq = 0. Also, it is apparent

that the coherency matrix

* *
3= |2 ] <EXEi> <EXE¥> (2.2.3)
Yyx dyy ] SEyE <ByEy?
*

is hermitian, that is, ny = Jyx'
Throughout this paper, the electric field will be expressed as a
column matrix with spatially orthogonal field components, i.e., EX and

Ey' Accordingly, we have
E(r,t) =| X7 | . (2.2.4)

With this notation, the coherency matrix given in (2.2.3) may be formed
as a product of the vector E with its hermitian conjugate gf. However,
in multiple scattering problems it is advantageous (as will be shown in
Appendix E) to define the coherency matrix as the product of the elec-
tric field vector with its complex conjugate Ef, yielding the column

matrix

* -
Taylor's frozen-in hypothesis simply states that any time variation of
a quantity is a spatial variation translated with uniform velocity.



J=ExE =| M . (2.2.5)

In view of the discussion at the beginning of this section, we
see that the random fluctuations of the medium destroy the spatial
orthogonality and time coherence between EX and Ey as the wave propa-
gates. ny and Jyx approach zero and Jxx and Jyy approach an equal-
valued equilibrium. This situation is illustrated in Figure 2-1. These
ideas suggest that the wave entropy is being steadily increased, be-
havior first suggested by Papas (11) in a recent paper. However, it
should be pointed out that this phenomenon is strictly a consequence of
the multiply scattered and polychromatic nature of the wavefield. For
instance, a monochromatic wave, even after single scattering, is always
in some state of general elliptical polarization, i.e., the end point of
its electric field vector must periodically trace out an ellipse or one
of its special forms, viz., a circle or a straight line. However, a
polychromatic electromagnetic wave can be in any state of polarization
ranging from elliptic to completely unpolarized. Mathematically, the
polarization state of such polychromatic waves is described by the four
Stokes parameters (5,12). The Stokes parameters may be derived directly
from correlations involving the orthogonal field components, however,

they are also simply related to components of the coherency matrix as

follows:
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Coherent Field (Jxx)

—o Z

Figure 2-1. General behavior of a polarized plane wave
incident upon a random medium (z > 0). The incident field

is polarized along the R-axis.



Sha=d._ +d ., = -
0 XX Yy S] Jxx Jyy (2.2.6)
52 ny - Jyx s 53 1(Jyx - ny).

The parameters SO, S], 52, and S3 are often collected into a column
matrix and called the Stokes matrix. Only a simple transformation is
required to convert the coherency matrix (2.2.5) into a Stokes matrix
whose components are given by (2.2.6). It can be shown (12) that the
polychromatic Stokes parameters satisfy the relation

2
1

+ sg + 52, (2.2.7)

2
50 25 3
where the equality sign holds only when the wave is completely polarized.
The degree of polarization P of the partially polarized wave is
defined as the ratio of the energy in the polarized field to the total

energy. In terms of the Stokes parameters, P is given by

_ 2 2 2%
P = [S] + 32 + 53] /s0 . (2.2.8)

The range of P is 0 <P < 1. For the two extreme values, P = 0 corre-
sponds to a completely unpolarized wave and P = 1 corresponds to a com-
pletely polarized wave. When P is in the intermediate range of values
0 <P < 1, the wave is partially polarized.

The degree of linearity L of the polarized part of the field is

given by

1
L= [s2 + S3T%/0s2 + 55 + S517 (2.2.9)

As with P, the degree of linearity L varies from zero to unity,

0<L<1. WhenL =1, the polarized part of the wave is Tinear.
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When L = 0 the polarized part is circular. For 0 < L < 1, the polar-
ization is elliptical.
The degree of ellipticity E of the polarized part of the wave is

given by

E = s3/[s$ + sg + sg]l/?- , (2.2.10)

where the range of E is -1 < E <1, When E = -1, the polarization is
left-hand circular. When E = +1, the polarization is right-hand circu-
lar. E = 0 corresponds to linear polarization. For 0 < E < 1 the
polarization is left-hand elliptical and similarly, for -1 < E < 0 the

polarization is right-hand elliptical.
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ITI. SCATTERING BY AN ELEMENTARY VOLUME OF RANDOM MEDIUM
The physical model for studying propagation and scattering in the
random medium is illustrated in Figure 3-1, where it is shown that the
total volume occupied by the random inhomogeneities is divided into N
identical elementary scattering volumes. Details of the electromagnetic
scattering characteristics of the elementary scattering volume are given

in this section.

3.1 Far-Field Scattering Amplitude

Consider a continuously varying random medium occupying an ele-
mentary volume Vs' The medium is characterized by the permittivity
e(r,t), which can be complex, and the permeability U, equal to that of
free-space. The permittivity varies from point-to-point and time-to-
time in a random manner and is described by a homogeneous, isotropic,
stationary, and frozen-in random function of position and time. To
represent the permittivity mathematically, one decomposes e(r,t) into

its average value € and its fluctuating part:
e(rst) = e (1 +e4(r,t)) , (3.1.1)
where € is the small fluctuation. The first two moments of €y are

<e1(£,t)> =0 (3.1.2)
and

<e](£}t)e](rf§d,t)> = Be(rd) . (3.1.3)
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Throughout this paper, sharp brackets < > denote the ensemble, space, or
time average, which is equivalent for a statistically stationary, homo-
geneous and frozen-in medium (see Appendix A). The space-correlation
function Bg(rd) is the fundamental measure of the random medium. Higher
order moments of €y are rarely discussed except to note that they are
completely specified in terms of Bg(rd) whenever €1 forms a gaussian
random process. At this point in the problem development, the details
of Be(rd) are unimportant; its assumed form will be given later. It
should be emphasized, however, that any correlation function is only a
model of the medium's irregularity structure and must be evaluated in
terms of its ability to satisfactorily predict the results of experi-
ments. An equivalent characterization of the medium is given by the
spectral density of its irregularities @E(K), which is the Fourier
transform

8 (k) = = | B_(ry) ——2r, dry (3.1.4)

+o0 .
] f s1n(Krd)
VA

The spectrum ®€(K) represents the medium's ability to produce irregu-
larities of a certain blob-size 2 = 2n/k. Three frequently used per-
mittivity spectra are discussed in Section 3.2.

The medium's index of refraction n = (e/ea)l/2 can be expressed as
n(r,t) =1+ n;(r,t). For small eq> the fluctuation of the index of

refraction is approximately given by

n(rat) & % eq(rst) . (3.1.5)
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Additional details about the treatment of random variables are discussed
in Appendix A.

Consider a monochromatic (w = ck) plane electromagnetic wave in-
cident upon the elementary volume Vs' Referring to Figure 3-2, the in-
cident wave Eﬁnc = és. exp(ik§'-r) is assumed to travel in the direction
§' and is polarized along és' with unit amplitude. From the procedure
outlined in Appendix B, one obtains the scattered field g?c in the

direction § at a distance r from the scattering volume in the far-zone:

E%%(r,8) = £(6,8")e" K = & f(s,80)e"T*T (3.1.6)
r

-~

2 A
£5.8) = 5 [ 8 x I8 x BTy (e ™ ar L (3.1.7)

where f is the far-zone scattering amplitude and E(r') is the total
electric field at r'. Since € is small and occupies only the ele-
mentary volume VS, it is_appropriate and applicable to rep]aceygﬁrf) in
the integral of (3.1.7) with the incident field E'"S(r'). This substi-
tution is known as the Born approximation and yields the scattering

amplitude

2 L er e
£(8,8") = e_siny %E-J e](rf)e+’k(§ Sy, (3.1.8)

Vs

where x is the angle between the po]arizationvvector of the incident
wave és. and the direction of observation §, and és siny = -8 x(§ x és.)

(see Figure 3-2).
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s

Figure 3-2. Elementary volume of random medium illuminated

by a plane electromagnetic wave polarized along és" The
incident wave is directed along §' and the scattered wave is

observed along §.



18
The vector scattering amplitude f can be expressed as a
matrix f, whose components relate the incident and scattered electric
field parallel and perpendicular to the scattering plane, the plane
containing the unit vectors § and §'. The matrix formulation simplifies
treatment of scattering from a single volume, and is used throughout
this study. Its geometry is illustrated in Figure 3-3. Accordingly,

the far-zone scattered field becomes

r_SC T inc
Bl T i) [B | sike
- 1 (3.1.9)
ESC f £ E]nC —
1| 21 Fao] |EL
[~ h
2 . . cosg O
Fol=X [ o (r)etiks I gp , (3.1.10)
47 1V— -
y 0 1
- - S

where § is the angle between § and §' (see Figure 3-3), 55 = k(§'-8),
and [k.| = 2k sin(9/2). The angle 8 is obtained by noting that x=90°-¢
for the component of electric field parallel to the scattering plane
(E" ), and x = 90° for the component perpendicular to the scattering
plane (Ej). The cos(9) factor in (3.1.10) represents the familiar
scattering pattern of an electric dipole. For further discussion on the
scattering amplitude matrix, see Van de Hulst (13). The elements of the
scattering matrix depend only upon cosf = §-8', and from the Helmholtz
reciprocity theorem (13), it follows that f12 and f2] must vanish. This
simplification results from the scattering symmetry about the axis §'.
Although the selection of the reference axes in directions paral-
lel and perpendicular to the scattering plane substantially simplifies

treatment of scattering from a single particle, this selection is quite
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Figure 3-3. Scattering geometry for the far-field scattering

matrix, referenced to the scattering plane.
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impractical for multiple scattering. In this case, since the amplitudes
or energy densities of several scattered waves must be added, a system
of reference axes (for use in each scattering event) which are fixed
and mutually parallel rather than varying with the changing orientations
of the scattering plane is reqqired. For a plane parallel medium with
complete statistical homogeneity, it is customary to select the refer-
ence axes parallel and perpendicular to the plane through the normal to
the medium boundary and the direction §. With the normal to the plane
parallel boundaries, 2, taken as the polar axis, the direction § is de-
fined by the polar angle 6, or its cosine u (u = cosf = $+2) and by the
azimuth angle ¢ of the plane through the axis 2 and the direction §.

The relationship (3.1}10) then has to be modified by: (a) a
rotation of the reference axes around §' by the angle n to orient them
to the scattering plane, and (b) a rotation through the angle (mw-v) to
reorient them after scattering. Figure 3-4 illustrates these rotations.

If R(o) is defined as this clockwise rotation matrix,

Coso, sina
R(a) =[ ] (3.1.11)
-sina  cosa

where o represents the rotation of the reference axes, then (3.1.10) is

replaced with
A(s,8') = gjw-yli(cosg)R(-n) . (3.1.12)

From the derivations of Chandrasekhar (5), the rotation matrix R is ob-

tained and A may be written in the form
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Figure 3-4. Reference planes for incident and scattered fields
for use in multiple scattering analyses. The scattering plane
is through the points 0BC, The meridian planes OBA and OCA are

used for multiple scattering.



kZ +igs-rf (2,2) (r,2)
Als.s") = £ f e (r')e dr' (3.1.13)
Vg L(z,r) (r,r)
where
(2,2) = sinBsind' + cosbcosd'cos(p'-¢)
(r,2) = +cososin(¢'-¢)
(3.1.14)
(2,r) = -cosb'sin{(¢'-¢)

(r.r) = cos(¢'-9) .

The angle pair (6',¢') specifies the incident field direction §'; (6,¢)
determine the scattered field direction §. The matrix elements given

in (3.1.14) correspond to the electric dipole scatterer. To differen-
tiate between the scattering elements considered here and those strictly
for the electric dipole, the scattering amplitude given in (3.1.13) is

referred to as the "augmented dipole" pattern of the random medium.

3.2 Differential Scattering Cross-Section

The ensemble average of the scattered field <§§C> is zero due to
the vanishing first moment of € given in (3.1.2). However, the second
statistical moment of the scattered field is nonzero; this moment repre-
sents the scattered power. The differential scattering cross-section
per unit volume is defined as (see Appendix B)

o(8,8') = - |f(s,8")(% , (3.2.1)
S

=

where the units of o($,8') are inverse length per steradian. However,
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f is a random function because it depends upon €4 which is random;

therefore, (3.2.1) is replaced by its ensemble average

<F(8,8')F (5,8')> . (3.2.2)

</~

o(8,8') =
s

Substitution of (3.1.8) into (3.2.2) gives an integral expression for

o(8,8'):
4 +ik o (ry-r,)
6(8,8') = - —— sinzxf f <eplrpe(rp)e 0 Zldridr, (3.2.3)
s (4nm) VoV

S 'S

By defining a function V([) according to the equations,

H
—
-

V(r)
v(r)

inside VS

]
(aw]
-

outside VS .

(3.2.3) can be rewritten as

‘o &2 +ik e (ry-1,)
o(8,8) = g+ L sty Vi Vrpheey (e rpoe drydr, .

-0

(3.2.4)

Next, change variables from ry and r, to r. and rq by means of the

formulae

Le =2l * rp)

(3.2.5)

!
-

L~ h- o
The integral expression for the differential scattering cross-section

then becomes
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4 +ik_er
o(8,8') = v, (a2 sin x”v(rc+ 7 rgV(re- > rydB_(ryle drgdr.
(3.2.6)

Depending upon the value of Ty the integrand in (3.2.6) is nonzero only
inside the common volume specified by the overlap of the product

V(r + l—r YeV(r - l—r ). If this product is factored into the form
Lr o Xy i35 0y
D

V(rc) ([d), then (3.2.6) 1is reduced to
o(8,8") = 2nk*siny T (k) (3.2.7)
n‘—=s‘? i
where
- +ik op
— — 1 M
(k) = B.(k) = =L [ D(rg)s (rde > ar, . (3.2.9)

-CO

D(rd) may be interpreted as a volume overlap function. Its sig-
nificance is illustrated in Figure 3.5. 66(55) is an averaged spectral
density of the refractive index fluctuations, the average resulting from
the overlap function D(rd) due to the finite size scattering volume.
Note that even if the random field 81(5) is homogeneous and isotropic,
its average spectral density still depends upon the direction of 55.

If the scattering volume is infinite, then D(fd) =1 and 56 = @n. In
this work, it is assumed that the scattering volume is sufficiently
large so that D(gd) is essentially constant over the interesting range
of Be(rd) as illustrated in Figure 3-5. If & denotes this range of
Be(rd) and L denotes the characteristic size of VS, then this criterion

can be stated as

L > 8. (3.2.9)
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BG(rd)

\D(rd), Vg small

|
|
i
Z 20 d

Figure 3-5. Approximate behavior of a "large" scattering
volume overlap function compared to the correlation function

of the random medium.
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Strictly speaking, an infinite scattering volume is not allowed since
the validity of the Born approximation would be severely limited in such
cases. The equivalent scattering matrix for the differential scattering
cross section is

cosze 0

o(s,8") = 2nk% (k) ~
(3.2.10)

cosp = §-§' and kS = 2ksin(9/2) .

The significance of using @n(ks) instead of Eh(gs) in g(8,8") is
easily related to the scattering physics. First we note that the cosgg
factor is simply the electric dipole pattern of the scatterer. When
@n(ks) is used, it is evident from (3.2.10) that scattering into the
direction es is produced by blobs or irregularities of characteristic
size zs given by
2, = %f = Msin(s/2) . (3.2.11)
However, when 55(55) is used, scattering in direction O is contributed
to by a collection of blobs which have a narrow spectrum of sizes cen-
tered about g In an analogous fashion, the averaging process speci-
fied by Eh smears the angular selectivity indicated by (3.2.11). That
is, blobs of characteristic size ZS produce a scattered wave only in the
direction es according to (3.2.11) if VS were infinite, whereas a finite
scattering volume produces a scattered beam in a narrow angular spread
about the direction 6.

The total scattering cross-section O (scattering loss per unit
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length) is obtained by integrating o($,§') in (3.2.10) or (3.2.7) over
41 steradians:
o, = f 0(§,§‘)dws , (3.2,12)
41
where dws = sinpdodo is the differential solid angle, By taking §' = 2,
a change of variables in (3.2.12) from 6 to kS = 2ksin(6/2) yields

2k
o, = 4n2k% | o (k_)sinZyk_dk_do (3.2.13)
s J Pn'%s XEURAP - e
0
. .2 . 2 2
From the scattering geometry, we have sin“y = 1 - sin“6cos“¢. Thus,
o = 4n?k? chp (k)1 l(ES_)2 ¥ J—(Ei)%k dk (3.2.14)
s n‘"s T2k 8'k ss ° e
0

The factor in the bracket of (3.2.14) accounts for the electromagnetic
dipole pattern. For acoustic or scalar wave scattering, this factor is
unity.

For multiple scattering, the differential scattering matrix
(3.2.10) must be referenced to a fixed coordinate system just as dis-
cussed when the scattering amplitude matrix A given in (3.1.13) was de-
veloped. This can be done by applying the appropriate rotation maxtrix
to o($,8') or by simply taking the ensemble average of the product of A
with its complex conjugate. The latter procedure yields the following
expression for the differential scattering cross-section for use in

multiple scattering analyses:
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<A x éf> = 2ﬂk4®n(ks)

(2,2)(r,2)
(2,2)(r,r)
(2,r)(r,2)

(2,r)(r,r)

(2,2)(r,2

)
(r.2)(2,r)
(2,2)(r,r)

)

(2,r)(r,r

(r,2)°

(r8)(r,r)
(r2) (r,r)
(r,r)?

(3.2.15)

The matrix § should be used in connection with the coherency matrix

(2.2.5).

are formed from equations (3.1.14).

The matrix elements enclosed within the bracket of (3.2.15)

In the next paragraphs, three models for the correlation function

Bn(‘fq'le) are discussed along with their respective spectrum @n(K).

The three correlation functions and their spectra are

(1) Exponential:

(2) Gaussian:

Bn(rd)

n

o (x)

<n12>£

T D) 2T

2. ""d

= <n] >e

<n]2>23

8m V1

-(Kk2)

1
(-7;-2-)

2/£2

2/4

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)
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(3) Kolmogorov:

Bn(rd) not specified

2.
o, (k) = 0.033C 224 AL
n L
(0]

(3.2.20)

In (3.2.20), K = 5.92/% and an is the random medium structure constant.
The exponential correlation function has been widely used to study over-
the-horizon scatter propagation. Such random medium is described by two
quantities: the variance <n]2> and the correlation distance 2. This
exponential model is possibly suggested by the physical theory of pres-
sure fluctuations in the turbulent atmosphere. Use of this model how-
ever is largely based upon the ease of mathematical operation involving
the exponential function. The gaussian model has been widely used in
line-of-sight theories mainly because it can be integrated easily. The
gaussian model has the same basic shortcomings as the exponential model
in that it has no strong foundation in physical theories of turbulence
and does not adequately éxp]ain the results of scattering experiments.
Note that both the exponential and gaussian models have only one char-
acteristic scale siie % describing the random medium. Typical angular
distributions for the differential scattering cross-section using the
gaussian spectrum of index of refraction fluctuations are giyen‘in
Figure 3-6.

The Kolmogorov model is based upon the physical theory of turbu-
lence. According to.the theory, the turbulence eddies or random irregu-
larities of the medium are characterized by two scale sizes; The outer

scale length Lo and the inner scale length 2. The spectrum in (3.2.20)
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180°

o/An?

1.0

Figure 3-6. Differential scattering for polarization

parallel to scattering plane and gaussian spectrum,

_An2 = <n12>(k2)4/4 VT L.
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is sometimes called the Von Karman spectrum. The value of the structure
constant in the atmosphere is on the order of 10']3m'2/3 for strong
turbulence and 1O'l7m'2/3 for weak turbulence. In the atmpsphere, £ is
usually considered to be approximately 1 or 2 mm near the ground, in-
creasing to about 1 cm at the tropopause. The outer scale length LO is

generally taken to be about 100 meters.
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IV. SCATTERING BY A COLLECTION OF ELEMENTARY VOLUMES

Section III provided the necessary details for scattering from an
elementary volume of continuous random medium. In this section, inte-
gral equations which account for the multiple scattering interaction
among many elementary scattering volumes are derived. Rigorous multiple
scattering theory is reviewed in subsection 4.1 in order to place in
evidence the scattering physics. This is followed by derivations for
the average and fluctuating electric fields in subsections 4.2 and 4.3,
respectively. In subsection 4.4, the basic integral equation for the
total electric field E(r) is developed along with transport equations
for the electric field and coherency matrix. Subsection 4.5 (along with
Appendix C) summarizes a simple analytic connection between multiple
scattering theory and radiative transfer theory. It is assumed that all
elementary scattering volumes are statistically identical, in the far-
zone of each other, and uniformly distributed through the total volume.
In addition, the scattering volumes are uncorrelated and represented
mathematically as point scatterers with all the scattering character-

istics of the elementary volume.

4.1 Rigorous Multiple Scattering Theory

Rigorous multiple scattering theory is developed in this sub-
section to derive mathematical representations for the electric field.
Consider a random collection of N elementary scattering volumes located
at rysfy === Iy as illustrated in Figure 3-1. Each scattering volume
is characterized by the same statistical moments. As discussed in

Appendix A, a point scatterer with all the scattering characteristics
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of the augmented dipole represents the scattering volume. The electric
field at points rs in between the scatterers satisfies the free-space

wave equation

VXV xE(r,) - KE(r.) = 0, (4.1.1)

where k = %ﬂ-is the wavenumber of the medium surrounding the elementary

scattering volumes. The total field at is the sum of the incident

r
—a

. inc . . sc .
field E"7"(r,) and the contributions E*"(r_ .r.) from all N scattering
volumes:

E(r.) = E"(r) + %‘ ESC(r_,r.) (4.1.2)
='—a - ‘- g5 — ast e e

The scattered field E?C is the wave at L scattered from the elementary

volume at r.. This scattered wave can be expressed in terms of the in-

cident field g(gs) and the scattering characteristic of the scattering

volume,
sC -
E(rgsr) = U ¥(r) . o (4.1.3)
. a a
Note that, in general, Es gﬂgs) does not mean the product of Qs and
Eﬁ[s), but rather a symbolic notation to indicate the field at ry due
the scattering from the volume at r_. The effective field ¥(r.) is

incident upon the scattering volume at Y- It consists of the incident
field gf"c(gs) and the waves scattered from all scattering volumes ex-
cept the one at re- Thus, ¥ is given by

N

)= BT ¢ 1B rgry) - (4.1.4)

t#s

¥(r,
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Equations (4.1.2), (4.1.3), and (4.1.4) are combined to form the funda-
mental pair of equations for scattering and propagation in the random

medium. These are

E(r,) = E™(r,) + 1 U ¥(r,) (4.1.5)
S:
inc Nos
¥(rg) = E(rg) + tZ] ug ¥(ry) . (4.1.6)
t#s

In principle, ¥ can be eliminated from these two equations by substi-
tuting (4.1.6) into (4.1.5) and iterating (1). The iteration produces
two groups of scattered waves. One group represents chains of succes-
sive scattering involving different scattering volumes. The second
group represents successive scattering through the same scattering
volume more than once. Twersky (6) included all the terms in the first

group and neglected those in the second group. His theory yields the

following series expansion for g(ra):
N N N
t
E(r)=E2+ ¥ VPES+ ¥ YURUSE,
——a —i g=7 —S s=1 =13 =t =i
t#s
N N N
t-m
+ 3 0y Y Bwu e, (4.1.7)
s51 t=1 p=1 ° M
t#s m#t

m#s

where a short form notation has been used according to the equation
E? = Eﬁ"c(ra). It is known that (4.1.7) takes care of almost all the
multiple scattering and gives excellent results when backscattering is

small compared to scattering in other directions. Furthermore, when N
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is large the difference between the exact scattering process (4.1.5)
or (4.1.6) and the Twersky approximation (4.1,7) becomes very small.
Even so, (4.1.7) offers little practical usefulness except in its inter-
pretation of the physical scattering processes,
We note that when the incident wave at rg can be approximated by
a plane wave propagating the the directions §',

+1'k’s"-§_S
Y(r ) X é_.e (4.1.8)

and the distance between re and L is large, the scattering character-

istic g: can be approximated by the far—zoneAscattering amplitude:
+ik|r -r |
U R A(s,8) S : (4.1.9)
lr,-r.|

where § is the unit vector in the direction rare- This far-zone
approximation (discussed in Appendix B) will be used throughout this
study. |

It will now be shown that the Twersky multiple scattering theory
can be used for deriving the basic integral equation satisfied by the
coherent or average field. First, take the average of (4.1.7) with re-
spect to the N scattering volumes <EN according to the definition given
in Appendix A, equation (A.7). In the limit as N>, this averaging

process yields



a,s , tm 3
+ fff Qs uy u E. p drsdftdfm + ... . (4.1.10)

N N
a . S_ _ a.csop - a .S
ngisf:-i” ) Jis—wdﬁs fﬁsﬁi pdr
= s=1
and (4.1.11)
N N
a S t. _ (N-1)eN a,s .t 2
521 thgs Ul E> = 2 JJ U Up E; o"dr dr,
t#s

Finally, we observe that (4.1.10) is just an expanded form of the

Foldy-Twersky integral equation (1):
_ ~inc a

Elrg )y = EMr,) + [ U2 <Elr)y odr, . (4.1.12)

With the insertion of the far-zone expression (4.1.9) into (4.1.12), the

integral equation for <E>N becomes

<E>y = E'NC + f p A(§,8') <E>y S——dr_ . (4.1.13)

This integral equation for <E>N was first obtained by Foldy (8), how-

ever, its physical significance was placed in evidence by Twersky (6).

4.2 Coherent Field

Let us consider a plane wave normally incident upon the random
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medium as shown in Figure 4-1, As derived on the preceding pages, the
average field <E>N satisfies the Foldy-Twersky integral equation
(4.1.13). The average field in the medium travels in the same direc-
tion as the incident field, i.e,, § = 2. For a polarized monochromatic

(w=ck) infinite plane wave, the incident field is given by

. E _(0) .

inc -] x e+1kz ) (4.2.1)
E (0
,(0)

It is clear that for a statistically homogeneous plane parallel medium

as indicated in Figure 4-1, the average field varies only in the 2

direttion. Thus we write
<E(r)>y = <E(z)>y - (4.2.2)

For this geometry, the integral equation for the average field becomes

zZ 4o 4 +Hk|r-r'|
- E(O)eﬂkz + f dz! f dx' f dY'DA(§92)<£(Z')>N €

0 -

<E(z)>
" r-r'|

(4.2.3)

The integrations with respect to x' and y' may be evaluated exactly (7).
For the present purposes, we obtain the same result by using the method

of stationary phase=-

. . . +ikg
Jf G(x',y')e+1kg(x"y )dxldyl "N 221' [Ge ] , (4.2.4)

[ g% T*
gXngy g_YX

where the brackets indicate that the functions g, G, and the second
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Coherent wave scattering zone

Figure 4-1. Fresnel zone scattering of the coherent wave

in a statistically homogeneous plane parallel medium. See

Van de Hulst (13).
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derivatives of g (i.e., Iyx 9 ) are evaluated at the stationary

vy 9yx
points for which g, and 9, = 0. Applying the results of (4.2.4) to the

integral in (4.2.3) yields

Z
<E(z)>y = E(0)etTK? + f dz' ggl-e+1k(z'zl)o A(2,2) <E(z')>y
0
i} ori etik(z-2") A(-2,2)<E(z')>, (4.2.5)
v f o B S 2.

Z

The second term on the right-hand side of (4.2.5) is the forward co-

herently scattered wave at z, whereas the third term is the backward

coherently scattered wave at z. In many practical circumstances, as

will be the case here, the backscattering amplitude is much less than
the forward scattering amplitude, A(-2,2) <<< A(2,2); therefore, the

backscattering integral is neglected and (4.2.5) becomes

4
. . . o
<E(z)> = E(0)e™TF% + B p(2,2)e*Tk2 f e K2 E(z )5 dz' . (4.2.6)

K N
0
Finally, to obtain the coherent field we take the ensemble average with
respect to the permittivity characteristics (according to (A.9)) of
Appendix A) yielding
Z
_ _ +ikz , 2wi +ikz -ikz'
Ec(z) = <<E>N>8 = E(0)e + —E—-pgé(2,2)>€e f.e gc(z')dz‘ .
0
(4.2.7)
In obtaining (4.2.7) it has been assumed that the statistics of E at

the location z are independent of the random variable € at the same
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point z. The exact solution of (4.2.7) is

E(z) = E(0)e" €, (4.2.8)
8=k + &0 pep(2,2)> . (4.2.9)

Thus, the average field propagates in the medium with the effective pro-
pagation constant g, which in general is a matrix. This solution pro-
vides an equivalent matrix (tensdr) refractive index for the medium.
Such an equivalent refractive index describes a combination of several
effects, including double refraction, polarization plane rotation, and
linear and circular dichroism as suggested earlier by Van de Hulst (13).
More specifically, however, for the augmented dipole scattering ampli-
tude discussed in section III, B8 = ﬁi, where I is the identity matrix.
Accordingly, none of the aforementioned effects associated with the
matrix refractive index occur in the continuous random medium. In
addition, Van de Hulst has shown that this forward traveling average
field given by (4.2.8) is coherently scattered from a region known as
"first few central Fresnel zones" with respect to the observation

point z as illustrated in Figure 4-1.

We note that g is in general complex, even for a Tossless medium,
and so the average or coherent field is attenuated as it propagates in
the medium. This attenuation is due to scattering as discussed in
section II. The result given in (4.2.8) and (4.2.9) is also known
from the Ewald-Oseen (see Born and Wolf (14)) extinction theorem,

which established that the incident wave in the medium may be regarded
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as extinguished at any point and replaced by another wave with a differ-
ent velocity (and generally different direction) of propagation.
The coherency matrix for the average field in the continuous

random medium is

3.(2) = 3(0)e™%s% (4.2.10)

where according to the forward scattering theorem (13), we have used

o, = po = 5:1 o<ImA(2,2)> . (4.2.11)

As expected, gt shows that the average wave energy simply decays ex-
ponentially with propagation distance but its initial coherence, speci-
fied by J(0) at z = 0, is unaltered.

It can be shown that g{(z) may be interpreted as the unscattered
field arriving at z by the most direct paths. Let's consider the
geometry illustrated in Figure 4-2. The cylindrical elementary volume
indicated has a cross section area S and length A. The volume contains
pSA scatterers, where p is the number density of scatterers. Each point
scatterer scatters the energy oJ/S; therefore the total loss due to

scattering is AJ = pAod. The percentage of unscattered energy is

J-
=1 - pAo . (4.2.12)

fle

From (4.2.12), it is clear that as A0 the unscattered portion of J de-

creases exponentially as given in (4.2.10).

4.3 Incoherent Field

Next, let us consider the fluctuating field at a point r in the
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Figure 4-2, Geometrical interpretation of the coherent field

energy as unscattered wavefield.
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medium (see Figure 4-3). We know that this fluctuating field is com-
posed of scattered waves originating from the many elementary scat-
tering volumes making up the medium. The scattered fluctuating field
is diffuse as opposed to specular like the average field. That is, at
any point in the medium, the field can be decomposed into an angular

distribution according to the equation

E(r) = f E(r,8)dw , (4.3.1)
an
where § = sinfcos¢pR + sindsingy + cos6z

and dw = sintded¢. However, we choose to add one more dimension to the
angular distribution of E(r) by expanding it in plane waves. Thus,

(4.3.1) is generalized to become

+(x> o
E(r) = | E(x)e"™E L g (4,3.2)

g

where E(x) is simply the three-dimensional (3-D) Fourier transform of

E(r). The transform quantity E(k) is given analytically by

E(k) = —! fg(r_)e‘iﬁ‘ﬁ dr . (4.3.3)

Equations (4.3.2) and (4.3.3) form the complementary pair Fourier trans-
form. The corresponding relationship to (4.3.1) may be seen by re-

writing (4.3.2) as follows:



44

Elementary
Scattering Volumes

Ray |Path

Figure 4-3, The physical construction of the incoherent
field scattered from points r' and arriving at the point r

via many ray paths.



where it is now clear that E(r,$) is given by

o]

E(r,8) = [g(g)e““"ﬁ i

0

(4.3.4)

(4.3.5)

It may first appear that (4.3.2) is an unnecessary complication of

(4.3.1), but it will be shown that this plane wave expansion offers a

significant generalization.

Thus, the field at r is decomposed into

components with generally different wavenumbers k as well as direc-

tions §.

Utilizing the angular expansion (4.3.1), one gets that the

scattered field at r, due to an elementary scattering volume dV'

centered about r', illuminated by a narrow beam of radiation with

angular spread dw" in the direction §" is given by

+ig|r-r'|
——-———!— o A(S',8")E(r',8")dw"dv"

|r-r

(4.3.6)

Figure 4-3 illustrates the construction of this contribution to the

field at r. Then, according to (4.3.2), when the incident field along

s
§" has wavenumber ", E*¢(r,r') becomes

+1_B.'r__£l| CRTIN
d ESC(r,r') = &= — 5 A(8",8")E(x)e™E M dray

|r-r'|

The total scattered field at r due to all incident waves at r' is

(4.3.7)
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obtained by integrating k" over all angles and wavenumbers;

oA(8',8"E(") e 1 Llagenayt . (4.3.8)

+iglr-r'] r
O

|r-r'|

-

Noting that § is a unit vector in the direction r-r', the total field
at r is obtained by summing all the contributions along the variable

direction §', from each elementary volumes dV'. Thus we have

o A(8',8"E(x") e 1 Claenay . (4.3.9)

a1l
—h
Lo
-
f—
1}
Sy
<
M
-
15 '
|- i
- |-s
¢

In allowing the integration in (4.3.9) to extend over all points r', we
have assumed that the elementary scattering volumes are being replaced
by point scatterers which scatter according to the augmented dipole
pattern. This point scatterer is discussed in Apppendix A. Since the
augmented dipoTe is represented in (4.3.9) by its far-field scattering
amplitude A, the distance between scattering centers r' should also
satisfy the far-zone conditions. To account for this effect, the number
of augmented dipole point scatterers (p) per unit integration volume dV'’
is included in the expression for gf as an averaging factor for the
intervening space between the scatterers. Also, the propagation factor
exp(ig|r-r'|) is utilized instead of exp(ik|r-r'|) to account for
scattering between r' and r. In this fashion, (4.3.9) represents a

two-space model wherein scattering from the elementary volume dV' is
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computed as if it were isolated in free-space, whereas propagation of
the scattered waves away from dV' occur in a g-space medium. This
B-space medium accounts for subsequent bulk scattering. Although the
field at r' is expanded in general plane waves with both variable di-
rections €" and wavenumber k", the scattering amplitude A does not
depend upon k. Thus, there is no wavenumber () conversion created by

the scattering, only a redirection of energy.

4.4 Total Field and its Transport Equations

Combining the expression for the fluctuating field, (4.3.9), with
the expression for the coherent field, (4.2.8), gives an integral equa-
tion for the total field

4o
+igir-r'| N
£ f p A(g',g")g(g")e*‘ﬁ r T A

'l
-0

E(r) = E(0)e1EZ + j
v ler

(4.4.1)
The integral equation (4.4.1) has little practical usefulness, particu-
Jarly because both the unknown quantity E(r) and its Fourier transform
E(x) appear in the integral equation. All is not lost however, forms
of (4.4.1) are given in subsequent paragraphs, along with derivations
of integral transport equations satisfied by the coherency matrix,

which allowssolutions for E(r) to be more easily found.

Transport Equation for J
Transport equations have found widespread use in physics and

astronomy. These equations account for sources and sinks of field
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intensities along the propagation path. More generally, for electro-
magnetic fields the quantity satisfied by the transport equation is the
coherency matrix or Stokes matrix discussed in section II. It is shown
here that under éertain simplifying conditions, a transport equation can
be obtained from (4.4.1). Thus, the applicability of (4.4.1) and the
resulting transport equation will be clearly placed in evidence.

To obtain the transport equation, first take the ensemble average

of the product of E(r) with its complex conjugate:

<E(r) x E*(r)> = <E.(r) x E;*(r)> + <E¢(r) x EX(r)>  (4.4.2)

where
<_E_f X 5’,‘> = < f pf Dﬁ B, x g;-_E_] X E_ZeH(E] ".L] ,-52"12-1()151 "dgz"dvl 'dV2'
V V-
and
8 = e BITL e s )/ pry |
B, = e+1§J£T£fLé(gzl,gzu)/lﬁfrzul
Ey = Elg")
E, = E(c,") . (4.4.3)

No cross products between E. and E. appear in (4.2.2) since by definition
the ensemble average of the fluctuating field is zero. In fact, it was
shown in Appendix A that the amplitude of fluctuating field 1is Rayleigh

distributed and the phase is uniformly distributed. The first
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simplification to (4.4.2) is that the scattering volumes (or equivalent

point scatterers) are independent and uncorrelated. Thus, the inte-

grand in (4.4.3) is a delta function correlated at Iﬁ'= ry' and equa-

tion (4.4.3) becomes

* i * * +igy ") er!
9i(r) = <E¢ x Ep> = f 9” B x B <E(k3") x E (gp")>e d; Tk, "dV
V -

o e}

(4.4.4)

Mathematically, the independent and uncorrelated scattering volumes are

represented by

gy ry-ikpr

<E(k;) x Ekye > =

+1(Eq'EQ)'Ih

<E(kq) X E (gp)e >8(ry-rq) . (4.4.5)

Secondly, change variables from 54“ and 52" to K¢ and K4 according to

Ko = —;—(_K_]" + k") (4.4.6)
Kqg = 51 - K" (4.4.7)
With this change of variables, (4.4.4) becomes -
4o
d;(r) = f p” B(§',8,) x B (8',8.)-d(r"  )di_|r-r'|%dr'du',(4.4.8)
vV~
where the K4 integration is represented by
r 1 * ] g L
Q‘ff’fc) = f <E(5c+ §'5d) X E_(EC - é'Ed) e dEd s (4.4.9)

00
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and the scattering amplitude é(@‘;@c,§d) is assumed to depend only upon
the average direction §C = %(§]“+§2"). Also the elementary volume has
been replaced with dV' = Jr}r}lzdr‘ dw'. The integral equation for
girygc) is found by noting that J(r) and gc(r) in (4.4.2) can be written

in the forms

3r) = <E(0) X E°(0)> = [ [ Ao de Caeedo (4.4.10)
a0
ic(r) = <_E_c([) X _E_:(£)> = J fgc(_r_,_K_c)Kcszcdw' . (4.4.17)
aF 0

Thus, combining (4.4.10), (4.4.11), and (4.4.8) into (4.4.2) gives

r
3r) = 30 + [ of BxBTa(et ) et e L (4.0.12)
ry LR

The point Ty is located on the random medium boundary, originating the
path integration in (4.4.12). Finally, we note that the random medium

under consideration here is such that 8 = BI, hence, the kernel of the

integrand of (4.4.12) becomes
-oglr-r'|

pB(S,8") x B'(8,8') = &——p5(5,8") , (4.4.13)
A L‘!‘_'

and the integral form of the radiative transfer equation results:

r -og|r-r'|
f S(6,8")+d(r' k' )du'e dr"

4m

J(rk) = J(0)e S+ f
b
(4.4.14)
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where
*
S(8,8') = <pA(S,8') x A (5,8')> . (4.4.15)

The differential equation form of the transport equation for J(r,«) is

given by the following expression:

(

§Vd(rsk) = -0gd(rok) + | 5(8,8")+d(r,k)d’ (4.4.16)
41

Although (4.4.16) is a Boltzmann-type transport equation, the equation

for the classical quantity J(r,§) is obtained by integrating out the

wavenumber dependence (k) in (4.4.16) yielding

§-v(r,8) = -0_J(r,8) +J 5(8,8')+d(r,8" )du' . (4.4.17)

5= 4

From either (4.4.16) or (4.4.17), it is easily shown that the Stokes
matrix satisfies a Boltzmann-type transport equation also. Detailed
discussion of the transport equation is given by Chandrasekhar (5) and

Davison (3).

Transport Equation for E

As shown in the previous paragraphs, the integral equation for
the total field E leads directly to the transport equations for the co-
herency matrix or Stokes matrix. In the next few paragraphs, a trans-
port equation of the same mathematical form is derived for the electric
field at a point r and in the general direction §, i.e., E(r,8). This

* equation offers an advantage over the classical transport equations for
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electromagnetic fields in that its dimensionality is only one-half the
classical form for J. We begin this derivation by noting that E(r) is
the total field at r and the integral equation (4.4.7) relates this
total field and its plane wave spectrum. Thus, we wish to decompose
the total field on the left-hand side-of (4.4.1) into terms of its
specific value E(r,8) along the variable direction §. Now, according
to the derivation, the coherent field travels only in the forward di-
rection and is scattered from a region loosely known as the "first few
Fresnel zones" with respect to the observation point. Similarly, we
assume that the scattered fluctuating field at point r and in the di-
rection § is scattered from Fresnel zone regions with respect to r but
aligned along the direction §. This condition is illustrated in

Figure 4-4. The integrations with respect to x. and yg can be approxi-

S
mated using the method of stationary phase just as performed for the
coherent field yielding

E(r,s)

T . Ot
- (r,8) + 21 f o etiglr-r 'J A(S,8")-E(r',8" ) dw'dr!
< r 4 T -

k o
b (4.4.18)

In analogy with (4.4.14), we note that (4.4.18) is simply the integral

form of

§-VE(r,8) = ig-E(r.§) + 2%[ o A(§,6")E(r,8" )du' . (4.4:19)
41
In deriving (4.4.18), B that would appear in the denominator of the

_integral term has been replaced with the free-space wavenumber k. This
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Figure 4-4. Illustration of scattering zone for fluctuating

electric field arriving at r along ray path direction §.
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valid whenever the effective refractive index of the random medium is
near unity, which is certainly the case of interest here. We coin the
title "Coherent Transfer Equation" to describe (4.4.18) and (4.4.19).
The terms in these transport equations can be associated with a con-
servation of electric field in each elementary volume of the medium
just as done with J in the classical version. There are, however, two
distinct advantages of (4.4.19) compared to (4.4.17). First, media for
which B cannot be written as 8 = 81 can be studied directly using
(4.4.19). Secondly, the dimensionality of (4.4.19) is only one-half
the dimensionality of (4.4.17). That is, the scattering amplitude
matrix A is 2X2 whereas the differential cross section matrix § is 4X4.
The first term on the right-hand side of (4.4.19) has been studied by
Van de Hulst (13). The second term represents the fluctuating electric
field and is a new development.

It remains to be shown that (4.4.18) or (4.4,19) reduces to the
transport equations for J. To show this, we first point out that the
quantity (2mipA/k) is the electric field scattering amplitude per unit
length of random medium. To form the transport equation for J, we make
the same assumptions as used in deriving (4.4.14), namely that the scat-
tering volumes (or scattering per unit volume) are uncorrelated. In the
~ present case, however, it is the scattering per unit length which is
computed as the statistically independent quantity. Thus, we take the
product of E(r,§) with its complex conjugate and replace (2mipA/k) with
<pA x A>. The integral form of the transport equation for J(r,§) re-

sults directly.
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4.5 Connection between Multiple Scattering Theory and Transport Theory
A quantity often computed in mu]tfp]e scattering theory is the
correlation of the total electric wavefield at two different space

points. Mathematically, this quantity is given by
g;(fjsfg) = <Eﬁ£q) X Ef(£2)> . (4.5.1)

Note that when ry = rop, the correlation matrix [ reduces to the co-
herency matrix (4.4.2). In this subsection, it is shown that the corre-
lation matrix is simply related to the conserved transport quantity
J(r, k) described by (4.4.16). Most of the details of this derivation
are given in Appendix C for scalar waves. However, the relevant results
for the vector electromagnetic field follows in the next few paragraphs.
From Appendix C, equation (C.11), we generalize to get the fol-

lowing result for electromagnetic fields:

Llrrg) = | e Ya (4.5.2)

where

Since k has both varying magnitude and direction, i.e., k = k§, it is

clear that (4.5.2) can be rewritten into the form

o«

r +ik8er
(g}rd) = J f Jd(r,«8)e _dszde
4 /-

0

4
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In deriving (4.5.2), it was not necessary to assume a specific form for
the correlation of the waves traveling along different directions 1in
the medium. Thus J(r,x) is simply given by the Fourier transform rela-
tion (4.4.9). However, in deriving the transport equation for J(r.x),
it was assumed that scattering from different elementary volumes was
independent, viz. (4.4.4) and (4.4.5). This is important because in
the classical derivation of the transport equation, "independent waves"

are taken to mean uncorrelated in both direction and position as given

by

* *
<E(ry38;) x E (ry.85)> = <E(ry:8y) x E (ry,8;)>8(ry-ry)6(8,-8) .
(4.5.4)

Clearly in our derivation, we have only assumed the following:
* *
<E(ry,8y) ¥ E (rys85)> = <E(ry,8;) x E (ry,8,)>8(ry-ry) . (4.5.5)

As shown in Appendix C, assuming the correlation given in (4.5.4) is
equivalent to specifying that the wavefield E(r) is homogeneous. And,
for such a homogeneous wavefield the coherency matrix cannot depend
explicitly upon the space variable r, i.e., J(r,k) = J(k). Thus, this
inconsistency in classical transport theory is uncovered.

Concluding this section, we note that many researchers (1,9) have

used the following relations between Lﬁr;rd) and J(r,s):

+iB _Ser
I{r,ry) =f J(r.8)e " Ydw . (4.5.6)

41
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It is pointed out in Appendix C that (4.5.6) is only valid when J(r,k)
takes the form

§(x-8.)

Irog) = ———J(r.8) , (4.5.7)
K

and that this condition applies only when the incident field is an in-
finite plane wave. Thus for all other cases, the general formula
(4.5.2) must be used. Equation (4.5.7) simply describes an angularly
diffuse field with a single wavenumber Br‘

The significance of the relationship between the correlation
matrix I and the specific coherency matrix J is better understood with
a few examples. First, note that the quantity J(r,<) represents the
angular and wavenumber distribution of the second-order field incident
at the point r. If this field is an infinite plane wave, then J(r,k)
is a delta function and the correlation distance specified by I is in-
finite. The other extreme is when J(r,<) does not depend upon k, as
with completely diffuse multiply scattered fields. In this case, I
becomes a delta function and the field has a zero correlation distance,
Obviously, there are many intermediate cases of physical interest such
as spherical waves and finite cross-section plane waves. Al] these

cases can be effectively treated with the results given above,
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V. THE PLANE - PARALLEL PROBLEM
Wave propagation in a random medium bounded by parallel planes
represents many practical situations. For example, planetary atmos-
pheres, oceans, and subsurface layers can be often approximated as

plane-parallel media.

5.1 Normally Incident Plane Wave
As discussed in Sections Il and IV, components of the coherency

matrix consist of a coherent part and an incoherent part J.. More

Je
specifically, it was shown that the sum of these two parts J(r,k)

satisfies the following integral equation:

r -og|r-r'|
i<!‘.a£)=ic(r_s£)+f f S(8',8")-d(r,8")duw"e dr' . (5.1.1)
' s 47
Now, let us consider a plane wave normally incident on a plane parallel

slab of thickness L (see Figure 5-1). 'For an infinite or uniform plane

wave it can be easily shown that J. is given by

(r.x) = d(0)e °  “o(k-82) (5.1.2)

where Br is the real part of the medium's effective coherent refractive

index given in (4.2.1). The delta function in (5.1.2) is defined by

 8(x-8,.)

T 8(u-n')6(¢-9 " <dkdudg = 1, (5.1.3)
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Figure 5-1. Plane-parallel slab with normally incident

infinite plane wave.
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where u = cos8. We note that because of symmetry, the incgoherent field
depends only upon the two space variables z and ﬁ; there is no ¢ de-
pendence. To eliminate the ¢ dependence, we integrate (5.1.1) with

respect to ¢ over 2m and obtain

z +] o lz-z
I(z,u3k) = gc(z,u;n)mf f S(u,u')ed(z' ' s¢)du'e H dﬁ_'
'z, -1
i (5.1.4)
where
27 m
sa') = 3 [ e g [ dosss) (5.1.5)
0 0
and
1 ‘USZ
J.(z,u3¢) = -2 J(0)e * 8(k-B )6(u-1) . (5.1.6)
™K

The matrix S(u,u') is discussed in Appendix D. From the results given
in this appendix, equation (D-13), the integral equations for Jxx and
J__ may be decoupled from . the equations for Jx and J X’ Accord-

Yy \ y
ingly, the component equations for J given in (5.1.4) become

z f‘*‘] —OS " dz"
dex = st 21| ISyt Sydy,ue ' (5.1.7)
Zb "]
7 z-2' y
= s dz’
Jyy Jyy,c+ ZWJ f {541 XX S44Jyy]du e ¥ (5.1.8)
z, -1
b
rz +1 J_Zi'_[_ dz’
- . v % 1 z'
Jey = Syt 2] f [Sppyy* Spglyldu'e 2L (5.1.9)
“ ° z-7'
z o+l -0
- s u dz' (5.1.10)
Jyx ij,c+ 2nf f 523 + Szzdyx]du e TR
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These four integral equations (5,1-7)-(5.1.10) constitute the basic
mathematical formulations for studying normally incident plane wave
propagation in a plane-parallel medium.
Since J can be decomposed into coherent and incoherent parts,
substitution of J = J_ + Qﬁ into (5.1.4) yields an integral equation

=
for incoherent field J.:

z s e dz'
3 (Zsusk) = J s (zomsk) + Zﬂfz‘ f Slusu")edy(z'ou'sk)dutee > S
b -1

(5.1.11)

where
8(k=B) Z gt 172" .
gﬁ(z,u;K)=—T‘”—s(u,1)-g(o)J e ° ST L (51.2)
K z
b

5.2 First-Order Multiple Scattering Theory

In the first-order multiple scattering approximation, we assume
that the total field 111qminating each elementary volume is approximate-
ly equal to the known coherent field. Thus we obtain the first-order

solution
3i(zousk) B J L (zomsk) (5.2.1)

This first-order solution is applicable whenever the incoherent field

<< J

is considerably small compared to the coherent field, i.e., J Ies

=i

a condition which is satisfied for two important situatigns:
(1) Propagation for small distances into the random medium.
(2) For waves confined to a narrow angular region as with

microwave and optical propagation in the atmosphere.
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®
From Figure 5-1, it is clear that J; for 0 < 6 < 7/2 (1 » u > 0)

represents scattered contributions from the range 0 to z whereas dy for
%-< 8 <m (0 >wu>-1) represents contributions from the range z to L.
From these definitions of J. and J; » we get the following first-order

solutions from (5.2.1)

® 6(K"B',.) i(Ua]) @,

d; (zou3k) = — — +4(0)6"(z,u) O<u<1 , (5.2.2)
K s

@ 6(K"Br.) i(u,]) @

ii (z,u3k) = 5 S «J(0)G (z,u) -1 <u<o0. (5.2.3)

K S

Accordingly, the (@ sign represents forward waves and the @ sign

represents backward waves. The propagation factors dg)and G are

given by
-0,z -0 /u ,
(ZQ(Z;U) = & ('I_-_ S) (5e2'4)
o -0.Z —os(z-L)/u-cSL
6 (z,n) = S— 7y (5.2.5)

A simple physical description of the two terms comprising either (5,2.4)
or (5.2.5) can be given. Let's consider the forward waves and G?
First note that the integral term in (5.1.4), often called path radi-
ance, represents a summation of the scattered waves all aJong a ray path
in thé direction u from the boundary z, to a depth z, Referring to
Figure 5-1, we see that scattering from points near the boundary at

z = 0 (ray path @ ) propagates a distance z/p in reaching the point z

producing the term exp (-OSZ/Q). However, scattering from points near

the observation point as with ray path @ propagates a distance z
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producing the term exp(—osz). Thus the combined ray path at z is a

weighted average of these two extreme paths, this average being given by
éB in (5.2.4). Finally, we know that the measurable quantity gﬁ(z,u)
is obtained from (5.2.2) and (5.2.3) by integrating with respect to k:

S(u,1)
38z, =2

1
OS

.3(0)€2(z,1) (5.2.6)

o S(u,1)
38z = 22 30z (5.2.7)

1 O’s

@
The forward incoherent field J, is zero at z = 0, increases with

z, and reaches a maximum at

whn(u) (5.2.8)

1, the forward incoherent field is given by

Along the line-of-sight u

-0 2
S(1,1)-3(0)ze ° (5.2.9)

_ii@(z »u=1)

and reaches a maximum at 0gz = 1. The final example of first-order
multiple scattering is incoherent reflection from an infinite half-
space (L»«). From (5.2.7) we have |

S(u,1)

g
S

f(z=o,u) = - 2(0) ]—_‘_J . (5.2.10)

This field is equal to the incoherent field anywhere in the region
z < 0 and is known as the law of diffuse reflection (5).
To conclude this section on first-order multiple scattering, we

provide a specific example of i1-® and J='1-@. These results are given
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for the gaussian spectrum of refractive index fluctuations (derived in

Appendix D):

2,2 i N
Az . —Q&—-(l-u) w0 oo uz
S(u,1) = e
? 2 0 » -4 O
0 o u . (5.2.11)
_1 0 O 1_
where Aﬁ = <n$>(k£)4/4ﬁﬁ L.

Now, consider a linearly planrepolarized wave incident upon the random

medium, i.e., J

xx(O) # 0 and Jyy(O) = 0. In this case, we get

-0.Z
I zam) = 3, (0)6(uT)e =+ 3, (0)y ()X z,0)

3. 2z0) = 3,003 (u,1)6%2,)

yy
©
3 z.) = 9, (0151, (w16 (2,1)
© . ©
Jyy(z,u) = J,,(0)S47(1,1)6 (z,1) . (5.2.12)

Clearly, the x and y components of the scattered field are independent

since Jx (z) = Jyx( z) = 0. However, the scattered field is partially

polarized, the degree of partial polarization, PS¢, given by

2

2 (5.2.13)

= | j“‘;‘jxx | =
yy 1+u

Thus the scattered field is unpolarized along the Tine-of-sight

(u = £1) but completely plane polarized at right angles to the line-
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of-sight (u=0),

5.3 Diffusion of the Coherency Matrix and Stokes Parameters

In this section, we develop solutions which describe diffusion of
the coherency matrix J(z) and the Stokes parameters. This solution is
derived for a semi-infinite half-space by cascading elemental layers of
random medium for which the scattering per unit length and depolariza-
tion per unit length have been estimated using the first-order multiple
scattering theory. Construction of this model is illustrated in
Figure 5-2.

We begin by integrating the first-order multiple scattering
solution for J;:kz,u), (5.2.6), with respect to u to obtain the total

forward incoherent field at the output of a layer of thickness L. This

yields
1 ,
380 = = [ swn-ao@& e (5.3.1)
S ;
0
For a single isolated layer, the forward field at L, Q;QQL), is iden-

tically equal to the total incoherent fie]d:gi(L) since there is no back
scattering in the region z > L. When there are many layers present as
indicated in Figure 5-2, equation (5.3.1) is still a valid approxima-
tion for the total field when scattering in the backward hemisphere is
negligible compared to forward scattering. Furthermore, we note that
the propagation factor G (L,u) in (5.3.1) varies from o L exp(-gsL) to

exp(-GSL) as u varies from 1 to 0. In developing this approximation, we

consider a strongly forward peaked scatteringfunction:i(u,l) and let






67
@
the factor G be GSL exp(—oSL), since most contributions to the integral
(5.3.1) come from the neighborhood of u =1, With this approximation
we get

-o.L
4;(L) = ole *g-9(0) , (5.3.2)

1
r
where q- %"J S(uw.1)du . (5.3.3)

>0
The total field at z = L is simply the sum of coherent field Jc and the

incoherent field Ji‘ Thus, we have

-o_L -o_L

3(L) = J(0)e * +ole °g-3(0). (5.3.4)

For an elemental layer of thickness L= A, such that GSA << 1, the

total field becomes
J(a) = (1-oSA)g(O) + csgggg(o) . (5.3.5)

where only terms of ordef OSA have been retained. In the limit as the
geometric thickness of the layer approaches zero, the elements of

(5.3.5) reduce to the following set of coupled ordinary differential

equations:

97 Jx(?) = =0 (1-01)3, (2) + 00939, (2) (5.3.6)

az Yyy(2) = -05(1-a44)9, (2) + 059449, (2) (5.3.7)
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d - :
HE'ny(Z) = -os(]-qzz)dxy(z) + OquSJyx(z) (5.3.8)
& I(@) = 0 (1-,5)0,,(2) + 08,30, (2) . (5.3.9)

Since backscattering has been neglected, the boundary conditions at

z = 0 are simply given by the incident coherent field,

3(0) = 3'"0) . (5.3.10)

For the gaussian spectrum of index fluctuations (see Appendix D),

the solution (5.3.6)-(5.3.10) is easily obtained and given by

(@ - %.e -os(l-q]-q4)z[] . e-cs(q1+q4)zldxx(o)

+ %_9-05(1-q]-q4)z - e_cs(q1+q4)z]dyy(o) (5.3.11)
Jyy(Z) ) % e‘ds(l—q]—q4)z [+ e-cs(q]+q4)z]Jyy(o)

+ %.e_os(]_q]_q4)z [1 - e-gs(q]+q4)zjaxx(o) (5.3.12)
b2 = 17 T L T o)

-1 eucs(]_2q2)2[1 ; e—ZGquz]Jyx(O) (5.3.13)



-0 (1-2q,)z
Jyx(z) = %—e S 2 [1+e
~a_(1-29.,)z ~20.q,2
- %4e 3 ZTi-e °
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«ZQquz

“10,,(0)

(5.3.14)

where we have q; = gy = G345 Gy = Qg7 = GQgq» and 9y = Gpy = =Go3-

These dimensionless parameters are given by

Y

2.2
AR =B
zrf“e du
>0
2.2
LS B ()
ég—f we du
>0
2.2
Al - R
%, | © au

(5.3.15)

(5.3.16)

(5.3.17)

When the wave incident upon an elementary scattering volume is

polarized along the x axis, 0 a1 equals the co-polarized scattering

Toss in the forward hemisphere and 0.y is the cross-polarized loss in

the forward hemisphere.

When backscattering is negligible, as assumed

when developing the diffusion equations (5.3.11)-(5.3.14), we have the

sum qq + Qg approximately equal one, i.e., qp + gy = 1. This is an

affirmation of conservative scattering in the random medium.

From this

conservation condition, it is also evident that 2q2 <1 (1+ u2 > 2u).

Thus, the final form for the Jxx and Jyy elements of the coherency

matrix is
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] 9s? ] 9%,
p[1te " 10,00+501-e ° 1,00 (5.3.78)

Ca
~~
N
~—
]

1 042 1 ~0g?
J. (z) E—[] + e ]Jyy(o) + ?-[1 -e ]JXX(O) (5.3.19)

Yy

The expressions for ny(z) and Jyx(z), (5.3.13) and (5.3.14), are un-
changed. Equations (5.3.18) and (5.3.19) along with (5.3.13) and
(5.3.14) constitute the diffusion approximation for the coherency
matrix. These equations express the degree of coherence of the field
as it penetrates the random medium. We see that a completely coherent
and polarized wave at z = 0 becomes completely incoherent and unpolar-
ized as z-«~, viz., Jxx = Jyy and ny = Jyx = 0. Recently Papas (11)
proposed a similar set of equations for the diffusion of the coherency
matrix; his formulation was largely based upon a quantitative view of
the phenomenon, whereas the results given herein have proceeded directly
from scattering theory.

From (2.2.6), we define the components of the Stokes matrix in

terms of the elements of the coherency matrix according to the relations

S0 = Jxx + Jyy : (5.3.20)
S] = Jxx - Jyy (5.3.21)
52 = ny - Jyx (5.3.22)
53 = i(Jyx - ny) . (5.3.23)

Utilizing the results for J(z) from above we get



So(2) = 5,(0) (5.3.24)
-0 Z

$,(2) = $;(0)e S (5.3.25)
-O’SZ

5,(2) = S,(0)e (5.3.26)
-05(1-2q2)z

s3(2) = s5(0)e ) (5.3.27)

Recall that for conservative scattering, we always have (1-2q2) > 0.
Thus, 53(2) is also an exponentially decreasing function of z. The
polarization characteristics of the field are easily computed from the

Stokes parameters yielding

0.2 +40_q,Z2 %
P(z) = e S [L2(0) + E2(0)e S 2

] (5.3.28)

—4osqzz L

E(z) = E(0)/[E2(0) + L2(0)e ] (5.3.29)

+4csqzz L

L(z) = L(0)/[L%(0) + E2(0)e ] (5.3.30)

where in section II, P(z), E(z) and L(z) were defined as the degree of
polarization, degree of elliptic polarization, and the degree of linear

polarization, respectively.

5.4 Examples

Next, Tet's consider examples of the polarization properties
described by (5.3.28) through (5.3.30). If the incident wave is linear-
ly polarized, then L(0) # 0 and E(0) = 0, As the linearly polarized
wave penetrates the random medium, its coherent and polarized part de-

creases, with the factor exp(-OSZ), but remains.]inear]y polarized. The
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incoherent part of the total field increases as the wave penetrates the

random medium and is unpolarized. From (5.3.28)-(5.3.30) we get
~0,Z
P(z) = L(0)e (5.4.1)
E(z) =0 (5.4.2)
L(z) =1 . (5.4.3)

If the incident field is circularly polarized, the behavior of the field

is similar to that given above for the linearly polarized field yielding

'US(]“ZQZ) z

P(z) = e (5.4.4)
E(z) = 2] (5.4,5)
L(z) =0 (5.4.6)

The more interesting case occurs for a general elliptically polarized
wave incident upon the random medium, one for which L{(0) # 0 and

E(0) # 0. For the elliptically polarized wave, we get

-0 (1~2q2)z
P(z) ~ |E(0)]e S (5.4.7)
E(z) » =1 (5.4.8)
-2
L(z) » L(0) s (5.4.9)

[E(0) |

as z»», In this general case, the eccentricity of the polarization
ellipse approaches zero as the wave penetrates the medium. Deep into
the medium (osz >>> 1), the ellipse turns into a circle and eventually

this circularly polarized part disappears completely,
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VI. CONCLUSIONS

As stated in the introduction, our purpose has been to study the
influence of a continuous random medium on the propagation of electro-
magnetic waves, with particular emphasis on polarization effects. This,
the final section, will be devoted to a summary and evaluation of the
general results of our investigation.

The essential effect of the random medium is to destroy the time
coherence and spatial orthogonality of the vector components of an
electromagnetic field, components which might otherwise exist inde-
pendently. This destruction process is intepreted as producing an
average or coherent electric wavefield and a fluctuating (noisy) or
incoherent electric wavefield in the medium. The average wavefield, E.,
retains all the coherence properties of the incident wave, but decays
exponentially (due to scattering) with propagation distance in the
medium; its behavior is described by an effective bulk refractive index
for the random medium, given by the wavenumber B8 in equation (4.2.9).
In general, this effective refractive index is a matrix and describes
several coherent wave effects, including double refraction, polariza-
tion plane rotation, and linear and circular dichroism. The fluctu-
ating electric wavefield, Ef, has an average value of zero (Rayleigh
distributed amplitude and uniformly distributed phase) and is given by
the integral expression (4.3.9); however, its amplitude increases due
to scattering as the wave penetrates the medium. Together, the average
and fluctuating electric wavefields form an integral equation, (4.4.1),

satisfied by the total field E = gc + Ef.
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For the continuous random medium considered, the effective re-
fractive index is such that 8 = BI, where I is the identity matrix.
This special condition allows the derivation of Boltzmann-type transport
equations, (4.4.14) or (5.1.4), for the coherency matrix. These trans-
port equations follow directly from the integral equation (4,4.1) for
the total electric field. For a plane parallel medium, the transport
equation for the coherency matrix is solved in the first-order multiple
scattering approximation given by (5.2.1). Results for a linearly plane
polarized wave incident upon the medium, (5.2.12), show that the scat-
tered incoherent wavefield along the line-of-sight is unpolarized,
whereas the scattered incoherent wavefield perpendicular to the line-
of-sight is completely plane polarized.

By cascading many elemental Tayers of random medium, for which
the scattering per unit length and depolarization per unit length have
been obtained using the first-order multiple scattering approximation
(neglecting backscattering), the elements of the coherency matrix are
found to satisfy a simple set of equations, (5.3.13), (5.3.14),
(5.3.18), and (5.3.19), which are characterized by two phenomeno-
logical parameters O and q- The parameter o is the scattering loss
per unit length of the medium, but may be interpreted as a depolariza-
tion parameter also, since the scattered waves are depolarized. Given
by (3.2.14), 0 varies directly with (k2)4<n]2>/2, where k is the free-
space wavenumber, % the characteristic length of the random inhomo-
geneities in the medium, and <n]2> the mean-square fluctuation of the
medium’s refractfve index. The parameter'qz--given by (5.3.16)--also

varies directly with (k£)4<n]2>/2, but is interpreted to be a coherence
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factor, appearing in the product 059, in the equations for ny and Jyx'
The phenomenological parameters are analogous to diffusion constants,
which describe the diffusive transmission of the wavefield in the
medium.

In general, this solution shows that as the wave penetrates the
medium, the state of polarization of the polarized part becomes circu-
lar. Recalling that any generally elliptically polarized wave is the
superposition of a circularly polarized wave (of the same sense) and a
linearly polarized wave (along the major axis of the ellipse), one can
reason that the coherence of the linearly polarized component decays
more rapidly than the circularly polarized component, as indicated by
(5.3.28). Thus, the medium tends to rub the edges off the ellipse
causing its eccentricity to approach zero, eventually yielding a

circularly polarized wave,
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APPENDIX A
RANDOM FUNCTIONS AND STATISTICAL AVERAGES

In studying wave propagation in a random medium, one must treat
quantities that are random functions of both position and time. As
discussed in Sections III and IV, the total volume occupied by the con-
tinuous random medium is divided up into N independent elementary scat-
tering volumes. Therefore, one must not only statistically characterize
quantities which depend upon the random medium within each elementary
volume, but also quantities which depend upon all N scattering volumes.
These statistical characterizations denote finding ensemble averages of
the quantities which are functions of a random variable. Thus, it
will be helpful to examine the unique method required for determining
these averages.

Let us consider a random function F which depends on all the N
elementary scattering volumes comprising the medium. The ensemble
average of F is given in terms of a probability density function

W(]_, g: gs"'N) :

<F> = ”-.-fF-w(l_,g,,..g,...m d1d2...ds...dN . (A.7)

The distribution function W is normalized such that J---IWdl,,,dﬂ_= 1,
when integrated over the full domain of variables; Wdl...dN is the
probability of finding the scattering medium in a certain configuration
in the "volume" between (1,2,...,N) and (1,2,...N) + d1 d2...dN. Thus,
in (A.1) s designates all the random characteristics of the medium in-

cluding its location res therefore, we may write



ds = dr de s (A!Z)

where dgs designates the volume integral dxS dys dzs and de represents
the random characteristics of the random permittivity. We assume that
the number of elementary scattering volumes in a unit volume of space is
low and that the separation between scattering volumes is Targe enough
to satisfy the far-zone scattering conditions discussed in Appendix B.
In this case, the finite size of the scattering volume can be neglected
and the location and characteristics of each scattering volume are in-
dependent of the locations and characteristics of other scattering
volumes. Thus, the elementary scattering volumes are comsidered as
point scatterers with all the scattering characteristics of the random
medium, and located precisely at ry, Iy, rg,==--rg---ry. Under this

assumption, we have
W(1,2,...5,...N) = w(Dw(2)w(3)...w(s)...w(N) . (A.3)

By assuming that all elementary scattering volumes have the same sta-
tistical characterization w(s) = w([s,e), the de integration in (A.1)

can be performed yielding

<F> = [---f <F>€w(__t:.I )W(_le)...W(_Y:s)...W(ﬁN)dr_]---dﬁN ) (A-4)

where <F>€ represents the average of F over the random configurations
of the medium's permittivity.
Next, we note that w(fs)'drs is interpreted as the probability

of finding a random medium within the incremental volume drS:



78

number of random medium scattering volumes in dgs

wtﬁs)'dﬁs ~ Total number of scattering volumes in the space V
= o(r)dr /N (A.5)

where p(rs) is the "number density" defined by the number of random
medium scatterers per unit volume. When the number density is uniform
throughout all the space, we have p = N/V and w(rs) = 1/V. With the

substitution of (A.5) into (A.4), the ensemble average becomes

r ¢ elryle(r)..o(ry)
<F> = J...J <F>_ 2 drydry...dry . , (A.6)

However, it is apparent the average with respect to the permittivity
depends only upon the location of the elementary volumes; accordingly,

and all the integrals in (A.6) can be per-

m

we can write <F> = <F >
_ writ c (r)

formed except the one over r- This leads to the final result
| p(ry)
F> = f__N__<F(gs)>edgs . (A.7)

We note also that since the characteristics of the permittivity
are independent of the location of scattering volume, the probability
function in (A.3) can be written as

_ plrgp(e)

w(s) = wrg.e) = —— (A.8)

Utilizing (A.8), an equivalent expression for the ensemble average of F

is obtained as follows;
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> = [ ple)eFledge (A.9)

where <F>N represents the average with respect to the N scattering vol-
umes and p(e) is the probability density function describing the
medium's permittivity.

Next, let us consider the random permittivity of the medium in
some detail. The random variable e(r) discussed in Section III is a
random function of position, which in this case is limited to being
inside an elementary scattering volume. We call € a random field and
characterize it by ensemble averages of various functions of the random
variable, In general, the statistics of the random field will also vary
from point-to-point. Two statistical quantities particularly useful in
characterizing the random field are its ayerage value <e> and correla-
tion function <e(rﬂ)e(§2)>, The correlation function is symbolized by
Be(rq,ge). In many cases, thercorrelation function depends only upon
the difference of the arguments, i.e., 88(14,52) = Be(lh‘fz)? and the
average value of the random field is independent of position. Such
cases describe a homogeneous random field. Furthermore, if the correla-
tion function of a homogeneous field depends only on the magnitude of
the difference of the arguments,‘i.e,, B.(ry-ry) = B_(|ry-ryl), the
field is isotropic as well as homogeneous. It is often useful to com-
pute the spectral density of the homogeneous random field, defined as
the Fourier transform of the correlation function. The spectral

density is given by



el = _—]—)—3— Jr Be(ﬁ)eﬂ‘ﬁprdﬁ J (A.10)

where the integration is over all 3-D space. For the isotropic and
homogeneous random field, the spectral density depends only on the mag-
nitude of k. The complete transformation is specified by including the

integral expression

+m -
B (r) = f o ()e* 8 Ty (A.11)

Up to this point, we have not discussed the time variations of
the medium. In this paragraph, the relevant result for a slowly
time-varying frozen-in permittivity are given. By ﬁslowly time-
varying," we mean that the time variation of the random permittivity
is caused only by simple translational motion at uniform velocity V,
This assumption is known as Taylor's frozen-in hypothesis. Mathe-

matically, we can write Taylor's frozen-in hypothesis as
e(r,t) = e(r-vt,0) . (A.12)
The correlation function becomes

B (L’T) = <€(£‘|"!t] 30)'€(£2"Vt230)>

B_(r-Vt) , (A.13)

where T = ti;-t,. Comparing (A.13) with (A.11), we see that the spectral

density for the frozen-in time-varying medium is
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8 (k1) = o_()e" YT (A.14)

In addition, it is eyident that time averages and ensemble averages in
the frozen-in medium are equivalent.

Finally, let us consider the probability distributions of the
amplitude A and phase ¢ of a .random field composed of many components,
such as the fluctuating electric field at a point in the random medium
comprised or waves scattered from many different elementary volumes.

This fluctuating field can be written as

E=pel® = x+ iy (A.15)
or
g “n g ( )
E= 3y Ae N-= +Y) . (A.16
n=1 " n=1 " n

From the "central 1limit theorem," we note that the probability
distribution of a sum of N independent random variables approaches the
normal distribution as N+¥, regardiess of the probability distribution

of each random variable. Assuming that each Xn and Yn scattered from

an elementary volume is an independent random variable, then we conclude
that X and Y are normally distributed. We also assume that the phase of
each of the elementary components is uniformly distributed over 2w, and
the resulting sum (A.16) has no preferred phase. These conditions would
only apply to the fluctuating field discussed in Section 4.3. It follows
that the amplitude A and phase ¢ of the fluctuating field are independent.
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The probability density function for A and ¢ can thus be written as

p(A,¢) = p(A)p(9) (A.17)
where

lt>(<i>)=;—ﬂr » 0<¢<2m. (A.18)

Using (A.17) and (A.18), we can easily show that<’<X>N = <Acos¢>N =0
and <Y>N = <As1'nq>>N = 0; therefore, the average value of the composite
field is zero, i.e., <E>N = 0.

The probability density function p(A) can be easily computed
also., Since X and Y are normally distributed and independent (also

uncorrelated), their joint probability density function p(x,y) is

given by
p(x,y) = p(x)p(y) = (%)e"‘xz"yz)/z"2 (A.19)
o
Noting that
p(x,y)dxdy = p(A)p(6)dAds (A.20)
and for the 2-dimension functions
dxdy = AdAd¢ , (A.21)
we get
p(A) = fzwp(A,qu» =4 A2 (A.22)
o

0
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The amplitude distribution given in (A.22) is known as the Rayleigh
distribution. Furthermore, we note that <X2>N==<Y2>N:=02 .

To summarize the results given in this appendix, we point out
that (A.7) or (A.9) gives the mathematiéa] expression for the en-
semble average of a quantity F which depends upon all N elementary
scattering volumes. Also, (A.18) and (A.22) show that the phase of

the fluctuating electric field in a random medium is uniformly dis-

tributed between zero and 2w, and the amplitude is Rayleigh distributed.
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APPENDIX B
INTEGRAL REPRESENTATIONS FOR THE SCATTERED FIELD

If a plane wave is incident upon a volume of space Vs with con-
stitutive parameters different from the surrounding medium, a scattered
field will be generated. The incident and scattered fields both obey
Maxwell's equations. Let €(r) represent the spatially dependent per-

mittivity descriptive of all space:

e(r) eo-er(g) inside VS (B.1)

e(r) = €, outise VS (B.2)

First, consider the Maxwell equations:

(B.3)

VXE = iwu

T=

VXH

iwe(r)E (B.4)

where the field time dependence e'mt has been suppressed. Here it is
assumed that the permeabf]ity Ho is constant inside and outside the
scattering volume. From Maxwell's equations, it is easy to obtain the

vector Helmholtz equation for E in the form

VXVHE(r) - wugegE(r) = wugeo (e (r) ~DE(R) . (8.5)

The right-hand side of (B.5) is nonzero only inside the scattering
volume Vs‘ If we define this right-hand side in terms of an equivalent
current density inside the scattering volume J(r), then equation (B.5)

takes the form

L lr o s
VXVXE = k°E = dun Jd (B.6)
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where

J(r) = -iwe (e,(r) -1)E(r) (8.7)

zuoeo = 2n/Xx. The homogeneous solution of (B.6) is just the

primary or incident field g}"c(r) which exists in the absence of the

and k2 = w

scatterer whereas the particular solution is the scattered field g?c(r)
~generated by the scatterer. Of course, the total field E(r) = gﬁnc(r)
+ E°%(r) also satisfies (B.6). Since E is linearly related to d, it

can be shown (12) that:

E(r) = EMC(r) + Tou, f I(r,r')d(r')dv" , (B.8)
VS
1.e.,
.
E¥(r) = oy | I(rr')d(rdv' (B.9)
VS
where
o otikir-r'|
I(r,r') = (U + 5 W) =——— (B.10)
[r-r'|

U is the unit dyadic, and VV is the double-gradient dyadic which in a

cartesian coordinate system 1is expressed by

3 3

U= mz] n‘Z] & dnm (B.11)

;Y R (8,12)

W= ) ea 2o B,12
mél ngl mn BXm axn



86
where xi(i=1,2,3) are the cartesian coordinates, éi(i=],2,3) are the
unit base vectors, and the symbol 5mn is the Kronecker delta, which is
T form=nand O form # n, From (B.9) and (B.7), the scattered field
becomes

E>“(r) = kzj {e (r')-1} I{r.r")E(r! )dv! (B.13)

Vs

In the far-zone, defined by r >> r' and kr >> 1, one can show

(12) that
. +ikr
1y - -ik8er' e
I(r.r') = (U - 88)e "™ = =0 (.14)
and (B.13) becomes
+ikr
EC(r.8) = f(8.8") 55—, (B.15)

where § and §' are the directions of the'scattered and incident waves,

respectively, and f is the far-zone scattering amplitude defined by

f(§,8') = 53—[ §-¢ x [ x E(r")}{e (r')—]}e-ikg'rfdv’
TS0 =g | Elrie e

s
(B.16)

Note that [§$ - U]:E has been rewritten as § x (§ x E), which clearly
shows that this is the component of E perpendicular to §.

The scattered power flux density ESC = F5C¢ is used to define
the differential scattering cross section of the volume. The power

flux density vectors for time harmonic waves are



87

]E5c|2
FSC = 1 [ESC X HSC] = (B.17)
2 = - 2n,
. ' . lEincl
Fine - %'[Eﬁnc x H'C] = ":%ﬁ-__ (B.18)
)

L . e .
where N, = (uoeo)2 is the characteristic impedance of the medium. The

differential scattering cross section is defined as follows:
o(s.6') = 1M [p2FSC/Eincy = 15(s,61) 2 . (8.19)
-0

o(§,8') has the dimension of area per solid angle.
The total observed scattered power at all angles is called the

scattering cross section Og and is given by
o, = f o(8,8")dw = f 17(8,6") | %du (B.20)
4n 4n

where dw = sinoded¢ is the differential solid angle. g has the

dimension of area.
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APPENDIX C
A RELATIONSHIP BETWEEN MULTIPLE SCATTERING THEORY AND TRANSPORT THEORY

In general, there are two approaches to the study of wave propa-
gation in random media: analytical or scattering theory and transport
theory. In analytic theory, fundamental equations for statistical
quantities describing the wavefield are derived starting with Maxwell's
equations and the resulting wave equation. Perhaps the simplest of the
analytic theories is the Born approximation, wherein the interaction
among scattered waves is neglected. Another well developed analytic
technique which is known to be superior to the Born approximation is
the method of smooth perturbations or Rytov's theory. In classical
transport theory, as was discussed in section IV of the main text, the
propagation of field intensities (coherency matrix‘or Stokes matrix for
an electromagnetic wave) in the random medium is investigated using a
transport equation based upon conservation of energy. Transport
theory has its beginnings in nuclear physics where studies of neutron
transport were done in the early 1900's, In many important circum-
stances, both analytic theory and transport theory can be applied to
the same problem; therefore, it is important to establish and under-
stand the relationship between the two theories. Such a relationship
is developed in this appendix.

Let E(r) be random scalar field, with a monochromatic time-
dependence exp(-iwt). Results for the electromagnetic field may be
easily obtained by generalization. The quantity most often sought in

the analytic theory is the second-order correlation function of the
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wavefield, which is given by

T(ryarp) = <E(pE (rp)> (c.1)

In (C.1) the asterisk denotes the complex conjugate and the sharp
brackets denote an ensemble average. In transport theory the quantity
sought is the specific intensity J(r,8) of the wavefield (radiance) in
a given direction § at the point in space r. The quantity J(r,$) is

given by
J(r,8) = <E(r,8)E"(r,$)> (.2)

The derivations in this Appendix provide a relationship between
P(Eq’fz) and J(r,8). Note that in measurements, the quantity T(Iq,xé)
would be determined by two omni-directional voltage receivers located
at the points ry and r,, whereas J(r,8) would be determined by a very
narrow-beam intensity receiver pointed in the direction § and located
at r. The energy density I(r) of the wavefield at a point r can be

obtained from either (C.1) or (C.2):
I(r) = T(r,r) = <E(r)E (r)> (C.3)

and

I(r) f Ir.&)dw . (C.4)

4t
In (C.4) dw = sin6dedo is the unit solid angle.
Now, at any point in space, E(r) can be decomposed into an

equivalent set of plane wave according to the equation (see(4.3.2)
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of the main text)

E(c)e d (C.5)

E(r) =

+o0 .
J Hger
[vo]

In (C.5) E(k) is simply the three-dimensional Fourier tra-sform of E(r).
For completeness, we include the following inverse transform relation-

ship:

-*m -
E(x) = —'— fe(g)e"ﬁ'ﬁd_g . (C.6)
(2m)° _2

The integrations in (C.5) and (C.6) involve the whole three dimensional
space represented by the domain of the field quantities. In this repre-

sentation, the correlation function I' becomes

+o0 .
x +i(Kkyory-Koery)
I(rysrp) = ” <E(ky)E (xp)>e 1 2 dicydk, - (C.7)
Next, let us change variables from (34,32) to (r,gd) anq (54,52) to

(Eﬁfd) by means of the formulas

regrntr) .orger-n
_'<_=;—(_K_1+52) s Kq =K - K (C.8)

In terms of these new variables, the correlation function given by

(C.7) becomes P(g}rd) given by

: +i(k ertcer,)
(e - %gd) e 1 _dd_K_dEd (€.9)

Defining a new function J(r,x) according to the equation



(C.10)

d (C.11)

From (C.11) it can be identified that the energy density given by (C.3)

is obtained by setting r, = 0. Thus, we have

I(r) = T(r,ry=0) = f J(r.«)d« (C.12)

Furthermore, when it is noted that x has both magnitude and direction,
i.e., k = k§ the vector wavenumber integration (dk) in (C.12) can be
broken up into an angular integration (dw) and wavenumber integration

(d<) yielding

(o]

I(r) = J | f J(L,Ké‘)szde . | (C.13)

47 0

Comparing (C.13) and (C.14), we see that the specific intensity of the
field J(r,8) is simply related to the plane wave expansion field accord-

ing to the equation

I(r,8) = f 3(r,k8)2dx (C.14)
0
It should be noted that J(r,$) is a directly measurable quantity

whereas J(r,k) is not.
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So far we have not entirely reached our goal of providing a re-
lationship between J(r,§) and F(ﬁ,ﬁd), However, we have shown that
J(r,k) is a much more fundamental and general quantity than J(r,s).
In fact, in Section IV of the main text, it was shown that J(r,«)
satisfies a transport equation just like J(r,$). Thus, it appears
that in mathematical solutions of transport phenomena, the quantity
sought should be J(r,k) rather than J(r,8). A few examples will help
clarify the meanings of (C.11) and (C.14). These examples will also
underline the applicability of classical transport theory as previ-

ously discussed in Section IV.

EXAMPLE A. HOMOGENEOUS WAVEFIELD

If the plane waves with different wavenumbers are independent,

then we have
1 * 1 _ *
<E( + 5 kg)E (k- 5 k)< = <E(K)E (k)>8(ky) (C.15)

where d(Ed) is the Dirac delta function which is zero except at Kq = 0.

From (C.10) we have
I(r) = d(x) = <E(<)E"(x)> (C.16)

which is independent of the position vector r. This result yields the

following expression for the correlation function

[}

T(ry) = f J(xle

o

+iKer
= g (C.17)
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Thus, the second-order corre]atign function depends only upon the dif-
ference between the position vector r and ro. If we take <E(r)> = 0,
then the above equation (C,17) is precisely a statement of statistical
homogeneity of the wavefield E(r). The significance of this example
is that (C.16) is the often-used condition specified in transport
theory for adding "independent" waves. From this example, it is clear
that such a condition restricts the specific intensity to a form inde-
pendent of position. Collet, Foley, and Wolf (15) reached a similar
conclusion about transport theory, but came short of proyiding an-al-
ternative formulation as done here with J(r,<). From (C.17) the energy
density of the wavefield can be found:

-

() = 100) = [ 9()oe . (c.18)

o]

EXAMPLE B. UNCORRELATED WAVEFIELD
A useful and alternative expression of the correlation of the
plane waves (which may have some physical significance) is that the

correlation depends only on the wavenumber difference, i.e.,

1
(2m)3

* 1

Ed)E (k - 7 Ky (C.19)

> = =L ko

Kq)

PO -t

<E(k +

Thus, the specific intensity J(r,§) or J(r,<) is independent of the
observation direction;

+ik ,er
I(rk) = I(r) = —! 3 f Flxqle ~d ‘ddgd (C.20)
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The correlation function I' is then simply related to J(r) according to

the equation
r(r.ry) = (2m)%3(r )8 (ry) (c.21)

and the energy density becomes

+iK o
1) = [ Flee 9 e (c.22)

From (C.21) we have the fact that the wavefield is completely uncorre-
lated for rq = (rd - 32) # 0.

In some problems, the plane wave components of the wavefield may
vary only with the observation angle §, i.e., J(r.,x) = J(r,8), where g
is fixed constant for all §. For instance, if a plane wave is incident

upon the random medium along the direction §', we have

EINC(r) = E(0)etTBS' L (C.23)
E'"C(x) = E(0)6(k-B8")
= £(0) SkB) 5(s-51) (.24)
K

Since there is no wavenumber (k) conversion in the medium (see Sec-

tion IV), we know that the field everywhere includes the factor &(k-R).

J(r,k) = -‘5-(—'%@1 J(r,s) (C.25)
K

Substitution of (C,25) into (C.11) yields



rirrg) = | orsle o (c.26)

Equation (C.26) represents the result initially sought, However, this
relationship was found to be applicable only when the incident wave
upon the medium is a plane wave. The relationship in (C.26) has been
postulated previously by Tartarski (9), Ishimaru (1) and others. How-
ever, in these previous papers, the limitation imposed by (C.25) was
not given. Finally, we conclude this section by noting that for a
plane parallel medium with a normally incident plane wave (§' = éz)

the expression for I' in (C.26) reduces to
7

2m J J(rﬁe)do(srdsine)sinede (c.27)
0

r(r.ry)

il

where L Edéx’ cosf §-ez, and Jo(x) is the zeroth order Bessel

function.
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THE SCATTERING MATRICES A AND S

In Section III of the text, scattering by an elementary volume
of random medium was discussed. The scattering amplitude matrix
A(s,8) was given along with the differential scattering cross-~section
matrix S(§,8'). In this appendix, more general details about these
scattering matrices, along with some simplifications for the plane
parallel medium, are derived. For convenience, let us first specify
the meaning of the scattering matrices: the scattering qmp]itude
matrix A relates the scattered field in the far-zone to the incident

field; this relationship can be written as
ESC(s) = A(5,8") ETMC(s) . (0.1)

The factor exp(ikryr has been suppressed in (D.1). In this appendix,
we are primarily concerned with scattering from a single particle. In

the plane parallel problem, EFC and gf“c are column matrices with the

elements (E SC,EySC) and (Exi"C,Ey‘“C), respectively, and A is the 2x2

X
matrix given by

A A
A(s,8') = | X Y. (D.2)
AYX Ayy
From the Helmholtz reciprocity theorem it follows that
E'MC(-8) = A'(-8",-8) E'"C(-s") (D.3)

and



97

A v
A'(8',8) =| XX YX (D.4)

Ay Py

Now, according to the definitions (2.2.5) and (3.2.15) of the main text
text, the coherency matrix of the scattered wave gfc is related to the
coherency matrix of the incident wave gf"c through the differential

scattering cross-section matrix S; therefore, we have

256(8) = 5(8,8")-a""C(s")
where

S(5,8') = A(S,8') x A (8,8") . (D.5)

For the random medium described in Section III, the matrix S takes the

form

(2,2)% (2,00(r8)  (.8)(rs2)  (r.2)?

4 (2,2)(2,r)  (£,2)(rsr)  (ro2)(2,r)  (r,2)(r,r)
S(8,8') = 2mx @n(KS)~
(£,2)(2,r)  (2,r)(r,2)  (2,2)(r,r) (r,2)(r,r)
('Q'sr)z (Q/,T)(P,T) (Q,Y‘)(\",Y‘) (r’r)z _J 3

(D.6)

where the elements of the matrix contained within the brackets in (D.6)

may be computed from (3.1.14) of the main text. These elements are
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(2,207 = % [201-2) (- 2y 2] +
+ 2u (1-12) (11 2)%cos (04 0) + %uzu‘2c052(¢‘~¢)
(r,2)? = %—u2[1 - c0s2(¢'-¢)]
(2,0)% = 2 u 201 - cos2(4'-)]
(ror)? = 2 [1 + cos2(¢'-¢)]

(2,2)(r,2) = u(1-u2)%(1-1 2)5sin(p'-0) + L uPu'sin(o'~0)

(1,02(00r) = =0 (2750 Dsin(or-0) - L Bsino’ -0
(2,r)(r,r) = - %— 'sin2(¢'-¢)

(r,2)(r,r) = %—u sin2(¢'-¢)

(2,23 (ror) = (1-u2)%(1- &) %c0s(pt-0) + +un' (1 + cos2(¢'-4))
(ro2)(2,r) = - %-uu?(1 - cos2(¢'-0)) (D.7)

The coherency matrix in (D.5) is a four-element column matrix. An
alternative representation is the 2x2 square matrix given in (2.2.3).
Such a representation is obtained by taking the product of g?c with its

hermitian conjugate yielding
Jsc(g) ='§;gf"°*§f (D.8)

The representation given in (D.8) is inconvenient, however, since the

matrix describing the scatterer does not appear in a linear fashion.
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This prevents many simple operations from being performed on gfc.

We are interested in the plane-parallel medium, wherein field
quantities depend only upon the depth into the medium (z) and polar
angle 9(= cos"]ﬁvz). As shown in Section V, more specifically equation
(5.1.5), the appropriate scattering matrix for the plane-parallel
medium is obtained by integrating out the ¢ and ¢' dependence in
S(8,8') = S(8,936'34'). Thus, the applicable version of (D.5) is

given by

21; 21
do' f do S(0,436',0") . (D.9)

0 0 |

1

N —
A

S(u,n') =

~N

i

If [Sik](i’k = 1,4) are the elements of this scattering matrix S, then

we have, for example, the first row (i = 1, k = 1,4)

2n 2w
Sy () = & 6 (k.)(2,2)%de'd D.10
11 Held = o n kS)( ,,Q,) ¢ do ( . a)
0 0
4 2n 2w
k '
S1p00) = S5 = b= [ [ () (0aa)(r a0 a0 (D.100)
0 O
2nr 27w
r i
sl < [ ek rnantas (D.10c)
0 O

Where @n(ks) is the spectral density of refractive index fluctuations.
Fortunately, several important results can be drawn from expressions
like (D.10) without explicit evaluation of the integrals. First, let
us restrict ourselves to considering only the three refractive index
spectral densities given in Section III; exponential, gaussian, and the

physically-based Kolmogorov spectrums. This restriction is very weak.
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For these three spectrums we note that @n(ks) is really a function of
the square of ks’ That is, @n(ks) = F(ksz). From the definition of

55 given in (3.1.10) we have

gs = k(§'-8) = k[ (sin6'cos¢' - sinbcosd)R
+ (sind'sing' - sindsing)y
+ (cos8' - cose)2] . (D.11)

Using (D.11), it is easy to show that

ks2 = 2k2[] - cosb'cosh - sin6'sinocos(¢'-¢)] . (D.12)

Hence, @n(ks) is always an even function of ¢ or ¢'. With @n(ks) even,
integrals of the elements of §j§,§') are zero whenever the terms in the
brackets of (D.7) are odd. Similarly, the integrals of S(§,8') are
nonzero whenever the bracketed terms are even. From this simple sym-

metry, the matrix elements of S(u,u') can be reduced to

511 0 0 514
0 S S 0
S(u,u') = 22 723 (D.13)
0 323 522 0
S 0 0 S
R 44

For the gaussian correlation function, the nonzero elements of

(D.13) can be readily computed. From (3.2.19) and (D.12) we have

2.3 22
() <ny >L7 - —§——-[l-cose‘cose—sine'sinecos(¢'-¢)]
o =0
n—s 8y
(D.14)
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Substitution of (D.14) into the appropriate integrals of (D.9) yields

2 1 2

S”(Usﬂ!) = Q(6,8') y[sin
+ Zsinesine'cosecose'I](W)

+ %~coszecosze‘12(w)

2
Sya0mut) = Q(8,0") S5-2 [T (W)-1,(u)]

21
Sgp(usn') = Q(8,0') S22 [1 (W)-1,(W)]
Sgalian’) = Q(6,6") 7 [ (W)+1,(W)]
Soo(Hsu') = Q(e,6") ;— {cosecose' [1,(W)+I,(W)]

+2$in6'sineI](w)}

a—d

So3(usn') = -Q(6,8") 5 cosbeose’ [T (W)-I,(W)]
where
2.2
W=k % sin6sing’
2.2
<n]2>k4£3 - K—%— (1-cosécosd’)
Q(6,8') = ——— e
4/

esinza' + % cos ecosze’]lo(w)

(D.15)

(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

where IO(N), I](W) and IZ(W) are the modified Bessel functions of the

zero » first, and second orders.



LOW FREQUENCY LIMIT:

102

k% << 1_(w>0)

511(u,u')

Sq4(1out) =

S4](U:H') =

544(u,u') =

Szz(U’U!)

523(11 ou' )

<n12>k423

47
2,43

2

[sin®6sin

<n]

8/m
2,14,3

COSZG

<n.|

8/
2>k423

cosze'

<n.l
8/m
2,143

<n
L cosfcosH’

8/

<n]2>k423

2

o' +.

- —————— co0sHcosH’

8/

%‘ CBS’2

eéosze’]

(D.22)

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

Equations (D.22) through (D.27) are the familiar matrix elements for

Rayleigh scattering.

These have been thoroughly studied for discrete

random media by Chandrasekhar (5).
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