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ABSTRACT_

Two methods have been developed for calculating the thermody-
namic properties of the small clusters of atoms believed important in
the phenomenon of vapor phase homogeneous nucleation, Clusters of up
to 100 argon atoms have been considered. The interactions among atoms
are represented by the Lennard-Jones pairwise additive potential func-
tion and all degrees of freedom are explicitly included.

In the first method, the microcrystal model is used and the inde-
pendent-cluster partition function is evaluated in the same way as one
would evaluate that for a polyatomic molecule in the simplest approxi-
mation: the harmonic, rigid-rotator, and perfect-gas approximations
are used to calculate the vibrational, rotational, and translational con-
tributions to the partition function. The steady-state rate of formation
of nuclel as a function of degree of supersaturation has been calculated
and is found to have a behavior similar to that expected from the classi-
cal, "liquid-drop' model.

The importance of using several stable configurations of a cluster
in calculating its properties from the microcrystal model is examined
in detail. It is shown that the single-configuration approximation that
has been used extensively in recent work can lead to serious errors.
Methods for selecting configurations that will minimize these errors are
suggested,

In the second method, molecular dynamics computer simulation
calculations are used. In these calculations the classical equations of
motion for the atoms in a cluster are numerically integrated to yield‘

time records of the atomic position and velocity coordinates. Values



of the independent-cluster thermodynamic functions are calculated from
these coordinate data and are compared with those obtained from the
microcrystal model. The comparison indicates surprising agreement for‘
values of the Gibbs free energy of formation. The transition between
"solid~like' and "'fluid-like" diffusion in the clusters occurs gradually;
no semblance of a phase transition is noted. The radial variation of
density indicates that nearly all the atoms of a cluster exist in the
"surface' region; the radial distribution of potential energy indicates
that the environment inside the clusters is quite different from that in-
side the bulk liquid or solid phases.

The largest error in the molecular dynamics results is statistical
error in the temperature. An expression for this error has been derived
in terms of the kinetic-energy autocorrelation function. We have shown
- that this and other correlation functions can be computed from the
molecular dynamics data very rapidly using a method based on the Fast
Fourier Transform. |

Finally, several very fundamental problems have been discovered
in the classical, liquid-drop theory of nucleation. These problems are
discussed in the context of a rigorous approach to nucleation theory that

is based on the Frenkel-Band theory of noninteracting physical clusters.
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PART I: THE THEORY OF VAPOR PHASE
HOMOGENEOUS NUC LEATION



A, Jnotroduction

It is well known that a pure supersaturated vapor can exist
in a metastable state. If the degree of supersaturation is not too high,
the lifetime of the metastable state will be quite long and the vapor will
appear stable. As one increases the level of supersaturation of the
vapor, the lifetime of the metastable state decreases and the vapor
eventually condenses. The point at which condensation occurs is a
reproducible characteristic of the vapor and is referred to as the
"eritical' level of supersaturation. Nucleation experiments are gener-
ally designed to measure this critical supersaturation over a range of
temperatures; nucleation theory attempts to predict the critical super-
saturation and, more generally, to understand the details of the nuclea~
tion process.

In this part of the thesis a general overview of nucleation theory
will be presented. We begin in Section B with a purely thermodynamic
explanation for the metastability of supersaturated vapors, which is due

originally to Gibbs. !

The explanation is of great conceptual value but
it does not lead to a quantitatively significant understanding of nuclea-
tion. In particular, it does not enable one to calculate the critical
supersaturation level of a vapor.

In order to calculate this quantity and to obtain a more detailed
understanding of nucleation, it is necessary to consider the kinetics of
the interactions among "clusters' of molecules in the vapor. In the
kinetic theory of nucleation, described in Section C, a supersaturated

vapor is treated as a gaseous mixture of clusters and the time depend~

ence of the cluster concentrations is determined using the methods of



chemical kinetics. Solution of the rate equations that describe the
nucleation process requires that one know the critical concentrations of
the clusters in the supersaturated vapor. The calculation of these con-
centrations is a problem in equilibrium thermodynamics or statistical
mechanics, and it has proved to be the most difficult aspect of the theory.

Two general approaches to the calculation have been developed.
The classical approach uses the Gibbs surface theory1 to evaluate the
"liquid-drop' model for clusters and to determine their thermodynamic
properties. The classical approach is discussed in some detail in
Sections D and E. Section D contains a brief outline of pertinent
aspects of the surface theory and in Section E the classical evaluation
of the liquid-drop model is followed. The purpose of these two sections
is to show exactly how the classical expreésion for the standard Gibbs
free energy of formation of a cluster is derived. The derivation is
periodically interrupted by "NOTE's" in which the approximations and
assumptions involved in the derivation are discussed. Tﬂese annota~
tions may appear somewhat laborious but it is the feeling of the author
that the significance and even the existence of the approximations and
assumptions are not génerally realized by many of those working in the
field. Asa canse@uence, much of the theory that appears in the litera-
ture is either ambiguous and confusing or just plain incorrect. In addi-
tion to difficulties with the classical derivation that are easily corrected,
we find 2 number of very fundamental problems with the liquid-drop
model that we believe cannot be rectified.

The second approach to the calculation of cluster concentrations

is based on the statistical mechanical theory of physical clusters. In



Section F we present a rigorous development of that theory and use it as
a basis for a new, descriptive approach to nucleation. The approach
enables us to determine just what is involved, on the molecular level,
when a nucleus is formed in a supersaturated vapor. Numerical evalu-
ation of cluster concentrations from physical cluster theory requires
computation of the "independent-cluster partition functions, ' which has
only recently been made practical by the availability of high-speed com-
puters. Development of methods for accomplishing this computation is
the object of most of the research reported in Parts II and III of this

thesis.

B. A Phenomenological AERroach to Nucleation

Why does a supersaturated vapor not 'condense'? The reason is
that the vapor is supersaturated with respect to bulk liquid with a planar
surface, but it is unsaturated with respect to the very small droplets
that must be formed at the initial stages of the condensati(;n process.
The small droplets tend to evaporate rather than to grow into macro-
scopic draops.

The problem can be understood on a more quantitative basis if we
consider an apprm;imate calculation of the work required to form one of
the small droplets in the vapor. According to an argument that will be
examined in more detail later, this work can be approximated by the
following expression,

W = n(ﬂﬁ-uv)+0Bn2/3 , (1)

where n is the number of molecules in the droplet, py 1is the chemical

potential of the vapor, u ) is the chemical potential of bulk liquid at the



temperature and pressure of the vapor, o is the surface tension, and

B is a positive constant. The first term nAy in the expression is nega-
tive because the vapor is supersaturated and its chemical potential is
higher than that of the bulk liquid; the second term is positive. A maxi-
mum therefore exists in the function as shown in Fig, 1.

The droplet whose work of formation is maximum is called the
nucleus. It exists in unstable equilibrium with the vapor: droplets
smaller than the nucleus tend thermodynamically to evaporate while
those larger than the nucleus tend to grow. Formation of the nucleus
is therefore regarded as the barrier to nucleation--if a nuclieus is
formed in the vapor, condensation is likely to follow.

Thermodynamically a supersaturated vapor will be metastable as
long as the work of formation of the nucleus is positive. In practice,
however, metastable states for which the barrier to nucleation is low
are not observed since fluctuations carry the system over the barrier
in a very short time. A purely thermodynamic theory is not; therefore,
capable of predicting the observed critical supersaturation. A kinetic

theory is required to accomplish this prediction.

C. The Kinetic Theorz of Nucleation

In the kinetic theory one treats a supersaturated vapor as a gase-
ous mixture of clusters and uncombined molecules that interact accord-
ing to a series of reactions resembling those for a chemical polymeri-

zation:



Figure 1. The work required to form a droplét ina
supersaturated vapor as a function of the

size of the droplet.
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where Am represents a cluster of m molecules. Reactions between
"polymers' are generally ignored because collisions between them are
relatively infrequent. For the series of reactions one can write a set
of coupled differential rate equations that can, in principle, be solved
for the time dependence of the cluster concentrations. The equations

are as follows:
dc, = k,C% - k_,C, - k,C,C, +k_,C,,
dC, = k,C,C, - k-,C, - ksC,C, +k_,C,,
(3)

@

AChy = k-1C:Cpo1 - k-(m-l)cm “KpCiln K mCma

° 3
where Cm is the number of m-molecule clusters per ugit volume.

To solve the equations, the following two sets of data are required:



1. The initial concentration of clusters, i.e., the concentrations in
the equilibrium metastable state corresponding to the supersatur-
ated vapor, and

2. the rate constants, k,, k-, etc,

Estimation of the Rate Constants

Rate constants for the forward reactions are estimated by assum-
ing that all collisions between a cluster and a monomer result in reac-
tion (accommodation coefficient of unity). From the kinetic theory of

gases, the rate of the reaction

k
n
is therefore s‘unply‘Z .
_ _  87KT \& 2
Forward rate = k C,C_ = (“—_-*“’n ) D C,C . (5)

Here u, is the reduced mass mlmn/(m1 + mn) and D is the collision

diameter of the two particles. Thus

3
_  87kT \? 2
ky = (D) o} (6)

The reverse rate for the reaction is determined using the principle of
detailed !oa,].ancew3 According to that principle the forward and reverse
rates of each of the reactions in Eq.(3) are equal when the system is at
equilibrium. If we denote equilibrium concentrations by a superscript
"e'", then

K CoCE =k _CC, ©
and



(8)

n+1
The rate constants are therefore easily estimated in terms of the equi-

librium concentrations Cg; and the only data that are actually needed

for solution of the rate equations are these concentrations.

D. The Gibbs Surface ’I‘heorg1

In discussing the surface theory we consider the system illustrated
in Fig. 2 that contains two nearly homogeneous regions, one liquid (£)
and the other vapor (v), separated by a nonhomogeneous film (o). To
enable a precise treatment of the two-phase system, Gibbs divided the

volume of the system by a geometrical dividing surface that passes

through points within the nonhomogeneous film that have similar envi-
ronments. The exact location of the surface is arbitrary. For a par-

ticular dividing surface the volume becomes

where V g is the volume inside the surface and VV is the remaining
volume. The total number of molecules in the system is also divided,

according to the expression

N=N£+NV+N6. (10)
Here Nv is the number of atoms that would be in VV if the density of the
vapor were constant up to the dividing surface, N 2 is the number that
would be in V!Z if that volume contained homogeneous liquid at the temp-~

erature and chemical potential of the vapor, and N g is essentially a

correction factor to make the two sides of the equation equal. Similar
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.dividing
surface

Figure 2. Section of a two-phase system that is
partitioned by a dividing surface. The
regions v and £ are homogeneous phases
and the region ¢ includesihe'inhomo«

geneous transition region,
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divisions are made for each of the other extensive variables: the

energy becomes

and the entropy becomes

4 4 4
ﬁ§=wg+$ﬁg+%’*g. (12)

NOTE 1. The division of the extensive variables of the system is
achieved on mathematical rather than physical grounds. A consequence
of this abstract approach is that the surface theory is largely independ-
ent of a model for the two~-phase system. The theory is therefore quite
general, but it is incapable of providing information about the structure
of the system.

According to Gibbs, the energy of an equilibrium state of the sys-
tem is completely determined by the variables & , N, V, V., and the
area S and the principal curvatures ¢, and ¢, of the dividing surface:
the fundamental equation of the system is E(s, N, Vs V8, ¢y Cy)e
Again, according to Gibbs the dependence of E on ¢, and ¢, vanishes for
a particular choice of the dividing surface, which we call the surface of
tension. For this choice of the dividing surface the individual terms in

Eq.(11) can be written as follows:

_ \
E, =T, + N, + 08, (13)
E, = Tﬁﬁ +UN, - PV, (14)
hnl = Mé + i -
E, TMV p,l\v PVVV . (15)
- . ; 101 — hny 3\ N
Here o is the surface tension, o (8&/88%’ N, V,, Vi ¢, 0,0 T is

the temperature, 4 the chemical potential, P g the pressure of bulk
liquid at temperature T and chemical potential u , and PV is the pres-

sure of the vapor.
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NOTE 2: For surfaces with radii of curvature that are large compared
with the thickness of the nonhomogeneous surface film, Gibbs argues
that the surface of tension lies within the nonhomogeneous film (Ref. 1,
pp. 225-228). This argument establishes an important connection be-
tween the abstractly defined variables of the surface theory and the
physical structure of the system. Gibbs notes, however, that the argu-
ment does not apply to surfaces of very high curvature such as those of
the microscopic droplets important in nucleation (Ref. 1, pp. 253-255).
For these droplets the position of the surface of tension cannot be
located with respect to the physical inhomogeneity by purely thermo-
dynamic means. Thus, the surface of tension might be located outside
the nonhomogeneous film. Connection between the abstract variables
and the physical structure is not, therefore, established for the small
droplets. Indeed, Gibbs notes that, 'vanishing of the radius of the
somewhat arbitrarily determined dividing surface [ surface of tension |
may not necessarily involve the vanishing of the physical heterogeneity"
(Ref. 1, p. 255).

It is now possible to compute the work of formation of a liquid
drop in a supersaturated vapor. The Helmholtz free energy of the

initial state (pure vapor) is

i (0] o
F mNuvavV, (16)

The free energy of the final state, which contains a liquid drop in
equilibrium with ambient vapor, is

i .f f f
F FQ+FV+F0'

it

We now assume that the volume is large enough so that the pressure and
chemical potential of the vapor remain approximately constant during

the process, i.e.,

P, = P), (18a)
and o
My = B (18b)

and we note that since the final state is at equilibrium,

o=ty = by (19)
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The change in free energy, which is the work required to form the drop,
is then

AF =W = -V, (Pﬂ - Pv) + 0S8 , (20)
which can be simplified using the Kelvin equation, P ' PV =20 /R, to

yield
AF::Wm%—GS. (21)

NOTE 3: The effect of the assumptions Pv = Pg and “v = p;‘or should be

examined. The changes that actually occur in the pressure and chem-
ical potential are most certainly small, but then so is the free energy
change that we are calculating. We can estimate the effect by treating
the vapor as an ideal gas of pure monomers and assume that the drop
corresponds to a cluster of n molecules. Then the number of particles
in the vapor decreases from N to N-n when the drop is formed and the
volume available to the vapor changes from V to (V- Vl). The change
in pressure is then

- -pOy - . E: :
AP = (P - P) = -nkT/V +P V,/V; (22)
and the change in chemical potential is
ap =, - w)) = -kT/N + KTV, /V , (23)
where the relation
pv(T, P) = ;uo(T) + kT P (24)
for an ideal gas has been used. If the above corrections in P, and i, are
included in the derivation of AF, one finds that the effects due to AP

and Au exactly cancel, yielding the same result as with the approxi-
mations in Eg. (18).

E. __The Liquid-Drop Model
The equilibrium cluster concentrations in a supersaturated vapor
can be determined from the Gibbs free energy of formation of the

clusters. We consider the reaction
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and note that if the clusters are treated as perfect gas particles, the

change in free energy for the reaction is
AG (T, P, X, X)) = AGZ(T, P) + kT Jzn{xn/x’f] , (26)

where X is a mole fraction and P is the total pressure of the vapor.

At equilibrium A(}n = 0 and

X = x3 exp[-—AGg(T, P)/xT] . (27)

In the liquid-drop approach the result for AF in Eq. (20) that was deter-
mined from the Gibbs surface theory is used to evaluate AG;E . The
classical derivation is traced in the next few paragraphs.

STEP 1: The familiar expression (a;uﬁ/aP)T =V where , is the
chemical potential and v ) is the volume per molecule of bulk liquid,

can be integrated between Pv and P g to yield

‘MQ(T,P g) (T, PY) = v (B, - P). (28)

In performing this integration the liquid is assumed incompressible.
STEP 2: As a consequence of Eq.(19), ',u.‘ﬂ(T, Pﬁ) = “‘v(T’ PV) and Eq.

{27) becomes

). (29)

HV(Ta PV) - “Q(Tg PV) = V.Q(P,Q - PV

STEP 3: According to the definition of Ny in Section C,
Ve = Npgvp (30)
where v ) is the molecular volume of bulk liquid at the temperature and

chemical potential of the vapor.

STEP 4: Substitution into Eq. (20) leads to the following expression:

AF = Nﬂ [,U'E(Ts PV) - y'v(Ta PV)] + BN22/303 (31)



where B = (36 vjf ‘&’}i/g.

STEP 5: To evaluate the difference ;;Q(T, PV} - ,uV(T, PV} in BEq. (31), we
consider the cyclic operation illustrated in Fig. 3. Along the path I —

Il —1II, the liquid is iscthermally expanded to the equilibrium vapor
pressure Pe, the liquid is then converted to vapor at that pressure, and
finally the vapor is iscthermally compressed to the original pressure PV.

The change in chemical potential for each process is as follows:
P

Sp = v P - Pv) (32)
By = 0 (33)
Appp = KT @ (P /P,). (34)

The term 4y is generally ignored because it is much smaller in mag-
&

nitude than A‘}J,HI, leading to
Ay = =lpg(T,P) - u (T, P )] = kT m(P,/P,). (3%)

Substitution into Eq. (30) yields

AF = -N,KT & (P /P,) + BN, %0 . (36)

STEP 6: Under the assumption that P = ‘Ps in Eq. (18),

A(PV) = 0, (37)
and ,

AG = AF, (38)
for the formation of a nucleus.

NOTE 4: In NOTE 3 we found that in the approximation that the vapor
can be treated as a perfect gas of monomers, the effect on AF of changes
in pressure and chemical potential.cancel. We now use the same approx-
imation to estimate the actual change A(PV) and hence the validity of
Eq.(38). By the same reasoning used in NOTE 3, we find that

A(PV) = AG - AF = -nkT. (39)
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Figure 3. ThermodYnamic cycle used in the classical

evaluation of the liquid~drop model. .
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This difference is of the same order of magnitude as the total kinetic
energy of the molecules in the nucleus, which is (3/2)nkT. Clearly
Eq. (38) is not very good and a more exact derivation than the classical
one would include the effect of the change A(PV).

STEP 7. We next assume that N ¢ €quals the number of molecules n in

the cluster that corresponds to the drop,

n=N,. (40)
Equation (33) then becomes
_ « 2/3
AG = -nkT ln(PV/Pe) + Bn“ Yo . (41)

NOTE 5: As discussed earlier (NOTES 1 and 2), the variable Ny is an
abstract quantity. It is not the number of molecules that actually exist
inside the volume Vp, it is the number that would exist there if the vol-
ume contained homogeneous liquid at the temperature and chemical
potential of the ambient vapor. Furthermore, the volume V, is not
necessarily related to that of the physical inhomogeneity. e variable
n, therefore, has no physical significance and, in particular, it is not
equal to the size of the cluster that most nearly corresponds to the drop.

The error associated with Eq. (40) is quite fundamental. It results
from the fact that Gibbs did not base his surface theory on a physical
model. Consequently, there is no purely thermodynamic way to get
molecular level information, such as the average number of molecules
inside Vﬁ, from the theory.

STEP 8: In the final step it is assumed that the reaction by which the
nucleus is formed in a vapor is that of Eq. (25). Thus AG in Eq. (41)
refers to the change in free energy for that reaction. In the classical
derivation AG is incorrectly equated to the standard’change in free

energy for the reaction, AG;i in Eq.(26). Thus

T
AG) (T, PV) = AG (42)

and
a6l (1,p,) = kT m( /P,) + Ba? 30 . (43)

NOTE 6: Under the assumption made in STEP 8 that the formation of a
nucleus in a supersaturated vapor corresponds to the reaction nA,; —A_,
AG in Eq. (41) equals the change in free energy for that reaction, n
which is AGn , not A(};f1 as assumed in Eq.(42). Thus the correct
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expression is

' - 2/3
AG = -nkT fn (Pv/Pe) + Bn“/ Yo, (44)

But AG, = AG& +kT fn {Xn/X?] ; and for the formation of a nucleus,
X, =1/Nand X, = n,/N ~1. Thus AG can be evaluated from Eq. (44)
to be '

i

_ 2/3
AG, = -nkT JZn(PV/Pe) + Bn

o +KT fn N. (45)

NOTE 7: The assumption that the process by which a nucleus is formed
in the supersaturated vapor is represented by the reaction nA;, — An is
quite fundamental to the liquid-drop approach. This assumption,

which we do not consider justified, is discussed in some detail at the
end of the next section.

NOTE 8: As noted by Long, 4 any derivation of AGT based on the liquid=~
drop model is valid only for the nucleus. This cluster is the only
one to which the basic expression AF = 1/3 ¢ A applies.

NOTE 9: A practical problem associated with the liquid-drop model is
that the surface tension is not known for other than plane surfaces. The
problem was recognized by Gibbs who states, "'the fundamental equation
of a surface of discontinuity can hardly be regarded as capable of ex-
perimental determination, except for plane surfaces' (Ref. 1, p. 257).
When the classical formula for AG! in Eq.(43) is actually evaluated,
values of the surface tension for pﬂne surfaces are used and the depend-
ence on droplet radius is ignored. o

F. Rigorous Calculation of Cluster Concentrations

In this section a rigorous approach to the calculation of cluster
concentrations in the equilibrium states of a system is presented. This
approach is based on the Frenkel-Band theory of ncninteracting physical

clusters, 5

We show how the various equilibrium states can be identified
and describe the nucleation process in terms of the motion of the system
through these states. In particular, the process by which a nucleas is

formed in a supersaturated vapor is expressed in a precise manner.
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Definition of a Cluster

Consider a specific configuration of a system of N atoms in a
volume V. If we regard pairs of molecules that are separated by less

than some distance R o which is of the order of the range of inter-

molecular forces (~ 30 for the Lennard-Jones potential), as "interact-
ing pairs' and imagine them connected by bonds, then the configuration

will appear divided into clusters of molecules that are bonded together.

Decomposition of the Partition Function

Each possible distribution of molecules among clusters is described

by a value of the N-dimensional vector
n =0y, Dyy o0, Dy (46)

where n, is an integer that denotes the number of i-molecule clusters in
the distribution. Allowed values of n are consistent with the equation
N
a .
), in. = N. (47)
. i
i=1

The canonical ensemble partition function for the system of N atoms is

3N/2
1, 2mkT i ,
Q = &T(?) f exp[~U(£l,,,.,KN)/kT}dﬁla”d}:N, (48)
V

where U is the potential energy. The integral in Eq. (48) can be trans-
formed into a sum of integrals each covering a region of configuration
space that corresponds to a specific value of n. Q becomes a sum of
"single~distribution partition functions:"

Q= LQ, (49)

{n}

where Q, contains the contribution to Q from configurations consistent

el
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with a specific value of n.

The probability of a given distribution n is proportional to Qn:

Ea

PI}\ = QQ /Q. (50)

The Independent-Cluster Approximation

The "independent-cluster' approximation enables us to write the
single-distribution partition functions in Eq.(49) in a particularly simple
form. The approximation has two parts:6
(1)  The interactions between molecules in different clusters are

ignored.

(2) '"Cluster interference" is ignored. In Qn , configurations in which
clusters overlap are excluded because th?ey are not consistent

with the specific distribution n; in thé approximate evaluation of

Q,, , these configurations are included.

The approximation leads to the following simple expression for

1.
. lay /ol (50)

=R

Cal

where 4 is an "independent-cluster partition function, "

w)wzf exp[-Ulr.,)/kTldr.. , (51)
Ci ~1j ~1)

and r ij represents the set of relative position coordinates for the i

atoms and dr. i is the product of their differential elements. The term

Ci indicates that the integration spans all relative positions of the atoms

that are consistent with their being in the same cluster. In Parts II and

III methods for evaluating the 9, will be presented.
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The Equilibrium States of the System

Equilibrium states of the system correspond to extrema of the
function Qn vs. n: a stable state corresponds to an absolute maximum,
a metastatﬁe state to a local maximum, and an unstable state to a mini-
mum. The number of extrema that the function has depends on the
temperature and density of the system. The number can be inferred
from the behavior of the Gibbs free energy of formation AGE as a func-
tion of n.

Figures 4~6 show three shapes of the function AGJf vs. n that are

n
possible. Beneath each of these plots, the corresponding behavior
expected of Qn vS. g is schematically illustrated. The function is plot-
ted along a "r;action coordinate' that traces the most probably path
for the system between vapor-like states on the left and condensed
states on the right. Position along the path is most simply indicated by
the variable i(max), which is the size of the largest cluster in a distri~
bution. i(max) increases from 1 to N along the path.

Figure 4 refers to low density and high temperature systems.
ac!

inn eq is microscopic. The distribution ﬂeq

urated vapor; the vector has the following form

increases monotonically with n and the size of the largest clusters

corresponds to an unsat-

{Eeq = {ni’ ng’“‘“,ni(max)’ 0.’ 0}‘“'}‘ (52)

The population numbers decrease monotonically for i = i(max), i.e.,

n, >N, > ... and they are zero for i > i(max).

Z 1 (max)’
Figure 6 refers to high density and low temperature systems for

which At»(}j1 decreases monotonically with n, The size of the largest
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Figure 4: (a) The shape of the function AG;: vs. n for a
low density or high temperature system, and
(b) the corresponding shape of the function
MmQ, vs.n along the "most probable path. "
The value of i(max) increases monotonically
along this path as larger and larger clusters
appear in the distributions. Both illustrations

are highly schematic.
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stable supersaturated vapor can exist, and (b) the

- corresponding shape of the function n Qn vs. 1
along the "'most probable path " Both 111ustrat10ns

‘are highly schematic.
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of the function in Qﬂ vs. 1 along the most probable

path;» Both illustrations are highly schematic.
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cluster inn _  is comparable in magnitude to N. The distribution cor-

eq
responds to a volume of liquid in stable equilibrium with ambient vapor

and the vector n, q has the form

n__= {nl,nz,...,0,0,...,n.

g (max) = b0 0.} (83)

Here the population numbers decrease to zero as in Eq. (5), there is a
gap in which all population numbers are zero, and then there is a single
nonzero value of unity that is followed by more zeros.

In Fig. 5 the free energy curve has the familiar shape associated
with nucleation theory; it has a maximum that marks the size of the
nucleus. The function Qﬂ vs. n has two maxima and one minimum.

Distribution n:

Deq has the same form as that in Eq. (52) and corresponds

to the metastable, supersaturated vapor. Distribution ‘ilelé has the same

form as that in Eq. (53) and corresponds to the condensed state. Distri-

. II
bution n eq

in unstable equilibrium with ambient vapor. That distribution also has
the form of Eq. (53); in aIqu

and is small, typically on the order of 100 molecules.

corresponds to the transition state in which the nucleus exists

however, i(max) is the size of the nucleus

Nucleation

Referring to Fig. 5b, a nucleation experiment corresponds to

preparing the system with an initial distribution approximately equal to

Iileq and measuring the time required for the system to pass through the

transition state II. The rate of formation of the transition state Iy is

proportional to the ratio of probabilities of the two states:

e Pqp/Pp =Qp/Qp . (54)
~eq ~eq  ~eq ~eq
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This expressioh assumes a more familiar form if we note that the
Helmbholtz free energy of a system constrained to maintain a particular
distribution n is

F = -kT i QQ . (55)

Ea

Equation (54) is therefore equivalent to the following expression:

where

The lifetime of the metastable state is proportional to ry ' and will be

very long if AF is large. As the level of supersaturation of the vapor
increases, the values of AF and the lifetime decrease. The supersat-
uration level at which the lifetime becomes short, on the time scale of

the experiment, is the critical supersaturation.

Evaluation of the Distribution of Clusters in the Metastable State

As shown in Section C, knowledge of the distribution of clusters
in the metastable state is necessary for sclution of the rate equations
that describe nucleation. To determine this distribution we maximize

[Eq.(50)], treated as a function of the n,, subject to the following
n i

constraints:

1. n contains no macroscopic clusters,
N

2 ), in, = N, and
i=1

3. the n. are integers.

The last constraint is usually ignored, leading to a distribution that
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contains fractions of clusters and that is not, therefore, physically
realizable.

An approximate method for computing the concentrations is based
on the method of Lagrange undetermined multipliers in which the n, are
treated as continuous variables. That method yields the following
expression, which is incorrectly used in most treatments of nucleation
theqry:

n = nilqi/qi, i=1,...,N. (58)

Our approximate solution for the n,, in terms of n,, is
n;, = int{nllqi/qll]y i=1,...,N, (59)

where the operator "int"” extracts the largest integer value. The actual
values of the n; can be determined by an iterative process. An estimate

N
of n, is used to evaluate the n, and the value of the sum Z in. s com-
: i

puted. If the sum is larger than N, the estimate of n, i=1 is

decreased; if it is smaller than N, the estimate is increased. This

process is repeated until the value of the sum converges to N.

There are no nuclei in Ife q" A distribution that contains a nucleus

cannot correspond to a maximum in Qn because a more stable distri-
bution with a higher value of Qn could always be formed by adding a
monomer to the nucleus.

NOTE 10:, The classical Becker-Doring solution of the nucleation rate
equations’ is based on an initial distribution n(t,) for which the integer
constraint on the n; does not hold. The solution is based on a distribu-
tion of the system %hat cannot in fact occur. In particular, that solu-
tion assumes that the concentration of nuclei in the initial distribution

s nonzero; and it equates the rate of formation of nuclei to the product
of that concentration with a frequency factor derived from Kkinetic theory.
If the correct set of initial cluster concentrations were used, this simple
approximation would not work because the initial concentration of nuclei
would be zero. The Becker-Doring approach does not constitute a valid
" solution of the nucleation rate equations.
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A Fundamental Problem with the Liquid-Drop Approach

The basic idea behind the liquid-drop approach is to use the Gibbs
surface theory result AF =30A, which is the difference in free energy
between the two equilibrium states I and II in Fig. 5b, to evaluate the
standard Gibbs free energy change AG; for the reaction nA, —A .
The approach is justified only if the change that results from going be~
tween the two equilibrium states is also represented by( the above reac-
tion. We do not believe this to be the case.

| There are many reactions among the clusters in the distribution
Qle q that lead to a distribution containing a nucleus. For example, the
following reactions are among those possible for the formation of such

a distribution:

nA, — A_ (60A)

(n-2)A, +A, = A | (60B)

n-3)A, +A;, — A, + A . (60C)
I

Only one reaction will lead to the distribution , and that reaction can

be determined only if one knows the distributions p;leq and ggq.

not as yet used the method outlined earlier in this section to determine

?\ eq
We have

the actual equilibrium distributions in a specific system so we cannot
state with certainty that the correct reaction does not correspond to that
in Eg.(80A); but we see no justification for the assumption that this is
the correct reaction. Indeed, it appears that in the most favorable reac-
tion, a nucleus is formed from the less stable, larger clusters instead

of from n monomers.
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Comment on the Translation-Rotation Controversy8

In what is known as the "translation-rotation controversy' it is
claimed that the classical expression for AGZ in Eq. (43) does not con-
tain contributions from the translational or rotational degrees of freedom
of the nucleus. Several arguments have been presented that lead to cor-
rection factors of widely differing magnitudes. We believe that all these
arguments are based on an incorrect understanding of the process to
which the Gibbs result AF = $0A refers. An assumption common to all
the arguments is that the process is the formation of a stationary drop.
This assumption is not made by Gibbs in his derivation of the surface
theory and we see no necessity for introducing it.

The actual process is quite simply a transition between states I

and II in Fig. 5b, and the free energy difference is

AF*—‘%‘O’A=FH --FI y (61)
’ &eq I}\eq

where Fn is defined by Eq. (57). The process is not, however, easily
represerﬁ:ed by a simple reaction among clusters unless the distribu-~
tions Qle q and EIGI are known. If the distributions were known, one could
write down the statistical méchanical equivalent of AF in terms of inde-
pendent-cluster partition functions. This equivalent would constitute a
rigOrous:, molecular-level interpretation of the expression AF = 20A.
The Gibbs result, therefore, refers to the formation of a cluster
that is free to translate and to rotate; and if an expression for AG;Y; could
be derived from this result, there would be no need to add in corrections

for the translational or rotational degrees of freedom.
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PART II: THE MICROCRYSTAL MODEL FOR CLUSTERS
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A, Introductory Remarks

This section contains two papers that describe our work with the
microcrystal model for clusters. In this model a cluster is treated as
a small crystallite and its thermodynamic properties are determined in
exactly the same way that one would determine those of a polyatomic
molecule in the simplest approximation: the harmonic, rigid-rotator,
and perfect-gas approximations are used to evaluate the vibrational,
rotational, and translational contributions to the cluster partition func-
tion.

In the first paper, which has been published [J. Chem. Phys. 99,
580 (1971)], results of calculations with clusters oi‘ 2 to 100 argon atoms
are presented. This work was the first complete (all degrees of freedom)
calculation of the cluster thermodynamic properties using a molecular
level model. In the paper we discuss in detail the approximations
involved in our calculation and present results for the cluster thermo-
dynamic functions and the steady-state rate of nucleation.

In the second paper, which has been accepted for publication in
Chemical Physics Letters, we discuss the importance of using several
stable configurations of a cluster in calculating its properties with the
microcrystal model. We show that the ""single-configuration" approxi-
mation that was used in previous work can lead to serious errors. We
alsc discuss methods by which the error can be minimized in future

calculations.
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B. Paper No. 1

Vapor Phase Homogeneous Nucleation and the

Thermodynamic Properties of Small Clusters of Argon Atoms

ABSTRACT

The steady state rate of homogeneous nucleation in a vapor of
Lennard-Jones spheres has been calculated using statistical mechanical
techniques to compute the equilibrium concentrations of clusters in the
vapor. All degrees of freedom of the clusters are explicitly considered.
The harmonic approximation is used in the calculation of vibrational
contributions to the cluster partition functions and the rigid body approxi-
mation is used in the calculation of rotational contributions. The Gibbs
free energy of cluster formation as a function of cluster size is calculated
and its dependence on temperature is examined. Size effects on the
vibrational free energy are found to be mainly energetic rather than
entropic. The rate of nucleation as a funclion of pressure is calculated
at four temperatures and found to have a behavior similar to what would

be expected from "liquid~drop'" model calculations.
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Qur theoretical undersianding of homogeneous nucleation irom
the vapor phase is based almost entirely on the mechanism proposed
by Farkasl in which the formation of condensed phase
occurs by the growth of small clusters of molecules into droplets or
crystals. The supersaturated vapor is treated as a gaseous mixture
of these clusters with uncombined molecules; and the growth and decay
processes of the clusters are limited to the gain or loss of single
molecules. A general kinetic description of this system, yielding
time~dependent concentrations for each of the clusters for a given
set of initial concenirations, is not yet possible. Such a general
description is, however, not entirely relevanti at presen‘t since experi-
mental measurement of these time-dependent concentrations is itself
not yet possible.

The quantity that is in fact measured is the "critical" super-
saturation, the degree of saturation at which the vapor collapses
from metastability. To calculate this "critical” value, an equilib~
rium theory of rates is used. The metastable vapor is modeled as
an equilibrium state of the system, which is formally established by
consiraining the set of possible reactions between clusters such that
the formation of clusters larg