THE COUPLING OF GRAVITATIONAL RADIATION TO

NONRELATIVISTIC SOURCES

Thesis by

William Lionel Burke

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1969

(Submitted May 22, 1969)



ii
ACKNOWLEDGMENTS

I wish to acknowledge the.help and guidance given by my
advisor, Dr. Kip Thorne, as well as that given by Drs. Frank Estabrook,
Jon Mathews, and P.A. Lagerstrom. The financial support of the
National Science Foundation, the United States Steel Corporation,

and the Caltech Physics Department is gratefully acknowledged.



iii
ABSTRACT |

This thesis examines the problem of the coupling of gravi-
tational radiafion to its sources in the limit of weak fields and
slowly-moving sources; it shows in detail how the irreversibility
caused by the escape of radiation can be included in the formalism.

The usual slow-motion expansions of General Relativity (EIH
and post-Newtonian) have the‘difficulty that they are not uniformly
valid for large distances -~ distances where radiation becomes impor-
tant and where the outgoing-wave-boundéry condition must be imposed.
This difficulty is eliminated by using the method of matched asymp-
totic expansions. A second asymptotic expansion, in the same slow-
ness parameter as enters in the near zone, is used to represent the
radiation. This outer expansion provides matching conditions on
fhe inner expansion that generate radiative corrections to the inner
expansion.

Using thisvtechnique we show that the escape of radiation
leads to an extraction of energy from the sources, without ever
having to défine the energy carried in the gravitational waves. The
damping is found by calculating the work done by the fields that
react back on the source. Explicit expressions are given for these
fields, and these can be use& to calculate, in lowest order, all the
irreversible effects caused by radiation.

In this thesis the problem of calculating radiation reaction
for bodies with very weak gravitational fields (U/c2 << vz/c2 << 1)

is solved definitely. The case of gravitationally bound systems
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2 2,2 . . : . . .
(U/e” ~ v /c” << 1) is discussed and a program for dealing with this

‘case is set up, but the calculations for this case have not yet

been done.



PART

II.

III.

v

v

TABLE OF CONTENTS

TITLE

INTRODUCTION

A. Motivation and Results
B. Historical Resume
C. Brief Outline of this Thesis

THE SLOW-MOTION EXPANSION AS A SINGULAR
PERTURBATION PROBLEM: THE KEY IDEA

A. The Expansion as an Asymptotic Expansion
B. Singular Problems and Nonuniformity
C. A Non-Trivial Example of Matching

SLOW-MOTION ELECTROMAGNETISM

A. The Equations of Electromagnetism

B. The Slow-Motion Limit

C. The Motion of a Classical Electrom

D. Discussion of the Solution: Validity,
Runaways

E. Quadrupole Problems

SLOW-MOTION GRAVITY

A. Weak-Field Gravity

B. Space-Time Separation

C. The Force Law

D. Multipole Solutions

E. Resistive Fields

F. The Damping Result

G. Interpretation and Pitfalls

H. Radiation in the post-Newtonian Limit
J. Conclusions

APPENDICES
A. Summary of Notation

B. Tensor Spherical Harmonics and Multipole

Radiation

PAGE

Ul -

11

11
12
17

31

32
34
39

45
49

53

53
58
61
65
68
72
75
31
86

88

90



vi

REFERENCES
A. Specific Citations

B. General References

TABLES

I. The form of the metric in the very-weak-
field limit

II. The form of the metric in the post-
Newtonian limit

110

112

60

83



I. INTRODUCTION

This thesis studies the problem of coupling weak-field
gravitational radiation to non-relativistic (i.e., slowly moving)
sources. It shows how the irreversibility caused by the escape of

radiation is to be uniquely included in slow-motion expansion such

(1) (2)

as those of Einstein, Infeld, and Hoffman ~’, of Chandrasekhar

and of Fock(3).

2

The problem is approached by using the method of matched
asymptotic expansions. Since this is a technique that may be un-
familiar to many readers, I have ihcluded a number of examples where
the key ideas can be seen without the complcations of spherical
coordinates or tensor fields.

For historical reasons I will céll this approximation the
"slow-motion approximation'. As we work out the examples it will
become clear that we are really dealing with a "long wavelength'", or
better, "'small phase-lag" approximation (size of source)/(wavelength
of radiation) << 1.

A. Motivation and Results

One studies gravitational radiation for a variety of reasons.

Besides satrisfying simple curiosity, gravitatiomal radiation is

1. Einstein, A., Infeld, L., and Hoffman, B. 1938, Ann. Math. 39,66.
2, Chandrasekhar, 5. 1965, Ap. J., 142, 1488, 1513.

3. Fock, V. 1964, The Theorv of Space, Time and Gravitation

(Macmillan, N.Y.) 2nd ed., pp. 398 and 399.



interesting as an integral part of Einstein's General Theory of
Relativity and is also a phenomenon of some astrophysical intérest.
The study of gravitational radiation sheds considerable

light on the role of "energy' in General Relativity. The Einstein
Field Equations explicitly ignore the energy that one would have
liked to ascribe to the gravitational field. Despite intensive
efforts over many decades, no satisfactory definition of gravita-
tional field energy has ever been given. There exist asymptotic

(4)

and pseudo-

(5)

tensor definitions that are not coordinate independent ™, but no

definitions valid in the limit of high frequencies

definition with the simplicity of, say, the electromagnetic stress-

energy tensor seems to be possible. Without ever defining the

energy in the eravitational field, this thesis shows that there exist

wave~-like solutions of the field equations capable of tramsporting
energy - solutions which extract mechanical energy from some systems
and deposit it in other systems. The waves carry only.positive
energy. That is, systeméhsﬁbject fo outgoing-wave boundary conditions
damp!

Gravitational radiation plays an important role in some
astrophysical situations through its introduction of small irre-
versible forces, principally damping forces. In this thesis I com-

pute '"resistive fields" adequate for describing the dominant

4. Isaacson, R.A. 1968, Phys. Rev. 166, 1263.

5. Landau, L.D. and Lifshitz, E.M. 1962, Classical Theory of Fields

(Addison-Wesley, Mass.) 2nd ed. page 341.
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irreversible effects in the weak-field, slow-motion limit. These
fields allow one to calculate the damping due to the emission4of
gravitational waves for systems that are not gravitational bound.

By far the most intefesting guestion that an astrophysicist
will ask of a general relativist is whether bodies moving only under
the influence of gravity (such as the'solar.system) radiate and if
so, how much? To my knowledge this question has never been
rigorously answered -~ nor is it answered fully by this thesis. The
accepted answer comes from the use of a routine linearization of the
field equations*; Unfortunately, this linearization cannot be
trusted when applied to gravitationally bound systéms. This approxi-
mation is not uniformly valid for long wavelengths. The point is
that the strength of the field, (Newtonian potential/cz), must remain
smaller than the square of the slowness parameter ¢, (e = size
of system/wavelength of radiation); and for a ;ystem that remains
gravitationally bound in a weak field the kinetic energy is on the
same order as the gravitational potential emergy so that the fields
are not weak enough to ignofe the non—linearities**. It is not
clear whether or not a proper treatment of this question will sub-
stantially change the accepted answers.

As an example of thisblimitation to very weak fields, consider

gravitational radiation from the normal modes of oscillation of the

* OSee, for example, Landau and Lifshitz (5) page 363 ff.

*% This matter will be taken up further in section H of part 1IV.
Perhaps the idea will be clarified if the reader compares Table I
and Table II, pages 60 and 83.
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earth. The satellite period is ninety ﬁinutes and from the above
argﬁments this is too long for the very weak field limit to be valid.
The periods of oscillation of thé earth are fractions of the fifty-
four minute fundémental and thus uncomfortably close to the limit.
One would not be surprised to find corrections that are of the order
of 209 for these modes when the non-linearities are taken into
account.

The analysis presented in this thesis does not go far
enough beyond the standard linearized theory to give a definitive
answer to the problem of radiation for gravitationally bound systems.
In order to treat that problem praperly, one will have to work out
a slow-motion limit, such as that used by Einstein, Infeld, and
Hoffman(l), (EIH) or the post-Newtonian hydrodynamics of
Chandrasekhar(z) in sufficient detail to ipclude radiation. The
approximationvschemes of EIH and Chandrasekhar both comsider field
strengths that are related to the velocities by

‘),.2
% = o(e) (1)

where U = typicallgravitational potential

v typical velocity,

and hence they are appropriate to the study of free-fall motions.
Previous workers have not been able to incorporate radiation int§
these approximation schemes. This thesis shows how this is to be

done (and perhaps that is its greatest contribution!) but it does

not carry the calculation out to completion.



B. Historical Resume

Early attempts to study the properties of gravitational

radiation naturally proceeded by concentrating first on the

(6)

simplest situations. The ofiginal paper on gravitational waves R
by Einstein, dealt with the waves in the limit of infinitely weak
fields superimposed on a flat spacetime. Later work, attempting

to couple these waves to sources and to determine the motion of the
sources, restricted its attention to slowly moving sources. The
classic paper on the EIH method(l) dealt with the motion of slowly
moving ''point" sources. Unfortunately, no one has been able to
éatisfactorily include radiation in the approximation. In a book on

the EIH method published in 1960, Infeld and Plebanski summarized
7,

the status of a study of radiation in the EIH approximation :

"... The results are indeed meagre and mostly of a
negative character. They show that it is hardly
possible to conmnect any physical meaning with the
flux of energy and momentum tensor defined with the
help of the pseudo-energy-momentum tensor. Indeed,
the radiation can be annihilated by a proper choice
of coordinate system." '

' This confused situation led some relativists to even doubt the
reality of the wave-like solutions to the linearized equations. A

(8)

recent review paper by Bonnor states

6. Einstein, A. 1918, Sitzber. Preuss. Akad. Wiss. Physic-Math.
K1, 154,

7. 1Infeld, L. and Plebanski, J., 1960, Motion and Relativity
(Pergamon Press, N.Y.) pp. 200 and 201.

8. Bonnor, W.B. 1963, Brit. J. Ap. Phys. 14, 555.
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", .. a number of workers have used the EIH method

on radiation problems, and their conflicting results
are a monument to its unsuitability for the task.,"”

Some workers have tried to study the problem of motion without the
restriction to slow motions. In this case the equations of motion
become differential-difference equations and are usually insoluble.

Many recent attempts have come up with anti-damping(g’lo’ll). Their

methods are complicated and it is not known if any of their results

are correct.

C. Brief Outline of This Thesis

This thesis shows how to uniquely incorporate radiation into
a slow-motion expansion. As I mentioned above, this is one diffi-
culty that must be surmounted before the problem of free-fall
motion can be attacked. 1In addition, the results presented here
cast new light on the usual results of the linear expansion of the
field equations for systems with very weak fields (U/c2 << v2/c2);
in particular, they reveal that the formulae obtained using the

. Landau~-Lifshitz pseudotensor are indeed correct.

In this thesis'the-damping of a source of radiation is found
by expiicitly calcﬁlating the damping force that acts back on the
source rather than by using energy comservation and some definition

of the energy in the wave field. These explicit expressions for the

9. Havas, P. and Goldberg, J.N. 1962, Phys. Rev. 128, 398.
10. Smith, S.F. and Havas, P. 1965, Phys. Rev. 138, B495.

11. Hu, N. 1947, Proc. Roy. Ir. Acad. A51, 87.
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"resistive' fields allow one to compute, in addition to energy, also
othér irreversible effects such as the angular momentum lost By a
spinning asymmetric body. This work complements some specific
numerical computations on the emission of gravitational radiation

by small-amplitude oscillations of fully relativistic stars recently
published by Thorne};ﬁd his colleagues(12’13’14).

In this thesis we restrict our attention to systems satisfying

the following conditions:

(a) the velocities are small compared to that of light:

% <« 1, (2a)

(b) stresses, pressures, etc., are small compared with the

densities:

122 <1, (2b)

(c) the sources are confined to a region small compared with the

. wavelength of the radiation characteristic of the motions:
2«1 (20)

(d) the gravitational binding enefgy is small compared with the

masses and even with the kinetic energies

12. Thorne, K.S. and Campolattaro, A. 1967, Ap. J. 149, 591.
13. Price, R. and Thorne, K.S. 1969, Ap. J. 155, 163.

14, Further papers in preparation.



U o, s
oS e, (2d)

(although we shall give some discussion of the "post-Newtonian' case
iJ/c2 = 0(v2/c2). Here and throughout this thesis:

v = typical source velocity

¢ = speed of light

P = typical source pressure

p = typical source density

L = typical source dimension

A = typical wavelength of the radiation

U = Newtonian potential

We will exploit these restrictions by approximating the

solution to the Einstein equations by the first few terms of an

asymptotic expansion in a small parameter ¢, defined by
W
&€= —
)\" (3)

studying systems for which

T =0 (4a)
L. _9

pet m o (4b)
- | |
= & D(e) (4c)

(except for some discussion of the U/c2 = O(ez) case).
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The analysis presented here is routine if oné is familiar
- with the recent literature on singular perturbations(15’16).

Since this material is not vyet a.part of most physicists' education,
this thesis is more tutorial than might otherwise be appropriate.
Nonetheless, it cannot substitute for the books written on the
subject.

The second chapter deals with the ideas involved in the slow-
mdtion limit viewed as a singular perturbation problem. Two simple
examples will be given to illustrate the ideas, especially the ideas
involved in "matching".

The third chapter discusses the slow-motion limit of electro-
magnetism in considerable detail.

Finally, the fourth chapter shows how the gravitatiomnal cal-
culation is done for an arbitrary multipole, then reconsiders the
calculation as a modification of the ordinary électrodynamic cal-
culation, and finally discusses the interpretation of the results
and some of the pitfalls in the calculation.

We will make extensive use of vector and tensor spherical
harmonics. These will considerably simplify the amnalysis. To
enable us to use spherical harmonics effectively we have restricted
our attention to a linearization about flat space. We will use =z
notation for sphericgl hérmonics that is identical with that used

in the theory of angular momentum and in nuclear physics. Appendix

15. Van Dyke, M. 1964, Perturbation Methods in Fluid Mechanics,
(Academic Press, N.Y.).

16. Cole, J. 1968, Perturbation Methods in Applied Mathematics
(Ginn-Blaisdell, N.Y.).
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B outlines the definitions of these fields and collects some useful
‘formﬁla not readily available*.

The notation for General Relativity that we will use is
fairly standard; but it is summarized in Appendix A lest there be any
confusion. Perhaps the principal difficulty will be the signature
of +2 that I am accustomed to using.

The literature references appearing throughout the text have
also been collected at the end of the thesis for convenience. In
addition, general references on relativity, applied mathematics, and

angular momentum are given at the end.

* A treatment of radiation reaction modeled after this treatment
but using the Regge-Wheeler convention for spherical harmonics
is in preparation by Thorne.



ITI. THE SLOW-MOTION EXPANSION AS A SINGULAR PERTURBATION PROBLEM:

THE KEY IDEA

The method that I wi;l use to solve the problem of radiation in
slow-motion expansions is applicable to problems in electromagnetism,
acoustics, waves on a stretched string, and to a great variety of
other wave-propagation problems. This chapter will make some very
general remarks on the method and will illustrate the key ideas
involved in the matching and in equations of motion in general by

working a model problem involving a stretched string.

A. The Expansion as an Asymptotic Expansion

The first point to be made is that we are dealing with
asymptotic expansions, not with power series (or Taylor's Series)
expansions, although our asymptotic séquence will turn out to be the
powers. Because of this, the convergence of our expansion is
irrelevant.

Roughly speaking, the difference between a power series ex-
. pansion and an asymptotic expansion can be seen in the terms that
-must be examined. The convergence of a power series expansion is
determined by the limiting behavior of the terms as they approach
infinity. On the other hand, an asymptotic expansion is one in
which the first few terms make an error that can in some sense be
estimated from the next term in the expansion. If we are going to
represent solutions by the first few terms of an expansion, then
clearly we will be'dealipg with an asymptotic expansion.

A pertinent example is the expansion for small ¢
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of the exponential:

e(l+e)'l:= etKl . ..s’c +) )

While convergent for all values of t, as an asymptotic expansion it
is not uniformly valid for lérge t. Clearly when t is as large as

1/e the second term is as large as the first and indeed, terms are

important all the way out until the factorigl finally cuts off the

powers. If one only has the first few terms, the ultimate con-

vergence is of little interest.

B. Singular Problems and Non-Uniformity

An asymptotic expansion for some function of x in a small
parameter ¢ may not be "uniformly wvalid" over the entire range of x.
Difficulties typically occur for spécial values like x = 0(¢), or
x =0(1/e). 1In some cases a different expansioﬁ in the same small
parameter € must be used to represent the function near those singu-
lar points. To see this, consider the following example.

Suppose we want‘the asymptotic behavior of the following

function in the limit ¢ going to zero. The function is

E

'?('X’E) = ] + % + —X_:o (6)

*
If one assumes an expansion in the sequence

'F(‘X,E) ~ 0 ) + €a(x) + .- N

* The "~'" is read "is asymptotic to'”.
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then one can evaluate the coefficients by using the limit property

*
of the terms in an asymptotic sequence:

a .
LJWN vel O )

E~+o a

The leading term is

a(x) = |+ % | (9

but this is clearly a very poor approximation for x near zero; see
Figure 1.
This could have been anticipated because the limit used to
3 > ** L3 3 .
evaluate a, was mnot uniform in x. If in the above limit process we
had taken x to be of the order of ¢, then we would have a different
ordering of terms and a different expansion. Rewriting our function

in terms of a new wvariable x given by

.
X = & - (10)

and taking a new limit ¢ — 0 for fixed X, and assuming a new

expansion

* This is the definition of an asymptotic sequence.

*% The definition of a limit, Lim g(x,e) = A, is that for any
' -

- € -
® > 0 there exists an ¢ such that if e < ¢, then lf(x) - A] < ©o.
If the size of the neighborhood ¢ must be dependent on the para-
meter X, then the limit is-not uniform in x.
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f(x,e)

————————

AN\

NN ——

/

() arammrimn

= |
|

VA

CINNER LIMIT  INTERMEDIATE OUTER LIMIT
LMt
X Fixep X eixeD X FIXED
g Je |

Figure 1. A plot of f(x,¢) = 1 + x + f , showing the various limit

processes described in the text.
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.g‘(sx_’g)-—:- F(X,e)~ A(x) + eA ) -
(11)

then we find for the leading term by using the above limit process

!
Aé(x) = |+ < (12)
Again, the limit is non-uniform and the above expansion is not
uniformly valid for X = 0(1/¢).

Such singular behavior will occur in the expansions that we
will make for the waves driven by our slowly-moving sources. An
important feature of such pairs of expansions is that they have a
common region of validity. By "matching" coefficients in such a
common region of wvalidity, any undetermined coefficienté in our
solutions can Ee evaluated.

In our example we could have considered an intermediate limit

where the variable xn, defined by

’)L=%

1T e’ a

was held fixed as ¢ 0. (For example, 7(¢) could be JE.) If we

apply such a limit with the properties

Lim (e) =0 | (14a)

)
(1.1
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L&y
E>»o0o 1{(6) ' . (14b)

to our function, we get a leading term

WC@H,G) ~ 1, | (15)

In terms of xn,we have

X = Y %‘1 (16a)

= 1/(—-?( 16b
X = < 7 (16b)
and so our intermediate limit corresponds to

X —= © X — o= (17a,b)

and taking the limit % 0 of the x expansion gives us the inter-
mediate expansion as does taking the limit X - o of the X expansion.

Thus the two expansions are said to "match'.

For the simple problems that we will have to deal with, the

*
matching can be done in the above, relatively unsophisticated manner .

* The modern theory and technique of matching was developed by
Saul Kaplun in the mid-fifties. &See Lagerstrom, P.A., Howard, L.N.,
and Liu, C. 1967, Fluid Mechanics and Singular Perturbations
(Academic Press, N.Y.).
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C. A Non—Triﬁial Example of Matching

The previous section diéplayed the essentials of the idea of
k"matching". To better understand the method, let us work a dynamical
problem. This example will also demonstrate how I intend to handle
the problem of equations of motion.

Let us consider a stretched, infinite, elastic string. For

small slopes the tramnsverse displacement of the string obeys the

equation
2 2
3522 fxg
T 2 — P 2 - §x, ’ (18)
D At
where: y = transverse displacement of the string
X = longitudinal coordinate along the string
p = mass/unit length, assumed constant
T = tension, assumed constant
f = transverse force, a function of position and time.

Let us further comsider two identical spring-mass oscillators weakly
coupled to the string and separated by a distance much smaller than a

wavelength. We define ¢ by

h
EE—.}Ta (19)

whére; L =spacing §f oscillators; A= wavelength of resulting radiation,
and look at the limit where ¢ is very small. The aséumption of weak
coupling is

U< E, (20)
where: g = ratio of coupling spring constant to main spring constant,
and it is not essential but it dées keep the computations from ob-

scuring the key ideas. The geometry is sketched in Figure 2.
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o nK
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2(t
ﬁ'()

”
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Figure 2. Geometry of the oscillators coupled to the elastic s.tring.
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This problem has two characteristic lengths, L and AN, and we

can expect (especially in the light of the previous example) that
there will be different asymptotic expansions in the two non-

dimensional coordinates defined by

b (21a)

* X
X =27 — 3
A (21b)
these coordinates are obviously related by
%
X x
X = *-E— . (22)

We will solve for the motién of this system by using the
following technique. We will: (i) assume that we have a given
motion for the masses; (ii) we will compute the motion of the string
caused by the weak coupling to the masses for their assumed (as yet
unspecified) motion; and (iii) find the force of the string on the
masses and use this to write an equation of motion for the oscillators.

Let us concentrate on the odd mode, having the property

(=)

il

- Z,(t), (2'3)

where zl(t),zz(t) are the transverse positions of the two masses

relative to their equilibrium positions.
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We ignore the even mode because it is much more strongly damped than
the odd mode and the damping is independent of I. to first order.

Let us introduce a non-dimensional time, t*, defined by
* 27¢ & |
T =Ewt = T“t' =m T, (24)

and let us write the mechanical equation describing the motion of each

mass

2

) ! T me "5\ zwc (25)
The wavelength of the radiation is given by

7\:: QQTC - aTw I:ML (26)

In the outer, (x*,t*) coordinates the wave equation for the string

reads
2 2
Y oY
dx¥? W2

In the limit ¢ - 0 at fixed x* the oscillators shrink into the origin,
leaving us with homogeneous "outer equations”. In the inner,
(X*,t*) coordinates the wave equation for the string reads

Ay

2 Y _ e\ c (g
;ITQ‘ - € Nty "Tﬁ:<2 §)sX 'N)'S(Xﬂ)] (28a)
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where _ o
%y _ oo (e 'M:*>
s(xT) =y (’4 ’ 2me (28b)
and
| 4= ykL
2T (28¢)

thus: Zd = the displacement of the string under the force caused by
moving the masses a distance Z from equilibrium. The dimensionless
parameter d measures the stiffness of the coupling spring relative to
the stiffness of the string. To keep the model simple, I will con-
sider only the case where d << ¢.
We assume that there is an asymptotic expansion for y(x,t)

valid in the inner limit:

(.&.* ﬁ) ~ A(X*'g‘)-"EB +'.'“ (29)

AJ W W ’

inserting this expansion into the inner equation (equation 26a) and
using the limit process to collect terms of the same order, we have
the following equations for the terms in the inner expansion

oA _ d(z-%) S(ﬁﬁ)—S(X*+ﬁﬂ

-bx\!'z. (3ba)

|

Y2 =0, | (30b)



X a¥? © (30¢)

Looking at the leading equation we can see why this is sometimes
called the "quasi-static" limit. Time enters this equation only as
a parameter. As far as this first term is concerned, the solution at
any time is independent of the solution at any other time.

The solution for A is easily found, either from a Green's

function or by guessing. It is

¥

d(2-%5) X >w

= d X ¥
A —X (2-%) < X< W D

-d(z2-%) x <-

where we have chosen the constant of integration so that A will be
antisymmetric about the center of symmetry, x = 0 -- i.e.

A(0,t*) = 0. From this expression and equations (28b) and (29) we
find that a first approximation for the string displacement at the

point of coupling is

) ~ dz(2E)

(32)

and
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' »
dz X >

A~ x* *
: CJZ—%— -7 < X < (33

-dz X¥<—1r

This result for the displacement of the string is sketched in
Figure 3.

We have partially solved our probleﬁ. Given the motion of the
masses, Z(t*), we have found the first term in the inner expansion
for the motion of the string. Since this term is time-symmetric,
there is no information about the damping in the expansion so far.

What about the function B? The only homogeneous solution with

odd parity is given by

B = & () Xt (34)

and one is tempted to dismiss this solution because of its divergent
‘behavior for large X*.

On the other hand, we might expect, on the basis of our
previous discussion that the exfénsion thus far obtained might not be
uniformly valid in the limit X* 5 », especially since that limit
takes us into the other non-dimensional coordinates where indeed
other phenomena dominate the equation. One can only determine whether
such a term is.present by examining the problem in the outer 1limit
and then matching back to find the effect of the outer expansion on

the inner expansion.
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Figure 3. The quasi-static solution for the string; a plot of A(X*) .
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We assume that there is an asymptotic expansion valid in the
outer limit:
A LK ¥ * (% * ¥
(B 2t FWE) v £G4 v o

All the terms of this expansion must satisfy equations of the same

form:

>F 3F
°r = O

The solutions of these equations in the right-hand region are just

free outgoing waves:
* ¥
F(it") = Cs ), (37)

where the function C can be chosen arbitrarily, the upper sign
corresponds to outgoing waves at infinity (physically reasonably),
and the lower sign corresponds to incoming waves (physiéally
"unreasonable). |

The escape of radiation introduces irreversibility into our
problem. The terms semsitive to this irreversibility are those that
contain a * sign. These terms are called "time-odd". Once the
leading time-odd terms have been identified, we will use the upper
sign corresponding to physically reasonable boundary conditioms.

What do these solutions look like for small x*? Their form,
which is sketched in Figure 4, is given by a Taylor's series

expansion of the above solution:
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LEADING TERM

cos(t) cos(x)

RESISTIVE TERM

sin{t) sin(x)

Y

Figure 4. Behavior of the outer solution for free waves on the string.
Case where C(t* - x*) = cos(t¥ - x%).
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M— C{H") F 2 CH") +-- " (38)
Writing this expansion in inmer coordinates we have

y — CUY) F X Q)+ (39)

Expanding the inner solution (eqs. (29), (33), and (34)) for large

X* we find
% * *
3—»dz(+;) + ex(t") X o+ .. . (40)
14
These two expansions will match provided that we take

CCH*) = dEE) | (41)

2

thereby matching the zero-order terms, and then take

*

() = =*d c%%—)_, (42)
théreby matching the first ofder terms. (For outgoing waves we
would take the upper sign.)

Thus we see that although B satisfies a homogeneous equation
(eq. 30b) whose solutions (eq. 34) look disastrous, B is non-zero;
in fact it is uniquely determined by the wave-zone properties of the

solution, including the outgoing wave boundary condition. We see

that over large distances the small inertial term in the wave equation
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for the string "bends" the seemingly divergent solution of the
“homogeneous inmer equation into a well-behaved, outgoing wave
solution. This action of a smali parameter over a large distance is
typical of non-uniformity. Note that if the size of ¢ is reduced,
the inertial term in the string equation is smaller, but the wavelength
is longer, so the smaller effect of the inertial term accumulates over
a larger distance.

If we insert the terms given in equations (33) and (34,42) into
the inmer expansion (eq. 29), we can find a more accurate expression

for g(t*) than that given in equation (32);

dz 9

Jt* )

TRE*) ~ dEEY) =emwd

This correction to g(t*) is time-odd and includes the effects of the
irreversible loss of radiation down the stfing.- For any given
motion Z(t*) we can compute the approximation (43) for (t¥*). Now we
just have to insert this expression into our force law (equation 25)
.to arrive at an equation of motioﬁ. Care must be taken to convert

the t*'s back into t's using

d

(S S, -_—

_ L 2 (44)
dt * S w adt o

The resulting equation of motion is:

. |
ﬂm% + E»«dm)km c—‘i—i— + RO+ ZE = 0, (45)
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Ignoring the first-order frequency shift due to the coupling spring
-kk, one can easily show that for outgoing waves the small damping
term causes the motion to decay with a "Q" (mean fractional energy

loss per radian) given by

. \ AT
TEWd S Gk 4

Q 46)

The actual string problem conceals a host of further singular
perturbations which would have to be considered if the results of
the problem were to be used for other than tutorial purposes.
Besides making sure that the driving forces did not generate slopes
that were too large, one would also have to check that the stiffness
of the wire was unimportant. The stiffness will manifest itself as

a boundary layer around the point of support with a thickness

[T1°
A=Al T, 47

where: Y = Young's Modulus
I = second moment of the cross section
A = scale size of the stiffness boundary layer.

Clearly we must have L >> A. This stiffness problem is also an
interesting problem in singular perturbations, but we shall not

pursue it here.

At this pbint we have covered all the ideas of singular per-

turbations that we will need. The key idea is that the ordinary slow-

motion expansion is not valid for large distances where the outgoing
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boundary condition is to be imposed. This difficulty is resolved by
using a different expansion to repreéent the solution in the oﬁter
region. In the outer région we generate an approximation to the
solution of the field equation, and by matching that solution to
the inner solution we generate an approximate equation of motion
suitable for describing the motion of the sources of the field.

In the next two sections we shall apply this technique to

the study of electromagnetic and gravitational waves.
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III. SLOW-MOTION ELECTROMAGNETISM

There is a great formal similarity between the equations of
weak-field gravity and those of classical electromagnetism. We can
exploit this similarity by using classical electromagnetism to
dévelop the analytical techniques needed for our study of gravitational
waves*. The discussion of gravity can then concentrate on the
problems peculiér to gravity, especially the.physical 1ﬁterpretation
of the results. In addition, the formalism of slow-motion electro-
magnetism is interesting and useful in itself.

After describing the formalism of slow-motion electromagnetism,.
we will consider the problem of motion for the classical electron -
specifically, we will find the radiative corrections to the motion of
a point** charge moving slowly along the z-axis. Motions in three
dimensions can be obtained by superposition and-their inclusion would
contribute nothing further to the example. This example will show
how the matching is done in spherical coordinates, how vector spheri-
.cal harmonics can be used to simplify the problem, and finally, how

the "runaway" solutions that have disturbed many writers(17) should

be handled.

* Analytical calculations, like computer programs, must be checked
and debugged.

Point charge here means just a bound charge distribution smaller
than the length scale of the motions.

17. For example, see Rohrlich, F. 1965, "Classical Charged Particles"
(Addison-Wesley, Mass.).
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Next we will discuss systems where the charge to mass ratio
is constant for all the particles. Such systems can emit only'
quadrupole radiation, and they have many features in common with
gravitational radiators. This example will show how the damping due
to quadrupole radiation behaves and also how to simplify the calcu-

lations by a skillful use of gauge transformations.

A. The Equations of Electromagnetism

The most convenient representation of the electromagnetic

field for these problems will be the one using the vector potential

*
in Lorentz gauge. In this representation we have field equations

My (M
ATy = — 4yt (48)
a gauge condition (initial-value equation!)

Vv
A7., =0 (49)

and a force law

T L [

where: u® = the 4-yelocity of the test charge ¢q

alt

the 4-acceleration of q.

In the slow-motion limit the space and time components of the

* We take ¢ = 1 for simplicity.
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vector potential are of different orders. To make the size of our
‘terms explicit, we shall represent our 4-vectors by 3-vectors ;nd
3-scalars. Thus, from our 4-potential Ap, we form a 3-vector Aa,
(using the same kérnel to denote 3 and 4~vectors and summing a,b,c

over only space-like indices) and a scalar ¢, according to

AT = A ' (51)

and

+ :

$=A". (52)
We proceed similarly with the 4=-current, 4-acceleration, etc., always
using the contravariant time components for the scalars. We will

write three vectors in boldface. 1In terms of our 3 + 1 split, the

field equations (48) become

2
Ve - b = —4wp (53)
VZ#\ - 62 A = —“"WI (53b)
+ _ '
the gauge condition (49) becomes
(54)

VA + b.gaP =0
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' *
and the spatial part of the force law becomes

' DA >
ma ct)'vx (VKA) %(at-l-Vfb + O( )
These are the customary equations of electromagnetism with ¢ = 1.

B. The Slow-Motion Limit

Having set up the formalism, we now turn our attention to a
system of slowly moving charges. We will study its motion by using
an asymptotic expansion in the slow=-motion limit. As in the model
problem of the last part there are two éharacteristic lengths, the
length typical of the motion of the source, L, and the length typical |
of the radiation*f A. Also as before, we introduce two non-
dimensional coordinate systems; and in each we construct a different
asymptotic expansion in the small parameter ¢, which we define as

before

(56)

H

W
£ —
~

* Because of the identity auu}1 = 0, there are only three independent

equations in the force law.

*% The length A here is a scale length and is a constant. The wave-
length of the radiation is some numerical factor (which may be
time~-dependent) times A. Of course, the radiation need not be
sinusoidal at all, as long as it stays on a length scale of the
order of M. Discontinuities are forbidden. They correspond to
the introduction of a new small length and a new limit process.
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The "outer coordinates" are defined by

T* - _{_ , (57a)
¥
+ --l;\- , (570

and the process of letting € -» 0 such that r* and t* are held constant
is referred to as the "outer limit". 1In this limit the source
appears to shrink into the point aﬁ the origin. Since all the sources.
are assumed to lie within a region that goes to zero like g, the
’"outer equations,' that is, the exact equations written in outer
coordinates, are homogeneous equations..

The inner coordinates typical of the source are defined by

: *
F=: X = X (58a)
L

8 k]

(58b)

t=

|+
I
<+

and the inner limit is ¢ — 0 for fixed -,E.

For example, for radiétion from the earth-sun system, the
inner length is the astronomical unit, the outer length is the light
year, and the small parameter is about 10-5.

The outer equations will be



- 36 -

* 9 2 :
V({) -B.t*(b:o’. .(598)
¥9 a g
v A - at*A = O, (59b)
»*
V- A + _(_P(AP = O, (59c)

and assuming that there is an outér expansion
b ~ 58(10 + EQ + o ) (60a)
A~ SS(P+E@+---> (60b)

we find that the various terms satisfy the following equations

Y;z d,2 - O (61a)
10 - -e% ‘b - ) '
32 : 2 - )
v P -BHIP =0 (61b)
*

In outer coordinates the simplication arising from the presence of
the small parameter lies in the simplification of the boundary
conditions, leaving us with homogeneous equations.

The inner equations will be

N o --'67'6_;49 = -41:)3‘9 ) (62)
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A - 6.23:*9’\ = -4l T, (62b)
VA + sé_t*cb = O, (6.2¢)

Aé a consequence of our assumption of slow ﬁotion the current
densities will be an order smaller than the charge densities. Thus
the leading term in the vector'potential expansion will be an order
smaller than the leading term in the scalar potential expansion.

If there is an inner expansion

$~ a + €b + €c + ed + - (63a)

A~ eM + N o+ (63b)

then the various terms satisfy the equations

VYo = —4171..5), (643a)
— T
Vb = O, | (64b)
e = 25a , | (64c)
—2 P '
v o= =-41Ad, (65a)

YN =0, | (65b)
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To lowest order we have an '"instantaneous' potential a, and
‘an "instantaneous" Coulomb force - Wa. These form an analog-of
Newtonian Gravitation.

The relation between the inmer expansion (equation 63) and
the outer expansion (equations 60) is provided by demanding that
the limit of the inner expansion as T - o match the limit of the
outer expansion as r¥* 5 0.

Two points should be mentioned about the procedure set out
above. The usual slow-motion expansion (inner expansion) is often
written as an expansion in inverse powefs of the speed of light.

This is an unfortunate practice. One usually expands in a dimension-
less parameter if ome is ;ble. Expansions in dimensioned parameters
are bound to be nﬁt uniformly valid in space or time because the
terms in the expansion must be dimensionless, and so x's or t's must
come in along with the dimensioned parameter when it is squared,
cubed,  etc. Because of this, one must be extremely cautious when
dealing with expansions in a dimensioned parameter =-- they are quite
.different'from asymptotic expansions. Here we have a genuine
asymptotic expansion and that fact should not be concealed.

The practice of expanding in powers of '"1/¢" is élso confusing

since the outer expansion is an expansion in the same small parameter,

yet in outer coordinates the 1/c terms are not considered small com-
pared with the other terms. Further, ¢ has a definite value, while
one cannot look at the value of 1/c and decide whether it is small

or not. Finally, it is more convenient to work in units where ¢ = 1.
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Thergfore, I have abandoned the historical practice (EIH,
Chandrasekhar, etc.) of treating the expansion as one in the parameter
"1/0".

A second point concerns our strategy with regard to the basis
vectors. One could have also transformed the vector components
when going from inner to outer coordinates. This would use basis
vectors of length e in inner coordinates and the sizes of terms would
not be explicit. The scheme used here is to refer the vectors to
basis vectors that are unit vectors in the physical coordinates r,t.

I have worked with both conventions and this is by far the simplest.

C. The Motion of a Classical Electron

The last section described the formal structure of the slow-
motion expansion of electromagnetism. As an aid to better under-
standing and to illustrate some features of the resulting equations
of motion, let us now turn to a specific problem. This section will
work the problem of finding the fields and forces caused by the slow

-motion of a point charge along the z-axis. This is a classic problem
in electrodynamics, in vogue when people thought that the eiectron
could be represented as a truly "point" charge distribution. It is
called the "Problem of the Classical Electron'. The discussion, given
later (section D of this part), of the validity of our results will
bring out some interesting aspects of this probiem, especially with
regard to the so-called "runaway' solutions.

Let the position of the charge be given by Z(t). Then the

charge and current distributions are given by
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b

P = oF 8(1) ) s(£-vth),  (66a)
, |
3 = €3 ¢ UW 500 805) S(L-04e™) (66

where we have gone to non-dimensional coordinates taking

vty = Lg(a), 67)

*
and we have introduced the notation

! 4V
U = = (68)
Jt* -

Using these distributions, we can integrate easily the equations given

in the previous section for a and &4 « The result is

| %
a= . - | (69a)
3 [4}"1 ¥ - 2FY mé_\" ’ |
! ¥*
M = qcﬁ(i ) Cs .
| v
L['F1+ T -2¥%0 91 * (69b)

These potentials lead to the usual "actiom-at-a-distance" electric

and magnetic fields around the charge.

* This is just the derivative with respect to the argument. I try
to follow the conventions of mathematics rather than thermodynamics
in this regard but often that is clumsy.



- 41 -

For matching we need the behavior of these solutions for

large r. We have

abb’(t*) oo ©
Ly KF?2

(70a)

>

%U,(‘P‘ ) €4
Ly

M — (70b)

The static, monopole part of this matches to a static, mono-
pole outer solution with no difficulty.' The time-dependent dipole
terms will radiate, as we shall see, so we will need an outer solu-
tion corresponding to electric-dipole radiation. Note one ad-
vantage to using two different expansions: the multipole decomposi-
tion need only be made in the outer zome.

(18)

Using spherical harmonics we can write down the potentials
representing electric-dipole radiation directly. The scalar
* .

potential must be proportional to TE;O' The vector potential could

i . i d
“be either Yﬁ?lOO or.?fjlzo (‘ifilo has the wrong parity and belongs
to the magnetic-dipole solution). The outer limit of the inner
expansion of the vector potential kﬂ’ (70b) has the angular

%k

dependence §E;OO3 so the outer solution that matches to it must go
like tir1oo' The coefficient relating the size of the vector

18. See, for these, Edmonds, A.R. 1960, Angular Momentum in Quantum
Mechanics, (Princeton).

* Axisymmetry implies that M = 0.

¥* Recall that Yoo = 14 bn T .

1
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potential to the scalar potential in the outer region can be
determined from the gauge condition. The radial dependence of-the
outer solution is determined by fhe wave equations and the boundary
conditions at r* = w. These wave equations and the spherical har-
monics are discussed in Appendix B.

The electric-dipole solution is given by

c.(t Fr* CH* = ")
4

~P Ti}b {— f*g. ?

(71a)

(71b)

P

i
+
El
O
'-\
d}
H
4%
S

where the function C will be determined by matching and the upper
*
sign corresponds to out-going waves at large r*.
For matching we need the behavior of this solution for small

r¥, Recalling the form of the outer expansion (60), we examine

g C&) o L
€ “p —> -l ® i) C(*) tév*c_ (£) (72a)

+ oes

* The escape of radiation introduces irreversibility into our
problem. The terms sensitive to this irreversibility are those
that contain a % sign. These terms are called time-odd. Once the
leading time-odd terms have been identified, we will use the upper
sign corresponding to physically reasonable boundary conditions.
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ey

' L .
¥ CE™) +- (72b)

s ERI
£ B)-—Hr ;FE GQEE

and writing this in inner coordinates (the matching must be dome in

some consistent coordinate system), we have

n Sl .

s 3 SLCHY | 8.1« Ll T E )y
E‘p-"'ﬁwe E —= -—ZECG’_) 3 r )4 | (732)

1~1

3 & 49
éSEP""_\Eq: e, [E Cff‘ T ECH") 4 ] (73b)
. F

The leading term in this small r* limit of the outer ex-
pansion will match the leading term in the large r limit of the inner

expansion (eq. 63) provided that we take

s=£, - (74)
CE*) = -‘%—- ‘13'1 TH”) . (75)

Having determined the function C(t*), we can find the leading
terms of expansions valid in the radiation zone from equations (60)
and (71). Thus we have found the radiation emitted for a given motion
of the charge. Métching higher terms will show us how the radiation
field acts back on the charge, extracting the energy that appears
in the radiation.

The term - %’C"(t*) in the expansion given in equation (73a)
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leads to effects that are even in time. These time-even terms cannot
‘lead to damping and I will ignore them. The first odd terms afe
the * % 63;0“'(t*).5610 term in the scalar potential and the
;ezwﬁrlooc”(gs term in the vector potential. We can find the leading
terms in the radiation resistance by finding the terms in the inmer
expansion that match these.

The res;stive term + %'63; cos 6 C™ (t*) will match the d term
in the inner expansion (eq. 63); the time-even term - % c"(t¥) will
match the ¢ term; and the b term in the inner expanéion will be iden-

tically .zero (homogeneous equation and nothing to match it). Thus, d

satisfies the equation

vd =0, (76)
and the asymptotic condition
{ 3 — ", %
* = [ e C &7). n
d— 31/%‘ ¥ o9 ")
The solution for d is in fact
— 4+ X [3 = nox '
d = x 31/% ¥ Wweo C (%), (78)

The fact that the small r* limit of the outer expansion
satisfies the inner equation could have been expected. Since the
outer equations are really the exact equations, their inner limit -
yields the inner equations; consequently, the inner limit of the
outer solution is indeed the immer solution. This simplification

does not always occur in matching problems.
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The leading resistive term in the vector potential can be

found in the same way; and we have

. 2
4’,_.( = —=— Mo O+ , (79a)

~‘/|2'ﬁ

2 /3 ", x
Ap\ = - € ——‘f'l'f @_z C (+ ) (79b)
The force on a charge due to these resistive fields is given by

- -9 D Ag %I *cb (80)

R ————— T n——
By evaluating this at the position of the charge we find
Fo= 51 (3) v @), (81)
or

2 2 Jdz
ER - _§_ d () (82)

Lre

for the resistive force on the charge caused by the escape of
radiation. As one expects, the scale lengths L, A have dropped out.

They are used only to achieve the-correct ordering of terms.

D. Discussion of the Solution: Validity, Runaways

We have derived an approximate equation of motion for a point
charge which takes radiative effects into account at lowest order.

To better appreciate this solution, one could study a specific
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example. 1In this section I will report on the results of working
such.an example. By studying the solution of the example in détail,
we will be able to see what really must be small for our expansion
to be valid. Finally, we will resolve the difficulty of the
"runaway" solutions that come up here and in the case of gravity.
As our example we use the expression for the damping force
(equation 82) to evaluate the damping of a charge mass on a spring
undergoing simple harmonic motion. In a detailed calculation we

would write an equation of motion for the mass:

&’z gz 2 d=
W;b-i + RZ --3—%_3%-3 = O, (83)

and from this we would find that the "Q" (energy loss per radiamn) of

the syétem for small damping is given by

3 Nfem 3 A (84
% T

ot 20

Q =

_where: re = qz/m. The length r, is an impﬁrtant factor in radiation
damping (for an electrom it is called the "classical" radius). The
cofresponding length in gravitation is the ''gravitational radius"
given by |

n = GCT a (85)

To exhibit more explicitly the nature of our approximation

scheme, we can write out the form of the higher terms in the

equation of motion. The resultant, more accurate equation of motion
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is

2 1]
Ve + () - % e ] o

and the criterion of wvalidity is clearly that

L3

. ’ 87
7\<<'1 (87)

Using this criterion of validity, we can now examine a
spurious solution of the equation of motion (equation 83), often
cailed the "runaway” solution. This solutiﬁﬁ exists even for k = 0,
and comes from balancing the inertial term directly against the

damping term. The runaway solution behaves like

4
2, (88)

and the characteristic time scale for the motion is re. " Thus unless

we have

{—;— <« 1, | (89)
4

i.e., unless the body is much smaller than its "electromagnetic
radius", the Bigher terms in the equation of motion are not small
and the first few terms do not give a good approximation to a
solution. Since realistic badies are always larger than their
electromagnetic radius, these solutions have no physical interest.

Interestingly enough, the gravitational "runaway solutions'
can be dismissed completely since bodies must always be larger than

their "gravitational radii'.
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The presence of these runaway solutions as solutions of the
approximate equations would cause us a good deal of trouble we%e we
to have to integrate them numericéllya As long as we deal with them
analytically, however, there will be no difficulty. Recall that we
can only consider forcing terms that act on the slow time scale.
Thus there is no problem with the generation of runaway solutions
by impulsive forces. For these reasons, we can ignore the runaway
solutions in our calculatioms.

Consider the gemeral method of the last section. The ex-
pressions for the radiation field and tﬂe leading term in the

resistive field are determined using only the distribution of charge

density, p. The current density ) was nowhere needed in the
calculation. This will occur for all multipoles for the following
reasomn.
The vector potential in outer coordinates will always go like
‘ir at lowest order. To see this, note that in general the
L,L-1,M
currents will be combinations of the two vector spherical harmonics

having the correct parity:

¥ = o Y\-’\rl,m *PYL ' (90)

b
and these lead through the source equation to terms in 0\ that go

like

A — o §L,L~|,M ‘ YL,LH,M

-+ 91
— L # T =y ? S

in inner coordinates. These match terms in the outer expansion that
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go like

E,\.-l,n 4 i.‘-'m YL-.,L‘H,M

¢ L
—y ¢ E — —_—
A ¥ L + v*(u‘z) (92)

and we see that, indeed, the term comes in at a lower
L,L-1,M

order than the L,LH+L,M"

Knowing from these arguments that the vector potential in the
outer region goes like 1§TL,L-1,M and the scalar potential goes like
.SrLM’ in iowest order, we can find the scalar potential by matching
onto the outer limit of the induction field of the charges and then
we can find the vector potential by ﬁsing the gauge condition. The
radiation fields are thus determined solely by the charge density
p(r,t).

Since the radiation fields are determined only by the charge-
density distribution, it must be the case that the radiation-resis-
tance fields are also determined‘only by thé charge-density, since
the radiation resistance extracts the energy that appears in the
‘radiation. The resistive fields associated with the (L,L-1,M) multi-
pole are two ordérs stronger than those associated with the (L,L+1,M)
multipole, and so it is only the (L,L-1,M) multipole that contributes,

and this can be found from p(r,t). (See part IV, section E for

detailed calculation, especially equation (153).)

E. Quadrupole Problems

The calculation of the radiative corrections to the motion

of a single charge discussed in the last section was useful for
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showing the essentials of the method and in particular, showed how
the spherical harmonics simplified the problem and how the runéway
solutions could be ignored. Now lét us consider briefly a system
which is much closer to thoserf interest in gravity -- a system of
particles whose charge-to-mass ratio is a universal comstant.
Momentum conservation prevents such a system from emitting dipole
radiation, so the dominant term in the radiation damping comes from
quadrupole radiation. Viewing such a system as a collection of
particles, we see that the dipole self-force on each particle,
calculated in section C, is cancelled by the radiation from other
particles, leaving a radiation resistance that is of higher order =--
a resistance which depends on the quadrupole moment of the entire

collection of particles. Because of this, I do not feel that it is

fruitful to try.to postulate one-particle force laws in gemeral
relativity.

Let me jusﬁ sketch the highlights of the electric-quadrupole
calculation. The asymptotic behavior of the near field is given by

A7 5 52

3
2 %2”& ) Y. (93)

M >

where the quadrupole moment is conventionally defined by

) |
B = gYm T pna) 4V oY

The outer solution that matches this is given by
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G () %
Y

10=41r YZM 2M ¥"F )3:3 i"‘ +3 Gl
Wt T e 3

" (95a)

" /
B = 4r [5 \d bam + Bam (95b)
s R M 1 ¥ . rg2

Following the same method of computation as used in section C,
we expand these outer potentials for small r*, take the leading time-

odd terms, and find that the 'resistive electric field" is given by

4

&
- (96)
Eq = PPy %\/szmm YT’am]- i

This resistive electric field can be used.to compute the radiation
damping of systems that emit'only quadrupole radiation at lowest
order. Note that the quadrupole moment is a non-linear function of
the amplitude and the equations of motion will be non-linear.

The calculation of the resistive electric field (96) can be
simplified by making use of the invariance of the result under a

gauge transformation

A—~ A =A + V% , (97a)
<l>-—*$=¢-%%' (97b)

Only a gauge function proportional to-STZM can couple with our

solution . If we take a gauge function given by
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_ / * K !
_ 5 4w Den (‘l:fFY‘) %2M Dam " (98)
7( =2 = 3 + 3 — TE. 1
! ? L

then the new form of the solution is

~ 2n %
A = _JE'\ t(:{ EZ%M el + - s (99a)
M

Y 3
¢ =-30, (99b)

The leading resistive term in the vector potential will now
come into the inner expansion in the €6 order, rather than the ¢
order because its radial dependence correspénds to L = 3 rather than
L =1. For this reason the vector potential will. not comtribute to
the resistive field in lowest order; it can now be computed solely
from the scalgr potential .

A similar gauge transfo?mation will be used in the gravity
calculation. There it will both simplify the complicated force law

"and also simplify the physical interpretation of the results.
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IV. SLOW-MOTION GRAVITY

The previous section developed the ideas of the slow-motion
approximation in considerabie detail. To apply this formalism to
gravitational radiafion we have to deal with three problems:

First, we must write the equations describing weak-field
gravitational waves in the form of wave equations and derive the
gravitational analog of the Lorentz force law. This is routine and

(5)

appears in textbooks such as Landau and Lifshitz'” ', although some

care needs to be taken with the force law. Also, we must separate

the wave equations and force law into their space and time components.
Second, we must solve these equations using the matching

techniques developed earlier. This will proceed quite in analogy

with the electromagnetic examples worked in detail im the last

chapter.
Third, we must interpret the results physically. There are many

subtle points involved here which require careful attention, especially

.if one wishes to_extend these results.

A. Weak-Field Gravity

The most concise method for carrying out the linearization of
the field equations is to consider a space with two metrics defined
on it. The backgfound metric is a previously known solution of the
Einstein field equations (the vacuum, flat-space solution in our case).
The exact metric is obtained from the background metric by a small
perturbation. In this manner one has manifest covariance at every

step of the derivation.
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- In terms of some small parameter, k, we make an expansion

3
pv B T “h/w + (100)
where: guv = metric of flat space,
*guv = metric of the exact solution,
huv = perturbation,

and we must decide on the relative sizes of the weakness parameter g
and the slowness parameter €. The choice g << €2 leads us to the
weak-field limit. The choice g = ez leads us to the EIH and post-
Newtonian limits. For simplicity we shall restrict ourselves to
the weak-field limit, though we shall discuss the EIH and post-
Newtonian limits later (section H).

Using the Einstein Field Equations we can find the energy-
momentum tensor for the exact metric, *guv. To first order in x we

have
g #®
~low *T)w =M [)F\Pv;"-(oc ‘4\0‘(}*;\’““1\“’5}“‘%” 'gu}b](ml)
where:
’K)w = )'\}w - éhqaﬁp (102)

and the semicolon (;) denotes a covariant derivative with respect to

*
the background metric , that is

* Although the background space is flat, we will use curvilinear
coordinates and so need covariant derivatives.
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3}*"“‘“ = O, : (103)

Later we will use the stroke ([) to indicate a covariant derivative

with respect to the exact metric, thus

*3}1\"5' = O, | (104)

We will use the background metric guv to raise and lower the
indices of unstarred tensors, and the exact metric *guv to raise amnd
nv

lower indices of .starred tensors such as *T ,

To "solve" these equations, we want to find functioms huV

such that the resulting *Tuv

and *guV correspond to a physically
interesting situation. Two different approaches come to mind for
this.

One approach is to specify hpv and *Tuv.on some initial hyper-

surface and to continue the solution forward in time using the

Einstein field equatioms (101), the mechanical equations:

*T}f?l\, =0 (105)

)

(which follow as identities from the Einstein field equatioms), an
equation of state for the matter, and four'arbitrary coordinate
conditions.

This approach has the difficulty that one doesn't really
know how, in practice, to pose the typical problem in gravitatiomal
radiation as an initial-value problem. Most choices of initial-value

data will include a certain amount of incoming radiation and will
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not be physically acceptable.
Another approach which will generate interesting metrics is

to solve simultaneously the slightly different equations

fﬁ}w,,ﬂ_tx = — lb® t),,, (106)

2

and

-l:)'.“.)l\, =0 | . (107)

using retarded potentials. - Since we have

4%, = O, (108)

we can find solutions satisfying

A = O(x) (109)

in which case we have

»*

T}w = "('t')m + 6(\’(4) (110)

and the last three terms in equation (101) are now included with the
higher order terms involving the squares of h.

In our model problems we were able to solve for the fields
that would arise from an arbitraz_'y motion of the sources. Here we
will be able to find the gravitational field corresponding to any

motions that satisfy

gV }.‘.\J;v = O(‘/() (111)
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Vv
(this insures that the e .y = 0(k)), and then from these fields
: ; )

and the force law (107) we will be able to write down '"equations of

n

motion'" for the sources that will include radiative corrections.

The resulting spacetime will have *T11 = ntuv (but of course

v

v v
*rH # kth ). One hopes to be able to pick a suitable tuV such that

when it is finally interpreted in terms of *gu the situation is of

v}
physical interest.

We are going to have to use the analog of the gauge
invariance of electromagnetism (equations 97) to simplify our
calculations. In General Relativify the invariance of the solution
under certain transformations reflects the fact that a particular
solution can be expressed in any coordinate system whatsoever. For

the gauge transformations of importance to us, we need consider only

the infinitesimal coordinate transformations.

Any solution huv could be made to look functionally different

by introducing an infinitesimal coordinate transformation:

M

At - XM = M s »('/Yf‘ (112)

Under such a transformation, the field hp.V goes to a nmew functional

form of the new coordinates: _
. .
h).m — h)w = h-}w +%yw + XV;)A. (113)

One can check directly that if hav-is substituted into the
expression for *Tpv (equation 101), the Xu terms cancel out identi-

cally. In view of the analogies with electrodynamics, this is also
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called a gauge transformation.

B. Space-Time Separation

We need to separate the space and time components of our
equations in order to make the size of the terms explicit. We
decompoze the metric perturbation in the form huV into a 3-scalar,

a 3-vector, and a symmetric 3-dyadic defined by

tt ' .
Y= M : (114a)
a _ pat
V=R . (114b)
H = )ﬁ“l’ (114c)

In terms of this 3 + 1 split the wave equations (equations 106) read

2 2
v \P - B*:\P = = lbTp | (115a)
2 2
VV -3V = -bad, (115b)
2. .
VEHa -30Be = -un§, (115¢)

and the gauge condition (109) reads

Y o+ ?’tk{) = 0, (116a)

V-H + 2V =0, (116Db)
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Here the stress energy tensor has been decomposed in the obvious

-fashion

XP = T.tt, (1176)
WI%= T“t, (117b)
wS= b (117¢)

and we have taken G = 1 as well as ¢ = 1 to simplify the notation.

The gauge transformation (equation 113) can be written in

terms of a 3-scalar X and a 3-vector ¥

~ _ Py
qz--»q:-_-\yfv.?('— —é—% N (118a)

V—-?%"'—'VJ«W)L-B:XQ (118b)

(118¢)

e — fa ‘—‘H-*V\}(—]I VX-&%

L4

where we have used.dyadic symbols defined by

(Wxxk = %a;k *x&;a ’ (119a)

(I)Qb = Qi . (119b)

The metric that we are considering is diagrammed in Table I.
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C. The Force Law

The conservation law (equation 107)

—\—)w v = o | (120)

implies that partigles tra§e1 along geodesics of the exact metric.
We can derive a force law by rewriting this to show the "apparent"
coordinate acceleration of the particle. Let me emphasize that this
acceleration is not measurable: an accelerometer carried with a
freely falling particle would show that it was, of course, in free
fall. This force is a '"pseudoforce', like the familiar coriolis

and centrifugal forces.

Using this force law one can set up equations of motion and
integrate them to find the trajectories of the particles with re-
spect to some particular coordinate system. Then one must use the
exact metric to interpret the coordinate motions in terms of
observables.

The force law is written using the fully covariant expression
for the 4-acceleration of a particle's world line with respect to the
background metric. The expression is easily derived by translating
the expression for a geodesic of the exact metric into terms
involving the béckground metfic and the perturbation.

Let the world line be givén in terms of a special affine

parameter in the background space

M = z"‘(s)7 (121)
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with a 4-velocity given by

dz™
uH = T (122)
satisfying
R
Jpo MM = -1 (123)

*
and similarly an "apparent 4-acceleration’

Mo Jdum u o
A’ = Ts + FLP JL}*P. (124)

In terms of the exact metric

¥ =
I = 3w~ “h,uv ) (125)
we have a new 4-velocity *a" and a new special affine parameter *S,
proportidﬁal to the old 4-velocity ut;
~ .
* M d¥
M= 1" =‘%MM_, (126)

Using the relation-

k]

gy ME W = - (127)

and u11

we can find k and hence *d in terms of huv

* Here the P%o are the affinity components for the flat background

space in some curvilinear coordinate system.
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=1+ o h%u"‘u”')u“ + D), (128)

The affinity for the metric *guv can be written in terms of
the background space affinity and the covariant derivatives of the
perturbation:

® a4 U ¥
r:’:' - rlv.o" -z 3}‘ (hav:r +h¢“’sv' h\’d’u) (129)

: a
{(This is easily calculated in coordinates where PBY

= 0.) Both
sides of the above equation are tensors.
The equation for a geodesic of the exact metric is
*
d'Mu
ds*

¥

*
+ Fo:;s WP o (130)

and from this end equations (116) and (117) one can derive a "pseudo-

force" law:

Y o M &
a* =~ .-\2- 3” (ﬁ hc-a;p° hapsw>}f‘#@~ %—M hc(pm“}‘fj“v, (131)
correct for high velocities, but linearized in the h's.

For the work here we are interested in only the leading time-
odd term of the resistive force. The corrections for high veloci-
ties involve v2 etc., and are time-even. They will be ignored here.
| The metric tensor can be split into space and time parts using

our previously defined quantities (equatiomns 114)



htt = é,l' tp) (132a)

ht“ = V" (132b)
s b b

= HY & 1y g% (132¢)

: . ; ab
Here we have assumed, as it will turn out, that H ~ is traceless.
Using these quantities and dropping corrections that are
2 , , ] ,
0(v™) but not making any assumptions on the relative sizes of vy,

Y , and B—E., we have

: \VA

a 4 Tha 2t
OH . .
=27+ (Vegp—Visa )0 ° (133)

2t
- H b ¢ LH L o, ¢
aksc'U'\S_' + EZ kesa UV N

where we define the 3-velocity as usual

Va = U (134)
= a .
‘\/ -2 ’
and
R v
Y =T \Y; s : (135)

A ' 2 :
and use it instead of ua, correct to O(v') in our force law,
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for the spatial part of the acceleration. This is the gravitational
analog of the Lorentz force law, although the interpretation is by

no means as straightforward.

D. Multipole Solutions

We have now set up the formalism for weak-field gravity in
parallel with the formalism for electromagnetism. Aside from the
complications of the additional dyadic field, one can nearly copy
the electromagnetic results line for line.

Now that we understand the machinery of the matching there is
no need to actually use two non-dimensional coordinate systems. All
of the manipulations can be performed in the usual physical coordi-
nates. In this section we will derive the genéral L-pole solution,
find the radiation fields, give the gauge transformations that
simplify the problem, and compute the resistive fields for gravi-
tational L-pole radiation.

‘Using the tensor analogs of the vector spherical harmonics,
't{FIJLM ~-- which are traceless and symmetric representations of the
rotation group of total spin J, spatiai spin L, and z-component of
total spin M (see Appendix B), we can easil? write down an electric

parity multipole solution:

v = X, .{CCOEL | 362

. /2L+! ' “J%
- % (136b)
V L . YL,L‘I,M {Q = ?
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aL-)(2auns )

H = ) VTE N 1) :ﬂ:u.M {C(”}L 3 (136¢)
where {C(P)]Q denotes an L = Q solution of the radial equation going
like C(P)(t * r)/r for r 5. For harmonic motions these are just
the spherical Hankel functions. These solutions are discussed in
Appendix B.

As in the previous examples, the function C is determined by
matching in the limit r 5 0. Expanding the scalar potential, we
habe

Clt
\!J — YLM T.L'H) CiL-l)l.l. (137)

If we follow the conventional definition of multipole moments

* L :
SINORS gYm ronat) dv (138)
we have the induction zone field behaving asymptotically like

‘P _.a,,_ﬁirﬁ. 4 bum d

Lt Yy M (139)

By matching equations (137) and (139), we determine the function C

in terms of the mass density multipole moment

* (2n - 1)l s (2n - 1)(Zn - 3) ... 1. These formulae are given in
Appendix B.
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lem Fum (X))
CzL+r )i

: (140)

Cik) =

This determines the radiation field caused by a given motion of the

masses.

An alternative solution representing electric-parity L-pole

radiation is
~ (3]
P = YLH iD (’c:—'r)‘iL , (141a)

s

R4 | (L)
= 141b
Vo= =5 Y 100, cuaw

B = (2 1@ L43) ‘:ﬁj Dm (141¢)
Nl 2) LU2,M “e '
This must be related to the previous solution (equation 136) by a
gauge transformation.

Using the formulae derived in the appendix and picking gauge

- functions with the proper symmetry, that is

L]

X o= «Wom * 8 Thuom (142a)

=T, , (142b)

we can find the relation between these two representations of the
electric-parity, L-pole solution. The only result that we will need

is the relation between the new scalar potential and the old, which
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is
(1) (+2)
L (h-t)

P (143)

-£2

E. Resistive Fields

As in electromagnetism, the damping force comes solely from
the leading time-odd term in the expansion of ¥ in the small r

*
limit . This term is

3 < [nen] s (G

R - Lo (h-t) CISIRRL (144)
and the resistive force per unit volume is given by
= £ $
Fe=vVH (145)

which, for ;I;R given by equation (144} is

/ _1 (at+1)
wH (L+ |)(L‘\'Q) L QL+ l
o [ L (L-1) [(aL-H)“]z .P qbl-M(-t) ‘r Yi_ LM, (146)

L\

The case with L = 2 is the only one with large enough resistive

forces to be physical interest;

r - WFZ{PGMM&) TYIM (147)

R

* The gauge transformat:.on from ¥ to ¥ was done so that the resistive
effects of V and Bﬂ would be of lower order than those of \;;
which is not true for y, ¥ , and B8 .
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The direction of this resistive force leads to an extraction

of energy from the source. The work done by the force is given by

dE

It - Xv-i}; dV o« JI-E;/PQIV o XSE}_,MVL"dV (148)

which is proportional to the (L,L-1,M) vector multipole moment of the
mass current. This, in turn, is determined by the mass density

multipole moment as follows.

Our motions satisfy continuity (at least to zeroth order):
_dP
‘V . + — =0

Multiply this by rL YLM and integrate over volume:

L
=)

SYLMY (\7{3})4\7‘ * 3% Fum = O ’ (150)
Integrate the first term by parté to get
“\% (1T, )+ 49 (£)=0 (151)

¢ Ve M d< Bim

A standard definition of the current multipole moment is

¥ et

Om =\ X, T T dV, (152)

The differentiation of the spherical harmonic in equation (151) is
routine, producing a vector spherical harmonic, which in turn gives

us just the vector multipole moment. The result is
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L
at Fim
M = (153)

Vi (aun+i)

This relation can be used to write the energy-loss relation

a

strictly in terms of the mass-density multipole moment Gy

@)
dE 4 (L) (L+2)
— = () Z Twm Lam (154)

Jdt L= [@wN R g

and using the identity

@uy ¢ L @ui-fe) &k L .
d k (kH)
= - é") 4+ G‘) (% (155)
T1&aOC % ),
this can be written
JE 46 (0 (W#2) (i) (2 4
Jdt =, .- b (k-0 TN ]2 (i (‘E)) + e X (156)

If the motions are periodic (or at least bounded) the time deri-
vative term averages to zero over the long run and energy is thus
extracted from the source as a consequence of the escape of radiationm.
Remember that here L is the first non-zero, time-dependent multipole
moment of the mass distributionm.

For the special case of harmonic motions, we define an

amplitude by the equation
: A
9 &) = c[) cos wb, (157)
Lm M

- and we can easily compute the average energy loss over a cycle. The

mean energy loss per radian is
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_l_<é§:‘_>= 41 (+)(h42) w S:: 2 (158)
W \dt b (1=1) Claenti]a 30 Pm 7

which for L = 2 becomes

JdE 417 w’ A
< CB (159)
w \dt 5’ aMm -
M
This is a potentially useful formula and it is probably worthwhile

to put the G's and c's back into it:

g
I /4E 47 w S
L/EN . _ 4 Gw E:"(% ). (160)
w \d¥ ¥ cf phbam
An interesting form of this expression can be found by

introducing a typical length L and a typical mass M such that

Zf(%zm 33 My (161)

where B is some numerical factor of order unity. In this case we can

write the energy lost as

< }“‘ - 47r56 (Qt\l) (Qf;kf. (162)

The second term in this expression is an energy of the size of the

gravitational binding energy. Thus we see that the system radiates
a small fraction of its gravitational binding energy per radian.
If we combine the previous expression with an expression for

the kinetic energy in the motion, we can derive an expression for the
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damping of the source assuming that there is no energy input.

Ignoring numerical coefficients, we find that the "Q" is

3
Q oc(i)(?_‘_) (163)

Ya‘ .

, 2

where: To = geometrical mass GM/c

M = typical mass

L = typical source length

A = typical wavelength.

All of the energy loss formulae derived in this section are
the same as the formulae derived using the Landau-Lifshitz pseudo-

tensor.

F. The Damping Result

In the previous calculation.we have not been too careful
about the sign of the damping. We can check that the resistive
forces actually lead to damping, rather than to antidamping, by
comparing this calculatioﬁ with the similar electromagnetic
. calculation.

In electromagnetism the near zone source equation is
2
AV} 4; = - xm? \ . (164)

while in gravity it is

Vz({-) = - 47p, (165)
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The force law in‘electromagnetism is

F=-qV¢$ (166)

while in gravity it is
P
F=m W(:;:). (167)

From this we can see that both theories have inverse square static
forces, although in gravity likes attract because of the sign
difference.

The gauge transformation that is used to eliminate resistive
fields.from all but the scalar potential at lowest order has the

form for electromagnetism (see equation A64 in Appendix B)

b = - ":' b C(168)

while for gravity it is

i+ ! L+2
- W= %%

o

(169)

The sign difference between these equations cancels the sign dif-
ference in the force law so it is clear that any gravitational
multipole has a damping field which points in the same direction as,
but is(L + ZMi - 1) times as large as that of the corresponding

*
electromagnetic multipole . If electromagnetism always damps, then

S0 must gravity.

* Thus equation (96) and equation (147), both for L= 2, differ
numerically only by a factor of 4.
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For completeness we should also consider the magnetic-parity
multipoles. In some cases these can compete at lowest order with
the electric-parity modes. The éame type of reduction can be
carried through to show that the gravitational damping of these
modes is just L/(L + 1) times as strong as the electromagnetic
damping of the corresponding modes (see Appendix B).

If we define a mass-current multipole moment dLM

“ -.
dyw = gY;uM - T 1Y, (170)

then we have resistive fields

(a2)

L+ 49 L ' L
H:; = ¢) Y )[(ZL-H)‘.‘_]"? A"M(-b) f YI‘_LM s (171)

and power extracted per radian for harmonic motions

A+l

_L_ CJE- - - L o (él )2
W <§€> = = _cc:x+ns\_]2§ Mo (172)

The explicit expressions for the resistive fields (equations
146, 147, and 171).can be used to calculate all time-odd secular
effects. An example of such a time-odd effect is one affecting the
motion of an axi-symmetric body spinning about a non-symmetry axis.
The angle between the spin axis and the symmetry axis should change
slowly in time, and this could be calculated using the formulae
for the resistive field given above. Note that the perihelion
precession of a planet is a reversible phenomenon, not depending upon

the escape of radiation. It is time-even and is caused by non-linear
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terms neglected in our very weak-field limit.

G. Interpretation and Pitfalls

The above derivations have been carefully routed to avoid
several sources of éonfusion. These will be discussed here so that
éeople interested in extending the results will not have to waste
time on them.

One obvious point is that the formulae are only valid for the
first multipole moment of a given parity which has a non-zero time
derivative. Otherwise the small corrections to the lower multipoles
create errors as large as the effect of the higher multipole.

A certain amouﬁt of caution must be used when these energy
loss formulae are used for anything but electric-quadrupole radiation.
The even corrections to the lower multipoles that are 0(v2) or
smaller can lead to radiatiom from.the lower L multipoles that will
. compete with the higher multipole.

As.an example of this, consider the magnetic quadrupoie

. radiation emitted by two counter-oscillating mass shells as dia-
grammed in Figure 5. Now in electromagnetism a moving charge has

the same total charge as it had at rest, the Jl < y? coming from
charge density being the t-component of a vector is cancelled by the
Jl - v2 in the Lorentz contraction of the volume. TFor gravity there
is an extra N1 - 2 since mass (energy) density is the tt-th component
of a tensor. Expanding this shows that the source for gravity is the
energy content: mc2 rest-mass plus 1/2 mﬁz kinetic energy.

As the mass shells counter-oscillate, this kinetic energy is
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Figure 5. Counter-oscillating mass shells -- a typical magnetic

quadrupole source.
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unequally distributed between the shells for part of the cycle, and
resides in the springs for other parts of the cycle. This periodic
redistribution of the oscillation.energy leads to electric-quadrupole
radiation that is smaller by e2 than the usual electric~-quadrupole
radiation, and which is thus of the same size as the magnetic
quadrupole radiation.

~Another point to be made is that one cannot always compute

the resistive force from the force law

(R, = (e

Before the gauge transformation was used to simplify the problem, the
lower L dependence of the vector and tensor potential allowed them
to compete with the scalar potential, so one had to use the complete

force law:

1!

(R), = 7 | 6, « (Rap {(\/ﬂxqsf(vﬁ)h%vk

° (Hk\alr ls ke b e e

By far the most serious source of confusion lies in incorrect
physical interpretation. The results presented so far have been
written in terms of pseudoforces. The integration of the equations
of motion resulting from these pseudoforces allows one to write down

*
the development of the system referred to some arbitrary coordinate

* Arbitrary to order g.
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system. Until this has been converted into observables, the solution
is incomplete.

A big difference between gravity and electromagnetism is seen
at this point. The electromagnetic field produces effects only
through its force law. On the other hand, not only does the gravi-
tational field affect the.coordinate motion of the system, but also

the potentials themselves determine the clock rates and the behavior

of rigid bodies. Until one knows ghe Bﬂ field, one cannot convert
coordinate differences into proper length without making errors that
are O(r) *. For the most part, since our formulae for the decay are
only accurate to e2 themselves, we will not need amplitudes any more
accurately. On the other hand, there are situations where such an
error can make a big effect, and these have come up as I will now
describe.

The gauge transformation that was used éo simplify the force
law represents only a redefinition of coordinates and should not
affect invariants such as.damping rates. Thus it should be possible
" to use the original electric-parity solutions in conjunction with
the complete force law to derive the same results. I1f one attempts
to check this, working as an exercise of the problem of the small-
amplitude oscillations of a spring-mass system, and if ome works in
the untransformed gauge (i.e., Y not $5 with the original potentiéls

and the complete force law, taking as the equation of motion

* Remember that we have calculated only the leading time-odd term

in BY . There are much larger time-even-corrections that have
been ignored.
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~m;1 + Bd - e =0 (175)

where the geometry is indicated in Figure 6, then one finds that the

¥
resistive forces do work on the system , What is the explanation for

this apparent paradox?
The equation of motion written down for the system (equation
175) implicitly assumes that the rest position of the spring is at

z = L. This is incorrect. The rest position is at z = Lﬁngz-

Neglecting this amounts to considering a problem in which the support
of the spring is moved back and forth in such a manner that the rest
position always has the coordinate position z = L. Now oscillating
the support of any oscillator at its resonant frequency is dangerous.
Here the errors due to the time-odd terms are 90O out of phase with
the motion and are capable of putting emergy into the system (para-
metric excitation!). The gauge transformation ﬁot only simplifies
the force law but it reduces the size of the time-odd terms in Bﬂ
(i.e., in gzz)by a factor of e4, more than -enough to eliminate this
.difficulty.

One would like to check the above interpretation by working the
problem taking into account the change in coordinate location of the
rest position of the spring, but this is an involved calculation.

An easier problem that will check this interpretation and also yield

a useful result is the problem of the radiation damping of a rotating,

* These calculations are available from the author.
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m
d

"EQUILIBRIUM

POSITION" —

‘Figure 6. Geometry of the spring/mass system discussed on page 79,

d and L are coordinate lengths.
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ideal dumbbell, i.e., two point masses connected by a line stress.
Clearly a small error in the length of the dumbbell should make
little difference in the damping. This is borne out by the calcula-
tion, and one gets the same damping whether one works in the trans-
formed system where the force is simple given by

= 13. t ' 176
b= 2 Y&, -

or in the original system, where there are non-zero contributions
from the following terms in the force law (including a velocity-

%*
dependent term )

B = 29 +m = -m (177)

The agreement between these two calculations gives us some support

for our resolution of the difficulty with the mass-spring system.

H. Radiation in the Post-Newtonian Limit.

If the result of the work presented in this thesis were only
to jus;ify the formulae already in common use among relativists, then
thére would be little interest im it beyond noticing its existence.
On the other hand, the methods worked out here should allow one to
finally solve the problem of incorporating radiation into a slow-
motion formalism such as a post-Newtonian expansion, and hence to

solve finally the problem of gravitational radiation from gravi-

* Calculations available from the author.
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. tationally bound systems.

A vigorous program aimed at extendiﬁg the post-Newtoniah
expansion to high orders is being éctively pursued by Chandrasekhar
and his colleagues. At present they have stopped just short of the

level at which radiative effects would come in(lg):

"... it is expected that the effects of gravitational

radiation on the behavior of the system will first manifest
itself when the next half-step is successfully taken. But
it appears that entirely new considerations will be needed
before we can properly take this next half-step.”

The approach used in this thesis should be just what is meeded to
overcome the difficulty, I feel. Let me just sketch out a program
for dealing with the problem and discuss a few ﬁf the difficulties
that I.can foresee.

Table II presents the forﬁ of the metric that is used in the
post-Newtonian expansion. Nearly everything that is important can be
seen in this table. Remember that ¢ is'the slowness parameter
(L/\), and that the weakness parameter has been taken to be 62.

A look at the force law (equation 133) shows that the vector
potential enters the force law with either a time derivative or a
velocity and that the dyadic.potential enters with ei;her two time
derivatives or two velocities. For this reason the vector potential
is needed to one less order than the scalar potential, and the dyadic

potential to two less orders for computing forces. The terms con-

19. Chandrasekhar, S. and Nutku, Y. 1969, Ap. J. (Oct.) in press.
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tributing to Newtonian gravity and'tolthe first post-Newtonian
correction are indicated by diagonal lines in the table. -

Now look at the radiation éolution that we used earlier
(equation 122). The vector potential corresponding to electric-parity
quadrupole radiation had the radial dependence corresponding to
L = 1 and the dyadic potential had a radial dependence corresponding
to L = 0. (In the language of angular momentum, the vector potential
makes total spin 2 by adding the intrinsic spin 1 of a vector to an
orbital spin 1, and the dyadic potential adds intrinsic spin 2 to
orbital spin 0.) For these reasons, for the radiation we need the
vector potential to one higher order (and one lower L-value) than the
scalar potential and the dyadic potential to two higher orders (and
a two lower L-value). This is indicated by the negative slope dia-
gonal line in the table.

The resistive fields caused by the escape of radiation of this
size are indicated by the dashed line in the figure. These forces are
coﬁpletely dominated in the short run by the time-even post-Newtonian
and second postQNewtonian forces. 1In the long run these small time-
-0odd resistive forces lead to damping and hence large and interesting
effects.

For a body in free fall motion, we have mass density and momen-
tum flux but no stresses in the sense that Einstein's equations have
stresses as their source. The functions y and Va can be found as

usual, but the function Ha has its source only in the non-linear

b

. . . . t1
correction terms like W,aw,b’ 6abw,cw,c etc. Only if the resulting
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Hab has the correct relation to ¥ and Va will we be able to make
the'gauge transformation that elim‘inates'Hab from the resistive
fields to lowest order. If this occurs, then the ordinary formulae
will apply to free-fall motion.

The term Hab is a part of the second post-Newtonian correction
and has been explicitly calculated by Chanﬂrasekhar(lg). There 1is
one difficulty that I can foresee that will prevent one from just

grinding out the Ha field from his formulae and using it to com-

b
pute the radiation and the radiation reaction. The sources of the
Hab field are not confined to ? region smaller than a wavelength but
come from the gravitational field everywhere. To avoid enormous
phase errors, the integration for the Hab field should use retarded

potentials even in the near-zone equations. Even if this is possible
and successful, I expect the results of such an integration along

the lightcone to produce the usual (log r) divergences that invali-
date the usual linear expansion Qhen it is éarried to higher orders.
This difficulty will probably require that one work in a coordinate

- system similar to the one proposed by Bondi(ZO)

where the null rays -
are not changed by. the perturbation.
One can hope that these difficulties will be. overcome and

that we will soon know whether or not the generally accepted results

for radiating, gravitationally bound systems are correct.

20. Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K. 1962,
Proc. Roy. Soc. 269, 21.
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J. Conclusions

| The calculations presented in this thesis have shown how‘the
irreversible escape of radiation.can be included in a slow-motion
expansion, and that the escape of gravitational radiation leads to a
loss of energy from the sources. The explicit formulae for the
resistive -fields that we have found should allow other interesting
effects to be calculated, such as the problem of the spinning
asymmetrical body mentioned earlier.

The results of the calculations can be easily summarized.

To calculate the energy loss for an electric-parity motion, com-
pute the energy lost by radiation from an equivalent distribution of

electric charge,

9\?9-5-“-1 = q P[ﬁ"‘-/c‘”?] . (178)

and multiply the results by (L + 2)/(L - 1). For a magnetic-parity
motion, multiply the electromagnetic results by L/ (L - 1).

Also, hopefully, the techniques presented here will allow
radiation to be-included in the EIH and post-Newtonian expansions.
A study of these a@proximations will finally produce answers to the
questions: "Does a gravitationally-bound system emit gravitational
waves? How much? Does it egperience a reaction force?" These
questions can be studied now that the slow-motion limit has been
extended to include irrevérsibility.

The key ideas are the realization that the usual slow-motion

limit is not uniformly valid for large distances and that this
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difficulty can be eliminated through the use of an additional

asymptotic expansion valid in the radiation zone.
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APPENDICES

A. Summary of Notation

There are several different conventions commonly used in
General Relativity. I follow the one used by Synge(21). I use a
metric with signature +2, that is, one for which guv may be put in

the form: Diag: ( 1, 1, 1, -1). The squared length of a time-like

vector is negative. The affine connection is defined by

9);‘ 54 % S}m(gd\%c"" 3“0';" —gvo-" “) ) (AD)

and a covariant derivative by either
Vi = Viw = Dw Vi (»2)
falid My MY Vo

or

\/}4\;.55 \/‘l,v + ri:; \/x.

; (A3)
The Riemann Curvature tensor is defined by
M — M M Ry M EY M
= - - Ab
Rve r:mcr vo; T 3¢ rjcc- r:)(}‘rlp-c , (&%)

and is contracted on the first and last indices to form the Ricci

tensor:

I
RVO’ - R c YOO K . (A5)

21.8ynge, J.L. 1960, Relativity: The General Theory (North-lolland,
Amsterdam) . . )
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The commutation formulae for covariant derivatives read

Vhiap ~Vpipx = R Vi (462

| ¥ o
Thosp~ Twspx = Rovag Tuw + Ropap Ty

(A6b)

and field equations are
o = - ST (A7)
R}Av 2 R g)‘*" . Tf‘“’ ’

Several notations for derivatives arec used in this thesis.
Partial derivatives are indicated either by_a comma (,) preceding .
the subscript or by the operator Ba. Covariant derivatives are
indicated by a semicolon (;), and when a second covariant derivative
is to be definéd on the same space, the vertic;1 stroke (l) is used

to indicate this.
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B. Tensor Spherical Harmonics and Multipole Radiation

This appendix contains material useful for solving the tensor

(18)

wave equation. The conventions of Edmonds have been followed,
and that book contains all the formulae needed to supplement the
material presented here*.

In the study of radiation from confined systems, we can intro-
duce a great deal of simplification by separating the sources and
the solutions into "multipoles' having simple behavior under ro-
tations. The ordinary wave equation does not mix the multipoles,
and for slow motions only a few muitipoles will dominate the radiation
field.

The angular functions that will be defined here have the
following features. They behave simply under rotations and form
irreducible representations of the rotation group. They have simple
formulae for their gradients, curls, and divergences. Finally, they

can be computed with relative ease.

Scalar Harmonics. The rotations of a scalar field are

generated by the operators

l <Q&,Q summed
Lo,": :’ Eokc XBBC over KV, E )’ (A8)

and the scalar harmonics are eigenfunctions of the operators

* The material in this Appendix is presented not because it is
original but because it is relatively inaccessible. Tensor
spherical harmonics were developed from the rotatiom group by
Jon Mathews, J. Soc. Indust. Appl. Math. 10, 768 (1962).
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he Tym = MYLN\.

These ~STLM are useful for solving the wave equation

\VRES -Bzéb = ¥

b

which in spherical coordinates can be written

2 Lf ' =
'l’iar“\" cb"ét‘b:{'

\(-‘L

where we have taken

V= % U o= X,

r [ S

(A9a)

(A9D)

(A10)

(A11)

(A12)

Note that we treat both ar and r as operators and omit the redundant

parenthesis. If we write both the solution and the source as a sum

of multipoles:

$=%0 ¢ 1) X, (0)
W,M

'F=§ ﬂM(r‘ﬂ YLM('O')’

(Al3a)

(A13b)

we find that the multipole coefficients (now only functions of r and

t) must satisfy
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| 2 h(L+1) N4 -
‘f‘ér’“hm - 2 <kDL,M B-Ectjl-M - J;LM (A14)

which I refer to as the '"radial equatiop”.

The vector and tensor spherical harmonics will be combinations
of constant unit vectors and unit tensors with these scalar harmonics.
Since V; will thgn act only on the spatial variables, the radial
dependence of the vector and.tensor spherical harmonics will be given
by the same radial equation (Al4) as for scalar spherical harmonics.

The Radial Equation. As mentioned in the preceding section,

the only equation that we will have to solve is the "spherical wave
equation" (Al4). For harmonic motions the radial solutions are the
Hankel functions (spherical Bessel functionms). For our purposes no
real simplification results from the consideration of harmonic
motions and here we find the general solutions of the radial equation.

We define an operator WL by
I ~2 Wils) 2
—w;fb = *-{;BY.Y'C\D - “"}:;‘"‘b "‘B.\.‘cb , (A15)
and consider the equation

Wb = o, - (416)

One can easily derive the following commutation relations

[:})r, ¥ ] = | (Al7a)

AL (L)

2
(w20 ] = v Y (A17b)



EE}JL) %:‘tl = - %%E o,

(Al7¢)
from which one can verify that if.q)L satisfies
Wb, =o0O | (A18)
then
Wi, (ar - ‘F‘F\ '4’,_ = O (A19a)
W, (3 + %!-3 $, =0, (A19b)
These relations give us raising and lowering operators for our
solutions. We can abbreviate these a;
D:- = Jd,. — -L; , . (A20a)
“'13; = O, + 5;—‘— : (A20b)

There is no problem in finding the solution of the radial
equation for L = 0. If we multiply the equation by r, we obtain the
usual one-dimensional wave equation for the quantity r@O. Thus the

general L = 0 solutions are given by

C(t=v)

$ = = , a21)

where C can be any function of one variable. The upper sign corres-

ponds to outgoing waves at infinity.
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Solutions for higher L values may be obtained by using ﬁ+
repeatedly. We have, for example,
Clt=v)
_":('T“‘ (A22a)

b = C(t=r)
Vo *

C"(t v Clh ) C(4wr)
<§>2-.= ~  F 3 ez 3 NER (A22D)

(normalizing the 1/r term). We can conveniently abbreviate these
radial solutions by writing just the leading term and the L value.

Thus we can write the L = 1 solution
/
<k>‘ o {C_(-t'{:v) (423)
1

and our raising and lowering operators applied to these radial

functions yield new radial functions according to

+ _ 5: /'E .
D {C}L = F 3C Lt | (A242)

. {c }L = ¥ {c'gw (A26b)

These raising and lowering operators will appear throughout the
formulae for the gradient, divergence, etc. of our spherical harmonics.
These functionals {C]L have been normalized by the size of
their radiation (that is, the size of their 1/r terms). We will also

be interested in the behavior of these functions for small r. This

can be found from the Taylor's Series expansion of
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{C@Ez*\-)} =) T D { C Cﬁr)

(A25)
which gives us
(@ L (p-){p- ~3) ('\0 -2L4) C?—L-\) (p+qQ-L)
C({?ﬂ} (:F ! Y C () w2
R
The leading term in the small r limit is the p = 0 term*;
| (q-v)
@ S C )
{C E — (&) (a0l “';IT\"" ) -
L .

and the leading time~odd term in the small r limit is the p = 2L + 1

term:
(L+Q +1)
chg T " C (t)
! = (_:F‘) (QL+| 3 l-l. ‘ (A28)
R

. This term is time-odd relative to the inductiom field p = 0 term, and
determines the time~-odd effects in the small r limit.

Vector Spherical Harmonics. One can easily generalize these

spherical harmonics to vector fields. To do so, however, ome must
augment the operator L with an operator that shifts the components
of vectors among themselves during the rotation. The rotation of a

vector field is generated by the operator Y defined by

* Note that (2L + 1)!! = (2L + 1)(2L = 1) ... (1), is the "odd
factorial®.
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c ¢ . ¥
TV o= L,V o LEae GV (A29)

’ A A -
(a!b')c =K, % QQ;—Q'X)QB)@z = 'X, H’ 2 >:
which is formed from the Lie derivatives along the Killing con-
gruences generating the rotations.
We will define special vector fields, called vector spherical

. X 2 2
harmonics, that are simultaneous eigenfunctions of J, L, and Jz,

that is
a = ~
J YG.LM T(T+1) Y:n_m, (430a)
2 = L
ko Y;YLM W (L+1) Y“"-M ) (A30b)

The first step is to combine the basis vectors so that they
~form a representation of spin 1 under the rotation generators S

defined by

= (@2 ¥
S - (A31)

The combinations can be written down by inspecting YIM’ which is

also a representation of spin 1,

(A32)
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and they indeed satisfy

2
ST e, = 22y (A33a)

S@=~m@m

z M ' (A33b)

Our vector spherical harmonics are formed by adding the in-
trinsic spin 1 of the basis vectors to the spin L of the spatial

dependence of the Y __ according to the rules of angular momentum:

M

Lo T
Y’JLM = t‘; [M-s s M] YL,M-S Qs (A34)

b

L1 L2 J

M1 M2 M

are identically zero because of the selection rules for the

where [ ] is a Clebsch-Gordon coefficient. Many of the

YETJLM
Clehsch-Gordon coefficients. For example, J and L can differ by
at most one unit. .

We can easily form solutions of the vector wave equation from
these vector spherical harmonics and the radial functions defined

.earlier by taking

V. = {szl_ Y (A35)

TLM TLm,

The most important relation for the manipulation of spherical

harmonics is the gradient relation:
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L+

W(‘l’(‘;ﬂ YLM).::' “\/ 2t D:qD YL,L«H,M

.,/ L y A36)
M Kl | [)L(i> RL,M,M’. ¢

which is proved in Edmunds and other places. From this and the rules
for adding three angular momenta one can deduce the divergence

relations:

L+
Y- (ép E’L’H\JM} - \/ AL+ | L+l¢ YLM N (A37a)

v (‘k’.YL‘\.,M\

(A37b)
L +
Q . (eP YL’L,. I’MB =+ AltF | DL-\ CP YLM (A37¢)
and the curl relations
Wx(cb Eu—\ M AL | ul({D YLLM (A38a)

vx (& YLLM) = Wi oy b X, m (A38b)
Gl / ;t:‘l D:Cb YL,L-I_, ™M ,
WV % (¢ .RL‘\,-AJM) = \v"\{ ;::*“ D:d) YLLM '

(A38c)
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Manipulations with the vector spherical harmonics are often

simplified if one uses the spherical vectors @0, @+1 instead of

the Cartesian vectors @x , Qy» @z as basis vectors. One can de-

fine the spherical components of a vector V by
= €, V ==L0 41
This can be inverted
g .
Y = 'Z Q) \/((3 @_% o (A40)
3
using the normalization of the spherical basis vectors
c, e/ = C-)% Se oo | (Ab1)
LY N S ST

The spherical components of the vector spherical harmonics are

‘ L 1 I S .
(YG’LM)S = [Mu -s M] YLIM-}S ¢) (A42)

The dot product of two vectors can be thought of as the multi-
" plication of a spin 1 representation by anmother spin 1 representationm

‘to form . a spin O representation. One can thus write
[Py ol AB=AS ‘
h'B ——\B‘E:\ [8 -5 © ‘_& 22 A8 AB AR wy

Similarly, the curl can be thought of as adding spin 1 to spin 1 to
get spin 1

) | I
(8<B), = '\Lf’_ ‘;:f[s L A,

(A44)
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 The gradient relation can be written in terms of spherical com-

ponents

L+ L+ l L S
[VGbYLMﬂS = -_\/.u_-u L¢[ -5 Ml(_) YLH’ M1

L E; L-1 [ G¥f .STL_

&L+l L¢ M+S -3 M

I, M+g (845)

The wvector spherical harmonics are normalized such that

LI}

2
'{g S "M' SMQd‘Qd?p = S gt.u S

(A46)
and their complex conjugates are given by
% JHleM+]
E\TLM = .-E;',L,-M . (847)

Tensor Spherical Harmonics. The general tensor is not an

irreducible represeﬁtation of spin-2 at a point. The trace behaves
like a scalar under rotations and the antisymmetric part like a
vector. The spin-2 part of a fensor is its traceless, symmetric part.
We can easily generate a suitable set of basis temsors by
combining the basis vectors used in the previous section, We define

five basis temsors %'?,(p = -2, =1, 0, 1, 2) by
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o 27
=S 2
%, %[s s p] s &

which is equivalent to

’ (A48)

) (A49a)

_..l -~ A A A, AA . A A
%:tt = E(:;'x;_t T ZA —\_’3% -LZY )’ (A49b)
.= .:‘2‘_(&&4’5«3 149 £ Y X) (A49c)

Using these basis tensors, we can construct tensor fields that
. 2 2 .
are simultaneous eigenfunctions of J , L and JZ just as we construc-
ted the vector spherical harmonics. Now, of course, we are using
the operator Y suitable for rotating a temsor field. This can be
found from the Lie derivative, but we will not need to be explicit

about it. We define tensor spherical harmonics :ﬁlJLM by

Foo= s wl Tt o

Jim

Perhaps the most useful formulae for these tensor fields relates
the divergence of a tensor spherical harmonic to vector spherical

harmonics. One can write this in the form:



- 102 -

( um\ _gwij_q \/——-1 1L v D+¢

27 Jutm . L

S U T -
(A51)

T }Y D¢

31 3 i
where the symbol j 3 P is a 6-j symbol, tabulated in several
(22) 3 23

places , or one can use the formulae for the 6-j symbols given in

Edmunds to write out the 5 cases explicitly.

W'<¢:ﬂ7l;x:z,m\)= (.u.-l) D 43 YL LM ' (A52é)

(L=1) +

v (¢ Ten) VS 2% Vi,
-1 L {(2L-1) + .

W'(“’Pﬁ Lm> = m) D¢ YL’LJA,M

(L+1)(2L+3) [~l Y
L L)L-l,M

6(at-1) (2L+1)

(A52¢)

)

L+ 2
(cbuﬁ\_ul M> m L-HCP YLLM s (A524)
(rs R) - |
M) AT B T

22, E.g., Rotenberg, M. et al., 1959,"The 3-j and 6-j Symbols"
M.I.T.).
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In discussing the gauge transformations useful in weak-field
gravity we will need the symmetrized gradients of our vector spherical

harmonics expressed as tensor spherical harmonics. We define these

(W\»V>O}, = anvh- * ak\{\ (a,& i 7"‘1’2>— (A53)

A straightforward computafion gives us
Y -z (W- Y. ):
V¥, -5 L(V ey,

I+l

+ Lé |
¢) 01'\/? - () Dx.<t> |

I

T 2 I, L4, M
(A54)

' . -1 1 LU
+-\/E DL% { | T z} TJ,L‘I,M )

where

(D), = &, (855)

Multipole Fields. Using these results we can write down

multipole solutions to vector and tensor wave equations practically
by inspection. The equations of electromagnetism in the wave zone

(no sources!) with Lorentz gauge can be written:

oA

) (A56a)

m

i
0]

(A56D)
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VA o+ 2

‘(A56¢c)

We can find solutions of these equations corresponding to a definite
parity. Solutions whose parity is the same as that of a current

form what is called magnetic multipole radiation. These solutions

can be written

A~ T (t-:v)} .

(A57)
<{2=O,

The solutiomsthat couple to charge density form what is called

electric multipole radiation, and can be written in two ways:
ARy O]
= .,/ — 2 C({+=%y) | E._JL_,)M
L—

@ . (A58)
C (‘E‘-FY YLM, _

9
(-

ar

)
o

2L+Y Q)
+ ‘\f Y { ('t'*:‘fﬁ Y;_ L+, M
~ W | '
b = {D (+ "-Fr)\&L YLM (459)

These are different representations of the same solution and must be

related by a gauge transformation
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+ YK

b
I

‘(A60a)

& = -2
<{> ¢ -{.’X. ) (A60b)

for some function ¥X.
To find X note that atX must be proportional to

{C(L) (t + r)]L YI_M' Thus we are led to try’

{ C(m(-k fF?‘)z YLM : | (461)

and to determine ¢ so as to cancel the H term in the vector
L,L-1,M

potential. Now we have (from equation A60a)

A E.‘. (L)Z L AL+ &)
A= *“\lzw {—C‘ L“YM’M"'GO(UAM * \} T >{C %EL_‘M (A62)
! ) [P

where we have used the gradient relation (equation A36). Comparing

this with equation (A59) we see that

ol = . (A63)

With this form for X we have
Y] &LH R — L+ ]
4;.—.:(]-' T) C (t=v) YLM _ - 4’. (A64)
L

This relation will be useful in the problem of radiation reaction
for electromagnetism.

Gravitational multipoles can be written in an analogous
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manner. The equations of weak-field gravity (equations 106 a-e)

read

Oft=o

(A65a)
gv-=
(A65Db)
oY =0
(A65c)
V-BH o+ 3V=o
(A65d)
YV o+ 3% =o0
(Ab05e)

Electric parity (i.e., those which couple to mass density)

multipole solutions of these may be written in two different ways:

{ RUDERED) Q) } |
E—E = L (L1 ) . C (’E;Y‘) L-?_:E L2, M \ (A6ba)
(1L+l) 42
.1/ {C (*"-F\‘) YL’L-\,M , (A66Db)

0]

C (+=v) YLM 5 (A66c)

~ 2L+ (aL+3) ) } v §
H = /@Gy (o) {D (£3r) o rt,_’,_u’m (A67a)

or
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& f ALt | (1) ' Y
R L+ 1 D({?rii“ L+ ™M

@
{D & T,

<
"

(A67b)

€1
I

(A67¢)

There must be a transformation relating these two representations

{cf. equations 107.2)

gg = B + V\'?/(. - (W-X"B_{X)IL' (A68a)
Vv =V + o A 346‘%) (A68b)

q) = W'Xa + a_;X" + \]D . ' (A68¢c)

If we take our gauge 3-vector in the form

. (=) (L~1)
X = A{C (t?r)} Y + BC (43 [EL M (469)
L’L-l)M 141 ) d
L=

dictated by parity considerations, then we can determine the
constants A,B as follows. Using the formulae for the symmetrized
gradient of a vector spherical harmonic equations (A54) and using
the formulae in Edmunds (1960) to work out the 6-j symbols in terms

of L, we can write equation (A68a)
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~ @@L k-1
b = \j L(L-1) - aA Q- TLJLQ‘M

[GQre)(as3) aL (ak-1) i
3(a-y) (aw) T 3(a1+ 1) (L+3) LL,M

L+2 |
+ 2B 753 1=fﬁ,m,w\_ (470)
+(?w5 m VX agc’q)]]lj‘

The various terms in this equation must vanish separately.
Fad

Noting that E}a . has neither a Ii L.L-2.y 00T 2
b4 2

_ ii L.L.M component, we can find A by setting the coefficient of
2
Ei equal to zero, and then B by setting the coefficient of
L,L-2,M .
‘i L LM equal to zero. Knowing the size of B gives us the size of
22
the qE]L,L + 2, term. Final;y we must havg D(t + r) proportional to
C(t + r), and the ratio can be found by comparing the size of the
ii L,L+2,M term resulting from the above gauge transformation with
the:ff]L’L+2’M.term appearing in equation (A67a). This constant of

proportionality can then be used to find that
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'\VP - L'.' { L-'— 9L \}J
' L b1 (A71)
which is the result of interest.

Magnetic parity (i.e., those which couple to mass currents)

multipole solutions may also be written in two ways:

T (W
== |5 {C ("**’}L.T*—»-w

’ (A72a)

vV = {Cm(-l:xr)}LYLLM ;

(A72Db)

or

n

~ aaw) §m } |
B = :—'-\/ =+ 1D :EL)L-H,M w5

I

~ (u)

V = {D ('t'-\:\-)} YLLM ) (A73b)
L

Analysis similar to that carried out above shows that

V= -2 v ‘ (A74)

L+yv

These formulae are all that we will need to develop the energy

loss formalism for gravitational radiation.
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