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THE STABILITY OF RELATIVISTIC, SPHERICALLY
SYMMETRIC STAR CLUSTERS

by James Reid Ipser
ABSTRACT

It has been suggested that very dense star clusters might
play important roles in quasi-stellar sources and in the nuclei of
certain galaxies, where violent events occur. Such star clusters
should become unstable against relativistic gravitational collapse
when, in the course of evolution, they contract down to a certain
critical density. In this thesis the study of the relativistic insta -
bility which triggers such collapse is initiated: The theory of the
stability of a spherically symmetric star cluster against small
radial perturbations is developed within the framework of general
relativity, Collisions between stars in the cluster are neglected,
since in realistic situations the time scale for collisions should be

much greater than the time scale for the growth of the relativistic
| instability. The equation of motion governing the small radial
perturbations of a spherical cluster is derived and is shown to be
self-conjugate. Associated with the equation of motion is a dyna-
mically conserved quantity, and a multidimensional variational
principle for the normal modes of radial pulsation. The variational
principle provides a necessary and sufficient criterion for the
stability of the cluster. Also derived are much simpler, one-
dimensional, sufficient (but not necessary) criteria for stability.
The most important sufficient criterion is this: A relativistic,
spherical cluster is stable against radial perturbations if the gas
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sphere with the same distributions of density and pressure is' stable
against radial perturbations with adiabatic index
Ty = o+ )P (dp/dr) @o/ar) .

The stability criteria are used to diagnose numerically the
stability of (i) clusters of identical stars with heavily-truncated
Maxwell- Boltzmann velocity distributions, and (ii) clusters whose
densities and isotropic pressures obey polytropic laws of index 2
or 3. The calculations show that a cluster of either type is unstable
against collapse if the redshift of a photon emitted from its center
and received at infinity is z, 2 0.5. The cluster is stable if z,5 0.5.

For purposes of motivation, two new theorems on the theory
of the stability of highly relativistic stars (not star clusters!) are also
presented in this thesis. The first theorem states that a highly rela-
tivistic, spherical star is stable if andonly if its adiabatic index
(assumed to be constant in the interior regions) is greater than a

certain critical value, I‘cr , which depends in a specified way on

it
the high-density equation of state. Because of relativistic effects

this critical value is somewhat larger than the Newtonian value

T .
. erit
densities, the curves of - (binding energy) versus radius for certain

= 4/3. The second theorem shows that, at high central

hot, isentropic sequences of stellar models must exhibit damped
clockwise spirals. This spiraling reflects the onset of instability
in one radial mode of pulsation after another as the central density

increases along the sequence.
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1. A Brief Outline of the Thesis



In this thesis we devote ourselves to the study of the stability
of relativistic, spherically symmetric star clusters against radial
perturbations. A brief outline of the thesis follows: In Part 2 we
attempt to provide motivation for our study. In Part 3 we present
an extensive summary of the remaining parts of this treatise.

Parts 4, 5, 6, and 7 are unmodified versions of papers which
have been prepared for publication.

Part 4 is included as further motivation for our study of the
relativistic instabilities in star clusters. We present there two new
theorems on the theory of the stability of highly relativistic stars
(i.e. gas spheres). These theorems quantify the strengths of the rela-
tivistic instabilities In highly relativistic stars.

In Part 5 we begin our study of relativistic star clusters.
Actually, we first discuss in $II of Part 5 the theory of stability
for Newtonian, spherical star clusters; and then in §IV we derive
the self-conjugate eigenequation governing the spherical pertur-
bations of a relalivislic, spherical cluster, and we discuss the
properties associated with the eigenequation. One of these, namely,
that there exists a multid.imensional variational principle for the

‘normal modes, provides a necessary and sufficient condition for
stability.

In Part 6 we present one-dimensional, sufficient (but not
necessary) criteria for the stability of relaﬁivistic, spherical
clusters.

In Part 7 we use our stability criteria to diagnose numeri-
cally the stability against gravitational collapse of a variety of
spherical clusters with isotropic velocity distributions.



2. Motivation



Recent developments in astronomy and astrophysics - - e. g.
the discovery and study of the quasi-stellar sources (Schmidt 1963;
Greenstein and Schmidt 1964), of explosions in galactic nuclei
(Burbidge, Burbidge, and Sandage 1963), of strong, extrasolar X-
ray sources (Giacconi, Gursky, Paolini, and Rossi 1962), and of
pulsating radio sources (Hewish, Bell, Pilkington, Scott,and Collins
1968) - - have led to a reawakening of interest in the possible roles
in nature of relativistic systems wii:h strong gravitational fields.
Thus far, this interest has concentrated largely on the roles which
relativistic stars might possibly play in various astrophysical situ-
ations. Consequently, much effort has been directed to the task of
understanding the specifically relativistic features of the structures
and stabilities of compact white dwarfs, neutron stars, and super-
massive stars (see Part 4 for references to reviews devoted to this
subject); these features should influence strongly the possible roles
of such stars in nature.

At present, it appears that theoretical analyses of hitherto
unobserved relativistic stars finally have begun to pay off. Today
rotating neutron stars seem to be the only reasonable explanation of

‘the pulsating radio sources (pulsars).

One can ask if there are, besides relativistic stars, any
other systems which might play roles in nature that are strongly
influenced by relativistic gravitational effects. Hoyle and Fowler
(1967) offered an answer to this question; they suggested that each
quasi-stellar source might lie at the center of a massive relativistic
star cluster, and might derive its redshift from the gravitational
field of the cluster.

The Hoyle-Fowler cluster model for quasars makes use of
relativistic star clusters which have central redshifts (redshift of a



photon emitted from the center of a cluster and received at iﬁﬁnity)

as large as ~ 2.4. Besides the gravitational redshift, another rela-
tivistic gravitational effect which could be of great importance for a
relativistic star cluster is the onset of gravitational collapse.

- Indeed, there are suggestions from studies of relativistic
stars that relativistic star clusters with central redshifts as large
as 2.4 might be unstable against gravitational collapse. (Studies of
the relativistic instability in stars are discussed in the reviews
referenced in Part 4; also, see the two new theorems presented in
Part 4, which reflect the strengths of the instabilities in the ultra-
relativistic regime.) It is known that the relativistic forces in stars
can induce instabilities which do not arise in Newtonian theory.
Studies reveal that a relativistic star becomes unstable against
gravitational collapse when it contracts sufficiently far that its
central redshift surpasses a value which is typically (though not
always) about 1. (In this connection, see the first theorem of Part
4, which deals with limits on the central densities of stable, highly
relativistic stars.) It is not unlikely that the maximum central red-

shifts of stablc star clustcrs are also about 1, but we cannot know
| until the theory of stability for relativistic star clusters has been
worked out and applied.

- Under what circumstances might one expect relativistic
gravitational effects, such as the onset of collapse, to be important
for star clusters ? A rough measure of the importance of relativity
for a star cluster is the parameter1

TThroughout this thesis we adopt ''gravitational' units, inwhich
the speed of light, ¢, Newton's gravitation constant, G, and Boltz-
mann's constant, k, are equal to unity. In these units all quantities
can be measured in terms of, say, a fundamental length. Thus, for
example, in gravitational units the mass oftheSun is 1.476 km.
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9M M/10 mg,

o= g ~ 0'01(_'R71_§T) .

Here M is the mass of the cluster, and R is some mean radius of
the star distribution (e. g. the radius in which half the mass is con-
tained).

¥a> 0.01 relativistic effects may be important. Notice
that this value of o corresponds to 109 stars in 0, 01 pc, 1011
stars in 1.0 pc, etc. That such star densities are enormous is
evident from the estimate that our galaxy has about 1()11 stars in
10 pc(o =~ 10’6).

Consequently, it appears that, of all known astronomical
'systems, relativistic star clusters could possibly be associated with
only the quasi-stellar sources [ as proposed by Hoyle and Fowler
(1967)] and the nuclei of certain galaxies (Seyfert galaxies, N
galaxies, and compact galaxies).

A seemingly strong argument to be heard against the exis-
tence of relativistic star clusters anywhere in nature is that, ac-
cording to Newtonian estimates, too long a time is required to
evolve a cluster up to star densities for which « > 0.01, For
example, the relaxation time of our galaxy is estimated to be about
1014 years (Chandrasekhar 1942), However, most Newtonian
analyses of evolution ignore collective interactions; they approxi-
mate N-body interactions as a sum of 2-body interactions. Certain
recent Newtonian studies indicate that collective interactions might
evolve some cluéters up to relativistic densities in times much
shorter than the evolution times associated with 2-body interactions.
The studies in question involve (i) numerical experiments on the
classical N-body problem (Aarseth 1963; Von Hoerner 1963; see



also Henon 1961, 1965), and (ii) analytic analyses of maximum-
entropy clusters confined to the interior of a spherical box (Antonov
1962, Lynden-Bell and Wood 1968). These studies suggest that, due
to collective interactions, rapid evolution can occur in some
clusters. In this evolution a cluster develops a dense core and a
diffuse, extended envelope on a time scale which might be less than
1010 years for the nuclei of some galaxies.

If relativistic star clusters do exist in nature, their roles
should be strongly influenced by relativistic effects such as the onset
of gravitational collapse. Indeed, it is not inconceivable that the
violent events in the nuclei of certain galaxies and the outbursts in
the quasi-stellar sources are associated with the onset of collapse
ina relativistic cluster, or with interac’tions between an already-
collapsed core and the surrounding stars.

Before these speculations can be pursued further, the relation-
ships between the structures and stabilities of relativistic star
clusters must be understood. In this thesiS we undertake the study

of these relationships.
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In general relativity the gravitational field is described by

the metric tensor, gw , of spacetime through the expression

2 _ LV
ds” = g dx” ax (1)

for the fundamental line element. 1 The Newtonian Poisson equation
is replaced by the Einstein field equations,

G =8nT . @)
VY Ty

The Einstein field tensor, Guv , involves certain combinations of
the gw and their derivatives. The stress-energy tensor, Tuv )
describes the distribution of matter in spacetime. The general
structure of the gravitational field equations is discussed, e.g.,by
Synge (1960), chapter 1. _

In this thesis we are interested in studying the gravitational
fields in spherically symmetric, relativistic star clusters. We seek
to learn whether the gravitational forces in a spherical cluster can
-become so strong that the '"pressure' forces are overwhelmed and
the cluster becomes unstable against gravitational collapse.

Our initial éffort_s in this thesis attempt to provide moti-
vation for this interest: In Part 4 we present two new theorems on
the relativistic instabilities in highly relativistic stars. The first
theorem results from attempts to analyze the strength of the

1Greek indices run from 0 to 3; Latin indices, from 1 to 3.
We use the superscript 0 to denote the time coordinate, t = xO, of a
general curvilinear coordinate system. In our convention the line
element has signature (+ - - -).
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relativistic instabilities in highly relativistic stars in terms of
adiabatic indices. This theorem places a lower limit on the adia-
batic index (defined by eqn. 1 of Part 4, and assumed to be constant
in the interior regions) of a stable, highly relativistic, spherical
star. In Newtonian theory this lower limit is 4/3 independently of
the structure of the star. But in general relativity this lower limit
is greater than 4/3 and its value depends upon the structure of the
star. (See eqn. 5 of Part 4.) We arrive at the theorem by using
known approximate solutions of the stellar eigenequation governing
adiabatic, radial oscillations of a spherical star. The second
theorem states that plots of minus the gravitational binding energy
versus the radius for certain one-parameter sequences of stellar
models with radially-invariant entropy per baryon must undergo
high-density spirals. (See eqns. 20 and Figure 2 of Part 4.) This
spiraling is due to the fact that more and more modes of radial
oscillation become unstable along such a sequence as the models
become increasingly relativistic. Thus both theorems of Part 4
reflect the strength of the relativistic instability in stars.
Sufficiently motivated by this work on stellar pulsations, we
‘begin our study of relativistic star clusters. From the outset we
should attempt to restrict ourselves to models which would not be
expected to evolve too rapidly., For some star cluster models
evolution would be so rapid as to be violent. The structure of such
a model would be altered very rapidly by evolutionary processes,
and so it would be useless to attempt to study its stability against
gravitational collapse. In such a study we should restrict attention
to clusters whose evolutions are sufficiently moderate that they can
be considered to be quasistatic. The evolutionary path of such a

cluster will pass through a sequence of near-equilibrium states.
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The ways in which collective interactions affect the evolution
of a star cluster are poorly understood. If, because of ignorance,
we ignore collective interactions, we can attribute the evolution to
four processes: (i) distant encounters between pairs of stars via
the long-range gravitational force; (ii) direct collisions, in which
two stars have grazing, or closer, contact; (iii) evaporation, in
which stars gain enough energy through encounters to escape from
' the cluster; and (iv) gravitational radiation-reaction. Rough esti-

mates of the characteristic times, associ-

trelax’ tcoll’ tevap’ trad
ated with these processes are (Chandrasekhar 1942; Spitzer and
Hiérm 1958; Zel'dovich and Podurets 1965; Spitzer and Saslaw 1966)

10°(m/mg) 2 (r/ry)% &t ¢

coll © ‘relax

9 -

~0.10" Y *RN/log,(N) ~ 107% e r10744%/2

/log,, (N1t (3)

eva rad’
Here m and r are the mass and radius of a typical star of the
cluster; o= 2M/R, where M and R are the mass and radius of the
~cluster; and N is the total number of stars in the cluster. These
estimates show that, even if a typical star of a cluster is as small
as a compact white dwarf (m ~ mg, T =~ 10-2 re), direct collisions
dominate the evolution if the cluster is relativistic (i.e. if « > 0. 01).
If a relativistic cluster is to evolve quasistatically, t oll
must be greater than, say, the period (~ 2m M~ 1/2 r3/ 2) for circular
orbits at the boundary of the system. For a given value of «, this
condition places a lower limit on the radius, R, and hence the mass,
M, of the system. For example, if o« is 0.1 and if a typical star has
m~ Mg, I ~ Iy, then R must be greater than about 0. 01 pc. If
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R=1pc(and o =0,1), then M~ 1012 mg, and t, ., ~ 8000 years.
One expects that the characteristic time associated with the
growth of the relativistic instability in a cluster will be of the order
of the star travel time across the cluster, just as the analogous time
scale for a star is of the order of the sound travel time across the
star. For a cluster which is evolving quasistatically, the star
transit time can be estimated crudely through use of the Newtonian
virial theorem. The virial theorem states that in an equilibrium
cluster the total kinetic energy is half the magnitude of the potential

energy. This implies that the velocity of a typical star is of the

1/2'
1/2

tivistic cluster which is evolving quasistatically. (For example, the

11@—2N for a

order of a Hence the star transit time across a cluster is of the

order of a ~/“R, which is short compared with tcoll for a rela-

ratio of tcoll to the star transit time is about 10~
cluster whose typical star resembles the Sun. This ratio is approxi-
mately 103 for the quasistatic cluster considered above, with
«=0.12and R =1 pe.)

Consequently, the equilibrium states through which a quasi-
static cluster evolves can be idealized as statistical distributions of
" point masses interacting through only the smoothed-out, self-
consistent gravitational field of the entire cluster. The basic
equations which are used to describe such a model are the Einstein
field equations (2) and the relativistic Boltzmann- Liouville (or |
collisionless Boltzmann) equaﬁon, This latter equation states that
the density of stars in phase space is conserved along the trajectory
of a star. (See the Appendix to this Summary. )

The type of statistical treatment which we employ here to
describe a relativistic star cluster has been used in the theory of

the structure of Newtonian star clusters for about fifty years.
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However, the stability of Newtonian clusters has been investigated only
recently (Antonov 1960; Lynden-Bell 1966, 1967; Milder 1967;
Lynden-Bell and Sanitt 1969; see also $III of Part 5 where we review
and slightly extend the work of Antonov)., In general relativity the
theory of the structures of spherical star clusters has been developed
recently by Zel'dovich and Podurets (1965).and by Fackerell (1966,
1968). This thesis and the papers which make up Parts 4-7 of it
constitute the first attack ever made on the stability of relativistic
clusters,

In our study of relativistic star clusters we work with the
invariant distribution function (i. e. density of stars in phase space),
N . The distribution function is defined and discus;sed in some detail
in the Appendix to this Summary. Briefly, in terms of an arbitrary
curvilinear coordinate system, 7 is the number, dN, of stars per

unit phase-space volume, d7 D d'zrx

n = dN/d'zrpd?rx y (4)
where :
v, = -dpydp,dpydpg// (-g) , (5a)
dv. = (p./mg,.)V (-g) dx1 dx2 dx3 (5b)
X o/ ™ 8o

are volume elements in momentum space and in physical space.
Here p, are the covariant components of the momentum of a star,
g is the determinant of the metric tensor, and m = (p P )1/ 2
the rest mass of a star. The volume elements (5a) and (5b) are
invariants; consequently, the distribution function is an invariant,
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The distribution function is in general a function of the
coordinates of an eight-dimensional phase space sometimes re-
ferred to as the tangent bundle. We will use general spacetime
coordinates, x“, as four of the independent coordinates in phase
space, We must also select four momentum coordinates. We
shall not restrict ourselves to one particular set of momentum
coordinates., At times we shall find it convenient to employ the
covariant components, pa, of the momentum as coordinates; on
other occasions we shall choose coordinates specially adapted to
spherical symmetry; etc. - )

As is discussed in the Appendix, the stress-energy tensor,
Tuv , is determined by the distribution function through the equations

T, =J@/m)pp, dr ©)

M p°
Consequently, the distribution function generates the metric of space-
time through the field equations (2).

In the absence of collisions, 7 satisfies the Boltzmann-
_ Liouville, or collisionless Boltzmann, equation

8N =0 . (7

Here the Liouville operator, § , is differentiation with respect to
proper time along the path of a star in the tangent bundle. If (x%, p,)
are used as independent coordinates, the Liouville operator takes
the form (A16). A proof of equation (7) is given in the Appendix.

Equations (2), (6), and (7) are the basic equations for our
study of relativistic star clusters.
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In §IV of Part 5 we begin the development of the theory of
small, radial perturbations of a spherically symmetric, relativistic
star cluster., As is discussed, e.g., by Synge (1960), chapter 7,
under the assumption of spherical symmetry coordinates can be
chosen such that the line element (2) assumes the form

ds2 = ev_(t’ ) dt2 - ek(t’ r) dr2 - r2(d62+sin26dq>2) . (8)

The coordinate system (t, r, 8, ) is called the Schwarzschild co-
ordinate system. The radial coordinate, r, is defined uniquely by
the demand that 2mr be the circumference of a circle about the
center of symmetry (point where r = 0). The time coordinate, t,
is defined by the demands that at infinity it reduces to proper time
for an observer at rest with respect to the coordinate system and
that everywhere the one-form di be orthogonal to dr, d6, and d¢.
An equilibrium spherical cluster is one for which the metric

functions v and A\, and the distribution function, 7, are explicitly
independent of the Schwarzschild time coordinate. In this case the
~dependence of the distribution function upon (x, p) is severely
limited : Notice that equation (7) states mathematically that the
distribution function is conserved along a star's path through phase
space. This implies the relativistic version of Jeans's theorem, |
namely, that 7 is a function of the integrals of the motion of the
stars. Ignore for the moment the fact that the distribution function
actually generates the metric terisor, 8,02 through equations (3)
and (6). Pretend that the g,y are given functions of the x*, Then
equation (7) can be viewed as a linear, homogeneous, partial
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differential equation in eight variables for 7 (cf. expression [A16a]
for the Liouville operator). It follows from the theory of partial
differential equations (see, e.g., Garabedian 1964, chap, 2) that
there are in general seven integrals of the motion., For a spherical
equilibrium configuration, in which the metric tensor and the distri-
bution function are independent of the Schwarzschild time coordinate,
the time coordinate can be eliminated and there are six explicitly
time-independent integrals of the motion. Three of these integrals
are the rest mass, m, the "energy at infinity, '" E, and the total
angular momentum, J. In terms of Schwarzschild coordinates,

a)1/2 1/2 .

m= (pp)’" E=py J= [pez + (p,/sin )] ()

Two additional integrals specify the conserved plane of a star's orbit,
and there is a final integral which specifies the "orientation” of a
star's orbit in the orbital plane. However, the star's orbit in general
will not be closed, but will fill up ergodically the physical region of
the orbital plane in which stars with given values of m, E, and J are
- constrained to move. And in the equilibrium situation under con-
sideration, equation (7) implies that the distribution function, for
fixed m, E, J, has the same constant value at all physical locations
(r, 6, ¥) along a star's orbit. Consequently, for each set of values
for m, E, J, and for each orbital plane, the distribution function in
general must have the same constant value throughout the physical
region in which stars with the given vélues of m, E, J are con-
strained to move. Thus the sixth integral referred to above is
redundant (for obvious reasons, it is called a non-isolating integral),
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and we can say that the distribution function is an arbitrary function
of the five remaining integrals. Next, we recall that the distribution
function of a cluster actually generates the gravitational field through
the Einstein field equations (2). If the distribution function depended
on the orientation of the orbital plane, it would lead to a non-spherical
stress-energy tensor and thence to a non-spherical gravitational field,
Therefore, the distribution function for a spherical equilibrium

cluster can depend on only m, E, and J; and we have
N = F(m, E, J) at equilibrium. (10)

If the distribution function of an equilibrium spherical cluster
depends on the angular momentum, J, then the velocity distribution
in the cluster is anisotropic. This means that the stresses (i.e. the
fluxes of momentum) in the radial and tangential (i. e. non-radial)
directions are not equal. However at each physical location the
radial direction is an axis of symmeiry for the velocity distribution.

The field equations (2) for an equilibrium spherical cluster

are (Synge 1960, chap. 7)

A A
o A A T

dvA/dr = (e " -1)/r - 8ure TAr ,
M, /dr = 4722 T, (11)

A A0 * ,
N

A = A
e - 1 - ZMA/r ®
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In these equations, and throughout this thesis, we use the subscript
A to refer to quantities in an equilibrium cluster. The quantity

M A(r) is the total mass-energy contained inside radius r. The
structure of an equilibrium cluster is computed by using the equi-
librium distribution function (10) to express the stress-energy
tensor (8) in terms of the metric coefficients v A and A A Equations
(11) can then be integrated to obtain v A and \ A 28 fungtions of r
(see, e.g., Fackerell 1966, 1968).

Once someone has given us a spherical equilibrium cluster,
we perturb the cluster slightly without destroying its spherical
symmefry., We analyze the dynamics of a radially perturbed cluster
. by linearizing in the perturbation the basic equations (2), (6), and
(7). In a perturbed spherical cluster the metric coefficients v and
A of the line element (8) take the form

vit, r) = vA(r) + vB(t, r), At, r) = XA.(r) + xB(t, r). (12)

Here the subscript B refers to the small perturbation of a quantity
away from its value in the equilibrium configuration.
‘ To define the perturbation of the distribution function we
must decide how to identify points in the perturbed cluster with
points in the unperturbed cluster.  The choice which we make is
motivated by both phySical considerations and the desire for sim-
plicity of formalism. We identify points with the same Schwarzs-
child coordinates (t, r, 8, o), and the same physical components
of the momentum., |

1/2

It I N ' (13)

P)
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(see Table 1 of Part 5, §IVc). The physical component P(0) is the
energy of a star, as measured locally by an observer at rest with
respect to the Schwarzschild coordinate system. The components
p(i) are the negatives of the locally measured spatial components
of the momentum along the r, 8, and ¢ directions. Notice that

equations (9), when reexpressed in terms of the P(o)? become

1/2

2]’

m = [p,..2 2 2
= P) T B(r) " Pee) -~ P(y)
(14)

/2 2 9 1/2
E=e’ Py I =TLP(g) * Py ]

For our choice of coordinates in phase space, the distribution

function of the perturbed cluster takes the form [cf. eqns. (10) and
(13)]

n= 7ZA (Xa; p(d.)) + ﬂB (xa9 p(a))
(15)

F(m’ EA’ J) ‘+ f(xay p(@)) H

v A/2
where E, =e p(o) .
When equation (15) is combined with equation (6) for the stress-

energy tensor, the perturbation in the stress-energy tensor becomes

Ty, = J@&/m)p_o° avy - (16)
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Since the perturbation f is a first-order quantity, implicit is the
z?ule that in going from contravariant to covariant momentum
components in equation (16), or from covariant to physical com-
ponents, etc., the unperturbed melric tensor, g Auv? is to be used,
Also, the factor /(~g) which appears in the definition (5a) of ar,

is to be evaluated in equations (16) by use of the unperturbed metric.
Equations (16) follow readily from the fact that the volume element,
d?fp, of equation (5a), when reexpressed in terms of the physical

components of the momentum through equations (13), becomes
d¥ = -d d d d . 17
p = ~9P(0) W) IP(e) WPey) (1)

Hence the stress-energy tensor is evaluated by integration over the
physical components of the momentum, Consequently, when a
perturbation is introduced, that perturbation of the distribution
function which enters into the perturbation of the stress-energy
tensor is f, the perturbation at fixed physical components of the
momentum, Further, it is evident that

paps = i(gﬁﬁ/gfm) p(a) P(B) (18)

for our diagonal metric . If o = B the perturbation in p pB at
fixed (x* s Plg )) obviously vanishes, and in this case equatmn (16)
follows. If o # B, the perturbatlon in P, pB |

this case, in addition to the integral in equatmn (18), one has for

does not vanish, In

7. % an integral similar in form to that in equation (16), except

Ba
that { is replaced by F. However the integrand, F paps, of this
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integral is an odd function of at least one of the spatial physical
components of the momentum; and so the integral vanishes.
Equation (16) then follows.

When the Boltzmann- Liouville equation (7) is linearized

in the perturbed quantities v and f it becomes equation

» Aps
(10; R) of Part 5. The deriva].stionBof that equation is an example
of a calculation in which we exercise our freedom to use coordi-
nates which make the calculat'ion as simple as possible. The
distribution function of a spherical cluster can depend on p(e) and
p(cp) only through the angular momentum, J. As is the case in
the derivation of equation (10; R) of Part 5, it is often convenient
to use J as a coordinate in phase space in place of both p(e) and
p )" A calculation can often be~ simpliﬁed- by making use of the
fact that J is conserved along a stellar orbit in phase space. The
same is true of the rest mass, m.

The perturbed Einstein field equations (2) are needed to
complete the basic set of perturbation equations. The perturbed
field equations are written down as equations (14; R) of Part 5.
There 1s a dynamical field equation in addition to these, which
-involves the second time derivative of the perturbation )‘B (see,
e. 8. ,Chandrasekhar 1964)., However, if equation (10; R) of Part
5 is multiplied by P, d'?/'p , and if the product is integrated over
momentum space, and if the resulting pr-moment is combined
with cquation (14a; R) of Part 5, then the dynamical field equation
referred to above will be reproduced. Actually, not even all of |
equations (10; R) and (14; R) are independent. The Py moment of
equation (10; R), when combined with equation (14a; R), yields
(14b; R).
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The equatibn of motion (10; R) of Part 5 is of first order in
the time and radial derivatives. But one expects that a perturbed
cluster will pulsate if it is stablé, and collapse or explode if it is
unstable, And throughout other areas of physics such motions are
described by hyperbolic second-order differential equations. In
analogy with a procedure in Newtonian theory developed by Antonov
(1960), in §IVd of Part 5 we obtain such a second-order differential
equation by first splitting the perturbation of the distribution
function into its even and odd parts, f+ and £ , as functions of the
spatial momenta, p(i) (cf. definition 16; R). We then split equations
(10; R) and (14; R) into their even and odd parts, combine suitably,
and eventually arrive at the desired equation of motion {(eqn. 19R),

(a/F) 3% /ot = 71, (19)

where

FE = (aF/aE)m’ J (20)
[ef. eqns. (9) and (10) of this Summaryl, and where the operator
7 is defined by equations (15¢; R) and (20; R) of Part 5.

Now the even part, f+, of the perturbation determines the
perturbation in the star density, in the mass-energy density, and
in the stresses. The odd part, f , determines the mass motions
and the average "displacements' in a perturbed cluster. Hence
equation (19) is the analogué of the pulsation equation for the
displacement in a perturbed star (see, e, g. Chandrasekhar 1964).

The operator J is a complicated integro-differential
operator in phase space. Consequently it would appear that the
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analysis of the equation of motion (19) involves a hopelessly .
difficult problem. However, in $IVe of Part 5 we show that 7 is
a self-conjugate operator in the sense that

jh:rkdvpdvrx = J‘krhdvfpdvfx, (21)

if h and k are functions which are bounded in phase space. From
the self-conjugafe nature of v follow many useful results, which
are listed in 9IVe of Part 5. One result is that there exists a
dynamically conserved quantity (i. e. a quantity whose value for a
perturbed cluster is independent of time)

2
H=[[ (af-/Bt) +t T£14d 'Vp d 7= constant . (22)
E

Of special importance is the result that there exists a variational
principle for the normal modes of radial pulsation of a spherical
cluster: If { is split up into normal modes, '

£ o= i, pa)ei(”t , (23)

i satisfies a self-conjugate eigenequation, obtained by combining
equations (19) and (23), for which there is a variational principle
(eqn. [27; R] of Part 5)

[175dv_dv
wz = - % X . (24)
[eY/Fp) e ar dr,
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If FE» <0 througho‘ut phase space, each normal frequency, w, is
either real (stable mode) or imaginary (unstable mode). Con-
sequently, since the variational principle is a minimal principle,

a spherical equilibrium cluster with FE < 0 throughout phase
space is stable against spherical perturbations if and only if 7 is a
positive-definite operator for odd spherical functions bounded in
phase space:

fh.‘rhd'zrp dv, > 0. (25)

The variational prinéiple (24) is difficult to apply because it
involves a multidimensional problem. It would seem worthwhile to
search for stability criteria which involve analyses in only one
dimension. One-dimensional sufficient (but not necessary)
criteria for stability have been developed in Newtonian theory by
Lynden-Bell (1966, 1967) and by Lynden-Bell and Sanitt (1969).

In Part 6 of this treatise we develop relativistic analogues of their
criteria.

In §II of Part 6 we derive a sufficient condition for stability
which involves the positive-definiteness of a one-dimensional,
second-order differential operator. We begin the derivation of
this stability criterion by introducing' a new perturbation function,

q, closely related to f:
A<, py) = 1, py) - Fgpyvp/2. (26)

By combining equations (15) and (26) we obtain (to first order) the
expression
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N = Fm, E, J) + q - (27)

for the distribution function of the perturbed cluster, since

vy +v.)/2 v /2
Py = ¢ A" B p(0)=eB EA' (28)

BE =
Expression (27) states that q is the perturbation in the distribution
function at fixed x*, m, E, and J, while f is the perturbation at

. a
leEd X, p(a)o

In §{IIc of Part 6 we reexpress the conserved quantity, H,

of equation (22) in terms of q, and combine with the perturbed field
equations (3). After a moderate amount of manipulation, we discover
that we can rewrite expression (22) in the form [eqn. (37) of Part 6]

3
H = Hy +(1/4) [ avB/at S avB/at dv_. (29)

Here S -- which is an ordinary second-order differential operator
in one variable, the Schwarzschild radial coordinate, r -~ and the
“volume element d?’VX «< dr de dy are defined by equations (28) and
(29b) of Part 6. For almost all physically interesting star clusters,
H; > 0 for all perturbations (see Part 6). In such a case, if the
second term in equation (29) is also positive for all perturbations,
then the perturbations cannot grow in time faster than linearly.
Otherwise, H could not possibly be constant in time because it
would be the sum of two positive terms, each of which becomes
arbitrarily large in time. As is discussed in §IVf of Part 5, linear
time growth is associated with a mode which is "marginally stable, "
i.e. a mode which is in neutral equilibrium. (Such a mode is called
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a_dyhamical zero-frequency mode. ) These considerations thus
result in a sufficient condition for stability: A spherical cluster
for which FE < 0, and for which condition (39b) (see also eqn. 38b)
of Part 6 is satisfied, is stable, or at least marginally stable,
against small radial perturbations if the operator S (eqn. [28] of
Part 6) is positive-definite over all physically acceptable pertur-

bation functions, avB/at, i.e, if

3

[ avB/at S avB/at v, _>0. (30)

(This integral is actually one-dimensional rather than three-
dimensional, since the integrand is independent of 6 and ¢.)

The boundary conditions on the acceptable avB/ dt are given
by equations (42a,b) of Part 6: at the center of symmetry the field
equations and the smoothness of the spacetime geometry guarantee
that the acceptable avB/at are power series in rz; at the surface
of the cluster both they and their radial derivatives vanish, We
could attempt to apply the eriterion (30) by inserting various

acceptable, radial trial functions into the integral. Alternatively,
| we can make use of the fact that, as follows from definition (28) of
Part 6 for S, S is self-conjugate for bounded, radial functions
[see eqn. (29a) of Part 6]. As we show in §Ilc of Part 6, if we
combine the fact that S is self-conjugate with the fact that it is a
Sturm- Liouville operator, then we obtain the following method of
applying condition (30): Integrate the differentlal equation

Sy =0 (31)
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from r = 0, where the boundary conditions ¢ = 1, dy/dr = 0 are
imposed, to r = R. If the resultant function, §, has no nodes, then
condition (30) is satisfied for all acceptable perturbation functions,
and the cluster -- if it satisfies the subsidiary conditions (39) of
Part 6 -- is stable against small radial perturbations.

In $IId of Part 6 we turn our attention momentarily to a gas
sphere (star) which has been perturbed radially away from its equi-
librium state. We derive there a sufficient condition for the stability
of the gas sphere which involves the positive-definiteness of the same
operator S which enters into criferion (30) above. We obtain this
condition for stability by manipulating a quantity which is conserved
during the small, radial motions of a perturbed gas sphere, That
quantity is [eqns. (59) - (61) of Part 6]

% *k %
H =X +P , : (32)

where K* and P* are the kinetic and potential energies associated
with the perturbation of the gas sphere. We find that, for pertur-
bations with adiabatic index (54) of Part 6, we can i'eexpress H* in
the form [see eqns. (59), (60), and (72) of Part 61

* *x 1 3
H =H +3[vg8Svgd Vv, (33)

which is similar to equation (29) above. For most interesting gas
| spheres, it turns dut that Hl>I< > 0. Hence by a line of reasoning
similar to that which leads to criterion (30) for a cluster, we arrive
at the sufficient condition for gas sphere stability stated in §IId of
Part 6,which involves the positive-definiteness of the operator S

over the set of acceptable perturbation functions Vge



29

In §III of Part 6 we prove the most important of our sufficient
conditions for the stability of a spherical cluster. This condition
establishes a relationship between the stability of a spherical cluster
with isotropic velocity distribution (i.e. a cluster whose equilibrium
distribution function, F, is independent of the angular momentum),
and the stability of the corresponding gas sphere (which is by defi-
nition the gas sphere which has the same equilibrium radial distri-
butions of pressure and of total density of mass-energy as has the
cluster -- see eqns. [86] of Part 6). We obtain the stability cri-
terion of §III of Part 6 by comparing the conserved quantity, H, of
equation (22) for a cluster with the conserved quantity, H*, of
equation (32) for the corresponding gas sphere. We manipulate the

quantity, H, for a cluster and rewrite it in the form
H = 2K + 2P, _ (34)

where 2K is just the first (positive-definite) term in equation (22)
above, and where P is defined by equation (83) of Part 6. We pro-
ceed to show that if the potential energy function, P*, for a gas
sphere is positive-definite for all physically-acceptable pertur-
bations of the gas sphere with adiabatic index (54) of Part 6, then
the function P for the corresponding' cluster is positive-definite

for all physically-acceptable perturbations of the cluster (cf. eqn.
[85]of Part 6). But the theory of gas sphere stability guarantees
that a gas sphere is stable agamst a given set of rad1a1 pertur-
bations if and only if the potential energy funct1on P is positive-
definite for that set of perturbations. (If P is posfuve-definite
then the gas sphere sits at the bottom of a potential well.) Thus,
if the gas sphere is stable, the function P is positive-definite,

and by equation (34) H is the sum of two positive terms. Hence
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perturbations cannot grow in time and the cluster is stable. This
stability criterion can be stated as follows: A bounded, relativistic,
spherical cluster with isotropic velocity distribution is stable
against small radial perturbations, if the gas sphere with the same
distributions of pressure and of density of total mass-energy (cf.
eqns. [86] of Part 6) is stable against radial perturbations with
adiabatic index (87) of Part 6..

In Part 7 we employ the stability criteria of Parts 5 and 6 to
diagnose numerically the stability of specific star-cluster models
with isotropic velocity distributions.

In $III of Part 7 we reduce the variational principle (24)
from the rather general form in which it is given in Part 5 to a
form more suitable for numerical calculations. We begin in §1IIa
of Part 7 by obtaining a simplified expression for the quantity 2, h,
where &# A is the Liouville operator of an unperturbed cluster, and
h is a spherical function in phase space. We choose (x%, p,) as our
coordinates in phase space. Then the unperturbed Liouville operator
takes the form given in equation (9d) of Part 7. Notice that it in-
volves derivatives with respect to the six coordinates (xi, pi). How-
‘ever, when the unperturbed Liouville operator acts on a Spherical
function, h, only those terms involving derivatives of h with respect
to r and P, survive, This is becausé a spherical function is one
that depends on 8, o, Py and .pqo only through the angular momem-
tum, J, which is itself independent of r and p.. And & AJ = 0
since J is an integral of the motion along a stellar orbit in any
spherical cluster. Consequently, the terms in & Ah which involve
derivatives with respect to 6, o, Py pQp sum up to zero, and we
arrive at expression (15) of Part 7 for the action of the unperturbed

Liouville operator on a spherical function,



31

One uses the variational principle (24) to study the stability
of a specific cluster model by inserting various odd-parity, spherical
trial functions, ¥ , into expression (24), and by searching for a
minimum value of wz. It follows from the necessary and sufficient
criterion (25) above that if a negative value of mz is associated with
any acceptable trial function, the cluster is unstable. If a trial
function is well chosen in that it approximates the eigenfunction of
the fundamental radial mode "to first order" in some sense, then
the value obtained for wz will agree '"to second order'" with the actual
value of the squared frequency of oscillation of the fundamental mode.

In §IIIb of Part 7 we discuss our choice of trail functions.
Our trial functions must have odd parity and spherical symmetry
because they correspond to the odd-parity part of the perturbation
in the distribution function. Hence, since Py and pcp can enter only
through J [see eqn. (9) abovel, any trial function must be odd in P
Another constraint on our choice of trial functions arises in the
following way: A bounded cluster possesses an equilibrium distri-
bution function, F, which vanishes for energies, E = Pys greater
than some limiting value (a star with E > its rest mass, m, can

" escape to infinity; i. e. it is not bound to the cluster). Unless F
drops smoothly to zero at this limiting energy, the perturbation in

the distribution function must have a term proportional to a delfa

function at the limiting energy. This is the proper mathematical
statement of the fact that the location in phase space of the cluster’'s
sharp "surface' varies. (Compare this with the fact that if the |
equilibrium density is discontinuous across the surface of a pulsating
star, then the Eulerian perturbation in the density includes a term
proportional to a delta function at the star's surface.) We can take

- account of this singular behavior by choosing the energy dependence
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of our trial functions to be Fo (cf. eqn. 20). Other reasons for this
choice are discussed in §¢IIIb of Part 7.

Our choice for the dependences upoﬁ r of our trial functions
is motivated by results from studies of the radial pulsations of gas
spheres. It is often frue that the displacement associated with the
fundamental radial mode of a gas sphere is nearly « r if the gas
sphere is not highly relativistic. If the gas sphere is highly rela-
tivistic, the fundamental displacement tends to be much larger in
the inner regions. For our star clusters we choose the radial
dependences of the trial functions in such a manner that the associ-
ated ""mean stellar displacements' have forms similar to these
fundamental radial modes of gas spheres.

In summary, using the above considerations as guides, we
choose our trial functions to be of the form

t
- “MT .
T =C)re" Fpp.; - (35)

we either set C'(r) equal to a constant or choose it such that the
mean stellar displacement has a given form [ condition (23) of Part
71. The constant u is a ""peaking parameter' with respect to which
minimization can be performed.

" In §IIc of Part 7 we substitute the trial function (35) into
the variational principle (24) and obtain an explicit, reduced form
of the variational principle. From this form [egns. (28) and (29) of
Part 7] one notices that the application of the variational principle
involves non-trivial integrations over r and over at least one
momentum coordinate,

Our method of evaluating the multidimensional phase-space
integrals which enter into the application of the variational principle
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is this: First we perform the required integrations over momentum
space (in some instances we can do so analytically). Then we re-
place the remaining integrals over the radial coordinate by their
equivalent differential equations. We integrate these differential
equations right along with the equations of structure for the equi-
librium configuration. In this way we can simultaneously compute
structure and dia:gnose stability. _

In §IV of Part 7 we use the necessary and sufficient vari-
ational principle, and also the sufficient criteria derived in Part 6,
to study the stability of clusters of identical stars with truncated,
isotropic Maxwell-Boltzmann velocity distributions. Such an iso-

-p,/T
thermal cluster has a distribution function F « e for Py less

than some cutoff value, where T is a constant; F is zero above the -
cutoff value [see eqn. (30) of Part 7]. At the beginning of §IV b of
Part T we spell out our integration scheme for studying the structure
and stability of isothermal clusters. It turns out (see Appendix A of
Part 7) that ten different momentum-space integrals enter into the
analysis. In Appendix A of Part 7 we devise a method for evaluating
seven of these in terms of the remaining three, Unfortunately, the
remaining three integrals, two of which also enter into the compu-
tation of the structure of the model, must be computed numerically.
In 8§V of Part 7 we study polytropic star clusters. By
definition, these are clusters whose isotropic pressures and total
densities of mass-energy are related by the relativistic polytropic
law (40) of Part 7, In ¢V b of Part 7 we use slight generalizations
of methods due to Fackerell to obtain the distribution functions, F,
- which give rise to the polytropic models. At the beginning of §Ve
of Part 7 we summarize the integration scheme which we use to
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study the structﬁre and stability of polytropic clusters. Fortunately,
we discover in Appendix C of Part 7 that all the momentum-space
integrals which enter into the stability analysis can be evaluated
analytically,

In §IVb of Part 7 we carry out our stability analysis for
isothermal clusters, and in §Vc of Part 7 we study polytropic
clusters, In both studies we collect the equilibrium configurations
into smooth sequences parameterized by the central redshift, z,
(redshift of a photon emitted at the center of the cluster and received
at infinity), of a model. As zc incx_'eases along such a sequence, the
models hecome more relativistic.

Our analyses indicate not only that the onset of collapse occurs
along each of a wide variety of sequences of isotropic clusters, but
also that the onset of collapse is largely independent of the nature of
the sequence. As z, increases from zero alQng each sequence, the
contrast between the densities of stars in the interior and outer
regions of a cluster increases, and the fractional binding energy
(the gravitational binding energy divided by the total rest mass)
increases, When z, reaches a value of the order of 0.5, the fraction-
‘al binding energy reaches a maximum; and thereafter it oscillates.
To within the accuracy of our calculations, the variational principle
indicates that instability against gravitational collapse sets in at the
peak of the fractional binding energy, which is always near z, = 0. 5.
(See Tables 1-6 and Figure 2 of Part 7.)

As we discuss in §IVb and §Vc of Part 7, in most situations
the sufficient conditions for stébility derived in Part § are much less
powerful than the variational principle. In fact, it turns out that the
criterion associated with equation (31) above yields vacuous results
for all isothermal and polytfopic models. Further, the criterion of
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§II1 of Part 6 which relates cluster stability to gas-sphere stabﬂity
is useless for studying the isothermal models. The gas spheres
which correspond to the isothermal models of Part 7 are all unstable.
Turning to the polytropic models', we find that all of the gas spheres
which correspond to the clusters of Tables 5 and 6 of Part 7 are un-
stable. And the gas spheres which correspond to the polytropes of
Table 4 of Part 7 (the "adiabatic' polytropes of index 2) become un-
stable when the central redshift reaches .the value z, = 0. 315,

Our analyses suggest an idealized story of the evolution of a
spherical cluster: It might evolve along some one-parameter
sequence of equilibrium configurations, by means of stellar col-
lisions and evaporation of stars. When two stars collide and coa-
lesce, they increase the cluster's rest mass and hence its fractional
binding energy. When a star gains enough energy through cncounters
to escape from the cluster, it carries away excess kinetic energy,
thereby leaving the cluster more tightly bound.” Consequently the
cluster should evolve along its sequence toward states with larger
and larger fractional binding energy. When the ¢luster reaches the
point, along its sequence, of maximum binding, quasistatic evolution
.must stop because collisions and evaporation could only increase
further the fractional binding energy of the cluster. Something else
must replace quasistatic contraction -- and indeed it does: The
cluster undergoes relativistic gravitational collapse.

In Part 7 we avoid consideration of isotropic clusters which
have high-density cores surrounded by extended, diffuse envelopes
(i.e. clusters with ratios of mean density to central density < 10'3).
Our experience indicates that an accurate study of the stability of
such a "core-halo" cluster cannot be achieved with the simple trial
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functions (35). However, we know of no sequence of isotropic
clusters for which the fractional binding encrgy pcaks at a central
redshift, Z,s significantly different from 0.5. Hence, it appears
likely that all isotropic clusters with zZ, 2 0.5 are unstable, One
could attempt to make this result more definite by searching for a
theorem which relates the onset of instability to the behavior of the
binding-energy curves associated with pruperly constructed
sequences of clusters. Sucha theorem would be analogous to the
theorem which we use for gas spheres in Part 4, and which enables
us to diagnose the stability of the stars along isentropic stellar
sequences by simply examining the .associated binding-energy curves. -
In any event, our analyses suggest that it will be very difficult,
perhaps even impossible, to construct stable clusters with central
redshifts as large as ~ 2, 4. Such clusters are needed in the Hoyle
and Fowler (1967) star- cluster modecl for the quasi-stellar sources.
Hopefully, future research will decide this issue conclusively, and
will cast light on speculations that violent events in the nuclei of
galaxies and in qﬁasars might be associated with gravitational

collapse.
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Appendix to Part 3

In this appendix we discuss certain aspects of relativistic
kinetic theory which are relevant to our analyses.

We want to discuss measurements made by local observers,
Associated with a local observer is the unit vector, xa, tangent to
his world-1line through spacetime, This tangent vector is just the
4-velocity of the observer; i.e.the 4-momentum of a particle which
is at rest with respect to the observer is p® = m xa, where m is the
rest mass of the particle.

Suppose that two spacétime évents near a local observer are
separated by an infinitesimal displacement dx%, The physical length,
d4, between the two events, as measured by the observer, is the
magnitude of the projection of dx™ onto the 3-space orthogonal to
the observer's unit tangent vector, 2%, The operation of projection
- is most easily performed through use of the projection operator

P = - A

‘where gas is the metric tensor of spacetime. The projection of
dx” is
B

a® = POLB dx® = dx® - x“xﬁdx- . (A2)

(Of course, indices are raised and lowered by contraction with the
metric tensor.) Hence the physical length, d¢, is

at = /et ) = /-[aax - (° dxa)z 1 . (A3)
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(The overall minus sign under the radical is due to our choice of
convention that the fundamental line element, equation (1) of this
Summary, has signature [+ - - -].) Notice from equation (A2)
that, as viewed by the observer, the spacetime displacement, dxa,
is a pure physical length (i. e, the two events separated by the dis-
placement dx” are simultaneous with respect to the observer) if
and only if A 8
with respect to which the observer is at rest (in such a coordinate

system the spatial coordinates, xl, are constant along the ohserver's

dxﬁa vanishes. In a curvilinear coordinate system

world line), the only non-vanishing coinponent of the observer's 4-
velocity is )\0 = 1// €00° Hence dx” is a pure physical length if and
only if, in a rest system for the observer,

Bag \dxP = €6 dxa//’goo = dxo /gy, = 0 . (A4)

In a rest system for the observer, who comoves with the co-

ordinate system, expression (A3) reduces to

de =/[-(gy; - gOigoj/goo)dxidxj] = /(@) g, axdx).  (A5)

(A different derivation of this expression is given in Landau and
Lifshitz 1962, §84.) This implies that the 3-space orthogonal to

the observer's 4-velocity is described by the 3-dimensional "metric"
tensor (3)gi. . It follows that the physical 3-volume elements, dS,
measured b}lz an observer are given in terms of the spatial-coordinate

elements, dxl, of a rest system for the observer by the expression

as = /(-®g)axt ax?as’, (A6)
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where (B)g is the determinant of (3) By:e (Synge and Schild 1949,
chap., 7, discuss in some detail the coilcept of volume for general
curvilinear coordinate systems. )

A quantity which plays a fundamental role in our statistical
treatment of relativistic star clusters is the distribution function
(oi' density of stars in phase space), 7. Lct attention be focused
upon a group of stars localized near a spacetime event, X, ina

star cluster, and with 4-momenta in the range
- 0,1.2.3
d7,, =/{-g) dp” dp” dp”dp” = -dp, dp; dpy dp,//(-g) (A7)

centered about p. Here g is the determinant of the metric tensor,

gu\):

variant components of the 4-momentum of a star in some curvilinear

of spacetime, and pOL and pOL are the contravariant and co-

coordinate system, The expressions in definition (A7) are invariants
(see e.g. chapters 1 and 4 of Synge 1960). Denote by A O the 4-
velocity of the observer at x who moves with these stars. As
mentioned earlier, x'“ = p“/ m. Suppose that this comoving observer
finds that dN of these stars occupy a physical 3-volume dS'. Then

- the distribution function, 7, is defined by

7 = dN/(d'zrpdS’) . (A8)

Nis an invariant by construction, If another observer at the space-
time event, x, has a 4-velocity 2% # 2 %, then, because of the
Lorentz contraction, he finds that the dN stars in question occupy

a physical 3-volume

s = as'/(\%\) = (mA%p )as', (A9)



40

In terms of the curvilinear coordinates of a rest system for this

observer, it follows that

3

1

ds

(og/m/gy0) /(- (B)g) ax ax? dx
(A10)

1,23
(pg/mgy) / (-g)dx” dx"dx” = dv_ .

(The first equality results from combining equations [A6] and [A9],
and the fact that A 0
of an observer's 4-velocity in a rest system. The second equality

= 1// 00 is the only non-vanishing component

results from the relation g = gOO(S) g, which is easily proved by
expressing the determinant g in terms of an expansion along the
zeroth row of the matrix gch‘) d’?/‘x is an invariant by construction.
Combining equations (A7), (A8), (A10), and the expression,

2 a _ ab .
m” = p P =g P Pg, (A11)
for the rest mass of a particle in terms of its 4-momentum, we
obtain

- _ -, 0 1. 2.3 -1
n= dN/d'Irpd?rX = dN[-(pO/p goo)dx dx"dx dmdpldpzdp3] , (A12)

in an arbitrary curvilinear coordinate system. Equations (A10) and
(A12) should replace the first of equations (1; R) and equation (2; R)
of Part 5, which are valid actually only in coordinate systems for
which 801 = 0.

Notice from equations (A8) and (A11) that the product

(ﬁ/m)dl?rp is an invariant. Hence
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= [ . ‘ .
TaB J @ /m) P, psd?rp (A12)

is a tensor of rank 2, the stress-energy tensor, It follows from

equations (A8) and (A9) that Tas)‘a is just the amount of covariant

4-momentum, P, per unit physical 3-volume as measured by the

B

observer with 4-velocity A%, More particularly, Ta A*2" is the

B

local density of energy as measured by the observer, and the pro-

jection of the vector Tcx XB

B
velocity, ka, measures the local spatial flux of energy per unit

on the 3-space orthogonal to the 4-

area per unit time. The projection of the tensor TaB on the 3-
space orthogonal to 2% measures the stress (i. e. the flux of spatial
momentum in different spatial directions) due to the motions of the
stars in a cluster (for a detailed discussion see Synge 1960, chap. 4).

In the absence of collisions between the stars which compose
a clusfer (the justification for our using such an idealization in our
investigations is discussed at the beginning of this Summary), a star
travels along a geodesic through spacetime., If proper time, s, as
measured by an observer moving with a star is used as a parameter
along the star's geodesic, then '

ax>/ds

p%/m = g% py/m, (A13a)

dpa/ds -(1/2m)agBY/ax(JL PgPy > (A13b)
along the geodesic (see, e.g. Synge 1960, chap. 3). Here X is the
star's position in spacetime, and P and m are its 4-momentum and
rest mass, In a rest frame for the star ds =/ €00 dxo (compare

with equation 2).
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Just as in Newtonian theory, so also in general relativity,
in the absence of collisions the distribution function, % , is con-
served along the path of a star,

8N = dN/ds = 0 (A14)

(Walker 1936). Here the operator §, the Liouville operator, is
the derivative with respect to proper time along a star's geodesic.
Equation (A14) is called the Boltzmann- Liouville, or collisionless
Boltzmann, equation. We can prove equation (A14) by generalizing
a familiar proof of the corresponding Newtonian equation:

The motion of a particular star in a cluster can be described
as a path through an 8-dimensional phase space, the tangent bundle,
~ four of whose coordinates are the coordinates, xa, of some space-
time coordinate system. The remaining coordinates are four
momentum coordinates, At present it is convenient to choose these
latter coordinates to be the covariant components, P of the mo-
mentum of a star with respect to the chosen spacetime coordinate
system, The element of volume in the tangent bundle is taken to be

8 0

dav = -dpo...dp dx dx3

3 . o ) (A15)

and is an invariant under spacetime-coordinate transformations,
For our choice of independent coordinates in the tangent bundle, the
invariant Liouville operator, 8§, takes the form

on o dh _ax®ah % 3n
T ds ds o = ds 3D,
g (Al16a)
_p* 3h 1 ag™ o op 2h
m 3 5% Zm 5 x& B Y apa
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when operating on some function, h, in the tangent bundle. The last
equality follows from equations (A13). Notice from equations (A13)
that equation (A16a) can be written in the equivalent form

o BY
Sh = ;i&_(grﬁ_h) + aipa(- %ﬁ :i“ PP, h) . (A16b)
We are interested in integrating expressions similar to

(A16b) over small domains of the tangent bundle. To simplify the
notation, we introduce what may appear to be a complication, We
denote by X (A =0, ..., 7) the coordinate, x* and p,, of the
tangent bundle with the identifications

0 3 L4 7 0 3
X,O.I,X’X’...’X Epo,‘.',p:g’x,ﬂii,x.

(A17)

Expression (A16b) can then be written as
sh = ahl/ax® | (Al6c)

with an obvious definition for the tangent-bundle vector h™. It
follows quite generally from the generalized Stokes theorem (Synge
and Schild 1949, chap. 7) that

[o@ v = Jartaxtyal. .. ax’

D ' D (A18) -
A T

=a]J)“hd>:A,
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where 3D is the 7-dimensional surface which bounds the tangent-

bundle domain D, and where the surface elements d72
by

are give
A given

AO AG
1. . 3X 30X 0 6
dEA"ieAA A O « s 6 dy ooody .

0 """""6 3y Y

(A19)

In definition (A19) ¢ A A is the totally antisymmetric permu-
0 L BN ] 7

tation symbol (60. 7= 1); yo, cees y6 are parametric coordinates
on the boundary 3D; and the plus or minus sign is chosen so as to
properly orient the surface elements.

We single out a small number, dN, of stars whose paths fill
up a thin tube in the tangent bundle, Of course, we can do this
actually only in the absence of collisions; otherwise stars would in
general enter and leave the tube. At some position along this tube
we choose an observer and denote by dlz that cross-sectional slice
through the tube which lies on the observer's 7-surface of simul-
taneity. The paths of the stars intersect dl‘a at a value s = 815 Say,
of proper time along the tube. At s = Sq =8¢ + ds we choose another
observer and denote by dzz the corresponding cross-sectional slice
for him., We denote by dD the cylindrical section of the tube bounded
by di):, d,Z, and that portion, d32, of the tube's wall between dlz
and dzz, We set h =1 in equation (A18) and obtain

0= [ 1hd's,. (420)
dlz + dzz

(’fhe surface integral over d.T= vanishes because at each point of

3
d32 the vector 1A is tangent to dsz by construction.) We evaluate



45

the integral over dlz by choosing parametric coordinates in equation
(A19) such that

0 3 4 6 1 3
Yoo eees ¥ ¥y eees ¥V SDgs evey Pgy X, o0y X, (A21)

where x are the coordinates of a rest system for the observer at
5 =84 along the tube. Since -dlE is a surface of simultaneity, xo
varies over the surface according to equation (A4). Combining
equations (A4), (A19), and (A21) we obtain, for the proper orien-

tation of dli:,
S S
disy = ... =45, =0,
7. 7 7. m
8oo91 %4 = Bpod V» --es Bppdy Ty =8p3d'Y, (422)
a'y = apy...dpgaxl... ax’.

Equations (A16b,c) and (A22) yield

AT 1 3
17d, =, = (po/mgoo)dpo... dp,dx” ... dx7, (A23)

which, except for a niinus sign, is just the invariant, 7-dimensional,
phase-space element, d¥ d?rx, used to define the distribution
function, 7 [cf. eqns. (A7), (A10), and (A12)]. The form of the
expression for the integral over dzz obviously differs from equation
(A23) by only a minus sign., Thus the phase-space volume, d?fpd?fx,
occupied by the dN stars is conserved along a star's path. Con-

sequently, the distribution function
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n = dN/d'I/‘p d'zrx

is conserved, and the mathematical statement of this conservation
law is the Boltzmann-Liouville equation {eqn. A14). Q.E.D.
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1. Introduction and Summary

In recent years relativigtic astrophysicists have developed an
extensive body of theoretlcal know;edgé concerning the structure and
stability of relativistic stars -~ i.e., high-density white dwarfs,
neutron stars, supermassive stars, and configuratibns which are unstable
against gravitetional collapse, and therefore which should not be realiz-
able in nature. ([For reviews see HARRISON, THORNE, WAKANO, and WHEELER
(1965), denoted henceforth as HTWW; WHEELER (1966); THORNE (1967); and
ZEL'DOVICH and NOVIKOV (1?67).]

One part of this body of knowledge coﬂcerns itself with the manner
in which general relativity cétalyzes instabilities in stellar models. '~
It is well known that in general relativity the gravitational forces at
work within a stellar model are more sensitive to perturbations of that
model than they are in Newtonian theory, and hence that relativistic
forces induce instabilities which do not arise in Newtonian theory. How-
ever, there appears to remain some uncertainty concerning the precise
strength of the relativistic instabilities in highly relativistic stars.
For example, there is occasionally debate as to whetﬁer one can construct
sfable stellar models whose structures are as highly relativistic as may
be desired. |

In this paper we seek to partially dispose of this uncertainty.
Specifically, in Section 2 we extend our understanding of the manner in
which general relativity cataiyzes'instabilities by presenting an analysis,
in terms of adiabatlic indices, of the strength of the relativistic in-
stabilities in highly relativistic, spherical stars.

In Section 3 we study how the presence of these instabilities is
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reflectéd in the structures of hot stellar models with radially invariant

entropy per baryon. We show that, because of the instabilities, Plota of
bindingAenergy versus radius for certain one-parameter sequences of such
models must undergo damped high-pc sﬁirals (where pc, the central density
of a model, parameterizes each sequence). This behavior is analogous to
the behavior of mass-versus-radius curves for éertain sequences of cold
stellar models at the endpoint of thermonuclear evolution (see, e.g., HIWW,
chap. 5); and it has been observed (though not explained) in a number of
numerical studies of hot, relativistic stellar models (e.g., BARDEEN, 1965;
TOOPER, 1965).

Throughout this paper we use units in which the speed of light, ¢, and

Newton's gravitation constant, G, are equal to unity.

2. Relabtivistic Instabilities in Ultrarelativistic Stars

CHANDRASEKHAR_(lssha,b) and FOWLER (1964) have developed independently
a beautifully simple method for measuring -- in the post-Newtonian regime --
the effects of general relativity upon the stability of stars. Their
analysis,:in slightly modified form, is the following: Consider a particular

spherical stellar model with mass M, radius R, and adiabatic index

r, = [(p+p)/p] (ap/ap)constant entropy ’ (2)

which is assumed to be constant fhroughout the star. Here p is the total
density of mass-energy and p is the pressure of the star's matter. The
stability of the star will depend upon the value of I',, and upon the star's
structure. Ignore for the moment the actual value of Pl. Pretend that the

star poasesses a different adiabatic index, Pcrit’ which is also constant
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throughout the star, and which is Just the right magnitude to make the
fundsmental mode of radial pulsation of the star neutrally stablg. Then
e comparison of the actual value of the adiabatic index with the "eritical
value', rcrit’ will reveal whether the star is stable or unstable. If Pl
exceeds I, , the star ia stable; if I) is less than T ., the ster is
unstable.

In Newtonian theory T' ., is equal to 4/3 independently of the structure
of the stellar model. However, in general relativity Pcrit exceeds 4/3.

(This is the manner in which relativistic instabilities manifest themselves.)

In the post-Newtonian regime Pcrit differs from 4/3 by an amount of the

order of the relativistic effects on the star's structure:
r -L4/5 =
erit L /3 c(eM/R) << 1 , (2)

where C is a constant, usually between 0.5 and 1.5, which depends only on
the Newtonian structure of the star.

In this section we examine the critical values of the adiabatic index
for highly relativisgtic stellar models, where the post-Newtonian analysis
ig invalid. More spécifically, we seek to dérive the following approximate
eriterion for stability:

Consider & relativistic, spherical stellar model whose distributions of

total density of mass-energy, p, and of pressure, P, are related by an

equation of state which approaches the "gamma-law" form

P = (Pu"l)p ’ (3)

where Ph is a constant, at densities greater than some limiting value,

Assume that the adigbatic index,

Plim’

r, = [(¢ +p)/pP] (BP/ap)cbnstant entropy ’ )
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of the model is constant throughout the region o > plim' If the density,

pc’ at the center of symmetry is sufficiently greater than p ,» then the

lim
critical adiabatic index, Pcrit’ below which the model is unstable agalnst

adiabatic radial perturbations,

T} <T 4, => instsbility, (5a)

is given (approximately) by the solution of the transcendental equation

Prse ® i - o (-2) - § Pk LRI R
erit crit F; T I mn (R /rcore) ’
| 2(I‘h - 1) 3
Teore ~ (0.2 LU, - L )sut > (8e)
y *HTy - e,

L
with R the radius of the model = (surface area of model/kx)Z.

We should note that almost all physically interesting equations of
state thus far préposed for cold matter at the endpoint of thermonuclear
evolution or for hot non-degenerate matter satisfy the gamma law (3) at
large densities [see, e.g., THORNE (1967) for references and examples of
such equations of state].

We begin the deriﬁation of our stability criterion by focusing atten-
tion upon a spherical equilibrium configuration with central density
P >> Pyyye 1T we employ Schwarzschild'cdordinates td describe the geocmetry

of spacetime, the metric assumes the familiar form

dsa _ ev(r) dt2 _ e?\(r) dr2 2

- r° (a6° + sine do°) ,  (8)

and the'non-linear effects of general relativity lead to the following
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peculiar structure (HIWW, chap. S): In the central region of the con-

figuration is a high-density core of radius ~ , where

b ol
core

i
[ 2Ty - 1) r

r =

core (T2 + 4T, - k) bmp_

throughout the core the density, the pressure, and the metric component
ev are approximately constant and equal to their values at the origin,

r = 0. Surrounding the core is a mantle in which

(5) ~ (0,-2) o) 2 (0, - 3 A Ll
e - =t 1 e s R
o y =3O (1,2 +47, - 4) bmr® ' (r%p ) *
2 (T -1 m (T, 1/t
m(r) = 2( ekt PO ——-3-5—1:-29-)-} , (8b)
- (0,5 + 40, - 1) (% ,)"
ev(r) ~ constant X p-2(l-l(Pu) »  (8¢)
a = 34 -1/(er,) ‘ ,  (8a)

where @ and 7 are certain oscillatory functions of n/bc (cf. HIWW), and

where m(r) is the total mass-energy within coordinate radius r,

n(r) = (r/2) [1 - e_‘“r)] - [ o(x) bmrPar (9
» 0

Extending from the outer edge of the mantle (that point at which p = p,, )
to the surface of the:star is an envelope in which the stfucture ig compli-
cated, since the simple limiting form (3) for the equation of state is not
valid there.

We seck to analyze the stability of the above configuration by
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studying the solutions_for it of the stellar eigenequation governing

adisbatic radial perturbations [CHANDRASEKHAR (196l4a), Eq. (12); see also
BARDEEN, THORNE, and MELTZER (1966), BEq. (3)7]. MELTZER and THORNE (1966)
have obtained approximate solutions of the stellar eigenequation in the
core and mantle under the assumption that Fl = Ph = h/s there. It i8 a
straightforward task to generallize their analysis to situatlons where

I, #T), # 4/3. Such a generalization ylelds the following solution of

the stellar eigenequation for the special case of zero pulsation frequency:

[3/(kr)2] [cosh kr - sinh kr/(kr)] in core

Bry(r)

= = { Ar~2® cos b in(x/r )+ B]. in mantle (10)

core

something much more complicated in envelope.

Here A and B are constants, and

k= [ele O F, b o= WO - (ME/M,-1) - AR (1)

The solution Bro, if it satisfies the correct boundary conditions at the
surface, r = R (in general it does not), corresponds physically to the
" displacement associated with a radial mode which is in neutral equilibrium
(i.e.,.a zero-frequency mode).

We are especially interested in the solution Bro because it is known

that the number of unstable normal modes of radial oscillation is equal
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: *
to the number of nodes which this solution possesses. Notice from Equa-

tion (10) that, to our level of approximation, the condition

b fn (r/r ) +B < nf2 (12)

core

must be satisfied if ﬁro is to have no nodes in the mantle or core at
values of the radial coordinate less than r. We determine the phase factor
B by demanding that the logarithmic derivatives of the core and mantle

solutions (10) match at the common boundary, r = r , of the core and

core
mantle. Thus we obtain

B~ tantdLl|3, éL i} roope PR Eroone ' (138)
b |2 , cosh KT ore - 8inh krcore/{ircore)

For l"l 2 Ph (the region of interest to us since Pcri‘b turns out to “!:‘.e
greater than Ph) the value of the last term in braces is always sufficiently

close to'S that we can say

B~ tan [- (1/*6)(3/2‘ - 1/1,)] . (13b)

¥cee BARDEEN (1965) [reviewcd by BARDEEN, THORNE, end MELTZER (1966)7, who
points out that this_staxement is true actually only when the surface, r=R,
is a singular point of the stellar eigenequation. If R is a regulér point,
the number of unstable modes is either n or n+1l, where n is the number of
nodes in the solution 5ro. However, we shall ignore this distinction ne-
cause, as will become evident, it does no£ introduce any significant error

into our already-approximate analysis.
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It is evident from Equations (10)-(13) that there are no nodes of
Br, in the core, and that any node in the mantle moves outward to larger
values §f the radial coordinate as the value of Pl in the core and mantle
is increased. Once such a node reaches the common boundary of the mantle
and envelope, it moves outward much more rapidly through the tenuous en-
velope as the core-mantle value of Fl is incressed further. The node
eventually disappears at the surface for some core-mantle value of I'., which

1
is to & large extent independent of the precise manner in which I', varies

1
in the envelope. Therefore, since we shall assume that condition (12) (with
b constant and equal to its core-mantle value) is approximately valid out
to the surface, we éhall tend to overestimate the eritical core-mantle
velue, Pcrit’ of Pl for which Sro possesges one node only, and for which
that node is located at the surface. However, the error thus introduced
will be slight in most cases, since the radlal coordinate enters only
loga.rithﬁically in condition (12). According to Bardeen's node-counting
theorem, the stellar model is stable if and only if the core-mantle value
of Pl exceeds this critical value (however, in this connection recall the
preceeding footnote). Consequently, we can combine Eguations (12) ana (13),
and thereby complete the derivation of our approximate criterion for
stability. QED.

In the ultra-relativistic limit, Equations (5) imply that

-1
3 (3 1
1im T =a[—-—-(——-1)+] . (k)
o, + 0o erit T, \T, | N

Since the speed of sound, B 4> 1s given by the relation (CURTIS, 1950)

soun

2

Bsound = (ap/ap)constant'entropy = I'yp/(p +32) , (15)
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it follows from Equation (3) and the limit (14) that

5 G(Ph - 1)
Peouna > 3(3/F), -1) + T, /h (16)

in the core and mantle 1f a model is stable in the limit pc + 00, If
Ph 2 1.45 the inequality (16) yields a speed of sound greater than the

speed of light (= 1 in our units), which is unphysical. Hence if Ph 2 1.45

the principle of causslity alone places an upper limit upon the central

density of a stable model. Actually, for any value of Ph = 1, the ratio

Pcrit/Ph approaches a limit sufficiently greater than unity such that it

is perhaps difficult to imagine a realistic situation where I', > Pcr

1 it 8%

ultrahigh densities.

In order to examine the accuracy of our approximate criterion for
stability, we have applied it to the cold Harrison-Wakano-Wheeler stellar
configurations which are governed by the Harrison-Wheeler equation of state
(HTWW, chap. 10). We exhibit the results in Figuré 1, where we have
collected the configurations in the usual way into a sequence paremeterized
by the central density, pc. For comparison with our approximate formula
fbr'rcrit’ we have calculated the exact valué of Pcrit for each configura-
tion by’setting Fl-equal to a constant throughout the configuration, and
by numerically integrating the stellar eigenequation for zero pulsation

016

frequency. For densities p 21 g/cm?, the Harrison-Wheeler equation of

state approximates the gamma law (3) with r, = 4/3. Although the peculiar

core-mantle structure used in our derivation is not fully developed until

17 3

Pa 2.1018 g/cms, Figure 1 shows that, for p_ as small as 107  g/em, the

stability criterion (5) predicts values for Fcrit which agree to within
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~ 5% with the exact values of Fcr obtained numerically. This agreement,

it
which improves rapidly with increasing pc, is modified hardly at all if

Pl is made to vary in some arbitrary way in the envelope.

3. High-Density Spiraling of Bindlng-Energy Versus Radius

Curves for Isentropic Sequences

It has been known for some time that the strength of the relativistic
instability is reflected in a peculliar behavior of mass versus radius curves
for certain sequences of cold stars. This peculiar behavior was discovered
independently by DMITRIEV and HOLIN (1963), HARRISON (1965), and WHEELER
(HTWW, chap. 5) and may be summarized as follows: Consider a family of
spherical stellar models governed by a unique equation of state p{p) which
approaches the form (3) at large densities. The membera of such a family
can be arranged into a sequence parameterized by the central density, pc.
(An example of such a sequence is the family of cold Harrison-Wakano-Wheeler
configurations associated with Fig. 1.) For such a sequence construct a
curve of mass M versus radius R (M upward, R to the right), parameterized

by central density, P, As p_ increases, this M(R) curve asymptotically

undergoes a high-oc, counterclockwise spiral into & limit point, which
corresponds to the configuration with infinite .central density. This
agymptotic behavior is intimately connected with the stability of the
highly relativistic members nf the sequence in the following way (see,
e.g., THORNE, 1987, Sections 4°2.1 and 4°2.2): As the central density in-
creases through each extremal point (each maximum and minimum of M) along

the counterclockwise spiral, a normal mode of radial oscillation with
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r, - B3R %§§%§ : (27)

becomes unstable. Hence more and more modes become unstable as pd increases.

adisbatic index

Numerical studies by BARDEEN (1965), TOOPER (1965), and others have
revealed ﬁhat‘the M(R) curves for certain sequences of hot stellar models
exhiﬁit analogous high-pc spirals. However, the existence and form of the
spiraling has been explained analytically only for sequences of cold models.

We wish to show that high-pc spiraling must exist for certain hot
sequences because of the presence of an increasing number of unstable modes.
We consider a one-parameter sequence of spherical stellar models for which
(i) the entropy per baryon, s, is radially invariant in each model (isene
tropic configuration); (ii) thé models all have the same radially invariant
fractional nuclea; sbundances and the same total number of baryons (and
hence also the same total rest mass); (iii) the matter from which the con-

figurations are made is described by equations of state for the density of

mass-energy, P, and the density of rest mass, P

01
p=0(p,8) , P,=0py(p,8) ) (18)

which assume the limiting forms

/Ty

p=p/N,-1) . oo =Klsk (19)

for/large p, where Ph igs a constart and K(s) is an unspecified function of
the entropy per baryon, s. Such a family of models can be parameterized
by s o}, more conveniently, by the central density, pc. Stellar configura-
tiqns with the above properties have been studied extensively, especially

in connection with the theory of'supermassive stars [see FOWLER (1966), also
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THORNE (1967) chaps. 5 and 6 for reviews and references].

We shall show thet the M{R) curve for the above sequence of hot isen-

tropic models undergoes the high-p spiral

- (Bg-Eggg) = M-M, = Gyo_* stn [w'/2) me +8y],  (208)

R-R, = Cp p;a/’(soo) sin [(b'/a) n pc+5R] . (20b)

Here E.B oo ? Moo and R_ are the bindihg ene;'gy, mass, and radius of the

member of the sequence with infinite central density, and s . is its entropy

per baryon; the constants CM’ CR’ BM’ and SR satisfy

Cy Cg sin (BM- GR) >0 , (20e)

8o that the spiraling in a curve of M up,R to the right is clockwise; the

constant a 1s defined by Equation {84d), b' is defined by
. 2 Ik
b' = (-9/T) + 11/T) - 1/4) ’ (204)
and £(s) > 0 is defined by the behavior

p(r) -——; (R- r)z(s) , (20e)
r -

which the unspecified equations of state (18) impose upon the density near
the surface.

We begin the derivation of Equations (20) by noticing thet Equations
(7) and (11) imply that the number of nodes of the zero-eigenvalue solution
(10) in the mantle of a high-density configuration increases by 1 for

approximately each increase of the central d.ensity , P o by +%the



62

amount

O me, = en(--g/rh2 + 11/Ph - 1/u)‘% ', (21)

if Pl = Ph‘ And Equation (19) yields Pl ~ Ph for our isentropic sequence
in the high-density limit if it is assumed that the adiabatic index is |
given by Equation (17). Hence it follows from BARDEEN'S (1965) node-
counting theorem that in the. high~density limit an additional radial mode
with adiabatic index (17) becomés unstable for approximately each increase
in p, by the emount (21). BARDEEN (1965) has also proved the following
theorem for our isentropic sequence: If the M(R) curve bends in the clock-
wise direction as pc increases through a maximum or minimum of M, a radiel
mode with adiabatic index (17) becomes unsteble there. Otherwise a mode
becomes stable. Further, & mode can change stability at no other point.
Since modes become unstable at the rate (21), this theorem enables us to
conclude that in the high-p, limit, the M(R) curve bends continuously in &
clockwlse fashion, with successive maxima and minima separated by the amount
(21).

To complete our derivation of Equations (20) we compare the structure
of a high-pc member of our isentropic sequence with that of the limiting
member of the seQuence, which has infinite central densiﬁy, pc. Notice
that the structure of the infinite~pc configuration, from the center of

symmetry to the outer edge of the mantle, is described by the limiting forms

of Equations (8) and of the equation

1-1/T 1/r
K(s) (k) Y [E(I‘h-l)ﬂ & -2y,

m (T, , 0/t
n (r) sos T 1 + _QS_&_i_gﬁz , (22)
(Ph +M‘h-)+) | (51‘1‘-2) T P
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for Dc. + o, 8+8_ . Here mo(r) is the rest mass within radius r, and
ﬂb is an oscillatory function of rch; we use the subscript "oo" to denote
the value of a quantity for the infinite . configuration. Equation (22),
which 48 valid only in the mantle of a high—pc configuration, can be derived
from Equations (8a,b), (19) and the expression

mo(r) = j‘;r po(r)e}‘/e brrCdr . (23)

The infinite-p  configuration must contain the same total rest mass, My,
as does each of the other members of the sequence, and thls requirement
uniquely determines its entropy per baryon, L which enters into the
equations of state (18).

Consider the differences Ap(r) = p(r) - poo(r), etc. , between the
velues of various quantities at corresponding radil of a particular high-p

configuration and the infinite-p c configuration. Equations (8) imply that
op(r) = o0(r) = ou(r) = o ®

in the mantle. That these quantities e D;a' also in the envelope, and that
Apo(r) o« O(r) o D;a' in the mantle and envelope, are guaranteed by the
following self-consistent argument: First assume (incorrectly) that

NS = 8 - 8., = 0; which implies through Equations (19) and (22) that

8o ,(r) = omy(r) o« p;a' in the mantle. For &S = O, the equations of structure,

dp/dr = - (P +p)(m +1+:tr3p-)/[r(r_- 2m) s
dmfar = burio , (24)
dm./dr = lmr?ew e P s

may be combined with‘the equations of state (18) to obtain a closed set of
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first order "perturbation" equations in Op, &9, 20, Anm, and Lmy which

guarantee that these Gifferences are of order D;a in the envelope if they
are of order 0;8’ in the ma.ntle.* (The proof is essentially identical to
that given in Chapter 5 of HIWW for certain one-perameter sequences of
zero-temperature stars, so we shall not reproduce it here.) For the hot
stelia.r modelslof physical interest, p (and' hence also po) drops to zero
at the surface, R,

p -—-—; (R—‘r)z(s) S (25)
r >

where the exponent, £(s), is determined by the behavior of the equations

of state (18) at low densities. Since &9 « p;a' in the env;elope if &8 = 0,
the limit (25) implies that AR = R'Roo o 0;8‘/1(800) in such a casg. It
then follows from Equation (23) tha.t.the difference between the rest masses

of the two configurations is

oMy,

0

mO(R) - mOoo(Rco )

Ro A (r)/2
m,(R) - m, (R) - J;‘ DOm(?)e oo {7/

]

barar e« p c-a. . (286)

*For simplicity, the analyses of this section tacitly assume that the func-
tionalv relationships (18) are well behaved. However, one can show that the
final result, namely, the behavior described by Equations _(20), follows from
- less stringent conditions. For example, one can show that Bquations (20)
remain valid if the equations of state (18) allow a phase transition, i.e.,
if p experiences a finite jump as p passes some critical value. One need
only demand that the magnitude of this jump and the eritical wvalue of p be

smooth functions of s.
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[The first two terms in the final expression give AmO(R), which is guaranteed

to be « D;a; end the remaining integrai ig « p;a(l'+l/l).] Thus if Os = 0,
AMO is of oxrder oza but is in general not e@ual to zero. However, we are
demanding that all the members of our isentropic sequence possess the same
total rest mass, M, i.e., that O, = 0. Now one ineluctably deduces from
Equations (18), (19), and (24) that if the value of s for the high-p o con-
figuration is varied by some small amount €, the values of p, ¢, and m in
the envelope, and the values of po andimo in all regions, are changed by
amounts =« €. Hence Mb is changed by an amount « ¢. Consequently, since
oM,y “'p;a if &8 = 0, the correct value of A8 {the value 'for which oM, = 0)
o« p;a. And the values of 4p, &0, &0, Om, and Amg in the mantle and enve-
lope for the correct value of As cannot differ from their values for &8 = O
by amounts of order > D;é. But the values for &8 = 0 are of order D;a-

Thus we have succeeded in showing that

Ap(r) =20(r) = An (r) e fm(r) < Am(r) o 0;a (27)

in the mantle and envelope of a high—pc member of our isentrople sequence.

We can now combine Equations (25) and (27).in a straightforward fashion

to show that

AR = R-R &p;a/ﬁ(soo) . (28a)

Finally, Equations (9), (27), and (28a) imply that the difference between

the masses of & high-bc configuration and the infinite-pc configuration is

R
MM = M-M - {Am(n) - J;oopm(r) hnerr] = p;a . (28b)
i ]

Combining Equations (28) with the previocusly-obtained result that in the
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'high-pé limit the M(R) curve for our isentropic sequence bends continuously

in a clockwise fashion with extremal pbints separated by the amount (21),
we conclude that the M(R) curve undergoes the high-p, spiral described by
Equations (20). Since all of the members of the sequence possess the same
rest mass, a plot of minus the binding energy (- E, = M-MO) versus radius
exhibits the same behavior.

This spiraling is evident in Figure 2, where we exhibit the - EB(R)
curve for the adiabatic polytropes of index 2, which are governed by the
equations of state

2/3
oo = K(s30%/°, b=y +2p. (29)

Here K dependsluPOn only the radially invariant entropy per baryon, s. A%
high densities Equations (29) approach the limiting forms (19) with Pu==3/2.
By éombining the first of Bquations (24) with Equations (29), one can show
that ¢ = 2 in Equation (20e) for all of these models. In Figure 2 we
follow-BARDEEN (1965) (reviewed by THORNE, 1967, Section 5°1) and exploy
MO’ the rest mass of a model, as the unlt of length in terms of which all

other structural quantities are measured.

L. Conclusion

In this paper we have added two items to the current body of knowledge
concerning the structure and stability of relativistic stars. These items
reflect the strength of the relativistic instabilities in ultrarelativistic
stars; and they indicatg the difficulty involved in constiructing stablé
stellér models with arbitrarily large central densities.

I express my thanks to Professor Kip S. Thorne for suggestions and
advice concerning the work reported here, much of which was performed

while I was a National Science Foundation Predoctoral Fellow.
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Filgure Captions
Fig. 1. The criticel adisbetic index, Pcrit , for the Harrison-Wakano-
Wheeler stellar configurations. The configurations are para-
meterized by the central density, e o* Two curves are given
for Pcrit (e c): The exact, correct (under the assumption that
I‘l is constant throughout each configuration) curve as obtained
by numerical integrations (curve labeled "exact"); and the curve
given by our approximate formula (5) (curve labeled "approximate").
The approximations which went into the derivation of formula (5)
are valid, for H-W-W configurstions, only at central densities
P c 2 1018 g/cms; and this figure shows the formula itself to be

very accurate in this range.

Fig. 2. The curve of minus the binding energy versus radius for the

adiabatic polytropes of index 2. The curve is parameterized by

- the central density of total mass-energy in units of Mo'a, where
Mo is the rest mass of a model. PFPlotted horizontally is the radius |
R = (surface area of model/lm)% in units of 2M, (= gravitational
radius of model). Plotted vertically is minus the binding energy,

- EB’ in units of Mo. At each peak or valley of the curve a
normal radial mode becomes unstable. The curve undergoes. a
high-density spilral which 1s described by Equations (20) with
Py, =3/2 end ¢ = 2,
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5. Relativistic, Spherically Symmetric Star Clusters. |
I. Stability Theory for Radial Perturbations

(Co-authored by Kip S. Thorne; published in Astrophysical
Journal, 154, 251 [1968])
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RELATIVISTIC, SPHERICALLY SYMMETRIC STAR CLUSTERS
I. STABILITY THEORY FOR RADIAL PERTURBATIONS*

JamEes R. Ipsert anD Kip S. THORNE]
California Institute of Technology, Pasadena
Received March 6, 1968, revised April 4, 1968

ABSTRACT

There is some indication that very dense star clusters might play important roles in quasi stellar
sources and in the nuclei of certain galaxies. The roles of such star clusters should be strongly influenced
by a relativistic instability, which sets in when a cluster surpasses a certain critical density. In this paper
the groundwork is laid for the study of that instability: the theory of small, radial perturbations of a
spherically symmetric star cluster is developed within the framework of general relativity. The cluster is
idealized as a solution to the collisionless Boltzmann-Iiouville equation (an idealization which should be
valid on the short time scale associated with the relativistic instability). The equation of motion governing
small radial perturbations is derived and is shown to be sell-conjugate, From the equation of motion
follows a variational principle for the normal modes, which provides a necessary and sufficient condition
for the stability of the cluster. Also presented are (1) the corresponding Newtonian analysis, much of
which has heen develaped previously by Antonov and by Lynden-Bell, {2) the relationship between the
Newtonian and relativistic analyses, and (3) necessary and sufficient conditions for the existence of a
zero-frequency mode of radial motion.

1. MOTIVATION

Between 1964 and 1967 it was generally believed that the redshifts of quasi-stellar
sources (QSSs) could not possibly be gravitational in origin. (One of us—K. S. T.—was
a particilarly firm proponent of this view.) Not only are there difficulties with the sharp-
ness of the spectral lines in a gravitational redshift model (Greenstein and Schmidt 1964);
there is also an absolute upper limit of z < 0.63 on the redshift of light from the surface
of any non-rotating equilibrium configuration of perfect fluid with reasonable equation
of state and density distribution {Bondi 1964), and this limit probably cannot be changed
much by angular velocities which are compatible with the sharpness of the emission
lines. (Large angular velocities are not permitted because of Doppler broadening.)

However, in carly 1967 Hoyle and Fowler (1967) revived the gravitational redshift
hypothesis by introducing a new model which may circumvent both of the above dif-
ficulties: they suggested that each QSS might rest at the center of a very massive rela-
tivistic star cluster and might derive its redshift from the gravitational field of the cluster.
One can, indeed, construct star-ciuster models in which sharp spectral lines and large
gravitational redshifts are produced. However, one does not know today whether such
star clusters are stable against gravitational collapse.

There is good reason to fear that star clusters with central redshifts as large z = 2
might be unstable against collapse. In Newtonian theory the stabilities of collisionless,
spherical star clusters and of gas spheres are somewhat related (Lynden-Bell 1966; see
also § IITg of this paper), and a similar relationship seems likely in general relativity.
Chandrasekhar (1964) showed that when a gas sphere (star) oi given mass contracts
beyond a certain critical point, it becomes unstable against gravitational collapse. This

* Supported in part by the National Science Foundation (GP-7976, formerly GP-5391) and the Office
of Naval Research (Nonr-220(47)).

1 Naiional Science Foundation Predoctoral Fellow.

T Alfred P. Sloan Research Fellow and john Simon Guggenheim Fellow.
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instability, which is catalyzed by general-relativistic effects, has been studied in great
detail since il was first discuvered (see Thorne 1967 for a review). An examination of a
varicty of relativistic gas spheres as computed, e.g., by Tooper (1965 and private com-
munication) and by us (unpublished) reveals this: a contracting gas sphere becomes
unstable against collapse when the redshifit from its center exceeds a limit which is
typically zceaual ~ 1. It is not unlikely that the critical redshifts for spherical star clusters
will be similar in magnitude, but we cannot know until the theory of pulsating star
clusters has becn developed fully.

Therce is another motivation for studying the rclativistic instability in star clustcers:
two independent lines of investigation have suggested recently that, when a Newlonian
star cluster contracts beyond a certain critical density—one far less than the density for
relativistic instabilities-—it may become unstable against a “thermal runaway,” In this
thermal runaway the cluster gradually develops a dense core and a diffuse envelope. Ior
some clusters of astrophysical interest (e.g., the compact nuclei of certain galaxies), the
core evolves toward ever higher densities on a time scale which may be short compared
with 10'0 years but which is very long compared with the time scale for the relativistic
instability (<1 year). The evidence which suggests that a thermal runaway may occur
comes (1) from dynamical computer experiments on the many-body gravitational prob-
lem (Arseth 1963; see also Hénon 1961, 1965) and (2) from analytic studies of the con-
figurations of maximal entropy for a star cluster inclosed in a spherical cavity (Antonov
1962; Lynden-Bell and Wood 1968). )

One is invited to speculate that the star densities in the nuclei of some galaxies (and
in potential QSSs) may exceed the critical density for thermal runaway, that runaway
may occur, and that the nuclei may thereby evolve in times ¢ < 10! years to such high
densities that relativistic effects become important and collapse sets in. Indeed, the out-
bursts which occur in the nuclei of galaxies might conceivably be associated with the
onset of collapse or with encounters between an already collapsed nucleus and surround-
ing stars. .

The above discussion of models for QSSs and of outbursts in galaxies is necessarily
very speculative, Before these speculations can be analyzed with confidence, we must
understand, among many other things, the onset of the relativistic instability in star
clusters. This paper is the first of several in which we shall attempt to delineate the
theory of the stability of relativistic star clusters and thereby contribute to the tools
needed for studying dense galactic nuclei and QSS models.

II. SUMMARY

In relativistic gas spheres the time scale for the growth of the relativistic instability
is roughly the sound travel time across the sphere. Similarly, in star clusters one expects
the time scale to be roughly the star travel time across the cluster, which—for the
clusters that interest us—is short compared with the mean time between close stellar
encounters. Consequently, in discussing cluster stability, we shall idealize the cluster as
a statistical distribution of mass points, which interact only through the smoothed-out
gravitational field of the entire cluster. The mathematical formalism used in such a treat-
ment is relativistic kinetic theory (Synge 1934; Walker 1936; Tauber and Weinberg
1961; Lindquist 1966). The cluster is described by a density in phase space and by a
metric for the curvature of spacetime. The density in phase space determines & stress-
energy tensor, which generates the metric through the Einstein field equations; the
metric in turn determines the density in phase space via the collisionless Boltzmann-
Liouville equation.

This type of statistical treatment of star clusters has been used in Newtonian theory
for about fifty years. However, only very recently (Antonov 1960; Lynden-Bell 1966;
Milder 1967) has the collisionless stability of Newtonian clusters been investigated, and
those Newtonian investigations of stability have all been of a formal nature: no applica-
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tions have been made yet to specific models for clusters. In general relativity the struc-
tures of spherical star clusters have been investigated recently by Zel’dovich and
Podurets (1965) and by Fackerell (1966, 19684—c), but no treatment of their stability has
been attempted.!

In this paper we shall treat the stahility of star clusters by means of a relativistic
analysis which is patterned after the Newtonian analysis of Antonov (1960). However,
Antonov made two restrictions in his Newtonian analysis which we do not wish to make:
he assumed that the stars in his cluster all had identical masses, and he assumed that
the number density in phase space for the equilibrium configuration depends only on
energy. Before presenting our relativistic treatment of stability, we shall redo the
Newtonian treatment, dropping Antonov’s restrictions but imposing in their place the
demand that hath the equilibrium and the perturbed configurations be spherically sym-
metric, We shall also extend the Newtonian analysis somewhat beyond that of Antonov:
in addition to obtaining his stability criterion, we shall derive a variational principle
(action principle) for the pulsation of the cluster; we shall obtain from our variational
principle a conserved quantity for arbitrary radial pulsations; and we shall derive an
elegant, new criterion for the existence of a zero-frequency mode of motion. All of this
Newtonian discussion is found in § ITL.

In § IV we shall use the Newtonian analysis as a guide in developing the corresponding
relativistic analysis. All the Newtonian results will be generalized to relativity theory
except Lynden-Bell’s relationship between the stabilities of star clusters and gas spheres:
we shall obtain (1) a self-conjugate equation of motion for the small spherical pulsations
of a spherical cluster, (2) an action principle for the pulsations, (3) a variational principle
for the normal modes, which is also a necessary and sufficient condition for stability,
(4) a conserved quantity analogous to pulsational energy, and (5) an elegant criterion for
the existence of a zero-frequency mode.

Throughout this paper we adopt the mathematical conventions of Thorne (1967),
including the use of *“geometrized units” in which the speed of light, ¢, Newton’s gravita-
tional constant, G, and Boltzmann’s constant, &, are equal to unity. Also, we number the
equations in a manner designed to bring out the close relationship between the Newtonian
and relativistic analyses; for example, the relativistic equation (12;R) has as its New-
tonian limit equation (12;N).

1il. NEWTONIAN THEORY OF STABILITY

a) Eguations of Stellar Dynamics

In Newtonian theory the density of stars in phase space, which we denote by 0, is
defined as follows: At a particular time ¢ an observer concentrates his attention on a
particular volume dU, in physical space and a particular volume dU, in momentum
space. In a Cartesian coordinate system these volumes are

dU; = dadydz , dU, = dp*dpvdprdm , (14L;N)

where m is the rest mass of a star and p7 = mdxi/di. If the observer sees dN stars in the
volume d0.dV, at time ¢, then the number density in phase space (“distribution func-
tion”) is ,

N =dN/d0.dV, = dN/(dxdydzdp=dp*dp*dm) . (2;N)

The density 9 is a function of time, ¢, and of location (x7,p7) in the seven-dimensional
phase space. .

1 Zel'dovich and Podurets (1965) and Zel’dovich and Novikov (1967, § 11.19) argued without proof
that one should be able to diagnose the stability of isothermal, relativistic star clusters from binding-
energy considerations; but the discussion presented in § IV/ of this paper makes that seem highly im-
probable.
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The smoothed-out gravitational field of the star cluster is described by the Newtonian
gravitational potential, ®(¢,%,v,2). The distribution function determines ¢ through the
source equation

Vb = drp, p= S mANdV,, (32;N)
which has the solution -

o(t,x) = —JS ﬁgrf—_’i'ﬁ’f”—)dv,,dv,, . (3b;N)
The gravitational field determines the distribution function through the collisionless
Boltzmann-Liouville equation (or simply “Liouville equation”)

DR =0. (4;N)

Here D, the Liouville operator, is differentiation with respect to time along the path of
a star in phase space. In a Cartesian coordinate system, D is given by

8 a0  dpf o ,dmd _ 8  p 8 0P 0 :
el TR T AT ap’+dt am = o moaw ™ ow ap (5;N)

(We sum over repeated indices unless otherwise indicated.)

Equations (3;N) and (4;N), which couple @ and 91, are the fundamental equations of
Newtonian stellar dynamics.

b) Spherical Equilibrium Configuralions

In stellar dynamics an equilibrium configuration is one for which the distribution
function and the gravitational field are independent of time. From the Liouville equation
(4;N) one readily verifies that a Newtonian star cluster is in equilibrium if and only if 91
is a function of the integrals of the motion of the stars (““Jeans’s theorem”; see, e.g.,
Ogorodnikov 1965). FFor spherically symmetric equilibrium configurations there are five
independent integrals of the motion: the steilar mass m, the energy E, the total angular
momentum J, and the two angles which determine the (conserved) plane of the orbit.
Of these, 97 can depend only on.#, E, and J, since a dependence on the plane of the orbit
would lead to a non-spherical mass density and thence to a non-spherical gravitational
field (cf. eq. [3a;N]). Consequently, the distribution function and the gravitational
potential have the form

N = F(m)E)‘I) ] b = q’(f) = ‘I)[(x2 + yz + z2)1/2] y (63.,N)
where
E = (pN2m + m@(@r), J=|xXp|. (6L;N)

When F is independent of J, the cluster has an isotropic velocity distribution at each
point in space.

Equilibrium configurations for spherical star clusters have been studied extensively
during the last fifty years. (See Ogorodnikov 1965 for references.) However, none of the
models constructed have ever been tested for collisionless stability.

¢} Equations of Motion for a Perturbed Spherical Cluster
Consider a particular spherically symmetric equilibrium configuration described by
the distribution function 9t = F(m,E,7) and by the gravitational potential & = &4(r),
Perturb the equilibrium configuration slightly without destroying its spherical sym-
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metry. The perturbed configuration can be described by a gravitational potential and a
distribution function of the forms

B(t,7) = Balr) + Dalty) (T;N)

m(t,xi,Pi’ m) = F(m’EA’]) +f(t’xi’pi’m) b (S;N)
where
Eis= (DY 2m + mdy, J=|xXp|. - (ON)

Notice that f is the perturbation in the distribution function at a fixed point in space x,
for mixed momentum p, and for fixed rest mass m; i.e., it is an “Eulerian perturbation”
in phase space.

Throughout this paper, as above, the subscript 4 will refer to quantities in the unper-
turbed cluster, and a subscript B will refer to perturbations in those quantities accurate
to first order in the amplitude of the motion. Qur treatment of stability will not be
carried beyond the first order.

The distribution function, 91, for the perturbed cluster must satisfy the Liouville
equation (4;N). When the Liouville equation is linearized in the perturbation functions
®p and f, it takes the form

8f/dt + Daf — Fup'ddp/or = 0. (10;N)
Here Fg stands for
Fg = (0F/0E4)m s , ' (11;N)
and D, is the Liouville operator of the unperturbed cluster,
D=L 829 (12;N)

mow " oxt api”
The derivation of the perturbed Liouville equation (10;N) follows.
The full Liouville equation states:
DI =[0/9t+Ds~m(0%5/057) (3/3p))JIF+f1=0.  (13aN)
Linearizing in f and $3, and subtracting the zero-order Liouville equation, we obtain
af/ 8t + Daf — m(3F/3p)) ;i i (0%s/0x%) = 0. (13b;N)
Since ®p depends only on ¢ and » = [x|, we have

m(&F/ép?)z,-’p,-lmaén/axf = m(aF/aj)') z,-'p,-'ma%/ar

(13¢;N)

mFg(p"/m)odg/or .
By combining equations (13b,c;N), we obtain equation (10;N). Q.E.D.

The perturbed Liouville equation (10;N) must be supplemented by an equation for
& in terms of f. From the linearity of equations (3;N) one readily sees that the required
relation is

V&y = 47 [ mfdV, , (14a;N)

which has the solution

’ l; ' m')
Bs(tyx) = = S ﬂf((:;—’f:%,—fﬂ d0pdV, . (14b;N)



77

JAMES R. IPSER AND KIP 5. THORNE Vol. 154

Equations (10;N) and (14b;N)—or their analogues for his version of this analysis—are
taken by Antonov (1960) to be the equations of motion of the perturbed cluster.2 Unfor-
tunately, one cannot readily obtain an analogue of equation (14b;N) in general rela-
tivity. In order to produce a Newtonian analysis which paraliels so far as possible the
relativistic analysis, we shall use in place of equation (14b;N) the relation

- 0%p 1 9 (mass mside) _1 (—4 r’)( mass flux in )
Hdr P H\ radiusr / 2 T\ radial direction

= —dr S 07fdU, ,
so that our version of the equations of motion is
| 87/t + Daf — Fpro®p/or = 0, (158;N)
Pdp/dtor = —4n S p7fdU, . (15b;N)

d) Equation of Motion for the Odd Part of f

1t may seem surprising that the equation of motion (15a;N) is of first order rather
than second order. Physical intuition suggests that a perturbed cluster should pulsate,
collapse, or explode, and such motions are usually described by hyperbolic second-order
differential equations. Actually, a hyperbolic second-order differential equation is hidden
in equation (15a;N) and can be extracted by a method due to Antonov (1960):

1) Split the function f{1,x,p,m) into “even’ and ‘“‘odd” parts:

f+(t7x7p71n) = %[f(t)x’p)m) +f(t)x) - p’”‘)l b
f_(t,x,p,m) = %[f(t,x,p,m) - f(t)xy - ﬂy'm’)] .

The even part, f;, is that part which is unaffected by reflections in momentum space
(“even parity” in momentum space); the odd part, f_, is that which changes sign under
reflections in momentum space (“‘odd parity” in momentum space):

f+('t;x1—p:m) =f+(tyxvp7m) ’ f—(t»x,“‘?,m) = —f_(t,x,p,m) )
= et

Notice that the even part of f, f,, determines the star density, the mass density, and the
stresses inside the star cluster (these are even moments of f in phase space), while the
odd part, f.., determines the flow of stars, the flow of mass, and the fow of energy (odd
moments of f).

ii) Similarly, split equations (15;N) into even and odd parts, noticing in the process
that D4 is an odd operator (it changes the parity of a function) and that only the odd
part of f contributes to the integral in equation (15b;N)

(16;N)

(17,N)

ofr/dt + Daf. =0, (18a;N)
af./at -+ ﬂDAf.}. — FEP'(%I’B/(')I‘ = 0 s (18b,N)
3By 0tdr = —dr S pf-d0, . (18¢;N)

® One can readily verify that Antonov's equations of motion and all ether results of his analysis are
valid, not only when F depends on E alone (the case he considered) and not only for spherical perturba-
tions of spherical clusters (the case presented here), but also for those perturbations of any cluster which
do not destroy the space symmetries of the equilibrium configuration. For example, his results are valid
for all axially symmetric perturbations of a rotating, axially symmetric equilibrium configuration. We
do not present the more general treatment here because our motivation is to obtain a Newtonian guide
for the relativistic analysis, and in relativity only spherical motions of spherical clusters are free of the
difficulties of gravitational radiation,
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iii) Differentiate equation (18b;N) with respect to ¢ and combine with equations
(18a,c;N), to get

(1/Fp)(8%-/38) = 3f_, (1%;N)
where J is the operator
af. = &%‘k ~ dnpr [ p7f_dO, . ' (20;N)

Equation (19;N) is the fundamental dynamical equation whick governs the pulsation of
Newlonian star clusters. Once equation (19;N) has been integrated to give the odd part
of f, equation (18a;N) can be solved for the even part, and equation (14b;N) or (18c;N)
can be integrated to give ®.

€) Properiies of the Equation of Motion; Variational Principles

The dynamical equation (19;N) has a key property which simplifies considerably the
study of its solutions: the operalor 3 is self-conjugaie for functions whick are bounded in
phase space. That is, if & and % are functions which are zero outside some finite region of
phase space, then they satisfy

 (Dam) (D4k) 40,40,
—F (21;N)

— o [ (S phd0 ) (S pTRd,)dV, -

S h3kdVL A0, = '_/'k Shd’(J,;d‘lJ, =

Proof of equation (21;N): The second term on the right-hand side of equation {21;N) follows
trivially from equation (20;N). The first term follows from the fact that 04 is anti-self-conjugate
for bounded functions # and v

S uD409d0.d0, = — SvDudV,d0, (22;N)

and from the fact that F is a function of the integrals of motion of the equilibrium configuration,
so that D4 Fg = 0. That Dy is anti-self-conjugate for bounded functions (eq. [22;N]} follows from
simple integrations by parts (cf. eq. [12;N}]). Q.E.D.

Since J is self-conjugate for bounded functions, the dynamical equation (19;N) has a
number of well-known and useful properties, provided only that the star cluster is bounded.
Property 1: The dynamical equation (19;N) follows from the action principle

5 r[wf___g)z —f :sf_]du,,dmdz =0. (23:N)

Property 2: Associated with the action principle (23;N) there is a dynamically con-
served quantity analogous to pulsational energy:?

H=T[ [Qf;/ﬁ—?t—)z + f_ Ch".]d’l),,d’uz = constant . (248;N)
—Fg

3 Lynden-Bell (1966, eq. [17]) has previously discussed a conserved quantity similar to expressions
(24;N). Rewritten in our notation, his conserved quantity is

9 1487
=4S Lowao. - 1S S T G000 v,

His conserved quantity, ¢, can be obtained from ours, H, as follows: Re-express the second term of ex-
pression (24b;N) for If in terms of 8f/é¢ by using eqs. (15b;N) and (14;N). Then simply replace af/d¢
in # by f and divide by 2. The resultant quantity is ¢, By splitting f into its normal modes and using their
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With the help of equations (17;N), (18a;N), and (21 N), we can rewrite this conserved
quantity in terms of the full perturbahonf fv+

H = J (= 1/Fg)(9f/84)'d0pd0; — 4 J (S pfd0,)*dVs . (24b;N)

Praperty 3: If f_ is split up into normal modes

- =t pimleet,  fo = (i/w)Dufe’t, (25;N)
then the eigenfunctions f satisfy the self-conjugate eigenequation
(— ¥/ Fp)f = of, (26;N)
for which there is a variational principle
of = J [ 3fd0,d0, 27:N)

T S(= 1/Fp)pdu,du,

The stationary values of the right-hand side of this equation are the squared eigenfre-
quencies, «?; and the functions f which produce those stationary values are the corre-
sponding eigenfunctions.

Property 4: If Fr is negative or zero throughout the phase space of the equilibrium
configuration, then the squared eigenfrequencies, «? are all real; i.e , each eigenfrequency
is real (stable mode) or imaginary (unstable mode).

Property 5: The eigenfunctions belonging to different eigenfrequencies satisfy the
orthogonality relation

f(—' I/FE)fmfndEUpd‘Uz =0. (28,N)

Property 0: If Fg is negative or zero throughout the phase space of the equilibrium con-
figuration, then that configuration is stable against spherical perturbaiions if and only if 5
is a positive-definite operator for spherical functions bounded in phase space—i.e., if and
only if

S h3hd0,dV, > 0 (29;N)

for all non-zero, bounded 4. {(Nofe: The condition Fr < 0 will be satisfied by most if not
all equilibrium configurations of physical interest, since it states that there are fewer
high-energy stars than low-energy stars.)

Most of these properties have been discussed previously by Antonov (1960) for clus-
ters with F a function of E only. However, he did not mention properties 1 and 2 or the
variational principle (27;N).

[) Criterion for the Existente of @ Zero-Frequency Mode

From the equations of motion in the form (18;N) one can derive an elegant criterion
for the existence of a zero-frequency mode: In a spherically symmeiric Newlonian siar

orthogonality (eq. [28;N]), one can show that the conservation of I implies the conservation of e. Neither
Lynden-Bell’s conserved quantity nor ours appears to be the pulsational energy of the cluster. Lynden-
Bell claims that there is an intimate relation between pulsational energy and his conserved quantity, but
his analysis proves only the trivial result that his conserved quantity differs from pulsational energy by a
constant. Milder (1967) has also discussed the relation between pulsational energy and the conserved
quantity, ¢, but the physical meaning of his formal mathematical result is unclear to us,



80
No. 1, 1968 RELATIVISTIC STAR CLUSTERS

cluster for which Fy < 0, there exisis a zero- -frequency mode of spherical, collisionless mo-
tion if and only if the followmg holds: there exists another, slightly different equilibrium
configuration such that the difference in distribution funclions "belween the fwo configurations,

Afn(xixpiym) = m2<xirpi)m) - ml(xi’Piim) ’ (301N)

satisfies the relation .
- AN = D4G (3L;N)

Jor some funiction, G, in phase space. Equivalenily, il is necessary and sufficient that

i) When AN is integrated around any closed siellar orbit, ©, in the phase space of the
equilibrium configuration, the resull is zero:

éfAf)Idt =0; (32a;N)
and

ii) When AU 1s inlegrated along any possible stellar orbit in phase space which originales
oulside the cluster and terminaies outside the cluster, the resull is also zero:

é,/‘amdz =0. (32b;N)

Moreover, when a zero-frequency mode is present, it has the form
fe=(/nan, fo=-G/r, &y=(/1)AP, (33;N)

where T is a constant. Hence the sero-frequency mode carries the clusier from one of ils two
equilibrium configurations to the other during the lapse of time 7.
The significance of this theorem will be discussed in the relativistic section (§ IVf).

Proof of the thearem: We first determine the general form for a zero-frequency mode. Any zero-
frequency mode must be a finite power series in time, #, for which f, vanishes at time ¢ = 0:

fo=a @ 4 qa Ot 4 a M,

(34a;N)
f+ = a+(1)t + P + a.,_(")t" .
The exponent # must be 1 for the followiné reason. The equations of motion (19;N) and (18a;N)
demand that
Sa_ = Ja_0D =0, (34b;N)
w(n — Da_®/Fp = Ja_. 0D, (n— D — Z)a_(”;l)/FE = Ja_79 (34c;N)
a0, W = — Dy @D, (34d;N)

Multiplying equations (34c;N) by a_™ and a_1, integrating over phase space, and using
equations (21;N) and (34b ;N), we obtain

nin— 1) S [“‘ I ro. 40, = (n — 1)(n - S [“ ]d'o 40, = 0. (34e;N)

CIf we define a zero-frequency mode to be one for which f has the form
Jo = BEipNl;  fo= y({@p7),

then we can drop from the theorem the demand that Fg < 0.
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' Suppose # > 2, Then equations (34e;N) together with the condition Fp <0 and eqﬁation
(34d;N) tell us that

0, = g™ = g D =, (34f;N)

Hence » must be <2, Whenn = 2, the above argument tells us only that a_®" = 0, but equations
(34a;N) and (i18b;N) allow us to conclude that a_*’ = 0 as well; and equation (344;N} then
reveals that a;® = 0. Consequently, # can only be equal to 1; and the general zero-frequency
mode is of the form (33;N).0

Next we verify that expression (33;N) represents a zero-frequency motion if and only if
A and G satisfy conditions (30;N) and (31;N). Equation (30;N) is equivalent to the statement
that A satisfies the perturbed Liouville equation

DAAI = FppaA®/dr , VHA®) = 4r S mANdU, (34g;N)

(cf. eq. [10;N] or egs. [4;N] and [5;N]). Hence equations (30;N) and (31;N) are equivalent to
eéquations (34g;N) and (31;N). On the other hand, expression (33;N) represents a zero-frequen-
cy mode if and only if it satisfies the equations of motion (18a,b;N) and (14a;N), which be-
come identical with equations (34g;N) and (31;N) upon manipulation. Q.E.D.

Only condition (32;N) remains to be verified. Equations (32;N) are nothing more than the
integrability conditions for the existence of the potential function, G, of equation (31;N). This
is because 24 is the derivative with respect to time along the unique stellar orbit that goes through
a given point in the phase space of the equilibrium configuration. Q.E.D.

g) Relation between Stabilities of Clusters and of Gas Spheres

The variational principles and stability criterion derived in § I1Ie will be much more
difficult to apply than the corresponding results in the theory of gas spheres For a gas
sphere the variational principles and eigenequations involve only one coordinate, 7,
whereas for clusters the radius #, radial momentum ", angular momentum J, and mass
m all enter non-trivally. In certain circumstances one may be able to handle the effects
of J and m analytically (recall that J and m are conserved along a stellar orbit in the
pulsating cluster), but typically one may have to analyze numerically a two-dimensional
problem in (r,p").

Recently Lynden-Bell (1966) has partially saved us from the pain of two-dimensional
numerical analyses by devising a simple one-dimensional criterion for the stability of
certain star clusters. Lynden-Bell’s criterion has one drawback: it is a sufficient condition
for stability but not (so far as we know) a necessary condition. Nevertheless, it should
prove extremely useful for many problems. _

Lynden-Bell’s criterion for the special case of spherical clusters with isotropic velocity
distributions (F independent of J)® says this: Consider a bounded, spherically symmetric
Newlonian cluster with isotropic velocily distribution and with Fg < 0. Such a cluster is
siable against collisionless, spherical periurbations if the gas sphere with the same radial
distributions of density,

p = S mFdV, = 4w [ m*2m(Es — m®4)]*FdEsdm , (35a;N)
and of pressure, -
P = f(pp/m)Fd0, = 3/ (J*/ mr*)FdV,

(35b;N)
= (41r/3)f[2m(EA - m(I’A)]a""FdEAdm,

% Antonov (1960) concluded incorrectly that zero-frequency modes with # = 2 are possible.

¢ Lynden-Bell proves his theorem in a somewhat more general context, but here we are concerned
only with spherical clusters,
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is stable against radial perturbations for whick the “‘adiabatic index’ is

_P aP/dr
" Pdp/dr

Since it is a simple one-dimensional problem to determine whether a gas sphere is
stable, this theorem gives us a simple, one-dimensional, sufficient criterion for the sta~
bility of a spherical cluster.

Paragraph added July 3, 1968 —Recent discussions between Donald Lynden-Beli and
James R, Ipser, motivated in part by remarks of idward Lee, have revealed that Lyn-
den-Bell’s (1966) proof of this theorem was incorrect.” However, a new, corrected proof
of the theorem has been devised by Lynden-Bell (paper in preparation), and a relativistic
version of the theorem has been proved by Ipser (to be published in Paper II of this
series). : :

I (35¢;N)

IV RELATIVISTIC THEORY OF STABILITY

We now develop the relativistic generalization of our Newtonian discussion of stabil-
ity. Our treatment follows as closely as possible the corresponding Newtonian treatment,
with the corresponding equations being given similar numbers (e.g., eq. [1;R] corresponds

to eq. {1;N]).

a) LEquations of Stellar Dynamics

In general relativity the density of stars in phase space, which we denote by M, is
defined as follows: we concentrate atteniion on those stars near a particular event, x, in
spacetime with 4-momenta near a particuiar value, p. As seen in the rest frame of these
stars, they occupy a particular three-dimensional volume; dU., in physical space and a
particular four-dimensional volume, dU,, in momentum space In terms of a general
curvilinear coordinate system, dU, and dU, are given by

a0, = (p°/m)v/(— gldx'dx’ds® ; &V, = —dpodprdpadps/v/(— g) . (L;R)

Herc p* and pa arc the contravariant and covariant components of the 4-momentum, g
is the determinant of the metric tensor, and m = (p.p®)!/? is the rest mass of a star with
4-momentum 2. If there are dN stars in the volume d0,dU,, then the number density
in phase space (‘‘distribution function”) is giverr by

RN = dN/d0.d0, = dN/(— dutda*da®dpidpadpsdm) . (2;R)

The density i is a function of location (x,p) in eight-dimensional phase space. Through
part of our discussion we shall use as coordinates in phase space general curvilinear
spacetime coordinates, #*, and the “conjugate” covariant components of the 4-momen-
tum, p.. However, we shall sometimes employ other sets of coordinates, for example,
(x=,p;,m)8 and coordinates specially adapted to spherical symmetry.
The smoothed-out gravitational field of the star cluster is described by the metric

7 The error lies in the argument showing that positive-definiteness of the Lynden-Bell operator

v dp/dr
dr ~ PdP/dr

is a necessary condition for stability of the gas sphere, It is nof necessary for stability.

= -

8 Greek indices run from O to 3; Latin indices, from 1 to 3.
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tensor, gas(x). The distribution function determines a smoothed-out stress-energy tensor
through the equations

T = f pap?(I/m)dU, , (3a;R)
and that stress-energy tensor determines the metric, gus, through Einstein’s equations,
Gug = 87T . ' (3;R)

The gravitational field in turn determines the distribution function through the col-
lisionless Boltzmann-Liouville equation (or “Liouville equation”)

DR =0. (4;R)

Here D, the Liouville operator, is differentiation with respect to proper time along the
path of a star in phase space:

_d 0 dp O _pt 0 1 dgm 0 _
T s 0w T ds 0p  maw  2m aw PP Gy (5;R)

Equations (3;R) and (4;R), which couple gog and 9, are the fundamental equations of

relativigtic

by Spherical Equilibrium Configurations

In general relativity, as in Newtonian theory, the distribution function for an equi-
librium configuration depends only on the integrals of the motion. For spherical sym-
metry the relevant integrals of the motion are the rest mass m, the “energy at infinity,”
E = p,, and the total angular momentum J; hence we have

9 = F(m,E,J) . (6a;R)

When I is independent of J, the cluster has an isotropic velacity distrihution at each
point in space We shall use the *“Schwarzschild coordinate system” (2,7,6,¢) 1o describe

spherical equilibrium configurations. In this coordinate system the gravitational field is
described by

ds* = e¢dff — e*dr* — ri(d¢* + sin® 8 d¢?) , (6b;R)

where » and ) are functions of 7, and the angular momentum and “energy at infinity” are
given by

J = [p + (pe/sin )1, E = p,. (6¢;R)

The theory of spherically symmetric equilibrium configurations has heen develaped
in great detail by Fackerell (1966; 1968a—c). Independently Zel’dovich and Podurets
(1965) have treated the restricted problem of a cluster of identical stars with a truncated,
isotropic Maxwell-Boltzmann velocity distribution—i.e., a cluster with

F = Ae"E’Té(m - mo) if E < Eo
= 0 HE>E.

¢) Equation of Motion for a Perturbed Spherical Star Cluster

If a spherically symmetric equilibrium configuration is perturbed in a spherical man-
ner, and if Schwarzschild coordinates are adopted for the perturbed configuration as for
the unperturbed configuration, then the perturbed gravitational field is described by

dst = gAPBUNge . paOPBEN g g, 4 ging g gg?) | (T;R)
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‘As in the Newtonian case, so also here, we work only to first order in the perturbation
quantities »p and Ap. :

The radial coordinate, 7, in equation (7;R) is defined uniquely by the demand that
47r® be the area of an invariant sphere about the center of symmetry. The time co-
ordinate, ¢, is also defined uniquely if we insist that the perturbed metric (7;R) become
the static Schwarzschild metric outside the cluster (Birkhofi’s theorem), Consequently,
there is no coordinate arbitrariness in the functions v4, vz, A4, and Ap.

In defining the perturbation of the distribution function, we must decide how to
identify points in the phase space of the perturbed cluster with paints in the phase space
of the unperturbed cluster. There is a variety of possibilities: We could identify points
with the same Schwarzschild coordinates, x%, and with the same covariant components
of the momentum, p,, so that

N = Nala®pa) + Nalxt,pe) .

Alternatively, we could use contravariant components of the momentum, $¢, in making
the identification:

N = Ma(xp%) + Yl py) .

Either of these choices is reasonable on mathematical grounds, but from a physical
standpoint it is preferable to identify points with the same Schwarzschild coordinates, x®,
and the same physical componenis of the momentum, pw) = |g**|/2p,. (See Table 1.)

TABLE 1
PHYSICAL COMPONENTS OF THE 4-MOMENTUM*
Component Value in Equilibrium Configuration Value in Perturbed Configuration
DY e e errnenen. poexp (—wa/2) = $° exp (va/2) poexp [—(va-+ve}/2} = p° exp [lva+vp)/2]
Py enen prexp (—ha/2) = —p exp (Na/2) | prexp [—(Aa+2g)/2] = p"exp [(Aa+rp)/2)
P@ s pert = —por . port = —pbr .
2 P Polr sin )7 = —p*(r sin 0) Po(r sin 8)71 = — p?(r sin 6)

* The physical components are the projections of f on an orthonormal tetrad with legs in the 4, 7, 8, and ¢ directions. (See,
e.g., chap. ii of Thorne 1967.)

"I'his is the type of identification which observers using proper reference frames or locally
inertial reference frames would make, and it leads to a formalism which is considerably
simpler than the other choices. With this choice of identification of points in phase space,
the distribution function of the perturbed cluster takes the form

N = F(m:EA:J) +f(xu,P(u)‘) ) (S,R)
~ where

m = [po? = po’ = po? — p@T?, Es = poe”, T =r1pe?+ pw. 9R)
The Liouville equation which this distribution function obeys takes the following form
when linearized in the perturbations vg, Mg, and f: :

o
ol

PO af Po raVB 1 ,
et Dy f — %;{FEP -—‘—+an?4’

m ot ar =0. (10;R)

Here Fz stands for .
Fp = (8F/3EA)m.s » (1;R)
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and Dy is the Liouville operator of the unpefturbcd cluster, which has the form
i 9 1 g™ ) '
p, = 2.0 Lo, (12;R)

moxi Im oxr PP Gp;

when (x°,p.) are used as coordinates in phase space. (Note that we must use care in the
choice of coordinates only while defining f. Now that f has been defined explicitly, we are
free to use whatever coordinates we wish in manipulating it, except that we shall demand
that our coordinates leave the equilibrium configuration explicilly static.)

The derivation of the perturbed Liouville equation (10;R) follows.

For the purpose of the derivation we shall use as coordinates in phase space the Schwarzschild
space coordinates {{,7,0,¢), the physical zero component of the momentum, ), the angular mo-
mentum, J, and the rest mass of a star, m = [p2 — (J/r)2 — pn?!’2 The rest mass, m, is used
in place of p(r); and J is used in place of dotk p(p) and p ). (This is possible because spherical sym-
metry guarantees that 97 can depend on ) and ) only through J.) The full Liouville equation
for a dynamical, spherically symmetric cluster is -

PN | dpw 9 dJ AN, dm 3T _ .
m dx* ds 9pw = ds aJ + 0. (132;R)

ds om

Because J and m are integrals of the motion in a dynamical, spherical cluster, we have

dJ/ds = dm/ds = 0. (13b;R)
The change in p(; along a star’s world line, as calculated from the geodesic equation, is
dpwy/ds = (1/2m)e™"2[p.p"(ON/0t) — bop'(Ov/01)] . (13¢;R)
Consequently, the Liouville equation (13a;R) reads
P@e? N ppe ™o, 1 [_ -ri2 oA
m ol m o + 2m ¢ Pore 5
o1 o9 (13d;R)
~)2 ol o _
+ eMpopm ar] Eyy
When we split into unperturbed and perturbed parts,
97.=F+f, V=VA+VB, >\=)\A+)\By (136,R)
and linearize in the perturbation, this becomes
ry _P2s (éf.
m i Daf m 2 \or/ipgim
_ , 131;R)
[4 vAI2[ OAp 1 Ovg . - ovg } GF) ( !
r o2 rf 1l = x _——— =
+ 2m Prp at MEC At or or 0pwy/ e Iom 0

The value of F¥ depends on p(g) and 7 only through 4 = p(ge"sa’? when J and m are held fixed.
Consequently,

oF 1 ovy [ oF
-— =1ip—=F = ¢4/ Fp , 13g;R
(61' t p(gydm zho ar % 317(0)]4 rdm ¢ o (13g;R)

When equations (13g;R) are combined with equation (13f ;R), the perturbed Liouville equation
(19;R) results. Q.E.D.
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The perturbed Liouville equation (10;R) must be supplemented by equations for »4
and vp in terms of f. The required relations are the perturbations of Einstein’s field
equations (3;R). The perturbation in the stress-energy tensor, which enters into the field

equations, is :
T‘Bu‘e = ./.Pupﬂ(f/m)deop H
and the perturbation in the Einstein tensor is the same as that used by Chandrasekhar

(1964) in studying the radial pulsation of gas spheres. By combining the perturbed Ein-
stein and stress-energy tensors, one obtains three useful field equations:

ONp/ot = —8rre™ [ pop’(f/m)dVy , (14a;R)
(8/0r)(ré™ 4ng) = 8rr S pop®(f/m)dV, (141;R)
dvs/dr = (dva/dr + 1/r)\g — 8wre™ [ pop’(f/ m)dO, . (14c;R)

Equations (10;R) and (14;R) are the equations of motion for the perturbed cluster.
These four equations for f, vg, and Ag are not all independent. The Liouville equation
(10;R), when combined with equation (14a;R), can be made to yield (14b;R); when
combined with {14b;R), it yields (14a;R).

Equations (10;R) and (14;R) are not the most useful forms for the equations of mo-
tion. Rather, it is convenient to remove vp and d\z/9 from equation (10;R) by use of

(14a,c;R), and to take the resultant equation along with {14a;R) as coupled equations for
f and )\B.'

o - 29( M) Py M :
3 + ®f » 147 5 Fgp 5y = 0, (15a;R)
a 55) = —dx s 2y (15h;R)
at \2r m P , ’
Here ® is the operator in phase space, .
_om m pr T T r .
G = 55 Dy + dwrd ﬁE(%~ S yqo, - BL p 2oE z#d'op) . (156R)

d) Equation of Motion for the Odd Part of f

In order to convert the equations of motion (15;R) into self-adjoint, hyperbolic, sec-
ond-order form, we follow the Newtonian procedure of splitting them into even and odd
parts. Such a split in general is not Lorentz-invariant in momentum space, because the
parity is defined in terms of inversions of the space part of the 4-momentum (g is not
inverted); and the space part of p is not a Lorentz-invariant entity, Fortunately, this
need not disturb us. The static nature of the unperturbed geomeiry provides us with
preferred time directions in both physical space and momentum space. In the pulsating
cluster, the preferred time directions are well defined to zero order in the perturbations—
which is sufficiently well defined for our purposes-—and they are automatically embodied
in the coordinate system (1,7,8,¢,2(0 ,{’m D), Pesy) which we are using,

Consequently, without any loss of generality, and without any introduction of ar-
bitrariness into the analysis, we can define the even and odd parts of f as

Fe(x,8) = Hf(xponpendontw) + F(xwy— b= Pon—b@)) »

| (16;R)
F-(x,0) = (%00 p0P0 @) — f(X,00,=Pws—pPen—Pw)] -
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As in Newtonian theory, f; and f_ have even and odd parities in the spatial part of mo-
mentum space, and their sum is f:

J+(np@p=puen—po—p®) = fe{np0penponte)
f-(%pn=Pen—b@n—Pw) = ff—(x:P(u),P(r);Pw):P(m) ; (17;R)
f=rf+rf.

If we split equations (15;R) into even and odd parts, noticing in the process that @ is
an odd operator and that only the odd part of f contributes to the integral in equation
(15b;R), we obtain the equations

(8f4/00) +&f- =0, (183;R)

Y= 1 af, — ~2(1+ SN pppr 2 = (18h;R)
A
2—1;) = —4xds S D yy o, (18¢;R)

Finally, if we differentiate equation (18b;R) with respect to ¢ and combine it with equa-
tions (18a,c;R), we obtain the desired hyperbolic second-order differential equation

(1/Fg)(0*-/08%) = of_ . (1%R)
Here 7 is the operamr
6VA )‘ m pu . Po .
5f. = (B(Bf_ 41r(1 +r == )4 — P m b j‘ — pf-dV, (20;R)

Equation (19,R) is the Jundamental dynamical equation which governs the pulsation of
relativistic star cluslers. Once it has been integrated to give f_, equation (18a;R) can be
solved for f;, and the ficld equations (14;R) can be solved for Ap and vs.

€) Properties of the Equation of Motion; Variational Principles

The operator 3, like its Newlonian counlerparl, is self-conjugate for functions which are
bounded in phase spuce. Thal s, il A and & are spherically symmetric functions which are
zero outside some finite region of phase space, then they satisfy

S hOkdVL V0, —~ Sk 3hdVEV, — S @ = h) ;@I;) dV,d0,

— 4r f( 147 a“ *A(f % j)’kd’l),,)(j' % pfkd'O,,) ;’f, &0

Proof of equation (21;R): the second term of the right-hand side follows directly from definition
(20;R) of 3 and from expression (1;R) for dU, and dU,,. The first term follows, once we have veri-
fied that ® is anti-self-conjugate with the weighting function 1/Fg, i.e., once we have shown that,
for bounded, spherical % and v, .

S (1/Fglu®vdU,4dV,; = — f(1/Fr)v®udV,d0; . (22a;R)

Equation (22a;R) is readily verified from definition (15¢;R}) of ®, once it is recognized that Dy
is also anti-self-conjugate, but with the weighting function (m/p%),

(2;R)

S % 4DA0d0V,d0, = — [ g‘ﬁ 2D Ud0,d0, , (22b:R)
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and that D4 Fg = 0. Relation (22b;R) follows from integration by parts plus simple manipula-
tions, if (x*,p,) are used as the coordinates in phase space. Note that with this choice of coordi-
nates 4 has the form (12;R), d0,and 40, have the form (1;R), and the relation

8 /PN 0 (1 dg, N ‘
T E) ~ 35 \am oar Puf") =0 (22¢;R)
is satisfied. Q.E.D.

Since 3 is self-conjugate for bounded functions, the dynamical equation (19;R) has
the same types of well-known and useful properties as its Newtonian analogue (19;N),
provided only tha! the star cluster is bounded.

Property 1: The dynamical equation (19;R) follows from the action principle

2
af[(—af:é—a‘@ - f.:sf_]dmdv,d: 0. . (23R)
—4LE
Property 2: Associated with the action principle (23;R) there is a dynamically con-

served quantity
(of /1)

H = f[__—-._____ +f_3f_]d1)pd’0, = constant . (24a;R)
—Fg

With the help of equations (17;R), (18a;R), and (21;R), we can rewrite this conserved
quantity in terms of the full perturbation f = f, + f_:

H=f (a_{/%)_z 40,30, — 4 f (1 +7 %”f) s (f %’- prfdo,) }"—ﬁ d0,. (24bR)
Property 3: If f_ is split up into normal modes,
f-=f{@paet,  fi = (i/)@fe!, (25R)
then the eigeﬁfunctions f satisfy the self-conjugate eigenequ‘ation
(—w*/Fe)i = 5, (26;R)

for which there is a variational principle

o = JT5Id0,0,
S (= 1/Fg)ftd0,d0s

(27;R)

analogous to the Newtonian variational principle (27;N).

Property 4: 1f Fy is negative or zero throughout the phase space of the equilibrium
configuration, then the squared eigenfrequencies, w?, are all real; i.e., each eigenire-
quency is real (stable mode) or imaginary (unstable mode).

Property 5: The eigenfunctions belonging to different eigenfrequencies satisfy the
orthogonality relation

f(_.l/FE)fmfndcopdeOz =0. (28,R)

Properly 6: If Fy is negaiive or zero throughout the phase space of the equilibrium con-
figuration, then that configuration is stable against spherical perturbations if and only if 3 is
@ positive-definite operator for sphevical funciions bounded in phase space:

S h5hd0,d0, > 0. (29;R)
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1) Criterion for the Existence of a Zero-Frequency Mode

Zeldovich and Podurets (1965) and Zel’dovich and Novikov (1967) have argued that
one should be able to diagnose the stability of isothermal star clusters from binding-
energy curves, in much the same way as one diagnoses the stability of isentropic stellar
models from such curves (Fowler 1964; Bardeen 1965; Thorne 1967, § 4.1.4). This seems
highly unlikely to us, because in isothermal clusters one must, in some arbitrary mannecr,
introduce a cutoff at high energies in the distribution function, and this cutoff must be
chosen uniquely for each central density in order to produce a one-parameter binding-
energy curve (cf. end of § IVd). Only a very special choice of the cutoff—which choice
is not yet known~—could lead to a binding-energy criterion for stability, and perhaps no
choice will work.

That the situation in star clusters is much more complicated than that in stars is indi-
cated also by the following theorem, which is the direct generalization of our Newtonian
theorem of § II1f:

In a spherically symmetric, relativistic star cluster for which Fg < 0 (see . 4, p. 259),
there exisis a zero-frequency mode of spherical, collisionless motion if and only if the fol-
lowing holds: there exisis another, skighily different equilibrium configuration such that the
difference in disiribution functions (at fixed physical components of the momentum)
between the two configurations,

AT = Na(r,0,0, PP P61 @) — Tu(rb,¢,pmspenpwt@),  (30;R)
satisfies the relalion
AT = &G (31;R)
. Jor some function, G, in phase space. Equivalently (integrability condition for eq. [31;R)),
it is necessary and sufficient that

i) When one inlegrales the following quantity around any closed stellar orbit, @, in the
phase space of the equilibrium configuralion, the resull is zero:

é/' [AR + 3(Fr/p)pep"ANdE = O ; (32a;R)
and .

1) When the same quantily is integrated along'any possible stellar orbit in phase space
which originates outside the clusier and terminales oulside the cluster, the resull is also
zero:

GJ, [AS + L(Fs/p) pop"ANdE = O . (32b;R)

Moreover, when a zero-frequency mode is present, it has the form
Jr=WnAR, [fo==G/r, vs=(/n)dv, X = ({/r)A\, (33;R)

where T is a constant. Hence the sero-frequency mode carries the cluster from one of its two
equilthrium configurations o the other during the lapse of Hme 7.

Proof of the theorem: We first veriiy that any zero-frequency mode must have the general form
(i.e., time dependence) of expressions (33;R). This is done by precisely the same procedure as was
used in the Newtonian analysis (eqs. [34a—f;N7]). . _

Next we verify that expression (33;R) represents a zero-frequency motion if and only if A%
and G satisfy conditions (30;R) and (31;R). Equation (30;R) is equivalent to the statement that
AJ satisfies the perturbed Liouville equation

_@< Np AN .
®aR — (1 +rg JFapr5 = 0. (34a;R)
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(cf. eq. [152;R]). Hence equations (30;R)} and (31;R) are equivalent to equations (34a;R) and
(31;R). On the other hand, expression {(33;R) represents a zero-frequency mode if and only if it
satisfies the equations of motion (18a,b;R) and (14b,c;R), which upon manipulation become
identical with equations (34a;R), (31;R), and the perturbed field equations for AN and Ap.
Q.E.D.

Condition (32;R) remains to be verified. Equation (31;R), when combined with definition
(15¢;R) of ®, with the form (33;R) of the zero-frequency mode, and with the field equation
(15b;R), becomes :

(m/1°) DsG = AR + L(Fe/p")pp"AN . (34h;R)

The operator (m/$")D, is the derivative with respect to coordinate time along the unique stellar
orbit that goes through a given point in the phase space of the equilibrium configuration. Conse-
quently, equations (32) are the integrahility conditions for the potential function &¢. Q.E.D.

The criteria for zero-frequency modes provided by this theorem are quite elegant
conceptually, but without some sort of extension they are useless for numerical calcula-
tions. This theorem can be compared to the statement that a hot stellar model possesses
a zero-frequency mode if and only if there exists another, slightly different model with
identically the same chemical composition, rest mass, and binding energy and with the
same distribution of entropy. In the stellar case, the demand for identical entropy dis-
tributions provides an infinity of constrainis analogous to the constraints (31;KR) or
(32;R) for clusters. In the stellar case, we know how to simplify the stability criterion by
looking only at isentropic configurations (Bardeen 1965; Thorne 1967, § 4.1.4). Perhaps

future thought will reveal an analogous simplification for star clusters.

V. CONCLUSION

In this paper we have reviewed and extended the tools available for analyzing the
collisionless stability of Newtonian star clusters, and we have derived a number of
analogous tools for studying relativistic star clusters. One of the authors (J. R. 1) is
now using these tools to study numerically the onset of the relativistic instability in
spherical star clusters. It is hoped that the numerical analyses (which will be reported in
a sequel to this paper) will yield improved understanding ‘of possible processes in the
nuclei of galaxies and of the Fowler-Hoyle star-cluster model for QSSs.

We thank S. Chandrasekhar, William A. Fowler, Donald Lynden-Bell, Michel Hénon
Robert F. Tooper, Igor D. Novikov, and Ya. B. Zel’dovich for helpful discussions. Part
of this work was performed while one of the authors (K. S. T.) was participating in the
summer 1967 International Research Group in Relativistic Astrophysics at the Institut
d’Astrophysique in Paris, and part while he was at the Laboratory for Astrophysics and
Space Research of the Enrico Fermi Institute of the University of Chicago. He thanks
Professors E. Schatzman, R. Hildebrand, and S. Chandrasekhar for their hospitality.
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I. INTRODUCTION AND SUMMARY

In g recent paper'(Ipser and Thorne 1968; henceforth this paper will
be referred to as I) the theory of the stability of spherically syﬁmetfic
star clusters for small radial pertufbations was developed within the
framework of general relativity. Among the results derived therein were
a self-conjugate equation governing the small, collisionless, radial
pulsations of & relativistic cluster, and a variational principle for the
normal modes of radial motion. In practice, the study of cluster
stability through the use of these tools involves the analysis of a
numerical problem which is at. least two-dimensional. In this paper we
shall derive sufficient (but not necessary) criteria for stability, that
necessitate only a one-dimensional analysis, and that, consequently, are
much easier to use than the necessary and sufficient, multidimensional
criteria of Paper I. In subsequent papers we shall apply both sets of
criteria to determine the stability of specific star-cluster models.

One-dimensional, sufficient conditions for stability have been
derived in Newtonian theory by Lynden-Bell (1966, 1967, 1968). Of
Iynden-Bell's results, those most important to us here are: (i) a proof
thgt a spherical, Newtonian cluster is stable if (out not only if) a
certain one-dimensional differential operator is positive-definite
(Iynden-Bell 1966, 1967); and (ii) the derivation of & relationship
between the stability of a collisionless, Newtonian cluster with isotropic
velocities, and the stability of the corresponding gas sphere (i.e., the
gas sphere whiech has.the same radial distribution of pressure and density
as has the cluster). More specifically, Iynden-Bell (1968) has shown that
a bounded, spherical cluster, with fe#er high-energy stars than low-energy

stars, is stable against collisionless, radial perturbations if the
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corresponding gas sphere is stable against radial perturbations for which

the adiebatic index igt I (r) = (p/p) (dp/ar) (dp/dr)'l.

lUnfbrtunately, there exists an important error in Lynden-Bell's (19686,
1967) analyses. This error was discovered during discussions between
Professor Iynden~Bell and the author, concerning the boundary conditions
satisfied by physically acceptable perturbation functions, and concerning

- the resulting restrictions upon the differential equations which such
functions must satisfy. It is sufficient for us to note here that those
proofs in Iynden-Bell (1966, 1967) which purport to establish a necessary
"Schroedinger equation" condition for the stability of a gas sphere are
invalid. In Lynden-Bell's (1968) paper, this matter is clarified, and
the theorem relating cluster stability to gas sphere stability is

reproved, correctly.

The purpose of this paper is to develop relativistic generalizations
of Iynden=Bell's results. Tn §IT we shall present a sufficient condition
for the stability of a spherical, relativistie, collisionless star cluster
with, in general, an ahisotropic velocity distribution. This condition,
like Lynden-Bell's corrcsponding Newtonian condition, involves the
positive-definiteness of a ong-dimensional, second~order differential
operator. We shall élso discuss a sufficient condition for the stability.
of a relativistic gas sphere in terms of the same differential operator.
In §IIT we shall-establish, within general relativity, the relationship
between the stabilities of an isotropic, spherical cluster and the

assoclated gas sphere. We shall find that the radlal stability of a gas
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sphere, with adiabatic index T, = (p+p) p-l (ap/ar) (dp/dr)-l, implies
the stability of the associated cluster against collisionless, radial
perturbations. .
Throughout this paper we will employ the notation and conventions of
Paper I, including the use of "éecmetrized units” in which the speed of
light, ¢, the gravitation constant, G, and the Boltzmann constant; k, are

set equal to uhity.

ITI. A SUFFICIENT CONDITION FOR STABILITY

In this section we shall show that a cluster is stable if (but not
only if) a certain one-dimensional, second-order differential operator is
positive=-definite. Our approach will be this: In subsection a we shall
reiterate some of the fundamental equations of relativistic, spherical
stellar dynamics that were derived in Pa.pef I; in subsection b we shall
derive useful formulae for certain integrals over the momentum space of
& spherical equilibrium cluster; in subsection ¢ we shall derive the
relevant operator a.nd. prove its relationship to cluster stability; and
in subsection d we shall show that the positive-definiteness of this
sa.rﬁe operator guarantees the stability of a gas sphere. Our notation

will be identical to that of Paper I.

a) Some Fundamental Equetions of Relativistic Stellar Dynamics

In relativistic stellar dynamics one works with the number density
in phase space or distribution function, 72 , which is defined to be the

number of stars, .dN, per unit invariant phase space volume, d'lfp d'Vx:

N = av/av a?) , (1)
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where

0 1 2
av, = (p°/m) /(&) ax* a&x® ax® ;
(2)
av, = - dp, dp; dp, dpg/V(-€) . :
Here pa are the covariant components of the four-momentum, g is the
determinant of the metric tensor, and m is the rest mass. The stress-
energy tensor is determined by dZ through the equations
t? = [ (H/m)p, P ¥/ | (3)
o o o) ’
and the metric 8 is determined by Einstein's equations
Gg = 81 Ty . (4)

We focus attention upon a spherical cluster undergoing small radial
motions about its equilibrium state. Adopting Schwarzschild coordinates

to describe the geometry of spacetime, we have

vy (r)+vo(t, A (2 n(t,r)
i? o Al R SRk L

- r® (a6® + sin®e of) . (5)

The subscript A denotes the equilibrium values of various quantities, and
B denotes the small departures of these quantities away from their
equilibrium values. We will carry our analysis only to first order in
the perturbation.

As aiscussed in $IVc of Paper I, the distribution function, 77, is

split into an equilibrium part, F, and a perturbation, f:

N = Flw, By, 3) + £ p(y) . (6)
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Here a star's rest mass, m, its energy at infinity, E, and its angular

momentum, J, are given by

_ 1/2 1/2
o 2 2
m = (p, D) » B =3, » J=1[py + (py/sin8)7] 3 (1)
and p( a) are the physical compbnen’os of the momentum,
1/2
oo . () _ 1/2 «
P(a) = g™l py 3 P =gl P . (8)

In terms of the physical components of the momentum, we have

1/2
m = [P(o)e - P(r)2 - P(e)2 - P(¢)2] 3
/2
B e X pg) . (9)
1/2
J =T [p(e)2 + p(¢)2] .

The unperturbed and perturbed parts of the stress-energy tensor are

given by

v,> = [ (¢/n) p, P av, ’ (10)

3
1}

Rf [ (g/m) v, ° d7/p . - (1)

In both of these equations D, p£3 av o ore to be evaluated in the
unperturbed cluster == i.e., they have implicit subsecripis A.
For the equilibrium configuration, some of the field equations (4)

take the form

-07\ :
(a/ar) (r e A)_ = 1-8xr° TAOO , (12a)
-A -A
re B dvA/d.'r = 1L-e ® bl TArr ’ (12v)

while some of the field equations for the perturbed cluster read
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-A
(3/r) (r e A %) = B r° TBOO ' (13a) -
. A‘
dvyfdr = (av,/ar +1/r) Ay -bxre T, T, (1)
' A
akalat « -Brrel TBOr . (13c)

To determine fully the dynamical evolution of the cluster, one must use,
in addition to these field equations, the perturbed Boltzmann-Iiouville
equation for £ (equation [15a; R] of Paper I); but since it will not be

needed in our analysis, we shall not write it down.

b) A Useful Identity

In this subsection we shall establish a relationship among certain
integrals taken over the momentum épace of & bounded, spherical, egquili-
brium cluster. We shall use this relationship in our stability analysis

of §IIc. The identity which we seek to prove is this:

 (Fy/m) (py)* (1:ar)b av,

A -
“ - o ) (2 (P a¥, - () e B A S (p/m) () (%2 0w,

(14)

Here a and b are constants, and I-‘E is defined by

Fg = (81-"/33‘,\)“1’J . (1s)

Proof of the identity: Notice that r, ©, and ¢ are treated as

constants in equation (14), and that m and J (and hence also () and

(g )) are held constant in obtaining Py from F by differentistion.

Becauge of this we can asimplify our proof by using m, p(r), p(g), p(¢)
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as the independent variables in our integrals. With this choice of

independent variables the left-hand side of equation (14) becames

J (rg/m) (5p)® (pr)b a,
(A, -v,)/2 -
= e A A ) (5F/ap(r)) (PO)a (Pr)b X (- dm dP(r) dp(g) dp(ﬁ)] .
™P(g) P(g)
(16)
To arrive at this expression first use equations (8) and (9) to reexpress

FE in the form

(N /2=-v,)
pme XN (o/p) (3¥p,) ;o an
m:P(g);P(¢)

Then use equations (2), (8), and (9) to express dv; in the form

@, = - dp(p) dp(,) dP(g) dP(g)

v, /2
= -eh (m/Po) dm dp(r) dp(e) dp(¢) : H (18)

and then combine expressions (17) and (18) to obtain (16). Next perform
an integration by parts in the integral on the right side of equation (16),
. obtaining ' :
a b

I (Fg/m) (pg)” (2,.)" a9f

(A, -v,)/2

A A -1
TRICT TRV [(e)* (20"
™P(g) P (g) ‘

X (- amdpgy) dap(g) op(g)] : (19)

Finally, in equation (19) employ equation (18) and the relations



(95/9p (1)) = e (p,/7g) ;
myp(e):P(¢) . (20)
(30,/3,.y) =eh ;
RRRIORI0)

-- which are readily derived from equations (5), (8), and (9) -~ to arrive

at the desired result, equation {14). QED.

c) Stability of Spherical Clusters

In deriving our operator criterion for stability we use an approach
analogous to the Newtonian approach of Lynden-Bell (1966, 1967). The first

step consists of changing variables from f to
a a .
alx’y p(g)) T £(x7, pg)) - Fp Py vp/2
~ f-F,md in Newtonian Yimit . (21)

Here OB is the perturbation in the Newtonian potential. From its
definition one verifies that q is the perturbation in the distribution
function at fixed (t, z, 6, ¢, m, P(e)’ P(g)’ E), while f is the
perturbation at fixed (t, r, ©, §, m, P(e)’ P(g)’ p(r)). Equivalently,
q compares the mmber density of particles, before and after £he |
. perturbation is turned on, at the same value of the angular momentum, J,
and gnerg& at infinity,-po = E, but at diffepent values of the radial
momentum, p(r); while f measures the change in the number density for
fixed physical components, p(a), of four-momentum but for different
energies at infinity, E = Pg = e?/2 p(o)‘

Our derivation of the stability eriterion makes use of the two

perturbation functions q and v, rather than the three functions - f, VB’

B
Ay of equations (13). From the perturbed field equations (13) we obtain a

"source equation” for vy in terms of g by the following procedure:
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First define the quantities

o
H]

[ {q/m) Py p0 d1/p =~ [qm d'lfp in Newtonian limit ,
(22)

W= [ (aym)p, v, ~ 0 in Newtonian limit .

Then use equations (11), (21), and (22) to reexpress the perturbed field

equations (13) in terms gf W Q W, vy %B rather then f, vp, A

S/3r M 2 2 0
/) (re “Ag) =8rxr®Qudnr vy [ (Fy/m) pypp 0 atf ,  (23a)

A
A
BVB/ar = (dvA/dr + 1/r) Ag-Bxre” W
-4xr e)\A v. [ (F./m) ps v D At/ (23p)
B E Po Pp P P ?
AA r |
57\3/31',= -8rre” [ (a¢/m) pyp d’l/p . - (23e)
(There is no term proportional to vy in equation (23¢) because FE/m is
an even function in three-momentum space and thus has venishing odd
-V
'moments.) From equations (10) and (14) and the relations po -c A Po»
-\ _
pP=-e fp  rind that
' .r ~ o _ r
| (Fg/m) oy p, » @ = T, - T, . (2¢)

Next use the unperturbed field equations (12a) and (12b) to show that

A
(¢far) (v,+n,) = 8nzre A O g Ty

(Tpo = Tpr . (25)

Combine equations (23b), (24), and (25) to obtain
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~(vyrn, /2 (/) (v, )/2 Ay

g [e vB] = (gvA/dr + 1/r) Ag=8rre W . (26)

Finally, use cquation (23a) to eliminate Ay from equation (26), obtaining

Sv, = =20+ & = ( © ) (27)
B 2 or av,/ar +1/r ’
where S is the opefator
1 0d | e-(vA+57\A)/2 3 (vt )/2
Sy, B = e v
B o 22 or av,/ar + 1/r or B
F
E 0

This is the desired source equation for v_ in terms of q, which enters

B
through the integrals @ and W of equation (22).

Notice that the operator S is defined in coordinate space rather
than in phase space. In fact, it is a one~dimensional operator; it

involves only the radial coordinate, r. An important property of the

operator S is that it is self-conjugate for bounded functions h, ki

fnsxa®v, = [ksnadv , (298)
where
a° v, = (m/po) d‘lé: = J(~g) axt ax dxo

(v,4+7,)/2
= e AT 22 sin e ar a9 af . (29b)

For the special case of an equilibrium cluster with isotropic velocity
distribution .(F independent of J), it is useful to define the total

density of mass=-energy, Py and the isotropic pressure, Dys by
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. 0 0
Py = Tho = J (F/m) py 0" a1 )

n
1
3
5
)
i
1
3;—3
.
I

-/ (F/m) p, B" A

"

1/2) [ (¥/m) (3/r)? 4 . (20)

The integral appearing in expression (28) for S is related to the density

and pressure by

F 2 dp,/ar dp,/dr
E 0 A A

(The first equality results from taking the radial derivative of expres-
sion (30) for Py == for which purpose it is most convenient to use P(0)?
p(r), p(e), and p(m as the coordinates in momentum space and to employ
equations (8), (9), and (18); the second equality results from the

relation T, " = 0.) Consequently, for isotropic clusters S takes the

Ar U
form
. 103 e e'("A*s"A)/z 3 ( (vyn,)/2
v = - e v
B ix 22 or av,far + 1/r or B
dp,/dr
'»(QAH’A) m vy, . (52)

As the next step in our derivation of the stability criterion we

take the quantity

2 | v A 2
B = f-(a—_f_'-/—g,a? d%dzé-mj(l—i—rdr—-—"‘) eA[fipoprd'Vp] d"*vX s

(33)
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which is conserved during any small, radial motion of a cluster (cf.
equation [24b; R] of Paper I), and reéxpress it in terms of q an@ VB by
the following procedures:

First rewrite H in terms of q and Q by simply substituting expres-

sions (21) and (22) into (33) and by remembering that FE/m is an even

function in momentum space

3612 v
E = J %L av, a7, - | gf-gt—B d3vx

F dv_\?
- %f (/2 nym p° /] (a-B') a®v

X
dv A . 2
- 45 [ (1 + d——z-;é) o A e %po pr d'r/p] dsvx . (z4)

By using equations (23a), (23c), (26), (29v) and an integration by

parts to manipulate the last term in equation (34), convert H into
the form

3t)2 1 a"B
H =/ -(-a-‘l_%_,;l- dq/pdvx-gj% S0 dz‘vx

o) .
FIER - =

Next transform the second term in this expression by using equations

(28) and (29b), by integrating by parts, and by then employing equation
(26), to obtein

2 dv dv
'H=j@§a—@-Ld4/d1/+-l-fB B %
.- E P X X

s ' x S ¥
A
4 A aw2
-/ dvA,/td: -?- 1/t (§E> d:va . (z6)
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Use equations (22) and (29b) to rewrite this expression in the form

D P
H=f?%";: §.+FE 5 "% dof, a9
p.

) )
/ 5;}3- g 3—:-13 a>v, , (37)

4

T

where O is given by

N 1/2
_ 1 . 4nre U
g = m 1 t, 1 dvA/dr + l/r‘ ) (38&)
and where 4 is defined by
-F_ (p_ p°)
- E r
p o= J - po d’l/P . (380)

Expression (37) is the form of the conserved quantity, H, which we
were seeking; and it provides the basis for our stability criterioﬁ:
Ifr FE is nowhere positive throughout the phase space of the equilibrium
cluster, and if O is real, the first term in expression (37) is positive.
Hence, if the second term is also positive -- 1l,e., if S is a positive=-
definite operator -- then the constancy of H prevents the perturbation
from growing in time faster than linearly. (Linear time growth corres-
ponds to mexrginal stability; i.e., zero-frequency motion.) Therefore

we have the following theorem:
A spherically symmetric, relativistic star cluster, for which

Fp £ 0 (39a)
and
A

A
‘4z r e M
dvA/dr + 1/r <1t (390)
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throughout phase space, is stable, or at least marginally stable, ageinst

small radial perturbations if the operator § is positive-definite over

the set of all physically acceptable perturbation functions, BVB/Bt:

f%—s;:—Bdsvxgo . (40)
The conditions (39) are reasonsble, in that one expects them to be
satisfied by almost all physically interesting clusters. Condition (3%9a)
says that there are fewér high-energy stars than low-energy stars. DNotice
" that in the Newtonian limit u becomes zero; S becomes the Iynden-Bell
(1986, 1967, 1968) operator

P
S~ -+ 02 Fp Y, in Newtonian limit  ; (41)

vy becomes 2¢B; and the stability criterion (40) rgduces to that of
Lynden~Bell. '

Our theorem is incomplete until we have delineated the physically
acceptable perturbations, BVB/at, of 0O(4n goo)/Bt. At the center of
the cluster the field equations (13), and also the smoothness of the
spacetime geometry, force v |

series in're:

g ~= and hence also BVB/bt -- to be & power

v 3 = a(t) +b(t) Pa... st re0 . (42a)

At the cluster's surface the interior line element (5) must join onto

the static Schwarzschild geometry
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- 12 (a6® + sin“6 ag®)

V,+v A+
d52 = e A''B th - e A AB dr2

[ 2......._‘%:”%)]

2
- 1 2&2%)/; - v (a8® + sin®® af’) , (&3)

in which MA and MB are constants.2 The join must be smooth in the sense

2For any physical perturbation the rest mass of the cluster (i.e., the

sum of the rest masses of the stars) is the same in the perturbed state
as in the equilibrium state. However, the total mass-energy, M = v%ﬁwgy
need not be the same; i.e., Mﬁ need not vanish. For example, if, at a
particular instant of time, every star is given & one percent increase

in p(o) with no change in direction of motion and no change in posi-

tion (i.e., in surface area of the sphere on which it sits), then TOP
increases by one percent everywhere, and Mﬁ is one percent of MA. However,

MB is constant in time during the subsequent motion of the cluster
(conservation of total mass-energy; Birkhoff's theérem). Any acceptable
perturbation can be expressed as & linear combination of normal modes

and zero=frequency modes. Paper I discusses normal modes, and those
zero-frequency modes which correspond to dynamiceal, uniform motion of a
cluster from one configuration to another. Such a zero=-frequency mode ««
which occurs only in a set of measure zerc of all clusters -- corresponds
to the onset of instability of some normal mode. The perturbation, b&y
in M vanishes for all normel modes and for these dynamical zero-frequéncy
modes. However, as noted by Professor K. S. Thorne (privaﬁe communication),
there exist other, more general zero-frequency mcdes which are possiblé
in any cluster and which may induce a perturbation, MEP in the conserved

muss—-energy, M. These are zero~Iirequency modes ror which the perturbation
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function f is completely static. These modes take the cluster mathe-

matically, but not dynamically, between two slightly different equili-
brium configurations which may or may not have the same total mass-
energy, M. General dynamical pertufbations of a cluster will typically
contain zero-frequency components of this sort, and as a consequence
they will have MB # 0. In fact, the example given above must contain

such a zero=frequency mode.

that the first and second fundamental forms of the cluster's surface,

r = R+ £(t), as induced by the interior four-geometry (5), must be the
‘same as the first and second fundamental forms.induced by the exterior

. Pour-geometry (43). Straightforward computations (see Appendix A) show
that the first fundamental forms agree if and only if vB is continuous
at the surface for all t, and the second fundamental forms then agree if
-and only if XB and 5VB/5r are continuous at the surface for all t.
Since avB/at and (a/ar) (Bvﬁ/ét) are zero outside the cluster, they

must approach zero as one approaches the.surface of the cluster from

the interior

avB/at -0 and (B/Br)(BvB/at) -0 as r=R_ . (42p)

The function space over which S acts in the stability criterion
(40) is the space of all functions satisfying the conditions (42a,b).
In practice, testing cluster stability by inserting various trial
functions into the integral (40) will be a risky business. One can
never be completely certain, from an examination of a limited set of
trial functions, that all trial funections will give a positive value

of the integral. Fortunately, an alternative stability criterion
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involving the operator S can be derived, one which is slightly weaker

than positive-definitenéss, but which is much more easily applied.

Integrate the differential equation

‘SY = 0 (44)

from r = O, where the boundary conditions ¥ = 1, d¥/dr = O are

imposed, to r = R. If the resultant function, ¥, has no nodes, then

S is positive-definite on the space of trial functions satisfying

conditions (42), and the cluster -- if it satisfies conditions (39) --

is stable against small radial perturbations.

Proof of the theorem: Consider the Sturm-Liouville eigenvalue

problem
svn=->\nv(i)wn | ,
v, =1 and dwn/dr =0 at r=0 R (452)
¥.=0 at r=R ,

where

V() = [ (Fy/m) v po B W : (45b)

We assume without proof that the eigenfunctions ¥, form a complete set

on the interval [0, R]. Since both the acceptable avB/at and their
radial derivatives vanish at the surface, r = R, the Ov./0t, for fixed t,
cannot be solutions of a second~order differential equation in r. However,
any trial function, B’VB/at, can be expresséd as a linear combination of

two or more eigenfunctions, Wn, of equations (45):
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avB/at = i a, V¥, for fixed t 3
o - (46)
ﬁ%d“’n/d1‘=° at r=R. .

Through use of the expansion (46) and the orthonormality relations,
[vgsv a = A J (V) vy v adv, -8, (47)

for the Stwm-Liouville problem (45), it follows that

n n

[ Qvy/3t) s (Bvy/t) = 2 a0\ (48)
n

for anracceptable trial funcfion, BVB/Bt. If there are no negative
eigenvalues for the problem (45), equation (48) implies that S is

- positive-definite over the acceptable BVB/at and that the cluster is
stable. vathere are at least two negative eigenvalues, %O and %1,
the trial function avB/at = ay Vo + a; ¥; Dproduces a negative value
when inserted into expression (48), and S is not positive-definite.

If there is énly one negative eigenvalue, one does not know if there
is an sceeptable trial funetion for which expression (48)'is negative.

Consequently, we conclude that: (i) if S has no negative eigenvalues,

then it is positive-definite over the avB/at, and the spherical

 cluster sotisfying conditions (39) is stable against small radial

perturbations; (ii) if S has at least two negative eigenvalues, S is

not positive-definite over the bvB/at; (iii) if S has only one negative

eigenvalue, one does not know whether S is positive-definite over the
BvB/at. The first of these conclusions is all we need to prove our
theorem: Because (45) is a Sturm-Liouville problem, the Sturm

oscillation theorem guarantees that the n-th elgenfunction, \%fn, has
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exactly n nodes -- excluding the node at r = R -- and that Wn has one

node in the region bgtweén any two adjacent nodes of V¥ __,. If the
differenﬁial»equation (S‘+ W)y =0 is'intégrated from r = Q, where
v=1 and ay¥/dr = 0, to r =R for every value of A, it follows that
the nodes of ¥ will move inward toward T =.O continuously with increasing
A (recall froﬁ definition {45b] that V is everywhere negative if Fg < 0).
Consequently, since Wb has a node at only r = R, there will be no nodes
in the range [0, R] for A <Ny For Ay <A< A there will be one
node in the range [0, R] -- which node moves inwerd with increasing A
uhtil another node appears at r = R when A = Al, etc. Hence, if there
are no nodes for A = 0 (equation [44]), it follows that N > 0, which
-in turn implies that all eigenvalues of equation (45) are positive and
that (conclusion (i) above) the cluster is stable. QED.

We conclude this section by emphasizing that the stabi;ity criteria
developed above should be qpplied only to clusters with anisotropic
velocity-distributiéns. The stability criterion fér isotropic clusters
: developed in §III of this paper is more powerful and is even easier to

_apply.

d) Stability of Gas Spheres
et us‘now turn ouf attention from star clusters to gas spheres
exhibiting small radial motions about their equilibrium states. In
discussing the stability of gas spheres we shall employ a method
analogous to that which we pursued in our discussion of the stability
of spherical clusters == i.e., we shall manipulate a quantity conserved
during the motion of a perturﬁed, gas sphere; and we shall thereby derive

a sufficient (but not necessary) condition for stability against radial
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perturbations for which the adiabatic index is given by

I‘l_(r) = (p+p) P-l (ap/ar) (dp/d.r)-l. This stability criterion will
involve the positive-definiteness of a second-order differential sperator,
which is similar to the operator S thét we encountered in §IIc. Before
proceeding to our stability criterion we will first review some of the
fundamental equations which govern the radial motion of a perturbed gas
sphere. |

If we employ Schwarzschild coordinates to describe the geometry of
spacetime (cf. equation [5]) the equilibrium field equations analogous

to the cluster equations (12) become (see, for example, Chandrasekhar

1964),
My 2
(¢/ar) (re ®) = 1 -8xr Py s (49a)
-A -A
re ® dvA/dr = l-e Ay oexx? Py s (49v)

while the perturbed field equations analogous to (13) take the form

N 2
(3/3r) (r e © KB) = 8r T Pp , (50a)
. ?\A
51/3/51' = (dvA/dr + 1/r) }\B +8xre’ py (s0b)
A
XB = -8xre® (pA + pA) 3 . {S0c)

Here ¢ is the radial displacement of the fluid (or "gas"), and p and p
are the density of total mass-energy and the pressuré as measured by an
observer comoving with the fluid. We are assuming a perfect fluid (no
viscosity or heat transfer; isotropic pressure in the comoving frame).

From the perturbed field equations (50a) and {S0c¢) it follows that
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pp = = (/r%) (3/3r) I+ (o, +7,) €] . (51)

If we make use of the relation

iv—“‘- = =2 dpA/dr (s2)
- Iy
dr Pyt Py |
which follows from the equation of motion Tra'a = 0, we can rewrite
]
equation (51) in the alternate form
dp (p,4p,) v,/2 -v, /2
_ A A'TA A ) 2 A
pp = = == & 2ol & (e ) . (53)
We will restrict attention to those perturbations of a gas sphere for
which the adiabatic index is given by
1 ' pA P constant entropy Py _deA/dr
It then follows that
= .dpA/dr = ?f.‘&. (55)
’p T o/ B T do, B .

(Henceforth we write (dp,/ar) (dgA/dr)"l symbolically as dpA/dgA.)

In arriving at an operator criterion for the stability of gas spheres
we employ a series of steps patterned after the analysis of §IIc. The
initial step thus consists in obtaining a source equation for VB
analogous to equation (27):

First introduce the quantities

% ap,/ar (py+2,) vy

BT E YT tE I, 2 (S6e)

O
1]
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* dpA/dr v

.W=-p+ V=-p-(o+p)~§=-ﬂ * (560)
'R dvA7dr B B ATPy D dp, .

ﬁhich are changes in p end -p at fixed potential, v. These are the
analogues of the quantities Q and W for a cluster (equations [22]) in
the following sense: If a cluster with isotropic velocity distributién
is perturbed radially, and if we define its equilibrium density and
pressure by equations (30), then its perturbation functions Q and W of

equationa (22) take the form

<O dp,/ar . O, (py+7,) vy (o2a")
B0 ~av,/ar B B0 T ap,/dp, 2 ’
dpA/dr v

W=0r

- r -
B T e 'sC T - (Bat) 3
# (dpA/dpA) Q in general . (22v')

(Equation [22a'] follows directly from equations [21], [22], and [31];
while equation [22b'] follows from equations [14], [21], and [22].) In
the derivation of a source equation for VB’ next rewrite equations (50a,b)

* % -
in terms of @ , W, vy and %B, thereby eliminating Py and Dy

d M ~ o ¥ o (pytpy)
5 (r e 7\3) = 8nr Q,. -~ 4q r W VB R (57a)
~(v,+0,)/2 (v,+n,)/2 A
e AR Qpn e AAT v = (av/ar s 1) N Bxre B WL
(57b)

(In deriving equation [57b] employ equation [257, with the identifications
0 r . R

Py = TAO and Py =" TAr , which follow directly from the field equations

[50a,b] for the gas sphere.) Next combine equations (57a) end (57b) and

= _ . % 3*
thereby obtain the desired source equation for v_ in terms of @ and W,

B
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* 2 0 r2 W* ]
Svg = -_2 @ + ;5 or [dvA7dr + 1/r . (s8)

Here S is precisely the same operator (equation [32]) ag sppears in the
analogous source equation (27) for a cluster with isotropic velocity
distrivution. Consequenfly, as for clusters, so also for gas sﬁheres,
the operator § is self-conjugate over the space of bounded functions
(equation [29a]). ‘ -

Continuing our derivation of the stability criterion along the lines
of §IIc, we next consider a quantity which is conserved during the small,

radial, adiabatic motions of a gas sphere. This quantity is

* ¥ * '

H = K +P s (58)
where

(A

- ) '
& = @) fe B A (o4p,) Gy av (0)

and where

P o= 2] (ap,/ar) (8/r) &

: | -v,/2 2
P (2/2) S e, (o,/%) /) (P e e a,
+ax fe P, (o, +p,) 82 &%
- (3/2) | (py +p,)™ (ap,/ar)? §2 &%, : (61)

* *
The quantities K and P are the kinetic and potential energies (to
second order in the radial displacement, §) associated with the pertur-

*
bation, and H 4is the second-order change in the total mass-energy from
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its value at equilibrium (see equation [B26] of Harrison, Thorne,

Wakano, and Wheeler [1963 with an obvious error corrected).

: * * .
Our pregent aim is to express P in terms of § and vB. To this

* _
end, we first rewrite P in terms of Py and )‘B by the following manipu-
lations:

Substitute equations (53) and (54) into the second integral in the
definition of P and obtain

S o QR
2 fbA+pA B X

dp,/dr [do dp ]
1 A i Y /Y -
+ 3 5+, 20pt +| g5 + 5 (pA"'pA) = £ d3vx
M 2 3,
+4n [ e " p, (p, +p,) 65 AV, . (62)

Next use equation (51) in the second integral of the above expression

to find
#oob e,
2 DA + pA B b 4
?\A 3 dp
1 e 3 2 Fa 42
+5 = (m, +4n r° p,) <5z [(pptp,) 851+ 2 = & dsvx
4 [ " ( ) 2 v (83)
Where my is the total gravitating»mass within coordinate radius r
(ef. equation [49a])
: -7\A T o
mA(r) =(1/2r(L-e ) = [ Py 4m r° ar . (64)
O .

(In arriving at equation [63] employ the Tolman-Oppenheimer-Volkoff

equation of hydrostatic equilibrium,
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%A 3 2

dPA/dr = -e (OA-FPA) (mA +_4u r pA)/r ’ (65)
which is derivable from the equilibrium equations [40a,b], [52], and
[(64].) Perform an integration by parts on the first term in the second
integral in equation (63) and use equations (25), (29v), (52), (&4),
and (65) to obtain
dpA/dpA

1
P - = f
2 pA ' PA

2 .3
(pB) d°v,

A A

A
-2x [ & [ore A (m, +4x o p,) + ] (pA+pA)2 (2 dz‘vx . {(86)
r’ ‘

Next use equation (65) to rewrite equation (52) in the form

M 3 2 2 |
2r e (mA+4n r’p,) +r° = r° (1+4r dv,/dr) ; (87)

and combine this relation with equations (S0c) and (66) to obtain the

»*
desired expression for P in terms of pB and KB:

dp, /dp .
P*(QB.RB) = %— J "AA"’ Pﬁ (oB)e <13'\rx

1 e-?\A vy 2 .3
- X <l+r a-r—-\) g av, . (68)

We will use this expression for P in $III to establish a relation-
ship between the stabilities of isotropic eclusters and gas spheres; but‘
we presently wish to continue our manipulations so as to reexpress-P*
in ferms of Q* and v,: Rewrite the first integral in expression (88)

*
in terms of Q and Vv by using definition (56a), and transform the second

integral via equation (57b) to obtain
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dp, /a0y wp 3

* 1 1 * 3
P o= 3 °A+PAQ av -3 JQ vy av
P, + D
1 s T Py 2 3
+5 1 dp,/dp, (vp)® a™v,
1 e-?\A ~v )2y (vey)/e
- / -;5— KB [re S (e VB)

A

3*
+ 8n r2 e by ] a°

v, . (89)

Next perform an integration by parts on the last lntegral in the above

expression, and use equation (57a), to find

- dp,/dp '
* 1 A RPA % -
P = 5 / —_pA+pA Q d3Vx

Ll Lo

* 1 * 3
[ vya¥y -3 Iw na, L ()
By using equations (57b) and (58) and an integration by parts, show that
jQ*v v =--l—fvsvdz‘v-jw* v
B X 2 B B X 7\B~ x

A

A .
8t r e *.2 .3
+ ] dvA/dr + 1/r W)™ a Vk -t (72)

Pinally, combine equations (56b), (70), and (71) to obtain

A |
A
P* - !_— f dpA/dpA 1 - 4 T e (pA+PA)(dPA/dpA) Q*2 d:ﬁv
2 Py + Py dvA/dr + 1/r ’
1 3
+ 5 [vgs vgav, . (72)

* *
This is the desired expression‘for P in terms of § and v_, and

B’
it enables us to arrive at & stability criterion for gas spheres which

is analogous to the stability criterion of §IIc for spherical clusters:
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The kinetic energy of motion, K*, of a perturbed gas sphere is positive-
definite (cf. expression [60]). If the coefficient of Q,*2 in the
first integral in expression (72) is noh~negative throughout the eguili-
brium configuration of the gas sphere, and if § is a positive-definite
operator, then P* is also positive~definite -~ and the perturbation
cannot grow in time since H (cf. equation [59]) is a constant of the

motion. Hence our analysis results in the following theorem:

A relativistic gas sphere, for which

A
A
4nr e’ (o, +p,)(dp,/do,) <1 (73}
dvA/d.r + 1/r -

throughout space, is stable agsinst small, radial perturbations for

which the adiabatic index is given by

p, +p p, +p, dp,/dr
A constant entropy A A
if the operetor S is positive-definite over the set of all physically
acceptable perturbation funetions, vB:
>
/ vy S vy d3Vx > 0 . (75)

For a gas sphere ~-~ but not for a star cluster =-- the perturbed
configuration has identically the same total mass-energy as the
unperturbed configuration, to first order in the perturbation (see, e.g.,

Harrison et al. 1965). Consequently, v. and 5vB/5r must vanish

B
identically at the boundary of the gas sphere, just as avB/Bt and

(o/or) (BVB/at) do for a cluster; and the boundary conditions on

acceptable perturbation functions, VB’ for a gas sphere are identical

to those (equations [42]) on_acceptable perturbation functions, avB/bb,

for a cluster.




120

Condition (73) for a gas sphere is in general not the same as con-
dition (39v) for an isotropic cluster. Notice that the equilibrium

equations (49) can be used to rewrite condition (73) in the equivalent

form
1 dvA/d_r.+ d7\A/dr dp, . . (73°)
2 av/ar + 1/r dp, =

For a gas sphere whose structure is not highly relativistie, dpA/dpA is
much less than unity and l/r is large-compargd to either dvA/dr or
dkA/dr. Hence one expects that condition (73') will be satisfied in
this case. On the other hand, for a gas sphere which is highly relati-~
vistic, one frequently finds that there exists a region in the sphere
throughout which p, = (y-1) ¢, with 1<7 < 2. Thus dpA/dpA = (7-1)
can be as large as unity in such a region. However, one can show by
using the equilibrium equations (49), (64), and (65) that condition (73)
is satisfied even in this latter case. Hence (73).is likely to be

satisfied for most physically interesting gas spheres.

III. REIATIONSHIP EETWEEN THE STABILITIES OF
ISOTROPIC CLUSTERS AND GAS SFHERES

In fhis section we -shall compleﬁe our discussion of the connection
between the stabilities of spherical clusters and gas spheres. We shall '
show that an isotropic cluster is stable ageinst small radial perturba-
tions if the gas sphere which has thevsame radial diétribution of density
and pressure is stable against small, radial perturbations for which the
adisbatic index is given by T = (o+p) p (dp/ar) (ap/ar)™ . We will

establish this connection by comparing the conserved quantity H of
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equation (33) for a perturbed cluster with the potential energy function

P*', as expressed in equation (68), for the associated gas sphere.

- We begin by transforming the conserved qﬁa.ntity H for a perturbed,
isotropic cluster into a form closely related to that of expression (68)
for the potential energy, P*, of the corresponding gas sphere:

First use equations {11) and (13c) to rewrite expression (33) as

=A 2
3e/ot )2 1 A v, axB
f-(—_LF;:-L d,'l/p cl‘l/x T J 9;-2‘" (l+r dr——) (Y) dst . (76a)

Next split £ into a part f+ which is even, and a part f_which is odd
under reflections of the spatial momente (p(r) -“p(r)’ P(g) ="~ (o)
Pegy = = P(g)y Plo) *F p(o)). (cf. equation [16; R] of Paper I, and
associated discussion.) When H is rewritten in terms of the even and

odd parts of f, it takes the form

(3¢_/3)° VO
H = [ = -d'z/p o +f = <au/1p .
-A 2
A av o) :
- i-:-'s'—ﬁ- J & 5 (l +r drA) (%’i) c13Vx . (78b)
r

This is the desired expression for H.
For an isotropic cluster, in which FE < 0, the following inequality

is valid for the second integral in this expression:

3 2 ) . 2
LY e, 2 s () L
E P | At Py
‘where the identifications p, = T 0 = =T .. T © = -7 ¢
AT A0 PaT T Car TT Cae 57 fag
and pg = TBOO have been made. Proof of inequality (77): The proof

involves an application of the familiar Schwarz inequality,
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(h,h) (k, k) > (n,k)? , (78a)

where, fér our purposes, we take the inner product to be defined by.
(h %) = [ (hk/m) py®° atf . (780)
For the functions
(5£+/3t)/J(—FE pg) s k= J(-Fgpy)

the Schwarz inequality (78a) reads

2
(3¢, /3¢ ¥ o -F dr. /3t
o ~E 0 + 0
= A | \] s=pp e | > | [ —F— py» af| (79)
- Divide by the second term on the left and integrate over d3Vx to obtain
(3¢ /3t)% J [(3¢./3t)/m] pn 2° d%/
E ? J (-Fg/m) 2y B, P’ ay,

Finally use equations (31) and
by = Ty = J (2/m) vy 2° ax = [ (£,/m) vy 2° a¥, (s1)
B BO 0 = P Y P

 to manipulate fhe inequality (80) into the desired form (77). QED.
Turn attention nekt to expression (68) for the potential energy F#
of a perturbed gas sphere. As follows from the variational principle
governing the normal modes of radial pulsation of gas spheres
(Chandrasekhar 1964), a necessary and sufficient condition for the
stability of a gas sphere against small, radial perturbations for which
the adiabatic index is given by T = (py+p,) p‘,,:l (dpA/dr) (dpA/dr)”l
" is that expression (68) is positive-definite for all acceptable pertur-

bation functions. Recall that the perturbation functiouns, Py gas and
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AB gas’ for a gas sphere are related through equation (50a), which fixes

KB gas uniquely once PB gac is specified as a function of t and r.

As fdllows from the field equations and the smoothness of the spacetime

geometry at the center of symmetry, the acceptable perturbations pB gas
behave as a power series in r2 near the origin:
2
P gas = a(t) +p(t) 2 + . . . near r=0 . (82a)

At the surface, r

R, of the gas sphere the lagrangian change in pressure
must vanish. For any equilibrium gas sphere with the same density and
pressure distributions, pA(r) and pA(r), as an isotropic star cluster,
QA(r) will approach zero as r approaches R (no discontinuity in density
 at the surface; see Appendix B). 1In this case & vanishing Iagrangian
change in pressure is equivalenf to & vanishing Eulerian change in

density

Py gas = 0 as r = R_ . (82b)

A final restriction on Py gas is that the change in total gravitating
mass, M, from its equilibrium vealue vanishes to first order in the

perturbation

R
=3 2 =
MB-é-pngs 4nxdr = 0 - . (82c)
' *
i i - y i .oc >
If expression (68) is positive-definite, i.e., if P (DB gas’ xB gas) 20

for all perturbation functions which satisfy the conditions (82)

pB gas
(with A gas given in terms of P gas by [50a]), then the gas sphere
is stable against all small, radial perturbations associated with the
special form of the adiabatic index, Pl(r), which we are considering.
Conversely, if P* in expression (68) is not positive-definite, the gas

sphere is unstable.



124
We are now in a position to prove the following statement: The

¥* . .
expression P of equation (68) is positive-definite over the set of

allowable, radial, perturbation functions, (0/0t) (pB cluster) and

(o/3t) [RB (pB)cluster]’ for an isotropic cluster, i.e.,
P L/R) (g uerer)s (3/3) O

gas sphere (the gas sphere which has the same radial distribution of

)1 >0, if the corresponding

cluster

density and pregsure as has the cluster) is stable sgainst radial pertur=-

bations for which the adiabatic index is

_ -1 -1 .
T, (r) = (pptp,) 2, (dp,/ar) (dpA/dr) . To establish the validity of

LN

this statement we need merely note that (9/0t) (pg . jictep) 804
(3/3t) (a,

equation (50a), that (d/3t) (bB elustep) Sebisfies the conditions of

cluster) are related by an equation of the same form as
equations (82), that (9/dt) (pB cluster) is therefore an acceptable
pB gas’ and that P* is pésitive-definite over the acceptable sets
[pB gas’ Ay (pB)gas] if the gas sphere is stable. (That
(9/9t) (OB cluster) satisfies condition (82a) follows from the smooth-
ness of the spacetime geometry at the center of symmetry. That it
satisfies condition (82b) is proved in Appendix B. That it satisfies
condition (82¢) follows from the fact that (O/dt) (MB) =0 for a
perturbed cluster.)

We can now compare the quantity, H, conserved during the motion of

*
a perturbed, isotropie cluster with the quantity P . We define a

quantity
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3, 3 | , /%)
P [Bét - (XB clusteri] = _5 I ffE dtg dw&

-A
A
"% | T (eravfan) (3 Oy

]2 dSVx ,  (83)

cluster

so that
(32_/ot)® ¥,
=/ -FE d1/p dvx + 2P [B‘ci - (}\B cluster)} (84)

for a perturbed cluster. For an isotropic cluster with FE <0 it

follows fram equations (68), (77), and (83) that

I{Bf /Bt (8/bt) (AB cluster )]

> PL/3) (b jucrer)s (3/3%) O )] : (85)

cluster
This inequality enables us to establish the relationship which we

were seeking between the stability of a spherical cluster with isotropic

pressure and the stability of'the corresponding gas sphere: Suppose that

the corresponding gaé‘sphere is stable against radial perturbations for

which Pl = (ptp) p~l (dp/dr)(dp/dr)-l. Then our previous discussion shows

that B [(3/3t) (Pg cluster)> (&/38) (A
throughout the motion of the cluster. Coupled with inequality (85), this

> .
cluster )1 >0 at all times
result implies in turn that H is the sum of two positive-definite terms
(cf. equation [84]), and that thebconstancy of H therefore prevents the
perturbations from growing in time. We have proved the following theorem:

Consider a bounded, spherical, relativistic cluster with isotropic

pressure and with FE < 0. Such a cluster is stable against collisionless,

radial perturbations if the gas sphere which hag the same radial distri-

bution of density of total mass-energy,
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0 0
p =Ty =] (F/m)pyp v, ) (86a)
and of pressure,
- _mi = - 2 _ 3 ' r
P = -1 T, ==, == [(Fm)p, P @) (8ep)

is stable against radial perturbations for which the adiabatic index is

given Bx
r = o+0D . e+p dp/ar )
1 r 5 p  dp/ar (87)

constant entropy

the that this theorem is pot limited by any restriction such as that

of condition (39b). -

IV. CONCIUSION

In this paper we have developed methods which should be useful in
studying the collisionless stability of relativistic star clusters.
Their usefulness liés in the fact that their application requires only
the solution of one-dimensional problems. The price paid for this
relative simplification is that these tools only provide sufficient
conditions for stability. For clusters in which they fail to prove
stability, one must turn for more conclusive results to the necessary
and sufficient, multidimensional veriational principle of Faper I.
.These methods are now being used by the author to study the stability
of specific relativistic star clusters. The results will be reported
in a subéequent papervin this series.

I wish to express my gratitude to Professor Donald Iynden-Bell for
helpful suggestions; I extend my special thanks to Professor Kip S. Thorne
for his encouragement and usefui advice throughout the course of this

research.
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APPENDIX A

JUNCTION CONDITIONS AT THE SURFACE OF A PULSATING CILUSTER
The proper Jjunction conditions to be imposed on the metric at the
surface of & pulsating spherical cluster are that the first and second
fundamental forms of the cluster's timelike three-surface, as computed
from the interior four-geometry, agree with the first and second funda-
mental forms as computed from the exterior four-geometry.

The equation of the surface of a perturbed spherical cluster is
r=R=-¢(t) = 0 s (A1)

where R is the value of the radial coordinate at the equilibrium posi-
tion of the surface, and where &(t) is the displacement of the surface
from its equilibrium position. In the Schwarzschild coordinate system
which we are émploying to describe both the interior and exterior
four-geometries, it follows that displacements in the radial and time

directions on the surface are related by the equation
dr = (d/dat) at . : (a2)

Hence the first fundamentael form, ¢1, of the surface is

o, = [e¥ - eM (ae/at)?] at? - 1 (a0 + sin% ag®) .  (a3)

The displacement, §, is a first-order quantity. Consequently, to first

order, @1 is continuous across the surface if and only if Vy and VB are

continuous there.
- The second fundamental form, @2, of the surface is given by

®

p = (=myg ax®aP) , (ac)
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where n” is the unit normsl to the surface. The subscript "d" denotes that
relation (A2) must be employed in the definition (A4). The only non-

vanishing components of the unit normal are

- 2
= e ggégg ; nf= gﬁ_ ; N = V![e Ao (%%) J . (as)

A simple computation, correct to first order, then reveals that

_ 2 2 2, 142
o, = K. dt° + K (a6 + sine ag<) s (a6a)

where
I R N I
2 ar B~ 2)For ’
/ (A6b)
-7, /2
— A -
Continuity of @, for a displacement in the (6, #) plane demands that
Kee, and hence }A and %B, are continuous across the surface. Continuity
of K., then demands that dvA/dr and BVB/ar are continuous across
the surface. Hence Ay Vo, and BVB/Br mast be continuous at the

suiface of a perturbed spherical cluster.
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APPENDIX B

BOUNDARY CONDITIONS ON THE DENSITY AT THE SURFACE OF AN ISOTROFIC CLUSTER

For an equilibrium ecluster with isotropic velocity distribution the
distribution function is independent of angular momentum; F = F(po,m).
In this case equations (2), (8), (9), and (10) enable one to write the

cluster's pressure end density as

P = - Ty = ‘TAeg = TA¢¢
= (4x/3) T ¥ F(evA(r)/g m x, m) nt an] (n_ca-l)z’/ 2 & (Bla)
1 |

. (r)/2
p = TAOO = 4::;!)'.0 s F(evA 2 ‘m x, m) n dm] 2 \i(xe-l) ax , (R1b)

(see, e.g., Fackerell 1968). At the surface, r = R, of the cluster the

radial stress, T,.~ = - p,(r), must be zero. This means that
Fle m x, m) must vanish for all x > 1; i.e., it means that

vy(R)/2
F(po,m) = 0 for all p  >me . (»)

Conditions (BL) and (B2) guarentee not only that lim p,(r) = 0, but
. ' r=R_
also that

lim pA(r) = 0 s (B3a)
r=R_ '
unless F has a strong delta-function singularity at p,=me .

However, delta~-function singularities in p, are excluded since we are

concerned only with elusters for which FE < 0. Not only does P

vanish at the cluster's surface; | dpA/dr also vanishes
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lim dpA/dr = 0 . (B3v)
r—bR- .

One discovers this from equation (31), and the fact that dVA/dr -15
finite and non-zero at the cluster's sﬁrface (cf. Appendix A).

Turn attention now to perturbations of an isotropic cluster. For
all acceptable perturbations except a set of measure zero, considerations
similar to the above enable one to conclude that TOO vanishes at the
surface, r = R + & (), of the perturbed cluster. That special class of
perturbations which leads to non=-vanishing Too at the surrace consists
of those perturbations which attach a shell of stars with circular orbits
to the cluster’s surface. Hence, except for this special set of very
physically unreasonable perturbations, the Lagrangian change in Too

vanishes ét r = R:
pp + (dppfar) € = 0 at r =R . (B4)

Equations (B3b) and (B4) may then be combined to show that P and

apB/Bt venish at the cluster's surface

lim oy = lim apB/at = 0 . (B5)
r=-R_ r=R_

In summary, the above analysis shows that in all physically
reasonable cases p,, Py, and BpB/Bt approach zero as r = R_. These

limits play an important role in §$III.
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7. Relativistic, Spherically Symmetric Star Clusters. .
IO. Stability of Compact Isotropic Models

(Td be published in Astrophysical Journal)
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I. INTRODUCTION

In the two preceding papers of this series [ Ipser and Thorne
1968 (Paper I), Ipser 1969 (Paper II)] the theory of the stability against
spherical perturbations of collisionless, spherically symmetric star
qlusters was developed within the framework of general relativity.
Among the results derived in Paper 1 was a variational principle for
the normal modes of radial oscillation. This variational principle pro-
vides a necessary and sufficient condition fof the stability of the cluster.
In Paper Il were presented sufficient (but not ﬁecessary) criteria for
stability. These sufficient criteria are much easier to apply than the
variational principle. In applying them one has only to determine |
whether a certain ordinary differential operator is positive definite
over a set of one-dimensional perturbation functions (cf. §llc and §III
of Paper II), whereas, to apply the variational principle of Paper I,
one must attack a problem which is at least two-dimensional, |

In this paper we shall use the stability criteria of Papers I‘and
Il to study numerically the stability of some compact models (i.e.,
models for which the ratio of mean density of total mass-energy, (p),
to éentral density, Pes is 2 10-3) with isotropic velocity distributions.
More specifically, we will employ both sets of criteria to study the
stability of (i) clusters of identiéal stars with heavily~-truncated,
isotropicl, Maxwell—Boltémann velbcity distributions {heavily-truncated
"{sothermal" clusters); and (ii) isotropic clusters whose density and
pressure distributions :obey a polytropic law of index 2 or 3. Our main
conclusion will be that neither of these classes of models contains a
stable equilibrium co'nfigurati..on with a cehtral redshift (redshift of a

photon emitted from the center of the cluster and received at infinity)
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Signi:ficantly larger than 0, 5.

The outline of this paper is as follows: In §II we shall restate
those basic definitions and results °£. Papers T and Il which will be
needed in this paper. In §II1 we shall reduce the variational principle
of Paper I frpm its rather general, original form to a form which is
more useful for numerical calcq.lations. In §IV we shall use the vari-
ational principle and also the sufficient criteria of Paper II to study
the stability of isothermal clusters; and in §V we shall apply these
criteria to polytropic clusters.

Our notation and conventions will conform to those of Papers I
and II. Thus we shall set equal to unity the gravitation constant, G,

the speed of light, ¢, and the Boltzmann constant, k.

II. REVIEW OF STABILITY THEORY

In this section we shall briefly review certain aspects of the
theory of the stability of spherically symmetric, relativistic star
clusters. For a detailed discussion of the material presented here,
the reader is referred to the relevant sections of Papers I and II.

We begin our review with the definition of the invariant distri-
bution function, N, in phase space. N is defined to be the number of

stars, dN, per unit invariant volume, dl:p dux, in phase space

n= dN/dUderx , | ()

where the volume elements in momentum space and physical space

are given by

dv, = -dpodpidpzdp3/wf(-g) ;o du = (p°/m)V(-glax'axfax®. (2)
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‘Here pa and P, are the contravariant and covariant components of
the 4-momentum of a si:ar, g is the determinant of the metric tensor,
and m is the rest mass of a star.
In analyzing the dynamics of a spherically perturbed cluster -
we employ Schwarzschild coordinates, so that the metric takes the

form.

v(r)tvo(t,r) N {r) A (t, )
dsz=eA B dtz'--eA B. drz

- I'Z(de2 +sin%0 dcbz) . . -~ (3)
As in Papefs I and II, the subscripts A and B denote the equilibrium
values of various quantities and the small departures of these quantities
away from their equilibrium values, respectively.

Following §IVc of Paper I we split the distribution function, N,

into an unperturbed part, F, and a perturbed part, f:
. a .
h - F‘m:EApJ) +f(X :P(a,)) ° (4)

Here the p are the physical components of the momentum,
(e) yaieal .

toje

. |
P(ay = 1€7%1%p, 5 p @ = g |57, (5)

and a star's rest mass, m, its energy at infinity, EA’ and its angular
momentum, J, may be expressed in terms of the P(a) through the

relations

vA/Z 1

' 1
(a))z H EA =ée P(O) ; J = r(P(29)+P(2&>)) . (6)

m = (P(a,)P

As described in §IVd of Paper I we write the perturbation, f, in the

distribution function as the sum of that part, f+, which is even, and
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that part, f_, which is odd under reflections of the spatial momenta

(Proy ™ *P0)* P(z) ~"P(x)’ P(a) " "P(g)* Pa) T "Prgy)e U L s

split into normal modes,

f = f(xj,pa)ei“t , (7

we have the variational principle

2 [r7t dy_ v,

= 2
f-1/F )¢ dy,du,

(8)

w

for the normal frequencies of oscillation. Here

Fp= (8F/8E,) . ; . - (9a)
, dv, . N\, P P
- A A0 _r 0O_r
Ti= (l/FE)Bﬁf-llw(i-f'r = )e ;—Gp mP A, (9b)
and
A PP P PP PP APD"
- 0 Am 0 T r 0

In definition (9c), AQA is the Liouville operator for the unperturbed

o . .
cluster; when (x ’Poz) are used as coordinates in phase space, AQA take

the form
, afp
Joar 1 984 af
5 :.E... . — —_— ., d
AJ'= m Bx‘]‘ 2m P papﬁ 8pj (9d)

The variational principle (8) provides a necessary and sufficient condition

for stabiiity: if FE is nowhere positive throughout the phase space of a

bounded, collisionless, sphekrical equilibrium cluster, then that cluster

is stable against radial perturbations if and only if J is a positive-
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definite operator for odd-parity spherical functions, h, bounded in

phase space:

S‘hfh dy, di, >0 . (10)

In Paper II sufficient (but not necessary) criteria for the stability
of relativistic star clusters were discussed. Among the criteria for
stability presented there the most important one is the thecorem of §III of
that reference, which relates cluster stability to gas-sphere stability:

A bounded, spherical, relativistic cluster with isotropic pressure and

with FE:E 0 is stable against collisionless, radial perturbations if the

Bas sphere which has the same radial distribution of density of total

mass-energy,

p = S (F/m)POPO dy, (11a)

and of pressure,

p= -Sﬁ(l?/m)prpr dv, _ (11b)

is stable against radial perturbations for which the adiabatic index is

given bz

= ptp(dp - ptp dp/dr
=5 (ap (12)

constant entropy p dp/dr

In the following sections we shall use the above criteria to study
the stability of some isothermal models and polytropic models. Our
first task will be to reduce the variational principle of equation (8) to

a more useful form. This is done in the next section.



138
III, REDUCTION OF THE VARIATIONAL PRINCIPLE

a) A Reduced Form of the Liouville Operator

In applying the variational principle (8) we shall use (xa,pa) as
our coordinates in phase space. Then the unperturbed Liouville operator,
ADA, takes the form given by equation (9d). However, when ;QA operates
on a spherical. function, h, in phase space, only those terms involving
derivatives of I with respectto r and P, survive, To sece this,
recall that a spherical function, h, can depend only on t, r, Pge Pus

and J--which is given by
2 . 273 .
J = [Pe +(P¢/Sln 0)“] (13)
(cf. egs. [5] and [ 6]). Consequently, for a spherical function, h,

equation (9d) takes the form .

gh:-e-}\AE—{(QE 1 %y b p 8h) (8 J)(ﬁz_x
A m 8rvxp.’P 2m 9Jr at B apr X“;PP A aJt’r'PO’Pr

(14a)

But ggAJ' = 0 since J is an integral of the motion along a stellar orbit
in any spherical cluster, Hence

"M Py yoh 1

AglAh= € m 81’) M 'ZTH ar p p ( ° \.14b)
x5 ,p

B Pu
_ All quantities in this equation can be re-expressed in terms of m, Po»

Pos Vp» and )‘A by the use of equations (5) and (6):

=\ P
- A “r oh
)QAh = -e —n—i -'O—i- .
N (_13_1 dvA_r___n')e_vA E_q.)z- (E d)\. m) A( m (15)
2 dr r m 2 4dr m T r !

when h is a spherical function in phase space.,



139

b} Choice of a Trial Function

In applying the variational principle to study the stability of a
specific éluster model, one inserts various odd-parity, spherical
trial functions, T, into expression (8} and searches for a minimum
value of mz. Hopefully, this minimum value of wz' will be close to
the true value of the squared frequency for the fundamental mode of
radial oscillation. Whether it is close or not, if it is negative, then
the cluster is unstable, If a "good choice" of trial function is made,
the method is powerful; this is because a triél function which is in
some sense ''good to first order" yields a value for the squared fre-
quency which is "good to second order."

Any spherical trial function. f. must be an even function of
Pg and p¢, since they can enter only through  J. Hence, if f is to
have odd-parity in the spatial momenta, it must be odd in P i.e, it
must have the form

o9}

| 2ntt |
f = z C,_ 4lr.pg.mip.” " . e

n=0
The angular momentum, J, does not appear explicitly in the coefficients
_ cZn+1 because J can be expressed in te‘rms of r, Pg» Pu» and m by
using equations (5) and (6)
-V -\ 1 .

J = z(e Apg—e P_-m“)¢ . (17)
In this paper we will confine ourselves to trial functions which

are linear in pr--i.e. , for which only the first term in equation (16) is

non-vanishing

. f = Ci(r’PO:m)Pr . (18)
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The obvious motivation for this is simplicity, Additional justification is
this: As will later become evident, each extra factor of (pr)2 \in a
momentum-space integral reduces the value of that integral by a factor

-(VA -VAC) |
~1-~-e s . Here v and v are the values of the potential,

Ac As
Vs at the center-of-symmetry and at the surface, respectively,
Hence, at least for clusters which are not very relativistic in their
“Vas VAl

structures [ i.e., for clusters where e ‘ is sufficiently close
to unity] the importance of successive terms in the expansion (16)
should decrease rapidly with increasing n.,

We shall also restrict our trial functions (18) to have a simple _

dependence on Py and m:
f= (;(r)FE(m,po)pr . (19)

(FE depends only on Py = E a.nd m, since we consider here only
clusters with isotropic velocity distributions--i,e., clusters for which
F and FE are independent of J.) 'i‘he reasons for this choice of
dependence on Py and m are as follows: (i) As will later become
evident, such a choice simplifies the analysis. (ii) For most of the
clusters under consideration here, such a choice satisfies ‘che'ph;ysically'
reasonable condition that the perturbation, £, should be large where

F is large and small where F is small, Why not take T «F rather
than f « Fp? Because (iii) the dynamical and zero-frequency equations
of motion suggest taking f « FE. In particular, the dynamical equation

of motion (eq. [ 19;R] of Paper I} is of the form

(m/p%)8 ,[ tm /p0)8 £ ] - 8%t _/ot?

= Fg X (terms where {. appears only in the ) . (20)

integrands of momentum-space integrals
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Since JQAFE =0, { « FE produces on the left side of this equation a
dependence upon FE which counterbalances the FE-dependence‘of
the right side. Similar remarks are applicable to the equation

(21)

A
0 - A
8,f = -Fplpgp /2m)dvy/ot + 41TFEprprre S.(f_/m)poprdlxp:

which governs zero-frequency motion. (This equation is readily derived
from the theorem on zero-frequency motion in §IVf of Paper 1I.) (iv) The
choice f « FE is particularly crucial because many bounded cluster
models have a term in FE which is proportional to a delta function
in E= Pg+ This arises from the fact that .a bounded cluster possesses
a distribution function, F, which vanishes for energies, E, greater
than a certain limiting value (see, e.g., Appendix B of Paper II).
Unless F drops smoothly to zero at this limiting energy, FE has
a delta function in the cnergy. In such a case, the. perturbation in the
distribution function must contain a.delta-function term like that which
appears in FE' Such a term is required in order to provide for the
motion of the cluster's sharp "surface" in phase space (cf. Fig. i later
in fhis paper}. This requirement has an analogue in the pulsAation
theory of stars. There, if the equilibrium density is discontinuous
across the surface of a star, then the pulsating conﬁgﬁration possesses
an Eulerian change in density, pp = ;V [ (pA+pA).§.] , which includes a
term proportional to a delta function at the star's surface.

The radial depend.ence, C(r), of the trial function (19} remains
to be specified. A reasonable form for C(r) is suggested by analogy
with the radial pulsations of gas spheres (see, e.g., Meltzer and

Thorne 1966). There, it is often true that the displacement, £, associated
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w.ith' the fundamental mode of radial oscillation is largely homologous;
i.e,, that § ~ r. Actually, this is usuélly'the case only if the structure
of the gas sphere is not too relativistic. Highly relativistic spheres
have high-density cores to which the fundamental eigenfunction, £(r),
couples strongly; i.e., they have £/r much larger in the central
fegions than in the outer fegions. |

Using these familiar results for gas spheres as a guide, we will

choose C(r) to be of a form such that

f = C(r)F = c'(r)re""“'FEpr ; (22)

EPr

and we will either set C'(r) equal to a constant or choose C(r) such that

the displacement, §, associated with the trial function, f, is given by

pt(ety _ 57 . JU/mipTay,
ot S f(F/m)podh'p

ol

f(f/m)prdlrp

f (F/rn)podl.rp

i

eiwt___ (r/ﬂ)e-prelmt . (23)

Here Sa = f(h/m)padlrp ie the number-flux vector, and the trial function

f is related to the odd part of the distribution function by

£ o= fel®t | (24)

The arbitrary constant £ in equation (23) has dimensions of length.
The constant p in expressions (22) and (23) provides for a peaking of
the fractional displacement, £/r, about the cluster's center. We shall
later choose this "peaking parameter” to have a value which minimizes
the squared frequency, wz.

Any physically reasonable perturbation should have the property
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that the perturbed cluster has the sa{me distrib;J.tion of rest masses of
stars as has the equilibrium cluster. Also, the total rest masses of the
perturbed and static configurations should be the same. These require-
ments place no constraints upon our choice of trial functions. In fact,
once a trial function, f, has been chosen, the above requirements
can be met by adding to the perturbation a static zero-frequency
mode, i.e., a mode for which f_ =0 and fo = f+(r,p0,pr,m). Such
a static mode in no way affects the stabilify ahalysis because it has a

vanishing odd-parity part, f_.

c} Reduced Form of the Variational Principle

"In this subsection we shall obtain an explicit, reduced expres-~
sion for the Qariational principle (8) which facilitates its application.
We arrive at the desired expression by the following procedures:

First‘employ definition (9b) and the anti-self-conjugate property
 of the operator B (cf. eq. [ 22a;R] of Paper I} in order to rewrite the

numerator of the variational principle (8) in the form

| 1 02D o 3
ffff av = -5 = (607 B &®v,

i 4'n'g oA (4= ‘z;A )[g L pop” dhp:rd?’vx , (25)
wherel | |
d3Vx.§ (m/i)o)dkx - Q(- g)dx dxdx>
- e(VAﬂA)/Zrzsine drdedé . (26)

Next, in expression {15) replace h by the trial function (22) and find
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fhat
B,F = mFE[ ao(r)(po/rn)2 + ai(r)(pr/m)z + C(r)/r] ,

where

i dv -\ d\
ao(r)%‘ C(r)e A(%-Tﬁé--i:) ; a(r)=e A[C(r)(—i——é—-a—?)-

(27a)

dC(z)]
o J . (27p)

In a straightforward fashion, combine equations (5), (8), (9), (22), (25),

(26}, (27) to finally arrive at the desired reduced form of the variational

principle,

Wt = (g dr e(KA-VA)/ZrZCZI' 2) h

1,
~ 3vA/2 XA/Z > 2
1 t H
X‘) dre {e [:(r.ao) 13’0 + 2r a0a111’2+2raoCIi’o
| #(ra)?T'.  +2ra.CI'. . +C2T'. |
1710 4 1Ly, -1,0
8 gINL: 2ep . oo C ]
,— Te r Ii,Z[raOIi,Z+ra11-1,4+CI-1,2_J
-3, /2
2 alé a_ 2., L2
+16n e r C 1“1,4(11’2)
(v, *tX\,/2)
rame A A1 4rav  fan)cia@ )Y (28)
. - A 1,2
where
I’ (r)ng m?(p /m)2(p_/m)P au (29)
‘a,b E™ Po Pp/mm) ety -

Notice from equations (28) and (29) that the application of the

variational principle entails the evaluation of multidimensional phase~

space intefgrals. In this paper we confine ourselves to the study of

clusters with isotropic velocity distributions. For such a cluster,

equations (28) and (29) involve non-trivial integrations over the radial
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cdordinate and over one momentum coordinate, if the cluster is com-
posed of stars with identical rest masses. (This is evident from the
analysis of §IV.) If an isotropic cluster is composed of stars with
different rest masses, integrations over three phase-space coordinates
are required., Such is the case for the polytropic models studied in §V.
(However, we will find that two of the integrations can be handled
analytically there,)

In this paper we shall evaluate the nec.es sary phase-space integrals
by a process which appears to introduce the least complication into the
numerical analysis. We shall perform the required integrations over
momentum space (in some instances we will be able to do so analytically),
and we shall replace the remaining integrals over the radial coordinate
by their equivalent differential equations. This will enable us to inte-
~ grate these differential equations right along with the equations which
govern the structure of the equilibrium configuration. Hence we will.
be able to simultaneously compufe structufe and diagnose stability.

We now proceed to detailed applications of the comp'utational

method outlined above.

IV, ISOTHERMAL CLUSTERS

In this section we shall study the stability of clusters of identical
stars with truncated, isotropic Maxwell-Boltzmann velocity distributions
{isothermal clusters). Our procedure will be as follows: In subsection
a we shall review the theory of the equilibrium structures of isothermal .
clusters. In Appendix A we shall discuss methods for evaluating the

momentum-space integrals which enter into the application of the vari-

ational principle. And in subsection b we shall outline the computational
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procedure and present the results of the computations of the cluster

pulsation' frequencies and stability,

a) Equilibrium Configurations

The structures of isothermal, relativistic clusters have been
studied independently by Zel'dovich and Podurets (1965) and by Fackerell
(1966). Such models have distribution functions, F, given by

-py/T '
F(m,py) = Ke §(m-m ) H(mVB - py) . (30)
Here K is a constant, T is the temperature of the configuration as
measured by an infinitely-removed observer, m; is'the rest mass of

a star, H is the unit step function

H{ix)=1 if x>0

=0 if x<0 ,
VA :
and B is the value of e at the surface, r = R, of the cluster:
v ,(R)
B=e A . The step function in relation (30) guarantees that no star

cain be found at r > R (see, e..g. ., Appendix B of Paper II). The metric
coefficients VA and >‘A are determined in terms of the stress-energy

tensor, TAap , (cf. equation { 3a;R] of Paper I) by the equations

3. M2
dvA/dr = Z(MA+ 47y pA)e /7 (31a)
dM /dr = 4nrl (31b)
/ Pa »
..XA
e =1-2M,/r , (31c)

where
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palr) =T, 00 =\ (F/m)pp° ay
A A0 T PgP dl

14

P
(314)

| - . r_ 0 _ _ ¢ _ r
are the density of mass-energy and pressure, and where MA(r) is the
total mass-energy within coordinate radius r.

To reduce the equations of structure to a manageable, dimension-

less form, we follow Fackerell's (1966) procedure: First introduce a

scaling parameter, L, with dimensions of length

L=ypac/ames) « G2

Here the subscript ¢ denotes the value of a quantity at the center of
symmetry, r = 0., Next define the dimensionless radius, x, mass,

v, and redshift factor, y, by

_ -
x=r/L; vEM,p, /(Lp, ); y=e /. (33)

i .
(Note that [y(r) ?-1] is the redshift of a photon emitted at radius r
and received at the cluster's surface, r = R.) Combine equations (31),
(32) and (33) to obtain the desired dimensionless form of the equations

of structure

. A
P A, Py Pp
%2 2'pAcye 5 (v -tp cx?al;_ ) , (34a)
Ac | x rAc Ac” .
dv/dx=x2(pA/pAc) ’ (34b)
-\
A
e =1-2p, v/lpp® - (34¢)

This system of equations is complete once we have explicit expressions
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for pAc/pAc, pA/pAc, and pA/pAC. As Fackerell (1966) shows, it
follows from equations (30) and (31d) that

i

1/ " .
b= 411'ng‘8‘ T EVY/T mi2ipi2_ g3 apr (35a)
1
. 1/\/—y ' '
Py = (4n/3)ngS e B Vy/T (E'2- 1)3/2dE' , (35Db)

where the variable of integration is E'= p(o)/mo,‘ and where
T'= T/(m,VB) : (36)

is the temperature, as measured by an observer at the surface of the
configuration, divided by a star's rest mass. We shall also wish to
compute the rest mass, MOA(r) » within coordinate radius r. The
rest mass, MOA(r) » is computed by first defining the dimensionless

rest mass

Vo = My apa /L, ) (37a)
and by then integrating the equation

N, /2
dv/dx = e A (pOA/pAC)xz (37D)

along with equations (34) and {35). Here the density of rest mass, Poa’

is given by
1/\/—3’ 1 ' 1
o=\ FplOdr = 4nkm? EW/Trim2 )Tar . (370)
0A P 0 {

(A detailed discussion of momentum space integrals similar to those
which enter into equations [35] and [ 37c] is presented in Appendix A.)

Notice that the constant K drops out of equations (34) and (37b).
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Hence, once values are chosen for the surface temperature, T', and
thg central-to-surface redshift factor, yc< 1, equations (34), (35) and
(37) can be integrated outward from x = 0, where V.=V = 0. The

surface of the configuration is reached when Pa drops to zero, i.e.,
when y =1 (cf. expressioné 35).

We shall discuss the structures of the isothermal clusters in

relation to their stability in the following subsection.,

b) Analysis of the Stability of Compact Isothermal Clusters

Our schemc of integration for computing the structurc of an
isothermal cluster, and for studying its stability through use of the
variational principle, now becomes evident. It consists of the following
procedures, all performed simultaneously for initially-chosen values
of the surface temperature, T', the center-to-surface redshift param-
eter, Vo = evAC/[S < 1, and the trial-function peaking parameter, M
(i) integrate the structure equations (34) and (37b); (il) evaluate the
momentum-space integrals which enter into the analysis by using the
tec'hniques discussed in Appendix A; (iii) chose the function C(r) in the
trial function (22) such that the displacement, §, is given by expression
(23)--or alternatively choose C'(r) = constant in equation (22); (iv) evalu-
ate the integrals appearing in the numerator and denominator of expres-
sion (28) by integrating their equivalent ordinary differenj:ial equations
in suitable dimensionless forms (see Appendix B). Perform the radial
integrations outward from the origin, x = 0, until th.e pressure drops
to zero, identifying the point where Pp = 0 as the cluster's surface,

The outstanding remaining question concerns itself with the
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felationship, if any particular one is desired, between the choices of
the parameters T' and Ver Each set of choices corresponds to
picking a certain cluster temperature and a certain way of cutting off
the distribution function above the ene'rgy- Py = mwa. Zel'dovich and

Podurets (1965) chose to write the cutoff in the form

\/’p =1- eT'x/—ﬁ =1-€T/m , (38)

and to study all those clusters for which € is a fixed constant. In this
way they obtained a one-parameter sequence of models. It is the
members of such sequences whose stability we shall study here. Once
we have singled out for study one of these sequences by specifying thé
cutoff parameter, €, we obtain each of its members by first choosing
a value for the surface temperature, T', and then searching for a
value of Ve = evA(é)/ﬁ which produces the cutoff given by equation (38).
Of course, there is no guarantee that a model with the desired cutoff
exists for the chosen value of T'. Notice that the value of B for a
particular model is not known until the structure of the model has been
fully computed. Consequently, the task of finding the sets of parameters
(T ,yc) which belong to those models with cutoffs given by equation (38) |
for a prescribed value of the cutoff parameter, €, is somewhat time-
consuming.

We have performed a numerical analysis of the isothermal
sequence with cutoff parameter € = 0.5. The structures of the models

in this sequence have also been studied by Zel'dovich and Podurets

(1965) (see their Table 1, where the entries .in the second column should

1 . . .
The parameters (T',yc) for the sequences of models studied in this
section were calculated for the author by B. A. Zimmerman.
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be multiplied by 0.5). The results of our analysis of this sequence are
given in Table i, These results exhibit several phenomena, which turn
out to be common to all sequences with the cutoff (38): The dimension-
less temperature, T/mo, as measured by an observer at infinity,
reaches a maximum value along the sequence; and hence different
models- can have the same temperature. The product mgpAc, where

mo is the total rest mass of a. model, increases monotonically along

the sequence; but the fractional binding energ*y, e/mo, oscillates. Here

e/mg =1 - m/M, - (39)

where I is the total mass-ener:gy of a model,

For central redshifts z_ = 0.64, the entries in Table 1 for the
squared frequencies of oscillation, wz, were obtained by setting equal
to zero the peaking parameter, p, in equation (23). Thus .the associated
displacements are homologous: .§/r = constant. For z > 0,64 "upper
limits" are given for’ w2, Actually, those entries are not minimum
upper limits even with respect to our trial functions (22), since the
study of a model with z > 0. 64 was discontin.ued once a value of |
which yie;lded a negative.valqe of wz was found, Because of this, and
also because our simple trial functions (22) cannot be expected to be
"good" for highly relativistic models, no significance should be attached
to the way in which the given upper limits vary along the sequence of
Table 1,

We have found that, for each model in Table 1| which has a
central redshift z, = 0,64, the value of w? obtained by minimization

with respect to the peaking parameter, B, of equation (23) differs by



152

less than ~ one-tenth of_ a per cent from the value of wz obtained by
~letting p =0 in equation (23)! But 'che. most favorable value of u
increases as the central redshift becomelé larger along the seguence.
For example, for the model with z.C =1,08 th‘e‘ratio of the value of
the fractional displacement, £/r, at the surface to its value near the
borigin’ is = 0.6, for that value of p which minimizes wz. We have
also found that it seems to matter little whether the parameter C' of
equation (22) is set équal to a constant or is chosen such that equation (23)
is satisfied.

For the model of Table 1 with z, = 0.392, we exhibit in Figure 1
- the momentum-space dependences of thé equilibrium distribution
function, F, and of the perturbation trial function, f, at two values
of the radial coordinate, r. The odd-parity part, f_, of the pertur-
bation is takeﬁ fo be that given by the trial function (22) with C' = 1,28
and p =0, The perturbed distribution function, N= F +f, is shown af
‘a moment of timei wlilen the even-parity part, f+, of the perturbation is
‘zero, i.e., when n = F+f . (It is evident from equation [ 25;R] of
‘Pz'iper I that the even and odd parts of a normai mode oscillate with a
phase difference of 17/2}.)'

Since a model is unstable if the squared frequency of oscillation

of its fundamental radial mode is negative, Table ! indicates that an

instability occurs along the isothermal sequence with cutoff parameter

€ = % when the central redshift, z , reaches a value which is about 0.5.

We can be certain that the point of onset of instability occurs at a central

redshift < 0,52, This is because the variational principle is a minimal

principle.

Table 1 exhibits another interesting phenomenon, namely, that
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quite strongly correlated are the positions along the sequence of that

point where the fractional binding energy, S/mo, attains its first

maximum, and that point at which the variational analysis indicates

that an instability sets in. 2 This behavior is clearly indicated also in

Figure 2, where we plot (A‘.\z'/f:»AC and -Fjﬁno as functions of central
redshift, Z . This correlation between binding energy and stability is
highly reminiscent of a similar correlation which exists for certain
sequences of hot, isentropic stellar models (see, e.g., Chapters 4 and
6 of Thorne 1967): there each extremal point of the associated binding
energy curve signals the change of stability of a normal mode of ,radial
oscillation. |

In Tables 2 and 3 we present the general properties of the iso-
thermal sequences for which the cutoff parameter, €, is equal to 0.1
and 0.01. It is evident that these sequences possess properties quite
similar to those of the sequence with € = 0.5, wh.ich were discussed
~ above,

The isothermal sequences of Tables 1 -3 have heavily-truncated
distribution functions; i.e., they have cutoffs (38) such that, even in_

the central region of a model, the "spectral density, "

as'® sag

v 2 -
41rl‘5 F(m,e Y mE")m> deE'(E'Z- 1)z

- _d(proper density of stars with locally measured) JdE',

energy per unit mass greater than E'

attains its maximumat a value, E;n(r) , of E'= p‘o)/m which is either

-v,/2
greater than or only slightly less than the cutoff value, Eéut(r) = e A VB,

2'The possibility of such a correlation was conjectured in 1967 by Ya. B.
Zel'dovich and I. D. Novikov (private communication to K, S. Thorne);
but Ipser and Thorne (Paper I} thought it quite unlikely.
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above which the equilibrium distribution, F, vanishes, In general,
for fixed central-to-surface redshift factor, Ve the smaller is the

value of the cutoff parameter, €, the larger is E;n(r), whereas Eéut(r)

is largely insensitive to the value of €. As may be seen from Tables 1 -3,

values of € 3 0,5 give rise to isothermal models for which--except in

1 3

ultrarelativistic situations-- the ratio, (p,)p._ = 3 (4rR
AT Ac

-1
Pag) 2 of
mean density to central density is 2 10-3. From this comes our loosely-
applied statement that such heavily-truncated models are "compact.”

Tables 1| - 3 indicate that such a compact, isothermal cluster is unstable

against radial perturbations if the redshift from its center is significantly
3

larger than 0,5,

One could argue that compact isothermal clusters are unrealistic,
since they have heavily-truncated distribution functions, and since inter--
actions between stars near the center of a cluster should tend to populate
a significant portion of the tail of the Maxwellian distribution. However,
Zel'dovich and Podurets (1965) have pointed out that inelastic collisions
become more important than other evolutionary phenomena when the
stars which compose a relativistic cluster have velocitics a few per cent
of the velocity of light or larger. The prbcéss whereby two stars collide
and stick will tend to reducé the fraction of stars with large energies at
a rate which grows larger as the cluster becomes more relativistic.
Hence, at least some of the isothermal models examined here may be
semi-realistic,

The analyses of this section suggest a highly idealized history of

31n this connection, it should be noticed that the cutoif for any isothermal
cluster can be written in the form (38) for some choice of the cutoff
parameter, €. However, only for € S 0.5 will the cluster be compact.
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the evolution of a spherical cluster along one of the isothermal sequences
studied here.® A proto-cluster might be expected to relax towards an
isothermal distribution, after which it might evolve along one of the
sequences considered here, by means of the ejection of stars and
collisions between stars. (When a star is ejected from a cluster, it
carries away non-zero kinetic energy as measured by an observer at
infinity, and thereby increases the fractional binding energy of the
cluster; when two stars collide and stick, they increase the cluster

rest mass and hence also its binding energy.) Consequently, the cluster
evolves along the sequence down the binding energy curve (- e/mol
decreas irig) in the direction of increasing temperature, When the cluster
reaches the minimum of the binding energy curve, evolution along the
equilibrium sequence must stop because subsequent star ejection and
collisions can only increase further the fractional binding énergy of

the cluster (i,e., decrease -e:/mo). Something else must happen., What?
The analyscs presented in this section give us an answer: The cluster
undergoes catastrophic gravitational collapse at this point. The fact
that a compact isothermal cluster may move from one sequence to
another as it evolves will not enable it to es cape this catastrophe, This
is because fhe aﬁalyseé of this section indicate that the key features of
the sequences are largely cutoff-independent; i.e,, instabilities élways

occur when a compact isothermal cluster has evolved sufficiently far

For a related discussion, see Zel'dovich and Podurets (1965). However,
it should be remembered, in contrast with their comments, that there
appears to be little relationship between the temperature of a model and
its stability,
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that thé redshift of a photon 'emitted from its center and received at
infinity is of the order of 0,5, |

| We have argued that collisions and evaporation bring an iso-
thermal cluster to the verge of collapse., But we have ignored these
processes in performihg our stability analyses. The justification
given’ in §IT of Paper I for doing so is that the time-scale associated
with the gro';vth of the instability in a cluster should be -foughly the
star-travel time across the cluster--a time muchvsmallezl' than the
interval between collisions for a typical star. Our analysis has veri-
fied this justification; it has shown that the time-scale for onset of the
instability is 1/ }wl ~ pgi (cf_. Figure 2), a time of the order of the
star transit time. |

In addition to the variational principle, we have applied to the

isothermal models the sufficient condition for stability quoted in §11,
whicﬁ relates cluster stability to gas-sphere stability. Unfortunately,
that sta‘bility criterion is useless for studying the isothermal models.

The corresponding gas sphere was unstable for every model examined!

We have also applied the suﬂicient condition for stability associated with
equation (44) of Paper II. That criterion also is of no use for studying
the isotherfnal models; It was not saf‘.isfied for any model examined.

In this section we have av_oided consideration of isothermal
models which possess high-density cores surrounded by extended,
diffuse envelopes (i.e., models with the cutoff € >> 0,5). Our experience
suggests that an accufate study of the stability of such a "core-halo"
model cannot he achieved with the simple trial functions employed in this
paper. However, we have as yet been unable to construct a sequence of

core-halo isothermal models for which the model with maximum fractional
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binding energy, S/mo » Possesses a central redshift significantly dif-

ferent from 0.5. Conséquently, at présent it appears likely but -

remains unproved that any isothermal cluster is unstable if it possesses

a central redshift & 0.5.

V. POLYTROFPIC CLUSTERS

In this section we shall study compact, isotropic clusters with

densities, Pa = TAOO’ and pressures, Pa =.-T, Y=_.7 e = T ¢

- TAr AD Ao’
which are related by a relativistic polytropic law (eq, [ 40] below).
The gas spheres whichcorrespond to these clusters (i.e., the gaé spheres
which have the same radial distributions of density and pressure) have
been studied extensively by various authors (see Thorne [ 1967] for
references). Our approach to the study of the polytropic cluster models
will be this: in subsection a we shall discuss the equations of structure
and the dimensionless form in which they are usuaily written; in sub-
section b we shall discuss Fackerell's (1966, 1968a, 1968b) method
for the determination of the distribution function; in Appendix C we
shall develop a method for evaltiating the momentum-space i.ntegrals‘

which enter into the variational principle; and in subsection ¢ we shall

study the structures and stabilities of the polytropic models,

a) Equations of Structure

In this subsection we write the equilibrium equations of structure
for polytropic cluster models in a form identical to that used by Tooper
(1965) for polytropic stellar models.

By definition, a relativistic star cluster which is polytropic is

one whose density, Par and isotropic pressure, Pa> obey the relations
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aT@n’H‘, (40a)

Pa

pa= 7O +p AT, - 1) . (40b)

In these equations ©O(r) is a dimensionless function which is equal to
unity at r=0 and zeroat r=R; &, T, n, and 1"4 are constants, with
T having the dimensions of an inverse length squared. The positive
constant n is called the polytropic index. Study of equations (40)
reveals that the larger is the value of the relativity parameter, «, the
more relativistic is a cluster. By combining equation (40a) and the

relation

dp,/dr = -(t/2)(p ,*p,) dv , /dr , (41)
which follows from the equation of motion, TAr“;H= 0, we obtain the
useful equation

ey = o A TTAR A ray, 0 N
where we have introduced the parameter
v, = T,/(T,- 1) . (43) |

To reexpress the equations of structure in dimensionless form,
we introduce the dimensionless radius, x, and mass, v, through the

definitions
x=r/L; v(x) = M, (r)/ (4nL>7) ; L =4/[(ntt)a/anT] . (44)

(In this section we shall thus reinterpret the symbols x, v, and L,

which were employed in the previous section.) With the help of
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equations {40) and (41), we may then rewrite the equilibrium field

equations (31) in the form

4o -ltteyO)v +axo 0t

—_— = (452a)
dx xz[ 1 -2(n+t)av/x]

dv/dx = x“07[ 1 +aly,- 1)6] , (45h)
Ay

e ={1 - 2(ntl)av/x] . . (45c)

To compute the structure of a polytropic model, we first choose values
for n, I'4 (or y4), and «. We then integrate equations (45) outward
from x =0, where ©=1 and v = 0, until © drops to zero. This
happens at the cluster's surfacé. The pressure and density throughout
the configuration are obtained from © through eciuations (40). Notice
- that all quantities will be scaled by the parameter T, which is related

to the central density, by equations (40):

Pac?

Pac=TL1 +ea/(Tem11 . (46)

b} The Distribution Function

The distribution function, F, which gives rise to the polytropic
models can be obtained by a method due to Fackerell (1966, 1968a).
‘This method has been employed. by Fackerell {(1968b) to obtain expres-
sions for F in those cases where I'y =1 + 1/n (the "adiabatic"
polytropes). A straightforwa.rd generalization of this method will allow
us to obtain F when no such restriction is placed upon T4.

We begin by combining equations {40a) and (42) so as to obtain

an expression for the pressure, Py in terms of the redshift factor
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n+i 'Y4/2 Y4/[2(n+1) n+l
1y ¥ ( : .

py=lat/lay,) 1-y (47)

The pressure is given in terms of the equilibrium distribution function,

F, by the expression

Pp= -S F(m.PO)(P(r)P(r)/m) du,

Qo

= (Zw/3)(ﬁv)’2§

o
(S‘ F(rn,m\/-u)m‘}dm] (u—By)3/2u‘1/2 du. (48)
By 0 B '

In this integral the integration variable u corresponds to (po/m)z.
Expression (48) is easily derived by techniques similar to those em-
ployed to obtain relation (A7) (also see Fackerell 1968a). The inte-
gration over u in expression (48) actually runs up to only u = . This
is becausé the distribution function, F, rﬁust be.zero for values of

EA = Pg > mﬂi, o.r else particles would be found at r > R, where R is

the value of the radial coordinate at the surface., If we define the mass-

weighted distribution function,
- o . |
Flu) = [211/(3\/—u)]§ Flm,mVym" dm , (49)
0

and if we combine equations (47), (48), and (49), we obtain

p
o = | ste-pp®/?a

By

i

2-v4/2 vy/l 2tnt)] 271
[ar ﬁZ/(a_Y‘L)nﬂ]y 4 ( 4

1 -y ) . (50

The stability criteria of Papers I and II cannot be applied to



models with polytropic index n <3/2, since F

lée1l

E is positive over a

certain region of phase space for those models. > Restricting ourselves

to those polytropic models for which n =23/2, Fackerell's {1968b)

analysis tells us that the solution of the integral equation (50) for I is

. i
(u) = -(4/3«):3'5/{ / Sl /ey iy-u/m Y 2ay.  (51)

u/p

by straightforward differentiation of equation (50}, we obtain for the

integrand of equation (51)

-(1+y,/2)
Lo/ ay? = sz/(aw"“] y 4
y4/[ 2(n+1)] n-2 y4/[ 2(n+1)]
X |1-y ' ] AytAy tAy
(52a)
In this expression,
Ay = -Y4A6/Z » A= [y4/(n+1)](A6 -nAi/z) , -
{52b)
A, =[yy/ta+)llal/z - (n-0)] ,
where
Ay =2 -y M(4-v,)/4
0 4 4 (520)

>
"

= -(a-yl2lntt) - v L4+ )] +ny/tatt) -2 .

5This is because equations (40) reduce to the Newtonian polytropic law
near the surface of a relativistic polytrope. Since only stars with
large energies, Pg» close to the cutoff energy, m\/ﬁ, can reach the
surface region of a cluster, it follows from the known form of the
distribution function for a Newtonian polytrope (Eddington 1916) that

B (m\fp - po)n-3/2 for the largest energies, Py available to the

stars which compose a relativistic polytrope. Hence Fp (cf. definition
‘9a) is positive at large energies if n < 3/2,

y4/(n+1)]
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Equatiéns (51) an.d (52) may now be combined to obtain the mass-weighted
distribution function, S(u). ft is evident ‘tha.t the expression obtained for
3({u) will be complicated,particularly when Yy # 1 *+1/n. Andin order
to evaluate any of the momentum-space integrals which enter into the
analysis, one must perforrn a c&mplicated integration over the variable
u apbearing in our complicated result for F. These features suggest
that the task of studying the stability of the polytropic models might be
‘ formidable., However, in Appendix C we devise a ‘technique for evalu-

ating analytically, in terms of the metric coefficients v, and )‘A’

A

the momentum-space integrals which enter into our stability analysis’

when n is an integer,

c) Analysis of the Stability of Polyvtropic Models

In this subseﬁtion we study the stability of polytropic clusters with
‘indices n=2 and 3. The method used to apply the reduced variational
- principle (28) is the following (all prc;cedures performed simultaneously):
(i) integrate the structure equations (455,b); (ii) evaluate--by employing
the technique devised in Appendix C--the momentum-space integrals, |
I;,b(r) , of »d_efin‘ition (29) > which occur in the reduced variationa_l-principle
(28); (iii) employ the trial function (22) with C' = constant, and evaluate
the numerator and denominator of the reduced variational principle (28)
by integrating their equivalent differential equations in suitable dimen-
sionless form (see Appendix D). The value thus obtained for the squared
frequency ofv oscillation, wz, of the fundamental radial mode can be
minimized by varying the peaking parameter, u, of equation (22). The
integrations are performed qutward from the origin (r = x = 0), where

v=0 and © =1, to the point where the structure variable © drops to
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zero, This defines the position of the surface, The run of the density
of total mass-energy and the pressure throughout the equilibrium con-
figuration are determined from equations (40). "All results are scaled
by the parameter T ({cf, eq, [ 46]),

In this paper we obtain a one-parameter sequence of polytropic
clusters by choosing the polytropic index, n,.to be equal to either 2
or 3, and by choosing a value for I"4 > 1., We then collect into a
sequence the models which belong to different‘ va.lue's of the relativity
parameter, o. As the value of « increases, the models become more
relativistic (i.e., the redshift of a thton emitted from the center of
the model and received at infinity increases),

In applying the stability criteria of Pape rs I and Il to the members
of such a sequence, we must always be certain that FE (cf, definition 9a)
is non-positive throughout the éhase space of a model, Otherwise, the
stability criteria will be inapplicable., In any event, we might question
the reasonableness of a model for which ‘FE >0 in some region of phase
space--in such a region there would be fewer low-energy stars than
high-energy stars. Notice from §Vb that the distributions of density,
pA(r) , and of pressure, pA(r) , throughout an isotropic clusfer deter-
mine u'niqxiely only the mass-weighted distribution function, 3[(p0/m) 2] .
If only % is known, we must make some assumption ébout the explicit
dependence of F(m,po) upon the rest mass, m, and the energy, Pg >
of a star in order to_study the behavior of FE' Fackerell (1969) has
carried out a study of the sign of FE for the polytropes of indices 2
and 3, under the assumption that F(m,po) depends upon the energy,

Pg+ only through the ratio po/m. His investigations show that thg

larger is the value of I‘4 for a given polytropic index, n, the earlier
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FE becomes somewhere positive along the associated sequence (n and
I‘4 fixed along the sequence; « varying), More specificially, the larger
is the value of I‘4, the smaller is the maximum of the central redshifts,
Zs for those models which have FE = 0 throughout phase space.
Further, for given values of n and 1"4, the assumption that F has a
dependence on Pg which is more complicated than that considered by
Fackerell tends to make matters only worse; i.e., it tends to lower
the maximum of the qentral redshifts for those mo’dels which have
FE =0,

In Tables 4 - 6 we exhibit the results of our stability analysis for‘
three representative sequences 'of polytropic clusters with indices
n=2 and 3. The structures and stabilities of the gas spheres which
correspond to the models of Tables 4 and 5 have been studied by Tooper
(1965). The entries in Tables‘4 - 6 for the fractional binding energies,
El/mo, were computed by Fackerell (1969). Under the assumption that
the distribution function, F(m,po)‘deperids on p, only through the ratio
po/m, Fackerell (1969) has found that, for values of the relativity param-
eter, a, only slightly greater than the last entries in Tables 4 and 6,
FE has a turning point and the stability criteria become inapplicable,
However, all members of the "adiabatic" sequence withn = 3 and I"4 = 4/3
I(Ta}.:»le 5) have FE = 0 throughout phase space.

There are two outstandiﬁg features of the results given in Tables
4 -6, which are quite similar to the main results of §IVb for compact,

isothermal clusters, First, Tables 4 -6 indicate that a polytropic cluster

of index 2 or 3 is unstable if it has a central redshift Z. 2 0.5, and stable

if it has Zc'<" 0.5. Secondly, the fractional binding energy, s/mo,

reaches its maximum value along each of the polytropic cluster sequences
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considered here at a point quite close to the point of onset of instability

as diagnﬁsed by our vériational princii:le.

| If one applies to the polytropic models the sufficient condition
for stability quoted in §II, which relates cluster stability to gas-sphere
stability, he finds that criterion to be fairly weak. In fact, the gas
spherés which correspond to the polytropic clusters with n = 2 and
I"4 = 3/2 become unstable against radial perturbations with adiabatic
index (12) when the central redshift reaches the value z = 0.315.
All of the relativistic gas spheres with n = 3 and I"4 = 4/3 are ﬁnstable;
and all of the gas spheres with n =3 and T4 = 2 which correspond to
the specific clusters of Table 6 are unstable, Further, one can obtain
no information regarding the stability of the polytropic clusters through
use of the stability criterion associated with equation (44) of Paper 1I.
That criterion failed for every polytrope to which it was applied.

It is to be expected that the results presented in this section are
typical of at least all polytropic .clusters with 2<n<3. For nfS2,
our stability criteria are not even épplicable when the central redshift
is. zcz 0.55, because the distribution function has Fgp> 0 somewhere
in phase space (Fackerell 1969). For n 2 3, the polytropes have core-
halo structures » and the simple trial functions (22) yield inconclusive

results,

VI. CONCLUDING REMARKS

In this paper we have employed the stability criteria developed
in previous papers of this series to study the stability against radial

perturbations of two representative classes of compact, relativistic,
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spherical star clusters with isotropic velocity distributions. It is
perhaps somewhat surprising that our study indicates that neithér
heavily-truncated isothermal models nor polytropic models of indices
2 and 3 admit stable equilibrium configurations which have central
redshifts significantly greater than 0,5,

| These findings are of some relevance to the Hoyle and Fowler
(1967) star-cluster model for quasi-stellar sources; the results suggest
that it will be difficult--and perhaps even impossiﬁle--to construct a
stable spherical star-cluster model which has an isotropic velocity
distribution, and which has a central redshift as large as ~ 2,3, If
further analyses of compact and also of core-halo isotropic models
confirm that stable, isotropic, .spherical clusters cannot have the
required large central redshifts, one would logically turn next to the
study of spherical models with anisotropic velocity distributions, and
to the study of rotating models.

Our analyses have demonstrated the existence of a strong cor-
relation between the behavior of binding-energy _cufves _and the onset
of instability along a variety of sequences of isotropic, spherical
clJusters. This suggests that, for certain properly-chosen sequeﬁces
of cluster models, one will be able to diagnose stability by simply
appealing to the behavior of the associated binding-energy curves.
Since the task of applying the variational principle can bc somewhat
time-consuming, it would seerﬁ well worthwhile to devote considerable
effort to the search for such a binding-energy theorem for stability.

Of some use in such a search should be the theorem on zero-frequency
motions in §IV{ of Paper I. The importance of a binding-energy theorem

for stability is further enhanced by our findings that the one-dimensional
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sufficient criteria for stability of Paper II seem to be much less
powerful than the multidimensional, necessary and sufficient vari-

ational principle of Paper I.

I am especially indebted to Professor Kip S. Thorne for his
guidanée and advice concerning the research reported here. I also
benefited from enlightening discussions with E. D. Fackerell and
R, F. Tooper. I' thank E. D. Fackerell for his kind permission to
quote some of his results in advance of their.publication; and I thank
E. D. Fackerell and B, A. Zimmerman for assistance with varibus
aspects of the numerical compufations. This work was performed in

part while I was a National Science Foundation Predoctoral Fellow.
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APPENDIX A

EVALUATION OF MOMENTUM-SPACE INTEGRALS FOR
ISOTHERMAL CLUSTERS

It is evident from the reduced expression (28) that our application
of the variational principle (8) entails the evaluation of at least six of
the momentum-space integrals I;,b(r) defined by equation (29). In
addition to the six I;’b(r) which appear in expression (28), the
integral I(')’z(r) also enters into the analysis if thé trial function (22)

is chosen such that the displacement is given by équation (23). Further,

the integrals IZ,O’ 11,0’- and IO,Z’ where

1, @ = § Py /miPe, mi® @y (a1)

enter into the structure equations (34a,b) and (37b). Thus ten momentum-
space integrals Ia,,b and I;,b enter into our analysis of the structures
and stabilities of the isothermal clusters. Sorﬁe of the relevant momen-
tum-space integrals can be evaluated in terms of the others, as we shall
show here,

In this appendix we derive useful expressions for I

a,b » b

when the distribution function is that of an isothermal model: First use

and I
a

equations (2), (5), and (6) to change variables in expression (29) from

pos pr: pe: Pcb to m, p(r)a P(e): p(¢)

v, /2
dlrP = -dp, dp_dp, dp(!)/\/-(-g) e B (m/po) dm dp(r)dp(e)dp(¢). (A2)

Expression (29) then becomes

\

14 2 . ‘
I;’b(r) =e B S“FEmz(po/m)é—i(pr/m)bdm dp(r) dp(e)dp(q)) . (A3)
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At each point in physical space we set up a Cartesian coordinate system

RORRORREY

in 3-momentum space with coordinates p

(r) , p(e) , p(¢)) in this space with magnitude p = (Zp(j)p(j))%.

Let { be the angle between the p(r)
(6)

P Consider a

vector (p
axis and this 3-vector; and let 7

be the azimuthal angle in the (p p(¢)) plane. By construction,

p =pcost, p®=psingcosn , p® - Psinlsinn, (Ada)

dp(r)dp(e)dp(‘ﬂ = pzdp d(cos L)‘d'r] . (A4b)
Combine equations (A3), (A4),and the relations

v /2 v 2 1
e 50 o ¢ Y (2 +m?)? , (A5a)

Py

N,/2 ' N,/2
e A/ p(r) = -e A/ pcos il ,- (A5D)

1]

Py
which follow from equations (5) and (6), to obtain

(av ,+bN,)/2
I;.,b(r) = (-1)P2re A AT

Vv /2
X S FE(m,e Al p(o))m‘l(p(o)/m)a_L(p/m)b+2cosb§.dm dp d(cos {).
(A6)

In arriving at this expression we have performed the trivial integration
over 7. Next use equation (Ab5a) to change variables from m,p, L

to m, E'= p(o)/m, { in expression {A6); and then integrate over [,
obtaining

(av

. +b\,}/2
I () =[4m/(b+)]e A

A

/2

v
XSFE(m,e A mE')mSE'a(E'Z-l)(bH)/Zdm dE' ., (AT)

This expression is valid only if b is an even integer--which it is for all
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cases of interest in this paper. For isothermal clusters it follows from

equations (9a) and (30) that

Fp(m,pg) = -Ke-po/TS(m-mo)[ H(m -pg) /T + 8(py-mVB)]
= -F/T - Ke-po/TG(m-mo)é(po-m\[ﬁ) - (A8)
since
o E(mYB - py)] /0P, = ~6(py - mVB) . (49)

Notice that when FE is reexpressed in terms of the variable E' = p(o)/m,
v, (R) v

‘the quantity f=-e A » the redshift factor, y=e A/B, and the surface

temperature, T', it becomes

ke B/ T () /)

X[(1/TYH(1 /Yy - E') + §(EWy -'1)] . (A10)

Insert this expression for FE into equation (A7) and finally arrive at

the desired relation for I; b(r):

S bh,/2
R b(r)_.-.-,[4n/(b+1)]ng;3(a'“/ze A/

a,
X (r*/ 2/, L+ T Ay -0 © 2 A

where

1/fye_E|{Y/TuEla(E,2_1)(b+1)/2 aE!
. |

3,y 55 ) (A12)

It follows from equations (30), (A8), and (Al11l) that we can also write
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the integrals Ia b(r) of definition (A1) for isothermal clusters in terms
E] .

of '3 (x):

Ia.,b(r) = [ 4n/(b+1)] ng ﬁa/zeb)\A/Zy‘a/zJa’b(r) . (A13)
‘Notice from equations (Al11) and (A13) that we have reduced our
task of evaluating the required integrals I;,b and Ia,b to the problem
of evaluating the corresponding integrals Ja,i)’ Scrutiny of equations
{23), (28), {35), (37c), {(Al),and (A13) will reveal that eight different
integrals ‘Ba,b enter into the structure and stability analysis., The
relevant combinations (a,b). .are: (3,0), (2,0), (1,2), (1,0),(0,2),(-1,4),
(-1,2), and (-1,0). We shall now show how five of these integrals may

be evaluated in terms of the remaining three: First reexpress definition

(A12) for Ja+1 b in the form
-EWy/T! 2_,,\(b43)/2
3 it bm [1/(b+3)]§1 e EVY/T'giag /amn[ ('2-1) P13/ 2 gE |
Perform an integration by parts and use definition (A12) to obtain

= VT AR fy - 1) /2

(b13) °9a+1 ,b

+({Y/T')Ja,b+2 - aJa-.i 42 * . (Al4a)

Also, employ definition (A12) and simple subtraction to arrive at the

trivial identity

J (A14Db)

a,b42 = %at2,b " Ja,b .

The "rccursion rclations” (A14) imply that if, say, the intcgrals &2. 0
2
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"90 23 and 3_1 o are known, we can evaluate in terms of them the five
ol | ] .

remaining Ja “which enter into our present analysis. This fortunate

s b
state of affairs greatly simplifies the numerical problem.,

Fackerell (1966) has shown how to efficiently evaluate integrals
equivalent to "92,0 and :90,2 by summing infinité series involving
hypergeometric functions. Unfortunately, the integral ‘9-1,6 seems
to be expressible only as a doubly-infinite series involving hypergeometric

functions, so that it is most efficiently evaluated by use of Simpson's rule

or some other numerical technique,
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APPENDIX B

DIMENSIONLESS FORM OF THE VARIATIONAL PRINCIPLE
‘ FOR ISOTHERMAL CLUSTERS

For the isothermal clusters, the reduced variational principle
(28) can be reexpressed in a dimensionless form which facilitates the
computation of a squared frequency, wz. We begin by defining the
1

dimensionless analogues, GO and 0‘,1, of the functions 2, and a

of definitions (27b):

Golx)= BLay(x) = <L) [-2% & é] (Bia)
-A dA
G ()= La (x)=e 2 [C(Lx)(;ic -3 dx“‘) - dcg;ﬂ. (B1b)

where L 1is defined by equation (32). (Recall from expressions [ 22]
that the function C(r) = C(Lx) is itself dimensionless.) The last equalities
in these relations follow from equations (27b), (32}, and {(33)., Next we

introduce the dimensionless function {cf. equation [ A11])
860 = 62/, + YT Ay - 9®T/2 5y

s0 that

/2

: bA
I;,.b(r)=I;,bmx):—[4w/<b+1)]Km‘§@‘a”“/2e AT ®) . (B3)

ab(

It follows from:equations (A12), (B2), and (B3) that the constant
K appears raised to different powers in the various terms of the reduced
equation (28). In order to reexpress the dependence on K of equation

{28), we combine equations (32), (35), and (A12) to obtain
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4.2 _ ,c
KmjL —30,2/

where the superscript ¢ denotes the value 'of one of the integrals Ja b(r)
at the center of symmetry, r =x =0,

If we now combine equations (B1) - (B4) with equations (28), (32),

and (33) we obtain the desired reduced foi-m of equation (28):
3n, /2 -1
(Lw)z/(S =<5 dxy 1/-ze A 2C2 1 2)

-A

3N, /2 -7\
ngxv‘?’/ze A { Alagp sy g+ 2x70 081 ,t6e AxB G

-\
+3e Bcls

M a2
+(3/5)e T(xC)) 8Ly 4t 2x0 G 11,0

A

[ 3¢ 2/(=92 o1 xfca [(2/9)x@O p,2 T (2/15)e Axﬁﬂ'_i,zi |

(/9GS - (1/NU /ey ay ax)CSy ]

. |
+(1/138) [(5 )2/ ) ¥le A4cz(s DS O, (BS)

where C = C(r) = C(Lx) in this expression. As stated in §IVDb, we
evaluate expression (BB) by integrating the differential equations which

are equivalent to its numerator and denominator.
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APPENDIX C

EVALUATION OF MOMENTUM-SPACE INTEGRALS
FOR POLYTROPIC CLUSTERS

In order to apply the reduced variational principle (28) to the
study of the stability of a polytropic cluster, we must first be able to

evaluate the six integrals I;i of definition (29), which appear in

b

equation (28). In this appendix we devise a method for evaluating
these integrals analytically in terms of v A and A A when the poly-
tropic index, n, is an integer = 2: First recall identity (14) of

Paper 1I,

e b
Y Fp/m)pg) (e )° db

A, -V
- - a-i,_ b o ATTA atl,_ b-2
= g(f/m)(po)- (p,) duy,- (b-l)e S(F/m)(po) (p,)" "dug. (C1)

Since the rest mass, m, and the angular momentum, J, of a star are
held constant in obtaining Fp from F by differentiation {cf, definition
9a), we can replace FE and F in identity (C1) by FEG(m,J) and

FG(mn,J), where G is an arbitrary function of its arguments--the

3-a-b
m

. identity will remain valid, For G(m,J) = the identity becomes

k-vA

(r) - (b-1)e & &1 (c2)

, . ,
Lo, pl®=-al gy att,p-2F) o

where I; b and Ia p are defined by equations {29) and (Al). By

’ 14

employing the same methods used to derive expression (48), and by

employing definition (49), obtain the relation

" [bh,-(bt2)v,] /2B v b
Ia b(r) = [3/(b+t)]e A A (.v -'F(u)ua/z(u-e A)( ﬂ)/zdu

€

» (€3}
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when b is an even integer. (In the remainder of this Appendix we

assume that such is the case.) Next combine equations (C2) and (C3)

to arrive at the identity

- [ b\, -(b+2v,]/2
T i = =30 8 SR (VI K41, b2}
. (ca)
where
B v, (b+1)/2
Ka,b(r) = §VA3(u)ua/2(u-e ’A) du
e
" B v, {bt1)/2
=-[4/(3¢;)]S‘ lelEla/Z(u—e A) /
. e ‘
8 | '
xg §d3[ Q(w/p)]/dw3§(w-u)‘1/2dw]]du . (C5)
u

The last equality in this equation results from employing equation (51)
and the relation y = eVA/B . Examination of equations (52) reveals that
- we can evaluate the needed Ka’b(r) of} equation _(C5) most simply by
reversing the Q_rder‘of_ integration in equatién (C5). That equation then }

reads
_ 3. 8 3 1 /aw’ YA
K, =l Plgtw/ol /e, e Maw (@)
e

where

VA)(b-!-i)/_Z(

1% - .W
.La,b(w,_e A) Eg vAua/z(u-e w-u)_i/zdu « {C7)

e
Scrutiny of equations (28), (C4), (Cé) and (C7) leads us to conclude that
all of the integrals L, b which we encounter in our stability analysis

are ammong those for which a is an even integer. (We have already
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assumed that b ié an even integer.) Consequently, the needed La,b
are easily evaluated in terms of the variables w and evA by use of
anjr of the standard tables of integrals, and it seems unnecessary for us
to reproduce expressions for them here. Howe;fer, we note that each
of the needed La,b is expressible as a sum of terins; each term
depends on the variable w through its propoftionality to only one of
the factors w-i/z, 1, w, or wz.

Once we have analytic expressioné for the La,b we can combine
with equations (52) and perform the integrations over the variable w
in equation (Cb) analytically, thereby obtaining explicit algebraic

expressions for the Ka b when the polytropic index, n, is an integer
4

= 2, The results are these: Define the quantities

ag.
= o Jk .
Bj,k(r)— (1/crjk)(1 v 39 if crjk¢ 0

=-1lny if ‘O-jk =0, (C8a)
oq = (g /ALi/mH) - 1] 4k, (C8b)
Dy = (VA m-214 () w21, (C8c)
. n-22 | _
Qk(r)s -4aT /[ 3(ay4)n+1] Z Z DijBi_I_j’k(r} . (C84d)
' i=0 j=0

v
Here y = e A/p, Y, is defined by equation (43), the A, are defined
by equations (52b,c), and 7 is the scaling parameter of equation (46).

In terms of these quantities the relevant Ka b(r) are given by

2 2
K‘l’__2= (e /8)(3Q2+ 2yQ, +3y°Q,) .
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K, _p= (B/a)(Qy +AYQO) s
K, , = (32/8)(Q, - 2yQ, +y2Q,)
0,2 27 4V TY Mol o

Ko,-2=% -

K_Z’4= (ﬁ2/8)(302 - 10yQ, + 15y_2Q0 - 8y5/2Q_1/2) s
AK_2,2= (B/2)(Q, - 3yQq + 2?3/2Q._1/2) ,

K50 Q- v, (C9)

Equations (C4), (C8), and (C9) provide us with analyfic expressions for

the integrals I;b(r) which enter into our stability analysis for poly-

tropes of integral index n = 2,
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APPENDIX D

DIMENSIONLESS FORM OF THE VARIATIONAL PRINCIPLE FOR
POLYTROPIC CLUSTERS

In this appendix we rewrite the reduced variational principle (28)
in a dimensionless form suitable for application to polytropic clusters

of integral index n= 2. The first step consists of introducing the

quantity

e p =l 3(Q’Y4)n+1/(4a'r)] p'(a+b+i)/2

X{[a/(b-i-i)]Ka_i'b(Lx) + Kaﬂ'b_z(Lx)} , (D1)

where, in this appendix, the length parameter, L, is defined by

equation (44), It follows from equations (C4) and (D1) that
) b, /2 . _
I o(Lx) = (47 flay) 2Py BFR/2 A gl /2 g L (D2

Notice from equations (C8), {C9), and (D1) that the R‘a b(x) do not depend

upon the scaling parameter, 7, and that they depend upon the surface
v .

A

redshift factor, B3, only through the quantity y = e {3—1 » which is given

in terms of the structure parameter, ©, by equation (42). Consequently,
as we integrate the structure equations (45), we can simultaneously
evaluate the 3*{;=L b(x) which enter into the reduced variational principle

’

(28) through equation (D2). If we introduce the dimensionless quantities
Golx) = pLa_(r) ; G,{x) = La,(r) (D3)

(cf. equations [ 27b] and [ 44]), and if we combine equations (28), (44),
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(D2), and (D3), we finally arrive at the following dimensionless form

of the reduced expression (28):

_ 3N, /2 -1
(Lw)2/8 =(3‘dxy 5/2 A zcz}ﬂ.1 2)

N, /2
Xdegw/-y e & [(xG )ZM' +(2/y)e Goai}ii , T 2x0 C}ﬂ'i 0

y -2 2\, Ma v 2.,
y “e (xG) 1 4+(2/y)e G, C¥!, L+ CTHI

3\, /2 ‘
+[8(n+1)a2/(ay4)n+1]y'5/Ze A ch}ﬁ’ [xao}ﬁ'l )

" ,
(1 /y)e & xQ +C}c'1 - (/2 fy) Lty dy/dx)C}ﬂi 2]

5x/

As we integrate the equations of structure (45a,b) for a polytropic
model of integral index n = 2, we simultaneously evaluate the right
side of equation (D4) by integrating the differential equations which are

equivalent to the integrals over the coordinate x in the numerator

and denominator.
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Legend for Table

*With all quantitics expressed in units where G = ¢ = k = {, the various
columnsy are: z ., the gravitational redshift of a photon emitted at the center
of the cluster and received at infinity; m(Z)pAc’ the central dens ity of total
mass-ene rgy of the cluster in units of m‘;z, the inverse of the square of
the total rest mass of the cluster; (p)/pAc, the ratio of mean density to
central density--(p) = (3/4 m)(total mass-energy)(radius)-3; T/mo, the ratio
of the temperature, as measured by an infinitely-removed observer, to the
rest mass of onc of the stars from which the cluster is made; e/mo. the
ratio of the binding energy to the total rest mass of the cluster; R/ZTHO,
one-half the ratio of the radius = {(surface area of c:luste.r/‘hr)i/2 to the total

rest mass of the cluster; , the gravitational redshift of a photon

“surface
emitted at the surface and received at infinity; T', the ratioc of the tempera-
ture, as measured by an observer locat.ed on the surface, to the rest mass

of one of the stars from which the cluster is made; Yer the central-to-

surface redshift factor"(y;l/z— 1} is the redshift of a photon emitted at

the cluster's center and received at its surface; wz/pAc, the estimate, in
units of Pac? of the square af the frequency af oscillation af the fundamental
radial mode obtained from the variation.al principle; later entries in the column
give only "upperlimits"; an entry which is negafive implies that the model is

unstable, The cutoff parameter € is equal to the ratio 2z /T' The

surface

entries in this and the remaining tables are accurate to about { per cent.
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Legend for Table 4

* . . . .. .
The entries in the columns are: «, the relativity parameter, which
uniquely specifies a member of the sequence; z., the redshift of a photon

emitted at the center of the cluster and received at infinity; /T, the

fAc
ratio of the central density of total mass-energy to the scaling parameter, 7;
RYT , the radius = (surface area of clusl:er/‘hr)l/2 in units of 7'1/2;
mvr » the total mass energy, in units of "r'-i/z, as sensed gravitationally
by a distant observer; (p)/ P oo the ratio of mean density to central
density--(p)= (3/4n)n R—3; & /mo, the binding energy per unit rest mass--
the entries in this column were computed by Fackerell (1969); =z o,
. , surface
the redshift of a photon emitted at the surface of the cluster and received
at infinity; wz/'r » the squared frequency, in units of 7, obtained for the
fundamental mode of the cluster hy employing a trial function (22) with

C' = constant and  p = 0, A negative value of wz/v" implies that the

model is unstable. .
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FIGURE CAPTIONS

Momentum-space dependences of the equilibrium and pe'rturbed
distribution functions for the isothermal cluster of Table 1 with
central redshilt z. = 0,392, Figure (a) shows the momentum
space at a fractional distance r/R = 0.15 from the cluster's
center, where evA/Z = 0.73. Figure (b) is at r/R = 0,78,
where ev /2 = 0,87, The left portion of each figure is a plot
of the contours of constant F*, where F>-=- Kﬁ(m-mO)F* is the
equilibrium distribution function (cf. equation [30]). The right
portion of each figure is a plot of F* and of the perturbed
quantity ZE‘#< + f*, where = K{S(m-mo)f;{< is the perturbation
induced by the trial function (22) for the assignments C' = 1,28,
t. = 0, The perturbed distribution function is shown at a moment
of time when the even-parity part of the perturbation vanishes,
The perttirbed distribution function has a' delta-function singularity
at the cutoff encrgy, Py = 0;9 mgq of the cluster. The delta
function is a mathematical tool for taking account of the motion
of the clusfer's sharp surface in phase space, The dashed

extensions of the curires indicate the actual locations of the

perturbed cluster's surface, as calculated from the demand that

the area under each dashed curve be equal to the area under its

delta-function idcalization,

Relationship between binding energy and the onset of instability
of the fundamental radial mode for the isothermal sequence with
cutoff parameter € = 0,5. The central redshift (the redshift

of a photon emitted at a cluster's center and received at infinity)
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is plotted horizountally. The binding-energy curve is parametrized
by T/mo » where T is the temperature of a model as measured

by an observer at infinity, and where m_ is the rest mass of

0
one of the stars which compose the model. The solid portion

of the curve for the squared frequencies of oscillation, coz/pAc,
was obtained by choosing C' in equation (22) such that equation
(23) is satisfied, and by minimizing with respect to the peaking
parameter, lp., of equations (22) and {(23). The dashed portion
was obtained without minimizing with respect to p and is

included so as to show only that the corresponding models are

unstable. Thus its shape is of no significance.
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