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Chapter 3

Methodology

3.1 Electron crystallography

The electron wave function Ψ(�r, t) satisfies the Schrödinger wave equation,

− �
2

2m
∇2Ψ + V (�r)Ψ = i�

∂Ψ

∂t
. (3.1)

In free space the potential V (�r) = 0, the electron energy eigenfunction has the

form of a plane wave propagating in the direction of wave vector �k as

Ψ = Ψ0 exp(2πi(�k · �r − ωt)) , (3.2)

where hω = E is the electron kinetic energy and k = 1/λ is the electron wave number.

In high-energy electron diffraction studies, the electrons used have velocity be-

tween 0.1c and 0.99c, where c is the speed of light and the relativistic effects are not

negligible. Equation (3.1) can be corrected for relativistic effects by replacing the elec-

tron rest mass by its relativistic mass, and the energy E by E
(

m0

m

) (
1 + E

2m0c2

)
=

h2k2
0

2m
,

where �k0 is the relativistic wave vector. The wavelength λ is thus given by

λ =

[
2m0E

h2

(
1 +

E

2m0c2

)]−1/2

=
12.2643√

E + 0.97845 × 10−6E2
. (3.3)

In our UEC experiment, the electrons generated from the electron gun have energy

E = 30 keV, and their wavelength is λ = 0.0698 Å from equation (3.3).
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For an incident plane wave of the form (3.2), in the kinematic approximation, the

wave function at a distance far from the sample (r � r′) is [3, 33, 34]

Ψ(�r) ≈ Ψ0(�r) +
exp(2πik0r)

r
f (B)(�k,�k0) ,

where f (B)(�k,�k0) = f (B)(�k − �k0) is the Born or the kinematic scattering amplitude

given by the Fourier transform of the potential V (�r),

f (B)(�q) = − m

2π�2

∫
V (�r′) exp [−2πi�q · �r′] d�r′ ,

here �q ≡ �k −�k0. The space spanned by all �q is the reciprocal space, in respect to the

real or direct space of �r.

In principle, if the Born scattering amplitude could be obtained from the diffrac-

tion experiment, an inverse Fourier transform would give the real space potential

distribution. Since the potential is generated by the electrons and nuclei, the position

of the atoms in real space could then be solved. However, in real experiments, only

the intensity of the electron beam is obtained, i.e., only |Ψ∗(�r)Ψ(�r)| is known, and

the phase of the diffracted beams cannot be directly obtained. There are considerable

efforts to solve for the phase by indirect experimental and mathematical methods.

For a single atom, the atomic scattering factor f (e)(s) is the Fourier transform of

the atomic potential ϕ(�r),

f (e)(s) =
2πme

h2

∫
ϕ(�r) exp (2πi�q · �r) d�r ,

where s = 2π |�q| is conventional for gas diffraction. The atomic scattering factor is

tabulated in the International Tables for Crystallography. Alternatively, it can be

calculated using an analytical fit of the form

f (e)(s) =
n∑

j=1

aj exp(−bjs
2) ,

where aj and bj are fitting parameters, and n=3, 4 and 5 has been used in literature
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[34].

For a collection of atoms such as molecules or a unit cell in the crystal, if the

effect of redistribution of valence electrons due to chemical bonding is neglected, the

kinematic amplitude of scattering is given by the Fourier transform of the sum of the

potential field from single atoms,

F (�q) =
∑

j

f
(e)
j (s) exp(−2πi�q · �rj) . (3.4)

And the diffracted electron intensity is given by

I(�q) = F ∗(�q)F (�q) =
∑

i

∑
j

f ∗
i (s)fj(s) exp [2πi�q · (�ri − �rj)] . (3.5)

Gases, liquids and amorphous solids are statistically isotropic. They are described

by interatomic distances �rij = �ri − �rj, which can be assumed to take all orientations

in space with equal probability. The diffracted intensity given by the time-averaged,

spherically symmetrical distribution is

I(q) =
∑

i

∑
j

f ∗
i (s)fj(s)

sin srij

srij

.

This is the Debye scattering equation. The sum of the terms with i = j is the so-called

atomic scattering background, which is a smoothly falling intensity from all atoms

considered separately,
∑
i

|fi(s)|2. The sum of the terms with i �= j give oscillations

of the molecular scattering denoted by Im(s), experimentally obtained by subtraction

of the smooth background. The Fourier transform of this function gives the radial

distribution function

D(r) =

∞∫
0

sIm(s) sin(sr)ds ,

which directly shows the distribution of probabilities for the occurrence of the inter-

atomic distance r, weighted by the scattering strengths of the contributing atoms.

From this, the interatomic distances and hence the structure may be derived.
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In a crystal, a unit cell is repeated in a periodic array in three dimensions. The

unit cell may contain single atom, group of atoms or molecules. Let φ(�r) denotes the

potential in the unit cell, the potential of the entire crystal is then given by

V (�r) =
∑
n1

∑
n2

∑
n3

φ(�r − n1�a − n2
�b − n3�c) ,

where �a, �b and �c are the lattice vectors. The kinematic scattering amplitude is the

Fourier transform of this potential, namely

f(�q) = F [φ(�r)] × F [L(�r)] =
1

Ω0

F (�q)
∑

h

∑
k

∑
l

δ(�q − h�a∗ − k�b∗ − l�c∗) , (3.6)

where Ω0 is the volume of the unit cell, and F (�q) is the kinematic scattering amplitude

of the unit cell. F (�q) is called the structure factor and given by equation (3.4), where

the summation is performed over all the atoms in the unit cell. The vectors �a∗, �b∗

and �c∗ are called reciprocal lattice vectors, and related to the lattice vector �a, �b and

�c by

�a∗ =
�b × �c

�a ·
(
�b × �c

) , �b∗ =
�c × �a

�a ·
(
�b × �c

) , �c∗ =
�a ×�b

�a ·
(
�b × �c

) .

The equation (3.6) describes a three-dimensional lattice in the reciprocal space. It

can be interpreted in the following way. The diffracted amplitude has a nonzero value

only when �q coincides with one of the vectors

�g = h�a∗ + k�b∗ + l�c∗ . (3.7)

This is known as the Laue condition. The three indices h, k and l, when having

no common factors larger than 1, are called Miller indices. (hkl) denotes the family

of lattice planes perpendicular to �g, and the space between the planes is equal to

d = 1/|�g|. The notation {hkl} denotes all planes that are equivalent to (hkl) by

the symmetry of the crystal. In addition, [hkl] denotes a direction in the basis of

the direct lattice vectors instead of the reciprocal lattice, and < hkl > denotes all
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directions that are equivalent to [hkl] by symmetry.

Another commonly used interpretation for diffraction from the crystals is Bragg’s

law. It views the diffracted waves as scattered from different crystallographic planes

and construction interference occurs when

2dhkl sin θ = nλ ,

where θ is the angle between the incident wave and the family of lattice planes (hkl)

and d is the distance between the planes. And the angle, θ, which satisfies this

equation is called the Bragg angle. It is easy to show that Bragg’s law is equivalent

to the Laue condition.

The geometry of the diffraction pattern formation can be expressed by the Ewald

sphere construction in reciprocal space as shown in figure 3.1(A). The wave vector �k0

of the incident electron beam is drawn from point P to the origin O in the reciprocal

space. A sphere of radius k is drawn centered at P. Then for any point Q on the

sphere, the reciprocal vector it represents satisfies the relation �q = �k − �k0, where the

radial vector from P to Q represents the wave vector �k of the diffracted beam. The

intensity of this diffracted beam is proportional to |f(�q)|2, with f(�q) as scattering

amplitude in the reciprocal space at the point Q. This sphere is called Ewald sphere,

and it gives both the directions and intensities for all kinematic diffracted beams from

a given incident beam.

In the case of diffraction by a single crystal, the scattering amplitude f(�q) is given

by equation (3.6) and is nonzero only on the node of the reciprocal lattice. That

means, the diffracted beams are only in the directions where the reciprocal lattice

points lie on the Ewald sphere. It is easy to show that this is the necessary and

sufficient criterion for the Bragg or Laue condition. For high energy electrons, the

wavelength is short, e.g., 0.0698 Å in our experiment, and the radius of the Ewald

sphere is large (k = 1/λ = 14.33 Å−1) compared to the distance between the adjacent

points of the crystal reciprocal lattice, which is on the order of 0.1 Å−1. As shown

in figure 3.1, given the spread out of the scattering amplitude and the Ewald sphere
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Figure 3.1: Schematic diagrams of the Ewald sphere: (A) for a single crystal in
three-dimensional reciprocal space, only half of the Ewald sphere and part of the
reciprocal lattice are shown for clarence, also note the reciprocal lattice has intensity
modulations as well as systematic absentees; (B) for polycrystals; (C) for textured
materials.
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due to the experimental conditions, a small region around the reciprocal space origin

is on the Ewald sphere and represents an almost planar section. The diffraction

pattern may thus be recorded on a plane perpendicular to the incident beam and the

scatterings which are of interest are predominantly through small angles.

When a diffraction pattern involves multiple electrons, the intensities, not the

amplitudes, of individual electron wave function are added. The interactions between

different high energy electrons are not coherent [35]. The coherence length of the

electron beam is given by the energy and the angular spread [36]. The coherence

length of our electrons parallel to the beam direction is given by l‖ = 24.5
√

E/ΔE =

420 nm, estimated from the energy spread of ΔE = 1 eV and for the electron energy

E = 30 keV. The coherence length perpendicular to the beam direction is estimated

to be l⊥ = λ/Δθ = 1 nm from the angular spread Δθ = 7 × 10−3rad. The angular

spread also affects the coherence length l‖ as l‖ = 1
k sin θiΔθ

= 57 nm for incidence

angle θi = 1 , and is the dominant factor.

An ideal polycrystalline material is an assembly of large numbers of randomly

oriented crystallites, and is macroscopically isotropic. The effect of randomness is

that the reciprocal lattice vectors for a polycrystalline sample lie on a sphere, rather

than a set of discrete points for single crystals, as shown in figure 3.1(B). Given by

the intersection of these reciprocal spheres with the Ewald sphere, The resulting dif-

fraction pattern is a series of concentric circles around the incident electron direction,

which are called Derby-Scherrer rings. Similar to the analysis method introduced

previously for gas-phase samples, the radial distribution function for polycrystals can

be obtained and gives the distances between the different crystal planes. From these

distances, the structure of the crystallites may be derived.

A textured material is a polycrystalline material with intermediate degree of ran-

domness, where the crystallites have some preferential orientation. For example, as

often happens in thin films, the crystallites have the same orientation perpendicular

to the sample surface, i.e., share a common c-axis. The reciprocal space representa-

tion of such a texture consists of a series of rings, and the intersections of the Ewald

sphere with the rings form a pattern of spots lying on a series of ellipses (see figure
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3.1(C)).

For crystal surfaces and thin films, the lattice is two-dimensional in the surface

plane, while the third dimension perpendicular to the surface is very limited. In

reciprocal space, the reciprocal lattice is also two-dimensional, as the lattice points

elongate in the out-of-plane direction and become lattice rods (figure 3.2). The crys-

tal surfaces are most stable on the dense packed crystal planes (low-indices crystal

planes). The surface crystal structure is usually presented following the crystal bulk

structure. But the atoms or molecules on surfaces usually reconstruct or relax due

to the truncation of the crystal at surfaces and for different absorbates presented on

the surface.
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Figure 3.2: Schematic diagram of RHEED experiment, both the Ewald sphere and
Laue zones (L0, L1, ...) are displayed [24]. Inset: simplified kinematics of the electron
scattering [29].

Because of the large scattering cross section of the electrons, they are ideal for

diffraction studies of the surfaces and thin films. When the electron beam incident
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at a glazing angle θi, which is between the electron beam and the sample surface

and usually between 0 and 8 , the electrons penetrate only a few atomic layers into

the sample and the diffraction pattern formed by the scattered electrons show the

surface structure. This is called reflection high energy electron diffraction (RHEED),

a powerful technique to study the surface structures, especially in thin film deposition

[37, 38, 36]. With ultrashort time resolution, a whole additional dimension is added

for several reasons. First, surface structural changes or restructuring can be probed

directly in real time. Second, there is a separation in time scales for motion in the

surface layer and perpendicular to it, and initial nonequilibrium (not that of the

diffusive regime) structures can be isolated [24]. Third, when the surface is used as

a template, substrate-enhanced interferences can be exploited for mapping structural

dynamics.

The Ewald sphere construction in RHEED geometry is shown in figure 3.2. The

direction of the incident electron beam is defined with respect to a specific crystal ori-

entation (zone axis), where φ is the angle between the projection of the electron beam

on the sample surface and the zone axis. For a monolayer of atoms in two-dimension,

the reciprocal space exhibits “rods” separated by the inverse lattice distances (a and

b in figure 3.2). The rods represent the constructive coherent interferences of waves.

However, as this monolayer turns into a crystal slab, the rods become modulated,

caused by the interlayer spacing (c in figure 3.2). For electrons, Ewalds sphere is

large and the diffraction pattern, depending on the incidence angle θi, exhibits both

the streaks at low scattering angles and Bragg spots at higher angles in Laue zones.

The diffraction intensity can be simulated by using equation (3.5) or (3.6), in

which the summations are over the penetrated regions (a few atomic layers) [38, 36].

In practice, a much simplified kinematic scheme of the electron diffraction is often

used for crystal surfaces [39], as illustrated in the inset of figure 3.2. The momentum

transfer �s ≡ �k−�k0 in reciprocal space satisfies the Laue condition �s = h�a∗ +k�b∗ + l�c∗,

where integers h, k and l are the Miller indices, and �a∗, �b∗ and �c∗ are reciprocal

lattice constants. The value of s = |�s| is given by s = 2k sin(θi), and tan(2θi) = R/L,

where R is the distance between the diffraction spot and the main beam position on
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the screen and L is the distance between the sample and the screen, i.e., the camera

length. When the diffracted angle θi is very small, which is the case in RHEED,

sin(θi) ≈ θi and tan(2θi) ≈ 2θi, and the momentum transfer is simply

s = k · R/L . (3.8)

In RHEED geometry, transmission diffraction through three-dimensional islands

or sharp edges is possible [37]. The transmission diffraction patterns are from the

bulk reciprocal lattice, have different arrangements of diffracted beams and different

behavior as a function of incidence angle comparing to the reflection diffraction. It

was observed in our experiments of Langmuir-Blodgett films, as shown in chapter 5.

As a result of the strong interaction between a crystal and high energy electrons,

multiple scattering of electrons can not be neglected for the quantitative analysis of

the diffraction intensities. The dynamical theory, based on a Bloch-wave solution

of the Schrödinger equation for one electron and a crystal potential, has to be uti-

lized, with absorption effects taken into account as the imaginary part of the crystal

potential [3, 33, 34, 36].

3.2 Pump-probe experiment

UEC is a pump-probe experiment, as illustrated in figure 3.3. We use a femtosecond

laser as pump pulse to initiate the dynamics and to define the zero point in time.

The ultrafast electron pulse is used as the probe pulse, which comes in at delay time

Δt. Because the interaction of the electrons and sample atoms is very short even

on the ultrafast time scale, the diffraction pattern generated by the electron pulse is

from the sample atoms at time Δt and represents the dynamical structure at that

time. By varying the delay time Δt between the laser pump pulse and the electron

probe pulse, a series of the diffraction patters are recorded. And the analysis of the

diffraction patterns map out the structural dynamics as it happens.
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Figure 3.3: Schematic view of the experiment, showing the laser pump and the elec-
tron probe pulses, together with typical diffraction frames [25].
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3.2.1 Characterization of the electron pulses

The number of electrons in each pulse is linear to the total intensity (Iet) of the

electron pulse recorded on the CCD camera, N = Iet/Ies, where Ies is the intensity

produced by a single electron. The intensity Ies is a function of the voltage of the

image intensifier and is measured as follows. After attenuate the laser (266nm) on

photocathode to very low fluence, only a few electrons are generated per pulse and

most of them arrive at well separated region on the CCD camera. The intensity of a

single electron, Ies, is then measured on the screen and statistically satisfies Poison

distribution.

The spatial profile of the electron pulse is measured on the CCD. The electron

beam profile on the CCD is Gaussian, and the general diameter (width in one dimen-

sion) of the electron beam in UEC experiments is about 500 μm on the CCD.

The temporal width of the electron pulses is characterized in the streaking exper-

iments. Just like in a streak camera, the temporal profile of the electron pulses is

transformed into a spatial profile on the CCD, by deflection under a time-varying elec-

trical field, as shown in the inset of figure 3.4. The resulting image forms a “streak”

of electron pulses, from which the temporal width is inferred.

In our setup, the time-varying field is provided in the deflection plates (see figure

2.5) through the RC circuit shown in figure 3.4. To get the streaking speed on the

order of 1 kV/ns, the resistor R is chosen to be 2 MΩ, and the capacitor C � 0.01 μF.

The photo-conductive switch is homemade by GaAs semiconductor wafer. When the

800nm laser pulse illuminate the wafer (see the optics layout in figure 2.9), the large

electric field breaks the semiconductor and it becomes conducting.

The result of the streaking experiment for our electron gun is shown in figure 3.5.

The linear relationship between the electron pulse length and the electron density

(see figure 3.5(B)) shows that our electron pulse length is mainly restricted by the

space charge effect. This curve only depends on the electron gun configuration, and

the fitting line is characteristic of the electron gun. To determine the electron pulse

length τ of each experiment, the electron numbers are counted for single pulses. The
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Figure 3.4: The electric diagram for the streaking experiment, the inset inside the
streaking plates showing schematic view of streaking.
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electron density per pulse is derived from the electron numbers and the averaged

electron spatial area on the CCD. τ is determined by interpolation on the line given

by the streaking experiment. On the other hand, in order to get different electron

pulse length, the power of the 266nm laser for the electron gun is varied to obtain

corresponding electron numbers.

3.2.2 Alignment of the laser and electron beams

Because the electron beam is invisible on the sample, a stainless steel needle and

two diode lasers (from Lasermate Group) are used to help to spatially overlap the

ultrafast laser beam and the electrons on the sample, as shown in figure 3.6(A). The

stainless steel needle is inside the chamber and at the side of the sample holder (see

figure 2.4). The needle tip defines a point in space where the two diode lasers shooting

from two different directions, the ultrafast laser beam and the electrons are brought

on respectively.

(A) (B)

Electron pulse

Pum
s

p la er

Diode laser
Diode laser

(x ,y ,z )1 1 1

(x ,y ,z )2 2 2 (x ,y ,z )3 3 3

Figure 3.6: Schematic diagram of the alignment: (A) the overlap of the electron beam,
the fs laser beam and two diode laser beams on the tip of the needle; (B) three-point
alignment of the two diode laser to determine the sample surface plane.

After all four beams overlap on the needle tip, the sample is moved in position.

The diode laser beams shoot on the sample and leave two prints (figure 3.6(B)), which

are monitored through a viewport by a color CCD camera (JAI high resolution CCD

camera with 75 mm focusing lens from Edmund Optics, Inc., Barrington, NJ) outside
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the chamber. The sample has five degrees of freedom. They are three in translation,

x, y and z; out of plane rotation θ and in plane rotation φ. With fixed θ angle, the

sample surface is a fixed plane in space. At the fixed position x and z, varying y

can bring the two diode laser beams to overlap on the sample. This position on the

sample surface is the same position where the needle tip was, and where the electron

beam and the excitation fs laser beam overlap in space. This position is now defined

by the coordinate (x1, y1, z1). Move the sample to another position with different x

and z, and by changing y again bring the two diode laser beams overlap on the sample

surface. This determines the second point (x2, y2, z2). Following the same procedure,

a third point can also be determined at (x3, y3, z3). These three points thus define

the sample surface plane at angle θ.

Using the same method, a plane at a different θ angle can also be found. The

crossing line of these two planes is the axis around which θ is rotated. Thus we

find the relationship between the goneometer motion system and the overlap of the

electron beam and the excitation fs laser beam in space. At any point on the sample

surface when the sample is at any given θ, we can calculate the coordinate which is

required for the x, y, z motion to bring it to the overlap with the electron beam and

the laser beam. We call this the three-point alignment.

In practice, we do the alignment at three different angles to check the relative

accuracy of the determination. When doing experiments, after finding dynamics,

we can move y a little bit to optimize for the overlap by optimizing the change of

diffraction patters.

3.2.3 Measuring the laser fluence on the sample

In order to determine the excitation laser fluence at the sample position, the laser

power and the area of the laser illumination on the sample are measured individually.

Without the sample, the excitation laser power is measured right before entering

the vacuum chamber (Itotal) and right after shooting out from the other side (Iout) to

determine the absorption Ia of the vacuum chamber windows Ia = (Itotal − Iout)/2.

With the sample, the laser power Itotal and Iout (after reflection) are measured again.
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And the excitation laser power absorbed by the sample surface is given by I =

Itotal − Iout − Ia.

To measure the area of the laser illumination on the plane of the sample surface,

the needle used for alignment is utilized. As shown in figure 3.7, assuming a round

beam cross section with the radius r being the full width at half maximum (FWHM)

of the Gaussian profile, the laser footprint on the xz plane (sample surface) is an

ellipse with area

A = (πr2)/ sin θ ,

where θ is the angle between the laser beam and the xz plane. The needle is in the

xy plane as shown in figure 2.4. By moving the needle in x direction, with enough

height in y direction, the laser beam is blocked by the needle, starting from position

x1 and ending at x2. It is calculated that the relationship between the measured

length lx = x2 − x1 and r is

2r = lx sin Φ , (3.9)

where Φ is the azimuthal angle in the xz plane (see figure 3.7). The calculation is not

straightforward although the result is simple. The needle measures the projection of

the laser on the xy plane, which is an ellipse with angles θ′ and Φ′ where sin θ′ =

cos θ sin Φ and sin θ = cos θ′ sin Φ′. The equation of the ellipse in the xy plane is

(x cos Φ′ + y sin Φ′)2 sin2 θ′ + (y cos Φ′ − x sin Φ′)2 = r2. And the point of x1 and x2

satisfy the equation (x cos Φ′ + y sin Φ′) sin2 θ′ sin Φ′ + (y cos Φ′ − x sin Φ′) cos Φ′ = 0.

The result (3.9) is obtained by solving the above equations.

3.2.4 Determining time resolution and time zero

The time resolution of UEC is determined by the laser pulse duration, electron pulse

duration and the geometrical effect. Because of the group velocity dispersion, after

traveling through the beam path (figure 2.9), the 120 fs laser (λ = 800 nm) pulse

broaden to approximately 200–300 fs. Since the electron pulse is generated by the fs

laser pulse, its pulse length is equal to or larger than the fs laser pulse length. But our

electron pulse length is limited by the space charge effect, as shown by our streaking
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Figure 3.7: Schematic diagram of the measurement of excitation laser beam spatial
profile.

experiment (see 3.2.1). In typical UEC experiments, electron pulses of 4–5 ps are

used with ∼3000 electrons per pulse. So the electron pulse width and the geometrical

effect are determining factors.

In the case of transmission, the sample is very thin (∼100 nm). The time it takes

for the electrons to travel through the sample is 1 fs for the 1/3 speed of light, which

is the speed for our 30 keV electrons. So the time resolution is determined by the

electron pulse duration. In this case, because of the high density of the atoms, fewer

electrons can be used to get relatively good diffraction patterns. That brings shorter

pulses and so better time resolution.

In the case of reflection, however, the geometrical effect is more important. The

beam profile at the sample is about 250 μm. At the incidence angle of 1 , the electron

beam on the sample is 14 mm long. The laser beam profile on the sample, i.e., the

excited area, is about 1 mm, which yields a group velocity dispersion (GVD) of 10 ps.

To increase the time resolution, one way is to reduce the GVD by reducing the spatial

extent of the sample by masking techniques [25]. With convolution and the strong

level of signal from crystal surfaces, we readily obtained a 1-2 ps response. Another
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way is to match the group velocity of the excitation laser pulse with the GVD of the

electron pulse [32].

The time zero is determined in situ. However, it obscures any delay that may

exist between the fs laser excitation and the start of the structural changes, as for

example observed in InSb [40, 41]. Another method to determine time zero is to

use the plasma lensing effect from the stainless steel needle [42, 43, 32]. It is shown

that after the fs laser shoot on the needle, there is a charging effect which shifts the

electron beam. It can determine the time zero to within 1 ps, but needs a lot of laser

power and can destroy the needle tip.

3.3 Analysis of the diffraction patterns

The diffraction patten recorded on the CCD represents an almost planar section in

the reciprocal space. The corresponding reciprocal space distance to the distance

on the screen is given by equation (3.8). The camera distance L, is the distance

between the footprint of the incidence electron beam on the sample and the phosphor

screen. It is determined in situ, by the crystal substrate diffraction patterns at varied

incidence angles, with known lattice constants for the substrate (in our cases silicon).

The direct beam position, i.e., the incidence beam on screen corresponding to s = 0

(origin) in reciprocal space, is also determined in situ from the substrate diffraction

patterns.

Depending on the sample surface crystallinity, the diffraction patterns are very

different. The single-crystal or textured surface give diffraction spots or lines, whereas

the polycrystal or amorphous surface give Debye-Scherrer diffraction rings. The

analysis is different in the two cases.

When the sample surface is single-crystal or textured, the diffraction patterns

contain diffraction spots or lines. The positions of the spots are determined by the

crystal structure and the sizes (or the widths) show the states of defects in the crystal.

The structural dynamics can be revealed by following the change in the positions and

the sizes of the spots. To determine the position and the width accurately, especially
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in the case when the change is very small, the spot or the line is fitted by a Voigt peak

function in the direction of interest. Voigt function is the convolution of a Lorentz

function and a Gaussian function. It is the best fit of our diffraction peak in general,

though with different coefficient, sometimes the peak is more Lorentzian or Gaussian.

The full width at half maximum (FWHM) of a Voigt function is given approximately

as

(2ω)2 � (2ωG))2

ln 2
+ (2ωL)2 ,

where 2ω, 2ωG and 2ωL are the FWHM of the Voigt function, the Gaussian and the

Lorentz function [44, 45].

When the sample surface is polycrystal or amorphous, the diffraction patterns

contain diffused diffraction rings (half ring or curves on the ring above the shadow

edge) with the same center, which is the direct beam position. Similar to the analysis

of gas-phase material, the intensity is averaged on the curve (angularly) to get the

diffraction intensity as a function of reciprocal space distance I(s).

The intensity of the diffraction spots or rings are usually the first sign of struc-

tural change. In thermal equilibrium states, the intensity change with temperature

is explained by Debye-Waller effect [34]. In reciprocal space, the effect of thermal

vibration on the average potential can be described by

Fs =
∑

j

f
(e)
j Tj exp (i�s · �rj) .

The temperature factor Tj is given by Tj = exp (−1
2

< (�s · �uj)
2 >), where �uj denotes

the instantaneous displacement of the j-th atom from its equilibrium position, and

< · · · > is averaging over thermal equilibrium. For isotropic thermal vibrations,

< (�s · �uj)
2 >= 1

3
s2 < �uj

2 > and

Tj = exp [−Bjs
2/(16π2)] ,

where Bj = 8
3
π2 < �uj

2 > is the Debye-Waller factor and B of many materials

have been determined by theories and experiments. For a lot of simple crystals,
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B(T ) � a0 + a1T . The total integrated intensity of a diffraction spot then satisfy the

relationship

ln (
I(T )

I(T0)
) = −2[B(T ) − B(T0)]s

2 .

However, since UEC is used to study the structural dynamics, the diffraction pat-

terns are of samples in highly nonequilibrium state. So it could be questionable

using the Debye-Waller coefficients, which are determined in the static temperature

dependence experiments, to relate the intensity change with the thermal tempera-

ture change. Nevertheless, the intensity change gave insights on the orderness of the

crystal structure, especially when combined with the widths change of the diffraction

spots or rings.

The change with time is fitted with multiple exponential functions [46]. While

the state of different structures are straightforward, it is assumed that the change

is homogeneous in the probing area. The assumption is valid in the case when the

probing area is much smaller than the excited area. In principal, a better theoretical

analysis would be simulations using molecular dynamics to determine the atomic

structure, and fit the whole diffraction pattern intensity using dynamical theory.


