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Abstract

Heavy quark chiral perturbation theory is used to predict the form factors for By,
and Dy4 decays. We also look at the long distance contributions to some hyperon and

kaon weak decays which are important for CP violation or extracting information of

CKM matrix.
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Chapter 1. Heavy Quark Symmetry and Applications

1.1 Introduction

Effective field theory is a very useful framework to understand particle physics. It
is conventional wisdom that physics at low energies is not sensitive to physics at much
higher energy scales (the “decoupling theorem” [1]). The idea of the effective field
theory is to integrate heavy particles out and arrive at an almost renormalizable low
energy theory, with the coefficients in front of the nonrenormalizable terms suppressed
by inverse powers of heavy particle mass. For example, suppose we want to integrate
out a heavy particle of mass M. At a subtraction point ¢ = M we match the Green’s
functions of the full theory with those of the effective theory without the heavy
particle. Of course the effective theory has all kinds of nonrenormalizable terms. Then
we can use the renormalization group to run the theory down to some lower scale p <
M. The couplings in the effective theory scale with x, and can be calculated using the
renormalization group equations. The contributions from a typical nonrenormalizable
term to some matrix elements would be proportional (ﬁ)E, with 6 > 0. Hence
at low energy (g < M), we are left with an “effective” theory without the heavy
particle, whose major effect is to give rise to many nonrenormalizable terms with
small coefficients [2]. In practice the effective field theory approach is very useful
in situations involving different energy scales. Two examples are the heavy quark

effective theory and chiral perturbation theory.

In the limit of the heavy quark mass mg — oo, a new symmetry of QCD arises
[3]. The strong QCD physics of most hadronic system is determined by momentum of
order Agcp (about several hundred MeV.) In order to change the heavy quark from
velocity v to v/, it has to emit/absorb a gluon with the coupling as(mg(v - v' — 1)).
As mg — o0, as(mg(v-v' —1)) — 0 [4] for v # v/, therefore hard gluon emission
and absorption is suppressed. The heavy quark velocity is a conserved quantity, i.e.,
the heavy quark moves along a straight worldline, and the QCD interaction can’t tell
its flavor. Furthermore, the spin-flipping magnetic moment type operator is of order

1

O(%), and vanishes as mg — oo. Hence the heavy quark spin also decouples from

QCD interactions. For N flavors of heavy quarks moving with the same four velocity,



their QCD interactions respect a new SU(2Ny) spin-flavor symmetry. (Notice this
symmetry exists for hadrons containing only one heavy quark. For hadrons containing
two or more heavy quarks, the important interactions between heavy quarks are not
of order Agcp and the above arguments don’t apply.) In the real world of six quarks,
the ¢, b and ¢ quarks have masses much greater than Agcp. The top quark is very
heavy [5] and decays quickly before hadronization. Consequently, we are left with
a SU(4) symmetry for hadrons containing a bottom or a charm quark. There are
many phenomenological applications of this symmetry developed over the last five
years, among them are hadron spectroscopy, and exclusive and inclusive semileptonic
decays of hadrons containing a bottom or a charm [6]. The largest uncertainty of the
symmetry predictions comes from the fact that the charm mass is not much greater
than Agep. The ultimate usefulness of heavy quark symmetry depends on how large

the (’)(%%Cf) corrections are, and they have to be examined on a case by case basis.

For practical applications of the heavy quark symmetry, it is very convenient
to use the heavy quark effective theory [7]. This is different from the conventional
effective theory, in which one integrates out heavy particles completely. Instead, we
only integrate out some degrees of freedom from a heavy quark, and go to an effective
theory in which the heavy quark has a fixed velocity. Explicitly, for a heavy quark of
mass mg, the QCD Lagrangian is

L(z) = Q)W) — mq)Q(z) , (1.1)
where [) = v*Dy = y#(9, + igA,T*), T"s are generators for color SU(3). For a

hadron containing one ¢ and moving with velocity v, the momentum of the heavy
quark is pg = mgv* + k¥, where k* is of the order Agcp. As mg — oo, the QCD
interaction can not change the four-velocity v, and we can factor out m¢g dependence

by redefining Q(z) = e™"™@%?h,(z). The equation of motion becomes

0= (P —m@)Q(z) = €™ (mq(f — 1) + P)hu(z) , (1.2)

where D,, acting on hy(z) only brings down residual momentum k,. In the limit

mg — 00, this gives

Pho(z) = hy(z) , (1.3)

which is an operator identity. In terms of the velocity-dependent field, the Lagrangian



becomes

Ly(x) = hy(z)iv - Dhy(z) . (14)

The whole QCD Lagrangian becomes £ = ), Ly(z) plus similar velocity-dependent
terms for anti-heavy quark fields. Since £, doesn’t have explicit m¢ dependence and

~ matrix structure, the spin-flavor symmetry is manifest.

The above discussion is valid for the limit mg — oo. To incorporate O(EI—Q—)

corrections, the field redefinition should be taken as

Q(z) = eV (hy(2) + xu(2)) , (1.5)

with $hy(z) = he(2), ¥xu(z) = —xu(z). Since heavy quark field has only two degrees
of freedom (two spin states), one can express x,(z) in terms of h,(z) field by using

the equation of motion
0 = (i — m@)Q(z) = (B — mQ)[e™™" " (hy(z) + xo(2))] , (1.6)

which gives

o) = pte) +xute) = 3 (g ) M) (D

Q) = e mer 3 (ﬂ—@—)nhv(z) S (18)

Substituting this into the QCD Lagrangian (equation 1.1) gives

Lo(z) = ho(2)iv - Dhy(z) + 57717(2-721,(:,;)[—@1) . DY + (iD)? — -;—ga’“’GZ,,T“]h,,(x)

1
+0(—) - (1.9)
Q
This is the effective Lagrangian at scale p = mg with the matching performed at

tree level. At scale u = mgq, there are large logarithms log (,,—nEQ—) present in matrix

elements of the higher dimensional operators in £, (here p is a typical momentum).



These large logarithms can be summed using the renormalization group equation,

and factored out as the coefficients of the respective operators by scaling down to a

scale p >~ p

Lo(z) = ho(2)iv - Dhy(z)

1= . 2 . 2 g a 1
+olo) [C1()(iv - D) + Calw)(GDY? + Calw) o™ G, T2 o) + oGz)
(1.10)
The coefficients C;(i)’s were calculated in leading logarithmic approximation [8](in

which all terms of powers (o, log I—nf)" are summed up). The results are

Cilp)=1- .g. (_ai(ﬁ)_)‘% |

as(mq)
Co(n) = % : (1.11)
s =3 ()

(The p-independence of 'z can be understood from the reparametrization invariance
[9].) These higher dimension operators are important when one considers O(qu)

corrections.

Now let’s get back to the limit mg — oo. In this limit the heavy quark spin §Q
completely decouples from QCD interaction, and is a good quantum number. The
total spin for a hadron S = ,§Q + S (where Sy is the spin for the light degrees of
freedom) is also a conserved quantity. This tells us that s; is also a good quantum
number. Consequently for each sy, there are two degenerate states with spin s = 515:}:%,
i.e., hadrons containing one heavy quark come in doublets (except for the case sy = 0).
The splitting inside a doublet is an O(Elg) effect. For example, the lowest-lying meson
doublet containing a heavy quark Q has 35 ‘= %— (Py is the parity of light degrees
of freedom). This gives two states (Pq,PC’S) with quantum numbers J¥ = (0—,17).
(In the case of b quark, these states are B and B*, whose mass difference is only

about 50 MeV, much smaller than Agcp.) Just as the octet of pions, kaons and eta
fields can be put in one single representation of SU(3), we may put Pg and PC’S fields



together into a superfield H,(z) [10]
H, = J(P W7 = Pays) (1.12)

Here a is the ordinary flavor SU(3) index, P, satisfies P;,v* = 0. (P,, P;) annihilate
respective mesons with velocity v. The H, satisfies y H, = H,. Under heavy quark
spin transformation, H, — SH,, where S is a rotation matrix in the four component
spinor representation. Under Lorentz transformation, H,(z) — D(A)"1H,(Az)D(A),
where D(A) belongs to 4 X 4 matrix representation of the Lorentz group. We can also

introduce H, = 70H(lL 49, Explicitly,

1o = (Pl + Plos) 2. (113)

The (P,:J , PJ ) create a respective meson state with velocity v.

As an application of the above formalism, let’s look at the semileptonic decays
of B with velocity v into (D, D*) with velocity v'. The weak current mediating this
transition is JggeT = €o'I'by. The most general form of the relevant matrix element
is

< D,V |eyThy B, v >= —&(v - o) Tr(D(W)TB(v))

1+¢’ 1+¢

—¢(v - )Tr(D3 " + Dl =L

—1(B5y" - Bys)) . (1.14)
For the weak transition, I' = v, and v,75. The explicit form of equation (1.14) is

< D,V |pyuby| By,v > = E(v - v')y/mpmp(v+v'),
< D*,¢, Ullav’7ubﬂ|Bav > =1¢(v- U/)\/ m*DmBeuyaﬁe'”*vav’ﬂ J (1.15)

< D*, &, v |epyuysbo| B,v > = £(v - o)y /mAympl(1 4+ v - 0)é*, — €* vo] .
Therefore, in the heavy quark limit, the semileptonic decays of B into (D, D*) depend
on only one universal form factor, the Isgur-Wise function £(v - v'). Furthermore, the
heavy quark flavor symmetry determines the normalization of £(v - v') at zero recoil

point v = v’ to be (1) = 1 [3]. To complete the story, the current J HQET in the



effective theory has to be related to the current Jocp in the full QCD. The calculation

from the matching and the renormalization group running gives

Jgcp = CaJuQET - (1.16)

In the leading logarithmic approximation,

Cu(p) = (as(mb)>_% (S’iﬁ"ﬁ) o) , (1.17)

as(me) as(p)
where
! 8 ! !
aL(v-v):é—E,)—[v-vr(v-v)——l], (1.18)
and

(1.19)

(v ') :\/—(;—UIT—_T_Tlog (U-v'+ (v-v’)z——l) .

Factors of C are to be inserted into equation (1.15) for the full prediction of the heavy
quark effective theory in the heavy quark limit. Notice that ar(0) = 1 as required
by the heavy quark symmetry. Therefore, we can use the absolute prediction at zero
recoil of B semileptonic decays to (D, D*) to measure [V,3| [11]. This has been the
most important phenomenological application of the heavy quark effective theory.
Another significant aspect of the heavy quark effective theory is that it supplies us

with a systematic tool to take into account the symmetry breaking effects.

In the light quark sector (u,d,s), the current quark masses (my,mq,ms) are
believed to be small compared with the typical hadronic scale Agcp. If we take the
limit of zero current quark masses, QCD would possess a chiral symmetry SU(3)p x
SU(3)g. Since the hadrons are well classified according to the representation of
SU(3), this chiral SU(3)r x SU(3)r symmetry must be spontaneously broken, which
gives rise to eight massless odd-parity Goldstone bosons. Because light quark masses
don’t exactly vanish, these (pseudo)Goldstone bosons get small masses. They are
identified with the three pions, four kaons and the eta. In fact, this scenario gives a
natural explanation of why pions (and kaons) are so much lighter than other hadronic
resonances. It is generally regarded that the chiral symmetry is broken by the strong

color forces of SU(3) at long distance. The specific symmetry breaking mechanism



is an unsolved dynamical problem. Nevertheless, the low energy interaction between
Goldstone bosons is very much constrained by the ansatz of the chiral symmetry
breaking. One can build a chiral Lagrangian [12] of the Goldstone boson fields which
represent the excitations along the directions of the broken generators of the symmetry
breaking SU(3); x SU(3)gr — SU(3)y. Explicitly, the Goldstone boson fields can be

included in a nonlinear field X(z)

M
by :exp( zf ) , (1.20)
where
%’R’O + %77 7t K+
M= ™ gt K| (1.21)
K~ K° — %77

Under chiral SU(3); x SU(3)p transformation, ¥ — LERJf, where L € SU(3)1, and
R € SU(3)g. Under an unbroken SU(3)y transformation V = L = R, X — vevi,
which gives M — VM VJr, i.e., the Goldstone bosons transform as an octet under the
unbroken SU(3)y. The SU(3); x SU(3)pg invariant kinetic term is given by

Liin = ZSETr(auza#z’f) . (1.22)

The chiral symmetry is broken by the quark mass term, which transforms as (37,3z)+
(31,3g) under chiral SU(3); x SU(3)g. Including the symmetry breaking terms and

higher dimensional terms, the chiral Lagrangian reads

2
£ = L7r@,mom ) 4 ATr(m3 + mh 4 (1.23)
where
my O 0
my = 0 myg O (1.24)
0 0 mg

is the quark mass matrix, f ~ 132 MeV is the pion decay constant, and the ellipsis
denotes terms with more than two derivatives and more insertions of the quark mass

matrix. Neglecting effects from these extra terms, a fit to the masses of pions, kaons



and eta gives my/mq = 0.55, my/mq = 20 [13]. By dimensional analysis, the con-
tributions from the higher dimensional terms in the chiral Lagrangian are suppressed
by O(p?/ Ai gp) or higher, where A, 5p ~ 1GeV is the chiral symmetry breaking scale,
p is the typical momentum of a particular scattering process. Therefore these con-
tributions are less important than those from leading terms in the chiral Lagrangian.
The most dubious feature of this approach is that the mass of the strange quark may
be too large for low momentum expansion to be valid. But this approach has had

some success in describing kaon physics.

It is possible to construct chiral Lagrangians for matter fields which give their
interactions with the Goldstone boson fields [14]. For example, baryon chiral per-
turbation theory describes interactions of baryon octet and decuplet with the meson
octet [15]. There is also the heavy quark chiral perturbation theory [16], which incor-
porates the interactions between the heavy hadron multiplets with soft pions. Notice
that the chiral Lagrangian description fails if the momenta of the external pions are
large compared with A,sp. This approach only applies to the processes with soft

external pions (and kaons).
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1.2 By and Dy4 Decay

Heavy quark symmetry and chiral symmetry put constraints on Bpy and Dy
semileptonic weak decay amplitudes!l"®3], In this work we explicitly display the impli-
cations of these symmetries for D — Knlyy, D — nnlvy, B — nnliy and B — Dl
decays.

The strong interactions of the lowest lying mesons containing a heavy quark @
with the pseudo Goldstone bosons #, K,n are determined by the chiral Lagrangian
density

2
L= %Tr(@”E@,LEJf) + Ao Tr[mgS + my 0]
—iTr Hoou0" Ha + STrHo Hyo (€19, + €0, o
Yo palelg £ 1 7
o TrHaHyy"75[8 0ué — £0u8 b + MTrHod)

[€mg€ + E my€ e + N TrHoHo[mg S + mg Sy

A ~
+-—2TT'Ha0'/“,HaO';“/ —I"... (2-1)
mQ
where the ellipsis denotes terms with additional derivatives, factors of the light quark

mass matrix

m, 0 0
mg = 0 mg O (2.2)
0 0 my

associated with explicit violation of SU(3)f x SU(3)g chiral symmetry, or factors
of 1/mg associated with violation of heavy quark spin-flavor symmetry. The La-
grangian is written in terms of a 4 x 4 matrix H, which is defined in section 1.1. For

completeness, let’s display the form of H, herel®?]

H, = £1—;i)“[P;u’y#‘ — Pays] (2.3a)

H, = fyOHI'yO ) (2.3b)

In cases where the type of heavy quark @ and its four-velocity v are important the

4 x 4 matrix is denoted by H,gQ)(v).
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In the Lagrangian density (2.1) the light quark flavor indices a,b go over 1,23
and repeated indices are summed. For Q) = ¢, (P, P2, P3) = (DO,D"',DS) and
(Pf, Py, P§) = (D%, D+ D?) while for Q = b, (P, P, P3) = (B~,B% B;) and
(Pf, Py, P§) = (B~*, B%, B}). Factors of ,/mp and /mp~ have been absorbed into
the P and P* fields. Consequently they have dimension 3/2.

The field H, is a doublet under heavy quark spin symmetry SU(2), and a 3 under
the unbroken SU(3)y light quark flavor symmetry. Under SU(2), and SU(3)p x
SU(3)g it transforms as

H, — S(HUT, | (2.4)
where Se SU(2), and U is the usual space-time dependent 3 X 3 unitary matrix that
is introduced to transform matter fields in a chiral Lagrangian.

The low energy strong interactions of the pseudo-Goldstone bosons are described
by the chiral Lagrangian in eq. (1.23). In heavy quark chiral perturbation theory

(described by the Lagrangian in eq. (2.1)), it is convenient to use
§ =exp(iM/f) , (2:5)
and
£ =% =exp(2iM/f) . (2.6)
Here M is the usual meson octet {(eq. (1.21)).
Under SU(3)r x SU(3)g chiral symmetry, ¥ — LZR‘L, implying that
¢ — LevT = vert | (2.7)

where LeSU(3)r, ReSU(3)p and U is a function of L, R and the meson fields. Typi-
cally U is space-time dependent. However, for SU(3)y transformations, V = L = R,
U is equal to V.

Heavy quark flavor symmetry implies that, to leading order in Agop/mg, ¢ is in-
dependent of heavy quark flavor. For ) = ¢ the D* — D= decay width is determined
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1Y 42
+ 0, 4y — = 13
(D™ — D7) = <6—7r> Flpﬂ . (2.8)
The present experimental limit[®! on this width (D(D1t* — D% %) < 72KeV) implies
that g2 < 0.4. Applying the Noether procedure, the Lagrangian density (2.1) gives

the following expression for the axial current,
GaTupywy5qs = =91 Ha Hyyo¥s T + .- - (2.9)

In eq. (2.9) the ellipses represent terms containing the pseudo-Goldstone boson fields
and T is a flavor SU(3) generator. Treating the quark fields in eq. (2.9) as constituent
quarks and using the non-relativistic quark model (i.e., static SU(6)) to estimate the
D* matrix element of the Lh.s. of eq. (2.9) gives!®) ¢ = 1. (A similar estimate
for the pion-nucleon coupling gives g4 = 5/3.) In the chiral quark modell”) there
is a constituent-quark pion coupling. Using the measured pion nucleon coupling
to determine the constituent-quark pion coupling gives that ¢ =~ 0.75. The decay
B* — B is kinematically forbidden and so it will not be possible to use it to test
the heavy quark flavor independence of g. The amplitude for the semileptonic decay
B — Driy,, in the kinematic region where the pion has low momentum (and the
Dm mass is greater than that of the D*), can be predicted using chiral perturbation
theory. In principle, experimental study of this decay can give information on the

flavor dependence of g.

In the next section we discuss the kinematics of weak semileptonic Dy and By,
decay. The fully differential decay rates are expressed in terms of form factors. The
results of the next section are a slight modification of the kinematics of Ky decay
to the situation where the two hadrons in the final state have different masses. The
generalization of Ky, decay kinematics to D — Kxfv, decay was previously discussed
by Kane, et al.l’l We have included a short review of the kinematics for complete-
ness. The two following sections give the predictions of chiral perturbation theory for
D — Knly;, D — 7nly; and B — nnli, decay form factors, and for B — Dwl7,.
After that there is a brief discussion of the expected kinematic range where chiral
perturbation theory for B — D/, is applicable. Concluding remarks are made in

the end.
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For Byy and Dy decay the kinematic region where chiral perturbation theory
is applicable is small. In the kinematic region where chiral perturbation theory is
applicable Br(B — Drliy) ~ (1/16%2)Br(B — Dfpy) ~ 107 The situation is
worse for the modes with two pseudo-Goldstone bosons in the final state. For example
we expect that Br(D — nrlyy) ~ (1/1672)sin® 0,(fp/mp)?Br(D — X,slv;), where
fp is the decay constant for the D-meson. For fp ~ 200MeV this crude order of
magnitude estimate gives Br(D — wrlyy) ~ 1078, The factor of sin? 4, is absent for
the Cabibbo allowed decay D — Kwlv,, but the fact that the kaon mass is not very
small makes the validity of lowest order chiral perturbation theory dubious. It will
be very difficult, in the kinematic region where chiral perturbation theory applies, to
observe By and Dy4 decay to two pseudo-Goldstone bosons. However, the results
of this work may still prove useful for these decays. Phenomenological models that
predict the form factors over the whole phase space should be constrained to agree

with chiral perturbation theory in the kinematic region where it applies.
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Review of the Kinematics

Consider for definiteness the decay D — Knlvy. At the end of this section we
show how to modify the formulae so they apply to the other decays we are considering.
It is convenient, following the analysis of Ky decay by Pais and Treiman!®!, to form

the following combinations of four-momenta
P =pg +pr, Q=pK— pr, L=p¢+puy, N=pi—py . (210)

Like Ky4 decay, Dy4 decay is kinematically parametrized by five variables. For two of

these we take the K7 and v, squared masses
sgr=P?% sp =1L%. (2.11)

For the remaining three variables we choose: g, the angle formed by the kaon three-
momentum in the K7 rest frame and the line of flight of the K in the D rest frame;
0;, the angle formed by the £ three-momentum in the fv, rest frame and the line of
flight of the vy in the D rest frame; ¢, the angle between the normals to the planes
defined in the D rest frame by the K pair and the fv pair. (The sense of the angle

is from the normal to the K7 plane to the normal to the £v, plane.)

Over most of the available phase space (including the kinematic regime where
chiral perturbation theory can be applied) the mass of the lepton can be neglected

(i-e., m?/s¢, < 1) and we find that with mg = 0;

2
mMp — SKx — Sty

P L= ; : (2.124)
L-N=0, P-Q=m%—m2, (2.12b)
Q? =2(m% +m2) —sgy, N?=—sq,, (2.12¢)
m2. —m2
L-Q= ('—]-‘S——W>P-L+ﬂXCOS(9K, (2.12d)
Kr
P-N = Xcosb, (2.12¢)
2 _ .2
Q- -N= <7_72L(8__T1r_> Xcosbyp+ P - Lcos@costy
Kr
— ﬁ(Sg,,SKﬂ-)l/z sinfg sin 6y cos @ , (2.12f)

€uvpe@FPYNPLP = —ﬁX(sz,,sK,,)l/z sin @ sin By 5in ¢ . (2.12¢9)
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In egs. (2.12)
X =[(P- L)’ = sgrse]? (2.13)

and 3 is (2/+/Sk~) times the magnitude of the kaon three-momentum in the K= rest

frame,

B = [5%“ + mfr + m'}( -~ Qm%(m,% — QSK,,m%( - 25[{7rm72r]1/2/3[(ﬂ- . (2.14)
Taking the limit, mx = my, egs. (2.12) agree with the results of Pais and Treiman
for K4 decay.

The invariant matrix element for D — K7 fy, semileptonic decay is

Myi = %VCS < 7(pn) K (o) 5701 = 5)el D(pp) >

a(py )y (1~ v5)v(pg) » (2.15)

where V., is the ¢ — s element of the Cabibbo-Kobayashi-Maskawa matrix and Gp
is the Fermi constant. The hadronic matrix element can be written in terms of four

form factors w4,r and h that are defined by

< 7(px) K (pr)157u(1 — v5)elD(pp) >= 1wy Py + iw-Qy

+ir(pp — P)y + heunppHPPQ] (2.16)

The form factors w4, r and A are function of sy,, s and cos . Summing over the

lepton polarizations the absolute value of the square of the matrix element is
Y AMpil? = AGH Voo Hy L (2.17)
spins

where

Hyy =< 7(px) K (px)|57u(1 = v5)c| D(pp) >

- < 7(px) K (pK )57 (1 — v5)c|D(pp) >* (2.18a)

1

LM = S[LPLY = N*NY = s —ic™ 7 LaNy] . (2.180)
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The differential decay rate takes the form
_ GlVeal?
(i}

The dependence of I on 8y and ¢ is given by

T XBI(SKkry,Se, 05,00, ¢)dsp,dsgr - dcos Ogdcos Gpdd . (2.19)
I =1 + Iy cos 20; + I3sin® 0 cos 2¢ + Iy sin 20, cos ¢
+I5sinfycos ¢ + Ig cos §p + I7sin 6y sin ¢

+Igsin 20, sin ¢ + Igsin® Oy sin 2¢ | (2.20)

where Iy, ..., Ig depend on sk, sy, and Of.

To display I, ..., Iy in as compact form as possible it is convenient to introduce

the following combinations of kinematic factors and form factors

mz,— - m2
Fi =Xwy +[BP- LcosOk + (——A———l> X]w_ (2.21a)
SKn
by = ,8(35,,5}(7,)1/211;_ (2.21b)
F3 = ﬂX(se,,sK,r)l/zh. (2.21¢)
In terms of these combinations of form factors
1 3 .
h=g {lFlI2 + 5 sin® O (| F” + IF3|2)} (2.22q)
1 1.
Ip=—3 {|F1|2 -3 sin? O (| Fo|* + 1F3|2)} (2.22b)
1
Iy = —Z[IFQIZ — |F3]?]sin? 0 (2.22¢)
1
I = 5Re(Fng) sin 0x (2.22d)
Is = Re(F{ F3)sinfg (2.22¢)
Is = Re(F3 F3)sin® 0 (2.22f)
It = Im(F1Fy)sin O (2.22¢9)
1
Ig = EIm(Fng’f) sin § g (2.22h)
1
Iy = = Im(F,F5) sin? O . (2.22i)

Egs. (2.20) and (2.22) are the same as eqgs. (11) of Pais and Treiman. However, the
definitions of Fy, I'y and F3 are slightly different because m g # my.
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It is evident from egs. (2.22) that the partial wave expansions for the form factors

Fy, Fy and F3 are

[o.0]
Fi(skx,Sey,cosbli) = Z Fi o(skx,sev) Pe(cos Ok) (2.23a)
£=0

2 d
Fa(sgny sy, cos k) = Z 0 1/2F2 g(sKmse,,)dcos GKPg(cos fr)  (2.23b)

€=1 ( +

d
F3(skr, Sey, 008 0Kc) Z 0T £+1 77 (s sKm Stv) oo g Fe(cos 0) (2.23¢)

Integrating over the angles gives

G%|Ves )
£

7 2
(20 +1) ['FMI

(4m)5m3,
+|F2’gl2 + IF3,(12] dsg,ds g« , (2.24)
and the total decay rate is
mb (mp=s3(7)’
r= dsi / dsgy (—L (2.25)
- S_Kﬂ' 3[1/ dSszSI(W 4 .
(mx+my)? 0

One advantage of the variables 0, 8¢, @, s¢, and s is that in terms of these variables
the region of phase space integration is quite simple. The angles are unrestricted and

eq. (2.25) gives the region for sk, and s,

Although we have focused on D — Knfy; decay the results presented above can
be straightforwardly altered to apply to the other decays we discuss in this work. For
D — w7rly; decay one simply changes Vos — Vg and mg — my. For B — nndiy,
decay one changes Vs — V', ,mp — mp and mg — my. Also, in eq. (2.15) p; and
py are switched. Consequently the term proportional to the alternating tensor in eq.
(2.18b) and the expressions for I, Is and I7 in eqgs. (2.22¢), (2.22f) and (2.22g) change
sign. Finally, for B — Dn{vy; decay the changes Vo5 — Vj,mp — mp,mg — mp

and the same sign changes as for B — n7/y,; decay are made.
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Decays to Two Pseudo-Goldstone Bosons

The semileptonic decays D — Knlyy D — nnly, and B — nwliy are determined

by matrix elements of the left-handed current

Lye = qa’yu(l - ’)’5)Q . (2-26)

This operator transforms under chiral SU(3); x SU(3)r as (3;,1r). In chiral

perturbation theory its matrix elements are given by those of
e 1
Ly, = 5— T’r"y,,(l — 75)Hb§ba + .., (2.27)

where the ellipsis denotes terms with derivatives, factors of the light quark mass

matrix mg or factors of 1/mg. The constant « is related to the decay constant of the

heavy meson,
< 0lg*y" 1 QIPD (v) >= f p@mp@v” . (2.28)

Taking the PéQ) to vacuum matrix element of eq. (2.27) (for this matrix element ¢ f

can be replaced by unity) gives

o = fng) /mpéQ) . (2.29)

The parameter o has a calculable logarithmic dependence on the heavy quarkl%14

mass from perturbative QCD.

For Dy and Byy decay to two pseudo-Goldstone bosons the Feynman diagrams
in Fig. 1 determine the required matrix element. In Fig. 1 a solid line represents
a heavy meson and a dashed line represents a pseudo-Goldstone boson. The shaded
square denotes an insertion of the left handed current. The form factors wa,r and A

that follow from calculation of these Feynman diagrams are given below.
(i) D — Krly,

D — Knly, decays are determined by ) = ¢ matrix elements of L,3. For the

decay DT — K ~n%lyy computation of the Feynman diagrams in Fig. 1 gives

__(Jfobmpg 1 _
w~_—~( 572 >[v'pw+AC] Wy = —w_+7 (2.300)
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f? 2 2-(px +pr)+ul [v-pr+A]
o [Pr-PK — v PKY - Px]
I ook +p0) + Wlv-pr + Ad] } (2:306)

_ ngz) 1 1 .
h“(Zfz o ¥ o) ¥ Aot ] o pr ¥ AT (2:30c)

In egs. (2.30)

A, =mp+ —mp , (2.31a)

g =mp, —mp , (2.31b)

and v* is the four velocity of the D—meson, i.e., pf) = mpv”. Isospin symmetry
implies that the form factors for D% — K~ 7%, are 1/4/2 times those above, the
form factors for D* — K%%y, are —1/+4/2 times those above, and the form factors
for D° — K% ~{y, are equal to those above. It is straightforward using eqs. (2.11)

and (2.12) to express these form factors in terms of O, sx» and sg,.
(ii) DT — nta=ly,

For this decay a () = ¢ matrix element of L,z is needed. It is straightforward to
see that the form factors in this case are given by those in egs. (2.30) if the changes
PK — Pr~ and pr — py+ are made and p is set to zero. Again using eqs. (2.11) and
(e.12) these form factors can be expressed in terms of 8-, sxr and sg,,.

(iii) B~ — nTaLij,

In this case a () = b matrix element of L,; is required. The form factors are given
by those in egs. (2.30) if the changes fp — fg,mp — mp, Ac — Ay, pir — po+ and
Pr — Pr- are made and g is set to zero. Using egs. (2.11) and (2.12) these form
factors can be expressed in terms of 8.+, s and sg,.

(iv) D% — 77 n%y,
In this case the () = ¢ matrix element of L,y is required. Computation of the

Feynman diagrams in Fig. 1 gives that the form factors are

- = @%;5> { TRy Rl e } (2.520)
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_(9fpmp 1 .
Wy = (2\/§f2 ) { [0 prm [‘v'p,,o +Ac]} + (2.32b)
. ( /o ) v- (pw——pwo) PCH D)
\/§f2 v ( -+ p,ro) [U *Ppro + Ac]
—g (v pa-) _ g (P pro — (v Pr=)(v - Pro))
[v- pr- + Ac] [v - (Pr— + Pro)]
1 1
. ([v e+ A [v-peo Ac]) } (2.32¢)
__( fog’ 1 1 1
h= (2\/—2—.)[2) [v'(p,,-— + pro) + Al {[U'Pyr- +Ac] + [v- pro +Ac]} )

(2.32d)

It is straightforward using egs. (2.11) and (2.12) to express these form factors in

terms of 0,-, sxr and sgy. (Here the difference of four-momenta Q* = p£_ — p¥;.)
(v) B® — ntxly,

In this case the () = b matrix element of L, is needed. The form factors are
given by those in egs. (2.32) if the following changes are made: fp — fp,mp —
mp,Ac — Ap, and pr- — pr+. Using egs. (2.11) and (2.12) the form factors can be

expressed in terms of 0.+, 3,7 and sy,
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B — Dniy,

In this case matrix elements of the operator ¢y, (1—-5)b are needed. This operator
is a singlet under chiral SU(3) x SU(3)g and in chiral perturbation theory its matrix

elements are equal to those of
_ ~(c b
Evu(1 = 75)b = —g(v - )\ TrHE (07,1 — 75) B (v) + .. . (2.33)

The ellipsis in eq. (2.33) denotes terms with derivatives, insertions of the light quark

mass matrix or factors of 1/mg. The B — D and B — D* matrix elements of this

current are[1 0]

< D(W)|eyu(1 — 75)b| B(v) >= /mpmpn(v - v')[v + '], (2.344a)

< D*(v', €)|evu(1 — 45)b| B(v) >= /mpmpen(v-v')[—€; (1 + v - v')
+H(e" - 0)0), + ieqause v 0] (2.34b)

The normalization of 57 at zero recoil, i.e., v-v' = 1, is determined by heavy quark flavor
symmetry and by high momentum sstrong interaction effects that are computable using

perturbative QCD methods,!10—14]

as(mb)

as(me)

= 28]

Since the operator in eq. (2.33) doesn’t involve the pseudo-Goldstone boson fields,
in the leading order of chiral perturbation theory B — D7 matrix elements of the
current are determined by the pole-type Feynman diagrams in Fig. 2. They give for

a charged pion

— 2 m V- 'Ui ! 1 "
Wy — W = f\/—?_ mp| ! 1]{(v’-p7r—Ac) (v-p7r+Ab)}
(2.35a)

_ =9 [mB_{ pr-(v+)
wy +w_ = 7 mDn{(v,_pw_Ac)}—i»r (2.35b)

9 [mp_f pr-(v+9)
"7 mBn{(v'pw+Ab)} (2:35¢)
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_ 9 7 1 _ 1
h= { (v pr — Ac) (v-pr+ Ap) } . (2.35d)

In egs. (2.35)
A, =mp+ —mp ~ 140MeV (2.36a)

Ap=mpgs —mpg ~50MeV . (2.360)

The form factors for a neutral pion are obtained from the above by multiplying by
+1//2.

We have assumed in writing eqs. (2.35) that the kinematic region is chosen so
that v' - py is not too close to A,. For use of the effective theory propagator to be

appropriate it is necessary that
V' pr — A > mp(mg/2mp) >~ 5MeV . (2.37)

This also ensures that the D* width can be neglected in the propagator (it is expected
to be only about a hundred KeV).

It is convenient to reexpress some of the formulae of “review of kinematics” in a
way that makes the dependence on the heavy meson masses explicit and neglects terms
suppressed by mx/mp or mx/mp. Introducing the pions four-velocity vk = pi/m,

we change integration variables from sp, and sg, to v' - vr and v - v’ using
dsprdsg, ~ 4m3mﬂm%d(v’ cvg)d(v-0') . (2.38)

The form factors F} are conveniently written in terms of dimensionless quantities F s
nz%/zmgz oA

F; = ———f——gn(v v )Fy . (2.39)

Using 8 ~ (2ma/mp)[(v'-v)? = 1]"% and X ~ mpmp[(v-v')? —1]*/2 the differential

rate (after integrating over 6y and ¢) becomes

8GAmAEmS |V l? [ ma 2
BT = F 3(B47r)lf))| ( (7_> 92772[(,0/ . UW)Z _ 1]1/2

[ 02 =12 4 sin? 0p(|F2]? + | B3)2) (0" - va)d(v' - v)dcosp . (2.40)

Combining eqgs. (2.39), (2.35) and (2.21) the dimensionless form factors £ are found
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to be:

ﬁ’l:[(v-v')2—1]1/2(0+v')-vx{(mD> ! ~ L }

mp) (v-ve+2Ay) (v vx — Ap)

—v'vgfv v v-v')? — 112 L — L
7r[ +1][( ) 1] {(’U-’UW‘}‘Ab) (’U’-’Uﬂ-——Ac)}

cos v )2 = 1120 v-v' —mp/m 1 — 1
+cos 0p[(v' - v)? — 1]72v- o' + 1] p/ B]{(U-Uw—i—Ab) (u’-v,r—AC)}
(2.41)

By =[(v' - vz)? = 1"?[v- o' + 1][1 + (mp/mp)?

—2(mp/mp)v - v']Y/? ! — !
2(mp/mp)v-v'] {(v-vﬂLAb) (v’-v,r—-Ac)} (2.42)

A

By = ~[(v' - vx)? = 1)V3[(v - 0")2 = 1/2[1 + (mp/mp)? — 2(mp/mp)v - ']/

{ N } (2.43)
(vevr+ A (Vve—Ap)

In egs. (2.41) to (2.43)
vovg = (0 vr)(vv) = [(v - vr)? — 142 (v - v")? = 1]Y2 cos 0p (2.44)

and

A

Ac = (mps —mp)/mz, Ay = (mp» —mp)/my . (2.45)

Chiral perturbation theory should be valid for v - vy and v’ - vz not too mnch
greater than unity. From eq. (2.44) it is clear that the kinematic region where cosfp
is positive yields (for given v' v, and v-v')a smaller value for v-v,. Note that because
my and f are comparable, the rate for B — D /vy is not suppressed by factors of
mx/mp or mx/mp. In fact the above formulas indicate that there is a significant rate

for B — D7{v, in the kinematic region where chiral perturbation theory is expected



24

to be applicable (and the D7 mass is large enough to neglect the width in the virtual

D* propagator). To illustrate this we write,

2,.5

BT = %%]Vcbﬁg%%ﬁ . (2.46)
In Table 1 we give d*1'/d(v - v')d(v' - vy) for various values of (v - v') and (v' - vr).
Provided 5 does not fall off very rapidly as v' - v increases, the rate for B — Dnliy,
in the region where chiral perturbation theory is expected to be applicable (i.e., v- v,
and v’ - vy around unity) is comparable with what was estimated in the introduction.
In Table 1 we used Ac = 1. The rate in the kinematic region where v - v' is near one
is quite sensitive to the value of Ac. For Bt — DT x4y, decay Ac = 1 is consistent
with the measured masses, but for B® — D°n 47, decay A, = 1 is slightly less than

the experimental value.

d*T /d(v - v")d(v' - vg) [ (v-0") | (V) - vr)
0.030 1.2 1.2
0.042 1.4 1.2
0.024 1.2 1.3
0.034 1.4 1.3
0.021 1.2 1.4
0.030 1.4 1.4
0.018 1.2 1.5
0.027 1.4 1.5

Table 1: d’I'/d(v - v')d(v' - vy) for various values of (v - v') and (v’ - vy)
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Validity of Chiral Perturbation Theory

Chiral perturbation theory is an expansion in momenta so our results are expected
to be valid for only a limited kinematic range. For B — Dmnfp, naive dimensional
analysis suggests that the expansion parameters are (v- pr)/A and (v'-pr)/A, where
A is a nonperturbative strong interaction scale around 1 GeV. However, it is far from
clear precisely how small these quantities must be for the B — Dwfy, differential
decay rate given in eqs. (2.40) - (2.43) to be a good approximation. We do have
some experience from comparisons of the predictions of chiral perturbation theory for
77 scattering, weak kaon decays etc., with experiment. As we shall see shortly, the

situation in B — Dr/lip decay is somewhat different.

For B — Dzfly, the leading contribution is of order unity. One factor of pr
from the D* Dr(or B*Br) vertex is canceled by a factor of 1/pyx from the D*(or B*)
propagator. At the next order of chiral perturbation theory, corrections come from
two sources: (i) operators in the chiral Lagrangian for strong D* and D (or B* and
B) interactions with pions containing two derivatives or one factor of the light quark
mass matrix; (ii) operators representing the weak current ¢y, (1 — 5)b that contain

one derivative.
For example, one term in the ellipsis of eq. (2.33) is
oy ’
(v - v - b
A0 ) (AW (1~ 1) BP0 ) [are - earet]  an)
where 7j(v - v') is a new universal function of v - v'. This “higher order” contribution

to the current &y, (1 — v5)b gives rise to the following changes in the form factors wyr

and &

2
S(wy —w_) = H,/mgmpﬁ[v o' 1]+ ér (2.48a)
2
8wy + o) = 1 %ﬁ- i[px - v] + 6 (2.48b)
_ 2 [mDp oo
or = 27\ g 7i[pr - V'] (2.48c)
sh=— 1 (2.48d)
~ Af/mpmp '

For the nm phase shifts, the first corrections to the leading predictions of chiral

perturbation theory are suppressed by s/A? and come from operators in the chiral
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Lagrangian with four derivatives and from one-loop diagrams. However, for B —
Driv, loops do not contribute to the leading correction which is only suppressed by

v-pr/A or v - pr/A.

There are too many higher dimension operators with unknown coefficients to make
any predictions for the next order contribution to the form factors for B — D= /ly,.
However, it is certainly possible that our leading prediction for the B — Dn{p,
differential decay rate is valid at the 30% level over the kinematic range displayed in
Table 1. Eventually the range of validity of lowest order chiral perturbation theory

for B — D7fvy; may be determined by experiment.
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Concluding Remarks

In this section the semileptonic B and D meson decays, D — Knlyy, D — mrlyy,
B — #wlyy; and B — Dnli, were considered. Chiral symmetry and heavy quark
symmetry were combined to deduce the decay amplitudes in the kinematic region
where the pseudo-Goldstone bosons are soft. There was earlier work on these decays
that considered the implications of chiral symmetry but it did not implement heavy

quark symmetry in a model independent fashion.[5!

For B — Dn{i, decay the rate is large enough that detailed experimental study
of the decay (in the kinematic regime where chiral perturbation theory is expected to
be applicable) may be possible at a B factory. Table 1 gives 421 /d(v - v")d(v' - vy ) for
various values of v - v' and v’ - vy (see eq. (2.46)). These indicate that the branching
ratio for semileptonic By, decay to nonresonant D7 (in the kinematic regime where
the pion is soft, i.e., v - vy and v’ - v, around unity), is about 1074,

The results of this paper rely on heavy quark spin and flavor symmetry. There is
experimental evidence from semileptonic B decay!’® and from the decays of excited
charm mesons!” that (at least in some cases) the charm quark is heavy enough
for heavy quark symmetry to be applicable. However, several theoretical analyses
suggest that there are large Agop/mc corrections to the prediction of heavy quark
symmetry for the relation between B and D meson decay constants.l1819:20] If this is
an isolated case, where the Agcp/m. corrections that break the flavor symmetry are
anomalously large, then the results of this paper can still be used (with fp and fp

treated as independent constants).

Semileptonic B — Dy and B — D*{p; decay can be utilized to check that there
are not large Agcp/m. corrections to the expression for the b — ¢ transition current
in eq. (2.33). However, our predictions for B — Dnly, decay still depend on the
validity of heavy quark spin-flavor symietry for the chiral Lagrangian in eq. (2.1).
The dependence on the flavor symmetry arises from the equality of the B*B7 and
D*Dr couplings. If heavy quark flavor symmetry is not used then the form factors

for B — Dnlpy decay given in eq. (2.35) become

vmpmp v gc _ 9b
f ( +1)n{(U'°P7r_AC) (U’pﬂ"*‘Ab)}

Wy —wW- =
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+ 7, (2.49q)

__9c /™MB pr - (v+ ) '
wi +w_ = 7 mpn{(v’-pw—Ac)} +r, (2.49b)

g [mp [ px-(v+0)
’"‘TVmB"{@-pﬁAb)} ’ (2:49¢)
1

. 1 ge . b
=37 Jrams { 0 e B0 (0 pr 1 ) } ' (2.494)

It would be interesting to use B — Dnliy decay to test the heavy quark flavor

symmetry prediction, g5 = ge.

It is not known precisely for what range of v - pr and v’ - px chiral perturbation
theory will be valid. Our experience with light hadrons suggests that the relevant
expansion paraments are roughly v - p;/1GeV and v’ - pr /1GeV. It may be possible
in B — Dndp, to study the range of validity of chiral perturbation theory for heavy-

meson pion interactions.

A number of extensions and improvements on this work are possible. The decay
B — D*rnfyy can be considered.®l It is interesting to explore to what extent it can also
be used to fix g and to test the heavy quark flavor symmetry prediction g = g5 = ge.
There are computable ag(my) and og(m) corrections to the form factors for the
decays discussed in this paper#21:22] and it is worth examining their influence on the

rates for Byy and Dy decays.
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Chapter 2. Long Distance Contribution to Some Weak Decays

2.1 Introduction

The Standard Model [1] based on the gauge group SU(3)¢c x SU(2); x U(1)y
gives successful description of particle physics up to several hundred GeV’s. One of
its prominent features is the spontaneous breaking of clectroweak symmetry down to
electromagnetism SU(2)r x U(1)y — U(1)em [2]. This gives the coupling of three
families of quarks to the charged W-bosons through

Lint = _;‘%ai%a — ) VIEWH + hec. . (1.1)
Here go is the SU(2)r coupling, W# the charged W-boson field, u' the three up-
type quarks (u,c,t), d’ the three down-type quarks (d,s,b), and V the Cabibbo-
Kobayashi-Maskawa matrix. V is a 3 X 3 unitary matrix, arising from rotating the
quark weak eigenstates to mass eigenstates. The number of degrees of freedom for V
is N}l — (2Ny — 1) = (Ny — 1)%, where the factor (2Ny — 1) comes from redefinition
of the phases of quark fields (Ny = number of families of quarks.) For the standard
six-quark model, there are (3 — 1)® = 4 degrees of freedom in the CKM matrix V.

The standard parametrization uses four angles 61, 63,03 and 6. Explicitly [3]

Vad Vaus  Vip a1 —s51€3 —8183
V=]V Vs Vg | =] s1cc cicocs —s253€®  creasy + saczet (1.2)
Vie Vis Vi 5182 c152¢3 + cas3e®  crsasy — cpeze’®

where ¢; = cosf; and s; = sinf;. It’s possible to choose the #;’s to lie in the first
quadrant by redefining the phases of the quark fields. A phase é not equal to zero or

7 gives rise to CP violation.

There is no satisfactory understanding of why the CKM angles take their values.
Nevertheless, the CKM matrix plays an important role in particle physics and it is

useful to know its parameters very accurately. A convenient parametrization due to
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Wolfenstein [4] is

1—)%/2 A AX3(p —in)
V= —A 1—22/2 AN : (1.3)
AN (1 —p—in) —AN? 1

(Note that in this parametrization some higher order terms in powers of A are ne-
glected.) The upper-left 2 x 2 corner of V is essentially determined by the Cabibbo
angle [5]. From data of nuclear 3 decay and semileptonic decays of kaons it is deter-

mined to be |Vys| = 0.22 [6] with the error at one percent level.

Semileptonic B decays give information on |V 3| and |Vy3|. At present the best
information on [V| comes from comparing the data of exclusive decay B — D*lv
near zero recoil point (at which D* is at rest in the B rest frame) with the prediction
of the heavy quark effective theory [7]. A recent fit gives |V 3| = 0.040 = 0.003 [8].
The value of |V,;| is determined by comparing data on the endpoint of the electron
spectrum in B semileptonic decays with phenomenological models [9]. This gives
[Vas/Ves) = 0.08 & 0.02 [6]. The error ought to be taken as only a rough measure of

the large uncertainties of this method.

Information on V;4 comes from BB mixing, KT — 7w [10], KT — 7tutu~
[11], etc. Measurement of —A—IM = 0.71 £ 0.06 [6] for B® — B mixing gives |Viq| (after
my is determined). But this method has large uncertainties due to unknown value
of Bp f% The best way to constrain Viq perhaps is the measurement of the rate
[(K* — n%wi), for which there is a fairly clean theoretical prediction. Of course the
experiment is very difficult. One may also look at the asymmetry of the decay rate for
K+ — 7tutu~ to the right-handed p& versus the left-handed p* (which constrains
Re(VigVit [VuaVid) = Re(p — 1+ in)|Vip|? in the Wolfenstein parametrization).

The CKM matrix also explains why there is CP violation. It was observed more
than thirty years ago that the discrete symmetry of combined charge conjugation and
parity is violated in neutral K° — K0 systems [12]. It has been a mystery why CP
is violated and why the violation is so small (at 2 x 1073 level). Since the CKM
matrix is in general complex, CP violation occurs naturally. (Of course at some level
the CKM matrix is merely a phenomenological description of the weak interactions

among quarks. One still should try to understand the underlying physical principles
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which give rise to a complex CKM matrix or some other alternative CP-violating
mechanism.) However, since CP violation is only observed in K° — K° system, there
are many beyond-the-Standard-Model CP-violating mechanisms which are not ruled
out by experiment. For example, it’s possible that low energy physics (described by
the Standard Model) is CP-conserving, and the CP violation arises due to some new
physics at very high energy scales (the superweak models [13]). So it is important
to observe other independent CP-violating effects. At present the most promising
experiment is to observe CP-violating asymmetries in neutral B mesons decaying
into CP-eigenstates at the B-factory. This should give a clean test of the Standard
Model explanation of CP violation. There are many other channels to observe CP
violation in rare kaon decays, and also hyperon decays [14]. Unfortunately, for these

decays the theoretical uncertainties are much larger.

The rest of this chapter is organized as follows. In the next section we discuss
the contribution of the final state interaction for CP violation in weak = — Ax [15)
decay. The result is that this effect is relatively small and the CP violation in the
hyperon decay chain = — An — prr is likely to be dominated by the CP violation
in the A — pr part. In section 2.3 we estimate the long distance contribution to
the Kt — ntvi decay [16]. This contribution is also small, which makes this a
promising channel to provide information on V4. In section 2.4 we look at the two-

photon contribution to the polarization in K+ — 7Tyt~ decay.
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2.2 Strong A7 Phase Shifts for CP Violation in Weak = — Ar Decay

In the standard six-quark model CP violation arises from the phase § in the
Cabibbo-Kobayashi-Maskawa matrix. So far CP violation has only been observed
in second order weak K% — K° mixing and it is not known if this arises from the
phase § or from some new interaction associated with a very large mass scale. The
latter possibility leads to a superweak scenerio for CP violation [1]. Observation of
CP violation in a first order weak decay amplitude (sometimes referred to as direct
CP violation) would rule out the superweak model as its sole origin. Avenues for
detecting CP violation in first order weak decay amplitudes are the measurement of a
nonzero value for the parameter ¢ and the measurement of asymmetries in B decay.
Recently it has been proposed to measure direct CP violation in the nonleptonic
hyperon decay chain = — Aw — pr7 at Fermilab [2]. To observe CP violation in this
case requires not only a CP violating phase in the weak hyperon decay amplitudes
but also a phase from final state interactions. In this letter we calculate the strong
A7 phase shifts that are important for observing CP violation in = nonleptonic weak
decay using baryon chiral perturbation theory. An interesting aspect of our work is
that we are able to make predictions using only chiral SU(2); x SU(2) g symmetry by
utilizing the measured ¥~ — Aev, decay rate to determine the magnitude of the XAr
coupling. Strong phase shifts relevant for weak = — An decay were first calculated
about 30 years ago and we compare our results with these earlier calculations [3-
5]. Ome important difference between our approach and the previous work is that
we don’t rely on SU(3) symmetry. We find that the S-wave phase shift vanishes at
leading order in chiral perturbation theory and that the P-wave J = % phase shift is
only -1.7°. This suggests that CP violation in the recently proposed hyperon decay
experiment at Fermilab will be dominated by the A — pm part of the decay chain.

Nonleptonic = — Ax decay is characterized by S-wave and P-wave amplitudes
which we denote respectively by S and P. The differential decay rate (in the = rest

frame) has the form

dar N Ao A fa A
— < 1 — o (bzpr + 35 Pr) + B Pz (82 X 34p)

a0 (2.1)

+ v82-80 + 1—9)(Ba-pr)(8= - pr)

where 3z and 8 are unit vectors along the direction of the = and A spins and p, is
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a unit vector along the direction of the pion momentum. The parameters o, 8 and
v which characterize the decay distribution are expressed in terms of the S-wave and

P-wave amplitudes as follows;

2 Re(S*P)
= "7 2.2
P+ PT 22)
2 Im(S*P)
= ———2 2.3
7T BRI >
1S2 — P
= S5 ——5 - 2.4
7= ISP PP 24
The S-wave and P-wave amplitudes are complex numbers
S = |S|e’s | P = |Ple¥F . (2.5)
In terms of the modulus and phase of S and P the parameters o and 3 are
|S]1P]
a = 2I_Slz—“|'—lp_|2 cos(6s — 6p) , (2.6)
IS1IP]
/6 = —2!—m sm(65 - 6})) . (27)

Isospin symmetry ensures that S and P for the decays == — Ax~ and 2% — A#? are
related by a factor of v/2. The quantities §g and §p are respectively equal (up to a
factor of 7) to the strong interaction S-wave and J = % P-wave A7 phase shifts plus

small but important contributions from direct weak interaction CP violation [6].

The decay distribution for = — A~ is also given by eq.(2.1) with parameters &,
B, 7 whose expression in terms of the S-wave and P-wave amplitudes S and P are
similar to eqs.(2.2), (2.3) and (2.4). The only difference is that the analog of eqs.(2.2)
and (2.3) have a minus sign. The A’s produced in the decay of unpolarised =’s have a

polarisation « (as seen in eq.(2.1)) and an important measure of CP violation is the
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asymmetry
a+a

A = (2.8)

oa—«

In terms of the phases of the S-wave and P-wave amplitudes the above becomes

cos(6g — bp) — cos(bs — ép)

A = cos(dg — &p) + cos(dg — 6p)

(2.9)

We denote the J = -%— S-wave and P-wave An phase shifts by §p and é; respectively

and write

bg—ébp = 6p— 61+ dcp+ 7, (2.10(1)

65‘*615 = do—b1—@op+7, (2.10[))

with ¢cop the phase that results from direct weak interaction CP violation. Data from
Z~ — Ar~ decay and Z° — Ax? decay give (neglecting CP violation) §o—&1 = (848)°
and 8 — & = (38F12)° respectively. Putting eqgs.(2.10) into eq.(2.9) yields

A = —tangcp - tan(dp — 61) . (2.11)

Eq.(2.11) indicates that the CP violating observable 4 is small if the difference of
phase shifts §g — 61 is small. In this letter we calculate the strong interaction Arx

phase shifts 6p and 61 using chiral perturbation theory.

In chiral perturbation theory the low energy strong interactions of pions are de-
scribed by the chiral Lagrangian. (See Chapter 1 for a detailed description.) For the
following calculation all is needed is the chiral SU(2); x SU(2)g symmetry. It is

convenient to introduce the following combination of meson fields

(A} = L(eanet — etone)} (2.120)

(V4. = %(ﬁa”éuﬁa“g)z, (2.12b)

where ¢2 = ¥ = exp(2iM/f). Note that V* contains terms with an even number of

pion fields and A# contains terms with an odd number of pion fields.
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The baryon fields we use are the spin % isosinglet A, the spin
( 211 = E+ s 212 = 221 = %20 and 222 = Z_) and the Spin
(the assignment of the X*’s to X} is analogous to the assignment of the X’s to Xgp).

Under chiral SU(2)r x SU(2)p these fields transform as
A— A, (2.13a)

isotriplet g3

B[ D=

isotriplet E:z

508 L Ul 20 (2.13b)

where repeated roman indices a,b,... are summed over 1,2. Strong interactions of
these baryons with pions are described by a chiral Lagrangian that is invariant under
parity and chiral SU(2)p x SU(2)g symmetry. Expanding in derivatives this chiral
Lagrangian density is [7,8],

L= Ly+Ly+ Ly + Lint (2.14)
where
Ly = Adv-9A, (2.15q)
Ly = 5% 0.0 %4 +25% v VE By + (my — mg)E? Sy, (2.15b)
and
Lint = gsaA A S- Az Yep €€+ gsep A Az - Xy, €+ hee. . (2.15¢)

The expression for Ly« is similar to eq.(2.15b). In egs.(2.15) S is the spin operator
four-vector, €% is the antisymmetric tensor, e'! = €22 = 0, €12 = —¢?! = 1, and
v is the baryon four-velocity. There are also interaction terms with one derivative
involving two £(*) fields and an odd number of pions. However these interactions
are not needed for our computation. We treat my — mp and myx — mp as small
quantities. For power counting purposes these mass differences are considered to be

the same order as a single derivative.

The magnitude of the couplings gy« and g5z can be determined from experiment.
Comparison of the measured ¥** — Axt decay width with
_1_ Iﬁﬂ'|3 mA
67 f2 my.

gives g2., ~ 1.49. There is a Goldberger-Treiman type relation that relates matrix

D(EF — Ar™) = g3y

(2.16)

elements of the axial current to the X¥Ax coupling gyp. Using the Noether procedure
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we find that in chiral perturbation theory matrix elements of the left-handed current

are given by
(1 —y5)d =gsa A SP ST +... . (2.17)

In eq.(2.17) the ellipses denote pieces involving other baryon fields, the pion fields

and terms with derivatives. The resulting ¥~ — Aev, decay rate is

G2
'YX~ — Aeve) = %—%IVud]ZggA (my — mA)5 . (2.18)

Comparing with the measured ¥~ — Aev, decay rate yields g%, ~ 1.44.

The Feynman diagrams in Fig.3 determine the S-wave and J = % P-wave Anm
phase shifts at the leading order of chiral perturbation theory. As a function of the

pion energy in the center of mass fra,me,* FE, we find the S-wave phase shift to be
So(Fx) = 0, (2.19)

and the J = %— P-wave phase shift to be

(£7 —m2)* [1 95 3 g%

h(Er) = — - -~
1(Er) 127 f2 A4FE: +my—my 4 E:+mp—my

4 S

" 3E.+ i;\:zf— mpl (220)

The expression inside the bracket for 6;(FEy) is singular at the unphysical pion
energy Er = my — mp because of the ¥ pole. (When the energy is near this value
other terms we have neglected become important and tame the singularity.) Note
that there is no singularity at £/ = myx — m, as there is no £* pole in the J = %
channel. The S-wave phase shift vanished because A is an isospin-zero baryon (hence
there is no coupling to two pions in £, ) and because the ¥ An and ¥* A7 interactions

have the pions derivatively coupled. At higher order in chiral perturbation theory

we expect an S-wave phase shift suppressed by a factor of order Ex/A, (where A,

* In heavy baryon chiral perturbation theory the centre of mass frame and the baryon rest frame
coincide.
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is the chiral symmetry breaking scale) compared, for example, with the S-wave pion-
nucleon phase shifts. At Ep ~ 200MeV the pion-nucleon S-wave phase shifts are
several degrees. A contribution to the S-wave Am phase shift suppressed by Er/Ay

arises from higher derivative terms, e.g.,

Lhigher = . AA Ap - Az . (2.21)

Ay

The coeflicient c is expected to be of order unity, but as it is an unknown quantity the
S-wave phase shift at this order is not calculable. Previous calculations [5] did not
find a small S-wave Ar phase shift. Fig.4 contains a plot of the J = % P-wave phase
shift &1 as a function of Er. For the hyperon decay = — A7n we need the phase shift
evaluated at Fr ~ mx=-—my = 206MeV. At this energy the J = % P-wave phase shift
is 67 = —1.7°. This is within a factor of two of the value for é; obtained in previous

calculations {3,5].

Our predictions for the phase shifts do not make use of chiral SU(3) x SU(3)r
symmetry. However, chiral perturbation theory is an expansion in E, and our result
for §1(m= — my) relies on mz — my and hence the strange quark mass being small

compared with the chiral symmetry breaking scale.

The smallness of the J = %— P-wave phase shift 6;(Ey) is partly the result of a
cancellation between the Feynman diagrams involving the ¥ and 2*. This cancellation

becomes exact in the large N, limit [8,9] where my = mz+« = my and g2, , = %g%A.

Our calculations indicate that for the weak decay = — A= the difference between
the S- and J = % P-wave phase shifts 6y — 61 and consequently the CP violating
asymmetry A are small. Therefore, it is likely that any CP violation observed in
the recently proposed Fermilab experiment will be dominated by CP violation in the

A — pr part of the = — Ar — prr decay chain.
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2.3 Long Distance Contribution to K+ — 77y

The decay KT — 7tvi is likely to be observed in the near future. An accurate
measurement of its branching ratio can provide a precise determination of the weak
mixing angle V;g (once the t-quark mass is known). The general form for the K+ —

7t v invariant matrix element is

— GF af+ * 2
M(KF — ntvp) = 3 om0 Vis Viae(mi [Miy)
VoiVeabe(mi [Miy) + Vi Vaabi | (px + pa)" @(pe)vu(1 — 5)v(po) - (3.1)

In eq. (3.1) Gp is the Fermi constant, Oy is the weak mixing angle, o is the fine
structure constant, f is the form factor in K? — n¥et, decay and V,; denotes the
a — b element of the Cabibbo-Kobayashi-Maskawa matrix. The factors & and £
arise from the short distance contribution to Kt — 7tvi and £;p from the long

distance contribution. Neglecting perturbative strong interaction corrections [1]

x| 24« 3z —6
ét(x)_g _1~w+(1——x)2

Inz| |, (3.2a)

€e(e) % [—6lnz —2] . (3.2b)

Recently QCD corrections to &;(z) of order as(m;) have been calculated [2] and
the QCD corrections to {.(z) have been summed in the next to leading logarithmic
approximation [2,3]. The value of £ is about 1073 . (This is for v, and v, neutrinos.
A somewhat smaller value is obtained for v, because the 7 lepton mass cannot be
neglected in the W-box diagram.) With the next to leading logarithms included the
largest uncertainty in £ comes from our imprecise knowledge of the charm quark

mass and Agep -

This paper contains an estimate of {1 p using chiral perturbation theory. Previous
estimates of this type were made by Rein and Sehgal [4] and Hagelin and Littenberg
[5]. Our work is similar to theirs in approach and conclusions, however, some of the

details are different.
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One of the most prominent features of the pattern of kaon (and hyperon) decays
is the AI = 1/2 rule. Nonleptonic kaon decay amplitudes that arise from the I =1/2
part of the AS = 1 effective weak Hamiltonian are enhanced by a factor of twenty
over those that arise from the I = 3/2 part. In this letter we focus primarily on the
part of {;p that arises from the time ordered product of the weak AS = 1 effective
Hamiltonian with the Z° neutral current, since it receives a Al = 1/2 enhancement.

The Z% coupling to light u, d, and s quarks is given by

2 2
\/91 t 9
VI 22 gow 1760 9 sin20u J ™)) (3.3)

int —
2

where JISL) is the left-handed current

A 5 _
I = apyuur — dpyudy — Spuss (3.4)
(the part of J,SL) involving the strange quark was neglected in Ref. [4]) and J,(f'"") is

the electromagnetic current

1 1

e.m. 2 7, 5
Jlg m.) — gufyﬂu — Sdf)/ud — 58’)/“8 . (35)

The left-handed current J, ,SL) can be written as the sum of a piece that transforms as
(81,1g) and a piece that transforms as (17, 1) with respect to the chiral symmetry
group SU(3)r x SU(3)r.

L L L
I = I + D (3.6)
where
L 4 2. 2
Jéu) = UL = gdL’VudL — 351 » (3.7)
I 1 1. 1_
Jl(u) = -gumuw - gdL’YudL - gSLwSL . (3.8)

The electromangnetic current transforms as (8z,1z) + (1z,8z) under SU(3); x
SU(3)r.

The interactions of kaons, pions, and the eta are constrained by chiral symmetry.

At low momentum they are described by an effective chiral Lagrangian, which was
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given by eq. (1.23) in chapter 1. The enhanced part of the effective Hamiltonian for
weak AS = 1 nonleptonic kaon decays transforms as (81,1g) under chiral symmetry

and is given by

4
H|AS=1| — %ﬁ;ﬁi_‘/u*s‘/udr]?rOWauz)a”‘z,T + h.C. ; (39)

where

0 0 0
Ow=|0 0 0{, (3.10)
0 1 0

projects out the correct part of the octet and the measured Kg — 717~ decay

amplitude determines that |gs| ~ 5.1.

Jgﬁ) and J,(,,e'm') are currents associated with generators of chiral symmetry. At
leading order in chiral perturbation theory the K+ — 72 vertex that arises from
the Z° coupling to these currents is obtained by gauging the chiral Lagrangian density
(eq. (1.23) in chapter 1) and the Hamiltonian density (3.9) via the replacement

0% — D% =T 414 /g2 + g%Zg (QY —sin?0w[Q, X)) , (3.11)
where
20 0
Q=0 -3 0 (3.12)
o 0 -1

is the electromagnetic charge matrix, and computing the tree level Feynman diagrams
in Fig. 5 (using the interactions that follow from egs. (3.9-12) and (1.23) in chapter 1).
In Fig. 5 the incoming dashed line denotes the K, the outgoing dashed line denotes
the 71 and the wiggly line denotes the Z%. (Only some of the diagrams in Fig. 5
were considered by Ref. [5].) We are interested in the part of the Kt — 7720 vertex
proportional to (px + pr)*. The part proportional to (pgx — px)# doesn’t contribute
to K* — mT v since the neutrinos are massless. The Z° coupling to J,(f'm') doesn’t

give rise to a KT — 7+ 2% vertex at the leading order of chiral perturbation theory
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(the three diagrams in Fig. 5 cancel [6]). The Z° coupling to Jéﬁ) gives

F 2 2 2 2
Gr. Va2 + g2 sV, +1-2 + ) 1
N 91 + 95 98VysVuaf” |0 3 (px + pr) (3.13)

for the KT — 7t Z° vertex (m, and mq are neglected here). The three terms 0,1
and —2/3 in the square brackets of eq. (3.13) arise from Figs. (5a), (5b) and (5c)
respectively. The long distance contribution to Kt — wtvi that results from the

vertex in eq. (3.13) is
&) = gsﬂ = (f/Mw)? . (3.14)

Numerically eq. (3.14) is about 5 x 10~ which is only 5% of the charm quark short

distance contribution, .

The K+ — 1170 vertex arising form the Z° coupling to Jl(ﬁ) cannot be calculated
using chiral perturbation theory alone because through the anomaly instanton field
configurations in the QCD path integral spoil the axial U(1) symmetry. (It is expected
to have the same order of magnitude as eq. (3.13).) However, in the large NV, limit [7]
effects of the anomaly are suppressed and the axial U(1) is a good symmetry [8]. Then

the Z° coupling to J1u (D) is taken into account by adding to the covariant derivative

in eq. (3.11) the term
. 1
i\/gl+ 937, (-2 (3.15)

In the large N, limit the coupling of the Z° to Jfﬁ) gives rise to the Kt — r+Z0

vertex

(px + pr )t . (3.16)

1
2\/— 9t + 93 g8V, udf2[0+0—§

The three terms 0,0 and —1/3 in the square brackets of eq. (3.16) come respectively
from Figs. (5a), (5b) and (5c). This implies that the Z% coupling to ']l(;f) gives a
contribution to {1 p that satisfies

2
Jim €5 = —F(F/Mw)? (3.17)

This cancels the contribution in eq. (3.14).
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In the large N, limit the leading (in chiral perturbation theory) long distance
contribution to K+ — 7tvy from Feynman diagrams with a W boson and a Z°
boson vanishes. However, in the large N, limit the 5’ is a pseudo-Goldstone boson
(m%, is of order 1/N,). It’s large mass, 958 MeV, is an indication that this limit is not
trustworthy [9]. Nonetheless, it seems likely that some remnant of the cancellation
that occurs as N. — oo survives in the physical case of three colors. We do not
expect the long distance contribution to K+ — 7+vy from Feynman diagrams with
a W and Z° to exceed eq. (3.14). Contributions from Feynman diagrams with two
W bosons are expected to be even smaller. They are not enhanced by the factor gs

which reflects the Al = 1/2 rule.
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2.4 Two-Photon Contribution to Polarization in K+ — ztputu~

In the minimal standard model the unitarity of the Cabibbo-Kobayashi-Maskawa

matrix V gives that
VaudVay + VeaViy + ViaVi; =0 . (4.1)

We can think of each of the three complex numbers (V,4V.}, etc.) on the Lh.s. of eq.
(4.1) as vectors in the complex plane. These vectors add to zero and so by translating
them they form the sides of a triangle that is often called the unitarity triangle. With

the parametrization of the Cabibbo-Kobayashi-Maskawa matrix in eq. (1.2) we have

VaaVip = —s183 (4.2a)
thVtZ ~ ——81826_i6 (4.20)
VeaVip o s1(s3 + s2¢7*%) . (4.2¢)

The unitarity triangle specifies the angles 83,03 and 6. From egs. (4.2) it is clear
that the length of two sides gives 2 and 03 while the angle between two of the sides
is ™ — 9.

The orientation of the unitarity triangle in the complex plane depends on the
phase convention in the Cabibbo-Kobayashi-Maskawa matrix. The length of the
sides and the angles at each vertex a, f,7 are independent of the phase convention.
When there is no CP violation the unitarity triangle collapses to a line. One common
orientation for the triangle has V;qVj lying along the real axis. It is conventional to
rescale the side on the real axis to unit length and locate one vertex at the origin
of the complex plane. This is shown in Fig. 6. With this convention the unitarity
triangle is specified by the coordinates in the complex plane, p + 7, of the vertex

associated with the angle a.

It is important to determine the unitary triangle by measuring quantities that do
not violate CP. The resulting values of the weak mixing angles can then be used to
predict the expected values of CP violating quantities. In this way the standard six-
quark model for CP violation can be tested. At the present time it is not known if the
CP violation observed in kaon decays is due to the phase in the Cabibbo-Kobayashi-
Maskawa matrix or from new physics, beyond that in the minimal standard model,

or both.
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B-meson decays give valuable information on the unitarity triangle. However, rare
kaon decays where a virtual top quark plays an important role can also be useful.
For example, an accurate measurement of the branching ratio for K+ — 7 v would

restrict the a corner of the unitarity triangle to lie on a circle.

In Ref. (3] it was pointed out that the measurement of polarization in Kt —
7t ut ™ decay can also lead to valuable information on the weak mixing angles. The
dominant contribution to the K+ — 7t u+u~ decay amplitude comes from Feynman
diagrams where a single photon produces the p*p~ pair. Even though the weak
interactions violate parity maximally the one-photon part of the decay amplitude is
necessarily parity conserving and doesn’t contribute to the parity violating asymmetry
App =T —T7)/(Tg+Ty), where I'g and I'y are the rates to produce right and
left-handed ut respectively, This parity violating asymmetry arises predominantly

from two sources:

(7) the interference of W-box and Z-penguin Feynman diagrams (see Figure 7)

with the one-photon piece.

(i7) the interference of Feynman diagrams where two photons create the u ¢~ pair

with the one-photon piece.

If the short distance W-box and Z-penguin part dominates the asymmetry then its
measurement can lead to important information on the unitarity triangle. The main
purpose of this paper is to examine the long-distance two-photon contribution to
the Kt — ntputu~ decay amplitude and in particular its influence on the parity
violating asymmetry Argr. Ref. [3] also noted that there are T-odd asymmetries
which involve both the ™ and y~ polarizations and can arise from the interference
of the Z-penguin and W-box Feynman diagrams with the one photon piece. Detailed
predictions for the short distance contribution to these T-odd asymmetries were made
in Ref. [4]. Here we stress that the T-odd asymmetries also receive a contribution
from the interference of the absorptive part of the parity violating the two-photon

contribution with the one-photon piece.

* By right- (or left-) handed we mean that the spin is directed along (or opposite) the direction
of motion, i.e., helicity +1/2 (or —1/2).
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Kinematics
The dominant part of the K+ — 7t utu~ decay amplitude comes from Feynman

diagrams where a single photon produces the u¥ u~ pair. The one-photon contribution

to the invariant matrix element has the form

s1GF
V2

M) = af(s)(px + px)la(p-, s-)1uv(P+,8+) (4.3)

where pg and p, are the four-momentum of the kaon and pion and p4 are the four-
momenta of the u*. In eq. (4.3) s+ are the spin vectors for the u* while /s is the

invariant mass of the u™u™ pair
s=(py +p-). (4.4)

We shall parametrize the differential decay rate in terms of s and 8 the angle between
the three-momentum of the kaon and the three-momentum of the p~ in the ptpu~

pair rest frame. In terms of these variables the inner products of four-momenta are

p--pt =8/2—mj , (4.5a)
(pK + p7r)2 = Q(m%{ + mgr) — 5, (4'5b)
4mz

[(s+m% —m2)? —dsm3)]Y2 cos 0 . (4.5¢)

24 (prc+pr) = (mk —m7)+4/1 -
For a right or left-handed p the dot products of the polarization four-vector s& with

the p~ and kaon four-momenta are

(B) (L) s 4m]

_ L _ #
sy po = —sy -p_—é—n;; 1-— pa (4.6a)

R L 1 Am}
Sgr)-pK=—8£L)-pK=4——m”{ 1- 8“(8+m§(—m3r)

+[(s + m% — m2)? — 4sm2%]Y? cos 0} . (4.60)

The total differential decay rate is dominated by the one photon piece and the
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invariant amplitude in eq. (4.3) gives

203242 2 42
s1GFa”|f(s)] | — —L[(m% —m2 +5)? — 45m%(]3/2
2°m3, 3 s

[1 — < — 4_22_3_) cos? 0] . (4.7)

The parity violating part of the decay amplitude has the form

d(Cr+T)/dcosbds =

$1Gra

(pv)
M NG

[B(px + pr)* + Clpx — pr)*]

“U(p—, $=)Vu Y50 (P4, 54) - (4.8)

The parameters B and C in eq. (4.8) get contributions from the Z-penguin and

W-box Feynman diagrams as well as from Feynman diagrams with two photons.

The difference in decay amplitudes for right and left-handed p* arises from the
interference of the parity conserving part of the decay amplitude in eq. (4.3) with

the parity violating part of the decay amplitude in eq. (4.8). This gives

20202 Arn2
d(FR_FL)/dCOSGdSZ“Q-SIE;;—FF 1 - —F
K

[(s +mi —m3)* — 4sm]

2
4mu

[(s +m% —m2) — 4sm%]Y? sin? 6

{Reu*(s)B) -

2 2
mK—mﬂ.

+4 [Re( *(s)B) ( ) + Re( f*(s)C)J m, coso} : (4.9)

Note that in eq. (4.9) the contribution of C' vanishes when the difference of decay

rates is integrated over 6.
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The Parity Conserving Amplitude

The parity conserving amplitude arises predominantly from Feynman diagrams
where a single photon produces the pu*u~ pair. It is characterized by the function
f(s) introduced in eq. (4.3). The absolute value of f(s) has been determined by
experimental data on Kt — 7TeTe™. A good fit to the differential decay rate is

obtained from!®!

[f(s)l = 1£(O)](1 + As/m3) (4.10)

with A = 0.11 and |f(0)] = 0.31.

Using chiral perturbation theory, the imaginary part of f(s), arises from the
Feynman diagrams in Fig. 8, with the pions in the loop on their mass shell. The
strong interactions of the pseudo-Goldstone bosons #, K and 7 are described by the

effective chiral Lagrangian
2
L= gTra,ﬁzawz’f +oTr(mgY + Sfmy) + ... . (4.11)

(For explanation of various terms in eq. (4.11), see eqs. (1.20-24) in chapter 1.) In
Fig. 8 a shaded circle denotes an interaction vertex arising from the strong interaction
effective Lagrangian density in eq. (4.11). The effective Lagrangian for As = 1
weak nonleptonic decays transforms under chiral SU(3)r x SU(3)r as (81,1r) +
(271,1g). In terms of ¥ the (8;,1g) part of the effective Lagrangian density ™ for

weak nonleptonic kaon decays is

Gr
L= 5 FATrowd* o, 2t + ... (4.12)

where

000
Ow=1{0 0 0| . (4.13)
010

The measured Ks — ntn~ decay rate implies that{! |gg| ~ 5.1. In Fig. 8 a shaded

square denotes an interaction vertex from the effective Lagrangian in eq. (4.12). The

* It dominates over the (27, 1g) part of the Lagrangian.
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Feynman diagrams in Fig. 8 give[6]
Imf(s) = —(gs/24)(1 — 4m2 [3)*/%0(s — 4m?) . (4.14)

The imaginary part of f(s) is largest at the maximum value of s, Smaz = (Mg —myz)%.
Eq. (4.14) implies that (up to a sign) Imf(smaz) ~ 0.05 and so the imaginary part

of f(s) is expected to be much smaller than its real part.

Chiral perturbation theory also predicts Ref(s) up to a s independent constant
that is determined by the total decay rate.l®l The measured s dependence given in
eq. (4.10) is somewhat greater than what chiral perturbation theory gives but the
experimental error is still quite large, i.e., A = 0.105 + 0.035 & 0.015.
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Short Distance Contribution to the Parity Violating Amplitude

The Z-penguin and W-box Feynman diagrams contribute to both B and C' of
the parity violating amplitude in eq. (11). Explicitly

B = fi(s)¢ C=J-(s)¢, (4.15)

where f (s) and f_(s) are the form factors for K3 semileptonic decay. Conventionally
their s-dependence is parametrized by f1(s) = f+(0)(1+Axs/m2). We usel? f,(0) =
1.02, A+ = 0.03, f—(0) = —0.17 and A_ = 0. £ is a quantity that, apart from mixing

angles, is essentially the same as occurs in B — XzeTe™. As noted in Ref. [3] it is

given by
Eo—E+ (%) & , (4.16)
where
& =80 +&" (4.17)

is the sum of the contributions of the Z-penguin (superscript Z) and W-box (super-
script W). In eq. (4.17)

2y T 1 [(z—6)(z—1)+Bz+2)Inz

§ = sin? Oy 167 [ (x —1)2 (4.180)
A(W) z _1_ z—1—-Inz
b gin? Ow 8r [ (z—1)2 ] ’ (4.180)

with 2 = m?/Mg, and

. 2y 1 2

Z Ui e

N (W) 1 2

w U me
SUSEN R §T-< 5V> In(m2/M%,) . (4.19b)

The QCD correction factors () and 5("") have been computed in the leading loga-
rithmic approximation!” and they have the values (%) ~ 0.3 and (") ~ 0.6. Using
me = 1.5 GeV and My = 81 GeV and sin? fy = 0.23 equations (4.19a) and (4.19b)



54

imply that fe = 1.4 x 10™%. The value of & depends sensitively on the top quark
mass. For my; = 140 GeV, th ~ 0.51 and for my = 200 GeV, & ~ 0.89. Notice that
¢ depends on the weak mixing angles V;tVia/ V5, Vg = (p — 1 +19)|Vs|?. Therefore,

the information on £ would yield information on the weak mixing angles.

Since Imjf(s) is small (provided the two-photon contribution to the parity vi-
olating amplitude is negligible) measurement of the polarization asymmetry App
determines the value of p restricting the a vertex of the unitary triangle to lie on a
vertical line in the p — 5 plane. Integrating over the whole available phase space we
find that the interference of the short distance contribution to the parity violating

amplitude with the parity conserving part implies that™
|Arr| = |2.3Ref] . (4.20)

For my = 140 GeV and p = —0.51 this gives |ALg| = 3.7 x 10~% while for m; = 200
GeV and p = —0.12 this gives |Apg| = 4.7 x 1073,

The magnitude of the asymmetry Appg is larger for cos# positive than for cos 8
negative as eq. (4.9) indicates. Hence, the asymmetry can be increased by a cut on

cos 0. If cos @ is restricted to lie in the region
—0.5<cosf <1.0, (4.21)

the asymmetry arising from the interference of the short distance parity violating

amplitude with the parity conserving part is
|Arr| = |4.1ReE]| . (4.22)

For my = 140 GeV, and p = —0.51 this gives |Azg| = 6.5 x 1073 while for m; = 200
GeV and p = —0.12, eq. (4.22) implies that |[Apg| = 8.3 x 1073, This cut increases
the magnitude of the asymmetry by almost a factor of two and reduces the number
events by only a factor of 0.77. In Fig. 9 we show the constraint on p extracted from a

A g measurement (with the cut in eq. (4.21)) for some values of the top quark mass

* This differs slightly from the result of Ref. [3] because in this paper the measured s-dependence
of f(s) has been used.
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and asymmetry. The values of the asymmetry and top quark mass are chosen to be
compatible with the measured value for B® — B® mixing when +/Bpfp lies between
120 MeV and 250 MeV. ¢ is dominated by the top quark loop for the values of the

asymmetry shown in Fig. 9.
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Two-Photon Contribution to the Parity Violating Amplitude

In this section we use chiral perturbation theory to examine the two-photon con-
tribution to the parity violating form factors B and C. There are local operators
that can contribute to the parity violating K+ — ntutu~ amplitude. At the lead-
ing order of chiral perturbation theory they are included in the effective Lagrange

density

1Grasy _

L=
\/5 /Wu’YW

[ Tr(Ow@*so* )

7 Tr(Owd* Qs — O xQ?orst)

+73Tr(Owo*EQEIQ — Ow 2QO*TTQ)] . (4.23)

In eq. (4.23) Q is the electromagnetic charge matrix

2/3 0 0

Q=10 -1/3 0 . (4.24)

0 0 —1/3
Each term contains two factors of () because the Lagrange density in eq. (30) arises
from Feynman diagrams with two photons. When the photons (and other virtual
particles) are off-shell by an amount that is large compared with the pseudo-Goldstone
boson masses their effects are reproduced by those of the local operators in eq. (4.23).

CPS symmetry!8] has been used to reduce the effective Lagrangian to the form in

eq. (4.23). Under a CPS transformation
X(Z,t) = SE*(-Z,1)S (4.25)

where S is the matrix that switches strange and down quarks
0 0 0
S=10 0 1]. (4.26)
010

It is CPS symmetry that forces the two terms in the last two traces of eq. (4.23)

to occur with a relative minus sign (the linear combination with a relative plus sign
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is not invariant under CPS). Expanding out the ¥ matrices in terms of the pseudo-
Goldstone boson fields it is easy to see that the effective Lagrange density in eq. (4.23)
gives a contribution to B proportional to y; — 842 — 43, but gives no contribution to
C'. We shall not be able to predict B using chiral perturbation theory as ~;,72 and

~3 are not known.

CPS symmetry forces the contribution to C' from local operators (without factors
of my) to vanish. This symmetry is broken by the difference between strange and
down quark masses. In the pole type graphs of Fig. 10 the quark masses cannot
be neglected and it is these diagrams that (in chiral perturbation theory) give the
dominant contribution to C. In Fig. 10 the shaded square is an interaction vertex
from the weak As = 1 Lagrangian in eq. (4.12), the shaded circle is a 5y or 70y

vertex from the Wess-Zumino terml'9]

Lws = fogeuna PP (5 V2 + 1/ VE) + . (4.2

The cross denotes a nutTu™ or 7°uT = vertex that arises from the local terms in the

effective Lagrange density for strong and electromagnetic interactions

ia?

L= i pulalr(Q 9,2 — 9*9,3'%)

+x2Tr(Q31Q9,E - Qa,2'QR)] (4.28)
that couple a 7° or 7 to a utu™ pair.

In the Feynman diagrams of Fig. 10 the “infinite part” of the loop integrals is
cancelled by the terms from eq. (4.28) yielding the following prediction for C

c=% {?”" — e~ 2mjes }A(s) , (4.29)

12 s—m%

where

ReA(s) = 123w+ 5(s/md) = 1o/l

Hsfm)in(s/m2) + 5(s/m3)n(s /m3)
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1
_/d:c 3 2lls/m) — Ve M2 In| Ay /2]
) \/:z: + (4m2/s)(1 — )
1
—/d:c g Alls/amy) Ve Az_lnl)\_/Ql}, (4.300)
/ \/:c + (4m2/s)(1 — )
and”
ImA(s) = = ! l Lyt G 4.300
A= I amifs) 2mu//s ' (430

The Feynman diagrams in Fig. 10 give no contribution to B. In eq. (4.30a) w is a

constant independent of s and

A = \fals/m2) & \[a(s/m2) +4(1 — 7). (4.31)

The constant w gets contributions both from the one-loop diagrams and from
the tree diagrams in Fig. 10. It can be determined from the relative strength of the

decays n — 4y and 7 — putp~. At the leading order of chiral perturbation theory

azm%
=7 =355 7 (4.32)

n2 2 2
T(n—putp)= Bﬂ/}%—fﬂ— (%) \/mi —4m? . (4.33)

The recent measurement! of the branching ratio for n — utu~, Br(n — ptu™) =
(54£1) x 1079, is within 1o of the unitarity limit which is 4.3 x 107° (arising from an

and

on shell two-photon intermediate state.) The measured branching ratio for  — p*pu~
implies that |ReA(m,27)( < 2.5 x 1073 which gives —2 < w < 25. Using the cut on
cosf, given in eq. (4.21), we find that the two-photon contribution of the parity
violating form factor C, to the asymmetry satisfies, |Apg| < 1.2 X 1072, Improving
the measurement of the branching ratio for n — ¥y~ would reduce the uncertainty

in w and consequently improve our knowledge of the two-photon contribution to C.

% The imaginary part is related to the unitarity limit for n — ptp~. This was computed in
Ref. [20]. The real part of the n — p*p~ amplitude was also computed in Ref. [20] using a
phenomenological model for the form factor associated with the n — vy vertex.
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If the short distance contribution to the asymmetry Arg (with the cut on cos @
given in eq. (4.21)) is at the 1% level then it is likely that the two-photon contri-
bution to C can be neglected. (Of course, if the full range of cos @ is used then the
contribution of C to the asymmetry vanishes.) We have not been able to predict
using chiral perturbation theory, the two-photon contribution to the parity violating
form factor B. However, we do not expect its influence on Ay (with the cut on cos 8
given in eq. (4.21)) to be larger than that of C. (Our naive expectation is that it
gives |Arp| ~ O(a/m) ~ 2% 1073.) It would be interesting to try to estimate the two
photon contribution to B using phenomenological models. Experimental information

on the decay KT — 7y may also prove useful.

There are T-odd asymmetries that involve both the u* and p~ polarizations.
They will be much more difficult to measure than the parity violating asymmetry
we have been discussing. The T-odd asymmetries also violate parity and are deter-
mined by ImB f*(s) and ImC f*(s). They get a contribution from the interference
of the two photon contribution to the imaginary part of C, given in egs. (4.29) and
(4.30),with the real part of the parity conserving amplitude (as well as from short
distance physics).



60

Concluding Remarks

We have calculated the two-photon contribution to the parity violating K+ —
7Y utu~ decay amplitude arising from the diagrams in Fig. 10. They give rise
to an invariant matrix element with Lorentz structure (pr — pr)*@y,ys5v and do
not contribute to the other possible form for the parity violating amplitude, (px +
pr )t Uyysv. CPS symmetry of the chiral Lagrangian forces the contact terms (that
arise from Feynman diagrams where the virtual particles have large momentum) to
have the structure (pg + pr)*@vy,vsv. Therefore, the diagrams in Fig. 10 give the
leading value for the coeflicient of (px — pr)*@vy,y5v in chiral perturbation theory.
The prediction of chiral perturbation theory contains an s-independent constant that
is fixed by the measured n — p*p~ decay rate. Improving the experimental value
for the n — p+u~ branching ratio would reduce the uncertainty in this constant and
hence improve our prediction for the coefficient of (px—px)*uv,y5v. Unfortunately we
cannot compute the coefficient of (px + px)*ty,v5v using chiral perturbation theory
since there are several local contact terms that contribute to it which we cannot
fix experimentally. These contact terms also contribute to the K; — u*u~ decay
amplitude, but for this amplitude they enter in a different linear combination than
for the K+ — 7Fu*u™ matrix element and furthermore the measured Ky — ptpu~

branching ratio is not accurate enough to provide a significant constraint.

If all the available phase space is integrated over then the (px — pr )" @y, y5v piece
of the parity violating decay amplitude does not contribute to the parity violating
asymmetry Arp = (I'p—T1)/('r+I'1). However, it is advantageous to make the cut,
—0.5 < cos @ < 1, since it increases the short distance contribution to the asymmetry
by almost a factor of two and diminishes the number of events by only a factor of
0.77. With this cut the measured  — ptu~ branching ratio implies that the two
photon contribution to Ay g from the diagrams in Fig. 10 satisfies |Azp| < 1.2x1073.
This asymmetry is much less than the asymmetry arising from short distance physics
involving virtual top and charm quarks, provided that p is negative. For p positive,
the Feynman diagrams in Fig. 10 may contribute a non-negligable portion of the
asymmetry. It seems likely to us that the asymmetry coming from the two photon
contribution to the part of the K* — 7t utu™ decay amplitude of the form (px +

Pr )Py, ysv is not much larger than that arising from the diagrams in Fig. 10. Our
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naive expectation is that it gives rise to an asymmetry [Azp| ~ O(a/m) ~ 2 x 1073,
It would be interesting to estimate this part of the parity violating K+ — mHu*u~
decay amplitude using phenomenological models. (Such calculations may reveal a
further physical suppression of this amplitude.) Experimental information on the

decay KT — 714~ could also be valuable.

The asymmetry App can provide information on the unitarity triangle. Even an
experimental limit at the percent level would provide interesting information on p.

This may be within the reach of a dedicated experiment at existing facilities.(22]

Short distance physics contributes to T-odd (and P-odd) correlations involving
both the ut and p~ polarizations. We have found that the imaginary part of the
Feynman diagrams in Fig. 5 (that arises from on shell photons) also contributes.
A crude measure of the importance of this long-distance physics contribution is the
ratio, r(s) = ImC(s)/|f(s)|. Using eqs. (4.10), (4.29) and (4.30b) we find, for
example, that r(4m2) ~ —5 x 1073, The effect of the long distance contribution to
ImC(s) should be included in analysis of the implications of measuring these T-odd

correlations.
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Figure 1. Feynman diagrams for D — K 7,D — 77 and B — 77 matrix elements of
the current L,,. The shaded square denotes an insertion of the current in eq. (2.27)

of section 1.2. Dashed lines denote pseudo-Goldstone bosons.
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Figure 2. Feynman diagrams for B — Dn matrix element of &y,(1 — v5)b. The

shaded square denotes an insertion of the current in eq. (2.33) of section 1.2.
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Figure 3. Feynman diagrams contributing to the J = % P-wave Am phase shift
61. There is no contribution to the S-wave phase shift at leading order in chiral

perturbation theory.
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Figure 4. The J = % P-wave phase shift & (in degrees) as a function of pion energy
Ex (in MeV).
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Figure 5. Feynman diagrams that dominate the Kt — 7%Z% vertex in chiral
perturbation theory. The shaded circle denotes an insertion of the weak AS = 1

nonleptonic Hamiltonian in eq. (3.11) of chapter 2.
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Figure 6. The unitary triangle.
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Figure 7. Z-penguin and W-box Feynman diagrams that contribute to the K+ —s

7tut ™ decay amplitude.
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Figure 8. Feynman diagrams that give the leading contribution to Imf(s) in chiral

perturbation theory.
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Figure 9. Implications of measurement of the asymmetry Ayg for the location of

the o vertex of the unitarity triangle.
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Figure 10. Feynman diagrams that give the dominant two photon contribution to
C in chiral perturbation theory.



