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ABSTRACT

Part I. This work focuses on the construction of equilibrated two-phase
antiplane shear deformations of a non-elliptic isotropic and incompressible hy-
perelastic material. It is shown that this material can sustain metastable two-
phase equilibria which are neither piecewise homogeneous nor axisymmetric, but,
rather, involve non-planar interfaces which completely segregate inhomogeneously
deformed material in distinct elliptic phases. These results are obtained by study-
ing a constrained boundary value problem involving an interface across which the
deformation gradient jumps. The boundary value problem is recast as an inte-
gral equation and conditions on the interface sufficient to guarantee the existence
of a solution to this equation are obtained. The contraints, which enforce the
segregation of material in the two elliptic phases, are then studied. Sufficient
conditions for their satisfaction are also secured. These involve additional restric-
tions on the interface across which the deformation gradient jumps—which, with
all restrictions satisfied, constitutes a phase boundary. An uncountably infinite
number of such phase boundaries are shown to exist. It is demonstrated that, for
each of these, there exists a solution—unique up to an additive constant—for the
constrained boundary value problem. As an illustration, approximate solutions
which correspond to a particular class of phase boundaries are then constructed.
Finally, the kinetics and stability of an arbitrary element within this class of phase

boundaries are analyzed in the context of a quasistatic motion.

Part II. This work investigates the linear stability of an antiplane shear
motion which involves a planar phase boundary in an arbitrary element of a wide
class of non-elliptic generalized neo-Hookean materials which have two distinct
elliptic phases. It is shown, via a normal mode analysis, that, in the absence of
inertial effects, such a process is linearly unstable with respect to a large class
of disturbances if and only if the kinetic response function—a constitutively sup-
plied entity which gives the normal velocity of a phase boundary in terms of the

driving traction which acts on it or vice versa—is locally decreasing as a function
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of the appropriate argument. An alternate analysis, in which the linear stability
problem is recast as a functional equation for the interface position, allows the in-
terface to be tracked subsequent to perturbation. A particular choice of the initial
disturbance is used to show that, in the case of an unstable response, the mor-
phological character of the phase boundary evolves to qualitatively resemble the
plate-like structures which are found in displacive solid-solid phase transforma-
tions. In the presence of inertial effects a combination of normal mode and energy
analyses are used to show that the condition which is necessary and sufficient for
instability with respect to the relevant class of perturbations in the absence of
inertia remains necessary for the entire class of perturbations and sufficient for
all but a very special, and physically unrealistic, subclass of these perturbations.
The linear stability of the relevant process depends, therefore, entirely upon the

transformation kinetics intrinsic to the kinetic response function.

Part III. This investigation is directed toward understanding the role of
coupled mechanical and thermal effects in the linear stability of an isothermal
antiplane shear motion which involves a single planar phase boundary in a non-
elliptic thermoelastic material which has multiple elliptic phases. When the rel-
evant process is static—so that the phase boundary does not move prior to the
imposition of the disturbance—it is shown to be linearly stable. However, when
the process involves a steadily propagating phase boundary it may be linearly
unstable. Various conditions sufficient to guarantee the linear instability of the
process are obtained. These conditions depend on the monotonicity of the ki-
netic response function—a constitutively supplied entity which relates the driving
traction acting on a phase boundary to the local absolute temperature and the
normal velocity of the phase boundary—and, in certain cases, on the spectrum
of wave-numbers associated with the perturbation to which the process is sub-
jected. Inmertia is found to play an insignificant role in the qualitative features
of the aforementioned sufficient conditions. It is shown, in particular, that in-

stability can arise even when the normal velocity of the phase boundary is an
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increasing function of the driving traction if the temperature dependence in the
kinetic response function is of a suitable nature. Significantly, the instability
which is present in this setting occurs only in the long waves of the Fourier de-
composition of the moving phase boundary, implying that the interface prefers to

be highly wrinkled.
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ON THE CONSTRUCTION OF TWO-PHASE
EQUILIBRIA IN A NON-ELLIPTIC
HYPERELASTIC MATERIAL



1. INTRODUCTION

Finite elastic equilibria with discontinuous deformation gradients have fig-
ured prominently in recent continuum mechanical treatments of displacive solid-
solid phase transformations. Models of this sort are pertinent to the investigation
of shape memory, twinning and transformation toughening in solids—all three
of which occur in both metallic and ceramic alloys. Micrographs of multiphase
equilibrium states in alloys, such as those presented by ZAckay, JusTusson, &
ScumaTtz [30] and PORTER & HEUER [24], often display configurations wherein the
various phases are segregated by geometrically complicated interfaces. One ques-
tion which arises regarding the aformentioned continuum mechanical idealizations
of such materials is whether they are capable of capturing the morphological com-
plexity of such deformations. As a first step toward answering this question, this
work focuses, within the context of a particular class of hypothetical materials, on
the construction of equilibria involving coexistent phases segregated by surfaces
which—although not as morphologically complex as those displayed in [24] and
[30]—are, at least, non-planar.

In a homogeneous, hyperelastic material discontinuous deformation gradients
occur only if the relevant elastic potential allows for a loss of ellipticity, at certain
values of the deformation gradient, in the associated displacement equations of

equilibrium.!

Materials characterized by elastic potentials which allow such a
loss of ellipticity are referred to as non-elliptic. Of particular importance in this
work are non-elliptic materials which have at least two disjoint elliptic phases.
Examples of such materials are provided by ERICKSEN [12] in the context of a
one-dimensional bar theory, Fospick & MacSitHiGH [14] in their work on the
helical shear of a cicular elastic tube, and by ABEYARATNE [1] in his study involv-
ing a special class of incompressible, isotropic materials. ABEYARATNE [1], BALL

& JaMEs [10], GURTIN [18], and SILLING [28] have demonstrated that materials of

this sort support equilibrium states which display coexistent elliptic phases and,

1 For a discussion of this issue see, for instance, ROSAKIS [26].
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in addition, minimize the relevant energy functional. As a result of the latter
property these states are referred to as mechanically stable. The associated de-
formation fields in all of the foregoing works are either piecewise homogeneous or
axisymmetric. In the case of equilibrated piecewise homogeneous deformations the
associated phase boundaries must be planar. BALL & JAMES [10] and SiLLING [28]
have shown, however, that energy-minimizing sequences of piecewise homogeneous
mechanically stable deformations may possess limits which are metastable as op-
posed to mechanically stable and, moreover, involve non-planar phase boundaries.
On the other hand, ABEYARATNE [2] and SILLING [28] have constructed, respec-
tively, asymptotic and numerical solutions to a boundary value problem involving
a mode III crack in a particular subclass of incompressible, isotropic non-elliptic
materials. These solutions are not mechanically stable and are neither piece-
wise homogeneous nor axisymmetric; furthermore, they include the non-elliptic
material phase and, in addition, transitions between the elliptic and non-elliptic
phases which do not involve jumps in the deformation gradient. These solutions
do, however, involve surfaces which separate the two elliptic phases present in the
deformation. The relevant interfaces are, moreover, non-planar. RosAkis [27] has
recently shown that a special class of anisotropic non-elliptic materials is capable
of sustaining equilibria in which a family of cusped lenticular inclusions of one
elliptic phase reside in a matrix of another elliptic phase. These states are, in

general, metastable.

As yet there are no results pertaining to the existence, in non-elliptic isotropic
hyperelastic materials, of multiphase equilibrium states which are free of the non-
elliptic phase and are neither piecewise homogeneous nor axisymmetric. The
primary objective of this investigation is to prove constructively that a class of
non-elliptic isotropic incompressible hyperelastic materials is capable of sustaining
deformations of this type. These deformations will typically be metastable—like
those associated with the limits of the aformentioned minimizing sequences of

piecewise homogeneous deformations and the states constructed by Rosakis [27].
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Although non-planar phase interfaces may, in reality, reflect anisotropic effects,
these results show that they can exist within the context of a model which does
not take anisotropy into consideration. Isotropic materials may, consequently, be
useful in preliminary studies of the kinetics and stabilty of interfaces between
phases. These issues are taken up briefly in the final section of this work and,
more thoroughly, by FRIED [16] in a linear stability analysis of states involving

planar phase interfaces for a class of nomn-elliptic isotropic materials.

Chapter 2 is devoted to preliminaries. After a brief overview of the notation
to be used, Section 2.1 introduces the kinematics and fundamental balance prin-
ciples which will be needed in the following. Section 2.2 explains the constitutive
restrictions which will be adhered to throughout this work. Section 2.3 begins by
introducing the concept of a quasistatic motion. It then discusses the notions of
mechanical dissipation and driving traction associated with surfaces across which
the deformation gradient jumps; these lead naturally to the consideration of a
kinetic relation and the associated kinetic response function. In the final section

of Chapter 2, the kinematics are specialized to those of antiplane shear.

Chapter 3 focuses upon the solution of a particular constrained boundary
value problem, in antiplane shear, involving the field equations and jump con-
ditions put forth in Section 2.4. After formulating the problem in Section 3.1,
a representation for the solution of the boundary value problem is presented in
Section 3.2. This representation is indeterminate in that it involves the unknown
jump in the normal derivative of the displacement field over an interface across
which the deformation gradient is discontinuous. In Section 3.3 an integral equa-
tion is derived for the unknown jump in the normal derivative of displacement
in terms of a parameterization of the interface. Sufficient conditions for the ex-
istence of a unique solution of this integral equation are then obtained. These
constitute analytical restrictions on the interface geometry. It transpires that
there exist an uncountably infinite number of interfaces which comply with these

restrictions. It is then shown that for each of these interfaces there exists a so-
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lution, unique up to an additive constant, to the boundary value problem stated
in Section 3.1. In Section 3.4 the constraints which enforce segregation of the
elliptic phases are analyzed. These impose further analytical restrictions on the
interface geometry. It is shown that, within the set of interfaces which allow a
solution to the boundary value problem, there exist an uncountably infinite num-
ber of interfaces which also satisfy these restrictions and, hence, allow a solution
to the constrained boundary value problem. Each of these solutions involves a
non-planar and non-axisymmetric phase interface which separates elliptic phases
subjected to inhomogeneous deformations. Section 3.5 illustrates the results of the
two preceeding sections in determining a particular class of non-planar surfaces
for which the constrained boundary value problem can be solved. Approxima-
tions for the strain and displacement fields corresponding to the solutions of the
appropriate family of constrained boundary value problems are then constructed.

The last chapter is concerned with the kinetics and stability of slowly propa-
gating phase boundaries. In Section 4.1 the distribution of driving traction along
a phase interface of the kind constructed in Section 3.5 is calculated. Section
4.2 is concerned with observations pertaining to the kinetics of such a surface.
Ingredients crucial to this analysis are the kinetic relation and response function
introduced in Section 2.3. This section concludes with results that relate the
monotonicity of the kinetic response function for a particular material and the
kinetic stability of that material. These final results are comsistent with those

obtained in [16].



2. PRELIMINARIES

2.1. Notation, kinematics and balance principles. In the following IR
and C denote the sets of real and complex numbers. The intervals (0, 00) and
[0, 00) are represented by IR, and IR,. The symbol R", with n equal to 2 or 3,
represents real n-dimensional space equipped with the standard Euclidean norm.
If U is a set, then its closure, interior and boundary are designated by U, U , and
OU, respectively. The complement of a set V with respect to U is written as
U\ V. Given a function ¢ : U — W and a subset V of U, ¥(V) stands for the
image of V under the map .

Vectors and linear transformations from IR® to IR® (referred to herein as
tensors) are distinguished from scalars with the aid of boldface type—lower and
upper case for vectors and tensors, respectively. Let a and b be vectors in R®
their inner product is then written as a - b; the Euclidean norm of a is, further,
written as |a| = /a-a. The set of unit vectors—that is, vectors with unit
Euclidean norm—in IR® is designated by A'. The symbol £ refers to the set
of tensors, £, denotes the set of all tensors with positive determinant, and §
stands for the collection of all symmetric positive definite tensors. If F is in £
then FT represents its transpose; if, moreover, det F # 0, then the inverse of F
and its transpose are written as F~! and F~7, respectively. The notation a® b
refers to the tensor A, formed by the outer product of a with b, defined such that
Ac = (b c)a for any vector ¢ in JR> If A and B are tensors then their inner

product is written as A - B = tr ABT.

When component notation is used, Greek indices range only over {1,2};
summation of repeated indices over the appropriate range is implicit. A subscript
preceded by a comma denotes partial differentiation with respect to the corre-
sponding coordinate. Also, a superposed dot signifies partial differentiation with

respect to time.

Let g lie in [1, 00). Then, a function ¢ : IR — IR is an element of LI(IR) if it
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is q integrable on JR—that is, if its L? norm over IR,

+o0
9] oy = ( / hp(€)[ de )7,

is defined. Similarly, 1) is an element of L (IR) if ¢ is bounded on IR—that is, if

its L® norm over IR,
“7/)“1,00(13) = sup [¢(£)|,
£EeR

exists. A function ¥ : R?> — IR is an element of LI(IR?) or L°(IR?), respectively,
if the analogous L9 or L™ norm over IR? exists.
Consider, now, a body B which, in a reference configuration, occupies a region

R contained in IR3 Let the invertible mapping § : R — R., with
¥(x) =x+u(x) VxeR, (2.1.1)

characterize a deformation of B from the reference configuration onto a config-
uration that occupies the region R, in IR3. Assume that the deformation ¥, or
equivalently the displacement u, is continuous and possesses piecewise continuous
first and second gradients on R. Let S be the set of points contained in R defined
so that ¥ is differentiable on the set R \ S. Introduce the deformation gradient
tensor F: R\ S — L by

F(x)=Vy(x) ¥xeR\S, (2.1.2)

where the associated Jacobian determinant, J : R\ S — IR, of ¥ is restricted to

be strictly positive on its domain of definition:
J(x)=detF(x) >0 VYxeR\S. (2.1.3)

+
Hence, F : R\ S — L;. The left Cauchy-Green tensor G : R\ S — S corre-
sponding to the deformation ¥ is given by

G(x) = Fx)FT(x) VxeR\S. (2.1.4)
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The deformation invariants associated with § exist on R\ S and are supplied

through the fundamental scalar invariants of G:
L(G)=trG, L(G)=1(trG)?-tr(G?), I5(G)=detG. (2.1.5)

With the above kinematic antecedents in place introduce the nominal mass
density p : R — IR, the nominal body force per unit massb: R — IR® and the
nominal stress tensor S : R\ S — L, and suppose that p and b are continuous
on R, while S is piecewise continuous on R, continuous on R \ S, and also has a
piecewise continuous gradient on R. In the absence of constitutive assumptions
relating the stress to the deformation gradient, the sets over which S and F suffer
jumps need not be equivalent. The scope of this investigation is limited, however,
to elastic materials wherein stress is continuously related to strain—hence, S is
| assumed to obey the above smoothness criteria. Let p, be the mass density in the
deformed configuration associated with §. Given a regular subregion P of R, let
m : P — N denote the unit outward normal to 9P. Then the global balance laws
of mass, and—in the absence of inertia—force and moment equilibrium require

that

/pdV = [ p.dV, (2.1.6)
P $(P)
/SmdA+ /pde =0, (2.1.7)
P P
and
/)“'/\SmdA+/$'/\pde=0, (2.1.8)
P P

respectively, for every regular subregion P contained in K.
Localization of the balance laws (2.1.6)—(2.1.8) at an arbitrary point con-

tained in the interior of R \ S yields the following familiar field equations:
p=p(F)J on R\S,
V-S+pb=0 on R\S, (2.1.9)
SFT=FST on R\S.
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Suppose, from now on, that the set S is a regular surface. Then, localization

of (2.1.6)—(2.1.8) at an arbitrary point in S yields the following jump conditions:

[[p*(y)‘]]lzo on S,

(Sa] = 0 . (2.1.10)
nj| = on S,

where, given a generic field quantity g : R \ S — IR which jumps across S, [g] is
defined through

[e(x)] = ’lli\I% (g(x + hn(x)) — g(x — hn(x))) Vx €S, (2.1.11)

with n : § — N a unit normal to S. Observe from the jump condition (2.1.10);
that the mass denity in the deformed state p, is only defined on (R \ S). Evi-
dently, equations (2.1.9); and (2.1.10); are completely decoupled from equations
(2.1.9)2,3 and (2.1.10)2; that is, given a solution to a boundary value problem
involving the latter set of equations, p, can be calculated a posteriori. For this
reason equations (2.1.9); and (2.1.10); will be disregarded in the subsequent anal-
ysis.

In addition to the jump conditions given in (2.1.10), the stipulated continuity

of ¥ gives the following kinematic jump condition

[ul=0 on S. (2.1.12)

2.2. Constitutive assumptions. Let B be composed of a hyperelastic ma-
terial which is homogeneous, isotropic and incompressible. Since B is hyperelastic
its mechanical response is governed by an elastic potential or strain energy per
unit reference volume. The homogeneity of B implies that the elastic potential
does not depend explicitly on position in the reference configuration. Further-

more, because B is isotropic the elastic potential can depend on the deformation
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gradient F only through the deformation invariants I (G) defined in (2.1.7). The

incompressibility of B requires that the deformation § be isochoric, i.e.,
L(G(x)=J*(x)=1 VxeR\S. (2.2.1)

An additional consequence of isotropy is, therefore, that the elastic potential can
be expressed as a function solely of the first two deformation invariants. It can
also be demonstrated via (2.1.5) that, when (2.1.1) holds, I,(G(x)) > 3 for all
x contained in R\ S. Now, let W : [3,00) x [3,00) — IR denote an elastic
potential which characterizes B and assume that W is continuously differentiable
with piecewise continuous second derivatives on its domain of definition. The
nominal stress response of B is then determined through W up to an arbitrary
pressure p : R \ S — IR required to accomodate the kinematic constraint (2.2.1)

imposed by the incompressibility of B: viz.,
S =2 (v"v,l (I)F + Wi, (D)(1L(G)1 - G)F) _pFT on R\S, (222
where I : R\ § — [3,00) x [3,00) is given by
I(x) = (I1(G(x)),2(G(x))) VxeR\S.

Following GURTIN [18], let the class of generalized neo-Hookean materials re-
fer to that subset of hyperelastic materials, first introduced by KnowLEs [21],
which are homogeneous, isotropic and incompressible with elastic potential in-
dependent of the second deformation invariant (2.1.5)3. Assume, henceforth,
that B is composed of a generalized neo-Hookean material with elastic potential
W : [3,00) — IR, where W is continuously differentiable with piecewise contin-
uous derivative on [3,00). Then, by (2.2.2), the nominal stress response of B is

determined by

S =2W(I(G))F —pF™T on R\S. (2.2.3)
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Suppose also that the elastic potential is normalized so that
W(3)=0. (2.2.4)

Choose a rectangular Cartesian frame X = {0;e;,e2,e3} and consider the

response of the material at hand to a simple shear deformation ¥ given by
V(x,t) = (1 +ves ®e;)x V(x,t) € M, (2.2.5)

where the constant y—assumed non-negative without loss of generality—denotes
the amount of shear. From (2.1.2), (2.2.3) and (2.2.5) the nominal shear stress

corresponding to the deformation ¥ is, for each -y in IR, found to be
e3 - Se; = YW/ (3 ++%) =: (7). (2.2.6)

In [21-22] KNOWLEsS demonstrates that the 31 and 32 components of nom-
inal and Cauchy shear stress are, in the present setting, equal. The function
1 : IR, — IR is, hence, referred to as the shear stress response function of the
generalized neo-Hookean material, characterized by W, in simple shear. An im-

mediate consequence of (2.2.4) and (2.2.6) is

vTi=3
W) = /7’(7) dy VI € [3,00), (2.2.7)

so that the response of a generalized neo-Hookean material, in all three dimen-
sional deformations, is, up to a hydrostatic pressure, completely characterized
by specifying the shear stress response function 7. Define the secant modulus in
shear M : R, — IR of a generalized neo-Hookean material with elastic potential
W by

M(y)=2W (3 ++%) VyeR,, (2.2.8)
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and assume that, in compliance with the Baker-Ericksen inequality,
M(y)>0 Vye R, (2.2.9)

Assume, also, that M(0) > 0 so that the infinitesimal shear modulus of the
material at hand is positive. Note from (2.2.6) and (2.2.8) that the shear stress

response function 7 must also satisfy

7(0) =0, 7Y(0)= M(0). (2.2.10)
Observe, also, that the stipulated smoothness of W guarantees that both 7 and
M are piecewise continuously differentiable on R,.

It is worth remarking that, despite the significant restrictions which have been
placed upon the class of materials which will be considered in this investigation,
no presuppositions have been made regarding the sign of the derivative—where it
exists—of the shear stress response function corresponding to the generalized neo-
Hookean material through (2.2.6). In [22] KNOWLES shows that the monotonicity
of the shear stress response function 7 is related directly to the ellipticity of the
generalized neo-Hookean material which it characterizes: if 7 is not a monotoni-
cally increasing function on its domain of definition then the associated material
is non-elliptic. This investigation will make use of a particular subclass of non-
elliptic generalized neo-Hookean materials, first suggested by ABEYARATNE [1];
this class of materials is characterized by the set of shear stress response func-
tions 7 which are continuous on IR, and piecewise continuously differentiable on

IRy \ {v,7}, where 0 < v < 4, such that
>0 on Ry\[v,9], 7 <0 on (v,%). (2.2.11)

The sets of shear strains lying in the intervals [0,~) and (¥, o) are referred to as

the high and low strain phases of the generalized neo-Hookean material specified
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by the shear stress response function 7. Together the high and low strain phases of
such a material comprise its elliptic phases. A generalized neo-Hookean material
characterized by a shear stress response function of this type will be referred
to herein as a three-phase material. See Figure 1 for a graph of a shear stress
response function typical of those which specify three-phase materials. Within
the class of three-phase materials special attention will be given those materials

(proposed by ABEYARATNE in [2]) for which

wmy iy e[0,7],
() =qd() i velpil (2.2.12)

Lpoy if v €[d,00),

where the function d : [Z,'ﬂ — IR is linear in its argument. Observe that, in
accordance with (2.2.11),, d is required to decrease on (Z,";) A further conse-
quence of (2.2.11) is that u; must be greater than s which must itself be positive.
Figure 2 shows the graph of 7.

2.3. Dissipation, driving traction and the kinetic relation. For the
purposes of this section it is necessary to consider a one parameter family of
deformations y{-, ) : R — R, where £, which denotes time, increases from to to
t1. It is assumed that y(x,-) is continuous with piecewise continuous first and
second derivatives for each fixed x in R. Let S; be a regular surface, with unit
normal n(-,t) : S; — N, contained in R; for each value of ¢ in [tg,%;]. The fields
u(-,t): R — R F(-,t) : R\ S; = L4, b(-,t) : R = R® and S(-,t) : R\ S; — L
are, at each t contained in [tg, t1], the obvious counterparts of those introduced in
Section 2.1. A one parameter family of deformations of this sort is referred to as
a quasistatic motion if the above quantities and the nominal mass density satisfy

the field equations

V-S(,t)+ pb(-,t)=0 on R\S, Vte [to,tll, 03
3.1
S, )FT(-,t) = F(-,t)ST(,t) on R\ S; Vi€ [to,t1], ( )
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the jump condition
[S(,t)n(-,t)] =0 on S; Vte€ [to,t1], (2.3.3)
and the kinérnatic condition of displacement continuity
[u(-,t)) =0 on S; Vi€ [to,t1]. (2.3.4)

K~NowLEs (23] has shown that, in a quasistatic motion, the presence of a
moving surface of discontinuity S; of the type considered here has an effect on
the balance of mechanical energy. Let P be a regular subregion contained in R.
In [23] it is demonstrated that the difference in the rate of work of the mechanical

forces external to P and the rate at which energy is stored in P is given by

8s(t; P) = ff(x,t)Vn(x,t)dA Vi € [to, t1], (2.3.5)
S:nP

where, for each t in [to,t1], f(-,t) : Sy — IR is the scalar driving traction and
Va(t) : St — IR is the normal velocity of the interface (in the reference configu-
ration). The function 8,(-;P) : [to,t1] — IR is referred to as the rate of dissipation
of mechanical energy associated with the region P. It has been shown by YAToMI
& NisHIMURA [29] as well as ABEYARATNE & KNowLEs [8] that the form of the

driving traction for a hyperelastic material is, in the quasistatic setting, supplied

by
f(-,t)=[[W(F(-,t))]]—§(-,t)-ﬂF(-,t)]] on S, Vte€ [to,t], (2.3.6)

+ p—
where S(-,t) (resp., S(-,t)) is the limiting value of the field S(-,¢) on the side of
the interface into which the unit normal n(.,t) is (resp., is not) directed at ¢ in

[to, t1).
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When treated from a thermomechanical perspective, the dissipation rate can
be shown to be identical to the product of the temperature and the rate of entropy
production—provided that the temperature is spatially uniform and independent
of time.2 The Clausius-Duhem inequality then requires that the dissipation rate
associated with a quasistatic motion of the kind envisioned here be non-negative,
that is

0s(t; P) =0 Vit € [to, 1], (2.3.7)

for every regular subregion P contained in R. A localization of (2.3.5) at an

arbitrary point on the interface therefore yields the inequality
FC,0Va(t) >0 on S; Vi€ [t t] (2.3.8)

as a condition imposed for the admissibility of the quasistatic motion.

In the context of a motion which involves such an interface it is necessary
(see [3-8]) to supplement, in some fashion, the constitutive information which
relates the stress and strain fields. An approach to this taken by ABEYARATNE
& KNOWLES [8] entails the provision of a kinetic relation which gives the normal
velocity of the interface in terms of the driving traction which acts thereon or vice

versa. In the former case one specifies a function V : IR — IR such that
V. =V(f) VfeR. (2.3.9)

Here V is referred to as the kinetic response function. If the function V is such
that V(f)f > 0 on IR then (2.3.8) is automatically satisfied and the kinetic re-
sponse function is itself referred to as admissible. If an admissible kinetic response
function is continuous on IR, then it must satisfy ‘7(0) = 0. If, in addition to be-
ing admissible, V is continuously differentiable on IR, then V’(0) > 0. Otherwise

admissibility implies nothing with regard to the sign of the derivative of a smooth

2 For a detailed discussion of the these issues see ABEYARATNE & KNOWLES [8].
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kinetic response function V. All kinetic response functions considered herein are

assumed to be admissible.

In the work of ABEYARATNE [1], BALL & JaMmEs [10], GURTIN [18], GURTIN
& TeEmawm [19], Fospick & MacSiTHIGH [14], and SiLLING (28] the necessary
additional constitutive information is provided by setting the driving traction
equal to zero on S; for all ¢ in [tg,?;]. This amounts to prescribing a particular
rate independent kinetic relation whereby energy is conserved; it is, furthermore, a
necessary consequence of requiring that a suitable energy functional be minimized

at each t in [to,t1] (see ABEYARATNE [3]).

2.4. Antiplane shear of a generalized neo-Hookean material. Sup-
pose, from now on, that R is a cylindrical region and choose a rectangular Carte-
sian frame X = {0;e;,e3,e3} so that the unit base vector e is parallel to the
generatrix of R. The deformation § defined through (2.1.1) consists of an an-
tiplane shear normal to the plane spanned by the base vectors e; and e; if it is

of the form

§(x) =x+u(z1,72)e3 Vx €R. (2.4.1)

Observe that the displacement field intrinsic to such an antiplane shear defor-
mation has only one nonzero component which lies in the ez direction and is
independent of the zg—coordinate. In (2.4.1) z, = x - e, for each x contained
in R. The function u will be referred to as the out-of-plane displacement field.
Inspection of (2.4.1) reveals that any discontinuities in the gradient of ¥ must
be due to discontinuities in the out-of-plane displacement field and, hence, occur
across surfaces which do not vary with the zz—coordinate.

KnowLEs [21] has demonstrated that, although not every hyperelastic,
isotropic and incompressible material can sustain antiplane shear deformations,
all generalized neo-Hookean materials are capable of doing so. It has been shown
(KNowLES [21-22]) that for such materials the local balance equations (2.1.9)2 3

reduce, in the absense of body forces and under the asssumption that the nominal
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stress tensor is independent of the z3-coordinate, to the scalar equation
(M(7)%a )a=0 on D\C. (2.4.2)

See Fospick & SERRIN [15] and Fospick & Kao [13] for a general discussion
of circumstances under which the field equations (2.1.9)2 3 reduce to a single
scalar equation. In (2.4.2) M is the secant modulus in shear as defined in (2.2.8),

v: D\ C — IR is the shear strain field given by

7($1)z2) = \/uva("rlv $2)U,a($1, $2) V(xlaw2) €D \ C7 (243)

D is a plane region with shape determined by a generic cross section of R, and
C is a curve contained in D and determined similarly by a cross section of the
surface across which the deformation gradient jumps. Furthermore, the jump
condition (2.1.10); reduces, for a generalized neo-Hookean material subjected to

antiplane shear, to

[M()tana] =0 on C, (2.4.4)

where n : C'— N is a unit normal to C, while (2.1.15) becomes
[u=0 on C. (2.4.5)

It is also readily shown that the driving traction f, introduced in Section 2.3,
for a generalized neo-Hookean material subjected to an antiplane shear deforma-
tion involving a discontinuity in the gradient of displacement across a curve C is
given by

F=W@B++)] - MF)da [ue] on C. (2.4.6)

In (2.4.6) $,a and u,, refer to the limiting values of the gradient of the out-of-
plane displacement field on the side of the curve C into which and out of which
the unit normal n points, respectively. Evidently, $ and v are given in terms of

t,a and u,, by (2.4.3).
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3. STUDY OF A CONSTRAINED BOUNDARY VALUE PROBLEM
IN THE ANTIPLANE SHEAR OF A THREE-PHASE MATERIAL
This chapter focuses, in the context of antiplane shear, on the construction of
two-phase equilibria of a body composed of the particular non-elliptic generalized
neo-Hookean material with shear stress response function 7, defined via (2.2.12).
These equilibria will involve non-planar interfaces which segregate material in

different elliptic phases. The interfaces will be described by surfaces Q, of the

form
Q, = {x € R®|z; = s(z2), 72 € R,z3 € R}
where s is twice continuously differentiable on IR, s(™ is in L>(IR) N L?(IR) for
n=20,1,2, and
lim s(z2) =
T2—++00 ( 2)

In Section 3.1 a boundary value problem for the out-of-plane displacement field
associated with two-phase antiplane shear deformations of a three-phase material
is formulated and specialized to the case of the material with shear stress response
Tp. This boundary value prdblem is supplemented by a set of constraints which
require that the non-elliptic phase of the relevant material is absent and, moreover,
that the elliptic phases are segregated. In Section 3.2 the boundary value problem
is converted into an integral equation for the jump in the normal derivative of
the out-of-plane displacement field across Q. In Section 3.3 it is shown that
there exists a unique solution to this integral equation for every 9, defined by a

function s which, in addition to the restrictions delineated above, satisfies

~+00
1 + 2
s'(zo)||s" (z5)| dzy) ? < o/3x FLTH2 ,
([ @olls" @)l do)* < /5 ELEL2
—Co0
where y; and pg are the moduli associated with the elliptic phases of the material
defined by 7,. It is then demonstrated that for each such s there exists a unique

(up to an arbitrary additive constant) solution to the boundary value problem
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stated in Section 3.1. Since, however, the constraints mentioned above are not
necessarily satisfied by any of these solutions, the deformation associated with
a given solution does not necessarily constitute a two-phase equilibrium state of
the type sought after here. In Section 3.4 it is shown that, provided a certain
functional of s is sufficiently small—in a sense to be made precise—then there
exists a unique solution to the constrained boundary value problem and, hence, a
two-phase equilibrium state of the type sought after here. The concluding section
of this chapter is concerned with the construction of a class of two-phase states

which involve non-planar interfaces separating material in distinct elliptic phases.

3.1. Formulation and reduction of the boundary value problem
and phase segregation requirements. Suppose that B is composed of a
three-phase material and that the cylinder R degenerates to occupy all of IR3
Let the rectangular Cartesian frame X be as in Section 2.4. Consider the effect
of subjecting R to a particular antiplane loading whereby, independent of the
zg—coordinate, the shear strain approaches uniform values of 7; as z; tends to
—oo and 7, as z; tends to +o0o. Assume that v, is greater than 4 and that
~- lies strictly between 0 and gt the prescribed remote shear strains associated
with the loading are, thus, in the high and low strain phases of the material at
hand as z; approaches —oo and +o0o, respectively. If ; and «, are chosen so
that the corresponding remote shear stresses 7(y;) and 7(v,) are equal then—for
every three-phase material—there exists, modulo an arbitrary additive constant, a
unique one parameter family of pairwise homogeneous out-of-plane displacement
fields u, : IR — IR which satisfy the equilibrium equation in (2.4.2) on IR? \ C,,
with the straight line C, given by {z,e, € R?|z; = a,z3 € IR}, the jump
conditions in (2.4.4) and (2.4.5) on C, and, of course, the decay requirements
associated with the prescribed conditions at z; = *oo. The function u, is given

by

ta(z1) = {’n(ml —a) if =z <a, (3.1.1)

(1 —a) if z;>a.
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Here a determines the point of intersection of the plane surface Qq, given by
Ca X IR, with the z;-axis. Note that, for each fixed a, the pairwise homogeneous
deformation associated with (3.1.1) through (2.4.1) involves exclusively the elliptic
phases of the material under consideration and that these are segregated by Qg;
the deformation associated with (3.1.1) will be referred to as a globally elliptic
pairwise homogeneous equilibrium state. The interface @), associated with such a
state will, in turn, be referred to as a phase boundary. Observe that the qualitative
character of the equilibrium state associated with u, is clearly unaffected by the
value of a.

Envision a generalization of the globally elliptic pairwise homogeneous equi-
librium state wherein the kinematics remain those of antiplane shear and the
loading conditions are as described at the outset of this section but the planar
phase boundary is replaced by a non-planar interface Q, with cross section C,
where, for simplicity,

Qs=Cs xR (3.1.2)
with
Cs = {za€o € R?| 21 = 3(x3), x2 € IR}. (3.1.3)

Assume that the state is equilibrated in the sense that the balance equation in
(2.4.2) holds on RR? \ C, while the jump conditions in (2.4.4) and (2.4.5) are
satisfied on C,. Ciearly, if such a state exists, the deformation field intrinsic to it
must be inhomogeneous on either side of the interface Q,. Observe that even if a
three-phase material is capable of sustaining a deformation of this kind the shear
strain field may not, in general, be distributed so that only the elliptic phases of
the material are present; if, however, this is the case and, furthermore, the high
and low strain phases of the relevant material are segregated by the interface Q,
then the deformation will be said to constitute a globally elliptic inhomogeneous
two-phase equilibrium state with phase boundary ;.

Consider, now, the geometry of the curve C, which determines the phase

boundary Q, essential to a globally elliptic inhomogeneous two-phase equilibrium
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state. Since the shear strain field is constant as x; approaches Foo, it is clear
that s must be bounded on IR in order for C; to qualify as a cross section of the
phase boundary Q,;. The kinematics and boundary conditions place no further
restrictions on the geometry of Cjs.

Observe that if, in addition to being bounded and continuous on IR, s satisfies
one or both of

im s(ze)=¢, lim s(ze)= ¢, (3.1.4)

Zo—+—00 Tp—+00

where ¢ and ¢ are real constants, then the loading must be restricted so that the
far field shear stresses 7(7y;) and 7(*,) are equal. To see this suppose that (3.1.4);
holds. Then, as z, approaches —oo the phase boundary becomes planar and the
local character of the deformation begins to resemble a pairwise homogeneous
state. Since the far field shear strains 4; and <, are constant the local shear
strains must match these appropriately on either side of C; as z; approaches —oo.
Hence, the local shear stresses must match their far field counterparts 7(v;) and
7(7+), and, by the jump condition in (2.4.4) which holds on Cs, 7(v1) = 7(v).
A completely analogous argument can be constructed if (3.1.4); holds instead of
(3.1.4);. Certainly, if both of (3.1.4) hold, the result is still true. Note, however,
that if neither of (3.1.4) hold, and, hence, the curve C, is merely bounded, there is
no reason to rule out—a priori—loading conditions wherein the far field stresses
are unequal.

Assume, henceforth, that (3.1.4) holds with ¢ and ¢ equal to, say, c. Recalling
the role of a in (3.1.1), there is certainly no additional loss in generality incurred

by taking ¢ = 0. In this case (3.1.4) becomes

lim s(zz) = 0. (3.1.5)

To—+00

Let U be the set of functions defined by

U={yYy: R->R|yp¢€ C(R),z Exgww(xz) = 0,9 #Z 0on R}.
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Assume, henceforth, that s is an element of the set

A=UnNnvynw, (3.1.6)
where V and W are defined by
V={¢:R— R|y € C}(R),%"™ € L*(R),n =0,1,2}, (3.1.7)
and
W={y:R— R|¢ € C*R),y™ € L*(R),n=0,1,2}, (3.1.8)
respectively.

Given an element s of A which describes an interface Q, it is convenient to

define plane sets D! and DI by
D, = {Taea € R?| 71 < s(z2),22 € R}, D] = R?\ DL (3.1.9)

Clearly, the union and intersection of D! and D! form generic cross-sections
of the cylinder R and the phase boundary Qj;, respectively. Note, also, that
if s is an element of A then, by (3.1.3) and its assumed smoothness, a unit
normal to Q, exists everywhere on Q, and depends only on the zy—coordinate.
Let n : JR — N designate the unit normal to @, which points into the region of
low strain—'ﬁs’ x IR. Then the representation for n is computed easily from the

definitions of Q, and C,; and is given by

e; — s'(z2)es

Vzs € R. (3.1.10)
1+ 8'(z2)?

n(zz) =
Now, if a three-phase material is capable of sustaining a globally elliptic
inhomogeneous two-phase equilibrium state of antiplane shear with phase bound-

ary Q, then the out-of-plane displacement field u associated with the deformation
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through (2.4.1) must, by virtue of (2.4.2), (2.4.4) and (2.4.5), satisfy the following

field equation and jump conditions:

(M(’Y)usa )aa =0 on Rz \Cs,
[M(7v)u,ana] =0 on Cs, (3.1.11)
[ul =0 on C,,

with n as indicated in (3.1.10); in order to comply with the prescribed loading it
suffices to require that the gradient of u satisfies the following asymptotic decay
conditions:
e1+o(l) as =z -00,
Uy (T1,°)€0 = {’Yl 1+o(1) 1= on IR; (3.1.12)
ve1 +0(l) as z; — 400,
moreover, in order to assure that only the elliptic phases of the material at hand
are present and are segregated by Qg, the shear strain field v, given in terms of

the gradient of u by (2.4.3), must conform to the following inequalities:
v € (§,00) on 15;, v €[0,7) on 73;”, (3.1.13)

where D! and D7 are given by (3.1.9). These inequalities will be referred to as
the phase segregation requirement.

Given a three-phase material, (3.1.11)-(3.1.12) comprise, for each fixed s
contained in A, a boundary value problem in the out-of-plane displacement field
u, while (3.1.13) acts as a system of constraints thereon. Together (3.1.11)-
(3.1.13) will be referred to as the constrained boundary value problem in u for
the three-phase material with secant modulus in shear M. Given a particular
three-phase material the constrained boundary value problem need not have a
solution for any function s in \A. The study of (3.1.11)—(3.1.13) for a specific
material may, however, serve as a means to determine a subset of A for which

the constrained boundary value problem is soluble.
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Before proceeding note that the jump conditions (3.1.11)2,3 holding across

C, can be recast to read

M0+ 2 (s04,) = M (0= ) 5o ((O=) on R,

u(s()+,) =u(s()—,") on R,

(3.1.14)

where the + and — symbols indicate the limiting values of the appropriate quan-
tities on the high and low strain sides of the interface, respectively.

For simplicity attention will, for the remainder of this work, be restricted
to the constrained boundary value problem for the material characterized by the
shear stress response function 7, defined in (2.2.12). In this case the form of
the shear stress response function is such that the secant modulus in shear M
is constant in both the high and low strain elliptic phases; hence, (3.1.11); and
(3.1.14); reduce to

Uyae =0 on RZ\CS,

Oou (3.1.15)

ul-é—ﬁ(s(-)h )= uzg%(s(-)—, ) on R
The analytical difficulties of the special constrained boundary value problem posed
by (3.1.15), (3.1.14), (3.1.12) and (3.1.13) are certainly less daunting than those
encountered in the analogous problem for a more general three-phase material.
For each fixed s in A the only non-linearity which encumbers the problem asso-
ciated with 7, is that imposed by the strain constraints (3.1.13). In the present
absence of results pertaining to the existence of globally elliptic two-phase equi-
libria in arbitrary three-phase materials, any results which can be obtained for
this particular material constitute progress toward a qualitative understanding of
the more general issue.
As a first step in analyzing the constrained boundary value problem com-
prised by (3.1.15), (3.1.14),, (3.1.12) and (3.1.13) it is convenient to introduce a
reduced out-of-plane displacement field v : R? \ Cs — IR specified via

v(zy1, T2) = uw(T1, T2) — uo(1,22) V(x1,72) € R? \ Cs, (3.1.16)
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where ug : IR? \ C; — IR is furnished by
ug(z1, T2) = H (s(z2) — 1) viz1 + H (21 — s(z2)) y»2z1 V(z1,72) € R? \ Cs,

and H : R\ {0} — R is the Heaviside function:

0 if z;<0,
1 if z;>0.

He) = {

Solving for u in (3.1.16) and inserting the result in (3.1.15), (3.1.14)2 and
(3.1.12) shows, with the aid of the definitions of ug and H, that the reduced out-

of-plane displacement field v must satisfy the following boundary value problem:

Voo =0 on R2\Cs,

i 2 (s, ) = page(s()=7) on R,

(3.1.17)
v(s(-)+, ) — 'v(s(-)—-, ) ={w—1)s on IR,

V,o (Z1,-)eq =0(1) as z3 — *oo on IR.

Note that in deriving (3.1.17)2 use has been made of the equality of remote shear
stresses—which, as shown at the beginning of this section, is a necessary conse-
quence of (3.1.5). The phase segregation requirement (3.1.13) can be written—
after appropriate substitution for u—in terms of the components of the gradient

of v as follows:

*2 (2 ﬁl
v < Vya Ve +7l Vi1 +’7l) on ’Y
o (3.1.18)
0 < V,q Vya +7+(20,1 +97) < '12 on DJ.

The boundary value problem in (3.1.17) will be referred to as the reduced
boundary value problem with the implicit understanding that it is in the reduced
out-of-plane displacement field v and for the special three-phase material with

shear stress response function 7,. The system of inequalities in (3.1.18) will be
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labelled the reduced phase segregation requirement. It is clear from the simple
relation between the primitive out-of-plane displacement field u and its reduced
counterpart v that any solution to the reduced problem yields a solution to the
original problem. The next section will focus on obtaining a representation for
the solution to the reduced boundary value problem with the reduced phase segre-
gation requirement held in abeyance. This representation will lead to an integral
equation which, for each fixed s in .A, may be analyzed in place of the associated

reduced boundary value problem.

3.2. Reformulation of the reduced boundary value problem as an
integral equation. Let s be an arbitrary element of 4. Since, by (3.1.17),,
the reduced out-of-plane displacement field v is harmonic on IR? \ Cs the jump
conditions (3.1.17), and (3.1.17)3 suggest that v can be represented, modulo an
arbitrary additive constant, as the sum of a single- and a double-layer potential
along the curve C,.> The densities of the appropriate single- and double-layer
potentials are given, respectively, in terms of the jumps in the normal derivative
of v and of v itself across the curve C;. From the jump condition (3.1.17)3 it is
clear that the density of the double-layer potential must be given by (v; —~,)s on
IR. Since, by the definition of the shear stress response function 7,, the moduli px;
and po which appear in (3.1.17)5 are required to be unequal, this jump condition
does not yield direct information regarding the form of the density of the single-
layer potential. It is, therefore, necessary to designate the jump in the normal
derivative of v across C, in terms of an unknown function—say (y; — v»)¢, where
it is assumed, until demonstrated otherwise, that ¢ : JR — IR does not vanish
identically on IR. Hence, the proposed representation for the reduced out-of-plane
displacement field v takes the form

Y= Vr
27

v(zy,z2) = (Sp(z1,22) + Dys(z1,22)) V(z1,22) € R\ C,, (3.2.1)

where the functions Sy : R? - R and D, : R?\C, — IR issue, respectively,

3 For an overview of the relevant potential theory see COURANT & HILBERT [11].
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from the single- and double-layer potentials on C,; with densities ¢ and s and are

given by

+o0
Se(z1,22) = /Gi(ml,mg,f)qﬁ(f)\/l +5'(6)2de V(zy1, 1) € R? (3.2.2)

and

+oo
D, (z1,72) = / G2 (z1,22,6)5(€) dé V(z1,32) € B2\ Cs. (3.2.3)

The kernels G% : (R*\ C,) x R — R and G} : R? x IR — IR which appear in

(3.

Fa s By

) and (3.2.3) are given, for each £ contained in IR, by

(&)
[Sv]

Gi(z1,22,6) = In /(21 — 5(6))2 + (22 — ) V(z1,22) € R*\Cs,  (3.24)
and

G (0, 2m.¢) = ZL=3E) = (22 = O5(©)

2
(z1 — 8(£))2 + (z2 — &)2 V(z1,z2) € R”. (3.2.5)

Consider, now, the issue of verifying the status of the representation (3.2.1) as
a solution to the boundary value problem (3.1.17). Since the single- and double-
layer potentials are harmonic, by construction, on R? \ Cs, it is evident that the
function v given by (3.2.1)-(3.2.5) satisfies (3.1.17);. A series of direct calcu-
lations too long to display here show that v,; (x;,-) and v,2 (z1,-) both behave
asymptotically like O(1/z;) as z; approaches oo on IR so that the represen-
tation (3.2.1)-(3.2.5) complies with (3.1.17)4 and, hence, the loading conditions.
Since the single-layer term (3.2.2) is continuous on IR? and the double-layer term
(3.2.3) has been constructed so that it possesses a jump of 27s across the curve
C, it is also clear that (3.2.1)-(3.2.5) furnishes a representation of v which sat-
isfies the jump condition in (3.1.17)3s. The only remaining requirement which

must be satisfied by (3.2.1)—(3.2.5) in order for it to provide a solution to the
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reduced boundary value problem is the jump condition (3.1.17), involving the
normal derivative of v. A straightforward but tedious calculation using standard
results from potential theory delivers the limits of the normal derivative of v on

either side of C; in the form

+o00
v _ Y=Y ’
on (s(xZ):t1$2) - 27!'\/_17-8—7(_555_ Is(z2a 6)3 (5) d£

o m / K, (22, )$(€)v/ 1+ 50 de

:t’YI_VT

d(z2) Vzz € R, (3.2.6)

where, for each fixed z3 in IR, Iy(z2,-) : R\ {z2} — R and Ks(z2,) : R— IR

are given, repectively, by

(s(z2) — 5(£))8'(z2) + (22 = &)
(s(z2) — 5(£))* + (z2 — £)°

Is(z2,8) = Ve € R\ {z2}, (3.2.7)

and
(s(z2) — s(£)) — (z2 — £)s'(z2)
(s(z2) — 8(€))2 + (z2 — €)?

Observe from (3.2.8) that as £ approaches z2, Is(x2,£) is singular for each

Ks(x2’£) =

V¢ € R. (3.2.8)

T in IR in that

I (z2,€) ~ —1—- as £€— 1y VIo € R.
z2—§

Hence, the integral involving I in (3.2.6) must, as indicated, be taken in the sense

of the Cauchy principal value. One also finds that, as zo approaches &, I,(z2,£)

is singular for each ¢ in IR in a manner entirely analogous to that displayed

above. On the other hand, an examination of (3.2.6) reveals that the behavior of

K,(z2,£) as either £ approaches a fixed z2 in IR or as z approaches a fixed £ in
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IR is regular; in fact, since s is an element of A, the limits

' 3 " (z2)
dm Ka(m2,0) =~ 50 gty "€
and
: ___ s"®
mligf Ks(m2,€) - 2(1 + 81(5)2) V& € -R)

both exist and are finite.

Recall, now, that the function ¢ which appears in the second term on the right
hand side of (3.2.6) is unknown. The jump condition (3.1.17); serves, therefore, as
a device by which this function can be determined. An appropriate substitution of
(3.2.6) into (3.1.17), yields—after collecting terms and dropping a non-vanishing

common factor—the following equation:

+oc0

(/'1‘1 +/1‘2)¢+ \/1—--f-—_)2- s("g)(ﬁ(

+00

_ g [
_Wm—mls(,é)s(f)df on IR.

§V1+(£)%dE

(3.2.9)

Observe that (3.2.9) constitutes, for each fixed s contained in A, a linear integral
equation to be solved for ¢ on IR. The integral equation in (3.2.9) can be simplified
by making a few modest substitutions; toward this end define ¢ : IR — IR by

(:132 (1:2)\/ 1+ S'($2)2 Vz, € R, (3.2.10)
and introduce a real constant A through the relation

H1 — K2

Recall from the definition of 7, that the moduli x; and p» satisfy 0 < p2 < p1; A
must, consequently, lie strictly between 0 and 1/7. Continuing with the simplifi-

cation of (3.2.9), multiply and then divide both sides of the integral equation by
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/14 (s')2 and (p; + p2), respectively, to obtain, with the aid of the definitions
(3.2.10) and (3.2.11) the following alternative to (3.2.9):

+oo +o0
o+ A / K, €)p(€) dE = A ][ L(-£)s'€)dt on R (3.2.12)

For the purpose of facilitating the forthcoming discussion introduce, for each
function s contained in .4, an operator M, such that, for each function vy the

function M, is given by

+00
a2 ; [v N s SN I ko) (2] 19
M= | Kq(-,§)¥(§)df on R. (3.2.13)
~00
In addition, let a function f; : IR — IR be defined for each s in A via
+00
fo = ][ L(,&s(€)d¢ on R (3.2.14)
With the aid of (3.2.13) and (3.2.14), (3.2.12) can be recast to read
o+ IMzp=Af, on R (3.2.15)

Evidently a solution ¢ to (3.2.15) provides, through (3.2.10), a solution to
(3.2.9). However, it is also clear from (3.2.1)—(3.2.3) and (3.2.10) that, given ¢,

v can be obtained directly in the form

~+oo0
%;ﬁ% /( 2 (21,72, €)0(€) + G(x1, T2, £)s(€)) dE

-0

’U(.”El,mz) =

Y(z1,22) € R*\Cs,  (3.2.16)

which obviates the need to consider ¢. Hence, for each s in .4 the task of

constructing a solution v to the corresponding reduced boundary value problem
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(3.1.17) is altered, via potential theory, to one of constructing a solution to the
corresponding integral equation (3.2.15). The task of the next section is to deter-
mine a set of conditions upon s—in addition to requiring that it to be an element

of A—which are sufficient to guarantee the existence of a solution to (3.2.15).

3.3. Analysis of the integral equation. Suppose that s is contained
in A and consider the kernel K, associated with it by (3.2.8). Observe that
the stipulated smoothness of s implies that K, is a continuous function on R

Moreover, since

(22, £)] < 15(2) = 5(8) = (@2 = ) (z2)]

2
(@2 — )2 Y(z2,&) € RS (3.3.1)

the boundedness of s” on IR and Taylor’s theorem imply the following global

estimate for the modulus of K,:

. | 1
|Ka(22,€)| < 5 sup 18" = 518"y ¥(@2,€) € IR (3.3.2)

Hence, the kernel K, corresponding to any s in A is continuous and bounded on
IR; furthermore, the bound is given explicitly in terms of a functional of s—the
L* norm of s” over IR. If the integral equation held over a compact domain
then the bound (3.3.2) would lead, for each fixed A in (0,1/7), to sufficient con-
ditions in terms of the size of |s”|je gy Which would allow the construction of
a unique solution to the integral equation via a uniformly convergent Neumann
series. Since the integral equation in (3.2.15) holds over IR, it will be convenient
to determine conditions on functionals of s other than its L° norm which are suf-
ficient to guarantee an analogous result. Toward this end consider the Neumann
series for this integral equation. This series is readily obtained via the method of

successive substitutions and is given by @ : IR — IR as defined below:

S =) i(——)\)"MQ‘fa on IR (3.3.3)

n=0
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Observe that, with the aid of (3.2.13) and a formal interchange of summation and

integration, @ satisfies
S+ IM;P=Af;, on IR.

That is, provided the formal operations performed above can be justified, ¢ fur-
nishes a solution to the integral equation. If the Neumann series converges uni-

formly then this is certainly the case. Consider the following geometric series:

(o o}
9= Mfelz2my DN 1Kl 722y - (3.3.4)

n=0

If K, and f are elements of L?(IR?) and L?(IR), respectively, and the L? norm

of K, over IR? satisfies

MEal g2y <1 (3.3.5)

then (3.3.4) will converge. Note that the Neumann series is majorized by the
geometric series. Conditions sufficient to guarantee the convergence of (3.3.4)
are, accordingly, sufficient to assure that the Neumann series converges uniformly
on its domain of definition and, therefore, as alluded to above, that @ supplies a
solution to (3.2.15). Provided these sufficient conditions are in force, the operator
M is, moreover, a Fredholm integral operator with domain and range L2(IR).
Hence, the Fredholm alternative holds and it can be shown that the solution @ to
the integral equation provided by the Neumann series is unique.*

At present the aforementioned sufficient conditions are only of value if there
exist functions s in the set A defined by (3.1.6)—(3.1.8) for which they hold. It
will now be demonstrated that the first two conditions are satisfied for every s
in A and that the third holds for every s contained in the proper subset Z of A
defined by

-+00
T={se AlA/Z( / 18" @2)lls" (z2)| de2) ¥ < 1}. (3.3.6)

4 See GARABEDIAN [17] for a discussion of Neumann series and the foregoing results.
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First suppose that s is an element of A. Show that the kernel K, must
consequentially be square integrable on its domain of definition. Let k; : R*—> R

be defined by

s(z2) — s(z2 + 1) + ns'(x2)

ko(w2,7) = - V(z2,m) € IR (3.3.7)
Note, from (3.3.1), (3.3.7) that
T, T l(es) = 5(6) = (@2 = )5/ @)
/ /Kf(mz,ﬁ)dfdxz < / 2 AN (2 __54 221 de day
+00 400
= / /kf(xg,n) dndza. (3.3.8)

Hence, to demonstrate that K, is contained in L?(IR?) it suffices to show that k,
as defined in (3.3.7) is square integrable on JR? Now, with a formal change in the
order of integration and the use of Parseval’s identity the far right-hand-side of

(3.3.8) can be recast as

+60 +00 400 +co

f
/ /kf(wz,n)dndr2=/ /kg(fﬂz,n)dmdﬂ
1 0o 4060
o [ [P w P adn.  (339)

The function F{ks}(:,n) : R — € which appears in (3.3.9) represents, for each 7
in IR, the Fourier transform of ks(-,7). This is supplied by

+0oc0
FlkaHw,n) = / ko(@2, m)e="* dis

1 q — PN
—3(w) ”’“"7’772  V(w,) € R? (3.3.10)
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where § : IR — @, in turn, is the Fourier transform of s:

+00
3(w) = /.s(a:g)e‘i‘"Iz dzy Vw € R. (3.3.11)

- 00

A formal change in the order of integration on the far right-hand-side of (3.3.9)

yields
400 400 1 +00 +00
[ [Ramamd=o [ [iFE) e,
—-—00 — 00 —00 — 00

so that, with the aid of (3.3.10) and (3.3.11),

+00 +00

o0 +o0
A 1414 _ pinw]2

— 00 —O0

-+00 .
|1+ i¢ — e*¢|?
2m ¢4

+00
= / lw]3|8(w)|? dw d¢. (3.3.12)

- 00
Next, a straightforward application of contour integration yields the identity

<+

o .
[ ll+i§—-e’<!2d !
/ 271' C4 C - 3’
so that (3.3.12) implies that
+o0 +o0 1 400
/ / k3(z2,m) dndza = 3 / |w|?]3(w)|? dw. (3.3.13)
—30 =00 —00

Note that, provided the integral on the right-hand-side of (3.3.13) exists, the
two formal changes in the order of integration performed above are justified by

Fubini’s theorem.? Now, by (3.3.12), elementary identities involving the Fourier

5 See HALMOS [20] for a statement and proof of Fubini’s theorem.
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transform of first and second derivatives, and Parseval’s identity, (3.3.13) gives

+o00 400

f /k2(:1:2, dndmg- 3 /|s (z2)||8" (z2)| dza. (3.3.14)

—00 —00
Hence, provided s is an element of A it is apparent from (3.3.8), (3.3.14) and the

Cauchy-Schwarz inequality that the kernel K, is square integrable on IR? and,

moreover, that | K|z g2y can be estimated as follows:

2n
IKalZ2imey < 5 [ 18" (@2)lls" (22) dz2 < 21" oy 15" | paqmy - (3:3.15)
(R?) 3 (R) (R)

—o0

Observe that while the membership of s in A is certainly sufficient to ensure
that K, is an element of Lz(Rz) it is not necessary. An application of Holder’s
inequality to (3.3.14) shows, for instance, that in order for K, to be square inte-
grable on IR? it is sufficient to require that s’ and s” be elements of LP(IR) and
Li(IR), respectively, for some p in [1,00) and conjugate exponent q¢ = p/(p — 1).
The choice p = ¢ = 2 clearly leads to the ultimate estimate in (3.3.14). It is,
moreover, clear that, provided s is in .4, the domain and range of the operator
M introduced in (3.2.13) can both be taken as L?(JR). An immediate conse-
quence of this observation is that if ¢ is in L2(IR) then so also is M™% for any
natural number n.

Next, given that K, is an element of L2(R2) for every function s in A,
consider the issue of proving that the forcing f; is similarly square integrable on
its domain of definition. Observe, first, that the singular behavior of I, which
appears in the definition (3.2.15) suggests that f,; can be linearly decomposed

into a regular part and a Cauchy principal value part as follows:

+o0
flor) = [((en§) - )@ e+ ][ LGL

+00 +o,
- /Ks(mz,f)ws'(f)d{+ ][_S__(_E)__df_ V.’Ez € R. (3.3.16)
J z2—€ PR
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It is now convenient to define functions g, : IR — IR and h, : IR — IR by

+o0
gs(x2) = — /Ks(zz,f)f—(f%——s@ "(&)d¢ Vzp € R, (3.3.17)
and
he(z2) = ][;ig)_dg Vz, € R, (3.3.18)

respectively. Consider the term of the decomposition involving the function gs.

From the assumed smoothness of s, the difference quotient which appears in the

R

s(z2) —
o —

2(5)‘ S| lpeo(ry V(@2,8) € R?,

and, hence, it follows from the Cauchy-Schwarz inequality that

+00 +oo+o00

[ s2 @) dor <15 Bniry [ [Kutan, 005 ey o

400400
<|s /( [ K2(z5,€) de)( [ls (O d¢) de

—00—00 --oo

< |Islu2L°°(R) “Ksaiz(ﬁz) “3,“%2(13)- (3.3.19)

Therefore, since s’ is contained in L2(IR)NL*®(IR), (3.3.19) and the bound (3.3.15)
on |K,| 2(ge) guarantee that g, is square integrable on IR and, furthermore,

deliver the estimate

3 1
19502y < A/ F 18" oo (y 15" | L2y 15" N Lo ey - (3.3.20)

Next, observe from (3.3.18) that h, is a scalar multiple of the Hilbert transform
of s’ and recall that the Hilbert transform maps the space LI(IR) into itself for
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g in (1,00).% Consequently, the square integrability of s’ on IR shows that h; is
also an element of L?(IR). Since the space of square integrable functions on IR
is linear it is clear that f,, as the sum of two functions contained in L%(IR), is
itself an element of L?(IR). Hence, under the assumption that s is a member of
the set A the forcing f, must necessarily be square integrable on IR. Note that—
based on the last statement and earlier remarks pertaining to the domain and
range of the integral operator M,—the function M™ f, is contained in L?(IR) for
every non-negative integer n. Hence, if the Neumann series (3.3.3) is uniformly
convergent then ¢ must also be square integrable on IR.

Up to this point it has been shown, as proposed above, that K, and f, are
square integrable on their domains of definition for every s contained in A D 7.
Finally, it is readily apparent from the primary estimate of | K|, - (Rr?) 8iven in
(3.3.15) that if s is an element of the set Z introduced in (3.3.6) then inequal-
ity (3.3.5) must hold. Hence, (3.3.5) is satisfied for every element s of Z. To
recapitulate, observe that if s is in Z then there exists a unique solution to the
corresponding integral equation (3.2.14) given by the appropriate Neumann series
(3.3.3).

There may exist solutions to (3.2.15) which are not obtainable via the Neu-
mann series construction. Since, however, the solution to the integral equation
obtained via this construction is unique for each s in 7 it is apparent from the
above discussion that, should there exist any solutions to (3.2.15) which can be
aquired by alternate means, these must correspond to curves C, described by
functions s which do not belong to Z (and may not even belong to A). It is
interesting to speculate on whether some of these solutions might correspond to
states wherein the phase boundaries manifest large slopes and/or curvatures akin
to those exhibited by the fingers found in studies of porous media, solidification,

and crystal growth.

Prior to concluding this section a few comments regarding the uniqueness of

6 This fact is established in RIESZ [25).
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the solution to the reduced boundary value problem are in order. Let s be an
element of Z. Then, by the foregoing results, the related reduced boundary value
problem has a solution given by the appropriate Neumann series (3.3.3). It is
known that the solution to the integral equation which issues from the reduced
boundary value problem is unique. The uniqueness of the solution to the reduced
boundary value problem is, however, still in question. It will now be shown
that the solution of the reduced boundary value problem is unique—just as with
the globally elliptic pairwise homogeneous equilibrium states—up to an arbitrary
additive constant. To see this suppose that v, : IR \Cs — IR and vs : Rz\Cs — R
are both solutions to the reduced boundary value problem corresponding to s in
T; define w : IR?\ C, — IR by their difference (v; — v2) on IR?\ C,. Then, from

(3.1.17), w clearly satisfies the following boundary value problem:

Weoe =0 on IR? \ Cs,
ow Oow
i (N ) = g (Y —. .
M1 8()'!',)—-#2 (S() 7) on Bs
on " on (3.3.21)
w(s()+) =w(s()=,) on R

W,y (T1,')eq =0(1) as xz; — +oo on IR

From (3.2.16) it is readily apparent that a solution to (3.3.21) is provided, modulo

an arbitrary additive constant, by

Vi

w(zy,z2) = 5

+00

_7‘_7T /G‘;(.’El,.’rg,f)’l/)(f)d& V(.’El,.’rg) € R2 (3.3.22)
—00

where G2 : (IR*\ Cs) x R — IR is given by (3.2.3)1, and ¢ : R — IR satisfies

Y+ AIMp=0 on IR. (3.3.23)

It is clear, based on the assumption that s is in Z, that A cannot be an eigenvalue

of the operator M;. Hence, (3.3.23) has only the zero solution. Now, since
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the representation (3.3.22) for w is modulo an arbitrary additive constant, the
functions v; and vo can differ at most, as stated above, by a constant.

During the course of this section it has been shown that, for each function s
contained in Z there exists, up to an arbitrary additive constant, a unique solution
to the reduced boundary value problem (3.1.17). This solution corresponds to
a deformation involving a non-planar interface Q,. Inasmuch as the reduced
phase segregation requirement (3.1.18) has not yet been applied it is still unclear
whether any of the aforementioned solutions give rise to globally elliptic two-phase
equilibrium states. The next section will, therefore, focus on characterizing a
subset of 7 for which there exist solutions to the reduced boundary value problem
augmented by the (reduced) constraints of phase segregation. If a function s

belongs to this subset of 7 the interface Q, will qualify as a phase boundary.

3.4. Implementation and satisfaction of the reduced phase seg-
regation requirement. Let s be an element of Z and suppose that ¢ and
(up to an additive constant) v are the corresponding solutions to the integral
equation (3.2.15) and the reduced boundary value problem (3.1.17). If v is to
provide—through (3.1.16)—a solution u to the constrained boundary value prob-
lem its gradient must comply with the reduced strain constraints (3.1.18). Let

K : IR \ C; — IR, denote the reduced shear strain field given by
K=1U,qUa on IR?\C,. (3.4.1)

Certainly |v,;| must be less than or equal to x on IR? \ C,; hence, if the

reduced shear strain field complies with
K < min{y — v, =4} on R*\C,, (3.4.2)

then both of the inequalities which comprise the reduced phase segregation re-
quirement (3.1.18) will be satisfied. Notice that the foregoing condition is suffi-

cient but not necessary to ensure the segregation of phases. It may, consequently,
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lead to overly conservative restrictions. Despite the strong restrictions which may
be imposed by enforcing (3.4.2) in lieu of (3.1.18), it will be demonstrated that
there exists a non-empty subset of Z each element of which gives rise to a soluble
reduced constrained boundary value problem with a reduced shear strain field &
that allows their satisfaction.

The following simple calculation shows that x is subharmonic on R?\ Cy:
Kyaa = (U,B U8 )mta = 2(vaaﬁ U, ))a
- 2(v,aﬁ Vyap +'U,aaﬂ v,p )

= 20,081,032 0 on R?\ C,.

The subharmonicity of £ on IR? \ C;s implies, given the decay properties of the
gradient of v embodied by (3.1.17)4, that its maximum values on ’Bj and Zo)sr
must occur in the limits approaching the curve Cs from the high and low strain
sides, respectively. Hence, in determining whether the reduced shear strain field
k satisfies (3.4.2) it is sufficient to analyze its limiting behavior on either side of
the curve C,. A convenient approach to this is afforded by examining the limits
of the normal and tangential derivatives of v on either side of C;. From (3.2.6),
(3.2.11) and (3.2.12) it is evident that the limiting values of the normal derivative

of the the reduced out-of-plane displacement field are given by

OV (s(zg)— ag) = —— 22
n (s(z2)—,z2) = Tt 5 (20)? Vzs € R (3.4.3)

on the high strain side of C,, and

ov _ Yro(z2)

3, (5(@2)+,22) = Tt 5@

on the low strain side of C,.

Vzs € R (3.4.4)

Let 1: IR — N designate the unit tangent vector to Q, defined by

§'(z2)ey + e

4/ 1+ S'($2)2

N(z2) = Vzs € R. (3.4.5)
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Then a calculation very similar to that used in obtaining (3.2.4) yields

o (a2, 2) =

+00
T JLICGEIGE

“+o0o

N I,(x2,€)p(€) de

g
+
27y/1 + §'(x2)?

T~ Ur
2¢/1+ s'(z2)?

s'(x2) Vra € R (3.4.6)

for the limits of the tangential derivative of v on either side of the curve C,. Here,
as in (3.2.4), I (z2, ) and K,(z2,-) are given, for each z; in IR, by (3.2.5).

Turn now to the estimation of (3.4.3), (3.4.4) and (3.4.6)+. Consider the
limits of the normal derivative first. The following pair of inequalities follow

immediately from (3.4.3) and (3.4.4):

Ov
o, (8(@2)= z2)| S mle(@2)l S nlelLe(m) Vo2 € R,

(3.4.7)

ov
B (s(z2)+,z2)| < ¥r lo(z2)] € Y |l Loy V22 € R

Hence, in order to bound the limits of the normal derivative of the reduced dis-
placement field on either side of C; it is only necessary to estimate the L® norm
of ¢ over IR. In Appendix A it is shown that if ¢ : IR — IR is an element of the
set V defined in (3.1.7) then |4 (g, exists and can be bounded as follows:

[h ooy < 25 W2y 191y - (3.4.8)

Recall from Section 3.3 that if s is contained in Z then ¢ is square integrable
on IR. Therefore, if ¢’ exists and is square integrable on IR the inequality displayed
in (3.4.8) can be used—with v replaced by ¢—to obtain an estimate for the L>

norm of ¢ over IR. Suppose, from now on, that s is a three times continuously
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differentiable element of Z with a square integrable third derivative on R. It
can be readily shown that this is sufficient to guarantee that ¢’ exists and is an
element of L2(JR). In Appendix B it is demonstrated that the L? norms of ¢ and

¢’ over IR can be estimated, respectively, by

cr(1+ 18" Lz gmy 18" L2 (my) 1 “L2(}R)

lelzacm) < = (3.49)
1-X uslnm(m) |s” Lle(R)
and
3 " "y
1"l L2y < e2[ 18" IL2my + 15 220y 15" I L2y 8™ 12y
2 3 1
+ “3,“[,2(13) uS”||12,2(R) “3”,“12;2(111)
1 1
+ "5"“22(12) “'Sl”nfﬂ(R) “(P“LQ(R)
1 1
151 Ee ) 1 L2y 15" a ey NP d o] (3:4.10)

The constants ¢; and cp which appear in (3.4.9) and (3.4.10) are positive real
numbers entirely independent of s. Note that the denominator in (3.4.9) is strictly
positive since s is an element of Z. With the aid of (3.4.9) the estimate (3.4.10)
for |¢'| () can be expressed completely in terms of |s'| 2(g)s I"|12(R) and
Is"'|L2(m)- Hence, (3.4.9), (3.4.10), (3.4.8) and (3.4.7) give estimates for the
moduli of the limiting values of the normal component of the gradient of v on
either side of C, in terms of the L2 norms of the first three derivatives of s over
R.

To provide an estimate for k it remains to obtain bounds on the limiting

values of the tangential derivative of v. Toward this objective, introduce a function

A:R— R, by

+00

Azs) = /K (zo,€)s' (&) d€ + ][I (zg,E)p(€) dE + s’ (x) Vz2 € R. (3.4.11)

- 00
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Then it is clear from (3.4.6) and (3.4.11) that

Ov

—8—l— (S(Q)z)i,xz)

Yi— Vr Yi— Tr
< BT Aw) < P WAl (my Vm2 € R, (3412)

rH

Under the current assumption that s’/ exists and is square integrable on IR

it can be shown that both A and A’ are elements of L?(IR). Inequality (3.4.8)
can, therefore, be applied with v replaced by A; this leads, through (3.4.12), to
a bound on the limiting values of the tangential component of the gradient of
v on either side of C;. Given the bounds (3.4.9) and (3.4.10) for ||z ) and
Il r2(m) it is straightforward to derive estimates for the L? norms of A and A’

over IR in the form

3 1
“A“m(m) < 03[“3’“1,2(13) + ﬂs’zz(m) “3”“15,2(12) + “‘P"LZ(R)

+ “S’“Li’()R) “'slluLz(R) “(p“L2(R)]’ (3.4.13)

and

1 1
"AI“m(R) <c [ HSHHLz(IR) + HSI“B(R) IIS"IIE:UR) IIS'"IIZz(R)
+ “3’ Iiiz(R) HSHHB(R) “3',,“12,2(13)
1 1
+ “3,“,2(13) "3”"1,2(R) IIS”’IIZ:UR) “‘P“H(}R)

3 ) 1
+ "5’“22(13) “'SHHL?(}R) IIS’"IIEz(R) lel 2w

+ 1ol L2 (my - (3.4.14)

respectively. Here c3 and c4 are positive real numbers which, like ¢; and cz, are
independent of s. Note that the L2 norm of ¢ over IR appears in the estimates
for both |A]L2(g) and |A'| (k). Hence, with the aid of (3.4.9) these can be
rewritten solely in terms of the L2 norms of s/, s” and s over IR. As with
the normal component of the gradient of v, a bound on the limiting values of

the tangential component of the gradient of v on either side of C; is given, from



—44-

(3.4.13), (3.4.14), (3.4.11), (3.4.12), (3.4.9) and (3.4.8) in terms of the L? norms
of the first three derivatives of s over IR.

From the preceeding discussion it is clear that x can be made arbitrarily small
by reducing the size of |s'|2(g) I5"|L2(r) and |s”'|L2(g)- More specifically,
(3.4.9), (3.4.10), (3.4.13) and (3.4.14) can be substituted appropriately into (3.4.8)
to compute, using (3.4.7) and (3.4.12), an upper bound for x on ﬁf Uﬁ; in the

form
k& < T2 (18" Loy > 18" L2y » 18 | L2 gmy) =2 T3 (34.15)

Define a set of functions J by
J={s€A|F3<min{fz-—7r,'n——'§}}ﬂX, (3.4.16)
where X is given by
X={y:R— R|¢eCR),¥"™ e L*(R),n=0,1,2,3}. (3.4.17)

Then, from (3.4.2), (3.4.15) and (3.4.16), provided s is an element of the set IT
defined by
I=1InJ, (3.4.18)

there exists a solution—unique up to an additive constant—to the associated con-
strained boundary value problem (3.1.17)-(3.1.18) with phase boundary Q,. This
solution defines a globally elliptic inhomogeneous two-phase equilibrium state and,
therefore, establishes the existence result sought after here. Note—from the defi-
nition of IT—that the approach delineated above provides a means by which an
uncountably infinite number of such states can be constructed. It is significant
that the loading conditions related at the outset of Section 3.1 give rise to not
only a globally elliptic pairwise homogeneous equilibrium state but also an un-
countably infinite number of globally elliptic inhomogeneous two-phase equilibria.

This result clearly reflects the underlying non-linearity of the problem.
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As remarked earlier, there may exist globally elliptic inhomogeneous two-
phase equilibrium states which cannot be constructed via the approach taken
above and, thus, do not correspond to phase boundaries in the set II. Under
relaxed smoothness assumptions on s there may, however, exist still other globally
elliptic inhomogeneous two-phase equilibrium states which can be constructed
via Neumann series. In particular, under such relaxed circumstances, it may
be possible to demonstrate the existence of states wherein the associated phase
boundaries exhibit geometrical irregularities such as corners or cusps (recall that
the existence of equilibria involving cusped phase boundaries has been established

by Rosakis [27] in his work involving a special anisotropic material).

3.5. An example. Given the results of Sections 3.3 and 3.4 it is illuminating
to consider a particular class of functions in the set A4 defined by (3.1.6) and
determine a subset of this class of functions which are also contained in the set

IT defined by (3.4.18). Toward this end, let s is given by
h
5(z2) = ———=—= Vz2 € R, (3.5.1)

where h and ¢ are both positive constants. A representative graph of s is displayed
in Figure 3. Note that s is clearly an infinitely differentiable element of the set .4
for all values of the parameters h and £. Let the ratio of h to ¢ be denoted by e.
The kernel K, associated with s must, as a consequence of the results of Section
3.3, be square integrable on IR%. In fact, from (3.3.15) one finds, after a bit of

calculation, that the L? norm of K, over JR? can be bounded as follows:

s
"Ksnm(mz) < uksuLz(Rz) =3¢ (3.5.2)

In the latter, k, is as defined in (3.3.7). Hence, it is clear from (3.2.10)
and (3.3.6) that if—for a given choice of the moduli x; and po which define the

elliptic phases of the three-phase material with shear stress response function
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Tp—the parameter e satisfies

<o Pt h + U2

3.5.3)
B — po’ ( )

then the function s introduced above will be an element of ZNC*(IR). Assume,
from now on, that s as defined in (3.5.1) is such that (3.5.3) holds. Then the
Neumann series (3.3.3) converges uniformly on IR to a solution of the integral
equation. With the aid of the decomposition (3.3.16) of the forcing f,, the solution

of the integral equation can be expressed as

e o} o o}
p(22) =X ) (A MER)(@2) + A Y (- N (M3g,)(z2) Va2 € R,

—
o
=
159

S

where M is as defined in (3.2.13). Given 7, and, hence, the moduli 3 and po, it
can be readily shown that, for every e¢ which satisfies (3.5.3), the following order

relations hold for each non-negative integer n:

(M2h,)(z2) = O(2™*1) Vz; € R,
(3.5.5)
(M3g.)(z2) = O(€™1?) vz € R,

Therefore, facilitated by (3.5.4) and (3.5.5), ¢ can be represented in the form

+O(e?) Vz € R. (3.5.6)

S”(””2)‘2’”“2][ @t §2>2<s z2)

An application of contour integration yields

+00 202
][ & ~ 2 120 v eR
S EHER(E-z2) 260 (14 (%)% ’
so that (3.5.6) becomes, with the aid of (3.2.11),
- 1 — (%2)2
o(z2) = £~ Fa () e+ O0(¢?) Vzy € R. (3.5.7)

p1+ p2 (14 (%)?)?
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Observe that (3.5.7) and (3.5.1) can be used in (3.2.16) and (3.1.16) to con-
struct, for each appropriate pair (h,£), an approximate solution to the reduced
boundary value problem (3.1.17). Now, substitution of (3.5.1) and (3.5.7) into
(3.4.3) and (3.4.4) delivers the following formulae for the limiting values of the
normal derivative of v on either side of C,:

=) 1- (%)

+O0(e?) Vzs € R,
w+pe (1t ()22 ° () Va2

2 (s(oa)-m2) =

5 ( ) (22)? (3.5.8)
v _ =) 1-(F ] ] -
% (S($2)+,£L'2) - U1 + Lo (1 + (E;)2)2 + O( 2) v 2 € R.

Similarly, substitution of (3.5.1) and (3.5.7) into (3.4.6) gives rise to the following
expressions for the limiting values of the tangential derivative of v on either side

of C,:

v _ 2pmn=) 7
51 (s(z2)—,x2) = ptpe (14 ()%)?

e+ O(®) Vz; € R,

) (3.5.9)

2pp(i—) F
p+pe (14 (%)?)

3}
—ag (s(z2)+,22) = se+O0(°) Vzpa e R

The expansions in (3.5.8) and (3.5.9) show the dependence on € of the limiting
values of the normal and tangential derivatives of v on either side of C;. They
readily imply that, for the function s indicated in (3.5.1), the associated reduced

shear strain field & introduced via (3.4.1) satisfies
k=0(*) on R\C,. (3.5.10)

An immediate consequence of (3.5.10) is that if ¢ is made sufficiently small the
reduced phase segregation requirement (3.1.18) will then be satisfied and the
relevant function s will be contained in I7.

Note, alternatively, that the L? norms, over IR, of the first three derivatives

of the function s defined in (3.5.1) can be computed directly to give

h [37 D h
’ Y " _ [3x v " _  [45m 'V
uS an(R) = \/_Z—e_%'a “S ||L2(R) - 4 eg.’ HS "Lz(m) - 8 p5°
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If the foregoing are substituted in the estimates (3.4.9), (3.4.10), (3.4.13), and
(3.4.14) then it is straightforward to show, with appropriate use of (3.4.7), that the
quantity I's defined in (3.4.15) is of order e—which corroborates the asymptotic
results obtained above. Hence, if the parameters h and ¢ which appear in the

definition of s are chosen so that e is sufficiently small, I's will satisfy

I, < min{’z — Y1 =3} (3.5.11)

and s will be an element of II.

In either case a class of phase boundaries Q, for which e = h/Z is sufficiently
small emerges from the class of functions s given by (3.5.1). The reduced out-
of-plane displacement field corresponding to each such s, is by using (3.5.1) and
(3.5.4)—(3.5.7) in (3.2.16), given approximately by

+o00
Y= Vr hzq d€

2w ¢ ) G+eNG+(F -

v(T1,T2) ~

+oco
—Ir 1-¢2 T T
+2 2 f (Hé)z /(2 + (F — €7 dé

V(zy,z2) € R*\C,. (3.5.12)

An approximation to the corresponding primitive out-of-plane displacement field

u is then calculated easily by substituting (3.5.12) appropriately into (3.1.16).
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4. STUDY OF PHASE BOUNDARY KINETICS AND STABILITY

This chapter relies on the concept of a quasistatic motion introduced in Sec-
tion 2.3. Recall that, in addition to the shear stress response function 7,, the
constitutive characterization of the material at hand includes a kinetic response
function V which, in the setting of a quasistatic motion, dictates the dependence
of the normal velocity of a particle located at a point on a phase boundary on the
driving traction acting at that point. Given the distribution of driving traction on
a particular phase boundary it is therefore—through the kinetic relation—possible
to discuss the kinetics and stability of that phase boundary in slow motions. For
illustrative purposes this is done; below in the context of the specific class of
phase boundaries studied in Section 3.5. A similar analysis could, in principle, be
performed for any function s in IT.

In Section 4.1 the driving traction f which acts on such a phase boundary is
derived. It is demonstrated that f is composed of the sum of an ambient term fo
which corresponds to the constant driving traction which would act on a planar
phase boundary corresponding to a suitable globally elliptic pairwise homogeneous
equilibrium state and higher order terms which represent the increment to the
driving traction resulting from the non-planarity of the surface Q,.

In Section 4.2 the ambient term fy and the most significant non-constant
term in the driving traction f are used in conjunction with V and the kinetic

relation to address phase boundary kinetics and stability.

4.1. The driving traction acting on an arbitrary element of a spe-
cific class of phase boundaries. Let s be given by (3.5.1) with e = h/¢ chosen
so that (3.5.11) is fulfilled. As discussed in Section 3.5, @, is then a phase bound-
ary. Consider the computation of the driving traction acting on Q,. The simple
manner in which @, can be parameterized implies that—in the present context
of antiplane shear—the expression for the driving traction provided in (2.4.6) can
be written as a function of one variable. Furthermore, it can be shown with-

out difficulty that, for the special three-phase material with shear stress response
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function 75, the driving traction f is given by

f= H1 ; B2 (U,a (s(:)+, Ythya (8(-)—, ") — ‘;PZ) on IR. (4.1.1)

The definition of v supplied in (3.1.16) readily furnishes the following expres-

sions for u,q (s(:)%, )eq on R:
Usa (8(-)—,")€a = €1 + V)0 (s(-)=")ea

ov ov
=ye; + ‘5;;(3(')“, )n + E(s(')—, )1 on R,

(4.1.2)
User (8(')+; )€a = Vr€1 + V)0 (8(1)+,")eq
ov ov
= s+ 5o (s()+Jn+ SO+ on R

It is possible to show, from (3.5.1), (3.1.7) and (3.4.5), that the unit normal and

tangent vectors to Q, satisfy the following order relations:

n-eg=1+0() on R, l-eg=0() on R. (4.1.3)

Hence, (3.1.16), (4.1.2) and (4.1.3) yield

i (81, Y (5=, ) = W0 2 5 (54, + 3 ()= )
+0(e?) on R. (4.1.4)

Now, if (3.5.8) is inserted appropriately in (4.1.4) and the result is substituted
into (4.1.1) the driving traction along the phase boundary Q, can be expanded

in powers of ¢ as follows

1- ()2

arEmEet O(c*) Vzz € R, (4.1.5)

flz2) = fo—v

with the constants fp and v given by

_ 2
Y = (p1 — p2)

= Yy 4.1.6
(p1 + p2) ( )

K1 — K2 «
fo= T(%% - '71),
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fo is the ambient or base driving traction which would hold on a planar phase
boundary associated with a globally elliptic pairwise homogeneous equilibrium
state with displacement field (3.1.1). Observe that since

SRR,

1
—— I, ‘WA
s ST o S1 Ve e R,

the coeflicient of the O(¢) term in the expansion of f provides a bounded correction
to the base term fy. This term is, for small €, the most significant contribution
to f which results from the deviation in the geometry of @, from planar. Note
that fp can take on any real value whereas v must be positive. Furthermore,
because the difference (u; — p2) is squared in (4.1.6)2, the positivity of v holds
even if the affiliations of the moduli p; and u9 are reversed so as to be associated
with the high and low strain phases of the material at hand. From (4.1.5) it

is apparent that the O(e) contribution to the distribution of driving traction on
the phase boundary Q, under consideration is a complicated function of position.
See Figure 4 for the graph of the function corresponding to the O(e) term in the

expansion of f. The results of ABEYARATNE [3], imply that the equilibria at hand

must, in general, constitute metastable states.

4.2. Kinetics and stability of an arbitrary element of a particular
class of phase boundaries. Given the expansion (4.1.5) consider the issue of
analyzing the kinetics and stability of an arbitrary element of the class of phase
boundaries at hand. Suppose that V is twice continuously differentiable on IR.
Then, as noted in the remarks following (2.3.9), the admissibility of V requires
that V(0) = 0 and V’(0) > 0. Assume, for the purposes of this discussion, that fg
is not a critical point of V'; note that this requires, in particular, that if fo = 0 then
V'(0) > 0. See Figure 5 for examples of graphs of monotonic and non-monotonic
kinetic response functions.

Let QS and Q{ be those subsets of the phase boundary 9, defined as follows:

Q§ = {X € Qs |x2 € (""e’ e)}) Q{ = Qs \ Qs
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Observe, from (4.1.5), that Q¢ and Qf correspond to the portions of Q4 upon
which the O(e) correction to fo is negative and positive, respectively. Note,
also, that QS is the subset of Q, whose geometry deviates most significantly
from planar—that is, roughly speaking, the major portion of the bump which is
associated with the graph of the function s given by (3.5.1) corresponds to the
image of (—/,¢) under s. See Figure 4.

From the assumed smoothness of V, (4.1.5) and Taylor’s theorem the normal

velocity at a point on the phase boundary is given by

— (Z2)2
Va(x) = V(f(z2)) = V(fo) - uf/’(fo)( 1= (%) e+0(?) Vxe Q, (4.2.1)

T+ (37
In determining the kinetic tendencies of Q, it is now convenient to consider two
cases. These are fo = 0 and fy # 0. Note that the base globally elliptic pairwise
homogeneous equilibrium state is mechanically stable only in the first of these
two cases.

Consider the case fo = 0. Then, since V(0) = 0, (4.2.1) imples that
1- (%)

Vn(X) = —VV’(O) '(-i—;—(—%z-)—zv

e+ 0(e?) Vxe Q,. (4.2.2)
Since V’(0) and v are positive, it is apparent from (4.2.2) and (4.1.3); that, to
most significant order in e, all points on Q¢ tend to move in the —e; direction
while all points on Qf tend to move in the e; direction. That is, if fo = 0 then
the phase boundary displays a proclivity to become planar.

Now consider the case where fy # 0. Suppose, first, that fg is positive. As
such the dominant contribution to the normal velocity is, at all points on Q,, in
the e; direction. Recall that fy is assumed not to be a critical point of V; hence,
since fo # 0, V'(fo) can be either positive or negative. If V/(0) > 0 then, since
v > 0, the normal velocity of points on Q¢ and Qf will decrease and increase,
respectively, on top of the ambient value V(fy). This, as in the case where

fo = 0, indicates a tendency for the phase boundary to straighten out. If, however,
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V'(fo) < O then, since v > 0, the exact opposite occurs—the normal velocity of
points on Q¢ and Q7 will add positive and negative increments, respectively, to the
ambient value V(fy). The protruding part of the phase boundary, if V'(f,) < 0,
portrays a tendency to grow while the flat part lags behind. The subcase where
fo is negative is yields a completely analogous result. That is, when f; < 0
the phase boundary shows a propensity to become planar or develop a larger
protrusion depending upon whether V’ (fo) is positive or negative, respectively.
The foregoing discussion shows that the kinetics of a phase boundary Q,
in the class at hand are, to first order in ¢, stable or unstable depending upon
whether the kinetic response function is locally increasing or decreasing at the
ambient driving traction fy. If the constitutive description of a three-phase mate-
rial with shear stress response function 7, also includes a monotonically increas-
ing kinetic response function such as that depicted in Figure 5a it is clear that
phase boundaries of the class under consideration will always be stable. If, on
the other hand, the constitutive description includes a non-monotonic kinetic re-
sponse function like that depicted in Figure 5b it is always possible to choose «;
and -, so that the phase boundary is unstable. These results suggest that it may
be reasonable to classify those three-phase materials with shear stress response
function 7, as kinetically stable and kinetically unstable depending on whether
the kinetic response function V is a monotonic or non-monotonic function of its
argument. Such a classification is consistent with that found by FRIED [16] in a
linear stability analysis of planar phase boundaries in arbitrary three-phase ma-
terials subjected to a class of perturbations which encompasses the set of phase

boundaries IT determined in Chapter 3.
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APPENDICES

Appendix A. In this appendix inequality (3.4.8) is established for all func-
tions 1 contained in the set V defined in (3.1.7). Let x : IR — IR be an element of
V with compact support about the origin; suppose, further, that x(0) = 1. Then,

if 1) is contained in V, one has the following inequality:”

Il Ly < Ity 1y (A1)

where
1¥ly = ¥l L2 @ry + 19l 2y -

Hence, (A.1) shows that all elements 1 of V are bounded on IR. The limit
lim (z2)e” 2P =0 (A.2)
Ig=—+—00

must, consequentially, hold for every (without loss of generality) positive real
number £ and every function ¥ in V. Evidently, then, such a function ¥ can be
expressed as follows:

T2

b(w2) = J/ %(w(g)e-%@z‘—‘)z) d¢ Vz, € R. (A.3)

—C0

Thus, from (A.3) and the Cauchy-Schwarz inequality it is clear that

400 oo
O T e

-0

< i (ﬁ u"b"L?(R) + \/é"lb,a[,z(m)) V(z2,0) e Rx Ry. (A4)

It is then obvious from (A.4) that

[¥] Lo () < m (T ey + VW'l 12 my) VL E Ry (A.5)

7 See AUBIN [9] for a demonstration of this fact.
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Now, minimize the expression on the right hand side of the inequality in (A.5)
with respect to £ to obtain (3.4.8). Note that the constant 2(%)"1{ in (3.4.8) may
not be the sharpest possible one for an estimate of this type. That is, there may

exist a function 1 in V more optimal than the Gaussian used in (A.3)—(A.5).

Appendix B. In this appendix the estimates (3.4.9) and (3.4.10) for
lelrz(my and |¢'l2() are established. First consider (3.4.9). From the in-
tegral equation in (3.2.15), the Minkowski inequality and the Cauchy-Schwarz

inequality it is clear that

—~~
oy
—

S

With the aid of the decomposition of f, provided in (3.3.17), the bound (3.3.21),
and the fact |hs| 2 k) = 7 |8'|p2(g) (B.1) implies that

A7+ 18" oo () 1 K5l L2(r2)) 18] 2 ()

B.2

lolLz(m) <
Now, use (3.4.8) and (3.4.9) in (B.2) to give (3.4.9).

Next consider (3.4.10). Recall that in order to obtain an estimate for the L?
norm of ¢’ over IR it is sufficient to require that s be an element of ZN X, where
X is given by (3.4.17). Suppose that this is the case. Then it is permissible to
differentiate the integral equation in (3.2.15) to obtain

+00
o+ / R, 6pE)dE=2f! on R, (B.3)

where

s5(z2) — s(€)

+ 2L3(.’L‘2,§) V(:L‘g,f) € R2’ (B4)
T2 —§

Rs(x% 6) = 2Ks2(x2? 6)



and

s(z2) — 8(€) — (z2 — £)8'(z2) + 3(x2 — £)5" (22)
(z2 — &) ((s(z2) — 5(£))2 + (z2 — £)?)

Y(zo,€) € R (B.5)

Ls(x% 6) =

Clearly, with the aid of the Cauchy-Schwarz and Minkowski inequalities, (B.3)

implies the following estimate for |¢'| 2 g

“‘Pluzﬂ(ﬂ{) < Aﬂf?sllm(m) "‘PHU(R) + A "f;“m(m) : (B.6)

So, given bounds for | K| r2(r?) and | fo|p2(g) in terms of the L? norms, over IR,
of the first three derivatives of s, (B.6) will provide, in conjunction with (3.4.9), an
estimate for |¢’|;2(g). A bound for the L? norm of L, over IR? can be obtained
in exactly the same manner as that established for K, in Section 3.3. This bound

is
N

HLs“Lz(}R?) < 6 "3”"22(12) HS’HH?F(R) . (B.7)
Now, from (B.4), (B.5), (B.7), (3.3.2) the Cauchy-Schwarz inequality and the

Minkowski inequality one obtains the following estimate for | K] L2(R?):

1 1
1ol < 4/ 51 Loy 18 koo ) 15 Uy 17 | o )
1 1
+ 18" 22 gy 15" 1oy - (B.8)
It is also clear that
1felzzcmy < ™"l peqmy + 18"l oo (y | Kol z2(m2) 15"l L2 ()

+ 5 15" Lo () 1Kl L2y 15l Loy - (B.9)

Using (3.4.8), inequalities (B.8) and (B.9) become

bt

" 1 1
1Rl agrey < 42151 Ea gy 15" Ly 15" e

1 1
+ 18" 2y 15" | 2a ey » (B.10)
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and

1 3 1 -
102y < 718" iacmy + 20503 1o ey 1”1 E ey 1K by

1 1 1
+(3)* “51“1,2(13) “3”“22(13) IIS"’IIEz(R) llelle(,Rz) ) (B.11)

respectively. Combining (B.6), (B.10), (B.11) and (3.3.15) leads, after a bit of
algebra, to the desired estimate (3.4.10).



—58—

REFERENCES

[1]

[2]

3]

[4]

[5]

[7]

[10]

R. ABEYARATNE, Discontinuous deformation gradients in the finite twisting

of an incompressible elastic tube, Journal of Elasticity 11 (1981), 43-80.

R. ABEYARATNE, Discontinuous deformation gradients away from the tip of

a crack in anti-plane shear, Journal of Elasticity 11 (1981), 373-393.

R. ABEYARATNE, An admissibility condition for equilibrium shocks in finite

elasticity, Journal of Elasticity 13 (1983), 175-184.

R. ABEYARATNE & J.K. KNOWLES, Non-elliptic elastic materials and the mod-

eling of dissipative mechanical behavior: an example, Journal of Elasticity

18 (1987), 227-278.

R. ABEYARATNE & J.K. KNowLEs, Non-elliptic elastic materials and the
modeling of elastic-plastic behavior for finite deformation, Journal of the

Mechanics and Physics of Solids 35 (1987), 343-365.

R. ABEYARATNE & J.K. KNnowLES, On the dissipative response due to dis-

continuous strains in bars of unstable elastic materials, International Journal

of Solids and Structures 24 (1988), 1021-1044.

R. ABEYARATNE & J.K. KNowLEs, Unstable elastic materials and the vis-

coelastic response of bars in tension, Journal of Applied Mechanics 55 (1988),

491-492.

R. ABEYARATNE & J.K. KNOWLES, On the driving traction acting on a surface
of strain discontinuity in a continuum, Journal of the Mechanics and Physics

of Solids 38 (1990), 345-360.
J.-P. AuBiN, Applied Functional Analysis, Wiley, New York, 1979.

JM. BaLL & R.D. JaMEs, Fine phase mixtures as minimizers of energy,

Archive for Rational Mechanics and Analysis 100 (1987), 13-52.



[11]

[12]

[13]

[14]

[20]

[21]

[22]

[23]

-59-

R. CouranT & D. HILBERT, Methods of Mathematical Physics Vol. 2, Inter-
science, New York, 1961.

J.L. ErICKSEN, Equilibrium of bars, Journal of Elasticity 5 (1975), 191-201.

R. Fospick & B.G. KAo, Transverse deformations associated with rectilinear

shear in elastic solids, Journal of Elasticity 8 (1978), 117-142.

R. Fospick & G. MAcSiTHIGH, Helical shear of an elastic, circular tube with

a non-convex stored energy, Archive for Rational Mechanics and Analysis 84

(1983), 31-53.

R. Fospick & J. SERRIN, Rectilinear steady flow of simple fluids, Proceedings

of the Royal Society of London SERIES A 332 (1973), 311-333.

E. Friep, Linear stability of a two-phase process involving a steadily prop-
agating planar phase boundary in a solid: part 1. purely mechanical case,

manuscript in preparation.
P.R. GARABEDIAN, Partial Differential Equations, Wiley, New York 1964.

M.E. GurTiN, Two-phase deformations in elastic solids, Archive for Rational

Mechanics and Analysis 84 (1983), 1-29.

M.E. GurtiN & R. TEMAM, On the anti-plane shear problem in finite elas-

ticity, Journal of Elasticity 11 (1981), 197-206.
P.R. HaLmos, Measure Theory, van Nostrand, London, 1950.

J.K. KNowLES, On finite anti-plane shear for incompressible elastic materials,

Journal of the Australian Mathematical Society 19 Series B (1976), 400-415.

J.K. KnowLES, The finite anti-plane shear field near the tip of a crack for

a class of incompressible elastic solids, International Journal of Fracture 13

(1977), 611-639.

J.K. KNnowLEs, On the dissipation associated with equilibrium shocks in finite

elasticity, Journal of Elasticity 9 (1979), 131-158.



[24]

[25]

[26]

[27]

[28]

[29]

(30]

—60—

D.L. PortER & A.H. HEUER, Mechanisms of toughening in partially stabi-
lized zirconia, Journal of the American Ceramics Society 60 (1977), 183-184.

M. Riesz, Sur les fonctions conjugées, Mathematische Zeitschrift 27 (1928),
218-244.

P. Rosakis, Ellipticity and deformations with discontinuous gradients in fi-
nite elastostatics, Archive for Rational Mechanics and Analysis 109 (1990),
1-37.

P. Rosakis, Compact zones of shear transformation in an anisotropic body,

forthcoming.

S.A. SiLLING, Consequences of the Maxwell relation for anti-plane shear de-

formations in an elastic solid, Journal of Elasticity 19 (1988), 241-284.

C. YaroMmi & N. NisHiIMURA, On the dissipation inequality in equilibrium

shocks, Journal of Elasticity 13 (1983), 311-316.

V.F. Zackay, M.W. JusTtussoN & D.J. SCHMATZ, Strengthening by marten-
sitic transformations, in Strengthening Mechanisms in Solids, 179-216, Amer-

ican Society for Metals, Metals Park, Ohio, 1962.



7(7)

—61-

#-2
2 f— — —

Figure 1: Graph of the shear stress response function 7.
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Figure 2: Graph of the shear stress response function Tp.
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Figure 4: Graph of the first order correction to the driving traction.
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Figure 5a: Graph of a monotone increasing admissible kinetic response function.
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Figure 5b: Graph of & non-monotone admissible kinetic response function.
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LINEAR STABILITY OF A TWO-PHASE PROCESS INVOLVING
A STEADILY PROPAGATING PLANAR PHASE BOUNDARY
IN A SOLID: PART 1. PURELY MECHANICAL CASE
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1. INTRODUCTION

Displacive solid-solid phase transformations occur in a wide variety of metal-
lic and ceramic alloys. The different phases of a material capable of undergoing
such a transformation are generally distinguished by distinct crystal structures.
Transformations involving such materials are characterized by the existence of
interfaces, or phase boundaries, which segregate material in different phases. Of
particular interest is the growth stage of a displacive solid-solid phase transfor-
mation which is directly related to the kinetics governing the motion of phase
boundaries. Some experimental work directed at understanding the growth stage
of these transformations has been performed. NisHrvaMa [25] has separated the
transformation kinetics of relevant materials into three classes based upon the
speed at which they occur. Depending on how they are loaded, some materials
may exhibit kinetics which fall into any or all of these three classes. In the fastest
of these, phase boundaries propagate at velocities which are of the same order of
magnitude as the velocity of shear wave propagation; in the remaining two classes
the velocities with which phase boundaries propagate are many orders of magni-
tude smaller the the shear wave speed. The work of GruJicic, OLsoN & OwEN
[16] and CrapPp & Yu [10] suggests that slowly propagating phase boundaries
are most often observed to be planar in structure, while those which propagate
rapidly often display highly complex geometries involving plate-like or dendritic
structures. These complicated structures are reminiscent of those which occur in
crystal growth, that are known to evolve from states involving planar interfaces
which separate solidified crystal material from liquid melt.! It is, therefore, nat-
ural to speculate as to whether the complicated plate-like morpholgies observed
in rapid displacive solid-solid phase transformations can emerge in an analogous
fashion from their slow counterparts.

Finite elastic dynamical processes in materials capable of sustaining equilib-

ria with discontinuous deformation gradients have figured prominently in recent

! LanGER [22] provides an overview of such phenomena.
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continuum mechanical treatments of displacive solid-solid phase transformations.?

In a homogeneous, hyperelastic material equilibrium states with discontinuous de-
formation gradients occur only if the relevant elastic potential allows for a loss
of ellipticity—at certain values of the deformation gradient—in the associated
displacement equations of equilibrium.? Materials characterized by elastic po-
tentials which allow such a loss of ellipticity are referred to as non-elliptic. Of
particular importance in most of the work that has been done in this area are
non-elliptic materials which have two disjoint elliptic phases. Such hypothetical
materials serve as models for actual materials which can sustain displacive solid-
solid phase transformations; surfaces which, in either equilibrium or dynamics,
separate the different phases of a non-elliptic material function as models for the
phase boundaries which occur in actual materials and, hence, are referred to as

such.

Despite the apparent dearth of experimental information regarding the is-
sue of whether the growth stage of displacive solid-solid phase transformations
can involve the emergence of complicated dendritic structures from planar phase
boundaries, it is legitimate to examine this topic from an analytical perspective
in the foregoing continuum mechanical context. Except for the work of SILLING
[30], the bulk of the continuum mechanical investigations which consider dynam-
ical processes are confined to one-dimensional bar theory and, hence, are not
of direct bearing on the issue of phase boundary morphology. SiLLING [30] has
demonstrated, through an asymptotic analysis, that a particular generalized neo-
Hookean material is capable of sustaining a motion which involves a steadily prop-
agating cusped surface of discontinuity which segregates distinct elliptic phases
of the relevant material. This cusped phase boundary can be thought of as a
model for one which would accompany a single plate-like structure in an actual

displacive solid-solid phase transformation. SiLLING [30] also performs numerical

2 See, e.g., ABEYARATNE & KNOWLES [4-6], JAMES [18], PENCE [27] and SILLING [30].
3 For a discussion of this issue consult, for instance, RosaKIs [28].
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calculations which seem to support his asymptotic results. It is important to note
that this work does not consider the issue of the emergence of the cusped phase

boundary from a planar one.

In analogy to the large body of analytical work which has been directed at
modeling the emergence of dendritic structures from planar interfaces in the pro-
cess of crystal growth,? it seems reasonable—as a first step in addressing the issue
at hand—to investigate the stability of a two-phase process involving a steadily
propagating planar phase boundary in a non-elliptic material. In a study which
focuses primarily on contructively establishing the existence of two-phase equi-
libria in a special non-elliptic generalized neo-Hookean material FrRIED [14] also
analyzes—in an inertia-free setting—the stability of such a state with respect to
a particular class of perturbations.> Together, the narrow class of perturbations
which is considered, the absence of inertial effects, and the constitutive special-
ization which is adhered to severely restrict the generality of the results which
are obtained in [14]. The objective of the present inquiry is, therefore, to perform
a more general stability analysis where a two-phase process involving a steadily
propagating planar phase boundary in a wide class of non-elliptic generalized
neo-Hookean materials is subjected to a broad class of disturbances and inertial
effects are taken into consideration. It will transpire, however, that the stability
results which are obtained are consistent with those secured by FrieD [14].

Chapter 2 is devoted to preliminaries. After a brief overview of the notation
to be used, Section 2.1 introduces the kinematics and fundamental balance prin-
ciples which will be needed in the following. Section 2.2 explains the constitutive
restrictions which will be adhered to throughout this work. Section 2.3 is con-
cerned with the notions of mechanical dissipation and driving traction which are
associated with phase boundaries; these lead naturally to the consideration of a

kinetic relation—which gives the normal velocity of a phase boundary in terms

4 See, for example, LANGER [22], MULLINS & SEKERKA [24] and STRAIN [31].
5 The relevant material is also that used by SILLING in [29-30].
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of the driving traction which acts on it or vice versa—and an associated kinetic
response function. In the final section of Chapter 2, the kinematics are specialized

to those of antiplane shear.

Chapter 3 concentrates upon a linear stability analyis of a two-phase process
involving a steadily propagating planar phase boundary in a non-elliptic general-
ized neo-Hookean material which obeys the Baker-Ericksen inequality. The pro-
cess to be perturbed, which involves an antiplane shear deformation, is introduced
in Section 3.1. In Section 3.2 the class of perturbations which will be applied to
the base process are then introduced. Each admissible perturbation involves, in
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placement and velocity fields in a small neighborhood of the phase boundary—all
of which are assumed to be small in some appropriate sense. The kinematics of
the perturbation are also restricted to those of antiplane shear. It is assumed,
furthermore, that the post-perturbation deformation remains an antiplane shear
and involves only one phase boundary. Section 3.3 is devoted to the linearization
about the base process of the field equations, which hold away from the phase
boundary, about the base process introduced in Section 3.1. In a similar manner,
Section 3.4 is concerned with the linearization about the base process of the jump
conditions and kinetic relation which hold on the phase boundary. A summary
of the complete linearized system of field equations, jump conditions, kinetic re-
lation, boundary and initial conditions which describe the process generated by
the perturbation is presented in Section 3.5. Included are both the inertial and
inertia-free cases. In Section 3.6 a normal mode analysis is performed in the ab-
sence of inertial effects. A condition necessary and sufficient for the base process
to be unstable with respect to any perturbation of the type introduced in Section
3.2 is obtained. This condition involves only the local behavior of the derivative of
the (essentially arbitrary) kinetic response function introduced in Section 2.3. An
alternative to the normal mode analysis of Section 3.6 is performed in Section 3.7.

Here the relevant initial boundary value problem is converted into a functional



71—

initial value problem for the correction to the interface position arising from the
perturbation. Analysis of this problem yields identical stability criteria to those
which are obtained in Section 3.6. Moreover, when instability is present, its man-
ifestation can be tracked over a finite time interval upon which the linearization
performed in the foregoing remains valid. The results suggest the emergence of
plate-like or dendritic structures. Section 3.8 contains both a normal mode and
an energy analyis in the case where inertial effects are included. First, the normal
mode analysis leads to a necessary and sufficient condition for the base process
to be unstable with respect to a special subset of the class of perturbations intro-
duced in Section 3.2. The operative stability criterion is identical to that which
holds for all initial disturbances in the inertia-free case. An argument based upon
a Fourier-Laplace transform analysis of the relevant initial boundary value prob-
lem is then used to show that all but a very special subset of the full class of
perturbations introduced in Section 3.2 are covered by the normal mode analysis.
Section 3.8 is concluded with an energy analysis which is used to show that the
sufficient condition referred to above is also necessary for the base process to be
unstable with respect to any perturbation of the class introduced in Section 3.2.
Hence, it is shown that the presence of inertia does not qualitatively alter the
linear stability of the base process of interest. Finally, in Section 3.9, a discus-
sion which focusses on the physical reasonableness of admissible non-monotonic

kinetic response functions is undertaken.
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2. PRELIMINARIES

2.1. Notation, kinematics and balance principles. In the following IR
and € denote the sets of real and complex numbers. The intervals (0,00) and
[0,00) are represented by IR, and IR,. The symbol IR", with n equal to 2 or 3,
represents real n-dimensional space equipped with the standard Euclidean norm.
If U is a set, then its closure, interior and boundary are designated by U, U , and
OU, respectively. The complement of a set V with respect to U is written as
U\ V. Given a function ¢ : U - W and a subset V of U, (V) stands for the
image of V' under the map .

Vectors and linear transformations from R® to IR® (referred to h
tensors) are distinguished from scalars with the aid of boldface type—lower and
upper case for vectors and tensors, respectively. Let a and b be vectors in IR®,
their inner product is then written as a - b; the Euclidean norm of a is, further,
written as |a| = {/a-a. The set of unit vectors—that is, vectors with unit
Euclidean norm—in JR® is designated by A'. The symbol L refers to the set
of tensors, £, denotes the set of all tensors with positive determinant, and :St
stands for the collection of all symmetric positive definite tensors. If F is in £
then FT represents its transpose; if, moreover, det F # 0, then the inverse of F
and its transpose are written as F~! and F~7, respectively. The notation a® b
refers to the tensor A, formed by the outer product of a with b, defined such that
Ac = (b - c)a for any vector ¢ in IR%. If A and B are tensors then their inner
product is written as A - B = tr ABT.

When component notation is used, Greek indices range only over {1,2};
summation of repeated indices over the appropriate range is implicit. A subscript
preceded by a comma denotes partial differentiation with respect to the corre-
sponding coordinate. Also, a superposed dot signifies partial differentiation with
respect to time.

Consider, now, a body B which, in a reference configuration, occupies a region

R contained in IR®%. A motion of B on a time interval 7 C IR is characterized by
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a one-parameter family of invertible mappings y(-,¢) : R — R;, with
y(x,t) =x+u(x,t) V(x,t) e M, (2.1.1)

where M = R x 7T represents the trajectory of the motion. Assume that the
deformation §, or equivalently the displacement u, is continuous and possesses
piecewise continuous first and second partial derivatives on M. Let S; be the set
of points contained in R defined so that, at each instant ¢ in 7, y(-,t) is twice

continuously differentiable on the set R \ S;. Let the set X~ be defined by
Y ={(x,t)|x € S;,teT}. (2.1.2)
Introduce the deformation gradient tensor ¥ : M\ X — L by
F(x,t) = Vy(x,t) VY(x,t) e M\ Z, (2.1.3)

where the associated Jacobian determinant, J: M\ ¥ — IR, of y is restricted to

be strictly positive on its domain of definition:
J(x,t) = det F(x,t) >0 V(x,t) e M\ Z.

+
Hence, F : M\ X — L,. The left Cauchy-Green tensor G : M\ X — S

corresponding to the deformation ¥ is given by
G(x,t) = F(x, t)FT(x,t) V(x,t) e M\ Z. (2.1.4)

The deformation invariants associated with § exist on M \ X and are supplied

through the fundamental scalar invariants of G:

L(G)=tuG, L(G)=13((tr G)? - tr(G?), I3(G)=detG. (2.1.5)
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With the above kinematic antecedents in place introduce the nominal mass
density p : R — IR, the nominal body force per unit massb : M — IR® and the
nominal stress tensor S : M\ X — L, and suppose that p is constant on R and b
is continuous on M, while S is piecewise continuous on M, continuous on M \ X,
and has a piecewise continuous gradient on M. Let p. be the mass density in
the deformed configuration associated with y. Given a regular subregion P of
R, with 9P N S; a set of measure zero in P for each t in 7, let m : 9P - N
denote the unit outward normal to P. Then the global balance laws of mass,

linear momentum, and angular momentum require that

/pdV: /p* dV on T, (2.1.6)
P ¥(P)
/SmdA+/pde=/pl'1dV on 7T, (2.1.7)
P P P
and
/S'ASmdA-I-/S'/\pde:/y/\pﬁdV on 7T, (2.1.8)
P P P

respectively, for every such regular subregion P contained in R.
Localization of the balance laws (2.1.6)—(2.1.8) at an arbitrary point con-

tained in the interior of M \ X yields the following familiar field equations:

p=p«(y)J on M\Z,
V-S+pb=pii on M\Z, (2.1.9)
SFT=FST on M\Z.
Suppose, from now on, that the set S; is a regular surface for every ¢t in 7.

The set = then represents the trajectory of a surface of discontinuity in F and S.

Let g(-,t) denote a generic field quantity g(-,t) : S¢ — IR which is discontinuous
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across S; at the instant ¢ in 7. Define the jump [g(-,t)] of g(-,t) across S; by
lo(x,1)] = ’ltirr(x) (9(x + hn(x,t),t) — g(x — hn(x,t),t)) V(x,t) € X, (2.1.10)
~

where n(-,t) : S; — N is a unit normal to S; at each ¢ in 7. Then, localization

of (2.1.6)—(2.1.8) at an arbitrary point in X' yields the following jump conditions

[o«(#)7]1=0 on Z,
(2.1.11)
[Sn] 4 pVo[u] =0 on X

where V,(-,t) : S — IR denotes the component of the velocity of the surface S;
in the direction of n(-,t) at the instant ¢ in 7.

Equations (2.1.9); and (2.1.11); are, evidently, completely decoupled from
equations (2.1.9)23 and (2.1.11)9; that is, given a solution to, say, a boundary
value problem involving (2.1.9)2 3 and (2.1.10)2, p. can be calculated a posteri-
ori. For this reason equations (2.1.9); and (2.1.11); will be disregarded in the
subsequent analysis.

In this investigation an inertia-free motion is defined as one wherein the
inertial terms on the right hand sides of the global balance equations (2.1.7) and
(2.1.8) are replaced by the zero vector. In the context of an inertia-free motion

the field equation (2.1.9); simplifies to read
V-S4+pb=0 on M\Z, (2.1.12)
and the jump condition (2.1.11)2. becomes
[Sn]=0 on X. (2.1.13)

Equations (2.1.9); 3 and (2.1.11); remain, of course, unaltered.



76—

In addition to the jump conditions given in (2.1.11) in the inertial case or
(2.1.10); and (2.1.13) in the inertia-free case, the stipulated continuity of ¥ gives

the following kinematic jump condition

[ul]=0 on X. (2.1.14)

2.2. Constitutive assumptions. Let B be composed of a hyperelastic ma-
terial which is homogeneous, isotropic and incompressible. Since B is hyperelastic
its mechanical response is governed by an elastic potential or strain energy per

unit reference volume. The homogeneity of B implies that the elastic potential

more, because B is isotropic the elastic potential can depend on the deformation
gradient F only through the deformation invariants I (G) defined in (2.1.5). The

incompressibility of B requires that the deformation ¥ be isochoric, i.e.,
I{(G(x,t) = J3(x,t) =1 V(x,t) e M\ Z. (2.2.1)

An additional consequence of isotropy is, therefore, that the elastic potential can
be expressed as a function solely of the first two deformation invariants. It can
also be demonstrated via (2.1.5) that, when (2.2.1) holds, I,(G(x,t)) > 3 for all
(x,t) contained in M \ X. Now, let W : [3,00) x [3,00) — IR denote an elastic
potential which characterizes B and assume that W is continuously differentiable
with piecewise continuous second derivatives on its domain of definition. The
nominal stress response of B is then determined through W up to an arbitrary
pressure p : M \ £ — IR required to accomodate the kinematic constraint (2.2.1)

imposed by the incompressibility of B: wviz.,
S=2 (W,l (D)F + Wi, (I (I,(G)1 — G)F) —pF T on M\Z, (222
where I : M\ X — [3,00) x [3,00) is given by

I(x,t) = (I1(G(x,1)), I2 (G(x,t))) V(x,t) e M\ Z.
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Following GURTIN [17], let the class of generalized neo-Hookean materials re-
fer to that subset of hyperelastic materials, first introduced by KnowLEs [19],
which are homogeneous, isotropic and incompressible with elastic potential in-
dependent of the second deformation invariant (2.1.5);. Assume, henceforth,
that B is composed of a generalized neo-Hookean material with elastic potential
W : [3,00) — IR, where W is continuously differentiable with piecewise contin-
uous derivative on [3,00). Then, by (2.2.2), the nominal stress response of B is
determined by
S = 2W/(I1(G))F —pF T on M\ Z. (2.2.3)

Suppose also that the elastic potential is normalized so that
W(3) =0. (2.2.4)

Choose a rectangular Cartesian frame X = {0;e;,e2,e3} and consider the

response of the material at hand to a simple shear deformation y given by
y(x,t) =(1+ve3®e1)x V(x,t) € M, (2.2.5)

where the constant y—assumed non-negative without loss of generality—denotes
the amount of shear. From (2.1.3), (2.2.3) and (2.2.5) the nominal shear stress

corresponding to the deformation ¥ is, for each « in IR, found to be
e3-Se; = 29W'(3 ++°) =: 7(7). (2.2.6)

In [19-20] KNOoWLEs demonstrates that the 31 and 32 components of nom-
inal and Cauchy shear stress are, in the present setting, equal. The function
T : R, — IR is, hence, referred to as the shear stress response function of the
generalized neo-Hookean material, characterized by W, in simple shear. An im-
mediate consequence of (2.2.4) and (2.2.6) is

VT3
W(L) = / ry)dy VI € [3,00), (2.2.7)
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so that the response of a generalized neo-Hookean material, in all three dimen-
sional deformations, is, up to a hydrostatic pressure, completely characterized
by specifying the shear stress response function 7. Define the secant modulus in
shear M : IRy — IR of a generalized neo-Hookean material with elastic potential
W by

M(y)=2W(3++%) Vye Ry, (2.2.8)

and assume that, in compliance with the Baker-Ericksen inequality,

MH)>0 Vye R,. (2.2.9)

Assume, also, that M(0) > 0 so that the infinitesimal shear modulus of the
material at hand is positive. Note from (2.2.6) and (2.2.8) that the shear stress

response function 7 must also satisfy

7(0)=0, 7/(0) = M(0). (2.2.10)

Observe, in addition, that the stipulated smoothness of W guarantees that both
7 and M are piecewise continuously differentiable on IR .

Despite the significant restrictions which have been placed upon the class of
materials which will be considered in this investigation, no presuppositions have
been made regarding the sign of the derivative—where it exists—of the shear
stress response function corresponding to the generalized neo-Hookean material
defined through (2.2.6). In [20] KNOWLEs shows that the monotonicity of the
shear stress response function 7 is related directly to the ellipticity of the gener-
alized neo-Hookean material which it characterizes: if 7 is not a monotonically
increasing function on its domain of definition then the associated material is non-
elliptic. This investigation will make use of a particular subclass of non-elliptic
generalized neo-Hookean materials, first suggested by ABEYARATNE [1]; this class

of materials is characterized by the set of shear stress response functions 7 which
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are continuous on JR, and piecewise continuously differentiable on R, \ {v,7},

where 0 < vy < 4, such that

>0 on Ry\[1,%]

* (2.2.11)
<0 on (v,9).
*
The sets of shear strains lying in the intervals [0,+) and (¥, 00) are referred
&=

to as the high and low strain phases of the generalized neo-Hookean material
specified by the shear stress response function 7. Together the high and low
strain phases of such a material comprise its elliptic phases. A generalized neo-
Hookean material characterized by a shear stress response function of this type

will be referred to herein as a three-phase material. See Figure 1 for a graph of a

shear stress response function typical of those which specify three-phase materials.

2.3. Dissipation, driving traction and the kinetic relation. Let P be
a regular subregion contained in R chosen so that 9P N X is a set of measure zero
in OP. The total mechanical energy contained in P at an instant ¢ contained in

T is given, under the present constitutive assumptions, by

E(t:P) = / (W(I.(G(x,8))) + Lola(x, )P) dV Ve T. (2.3.1)

P

A standard calculations then shows, with the aid of (2.2.3), that

B(t;P) = / S(x, t)n(x, t) - i(x, £) dA — / Fx,OVa(x,t)dA Yt T, (232)
oP PNS,

where f : X — IR is the scalar driving traction given by
FG8) =WnLGEHD) - (SEON - [F(,8)] on S VEeT,  (23.3)

and, given a generic field quantity g(:,t) : S; — IR which jumps across S; at the
instant ¢ in 7, {(g(:,t))) is defined through

{g(x,t)) = ’lli\r%% (9(x+ hn(x,t),t) + g(x — hn(x,1),t)) V(x,t) € Z, (2.3.4)
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In [21] KNowLES derives (2.3.2) in the absence of inertial effects; following either
Yarowmr & NisHIMURA [32] or ABEYARATNE & KNOWLES [3] it can be shown that

(2.3.3) reduces, in this setting, to
768) = W (RGO - 86,0 - [F(,H] on S VieT,  (235)

where §(-,t) (resp., g(, t)) is the limiting value of the field S(-,t) on the side of
the interface into which the unit normal n(-,t) is (resp., is not) directed at the
instant ¢ in 7.

From (2.3.2) it is clear that the presence of a moving surface of discontinuity
S; of the type considered here may effect the balance of mechanical energy. Let the
difference in the rate of work of the mechanical forces external to P and the rate at
which energy is stored in P be referred to as the rate of dissipation of mechanical
energy associated with the region P. When treated from a thermomechanical
perspective, the dissipation rate can be shown to be identical to the product of the
temperature and the rate of entropy production—provided that the temperature is
spatially uniform and independent of time.® The Clausius-Duhem inequality then
requires that the dissipation rate associated with a motion of the kind envisioned

here be non-negative, t.e.,

/ Fx, ) Valx,8)dA> 0 VteT, (2.3.6)
PNS,

for every regular subregion P, with 9P NS, a set of measure zero in 9P at ¢ in
T, contained in R. A localization of (2.3.6) at an arbitrary point on the interface

therefore yields the inequality
fVo20 on X (2.3.7)

as a condition imposed for the admissibility of the motion.

6 For a detailed discussion of the these issues see ABEYARATNE & KNOWLES [3].
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Assume that the surface S; separates, for each ¢ in 7, low and high strain
elliptic phases of the three phase material at hand. In the context of a motion
which involves such an interface it is necessary (see [3-6]) to supplement, in some
fashion, the constitutive information which relates the stress and strain fields. An
approach to this taken by ABEYARATNE & KNOWLES [3] entails the provision of
a kinetic relation which gives the normal velocity of the interface in terms of the

driving traction that acts on it or wvice versa. In the former case a constitutive

V:R— Ris provided so that
Vo =V(f) VfeR, (2.3.8)
while, in the latter case a constitutive function ¢ : IR — IR is given so that
f=¢(Vn) VV, € R. (2.3.9)

The functions V and ¢ are referred to as the kinetic response functions. Both
varieties of kinetic response functions will be considered in this investigation. If
V is such that V(f)f > 0 for all f in IR then (2.3.8) is automatically satisfied
and V is referred to as admissible. If S(VYV > 0 for all V in IR, $ is, similarly,
referred to as admissible. If an admissible kinetic response function V (or @) is
continuous on IR, then it must satisfy V(0) = 0 (or ¢(0) = 0). If, in addition, to
being admissible, V (or @) is continuously differentiable on IR, then V' (0) >0 (or
@'(0) > 0). Otherwise, admissiblility implies nothing with regard to the sign of the
derivative of a smooth kinetic response function. All kinetic response functions
considered herein are assumed to be admissible. See Figure 2 and Figure 3 for
graphs of such kinetic response functions.

ABEYARATNE (1], BALL & JaMEs [9], GURTIN [17], Fospick & MACSITHIGH
[12], and SiLLING [29] consider either equilibrium states or inertia-free motions
and require that the driving traction, f, be identically equal to zero on X'. This is

equivalent to prescribing a supplementary kinetic relation in the form (2.3.9) with
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¢ identically zero on IR. Provision of such a kinetic relation is, furthermore, a
necessary consequence of requiring that a suitable energy functional be minimized

at each t in 7 (see ABEYARATNE [2]).

2.4. Antiplane shear motions of a generalized neo-Hookean mate-
rial. Suppose, from now on, that R is a cylindrical region and choose a rectangu-
lar Cartesian frame X = {0;e;, ez, e3} so that the unit base vector es is parallel
to the generatrix of R. The deformation y defined through (2.1.1) consists of an
antiplane shear normal to the plane spanned by the base vectors e; and eq if it
is of the form

y(x,t) = x + u(zy,z2,t)es  V(x,t) € M. | (2.4.1)

Observe that the displacement field intrinsic to an antiplane shear deformation
of this type has only one nonzero component which lies in the ez direction and
is independent of the z3—coordinate. In (2.4.1) z, = x - e, for each x contained
in R. The function u will be referred to as the out-of-plane displacement field.
Inspection of (2.4.1) reveals that any discontinuities in the gradient of y must
result from discontinuities in the out-of-plane displacement field and, hence, occur
across surfaces which do not vary with the z3—coordinate. Let S; denote such a
surface at the instant ¢ in 7 and let X be defined as in (2.1.2).

It is possible to show, following the work of KNowLEs [20] in the inertia-free
context, that, although not every hyperelastic, isotropic and incompressible ma-
terial can sustain nontrivial antiplane shear motions, all generalized neo-Hookean
materials are capable of doing so. It is easily shown that for such materials the lo-
cal balance equations (2.1.9); 3 reduce, in the absense of body forces and under the
asssumption that the nominal stress tensor is independent of the z3-coordinate,

to the scalar equation
(M(Y)tya )ra=pii on X\T, (2.4.2)

where X is given by D x 7, D is a generic cross section of R, and I' =

{(z1,z2,t)| (z1,22) € Ct,t € T} with C; = DN S; at each ¢ in 7. See Fospick
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& SERRIN [13] and Fospick & Kao [11] for a general discussion of circumstances
under which the field equations (2.1.9)2,3 reduce to a single scalar equation. In
(2.4.2) M is the secant modulus in shear as defined in (2.2.8) and v : & \I' - R
is the shear strain field given by

Y(z1, T2, t) = V Ua(Z1, T2, tya(T1, T2,8)  V(21,22,t) € X\ T (2.4.3)

For a generalized neo-Hookean material subjected to antiplane shear, the

jump condition (2.1.11), reduces to
IIM(’Y)uaa na]l + anlI'u]] =0 on I, (2.4.4)

where I' = {(x,t)|x € Ci,t € T} and n(-,t) : C; — N is a unit normal to Cy,

while the kinematic jump condition (2.1.14) becomes
[ul=0 on I. (2.4.5)

It is also readily shown that the driving traction f, introduced in Section 2.3,
for a generalized neo-Hookean material subjected to an antiplane shear deforma-
tion involving a discontinuity in the gradient and, perhaps, the partial derivative
with respect to time of out-of-plane displacement field across a moving curve Cy

is given, with the aid of (2.3.5), by
+

= ey dy = (M(V)wa Mita] on T (2.4.6)

~

With reference to (2.1.12), (2.1.13) and (2.3.5) it is easily demonstrated that,

in the absence of inertial effects, (2.4.2) is replaced by

(M(Y)tha )a=0 on X\T, (2.4.7)
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while (2.4.4) becomes
[M(Y)uana] =0 on T, (2.4.8)

and (2.4.6) simplifies to

+
f= ‘[_:‘r('y) dy — M('jy:)ﬁ,a [u,a] on TI. (2.4.9)

Observe that, within the context of an antiplane shear deformation of the
type described above, no generality is lost by focussing exclusively upon the
motion on a cross-section D of the cylinder R and the dynamics of the curve
C, = DN S,. In the following, curves C; across which the gradient and, perhaps,
the partial derivative with respect to time of the out-of-plane displacement field
u(-,-,t) jump, at some instant ¢ in 7, and which segregate the high and low strain

phases of the material at hand will, therefore, be referred to as phase boundaries.
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3. LINEAR STABILITY OF A PROCESS INVOLVING A STEADILY
MOVING PLANAR PHASE BOUNDARY IN A THREE-PHASE
MATERIAL

3.1. Description of the base process. Suppose that B is composed of
a three-phase material and that the cylinder R degenerates so as to occupy all
of IR3 Let the rectangular Cartesian frame X be as in Section 2.4. Consider
an antiplane shear motion on the time interval (—oo,0) with an out-of-plane

displacement field ug(-,t) : R — IR given by

{'lel +uyt if  x; < et
r1,t) =4

o (3.1.1)
LYz + ot iz > vot,

uo(
for each t in (—o0, 0), where the shear strains «; and +, satisfy one of the following:
0<7,.<~*y<f?<fn, 0<7l<f1<'?<fyr. (3.1.2)

Since one of (3.1.2) must hold, there is no loss in generality incurred by assuming
that the base interface normal velocity vg is non-negative; that is,
U 2 0. (313)
It is clear that ug satisfies the differential equation in (2.4.2) on the set
(IR? x (—00,0)) \ I'b with Ip given by {(z1,z2,t)| (z1,22) € As,t € (—00,0)} and
A; = {(z1,z2)| 21 = vot,z2 € IR} for each t in (—o00,0). The moving line A; is,
for each t in (—o0,0), a phase boundary.
Assume, in order to comply with the jump conditions in (2.4.4) and (2.4.5) on

Iy, that the constants v;, v-, v1, vy, and vp associated with (3.1.1) are restricted

to satisfy the following equations:

vy — v + (7 — M) =0,
(3.1.4)
7(vr) = () + pvo(vr — v1) = 0.
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Assume that the normal velocity of the phase boundary in the base process

is locally subsonic so that vy satisfies the following inequality:

vo < min { /7 (n)/p, V7' ()]0} (3.15)

It is then permissible” to impose the kinetic relation of the form (2.3.8) or (2.3.9)

on Iy and require that the parameters ~;, 7, vi, vr, and vy satisfy one of

vo =V (fo), fo=@(vo), (3.1.6)

depending upon whether a kinetic relation of the form (2.3.8) or (2.3.9) is pro-
vided. In (3.1.6) the base driving traction fo is given, with the aid of (2.4.6),
by

Ir

fo= / (1) dy - 3(r(m) + 7)) (e — ). (3.1.7)

o f}

Observe, as a consequence of (3.1.3) and (2.3.7), that fy must satisfy

S,
O’,
v
jon
~~
&
oy
Qo
~—r

In a coordinate frame moving with the phase boundary, the base process
described involves a piecewise homogeneous shear strain field. If v, and ~, are
consistent with (3.1.2); then (3.1.3) implies that the base process is one wherein
the high strain elliptic phase of the material at hand grows at the expense of the
low strain elliptic phase; whereas, if 4; and 4, comply with (3.1.2), then (3.1.3)
implies that the base process is such that the low strain elliptic phase of the
material at hand grows at the expense of the high strain elliptic phase. In either
case the discontinuity involved is, for the duration of the motion, a normal phase

boundary—that is, the angle between the limiting values of the gradient of the

7 See ABEYARATNE & KNOWLES [4].
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out-of-plane displacement field on either side of the phase boundary is zero at
every point of the phase boundary over the time interval (—o0, 0).

Suppose, in addition to all the above, that the kinetic response function V
or ¢ is chosen so that its derivative is non-zero at the base driving traction fo;
that is, assume that one of the following—as is appropriate to either (2.3.8) or

(2.3.9)—must hold :
V'(fo) #0, & (v) #0. (3.1.9)

This assumption is made in order to preclude the necessity of going to higher
order in the context of the forthcoming stability analysis. See Figure 2 for the
graph of a smooth admissible kinetic reponse function which satisfies (3.1.9).
When inertial effects are ignored it is clear that ug as defined in (3.1.1) also
satisfies the field equation in (2.4.7) on (IR? x (—00,0)) \ I;. Equation (3.1.4);
is, in this context, still sufficient to satisfy (2.4.5) on I'p. In place of (3.1.4),, the

constants v, vr, v, Ur, and vy must, however, satisfy

() —7(n) =0, (3.1.10)

in order for the jump condition in (2.4.8) to hold on Iy. Although the expression
for the base driving traction fy given in (3.1.7) remains valid in the inertia-free

setting, (3.1.10) can be used to show that

Ir

fo= /T(v) dy — (v — ), (3.1.11)

where 7. = (%) = (7).

Given a shear stress response function 7 which describes a particular three-
phase material and an arbitrary kinetic response function V or ¢ which describes
the dynamics of phase boundaries which may occur therein, there may or may
not, in general, exist constants v;, ¥, vi, vr, and vo which satisfy one of (3.1.2);

or (3.1.2); and are consistent with the restrictions embodied by (3.1.4), (3.1.5),
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(3.1.6); or (3.1.6)2, and (3.1.9); or (3.1.9)2, or in the inertia-free case, (3.1.4);,
(3.1.10), (3.1.5), (3.1.6); or (3.1.6)2, (3.1.11) and (3.1.9); or (3.1.9)2. Within the
context of this investigation it will be assumed, however, that V or ¢ is chosen

so that a non-trivial base process exists.

3.2. Perturbation of the base process. Suppose that at the instant
t = 0 the out-of-plane displacement and velocity fields and the configuration of the
phase boundary associated with the motion specified in Section 3.1 are subjected
to a perturbation. Let this perturbation be such that the phase boundary can
be, at t = 0+, described by the graph Cy of a continuous function h : IR — R
of the zo—coordinate, and segregates elliptic phases of the three-phase material
at hand in a sense consistent with that which was present for ¢ in (—o0,0). Let
the out-of-plane displacement and velocity fields linked to this perturbation be
given, respectively, by a once continuously differentiable function n : R> — R
and a continuous function w : JR? — IR. Assume that h, 7 and @ represent
small deviations, in some appropriate sense, from their counterparts in the base
process. In particular, suppose that h, 7, 7,4, and w@ are all square integrable
on their domains of definition. Furthermore, require that the components of the

gradient of 77 allow the satisfaction of

2 hl;n ha (xla 5172)77,a (1?1, $2) = 07 (321)
:z:l+:zz-»oo
while = complies with
lim w(zy,22) =0, (3.2.2)
1:§+:z:§-—¢oo

so that the disturbance is localized in a neighborhood of the phase boundary
associated with the base state at ¢t = 0.

The perturbation at £ = 0 will initiate a new process involving an out-of-
plane displacement field u : IR? x IR, — IR which is, in general, a weak solution
of the field equation (2.4.2) and satisfies the jump conditions in (2.4.4) and (2.4.5)
at all discontinuities in its gradient, the kinetic relation (2.3.8) or (2.3.9) at all
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phase boundaries, and the initial conditions

’U(', ‘9 0+) = Uo(,0+) + 7 on Rza
(3.2.3)
a(-y-,04+) = io(-,0+) + @ on IRZ

Since the perturbation is small, assume that the subsequent process involves
only a single phase boundary C; = {(z1, z2,t)| 1 = (x2,t),z2 € IR} for each ¢ in

R, with ¢ : Rx Ry — IR continuously differentiable on its domain of definition

and defined so that it complies with the initial condition

a)
~~
(o]
.+-
-
Il
bl
Q
=]

R. (3.2.4)

With the intent of linearizing the field equation in (2.4.2) about the base process,

write, for each t in R,

u($1,$2,t) = u0(:c1,t) + 'w(xl,xz,t) V(il,‘l,xg) eD \ Cy, (3.2.5)

where w and its derivatives are assumed to represent small departures from the
relevent quantities in the base process. Assume that the components of the gra-

dient of w satisfy the following limits:

lim w, (z1,,,-)=0 on R xRy,
Ty —too

B (3.2.6)
lim w,(,z2,))=0 on IRxIR,.

xo—t00
From (3.2.3) and (3.2.5) it is clear, moreover, that—when inertial effects are not
ignored—the increment w to the out-of-plane displacement field must satisfy the

following initial conditions:

w(-,-,0+)=7n on R?,
(3.2.7)
W(,0+)=w on R
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It is important to emphasize that these can not be imposed in the inertia-free
setting.
Next, define s : IR x IR, — IR, the correction to the interface position due

to the perturbation, via

s(yt) =vot +s(-,t) on IR Vte R,. (3.2.8)

Note, from (3.2.4) that the increment s to the phase boundary position must

satisfy the initial condition

{.
\

~~
)
E\D
©
p—

s(-,0+4)=h on R.

Observe that the unit normal vectors ng (-, t) : IR — N to C; are given by

e; — 8,2 ('9t)92

1+ s,g (-y2)

For the remainder of this work, choose the unit normal vector associated with the

ng(,t) == on IR Vte R,. (3.2.10)

plus sign in (3.2.10) and drop this sign when referring to it. The normal velocity

Va(-,t) : R — IR of C; is given, for each ¢ in IRy, by

Yo +S(,t)

VT

Va( 1) = R Vte R,. (3.2.11)

3.3. Linearization of the field equations associated with the process
initiated by the perturbation. Let D! and D! denote, for each t in IR, , plane
sets defined by

Dl = {(z1,22)| 71 < <(z2,1)}, D = R2\ D). (3.3.1)
Let X; and X, be given, in turn, by

‘;\')l = {(m17$27t)l ($1a$2) € Di’t € R+}s (332)
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and

Xy = {(z1,72,t)| (z1,22) € D}, ¢ € R, }. (3.3.3)

The field equations which hold on X 1 and X r can be obtained by linearizing
the partial differential equation in (2.4.2) about ~; and 4,, respectively. First,
consider the derivation of the field equation which holds on X,. From (2.4.3),
(3.2.5) and the assumption regarding the magnitude of the spatial gradient of the

increment w to the out-of-plane displacement field it is clear that

y=y/ntwi 2 rwi= VR + 20w, 0,0 W,

o]

2~vy+w,; on X (3.3.4)
From (2.2.8), (3.3.4) and Taylor’s theorem it is further evident that
M) =My +w,y)2M(y)+M(Mm)w,, on X, (3.3.5)

Next, using (3.2.5) and (3.3.5) in the left-hand-side of the partial differential

equation in (2.4.2) gives

(M)t )ya = [(M('Yl) + MI(7l)w71 e Jsa
= [(M(m) + M (v)w,1 )(m 4w,
+ [(M(’Yl) + M,('Yl)wal )'U),2 ]a2

=~ ' (y)w,1 +M(7)w,22  on X, (3.3.6)
Note that, in deriving (3.3.6), the smoothness of 7 and hence M, the identity
() =M(y)y Vv€ Ry,
which follows from (2.2.6) and (2.2.8) and its consequence

(N =M+ M)y ¥yeRy\{y4}
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have been used. Observe, also, that 7/(y;) > 0 by whichever of (3.1.2) is appro-
priate, and M (v;) > 0 by (2.2.9). From (3.1.1), (3.2.5) and (3.3.6), the linearized
field equation which holds on X 1 is

a?w,; +biw,ze = W, (3.3.7)
where the positive constants a; and b; are defined by
a=+/Tm)/p, b =+MM)/p. (3.3.8)
Similarly, the linearized field equation which holds on X r is
a2w,1y +b2w 90 = W, (3.3.9)
where the positive constants a, and b, are defined by
ar = VT(w)[p, b =+/M()/p. (3.3.10)

In writing (3.3.10), the positivity of 7/(v,) > 0 and M(y,) > 0, which are results
of (2.2.9) and whichever of (3.1.2); o is appropriate, have been used.

From (2.4.7) and (3.3.6) it is clear that, in the inertia-free setting, equations
(3.3.7) and (3.3.9) are supplanted by

atw,11 +bfw,e =0, (3.3.11)
and
a2w,11 +bw,92 = 0, (3.3.12)

which hold on ¥ ; and X r, repectively.

3.4. Linearization of the jump conditions and kinetic relation as-

sociated with the process initiated by the perturbation. Since the set
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I' = {(z1,12,t)| (z1,22) € Ct,t € IRy} represents the post-disturbance trajec-
tory of the phase boundary, the jump conditions in (2.4.4) and (2.4.5) and the
kinetic balance equation in (2.3.8) or (2.3.9)—with V,, and f given, respectively,
by (3.2.11) and (2.4.6)—must hold on it. Assume, henceforth, that the function
s introduced via (3.2.8) and its derivatives are small in the same sense that w is
small. Note, first, that this assumption implies, using (3.2.10) and (3.2.11), the

following approximations for n and V,, on I":
n~e —spey; on I, V,=2y+s§ on I. (3.4.1)

It will now be shown that a further consequence of the above stipulation
regarding the size of s and its derivatives is that, within the error associated with
the linearization, the jump conditions in (2.4.4) and the kinetic relation can be
enforced on an undisturbed continuation of the phase boundary intrinsic to the

base process I given by
I = {(z1,22,t)| T1 = vot,z2 € R,t € R, }, (3.4.2)

but, when V, appears in any of these, the contribution due to § from (3.4.1);
must be retained. To see this consider, for example, the limiting values of the
z1—component of the gradient of the out-of-plane displacement field u on either

side of the phase boundary; note that by Taylor’s theorem, (3.1.1), and (3.2.8),

uy (s(x2,t)—, 2,1) := llli{r(l) u,1 (vot — h + s(z2,t), z2 + hs,2 (z2,1),1)
= 4 + w,1 ((vot + s(x2,t))—, T2, 1)
& v + w,; (vot—, T2,t) + w,11 (vot—, T2, t)s(x2, 1)
= u,; (vot—, Za,t) + w,11 (Vot—, T2, t)s(z2,t)

V(a:g,t) € R x R+, (343)
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and, similarly,

u,1 (s(z2, t)+, z2,t) = ’lliir(l) u,1 (vot + h + s(z2, 1), Z2 + hs,2 (22, 1), 1)
> v, + w,1 ((vot + s(x2, 1))+, T2, 1)
&~ 4+ w,; (vot+, T2,t) + w11 (vot+, T2, t)s(z2,t)
= u,; (vot+, T2, t) + w11 (vot+, 22, t)s(x2,t)
V(z2,t) € R x Ry. (3.4.4)

Since both s and the derivatives of w are assumed small and of the same order, the

quadratic terms on the right-hand-sides of (3.4.3) and (3.4.4) can be neglected.

This produces
u,1 (s(x2,t)%, To,t) = u,; (vott, z2,t) V(z2,t) € R X R, (3.4.5)

Within the scope of the linearization, u,; (s(z2,t)+, z2,t) is, therefore, obtained,
for each (z3,t) in R x IR, by evaluating u,; (-, 2,t) at vot£. Analogous remarks
also hold for the zo—component of the gradient of the out-of-plane displacement
field, the out-of-plane velocity field and the shear strain field. Hence, with the
aid of (3.4.1), (2.4.4) implies that

0 =7(vr) — 7(m) + pro(vr — w) + pro(vr — M)3(22,1)
+p (afw,l (vot+, z2,t) — a?w,l (vot—, 2, t))
+ pug (w(vot+, T2, t) — w(vot—,T2,t)) V(z2,t) € R x Ry. (3.4.6)
From (3.1.4)s, the constant term on the right-hand-side of (3.4.6) is zero and,

hence, the linearization of the jump condition which enforces the balance of linear

momentum across the phase boundary leads to

0 =a‘3w’1 (’Ugt+, ) t) - a’l2w’1 (’Ugt-—, T2, t) + 'UO('YT - 71)3(182, t)

+ vg (u')(vot+,x2,t) - 'li)('l)ot—, mz,t)) V(sz,t) eERxR,. (3.4.7)
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Prior to deriving the linearized kinetic relation it is convenient linearize the
driving traction f. From (3.2.4), (2.4.3) and the foregoing discussion one finds
that

f(@2,t) 2 fo+ 1p(n = ) (@Pw,1 (vot+, 22, t) + afw,1 (vot—, 22, 1))
+ %(T(’Yr) — 7(m)) (w1 (vot+, z2,t) — w,1 (vot—, x2, 1))

V(z2,t) € R x Ry, (3.4.8)

where the base driving traction fy is given by (3.1.7). From (3.1.4)3 it is clear,
furthermore, that (3.4.8) simplifies to read

f(z2,t) & fo+ 2p(v — ) (a2 — v3)w,1 (vot+, T2, t) + (af — vd)w,1 (vot—, 72, 1))

V(zs,t) € R x R,. (3.4.9)

If the kinetic relation is of the form given in (2.3.8), then (3.4.1)2, (3.4.9)
and Taylor’s theorem lead to

vo + §(z2,t) = V(fo)
+ %PV'(fo)(’Yl - ’Yr)((ag - vg)wal (U0t+,$2,t) + (a12 - ’0(2))’(1),1 ('Uot—, L2, t))

V(z2,t) € R x Ry. (3.4.10)

If, on the other hand, the kinetic relation is provided in the form (2.3.9), then
(3.4.1)2, (3.4.9) and Taylor’s theorem give, similarly,

@(vo) + ¢ (vo)s(z2,t) = fo
+ Lp(y = 1) (a2 — vd)w,1 (vot+,32,t) + (af — v§)w,1 (vot—, z2,1))

V(z2,t) € R x Ry (3.4.11)
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Use of the (3.1.6); and (3.1.6)2 in (3.4.10) and (3.4.11), respectively, results in

the linearized kinetic relation

T — V>

2% ((ag - vg)w’l (v0t+’$2a t) + (al2 - Ug)w’l (’UUt—,xZ’ t))

é(l‘g, t) =

V(x2,t) € R x Ry, (3.4.12)

where the constant v, is defined by either

: (3.4.13)

v, = , (3.4.14)

if the kinetic relation is supplied in the form (2.3.9). Note, from (3.1.9), that v,
is a real—but nonzero—counstant.
Consider, now, the task of linearizing the jump condition in (2.4.5). Note,

from (3.2.5), that (2.4.5) implies

0 =uo({(z2,t)+,t) — uo({(z2

V(xz,t) € R x Ry, (3.4.15)

Certainly, from (3.1.1), (3.2.8) and (3.1.4),,

uO(C($2»t)+’t)_uO(C(mZat)_at) = (71_'7r)5($2’t) V(Il',’g,t) € RXR-F; (3416)

furthermore, from (3.2.8), Taylor’s theorem, and the assumption regarding the

small magnitude of products involving s and the derivatives of w,

w(s(za,t)E, z2,t) = w(vott, z9,t) + w,1 (vott, 22, t)s(z2, t)

= w(vot:}:, xz,t) V(Jtz,t) ERxR,. (3.4.17)
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Hence, from (3.4.15)-(3.4.17), the linearization of the jump condition which en-

forces the continuity of displacement across the phase boundary yields
w(vot+, x2,t) — w(volt—, z2,t) = (71 — Vr)s(z2,t) V(z2,t) € R x R,. (3.4.18)

Differentiation of (3.4.18) with respect to time then results in the following

identity:

0 =u')(v0t+, T2, t) - ’l.b('vot—, Ia, t) + (’Y'r - ’)’[)5(1‘2, t)
+ UO(wyl (U0t+a T3, t) - Wy (’UOt", Za, t))

V(z2,t) € R x Ry, (3.4.19)

Appropriate substitution of (3.4.19) into the linearization of the jump condition
which enforces the balance of linear momentum across the phase boundary (3.4.7)

then gives rise to

0 =(a? — v3)w,; (vot+, z2,t) — (a? — v3)w,; (vot—, z2,1)

+ 2vo(y1 — ¥r)$(z2,t) V(z2,t) € R x R,. (3.4.20)

By virtue of the foregoing calculations it is crucial to note that, within the
scope of the linearization, it is legitimate to enforce the partial differential equa-

tions in (3.3.7) and (3.3.9) on the interiors of the sets {2; and 2, defined by

1 = {(x1, 29, 1)| (z1,22) € T}, t € R, Y, (3.4.21)
with IT} = {(z1,z2)| 1 < vot,z2 € IR} for each ¢ in IRy, and

2, = {(z1,z2,t)| (z1,22) € II] ,t € R, }, (3.4.22)

with IIT = {(z1, z2)| 21 > vot,z2 € IR} for each t in IR, , instead of the sets X
and X, (recall (3.3.2) and (3.3.3)).
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In the inertia-free case it is readily shown that, while (3.4.18) continues to

hold, (3.4.17) is replaced by
a’w,; (vot+,Z2,t) — a?w,; (vot—,xo,t) =0 V(z2,t) € R x Ry, (3.4.23)

and (3.4.11) simplifies to read

$(z2,t) =%l(a3w,1 (vot+, z2,t) + aw,; (vot—, T2, 1))

V(zo,t) € R x Ry (3.4.24)

Finally, remarks analogous to those made regarding the enforcement of the partial
differential equations in (3.3.7) and (3.3.9) on £, and 2, apply also to those in
(3.3.11) and (3.3.12).

3.5. Linearized description of the post perturbation process. In
this section the linearized field equations, jump conditions, kinetic relation, ini-
tial conditions (where appropriate), and far field decay conditions satisfied by
the increments w and s to the out-of-plane displacement field and the interface
position are listed in both the inertial and inertia-free cases.

In the inertial case, (3.3.7) and (3.3.9) give the following linearized field

equations

2 2 o
ajw,11 +bjw,z2 =1 on .(021, ( )
3.5.1
a,z,w,u +bf'w,22 =W on .(er.

In addition, from (3.4.20) and (3.4.18), the following jump conditions hold

[(02 - vg)wﬂ} = 2up(yr — )8 on I, (35.2)
[w] = (v —)s on I, -

where

a2 =d?, o =aqf. (3.5.3)
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Next, from (3.4.12) the following linearized kinetic relation holds:

s:li—"’—’(((az—vg)w,l» on I. (3.5.4)

The initial conditions satisfied by w and s are, from (3.2.4) and (3.2.7),

’lU(,,0+)=7] on R2s
w(-,,0+)=w on IR? (3.5.5)

s(-,0+4)=h on R.
Finally, from (3.2.6), it is assumed that the following far field conditions hold

lim w, (z1,-,t)=0 on IR,
+oco

o (3.5.6)
im w,(-,z2,t) =0 on R,
xz—-P:i:OO
for each t in IR,.
In the inertia-free case, (3.5.1) is replaced by the following:
a?w,n +b,2w,22 =0 on .&1,
(3.5.7)

a?,w,u +b,2.w,22 =0 on .(QZ,..

Furthermore, the jump condition (3.5.2); is, by virtue of (3.4.23), replaced by
[a?w,1] =0 on I, (3.5.8)

while (3.5.2); continues to hold. Following (3.4.24), the linearized kinetic relation
(3.5.4) is superseded by

s'=1’;—-7’-((a2w,1)) on I, (3.5.9)

*

In the absence of inertial effects initial conditions cannot be given for the incre-

ments to the out-of-plane displacement and velocity fields w and ; the initial
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condition (3.5.5)3 pertaining to s still, however, continues to be applicable. The

decay conditions (3.5.6) also still hold.

3.6. Normal mode analysis in the inertia-free setting. An approx-
imate means for analyzing the linear stability of the base process described in
Section 3.1 is afforded by the study of the inertia-free initial value problem con-
sisting of (3.5.7)-(3.5.9), (3.5.2)2, (3.5.5)3 and (3.5.6). Observe that, by virtue
of the linearization, the relevant partial differential equations, jump conditions
and kinetic relation are all linear with constant coefficients; note, also, that the
domains 17 ! and I ¢ are, for each t in IRy, rectangular. It is therefore possible
to find a solution to the linearized partial differential equations, jump conditions

and kinetic relation in the form

me+€z($1—vot)ei'“’23pt V(zi,z2) € ﬁé, te Ry,
Wre_gr(ml—vot)einmgept V($17$2) = ﬁ;‘, t e RJ{-, (3.6.1)

’U)(IIIl,iL'z,t) = {
s(z2,t) = Se™**2ePt V(zq,t) € R x Ry,

where the amplitudes W, W, and S, wave-numbers &, €, and &, and growth-rate
p are all constants. To comply with the decay condition (3.5.6); it is clear that
R(&) and R(&,) must both be positive. The Ansatz (3.6.1) is not, in general,
consistent with the initial condition (3.5.5)3 or the decay condition (3.5.6)s; since
the initial disturbance h is stipulated to be square integrable on IR, and hence

can be represented as a Fourier integral—

+o0
h(zy) = -2-17; / A(R)e"® di Vo, € R, (3.6.2)

— o0

it is reasonable to expect that stability results can be obtained by a normal-
mode analysis; such an analysis entails substitution of (3.6.1) into (3.5.7)—(3.5.9)
to determine the growth-rate p as a function of the positive wave-numbers &

and & and the real wave-number k. In the context of such an undertaking, the
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amplitude S and wave-number « are regarded as given and non-zero, while, along
with the growth-rate p, the amplitudes W; and W, and wave-numbers ; and &,
are—due to the present lack of inertial effects—to be determined. If there exists
a complex growth-rate p with positive real part which arises as a solution to
the aforementioned problem then the base process will be referred to as linearly
unstable. Otherwise, the base process will be called linearly stable.

Substitution of (3.6.1) into (3.5.7)—(3.5.9) and (3.5.2)2 yields the following

system of five equations in the five unknowns W;, W,., &, & and p:

(a’l2€l2 - b12K2)Wl = Oa

a2é W, + afW, = 0, (3.6.3)

W‘r - Wl - ('71' _71)S= 07

T (a2, W, — aaWi) + Sp = 0.

First, (3.6.3)1,2 give, recalling that £ and &, must be positive,
= = = —|xl. 6.4
b= 2, &= I (36.4)

In particular, (3.6.4) implies that, the wave-numbers £ and £, must be real and,
further, that, of &, &, and k, the growth-rate p will depend only on k. Next,

(3.6.3)3,4,5 can be solved for the remaining unknowns W;, W, and p to yield

V2|«
W= -5
l arbi(vi — )
2
w,=-— 2" __g (3.6.5)
arbr(’Yr - '7'1)
2
v
b= ———lfil,

Vs

where the constant v? is defined as follows:

V2 — alblarbr(')'l - 'Yr)2

a1b + arb, (366)
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Equation (3.6.5)3 which gives the growth-rate p in terms of the wave-number
% and various physical parameters intrinsic to the problem at hand will be referred
to as the dispersion relation. It is clear from (3.6.5)3 that the growth-rate p is
real. Since k # 0 by assumption and v, # 0 by (3.1.10), it is clear, moreover,

that the signs of p and v, are opposite: viz.,

sgn (p) = sgn (—v.). (3.6.7)

The linear stability of the base process, in the absence of inertial effects, thus
depends entirely upon the sign of v,. Significantly, the wave-number & plays no
role in determining stability. Moreover, the local mechanical properties of the high
and low strain elliptic phases of the three-phase material at hand do not effect the
stability criteria. If v, > 0 then the base process is linearly stable with respect to
all initial disturbances h of the type under consideration. If, alternatively, v, < 0
then the base process is linearly unstable with respect to all disturbances h of
the type considered here. To summarize, in the absence of inertial effects, the
criterion v, < 0 is necessary and sufficient for the base process to be unstable
with respect to any perturbation of the type put into consideration in Section
3.2. Thus, if the kinetic response function V or ¢—as is appropriate to whether
a kinetic relation of the form (2.3.8) or (2.3.9) is prescribed—is non-monotonic,
the base process may be linearly unstable with respect to any initial disturbance
h of the type being considered. Discussion regarding the physical reasonableness
of a non-monotonic kinetic response function is left until Section 3.9.

Suppose, now, that the normal velocity vy of the phase boundary in the base
process is zero. Note that this is equivalent to requiring that the base process
be mechanically equilibrated. Then, by the admissibility of the kinetic response
function, one or both of fy and v. must be zero. Since the latter contradicts
(3.1.10), vo = 0 implies, at present, that fo = 0 and, furthermore, either V/(0) > 0
or ¢'(0) > 0. Thus the foregoing stability dichotomy implies that a mechanically

equilibrated base process of the type defined in Section 3.1 must be linearly stable
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with respect to all initial disturbances h of the type considered here.

Note that the foregoing results are consistent with those presented by FRIED
[14] in a study of the distribution of driving traction along a particular non-
planar phase boundary. The latter work shows, roughly speaking, that the driving
traction is less in regions of the interface where the curvature is larger. Specifically,
if small deviations of the relevant type from a planar interface with constant base
driving traction f, are considered and a kinetic response function V is provided
so that V’(f.) < 0 then the normal velocity of the interface in regions of higher
curvature exceeds that in regions of lesser curvature. The interface, then, has a
marked tendency to evolve in a manner wherein its curved portions move ahead
of its flat portions—and, hence, become less planar. Such a response is intuitively
unstable. If, however, f, is such that V'(f.) > 0, flat portions of the interface
tend to catch up with the curved portions so that the interface regains its planar

shape—hence, the planar interface is stable.

3.7. An alternative to normal mode analysis in the inertia-free
setting. The analysis performed in Section 3.6 resulted in a necesary and suffi-
cient condition for the base process to be unstable with respect to an arbitrary
perturbation of the type discussed in Section 3.2; it did not, however, encom-
pass a means for tracking the evolution of either a stable or unstable response to
perturbation. This section will focus on an analysis which does allow the post-
perturbation evolution of the phase boundary to be followed in the linear regime.
Since the analysis is performed in the linear realm it is, in the case of an unsta-
ble response, only of value in a short time interval following the perturbation at
t = 0. Consider, again, the inertia-free initial boundary value problem consisting
of (3.5.7)-(3.5.9), (3.5.2)2, (3.5.5)3 and (3.5.6). Techniques from potential the-
ory are used in the appendix of this work to show that the increment w(-,-,t)
to the out-of-plane displacement field can be represented, for each ¢t in IR, in
terms of the sum of a single-layer potential, with density proportional to $, and a

double-layer potential potential, with density proportional to s—each on the line
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1 = vgt—as follows:

+00
w(on,aat) = [ Kuoy = vot, 2 - ¢, 5)3(,) d¢

+o00
+ / KQ(IL‘l — vot, z2 — C, %‘Z‘)S(C,t) d¢ V(.’thg) € ﬁtd.(3.7.l)
—00

The sub- and superscripts d in (3.7.1) are to be replaced by either ! or r—as
appropriate, while the kernels K,(-,-,¢) : IR2\ {(0,0)} — IR are defined via

1 Vs

Ki(z,y,¢) = ————In+v/c222 + 32 VY(z,y) € R*\ {(0,0)},
2 V‘(’Yl - 'Yr)
X (3.7.2)
cx
K L 2 01,
2(2,9,€) = 5- 55— e V(z,y) € R*\ {(0,0)}

for each ¢ in R,, and s, introduced in (3.2.8), satisfies the following functional

initial value problem

+o00
2 t)d
ez t) = ][S’za:ig’—)c > Vianf) € Rx R (3.7.3)

8(1‘2,0) = h(:L‘Q) Vzo, € R.

The integral on the right-hand-side of (3.7.3); is, as indicated, of the Cauchy
principal value type.

The stability of the base process rests on the stability of the solution s to
the foregoing functional initial value problem. To investigate this issue, assume—

because of the square integrability of h—that s can be represented in the form

+co
s(z2,t) = —21; / 3(k,t)e*®2 dx  V(zq,t) € R x R, (3.7.4)

-0

for some function 3 : R x IR, — IR which satisfies

“+0o0
5(x, 0) = / h(z2)e=*%2 dzy =: h(x) Vk € RR. (3.7.5)

—C0
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Now, from (3.7.3)—(3.7.5) it is possible to derive, for each fixed x in IR, the

following initial value problem:

2
: v
8(k,)+ —|klé(k,-) =0 on IR,
(%) U*H( ) (3.7.6)

3(k,0) = h(k).

Observe that the Laplace transform could be applied to (3.7.6) to derive the dis-
persion relation (3.6.5)3. The linear stability results obtained in Section 3.6 would,
then, follow immediately. Instead, note that (3.7.6) can be solved, formally, to

yield the following expression for §:
. L2 —
8(k,t) = h(k)e™ %"t V(k,t) € R x R,. (3.7.7)

Inspection of (3.7.7) reveals that, as demonstrated in Section 3.6, the linear sta-
bility of the base process is decided entirely by the sign of v.. Note that if v. > 0
then, by (3.7.4) and (3.7.7),

+o00
V2t h(¢) d¢ _
s(za,t) = p— / 02 1 (70 V(zq,t) € R x Ry. (3.7.8)

Ve

Hence, under these circumstances, it is clear that
tlim 8(zo,t) =0 Vzo € R, (3.7.9)
—00

for all square integrable initial disturbances h. The base process is, therefore,
linearly stable with respect to all such disturbances.

Suppose, now, that v, < 0—which, as remarked in Section 3.6, can occur
only if vg > 0. It is then instructive to consider a special example where the

initial disturbance h is given by

(3.7.10)
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with £ taken, without loss of generality, to be a positive constant. See Figure 2
for a representative graph of h. Note that since (3.7.3); is linear it is, in general,
possible to consider an initial disturbance which involves a linear superposition

of disturbances of the type defined in (3.7.10), e.g., H : IR — IR given by

N

1 A
H = S N— '~ R,
(z2) - nz=:1 Ty (a2 T

where N is a natural number and A, y, and £, are real constants for each n
in {1,2,...,N}. The results which follow are easily extended to apply to such
a generalization of the initial disturbance. Now, the Fourier transform h of the

function h defined in (3.7.10) is given by
h(k) = Ale™®* Vk e R. (3.7.11)

Next, (3.7.4), (3.7.7) and (3.7.11) imply that

+00
p2 :
/ e—(e—m)lnlemzz de Y(z2,t) € R x [0,t.), (3.7.12)

—0o0

Al

s(zo,t) = o

where the critical time t. is chosen small enough so that the amplitude of s does
not contradict the assumptions necessary for the linearization to remain valid over

the time interval [0,¢.); i.e.,

v |l
t, < L_§|_ =: teo. (3.7.13)
From (3.7.12) it transpires, further, that
1 Atoo(too — t
s t) = LAl =8 g e myi08). (3.7.14)

T (too — t)2 + 12, (%7)2

The expression for s(-,t) on IR given in (3.7.14) shows that the amplitude

and wavelength of the hump associated with the special initial disturbance under



-107-

consideration increase and decrease, respectively, as ¢ approaches t.. Hence, up
until some critical time, the assumption v. < 0 implies that the hump associated
with the initial disturbance grows in an unstable fashion. See Figure 4 for a
depiction of this unstable evolution. Observe, moreover, that, as ¢ approaches

too, the function s given by (3.7.14) forms a delta sequence so that

Jm s(-,t) = AL6 on IR, (3.7.15)

where § is the Dirac delta distribution.

3.8. Normal mode and energy analysis with inertial effects in-
cluded. The applicability of the stability criterion obtained in Section 3.6, and
recovered in Section 3.7, is, so far, limited to contexts where inertial effects are in-
significant. This section is concerned with the extension, as far as possible, of the
inertia-free stability dichotomy based upon the sign of v, into the inertial realm.
As a first step toward achieving this goal a normal mode analysis analogous to
that performed in Section 3.6 is undertaken with inertial terms present. The
conclusion of this analysis is that v, < 0 is necessary and sufficient to guarantee
the linear instability of the base process with respect to a particular subset of the
class of perturbations put into consideration in Section 3.2. It is then argued that
the remaining class of perturbations not covered by the normal mode analysis is,
in fact, very small. Next an energy argument is used to show that v. < 0is a
necessary condition for the base process to be linearly unstable with respect to an
arbitrary disturbance within the full class of perturbations introduced in Section
3.2.

Consider, now, the initial boundary value problem composed by (3.5.1),
(3.5.2) and (3.5.4)-(3.5.6). It is, once again, possible to find a solution to the
system formed by the linearized field equations, jump conditions and kinetic re-
lation in the form of (3.6.1). Remarks regarding the decomposition of the initial

data—which now includes 77 and w as well as h—and the satisfaction of (3.5.6)2
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akin to those made in Section 3.6 are pertinent. Observe that, in the inertial case,
the amplitudes W,,, W; and S and wave-numbers &, &, and « must be viewed as
given for the normal mode analysis to be effective in determining necessary and
sufficient conditions—via a dispersion relation analogous to (3.6.5)3—for insta-
bility with respect to arbitrary disturbances of the out-of-plane displacement and
velocity fields and the interface within the class of perturbations put forth in Sec-
tion 3.2. Substitution, however, of (3.6.1) into (3.5.1), (3.5.2) and (3.5.4) produces

the following relations

g = JuEP) — vop

af —v§
¢, = {r(%:P) + vop
T a2 —v¢ '
_ (7 — v )(vop — fr(k,D))
O T A R (381
wr _ (=) (wop + fils,p))
WT B fl(K‘,p) + f'l‘(""',p) S,
_ _(n=2)*(fi(s,p) fr (5, p) + vEP?)
v« (fi(k,p) + fr(x,p)) ’
where f; : R x € — € and f, : IR x @ — € are given by
filk,p) = \/(a,2 — )bk + a?p? V(k,p) € R x C,
(3.8.2)

fo(k,p) = /(02 — w3)b262 + a2p? ¥(x,p) € R x C.

The square roots in (3.8.2) are defined so that when their respective arguments
are real and positive the resulting square root is also real and positive.

It is clear from (3.8.1); 2,3 4 that, for (3.6.1) to represent a solution to (3.5.1),
(3.5.2) and (3.5.4), the amplitudes W; and W, and wave-numbers §; and & cannot
be chosen independently of S and k. Hence, the normal mode procedure is only
capable of analyzing the linear stability of the base process with respect to a

certain class of perturbations; that is, it is only possible—via this analysis—to
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determine conditions necessary and sufficent for the instability of the base process
with respect to a subset of the class of perturbations put into consideration in
Section 3.2. To do this it suffices to analyze the zero structure of the dispersion
relation (3.8.1)s as a function of the growth-rate p for fixed values of the wave-
number k and the parameters 7;, vr, Vo, G, @r, by, by, p and v,. This is done
below.

If v, < 0 it is evident, by inspection, that there exists a real positive root p
to (3.8.1)s for all admissible values of &, ¥, ¥r, Vo, a1, @r, bi, by and p. Hence,
v, < 0 is sufficient—indepedent of the value of the wave-number k—to guarantee
that the base process is unstable with respect to the narrowed class of initial
disturbances at hand. To establish the converse, show that the condition v. > 0
is sufficent to guarantee that there cannot exist unstable zeros p to (3.8.1)s. Let

F(k,-) : € — € be given, for each x in IR, by

(=) fi(p, k) fr(p, K) + vEP?)
F(k,p) = DA 9 Vpe

(3.8.3)

Now, it is easy to show that if R(p) > 0 then R(F(x,p)) > 0 for every « in IR.
Hence, if v, > 0 then all roots p to (3.8.1)s must have non-positive real parts.
Thus, vs < 0 is also a necessary condition for the base process to be unstable
with respect to an arbitrary element of the class of perturbations which can be
tested via the normal mode analysis. Observe that this conclusion is independent
of the wave-number  associated with (3.6.1).

If, in place of the foregoing normal mode analysis, a full-fledged Fourier-
Laplace transform analysis of (3.5.1), (3.5.2) and (3.5.4)-(3.5.6) is performed,
then the narrowing of the class of initial data necessitated by the normal mode
analysis does not occur. Furthermore, in this case it transpires that the Fourier-

Laplace transform of s can be expressed in the form

h(k) + L=2=H k, p)
p+ 5-F(x,p)

S(k,p) = V(k,p) € R x C, (3.8.4)



~110-

where A is the Fourier transform of h and, for each (k,p)in R x @, H(k,p) is a
functional of the initial data n and w. Evidently, it is possible that there exist
combinations of 7, w and h which would allow the cancellation of an unstable
zero in the denominator of the expression on the right-hand-side of (3.8.4) by a
zero in its numerator. It is equally clear, however, that the set of such initial
data constitutes a very small one within the full class of initial data purveyed
in Section 3.2. Hence, except in response to very special initial perturbations
the condition v« < 0 is necessary and sufficent for the base state to be linearly
unstable. The normal mode analysis thus shows that v, < 0 is necessary and
sufficient for the base process to be unstable with respect to all but a very small
subset of the initial disturbances under consideration.

Now, to show that v, < 0 is a necessary condition for the base state to be
linearly unstable with respect to any perturbation in the full class introduced in

Section 3.2 consider the dependence of the following energy £ on time:

+o0 0
¥4 .
E(t) =%/ /(vz(azl, T2,t) + (af — vd)v,2 (z1,20,1) + b2v,2 (21, 2, t)) dridz,
—_—0 —O0
e-)-oo +’go
+%/ (V%(z1, 22, 1) + (a2 — v3)v,2 (21, T2, 1) + b2v 2 (21, 22, t)) dzidzs
—o0 0

Vt € [0,1.). (3.8.5)

In (3.8.5) £ is a positive constant which carries units of length and the function

v:R? x R,y — IR is defined via
w(z1, T2, t) = v(x1 — vot, 22,t) V(z1,72,t) € R? x R,. (3.8.6)
By (3.5.5)1,2 and the stipulated square integrability of 7,, and = it is evident

that £(0) exists. Assume, then, that there exists a positive time t,, which may

be very small, such that the integrals which define £ exist on the time interal
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(0,t.). Recalling (3.1.5), (3.3.8) and (3.3.10), it is clear that £ is non-negative on
its domain of definition. Now, an alternate definition of linear stability in terms
of the energy & is that it remain bounded on [R.. A series of calculations which
use (3.5.2) and (3.5.4)—(3.5.6) then show that the power £ is given by
+00

E(t) = —plv, / §%(xg,t)dzy Vt € [0,1.). (3.8.7)
Certainly, if v, > 0 then £(t) < 0 for all t in [0,t.); furthermore, under these
circumstances, the interval over which £ is defined can be extended in increments

to IR, leading to the following inequality
£t)<0 Vte R,. (3.8.8)

The condition v, > 0 is, therefore, sufficient to ensure that the energy & re-
mains bounded for all time and, hence—according to the above definition of
linear stability—that the base process is stable with respect to all perturbations
of the type introduced in Section 3.2. Now, since v, # 0 by assumption, it is clear
that v* < 0 is a necessary condition for the base process to become unstable with
respect to any perturbation of the type under consideration.

From the foregoing discussion it is clear that admissibility, the assumed
smoothness of V or ¢ and (3.1.9) imply that when vy = 0, the base driving
traction fo = 0 and V’/(0) > 0 or ¢'(0) > 0 and, hence, a mechanically equili-
brated base process of the kind introduced in Section 3.1 is—as in the inertia-free
case—stable with respect to all perturbations considered in this work.

To recapitulate, the calculations performed this section show that v, < 0is a
necessary condition for the base process to be unstable with respect to any initial
disturbance of the type under consideration and a sufficient condition for the
base process to be unstable to all but a small subset of these initial disturbances.
Comparing the results obtained in Section 3.6 with those obtained here, it is

apparent that inertial effects do not significantly effect the linear stability criteria.
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3.9. Discussion. The analysis of Sections 3.6 and 3.8 shows that—
regardless of whether intertial effects are included or not—wv. < 0 is necessary
for the base process to be linearly unstable with respect to any perturbation of
the type purveyed in Section 3.2 and sufficient for the base process to be unstable
with respect to all but a small subset of these perturbations. In Section 3.7 it is
shown, in the absence of inertial effects, that if v. < 0 then the linear instability
will manifest itself in a manner whereby the morphology of the interface evolves
so as to develop plate-like or dendritic structures. Recall, from the alternate def-
initions (3.4.13) and (3.4.14) of v., that v. < 0 can occur only if the relevant
kinetic response function V or @ is locally decreasing at fy or vg, respectively.
Is it physically plausible for V or ¢ to display such non-monotonicity? Recall
from Section 2.3 that admissibility—from the perspective of the Clausius-Duhem
inequality—does not restrict the monotonicity of the kinetic response function.
OWEN, SCHOEN & SRINIVASAN [26] suggest, moreover, that unstable kinetics of
the sort where ¢ has a single maximum as a function of V,,—and thus must be a
non-monotonic function of V;,—may be responsible for the rapid growth of plate-
like structures which is observed experimentally. Furthermore, there exist other
physical contexts, the most notable of which include unstable crack growth and
the slip-stick peeling of tape,® where the analogues of such non-monotonic kinetic
response functions are considered physically acceptable.

It is reasonable, based on the foregoing discussion, to refer to the type of linear
instability which occurs when v, < 0 as kinetic instablity. This investigation has
demonstrated that, under the current kinematical and constitutive restrictions, in
a purely mechanical context, independent of whether inertial effects are accounted
for or not, the only means by which a linear instability involving the emergence of
plate-like or dendritic structures from a planar interface can occur is if a kinetic
instability is present. It is possible that, in a broader context, other brands of

instability may be present. This may, in particular, be true when thermal effects

8 See AIFANTIS [7], AUBREY, WELDING & WONG [8] and MAUGIS & BARQUINS [23].
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are taken into consideration. An investigation which takes both mechanical and

thermal effects into consideration is performed by Friep [15].
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APPENDIX

In this appendix (3.7.1) and (3.7.3) are established. Consider the inertia-free
initial value problem comprised of (3.5.7)~(3.5.9), (3.5.2)2, (3.5.5)3 and (3.5.6).
Define v: R? x R, — IR by

w(z1,T2,t) = v(Hi(z1,t), f2(z2), 1) V(z1,z2,t) € R?x R, (A.1)

where 7;(-,t) : R — IR and 7j; : IR — IR are given by

o f%’;(zl —vot) if 1 < wet,

m(zy,t) A.2)
ML %’;—(:cl —vpt) if 1 > vot, (#.2)
for each t in IR, , and
i(z2) = z2 Vz2 € R. (A.3)
Then, in terms of v, (3.5.7)—(3.5.9) yield, for each ¢ in R,
Voo =0 on ((—00,0) U (0,00)) X R,
arbrv, (04, 1) — abivyy (0-,»t)=0 on R,
(A.4)
v(0+,-,t) —v(0—,-,t) = (m —¥w)s(-,t) on R
2V,
arbyv,1 (0+,-,8) + aibv,y (0—, ) = ——$(-,t) on R.
{08 b abwa (028 = G0y
Now, from (A.4)s 4 it is clear that
'U*(a'lbl - arbr) .
;1 (0+, 'at) — U1 (0-7 "t) = 3('at) on R’ (AS)

aibarbr(y — ¥r)

for each ¢ in IR, Consider, next, (A.4)1,3 and (A.5). Since v(-,,¢) is harmonic
on ((—00,0) U (0,00)) x IR for each t in R4, the jumps in the normal derivative

of v and in v itself across the line I = {(m1,72)|m = 0,72 € IR} indicate that it
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can be represented by the sum of appropriate single- and double-layer potentials

with densities proportional to § and s, respectively. That is, for each ¢ in IR,

+00
v(m,ne,t) = / (Li(m1,m2 — €)8(¢, 1) + La(m, m2 — €)s(¢, 1)) d¢

V(771,"72) € ((_OO, 0) U (O) OO)) X R: (AG)
where L, : IR? \ {(0,0)} x IR, — IR are given by

Li(m,m) = 2 2l =) Iny/7f +n3 VY(n,m2) € R*\ {(0,0)}, o
1 9 '
La(ni,m2) = ‘é;m Y(n1,m2) € R?\ {(0,0)},

and where 1?2 is as defined in (3.6.6). With the aid of (A.1)-(A.3), (A.6) gives

the representation (3.7.1) of w. Next, use of standard identities from potential

theory gives the following expression for the limiting values of v,; (-, -,t) on either

side of {

+o0
5,2

1
a1 (0£,m0,t) = —
v,l(o » 712, ) 271,][

— 00

(Ca t) dC 4+ Ve (albl - arbr)
M2 —¢ 2a;bjarbe (v — vr)?

for each ¢ in IR,. Substitution of (A.8) into either (A.4), or (A.4)4 then yields the
functional equation (3.7.3);. The initial condition (3.7.3), follows directly from

(3.5.5.)s.
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Figure 1: Graph of the shear stress response function 7.
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Figure 4: Superimposed graphs of the h and s(-,t') for some t' < t..



=124~

LINEAR STABILITY OF A TWO-PHASE PROCESS INVOLVING
A STEADILY PROPAGATING PLANAR PHASE BOUNDARY
IN A SOLID: PART 2. THERMOMECHANICAL CASE
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1. INTRODUCTION

Recently [9], motivated by a desire to determine whether continuum me-
chanical models for displacive solid-solid phase transformations can predict the
emergence of plate-like or dendritic structures from states involving planar phase
boundaries, a purely mechanical two-phase dynamical process in a non-elliptic
generalized neo-Hookean material was considered. The process involved an an-
tiplane shear motion with a single steadily propagating planar phase boundary
separating high and low strain elliptic phases of the relevant material. In a frame
moving with the phase boundary, the shear strain field was piecewise homogeneous

+1

A arnala R 1.1 TS T L I
and vil€ angie o

etween the limiting values of the gradient of the out-of-plane dis-
placement field on either side of the phase boundary was zero—so that the phase
boundary was, for each instant of the motion, of normal type. The linear stability
of this process with respect to a broad class of perturbations was then investi-
gated. It was shown that a necessary and sufficient condition for the process to
be linearly stable was that the kinetic response function—which gives the driving
traction acting on a phase boundary in terms of the normal velocity of the phase
boundary, or wvice-versa—be a locally increasing function of its argument at the
value corresponding to the base process. A necessary consequence of this stability
criterion is that, in order for the process to be unstable, the kinetic response func-
tion must exhibit a non-monotonic dependence on its argument. Non-monotonic
kinetic response functions are admissible under the Clausius-Duhem version of
the second law of thermodynamics (specialized to isothermal conditions for the
purposes of the purely mechanical process discussed in [9]); the work of OWEN,
SCHOEN & SRINIVASAN [15] implies, furthermore, that a non-monotonic relation
between interfacial driving traction and normal velocity may be operative in the
unstable kinetics which are observed to accompany the emergence and growth of
plate-like structures. Under such kinetics, the results obtained [9] suggest than
an evolution from a planar to a plate-like phase boundary morphology might be

possible with the confines of a purely mechanical theory.
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Thermal effects are manifestly absent from the purely mechanical investi-
gation in [9]. The experimental work of CLapp & Yu [5], GruJicic, OLsON &
OwenN [10] and Cong DAHN, MORPHY & RAJAN [6] indicates that temperature
effects do play an intrinsic, if not entirely understood, part in the kinetics of
phase boundaries in displacive solid-solid phase transformations. The investiga-
tion which follows is, therefore, directed toward understanding the outcome, with
regard to the morphological stability of states involving planar phase boundaries,
when thermal as well as mechanical effects are taken into consideration in a model
for displacive solid-solid phase transformations. Of particular interest is the ques-
tion of whether thermal effects allow for an evolution from planar to plate-like
phase boundary morphology under kinetics which are mechanically stable in the

sense of [9]. The paper is organized as follows.

Chapter 2 is dedicated to preliminaries. Following a synopsis of the notation
to be used, Section 2.1 introduces the kinematics and fundamental balance prin-
ciples which will be needed thereafter. Section 2.2 focuses on the rate of entropy
production due to the presence of phase boundaries and introduces the associ-
ated notion of the driving traction acting on a phase boundary. In Section 2.3 a
thermoelastic material is defined and in Section 2.4 the particular class of ther-
moelastic materials which will be used in the forthcoming analysis is introduced.
Section 2.5 is concerned with the kinetic relation and allied kinetic response func-
tion. In the final section of Chapter 2 the kinematics are specialized to those of

antiplane shear and a thermoelastic antiplane shear motion is defined.

Chapter 3 is devoted to the linear stability analysis of an isothermal two-
phase process which involves a steadily propagating planar phase boundary in
an arbitrary thermoelastic material within the class introduced in Section 3.4.
The relevant process, which is a straightforward generalization of that used in the
purely mechanical investigation [9], is introduced in Section 3.1, while the class
of perturbations to which it will be subjected is put forth in Section 3.2. Each

admissible perturbation involves, in general, a disturbance of the configuration
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of the phase boundary and of the displacement, velocity and temperature fields
in a small neighborhood of the phase boundary. All disturbances are assumed
to be small in some appropriate sense. The kinematics of the perturbation are
restricted to those of antiplane shear. It is assumed that the post-perturbation
process is a thermoelastic antiplane shear and involves only one phase boundary.
Sections 3.3 and 3.4 address, respectively, the linearization—about the unper-
turbed process—of the field equations which hold away from the phase boundary
and the jump conditions and kinetic relation which hold on the phase boundary.
After a specialization of the base process, a summary of the complete linearized
system of field equations, jump conditions, kinetic relation and boundary and
initial conditions which describe the process generated by the perturbation is
presented in Section 3.5. As in [9], both the inertial and inertia-free cases are
included. The combined results of Sections 3.6 and 3.7 show that whenever it
is static, regardless of the presence of inertial effects, the base process is linearly
stable with respect to all perturbations of the type introduced in Section 3.2.
Section 3.8 deals with the case where the base process involves an interface prop-
agating at non-zero velocity. A normal mode analysis is performed which leads
to a variety of conditions sufficient for the instability of the undisturbed process.
These conditions depend on the monotonicity properties of the kinetic response
function. Highlighted in Section 3.9 is one set of sufficient conditions which is
of particular interest. The relevant conditions alter the conclusions reached in
the purely mechanical context considered in [9] in two ways. First, in contrast
to the results obtained in the latter setting, instability may arise even when the
normal velocity of the phase boundary is a monotonically increasing function of
driving traction as long as the temperature dependence in the kinetic response
function is of an appropriate nature. Second, the instability that arises in these
thermomechanical circumstances occurs only in the long waves of the the Fourier
decomposition of the moving phase boundary, suggesting that the interface favors

a highly wrinkled configuration. This conclusion is akin to that reached in simi-
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lar linear stability analyses performed within the context of models for dendritic
crystal growth where an otherwise thermally unstable process is stabilized for
sufficiently large wave-numbers by the inclusion of surface tension at the inter-
face in lieu of including mechanical effects.! The final topic addressed in Section
3.9 pertains to the physical suitability of kinetic response functions which are

mechanically stable but thermally unstable.

1 See, for example, LANGER [13], MULLINS & SEKERKA [14] and STRAIN [16].
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2. PRELIMINARIES

2.1. Notation, kinematics and balance principles. In the following R
and € denote the sets of real and complex numbers. The intervals (0,c0) and
[0, 00) are represented by IR, and IR,. The symbol IR", with n equal to 2 or 3,
represents real n-dimensional space equipped with the standard Euclidean norm.
If U is a set, then its closure, interior and boundary are designated by U, U , and
0U, respectively. The complement of a set V with respect to U is written as
U\ V. Given a function ¢ : U — W and a subset V of U, (V) stands for the
image of V under the map .

Vectors and linear transformations from IR to IR
tensors) are distinguished from scalars with the aid of boldface type—lower and
upper case for vectors and tensors, respectively. Let a and b be vectors in R®,
their inner product is then written as a - b; the Euclidean norm of a is, further,
written as |a] = y/a-a. The set of unit vectors—that is, vectors with unit
Euclidean norm—in IR?® is designated by /. The symbol £ refers to the set
of tensors, £, denotes the set of all tensors with positive determinant, and g
stands for the collection of all symmetric positive definite tensors. If F is in £
then FT represents its transpose; if, moreover, det F' s 0, then the inverse of F
and its transpose are written as F~! and F~7, respectively. The notation a® b
refers to the tensor A, formed by the outer product of a with b, defined such that
Ac = (b - c)a for any vector ¢ in IR>. If A and B are tensors then their inner
product is written as A - B = tr AB7.

When component notation is used, Greek indices range only over {1,2};
summation of repeated indices over the appropriate range is implicit. A subscript
preceded by a comma denotes partial differentiation with respect to the corre-
sponding coordinate. Also, a superposed dot signifies partial differentiation with
respect to time.

Consider now a body B which, in a reference configuration, occupies a region

R contained in IR% A motion of B on a time interval 7 C IR is characterized by
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a one-parameter family of invertible mappings y(-,1) : R — R, with
y(x,t) =x+u(x,t) V(x,t)eM, (2.1.1)

where M = R x 7T represents the trajectory of the motion. Assume that the
deformation §, or equivalently the displacement u, is continuous and possesses
piecewise continuous first and second partial derivatives on M. Let S; be the set
of points contained in R defined so that, at each instant ¢ in 7, J(-,t) is twice

continuously differentiable on the set R \ S;. Let the set X be defined by
Y ={xt)|xe€S,teT} (2.1.2)
Introduce the deformation gradient tensor F: M\ ¥ — L by
F(x,t) = Vy(x,t) V(x,t) e M\ X, (2.1.3)

where the associated Jacobian determinant, J : M\ X — IR, of ¥ is restricted to

be strictly positive on its domain of definition:
J(x,t) = det F(x,t) >0 V(x,t)e M\ Z.

+
Hence, F : M\ X — L;. The left Cauchy-Green tensor G : M\ X — S

corresponding to the deformation ¥ is given by
G(x,t) = F(x,t)FT(x,t) V(x,t) e M\ Z. (2.1.4)

The deformation invariants associated with ¥ exist on M \ X and are supplied

through the fundamental scalar invariants of G:

L(G)=tG, L(G)=1(trG)?-u(G?), L(G)=detG. (2.1.5)
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With the above kinematic antecedents in place introduce the nominal mass
density p : R — IRy, the nominal body force per unit massb: M — IR3 and the
nominal stress tensor S : M\ X — L, and suppose that p is constant on R and b
is continuous on M, while S is piecewise continuous on M, continuous on M \ X,
and has a piecewise continuous gradient on M. Let p, be the mass density in
the deformed configuration associated with y. Given a regular subregion P of
R, with 0P N S; a set of measure zero in P foreach tin 7, let m : 0P - N
denote the unit outward normal to 9P. Then the global balance laws of mass,

linear momentum, and angular momentum require that

/pdV= / pedV on T, (2.1.6)
P ¥(P)
/SmdA+/pde=/p1'1dV on T, (2.1.7)
8P P P
and
/&/\SmdA+/5'/\pde=/$'/\pﬁdV on T, (2.1.8)
aP P P

respectively, for every such regular subregion P contained in R.

Next, introduce the nominal internal energy per unit mass e : M\ X — IR,
the nominal heat flur q : M\ £ — IR®, and the nominal heat supply per unit
mass v : M\ X — IR. Suppose that € and q are piecewise continuous on M,
continuous on M \ ¥, and have piecewise continuous partial derivatives on M,

and that r is continuous on M. The first law of thermodynamics requires that

/(sm-u+q.m)dA+/p(b-u+r)dv=/p(a+%;u]z)dv on T, (21.9)
ap P P

for every regular subregion P contained in R such that 9P N S; a set of measure

zero in OP for each t in 7.
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Finally, introduce the nominal entropy per unit mass n: M\ X — IR and
the nominal absolute temperature § : M — IR. Stipulate that 7 is piecewise
continuous on M, continuous on M\ X, and has piecewise continuous first partial
derivatives on M, and that @ is continuous on M with piecewise continuous first
partial derivatives on M. The Clausius-Duhem version of the second law of
thermodynamics requires that the rate of entropy production I'(;P) : T — R

satisfies

p(.;P)=/pndV—/q—;92dA—/%dV20 on T, (2.1.10)
P P P

for every regular subregion P contained in R such that P N S; a set of measure
zero in P for each ¢ in 7.

Localization of the balance laws (2.1.6)—(2.1.9) and the imbalance law (2.1.10)
at an arbitrary point contained in the interior of M\ X' yields the following

familiar field equations and field inequality:

p=p.)J on M\Z,

V-S+pb=pii on M\Z,
SFT=FS" on M\Z, (2.1.11)

S-F+V.q+pr=p¢ on M\Z,

V-(%)+%T—Sp1'7 on M\ Z.
Suppose, from now on, that the set S; is a regular surface for every ¢ in 7.
The set X' then represents the trajectory of a surface of discontinuity in F, S and,
perhaps, €, q and 7. Let g(-,t) denote a generic field quantity g(-,t) : S; — IR

which is discontinuous across S; at the instant ¢ in 7. Define the jump [g(-,t)]

of g(-,t) across S; by

[o(x,t)] = ’lli{r(l) (9(x + hn(x,t),t) — g(x — hn(x,t),t)) V(x,t) € X, (2.1.12)
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where n(-,t) : S; — N is a unit normal to S; at each ¢t in 7. Then, localization of

(2.1.6)—(2.1.10) at an arbitrary element of X' yields the following jump conditions

[p«(¥)J] =0 on X,

[Sn] + pVp[i] =0 on X,

(2.1.13)
[Sn-ua] + pVule+ 310’ ]+[a-n]=0 on X,

1
pValn] + ﬂq-nﬂ <0 on X,

where V,,(-,t) : Sy — IR is the component of the velocity of the surface S; in the
direction of n(-,¢) at the instant ¢ in 7.

Equations (2.1.11); and (2.1.13); are, evidently, completely decoupled from
equations (2.1.11)9 3 4,5 and (2.1.13) 3 4; that is, given a solution to, say, a bound-
ary value problem involving (2.1.11)53 45 and (2.1.13)2,3 4, p« can be calculated
a posteriori. For this reason equations (2.1.11); and (2.1.13); will be disregarded
in the subsequent analysis.

In this investigation an inertia-free motion is defined as one wherein the
inertial terms on the right hand sides of the global balance equations (2.1.7) and
(2.1.8) are replaced by the zero vector. In the context of an inertia-free motion

the field equation (2.1.11), simplifies to read
V-S+pb=0 on M\Z, (2.1.14)
and the jump condition (2.1.13)2 becomes
[Sn]=0 on X. (2.1.15)
Equations (2.1.11)1,3,4,5 and (2.1.13); 3 4 remain, of course, unaltered.

In addition to the jump conditions given in (2.1.13) in the inertial case or

(2.1.13)1,3,4 and (2.1.15) in the inertia-free case, the stipulated continuity of y
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and @ gives the following kinematic jump conditions

[ul=0 on X, []=0 on X. (2.1.16)

2.2. Rate of entropy production and driving traction. Using the field
equations (2.1.11), the jump conditions (2.1.13) , and the assumed smoothness of
the deformation y, ABEYARATNE & KNOWLES [1] have demonstrated that for any
continuum the rate of entropy production I'(-;P) can, for any regular region P

contained in R, be represented in the form
I'(t;P) = Noc(t; P) + Teon(t; P) + [s(t;P) VEET, (2.2.1)
where Ioc(+;P), Tcon(+;P), and I's(-;P) are defined by

Foo(5P) = / LS F-pl+n)av on T,
P\S:

1
Teon(P) = / a—iq-VOdV on 7, (2.2.2)
P\S:

(5 P) = j S(ol1 - (S) - [F)VadV on T,
PNS,

with ¢ : M\ X — IR representing the nominal Helmholtz free energy per unit

mass in defined in terms of €, § and 7 by
Yp=e—6n on M\Z, (2.2.3)

and, where—given a generic field quantity g(-,¢) : S; — IR which jumps across S;

at the instant t in T—{{g(-,t))) is defined through

{g(x,1)) = ’lli{r(l)% (g(x + hn(x,t),t) + g(x — hn(x,t),t)) V(x,t) € Z. (2.24)
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The representation (2.2.1) additively decomposes the total rate of entropy
production I'(-; P), at the instant ¢ in 7, in the regular region P contained in R
into three parts. The first two terms in the decomposition Iioc(+; P) and Ieon(+; P)
are the contributions to the rate of entropy production due, respectively, to local
mechanical dissipation and heat conduction away from the surface S;, while the
third term I;(-;P) represents the entropy production rate due to the motion of
the surface S;.

Motivated by (2.2.2); define the driving traction f(-,t) : S; — IR which acts
on the surface S; at the instant ¢ in 7 by

f("t) = PW(J)]] - «S(7t)» ) IIF(?t)]] on S; VteT. (225)
In the absence of inertial effects it can be demonstrated that (2.2.5) reduces to
+
f(,t) = plv(-, )] — S(-,t) - [F(,t)] on Sy VteT, (2.2.6)

where §(, t) (resp., é(,t)) is the limiting value of the field S(-,¢) on the side of
the interface into which the unit normal n(:,t) is (resp., is not) directed at the
instant t in 7.

Now, from (2.2.1) and (2.2.2)3, localization of the imbalance law (2.1.10) at
an arbitrary element of X yields the following alternative to (2.1.13)4:

fVp20 on X (2.2.7)

with f given by (2.2.5) or (2.2.6) depending on whether inertial effects are included
or not. Observe , from (2.2.2), that under isothermal conditions the total rate of
entropy production I'(+; P) in a region P takes the form of the rate of mechanical

dissipation per unit temperature.

2.3. Finite thermoelasticity. Let B be composed of a homgeneous

thermoelastic material. Then there exists a Helmholtz free energy potential
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¥ : Ly x Ry — R such that the nominal Helmholtz free energy per unit mass
1, the nominal stress tensor S, and the nominal entropy per unit mass are given

in terms of 7,5 as follows:
¥ =19(F,0) on M\Z,
S = pyp(F,0) on M)\ X, (2.3.1)
n=—s(F,0) on M\Z.

It is assumed that 1/3 is once continuously differentiable and piecewise twice contin-

uously differentiable on £ x IR,. The nominal heat flux q is, for a thermoelastic
Fa)

$
-

X
y a heat fluz response function § : L4 x Ry x IR® — IR? so that

5
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ct
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=
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o
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o
[
<4
[¢]
=
C

[

L

q=q(F,0,V8) on M\Z. (2.3.2)

It is assumed that q is piecewise twice continuously differentiable on its domain
of definition.

Observe that a thermoelastic material is defined in a manner such that the
rate of entropy production Iloc(-;P) in a region P due to mechanical dissipation
is identically zero on 7. Hence, the localization of the imbalance law (2.1.10)
at a point contained in the interior of M \ X' yields, with the aid of (2.3.2), the
inequality

g(-,-,d)-d>0 on Ly xR, VdeR® (2.3.3)

as a condition necessary for the satisfaction of the second law of thermodynamics.
The response function § is assumed to be specified so that (2.3.3) holds; then,
inequality (2.1.11)5 is automatically satisfied and can be ignored in the following.

For remarks regarding the consequences of objectivity on the properties of

the potential ¢ and response function §, see Jiang [11].

2.4. Constitutive specialization. To facilitate the ensuing analysis sup-
pose, henceforth, that the homogeneous thermoelastic body B is thermomechani-

cally isotropic. Then the Helmholtz free energy potential ¥ and heat flux response
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function g can depend on the deformation gradient F only through the deforma-
tion invariants I't(G) defined in (2.1.5). Assume henceforth that both ¢ and §
are independent of the second deformation invariant I3(G). Suppose, moreover,
that the Helmholtz free energy potential 1/3 can be represented in terms of three

functions ¢ : Ry x Ry — IR, §: R, x Ry — R and §: IRy X IRy — IR in the

form
$(F,0) = P(11(G),6) + ¥, (11(G), 0)§(I3(G), 6) + §(I3(G), 0)
V(F,G) € £+ X R+, (241)
xpressed in terms of a function

&
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4(F,0,d) = ¢(I;(G), I3(G),0)d V(F,0,d) € L, x R, x IR>. (2.4.2)

In (2.4.1) and (2.4.2) G is the left Cauchy-Green tensor defined in terms of the de-
formation gradient tensor F by (2.1.4). In accordance with the stipulated smooth-
ness of 1& and g, the functions J), § and § are taken to be once continuously
differentiable and piecewise twice continuously differentiable on IR, x IR, , while
é is taken to be continuous and piecewise twice continuously differentiable on
R, xR, x R,. Assume, in addition, that the functions 1/3, § and § comply, for

each 8 in IR, with the following isochoric restrictions:
$(3,0)=0, §(1,0)=0, §1,(1,0)=-1, §(1,0) =5 (1,6)=0. (2.4.3)

In what follows, attention will be restricted to homogeneous isotropic thermoe-
lastic materials wherein the Helmholtz free energy potential 1) obeys (2.4.3). A
particular material of this type was studied by Jiang [11].

The nominal stress response of B is then determined, with the aid of (2.3.1)

and (2.4.1), by

S =2p (x1(11(G), I3(G),O)F + x2(I1(G), I3(G),0)FT) on M\ Z, (2.44)
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where the functions x4 : R4 X IRy X IR, — IR are defined as follows:

Xl(II(G)1I3(G),9) = 1/;1—1(1179) + '()Zflil (Il7e)§(l3,9)
V(I]_,I3,9) S R+ X R+ X R+,
x2(11(G), Is(G),0) = 91, (I1,6)31, (I3, 0) + §1,(Is,6)

V(II,I3,0) € R+ X R+ X R+.

(2.4.5)

Observe that, for an isochoric deformation—where I3 = 1 on M\ X, use of (2.4.3)

in (2.4.5) reduces (2.4.4) to read
S =20y, (I1,0) (F-=FT) on M\Z. (2.4.6)

Following the work of JianG & KNowLEs [12] in the purely mechanical set-
ting, it can be readily shown that a special thermoelastic material of the type
characterized by (2.4.1)—(2.4.3) satisfies the Baker-Ericksen inequalities at all ab-

solute temperatures if and only if
¥r,(11,8) + ¥n,1, (11,0)(13,6) > 0 V(I1,13,0) € U x Ry, (2.4.7)
where the set U is given by
U={(L,5L)0< I < (I,/3)%}.

Choose a rectangular Cartesian frame X = {0;e;, ey, e3} and consider the
response of the thermoelastic material at hand to a simple shear deformation y
given as follows

yix,t) = (L +ve3®e;)x V(x,t) € M, (2.4.8)

where the constant y—assumed non-negative without loss of generality—denotes

the amount of shear. Note that the foregoing deformation is isochoric. From
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(2.3.1)3, (2.4.1), (2.4.3) and (2.4.6) the nominal shear stress corresponding to the

deformation ¥ is, therefore, for each v in IR, found to be
es - Se; = 2py9Yr, (3 +12,0) =: 7(v, 9). (2.4.9)

where 8 takes on some positive value. The function 7 : Ry x Ry — IR will
be referred to as the shear stress response function of the special thermoelastic
material at hand in simple shear. An immediate consequence of (2.4.3); and

(2.4.9) is that ;) can be expressed via

pB(I1, 6) = / r(k,0)dx V(I1,8) € [3,00) x Ry, (2.4.10)

0
so that the nominal stress response of such a material, in all three dimensional
deformations and absolute temperatures, is completely characterized by specifying
a shear stress response function 7 along with the functions § and g introduced in

(2.4.1). Now, define the secant modulus in shear M : R, x Ry — IR by
M(v,6) = 2091, (3+4%,8) V(v,0) € Ry x R,. (2.4.11)

Observe that, in compliance with the stipulated smoothness of QZ), both 7 and M
must be continuous and piecewise continuously differentiable on R, x IR, . From

(2.2.9) and (2.2.11) that the shear stress response function 7 must also satisfy
7(0,6) =0 Ve R,, 7,(0,0)=M(0,0) VoeR,. (2.4.12)

Note, also, that for the simple shear deformation defined via (2.1.1) and (2.4.5),
the Baker-Ericksen inequality (2.4.10) reduces, with the aid of (2.4.11) and

(2.4.3)4, to a relation which involves only M: wviz.,

M(v,0) >0 V(v,0) € R%. (2.4.13)
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Restrict attention in the sequel to these special materials for which the infinites-

imal shear modulus is positive; i.e., require that
M(0,0) >0 Vo€ R,. (2.4.14)

Despite the significant restrictions which have been placed upon the class
of materials which will be considered in this investigation, no presuppositions
have been made regarding the sign of the derivative with respect to its first
argument—where it exists—of the shear stress response function corresponding to
the thermoelastic material defined in compliance with (2.4.1)-(2.4.3) and (2.4.10).
JIANG [11] has shown that the monotonicity of 7(-, ) is, for fixed 6 in IR, , related
directly to the ellipticity of the material which it characterizes. If, in particular,
7(-,6) is not a monotonically increasing function on its domain of definition—for
some range of §—then the associated material is non-elliptic. With this in mind,
let (0,6n) be contained in IR, and define functions ok (6m,6m) — R, and

4 : (6m,00) — IR, such that
¥(6) < H(6) VO & (B, 6nr). (2.4.15)

Next, define three plane open subsets A;, Ay, and A; of the shear strain-

temperature quadrant as follows:
A = {(7,9)1 0<vy< z(o)ae € (omng)}s
Az = {(1,0)|7(60) <7 <H(6),6 € (B, Onr)}, (2.4.16)

Az = {(7,0)|9(6) <v < 00,6 € (0, 0m)}-
This investigation will make use of a particular subclass of non-elliptic thermoe-
lastic materialsof the above special form wherein the relevant shear stress response
function 7 is taken to be continuous on R, x IR, and continuously differentiable

on A; U Az U A3 and is required to obey the following monotonicity requirements

Ty > 0 on AU A3,
(2.4.17)
7 <0 on Aj.
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Assume, also, that 7(-,8) is monotonically increasing on [R4 for all § in Ry \
[6m, 0rr]. Let the nominal conductivity in shear k:Rx R, — IR, and the nom-
inal specific heat per unit mass in shear &: R x Ry — IR of the thermoelastic
material at hand be defined as follows

k(v,6) = ¢(3++°,1,6) V(v,0) € R x Ry,
(2.4.18)

&(v,0) = —0ge(3 +7%,6) VY(v,0) € R x R,.

Suppose that k and ¢ are both continuous on A;UA2UA3 and piecewise continuous
on R, x R;. In compliance with (2.3.3) let k be positive on its domain of
definition. Suppose, in addition, that ¢ is positive on its domain of definition.
The sets A; and Aj are referred to as the high and low strain phases of the
thermoelastic material specified by (2.4.1)-(2.4.3) and (2.4.10). These, together
with the set of shear strain-temperature pairs in (R, x R}) \ (A; U A3 U 43)
comprise the elliptic phases of such a material. A thermoelastic material of the
type at hand which is defined so that T, k and ¢ have the properties set forth
above will be referred to herein as a three-phase thermoelastic material. See
Figure 1 for a graph of 7(-,6p) for fixed 6y in (6.,,0nr) typical of those which
specify three-phase thermoelastic materials. Consult Figure 2 for a division of
the shear strain-temperature quadrant into regions of monotonicity of 7(-,8) for

fixed 6.

2.5. Completion of constitutive assumptions via the kinetic rela-
tion. Let B be composed of a three-phase thermoelastic material and consider
a motion of B which involves a moving surface of discontinuity S; in one or all
of the field quantities F(-,t), u(-,t), S(-,¢t), ¥(:,t), n(-,t), and q(-,t) at each in-
stant ¢ in 7. Assume that S; separates high and low strain elliptic phases in the
material at hand. In the context of such a motion it is necessary (see [1-4]) to
supplement, in some fashion, the constitutive information provided in Section 2.4.
An approach to this taken by ABEYARATNE & KNOWLES [1] entails the provision

of a kinetic relation. Two basic cases motivated by [1] can be considered: in the
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first a constitutive response function V : IR X (8m, 8a7) — IR is specified so that
Va=V($,0) VY(4,0) € Rx (6,0Mm), (2.5.1)

while, in the second a constitutive response function @ : R X (6,,0p) — R is

furnished so that
f=08(Vas8) ¥(Va,0) € R X (B, O1). (25.2)

The functions V and ¢ are referred to as kinetic response functions. Since the
three-phase thermoelastic material can lose ellipticity only for absolute tempera-
tures 6 in (6, 0a), the kinetic response functions V and @ are defined only on
IR x (6,n,0). Both varieties of kinetic response functions will be considered in
this investigation. If V is such that V (&, 8)® > 0 for all (®, §) in JRX (6, 637) then
(2.2.6) is automatically satisfied and V is referred to as admissible. If 3(V, )V > 0
for all (V,6) in IR X (0,0 ), @ is, similarly, referred to as admissible. If an ad-
missible kinetic response function V (or @) is continuous on IR X (6,,,60x), then
it must satisfy V(0,6) = 0 (or 3(0,68) = 0) for all 8 in (8, 6ar). If, in addition,
to being admissible, V' (or @) is continuously differentiable on IR X (6, 61), then
V(0,8) > 0 and Vg(0,8) = 0 (or Gy (0,8) > 0 and $¢(0,6) = 0) for all § in
(0, 0ps)—here Vs and @y refer to the first partial derivatives of V and @ with
respect to their first arguments while Vo and @y refer to the first partial deriva-
tives of V and ¢ with respect to their second arguments. Otherwise, admissiblility
implies nothing with regard to the sign of the derivative of a smooth kinetic re-
sponse function. All kinetic response functions considered herein are assumed to
be admissible. See Figure 3 and Figure 4 for illustrative graphs of f/(-, 6o) and
&(+, 0) for fixed 6g in (6,,,0p1)-

2.6. Thermoelastic antiplane shear motions of a special thermoe-
lastic material. Suppose, from now on, that R is a cylindrical region and choose

a rectangular Cartesian frame X = {0;e;, ez, e3} so that the unit base vector ez
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is parallel to the generatrix of R. A dynamical process will be referred to as a
thermoelastic antiplane shear normal to the plane spanned by the base vectors e;

and ey if the deformation ¥ is of the form
y(x,t) = x + u(z1, 22, t)es  V(x,t) € M, (2.6.1)

and the nominal Helmholtz free energy per unit mass ¢, nominal entropy per
unit mass 7, nominal absolute temperature 8, and nominal heat flux vector q
are—like the displacement field associated with (2.6.1)—independent of the z3—
coordinate. The non-trivial component of displacement u in (2.6.1) will be referred
to as the out-of-plane displacement field. Inspection of (2.6.1) reveals that any
discontinuities in the gradient and, perhaps, time derivative of ¥ must result
from discontinuities in the spatial derivatives out-of-plane displacement field and,
hence, occur across surfaces which do not vary with the zz—coordinate; similarly,
because of their independence of the z3—coordinate, any discontinuities in 1, n or
q must occur across surfaces which do not vary with the z3—coordinate. Let S;
denote a surface across which at least one of the above field quantities jumps at
the instant ¢ in 7 and let X be defined as in (2.1.2).

Following the work of JiaNG [11] in the inertia-free context, it is possible
to demonstrate that, although not every homogeneous and isotropic thermoelas-
tic material can sustain thermoelastic antiplane shear motions, all thermoelastic
materials defined in compliance with (2.4.1)-(2.4.3) and (2.4.10) are capable of
doing so. It is easily shown that for such materials the local balance equations

(2.1.11)2,3,4,5 reduce, in the absence of body forces and heat supplies, to

(M(’Y,o)u,a),a =p'U: on X\F,

i . (2.6.2)
(k(7,0)0,0 )10 +Mp(7,8)0U,q o = pé(y,0)8 on X\T,

where X is given by D x 7, D is a generic cross section of R, and I' =

{(z1, z2,t)| (z1,22) € Cy,t € T} with C; = DNS; at each ¢ in 7. See Fospick &
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SERRIN [8] and Fospick & Kao [7] for a general discussion of the circumstances
under which the local balance equations (2.1.11), 3 reduce to a single scalar equa-
tion. In (2.4.2) M is the secant modulus in shear as defined in (2.4.11) and
v: X\ I — IR is the shear strain field given by

v(z1,z2,t) = \/u,a(xl,mg,t)u,a(xl,xg,t) V(z1,z2,t) € X\ I. (2.6.3)

The jump conditions (2.1.13); 3 reduce, for a thermoelastic material of the
type at hand subjected to antiplane shear, to
[M(7y,80)u,6ne] + pVule] =0 on T,
_ (2.6.4)
[k(7,0)0,a na] + pVabn] + fVa=0 on I,
where I' = {(x,t)|x € Cy,t € T}, n(,,t) : C; — N is a unit normal to C;, the

nominal entropy per unit mass 5 : X \ I — IR is given, from (2.3.1)3, (2.4.1) and
(2.4.3), by

7
n=—vs(3+7%0) = —% /Tg(rc, )ds on X\T, (2.6.5)
0

and f: I’ — IR is the driving traction introduced in Section 2.3. The kinematic

jump condition (2.1.16) becomes
[ul]=0 on I [f]=0 on TI. (2.6.6)

It is also readily shown that the driving traction f for a thermoelastic material
defined via (2.4.1)-(2.4.3) and (2.4.10) subjected to an antiplane shear deforma-
tion involving a discontinuity in the gradient of the out-of-plane displacement

across a moving curve C; is given by

+

f=/_7‘f(f€,0)dﬂ—((M(%9)u,a))ﬁu,a]l on I (2.6.7)

v



-145-

Recall that the jump condition (2.1.13)4, or, equivalently, (2.2.7) is satisfied con-
stitutively by requiring that the kinetic response function be admissible.

With reference to (2.1.14), (2.1.15) and (2.2.6) it is easily demonstrated that,
in the absence of inertial effects, (2.4.2) is replaced by

(M(7,0)u0)a=0 on X\T, (2.6.8)
while (2.4.4) becomes
[M(v,0)u,ana] =0 on T, (2.6.9)
and (2.6.7) reduces to
-+
7 £ E
f= /_ T(K,0)dk — M(7,0)u,q [u,a] on I (2.6.10)
g

Observe that, within the context of a thermoelastic antiplane shear defor-
mation of the type described above, no generality is lost by focussing exclusively
upon the motion on a cross-section D of the cylinder R and the dynamics of the
curve C; = DN S;. In the following, curves C; across which the gradient of the
out-of-plane displacement field u(-,-,t) and, perhaps, the out-of-plane velocity
field (., -,t), the entropy field 7n(-,-,t), and the gradient of the absolute temper-
ature field 6(:,-,t) jumps, at some instant ¢ in 7, and which segregate the high
and low strain phases of the material at hand will, therefore, be referred to as

phase boundaries.
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3. LINEAR STABILITY OF A PROCESS INVOLVING A STEADILY
MOVING PLANAR PHASE BOUNDARY IN A THREE-PHASE
THERMOELASTIC MATERIAL

3.1. Description of the base process. Suppose that B is composed of
a three-phase thermoelastic material and that the cylinder R degenerates so as
to occupy all of IR® Let the rectangular Cartesian frame X be as in Section 2.4.
Consider a thermoelastic antiplane shear motion on the time interval (—oo,0)

with an out-of-plane displacement field ug(:,t) : IR — IR given by

! YTy + vt if z7 < wgt,

u()(\zlat) = Ey g
Lyrzr + v+t i1 21 > vpf,

(3.1.1)

for each t in (—o0,0), and an absolute temperature field §; which is constant on
R x (—00,0) and satisfies
80 € (O, On1), (3.1.2)

where the shear strain-temperature pairs (v;,68p) and (7., 6p) satisfy one of the

following

((11,00), (7, 60)) € Az x A1, ((,60), (7r,60)) € A1 X As. (3.1.3)

Observe that the process described by (3.1.1)-(3.1.3) is i¢sothermal.
Since one of (3.1.3) must hold, there is no loss in generality incurred by

assuming that the base interface normal velocity vg is non-negative; that is,
vo > 0. (3.1.4)

It is clear that ug and 6, satisfy the differential equations in (2.6.2) on the
set (IR? x (~00,0)) \ Iy with Iy given by {(z1,z2,t)| (z1,Z2) € As,t € (—00,0)}
and A; = {(x1,2)| 21 = vot,z2 € IR} for each t in (—00,0). The moving line 4,

is, for each t in (—o00,0), a phase boundary.
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Assume, in order to comply with the jump conditions in (2.6.4) and (2.6.6)
on Ip, that the constants v, ¥, v, vr, and vy associated with (3.1.1)~(3.1.3) are

restricted to satisfy the following equations:

vr — v+ vo(Yr — Y1) = 0,
7(¥r,80) — 7(1,80) + pvo(vr — ;) = 0, (3.1.5)
vo(fo + pOo(nr — m)) = 0.

In (3.1.5) the base driving traction fo is given, with the aid of (2.6.7), by

fo= /T(% 80) dy — 3 (T (7, 60) + 7(71,60)) (v — 1), (3.1.6)

Vi

and the constants 7, and 7; are given in terms of 7,, ; and 6, via the shear stress

response function 7 as follows

Yr. T

1
Np = —%/To(lﬁ:, bo)dr, m = ‘;/TG(K', bo) dx. (3.1.7)
0 0

Observe, as a consequence of (3.1.2) and (2.2.7), that fy must satisfy
Jo 2 0. (3.1.8)

Assume that v complies with the inequality

vo < min {v/7'(0,00)/5, /7' (4, 60/ . (3..9)

so that the normal velocity of the phase boundary in the base process is locally

subsonic. It is then permissible? to impose a kinetic relation in the form (2.3.8)

2 See ABEYARATNE & KKNOWLES [2].
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or (2.3.9) on I and require that the parameters v, -, v, vr, and vg satisfy one

of

Vo = V(é&, 00), fo = 00(/3(’00,90), (3.1.10)

depending, respectively, upon whether a kinetic relation is provided in the form

(2.5.1) or (2.5.2).

In a coordinate frame moving with the phase boundary, the base process
described involves a piecewise homogeneous shear strain field and a homogeneous
temperature field. If (y;, o) and (v, o) are consistent with (3.1.3); then the base
process is one wherein the high strain elliptic phase of the material at hand grows
at the expense of the low strain elliptic phase at constant temperature; whereas, if
(1, 00) and (7y, 6p) comply with (3.1.3), then the base process is such that the low
strain elliptic phase of the material at hand grows at the expense of the high strain
elliptic phase at constant temperature. In either case the discontinuity involved
is, for the duration of the motion, a normal phase boundary—that is, the angle
between the limiting values of the gradient of the out-of-plane displacement field
on either side of the phase boundary is zero at every point of the phase boundary

over the time interval (—o0,0).

The constant latent heat of transformation—~£y—associated with the ther-

moelastic process described by (3.1.1)—(3.1.3) is defined by

Yr
e() = peo(m - ’I]r) - fo = OQ/TQ(K,O()) dk — fo. (3.1.11)

el

From (3.1.5)3 it is clear that £y must be zero if vgp = 0—which agrees with the
intuitive notion that the heat given off in the process of transformation must
be zero in the absence of heat flur. Recall from Section 2.5 that, under the
present assumption that the kinetic response function V or ¢ which is provided

is continuous, vg = 0 if and only if fo = 0. Hence, when vp = 0, the latent heat
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of transformation simplifies to

Yr
to = pBo(mi — 1) = Bo / ro(K, 60) d. (3.1.12)

v

Observe, however, that (3.1.5)3 is satisfied for any real value of £y when vo = 0.
Suppose, in addition to all the above, that the kinetic response function 1%

or ¢ is chosen so that its derivative is non-zero at the base driving traction fo,

that is, assume that one of the following, as is appropriate to the specification of

a kinetic relation in the form of either (2.5.1) or (2.5.2), must hold:
Va({2,00) #0, @v(vo,60) #0, (3.1.13)

This assumption is made in order to preclude the necessity of going to higher
order in the context of the forthcoming linear stability analysis. See Figure 3 and
Figure 4 for schematic graphs of smooth admissible kinetic response functions
V(-,80) and @(-,8;) which satisfy (3.1.13).

When inertial effects are ignored it is clear that uo as defined in (3.1.1) also
satisfies the field equation in (2.6.9) on (R? x (—00,0)) \ I's. Equations (3.1.5)13
are, in this context, still sufficient to satisfy (2.6.8) and (2.6.2)2 on Ip. In place

of (3.1.5), the constants v, ¥r, v, vr, and v must, however, satisfy

7(7¥r,80) — 7(1,60) = 0, (3.1.14)

in order for the jump condition in (2.6.9) to hold on I. Although the expression
for the base driving traction fo given in (3.1.6) remains valid in the inertia-free

setting, (3.1.14) can in this case be used so that it simplifies to read

Ir

fo= / 7(7,00) v — 2 (1 — ), (3.1.15)

v
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where 7. = 7(, 00) = T(7¥r, 60)-

Given a shear stress response function 7 which describes a particular three-
phase thermoelastic material and an arbitrary kinetic response function V or
@ which describes the dynamics of phase boundaries which may occur therein,
there may not, in general, exist constants v, vr, v1, vy, and vg which satisfy one of
(3.1.3); or (3.1.3); and are consistent with the restrictions embodied by (3.1.5),
(3.1.9), (3.1.10); or (3.1.10)2, and (3.1.13); or (3.1.13)2, or, in the inertia-free
case, (3.1.5)1, (3.1.13); or (3.1.13),, (3.1.9), (3.1.10); or (3.1.10)2, (3.1.14) and
(3;1.15). Within the context of this investigation it will be assumed, however,

that V or ¢ is chosen so that a non-trivial base process exists.

3.2. Perturbation of the base process. Suppose that at the instant ¢t = 0
the out-of-plane displacement and velocity fields, the absolute temperature field
and the configuration of the phase boundary associated with the thermoelastic
process specified in Section 3.1 are subjected to a perturbation. Let this perturba-
tion be such that the phase boundary can be, at ¢ = 0+, described by the graph
Cyp of a continuous function h : IR — IR of the xo—coordinate, and segregates
elliptic phases of the three-phase material at hand in a sense consistent with that
which was present for ¢ in (—o0,0). Let the out-of-plane displacement field, out-
of-plane velocity field, and absolute temperature field linked to this perturbation
be given, respectively, by a once continuously differentiable function 7 : R’ - R,
a continuous function w : IR? — IR, and a continuous function ¢ : R* — RR.
Assume that h, 7, w and ¢ represent small deviations, in some appropriate sense,
from their counterparts in the base process. In particular, suppose that h, 7,
N,a, @, and ¢ are all square integrable on their domains of definition. Require,
furthermore, that the components of the gradient of 7 allow the satisfaction of

the decay condition

lim Ta (ml, 372)77,a (231, $2) - 0’ (321)

2, .2
Ti+T5—00
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while w and ¢ comply with the following decay conditions

lim w(zy,22) =0,

z24+z2—00 2

1

lim ¢(z1,22) =0, (3.2.2)
+zZ—00

so that the disturbance is localized in a neighborhood of the phase boundary
associated with the base state at ¢t = 0.

The perturbation at ¢ = 0 will initiate a new process involving an out-of-
plane displacement field u : IR? x IR, — IR and an absolute temperature field
6 : R? x R, — IR which are, in general, weak solutions of the field equations
(2.6.2) and satisfy the jump conditions in (2.6.4) and (2.6.6) at all discontinuities
in their gradients, the kinetic relation (2.5.1) or (2.5.2) at all phase boundaries,

and the initial conditions

U(', 7O+) = UO(’,O+) + n on R2,
a(+, -, 0+) = 4o(-,0+)+ @ on IR (3.2.3)

6(-,-,0+) =6y +¢ on IR2.

Since the perturbation is small, assume that, the subsequent process involves
only a single phase boundary C; = {(z1,2,t)| 21 = ¢(z2,t),22 € IR} for each t in
R,, with ¢ : Rx IRy — IR continuously differentiable on its domain of definition

and defined so that it is in accord with the initial condition
¢(wO0+)=h on R. (3.2.4)

With the intent of linearizing the field equations in (2.6.2) about the base process,

write, for each ¢ in R,

u(mhzZ,t) = ’U,Q(fL‘l,t) + U)(.’El,.'Ez,t) v(3"17 $2) €D \ Ct,
(3.2.5)
0(x11x27t) = 90 + T(.’L'l, x2’t) V(x1,$2) €D \ Cta
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where w and its derivatives and T are assumed to represent small departures from
the relevent quantities in the base process. Assume that the components of the

gradient of w satisfy the following limits

lim w, (z1,,-)=0 on RxR,,

x1—too
B (3.2.6)
lim W,o (-,372, ) =0 on Rx R+,
xg—too
and also that T complies with the limit
lim 7T(z1,72,-)=0 on IR,. (3.2.7)

21,2
z1+z3—00

From (3.2.3) and (3.2.5) it is clear, moreover, that—when inertial effects are not
ignored—the increment w to the out-of-plane displacement field must satisfy the

following initial conditions:

w(-,+04)=n on IR?,
(3.2.8)
w(,-,0+)==w on IR%

It is important to emphasize that these can not be imposed in the inertia-free
setting.
Also, the increment T to the absolute temperature field must satisfy the

following initial condition

T(-,-,0+4)=¢ on IR (3.2.9)

Next, define s : R x IR, — IR, the correction to the interface position due

to the perturbation, via

s(-,t) =vot +s(-,t) on IR Vie R,. (3.2.10)
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Note, from (3.2.4) that the increment s to the phase boundary position must

satisfy the initial condition
s(,0+)=h on R. (3.2.11)

Observe that the unit normal vectors ny(-,t) : IR — N to C; are given by

e; — 8,2 (-, t)er

V1+52 (1)

For the remainder of this work, choose the unit normal vector associated with the

ni(,t)==% on R Vte R,. (3.2.12)

plus sign in (3.2.12) and drop this sign when referring to it. The normal velocity
Vu(:,t) : R — IR of C, is, thus, given, for each ¢t in Ry, by

v + é(-,t)

Vire3CD

Va(:,t) = on R Vte R,. (3.2.13)

3.3. Linearization of the field equations associated with the process
initiated by the perturbation. Let D! and D} denote, for each ¢ in IR, plane

sets defined as shown below:
D} = {(1,32)| o1 < s(22,1)}, Df = R*\ D). (3.3.1)
Let X; and X, be given, in turn, by
X, = {(z1,2,1)| (z1,22) € D}, t € Ry}, (3.3.2)

and

A = {($1,$2,t)l (331,(132) € D{’t € R+} (333)

The displacement equations of motion which hold on X ; and X ~ can be obtained

following FrieD [9] and are given, in turn, by

2 2 e
ajw,11 +bjw,z2 = W,

(3.3.4)

2 2 -
arw,11 +biw, = w,
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where the positive constants a;, b;, and a,, b, are defined as follows:

ar = /7y(%,00)/p, b1 =+/M(m,60)/p,
0y = V T’Y(PYT"OO)/p’ by = \ M(’y,-,@o)/p

In writing (3.3.5), the positivity of 7,(vi,60) and 7y(7r,80)—which are results

(3.3.5)

of whichever of (3.1.3); o is appropriate, and of M(v;,6o) and M (vr,6o)—which
follow from (2.4.13), have been used.

The energy equations which hold on X ; and X ~ can be obtained by linearizing
the partial differential equation (2.6.2); about (vi,6p) and (v, 60), respectively.
Turn, now, to the derivation of the linearized energy equation which holds on X I

It is easy to show, following [9], that

[o]

YEn+w,, on Al (3.3.6).

With the aid of (3.2.5); and Taylor’s theorem the relation (3.3.6) leads to the

following expansions:

k(v,8) = k(,00) + ky(71,00)w,1 +ko(1,00)T on X,
&(v,8) = &1, 80) + & (v, B0)w,1 +8s(71,60)T on Xy, (3.3.7)

Mg(7,6) = Mg(v1,60) + Myo(1,00)w,1 +Mog(y1,00)T on X

Next, using (3.2.5) and (3.3.7)12 in the left hand side of the partial differential

equation in (2.6.2), gives

(E(’)’, 0)010! ),a + MO(')’, 0)9u,a1},,a >~

k(11 60)Thae +0070 (11, o)ty on (3.3.8)
while using (3.2.5) and (3.2.7)3 in the right-hand-side of the same equation gives

pé(v,B)é%p&('y;,Go)T on X, (3.3.9)
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The linearized energy equation which holds on X ; is, thus, from (3.2.5), (3.3.8)
and (3.3.9), given by
Tyaa=T + Bi,1 , (3.3.10)

where the positive constant oy and the real constant ; are defined by

_ k(,60) _ _bo7e(m1,90)

YT pe(m,60) 7T pe(m,B0) (3:3.11)
Similarly, the linearized energy equation which holds on X r 1S
o Toaa=T + Bri,y (3.3.12)
where the positive constant o, and the real constant §, are defined by
= pfc%% B, = —";—Z?EZ”’-?%-)-. (3.3.13)

From (2.6.9) it is clear that, in the inertia-free setting, the displacement

equations of motion (3.3.4) are supplanted by

a‘lzwyll +b;2wa22 = Oa
(3.3.14)
a‘gwill +b£'wa22 = 0)

which hold, repectively, on X ; and X -

3.4. Linearization of the jump conditions and kinetic relation as-
sociated with the process initiated by the perturbation. Since the set
I' = {(z1,z2,t)| (z1,22) € C,t € IR} } represents the post-disturbance trajec-
tory of the phase boundary, the jump conditions in (2.6.4) and (2.6.6) and the
kinetic relation in (2.5.1) or (2.5.2)—with V, and f given, respectively, by (3.2.13)
and (2.6.7)—must hold on it. Assume, henceforth, that the function s introduced

via (3.2.10) and its derivatives are small in the same sense that w and T are small.
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Note, first, that this assumption implies, using (3.2.12) and (3.2.13), the following

approximations for n and V,, on I":

nxe; —se; on I,
(34.1)
Vo=2v9+8 on I

It is easy to show, following FRIED [9], that the linearized form of the jump

condition (2.6.4); is as follows

(af - vg)w,l (vot+, z9,t) — (a,2 — vg)w,l (vot—, x2,1)
(3.4.2)
= 2vo(yr — M)$(x2,t) V(z2,t) € R x R4,

while that of (2.6.6); is
w(vot+, za,t) — w(vet—, z2,t) = (71 — ¥r)s(x2,t) V(z2,t) € Rx Ry. (34.3)

Linearization of the jump condition (2.6.6); gives, next, since no heat flux is

present in the base process (3.1.1)-(3.1.3),
T(vot+,z2,t) — T(vot—, z2,t) =0 V(z2,t) € R X R, (3.4.4)

so that the increment T to the absolute temperature field is continuous across the
phase boundary in the post perturbation process.
The driving traction f can be linearized in a manner analagous to that dis-

played in [9] to give, with the aid of (3.4.4),

fx2,t) = fo + Fp(n — v) (a2 = v§)w,1 (vot+,Z2,t) + (a] — v])w,1 (vot—, T2, t))
+ (p(m = ) + 3 (vt — ) (76(¥r, 00) + 70 (1, 60))) T(vot, z2,t)

V(zs,t) € R x Ry, (3.4.5)

where the base driving traction fp is given by (3.1.6).
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Turn, now, to the linearization of the energy jump condition (2.6.4),. From
(3.3.7)1, (3.4.1); and (3.2.5)2 it is clear that the first term on the left-hand-side

of the energy balance jump condition (2.6.4), linearizes as follows:

ﬂk(’Y(C(a"% t)a T2, t),0(<($2, t)) T2, t))eyo: (C(x2s t)7 Z2, t)na (.’132, t)]]
= I::('yr,()o)T,l (vot+, x2,t) — IE(WI,OO)T,l (vot—, 2, 1)
V(z2,t) € R x Ry. (3.4.6)
Furthermore, (2.6.5), (2.6.6)2, (3.4.1), (3.4.4) and (3.4.5) yield the following lin-

earization of the remaining two terms on the left-hand-side of the energy balance

jump condition (2.6.4),:

(P6(¢(z2, t), T2, 1) [N(¢(z2, 1), 22, )] + f(22,1)) Vi(z2, 1)
=pvo(E(Yrs 00) — €(, 60))T (vot, T2, t)
+ 3v0(m — 1) (7o (e, B0) + T6(1, 80)))T (vol, 2, 1)
+ %on(’n - ’Yr)((a,zi - ”g)w»l (vot+, T2,t) + (012 - vg)w,l (vot—, z2,1))
— vo8o (1o (7r, O0)w,1 (vot+, T2,t) — T (Y1, Bo)w,1 (vot—, T2,1))
— foé(za,t) V(zog,t) € Rx IR,. (3.4.7)

Together, (3.4.6) and (3.4.7) give the following expression for the linearization of
the energy jump condition (2.6.4),:

0 =k(vr,00)T1 (vot+,T2,t) — k(71,00)T'1 (vot—, T2, 1)
+ pvo(&(r, 00) — &(1, 60))T (vot, x2, 1)
+ 2vo(m — ¥+ ) (7o (s, B0) + To(1,60))) T (vot, 22, t)
+ 3pvo( — 7r) (a2 — v§)w,1 (vot+, 2, t) + (af — v§)w1 (vot—, 22,1))
— v080(7o(Vr, B0)w,1 (vot+, T2,1) — To(V1, 6o)w,1 (voi—, T2, 1))

- 505(:172, t) V(:L‘z,t) € R x R+. (348)
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Linearization of the kinetic relation and use of whichever of (3.1.10) is ap-

propriate in a manner completely analogous to that performed in [9] gives, with

the aid of (3.4.4),

. 1 —
§(z2,1) =L—jl((a3 — vd)w,; (vot+, To, t) + (af — vd)w,1 (vot—, z2, 1))

20,
Y Ur
+ 2—pv‘“(79(’7r,90) + 19(1,60))) T (vot, z2, )
+ (vs + =) T (vot, z2,8)  V(z2,t) € R x Ry, (3.4.9)

where the constants v, and vy are defined by either

fo -
vy = ——0——, vy = Va(L2,6), (3.4.10)
pV¢(‘gﬁé')00) b ,

if the kinetic relation is furnished in the form (2.5.1), or

v, = 9095v(vo,90), v = — @ (vo, bo)

= —— y 3.4.11
p v (vo, bo) ( )

if the kinetic relation is supplied in the form (2.5.2). Note, from (3.1.13), that v,
is a real—but nonzero—constant, while vy is a real—and possibly zero—constant.

By virtue of the foregoing calculations it is crucial to note that, within the
scope of the linearization, it is legitimate to enforce the partial differential equa-

tions in (3.3.4); and (3.3.10) on the interiors of the set {2; defined by

@ = {(z1,22,1)| (z1,22) € II},t € Ry}, (3.4.12)
with IT} = {(z1,z2)| 21 < vot,z2 € IR} for each ¢ in IRy, instead of the set X,
and the partial differential equations in (3.3.4)2 and (3.3.12) on the interior of the

set {2, defined by

2, = {(z1,22,t)| (z1,22) € IT], L € Ry}, (3.4.13)
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with IT] = {(z1,z2)| 1 > vot, 22 € IR} for each ¢ in R, instead of the set Aof'r.

For the purposes of the forthcoming analysis it is useful to define a set I as follows:
I = {(x1,z2,t)| z1 = vot,z2 € R,t € R, }. (3.4.14)

In the inertia-free case it is readily shown that, while (3.4.3) and (3.4.4)
continue to hold, (3.4.2) is replaced by

a,2,w,1 (v0t+, xz,t) - a,zw,l (U0t-,$2,t) =0 V(xz,t) € R x R+, (3.4.15)
(3.4.8) reduces to

0 =k(7r, 60)T'1 (vot+, z2,t) — k(71,60)T;1 (vot—, 72, 1)
+ pvo(&(yr, 60) — &(m,00)) T (vot, z2, 1)
+ 2vo(m — ) (e (77, 60) + 7o (1, 60)))T (vot, T2, 1)
+ 2 pvo( = 7r) (@2w1 (vot+, T2, t) + af w1 (vot—, T2, t))
— 0980 (16 (Yr, G0)w,1 (vot+, z2,t) — To(M, o)w,1 (vot—, x2,1))

- 505‘(.’1)2,13) V(:L‘g,t) € Rx Ry, (3.4.16)

and (3.4.9) simplifies to read

$(z2,t) =’—n—§_;15(a3w,1 (vot+, T2, t) + afw,; (vot—, T2,t))
Y= Yr 0 0 T
+ 2p’U (7—0(71‘) 0) + 7o (’Yla 0))) (Uot, Z2, t)

+ (vg + ;v%qég)T(vot,m, t) V(zz,t) € Rx Ry (34.17)

Finally, remarks analogous to those made regarding the enforcement of the partial
differential equations in (3.3.4); and (3.3.4)2 on .(Qh and .&r apply also to those in



~160-

3.5. Specialization of the base process and the associated linearized
description of the post perturbation process. Suppose, henceforth, that the

base process described in Section 3.1 is restricted so that
79(1,600) = 19(Vr,00) = 0; (3.5.1)

it is implicitly assumed that the shear stress response function 7 allows for the
possibility of (3.5.1). Observe that (3.5.1) requires that the coefficients of ther-
moelastic coupling in the low and high strain phases of the material at hand are,
by (3.3.11)2 and (3.3.13)2, both identically zero. Although this assumption is
made in order to simplify the forthcoming analysis, it is not inconsistent with
the isochoric nature of the deformation under consideration. The linearized field
equations, jump conditions, kinetic relation, initial conditions (where appropri-
ate), and far field decay conditions satisfied by the increments w, T and s to
the out-of-plane displacement field, absolute temperature field and the interface
position are now listed in both the inertial and inertia-free cases.

In the inertial case, (3.3.4), (3.3.10) and (3.3.12) give the following linearized

field equations
2 2 .o
ajw,11 +bjw,22 =W on .(Qll,

2 2 os
a;w,11 +bw,2e =W on O,

‘ (3.5.2)
Ty =T on £,
arTyqe = T on !QZ,..
In addition, from (3.4.2), (3.4.8), (3.4.3) and (3.4.4) the following jump conditions
hold

[(a® — vd)wa ] =2vo(7r —m)$ on I,
[kT,1 ] + pwolelT = pvo(yr — m){(@® = v3)w, ) + £oé on 1,
(3.5.3)
IIw]] =(nw—7)s on I,

[6]=0 on I,
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where the constants a2 and a? are given by

a2 =a?, a2 =ad}, (3.5.4)

and k4 = ky, k— = ki, ¢4 = ¢, and c_ = ¢; are defined via

k+ = E('Yr,OO), k_ = ";3(7[,90),
(3.5.5)

c+ = &(¥r,6o), c- = &(n,bo).
Next, from (3.4.9) and (3.5.1) the following linearized kinetic relation holds:

s=2"T"(0? — @)wy ) + (v + =2)T on I. (3.5.6)

Vs pv.6o

Observe that, despite the restrictions imposed on the coefficients of thermoelastic
coupling by (3.5.1), the corrections to the out-of-plane displacement and absolute
temperature fields reamain coupled through (3.5.3)2 and (3.5.6).
The initial conditions satisfied by w and s are, from (3.2.8), (3.2.9) and
(3.2.11),
w(-,-,0+) =71 on IR?

w(-,-,04) =w on IR?
(3.5.7)
T(v10+) =¢ on R21

s(,0+)=h on R
Finally, from (3.2.6) and (3.2.7), it is assumed that, for each ¢ in IR, the following
far field decay conditions hold
lim w, (z1,-,t)=0 on R,

zr1—to0

lim wy(,72,t)=0 on R, (3.5.8)

:l:z—’:f:

lim T(z1,z2,t) =0.

z2+4z2—doo
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In the inertia-free case, (3.5.2)1 2 are replaced by

2 2
ayw,11 +bl W,22 = 0 om &ls

(3.5.9)
2

a,

W,11 +b3w,22 =0 on .&r.

Furthermore, the jump condition (3.5.3); is, by virtue of (3.4.15), replaced by
[e*w,;]=0 on I, (3.5.10)
and (3.5.3) is, from (3.4.16) and (3.5.1), supplanted by
[£T,1] + pvolc]T = pvo(vr — 1) {@®w,1 ) + £oé on I. (3.5.11)

while (3.5.3)3 4 continue to hold. Finally, the linearized kinetic relation (3.5.6) is,
upon referring to (3.4.17) and (3.5.1), superceded by
§= 2" 002w, ) + (vg + =22-)T on I (3.5.12)
= o .1 K] 5v.00 . 3.
In the absence of inertial effects initial conditions cannot be given for the incre-
ments to the out-of-plane displacement and velocity fields w and w; the initial
condition (3.5.7)3,4 pertaining to T and s still, however, continue to be applicable.

The decay conditions (3.5.8) also still hold.

3.6. Normal mode analysis for a base process involving a static
interface in the absence of inertia. Suppose that v in (3.1.1) is zero. Theft
the base process described by (3.1.1)-(3.1.3) is a piecewise homogeneous isother-
mal two-phase state involving a static planar interface. Recall, from Section 2.5,
that when vy = 0 and the kinetic response function V or @ is continuously dif-
ferentiable on its domain of definition then v. > 0. Since v, = 0 is ruled out by
whichever of (3.1.13) is appropriate and the corresponding expression (3.4.10);

or (3.4.11);, it is clear that—in the present context—v. > 0. Consider, now, the
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initial boundary value problem composed by (3.5.9), (3.5.2)3.4, (3.5.10), (3.5.11),
(3.5.3)3,4, (3.5.12), (3.5.7)3,4 and (3.5.8). Note, since vo = 0, that (3.5.11) and
(3.5.12) reduce with the aid of (3.1.12) to

I[kTﬂ]] = 990(771 - 771‘)5. on I7

é:%ﬂi«azw,l)}+yl—5—&T on I.

(3.6.1)

Observe that, by virtue of the linearization, the relevant partial differential equa-
tions, jump conditions and kinetic relation are all linear with constant coefficients;
note, also, that the domains i1 L and Jig o are rectangular. It is therefore possible
to find a solution to the linearized partial differential equations, Jjump conditions

and kinetic relation in the form

. . o
w(zy, T2,t) Wietaim1ei®2ePt  V(zy,2,,t) € 1Tl x Ry,
1542 = )
y W,.C_fr:rlemxzept ‘v’(a:l,:cg,t) € ﬁs X R+,
T(z1,T2,t) Oretiimeiimacht (3,35, t) € I x Ry, (3.6.2)
1,42 = ]
| @Te"qrxlezﬁ‘lm‘zept v(ﬂ?]_,.’L‘g, t) € IOIG X R-H

5(x2,t) = Se" 2Pt V(zy,t) € R x Ry,

where the amplitudes W;, W,., ©;, 6, and S, wave-numbers &, &, G, Gr and k, and
growth-rate p are all constants. To comply with the decay conditions (3.5.8)1,3 it
is clear that (&), R(¢-), R(¢:) and R(¢,) must all be positive. Although (3.6.2)
are not, in general, consistent with neither the initial conditions (3.5.7)3,4 which
hold in the absence of inertial effects nor the decay conditions (3.5.8)2,3, since ¢
and h are stipulated to be square integrable on IR, and hence can be represented

as Fourier integrals—

+o0
1 . .
é(z1,22) = 5;;/ (1, K)e™ * dx  Y(zy1,z3) € R,
—00

o (3.6.3)
h(zz) = -z—l;r—/ h(k)e™*2 dx  Vz, € R,

- 00
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it is reasonable to expect that stability results can be obtained by a normal-mode
analysis; such an analysis entails substitution of (3.6.2) into (3.5.9), (3.5.2)34,
(3.5.10), (3.5.11), (3.5.3)3,4 and (3.5.12) to determine the growth-rate p as a
function of the complex wave-numbers &, &, (;, (» and the real wave-number k.
If there exists a complex growth-rate p with positive real part which arises as a
solution to the aforementioned problem then the base process will be referred to
as linearly unstable. Otherwise, the base process will be called linearly stable.
Observe that the amplitudes 6;, 6, and S and wave-numbers (;, ¢, and
k must be viewed as given for the normal mode analysis to prove effective in
determining necessary and sufficient conditions, via the analysis of a dispersion
relation like that performed in [9], for the linear instability of the base process with
respect to arbitrary disturbances contained in the class of perturbations described
in Section 3.2. Before proceeding, note, from (3.5.3)4, that 6, = 6, =: 6. Now,
substitution of (3.6.2) into (3.5.9), (3.5.2)34, (3.5.10), (3.5.11), (3.5.3)34 and
(3.5.12) yields the following relations
V2|

2
P g o P o pGelmp)g
arbi (v — vr)

Cahe () m— 0y

& = %W, & = Z—r|ﬂ|, G =K +p/ay, {=+/Kk2+Dp/ay, (3.6.4)

1
p+ v—-(v2|n| + pGo(k,p)) = 0,

W =

3

where Gy : IR x € — C'is given by

00(77! - 771')2
Go(k,p) = VY(k,p) € R x @, 3.6.5
o(#, p) afk? + oqp + ¢r\/a2k2% + a,p (. P) ( )

and the constant »? is defined as follows:

V2 = alblarbr(7l - 71')2

o —— (3.6.6)

It is clear from (3.6.4)3¢,7 that, for (3.6.2) to represent a solution to (3.5.9),
(3.5.2)3,4, (3.5.10), (3.5.11), (3.5.3)34 and (3.5.12), the amplitude © and the
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wave-numbers (; and ¢, cannot be chosen independently of S and . Hence, the
normal mode analysis is only of use in analyzing the linear stability of the base
process at hand with respect to a certain class of perturbations; that is, it is only
possible—via this analysis—to determine conditions necessary and sufficient for
the instability of the base process with respect to a proper subset of the class
of perturbations introduced in Section 3.2. To achieve such results it suffices to
analyze the zero structure of the dispersion relation (3.6.4)g as a function of the
growth-rate p for fixed values of the wave-number x and the parameters 7, 7,
vg, 09, a1, ar, by, b, au, ar, ¢, ¢, p and v,. This is done below.

To comply with the restriction that R(¢{;) and R({,) are both positive, the

square roots which appear in the definition of Gy are defined so that for p in IR,

AP +ap>0 = alk?+ap>0 Ve R,

(3.6.7)
a2kl +ap>0 = +/o2k2+a,p>0 Vke€R,
from which it is clear that for p in
Ra?k2+ap) >0 = R (y/a?nz + alp) >0 Vk€ R,
(3.6.8)
R(a2k® +arp) >0 = R (\/a?,nz + arp> >0 VeeRR.
Furthermore, it is evident from (3.6.8) that
R(p)>0 <= R(Go(k,p))>0 VkelR. (3.6.9)

This result shows that there cannot exist a root p in € with R(p) > 0 to (3.6.4)s
unless v, < 0. Since v, > 0 it is clear that, at present, there cannot exist a pin €
to (3.6.4)s with R(p) > 0 for any « in IR\ {0}. Hence, when vy = 0 and inertial
effects are disregarded the base process described in Section 3.1 is linearly stable
with respect to all perturbations within the narrowed set under consideration.
If, in place of the foregoing normal mode analysis, a full-fledged Fourier-

Laplace transform analysis of (3.5.9), (3.5.2)3,4, (3.5.10), (3.5.11), (3.5.3)3,4 and
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(3.5.12) is performed, then the narrowing of the class of initial data necessitated by
the normal mode analysis does not occur. Furthermore, in this case it transpires

that the Fourier-Laplace transform of s can be expressed in the form

h(k) + 222 H(x, p)
P+ 5-F(x,p)

S(k,p) = V(k,p) € R x C, (3.6.10)

where b is the Fourier transform of h and, for each (k,p) in R x €, H(k,p) is
a functional of the initial data 7, w and ¢. From the foregoing discussion it
is apparent that, since v, > 0 at present, there exist no unstable zeros of the
denominator of the expression on the right-hand-side of (3.6.10). Hence, when
the base process is one wherein the associated phase boundary is static prior to
the instant at which the perturbation is imposed and inertial effects are ignored,
it is linearly stable with respect to all perturbations within the class introduced

in Section 3.2.

3.7. Energy analysis for a base process involving a static interface
with inertial effects present. Suppose, as in Section 3.6, that vy in (3.1.1)
is zero; the parameter v, is, as such, positive. Consider, now, the inertial initial
boundary value problem formed by (3.5.2), (3.5.3) and (3.5.6)—(3.5.8). Observe
that, since vo = 0, (3.5.3)2 and (3.5.6) are replaced by (3.6.1); and (3.6.1)2, re-
spectively. Furthermore, (3.5.3); simplifies to its inertia-free counterpart (3.5.10).
In place of a normal mode analysis like that performed in Section 3.6 an energy
analysis will be used in this section to show that, when inertial effects are ac-
counted for but vy = 0, the base process described by (3.1.1)—(3.1.3) is linearly
stable with respect to all perturbations of the type put forth in Section 3.2. Pre-
liminary to doing so define the total energy £ : [0,1.) —RR, by

E(t) = Ex(t) + Ew(t) + Er(t) Vte[0,t.), (3.7.1)
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where Ex : [0,t.) — IR, is the kinetic energy given by

400 400

Ek(t) =%£ / ]tb(ml,a:z,t) dzidzs Vi€ [0,t.), (3.7.2)

-0 00

Ew :[0,t,) =R, is the elastic energy defined via,

+o0 O
14
Ew(t) —_-%/’ /(alzw,f (z1,x2,t) + b?w,g (zy1, 3, t)) dzidzs

—-~00 —00

vt € [0,1.), (3.7.3)

and Er:[0,t.) — IRy is the thermal energy given by

€+oo 4] e—{-oo 0
Er(t) :%—/ /Csz(iL'l,.'Bg,t)d.'Eldxz + %—/ ]chz(ml,xQ,t)dzldxz

-0 —O0 — 00 — 00

t <00 400

+Pe/ / /leya (111,:1:2, T)Tya (ml’ Za, T)d$1d$2d7'
0 -0 O

t 400400

+P€/ / /krTya (xl, mg,T)T,a (x17x2,7.)dx]_d$2d7’
0 —co O

vt € [0,£.). (3.7.4)

The constant £ which appears in (3.7.2)-(3.7.4) is assumed to be positive and
carries units of length. It is clear from (3.5.7)1,2,3 and the stipulated square
integrability of 7,,, w and ¢ that £(0) exists. In writing (3.7.2)-(3.7.4) it is
assumed, however, that there exists a positive time ¢,, which may possibly be very

small, such that the relevant integrals exist on [0,%.). A reasonable definition of
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linear stability is, at present, that £ remain bounded on [R.. A straightforward
but long calculation which makes use of (3.5.8), (3.6.1) and, recalling the foregoing
remarks regarding the coincidence of (3.5.3); with (3.5.10) when vy = 0, show

that the power & is given by

“+00
£(t) = —plv, / 2(z5,t)dzy Ve [0,2.). (3.7.5)

—00

Since vg = 0 at present, £(t) < 0 for all ¢ in [0,¢,); under these circumstances the
interval over which £ is defined can be extended incrementally to IR, leading to
the following inequality:

E(t)<0 Vte R,. (3.7.6)

Evidently, then, by the definition of linear stability given above, the base process
at hand is stable with respect to all perturbations under consideration if the
associated phase boundary is static prior to the instant at which the perturbation
is imposed and inertial effects are accounted for.

Note that a normal mode analysis akin to that performed in Section 3.6

produces the following dispersion relation

p+ = (Fo, ) + pGolx, ) = 0, (3.7.7)

where Fy : R x € — ( is defined by

abiarb. (v — '71')2\/"€2 + pz/bl?\/"'*z + pz/bg

arby+/ k2 +p?/bl2 + arbr\/K2 + p? /b2

FO(K'ap) =

V(k,p) € R x @,
(3.7.8)
and Gy is as defined in (3.6.5). A study of this dispersion relation allows the
recovery of the results obtained by the foregoing energy analysis.
The combined results of this and the preceeding section are consistent with

those presented by FRIED [9] in the purely mechanical analogue of the problem
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considered here. Hence, when vy = 0, the inclusion of thermal effects does not al-
ter the linear stability of the base state (3.1.1)—(3.1.3) from its obvious mechanical

analogue.

3.8. Normal mode analysis for a base process involving a moving
interface with or without inertial effects. Suppose that vy in (3.1.1) is
positive. Consider now both the inertia-free intial value problem consisting of
(3.5.9), (3.5.2)3,4, (3.5.10), (3.5.11), (3.5.3)3,4, (3.5.11), (3.5.7)3.4 and (3.5.8) and
the inertial initial value problem comprised by (3.5.2), (3.5.3) and (3.5.6)—(3.5.8).
Note that, in both of these cases, (3.1.5)3, (3.1.11) and the assumed positivity of
vo imply that £y = 0. Hence, in the inertia-free case, (3.5.11) and (3.5.12) simplify

as shown below

[T, ] + pvolelT = pvo(vr — m)(a*w,1 )} on I,

3.8.1
%v T (a? wy ) +vsT on I, (38.1)
while, in the inertial case, (3.5.3)2 and (3.5.6) become
[ET:1 ]+ prole]T = pvo(vr — 1) {(a® = v§)wa ) on 1,
e (3.8.2)
§=——((a® - vd)w, ) +vsT on I.

Vs

Next, a normal mode analysis analogous to those undertaken in Section 3.6 and
[9] will be performed based upon the following representation of a solution to the

relevant partial differential equations, jump conditions and kinetic relation:

me+(£l—vot)zlei5x2€pt V(ml,x2) 6 ﬁé, t E R+,
Wre_(f,.—-vot)rm eirT2 opt V(.’E1,$2) € ﬁ:, te R-i-a

’lU(IEl, .’Ez,t) = {

ele+(cl—vot)zleiﬂx26pt V(xl,xz) € ﬁi, t [ R+, (3-8.3)
e~ (vt ginzaert (2, z0) € 1T}, te Ry,

T(zla Za, t) = {

s(z2,t) = Se*"™2ePt  V(z,,t) € R x R..
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Substitution of (3.8.3) into the equations appropriate to the equations appropriate

to the inertia-free and inertial cases gives, respectively, the following dispersion

relations )
v

p+ 151 4 oG p)) = 0,

v

p+ T 4,6, p) =0,

*

where G: RX '— Cand F : R x € — C are given by

2v,
G 3 = v 9 ’
('9 p) ) —Cr+ Clgl(fi,p) + crgr(n7p) (n p) cRx8,
—_ 2 2.2
F(!‘é,p) — ('Yl 7T) (fl("",p)fr(""*:p) + VP ) V(K,p‘) e R x av’

filk,p) + fr(k,p)

where g; : R X @ — T and g, : R x € — C are given by

a(mp) = \/1+ & (@F? + ap) V(x,p) € Rx

9(k,0) = /1 + (0262 + arp) V(r,p) € Rx G,

and fi: Rx € — Cand f, : IR x € — € are defined via

fis,p) = 1/ (a} — )b2k? + afp?  V(k,p) € Rx G,

fr(k,D) = \/(a£ — v2)b2k2 + a2p? V(k,p) € R x C.
When vy = 0 the dispersion relations in (3.8.4) reduce to

vik| _

p+ 0,

*

F
p+_£.'.‘:ﬁ).=0,

%

(3.8.4)

(3.8.5)

(3.8.6)

(3.8.7)

(3.8.8)

Observe that (3.8.8); and (3.8.8); are structurally identical to the inertia-free

and inertial dispersion relations obtained by Friep [9] in the purely mechanical

analogue of the investigation at hand. Hence, if the kinetic response function V
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or ¢ is chosen so that vy = 0 then the linear stability of the base process at hand
remains unaltered from that of its purely mechanical analogue by the presence of
thermal effects; specifically, when vy = 0, the linear stability of the base process
(3.1.1)-(3.1.3) is determined entirely by the sign of v.. That is, v. < 0 is a
necessary condition for the base process to be linearly unstable with respect to
any perturbation of the type introduced in Section 3.2 and, further, v. < 0 is a
sufficient condition for the base process to be linearly unstable with respect to all
but a small class of very special initial disturbances contained within the full set
under consideration. Note, in particular, that vy = 0 if either V depends only
on 6 through the ratio f/6 or @ is independent of §. Assume, henceforth, that
vy # 0.

The branches of the square roots which define g; and g, are chosen so that,

for pin R,

1+ %(af’ +ap) >0 = q(kp) >0 VieR,

(3.8.9)
1+ fg(afnz +a,p) >0 = gr(5p)>0 VeeR,
from which it is clear that, for p in @,
R(1+ fg(a;"nz +ap) >0 = R(a(x,p)) >0 VkeR,
(3.8.10)
R(1+ fvg(afrf +a,p) >0 = R(g-(k,p)>0 VkeR.
Evidently, then, (3.8.10) and (3.8.5); yield the following result:
R(p) >0 <= Rw.G(k,p))>0 Ve R. (3.8.11)

The square roots which appear in f; and f, are defined via the principal branch

of the complex logarithm. It is, therefore, clear that

R(p) >0 <« RN(F(k,p))>0 Ve R. (3.8.12)
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An immediate consequence of (3.8.11) and (3.8.12) is that one or both of the
parameters v, or vy must be negative in order for a root p in € of either (3.8.4), or
(3.8.4) to have a positive real part. It is also obvious, from (3.8.11) and (3.8.12),
that if both v, < 0 and vy < 0 then there exists a root p in € with R(p) > 0 to
both of (3.8.4) regardless of the value of the wave number « in IR\ {0}. A more
subtle condition sufficient for the existence of a root p in € to either of (3.8.4)
occurs under the assumption that v, > 0, vy < 0 and v.|vg|/c; > 1. Specifically,
when v, > 0, vy < 0 and v.|vg|/¢; > 1 it is, then, possible to show that there
exists a root p in € to both of (3.8.4) provided the wave-number « in IR\ {0} is
sufficiently small so that the inequality

a=c, fisp) , fr(sp) _ 2usfvsl
c +cr 1+9;f 1+—c°-’: c+c,

(3.8.13)

holds. A similar condition which guarantess the existence of a root p in € to either
of (3.8.4) occurs under the assumption that v, < 0, v¢ > 0 and |v.vg/c; < 1.
In this case there always exists such a root to either of (3.8.4) as long as the

wave-number & is sufficiently large so that the following inequality is satisfied:

Cl — Gy fl(’c7p) + f?‘(n1p) 2!’0*!’019
a+e 1+ 1+ 2 a+er

(3.8.14)

The foregoing discussion shows that, unlike the purely mechanical process
investigated in [9], the present context is not, when vg > 0, amenable to the
statement of necessary and sufficient conditions for the linear instability of the
base process at hand. The sufficient conditions which have been presented above

are, however, of interest.

3.9 Conclusion. In [9] it is demonstrated that when the purely mechanical
analogue of the parameter v, is positive the appropriate purely mechanical version
of the base process considered here is linearly stable with respect to all perturba-

tions which are considered in that context. The last of the conditions sufficient
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for the linear instability of the thermoelastic base process (3.1.1)—(3.1.3), viz.,

ViV a—c , filk,p) | fr(k,p) _ 2vilug|
ve >0, vy <0, > 1, + < , (3.9.1
v cy ¢+ cp 1+-cc-'l; 1+§f cy + ¢ ( )

where the parameters v., vy, ¢; and ¢, are as defined in (3.4.10); or (3.4.11),,
(3.4.10)2 or (3.4.11)2, (3.5.5)4 and (3.5.5)3, respectively, and the functions f; and
fr are as defined in (3.8.7), is, hence, arguably the most interesting of the three
which are presented. It exposes what might be described as a competition between
mechanically stabilizing and thermally destabilizing effects and an explicit depen-
dence of growth-rate upon wave-number. Significantly in these circumstances,
it is the low wave-numbers (that is, long waves) with respect to which the base
process is linearly unstable. Under conditions consistent with (3.9.1), a moving
planar phase boundary, therefore, tends to prefer a highly wrinkled—i.e., plate-
like or dendritic—morphology. Instability of this variety is also found in models
for dendritic crystal growth and solidification (see [13-14] and [16]).

In analogy to [9] where the physical plausibility of a purely mechanical kinetic
response function for which the parameter analogous to v, can be negative is
addressed, it is now natural to consider the question of whether it is physically
reasonable for a kinetic response function to depend monotonically on its first
argument—so that v, is always positive and the related purely mechanical process
is linearly stable—but non-monotonically on its second argument, in which case
vy may be negtive. The experimental work of CLaPP & Yu [5] which studies, in
part, the dependence upon temperature of transformation kinetics in a particular
alloy capable of sustaining displacive solid-solid phase transformations indicates
that the role of temperature in such kinetics is very complicated. In fact, despite
what appears to be a very careful experimental procedure and analysis, CLAPP
& Yu [5] observe a severe scatter in the data which measure the dependence of
phase boundary velocity upon temperature. This scatter indicates there may not
be a simple functional dependence of interface normal velocity upon temperature.

With regard to the issue at hand, these experimental results seem to indicate that,
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if a kinetic relation of the form (2.5.1) or (2.5.2) is insisted upon, monotonicity
of a kinetic response function V (9, -) for fixed & in IR or @(V,-) for fixed V in R

may be the exception rather than the rule.
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Figure 1: Graph of the shear stress response function 7(-,6,) for
fixed 6y in (Om,0r)-
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Figure 2: Plot of the shear strain-temperature quadrant.
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