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ABSTRACT

Large-scale systems of thousands and millions of atoms are of great
interest in many areas of chemistry, biochemistry, and materials science.
Atomic-level simulations of such systems can provide increased accuracy and
especially enhanced insight and understanding when compared with either
smaller-scale model calculations or grossly-averaged macroscopic models.

Megamolecular simulations require large amounts of memory and
computation, far more than can be provided by the typical scientific
workstation. These resources can be most cost-effectively provided at this
time by scalable massively parallel computers.

This thesis presents a large-scale, parallel, distributed-memory,
general-purpose molecular dynamics code. The most time-consuming portion
of the calculation, the computation of the nonbonded forces, is handled by the
Cell Multipole Method, which was developed to overcome the speed and
accuracy limitations of standard techniques for handling long-range power-
law interactions in large molecular systems. Versions of the code for the
KSR-1 and Intel Delta and Paragon parallel supercomputers are described,
and performance, accuracy, and scalability results are given.

The applications section begins with a discussion of computational
experiments leading to a prescription for choosing the value of the free time-
scale parameter in Nosé-Hoover constant-volume, constant-temperature
(NVT) canonical dynamics. This is followed by several applications of the
above megamolecular dynamics codes to interesting chemical applications in
the areas of argon cluster structure, polymer structure, surface tension of

water drops, diffusion of gases through polymers, and viral structure.
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Chapter 1. Introduction

Large-scale systems of thousands and millions of atoms are of great
interest in many areas of chemistry, biochemistry, and materials science.
Atomistic-level simulations of such systems can provide increased accuracy
when compared with either smaller-scale model calculations or grossly-
averaged macroscopic models. The ability to analyze such simulations at the
atomic level can lead to greater insight into structure/function relationships,
effects of chemical modification, and in general the underlying physical basis
of the system’s behavior. Two key examples of large-scale systems include
simulations of polymers and viruses.

Polymer molecular weights are typically in the range of millions,
requiring at least hundreds of thousands of atoms to properly model a single
polymer chain, let alone several chains at a time. Use of a shorter chain may
lead to unphysical end effects; use of an infinite chain via periodic boundary
conditions may ignore such effects, or artificially limit the achievable chain
conformations. In particular, amorphous or partially-crystalline assemblies,
typical of industrial polymers, are not readily describable using a single chain
per unit cell. The study of the organization and structures of these systems
and of their mechanical and thermodynamic properties thus will require
models with on the order of 1 million atoms per unit cell.

The starburst dendrimer class of polymers [1] leads to a monodisperse
collection of large molecules having the same topology but each with different
packing of the branches and leaves. The limits of growth for these polymers
depends critically upon how closely the branches and leaves can pack. For

the most interesting case, the PAMAM dendrimers, this may require
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molecular dynamics studies of systems ranging from 0.25 to 0.5 million
atoms.

The smallest important viruses, the picornaviruses (responsible for
polio, the common cold, and hoof-and-mouth disease) [2] are composed of
protein coats of about 0.5 million atoms and a nucleic acid genome of about
the same size. The exterior of the protein coat has approximate icosahedral
symmetry. The interior surface of the coat, which must fit around the RNA,
is assuredly not highly symmetric, however, and is therefore ill-resolved in X-
ray diffraction studies. It is also likely that the exterior symmetry will be
broken, particularly at the interfaces between the protein subunits that make
up the coat. Understanding such structural details will be important for
finding specific antigenic or molecular recognition sites on the exterior
surface or for devising agents that could interfere with viral assembly or
disassembly.

The smallest virus for which nucleic acid structural information is
known is the tobacco mosaic virus, which contains about 3 million atoms in a
cigar-shaped structure [3]. The approximate helical symmetry of the coat has
been used to obtain structures from X-ray fiber diffraction experiments, but
determination of the true structure will require simulations with no such
assumed symimetry.

The most expensive computation in standard molecular mechanics and
dynamics calculations is the evaluation of the nonbonded energy. Exact
computation requires O(N2) operations, which is infeasible for large-scale
systems. Truncation methods have been used to reduce the operation count
to O(N), but at the cost of significant decreases in accuracy, particularly for

the long-range Coulomb interaction.
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The Cell Multipole Method (CMM) [4] was developed to overcome these
limitations in handling long-range power-law forces in molecular systems. In
particular, it can be used to handle the R-1 (or R-2 if screened) Coulomb
interaction and the R-6 attractive portion of the usual Lennard-Jones 12—6 or
the exponential-6 van der Waals potentials. It is a true O(N)-operation
algorithm, with substantially better accuracy than cutoff methods of the same
speed. It is thus the most suitable method for handling large-scale molecular
mechanics and dynamics problems.

Improved algorithms are not sufficient for performing megamolecular
simulations, however. Such large systems also require large amounts of
memory and computation, far more than can be provided by the typical
scientific workstation. These resources can be most cost-effectively provided
at this time by scalable massively parallel computers.

The largest parallel computers available today are most efficiently
programmed in a message-passing style. Unfortunately, it is not always easy
to implement a set of mathematical equations, which do not by themselves
specify appropriate data partitioning and communication patterns, in such a
style.

We used a three step strategy to deal with this problem. First, an
algorithm is implemented on a standard workstation without regard to
parallelization. This allows testing on simple, small cases to ensure that the
method incorporates correct physical principles. Second, we used a KSR-1
parallel supercomputer, which provides a global shared memory
programming model despite its physically distributed memory, to parallelize
incrementally larger portions of the calculation by partitioning data and

computation across processors. During this step, calculation and
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communication are separated within the code as much as possible. When the
entire algorithm has been parallelized efficiently in this fashion, it is then
reasonably simple to embed the resulting computational routines within a
message-passing communications framework, producing an efficient, portable
code that can run on the largest production machines, such as the Intel
Paragon multicomputers or the Cray T-3D.

Part I of this thesis describes the theory behind molecular dynamics
and the Cell Multipole Method, as well as an extension of the CMM to
systems with periodic boundary conditions, the Reduced Cell Multipole
Method (RCMM) [5].

Part II then discusses the implementation of a large-scale, parallel,
distributed-memory, general-purpose molecular dynamics code on the KSR-1
parallel supercomputer. The code uses the CMM and RCMM to handle the
nonbonded portions of the calculation. The design of the parallel aspects of
the code, particularly the parallelization of the CMM, is described. Details of
the implementation of the CMM in a similar, though currently slightly less
general, molecular dynamics code on the Intel Touchstone Delta and Paragon
multicomputers are also presented. Performance, accuracy, and scalability
results are given.

Finally, Part III begins with a discussion of computational experiments
leading to a prescription for choosing the value of the free time-scale
parameter in Nosé-Hoover constant-volume, constant-temperature (NVT)
canonical dynamics. This is followed by several applications of the above
large-scale molecular dynamics codes to interesting chemical applications in

the areas of argon cluster structure, polymer structure, surface tension of



5

water drops, diffusion of gases through polymers, and viral protein coat

structure.
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Chapter 2. Molecular Mechanics and Dynamics

2.1. Introduction

Molecular dynamics (MD) is the premier technique for simulating
medium and large-scale molecular systems, including polymers, biological
macromolecules, and materials. Although not as accurate as quantum
mechanical calculations, MD can be applied to much larger systems and a
much larger range of systems. MD makes the approximation that atoms can
be treated as classical particles rather than electrons and nuclei, as in ab
initio methods. For many systems where structure and dynamics are
important but bond breaking is not, this assumption is quite reasonable.

The atoms in an MD simulation interact through a set of potentials
that makes up a forcefield. These potentials are usually parameterized to
reproduce experiment or more accurate theory. Summing the potentials as a
function of atomic positions produces an overall energy for the system. The
gradient of this energy then provides the force on each atom, which can be

used to find the acceleration, velocity, and finally new positions of each atom.

2.2. Forcefields

There are two main types of energy terms used in forcefields: valence
(or bonded) and nonbonded. The valence interactions include all terms
related to the chemical bonds within the molecule, while the nonbonded
interactions include through-space terms that are independent of atomic
connectivity.

Valence terms typically include bond stretch, angle bend, torsional

rotation, and inversion center contributions. Less frequently used terms
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include various combinations of cross terms, pi-twist representations of
torsional barriers, etc. Different forcefields may use different functional
forms for the various valence terms, but most share the common
characteristic that the energy is a function only of the atomic positions,
together with constants depending on the types of the atoms involved in the

interaction. A common set of valence terms would include the following:

Epona = Zk(R R ) (1)
bonds
angle = Zk(e 9 ) (2)
angles
Etorsion = 2 zkp cos p¢ (3)
torsions p
Einvérsian = Zk(COS @ — cos wo )2 (4)

inversions

Nonbonded terms typically include the Coulomb and van der Waals

interactions.
ECoulomb = ZquBR,Zé (5)
AB
E.uw =) CRy - DRy (6)
AB

Some forcefields use special nonbonded terms to handle hydrogen
bonds. These nonbonded components of the energy also depend only on the
atomic positions and types.

Computing the energy and its gradient, the force, for a given system is
thus a matter of identifying all the atoms participating in valence or
nonbonded interactions, passing their positions and types to the appropriate

functions, and summing the results.
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Most widely-used forcefields for atomistic simulations can be placed

within this general framework.

2.3. Microcanonical Dynamics

Once the forces on the atoms in the system have been computed,
Newton’s Second Law can be used to derive accelerations. The accelerations
can then be integrated twice to generate velocities and then new positions for
the atoms. We thus obtain a method for following the time evolution of the
atomic positions.

Using the Verlet formulation for integrating the equations of motion
[1,2], we obtain a procedure for updating the atomic velocities and
coordinates that conserves the total energy (kinetic plus potential) in the
system. This is known as microcanonical dynamics.

If we start from a minimum of the potential energy with a kinetic
energy equal to twice the desired temperature, by equipartition, we should
eventually reach equilibrium at the desired temperature. Since the potential
surface may be complex, however, and since we cannot always start at a
minimum, it may be impossible to maintain a fixed temperature within the
dynamics. To overcome this limitation, we can rescale the temperature of the
system periodically by appropriately modifying the velocities of the atoms.
This allows us to simulate a physically reasonable temperature, at the cost of
discontinuities in properties at the rescalings. Typically, the amount of
rescaling needed decreases as the system reaches equilibrium, so it is
possible to perform a long run without scaling to obtain thermodynamic

averages after an initial equilibration period.
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The equations of motion used are as follows, where x, v, j-”, and m are
the atomic positions, velocities, forces, and masses, respectively, and At is the

timestep:

- fa
Vasrsz =Vpann T ;At (7)

X =X +v At (8)

n+l n n+l/2

2.4. Canonical Dynamics

A better way of achieving constant temperature is to place the system
in contact with an infinite heat bath which is fixed at the desired
temperature [3,4,5,6]. If the system gains kinetic energy (and thus heats up),
it will transfer the excess energy to the bath. Ifit loses kinetic energy, it will
obtain energy from the bath. The conserved Hamiltonian in this case is the
sum of the kinetic and potential energies of the system and the bath.

We use a double-half-step integration method. A half-step is taken to
determine the velocity at timestep n from the velocity at timestep n—1/2, and
another half-step is taken to go from the velocity at time n to the velocity at
time n+1/2, which is needed for the next step. This method allows the
velocity at each half-step to be determined, which is essential for computing
the system’s kinetic energy at both time n and n+1/2, while at the same time
not requiring additional storage for velocities. The kinetic energy at time n is

reported and contributes to the Hamiltonian, while the kinetic energy at time

n+1/2 is used to compute { at time n+1/2.
The equations of motion used are as follows, where { is the friction

coefficient that controls heat exchange between the system and the bath, ¢ is
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its integral, and 15 is a free parameter that is related to the time scale for

heat transfer to the bath:
=1 +t:, & [‘7"-1/2 * %’%{) ®
5= {5,,(1 -¢, 525) + %% (10)
X, =% +7 0 (11)
0, =0, 1, +5s % (12)
G, =0, +g,,§ (13)
i e
KE, ., = 3—21YkBT,,a,,, 7207 (15)
PE,, = (3N +1)ksT,,0, (16)

2.4. Minimization

Finding minima of complex, multidimensional potential surfaces is a
heavily-researched field. Three approaches are presented here.

First, we can run dynamics at zero temperature. In this method, the
atoms in the system will always move along the direction of their force vector,
which is the gradient of the energy. This method uses a fixed step size.

Improved convergence can be obtained by varying the step size. In
particular, projecting the location of the nearest minimum along the gradient

direction can be very useful. This method is known as steepest descent.



12

Even better convergence properties can be obtained if the past history
of the minimization is used. Successive search directions are constructed so
that they form a set of mutually conjugate vectors with respect to the
(positive-definite) Hessian of a general convex quadratic function.
Convergence can be quadratic, rather than linear as for steepest descent, and
is especially improved near the minimum.

Both steepest descent and conjugate gradient minimization require
additional storage to enable the directed search procedure, but this additional

storage is linear in the number of atoms.
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Chapter 3. Cell Multipole Method

3.1. Introduction

The most expensive computation in standard molecular mechanics
calculations is the evaluation of the nonbonded energy. Exact computation
requires O(N2) operations, which is infeasible for large-scale systems. We
maust thus find a way to represent groups of atoms in an approximate way,
reducing the operation count while maintaining as much accuracy as
possible. Traditionally, cutoff methods have represented all atoms
sufficiently far away from an atom of interest as not being present at all,
assuming that their effects would be negligible. Unfortunately, for many
interesting systems this assumption may not be valid and accuracy suffers,
even though the operation count is reduced to O(V).

The Cell Multipole Method (CMM) [1] was developed to overcome these
limitations in handling long-range power-law forces in molecular systems. In
particular, it can be used to handle the R—1 (or R-2 if screened) Coulomb
interaction and the R-6 attractive portion of the usual Lennard-Jones 12-6 or
the exponential-6 van der Waals potentials. It is a true O(IN)-operation
algorithm [2], with substantially better accuracy than cutoff methods of the
same speed. It is thus the most suitable method for handling large-scale
molecular mechanics problems.

The key feature of the CMM and other multipole methods [3,4,5,6] is
that they replace the effects of atoms with multipole expansions representing
the fields due to those atoms. This replacement reduces the number of
computations that must be performed, while not ignoring these effects

altogether as in cutoff methods. In order to maintain accuracy, stronger,
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nearby interactions are represented more accurately than weaker, more
distant interactions.

Computing and using these multipole expansions is the major
computational task in all multipole methods. The CMM is a particularly
regular, easily parallelizable multipole method that enables this task to be
performed efficiently. It uses Cartesian coordinates only, unlike the other
fast multipole formulations that use spherical harmonics [5,6,7], further
simplifying the method. We can divide the CMM into four parts:

¢ Octree decomposition. The space occupied by the system of interest

is divided into cells that form a tree. Each cell’s effects will be
represented by multipole expansions.

¢ Multipole expansion computation. The multipole expansions are

computed for each cell at each level within the tree, starting
from the leaves, or smallest cells, and working upwards in the
tree to the root, which represents the entire system.

® Taylor series expansion computation. The multipoles represent the

effects of atoms within a given cell. What we require, however,
is the effect on an atom within a cell of all the other atoms in the
system. We represent the long-range component of this effect
with a Taylor series expansion that applies to all atoms within a
given cell. The coefficients of this series are computed from the
multipoles from the previous step, starting at the root of the tree
and working downwards to the leaves.

¢ Farfield and nearfield computation. Once the Taylor series

expansion coefficients have been computed for each leaf cell, the

force on each atom can be computed as a combination of the
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effects represented by the Taylor series, evaluated at the atom’s
location, and the effects of nearby atoms, which are calculated

explicitly.

3.2. Octree Decomposition

In the CMM, the system of interest is surrounded by a bounding box,
typically a cube, but in general a parallelepiped specified by three side
lengths and three corner angles. This box, the level 0 cell, is then subdivided
into eight octants by bisecting each side. The eight “child” cells are then
themselves further subdivided into octants. This process continues
recursively, forming an octree decomposition of the original box. The
maximum level of the tree is a parameter of the method and is chosen to best
maximize computational speed and accuracy. Increasing the maximum level
will tend to increase computational speed but decrease accuracy; decreasing
the maximum level will have the opposite effect. The cells at the maximum
tree level (“lowest” level) will be referred to as “leaf” cells. Note that the
decomposition is carried out to the same level across the entire system, unlike
other adaptive multipole methods. This regularity makes it easier to
determine the neighbors of any given cell and may increase the number of
timesteps that can be executed before rebuilding the cell tree.

Figure 3-1 shows a two-dimensional projection of some of the cells in
the octree. The bounding box has been divided into level 1 cells, one of which
has been further subdivided into level 2 cells. A level 2 cell has in turn been
split into level 3 cells. All of the level 1 and level 2 cells would be subdivided
in this fashion.
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Figure 3-1. Two-dimensional representation of octree decomposition.

Cells are labelled with their level.

3.3. Multipole Expansions

Within the leaf cells, the effects of the atoms are replaced by multipole
expansions. The level of multipole expansion (quadrupole, octupole, etc.) is
another free parameter. Increasing the level of expansion will increase
accuracy at the cost of extra computation time. The equations for the cell

charges, dipoles, and quadrupoles are as follows:

qcell = anwm

atoms

Bovw = 2 €R. G0 (1)

atoms

chll,aﬁ = 2 8(8 + 2)Ra Rﬁqamm - ngqatom 5(2[3

atoms
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where g, u,, and Q.5 are the charge dipole, and quadrupole moments,

1s the position of the atom; R

center

respectively; R, = R -R

atom, o center, a’ atom
the position of the center of the expansion; the power-law for the energy is

Eec<R*;and x=x,y,zZ.

3.4. Choice of Expansion Centers

The centers of the multipole expansions can be chosen in several
different ways. The simplest choice is to use the geometric centers of the
cells. If the atoms within a cell are not distributed evenly, however,
expanding about the centroid (or average) of the atom locations produces

improved accuracy for a given level of multipole expansion.

cemrouz' ]'/ n’atoms in—cell 2 atom (2)

Another possible alternative is to use a weighted average of the atom
locations, with the weights being, for example, the absolute values of the
charges on the atoms. This tends to place the center close to atoms with large
charges, which will again tend to reduce the higher-order multipole
coefficients.

The centroids or weighted averages can easily be computed in a
hierarchical fashion using the existing cell tree, as the centroid of a higher
level cell is equal to the weighted average of the centroids of its children,
where the weights are the number of atoms in each child cell.

We have found that the increased accuracy from the centroid
formulation allows the use of more highly truncated expansions than would

otherwise be required. Further details are given in chapter 7.
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3.5. Combination of Multipoles
Once the leaf cell multipoles have been computed, the expansions may
be translated to the centers of the next higher-level (“parent”) cells and
combined. In this way, the multipole expansion representing the parent cell

is determined.

qparent = zqchild

children

‘Lt parent, o = Z‘LL child, o + 8Raqchild (3)
children
= (oP.5 2
Qparent,aﬁ - h% Qchild,aﬂ + (8 + 2)Rot RB qchild (2R lLl‘ + 8R qchild ) 5043
Where R = Rcemer,parem - Rcenter,child "

This process continues up the tree until the root (level 0 cell) is
reached. At this point, every cell in the system has associated with it a
multipole expansion representing the field due to all of the atoms contained

within the cell.

3.6. Taylor Series Expansions

In order to compute energies and forces on a given atom within the
system, we need to obtain the field due to all of the other atoms in the
system. This can be broken into two components: the “nearfield” interaction
due to all of the atoms in the same cell or neighboring cells, and the “farfield”
interaction due to all of the rest of the atoms. In the CMM, the nearfield
interactions are evaluated explicitly to ensure high accuracy while the
farfield interactions are evaluated using effective fields.

A Taylor series expansion of the farfield for a given cell is used to

enable the computation of the farfield at any point within the cell. The
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coefficients of this expansion are determined from the multipole expansions
computed in the previous step.
We define the Taylor series expansion of the field at the position of an

atom to be

V(R)=Vo+ ZV.R, + 2V R.R, +-- 4@

where R=R_—R__and Vys Vo, and V4 are the zeroth, first, and second

atom center
order expansion coefficients, respectively. The centers used for the Taylor

series expansion are the same as those used for the multipole expansion.

3.7. Computation of Taylor Series Coefficients

If we assume that a cell’s parent’s Taylor expansion has been computed
and properly represents the field due to all atoms in the system outside the
parent’s neighbors, the remaining contribution we need to add to obtain the
cell’s farfield expansion is just the fields from the children of the parent’s
neighbors and from the other children of the parent, minus the fields from
the cell itself and its immediate neighbors at its level. This is 27 cells (parent
and its neighbors) times 8 (children per cell) minus 27 cells (cell and its
neighbors), or 189 cells. Note that all of the children of the same parent are
immediate neighbors of each other and can thus be omitted. We thus need to
add to the parent’s farfield expansion the fields from the parent cell’s
neighbors’ children (which we will call PNCs), with the understanding that
the other immediate neighbors of the cell in question are also excluded.
Figure 3-2 shows a two-dimensional projection in which the immediate
neighbors (excluded from the farfield) and the PNCs (included in the farfield)
of a level 3 cell are shown. All of the shaded cells are with the parent of the

level 3 cell or the parent’s neighbor cells. The remaining unshaded level 2
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cells are within the farfield of the parent cell, and are included in its

contribution to the level 3 cell’s farfield.

Figure 3-2. Neighbors and PNCs for a level 3 cell.

To start this process, note that all cells at level 1 (the first set of eight
child cells) are immediate neighbors of each other, and thus there is no
farfield contribution from the parent or the PNCs of these cells.

By induction, we can continue generating Taylor expansions all the
way to the leaf cells, at which point every cell has a Taylor expansion
representing the farfield within the cell.

We define the following useful terms:
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— - —

R = Rcemer,PNC - Rcenter,cell

B=2 1R,

Q= azﬂ, Q,R.R,

The contributions from each PNC to a cell’s Taylor expansion
coefficients are then:
Vo — R—eq _ R—s-zu + %R—E-4Q
Va = qu_E—ZRa - R_e_z ((8 + 2)R-2 oull - l’la )
+ R (%(e +4)R*R,0—-> 0 R, )
B

V.. =36gR*?((e+2)R?R2 - 1)+ R (e +2)u R,
—1(e+2)uR**((e +4)R*R. -1)+1R"Q,,
+4(e +4)R"£"’zﬁ:QapRaRﬂ

V,;=¢e(e+2)gR* R,R,
+(e+2)R™** (1R, +1u,R, — (e +4)R”UR,R, )
+ R‘E“‘Qaﬂ
~(e+4)R**Y(Q, R,R, +Q,R,R,)
Y

+i(e+4)(e+ 6)QR"5‘8RaRp

(5)

(6)

(7

(8)

9)

where the ¢, 1, and Q multipole expansion coefficients are those of the PNC.

The contributions from the parent cell’s Taylor series coefficients to one

of its child cells’ coefficients are:
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Vosigo = Vo + 2 V,R, + zﬂ VR Ry
[#4 Q,

Vchild,a = Va + VaaRa + z VaﬁRﬁ (10)
B
Vchild,aﬂ = Vaﬂ
where R = I—écemr’chﬂ g I_écem, Jaren €T€ and the V coefficients on the right are

from the parent cell.

3.8. Farfield Evaluation and Nearfield Computation

Once the cell Taylor expansions have been determined, computing the
interaction energy and force due to the farfield at each atom is then simply a
matter of evaluating the Taylor series at the atom’s position (given by
equation 4 above) and calculating the interaction of the field and the atomic
charge.

Since the farfield changes much more slowly than the nearfield, we
have found it feasible to perform the farfield calculation at intervals instead
of every timestep. The centers and coefficients of the Taylor series
expansions representing the farfield are kept constant during the interval.

The remaining nearfield interactions between an atom and the other
atoms in the same cell and in neighboring cells are computed explicitly, using
the appropriate charge-charge interaction equations (Coulomb or van der

Waals).
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Chapter 4. Reduced Cell Multipole Method

4.1. Introduction

Extending the CMM to handle systems with periodic boundary
conditions substantially expands the range of problems that can be attacked.
PBC is especially important for the simulation of bulk materials.

The Reduced Cell Multipole Method (RCMM) [1] is a relatively simple
way of extending the CMM to periodic systems that maintains the overall
scaling and memory usage advantages of the CMM. It builds on the idea of

representing distant atoms with multipole expansions.

4.2. Enhanced Multipoles

First, an enlarged set of multipoles (through at least the hexadecapole
moments) is computed from the atoms in the unit cell. This is an extended
version of the standard CMM multipole computation and uses the same
octree structure to ensure that it is O(N) in the number of atoms.

Next, a random set of points within the unit cell is chosen. Charges
are placed on these points so as to reproduce the enlarged multipole set
determined above. The number of random points is equal to the number of
multipole coefficients, so this amounts to merely solving a set of simultaneous
linear equations. This “reduced set” of random points and charges then can
be used to substitute for the unit cell at large enough distances without

substantially decreasing accuracy.

4.3. Ewald Summation
In order to handle the infinite periodic lattice, a standard Ewald

summation method is used [2,3]. In this method, we divide the effective field
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of the infinite system at a given point into two pieces: a sum over atoms close
to the unit cell in real space and a sum over terms in reciprocal space.

Computing an Ewald sum over all of the atoms in the unit cell would
be computationally infeasible, so we only compute the sum over the reduced
set, which is much smaller. This still reproduces all of the effects of the
infinite system.

The real space part of the effective field is composed of the fields due to
each of the nearby (reduced set) atoms, modified by a screening function.

Viea = 2, q‘%erfC(R/ n) D

atoms

where R=|R R

iom — Revas| @nd 7 is a parameter that determines the cutoff range
for the real space sum.

If there is an atom that is very close to the point at which the field is
being evaluated, a different expression is used for the term due to that atom
to account for the singularity in the field.

2 4
[_2 + ER_ — R_]____Z‘i’/ﬂ_;"_r (2)

The sum of these screened terms converges very rapidly as the
distance from the evaluation point increases.

To correct for the screening functions introduced in real space, we must
add terms that represent their complement. This sum now converges slowly
in real space, but its Fourier transform converges rapidly in reciprocal space.

e_zznZhZ - - _
Vr ip = 2 elh.Rm, exp (Z ZQatomh ‘R 1 m) (3)
“ h ﬂth atoms “

where & is the reciprocal lattice vector and Q is the volume of the unit cell.

Finally, a correction is added to handle the case of charged unit cells.
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2
T
Vcharge == g 9ceil 4)

+V

recip

V=V,

real

+ Vcharge (5 )

4.4. Exclusion of Neighbors

At shorter ranges, the reduced set may not be an adequate
representation of the atoms in the unit cell. Therefore, we will use a different
technique (an extended CMM) to compute interactions with the nearest-
neighbor unit cells. The Ewald sum over the reduced set already attempts to
include these interactions, however, so we subtract out the field contribution
from the nearest-neighbor unit cell images. Since this is within the range of
the real-space portion of the Ewald sum, this subtraction is quite easy; the

screening function in equation 1 above is simply modified by subtracting 1.

4.5. Combination with CMM

The Ewald sum is evaluated at a specific set of points within the unit
cell. Taylor series coefficients representing the resulting field values are then
computed by interpolation. These coefficients compose the farfield due to the
infinite array of atoms, except for those in the nearest-neighbor unit cells.
This is exactly the correct farfield to use for the (level 0) unit cell at the
beginning of the induction step of the standard CMM.

To compute the interactions with the neighboring unit cells, we can
extend the CMM into those cells. We use the multipole expansions and fields
calculated for the unit cell, but translated to the neighboring images. This
adds extra calculations for CMM cells that used to be at the edge of the

bounding box but now have image cells as neighbors, as well as additional
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calculations at level 1 in the octree, since the cells at that level now have

PNCs in the image unit cells.

4.6. Noncubic Unit Cells

If the unit cell is not cubic, adjustments have to be made to the CMM.
The method chosen is to compute a transformation matrix that converts the
unit cell to a unit cube. The octree decomposition is then performed on the
cube, with the cell coordinates being mapped back to real-space Cartesian
coordinates by the inverse of the transformation matrix. The points at which
the Ewald sum is computed are expressed in terms of transformed (unit cube)
coordinates; the resulting interpolated Taylor series coefficients are then

transformed back to real-space coordinates.
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PART II — DESIGN AND IMPLEMENTATION
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Chapter 5. Implementation on KSR

5.1. Introduction

Numerous other groups have developed parallel molecular dynamics
codes [1,2,3,4,5,6,7,8,9,10,11,12,13]. All of these codes suffer from various
limitations, however. Some [1,2,3,4] limit the range of the forces, keeping the
number of interactions low and thereby minimizing communication, but
eliminating the possibility of handling interesting chemical systems which
rely upon the long-range Coulomb interaction. Others [5,6,7] use replicated
data methods, in which a copy of each atom is stored on each processor. Such
codes are obviously unusable for large-scale systems which may not fit on a
single CPU. Still others [8,9,10,11] use a ring for communication, which
allows every atom to interact with every other atom, but also requires that
half the memory of each CPU be reserved for incoming atoms and that every
atom be sent to every CPU, maximizing communication. Kalia [12,13] has
developed codes that handle nonbonded forces well but require special three-
body potentials instead of standard valence forcefield terms. We set out to
develop a code that would be parallel, distributed-memory (limited only by
the total memory in the system), large-scale (able to handle systems of
millions of atoms), and general-purpose (accepting standard forcefields). The
heart of such a code is the nonbonded energy calculation, which is performed
by the CMM.

The primary parallel implementation of the CMM algorithm has been
performed on the Caltech Materials and Process Simulation Center’s KSR-1
parallel supercomputer using the C language. This code uses the KSR’s

shared-memory programming model and is robust, efficient, and modular. It
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has been used for production calculations on systems of up to 2 million atoms
on the MSC 64-CPU, 2-gigabyte-memory machine and on systems of up to 4
million atoms on the Cornell Theory Center 128-CPU, 4-gigabyte-memory
machine, with the main limitation being memory capacity. The program has
been structured to permit the easy addition of new science (e.g. new forcefield
terms and new integration methods), while still remaining efficient for large-

scale computations.

5.2. KSR Architecture

The KSR AllCache architecture [14] presents a shared memory
programming model to the user, even though it is implemented on top of a
physically distributed memory. This model greatly simplifies the initial
parallel programming task and, when attention is paid to the actual location
of data, can still provide high parallel efficiency without requiring massive
rewriting of code.

Two key features of the KSR architecture are used in the code. First,
all data is stored in a single global address space. This means that data that
is not specified as private is automatically sharable by all processors, merely
by accessing a global variable or dereferencing a pointer. Second, any 128-
byte “subpage” (the basic quantum of memory sharing in the machine) may
be locked atomically by a processor so that only it retains access rights to the
subpage. Any other processor attempting to lock (or even reference) the
subpage must wait until the locking processor explicitly releases it. Though
an exclusive lock primitive is often provided in parallel programming
systems, since the KSR version is associated with 128 bytes of data, it is
substantially more powerful. In particular, the cost of a lock is small in terms

of execution time and zero in terms of memory usage (provided that the data
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being locked is at least 128 bytes). These values are significantly cheaper
than most implementations provide.

An additional feature provided by the KSR architecture is a fast
reciprocal square root approximation instruction. The KSR FORTRAN
compiler issues this instruction, followed by two Newton-Raphson steps to
ensure accuracy, when computing x~1/2. This is much more efficient than
calling a library function to determine the square root and then performing a
reciprocal operation. Since the C compiler does not make the hardware
instruction accessible and does not properly optimize an explicit expression
for the function, inlined code generated by the FORTRAN compiler is used.

The caching strategy of the machine allows data to be passed from
CPU to CPU merely by referencing it. As long as the new CPU continues to
use the data, it will remain in its cache. The copy of the data in the old CPU
will be flushed when necessary or when the data is modified. Because of the
global address space, no bookkeeping needs to be done in the software to keep
track of where a given piece of data is. This contrasts with message-passing
architectures, in which data must explicitly be sent from one CPU to another,
and it is often necessary to maintain elaborate structures to identify the

location of a desired piece of data.

5.3. Memory

In order to handle large-scale systems of millions of atoms, the amount
of memory used per atom must be kept to a minimum. With existing
machines’ capacities ranging up to a few tens of gigabytes, maintaining an
average memory usage of about one kilobyte per atom is essential for the
simulation of million-atom systems. The KSR implementation uses 128 bytes

(one subpage) to store the most important information about each atom and
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additional memory of up to about 800 bytes per atom to store information
about atomic connectivities, cell multipole and Taylor series coefficients, and

valence forcefield information.

5.4. Data Structures

Critical atom data is stored in a single subpage for maximum
efficiency. In addition, the most frequently used data is stored in the first 64
bytes of the subpage, or subblock, to enable it to be more efficiently cached in

the onboard processor cache.

Offset

0 cnext (link to next atom) O L——-}
8 x[0] (X coordinate)

16 x[1] (Y coordinate)

24 x[2] (Z coordinate)

32 f[0] (X force)

40 {11 (Y force)

48 fi2] (Z force)

56 q[0] (Coulomb charge)

64 qf1] (London charge)

72 v[0] (X velocity)

80 v[1] (Y velocity)

88 v[2] (Z velocity)

96 m (atomic mass)

104 vehg2 (vdW repulsion charge)

112 n (global atom number) | cell (CMM cell number)

120 type (atom type) flags Sﬂag bitsz

Figure 5-1. Atom data structure.

The cell data structure contains the position of the cell’s center (or

centroid), its multipoles, and its Taylor series coefficients. In addition, if the
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cell is a leaf cell, a pointer to the cell’s atoms is maintained. The “done”
variable is used as a validity or “presence” tag to help avoid explicit global

synchronization (see section 5.11).

Offset

0 c_atom (link to cell's atoms) E :l——-»

8 next (link to next cell funused])

16 mpole[0] (multipoles)

152 mpole[19] (multipoles) I

160 c[0] (center X coordinate)

168 c[1] (center Y coordinate)

176 c[2] (center Z coordinate)

184 q (total weighted charge)

192 n (total weight) done (synch flag)
200 vv[0] (Taylor series coefficient)

352 w[19] (Taylor series coefficient)

Figure 5-2. Cell data structure.

Atoms are stored in a globally-accessible array so that they may easily
be retrieved by atom number. This is particularly useful in computing the
valence forcefield portion of the energy, where each interaction is specified
only in terms of the numbers of the atoms participating. The atoms are
simultaneously linked into lists attached to the appropriate leaf cells to allow
easy cell-by-cell handling in the CMM portion of the code.

Since each atom occupies one subpage, the atom array will be
distributed element-by-element across the processors. A CPU performing
computations using an atom’s data will tend to maintain a copy of that data

in its cache.
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Pointers to cells are stored in globally-accessible arrays, one for each
level. This allows a cell to be accessed easily given a pair of integers
representing the level and cell number. Cells without atoms have no memory
allocated for their data, but they do have pointer array elements (set to null)
associated with them. As the number of levels increases, these arrays grow
rapidly in size. For some systems containing significant amounts of open
space, many of the cells will remain unoccupied, and it may be worthwhile to
convert to a hash table or other sparse vector implementation rather than the
explicit array. At levels up to about 7 (221 = 2 million cells), however, the
overhead of keeping empty elements in the array is outweighed by the speed
of access.

Iterator functions are used to step through all atoms or all leaf cells.
Each such iterator is first initialized, and then the iterator returns a new
atom or cell at each call. The end of the list of cells is indicated by returning
a null pointer.

Connectivity is stored in an array of six elements for each atom. Each
element is composed of an atom number, a translation to a neighboring unit
cell, if necessary, and a bond type index used for computing bond energies.

Valence forcefield entries are stored in another list associated with
each atom containing the interaction type, the atom numbers (and possibly
translations) used in the interaction, and a type index from which the
forcefield parameters can be obtained.

Both the connectivity arrays and the valence forcefield entries are
globally accessible. This simplifies checking for connectivities of neighboring
atoms and allows slightly less complex updating when an atom moves across

unit cell boundaries.
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5.5. Modularity

Most parameters to the program are specified in a control file
containing commands. The control file input routine is designed to accept one
command per line, switch based on the first word of the command, and pass
the remainder of the command to option routines associated with each
module to further parse keywords. This allows the control file reader to be
essentially isolated from the state variables maintained by each module.

The forcefield parameters are specified in a separate file, the format of
which is defined by BIOGRAF [15]. The forcefield file input routine makes
two passes through the file. In the first pass, the number of entries in each
section of the file is counted. Section dividers are used to trigger calls to
specific readers that understand the format of each section. In the second
pass, memory is allocated for each forcefield parameter array in which data
parsed from the file is stored.

Different functions may be used for different interactions in the
forcefield. When a set of forcefield parameters has been read from the file, it
is passed to a routine that looks up the function type in a dictionary and calls
the appropriate setup routine to store the data, after any preprocessing, in
the forcefield parameter array. A pointer to the routine that actually
computes the function is also stored. The use of the dictionary and function
pointers allows additional functions to be added easily.

The overall sequence of events within a timestep is controlled by a
single routine (real_nodes). Additional computational routines may be
added, with calls placed in the master routine at appropriate places during

the timestep. It is hoped that eventually this master routine can be replaced
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by an embedded language interpreter (such as Tel or Perl) to allow even
greater flexibility in the use of computational modules and analysis tools.

Integrators are also modular. Each integrator is called through a well-
defined interface from the master sequencing routine. This interface is a list
of pointers to functions provided by the integrator module. In addition,
functions must be provided to save and restore any state information
required by the integrator, and some additional functions used by the rigid
molecule code are also required. This technique allows any integration
method that can be structured to fit the (very general) interface to be used,
and the integrator may keep any amount of private state information.
Additional integrators may be added by merely defining the interface and
providing a command to choose the appropriate function pointer list.

Atoms and cells could easily be reworked into C++ objects. Although
many of their data elements are “public,” most manipulations of these data
structures are handled through access functions. As an example, atomic
forces may only be updated through one of two calls: a version that locks the
atom to prevent access by any other CPU, performs the update, and then
unlocks the atom, or a version that avoids the locking. The latter version
(which is actually inlined for efficiency) is used primarily in the CMM code,
where the structure of the algorithm makes it impossible for two CPUs to be
attempting to update the same atom. Neverthelesss, it could be replaced by
the locking version, perhaps for debugging purposes, without modification to

the rest of the code.

5.6. Features
Even a fast, efficient code is useless unless it can solve problems of

interest to chemists. To that end, the code supports general forcefields,
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including all normal valence terms, cross terms, and variant functional forms
for each type of term. The commonly-used DREIDING [16] and AMBER
[17,18] forcefields may be used (except for DREIDING hydrogen bond terms).
Many additional features have been implemented to increase the problem
domain that can be handled by the code.
5.6.1. Coordinate Transformations

Two types of coordinate transformations need to be performed in the
code when periodic boundary conditions are used. The first type is necessary
when noncubic unit cells are used. As described in Chapter 4, coordinates in
the unit cell in real space are transformed to lie within a unit cube. The
reverse transformation is also required, as are utilities for slightly more
complex transformations related to reciprocal-space vectors used in the
RCMM.

The second type of coordinate transformation occurs when a bonded
interaction spans a unit cell boundary. All atomic coordinates are kept
within the unit cell by the code. If an atom moves across a unit cell
boundary, it is mapped to the image position on the other side of the unit cell.
As a result, each atom participating in a valence interaction crossing a cell
boundary may need to be remapped into its image position outside the unit
cell before the interaction energy is computed. Such displacements are stored
with the atom number in the bond and valence force field structures; the
appropriate corrections are made to the atomic coordinate values within the
various interaction computation routines through a standard utility function.

These displacements are always to neighboring unit cells. The
Cartesian coordinate adjustments for each of the 26 neighbors can be

precomputed, resulting in a very fast transformation routine that merely
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performs three additions. Future versions of the code with variable unit cell
parameters (e.g. for NPT dynamics) will require recomputation of these
coordinate adjustments whenever the cell changes.
5.6.2. Moving Atoms

During the course of the dynamics simulation, atoms will move
throughout the simulation volume. At intervals, a scan through all the atoms
is performed, and any atom outside its assigned cell is collected for
reassignment to a new cell. If the new cell does not exist, it will be created,
and if the old cell is left empty, it will be deleted. Note that the farfield must
be recalculated after this reassignment process to ensure that it is consistent
with the new atom locations.

At the same time, atoms outside the unit cell for PBC systems are
remapped to image locations within the unit cell.
5.6.3. PBC Displacement Updating

When atoms move across unit cell boundaries in PBC calculations, the
displacements associated with them and the atoms with which they
participate in bonded interactions must be updated. Two routines are
provided that scan through all the bond and other valence force field
interactions of a moving atom and modify the displacements to reflect the
new location of the atom. The displacement encoding (an integer from —13 to
13) is chosen so as to allow displacements to be simply added, provided that
no displacement extends beyond the immediate neighbor unit cells.
5.6.4. Atom Tracking

During, for example, diffusion calculations, it is important to know how
far in real space a given atom has moved since the beginning of the

simulation, despite remappings due to periodic boundary conditions. Since
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the displacements above only maintain relative information, it is not possible
to use them alone to determine coordinates in the initial frame of reference.
A facility has been added to the code to designate certain atoms as being
tracked. The state (coordinates, velocities, and forces) of the tracked atoms
may be written out more frequently than that of the other atoms in the
system, reducing the amount of data that needs to be saved. In addition,
absolute displacements from the original frame of reference in each of the
Cartesian coordinate directions are maintained for the tracked atoms,
allowing recovery of the true distance moved by an atom.
5.6.5. General Valence Forcefield

All bonded interactions are calculated in parallel by iterating through
the list of atoms on each processor. Bond interactions are calculated twice
(from the point of view of each atom participating in the bond); all other
interactions are calculated only once, with the results communicated to the
appropriate atoms. To date, this portion of the calculation has not been
highly optimized. In particular, the amount of communication could be
reduced by performing all calculations for each non-local atom at one time.

To set up the valence force field interactions, it is necessary to
determine which interactions are to be computed and to assign each
interaction a type from the forcefield. This type is just a key specifying the
appropriate function and set of parameter values to be used when calculating
the energy and forces due to the interaction.

Selecting interactions is a relatively simple process. From the input,
we know the molecular connectivity: which atoms are bonded to which other
atoms. Any atom that is bonded to two other atoms forms an angle. Any

atom bonded to exactly three other atoms also forms an inversion center.
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Any angle plus an additional bond on one side forms a torsion. Some
additional checking needs to be done to ensure that only one instance of each
interaction is generated and that systems with loops (e.g. cyclopropane) are
handled properly.

Once the atoms participating in an interaction have been identified, we
can use their atomic types to determine the type of the interaction. To
simplify this process, a set of trees, one each for bonds, angles, torsions, and
inversions, is built from the forcefield file information. Each interaction is
placed in a canonical order based on its atomic types. The first type is then
used to choose a branch from the root of the appropriate tree; the second type
selects a branch from the resulting node; etc. Additional branches are added
to the trees to handle wildcards in the type specifications from the input file.
The wildcard branches are only tried if there is no type-specific branch.

An additional tree is built for hydrogen bond (or off-diagonal nonbond)
interactions, which are further described in section 5.6.8. Although the bond,
angle, torsion, and inversion trees may be disposed of after the program is
initialized, hydrogen bonds are not completely predetermined by the initial
geometry and so this small additional tree must be retained throughout the
simulation.

5.6.6. Nonbond Exclusions

Many forcefields define the nonbond interactions so as to exclude any
components stemming from atoms that are participating in bonded
interactions. Such exclusions could be handled in the CMM nearfield
computation step by checking each interaction to be calculated, but such

checking would be quite expensive. In addition, if a bonded interaction
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spanned a leaf cell, the most distant atoms in the interaction would only
interact through the CMM farfield, not the nearfield.

To overcome these difficulties, we compute the CMM normally, with no
checking for exclusions. We then compute the excluded interactions
explicitly, subtracting them from the energy and forces computed by the
CMM. The list of excluded interactions can be built once, since it depends on
the molecular topology, which doesn’t change as long as no bonds are broken
or created. The calculation of the exclusions can occur in parallel, with each
CPU handling the computations for the atoms that are in the cells it owns.

The excluded energy is often dominated by Coulomb and van der
Waals repulsion terms at short ranges and can thus be quite large. The net
energy is then the difference between two large numbers (the unexcluded
energy and the excluded energy), which could potentially lead to loss of
accuracy. We have found, however, that use of double-precision (64-bit)
floating point numbers provides more than adequate accuracy for non-
pathological cases. Since this precision is all that the KSR floating point unit
provides, there is no loss in performance.

5.6.7. Spline Nonbonds

The code also handles spline-type nonbonds for comparison with this
older method. As in traditional programs, a list of all nonbond interactions to
be computed is generated periodically during the simulation. To speed up the
list generation process, the code uses the same cell structure generated for
the CMM. The sizes of the cells are set to at least the length of the spline
cutoff distance. Then any interaction that could potentially be included on
the nonbond list must be between atoms in neighboring cells. Each CPU

generates a nonbond list for the atoms it owns; each interaction is included
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twice. The lists are stored in a packed form, removing redundancies in the
storage of the numbers of local atoms. Exclusion tests are performed while
building the nonbond list; no separate excluded force is calculated in this
case. A standard cubic spline is used to smooth the energy function at the
cutoff radius.
5.6.8. Hydrogen Bonds and Off-Diagonal Nonbonds

AMBER-type hydrogen bonds are supported through a general facility
that allows special off-diagonal nonbond parameters and functions to be
applied. As for the spline nonbonds, a list of potential off-diagonal
interactions is generated. Like the nonbond exclusions, the CMM-computed
Interaction is first subtracted; the new off-diagonal energy and forces are
then added in.

5.6.9. Initial Velocities

The initial velocities of the atoms in the system are generated by
sampling a random Gaussian distribution for each Cartesian component. The
standard deviation of the Gaussian is determined by the simulation
temperature. Once selected, the velocities are rescaled to ensure that the
initial temperature exactly matches the desired one. The selection and
rescaling process is simple to parallelize; each CPU computes initial velocities
for the atoms that have been assigned to it.

Use of truly random velocities makes debugging the code or methods
for using it difficult, as no run may be repeated exactly. To overcome this, we
need to preserve the seed used for the pseudorandom number generator. If
we saved a seed for each CPU, however, we would not be able to execute the

same run on a differing number of CPUs.
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The solution used was to determine the generator seed algorithmically,
by computing a function of each atom’s coordinates. The generator is
reinitialized for each atom. Use of a function of the coordinates ensures that
there is no dependency on the number of CPUs, the assignment of atoms to
CPUs, or any other aspect of the parallelism.

There is, of course, an option for production runs to use true random
numbers seeded by the time-of-day clock on each CPU.
5.6.10. Rigid Molecules

Rigid molecules are handled with a quaternion method [19]. The
quaternion represents the rotational state of the molecule. The forces applied
to atoms in the molecule are decomposed into a center-of-mass translational
force and a torque. The translational force is applied to the center of mass of
the molecule, which can be integrated normally. The torque is used to update
the angular momentum of the molecule, which is in turn used to generate the
new rotational quaternion through an iterative procedure.
5.6.11. Perturbation Thermodynamics

A limited capability to perform perturbation thermodynamics
calculations has been implemented. The program allows individual atoms to
be mapped from one atom type to another. Only the nonbonded parameters

(van der Waals and charge) are affected. The value of A, the percentage blend
of the two atom types, may be specified. If two values of A are given, the
program evaluates energies with each value at each timestep and prints the

resulting energy difference along with various statistical information. Only

one value of A is used to determine the forces that control the dynamics.
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5.7. Input/Output

To ease the transition from workstation-based programs, the program
reads BIOGRAF-format forcefield and structure files, with only minor
modifications needed to simplify the code or support additional functionality.

Input data to the simulation includes a control file giving parameters
for the dynamics, a forcefield file giving parameters for the various terms in
the energy expression, and a structure file containing the atomic position,
charge, and connectivity information. The input data set totals 80-120 bytes
per atom (depending on the system’s connectivity).

Output includes the potential and kinetic energy at each timestep, as
well as other parameters of the dynamics, such as the total Hamiltonian. At
user-specified intervals, snapshots of the system are taken containing
positions, velocities, and forces on each atom. These allow analysis of the
properties of the system (including evolution with time) and also serve the
important purpose of allowing the simulation to be restarted. The output
files contain 72 bytes per atom, plus a small header, and a possible trailer for

periodic boundary condition systems.

5.8. Parallelization
The CMM was initially implemented on single-processor workstations.
Transferring the code to a single processor of the KSR-1 was simple, but
achieving an efficient parallel implementation required substantial work.
The primary method of parallelization used is domain decomposition.
We partition the cells (at all levels) across the set of CPUs. Each CPU then
computes all relevant information for the cells and atoms it has been

assigned, communicating with other CPUs as necessary. The two major
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obstacles to peak efficiency are the amount of communication required and

imbalances in the amount of computation required on each CPU.

5.9. Communications

Since the CMM decomposes space into an octree of cells, it is natural to
decompose the MD data across the processors of a parallel machine in the
same spatial manner. Each processor is then responsible for a volume of
space, and communication is only required across the surface area of that
volume.

Minimizing this surface area while distributing the data is highly
desirable to keep communications costs low. To achieve this goal, each cell is
assigned a number. We use an octree numbering system, in which a cell’s
number is equal to its parent’s number multiplied by 8 plus an index varying
from O to 7. This system ensures that consecutively-numbered cells at the
same level are generally close to each other in space. In particular, any range
of cell numbers tends to form one or two approximately-cubic domains.
Assigning such a range of cell numbers to each CPU will then tend to keep
the surface area associated with each CPU small. Although this may not be
the ideal partitioning, it works well, even on highly irregular (non-cubic)
systems and is simple to implement.

A cell’s number can thus be represented by a sequence of octal (base 8)
digits, each corresponding to the child index at a different level.

Within this numbering system, the numbers of a cell’s children or

parent can be computed using simple expressions:

child = nparent X 8 + lndexchild

nparent = [nchild / 8]

n
(1)
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where the square brackets denote the greatest-integer function.

Determining the number of a cell’s neighbor in, say, the —x direction is
slightly more complex. Conceptually, we wish to subtract one from an integer
composed of the bits forming the x coordinate of the cell. These bits are the
lowest-order bits of each octal digit (three bit group). We can thus use the
following C code to mask out the desired bits and perform the subtraction
with borrows, if necessary, through the intervening bits, which are then

restored:
mask = 01111111111; /* octal */
nmask = ~mask;
x = cell & mask;
if (x > 0) {

return (x - 1) & mask | (cell & nmask);
) )
else {

return -1; /* no such neighbor */
}

Similar code applies to the other directions (the mask need merely be
shifted) and to the positive directions (requiring additions with carries rather

than subtractions with borrowing).

5.10. Dynamic Load Balancing

Because this implementation of the CMM does not store information
for unoccupied cells, and because systems of interest are often irregularly
shaped, load balancing is a particular problem with this code.

The simplest approach is to assign the same number of leaf cells to
each CPU. This fails, however, since many cells may be empty. Particularly

with regular cell numberings, assigning equal-sized ranges of cells to CPUs
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can often lead to some CPUs not having any atoms (and thus computations)
at all.

To a first approximation, the computational time per timestep is
dominated by the nearfield interactions, which in turn are dependent on the
number of atoms (or occupied cells) assigned to each processor. Therefore, we
arrange for each processor to be responsible for a consecutively-numbered
range of cells containing no less than ngsoms/ncpus atoms (except for the last
CPU). The use of ranges keeps the surface area low, as mentioned above, and
also limits the size of the tables needed to determine on which CPU a given
cell resides to merely one integer per CPU. This approach led to satisfactory
load balancing.

Atom movements may cause the load to become unbalanced again.
Each cell can determine how many atoms it contains; a simple, rapid linear
sweep through the CPUs then can readjust the cell ranges and communicate
the cell and atom data to their new locations. The KSR architecture makes
this last step trivial: data migrates to each processor’s cache as it is
referenced in the next timestep, so it is not necessary to communicate it
ahead of time.

The final code uses an even more sophisticated approach. After the
initial load balance using the above technique, the amount of time each CPU
spends waiting at synchronization points is measured. CPUs with longer
waiting times do not have enough work. At intervals in the simulation, each
CPU compares its accumulated waiting time with the average value across
all the CPUs. Those with shorter waiting times give up cells and atoms to

those that have longer waiting times, in proportion to the ratio of the waiting
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time to the average. The proportionality constant is adjustable and was
empirically chosen to be 2.

This more advanced repartitioning strategy led to significant
performance improvements on irregular problems. See Chapter 7 for more
details.

Upper levels in the tree are assigned in such a way as to generally
minimize the amount of communication required during tree traversals. A
parent cell is assigned to the same CPU as its 0-th numbered child. Given
the load-balancing-determined ranges of leaf cells on each CPU, it is simple
to determine the CPU containing a higher-level cell by a simple shift and

binary search.

5.11. Avoiding Synchronization

Since the KSR architecture provides a shared memory programming
model, we can avoid some synchronizations that would otherwise be required
to maintain data dependencies by allowing processors to explicitly check for
the availability of needed data. This is accomplished by placing a “volatile”
variable in each cell data structure that is set to a different value depending
on what portions of the cell data have been computed. Processors requiring
cell data to proceed can check the variable and wait if the values they need
have not yet been calculated. The structure of the algorithm guarantees that
deadlock will never occur.

Avoiding global synchronizations, in which processors that may not yet
have data dependencies nevertheless must wait for slower processors,

substantially improves the efficiency and speed of the code. On large

problems with sufficient numbers of cells and atoms per processor, almost no
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waiting for data dependencies occurs at the lower, most populous levels of the
tree.
When global synchronizations do need to be performed, they are
implemented using the KSR-supplied, POSIX-compatible barrier primitive.
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Chapter 6. Implementation on Message Passing

Architectures

6.1. Introduction

The KSR architecture is unique among existing massively parallel
machines, and the demise of the company promises to maintain that status
for the near term. A more common architecture uses the message-passing
model, in which each processor has its own dedicated memory, inaccessible to
any other processor, and communications are explicitly performed through
messages passed from one processor to another. Examples of message-
passing architectures include the Intel Touchstone Delta and Paragon XP-S,
the IBM SP-1 and SP-2, the Cray T-3D when programmed using PVM, and
the experimental MIT J-Machine.

Current multicomputers can be classified as coarse-grain systems in
which tens to hundreds of processors are relatively loosely coupled,
communicating using (optimally) large messages. At one end of this grouping
are workstation clusters and machines like the IBM SP-2, which run a
complete operating system on each node; at the other end are machines like
the Cray T3D, Intel Delta/Paragon, or KSR (which can also be programmed
using a message-passing model) which are more tightly coupled and use a
distributed OS or a simple runtime system.

A major shift of emphasis in architectural design for parallel
computers is occurring, however. New fine-grain multicomputers built from
thousands of processors, coupled using a low-latency, small, active message
paradigm, show great promise in improving the capability of parallel

systems. Their primary advantages lie in the ability to scale well to orders of
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magnitude more processors than existing machines, the low overhead cost of
the active-message communications, and the ease of implementation of the
object-oriented paradigm that is becoming the fundamental basis of software
technology. This new class of machines is exemplified by the MIT J-Machine
prototype.

It is not yet clear how to use these new machines for non-trivial
applications, how best to program them, or how best to compile programs for
them. Previous work in this area has led to the development of prototype
programming systems for the J-Machine and portable programming
abstractions that can be used to implement a wide variety of irregular
concurrent algorithms. These methods are now at the point where they can
be applied to real-world problems in materials simulation.

The computational routines developed from the KSR code have been
incorporated into a second code currently running on the Caltech/CSC Intel
Touchstone Delta and Paragon XP/S machines, and potentially portable to
the JPL Cray T3D. This code uses a new communications architecture based
on a portable active message library, and thus also compiles on the prototype
MIT J-Machine. It is suitable for calculations on very large-scale systems of
up to 20 million atoms. The code also serves as a testbed for flexible
optimization strategies designed to give efficient performance on traditional
coarse-grain as well as fine-grain processors despite the highly asynchronous,

multithreaded nature of the communications strategy.

6.2. Message Types
Five types of messages implement the heart of the CMM algorithm:
1. Cell center sent from a child cell to its parent cell.

2. Multipoles sent from a child cell to its parent cell.
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3. Multipoles sent from a cell to its PNCs.
4. Taylor series coefficients sent from a parent cell to its children.
5. Atoms sent from a leaf cell to its neighbors.

The first four of these are used to compute the farfield and occur only
at intervals; the last type of message must be sent at every timestep.

Note that the cell centers need to be sent up the tree before the
multipoles because each parent cell needs to determine what its center is
before it can process incoming multipoles from its children.

Additional message types are used for initialization, synchronization,

flow control, and atom reassignment.

6.3. Active Messages

An active message model was used for the development of the code. In
this model, reception of a message triggers the execution of a function
specified in the message with the message contents passed as an argument or
arguments to the function. This model allows low-latency communications
through the avoidance of copying. It also leads to a natural, asynchronous,
multithreaded style of programming. These advantages of the active message
model may make it the preferred programming model for future generations
of multicomputers.

Currently, the active message model is the preferred model for
programming experimental fine grain parallel processing hardware such as
the MIT J-Machine and M-Machine [1,2,3,4,5], which are among the targeted
platforms for this code.

As an example, the second type of message from the previous section,
involving the communication of multipoles from a cell to its parent. This is

implemented through an active message of type CHILD, with the destination
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node, destination (parent) cell, and sending cell’s multipoles as arguments.
When such a message is received on the destination node, it triggers the
invocation of the child () routine which parses the arguments, obtains the
appropriate destination cell, and calls a purely computational routine,
identical with the KSR code’s corresponding routine, to combine the child’s
multipoles with the parent’s.

Although active messages have not been extensively used on
traditional multicomputers such as the Intel’s Delta and Paragon [6,7], we
have found that refinements can be added to improve performance on such
architectures, primarily by gathering together multiple small messages into a
few large messages. This buffering significantly reduces per-byte overhead;
improvements in wall clock time of factors of 2 to 5 for a five million atom
case were observed when buffering was implemented.

Since the fundamental messaging primitives have no flow control, we
implemented a flow control system on top of the active messages. Each
processor is allowed to send a certain number of messages (a window) to each
other processor in the system. When the window is full, it must wait until it
has received acknowledgements before sending more messages. Keeping the
windows on a per-processor basis allows more messages to be outstanding
(not acknowledged) than if a single window were used on each processor.
This in turn reduces the amount of nonproductive busy-waiting on each
processor.

The acknowledgement can often be packed with message data needed
to further the calculation. In addition, we could optimize further by sending
buffered messages taking into account the size of the system message buffer,

as indicated during program invocation. The buffering strategy we use not
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only handles flow control on the underlying message system, but also reduces
the overall latency costs by sending fewer larger buffers, rather than more
smaller buffers.

There are two possible messaging strategies: a “pull” strategy in which
data is requested from another processor and a “push” strategy in which data
is sent to a destination processor. The “pull” strategy requires two messages
per data transfer, while the “push” strategy could possibly be optimized to
only use one message per transfer, if empty acknowledgements were not
required. The expected savings led us to use the latter strategy.

Portability across a wide range of message-passing machines, including
the experimental MIT J-Machine, was desired. To achieve this goal, the
message-passing code is organized as a set of procedures executed via what
amount to remote procedure calls. The main program is simply a dispatcher
that executes the appropriate procedure for a given message type, with
arguments obtained from the message data.

The active message strategy was implemented on top of the Intel-
provided messaging system, NX.

One additional optimization can be performed within the context of the
CMM. Often, the same data (such as a cell’s multipoles or its atoms) must be
sent to multiple neighboring cells that are not on the local node. In many
cases, all of those remote cells will be assigned to the same CPU. In that
event, we can eliminate the redundant data transmissions by sending only
one copy of the data but specifying that multiple cells as destinations. Such

redundancy removal can provide significant performance gains.
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6.4. Load Balancing

The message-passing code has not yet had the sophisticated load
balancing advances of the KSR code implemented in it. Currently, an
external program divides up cells among processors so that the number of
atoms per processor is approximately equal, generating a map. The atoms in
the input BIOGRAF file are then distributed to multiple “split” BIOGRAF
files, one for each CPU, according to this map. This initial load balancing
step is the only one that occurs; there is no dynamic load balancing during

the course of the simulation.

6.5. Input/Output

Input data to the simulation, as for the KSR code, includes a control
file giving parameters for the dynamics, a forcefield file giving parameters for
the various terms in the energy expression, and a set of structure files, one
per CPU, containing the atomic position, charge, and connectivity
information. These structure files are generated by the load balancing
preprocessor from a single, unified structure file based on the number of
CPUs to be employed. The input data set totals 80-120 bytes per atom
(depending on the system’s connectivity).

Since large systems of atoms can span hundreds of megabytes per
input file per processor, we found this approach to be stressful for the
relatively small number of I/O nodes handling the disks on the Intel Paragon
and Delta. When each processor opens its own file, the read requests are
funneling through very few (16 on the 512 compute node Paragon we ran our
timings on) I/O nodes. The I/O nodes get overloaded retrieving information
spread across the disks, so we must throttle our requests. Another approach

would have been to reorganize the single, unified structure file such that each
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processor could seek to its own place in the file and read. This would have
allowed us to take advantage of the Intel optimized global read/write calls,
but moved away from the single reader/writer mode which the J-Machine
prefers. Having all the processors read all the atoms from the structure file,
discarding those that are not local, is probably too expensive for the multi-
gigabyte data sets needed for very large systems.

Output is again similar to the KSR code and includes the potential and
kinetic energy at each timestep, as well as other parameters of the dynamics.
At user-specified intervals, snapshots of the system are taken containing
positions, velocities, and forces on each atom. Each snapshot is composed of
one file written from each CPU.

We found that many hours of production runs not only needed the
flexibility of restarting, due to machine crashes and varying scheduling
policies, but would have also benefited from resuming on a different number
of processors than the original run. Since the startup and checkpoint files
were written on a per-processor basis, we would have had to reassign cells
and atoms (and rebalance the load) if the number of processors changed. This
was infeasible given the current I/O architecture; use of a unified input file
might make this easier.

Although calculation per timestep might take longer on smaller
numbers of processors, available CPU time for small to medium numbers of
processors is often times much greater than similar blocks of time for large
numbers of processors. Thus, time to solution for systems of atoms which
would fit on various sized partitions could have been shortened by flexible

restart capabilities.
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6.6. Data Structures

Cells are stored in hash tables local to each processor. This allows
rapid lookup based on the cell’s level and number. The tree structure is
maintained by utility functions that return the cell numbers for the parent,
children, or neighbors of a given cell, rather than through explicit pointers.

Since cells on different nodes often need to interact, we need a method
for determining which node a given cell at a given level is on. Since each
processor is assigned a consecutive range of leaf cells, and since there is a
fixed rule for assigning parent cells, all that is required is that each node
have a copy of the table describing the leaf cell range limits for all the nodes.
A simple binary search through this table (at most 9 steps for 512 nodes)
produces the number of the node containing a desired cell.

While the nonbond calculations do not depend explicitly on the identity
of atoms within the cells, the bonded calculations must in order to maintain
the correct molecular topology. This requires that a processor calculating a
bonded interaction know the coordinates of the atoms participating in that
interaction. On the KSR, obtaining data from non-local atoms can be left to
the memory system. On message-passing machines, we make the
assumption that all bonded interactions only involve atoms in the same leaf
cell or the nearest-neighbor leaf cells. Since the coordinates of the atoms in
those cells need to be communicated anyway for the nearfield interaction
computation, all we must do is save them until the valence calculations have
been completed.

This portion of the code is just now being implemented; the current
version stores all atom data in hash tables, taking care to keep data from

remote nodes and data from the local node distinct. After each nearfield
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calculation, all of the data required for the valence calculations may be found
in the hash tables. After the valence portion of the code, the remote atoms
may be removed.

On the KSR, each processor may update the forces for non-local atoms
as long as locking is used to prevent simultaneous updates by multiple
processors. The message-passing code updates the partial forces in the local
copies of remote atoms and then communicates these partial sums back to the
“home” node after all of the bonded calculations have been performed. No

locking is needed since only the local processor can access the atoms’ memory.

6.7. Computational Routines

The key feature of the Delta/J-Machine port is the constancy of the
computational routines developed originally on the KSR. Since computation
and communication were separated during the incremental parallelization on
that machine, large portions of the KSR code could be incorporated directly

into the new message-passing structure without modification.
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Chapter 7. Performance

7.1. Introduction

There are three important aspects to the performance of a program.
First, determining the accuracy of the results is crucial. Second, the overall
time to solution is a key criterion. Third, for parallel programs, the
scalability of the code with respect to the size of the system and the number
of processors is important.

The accuracy of the KSR and message-passing codes is identical, as
they use the same computational routines. Their speeds and scalabilities are

evaluated separately below.

7.2. Accuracy

There are two standards to compare against to determine the accuracy
of the CMM. One is of course the exact nonbond calculation using all N2
pairwise interactions. The other is the de facto standard method used for
small systems, spline cutoff.

The spline cutoff method derives from the simplest possible way of
reducing the scaling of the nonbond calculation: ignoring all interactions
between atoms farther apart than a certain distance. Since this leads to a
discontinuity in the energy function at the cutoff distance, a cubic spline
function is used to smooth the energy in that region. Typical distances used
for small systems are 8.0 A for the inner radius of the spline, where the
energy is equal to the unmodified energy, and 8.5 A for the outer radius of the

spline, where the energy has been reduced to zero.
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Given a constant density of atoms, the number of atoms within the

cutoff radius is approximately constant, thereby making the scaling of the

spline cutoff method O(N).

The asymmetric unit of the human rhinovirus-14 protein coat was used

as a test case. The structure was obtained from the Brookhaven Protein Data

Bank (file 4RHV). The forcefield parameters and atomic charges were

obtained from AMBER [1]. This system contains 8,530 atoms, including

crystallographic water molecules.

Rel. | Max. Force | RMS Force

Energy Error | Error Error _ Error _

Method (kcal/mol) | (kcal/mol)| (%) |[(kcal/mol/A) | (kcal/mol/A)
Exact -1.44298x104

Spline-Cutoff [|-1.39980x104 +431.8| +3.1% 40.17 7.06

CMM/center |[|-1.43682x104 +61.6| +0.4% 2.68 0.34

CMM/centroid || -1.44097x104 +20.1| +0.1% 1.99 0.28

Table 7-1. Accuracy of energy and force calculations.

Table 7-1 presents the energy and force results for the various
methods. The exact calculation was performed using all 72,752,370 pairwise
interactions in the system. The spline cutoff method used 8.0 A and 8.5 A
inner and outer distances. The CMM used a 128 A cube bounding box and a
tree depth (maximum level) of 5, resulting in 3.9 atoms per occupied leaf cell.
The multipole expansions were truncated at the level of quadrupoles.

The results show that for this representative system, the CMM
outperforms the traditional spline-cutoff method by an order of magnitude in

all categories. Of particular importance is the much smaller force error.
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Using cell centroids instead of geometric centers significantly improves the
energy, with a small additional improvement to the force errors, at virtually
no additional cost.

Finally, the CMM is also much faster than the spline cutoff method,
even with its improved accuracy. On a single (KSR-1, 20 MHz) CPU, the test
case required 84.2 sec to set up and 28.1 sec to calculate using spline cutoff:
the CMM required only 14.3 sec to set up and 6.0 sec calculation time. Since
both methods are approximately O(V), this ratio of times should scale to
larger systems as well.

From a purely numerical standpoint, then, the CMM is far superior to
spline-cutoff. There is one small disadvantage to using the CMM, however: it
is not guaranteed to produce forces which satisfy Newton’s Third Law. Since
atoms that are distant from one another interact only through fields, and
since those fields themselves are only approximate representations of the
effects of groups of atoms, the forces generated may not be decomposable into
a set of pairwise, equal and opposite forces. It is interesting to note that the
Ewald sum commonly used for handling systems with periodic boundary
conditions also uses fields and hence might produce non-Newtonian forces.
The spline-cutoff method always deals with pairs of atoms and so must
rigorously satisfy the Third Law.

Such errors in the forces have been observed to produce three effects.
First, an artifactual net force and net torque may be applied to the system.
Second, integration of the net force may lead to a net velocity, which can
appear as a directional flow in the system. Third, errors in the velocities can
contribute to the system’s kinetic energy, which in turn affects the total

Hamiltonian.
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Code has been added to the program to remove all three of these
effects, as desired by the user. Net translational forces are removed by
subtracting a small corrective force vector equal to the net force divided by
the number of atoms from each atom in the system. Similarly, net velocities
can be removed by subtracting (mass-weighted) corrective velocity vectors
from each atom. Finally, an experimental strategy for rescaling the system
velocities to produce a rigorously conserved Hamiltonian was implemented.

Rather than instituting such ad hoc corrections, however, the user can
also increase the accuracy of the computed forces by reducing the interval
between farfield updates or by reducing the timestep of the simulation. We
have found that a farfield update interval of 5 works well for most systems,
with a reduction to 2 being necessary in a few cases. Performing farfield
updates every step virtually eliminates the Hamiltonian drift in almost all

cases.

7.3. Timing

Time to solution for the message-passing code is currently rather poor
due to lack of optimization of various parts of the communication routines. A
naive implementation of active messages on current hardware produces many
small messages, each with considerable latency (ironically, the exact opposite
of the intended effect of active messages on future hardware). To overcome
this, we can bundle together multiple messages that are destined for the
same node. Analyzing how best to do this is an ongoing research project.

With the current version of the code, a 1 million atom argon cluster
system (calculating only nonbonded forces) takes approximately 35 sec per

timestep on all 512 nodes of the Intel Paragon, using a farfield update
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frequency of 5. A 10 million atom system, the largest run to date, takes
approximately 330 sec per timestep on all 512 nodes.

The KSR version, in contrast, does substantially better in performance
per CPU. On a 1 million atom virus dimer, including all valence forcefield
terms, we obtain a time of 64.7 sec on 60 CPUs, or about four times the
performance of the Paragon code.

The dynamic load balancing implemented in the KSR code can have a
substantial effect on the timing. On a very small, 463 atom system running
on 4 nodes at CMM level 2, we see an improvement in the farfield
computation time of 13% (from 55 ms to 48 ms) due to the reduced load

imbalance.

7.4. Scalability

Each of the steps comprising the CMM is linear and scalable, or nearly
so.

There are seven steps in the CMM; these may be divided into two
major parts. The five steps of the first part compute the farfield (the Taylor
series expansions representing the field from atoms far away from each
atom), while the two steps of the second part compute the nearfield (the
explicit calculation of effects due to atoms near each atom).

The first step, generation of the leaf cell multipoles, is fully linear and
runs in parallel since there are no data dependencies.

The second and third steps, computation of the cell centers and
propagation of the multipoles upward through the tree, both require a
traversal of the octree. Since the number of cells in the system is the sum of
a geometric series with a logarithmic number of terms, it is essentially

proportional to the number of atoms.
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nleaves = natoms/ K

Ppovels = logg nleaves (1)
nﬂ i
—_ S o — 8natoms 1
ncells_ZS = 7% _7

i=0
where x is the number of atoms per cell at the finest level, a constant.

Each pass through the tree, whether upward or downward, involves a
constant number of computations per cell and therefore is linear in the
number of atoms in the system. The tree traversals cannot be made fully
parallel, however, as there are increased data dependencies near the root of
the tree. On the other hand, since the number of computations to be done
near the root is relatively small, due to the high degree (8) of the octree, the
tree traversal time is dominated by the computations near the leaves, which
are highly parallel.

The fourth and fifth steps, the PNC computation and the propagation
of the Taylor series coefficients downward through the tree are also linear
and highly parallel as argued above.

The two steps of the nearfield computation (computing explicit
interactions with atoms in the same cell and with atoms in neighboring cells)
are perfectly linear and can also execute in a parallel fashion, limited only by
the communications overhead of transmitting atoms from leaf cells to their
neighbors.

Finally, the dynamics step has only one data dependency, a global sum
to determine the overall kinetic energy, with the rest being perfectly parallel
and linear.

The valence computations are essentially linear in the number of
atoms, since each atom is only connected to a limited number of other atoms

and can thus participate in only a limited number of valence interactions. In
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the message-passing code, we assume that no additional communications will
be required to compute the valence interactions; this should also hold true for
the KSR code, since the valence computations occur after the nearfield step in
which neighboring atoms are accessed and brought into the processor’s cache.

The total amount of computation that occurs is thus linear in the
number of atoms. Nonlinearities in the scaling of computation with number
of CPUs are the result of load balancing inefficiencies, which lead to waiting
at global synchronization points.

The total amount of communication that is required is almost linear in
the number of atoms, except for the tree effects described above. The fraction
of this communication that occurs off-node, however, varies depending on the
number of CPUs used, and will in general vary as the total surface area of the

boundaries between cells assigned to each CPU, which is approximately

213 1/3
n n

atoms " “cpus*

Further complicating the analysis, though, is the fact that much of

this communication can itself occur in parallel. The amount of
communication can also be decreased by taking into account the fact that an
atom or PNC may need to interact with multiple cells on the same
destination node. This avoidance of redundant transmissions has been
implemented in the message-passing code for the PNC multipole
communication step, but not yet for the nearfield atom communication step.
On the KSR, this redundancy is automatically eliminated because the data is
cached on the destination node.

The best case time is thus

C+t +t

L compnatoms / ncpus comm (2)

mestep —

while the worst case time is
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_ 2/3 _1/3
ttimestep =C+ tcompnatoms / ncpus (l + kloadbal) + tcommnatomsncpus (3)

where C is constant setup overhead, ¢omp is the computation time per atom,
tcomm 18 the communication time per cell, and kj,44pq; represents the
overhead due to imperfect load balancing.

The message-passing program was tested for performance on a series
of multi-million atom argon cluster systems. Although these systems do not
include Coulombic charges and their interactions, all Coulomb terms were
still calculated (and correctly resulted in zero energy and zero force) and
hence are included in the timing results. The calculations were run on the
CSC Paragon XP/S using OSF/1 Release 1.0.4. Five cluster sizes were used:
1 million, 2 million, 5 million, 8 million, and 10 million atoms.

For a constant number of atoms, if we plot the logarithm of the time
versus the logarithm of the number of CPUs, we will ideally get a line of slope
-1 by equation 2. As ngpys gets large, the slope should level off and
eventually begin increasing to a value of at most 1/3 as in equation 3,
assuming that imperfect load balancing does not depend much on the number
of CPUs used.

Figure 7-1 shows such a graph of log(time) against log(CPUs) for the
farfield Taylor series generation process. The number of CPUs along the X
axis ranges from 64 to 512. Three lines are drawn to show the scaling for
systems of different sizes ranging from 1 million to 5 million atoms. The
8 million and 10 million atom systems could only be run on all 512 CPUs.
The thick line shows the slope that would be achieved for ideal (perfectly
linear) scaling.

This portion of the calculation contains all of the tree manipulations.

The effects of the data dependencies inherent in the tree, which cause
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imperfect parallelization, can be seen by the less negative slope of the lines,
especially for the smallest, 1 million atom system. Larger systems, in which
the amount of computation per node increases, show better scaling which is
more nearly parallel to the ideal line. Note that we would only reach the
regime of zero or positive slope in pathological cases with much too little
computation for the amount of communication required (i.e. too few atoms
spread across too many CPUs).

Note that the farfield computation is only performed at intervals, so its

imperfect scaling has a relatively small effect on the overall time to solution.
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Figure 7-1. Scaling vs. number of CPUs for farfield computation.
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Figure 7-2 shows the same type of graph, but for the nearfield and
integration computations. This portion of the calculation contains no tree-

derived data dependencies and its scaling curves are close to parallel with the

ideal line.
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Figure 7-2. Scaling vs. number of CPUs for nearfield/integration steps.

For a constant number of CPUs, if we plot the time per atom versus
the number of atoms, we should ideally get a constant. Deviation from the
constant line should be most apparent at small numbers of atoms, since the

. . . -1/3 .
deviation is expected to scale as, at worst, n_.. These graphs are shown in

Figure 7-3 for the farfield computation and Figure 7-4 for the nearfield and
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integration steps, in which the X axis is the number of atoms in the simulated
system in millions and the Y axis is the time spent in the indicated portion of

the code divided by the number of atoms.
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Figure 7-3. Scaling vs. number of atoms for farfield computation.
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Dynamics Step Scaling
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Figure 7-4. Scaling vs. number of atoms for nearfield/integration steps.

We see that the lines for 128, 256, and 512 CPUS are close to flat, with
the expected upturn for the farfield computation at small system sizes. To
show that this is in fact due to the communications overhead, as described in
the theoretical scaling formula (equation 3), we can plot the time per atom

against the number of atoms to the —1/3 power. This should give lines with a

slope of zero in the best case, or . _n'”’ (a positive constant) in the worst

comm’ " cpus
case. In Figure 7-5, the lines of zero or constant positive slope show that the
imperfect scaling for the farfield computation is in fact due to the

communications term in the theoretical scaling formula.
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Farfield Scaling
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Figure 7-5. Scaling vs. n_ " for farfield computation.

On the KSR, we get close to linear scaling with both CPUs and atoms.
Inverting equation 2 above, we can compute an expected value of tcomp from
the time per timestep, the number of CPUs, and the number of atoms. Doing

so gives the approximately equal values in the following table for a viral

system, including valence forcefield interactions:

Atoms (millions) 0.5 1.0 1.0 { 0.5 1.0

CPUs 30 | 30 | 45 | 60 | 60

Time (CPU-ms/atom) || 3.07 | 3.55{ 3.35 ]| 4.39 | 3.98

Table 7-2. Scalability for KSR code.



74
For comparison, fitting lines to the above graphs for the message-
passing code gives fcomp values ranging from 5.6 to 18 CPU-ms/atom for the
farfield step and 12 to 18 CPU-ms/atom for the nearfield and dynamics step.
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PART III — APPLICATIONS
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Chapter 8. TVN Dynamics

8.1. Introduction

Questions exist as to whether constant-temperature, constant-volume
(TVN) dynamics properly reproduces physical properties of systems.
Although the equations of motion guarantee that a proper canonical
distribution will be generated eventually, the primary concern is whether the
dynamics reaches ergodicity, and thus an adequate sampling of the
distribution, in a reasonable amount of time.

The Nosé-Hoover formulation has one free parameter, 15. This variable
controls the rate of transfer of kinetic energy from the system to the bath and
vice versa and thus the rate of equilibration. There have been no clear
guidelines as to how this parameter should be chosen [1].

We investigated how 15 affects dynamics in a wide variety of systems,

including argon and methane clusters and periodic poly(ethylene) models.

8.2. Procedure

Five structures were generated for testing. Argon atoms were
arranged in a Mackay icosahedron [2] of five shells (561 atoms). An
additional argon system was built using a 256 atom face centered cubic (fcc)
unit cell, 21.6204 A on a side. A methane cluster was built by replacing each
argon atom in a three-shell Mackay icosahedral structure with a methane
molecule; the resulting cluster of 735 atoms was then minimized using
BIOGRATF [3]. Two poly(ethylene) (PE) systems were also built. One was an
infinite system composed of a minimized single chain fragment of 398 atoms

in an 18 A cubic unit cell. The ends of the chain fragment were connected
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through the unit cell boundary to form the infinite chain. The other PE
system was a 2x6x4 supercell of 576 atoms (16 chain fragments, each of 6
monomer units).

The argon systems are a very simple, finite cluster with only heavy
atoms and weak forces and an extension of that system to periodic boundary
conditions. The methane system is similar to the argon cluster, but it also
includes high-frequency C-H bonds. The PE cases have both periodic
boundary conditions and high-frequency bonds, first using only one chain and
then with inter-chain interactions.

Each system was simulated for 100 ps, using 1 fs timesteps. 15 values
between 0.01 ps and 1.0 ps were used. The bath temperature was set to 20 K
for the argon and methane cases; it was fixed at 300 K for the PE systems.

The kinetic energy for each run was plotted against time to observe
how quickly the system converged to the desired temperature. In addition,
the kinetic energy distribution was computed by dividing the range of kinetic
energies into 100 bins and counting the number of values falling into each

bin. In the ideal case, these distributions should be of Gaussian form [1].

8.3. Results

The kinetic energy distributions for various values of 15 are plotted in
Figures 8-1 through 8-5. The argon cluster results were essentially the same
as those for the fcc argon system and are not shown; the single-chain PE
results similarly were essentially identical to the multi-chain PE results and
are omitted.

Two particular features are notable. At longer values of 15, the

distributions have two distinct peaks and are often skewed so that the lower-
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energy peak is sharper and taller. For the argon systems, the distributions
for very short values of 15 in Figure 8-3 also show double-peaked behavior.

The first feature is explained by looking at sample plots of the kinetic
energy versus time in Figures 8-6 through 8-12. The system is coupled to the
bath via what is essentially a harmonic oscillator of period 2rnts. For long
values of 15 (Figures 8-7, and 8-9), relatively few cycles of this oscillator have
occurred by the end of the 100 ps simulation. The oscillator frequency is
outside the range of the modes of the system, so transfer of energy from the
system to the bath occurs only through the anharmonicities of the system’s
oscillators. This process is slow. Thus, by the end of the simulation the
system is still equilibrating and has not yet reached ergodicity. The resulting
distribution is dominated by the turning points of the Nosé oscillator, where
the system spends the most time.

At shorter values of 15 (Figures 8-6, 8-8, and 8-10), the oscillator
frequency couples well with the modes of the system. Energy is transferred
easily between the system and the bath, and ergodicity is reached more
quickly, both in terms of simulation time and in terms of the number of
oscillator periods.

At very short values of 15, as seen in the argon cases (Figure 8-3), the
distributions again become double-peaked. Note, however, that the range of
kinetic energies in these cases is much smaller than for long 5. Again,
reference to the kinetic energy versus time plots (Figure 8-9) shows that the
system is now highly constrained to a very limited range of KE values. In
these cases, with heavy atoms, energy is transferred too rapidly from the
system to the bath or vice versa, and the system has no opportunity to reach

ergodicity.
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The short 15 cases for argon were run with an unusually small timestep
of 1 fs. Using a more typical longer timestep caused numerical instabilities

as the Nosé oscillator failed to be properly integrated.
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8.4. Conclusions

Since rapid convergence is almost always desired over slower
convergence, the shortest possible 15 should be used. From the argon cases, it
is apparent that there is a limit to how short this can be, however. Between
the twin considerations of integrability of the Nosé oscillator and allowing the
system to vary somewhat in KE to maintain ergodicity, a suitable choice of 15
appears to be 10 times the normal dynamics timestep, or 0.01 ps for typical
systems involving hydrogen atoms. Using such a value, convergence to the

desired temperature can be achieved in a few hundred timesteps.
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Chapter 9. Argon Clusters

9.1. Introduction

Argon clusters have long been studied to determine the structures of
van der Waals aggregates. For small clusters, certain “magic numbers” [1] of
atoms have been found which lead to more stable structures than clusters
with even one more or one fewer atom. The most stable structure for these
clusters is typically the Mackay icosahedron [2].

Bulk solid argon, however, is known [3] to be most stable as a face-
centered cubic structure, which is not compatible with the Mackay
icosahedral symmetry. To investigate the transition between the small finite
cluster behavior and the bulk structure, we modelled a “magic number”

cluster of about five million argon atoms using a quenched dynamics process.

9.2. Procedure

We began with a Mackay icosahedral structure of 114 shells,
comprising a total of 5,003,879 atoms. The forcefield used was a simple
Lennard-Jones 12-6 potential with equilibrium radius (R,) of 3.82198 A and
well depth (D,) of 0.23725 kcal/mol, chosen to agree with the bulk lattice
spacing and the 0 K heat of vaporization (after correcting for zero-point
energy). CMM level 8 was used with a bounding cube 1440 A on a side; the
farfield was updated every 5 timesteps. The initial potential energy of the
starting structure using this potential was —9.20x106 keal/mol.

We performed 400 steps (4 ps) of Nosé-Hoover constant-temperature

(NVT) dynamics at 80 K with a Nosé time constant 15 of 0.1 ps. The kinetic

energy of the system rapidly converged to the desired temperature, which
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was selected to be close to the melting point of bulk argon (at 1 atm), thereby
allowing melting of the initial structure while limiting boil-off of surface
atoms from the cluster.

After the dynamics run, we quenched the system using dynamics at a
temperature of zero K, with all velocities removed after each integration step.
Adequate convergence was achieved after 1350 steps. The final energy was
-9.29x106 kcal/mol, nearly 1% lower than that of the starting structure,
indicating that a more stable structure was found. The RMS force on the

final structure was 5x10—4 kcal/mol/A.

9.3. Results

The final structure was analyzed by comparing simulated diffraction
structure factors computed from it to those computed from the initial Mackay
icosahedral structure. To look at gross structural aspects, we computed the
cluster structure factor (the magnitude of the Fourier transform of the atomic
positions) for 0 <h <10 and -10 <k,1 < 10, using the CMM bounding box as
the unit cell. Certain peaks show significant changes, as much as several
orders of magnitude, from the initial to the final structure. For example, the
peak at (0,7,8) decreases in intensity by a factor of 22, while (2,10,10)
increases by a factor of 752.

Sample contour plots of the logarithms of the structure factors for the
initial and final structures are shown in Figures 9-1 and 9-2. Both figures

show sections through the h=2 plane.
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Figure 9-1. h=2 section of log(structure factor) for initial argon cluster.
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Figure 9-2. h=2 section of log(structure factor) for final argon cluster

Additional comparisons were made with the energies of smaller,
optimized Mackay icosahedra and fcc spheres. A number of small (55 to 3925
atom) clusters were generated. Each cluster was minimized for 1000 steps,
which brought all of them essentially to convergence. All energies were
computed using exact nonbonds. The potential energy is expected to contain
two components: one that varies with the number of atoms (the binding
energy) and one that varies with the amount of surface area, or the number of
atoms to the 2/3 power (the surface energy). The energy per atom should
then be close to linear in the number of atoms to the —1/3 power, and this is in

fact observed in Figure 9-3 for both the Mackay icosahedra and fcc spheres.
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Figure 9-3. Comparison of potential energies for argon clusters.

The curves appear to cross between 2057 and 2899 atoms, indicating
that the fcc structure is more stable after this point. The 5 million atom
structure, however, has an energy per atom which, though more negative
than all of the smaller clusters, is well above the curves. This would seem to
indicate that the structure is in fact not a global minimum for that number of

atoms.

9.4. Conclusions

We have shown that molecular dynamics and minimization
calculations on systems as large as 5 million atoms are feasible given current
software and hardware technology.

The results of these simulations on argon clusters suggest that, even at

the achieved local minimum, interesting structural changes are occuring, as
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evidenced by the changes in peaks in the structure factor. Further analysis
of these changes will be necessary.

Although some visualization of these clusters has been performed,
bringing to bear the substantial capabilities of the human visual system on
the analysis of these structures will require more advanced visualization
tools that permit the user to select portions of the cluster to view, rather than
overwhelming the limited screen resolution with all 5 million particles.

The primary limitation on improving the search for a global minimum
for the 5 million atom cluster was the available minimization technology.
Dynamics at 0 K has relatively poor convergence properties, particularly
when compared with standard methods such as conjugate gradient
minimization. Installation of such improved minimizers in the code is a high

priority task.
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Chapter 10. Surface Tension of Liquid H2O and H>O on
PTFE

10.1. Introduction

Determining the surface tension of bulk liquids is a very difficult
problem with standard small-cluster or infinite periodic boundary condition
simulation methods. Large-scale molecular mechanics offers the opportunity
to use large clusters which more accurately simulate bulk properties and thus

promises to enable the prediction of surface tensions.

10.2. Drop Procedure

Water cubes from Jorgensen et al. [1] were used to build large
supercells. In particular, a 216 molecule cube was replicated 8 times in each
Cartesian direction to form a 110,000 molecule box.

A sphere of radius 50 A was then extracted from the center of this
large box. The sphere contained 17,254 molecules or 51,762 atoms. The
initial sphere density was 0.94 g/mm3.

Microcanonical dynamics at 300 K was then performed on the system.
A timestep of 1 fs was used, though longer timesteps should be feasible. An
iterative rigid molecule procedure based on SHAKE [2] was used to constrain
the bonds and angles in the water molecules. The temperature was rescaled
periodically, every 10 fs. The CMM parameters used were a maximum level
of 5 and farfield updates performed every timestep. The TIP3P forcefield
parameters [3] were used to describe the water molecules.

Ideally, reflecting boundary conditions would be used to enable the

formation of a vapor atmosphere around the drop. The performed
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simulations, however, were for relatively short times and hence had

relatively little boil-off of surface molecules.

10.3. Drop Results

After 2450 timesteps, the system temperature was stable and the total
and potential energies were also essentially constant, indicating that
equilibration was achieved.

Visualization of the system shows that the water drop has lost the
periodicity derived from the initial supercell; the molecular positions have
been thoroughly randomized. Some shrinkage has occurred. The RMS

radius from the center of mass decreased from 38.69 A to 35.38 A. Using
R .. = \/—-2? Ryys» the computed radius of the final sphere is 45.68 A, a

sphere

shrinkage of about 10%. The resulting density is 1.29 g/mms3.

10.4. PTFE Simulation

Standard polymer simulations typically use one or a few chains or
chain fragments, each composed of a handful of monomer units. These are
then placed in a unit cell with periodic boundary conditions.

This approach has several significant limitations. Molecular weights
are either very small or else infinite, both of which are unphysical.
Interactions between a chain and the images of other chains, or even its own
image, in a neighboring unit cell may lead to unphysical correlations.

Using large-scale molecular mechanics, a different model for bulk
polymers may be generated that may better reproduce physical properties.
Since thousands or millions of atoms may now be handled, molecular weights
can be increased to the range of 105 or 106 typical of experimental values. In

addition, the correlation problem may be avoided by using a very large, but
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finite system. This has the disadvantage of introducing edge effects, but
hopefully the behavior in the center of the system will accurately reproduce
the bulk. Perhaps better still is to use a very large unit cell with periodic

boundary conditions, reducing the correlation problem to negligible levels.

10.5. Procedure

A chain of 143 monomer units (431 atoms) was built in two forms: a
left-handed helix and a right-handed helix. The helix parameters were
obtained from experiment [4].

Sets of helices were then packed together into hexagonal structures
using rotations (about the helical axis) and translations (both in the X-Y
plane to generate the hexagonal lattice and in the Z axis). The lattice
parameters, helical rotations, and Z axis translations were determined from
experimental values. In figure 10-1, the left- and right-handed helices are
depicted as circles with appropriate letters. The spacing between two helices
of the same handedness in the vertical direction is 5.648 A, while the spacing
in the horizontal direction is 9.649 A. If the left-handed helix at the bottom of
the figure is assigned a Z coordinate of zero, then the right-handed helix
above and to the left of it will be offset 0.15 A in the positive Z direction (out
of the plane of the paper). The Z offset between one helix and the next of the
same handedness in the vertical direction, as indicated by the arrow, is 0.12
A; the Z offset in the horizontal direction is 0.05 A. These parameters are

sufficient to allow a system composed of any number of helices to be built.
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Figure 10-1. Experimental PTFE lattice geometry.

These hexagonal models expose three types of surfaces: one composed
of the sides of helices having the same handedness (e.g. the right or left
surfaces in Figure 10-1), one composed of the sides of helices having
alternating handednesses (e.g. the angled surfaces in the figure), and one
composed of the ends of the helices.

The sizes of the models used ranged from 7 chains (3000 atoms) to
2611 chains (1.1 million atoms).

Microcanonical dynamics was performed for 2.4 ps with a timestep of 2
fs. Since only heavy atoms are present, timesteps longer than the usual 1 fs
are feasible for this system.

The forcefield used included accurate torsions with terms up to
cos(120) from quantum mechanical calculations on small model systems [5].

The charges used were also optimized based on simpler systems.
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10.6. Results

The carbon backbones of the polymer chains were visualized to assess

changes that occurred during the dynamics.

As expected, edge effects were seen, with the ends of surface chains
and loops in the centers of surface chains moving into the vacuum. For the

smaller systems, these effects dominated any bulk behavior.
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Figure 10-2. End view of 2611 chain PTFE system after dynamics.
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Figure 10-3. Enlargement of 2611 chain PTFE system after dynamics.

Figure 10-2 is a snapshot of the final state of the million-atom system.
An enlargement of the central portion of this system is displayed in
Figure 10-3.

Disorder of the helices occurred surprisingly readily, even in the
central bulk portion of the system. With less accurate calculations,
supercoiling of the helices was observed. It is possible that longer dynamics

runs will produce the same effect in this calculation.
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10.7. PTFE Surface Procedure

Two cubes of 216 water molecules were placed on the surface of a large,
1.1 million atom hexagon of PTFE. The polymer molecules were fixed in
place in the experimental configuration, while the water was allowed to
move. One cube was placed in the center of a surface (a YZ plane) composed
of sides of helices, all with the same handedness, while the other was placed
on a surface (an XY plane) composed of the ends of the helices. The side-
surface drop is exposed to CF2 groups only, while the end-surface drop is
primarily exposed to CFg groups.

The positions of the cubes were adjusted so that the side of the cube
was the TIP3P oxygen van der Waals radius away from the nearest PTFE
atom.

Microcanonical dynamics at 300 K was then performed. CMM
parameters were: level 6, farfield update every 5 steps. The temperature was
rescaled to 300 K every 200 fs. The iterative SHAKE constraints were used.
Timesteps of 2 fs were found to be feasible and were used.

The PTFE parameters from the previous section were used, along with

TIP3P parameters for the water molecules.

10.8. PTFE Surface Results

After 24 4 ps, the water on PTFE had formed drops, showing no
evidence of the original cubic shape. 7 molecules had boiled away from the
drop on the CF3 end surface, while 10 had left the CFg side surface drop. The
drop shapes are shown in Figures 10-4 and 10-5. Qualitatively, we observe
that the CF3 drop appears to extend farther in the direction perpendicular to

the surface (the Z direction) and also seems to have a smaller contact area
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with the surface. This meshes with our expectation that the end surface

should have lower surface tension, causing water to wet it less easily.

Figure 10-4. Water drop on CF3 surface of PTFE.
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Figure 10-5. Water drop on CFg surface of PTFE.

To quantitate these observations, the distances of the centers of mass
of the drops from the surface were computed. The surface was defined as the
minimum value of the X or Z coordinate over all the drop’s molecules for the
CF2 and CF3 surfaces, respectively. The center of mass for the CFg drop was
found to be 6.73 A away from the surface, while that of the CFg drop was
found to be 9.78 A distant. The CF3 drop is thus in fact elongated in the
surface-normal direction compared with the CF9 drop. Since both drops have
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approximately the same number of molecules, the cross-sectional area of the
CF'3 drop must also be smaller than that of the CFy drop.

We can compute moments of the drops along the three axes to further
investigate the differences between them. We find that the root-mean-square
values of the coordinates parallel to the surface are 9.35 by 8.07 A for the CF3
drop and 9.01 by 10.88 A for the CFy drop, confirming the smaller surface
area for the former.

Since the number of water molecules in each drop is relatively small,
the drops are distorted from the ideal spherical sections. It is thus difficult to

compute quantitative surface tension values from these results.

10.9. Conclusions

Proof-of-principle calculations were performed on a large-scale
spherical drop of water and a million-atom finite PTFE system. These
calculations demonstrated the ability of the code to handle systems much
larger than could be used on ordinary workstations. The results of these
simple calculations indicate possibly fruitful further directions for
investigation.

For the water drop, future work with reflecting boundary conditions
and quaternion rigid molecules should be able to make contact with
experimental studies of drops on the scale of 0.1 pm. For example, a drop
containing 5 million atoms, the same size as previously-simulated argon
clusters, would have a diameter of about 0.05 um.

The simulations of PTFE systems showed surprising amounts of
disorder in the interior of the crystal. Further investigation of this disorder

and possible supercoiling will be necessary.
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The surface tension calculations used systems of greater than one
million atoms. Even though most of those were fixed in place, their effects on
the surface atoms were still computed rigorously. Use of the large, finite
PTFE crystal allowed simulations to occur simultaneously on multiple crystal
surfaces. The surfaces were large enough to avoid edge effects. The results
show that drop formation can be simulated on this small scale, and they
demonstrate the expected trends in drop shape, with the CF3 surface showing
a significantly lower tendency to be wetted by the drop.

Future work in this area would include removing the constraint on the
polymer, allowing it to respond to motions of the water on the surface, and
use of larger drops with quaternion rigid body dynamics instead of the

constraint-based technique used here.
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Chapter 11. Diffusion of Gases through Polymers

11.1. Introduction

Controlling the diffusion of gas molecules through polymer membranes
is a key problem in many industrial processes. It is desirable to predict the
diffusion coefficient for a given gas through a polymer of given composition.
If quantitative diffusion coefficients cannot be obtained, relative diffusion
rates for differing gases are still very useful.

It is generally thought that crystalline regions of the polymer matrix
are too dense and closely packed to allow penetration by the diffusant
molecule. The amorphous or amorphous-crystalline interface regions
apparently control the diffusion process. Accurately simulating diffusion at
an atomistic level thus requires the simulation of amorphous polymers.

Since amorphous regions of a polymer are not well-ordered, use of a
single, short chain or chain fragment and periodic boundary conditions, as is
typically done in order to limit the size of the simulation, is likely to yield
inaccurate results due to the imposed short-range order. Using multiple,
longer chains in a much larger unit cell should give a better approximation of
the true bulk amorphous behavior. This then requires large-scale molecular
mechanics, in the regime from thousands to millions of atoms, the latter
particularly in cases where properties are especially sensitive to molecular
weight.

Key industrial gases for which experimental data are often available
include COg, Og, N2, and He. Important polymers include poly(ethylene),
poly(vinyl chloride), and poly(vinylidene chloride), as well as copolymer

mixtures of the latter two.



105
11.2. Procedure

An amorphous polymer unit cell was generated from a single chain of
poly(ethylene) of 34.5 monomer units built using the BIOGRAF amorphous
builder routine [1], which uses the rotational isomeric state (RIS)
methodology. This single chain was equilibrated at 350 K using Nosé-Hoover
constant-temperature, constant-pressure (TPN) dynamics. The final cell
volume gave a density of 0.87 g/cc.

| This unit cell was then replicated to build a 5x2x1 supercell consisting
of 2090 atoms in 10 polymer chains. The dimensions of the supercell were
approximately cubic: 27.429 x 27.046 x 27.255 A, with angles of 90.0°. The
supercell was relaxed using Nosé-Hoover TVN dynamics (fixed cell
parameters) at 350 K for 50 ps. The resulting structure was highly
disordered, with no apparent residual crystallinity. This structure is depicted
in Figure 11-1.

The resulting unit cell was then scanned for voids using a program
that attempts to fit a sphere of a given radius at each point on a grid within
the unit cell. For COg, the sphere size was chosen to be 3.10 A; for He, 2.5 A
spheres were used. Random voids of adequate size were chosen as the
locations of the diffusant gas molecules. Figure 11-2 shows the starting
position of the COg molecule, along with the surrounding void spaces.

One COg2 molecule or three He atoms were placed in the unit cell. The
COg diffusant molecule was treated as rigid using quaternions.

Dynamics was performed at 350 K for 300 ps using 1 fs timesteps; the

location of the diffusant molecule was tracked at each 0.1 ps interval.
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Figure 11-1. Structure of amorphous PE.
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Figure 11-2. Voids in PE unit cell and initial COy position.
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The forcefield used had been optimized for single-chain periodic
poly(ethylene) [2]. The COg van der Waals parameters used were taken from
the DREIDING II forcefield [3], with charges assigned so as to reproduce the
experimental quadrupole moment. A CMM level of 3 was used; the farfield

update frequency was every 10 steps. The Nosé-Hoover 15 constant was set to

0.01 ps.

11.3. Results

Figure 11-3 shows the path of the CO2 molecule through the unit cell
during the diffusion process. The path appears to be composed of a few
sections in which the molecule remains localized to an area, or trapped,
interleaved with sections in which the molecule moves between areas. The
lines crossing the path indicate the orientation of the COg molecule at 10 ps
intervals through the trajectory. Unexpectedly, it appears that the axis of the
molecule is generally perpendicular to the direction of motion.

Figure 11-4 shows the path of the He atoms. In this case, the more
mobile He atoms appear to avoid being trapped by the polymer. Note that
the three He atoms went off in different directions, and that over the course
of the simulation, they managed to drift through multiple unit cells.

The mean square deviation <[R(t + At) -~ R(t)]2> was computed, where
the angle brackets denote the ensemble average over all possible time origins
¢ and R is the location of the molecule center of mass or atom. A graph of this
function versus values of the time interval Az is shown in Figure 11-5 for COg
and Figure 11-6 for He. The slopes of these curves at large time intervals can
be used to determine the diffusion constant, using

D= lti_1}}°—6—1A—t<[R(t +A1)-R()[') W
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Figure 11-3. Path of COg diffusion.
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Figure 11-4. Path of He diffusion.
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Figure 11-5. Mean square deviation curve for CO9 in PE.
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The resulting diffusion constants are given in Table 11-1 along with

values for two experimental systems [4].

System Temperature =D__i_:f_fusant Diffusion Constant (cmZ2/sec)
Expt. LDPE 298 K He 6.8 x 106

(0.914 g/cc) 298 K COq9 0.372 x 106
Expt. HDPE 298 K He 3.07 x 10-6

(0.964 g/cc) 298 K CO2 0.12x 106
Simulated 350 K He 1.00 x 10~7

(0.87 g/cc) 350 K COs 1.09 x 10-8

Table 11-1. Experimental and simulated diffusion constants.

The simulated diffusion constants are approximately an order of
magnitude lower than the experimental values, even for more dense systems.

Nevertheless, we did find that He diffusion is about 10 times faster
than COg diffusion, which is reasonable given the 30-fold difference in
diffusion constants for a density of 0.964 g/cc, the 20-fold difference for a

density of 0.914 g/cc, and our density of 0.87 g/cc.

11.4. Conclusions

The use of the efficient, parallel molecular dynamics code on smaller
systems of only a few thousand atoms, but simulated for long time periods of
hundreds of ps was demonstrated with this calculation.

Multiple polymer chains produced a significantly more disordered,

amorphous structure than the original single chain.
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We computed a ratio of diffusion constants between CO3 and He that is
of the correct order of magnitude. The low absolute values of the diffusion
constants are likely related to trapping within the polymer medium. As the
simulation length increases, the mean square deviation will be primarily
determined by the rate of hopping between regions, rather than the rate of
motion within those (presumably interstitial) regions as is currently the case.

Further investigation of the orientation of the CO2 molecule with
respect to its trajectory during the diffusion process may provide greater
insight into the atomic-level processes occurring in this system. Such details

can only be recovered from atomistic simulations.
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Chapter 12. Viruses

12.1. Introduction

A prototypical example of a large-scale system is a virus. Typical viral
protein coats range from 0.5 million atoms up; with the addition of viral RNA
or DNA, atom counts can easily exceed one million. Understanding the
structure of viral protein coats is essential for investigating antigenic sites
amenable to recognition by natural or synthetic agents and for understanding
the process of coat assembly and disassembly that is critical to the viral life
cycle. Much as with large finite simulations improving on small periodic
simulations, full atomistic simulations of viruses can improve substantially
on current technology, which imposes simplifying assumptions such as
symmetry constraints.

As a start towards more sophisticated analyses of viral coat structure,
a specific viral structure was simulated: human rhinovirus-14 (RHV). This
viral coat is composed of sixty protomers arranged with icosahedral

symmetry; each protomer is in turn composed of multiple subunits.

12.2. Procedure

The subunit structure at a resolution of 3.0 A was obtained from the
Brookhaven protein databank (file 4RHV) [1]. The atom types and forcefield
parameters were selected from the AMBER forcefield [2], and connectivities
were generated to match standard amino acids. Investigation of the fitting of
asymmetric units showed that several charged groups on the surface of the
protomer appeared to form salt bridges with oppositely-charged groups on the

opposing surface of a neighboring protomer. After accounting for these, a net
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charge of +5 remained, composed of 10 positively charged groups and 15
negatively charged groups. Counterions (sodium or chloride) were positioned
near each of these charged residues. Finally, the protein coat, consisting of
60 copies of the asymmetric unit, was then built using the crystallographic
symmetry operations from the structure deposited with the protein databank.
The final structure contained 512,760 atoms including crystallographic
waters and the added counterions.

The structure was then minimized to better position the counterions
and to attempt to find the best, symmetry-free, relaxed structure for the coat.
This also served to test whether the coat was stable in the absence of the
viral genome. Dynamics at 0 K was used to perform the minimization. A
CMM level of 6 was used with a bounding cube 360 A on a side. The farfield

was updated every 5 minimization steps.

12.3. Results

After 6000 steps of minimization, the RMS force reached a value of 0.2
kcal/mol. The energy of the final structure was —1.03x106 keal/mol.

The RMS difference in coordinates between the initial and final
structures was 0.495 A, but there was no change in the radius of gyration
during the course of the minimization.

Note that the structure remained relatively stable, despite the absence
of RNA in the interior. This suggests that the RNA does not play an essential
role in maintaining the integrity of the protein coat, though it does
undoubtedly affect the structure of the internal portions of the protomer

units.
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12.4. Conclusions

We have demonstrated that building a symmetry-constraint-free model
of a viral protein coat is now practical.

The coat structure is stable with respect to minimization from the X-
ray geometry, suggesting that there is sufficient strength in the interactions
between protomers to hold the coat together, even in the absence of RNA.

Future work on this project will include studying the pH dependence of
the stability of the system, as experiments have suggested that acid-induced
changes may be relevant to uncoating for rhinovirus-14 [3], but perhaps not
for poliovirus [4]. The temperature dependence of the stability can also be

determined.

References

1. Arnold, E.; Rossmann, M.G. Acta Crystallogr. A, 44, 270 (1988).

2. Weiner, S.J.; Kollman, P.A.; Case, D.A.; Singh, U.C.; Ghio, C.; Alagona, G.;
Profeta, S.; Weiner, P. J. Am. Chem. Soc., 106(3), 765 (1984).

3. Giranda, V.L.; Heinz, B.A.; Oliveira, M.A. Proc. Nat. Acad. Sci., 89(21),
10213 (1992).

4. Perez, L.; Carrasco, L. oJ. Virol., 67(8), 4543 (1993).



