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ABSTRACT_

Two methods have been developed for calculating the thermody-
namic properties of the small clusters of atoms believed important in
the phenomenon of vapor phase homogeneous nucleation, Clusters of up
to 100 argon atoms have been considered. The interactions among atoms
are represented by the Lennard-Jones pairwise additive potential func-
tion and all degrees of freedom are explicitly included.

In the first method, the microcrystal model is used and the inde-
pendent-cluster partition function is evaluated in the same way as one
would evaluate that for a polyatomic molecule in the simplest approxi-
mation: the harmonic, rigid-rotator, and perfect-gas approximations
are used to calculate the vibrational, rotational, and translational con-
tributions to the partition function. The steady-state rate of formation
of nuclel as a function of degree of supersaturation has been calculated
and is found to have a behavior similar to that expected from the classi-
cal, "liquid-drop' model.

The importance of using several stable configurations of a cluster
in calculating its properties from the microcrystal model is examined
in detail. It is shown that the single-configuration approximation that
has been used extensively in recent work can lead to serious errors.
Methods for selecting configurations that will minimize these errors are
suggested,

In the second method, molecular dynamics computer simulation
calculations are used. In these calculations the classical equations of
motion for the atoms in a cluster are numerically integrated to yield‘

time records of the atomic position and velocity coordinates. Values



of the independent-cluster thermodynamic functions are calculated from
these coordinate data and are compared with those obtained from the
microcrystal model. The comparison indicates surprising agreement for‘
values of the Gibbs free energy of formation. The transition between
"solid~like' and "'fluid-like" diffusion in the clusters occurs gradually;
no semblance of a phase transition is noted. The radial variation of
density indicates that nearly all the atoms of a cluster exist in the
"surface' region; the radial distribution of potential energy indicates
that the environment inside the clusters is quite different from that in-
side the bulk liquid or solid phases.

The largest error in the molecular dynamics results is statistical
error in the temperature. An expression for this error has been derived
in terms of the kinetic-energy autocorrelation function. We have shown
- that this and other correlation functions can be computed from the
molecular dynamics data very rapidly using a method based on the Fast
Fourier Transform. |

Finally, several very fundamental problems have been discovered
in the classical, liquid-drop theory of nucleation. These problems are
discussed in the context of a rigorous approach to nucleation theory that

is based on the Frenkel-Band theory of noninteracting physical clusters.
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PART I: THE THEORY OF VAPOR PHASE
HOMOGENEOUS NUC LEATION



A, Jnotroduction

It is well known that a pure supersaturated vapor can exist
in a metastable state. If the degree of supersaturation is not too high,
the lifetime of the metastable state will be quite long and the vapor will
appear stable. As one increases the level of supersaturation of the
vapor, the lifetime of the metastable state decreases and the vapor
eventually condenses. The point at which condensation occurs is a
reproducible characteristic of the vapor and is referred to as the
"eritical' level of supersaturation. Nucleation experiments are gener-
ally designed to measure this critical supersaturation over a range of
temperatures; nucleation theory attempts to predict the critical super-
saturation and, more generally, to understand the details of the nuclea~
tion process.

In this part of the thesis a general overview of nucleation theory
will be presented. We begin in Section B with a purely thermodynamic
explanation for the metastability of supersaturated vapors, which is due

originally to Gibbs. !

The explanation is of great conceptual value but
it does not lead to a quantitatively significant understanding of nuclea-
tion. In particular, it does not enable one to calculate the critical
supersaturation level of a vapor.

In order to calculate this quantity and to obtain a more detailed
understanding of nucleation, it is necessary to consider the kinetics of
the interactions among "clusters' of molecules in the vapor. In the
kinetic theory of nucleation, described in Section C, a supersaturated

vapor is treated as a gaseous mixture of clusters and the time depend~

ence of the cluster concentrations is determined using the methods of



chemical kinetics. Solution of the rate equations that describe the
nucleation process requires that one know the critical concentrations of
the clusters in the supersaturated vapor. The calculation of these con-
centrations is a problem in equilibrium thermodynamics or statistical
mechanics, and it has proved to be the most difficult aspect of the theory.

Two general approaches to the calculation have been developed.
The classical approach uses the Gibbs surface theory1 to evaluate the
"liquid-drop' model for clusters and to determine their thermodynamic
properties. The classical approach is discussed in some detail in
Sections D and E. Section D contains a brief outline of pertinent
aspects of the surface theory and in Section E the classical evaluation
of the liquid-drop model is followed. The purpose of these two sections
is to show exactly how the classical expreésion for the standard Gibbs
free energy of formation of a cluster is derived. The derivation is
periodically interrupted by "NOTE's" in which the approximations and
assumptions involved in the derivation are discussed. Tﬂese annota~
tions may appear somewhat laborious but it is the feeling of the author
that the significance and even the existence of the approximations and
assumptions are not génerally realized by many of those working in the
field. Asa canse@uence, much of the theory that appears in the litera-
ture is either ambiguous and confusing or just plain incorrect. In addi-
tion to difficulties with the classical derivation that are easily corrected,
we find 2 number of very fundamental problems with the liquid-drop
model that we believe cannot be rectified.

The second approach to the calculation of cluster concentrations

is based on the statistical mechanical theory of physical clusters. In



Section F we present a rigorous development of that theory and use it as
a basis for a new, descriptive approach to nucleation. The approach
enables us to determine just what is involved, on the molecular level,
when a nucleus is formed in a supersaturated vapor. Numerical evalu-
ation of cluster concentrations from physical cluster theory requires
computation of the "independent-cluster partition functions, ' which has
only recently been made practical by the availability of high-speed com-
puters. Development of methods for accomplishing this computation is
the object of most of the research reported in Parts II and III of this

thesis.

B. A Phenomenological AERroach to Nucleation

Why does a supersaturated vapor not 'condense'? The reason is
that the vapor is supersaturated with respect to bulk liquid with a planar
surface, but it is unsaturated with respect to the very small droplets
that must be formed at the initial stages of the condensati(;n process.
The small droplets tend to evaporate rather than to grow into macro-
scopic draops.

The problem can be understood on a more quantitative basis if we
consider an apprm;imate calculation of the work required to form one of
the small droplets in the vapor. According to an argument that will be
examined in more detail later, this work can be approximated by the
following expression,

W = n(ﬂﬁ-uv)+0Bn2/3 , (1)

where n is the number of molecules in the droplet, py 1is the chemical

potential of the vapor, u ) is the chemical potential of bulk liquid at the



temperature and pressure of the vapor, o is the surface tension, and

B is a positive constant. The first term nAy in the expression is nega-
tive because the vapor is supersaturated and its chemical potential is
higher than that of the bulk liquid; the second term is positive. A maxi-
mum therefore exists in the function as shown in Fig, 1.

The droplet whose work of formation is maximum is called the
nucleus. It exists in unstable equilibrium with the vapor: droplets
smaller than the nucleus tend thermodynamically to evaporate while
those larger than the nucleus tend to grow. Formation of the nucleus
is therefore regarded as the barrier to nucleation--if a nuclieus is
formed in the vapor, condensation is likely to follow.

Thermodynamically a supersaturated vapor will be metastable as
long as the work of formation of the nucleus is positive. In practice,
however, metastable states for which the barrier to nucleation is low
are not observed since fluctuations carry the system over the barrier
in a very short time. A purely thermodynamic theory is not; therefore,
capable of predicting the observed critical supersaturation. A kinetic

theory is required to accomplish this prediction.

C. The Kinetic Theorz of Nucleation

In the kinetic theory one treats a supersaturated vapor as a gase-
ous mixture of clusters and uncombined molecules that interact accord-
ing to a series of reactions resembling those for a chemical polymeri-

zation:



Figure 1. The work required to form a droplét ina
supersaturated vapor as a function of the

size of the droplet.
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where Am represents a cluster of m molecules. Reactions between
"polymers' are generally ignored because collisions between them are
relatively infrequent. For the series of reactions one can write a set
of coupled differential rate equations that can, in principle, be solved
for the time dependence of the cluster concentrations. The equations

are as follows:
dc, = k,C% - k_,C, - k,C,C, +k_,C,,
dC, = k,C,C, - k-,C, - ksC,C, +k_,C,,
(3)

@

AChy = k-1C:Cpo1 - k-(m-l)cm “KpCiln K mCma

° 3
where Cm is the number of m-molecule clusters per ugit volume.

To solve the equations, the following two sets of data are required:



1. The initial concentration of clusters, i.e., the concentrations in
the equilibrium metastable state corresponding to the supersatur-
ated vapor, and

2. the rate constants, k,, k-, etc,

Estimation of the Rate Constants

Rate constants for the forward reactions are estimated by assum-
ing that all collisions between a cluster and a monomer result in reac-
tion (accommodation coefficient of unity). From the kinetic theory of

gases, the rate of the reaction

k
n
is therefore s‘unply‘Z .
_ _  87KT \& 2
Forward rate = k C,C_ = (“—_-*“’n ) D C,C . (5)

Here u, is the reduced mass mlmn/(m1 + mn) and D is the collision

diameter of the two particles. Thus

3
_  87kT \? 2
ky = (D) o} (6)

The reverse rate for the reaction is determined using the principle of
detailed !oa,].ancew3 According to that principle the forward and reverse
rates of each of the reactions in Eq.(3) are equal when the system is at
equilibrium. If we denote equilibrium concentrations by a superscript
"e'", then

K CoCE =k _CC, ©
and



(8)

n+1
The rate constants are therefore easily estimated in terms of the equi-

librium concentrations Cg; and the only data that are actually needed

for solution of the rate equations are these concentrations.

D. The Gibbs Surface ’I‘heorg1

In discussing the surface theory we consider the system illustrated
in Fig. 2 that contains two nearly homogeneous regions, one liquid (£)
and the other vapor (v), separated by a nonhomogeneous film (o). To
enable a precise treatment of the two-phase system, Gibbs divided the

volume of the system by a geometrical dividing surface that passes

through points within the nonhomogeneous film that have similar envi-
ronments. The exact location of the surface is arbitrary. For a par-

ticular dividing surface the volume becomes

where V g is the volume inside the surface and VV is the remaining
volume. The total number of molecules in the system is also divided,

according to the expression

N=N£+NV+N6. (10)
Here Nv is the number of atoms that would be in VV if the density of the
vapor were constant up to the dividing surface, N 2 is the number that
would be in V!Z if that volume contained homogeneous liquid at the temp-~

erature and chemical potential of the vapor, and N g is essentially a

correction factor to make the two sides of the equation equal. Similar
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.dividing
surface

Figure 2. Section of a two-phase system that is
partitioned by a dividing surface. The
regions v and £ are homogeneous phases
and the region ¢ includesihe'inhomo«

geneous transition region,
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divisions are made for each of the other extensive variables: the

energy becomes

and the entropy becomes

4 4 4
ﬁ§=wg+$ﬁg+%’*g. (12)

NOTE 1. The division of the extensive variables of the system is
achieved on mathematical rather than physical grounds. A consequence
of this abstract approach is that the surface theory is largely independ-
ent of a model for the two~-phase system. The theory is therefore quite
general, but it is incapable of providing information about the structure
of the system.

According to Gibbs, the energy of an equilibrium state of the sys-
tem is completely determined by the variables & , N, V, V., and the
area S and the principal curvatures ¢, and ¢, of the dividing surface:
the fundamental equation of the system is E(s, N, Vs V8, ¢y Cy)e
Again, according to Gibbs the dependence of E on ¢, and ¢, vanishes for
a particular choice of the dividing surface, which we call the surface of
tension. For this choice of the dividing surface the individual terms in

Eq.(11) can be written as follows:

_ \
E, =T, + N, + 08, (13)
E, = Tﬁﬁ +UN, - PV, (14)
hnl = Mé + i -
E, TMV p,l\v PVVV . (15)
- . ; 101 — hny 3\ N
Here o is the surface tension, o (8&/88%’ N, V,, Vi ¢, 0,0 T is

the temperature, 4 the chemical potential, P g the pressure of bulk
liquid at temperature T and chemical potential u , and PV is the pres-

sure of the vapor.
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NOTE 2: For surfaces with radii of curvature that are large compared
with the thickness of the nonhomogeneous surface film, Gibbs argues
that the surface of tension lies within the nonhomogeneous film (Ref. 1,
pp. 225-228). This argument establishes an important connection be-
tween the abstractly defined variables of the surface theory and the
physical structure of the system. Gibbs notes, however, that the argu-
ment does not apply to surfaces of very high curvature such as those of
the microscopic droplets important in nucleation (Ref. 1, pp. 253-255).
For these droplets the position of the surface of tension cannot be
located with respect to the physical inhomogeneity by purely thermo-
dynamic means. Thus, the surface of tension might be located outside
the nonhomogeneous film. Connection between the abstract variables
and the physical structure is not, therefore, established for the small
droplets. Indeed, Gibbs notes that, 'vanishing of the radius of the
somewhat arbitrarily determined dividing surface [ surface of tension |
may not necessarily involve the vanishing of the physical heterogeneity"
(Ref. 1, p. 255).

It is now possible to compute the work of formation of a liquid
drop in a supersaturated vapor. The Helmholtz free energy of the

initial state (pure vapor) is

i (0] o
F mNuvavV, (16)

The free energy of the final state, which contains a liquid drop in
equilibrium with ambient vapor, is

i .f f f
F FQ+FV+F0'

it

We now assume that the volume is large enough so that the pressure and
chemical potential of the vapor remain approximately constant during

the process, i.e.,

P, = P), (18a)
and o
My = B (18b)

and we note that since the final state is at equilibrium,

o=ty = by (19)
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The change in free energy, which is the work required to form the drop,
is then

AF =W = -V, (Pﬂ - Pv) + 0S8 , (20)
which can be simplified using the Kelvin equation, P ' PV =20 /R, to

yield
AF::Wm%—GS. (21)

NOTE 3: The effect of the assumptions Pv = Pg and “v = p;‘or should be

examined. The changes that actually occur in the pressure and chem-
ical potential are most certainly small, but then so is the free energy
change that we are calculating. We can estimate the effect by treating
the vapor as an ideal gas of pure monomers and assume that the drop
corresponds to a cluster of n molecules. Then the number of particles
in the vapor decreases from N to N-n when the drop is formed and the
volume available to the vapor changes from V to (V- Vl). The change
in pressure is then

- -pOy - . E: :
AP = (P - P) = -nkT/V +P V,/V; (22)
and the change in chemical potential is
ap =, - w)) = -kT/N + KTV, /V , (23)
where the relation
pv(T, P) = ;uo(T) + kT P (24)
for an ideal gas has been used. If the above corrections in P, and i, are
included in the derivation of AF, one finds that the effects due to AP

and Au exactly cancel, yielding the same result as with the approxi-
mations in Eg. (18).

E. __The Liquid-Drop Model
The equilibrium cluster concentrations in a supersaturated vapor
can be determined from the Gibbs free energy of formation of the

clusters. We consider the reaction
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and note that if the clusters are treated as perfect gas particles, the

change in free energy for the reaction is
AG (T, P, X, X)) = AGZ(T, P) + kT Jzn{xn/x’f] , (26)

where X is a mole fraction and P is the total pressure of the vapor.

At equilibrium A(}n = 0 and

X = x3 exp[-—AGg(T, P)/xT] . (27)

In the liquid-drop approach the result for AF in Eq. (20) that was deter-
mined from the Gibbs surface theory is used to evaluate AG;E . The
classical derivation is traced in the next few paragraphs.

STEP 1: The familiar expression (a;uﬁ/aP)T =V where , is the
chemical potential and v ) is the volume per molecule of bulk liquid,

can be integrated between Pv and P g to yield

‘MQ(T,P g) (T, PY) = v (B, - P). (28)

In performing this integration the liquid is assumed incompressible.
STEP 2: As a consequence of Eq.(19), ',u.‘ﬂ(T, Pﬁ) = “‘v(T’ PV) and Eq.

{27) becomes

). (29)

HV(Ta PV) - “Q(Tg PV) = V.Q(P,Q - PV

STEP 3: According to the definition of Ny in Section C,
Ve = Npgvp (30)
where v ) is the molecular volume of bulk liquid at the temperature and

chemical potential of the vapor.

STEP 4: Substitution into Eq. (20) leads to the following expression:

AF = Nﬂ [,U'E(Ts PV) - y'v(Ta PV)] + BN22/303 (31)



where B = (36 vjf ‘&’}i/g.

STEP 5: To evaluate the difference ;;Q(T, PV} - ,uV(T, PV} in BEq. (31), we
consider the cyclic operation illustrated in Fig. 3. Along the path I —

Il —1II, the liquid is iscthermally expanded to the equilibrium vapor
pressure Pe, the liquid is then converted to vapor at that pressure, and
finally the vapor is iscthermally compressed to the original pressure PV.

The change in chemical potential for each process is as follows:
P

Sp = v P - Pv) (32)
By = 0 (33)
Appp = KT @ (P /P,). (34)

The term 4y is generally ignored because it is much smaller in mag-
&

nitude than A‘}J,HI, leading to
Ay = =lpg(T,P) - u (T, P )] = kT m(P,/P,). (3%)

Substitution into Eq. (30) yields

AF = -N,KT & (P /P,) + BN, %0 . (36)

STEP 6: Under the assumption that P = ‘Ps in Eq. (18),

A(PV) = 0, (37)
and ,

AG = AF, (38)
for the formation of a nucleus.

NOTE 4: In NOTE 3 we found that in the approximation that the vapor
can be treated as a perfect gas of monomers, the effect on AF of changes
in pressure and chemical potential.cancel. We now use the same approx-
imation to estimate the actual change A(PV) and hence the validity of
Eq.(38). By the same reasoning used in NOTE 3, we find that

A(PV) = AG - AF = -nkT. (39)
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Figure 3. ThermodYnamic cycle used in the classical

evaluation of the liquid~drop model. .
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This difference is of the same order of magnitude as the total kinetic
energy of the molecules in the nucleus, which is (3/2)nkT. Clearly
Eq. (38) is not very good and a more exact derivation than the classical
one would include the effect of the change A(PV).

STEP 7. We next assume that N ¢ €quals the number of molecules n in

the cluster that corresponds to the drop,

n=N,. (40)
Equation (33) then becomes
_ « 2/3
AG = -nkT ln(PV/Pe) + Bn“ Yo . (41)

NOTE 5: As discussed earlier (NOTES 1 and 2), the variable Ny is an
abstract quantity. It is not the number of molecules that actually exist
inside the volume Vp, it is the number that would exist there if the vol-
ume contained homogeneous liquid at the temperature and chemical
potential of the ambient vapor. Furthermore, the volume V, is not
necessarily related to that of the physical inhomogeneity. e variable
n, therefore, has no physical significance and, in particular, it is not
equal to the size of the cluster that most nearly corresponds to the drop.

The error associated with Eq. (40) is quite fundamental. It results
from the fact that Gibbs did not base his surface theory on a physical
model. Consequently, there is no purely thermodynamic way to get
molecular level information, such as the average number of molecules
inside Vﬁ, from the theory.

STEP 8: In the final step it is assumed that the reaction by which the
nucleus is formed in a vapor is that of Eq. (25). Thus AG in Eq. (41)
refers to the change in free energy for that reaction. In the classical
derivation AG is incorrectly equated to the standard’change in free

energy for the reaction, AG;i in Eq.(26). Thus

T
AG) (T, PV) = AG (42)

and
a6l (1,p,) = kT m( /P,) + Ba? 30 . (43)

NOTE 6: Under the assumption made in STEP 8 that the formation of a
nucleus in a supersaturated vapor corresponds to the reaction nA,; —A_,
AG in Eq. (41) equals the change in free energy for that reaction, n
which is AGn , not A(};f1 as assumed in Eq.(42). Thus the correct
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expression is

' - 2/3
AG = -nkT fn (Pv/Pe) + Bn“/ Yo, (44)

But AG, = AG& +kT fn {Xn/X?] ; and for the formation of a nucleus,
X, =1/Nand X, = n,/N ~1. Thus AG can be evaluated from Eq. (44)
to be '

i

_ 2/3
AG, = -nkT JZn(PV/Pe) + Bn

o +KT fn N. (45)

NOTE 7: The assumption that the process by which a nucleus is formed
in the supersaturated vapor is represented by the reaction nA;, — An is
quite fundamental to the liquid-drop approach. This assumption,

which we do not consider justified, is discussed in some detail at the
end of the next section.

NOTE 8: As noted by Long, 4 any derivation of AGT based on the liquid=~
drop model is valid only for the nucleus. This cluster is the only
one to which the basic expression AF = 1/3 ¢ A applies.

NOTE 9: A practical problem associated with the liquid-drop model is
that the surface tension is not known for other than plane surfaces. The
problem was recognized by Gibbs who states, "'the fundamental equation
of a surface of discontinuity can hardly be regarded as capable of ex-
perimental determination, except for plane surfaces' (Ref. 1, p. 257).
When the classical formula for AG! in Eq.(43) is actually evaluated,
values of the surface tension for pﬂne surfaces are used and the depend-
ence on droplet radius is ignored. o

F. Rigorous Calculation of Cluster Concentrations

In this section a rigorous approach to the calculation of cluster
concentrations in the equilibrium states of a system is presented. This
approach is based on the Frenkel-Band theory of ncninteracting physical

clusters, 5

We show how the various equilibrium states can be identified
and describe the nucleation process in terms of the motion of the system
through these states. In particular, the process by which a nucleas is

formed in a supersaturated vapor is expressed in a precise manner.
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Definition of a Cluster

Consider a specific configuration of a system of N atoms in a
volume V. If we regard pairs of molecules that are separated by less

than some distance R o which is of the order of the range of inter-

molecular forces (~ 30 for the Lennard-Jones potential), as "interact-
ing pairs' and imagine them connected by bonds, then the configuration

will appear divided into clusters of molecules that are bonded together.

Decomposition of the Partition Function

Each possible distribution of molecules among clusters is described

by a value of the N-dimensional vector
n =0y, Dyy o0, Dy (46)

where n, is an integer that denotes the number of i-molecule clusters in
the distribution. Allowed values of n are consistent with the equation
N
a .
), in. = N. (47)
. i
i=1

The canonical ensemble partition function for the system of N atoms is

3N/2
1, 2mkT i ,
Q = &T(?) f exp[~U(£l,,,.,KN)/kT}dﬁla”d}:N, (48)
V

where U is the potential energy. The integral in Eq. (48) can be trans-
formed into a sum of integrals each covering a region of configuration
space that corresponds to a specific value of n. Q becomes a sum of
"single~distribution partition functions:"

Q= LQ, (49)

{n}

where Q, contains the contribution to Q from configurations consistent

el
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with a specific value of n.

The probability of a given distribution n is proportional to Qn:

Ea

PI}\ = QQ /Q. (50)

The Independent-Cluster Approximation

The "independent-cluster' approximation enables us to write the
single-distribution partition functions in Eq.(49) in a particularly simple
form. The approximation has two parts:6
(1)  The interactions between molecules in different clusters are

ignored.

(2) '"Cluster interference" is ignored. In Qn , configurations in which
clusters overlap are excluded because th?ey are not consistent

with the specific distribution n; in thé approximate evaluation of

Q,, , these configurations are included.

The approximation leads to the following simple expression for

1.
. lay /ol (50)

=R

Cal

where 4 is an "independent-cluster partition function, "

w)wzf exp[-Ulr.,)/kTldr.. , (51)
Ci ~1j ~1)

and r ij represents the set of relative position coordinates for the i

atoms and dr. i is the product of their differential elements. The term

Ci indicates that the integration spans all relative positions of the atoms

that are consistent with their being in the same cluster. In Parts II and

III methods for evaluating the 9, will be presented.
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The Equilibrium States of the System

Equilibrium states of the system correspond to extrema of the
function Qn vs. n: a stable state corresponds to an absolute maximum,
a metastatﬁe state to a local maximum, and an unstable state to a mini-
mum. The number of extrema that the function has depends on the
temperature and density of the system. The number can be inferred
from the behavior of the Gibbs free energy of formation AGE as a func-
tion of n.

Figures 4~6 show three shapes of the function AGJf vs. n that are

n
possible. Beneath each of these plots, the corresponding behavior
expected of Qn vS. g is schematically illustrated. The function is plot-
ted along a "r;action coordinate' that traces the most probably path
for the system between vapor-like states on the left and condensed
states on the right. Position along the path is most simply indicated by
the variable i(max), which is the size of the largest cluster in a distri~
bution. i(max) increases from 1 to N along the path.

Figure 4 refers to low density and high temperature systems.
ac!

inn eq is microscopic. The distribution ﬂeq

urated vapor; the vector has the following form

increases monotonically with n and the size of the largest clusters

corresponds to an unsat-

{Eeq = {ni’ ng’“‘“,ni(max)’ 0.’ 0}‘“'}‘ (52)

The population numbers decrease monotonically for i = i(max), i.e.,

n, >N, > ... and they are zero for i > i(max).

Z 1 (max)’
Figure 6 refers to high density and low temperature systems for

which At»(}j1 decreases monotonically with n, The size of the largest
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Figure 4: (a) The shape of the function AG;: vs. n for a
low density or high temperature system, and
(b) the corresponding shape of the function
MmQ, vs.n along the "most probable path. "
The value of i(max) increases monotonically
along this path as larger and larger clusters
appear in the distributions. Both illustrations

are highly schematic.
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Figui'e 5: (a) The shape of AG;i vs. n for a system in which
the density and temperature are such that s meta-~
stable supersaturated vapor can exist, and (b) the

- corresponding shape of the function n Qn vs. 1
along the "'most probable path " Both 111ustrat10ns

‘are highly schematic.
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Figure 6: (a) The shape of AG;E vs. n for a high density or low
temperature system, and (b) the corresponding shape
of the function in Qﬂ vs. 1 along the most probable

path;» Both illustrations are highly schematic.
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cluster inn _  is comparable in magnitude to N. The distribution cor-

eq
responds to a volume of liquid in stable equilibrium with ambient vapor

and the vector n, q has the form

n__= {nl,nz,...,0,0,...,n.

g (max) = b0 0.} (83)

Here the population numbers decrease to zero as in Eq. (5), there is a
gap in which all population numbers are zero, and then there is a single
nonzero value of unity that is followed by more zeros.

In Fig. 5 the free energy curve has the familiar shape associated
with nucleation theory; it has a maximum that marks the size of the
nucleus. The function Qﬂ vs. n has two maxima and one minimum.

Distribution n:

Deq has the same form as that in Eq. (52) and corresponds

to the metastable, supersaturated vapor. Distribution ‘ilelé has the same

form as that in Eq. (53) and corresponds to the condensed state. Distri-

. II
bution n eq

in unstable equilibrium with ambient vapor. That distribution also has
the form of Eq. (53); in aIqu

and is small, typically on the order of 100 molecules.

corresponds to the transition state in which the nucleus exists

however, i(max) is the size of the nucleus

Nucleation

Referring to Fig. 5b, a nucleation experiment corresponds to

preparing the system with an initial distribution approximately equal to

Iileq and measuring the time required for the system to pass through the

transition state II. The rate of formation of the transition state Iy is

proportional to the ratio of probabilities of the two states:

e Pqp/Pp =Qp/Qp . (54)
~eq ~eq  ~eq ~eq
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This expressioh assumes a more familiar form if we note that the
Helmbholtz free energy of a system constrained to maintain a particular
distribution n is

F = -kT i QQ . (55)

Ea

Equation (54) is therefore equivalent to the following expression:

where

The lifetime of the metastable state is proportional to ry ' and will be

very long if AF is large. As the level of supersaturation of the vapor
increases, the values of AF and the lifetime decrease. The supersat-
uration level at which the lifetime becomes short, on the time scale of

the experiment, is the critical supersaturation.

Evaluation of the Distribution of Clusters in the Metastable State

As shown in Section C, knowledge of the distribution of clusters
in the metastable state is necessary for sclution of the rate equations
that describe nucleation. To determine this distribution we maximize

[Eq.(50)], treated as a function of the n,, subject to the following
n i

constraints:

1. n contains no macroscopic clusters,
N

2 ), in, = N, and
i=1

3. the n. are integers.

The last constraint is usually ignored, leading to a distribution that
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contains fractions of clusters and that is not, therefore, physically
realizable.

An approximate method for computing the concentrations is based
on the method of Lagrange undetermined multipliers in which the n, are
treated as continuous variables. That method yields the following
expression, which is incorrectly used in most treatments of nucleation
theqry:

n = nilqi/qi, i=1,...,N. (58)

Our approximate solution for the n,, in terms of n,, is
n;, = int{nllqi/qll]y i=1,...,N, (59)

where the operator "int"” extracts the largest integer value. The actual
values of the n; can be determined by an iterative process. An estimate

N
of n, is used to evaluate the n, and the value of the sum Z in. s com-
: i

puted. If the sum is larger than N, the estimate of n, i=1 is

decreased; if it is smaller than N, the estimate is increased. This

process is repeated until the value of the sum converges to N.

There are no nuclei in Ife q" A distribution that contains a nucleus

cannot correspond to a maximum in Qn because a more stable distri-
bution with a higher value of Qn could always be formed by adding a
monomer to the nucleus.

NOTE 10:, The classical Becker-Doring solution of the nucleation rate
equations’ is based on an initial distribution n(t,) for which the integer
constraint on the n; does not hold. The solution is based on a distribu-
tion of the system %hat cannot in fact occur. In particular, that solu-
tion assumes that the concentration of nuclei in the initial distribution

s nonzero; and it equates the rate of formation of nuclei to the product
of that concentration with a frequency factor derived from Kkinetic theory.
If the correct set of initial cluster concentrations were used, this simple
approximation would not work because the initial concentration of nuclei
would be zero. The Becker-Doring approach does not constitute a valid
" solution of the nucleation rate equations.
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A Fundamental Problem with the Liquid-Drop Approach

The basic idea behind the liquid-drop approach is to use the Gibbs
surface theory result AF =30A, which is the difference in free energy
between the two equilibrium states I and II in Fig. 5b, to evaluate the
standard Gibbs free energy change AG; for the reaction nA, —A .
The approach is justified only if the change that results from going be~
tween the two equilibrium states is also represented by( the above reac-
tion. We do not believe this to be the case.

| There are many reactions among the clusters in the distribution
Qle q that lead to a distribution containing a nucleus. For example, the
following reactions are among those possible for the formation of such

a distribution:

nA, — A_ (60A)

(n-2)A, +A, = A | (60B)

n-3)A, +A;, — A, + A . (60C)
I

Only one reaction will lead to the distribution , and that reaction can

be determined only if one knows the distributions p;leq and ggq.

not as yet used the method outlined earlier in this section to determine

?\ eq
We have

the actual equilibrium distributions in a specific system so we cannot
state with certainty that the correct reaction does not correspond to that
in Eg.(80A); but we see no justification for the assumption that this is
the correct reaction. Indeed, it appears that in the most favorable reac-
tion, a nucleus is formed from the less stable, larger clusters instead

of from n monomers.
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Comment on the Translation-Rotation Controversy8

In what is known as the "translation-rotation controversy' it is
claimed that the classical expression for AGZ in Eq. (43) does not con-
tain contributions from the translational or rotational degrees of freedom
of the nucleus. Several arguments have been presented that lead to cor-
rection factors of widely differing magnitudes. We believe that all these
arguments are based on an incorrect understanding of the process to
which the Gibbs result AF = $0A refers. An assumption common to all
the arguments is that the process is the formation of a stationary drop.
This assumption is not made by Gibbs in his derivation of the surface
theory and we see no necessity for introducing it.

The actual process is quite simply a transition between states I

and II in Fig. 5b, and the free energy difference is

AF*—‘%‘O’A=FH --FI y (61)
’ &eq I}\eq

where Fn is defined by Eq. (57). The process is not, however, easily
represerﬁ:ed by a simple reaction among clusters unless the distribu-~
tions Qle q and EIGI are known. If the distributions were known, one could
write down the statistical méchanical equivalent of AF in terms of inde-
pendent-cluster partition functions. This equivalent would constitute a
rigOrous:, molecular-level interpretation of the expression AF = 20A.
The Gibbs result, therefore, refers to the formation of a cluster
that is free to translate and to rotate; and if an expression for AG;Y; could
be derived from this result, there would be no need to add in corrections

for the translational or rotational degrees of freedom.
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PART II: THE MICROCRYSTAL MODEL FOR CLUSTERS
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A, Introductory Remarks

This section contains two papers that describe our work with the
microcrystal model for clusters. In this model a cluster is treated as
a small crystallite and its thermodynamic properties are determined in
exactly the same way that one would determine those of a polyatomic
molecule in the simplest approximation: the harmonic, rigid-rotator,
and perfect-gas approximations are used to evaluate the vibrational,
rotational, and translational contributions to the cluster partition func-
tion.

In the first paper, which has been published [J. Chem. Phys. 99,
580 (1971)], results of calculations with clusters oi‘ 2 to 100 argon atoms
are presented. This work was the first complete (all degrees of freedom)
calculation of the cluster thermodynamic properties using a molecular
level model. In the paper we discuss in detail the approximations
involved in our calculation and present results for the cluster thermo-
dynamic functions and the steady-state rate of nucleation.

In the second paper, which has been accepted for publication in
Chemical Physics Letters, we discuss the importance of using several
stable configurations of a cluster in calculating its properties with the
microcrystal model. We show that the ""single-configuration" approxi-
mation that was used in previous work can lead to serious errors. We
alsc discuss methods by which the error can be minimized in future

calculations.
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B. Paper No. 1

Vapor Phase Homogeneous Nucleation and the

Thermodynamic Properties of Small Clusters of Argon Atoms

ABSTRACT

The steady state rate of homogeneous nucleation in a vapor of
Lennard-Jones spheres has been calculated using statistical mechanical
techniques to compute the equilibrium concentrations of clusters in the
vapor. All degrees of freedom of the clusters are explicitly considered.
The harmonic approximation is used in the calculation of vibrational
contributions to the cluster partition functions and the rigid body approxi-
mation is used in the calculation of rotational contributions. The Gibbs
free energy of cluster formation as a function of cluster size is calculated
and its dependence on temperature is examined. Size effects on the
vibrational free energy are found to be mainly energetic rather than
entropic. The rate of nucleation as a funclion of pressure is calculated
at four temperatures and found to have a behavior similar to what would

be expected from "liquid~drop'" model calculations.
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Qur theoretical undersianding of homogeneous nucleation irom
the vapor phase is based almost entirely on the mechanism proposed
by Farkasl in which the formation of condensed phase
occurs by the growth of small clusters of molecules into droplets or
crystals. The supersaturated vapor is treated as a gaseous mixture
of these clusters with uncombined molecules; and the growth and decay
processes of the clusters are limited to the gain or loss of single
molecules. A general kinetic description of this system, yielding
time~dependent concentrations for each of the clusters for a given
set of initial concenirations, is not yet possible. Such a general
description is, however, not entirely relevanti at presen‘t since experi-
mental measurement of these time-dependent concentrations is itself
not yet possible.

The quantity that is in fact measured is the "critical" super-
saturation, the degree of saturation at which the vapor collapses
from metastability. To calculate this "critical” value, an equilib~
rium theory of rates is used. The metastable vapor is modeled as
an equilibrium state of the system, which is formally established by
consiraining the set of possible reactions between clusters such that
the formation of clusters larger than some size m is prohibited.

The value of m is chosen to be glightly larger than the size of the
cluster whose Gibbs free energy of {ormation from the monomer is

maximum. The allowed reactions for the model system are thus



AL+ A = A,

A, + A, = A,

. (1)

Am-i + A, = Am

Am + A, — no reaction,

The rate of nucleation is equated to the initial rate of formation of
A m and is expressed in terms of the equilibrium cluster concentra-
tions and the rate constants for the reactions of Eq.(1). The
"critical" supersaturation is identified as the supersaturation
value at which the rate of nucleation becomes "large'. In practice
this identification can be macde with little ambiguity since the cal-
culated rate increases guite drastically from a very small to a
very large value as the supersaturation is increased through the
"critical"” value. This value is apparently relatively insensitive
to the exact values used for the rate constants, and most of the
efiort in the development of the model has been directed toward
calculation of the equilibrium cluster concemraﬁons.
The classical "liquid-drop" model approach to this calcula-
tion is an extrapolation of Gibbs' thermodynamic theory of surfaces
to microscopic clusters of moieéules, Remarkable agreement with
experiment has been obtained in this Way,2 but the resulting theory
is not generally regarded as valid since the extrapolation is not
consistent with the assumptions on which the surface theory is based.
Indeed, Gibbs' model for a surface as an interface separating two

homogeneous phases is clearly not applicable to small clusters of less
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than 100 molecules, which are believed most important in determining
the rate of nucleation, since a homogeneous region does not in fact
exist anywhere inside such clusters.

In this paper, the equilibrium distiribution of clusters is cal~
culated using statistical mechanical techniques. No use is made of
thermodynamic surface theory so the results are independent of those
of the "liquid drop' model and not subject to many of the criticisms

directed at that model.

THEE METHOD

e al

We treat the clusters themselves as "molecules' and the super-
saturated vapor as a periect gas of these "molecules'. The partition

function for this system is given by

ey (2)

where ny is the number of clusters of size i and % is a cluster partition
function. The Hamiltonian for a given cluster is assumed separable

in the usual manner

. o= R H. . - H.
H; Hl,tr T8 yib Ty rot

' [ - H, . . are the translational, vibrational
where Hz,tr’ Hl,vzb’ and r‘a,roz are the transiational, vibrat i,
and rotational contributions to the Hamiltonian, respectively. The
importance of vibration-rotation interaction, which is ignored in this
separation, is discussed later in the paper. The cluster partition

function can thus be expressed as a product,

9 =9 tr 9, vib 4, rot
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The factors of the cluster partition function are evaluated from stand-
ard statistical mechanical formulas, using the harmonic approxi-

mation for the computation of g, and the rigid rotator approxima-

i, vib

tion for the computation of ¢ Thermodynamic functions for the

9, rot’
system are then calculated { m,om the partition function Q and the equi-
librium cluster concentrations are obtained from these functions using
standard thermodynamic techniques.

The clusters considered in these calculations are composed
of Lennard-Jones 12-6 spheres. The potential energy of a cluster of

n atoms is therefore given by

?

V L‘ﬁ
m
«kﬁ:&w
«Z«g,%é

g
§
l*%
-
@
o

where rij is the distance between atoms i and j, and the values of ¢
and € used are those specific for arg,“awn:3 o= 53.405 A& and

t‘.‘/kB = 119.8°K, where kB is Boltzmann's constant. How well the
Lennard~Jones pairwise potential represents the actual interactions
among argon atoms does not concern us here; our purpose is to study
in detail the characteristics of a simple, yet realistic, model oi a

supersaturated vapor.
THEE CALCULATION
A. The Statistical Mechanical Formulas

The formulas used in calculating the contributions to the

ciuster partition function are, for a cluster of { atoms, as follows;:

3
. nksT fﬁﬁmika’i‘\z@z

G; t (i’Pi)z i ) i (4)
O
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- Vo /g T ! Uvﬁoff hz/j/chT \’&

q. o (T) = e I - (5)
{/873' Tkg
, i=2
9, rot (T) = o\ 1 (6)
f/ Tkp j (4 IpIc)% , i >2
where Pi = partial pressure of i ~atom clusters,

: kB = Boltzmann's constant,
m = mass of single atom of the cluster,
h
Vo

vj = the jth normal frequency of vibration,

il

Planck's constant,

equilibrium potential energy of cluster,

i

Ni vib = number of vibrational degrees of freedom: equals unity
’ for the dimer and (3i - 6) for all other stable clusters,
I = moment of inertia of two-atom cluster, o
0. = rotational symmetry number,
1 A IB,IC = principle axis moments of inertia.

B. The Selection of "Noneguilibrium' Clusters

Each "nonequilibrium' clusier is a subset of an infinite lattice
of atoms having either the hexagonal-close-packed (hcp) or the cubic-
close~packed (ccp) structure. All nearest-neighbor distances in these
clusters are 21/ 6 o, the potential minimum distance for the Lennard~
Jones 12-6 pair poteniial. Two sets of "nonequilibrivm' clusters were

used in this work.,
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The first (Set A) is composed of "spherical’ clusters con-
structed by fiiling successive neignbor shells about an atom in a ccp
lattice and is identical to that considered by Burton. 4

The second (Set B) was selected in a somewhat more complicated
manner aimed at creating a more complete sequence of clusters. Three

series of clusters of 2 to 100 atoms were created. Each of these series

was derived from one of the close packed lattices by the following

process:
1. Choose either the hcp or ccp infinite lattice.
2, Select two contiguous lattice sites, number them 1 and 2, and

occupy each with an atom. This diatom constitutes the first
cluster of the series.

3. Consider all possible 3-atom clusters that have two atoms occu-
pying lattice sites 1 and 2 and a third atom occupying any oiher
lattice site and select those that have the lowest potential energy.
There are several such clusters having different orientations
within the lattice. One of the clusters in this latlter group is
arbitrarily chosen as the 3-alom cluster of the series. The new
lattice site is numbered 3.

4, Successively larger clusters are formed essentially by repeating
step 3. That is, consider all possible n-atom clusters, (. ~ 1)
of whose atoms occupy lattice sites numbered 1 through (n - 1);
select those that have the lowest potential energy; and arbitrarily
choose the n~atom cluster from this latier group.

One series was derived from a ccp lattice and two, corresponding to
two different outcomes of the arbitrary choice in step 3, were taken from

an hcp lattice.
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C. Creation of Bguilibrium Clusters
W\MWWVW\NW\’VWVV\W

Each equilibrium cluster was formed by "relaxing' one of the
"nonequilibrium' clusters described above so that the poltential energy
of the cluster was an extremum. The eguilibrium was accomplished
on an IBM 360/75 computer with an iterative routine in which, at each
step, each atom of g cluster was moved in the direction of the force on
that atom and a distance proportional to this force. The forces were
then recalculated and another iteration periormed. The proportionality
factor that was used was 107" sec. The process was terminated when
the average of the magnitudes of the forces on the atoms became less
than 1.5 x 107'° dynes/atom. This force was found to be small enough
so that the calculated normal mode frequenéies did not change signifi~
cantly when the value was decreased.

Two sets (1 and 2) of equilibriwum clusters were created from the
clusters in the two "nonequilibrium" sets (A and B). Set 1 was cbtained
directly by equilibrating each of the "ncnequilibrium' clusters of Set A.
The clusters of Set 2 were cbtained from the three series of "noneguilibrium"
clusters in Set B by first equilibrating the three clusters with a given
value of n, and then selecting the one with the lowest equilibrium potential
energy.

D. The Normal Mode Anaizsis

The normal mode analysis involves diagonalization of the "'force

3

) s 4 ¥ 4 “ 2
conatant" matrix whose elements are, for a n-atom cluster, the (3n)

-
second derivations of the cluster's egquilibrium potentizl energy. ° These
elements are evaluated by inserting equilibrium coordinate values of the

atoms in the cluster into analytic expressions for the second derivatives.
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The normal frequencies of oscillation Vj are obtained from the eigen-
values w; of this matrix through the relation waj = wj . The diagonal -
ization was accomplished with the 360/75 computer using the Givens-
Householder technique. 6 All variables in the computer program were
single precision except those into which sums were accumulated, which
were double precision. The effect of round-off error was checked by
diagonalizing the "force constant” matrix for the 55-atom ""spherical”
cluster using a program in which all variables were double precision.
The eigenvalues were found to differ insignificantly from those obtained

with the single precision program. Eigenvectors were not calculated

for most clusters.
o, Unstable Clusters
N NI N N S NN NN NN N N NS N N NN

An unstable cluster is indicated by 2 negative eigenvalue of
the 'force constant'' matrix corresponding to a normal coordinate
whose "restoring force' is negative. When indicated, this instability
was verilicu wnd 2 stable cluster obtained by adding a very small
amount of kinetic energy to the unstable equilibrium cluster and
following the subsequent motion of the atoms using a molecular
dynamics routine. 7 This kinetic energy was equally distributed among
the atorms by giving each atom an initial velocity of the appropriate
magnitude and of random direction. The molecular dynamics
technique, which has been widely used in the study of dense fluids,
allows one to caiculate the classical "trajectories' for many-particle
systems by numerically integrating the equations of motion. The

8

algorithm due to Verlet” was used in this work.
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T QTTT M
[BSULTS

"Spherical" (Set 1) clusters with 13, 19, 43, 55, 79, and 87 atoms
were studied. The 13-atom cluster of {his series had previously been
found to be unstabie by 3urton, 4 and this was verified in our calcu-
lations. The "collapsed' clusier belongs to the Dy point group and
is identical to the pentagonal structure discussed by Benson and
Shuttleworth. 9 We also found the HS-atom cluster 1o be unstable,
"collapsing'" to another Dy structure. The ''collapse' was accomplished by
adding 2x 107 ergs of kinetic energy per atom (equivalent to 0.01°K) to the
cluster in unstable equilibrium and by following the classical motion of
the atoms using the molecular dynamics routine discussed above.
The transfer of potential energy to kinetic energy that accompanies
the transition to a more stable configuration is shown in Fig. (1).
Potential energies for the equilibrium clusters of get 1 are listed in
Table 1.
Table II contains the potential energies for the clusters of Set
2. A l4-atom cluster wase not included in the set because the three
equilibrium clusters of this size formed in the manner described above
were all unstable. Stable i4~-atom clusters were not {ormed {rom these
unsiable clusters because it was felt that the amount of corputer time
required would not have been warranted. The 19-atom cluster of Set 2
is identical to that of Set 1.
The dependence of some of the cluster thermodynamic functions
on 1 is shown in Figs. (2) ~(4). The vibrational entropy and {ree energy
calcuiated from A yip &5C plotted in Figs. (2) and (3), and the total (all

degrees of freedom) Gibks free energy is plotied in Fig. (4).
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Figure 1. DPotential energy per atom and kinetic energy per atom vs time
for 55-atom "spherical" cluster as it "collapsed" from its
unstable initial configuration. Cluster remained in the unstable
configuration for about 3 x 107" sec after the addition of energy at
time { = 0; it then "collapsed" with a transfer of potential energy to
kinetic energy. The final temperature of the ciuster was ~ 1.5 K.
Fluciuations in the energies after about 4.5 X 107" sec are as

expected from an equilibrium cluster at this temperature.
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Figure 2. Dependence of the per-atom entropy on cluster size. Values

for the Set 2-clusters are connected by solid lines: e
and the Set 1 cluster values are marked as follows: @,

70°K; ©, 50°K; ©, 30°K; 4, 10°K.
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Figure 3. The vibrational Gibbs free energy per atom in clusters of

; Set 1 clusters: <, T0°K;

size n. Set 2 clusters:

50°K; ©, 30°K; 4, 10°K.
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Figure 4. Total (all degrees of freedom)v Gibbs free energy per atom

“for clusters of n atoms. Set 2 clusters: ; Set 1

clusters: €, 70°K; B, 50°K; @, 30°K; 4, 10°K.
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The concentration of clusters of size n, relative to that of the
monomer, is calculated from the Gibbs free energy of formation of the

cluster by the equilibrium requirement that
AG (@, T, P’anxl) =0, (7)

where X, is the mole fraction of clusters of size n,and P is the total

pressure in the vapor. From equilibrium thermodynamics,

S (8)

AG(, T, P, X ,X,) = AGT(n, T,P) +kgT 4n ;{—-? ,
where
AGT(n, T,P) = AG’(n, T) + (l-n)kBT hP ; (9)

and o 0
AG'(n,T) = G (0, T) -nG" (1, T)

is the standard Gibbs free energy of formation for an n-atom cluster.
For later use in conjunction with the classical nucleation rate equation,
we make the approximation that (Xn/X?) ~ (cn/ Cils where ¢, is the
concentration of clusters of size n. This is a very good approximation,
being based on the fact that virtually all the atoms in the vapor exist

as monomers. The standard {ree energies are compufced from the fac-

tors in the partition function, Egs.(4)-(6), using the relations

0 _ 1
G (1, T) = -kgT ﬁn;[ﬁ;—qn’ir('r, latm)q, por(The, yip(M1 (10
and
G*(L,T) = -kpT tliq, (T, Latm)], (11)

where n is the number of n-atom clusters and n, is the number of
- monomers. The standard Gibbs free energy of formation as a function
of cluster size n is plotted in Fig. 5 for four different temperatures,

and the values are tabulated in Tables I and II. The solid line in each
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Tigure 5. Standard Gibbs free energy of formation for clusters of n
atoms. Set 2 clusters: +; pclynomial fit of values for Set 2

; Set 1 clusters: ¢, 70°K; @, 50°K; ©,

clusters:

30°K; &, 10°K.
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of these plots represents an analytic expression for AGo(n, T) that was
used in the calculation of the rate of nucleation. The expression was
obtained by making, at each of four temperatures, a least-squares fit

of the Set 2 standard free energy of formation data to a fourth-degree

polynomial

AGY( n,T) Z . -1, (12)

where the C, (T) are the polynomlal coefficients. These coefficients
are tabulated in Table TII. The dependence of the curve AGT(n, T, P)
vs n on pressure is shown in Fig. 6 for a temperature of 50 °K. The
solid lines indicate values of an analytic expression for AG? that was
obtained using the polynomial representation of AGS,
The steady state rate of nucleation was calculated as a function
of pressure at four temperatures using the following equation

from '"classical” nucleation theorym

o

i T N

. P Cadprem | | -adimm) |

J(P9T> s e—— S(n*)c H exp 2.2 (13)
VZamk T | sy Tn*? 1 kT 7

where n* is the size, S(n*) the surface area (approximated as spherical),

and AGT(n*, P;T) the Gibbs free energy of formation for i
1

the one having the lowest concentration. For each temperature this rate

the cluster with the largest free energy of formation and hence

was calculated over the range of pressure where 2 = n* = 100. At each
such pressure, n* and AG?(n*, P;T) were found by maximizing Eq. (9)
and J(P;T) was then computed from Eq.(13).

The variations of n*, AG?(n’%‘), and J with pressure at 50°K are

shown in the plots of Figs. 7-9, respectively, and the resulis of the
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Figure 6. Gibbs free energy of formation, AGT(n, P;T) = AG° (n;T) +
(1-n)kgT P, at 50°K for clusters of n atoms. Set 2
clusters: +; analytic expression using polynomial expression
for AG®: ——; Set 1 clusters: @, 0.01 atm.; &, 0.1atm.;
©, latm.; 4, 10 atm.
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rate calculation are summarized in Table IV. The "critical"” pressure
P c was arbitrarily defined as the pressure at which the rate of nuclea-

tion is 1 cluster/(cm®: sec).



In this work, a ciusier has been modeled as a microcrystal; that is,
it has been assumed that the atoms of a ciuster possess an ordered struc-
ture similar to that in a crystal. This model is realistic at temperatures
below the "'melting" point of the cluster, which, according to the classical

Thompson equa:tion11

Z’crsvm)
b

TS

occurs at a temperature below that for the bulk solid. In this equation,

Tr is the "melling" point for a cluster of radius r, T, is that for the bulk

solid, o_ is the surface tension for the solid, Vo is the volume per mole-

S
cule in the solid, and 4X is the heat of fusion per molecule. Since Tz'
increases with r, the temperature range over which the model is reason-
able increases with cluster size.

Our evaluation of the thermodynamic functions for the microcrystal
cluster is only approximate. The most serious approximation by far we
believe is that of ignoring the efiect on the vibrational energy levels of
anharmonicily i the potential energy function. TFor low vibrational ener=-
gies this effect could be included as a perturbation of the harmonic approxi-
mation energy levels. The vibrational energy could then, however, no
longer be considered as a sum of the energies of the independent normal
modes of the cluster and 2 simple equation like Eg. (5) could not be used to
evaluate % vib® The effect becomes much more dramatic at higher ener-
gies where fluid-like motion becomes lmporiant and the structure of real
clusters ceases to resemble that of our model. The importance of anhar-

monicity is indicated by a comparison of the time average 'vibrational"



()]
(@2}

b RA

potential energies (V) of two "classical", nonrotating clusters, one har-
monic znd the other "exact", al the same emperature. Dy the equipartition
of energy Lneofom “ it is known that { V) for a harmonic cluster of i atoms
with a nonlinear configuration is
el
<V> (31 - ):"'f’“‘ 3

where (3i - 6) is the number of normal modes. The "exact" value of (V)
is obtained from molecular dynamic calculations performed as described
above. These calculations are "exact" in the sense that the comypleie
Lennard-Jones pairwise potentia’i is used. All time averages are taken
over intervals of 8 X 107 gec or lo onger, 13 Table V contains values {or
the two sets of energies at three diflerent {emperatures for a 30-atom
cluster. The eiffect of anharmonicily is indicated by the difierence between
<V>harmoni o and <V>exact‘ This difierence, which increases quite rapidly

from about 5% of <V>’narm<mic at 30°K to 85% of this value at 50°K, suggesis
that for a 30-atom cluster the harmonic gpproximation is useful up to ltemp-
eratures of about 30°K out is not very good at temperatures much higher
than this value.

Another approximaiion is the neglect of vibration-rotation comiinv.
Thig coupling can, in a first approximaiion, be resolved into two o*‘*"is
(i) changes in the vibrational energy levels due to Coriolis interaction; and
(2) changes in the rotational energy leveis due {o the fact that the average
values of the moments of inertia in a vibrating cluster are not equal to the

R TE) Y P o -

3 -1 S e I L o¥: oS T E T g Rt RN " ey 7 3
vaiues calculated from the eguilibrium positions of the atoms. The magni-

3
S,

tude of each of these effects was estimated for a 30-atom cluster using data

bt

irom a molecular dynamics calculation at 30°K.
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To estimate the magnitude ol the Coriolis interaction, the time average
Coriolis force per particle
N

(Foorionis’ = %_:1 (Em.y; xw)) ,

was cormputed and compared
with the time average total force per particle. The value of w used in the
calculation corresponded to a rotational temperature ldefined in terms of

the average rotational kinetic energy by (KEr o*i:> = (3/ Z)kBT | of approxi-

rot
mately 50 °K. The average Coriolis force was found to be only 0. 6% of the
average total force. This small relative size of the Coriolis force suggests
that its effect on “che thermodynamic functicns should be small, especially
when compared with that of the anharmenicily described above.

The second part of the vibration-rotation coupling can be approximately
included in the calculation of the thermodynamic functions by using the time

average moment-of-inertia product (I AEEKC) in the evaluation of g irom

i,rot
Eq.(8). The value of this average in a 30~atom cluster at 30°K was computed
from the molecular dynamics data and found to be 12% larger than the equilib-
rium moment~of-inertia product. The increase in q%ﬂ rot that results {rom
using this value of (IAIBKC) in Eg.(6) is 6%. This increase, however, is
reflected as a decrease of only 0.4% in the rctational Gibbs free energy
(Gr ot = 'k’ST in U Ot)n Neglecting this part of the coupling appears, there-
fore, not to be a bad approximation.

A third approximation involves neglecting the effect of centrifugal
distortion, which acts to increase the moments of inertia of a rotating
cluster and thereby changes the rotational energy levels. To esiimate the
importance of this effect, the 30-atom cluster of Set 2 was re-equilibrated

with a centrifugal force acting on each atom. The force was equivalent to



that expecied i the rotationzl temperature of the cluster were 100°K.
Inclusion of this force caused a change of only 0. 2% in the moment of
inertia product I AEEK o which is much smaller than the effect of the second
type of vibration-rotation coupling discussed above, Centrifugal distortion
is therefore not expected to have an importam“t eliect on the thermodynamic
functions.

The above arguments suggest that the approximations involved in our
calculation of thermodynamic functions for a microcrystal are dominated
in importance by the neglect of anharmonic effects on the vibrational energy

levels and not the effects of vibration-roiation coupling and centrifugal .

distortion. Qualitatively, the reasons for this are: - }

[ . (1) for clusters large enocugh.to be important in deter-
mining the rate of nucleation, the moments ¢f ineriia are large and the
probable rotational velocities small; and (2) for these same clusters, con-
tributions of the rotational degrees of ireedom to the thermocdynamic func~
tlons are small reiative to those irom the vibrational degrees of frecdom.
The preceding discussion has concerned the evaluation of the parti-
tion function for a single configuration of a cluster. We now consider the
approximation involved in our use of such a "'single-configuration" partition
function to represent a cluster partition function. For clusters of all but
the smallest size, we know that there is more than one stable coniiguration,
each corresponding to a different local minimum in the clusters potential
energy function. The partition function of the cluster contains large contri~
outions from the regions of phase space in the neighbornood of each of these
minima. If there are I, stable conligurations for a cluster of i-atoms, the

vibrational partition function of the cluster can be writlen as
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m;
_ (k)
4, vib = 121 %4 Vib (14)

(k)

where % ib is a "'single-configurational' partition function containing

the contribution to qi’ vib from the region of phase space in the neighbor-

hood of the kth potential minimum. By using only one configuration p, we

make the approximation that qi’ vib = qif%)ib'
The importance of the "single~configuration' approximation in the

calculation of cluster thermodynamic functions is difficult to estimate

because of our lack of knowledge concerning the number and distribution

of the single-configuration partition functions for a given sized cluster.

An idea of its importance can, however, be obtained by noting in Figs. 2

and 3 the differences in entropy and free energy per atom between clusters of the

same size but different configurations (the Set 1 and Set 2 clusters of size

13, 55, 79, and 87 have different configurations). Differences of up to about

2% in free energy and 8% in entropy are noted. These are large enough

relative to the magnitude of the fine structure in the functions to suggest

that much of this fine structure may be an artifact of the "single-configura~-

tion'" approximation rather than physically significant characteristics of

the multi-configurational functions. For this reason, we do not consider

the detailed structure in vibrational entropy and free energy suggested by

the six data points in Set 1 to have the physical significance suggested by

Burton. 4 We believe that only gross features of the single-configurational

functions as, for example, represented by the polynomial expression for

AG’(n;T), are significant.
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In the plot of vibrational entropy per atom in Fig. 2, it is noted
that the Set 2 values at a given temperature change very slowly for
n > 9. This indicates that, for microcrystal clusters of all but very
small size, changing the ratio of the "surface' of the cluster to its
"volume' has a remarkably small effect on the vibrational entropy per
atom of the cluster, The Set 1 data are generally consistent with this
conclusion although the small number of data points makes the identifi-
cation of the gross characteristics of the functions difiicult. The effect
of varying the "surface' to "volume' ratio on the vibrational free
energy per atom is clearly important, however, as shown by the plots
of Fig. 3. The characteristics of the entropy function indicate that
these ""size" effects in the free energy are primarily energetic rather
than entropic.

‘The great importance of nonvidrational degrees of freedom in

the cluster iree energy is indicated by the plot of the total Glﬁbb irce
energy per atom in Fig. 4. A maximum is noted that occurs at decreasing

values of n as the temperature is decreased. The shape of the curve
s radically different irom that of the vibrational free energy per atom,
although the curves do approach each other a large 1, wiere the non-
vibrational degrees of {reedom are relatively unimportant.
The Gibbs iree energy of formation as a function of n plotted

2

in Fig. § and § has the qualitative features expected from considera-

¥
O
1
€,
3
O
A
L
g
O
O,
(v}
e
-
3
by
)
<
2.
o
o}
o}

tions based on the "li¢

-

f n at which the
meaximum of the cwve/ ecreases as the degree of supersaturation

oi the vapor is increased, i.e., as the temperature is decreased or

o
j &3
Q
f»ar
ot

&
{“1
O
]

g@
&
=
o
<
Lo
e

the pressure increased. As point



61

calculations of AG vased on the "liguld-drop' model are sirictly valid

"

only for the one cluster, known as the "nucleus', that can exist in
phase equilibrium with the vapor, and the values of AG for other
clusters can only be obtained from the model by methods which are
not entirely ihermodynamic in nature. This limitation does not apply
to the values of AG reported here, because we have treated clusters
as "molecules', not as droplets of the liquid phase. The complete
4G vs n curves of Figs. 5 and 6 are therefore valid.

The rate of nucleation we caiculate also behaves like that
computed using the "liquid~drop' model: it increases from very small
to very large values over a narrow range of sugersaturation. This
increase is shown by the plot oi the rate as a function of pressure

in Fig. (9). The critical supersaturation ratios Sc = PC/ Pe, where

48

Pe is the equilibrium vapor pressure, *¥ were found to increase very

rapidly as the temperature was decreased (see Table 1y). This
behavior is atiributed mainly to the decreasing collision frequency
within the vapor that accompanies the decreasing temperature. The
collision irequency is so low at 10°K that the rate of nucleation reaches
only 3.6 X 107° clusters/(cm’® - sec)¥at a pressure where' n* becomes 2,
Values for cluster thermodynamic functions reported in this
paper are expected to gpproximate closely those for real clusters only
at low temperatures where the microcrystal model is realistic and the
epproximations involved in the evaluation of the functions are good.

b &

Sven at temperatures above the "meltlag'" point of ¢

-
H

insters, however,
the calculations can ke of use in a "first approximation” in much the

same way that cell theory has been used in studying the liquid state.
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More generally, caiculations of the type reported here are the first
step in the development of understanding of clusters on an atomic or
molecular level. An approach on tais level is necesgsary, we believe, |
in order to avoid problems such as the "translation-rotation" parac%oxm
that have resulted from uncertainties concerning the exact nature of

droplets used in the "liquid~drop" model.
FUTURE WORXK

Work is nearly completed on the development of a much mor
realistic model for argon atom clusters. Molecular dynamics caleu~
lations have been performed for a number of different sized clusiers
at temperatures up to about 75°K, and the data are being analyzed to
ovtain values for cluster thermodynamic functions. Results from

this work will be published soon.
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TABLE I. Equilibrium potential energy and standard Gibbs free

energy of formation for Set 1 clusters.

) V_/n AG’ (x 10™ erg)

(x 10*%erg) 10.2°K 30.0°K 50.3°K  170.1°K
13 -5.6390 -52.94 -23.26 7.822 37.75
18 -6.0014 -82.00 ~35.71 12.74 59.34
43 -1.4279 -239,2 -127.0 -9.166 104.1
55  -8.3967 -354.1 ~205.5 -49. 08 101.6
79 -8.7887 -534. 6 -316.1 -85.45 136.7

87 -8.7188 ~-584.0 -345.5 ~-93. 88 148.4
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TABLE II. Equilibrium (0°K) potential energy and standard Gibbs

free energy of formation for Set 2 clusters.

N Vn/n AG® (x 10" erg™)
(x 10™erg) 10. 2°K 30.0°K 50.3 °K 70.1°K
2 -0.8269 -1.043 0.179 1. 575 2.993
3 -1.6538 -3.168 -0.025  3.425 6. 847
4 -2.4807 -6.381 -0. 615 5,539  11.54
5  -3.0112 -9.943 ~1,920 6.565  14.79
6 -3.5039  -14.01 -3.236 8,121 19,10
7 -3.8995  -18.49 -5.101 8.965 22,54
8§  -4.0860  -22.27 6.610 © 9.810  25.64
9 -4,2192  -26.29 -8.976 9.152 26,60
10 -4.4967  -31.24 -10. 94 10.30 30. 74
11 -4.6727  -35.86 -12.98 10. 94 33.96
12 -4.9104  -41.44 -15.80 11.00 36.78
13 -5.2759  -49.05 -20. 54 9.264  37.93
15  -5.6091  -60.35 ~25.92 10.14 44.84
16  -5.6671  -65.03 -27.96 10.86 48. 20
17 -5.7889  -70.75 -30. 83 10. 97 51.18
18 -5.8096  -76.42 ~33. 46 11,52 54,79
19 -6.0014  -82.00 ~35.71 12.74 59. 34
20  -6.0813  -88.02 ~39.72 10.86 59. 50
21 -6.1212  -93.26 -42, 67 10. 29 61.21
22 -6.2563  -99.99 -46.01 10, 52 64. 88
23 -6.2848  -105.3 -49.24 0.483  65.94
24  -6.3773  -111.9 -53.22 §.245  67.33




TABLE II. (continued)
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Vn/n AG® (x 10™ erg™)
’ (x 10" erg) 10, 2°K 30.0°K 50.3°K 70.1°K
25 -6.5123  -119.3 -57. 51 7.301 69,62
26  -6.6350  -126.7 -61. 65 6.586  72.21
27 -6.6492  -132.0 64,77 5.797  73.66
28 -6.7158  -138.6 -68, 70 4.656  75.19
29 -6.8251  -146.2 -73. 21 3.423 77,13
30 -6.9219  -153.7 77, 69 2.157  78.96
35  -7.2120  -188.3 -98. 22 -3.634  87.35
40 -7.5675  -227.7 -123.0 -13.07 92. 80
45  -7.7266  -262.2 -143.3 -18.16  102.2
50  -7.9360  -300.7 -167.5 -27.36  107.5
55  -8.1093  -330.2 -191.6 -36.21  113.4
60  -8.2813  -379.2 217.1 46,25  118.2
76 -8.6953  -528.6 -312.2 -83.82  136.1
80  -8.7230  -537.3 -317.9 -86.33  136.7
87  -8.9203  -509,7 -359.5 -105.8  138.6

-9.0877  -704.3 -426.,7 -133.3 149, 4

100
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TABLE III. Coefficients in the polynomial expression for the Gibbs

free energy of formation AG’(n, T) = Cj (T)n(j - 1).
j=1

T C(T) C.(T) C4(T) C,(T) C4(T)
(°K) (107"erg)  (107™erg) (107erg) (107%erg) (10 %erg)

10.2 - 7.682 -3.119 -10.02 9. 605 ~-3.597
30.0 - 3.379 -0.7034 - 8.777 8. 173 -3.002
50.3 -0.9043 1,789 - 7.322 6. 524 -2.322

70.1 -4.89% 4,172 - 5.875 4.894 -1.652
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TABLE IV. Data for vapor whose level of supersaturation is

Yeritical. ' &

- T e
T (°K) P Platm) s nx @ G (ng)
C c (1{) léerg/
cluster)
10.9f
30.0 3.9x107¢ 5.8 x 10° 19 29
50. 3 1.3 x 107" 3.3 x 10? 37 44
70.1 2.5 3.3 x 10* 70 66

& Defined as supersaturation at which the rate of homogeneous nuclea-
tion is 1 cluster/(cm®- sec).

b Préssure of vapor whose supersaturation is critical.

€ nCritical" supersaturation ratio, P c/ Py, where P, is the equilib-
rium vapor pressure. -

d Size of cluster with highest Gibbs free energy of formation and
lowest "equilibrium'' concentration.

€ Gibbs free energy of formation for cluster of size ﬁ*.

f

Rate of nucleation remains less than 1 cluster/(cm®-sec) for all

n*= 2.
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TABLE V. Comparison of the average potential energy of a 30-atom
"classical non-rotating cluster calculated ‘dsing the harmonic approxi-
mation and using an "exact" potential. Energy here is measured rela-

tive to that of the equilibrium cluster at 0 °K.

T(°K) <V>harmonic (V) exact <V>exa;ct - <V>harmonic
(10™* erg) (10" erg) (10™** erg)
30 17. 4 18.2 0.8
37 21.4 29.8 8.4

50 29,0 53.9° 24.9
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THE SINGLE-CONFIGURATION APPROXIMATION IN THE

CALCULATION OF THE THERMODYNAMIC PROPERTIES
OF MICROCRYSTALLINE CLUSTERS*

DAVID J. MCG}'NTYT

Arthur Amos Noyes Laboratory of Chemical Physicsi

California Institute of Technology

Pasadena, California 91109

ABSTRACT

The single-configuration approximation that has been used
in previous calculations of the thermodynamic properties of micro-
crystalline clusters can lead to quite significant errors in calculated
values of the thermodynamic functions. The origin of the errors and

methods by which they can be minimized are discussed in this note.

* This work was supported in part by a grant (No. GP-12381) from
the National Science Foundation.

f Woodrow Wilson Fellow, 1967-1968; NSF Predoctoral Fellow,
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I. INTRODUCTION

Recently considerable work has been done using the "micro-
crystal” model to study the thermodynamic properties of small
clusters of atoms [1-5]. These clusters are thought to exist in
significant concehtrations in supersaturated vapors and to play an
important role in the process of homogeneous nucleation from the
vapor phase. The thermodynamic properties of the clusters are
used to evaluate their equilibrium concentrations in the vapor and
these concentrations are used in the ''classical' theory to calculate
the rate of nucleation [6].

In the model calculations the Hamiltonian of the cluster is

assumed separable,

H = Hvib * ’Hrot + Htr’ (1)

enabling the cluster partition function q to be written as a

product,
4 = dyiplrotder: (2)

The individual terms in the product are evaluated from standard
statistical mechanical formulas using the harmonic approximation
to evaluate Ayib? the rigid-rotator approximation to evaluate Ayt
and the perfect-gas approximation to evaluate Uy

In previous work with the microcrystal model, calculation
of thermodynamic properties has been based on a single stable

configuration of the cluster. In general, however, many stable

configurations exist and the actual thermodynamic properties are
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determined by all these configurations. Each stable configuration
corresponds to a minimum in the potential energy function oi the
cluster. The cluster partition function contains large contributions
from the regions of phase space in the neighborhood of each of
these minima. Contributions from other regions are very small
because the potential energy is large away from the minima. The
partition function for a microcrystal with m stable configurations
can therefore be wriitten as a sum of m single-configuration parti-
tion functions, each containing the coniribution from the region of

phase space surrounding one of the minima,

The "single-configuration" approximation that has been used in
previbus calculations approximates q by one of the single-configura-

)

tion partition functions q(p )

P, | (4)

Ne!
R

and ignores the other (m - 1) terms in the sum. The approximate

(k),

value is always smaller than the exact one since all the g“/'s are

positive.

In order to determine the importance of this approximation,
we have evaluated multiconfiguration thermodynamic functions for
a number of clusters using the Lennard-Jones pair potential7 to .

represent the interaction between argon atoms. The functions were
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obtained by combining according to Eq. 3 single-configuration func-

2 The

tions that were computed by previously described methods.
multiconfiguration functions obtained in this way are not exact since
many configurations are lefl out, but they are better approximations

than any of the single-configuration functions.

II. RESULTS

In Fig. 1 we have plotted the Gibbs free energy of forma-
tion [8] of argon clusters from monomers at 50°K and 1 atm. as
a function of cluster size. It is this function that is generally
used to compute cluster concentrations in the classical theory of
nucleation. All degrees of freedom are explicitly included in the
computation. Multiconfiguration values of the function are con-
nected by solid lines; the vertical bars indicate the range of our
single-configuration values.

The following types of configurations were included in the
calculation: _

(1) "Spherical-ccp” configurations of 13, 19, 43, 55, 79,
and 87 atoms and "'spherical-hcp" configurations ofu 13, 19, and
87 atoms. These were formed by filling successive neighbor
shells in a cubic-close packed (ccp) and akhexagonaluclose—packed
(hcp) lattice.

(2) "Grown'' configurations created by an aufbau process
designed to produce low energy configurations and described in

reference 2.
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Figdfe 1. Gibbs iree energy of formation at 50 °K and 1 atm. as a

function of cluster size. The multiconfiguration values are
connected by solid lines. The range of single-configuration

values for each cluster is indicated by a vertical bar.
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(3) "Dynamic" configurations of 15, 30, and 45 atoms
formed by ''relaxing' configurations that occur in molecular
dynamics calculations with clusters [9].

Fig. 2 shows the temperature dependence of the difference,
[G<m) - G], between the single-configuration Gibbs free energy
(all degrees of freedom) and the multiconfiguration value. The
difference is plotted for four configurations of the 19-atom cluster

at 1 atm. pressure.

III. DISCUSSION

The plot in Fig. 1 indicates that the spread in single-
configuration values of the free energy of formation is quite large.
This spread is particularly important for the clusters in the region
of the maximum of the curve since these clusters have the lowest
concentrations and are most important in determining the rate of
nucleation. An uncertainty of 50 to 100% exists in theésiﬁgle-con-
figuration values of AG in this region; this translates into an un-
certainty of several hundred percent in the concentrations of the
‘clusters and in the rate of nucleation. The mégnitude of this
error indicates that caution must be exercised in the interpretation
of results obtained using the single-configuration approximation.
For example, the curve in Fig. 1 connecting multiconfiguration
values suggest that AG is not a smooth function of N. Burton has
noted the fine structure in this [1]and other thermodynamic func-
fions [10] for clusters and has suggested that the structure has

important physical significance. Our results show, however, that
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Figure 2. Temperature dependence of the difference [G(m> - G} at
Latm. for four configurations of a cluster of 19 argon atoms.
G(m) is a single~-configuration free energy and G is the multi-

configuration value.
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the error in the single-configuration free energy has about the
same magnitude as the fine structure of the function, indicating
that the structure may not be a feature of the physically significant
multiconfiguration function. In agreement with our earlier conclu-
sion [2] and that of Abraham and Dave [3], we believe that the
error is too large to support Burton's interpretation and that

only the gross features of the single-configuration functions are
physically significant.

It is interesting to note in Fig. 1 that even though most of
the single-configuration free energies differ significantly from the
multiconfiguration value, the free energy of the most stable
(lowest in free energy) configuration does not. The free energy
is dominated by the largest terms in Eq. 3, which correspond to
the most stable configurations. As an example of this behavior, consider
the two most stable configurations we have found for the 45-atom
cluster at 50°K and the two-configuration Gibbs free energy com-

puted from them. This free energy can be writfen,

(2) (2)
G(T, P) = Gyp(T,P) - kTa[q )] - kTan [1 + %’;%2%89;] (5)
Ayib Grot

where the translational contribution has been factored out since it

(1) (1)

is the same for all configurations. From the values Ayibdpot =

235 (2) (2) 235
;182 x 107 and GyibSrot = 1.98 x 10

contribution of the more stable configuration to G(T, P) is larger

, it is determined that the

than that of the second configuration by a factor of 5 x 10%. It is
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interesting to note also that if there were n configurations with the

same stability as configuration (1), the free energy would be,
G - 6.(1,?) - xTea[gH gt ] - kT 6
(T,P) = tl‘( , P) n [qvibqrot] n(n), (6)

and unless n is very large indeed, the last term is ignorable.

For example, for n = 10" and the value of q‘(}i%q;lo)t quoted above,
the magnitude of’ that term is only about 1% the magnitude of the
second term. In conclusion, if the number of low-free-energy con-
figurations is not too large, the single-configuration approximation
should be very good, but only if it is based on one of the most
stable configurations.

Neither the '"spherical” nor the "grown' configurations that
have been used in previous work with the microcrystal model yield
good approximations to the multiconfiguration free energy for all
clusters. At 50°K, '"'grown' configurations are more stable than
the "spherical” ones for 19, 43, and 87-atom clusters, but
"spherical” configurations are more stable for 13, 55, and 79-
atom clusters. A better method of selecting configurations is
clearly needed. One possible methodis that of relaxing configura-
tions that occur in molecular dynamics calculations. The method
is expected to produce configurations with low free energy because
these are the ones that occur with highest probability during the
molecular dynamics calculations. '"Dynamic" configurations were

éonsidered in this work for clusters of 15, 30, and 45 atoms; for
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each of these clusters we find "dynamic" configurations that have
lower Ifree energy than any of the ''grown' ones.

The temperature dependence of the single-configuration free
energies for the 19-atom cluster in Fig. 2 suggests that no single
configuration of the cluster is Amost stable at all temperatures.
Configuration II ("spherical-hcp') is most stable from 0 to 15°K,
OI ("grown') from 15 to 43°K, and IV (also "'grown'") from 43 to
100°K. Configuration I is "spherical-ccp.' The crossings of the
single-configuration curves is due to the competition between energy
(or enthalpy) and entropy for dominance in the free energy func-
tion, G = H - TS. At low temperature, low energy configurations
tend to be most stable; and at higher temperatures, high entropy
configurations tend to be most stable. In accord with these tenden-
cies, we note that for the 19-atom cluster the single-configuration
free energies at low temperature are ranked according tc the

equilibrium potential energies,

I I v

VH<V <V <V

and at high temperature their ranking is determined by that of the

entropies,

I II I

stV > st gh,

>‘S

It is evident that, in general, a satisfactory evaluation of the
microcrystal model over a range of temperatures cannot be based

on a single configuration of the cluster.
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Iv. CONCLTUSIONS

The error in cluster iree energies due to the single-con-
figuration approximation is too large to be ignored. Future cal-
culations with the microcrystal model should be based on a number
of configurations for each cluster; and at each temperature con-
sidered, one of these should be close to the absolute minimum in
free energy for the cluster. Work is needed to develop techniques
for selecting these configurations; both low energy and high entropy
ones must be considered. Relaxing configurations occurring in
molecular dynamics calculations is one such technique that appears
very promising. Estimates of the number of stable configurations
as a function of cluster size and the distribution of the free energy
among these configurations are also needed to determine how many
configurations must be included to achieve a good approximation of

the exact thermodynamic functions.
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PART III: MOLECULAR DYNAMICS CALCULATIONS
OF THE PROPERTIES OF CLUSTERS
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A. Introductory Remarks

In this section we describe the use of molecular dynamics com=
puter simulation calculations for the determination of the properties of
clusters of argon atoms. The molecular dynamics technique has been
extensively applied to the study of the fluid state in the past decade, and
remarkable agreement with the experimentally determined equilibrium
properties of argon has been obtained. The work reported in Paper III
represents the first application of the technique to the study of clusters.

In that paper, which has not yet been submitted for publication, the
computer-generated déta are used to evaluate the cluster thermodynamic
functions at temperatures where the clusters are fluid-like and the
microcrystal model is not valid. The data were also used to determine
some of the more general characteristics of the clusters with the hope
of inspiring more realistic models that can be used for purely theoretical
calculations of the cluster thermodynamic properties. The temperature
dependence of the coefficient of self~diffusion was examined to charac-

! terize the motion of atoms in the clustérs; the radial variation in density
was examined to understand the .average "size'" of the clusters; and the
radial variation of the potential energy was examined to characterize
the environment inside the clusters.

Considerable effort was devoted to understanding the statistical
error in the temperature and other averages calculated from the raw
trajectory data. An expression for the error in temperature was derived
in ‘ﬁerms of the kinetic-energy autocorrelation function. The second
paper in this section is actually a spin-off from our work with the error

expression. In that paper [Chem. Phys. Letters ;@, 285 (1971)] we
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show that the kinetic-energy autocorrelation function and other correla-
tion functions can be computed from molecular dynamics data very

rapidly using a method based on the Fast Fourier Transform.
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Molecular Dxnamics Studies of the Progerties of Small Clusters of
Argon Atoms

DAVID J. McGINTY

Arthur Amos Noyes Laboratory of Chemical Physics, California

Institute of Technology, Pasadena, California 91109

ABSTRACT

Molecular dynamics calculations have been performed on clusters
of 15, 30, 45, 60, 80, and 100 argon atoms at temperatures of up to
70°K. Values of the independent~cluster thermodynamic functions
are presented and compared with those obtained from the micro-
crystal model. The comparison indicates surprising agreement for
values of the Gibbs free energy of formation. The transition from
solid~like to fluid~like diffusion in the clusters occurs gradually; no
semblance of a phase transition is noted. The radial density
functions for the clusters have maxima and minima reminiscent of those
in the radial distribution function for bulk liquids. The temperature
_ dependence of that function indicates that clusters expand quite rapidly
as thetemperature is increased.The radial distribution of potential
energy indicates that there is no region inside the clusters where the
" environment resembles that in the bulk phases; the properties of the
clusters are dominated by the ""surface region' where nearly all the

atoms exist.
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I. INTRODUCTION

There has been considerable interest in the caiculétion of the
thermodynamic properties of small clusters of molecules due primarily
to the importance of these clusters in the phenomenon of vapor phase
homogeneous nucleation. Much of the work has been with the classical,
liquid=-drop model1 in which clusters are treated as small droplets
and their properties calculated using the Gibbs surface theory. This
approach is not generally regarded as valid, however, because the
application of the surface theory to the small droplets important in
nucleation is not consistent with assumptions on which that theory is
based.

Recently, the availability of large computers has made it pos~
sible for investigators to attack the problem on the molecular level
and actually to evaluate partition functions for model_clusters. In the
"microcrystal’” model, which has been most extensively used, the
clusters are treated as very small crystallites. The partition function
for a microcrystal is evaluated in the same way one would evaluate
that for a polyatomic molecule in the simplest approximation. The

cluster Hamiltonian is assumed separable,

H=Hy +H.;+ He, (1)

vib
enabling the cluster partition function to be written as a product,

4= Qyinrotiiee (2) ,
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The individual terms in the product are evaluated irom standard
statistical mechanical formulas using the harmonic approximation to
evaluate Ayih? the rigid-rotator approximation to evaluate Aot and
the perfect-gas approximation to evaluate Qo The exact microcrystal
partition function contains contributions from all stable configurations
of a cluster, 4 although most investigators have used the "'single~-con=
figuration’ approximation, ignoring all but one configuration for each
cluster. A more approximate, Einstein technique5 has also been

used to evaluate the vibrational partition function and has enabled the
study of quite large clusters.

Cluster partition functions evaluated from the microcrystal
model using the harmonic approximation are exact in the low tempera~
ture limit where anharmonicities in the potential energy function are
negligible. At higher temperatures, the anharmonicities become
significant., Eventually, when fluid motion becomes important, the
model itself becomes unrealistic. In order to study the "fluid-like"
clusters in this higher temperature region, we have used molecular

%7 The data from these

dynamics computer simulation calculations.
calculations have been analyzed to obtain the thermodynamic functions
for clusters of up to 100 argon atoms at temperatures below 75°K.

In addition to this thermodynamic data, the molecular dynamics
calculations yield very detailed information about the structure and
dynamics of the clusters. We feel that this type of information about

the general characteristics of clusters should be very useful in the

development of new, realistic models that can be used in purely
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theoretical calculations of cluster thermodynamic properties. In
the present paper we shall describe the molecular dynamic calculations

and discuss cluster properties that have been determined from our data.
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The goal of nucleation theory is prediction of the ''critical”
supersaturation of a vapor, the supersaturation level at which tvhe
vapor condenses. In the calculation of this property, one treats the
vapor as a gaseous mixture of clusters that interact according to the
following set of reactions, which resemble those of a chemical

polymerization:

At b= Ay

(3)

%+A1 = Am+i

where Am represents an m-atom cluster. Reaction betwéen"'poly-
mers' are generally ignored because collisions between them are
relatively infrequent. The set of coupled differential rate equations
for the set of reactibns can in principle be solved to yield the time
dependence of the cluster concentrations. Two sets of data are
needed for the solution: (1) the rate constants for the reactions, and
(2) the cluster concentrations in the initial, metastable state that
corresponds to the supersaturated vapor. The rate constants for the
forward reactions in Eq. 3 are estimated by assigning an approximate
hard-sphere radius to each cluster and assuming that every polymer-

monomer collision leads to reaction (accomodation coefficient of
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unity). The principle of detailed balance along with the cluster
concentrations in the metastable state are then used to determine
the reverse rate constants. 8 The cluster concentrations are thus
of key importance to solution of the rate equations.

The actual solution of these equations can be accomplished
by numerical integration with a computer or by various approximate
analytical methods. In this paper we shall be concerned only with the
equilibrium problem of computing the cluster concentrations in the
metastable state, which has been the object of most of the recent
effort in nucleation theory. The rigorous basis for this computation

will now be considered.
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II. THEORY

A, Decomgositien of the Partition Function

The basis for our thinking of a supersaturated vapor in terms
of a gaseous mixture of clusters is a transformation of the canonical
ensemble partition function for the vapor. Considering a vapor of
N atoms in a volume V Wwe focus our attention on a single configura~
tion of the system, corresponding to a single point in the 3N-dimen~
sional configuration space spanned by the position coordinates of the
system. If we now regard pairs of atoms separated by less than some
distance R o’ which is of the order of the range of interatomic forces
(~30 for the Lennard-Jones potential), as "interacting pairs'' and
imagine them connected by bonds, then the configuration will appear
divided into clusters of atoms that are bonded together. The partition-
ing of atoms into clusters is illustrated for a sample configuration in
Fig. 1. It is, of course, possible to use other definitions of a cluster,
and any definition is acceptable as long as it enables a unique division
of each configuration of the system into clusters.
| Each possible distribution of atoms among clusters is described

by a value of the N-dimensional vector,

n= (ng, nyy ooe, nN): (4)

where n; is an integer that denotes the number of i~atom clusters in
the distribution. The allowed values of n are consistent with the

constraint equation
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Fig. 1.  The partitioning of atoms in a configuration into clusters.
. Each point represents the center of an atom and the bonds

connect "interacting pairs."”
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N
). in; = N. (5)
i=1

The partition function for the system oi N atoms is

3N/2

fv eXpi "U(£19 ) ?\N)/kT] d:f;l e dEN’ (6)

Q =*I\%"(“T
where U is the potential energy. Every configuration of the system and,
hence, every point in the region of configuration space available to the
system can be assigned a unique value of n. 1Itis, therefore, possible
to transform the configuration integral in Eq. (6) into a sum of integrals,
each over the region of configuration space that corresponds to a speci-
fic value of n. Q then becomes a sum of ""single~-distribution partition

functions'":

Q=) Q, (7)
{o} ~

where

1 27mkT
Qn :‘N"f(wﬁgﬁ‘}s_ﬁm fn eXp['U(z{p ”’sﬁN)/kT]d?\i""diN (8)
and {E} is the set of all values of n consistent with the constraint of

Eq. (5). The integral covers all configurations in the distribution

.
~
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B. The Independent-Cluster Approximation

The "independent~cluster' approximation enables us to simplify
the single~distribution partition function in Eq. (8). The approximation
has two parts;g

(1) The interactions between atoms in different clusters are

ignored.

(2) ""Cluster interference’ is ignored. In Q][1 configurations in
which clusters overlap are excluded because they ;re not consistent
with the specific distribution n; in the approximate evaluation of Q »
these configurations are included. )

The approximation leads to the following simple expression

for Qn; N
Qn = II [qxj}i/ni!]s (9>
=l

where 9 is an independent-cluster partition function,

3i/2 ”
2

and L represents the set of relative position coordinates for the i
atoms and dﬁij is the product of their differential elements. The term
o5 indicates that the integration spans all relative positions of the

atoms that are consistent with their being in the same cluster.
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C. The Eguiiibrium Distribution of Clusters

To determine the equilibrium distribution that corresponds to
the metastable, supersaturated vapor we maximize Qn’ treated as a
function of the n; and subject to the following constraints:

1. n contains no macroscopic clusters.
N

2. ) in, =N, and
i=1

3. the n, are integers.

This last constraint is usually ignored, leading to a distribution that
contains fractions of clusters and that is not, therefore, physically
realizable.

An approximate method for computing the concentrations is
based on the method of Lagrange undetermined multipliers in which
the n; are treated as continuous variables. That method yields the
following expreSsion, which is incorrectly taken as the final form in

most treatments of nucleation theory:
i i, A
n; =m0 q/qp, i=1, «-0, N. (11)
Our approximate solution for the I, in terms of n,, is
. i iy .
ni:mt[ni qi/ql}) 1= 19 -++ N, (12)

where the operator "int" extracts the largest integer value. The
%actual values of the n; can be determined by an iterative process. An

estimate of n; is used to evaluate the ny and the value of the sum
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N
Z ini is computed. If the sum is larger than N, the estimate of n,

=1 . ol . A
¥ is reduced; if it is smaller than N, the estimate is increased.

The process is repeated until the value of the sum converged to N.
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D. The Comgutationai Problem

In this paper we are concerned with evaluating the independent-
cluster partition functions q;. Our resulls will be expressed in terms
of the more common, thermodynamic functions derived from the Q-

The Gibbs free energy expression that is equivalent to Eq. (1) is

AGy(T, P, X, X,) = AG?: (T, P) + KT Ln(X,/X}) (13)
where
AGJ(T, P) = AGS(T) + (1-DKTLnP (14)
and
AGY(T) = G2(T) - iGS(T). (19

At equilibrium AG; in Eq. (13) is zero. The standard free energies

G{ and G; are

3/2
Gi) (T) = ~kT2 {kT(sz}{T) qvibqrot}’;,, (16) ,
and
. kT S/ 2 |
Gy (T) = ‘kTﬁn{kT(*"’gz‘") } (17)

In these expressions P is the total pressure of the ‘vapor and Xi is the
mole fraction of i-atom clusters. In our calculation we evaluate the
t

. 7 : .
function AG; for a range of cluster sizes; these can be used in Eq.

(13) to determine the mole fraction X;. These mole fractions should,
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of course, be made consistent with the integer constraint on n, by a

device equivalent to that of Eq. (12).
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In the molecular dynamics calculations, the classical equations
of motion for the atoms in a cluster are numerically integrated to
yield a time record of the position and velocity coordinates of the

6 . . . _
’" Our calculations were performed using single-precision

atoms.
arithmetic on IBM 360/75 and 370/155 computers.

Rotationless (zero angular momentum) clusters of Lennard-
Jones 12~6 spheres were studied. The interactions of all pairs of
atoms in a cluster were considered so that the potential energy of a

cluster of N atoms is

N N
V=) ) 4% - D, (18)
i=1 >i g H

where T34 is the distance between atoms 1 and j. We used values of
the Lennard-~Jones parameters that are specific for argen:100=3.4050§1
and €/k = 119.8°K. According to the priﬁciple of corresponding
states, 11 however, the results can easily be applied to any other sub~
stance for which the Lennard-Jones potential is applicable. The
numerical integration routine due to Verlet7 with a time increment of
107 sec was used.

To perform the calculations it is necessary to adopt an opera~
tional definition of a cluster. In particular, one must be able to

distinguish an N-atom cluster from (N~1) and (N+1)-atom clusters.

- The definition was accomplished with a spherical boundary centered
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at the center of mass of the cluster and having radius Ry- A particle
was regarded as having escaped {rom the cluster when it passed
beyond this boundary. The value of RN depended on N in such a way
that the volume per atom within the boundary was the same for all

1/ 3., The value of the

clusters; RN was therefore proportional to N
proportionality constant that determines the actual magnitudes of the
RN was chosen rather arbitrarily. The values of the RN that we used

are tabulated in Table I.

When an atom escaped, the calculation was interrupted and a
procedure was executed to redirect the escaping atom back toward the
cluster. The calculation was then restarted from the new state of the
cluster. The reinitialization procedure involved modification of the
velocities of the atoms only -~ the configuration of the cluster was not
changed. The procedure consisted of the following steps:

(1). The component of the escaping atom's velocity perpendi-
cular to the spherical boundary was reversed. "

(2). The velocities of all the atoms were scaled by a factor
slightly larger than the unity to return the internal kinetic energy of the
cluster, the kinetic energy in the center-of-mass coordinate system,
to its value before the execution of Step 1. This compensates for the

small amount of kinetic energy that is transferred {rom the internal
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degrees of freedom to translational motion of the cluster when the
escaping atom is reversed.

When the calculations are reinitialized in this way, the micro-
scopic State of the cluster, defined by the center-of-mass coordinates
of the atoms, was changed only slightly; and the kinetic and total energies
and the angular momentum of the cluster were not changed at all. It
" is,therefore, reasonable to assume that the cluster is not driven into
a 'nonequilibrium" state by the reinitialization procedure.

The calculations yield a series of trajectory segments, each of
which is terminated by the escape of an atom from the cluster. These
data are exactly analogous to what would ideally be obtained from the
actual observation of clusters in a real vapor since these clusters
also change in size with time. Thermodynamic properties of
clusters are obtained from averages over trajectory segments.

The choice of initial conditions for a calculation is arbitrary. It
is desirable, however, that the initial configuration be close to that at
equilibrium so that the cluster will not take long to reach equilibrium.
In our calculations, 6000 time increments (6 x 107" sec.) were
allowed for a cluster to equilibrate after its energy was modified.
After a cluster was equilibrated, runs were made in which the coordi~
nate data were savedfor analysis. The lengths ™ of these runs were
proportional to N'}?:, the relative magnitude of fluctuations in kinetic

energy. The values of Ty are tabulated in Table I.
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The temperature of a cluster is computed from the time average
internal kinetic energy and must be adjusted to account for the missing

translational and rotational degrees of freedom,

N
T = (o) o (N -21 tmv?, (19)
i=

where v; is the velocity of the it

atom and m is the mass of the atom.

In calculating the cluster thermodynamic properties, we assume
the same separation of the cluster Hamiltonian as for the microcrystal
model,Eq. (1), which enables us to compute the (quasi)~vibrational,
rotational, and translational contributions to the free energy separately.
The translational contribution is simply that determined in the periect
gas approximation. The rotational contribution is approximated using |
the time average of the rigid-rotator partition function,

9, rot{T) = w2 (87°KT/ hz)g/z (IyIpl0) %> ) (20)

where 1 A IB and IC are the time-dependent, principle~axis moments
of inertia.

To calculate the vibrational contribution to the free energy of
a cluster, we evaluate the vibrational energy and entropy and combine
these to obtain the free energy. The thermodynamic energy is simply

“he internal total energy of the cluster, which is obtained from the
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molecular dynamics calculations. The absolute entropy of a
cluster was determined by extending the value of that function
determined from the microcrystal model at 25°K, S‘i\r (25°K). The

eniropy at temperature T is

T Cy(TY)

Sx(T) = 83 (25°K) + / —r— 4T/, (21)

25°

where CN(T)'is the heat capacity of the cluster determined from the
molecular dynamics data.

As noted above the correct evaluation of the microcrystal model
requires that all stable configurations of the cluster be included in
the calculation. Such a calculation is not in general possible because
of the extremely large number of stable configurations of a cluster.
The best approximation that is feasible is based on a number of con-
figurationsthat have low free energy at the temperature of interest. 4
Such a multiconﬁgura‘tion approach was used in our calculation of the
standard entropies S&(ZS"K). The number of configurations used for

each cluster is indicated in Table 1.
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V. RESULTS

A number of calculations were performed for each cluster. The
total energies and temperatures that were obtained are shown in the
plot of Fig. 2. Each point in the figure represents a calculation of
length N The solid curves in Fig. 2 are quadratic polynomials
obtained from least-square fits of the energy vs. temperature data.
These polynomials were used in calculating the vibrational contribu~

tions to the cluster thermodynamic functions. The variation in the

temperature of a cluster among runs with the same total energy is
due to statistical error, which is discussed below.

Fluid motion inside the clusters can be characterized by the
coefficient of self~diffusion DN(T). The coefficient was evaluated for
the 2/3 of the atoms in a cluster that were closest to the center of
mass at the beginning of a run. Contributions from suriace atoms were
thus excluded except where atoms initially in the interior of a cluster
diffused to the surface during a run. The value of DN was determined

from the time~dependent mean-square-displacement function,

M) = |z lt+t) - 5 0 5, (22)

where r, (t) is the position of the k% atom in the center~of-mass
coordinate system at time t. The average in Eq. (22) is over both
atoms and values of t,. Inbulk fluids, M(t) becomes linear after an
induction time 7 of order 107" sec and the diffusion coefficient is
érelated to the slope of the linear portion, 12

-

Dy = ¢ dM(t)/dt, (7). (22)
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Fig. 2.  The internal total energy per atom as a function of tempera-
ture. The solid lines are quadratic polynomial fits, Each

point corresponds to a run of length TNi ©, 15-agtom cluster;

+, 30; m, 45,9, 60; 4, 80; ®, 100,
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In a cluster an upper bound to the magnitude of M(t) is imposed by the
{inite ‘size of the cluster and the slope of the function decreases to
zero at long times. At intermediate times, h"dWever, the function is
very nearly linear. We evaluated the diffusion coefficient from the
slope in this region, using the interval from 3 x 10 to 10 x 10™* sec for

that purpose. Fig. 3 shows the temperature dependence of the diffusion
coetticient for a 30-atom cluster. In the figure, log,,D,, is plotted

as a function of 1/T. The line is a least~square fit of the data.

In Figs. 4 and 5 we have plotted the radial density function, the
average number of atoms per unit volume at a given distance from
the center of mass of the cluster. Each point in the plots represents
the same amount of information. There are no gjoints at small or
large values of r because statistics are poor in these regions: the
volume of the small radius region is small and the number of atoms
in the large radius regionis small. Fig. 5 showsthedependence ofthe
function on cluster size at a temperature of ~70°K, and Fig. 4 shows
the dependence of the density distribution of a 30~atom cluster on
temperature. The horizontal lines in the figures indicate the density
in the bulk phases. The upper line is the density of solid argon at
70°K and the lower one is the density of liquid argon at 84°K, the
triple-point temperature.

The size of a cluster is not obviously defined by the radial
distribution of its density. For the purpose of our later discussion of
the thermal expansion of clusters, we shall regard the radius of a
cluster as that of the spherical surface that contains, on the average,

90% of the cluster's mass. This radius is denoted RQO% . Its value -
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for each of the clusters in Figs. 4 and 5 is indicated by an arrow and
its temperature dependence for clusters of 30 and 100 atoms is shown
in Fig. 6.

Fig. T shows the radial distribution of potential energy,
the average potential energy of atoms at a given distance from the
center of mass. The potential energy of an atom is V. = %';iVLJ (rij)’
where VLJ<rij) is the value of the Lennard~Jones pair potential. The
curves refer to clusters at ~ 70°K.

In Fig. 8 we have plotted the rotational free energy as a function
of temperature. Again each point represents one calculation and the
solid curves are quadratic polynomials, obtained from least-square
fits. The free energy was determined from the rotational partition
function [ Eq. (20)] by the usual relation, GN, cot =~ KT in(qN, o)

TFigs. 9~11 show the temperature dependence of the total (all
degrees of freedom) enthalpy, entropy, and Gibbs free energy for
several different clusters, each at one atm partial pressure. In
these plots the points indicate values obtained from the microcrystal
model and the solid curves are from the molecular dynamics calcula~
tions.

Figs. 12 and 13 show the Gibbs iree eneré‘y of formation from
the monomer AG J&(T, P) as a function of cluster size. It is this
function that is used in Eq. 13 to compute the equilibrium cluster
concentrations. The points in the figures are from the microcrystal
model and the solid lines connect values obtained from the molecuiar

dynamics data.
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Vi. COMMENTS ON THE CALCULATIONS
A, Definition of the Clusters

The spherical boundary that we have used in our calculations
effectively defines a cluster of N atoms by determining which con~
figurations of the atoms will be identified with the cluster. This
definition is ’simple and efficient to use in the molecular dynamics
calculations. At the temperatures considered in our calculations, it is
practically equivalent to the definition introduced earlier where a cluster
is defined as a connected set of interacting pairs. That definition is
particularly useful in the rigorous decomposition of the configuration
integral of the vapor.

The definitions are nearly equivalent at reasonably low tempera-
tures because the most probable configurations of the atoms are con-
sistent with both definitions: configurations that are allm%zed’ by one of
the definitions but not the other have low probability of occurring. Thus
highly nonspherical configurations allowed by the "interacting~pairs"
definition that might not "'fit" inside the spherical boundary have high
potential energy and are therefore improbable. Similarly, configurations
allowed in the molecular dynamics calculations in which an atom is
separated by more than ~ 3o from others in a cluster occurred inire-
i;a%ntly. We expect, therefore, that the results of our calculations
ap;gly to the clusters defined in Section II. We also expect that our
results for a cluster would not change significantly if the value of the

cluster radius RN were varied over a range of several atomic diameters
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since the configurations that would be included or excluded by the vari-

ation would be those that occur with low probability.

B. Statistical Error in the Temperature

The temperature of a cluster is rigorously determined by the
ensemble average of its kinetic energy, which according to the ergodic
theory, is equivalent to the time average in the limit of infinite time.
In molecular dynamic calculations the infinite average is approximated
by a finite average. The error associated with the approximation is
evidenced in Fig. 2 by the spread in temperature estimates from cal-
culations at the same total energy. For the highest temperature state
of the 30~-atom cluster, for example, 8 calculations of length 7;, were
performed; the standard deviation of the temperature estimates {rom
these runs is 2°K and the standard deviation of their mean is 0. 8 K.

This statistical error can be exnressed quantitativgly ’in terms

of the autocovariance function for the kinetic energy,
Clk) = (Elt+s) E6)) - (B, (24)

where E(t) is the kinetic energy at time t and the brackets indicate
ensemble averages. Using a simple relationship from the theory of
stochastic processes, 13 the variance of the temperature estimates

for calculations of length TN is

‘ T
. N
2 __4C(0) 1-2 [cw)/c0)]dt 25
R I I COTE OIS (25)

We were unable to apply Eq. (25) directly to the calculation of UTZ

because of the large uncertainty that exists in our estimates of C(t)
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from the molecular dynamics data. 14 The expression is, however,
useful for understanding the origin of the statistical error. The
factor of C(0) in front of the integral indicates that UTZ is proportional
to the average magnitude of the fluctuations; and the integral itself,
which contains the normalized autocovariance function, indicates
that O'T2 also depends on the time correlation of the fluctuations.

The error in our temperature estimates is somewhat larger
than has been encountered in liquid state‘caicuiations where periodic
boundary conditions are used and the density is uniform throughout
the system. The fluctuations in kinetic energy of the clusters were
relatively large because of the small size of the clusters and also
because of the large variation in the potential en'ergy of probably con-
figurations of a cluster--both compact, low-potential-energy and
diffuse, high-potential-energy configurations were frequently encount-
ered. Variations in potential energy are, of course, accompanied by
variations of equal magnitude in the kinetic energy. Another contribu-
tion to the error, we believe, is a tendency for the fluctuations to be
correlated due perhaps to low frequency "breathing' motions of the
clusters. The error in the temperature can be reduced by increasing
the number or length of calculations at each total energy. To estimate
the length that is necessary for a given degree of accuracy, knowledge
of the decay properties of C(t)/C(0) is necessary. Hopefully such

knowledge will be obtained from future calculations.
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C. Errors in the Standard Entropy Values

Errors in the values of SS\J(ZS"’E{) for a cluster are due primarily
to the neglect of stable configurations of the cluster in evaluating its
entropy. This error, which is discussed in some detail in Ref. 4, can
be minimized by increasing the number of configurations actually used
and selecting them in such a manner that they tend to have low free
energy at 25°K. The effect of anharmonicities in the potential energy

function is not believed to be large at this low temperature. 3

D. Vibration-Rotation Couming

The neglect of vibration-rotation coupling in our calculations
enabled us to consider only clusters with zero angular momentum and
thereby saved considerable computer time. To include the coupling,
it would have been necessary to vary the angular momentum as well
as the total energy of a cluster. A molecular dynamics calculation
that was actually performed with a spinning cluster, however, indicates
that the effect of including the coupling would have been small compared
to the statistical error in temperature. V

A 30-atom cluster at ~ 50 °K with average rotational energy (3 Iw?)
greater than 3kT/2 was considered. In Table II results of the calcula-
tions are compared with those from a calculation in which the same
initial conditions were used except the angular momentum was zero.
Both calculations were run for 27,, or 1.2 x 107 °sec. Tt will be noted
in the table that the average of the vibrational total, kinetic, and poten-
tial energies from the two calculations are nearly equal even though -

their average rotational energies are quite different. If vibration-
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rotation coupling were strong, one would expect the vibrational energy
values to vafy with rotational energy. The potential energy, for exam-
ple, would increase with increasing rotational energy because of centrif~-
ugal distortion. This apparently does not occur for rotational energies
that are comparable to the thermal average value, probably because the
moments of inertia of the clusters are very large, causing their thermal

rotational velocities to be small.
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VII. DISCUSSION
A, Fluid Motion Inside The Clusters

To characterize the clusters according to the fluidity of the
motion of their atoms, we compared the values of the coefficient of
self diffusion DN in the clusters to that in liquid argon at the triple
point, 15 D, = 1.8 x 107" cm?/sec. Values of Dy larger than D,
are referred to as "fluid-like' and those smaller than D are referred
to as ""'solid~like.” According to this criterion, diffusion in each of
the clusters is solid-like in its lowest temperature state: D, at 22°K
is 1.5 x 1077 ecm®/sec and D,,, at 31°K is 3.6 x 107 cm”/sec.
Similarly, each cluster is fluid~like in its highest temperature state:
D,, at 68°K is 7.9 x 107° cm?/sec and D, at 71°K is 2.2 x 107°
em’/sec.

A true phase transition is not expected in the clusters. A fairly
sharp transition from solid-like to fluid~-like diffusion would, however,
be expected in the core region of large clusters. The transition would
become more diffuse as the size of the cluster was decreased. We
attempted to detect such a transition by examining the temperature
dependence of the diffusion coefficient, but were not successful. The
plot of log(D,,) vs 1/T in Fig. 3 has the same linear behavior that
has been determined for that function experimentally in liquid argon.
We believe that a "melling zone' would be evidenced by a rather sharp
change in the slope of the function as DN increased from solid~-like

to fluid-like values. The other clusters exhibited similar behavior



although our data are not as extensive for these clusters making it
more difficult to rule out a change in the slope of the function. The

transition is too diffuse to be detected in ocur data.

B. Radial Dependence of the Density

The plots of density vs. distance from the center of mass in |
Figs. 4 and 5 are generally consistent with the classical drop model
that pictures a solid or liqﬁid core separated from the vapor by a
transition region. It may be noted, however, that the volume of the
core region is quite small even for the 100~atom cluster and that most
of the atoms lie in the transition region -~ the clusters are mostly
"surface.” The density inside the 15-atom cluster at 68 °K does not
reach that of the bulk phases, which is not consistent with the drop
model.

Very definite structure is evident in the plots of the radial
density function. This structure, which was observed for each of the
clusters at every temperature studied, is consistent with the spherical
symmetry of the clusters and indicates a tendency for the atoms of a -
cluster to arrange themselves in shell-like layers about the center of
mass. The plots in Fig. 5 show that the tendency is strongest at low
temperatures where the iree energy is dominated by the configura~
tional energy of the cluster. The structure is especially pronounced
in the 30~atom cluster at 50°K even though diffusion in the cluster is
still fluid-like at that temperature. Similar oscillatory character is
predicted theoretically for the variation in density through a liquid-

vapor interface. 16
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In Fig. 5, the radius of the 15-atom cluster at 70°K
a;ppears inordinately large compared to that of the 60 or
the 100-atom cluster at the same temperature., The reason
is that the small clusters expand much more rapidly with
increasing temperature than do the larger ones ~~- the small clusters
don't hold themselves together as well, The difference in rate of
expansion for clusters of different size is shown quite clearly in Fig.
5. The curves in that figure not only indicate that the small clusters
expand more rapidly than the larger ones but also that the difference
between the rates of expansion becomes larger with increasing tempera-
ture. An interesting consequence of this expansion is that at some
temperatures the cluster size (radius) will not be a monotonically
increasing function of the number of atoms in the cluster: clusters
containing fewer atoms will be larger than clusters containing more
atoms. -

The horizontal lines in Fig. 5 indicate values of the cluster
radii calculated from the density of bulk solid and liquid argon using
the equation (4/3)7R® = Nv,., where vy, is the volume per atom in the
bulk phase. The lower line for each cluster refers to the solid at
20°K and the upper one refers to the liquid at 84°K. These values
for the radius, which are commonly used in the liquid drop model,
are quite poor in general, especially for small clusters at high
temperatures. The temperature dependence of vy is much too small
to enable the above equation to account for the rapid expansion of the

clusters.,
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C, Radial Dependence of the Potential Energy

Even though the density in the core region of the clusters is
nearly constant and roughly equal to that of the bulk phases, the
environment in this region is quite different from that in the bulk
phases. Decause of the small size of the core region, the atoms in
that region interact strongly with atoms in the transition region where
the density is not constant. These interactions cause a gradient in
the potential energy, shown in Fig. 6, that leads to an average radial
force tending to hold the clﬁster together -~ the surface tension
effect. The gradient apparently exists right up to the center of the
clusters. This means that the pressure is anisotropic throughout
the cluster and that the thermodynamic energy is not constant even
in the core region of the clusters. The clusters are not, therefore,
consistent with the model on which Gibbs based his surface theory.
In that model a suriace is regarded as an interface separating phases
in which the thermodynamic properties are homogeneous and
isotropic.

The environment in the core region of the clusters does not in
fact resemble that in either of the bulk phases and it is doubtful that
valid theoretical calculations of cluster properties can be based on
the properties of the bulk phases with corrections added for surface
eﬁgcts. This general approach, which is used in the liquid~drop
model, is not consistent with our finding that the clusters are in fact

almost entirely "surface."”
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D. The Cluster Thermodznamic Functions

The plot of enthalpy vs. temperature in Fig. 9 indicates that
the molecular dynamics values are nearly equal to the microcrystal
values at 25°K. As the temperature is increased past this value the
molecular dynamics values increase much faster because of the rapid
expansion of the clusters. This expansion, which is not allowed by
the harmonic approximation used to evaluate the microcrystal model,
causes a significant increase in the average potential energy of a
cluster. A similar difference in the temperature dependence of the
entropy may be noted in Fig. 10: the entropy of the "dynamic"
clusters increases much faster than that of the microcrystal clusters.
The reason is that the harmonic approximation severely constraing
the motion of the atoms of a cluster and thus reduces its entropy.

The difference is most pronounced at higher temperatures where the
dynamic clusters are expanded and the motion)of their atoms is fluid~
like, The Gibbs free energy plotted in Fig. 11 indicates that there is
somewhat less difference between the two sets of values for this
function than for the enthalpy and the entropy. The higher enthalpy

of the dynamic clusters tends to increase their free energy relative to
that of the microcrystal clusters while their higher entropy tends to

~ decrease it, and the two effects partially cancel. The result is that
'thed3 microcrystal model apparently yields reasonable values of the

cluster free energy even at temperatures where the model is unrealistic.
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i

The plots of the Gibbs free energy of formation AGN vs. Nin
Figs. 12 and 13 show the behavior expected for that function. The
nucleus in these curves is identified as the cluster for which A(}g\1r is
maximum. Il is noted that both the size and the free energy of forma-
tion of the nucleus decrease as the saturation level of the vapor is
increased, i.e., as the temperature is decreased in Fig. 12 and the
pressure is increased in Fig, 13. The small dip in the function at
N = 30 is attributed to error in the standard entropy values S{\} (25°K)
and is not considered physically significant. If is interesting to note
how close the microcrystal values of &G;r are to the dynamic values.
This suggests that the microcrystal model should be quite useful
for estimating the equilibrium distribution of clusters and the rate

of homogeneous nucleation.

E. Comment on the Liguidﬂ’)mg Model

The basic idea behind the liquid-drop approach is to use the Gibbs
surface theory result for the free energy of formation of a drop to deter=-
mine the Gibbs free energy of formation of a cluster, the quantity
AG?(T, P) defined by Egs. (15)~(19). There is, of course, a correspond-
ence between drops and clusters; and the relation between them is
apparent if one considers a system in which a drop exists in stable
equil}brium with ambient vapor. Each instantaneous configuration of
the sgrstem would appear as a large chister surrounded by small clusters
and monomers. In time the size of the large cluster would fluctuate.

A drop, therefore, corresponds to a distribution of clusters; but it is

reasonable to assume that the properties of the drop are nearly identical
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to those of the most probable cluster of the distribution. Ideally, then,
the free energy of formation of the drop could be used to evaluate AG?* R
where i* is the size of that most probably cluster.

There is, however, no purely thermodynamic way to determine
the value of i* for a drop. The problem is a consequence of the abstract
manner in which Gibbs defines the fuhdamenta} variables in his surface

17

theory. In that theory the volume of a liquid-vapor system is divided

by a geometrical dividing surface: for a volume V containing a liquid

drop,

V=V, +V,, ‘ (26)
where V, is the volume inside the surface and vy is the remaining
volume. Gibbs also divides the other extensive variables of the syé‘iem
using the dividing surface. The total number of molecules in the sys-

tem, for example, becomes
N =N, +Ny+N_. , (27)

Here Nv is the number of molecules that would be in VV if the density

of the vapor were constant up to the dividing surface; N ) is the number
of molecules that would be in V ) if that volume contained homogeneous
liquid at the temperatures and chemical potential of the vapor; and NO,

is essentially a correction factor to make the equation valid. The rela-
tion between Ns’& and Vﬂ is simply stated by the relation .ij,zv}2 = Vi’
whe;ce vy is the volume per molecule in the bulk liquid. In the liquid-~
dro;g; approach, N ) is incorrectly identified with i*. The identification
is invalid for two very fundamental reasons, which make N 09 in a sense,
doubly removed Irom physical significance. Firsi, N is unrelated to

the number of molecules actually inside Vﬁ; and second, V ) is
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unrelated to the structure (density variation) ¢ the drop. The first
reason is obvious from the definition of N IE and the second will
become apparent after further consideration of the surface theory.
According to Gibbs, the energy of the two-phase system is com-~
pletely determined by the entropy S, the number of molecules N, the
volumes Vv and V K and the area & and principal curvatures ¢, and
¢, of the dividing surface: the fundamental equation of the system is

E(S, N, V

v Vi A, c,, c;). Also, according to Gibbs, the depend-

ence on ¢, and ¢, vanishes for a particular choice of the dividing surface,

which we call the surface of tension. Gibbs argues that for surfaces of

small curvature (large drops), the surface of tension will "sensibly
coincide with the physical surface of discontinuity' (Ref. 17, p. 227).
These arguments do not, however, apply to very small, microscopic
drops that have high curvature and that do not have a homogeneous
region in their interiors (Ref. 17, pp. 253-255). TFor these drops the
position of the suriace of tension with respect to the physical disconti-
nuity is uncertain. A connection between V g and the structure of the
small drops is not, therefore, established.

We conclude that considerable error exists in the index i* for
values of AG—:* determined using thé liguid=-drop approach. This means,
for example, that the approach does not lead to an accurate determina-
tion of the number of molecules in the nucleus. It also makes it difficult
to dchieve a meaningful comparison between our values for AG? and
those obtained irom the liquid~drop model. A direct comparison could
not, for example, be expected to establish preference for either the -

Reiss-Katz—CohenzS or the Lothe—?oundig solutions of the model. An
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uncertainty of +1 in i* would be equivalent to + 3 degrees of freedom,
which is about the same as the difference between the two solutions.
We have decided, therefore, to leave consideration of the liquid-drop

model to another paper.
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Table I. Radii of the spherical boundaries, lengths of the calcula~
tions, and the number of stable coniigurations used in

evaluating the standard entropies: S&(ZS"K).

Number
of

N Ry/ 0 T/ 10" sec Contions
15 3.97 10000 19
30 | 5.00 6000 14
45 5.72 5000 7
60 . 6.30 4300 2
80 6.93 3700 2
2

100 7.47 3300
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Table II: Comparison of the energies for rotating and a non-rotating
clusters. A molecular dynamics calculation was first
performed on the rotationless cluster. The cluster was
then caused to rotate and another calculation performed.

The average vibrational, total, potential, and kinetic energies

are nearly the same for the two calculations.

Rotationless . Rotating
(Erot/Ne) 0.000036 0.03881
mvib/N€> ~2.500 -2.,494
<Vvib/N€> « -3,.084 -3,072

<Evib/N€> 0.5833 0.5785
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C. Paper No. 4

CALCULATION OF SPECTRA AND CORRELATION
FUNCTIONS FROM MOLECULAR DYNAMICS DATA
USING THE FAST FOURIER TRANSFORM
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Molecular dsmaumf:s“5 produces particle trajectories for atomic
and molecular fluids and solids. Time-displaced autocorrelation func-
tions calculated from these trajectories are used to study a host of

6,7 The auto-

transport, relaxation, and light scattering processes.
correlation functions C(t) of the dynamical variable a [QN(t), EN(t)] for

the N-particle system is approximated by a finite time average,

) = (ab)a(0) ~ = [Ta+9als)s, (1)

ensemble

and is generally calculated from particle trajectories by simple numer-
ical integration. We have employed a computational technique that
enables one to evaluate C(t) much more rapidly and with less round-off
rror.
It is well known that C(t) can be expressed in terms of the Fourier
transform a {(w) of a(t),
1 %

c) = == [ Tw) [Fe“ dw. o (2)

Cur method uses Eq. (2) with very efficient Fourier transform algorithm,
the "fast Fourier transform" (FFT)?’ 9 to calculate a{w) and thence
C(t). Mathematically, the method is exactly identical to the "standard
method" using Eq. (1).

Molecular dynamics produces a discrete time series of n values
of a variable a(t). The efficiency of algorithms used to process these
data can be measured by tie number of multiplications or additions
("operations') they require to produce the same result. To compute
C(t) using the "standard method" requires [ng +0(n)] operations. The

FFT applied to Eq. (2) is computationally far more efficient, requiring



140

3n[log,n + 0(1)] operations. 8,9

For n > 30, the FFT is superior to
the "standard method, " e.g., for n = 1000 the FFT is 25 times faster.
Since the generation of the molecular dynamics data requires calcula-
tions « n, extensive calculations of correlation functions using the
"standard method" (Ocnz) could easily consume more time than the data
generation. The FFT should be used in such cases.

As an example, in studying a liguid cluster of 30 atoms we have
calculated the autocorrelation of the total kinetic energy for 6000 points.
Using an IBM 360/75 computer (single precision), the data generation
required 220 sec, the "standard method" for C(t) required 320 sec,
and the FFT calculation of C(t) took only 8 sec. The values of C(t) for
the two methods were the same to five significant figures. We estimate
the time saving that could have been achieved using the FFT in past
calculations of correlation functions to range between 4:1 and 25:1.
Correlation functions have oiten been computed for a very limited
number of time points but the efiiciency of the FFT can allow calcula-
tion at all points for about the same effort.

If the FFT is simply applied to a block of data according to Eq.
(2), it produces a periodic correlation function with an incorrect asso-
ciation of certain pairs of data points. This difficully is easily circum-=~
vented by appending a bleck of n data points, all zero, to the original
n points. 10 Also when two {inite blocks of data are convoluted using
the: FFT, a different number of products contribute to each terms
C(tk)‘ To correct for this, each term is multiplied by a weighting

factor; C(‘ck) becomes C(‘ck)/ n-k).
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Some functions that are not normally thought of as autocorrelations
can be cast into that form, allowing one to use the FFT procedure.
The orientational function, (P, [u(0)-u(t)]), where P is the Legendre
polynomial and u is a unit vector along a molecular axis, can be written
in terms of autocorrelations of [u X(‘t)]z, uX(t)uy(t), etc. The mean-
square displacement of a particle, ( };\(t) - E(O) 12) can be derived from
the velocity autocorrelation function or expanded as, 2{|z(0)|*) -
2(£ ) -r (0)). Cross-correlations can also be calculated using
gf (w)alw) in placé of [E(w) [2 in Eq.(2). Other quantities of interest
such as spectral moments can be calculated directly from power spectra
obtained with the FFT.

It has recently been discovered using molecular dynamics data
that the velocity autocorrelation function C(t) decays very slowly at
long times. 11-14 This anomalous behavior can be studied directly via
the power spectrum E(w) » avoiding the additional step of calculating

3/2 for large t with spectrum -

C(t). In three dimensions C(t) «<t”
E(w) < D+ dlw% + 0(w) for small w. D is the diffusion constant. In
two dimensions C(t) « t'% so that 5(w) a w"% + 0(1). Thus this power
spectrum is divergent at zero frequency.

The FFT should be very useful in calculating space-time corre-
lation functions f(r, t) and their spectra ?{}5\? w), with special cases,
e.g., kx = ky =0, kz # 0, being the easiest to compute. The radial
distribution function g(r) is one case that can be computed more effi-

ciently using a simyple "standard method" in the radial variable r

- rather than a 3-d FFT in %, vy, z with subsequent spherical averaging.
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As a final application of Fourier transiorm techniques, consider
the problem of determining the phonon specirum of a solid. Two stand-
ard methods for this are (1) finding the eigenfrequencies from the
force-constant matrix, 16 which can lead to a large matrix diagonaliza-
tion problem, and (2) calculating the power spectrum of the velocity
autocorrelation function Cv(t) derived from molecular dynamics. 17
The second method is exact only if equipartition is obeyed and is there-
fore only an approximation in practice. The efficiency of the FFT
suggests a third method in which the power spectrum of Cv(t) is calcu~
lated directly from the particle velocities using a verﬁr fine frequency
mesh. The spectrum will then be large only in the neighborhood of
each of the eigenfrequencies, which can therefore be isolated (away
from each eigenfrequency there will be a background contribution of
Lorentizian or Breit-Wigner shape due to the finite frequency mesh
spacing). This method would be particularly interesting ’;f applied to
the slightly anharmonic solid where any additional broadening will

arise from anharmonicity.
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