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ABSTRACT

Farlier theoretical models of the Gulf Stream have treated the
motion of a single fluld layer of constant density and vertically uni-
form flow velocity. As a step toward models with continucus stratifica-
tion, the present work analyses inviscld, steady-state, purely inertial
flow using two moving layers of different density and velocity.

The first type of Gulf Stream model analysed consists of two
layers of different densities flowing over a denser layer at rest
(baroclinic model). The second has two layers of different densities
flowing over a rigid, horlzontal bottom (mixed barotropic-baroclinic
model).

In both models there exlst, at any latitude, either 0, 2, or 4
theoretical solutions to the flow problem. Only one such sclutilon,
however, is realistic and satisfies the boundary condition of vanishing
northward veloclty at the southern latitude boundary of the flow re-
gion considered. This is called the correct solution, while the others
are called incorrect solutions. As the parameters of the two-layer
models converge to limiting values corresponding to one-layer models
(for example, vanishing density difference vetween the upper and lower
layers), the solutions msy or may not converge to the one-layer solu-
tions. If a correct solution converges uniformly, the limit is called

g correct 1limit. If convergence 1s non—uniform at some value of the

latitude coordinave, the limit 1s called an incorrect limit. If no

solutions exist as the limit is approached, it is an 1mpossible limit,
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The most important limits discussed are as follows:

l. As the density contrast between the upper and lower moving
layers beccmes large in a baroclinic model for which the upper layer
increases In thickness with latitude in the interior of the ocean to
the east of the stream, the upper layer goes, via a correct limit, to
the one~layer baroclinic model.

2. As the density contrast between the upper and lower layers
becomes small in a barcoclinic model, the solutlon for the sum of the
two layers converges, via an incorrect limit, to the one-layer baro-
clinic model.

3. As the thickness of the upper layer becomes small while
the density difference across it remains proportional to the thickness
(a constant density "gradient" in the upper layer), the range of lati~
tude over which there exists a correct solution tends to zero. The
incorrect solubion goes to the one-layer model via an incorrect limit.
This result suggests that continuocusly stratified, purely inertial
models of the Gulf Stream are Impossible for finlte density gradients.

Lk, In the limit as the interface between the lower moving layer
and the resting layer becomes horizontal, the lower layer yelocity goes
to zero. No sclutlion exists as the limit is approached. It is an im-
possible limit.

5. As the density contrast between the upper and lower layer
becomes small In the barotropic-baroclinic model, the sclution gces vis
a correct 1imil to the homogeneous barotroplc medel.

In an attempt to model the actual Gulf Stream, parameters are

selected for a model of two moving layers, the upper about 600 meters
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thick and the lower about 400 meters. This medel 1s close to the im~
possible limit of 4. above, and no solution exists. The physical
reason for this is that because of the small transport in the lower
layer, the velocity 1in the lower layer must be small, walch is incom-
patible with the large veloclty gradient needed for conservation of
potential vorticity as required in an Inerstial model. Tt therefore
seems questionable that the deeper waters of the Guli Stream can ﬁe
modelled by a purely inertisl theory.

No off-shore countercurrents can be found, desplte failrly ac-
curate modelling of boundary conditions which might be expected to
give them.

The general implication of this work is that steady, purely
inertisl models are lnadequate to descrilibe even the lower latitude
growth region of Gulf Stream if density stratification is taken into
account, and that vlscosity or unsteadiness must therefore be intro-

ducea.
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CHAPTER T

INTRODUCTION

1.1 The observational data

The modern view of the Gulf Stresm is that 1t is a swiftly
moving boundary current driven by fluxes of water from the rest of the
North Atlantic. Both the wind stresses and temperature differences are
thought to act as driving forces for these fluxes. Figure 1 from (1)
shows schematically the chief features of the North Atlantic. The part
of the ocean distinct from the Gulf Stream is commonly called the "in-

terior,"

and the stream 1tself is called the "boundary layer." The
mean velocities in the interior are 1 cm sec—l, and 1n the Gulf Stream
a byplecal veloclty along the axls of the stream 1s 100 cm secﬁl.
Stommel (1) has given an account of the early explorations and theories
of the Gulf Stream.

The topography of the interior region is dominated by the
eastern boundaries and by the Mid-Atlantic ridge. The effect of the
Mid-Atlantic ridge on the ocean circulation is not too well understood.
In the upper regilons of the ocean, the observed distributions of tem-
perature and salinity do not show any perturbations cbviously associ-
ated with the ridge. However,they do chow that the ridge effectively
blocks the deep water, causiné the water on elther side of the ridge
between about 4OCO and 6000 meters to have significantly different

temperatures and salinities. The basic mechanism of the circulation

in the interior is presently thought to consist of a flow of cold
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water upward to balance the downward diffusion of heat. This water
then returns near the surface to colder regions of the ocean where it
ginks to form the bottom water, thus completing the cycle.

A schematic diagram, figure 2, incorporating these ideas has
been given by Stommel (l). Diagram 2a shows the upper layer, and
diagram 2b shows the lower layer, roughly below 2000 meters. South of
Greenland, surface water is thought to sink into the lower layer and
move south-westward along the continental shelf. Two-thirds of this
water flows tc the South Atlantic, and one-third to the North Atlantic.
In these general areas the cool water rises through the thermocllne to
act as the scurce for the upper layer circulations.

In the upper cilrculations, there is a certaln amount of water
constantly circulating, driven by the wind, which is represented by the
three streamlines in figure 2a which do not end In sources. These
other streamlines consist of water which has passed through the deep
circulation. In more recent work this diagram has been modified to in-
clude, 1n the lower layer, a recirculation in the North Atlantic, and
a zonal Jet at 50°S. The observational and experimental evidence sup-
porting this overall scheme has been discussed by Stommel and Arons
(2,3), and by Stommel, Arons, and Faller (4); but as is the case with
most oceanographic theories, the data are so sparse and so confused
that 1t is not yet known to vwhat degree this description is more than
a working hypothesis.

Several authors (5,6,7,8) have discussed the mechanism of the

thermocline in which the downward diffusion of heat warms the upward
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flux of cold water. This mechanism 1s important becsuse it determines
the upward flux of cold water at the bottom of the thermccline which,
when integrated over the globe, determines the total amplitude of the
abyssal circulation. One of the most critical cbjections to these
~theorles 1s the recent discovery by Swallow (9) of large scale velocilty
fluctuations in the thermocline and deep water. These fluctuations
have amplitudes of 40 cm sec—l, wavelengths of 300 km, and periods of
a week. They seem to invalidate the equations which are used in all
these theorles of the Interior which assume the steady state, and give
amplitudes of 1 cm sec_l. Perhaps the theorles as glven are correct
for the mean motion, but that remains to be shown.

Figure 3 gives a density section in the Western Atlantic drawm
from the data used by Fuglister (lO) in his figure 51. It extends
from Nova Scotia to Bermuda through the Mona Passage tc Venezuala,
roughly along latitude 66°W. The discontinuity at Bermuda is caused
by the data belng gathered on different crulses. The large slopes of
the isotherms arcund 42°N mark the path of the Culf Stream after it
has turned east.

Figure 4 from Stommel (1) shows the depth of the 10°C iso-
thermal surface In the western North Atlantic.

It 1s generally thought that the explanation for high velocity
Jets in certain regions of the ocean is that the equations appropriate
to slow, steady motlons do not have hlgh enough order derivatives to
satisfy boundary conditions on all of the coasts. As a result other
terms in the equations of motion must be called into play, and thege

terms can become of importance only in a fast, narrow stream.
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The Gulf Stream 1s just such a fast stream which satisfies the
boundary conditions on the west coast of the North Atlantic. The ad~-
ditional terms in the stream are now thought to include inertia, tur-
bulence, and time variations, all the terms available. Although the
present work is primarily concerned with those streams which satisfy
the boundary conditions using only the inertial terms, the second
chepter will give some account of theories using other terms.

Figures 1 and 4 give some idea of the observed flow of the
Gulf Sfream. Figure 5 from Stommel's (l) book shows the topography of
the Florida straits through which the stream passes. The depths are
given in fathoms. (One fathom equals six feet.) It is apparent that
the topography must exert a profound effect on the water in order to
gulde 1t through this charmel. After passing through the stralts the
stream continues over a shelf of about 800 m to about 33°N., where it
leaves the shelf. This shelf (the Blake Plateau) may be seen in
figure 6.

Figure 7 shows a temperature and velocity section across the
Qulf Stream from Chesapeake bay to Bermuda taken from Worthington (ll).
The "warm core" around station 4860 is a common feature of the Gulf
Stream and usually has associated with i1t a countercurrent to the
east, which is an object of considerable interest theoretically, since
no theory so far has given a satlsfactory account of it. Many wdrkers
have suggested that the countercurrent is a dynamical necessity be-
cause the hot water of the core, bounded by cold water to the east,
should create a pressure gradient opposite to that of the main stream.

However, this idea has not yet been fitted into a coherent model.
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Figure 7 also clearly shows the levellng off of the isotherms
ag they approach the coast. It is not known whether this i1s due pri-
merily to a frictional layer or to a hydraulic jump. These possibili-
ties will be discussed in more aetail in later chapters, especially
chapter IV. The deep countercurrent that was discussed in the previous
section 1s, of course, distinct from the one assoclated with the warm
core, and slnce the former is thought to flow along the base of the
continental shelf, it is below 2000 meters and not in this figure. It
should be mentioned that inshore countercurrents have been observed in
the Gulf Stream, but to my knowledge there are no accurate measure-
ments of them. Probably they are basically a frictional phenomenon,
even though inshore countercurrents of questionable significance are
found in the present, purely inertial, theory.

When the stream leaves the coast at Cape Hatteras i1t rides out
over deep water, and north of this point elaborate meanders are ob-
served with wave lengths of 300 km, and a velocity of propagation of
apout 5 cm sec._l For some time these waves were thcught to be in-
stabilities in the Gulf Stream, however, one of the most surprising
regults in recent oceanography is the seemingly conelusive demonstra-
tion by Bruce Warren (12) that the detailed path of the stream is de-
termined by the angle at which it leaves the coast (which, perhaps, is
due to some unstable fluctuation) and by the detailed topography over
which it passes. This illustrates the powerful effect which topography

exercises on the stream.



1.2 Aims of the present work

The purpose of this paper is to abstract from the maze of in-
fluences on the Gulf Stream the effects of inertial flow in a strati-
fied system. The hope is, of course, that this will give the dominant
vehavior of the shtream and that the cther influences can be treated
as perturbations. The interior will be completely parameterized by
glving, & priori, its structure and the flux which it delivers at the
eastern edge of the boundary layer.

The best previous theoretical models (chapter II) treat the
Gulf Stream in terms of a single flowing water layer of constant density
overlying s rigld bottom or a layer of statlionary water of greater.den—
sity. The dynamics are dominated by inertial forces, including, pre-
dominantly, the Coriolis "force."

The present work treats for the flrst time the case of two
moving layers of different density. When the problem was undertaken,

T expected to be able to fit observation in more detail than 1s pos-
sible with one-layer models, on the grounds that one could hope that
two layers would allow a closer approach to the actual continuous
density distribution. One could hope, for example, to account for the
countercurrent assoclated with the warm core, and tc show some of the
characteristics which continucus inertial mcdels would have to possess.
The results could hardly be more different. Adding more detail to the
models seems only to increase the detall of disagreement with observa-
tion. No warm core countercurrent can be found, and the principle re-

sult of the work i1s that steady, purely inertial models of any type
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probably cannot account for the observations in any detall. The em~
phasis in the work has therefore been altered toward a study of the
analytical properties of the inertial solutions, and in particular the
various limite that the two-layer models approach as the defining
parameters (e.g., density contrasts) are allowed to tend to certain
limiting cases, llke the one-layer model.

These results are contalned in chapter III, where two-moving-
layer models are calculated both analytically and numericelly. Chapter
II prepares the ground by reviewlng earlier viscous and inertial one~
moving-layer models, and chapter IV applies the calculations of chapter
IIT to observed data in an attempt to account for the observations as
clogely as possible. Chapter V summarizes all the results and glves

suggestions for further research.

1.3 Summary of Results

Anelytic and numerical solutions are cbtalned for purely in-
ertial, steady-state Gulf Stream models of two types. The first is a
"completely baroclinic" stream consisting of two moving layers of dif-
ferent densities, flowing above water at rest, and therefore out of
contact with the ocean bottom. The second is a "mixed barctroplc and
baroclinic model"” comprising two layers of dlfferent density flowing
over a rigid, horizontal bottom. In both models the flow slong the
_ axls of the stream is in geostrophic balance in accordance with s

"boundary layer" concept, as in the one-layer models (chapter II).
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The detailed results may be divided into two classes, those of
interest for a comparison with observation, and those of primsrily
theoretical interest.

I. The results of observational interest for the "baroclinic" models
are:

a. Large density gradients near the surface are necessary for
flows to exist over large ranges of latitude.

b. The.countercurrent assoclated with the warm core of the Gulf
Stream slmost certainly cannot be accounted for, within the boundary
layer regime considered, by a model in which warm water 1g carriled to
higher latitudes in the upper layer.

e. Existing one-moving-layer models have generally been thought
to apply to the water in the Gulf Stream between, say, 100 and 800 me-
ters depth. The most obviocus extensions for a two-layer mcdel would
be for the second layer to go from O to 100 meters, or from 800 to,
gay, 1600 meters. However, when possible models of these types are
constructed, thé disagreement with observation ils extreme, leading one
to suspect that adding further detail to the one-layer theory only in-
creases the detailed disagreement with observation.

II. Of observational interest for the "mixed barocliniec-barotropic”
models 1s an indication that the water flowling along the bottom with
the stream through the Floride Straits and over the Blake Plateau can-
not preserve the integrals of the inertial motion, because the analyt-
ical results based on these integral ccnditions disagree greatly with

observatilion.
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III. The results of theoretical interest for the "baroclinic" model
are:

a. For most modelling parameters, as a solution 1s extended
north from a chosen latitude of origin a latitude is reached at which
more then one Gulf Stream cross section which satisfies all the integral
conditions on the motlon car be found. Only one of these cross sec—
tions belongs to a sequence of cross sectlons possessing the proper
boundary conditions in the area of origin to the south, and only this
one can be considered as the "correct" solution. However, the exis-
tence of these multiple solutions could be a stumbling block to fur—
ther theoretical studles. It will be necessary to ensure that solu~
tions from the same segquence are being discussed at all latitudes.

The "incorrect” sequences of cross—-sectlons are also Ilmportant
theoretically because in some cases 1t 1s they, rather than the "cor-
rect” solutions that converge to the one-moving-layer solution in the
1imit where some parameter such as denslbty difference tends to the
corresponding one-layer limiting value. Because each of the solutions
in this sequence tending toward the limiting solution is "incorrect,”
in that 1t does not comnect properly to the area of origin to the

south, the limit is called an incorrect limit. An incorrect limit

represents non-uniform convergence to the one-moving-layer solution.
b. The correct limit for passing from a two-moving-layer to a

ocne-moving-layer model is an increasing density contrast between the

upper and lower layers. As noted above, vanishing density contrast

between the two moving layers is an incorrect limlt.
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If the interface between the lower layer and the "level of no
motion" below it were horizontal, the lower layer would be stationary
and the upper layer would be a one-layer "baroclinic model. However,
there doeg not exist a sequence of realistic solutions converging to
this limit as the lower interface becomes horizontal. In thils work

guch a 1limit is called an impossible limit.

IV. The results of theoretical interest for the "mixed barotropic~
baroclinic" models are:

a. Multiple solutions occur just as for the "baroclinic” case.

b. The correct limit by which to pass from the stratified to the
homogeneous case is simply to let the density contrast venish. For
finite density contrast, if the interface between the two layers be-
comes horizontal there is non-uniform convergence to the homogeneous
solution at some latitude dependent on the "stratification,” hence
this 1s an incorrect limit. The limit in which the lower layer be-
comes a level of no motlon, and the upper layer passes into a one-

layer baroclinic solution is an imposslble limit.



CHAPTER IT

BARLIER THEORIES OF THE GULF STREAM

2,1 Introduction

Ansalytical theories about the Gulf Stream can be separated into
two groups, linear and non-linear., The linear theorles have the dis-
advantage that eddy vilscoslity terms of doubtful validity are used to
palance the driving forces, but they have the advantage that a steady
state solution for an entire ocean basin may be found. This is true
because the constant input of vorticity by the wind, and the changes
of relative vorticity along a stream line hecause of changes in lati-
tude, may be dissipated by the viscous terms.

The non-lincar theories have the advantage that they do not
use these questlonable terms in the equations of moticn, but because
they have no dissipation, they are not able toc model a complete ocean
basin if the circulation is driven by a wind stress. An attempt has
been made by Carrier and Robinson (15) to include Just enough dissipa-
tion 1n the non-linear models to give a steady state solution without
destroying the "essential” non-linearities. However, enough problems
have been discovered in their work to make it seem that this is still
a topic to be explored.

Bryan (14%) has performed numerical solutions of equations with
poth vigcous and inertial fterms, and has obtained solutlons over the
entire basin which cannot be brought to a steady state when the in-
ertlial terms are large. This result suggests that time varlation may

be a necessgary feature of a proper model.,
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The steady-state theories give different kinds of agreement
with observation. The viscous theories give a general sort of agree~
ment with the observed flow in the interior, but their picture of the
Gulf Stream itself is inaccurate. The inertial theories camnoct even

~discuss most of the interlor, but in the rapldly moving regions ofvthe
Gulf Stream between the Florida Stralts and Cape Hatteras, indlcatlons
are thalt they can be at least a first approximstion to observation.
It is to this region that the present work is confined.

The remainder of this chapter will be devoted to discussing
the above points in more detail, and in so doing, laying the ground-

work for the new results to be discussed in the next chapter.

2.2 Linear theoriesg

Stommel (1) has given a complete discussion of the important
linear theories. Here only the principle results will be mentioned.

Sverdrup (15) in 1947 produced one of the first important re~
sults in modern oceanography when he wrote the equations of motion for
the interior of the ocean as a balance between pressure gradlents,
Coriolis forces, and vertical steady-state stresses. By vertically
integrating these edquations, assuming that the stress vanished at
great depths, aﬁd then cross—~differentiating to eliminate the pressure,

he was able to obtain

-

BY = curl T (2.2.1)

where v is the vertically integrated north-south mass-transport, curlz?

18 the wvertical component of the curl of the wind stress at the surface
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of the ocean, B is the derivative of the Coriolis parameter, 2Q sin O,
with respect bto 6, where © is the latitude. This relation between the
horizontal transport and the vertical component of the curl of the wind
stress enabled Sverdrup to discuss the currents of the interior by aé~
suming that E, the east-west mass transport was zero at some longitude

and by using the observed wind field and the continuity equation

(Commas indicate differentiation with respect to the variables immedi-
ately following.)

Stommel's (16) important contribution was to show that the
westward intensification of flow in the oceans is due to the variation
of the Coriolis parameter with latitude, His basic equations were
the same ag those of Sverdrup's with the single addition of a dissi-
pative force proportional to the horizqntal transport. The resulting
equations were cross-differentiated tc eliminate the pressure, and
streamlines for an exact solution were found for the cages of a non-
rotating ocean, a rotating ocean, and a noﬁuniformly rotating ocean.
The latter would correspond to the variation of the Coriolils parameter
with latitude, and only for this case was there a westward intensifica~
tion.

Munk (17) replaced Stommel's expression for the dissipation by

~horizontal eddy viscosity terms, and carefully examined the observed
wind data to get a good representation of the driving force. The
principle new theoretical result from his theory was an offshore

countercurrent which can be traced to the biharmonic operator gener—
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ated by the eddy visccsity expresslons. The ratio of the transport
of the countercurrent to that of the main stream is rather close to
the observed ratio, and this is a feature which has not been duplicated
to this day by any steady inertial theory including the present one.
Of course the significance of the result 1s open to guestion because
of the hypothetical nature of the eddy viscosity. Bryan's (14) work
indicates that the ilnertial-viscous features corresponding to Munk's
countercurrent are currents returning from the north, forming a com~
plicated pattern in which even a small eddy viscosilty can‘dissipate
the advected vorticlity. Thls sort of countercurrent probably cor-
responds in its effect on the stream to the eddiles north of Cape Hat-
teras, and not to the countercurrent closely associated wlth the warm
core which is of interest in the present work.

Stommel (18) pointed out that a value of the eddy viscosity
small enough to give the proper width to the stream, and to be in
agreement with order of magnitude observations of the Reynoclds stresses,
would also cause the inertial terms to be large, and this observation

ushered in the inertial models of the Gulf Stream.

2.3 A history of inertial theories

Immediately after the paper by Munk was published, 1t was
thought that inertilal forces might be small compared to the viscous
forces, so that Munk, Groves, and Carrier (19) discussed the pertur—
bation problem. In an earlier paper Munk and Carrier (20) brought out
the boundary-layer character of the Gulf Stream, which has been an es-

sentizl point in all work on the subject since that time,
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Following a suggestion by Stommel, Morgan (21) and Charney (22)
developed inertisl theories. These are also presented in Stommel's
(1) book. Morgen considered both homogeneous and stratified models of
the Gulf Stream, and drew the appropriate gqualitative conclusions., He
also gave a careful discussion of the baslc eguations and.shOWed that
coastal frictlon could not be Inferred as necessary simply to balance
the wind torques on the ocean.

Charney's work was aimed, on the other hand, at achieving a
close agreement between theory and observation in the growth reglon of
the Gulf Stream vhere the present theory also concentrates. By using
s one-moving-layer stratified model and observed boundary conditions
he did achieve good agreement with obgervation and this result has
served as a source of confidence for all subsequent investigators.

Instead of discussing these papers in more detail, the solu-
tions for stratified and homogeneous streams will be derived In the
notation of this work, and Morgan's and Charney's papers will be dis-
cussed 1n terms of them. This will also provide the foundation for

the new results of the next chapter,

2.4 A homogeneous ("barotropic")model

In the present work the equatlons used will be those of or-
dinary shallow water theory, which are derived fram the baslc equa-
tions in, for example, Stoker (23). The conditions for shallow water
theory are that the flow be invisecid, adiabatic, incompressible,
laminar, and that the characteristic length of the flow be much larger

than the depth. In additicn, in the present work the flow will be
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assumed steady, and the variation of the free surface will be assumed
vsmall compared to the ocean depth.

The surface of the earth, over which the Tluid flow takes
place, 1s represented by a tangent carteslan plane, called the beta
- plane. In this plane the Corlolig parameter 1s allowed to vary in
order to model the dynamical effects of the earth's curvature. The
approximation was first Introduced by Rossby (24), and‘is fairly good
in o mathematical sense in the reglon between 15° and 35°N where it
is used in this work. Experlence with other theories indlcates that
it almost certainly will not lead to incorrect qualitative features in
this range of latitude. To my knowledge the only complete discussion
in the literature of this point is contained in the paper by Morgan
(21). He carried through an unexceptionable derivation of the approw-
jriate equations from the full spherical equations. His‘final results,
including the integrals of motion for a one-moving~layer model, are
indistinguishable from those of the beta plane except that his coor-
dinates measure distances along latitude and longitude clrcles instead
of along a tangent beta plane. The only serilous approximation which
he used was to expand the Coriolis parameter in a Taylor series and
retain only the first term, which is also done in the beta-plane ap-
proximation., Thus it 1s falrly clear that the most serious approxima-—
tion in the beta—~plane treatment of the GQulf Stream is the expanslon
"~ of the Coriolis parameter. The third term in the expansion becqmes
of the same size as the second term, for ranges of latitudé of the

order of the radius of the earth, when the plane 1s tangent at L5en,
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Thig latitude is therefore past the formal limit of validity of the
‘approximation. However, qualitatively correct solutions may even be
obtained north of 45° because the Corilolis parameter does increase
monotonically, and because the approximation of the beta plane to the
~spherical geometry is always equally good (or bad) at any latitude.

The general expectation, mostly as a resﬁlt of Charmey's work,
is that properly interpreted results from these equations will bear
semi~quantitative comparison with cbservation.

In chapter IIT, models wilth two moving layers of differenf
densitles will be discussed. As additlonal layers are added, it is to
be expected that a continuum model would be approached. This is cor—
rect, and in Appendix I it is shown that this limit corresponds to a
continuum model in a "quasi-Lagrangian” coordinate system,

Historically, the equations used have been derived by verti-
cally integrating the complete equations. However, as shown in Appen~
dix I this is an untrustworthy approach. In thils work, shallow water
theory is used.

The following fundamental equatilions (25) are thosge of shallow
water theory for steady flow of a homogeneous fluid layer on a car-
tesian plane tangent to a sphere, where the elevation of the free sur-

face 1s negligible compared to the ocean's depth.

1
u'nt, , +vu', , - W' +=p', , =0 (2.4.1)
u'v? + v'y! + f'u' + =p' =0 (2.k.2)
Iyt Iyt pP Iy e

p' =~ pg(z'~7') (2.4.3)
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(Dru'), . + (D‘v‘),y, =0 (2.Lk.k)

Primes indicate variables having the usual physical dimensions as ap~
propriate. In these equations u' is the east-west component of the
flow velocity (assumed constant with depth) in the layer, x' is the
east-west coordinate, v' is the north-south velocity component, y' is
the north-south coordinate, D' is the thickness of the flowing layer,

z' is the vertical coordinate, and 7 is the elevation of the free sur- .
face, p' the pressure, and p the fluid density. (2.4.1) and (2.4.2)
are the dynamical equation for horizontal motion, and express a balénce
between Coriolis forces (in terms of the parameter f'), pressure forces,
and mass inertia. (2.4.3) describes vertical "hydrostatic” equilib-
rium, which is assumed to hold, and (2.4.4) is the flux continuity
condition. The linear approximation to the Coriolis parameter, f', is

obtained as f'ollows:
f' =2q sind = 20 sin ©_ {1 + cot ©_(6-6_) - 5 (6-9_)% + .-+ }

, p o
~ 20 sine_ {1 + cot 6_(6-6 )} ~ 20 sine_ {1 + cot 6 %; },
(2.k.5)
where Q is the angular velocity of the earth, 90 is the latitude where
y' =0, and R ls the radlus of the earth. Throughout this work, f'
will be identified with the linear expression in y' given in (2.h,5).
To non—dimensionalizé, a convenient set of characteristic
sizeé of the variables, consistent with the boundary-layer character

of the stream as discussed by Morgan and Charney (21,22) is.
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y' ~ R, v o~ dg o’

t

A
Nt~ g u' ~ BN R (2.4.6)

Ve,

N-—-—————---—-—-:?\
' 20 sin@o

!

' ~2Q s8ind ,
o

where T is a characteristic size for n'. A resulting non-dimensional

parameter is,

m
I
Wi

(2.4.7)

The above quantities will be taken as coefficients of corresponding

dimensionless variables, for example x' = Ax, dimensionlesg variables
being identified by the unprimed symbols. If these dimensionless vari-
ables are substituted in 2.4.1-2.4.4, the result is, after eliminating

p' by using the hydrostatic equation 2.4%.3,

€2 {uu,X + vu,y} - v+, =0, (2.4.8)
UV TV, fu + oy = 0, (2.4.9)
(Du),X + (Dv),y = 0. (2.4.10)

Sizes of the scaling constants characteristic of the Gulf Stream are,
g ~ 1.0 m, Q~.Tx 10"4 sec"l,

g ~ 10° cm sec 2, o ~20 N . (2.4.11)

R~ 6.3 x 10° kum,
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The value for Mo is derived from observations of the density structure
by assuming that the pressure gradient vanishes at some great depth,
e.g. 2000 meters, and observing that the difference of the vertical
integral of pdz at two different points in the Gulf Stream differs by
as much as one meter of water. (See Stommel (1).)

These constants give
v ~3.6mn sec“l, x' ~ 84,0 km, e ~ 1077, (2.4.12)

Since the sizes of v' and x' are similar to those observed, all
the non-dimensionalized variables may be regarded as of order unity for
a description of the Gulf Stream, and the terms multiplied by €* in
2.4.8 may be neglected.

Two first integrals of the motion, the Bernoulli integral and
the integral of potential vorticity, are of great Importance in the
present work. For twc~layer models they may be derived in ways exactly
parallel to the derlvatlons glven below for the one-~luyer case.

To derive the Bermoulli integral, multiply 2.4.8 vy u and

2.%.9 by v and add. The result may be written as

% L (2 + v®) + 7] = O. (2.4.14)

S ; % , ., o8
where at (g) is the symbol for the substantial derivative u 5% + v §§ .
The quantity in the brackets is a constant followling the motion. For
steady motion, the particles move along the stream-lines. Therefore

the constant 1s a function only of the stream-function, V¥, that is

L (&® + v3) + q = G(V), (2.4.15)
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where G is an arbitrary function of Yy. The expresslons Tfor the veloci-

ties in terms of a stream function are defined as

u = '“"lf)y p) Vo=V, -

The layer depth, D, 1s not needed in the definition of ¥ because the
depth is constant for the barotroplc model.

The potential vorticity integral i1s derived by first cross-dif-
ferentiating and adding equations 2.4.8 and 2.4.9 to eliminate the pres—
sure gradients. The quantity Uy + v,y 1s then eliminated between the

result and the continuilty equation, to give, upon re-writing,

Vv, -~ €u, + ¢
d 2 2
= =S . J =0, (2.4.16)
or
V, - 6211, + g
==L —— -F(v), (2.4.17)

where F is an arbitrary function of v, and where the symbol { has been
wriltten in place of f£. This is done because this quantity t turns out
in the subsequent development to have a special role as the natural

"latitude" coordinate to use in place of y, to which it is related by

the linear transformation
t=(1+ cot@oy).

The basic equation to be solved for this homogeneous model 1s
found by substituting 2.4.8 intoc 2.4.7 to obtain, neglecting terms

multiplied by €=,



% Moy * © = DE(W) . (2.4.18)

For the homogeneous model, the ocean depth is taken as a constant; the
depth is normalized to D = 1.0,

This equation will now be applied to flow in the region illus~
trated by figure 8. The water flows toward the coast from the interior.
The streamline at ¢ = 1.0, which is the ( straight) southern boundary of
the flow region, turns north at the coast x = O and becomes the ¥ = O
gtreamline.

The gtructure of the interior will be specified to ensure com-
putational simplicity, since all that is desired here is a framework in
which to discuss previous work and to Introduce the ideas of the new
calculations in the next chapter, The Ilnterior wlll be specified Ly
giving the form of 71 as a function of latiltude, {, just outslde the
boundary layer. In a more complete theory, the transport as a function
of latitude would be determined by the wind stress, and this would fix
the variation of the free surface.

In the interior then, 1 is assumed to be

n{e0,8) =3 & . (2.4.19)

Tn the interior the non-linear terms in 2.4.9 are small and so

u(oo, g)

il

—eot 6 . (2.4.20)
Integration with 2.4.14 gives

(¢-1) . (2.%.21)

v(00,8)
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But, because the velocity in the interior is small, F(¥) in 2.4.18 is

F(W) = £ (OO:‘I’);

go from 2.4,21
F(y) = v+ 1. (2.k.22)

But by using 2.4.8, inlegrating across the stresm, and setting ¥ = O at

the coast,

¥x,6) = F Il t) - 1 (O}, (2.4.23)

where e ig the value of n at the coast.

Combining 2.4.22, 2.4.23, and 2.4.18 gives

Mo = N =~ L[E(E-1) + 1.1, (2.4.24)

and the decaying solution gives,

no=AG)eT + L) + g . (2.4.25)
Since n =, &t x =0 ,
Afg) = - £(¢-1) (2.k.26)
50
o= g(E-1)(1-eTT) + - (2.k.27)

There are two ways to complete the solution by determining Na*
The first is to use the Bernoulli condition, 2.4.15 (neglecting terms

of order €2), along the V=0 streamline. Then by 2.4.19, G(0) = 3 .
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The geostrophic relation applied to 2,4.27 gives the velocity at the

coast, and so the Bernoulli condition may be solved for Mo The re—

sult 1s,

n, =% §(2-¢) . (2.4.28)

The same result could be obtalned by equating the expression 2.4.21
for the stream function to the expression 2.4.23 with 3 t2, the expres-

sion for n in the interior, substituted for n(x,t). In either case the

final results are

no=t(l-t)e ™ + % £2, (2.4.30)
v = (¢-1)e ™, (2.4.31)
¥ = (6-1)(1-e7F) . (2.4.32)

Note that this homogeneous stream can extend to indefinitely large
values of { . It will be found in chapter III that introducing density
structure into the homogenecus model adds constraints on the motion so
that the solutions cannot extend Indefinitely far north.

As a check on this solution, it can be shown that continuity is
explicitly satisfied by calculating u from (2.4.9), (2.4.30), and
(2.4%.31), =2nd substituting in (2.4.10). From the inertial equation
2.4.9 the expression for u is

YV,  + 7,

V,X + €
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By substituting 2.4.30 and 2.4.31 into this expression and setting

x = 0, uis found equal to zerc at the coast, in agreement with the
flux condition applied in (2.4.23) by considering the y component of
the velocity only. Still another check 1s to notice that the Bernoulli
equation gives 3 v& + n = G(¥) . Now G(V¥) = n(oo,t) =2 t2 = 1 (w1)?,
or 2 v+ 1 =3% (¥+1)® by equations 2.4.15, 2,4,19, and 2.4.21, Equa-
tlons 2.4.30 through 2.4.32 satisfy the last relation, and thus the
Bernoulli integral 1s satisfled for all values of V¥ .

If instead of 2.4.19 there had been

n(o0,¢) = - % §2 )

then u would have been greater than zero, an eastward velocity, and q
would have a plus sign in front of it in 2.4.24, Implying only oscil-
latory solutions,that is, there would be nro boundary layer. General-
ized, this result says that there can be no steady inertial boundary
layers on the west coast 1f the asymptotic veloecity is easgtward. Per-
haps surprisingly the same result holds for inertial boundary layers
on the east coast of the ocean., The only steady inertial boundary
layers which can exlst are those wilth asymptotic westward velocities.
This result was obtained by Morgar and was extended by Robinson and
Carrier, who showed that it was true for all plausible geometries and
fluxes toward the coast.

A difficulty in constructing a purely inertial theory can be
seen by 2.4.15 which shows that if water travels from s small value of

{ to a large value, 1t must have a large negative value of the relative
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vorticity, V. s 8O that in the steady state In the north it must exist
as a jet even in the interior. A possible pattern of flow then is an
inertial flow accepting a westward flux up the west coast to a given
latitude, then a jet acrcss the ocean at that latitude, and then a
boundary current down the opposite coast with an asymptotic westward
flux golng directly across the ocean intc the boundary current on the
west coast. The transition between the jet and the boundary current
has been discussed in Fofonoff's (25) review srbiclc in which he shows
that the jets and boundary current discussed above msy be regarded as
the most important pieces of a "free" solution (a flow which goes on
steadily without dissipation) that he obtalns and that includes the

' Carrier and Robinson (13) suggested that en arbitrary amount

"gorners.'
of this free solution might be added on %o a ﬁind—driven component, if
friction were not taken into account; and they tried to use the neces-
glty for dissipation of the wilnd's vorticity input to determine this
amount .

However, Bryan's numericael calculations indicate that no ocean-

wide circulation is needed except that directly forced by the wind-

gtbress.

2.5 A baroclinie model:.constant potential vortleity

The previous section discussed homogeneous models, which are
algo called barotroplc modelg., The word implies that the constant den-
slty surfaces are parallel to the pressure surfaces, and since there is

only one density in the problem this is trivially true.
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A baroclinic model is instead one 1n which the constant density
surfaces are inclined to the constant pressure surfaces. It 1s neces-
sary to consider models of this type because the baroclinicity of the
Gulf Stream is one of its most striking features. The model will be
that of a layer of density p; and thickness D moving over a resting
layer ("level of no motion") of density po, and of undetermined thick-

ness. The equations of motion for the upper layer are,

1
uxux)Xx + V'ul,y, ~ Py 4+ H pt’x’ =0, (2.5.1)
1
ulv', v VIV, Tut 4 2mpt, =0, (2.5.2)
p' = -pg(z' - n'), | (2.5.3)
(D'u'),x, + (val):yx =0, (2.5.4)

where the variables are all the same as in 2.4.1-2.4.4,

The pressure in the lower layer is,

it

P'a = p1eD' — pog(z' + (D' - ")),

(2.5.5)

i

g(p1-p2)D' + pogn' - posgz' .

If the lower layer 1s to be a level of no motion, then the horizontal

pressure gradient must vanish, so

nt = Egégi-D'+ constant . (2.5.6)

The constant 1s taken to be zero.

By introducing the characteristic sizes of the variables, as in 2.4.6,
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V&M,

D' ~D_ =D(oco,l v ——— =
o =D(00;1), X'~ oo =N
[ Po~-P1 — . =
(el L NP R (2.5.7)
A
’ o~ 1 ~J —
s R b &6 R

" going through the same procedure used to get 2.4.8—2.4.10, and omitting

the terms multiplied by €2, there reesults,

- §V+D:X=O ] (2.5.8)
uv, + vv,y + L u+ D‘,y =0, (.5.9)
(Du),, + (Dv>,y =0 . (2.5.10)

The Bernoulli integral for these equations is derlved just like 2.4,15,

and, omitting the e® terms is
£ v2 +D =G . (2.5.11)
Similarly, the vorticity integral is,

vy, T ¢

——X—ﬁ——— =r(V) . (2.5.12)

The stream function is defined by

Du = ~w,y 5 Dv = , (2.5.13)

X

The fundamental equation to be solved is cbtalned by substituting

2.5.8 into 2.5.12,

v

D, ~ DF(¥) = ~¢ (2.5.14)
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This equation is now solved in the flow region shown in figure 8. A
simple solution may bc obtained if in the interlor the layer thickness

is given by

D(oo,t) = ¢ . (2.5.15)

Since the non-linear terms are negligible in the interior, 2.5.9 and

2.5.13 give, with ¥y = 0 at { = 1.0,
¥(oo,6) = (¢-1) (2.5.16)
and by 2,5.12,

F(y) =1 . (2.5.17)

Since F(V¥) 1s a constant in this case, 2.5.15 represents the special

situation of constant potential vorticity, which pleys an important

role in inertial theories of the Gulf Stream (1).
If 2.5.17 is substituted into 2.5.l)+, and the resultling equa-—

tion is solved, there results
z
D= (ho—g)s;g it (2.5.18)

where ho 1g the thickness of the layer at the coast. Just as in the
homogeneous cagse there are two ways to evaluate ho’ the Bernoulll in-
tegral or the boundary condition of no flux through the coast. It is

gimple to use either one to obtailn

0, = {LE-0F - (2.5.15)
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The complete regults are then

w)
|

1 _;%X
[{¢(2-6)} - tle + L, (2.5.20)

i

k. i . g%x
¢ ele-{¢(a-6) " 1e . (2.5.21)

v

 The tests that continuity is satigfied, that u = 0 at x = 0, and that
the Bernoulli equation is satisfied fof all V¥, can be performed Just
as they were for equations 2.4.30-2.4.32,

For a realistlc solution, the positive square root must be
taken. The negative root alsgso gives a set of cross sections which
satlsfy the Bernoulli equation and-mass’flux condition, but the layer
thickness ie negative, which is physically meaningless, Also, the
solutién fof negative ho does not match the boundary condition v = O at
£ = 1.0. (See figure 8.) In the present work the adjective realigtic
will have the striect meaning that all layer thicknesses are positive.

If the two solutions of 2.5.19 are plotted as a function of (,
they form a parabola with the nose at { = 2, h = O. In chapter IIT,
gsolubions will be found for which the nose of the curve analogous to
this parabola occurs for h > 0, thus implying more than one "realistic"
golution for a glven {. However, such lower "branches" do not extend
back to v = 0 at £ = 1.0, and thus are not correct solutions to the
problem, In the present work a correct solution is defined as a se~
quence of cross sections which has the proper boundary conditions at
| ¢ = 1.0.

There are also solutions for the one-layer model for £ <1.0.

If the positive sign 1s taken in 2.5,19 then v < O for { < 1 and this
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gilves the soclution in which the ¥ = O streamline turns south Instead
of north. The golution extends to { = O where D = 0, and the velocity
goes to the constant value, ~2%, independent of X because the exponen-
tial in 2.5.21 does not decay at { = 0, If the negative sign in

- 2.5.19 is tsken for { < 1.0, an unrealistic solution 1s found which
Jjolns the realistic one at { = O, and connects to the solution with a
negative layer thickness for { > 1.0 at { = 1.0. All of these
"wranches" have corresponding soluticns in the two-moving-layer cases,
ag will be geen in the discussion of the first two-moving-layer solu-
tions 1n chapter III.

The correct solution for > 1.0 contalns the qualitative fea~
tures of the baroclinic models of Morgan and Charney (21,22). Nctice
that the stream cannot extend beyond = 2, This was interpreted by
Charney as a separatlon of the Gulf Stream from the coast. Notice the
difference here from the barotrople model, which could extend %o in-
definitely large value of {, since negative values of 7n are physically
meaningful.

To understand the fallure of the solution at { = 2.0 somewhat
better, the following relation, valid for both constant and non-constant
potential vortieity, is useful:

dh 1 S
Tt h——f D(£)D* (8)as
1

]

o]

It may be derived by equating the northward transport to the transport
toward the coast, and differentiating with respect to . The layer

thickness at the coast 1s ho’ in the Interior it is D, and & is & dummy
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varisble. When ho = 0, only special functions, ;b willl give a finite
h,g. It h’@ is not finite when h = O, then nelther is D,C, so for
x > 0, u -» 00, the non-linear terms become important in equation 2.5.8,
"eross-stream geostrophy" failsg, and with it all the theory. Therefore
it is better to say that the regime of flow gradually breaks down as
{ = 2 1s approached, rather than to say that it fails suddenly at { = 2,
or that it leaves the coast at thils latitude. Perhaps the regime of
flow in which cross stream geostrophy is invalid could extend the flow
farther than { = 2.

It is clear then that D,§-+ oo if ho-+ 0. To show that ho
must vanish for some interiors, consider a fixed latitude gf with a

layer thickness in the infterior, T Then the maximum transport, given

o
by L DD, ax occurs for b = 0 and is =%— D 2, independent of D for
gf ’x ) 2§f £

t < Cf. But by increasing D for { < gf_an arbitrarily large flux can
be forced toward the coast, and therefore, north. Eventuzlly there-

fore at § = gf’ ho must vanigh.
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CHAPTER I1I
TWO-MOVING-LAYER GULF STREAM MODELS

3,1 Introduction

. In this chapter the equations for a Gulf Stream with two moving
layers are derived and solved for a range of parameters which is large
enough to give a good gqualitative picture of the behavior of the fluid-
dynamical system. The main purpose of the chapter is to provide this
qualitative picture. Comparisons with observed data, such as can be
made; are glven in chapter IV,

The chapter begins with the derivation of the equations of mo-
tion fbr a two-moving—layer model with a level of no motion. Here,
this model is called the baroclinic model. When a reference is made
to the baroclinic model of chapter II,1t is specifically called the
one-layer baroclinic model,

The equations are first solved for the case of constant poten~
tial vorticity in both layers. A particular solution is discussed in
detall, and 1t is shown that in a range of latitudes three cross-sec—
tions of the stream in which the ¥ = O streamline runs along the coast
mey be found for each latitude. HEach cross—-section satisfies the con~
ditions of conservation of mass, potentilal vorticity, and energy and
haga positive layer thicknesses, However, it is shown that only one of
- these cross-sections may be considered a correct solution, because the
others belong to families of cross~sections which do not have the proper

boundary conditions at £ = 1.0. (See figure 8.) It is shown that hy-
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draulic jumps camnot occur between the cross-sections that are pos-
sible at the same latitude, because the conservation of mass and energy
flux precludes momentum flux conservation, which must be satisfied in

a hydraulic Jjump.

A different type of cross-sectlon possible in the range of
latitude that contains multiple solutions consists of cne in which the
¥ = 0 streamline for the upper layer has left the coast and lies at
some distance off shore. This constitutes the first proof (by example)
that such a solution, representing a stream that has “separated” from
the coast, 1s possible.

If the ratio of the thicknesses of two constant-potential-vor-
ticity layers in the interlor is either large or small, 1t is possible
to get completely analytical solutions in serles form at those latltudes
at which the upper layer goes to zero thickness at the coast. From
these solutions it is possible to see that the proper limit by which

the two-layer baroclinic model passes Into the one-layer baroclinic

model is the limit in which the quantity y = gz:z; becomes large, where
Pi, P2, and pg are the densities of the upper, middle, and lower layers
respectively. 7 measures the density contrast or "stratification" of
the two-layer model.

It is also shown that the limit y = 1.0 1s incorrect (Section
1.3), because at { = 1.0 there i1s non-uniform convergence of the incor-
- rect solution to the limiting solution.

In none of thege solutions is an off-shore countercurrent

found.
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A numerical method for solving the exact equations for non-
constant potential vorticlity 1s then introduced and with it are ais-
cussed the solutions resulting from various types of interiors. The
principle new qualitative result here i1s that for the 1limit in which y
1s fixed and finite, but the boundary between pz and psz in the interior
becomes horizontal, thus making the middle layer a layer of no motion,
there deoes not exdist a converging sequence of solutions. This shows
that the one~laysr baroclinic model may not be thought of as this type
of limit of a two-moving-layer model, and the limit is defined as an

impossible limit.

Another qualitative result is that even for a large flow of
warm water from southern tc northern latitudes, which would be expected
to form a warm core (see figure 7), no warm core Or countercurrent is
found.

Numerical methods are then applied to a model 1n which there is
a rigid bottom beneath two moving layers of differing densities. Here
this model is called the baroctropic model. If a reference is made to
the barotropic model of chapter II, i1t 1s called the one-layer baro-
tropic model. (Of course this two-layer model i1s, strictly speaking,
baroclinic, but it is barotropic in the limit of vanishing stratifica-
tion, and it 1s named barotropic for convenience. {In the introductior,
Section 1.3, it was referred to as the "mixed barotropic-baroclinic
model.")

In chapter II the solution for & rigid bottom with no stratifi-

cation extended to the north indefinltely. One of the principle results
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of this chapter is that as stratifiéation 1s introduced, the result is
to restrict the solutlon to lower latitudes. The fact that as the
stratification density contrast 1s reduced the barotropic model extends
farther north shows that stratification decreasing gradually to zero
constitutes the limit leading to the one-layer barotropic solution.

It is shown that the solution corresponding to finite stratifi-
cation but infinitesimal slope of the interface in the interior has a
discontinuity‘in the velocities and layer thicknesses at some value of
¢ dependent on the stratification, There 1s a non-uniform convergence

to the homogeneous model, and this is thus a case of an incorrect limit.

The non-uniformity does not occur at £ = 1.0 as 1t does for y = 1.0 for
the bharoclinic model.
For the barotropic model, as for the baroclinic, there is no

warm core or countercurrent.

3,2 Equations for the baroclinic model

The characteristic thickness of the constant-density layers
will be taken as the sum of the thicknesses of the upper and lower
layer at £ = 1.0, x = co. Thus in nondimensional form this sum is
normélized to unity.

Assuming a level of no motion below the second layer, the

equations for the pressure gradients are,

Py x =7 Dyt Dy (3.2.1)

pE,x - Dl,x * DE,X ’
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where 7y = gé:gi and 03, Pz, and ps are the densities of the upper,
3~ P2

lower, and statlonary layers respectively. As written,they have been

non-dimensionalized, analogously to 2.5.7, by the expressions,

yen,

X' 2 —————— x = AX
i’ 20 sine ’

Jen;

D = [D:‘L(oo,l) + Dé(oo,l)]D

I

nt = &2 [0 (00,1) + Dy(c0,1)]n = ngn 5 ¥

A
wrl LI —_
y' =Ry , u —\/e;noRu-

The first of equations %.2.1 wlll now be derived. The deriva-
tion of the second equation is similar., The expression for the pressure

in layer i is
p(z) = & (1'-2')p'

where 1 is measured from z = O, The level of no motion below layer 2

requires that the pressure gradient there vanish, or

el ;
SxT LePPy *+ epgls — gps(z’ + Dy + Dy - ')l =0,

or
= pg'_ £1 D 1 + Pa—pPo D 1
nl,x‘ P3 1,x Pz 2,x

80

- g(per'pz 1 t
= —~—Eg——l [7Dl,x + DL 1,

1
P1,x 2,x

which when non-dimensionalized gives the filrst of 3.2.1.
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It would e possible to ensure a constant flux into the coast
between, say, § = 1.0 and { = 2.0 by relaxing the constraint that
Dl(oo,l) + Dg(oo,l) = 1.0. However, because solutions do not even exist
near { = 2.0 for some values of the parameters, it seems more reason-
able to normalize the thickness of the layers and let the transport
be determired, [In any event, the transport may be adjusted to any
value by changing the overall stratification, or D! + D.]

1 2

The differential equations for the layers are

- Ly + 7Dl’x + DQ’X =0, (3.2.2)

UV x + ViV1,y * fu, + 7Dl,y + Dg’y =0, (3.2.3)
(Dlul x* (Dlvl)’y =0, (3.2.4)

- tv, + Dl’x + DE)X =C, (3.2.5)

UpVp ot VoVp ot Lu, + Dl;y + DE)y =0, (3.2.6)
(Dou, xt (Devg),y =0 . (3.2.7)

These equations are just those of 2.5.8-2.5.10 for each indi-
vidual layer, wlth the exceptlon that the pressure gradlents are glven
by 3.2.1, instead of D < and D ¥ alone. The potential vorticity and

2 )

Bernoulll integrals are

vl X + E 1

—ﬁ-——— = Fl(‘l’l) 2 E'V?. + 7Dy + Do = Gl(“"l) p)
(3.2.8)

VQ X + § 1

s~ = Fa(le) , 2V5 + Dy + Do = G2(¥2) .

Do
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These integrals are derived Jjust as were 2.5.11 and 2.5.12. Only the
equatlons for each individual layer are needed to derive the integrals
for that layer. In the present work the thicknesses of the upper and
lower layers in the interior will be limited to being linear functions

of latitude, thus

Dl(OO,C) =a+ b,

(3.2.9)
Dz(o0,t) = ¢ + (l-a-b-c) ¢,

where the coefficilent of { in D guarantees the normalization at £ =
1.0, It may be that restricting the interlors tc this class makes it
impossible to consider some important gualitative change associated
wilth a change in the derivative of a layer thickness with latitude.
For example, as one result, the manner in which the stream leaves the
coapt may not be dlscussed becsuse the sign of the east-~west velocity
in the Interlor cannot change as a function of latitude. However, it
is shown in chapter IV that this problem lies beyond the scope of the
prescnt work. Another question 1s whether the countercurrent might e
excluded by 3.2.9. I do nct believe that 1t is, because I have been
able to model, to almost complete satisfaction, every type of two-

layer interior which I thought a-priorli might create a countercurrent.

5.3 Methods of solution for constant potential vorticity

The only interiors for which analytical results are obtainable
are those with constant potential vorticity. In this case 3.2.9 be~

comes,

Di(c0,8) =1t , Da(oo,§) = (-b)E . (3.3.1)
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This gives Fi(V1) ==, Fa(z) = i%g 3 the potential vorticity is thus

o'+

constant. The ratio ® is defined by

8 = i%g 2 (5-5'2)

and measures the ratio of thicknesses in the interior of the upper and
lower layers.

If 3.2.2 and 3.2.5 are 1nserted into the corresponding poten-
tial vorticity integrals, 3.2.8, and both sides of the resulting equa-
tlons are multiplied by the corresponding D, there result the follow-

ing equations for the barocclinic model,

7Dl,xx + D2,xx - ngFl(wl) =~ (%, (3.3.)

+ - ngFE(WE> = - (ﬁ-j'h‘)

|
v

Dl,xx DZ,XX

For the speclal case of constant potential vorticlty the functlons of

¥ are constant and,

1

Fi(vy) = 175 Fa(¥=) = 175 (3.3.5)
Then 3.3.3 and 3.3.4 become
1+% _ 2
M ux T Do xx ~ 5 P = 8 (3.3.6)
_ _ 2
Dy e ¥ Do, (1+8)tD, = -% . (3.3.7)
Particular solutions to these equations are
p_ 5 p_ 1
A br =135 & (3.3.8)
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The characteristic equation for the system of differentisl equations is

752 - iliﬁl o=

&
=0 . (3.3.9)
a? a® - (1+8)
This gives
-1 -1 ~1.%
o? = (148) {7 + 8" * (&;i))g + 4 ) X (3.3.1C)

It is easy to verify by rewriting the term under the square root sign
that OF 1s always greater than zero, because y is always greater than
1.0 for p; < ps < ps, stable stratification. Since & has four pos-

sible roots, expresslons for the layers are,

X Y
ealgzx -Q £2x

L L
O f2 2 t
+ age G2l"x + aée-m{EC £y o

D1 = a1 =7 °

+ age

1

1 i
2. O 2 —Os F2 2 ¢
Do = blealg * 4 boe 28 bae GLox b4eOé§ * 4 5%

where the convention 1s adopted that ; is the absolute value of the
square root of the right hand side of 2%.3.10 using the plus sign, and
0o is the same expression using the minus sign. There are eight un-
known constants in 3.3.1l. This number is reduced to four by substi~
tuting in 3.3%.6 or 3.3.7, and insisting that the coefficient of each

exponential be zero. Using 5.3.7 this gives,

8o = nibs g = n2b4 (5.3.12)

where ny = gl+22i~_oci N &(l+§é~053 .
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The other constants are coefficients of growing exponentials and are
set equal to zero so that velocitles go to zero in the interior.

This gives finally

1 1
-0 t2x -Ostex B
D1 =Dbzny e 28 + by np e a2t + 1&5 ) (3.3.13)
3 5
Do = bgemalg * + by e"%g x + I—l%

From 3.2.8, 3.2.9, 3.3.1, and 3.3.2 the Bernoulll constants for the

zero streamline are

1+y8
¢1(0) = 115 , G2(0) =1. (3.3.1%)
50 along y=0,
1+y0
7hy + b + 3% = Sz, (3.3.15)

where h; and he are the layer thicknesses al x = O, From 3.2.2,

%,2.5, and 3.3.13, at x = O,

1]

-1
vi = ~t2[0 (ynat+l) o+ O (ynotl) bal ,

(3.3.16)

It

o

Va ‘C”%[Qi(nl+l) bz + Oz (ns+1) bal .

An explicit formula for h; in terms of hs will now be found.
In the interior, applying 3.2.3 and 3.2.6, noting that the inertial

terms are small, to 3.3.1

Uy = —:é- (Z.it}.:.) tan QO sy U = % tan © . (5.5.17)
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If these expressions are multiplied by the layer thicknesses and in-

tegrated with respect to y, there results

¥1(00,8) + ¥a2(o0,t) = [ﬁﬁﬁ’“—lj (t-1) . (3.3.18)
(1+8)

But by integrating across the stream, using 3.2.2 and 3.2.5

(e8]
1
Y1(oo,t) = E‘f Dy (7D 4 #D, o) ax
° (3.3.19)
00
1
WZ(OO:C) = —g— f Dp(Dl;X'EDgJX) dx )
(6]
sa
oo
Y1(00,¢) + V=(00,t) = {é}g (7D§+2D1D2+D§))] . (3.3.20)
[0}
Combining 3,3%.20 and 3%.3.18 and using 3.3.1 and 3.3.2
yh% + 2hihs + b3 = £e-0) {762 + 20 + 1} . (%.5.21)
(1+8)2 :

This equation shows that there can be no realistic solution north of

¢ = 2.0, for constant potential vorticity, because, assuming (7,h1,hs) >
0, the right hand side is negative, whereas the left hand side must be
positive. Furthermore, If there 1s a realistic solution at { = 2.0,
ther h; = hs = 0.

Solving 3.3.2 for hp glves

ho = h; [~l + {1 _(7 _ke=f) (752+2a+1)1>}%]. (3.3.22)
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Only the positive value of the radical may be used for realistic solu~
tlons, otherwise elther h,y or hy would be negative.

The next step 1s to take 3.3.13 at x = 0, and solve them for

bz and by. The result i1s

be = {hy - noho - = (Bonp) ) 2, (3.3.25)
1+% N3~z

) o 1l
b4 = {Ill - Illl’l2 - 1‘_.% (@nl)} Ey——— -

If equations 3.3.23 are substituted in equations 3.3,16, and
the results substituted In equation 3.3.12, two quadratic equations in
h; and hy are obtalned. The eolution to the problem can then be found
as the roots of & quartic equation. The two quadratics might be any
conic sections in principle. They can be pictured as in figure 9 for
the case of two ellipses. Thus either 0, 2, or 4 real solutions for
(h1i,hp) are to be expected for any value of ¢,

Any palr of values (hi,hp) which are solutions to eguations
3.3.15 must satisfy 3.3.21 (a centered ellipse), and since 3,3.21 is
a simpler equation, the solutions have actually been computed using
2.3.21 and one of equations 3.3.15. Instead of solving directly for
the roots of a quartic, a numerical technigue was used to finé the
soluticn. For any latitude { the method of solution wes as follows.
Flret a guess for h; was made and substlitubed in %.3.22 to obtain hs.
Then by and by were cbtained from 3.3.23 and were substituted in

3.3.16 to obtain the velocities. The results were tested to see if
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they satisfy one of egquatlons 3.3.15, and if not, a new value of h; was
chosen and the process repeated, When this iteration has produced a
solution, the result satisfies the other equation 3.3.15. Then equa~-
tions 3.3%.23 give the values for bs and by, and equations 3.3.13 give
the functional form for the layer thicknesses.

The discussion of solutions will begin with the specific case
7 = 2.0, & = 1.0. Figure 10 shows the behavior of this solution. In
figure 10, ky is plotted ag & functlon of {. The symbols such ag
(++—+) give the signs of (hy,hs,vi,vs) at the closest camputed point.
The correct solution extends from hy = .5, ¢ = 1.0, to a "maximm" at
hy = 0.112 + .001, ¢ = L.%64 + ,005. From hy = 0, ¢ = 1.4565 + .0002,
another branch of realistic solutions moves north toward the "maximum.”
Another segment of realistic solutions lies between the brackets at
£ = 1.43 and 1.9. Outside of these brackets hp < 0 in the first
gquadrant.

Tor & small range of latitude around ¢ = 1.45 there are three
realistic solutions. Only one of these, however, connect; to the
proper boundary conditions at £ = 1.0. It 1s called the correct
solution.,

In the graphs discussed in sections 3.8 and 3.9, only realistic
solutiong in which the velocitles vy and vo at the coast are positive
are plotted. However, in figure 10 all solutions corresponding to real
roocts of the pair of quadratics have been plotted.

The branch of solutions beginning at hy = 0.5, £ = 1.0 and

extending to £ = O 1s realistic and has (Vvi,vz) < O. It corresponds
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to the case in which the streamlines turn south instead of north. The
‘solution which begins at hy ® 0.4, £ = 1.0 and goes to { = 0 and ¢ =
1.94, is unrealistic (hi,hs) < O. Between the bracket at £ = 1.9 and
the point hy = 0, ¢ = 1.9%, the solution has hy > 0, hp < O, and
,(Vl,vg) > 0. For the unreallstic solutlon extending from § = 1.45 to
¢ = 0, and around to near { = 1.2, vy has the opposite sign from vy,
and h; has the opposite sign from hs.

A1l of (hy,hs,v1,ve) change sign as they pass through { = O.
The solution passing through hy = .5, { = 1.0 corresponds in the limit
¥ = oo to taking the positive sign in 2.5.19, and the solution through
hy ® -0.4, ¢ = 1.0 corresponds to the negative sign. The two solu-
tiong together form a closed curve, and one might say that the other
closed curve gives the effect of the second iayer. The new realistic
cross—gections added by this layer are, therefore, those between the
brackets in the first quadrant.

The maximum at { = 1.463 corresponds to the infinite slope at
£ = 2.0 in the curve h = j;JE?E:ES for the one-layer, constant-po-
tential-vorticity model. Tt will be seen in the next section that as
the stratification, ¥, increases in the two-layer model, the upper
layer will become more like a one-layer model and the maximum will
move toward ¢ = 2.0, hy = 0. The "lower branch" thus corresponds, as
has been mentiloned, to taking the negative sign in equation 2.5,19.
Just as in the one-layer solution, if h;,f = oo at the maximum, the
east-west velocity is infinite, and cross-stream geostrophy fails, thus

invalidating the basic assumptions of the model.
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Flgure 1l gives an expanded view of the region of filgure 10
near { = 1.463. Figure 12 shows cross-sections of this solution at
selected latitudes., Two of them are at the same latitude to emphesize
the possibllity of multiple cross-sectlons at the same latitude. The
veloeclties are positive everywhere, and the velocities at the coast
are noted on the figures.

In the upper left-hand corner of figure 28 the correct solu-
tion ig plotted in more detail. The long dashed lines show the two
layers in the interior, and the lines with computed data points show
hy and he. At the left 1s an indicatlon of the density structure.
Because the absolute density differences have been scaled out of the
problem, only the ratio of density differences, 1.e., 7, 1s signifi-
cant. Thus the function B(z) in figure 28 conveys in graphical form

all the essentilal information about the density structure. It is de-

fined by
§ =1 for z below Ds ,
B = Z§£ for z in Dp ,
=0 for z in Dy .

Therefore in the graph of this function in figure 28, the ratio of the
sum of the two horizontal line segments (ps—pl), to the lower line
segment (ps—pg), igs 7. One may therefore think of the vertical lines

at O, 1535 and 1 as indicating the densities p;, pes and ps.
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In figure 28 the sum of the thickness of the two layers at the
coast remains very close to 1.0, its value at { = 1.C. It is note-
worthy that for correct cross—sections north of ¢ = 1.45 the maximum
velocity 1n the lower layer occurs for x > O, To see this note that

the conservation of pctential vorticity gives v . 2ho-t. Since at

2}
t = 1,46, h, = 0.790; vg,x(x=0) > 0 and the maximum velocity is for
x > 0.

Zt is natural to ask if there can be a transition between the
multiple solutions at a given latitude. If so, it could be imagined
that one solution would hold up to a particular latitude and that,
north of that latitude, another which did not extend down to £ = 1.0
would take over. However, the transiltions cannot occur between the
cross—sections at the same latitude in figure 10, because it is well
known that in hydraullc Jjumps energy is dlssipated whereas the momentum
flux integral and the mass flux sre constant. For all of these cross-
sections, on the other hand, the energy and mass flux are the same at

a given latitude, which implies that the momentum flux integral cannot

be,

3.4 Off-shore solutions

It 1s possible to find solutions 1n two layer models in which
the upper layer has moved away from the coast. In this section they
will be discussed only for constant potential vorticity solutions.

If the upper layer has moved away from the coast, then in the
interval between it and the coast there are only the single layer

equations, and the solutlion for Dp in this interval 1s the same as for
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the one layer model in chapter II, except that the thickness of the
layer in the iInterior is multiplied by i%g . Taklng thilsg into consid-

eration, the expression for Do in this interval is

1 1 1 1
_F2 2 2 2
D% =a, € £#(1+8)%x + &, el (1+2)%x + iés s (3.4.1)

where Dg gstands for D2 to the left of the two layer system,

If the argument leading to 3.3%,21 is repeated, but including
the one layer system to the west of the two layer system, it is found
that the same result, 3.3.21, is obtained, so that if the upper layer
departs from the coast, resulting in h; = O, then hy is completely de-
termined and is given by,

np = $C=8) (e 4 254 1) . (3.5.2)

 (148)2

From the Bernculll integral, 3.3.15, the velocity vg at x =0
o 1
va =+ {2(1-h2))? (3.4.3)

The sign must be determlned by the behavior of the entire solution as
a function of (.
Equations 3.4.1, 3.4.2, and 3.4.3 give two conditions on a; and

as in 3.4.1, thus completely determining D;. The conditions are

ho =a; + as + T--)g—_g N (5.’4—.)-1-)

o -k 1
vo = £ 2(1+8)2(~a1 + az) ,
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and the solutions are,

[ho - v262 (148) % - ¢(1e0)H1

]
N

a1

(3.%.5)
o .5 -4 ~1
[he + vz §2(1+48) 2 - ((1+8) 7] .

W]

8o =

Thus Dg is & known function of x. The problem can now be solved in s
manner similar to that of section 3.3. PFilrst consider equations
3.3.13. To use them for off-shore solutions, take a new coordinate
system to change them to the form

L L
—algg (X_Xt) + b4 o e—aegz (X—X't) -+ ég—

D1 1+6

bg ng e
(3.4.6)

1 1
Ol £2 {3 O F2 .
Dg = bg e alg (X Xt) + b4 e apg (X xt) + >

1+d °

where xt is the value of x at which layer 1 begins. To determine bz and
by, equations 3.3.23 are now useé with hy = 0, and Dg(xt), a known

funection of Xt’ replacing ho.

11 1 i
D) = ay e” (FOITE o op SO0 L L (507

Then equations 3.3.16 are used to fird v; and vo. Thus the layer
thicknesses and the velocltles are completely determined as functlons

of x,. The functions may be substituted in

193+ = L2, (3.4.8)

the Y1 = O Bernoulli integral. The result 1s a transcendental equation

Tor xt, which can be solved by a trial-and-error process.



- 51 ~

Figure 13 shows the loecation of X, as a function of x, for the
parameters & = 1.0, 7 = 2.0, the same parameters as were discussed in

section 3.3. An off-shore cross section exists between { = 14475 +

0005, and 1.4705 + .001, with a pair of cross-sections between the

lower limit and { = 1,4565, the latitude at which h; vanishes in
figure 10.

In this case then, the off-shore cross—sections are not physi-
cally realistic because they do not connect to a éorrect solution.
Another reason why these cross sections are not realistic i1s that when
Xy is plotted against { as in figure 13, the resulting line gives the
plan view of the trace on the surface of the boundary between the upper
and middle layer; and the trace moves south instead of north, moving
into latitudes where there 1s already some other eross~section.

For no solutions having © = 1.0 are there any off-ghore sgolu-—
tions which connect in a physically reasonable way to £ = 1.0, because
there is no physically reasonable pequence of cross—sections as a func-
tion of { by which hi can go from h; = hl(l) = 0,5 to hy = 0. This is
because, for all values of y, noting the discusslon at the end of gec~

tion 3.3, there are figures similar to figures 10 and 11 for the depth

of the upper layer at the coast as a funection of €.

3.5 Analytical resgultg for small o

In thig section analytical regults are obtained for cross sec~
tions in which ® is small, The terms obtained in the expansions con-
verge only if the quantity y& is small, thus providing an expansion for

7y also. It turns out that the h; = O cross sections, the only ones for
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which explicitly analytical expressiorn can be obtained for the layer
thicknesses and velocities, correspond to the solution on the lower
"branch" in figure 10, so that they do not represent correct solutioms.
However, the results will tell us that constant potential vorticity
solutions with ¥ of order unity and emall & cannot extend very far
north.

For analysis it is convenlent to introduce the parameter ©
representing the ratio of the density "gradients" of the upper and

lower layers.

Pe—p1
8/1+6 1 Po-p
o = o -5 2_ L (3.5.1)
Pa—Pe Pa—P2
1/1+9
This implies y =1+ 60 . (3.5.2)
An expsnsion of 3.3.10 gives, for small &
2571 (148)2 > 0 s |
Qy ® 0 28 (1+8)2 {1 + &/2 - /8 + 5+3z| 0%+ e
(3.5.3)

aez(ha)%-‘ {1- 6/2+5/862—1%(89+5) 5% + }

If 3.3.,23 is combined with 3.3.16 with h; = O, there results

vy = -§ 2 i:@l(ﬁlr"l) {”HE ha - IEE (b—ng)} nlEnE

(3.5.4)

No—11

+ G (yns+l) {—nl hs - T—%—g (&nl)} L },
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1

Vs = _ga {Cxl(nl{l_) {-—Ilghg - I_%_‘g (6—112)}

Li-Nz

+ O (nz+1) {~nl he - i&g (Ewnl)} neinl] s

If expansions for the n's and Q's are entered in the zbove ex-
pressions, and the results are inserted in 3.3.15 with h; = 0, then,
after lengthy calculations, the final result is a pair of algebraic
equations with terms in hpl, hZ, ¢, and ¢Z; and with power series in ©
and ©. If the term in { is eliminated between these two equations then

the quadratic formula produces the result

When this expression is substituted into one of the quadratic equations
to eliminate hy, the resulting equation in { yields,

L

(=1+5020+208 + -, (3.5.7)
ard thus,
1
he =1-586 &+ e, (3.5.8)

Expressions for the velocities using only the largest terms are
1
~L 1 1
1 -0 2 -
vl§692[695X+%EXJ’

(3.5.9)

-

Q
Nf=
(e
@
1ok
(]

TJ‘Z
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The upper diagram in figure 14 is a plot of h; as a funciion of
{ for the parameters © = 1.0, & = 0,1. It was obtained by calculations
using the methods of %.3. Thils diagram shows that the cross section,
which has been obtalned anslytically by putting hy = O, lies on the
lower branch and is thus not part of a correct solution.

The accuracy of the expanslon 1s quite good. ZEguation 3.5.7
gives £ = 1.05375 for the latitude at which h; = 0, whereas the exact
solution gives 1.0527 + .0002. The expansions for the other variables
give comparsble accuracy. From figure 14 it can be seen that the
"nose" extends north to & value of (¢{~1) of the same order as that at
which hy = 0. Therefore in the present theory, thin upper layers with
finite 0 are restricted to low latitudes. Thils result is quite genersl
and wlll be seen to apply to non-constant potential vorticity cases
also.

Even though expressions like 3.5.3 do not appear to converge
Tor small &, presumably the higher terms 4o glve convergence because
3.5.7 and %.5.8 give good agreement with numerical calculations for
small ©, in addition to small &. Thus 3.5.7 and 3.5.8 are valid ex—
pansions Tor small © and o.

The solutions fall at the points anelogous to the "nose" in
figure 14 because cross-stream geostrophy breaks dowﬁ. Perhaps a thin
upper layer can be carried smoothly north by purely inertial, a-geo-
strophic dynamics. However, if not, the suggestion is strong that no
purely inertisl, continuously stratified model of the Gulf Stream can

be constructed.
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Off-shore sgolutions exist for small B, but they are gqualita-
tively the same as flgure 13.

The lower diagram in figure 14 shows the sequence of cross-
sections for © = 0.1, which corresponds to the incorrect solution be-
tween € = 1.4 and 1.9 in figure 10, in 3.k, As ® - 0 1t goes to the
one-layer baroclinic model of chapter II. To see this, imagine that
the one-moving-layer baroclinic model were separated into two layers
of equal density, of constant potential vorticity, and of thickness

ratio &. Then at the coast the ratio oy would always be ®, and there-

ho
fore hy = i%g Jg(e—g). This is close to the behavior of the incorrect

solution in figure 14b. The results of the cslculations for ks are

1
close to 158 JQ(Q—Q). The only difficulty is that the incorrect solu-
tion is not close tc the proper value at { = 1.0. As ® > 0, hy(1) does
not go to i%% even though for £ =1 + ¢, for any small ¢, there is

convergence. The convergence 1s non-uniform at € = 1.0. A limit which

behaves in this way 1s called an incorrect limit. If the comvergence

is non-uniform at some latitude other than £ = 1.0, the limit 1s also

called sn incorrect limit.

The incorrect solution in figure 14 turns toward larger { near
¢ = 1.1, but eventually turns again and crosses { = 1.0 at h; = 2.875,
where hp = -3.292, 8o as 80, hy at { = 1.0 appears to go to a large
value. In fact, for § = 1.0, ® = 0.01, y = 1.01 there is h; = 3.85,
he = -b.77, at £ = 1.03 the value of h; at { = 1.0 appears to diverge.
It seems clear that there is non-uniform convergence near § = 1.0.
The sharp turn near £ = 1.1 corresponds to the slight inflection for

the incorrect solution in figure 10,
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The behavior of the solution for constant © and small © ob-
tained here ig one of the most important results of the present work.
Because O represents the ratio of the density gradients, the fact that
the correct solution for small & cannct extend far north indicates that
no solutions can exist for continuocusly stratified models with finitc
density gradients. It might be that a thin upper layer cannot corres-
pond to a thin surface portion of a continuocusly stratified model; or
that a continuously stratified model will "join" the correct and in-
correct solutions. However, such conjectures can only be resolved by
an expliclt treatment of continuously stratified models, Until this
1s done,the existence of continucusly stratified solutions is thrown
‘into question.

The limit © - 0 is also incorrect, as can be seen from figure
20 which is discussed in section 3.8. It will be seen that it has the
same type of behavior at { = 1.C as the 1limit © - 0. This 1s reason-

able because in both cases y > 1.0.

3.6 Analytical results for large ©

For large © an expansion of 3.3.10 gilves,

_J__- - 0 = _ —_
oy ® (145)2 1+%9“lal-l@252+(£92+ 1@5)6§
g 2 16
+ (—13;9‘5~——ng oy 4 (%@”5+%9"b“+§-g—g@"5) 57 + };

2 i 1 - D - ~%, -
ozgzeaal(ha)a {l-—é—9181+5-9262—(—é—92+5 95’)551“..}_



_57_

By obtaining two quadraties in h%, hi ¢, t& and { and eliminating ¢

ag in section 3.5, there results

- {lﬁ@—la—E _ oo3/275/2 (29~5/2+9-2>5— + (66 +65/2)6 7/2+_.}

(3.6.2)

'and

262

1y -1 _1 -3z
bz =775 {1 + 0 26 3 + (6~ 3 +3067)d -26 738 5/2 + ---g. (3.6.3)

Taking only the largest terms, the expansions for the velocities are,

1 1 r _1
vy = (20)2 [e 220728 x| =3/2g5/2,-2%0 J (3.6.4)
RN R 11 2ste
Ve = 228 2 [9‘§e"2 070 %x _ (672 + S§~l)e—2 o %x (3.6.5)

There are two cases of interest here,

a. 6~1, 8> 1,

b. ©>>1, 5< 1.

In both cases all the expansions converge. However in case a, 3.6.5
shows an inshore countercurrent for this limit. As has been mentioned
befofe in connection with the off-shore solutions, there is no possible
source for such countercurrent water since its ¥ value is less than
zero.

In case b there is no countercurrent in the lower layer. The
fact fhat 8 < 1.0 and © >> 1 for this good behavior is suggestive of

a rule that a physical stream, to flow smoothly, must have a large
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difference in denslty gradients and that the large density gradients
must be concentrated near the surface, as 1s observed in the Gulf Stream.
Figure 15 shows the exact solution for the case 6 = 1.0, 8 =
10.0, case a. The solution consists entirely of the upper "branch.”
However, the unrealistic aspect of the solution consists of an inshore
countercurrent in the lower layer which sets in between { = 1.3 and
1.4. Once again the expansions give good agreement with the exact
solution for the latitude at which h; = 0. The exact solution gives
1.973k + .0001, and the expansion, 1.978. An off-shore solution ex-
tends tc the north from where hi; = 0 to & = 1,982 where x

t,8

to be infinite at x% = 1.0 + .1. The offshore solution also hag the

appears

countercurrent along the coast in the lower layer.

Figure 16 shows the exact solution for the parameters & = 1.0,
0 = 16.C. This is not strictly case b because d ¢ 1, however; it has
the same behavior as case b because of smaller terms not written down
in 3.6.15. This solution has no countercurrent. The latitude where
h; becomes zero is { = 1.8970 + .00C1, while the expansion gives
1.8954. Since the cross-section for hy = O is on the lower branch,

there can be no physically reasonable offshore sclutions.

3.7 Numerical technigques for baroclinic models

Despite considerable unpublished work by several investigators,
no analytical solution of the case of more than one layer of non-
congstant potential vorticity has been carried out. Even perturbatlions
on the case of constant potential vorticity seem intractable. Thus,

if the qualitative features associated with different interiors are to
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be discussed, and if theoretical results are to be compared in any
detail with observation, then numerical solutions are necessary.
For numerical integration, the equations 3.3%.3 and 3.3.4 are

reduced to four first-order differential equations by first defining

K] D =Y.,
ol 2 7 (5.7.1)

The stream-functions constitute two other varlables in the set

of numerical equations,
Wl = Y5 2 ‘4’2 = Y6 * (5'7'2)

The geostrophilc equations 3.2.2 and %.2.5 may be expressed in

terms of the Y's.

Vi = % [7Y2 + ¥4
(3.7.3)
Vo = % [Yg + Y4]
Equations 3.3.3 and 3.3.4 may be separated as
Dy xx = }'E‘i 1Py (g Dy = Fp (45D, ] .
(3.7.4)
Do xx = 7% Lye (U )Py = Fy (¥ )0y 1 - £

So an appropriate set of six first-order differential equations is,
Y =Y, , ‘ (57-5)

Y, = 7§i [P, (x5) - ¥p - Fplrg) - Y51, (3.7.6)
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Y=Y, (3.7.7)
Ty = 5or DF(0) - Y - F(Y) Y- B, (5.7.8)

v, by, + 17,1 = Davy (5.7.9)

1

e

P
N e e L

Y5 [YE + Yu] = DaVs . (3.7.10)

For the initial conditlons on these equations, a trial guess is
made for h;, Then an equation analogous to 3.%.22 gives hs. The two
Bernoulli conditicns will then give vy and ve, and %.7.3 can be used
to derive Yy and Y4. The stream functions Ys and Yg are, of course,
zero at the coast. Fquations 3.2.9 give the structure of the layers
in the interior, and the equation for obtaining hy in terms of the

guess for h; 1s derlved in the same way as 3.3.22, and is,

he = by + (88 - Ku)P (3.7.11)
where
Ki =28 (Ya(o0,8) + ¥2(o0,t))
- { -f + 7(a+bg)® + 2(abg) (e + (1.0-a-b-c) ¢) (3.7.12)
+ (e + (L.C-a-b~c) L)},
and

It

Y1(c0,t) = (7b + (1-a~b-c)) {a log £ + b(t-1) } (3.7.13)

¥2(00,¢) = (1-a-c) {c log ¢ + (l-a-b-c)(t-1) }  (3.7.14)
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Once the initial conditions are specified, the equations 3.7.5-3%,7.10
may be integrated, provided only that the expressions F; and Fo are
glven. Tor any value of x, F; may be evaluated by equating wl(oo,g)
and Ys. The value of { that satisfies this equation is the latitude
of orlgin of the water at the value of X under consideration, and the
potential vorticity of this waser may thus be calculated. Writing

this process out explicitly, first the value of ¢ that satisfies
Y5 ~{rb + (1-a-b-c)Ha log ¢ +b(¢-1)} = 0 3.7.15)

must be found. This is done by the method of false position. (See
Todd (26).) In the numerical solution this method is used until an
accuracy is attained an order of magnitude greater than that maintained
in the integration of the differential equations. Then, if the value

for { is found to be, say, gc then F; i1s glven by

Fi1 = -

A similar procedure applies for finding Fs.

The actual integrations are performed by a combination of
Runge~Kutta-Gill and Adams-Moulton-predictor-corrector formulas (see
Todd (26)) whick are used in a program to provide the option of verilable
spacing while maintaining a constant level of accuracy. When the solu-
tion changes so rapidly with x that the intervel spacing must be re-
duced to less than lO~5 times a value of A x set by the programmer, in
order to malntain a stated accuracy, the program gives an errcr return

and stops. This generally means that one hasg tried to integrate
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through a singularity, although in this work it frequently means that
growing exponential terms have become large. The integration scheme 1s
described in detail in Appendix II.

As wasg shown above, all of the initial conditions are functions
of the single varlable h;. Thus, to find the solution, integrations
mey pe performed for a serles of values cf hy until that value is
found for which the asymptotic values of Dy, Do, VY3, and VYo approach
the values glven by 3.2.9, 3.7.13, and 3,7.14; and the velocities go
to zero,

For the offsghore solutions, hy = O3 and as has been shown for
the constant-potential-vorticity case,this completely determines hs.
There are only the one-layer equations between the ccast and the two-
layer system, and the solution to these equations is completely deter-
mined by he. To find the offshore solution, the one-layer equations
are integrated out to some selected value of x, say X, and then the
two-layer system is introduced. All the boundary conditions at this
point are easy to determine, and the two-layer system is integrated
outward in x. Successive values of x, are chosen until that velue is
found which gives the proper asymptotic behavior for the two-layer
system.

The greatest difficulty with this technique, both for solu-
tions offshcre and at the coast, is that incorrect values of h; or X,
imply non-zero coefficients of growing exponentials, which were dis-
carded from equaticns 3.3.11 in the analytical solutions for constant

potential vorticity. As an example, for ® = 1.0, 7 = 2.0, the largest
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L1 1
exponent for D3, Dz, Vi, and vp is (1+0)?¢204x = 2.80 t2x, and since
the stream-functions are products of thesge variables, the largest ex~

1
ponentisl in their expressions is 5.60 QEE. As a result h; must e ac-

3

curate to about 10 - for a solution accurate to 10% at x = 1,0, and to
about 10“6 for x = 2.0.

However, 1t is falrly simple to iterate toward the proper value
of h;, because as h; passes through its proper value, the coefficients
of all the growing exponentials change sign, sc that by examining thc
behavior of the solutions at large values of x 1t is possible to bracket
the solution. The program 1s constructed to iterate to as many decimals
as are desired for hi once the solution is bracketed.

5

If the routine is required to keep an accuracy of 10 ° in each
interval of A x = .1, then there is no change in the fifth decimal
place when the accuracy is changed to 10—7. This shows that the nu-
merical error control is conservative. It appears that when the rou-
tine is requlred to keep an accuracy of lO”5 it manages to maintain
close to lO~6. These results show that the integration does not intro-
duce significant random coefficlents of the growing exponentials which
would render the solutlons erratic. A typlcal Integration to x = 2.0
requlires one second on the 7090, and four-figure accuracy for h; re-
guires about six iterations.

Figure 17 shows the convergence of the machine solutions for
& =10, 7y = 2.0, t = 1,4565, hy = .2100 which is, of course, a cross
section which was discussed in previous sections of this chépter by

analytical methods.
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3.8 Behavior of baroclinic models

The numerical technique of the previous section will give solu-
tions for various velues of a, b, c, and 7. In this section the chief
purpose will be to reveal the behavior as s function of these parame-—
terss comparison with observation 1s deferred to the next chapter.

The discussion centers on figures 18-23. They show h; as a
function of ¢ for those realistlc solutions which have (vi,vs) > O for
X = 0. The plots are only for { > 1.0. This regtricts the figures to
the first quadrant of figure 10.

In the upper left-hand corner of each figure are diagrams of
two north-south sections through the interior. The arrow between them
indicates a partlcular sequence of houndary conditions which is treated

in the main part of the figure. For example in figure 18 the stratifi-

cation, 7, 1s held constant while the layers change their rate of thick
ness Increase with latitude. The dlagrams are at opposite limits of
the sequence, and the data beneath them give the parameters of the
limits, The data in the upper right part of the figure give the param-
eters for the boundary conditions which are actually computed and plot-
ted in the figure, and identify the nlotted curves. Data are listed
only for those parameters which vary as the sequence 1s traversed.
The asterisks by some of the listings indicate that the correct portion
of the solution for those parameters 1s plotted in more detail in
figure 28,

The computations are indicated either by circled points or by

thin horizontal or vertical lines. A dot means that the value of hy is
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known with a limit of accuracy that would plot as a dot of the size
shown. A line indicates the limits between which the solution must
lie, If the line is vertical, there is uncertainty in h,, if hori-
zontal, in {. A heavy bar, as in figure 24, means that there are no
realistlc solutions for values of { beyond that bar, although there may
be unrealistic ones (i.e., solutions outside the range (hi,hz,t > 0).

If hp pecomes negative, then the end of the realistic solution
is Indicated by a bracket, as was done in figure 10, If the solution
is unknown beyond some point, the line simply stops. If there is some
evidence about the line, for example, a knowledge of where it is not,
the conjectured position is indicated by short dashes.

The figures will now be discussed individually.

Figure 18.-~This figure shows that the correct solution will
extend farther north as the layers become more nearly horizontal. It
is plausible that this should happen because it can be shown by the
equation analogous to %.3.21 that a single layer which increases more
slowly with latitude than a constant-potentlal~vorticity layer can

have an Inertial boundary layer farther north than & = 2,0.

Figure 19.--Here, the sequence explores what happens as the
interface between the lower and bottom layers becomes horizontal.
Since vo = %-g% (D1+D2) by the geostrophic equation (3.2.5), this
means that the lower layer becomes a level of no motion. Since the

upper layer in this sequence is held at constant potential vorticity,

then the solution in the 1limit should be the sgolution of chapter IT of
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& one-moving-layer baroclinic model of constant potential vorticity.
This 1imit is shown by the crosses in figure 19.

This one-moving-layer model is certainly the limit if us = ve =
0. But as the limit is approached, as (us,va) = O, the situation is
quite different from uz = vp = 0, because water continues to move, how-
ever slowly, from the interior through the boundary layer, and in the
theoretical formulation used it must preserve the integrals of the mo-
tion, One might well suspect that thig is impossible as the limit is
approached because of the following argument. Along a streamline both

v, +€
%v% + Dy + Do and.—§%E- must remain constant. If the veloclties are

2
small then both Dy + Ds and é% must simultaneously remain constant
along each lower layer streamline. One might well imagine that this
would prove impossible,

In figure 19, the question marks on solutions £ and 3 indicate
that it was not possible to determire certainly that there was, or was
not, a solution for values near the points plotted. (The numerical
computations do however show that there 1s no sclution anywhere else
for c¢ nesr the limiting value of 1.0.)

It is impossible to determine 1f there is a solution because
the numerical criteria for a solution become equivocal near these
points. For values of hy on either side of the line for ¢ = ,9 gt large
X%, only five of the six variables (D1, Dz, Vi, Ve, Vi, V=) changed
slgn. PFurthermore, although increasingly accurate velues for h; give

solutions that extend to larger values of x before diverging, the

convergence 1s very slow. The value of x attained was proportional to
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the logarithm of the precision of h;. Because of the slow convergence,
the maximum seven-fligure accuracy gave, for the parameters { = 1.5,

c = 0.9, a solution only to x = 1.5, where elther Ve’x became large or
Dy became negative, ending the computation. (For a typical set of
other parameters the corresponding value of x attained would be 5.0 or
6.0.) The same behavior, with slower convergence, and with only three
variables changing sign, is found for ¢ = .99. Because the convergence
is so slow, and because some of the variables dc not change sign, T do
not believe that there is any solution for 2 or 3 in figure 19, for any
value of (.

However, since the numerical results show clearly that the
plotted curves define the only trajectories that could conceivably be
realistic solutions, 1t is important to show that; in the limit as
¢ » 1.0, there 1s no solution here either. This proof below, draws on
the qualitative ideas discussed three paragraphs ago.

Flrst note that the numerlcal results for ¢ = .9, .99, estab-
1ish that there 1s no solution anywhere except possibly for a; e'%{g(Q—
g)}% and hy + hp > 1, the trajectory marked by the crosses. From the
Bernoulli integral for the lower layer in (3.2.8) this means that vo
(x=0) may be as small as desired. The potential vorticity integral, aon
the other hand, shows that VEJX(O), and, by differentiation and use of
the geostrophic equations, all higher derivatives, are of order unity.

For example,

Vo,xx ~ % (DeF2-t) = 1% (vi-7v2)Fz + DaFiDave = O(1) .
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Ags ¢ » 1.0, a reasonable solution would have vo a differentiable func-
tion of x, and it could, therefore, be expanded in a Taylor series
around x = O, 8o In some small, finite interval, €57 beyond x = O,
there must be V2,x = 0(1), and the lower layer transport in this inter-
val must be at least O(ei), since D = 0(1). But by letting ¢ - 1.0,
the transport toward the coast from the interior may be made arbitrarily
small., Thus the finite transpoft close to the coast can only be a re-
circulation, which constitutes a physically unrealistic solution, even
should it exist. Thus there do not exist realistic cross—sections at
any latitude, in the limit as the lower interface becomes horizontal.

(In the last two sentences "realistic" was used in its conventional

sense.) This is the definition of an impossible limit, as used here.

The very slow convergence, which I régard as a sign of the non-
existence of a solution, sets in for a value of ¢ > 0.4 and probably
¢ < 0.6. It should be emphasized that the non-existence of solutions
in the limit reets critically on the numerical result that the only

L
possible solution is for hy > % {£(2-£)}2, hit+hs > 1.

Figure 20.~-This shows how, as y 1ls Iincreased, the correct
soluﬁion moves toward the solution for a one-moving-layer model. This
same result was obtained by the analytic methods of gection 3.3. As y
goes to 1.0 (8 » 0), the incorrect solution goes to the one-moving-layer
solution, an incorrect limit.

Beyond the brackets, the solution crosses { = 1.0 for hy = 2,033,
ho = ~1,251, an unrealistic solution. From figure 10, 7y ; 2.0, 1t

crossges for hy = 1.0k, Evidently the value of hj at { = 1.0 diverges
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as 7 » 1.0; there is non-uniform comvergence at { = 1.0.

Figuré 21.~-Thils covers the types of interiors from which an
off-shore inertial countercurrent might have been expected, However,
in none of the solutions, correct or incorrect, is any countercurrent
found. Solutioms of this type will be discussed in detail in the next
chapter where comparisons with observation are made.

As 7 is increased, the correct solution penetrates farther
north, but y cannot increase indefinitely for a fixed negatlve value
of b because by 3%.2.9 and 3.2.3, 7b + (l-a-b-c) must be greater than O
for a westward flux in the upper layer. As the limit is approached,
the upper layer becomes a level of no mobtion. So, as in a previous
case (figure 19), it would be remarkable if there were a solution. In
fact, there is no realistic, incorrect solution for y = 2.6, and for
v = 4.5 there is no solution anywhere. Therefore y =5 1is an impossible
limit.

As 7 goes toward 1.0, the correct solution disappears increas-
ingly close to £ = 1.0, and the incorrect solution converges non-
uniformly to the solution for a single layer of thickness equal to the
sum of the two layers; this is an incorrect limit. In figure 21, the
cases plotted have been picked so that this limiting solution for the
two layers together is of constant potential vorticity, and the limit-
ing solution is shown by the.crosses.

It is reaéonable that the upper layer should increase in thick-
ness along the coast, because the sequence of solutionS‘isvtending, as

7 > 5, to the limit of an upper level of no motion. Now if the upper
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and bottom layers are levels of no motion, and the middle layer is of
constant potential vorticity, the solution can be calculated analyti-
cally, Just as was done in chapter II. In the result, h; doeg increase
along the coast. Since the solutions in this sequence are tending to
“this limit, shown by x's in figure 21, it is not surprising that h; in-
creases for them also.

North of hy = 0, as at ¢ = 1,45 in figure 21, one might expect
that the lower layer would move away from the coast beneath the upper
layer. However, these would be such physically unreasonable cross

sections that they have not been computed.

- Pigures 22 and 23.--These show the changes as an upper layer

thickness peasses from an increase to a decreage with latitude in the
interior. In all of these cages the sum of the two layers is held at
constant potential vorticity.

As the thickness of the upper layer in the interior increases
less rapidly with latitude, its profile along the coast changes from a
decrease as a function of latitude, to an increase. For no value of b

can the solution extend much beyond { = 1.5.

Summary.--~If in the interior, both layers inecrease slowly with
latitude, the inertial boundary layer extends far north, Small values
of y keep the correct solutions far south, as do large negative or
positive derivatives of the layers with latitude. To increase the
northward extension, then, a rule of thumb is to have strong stratifica-
tion and to minimize variations of the layer thicknesses with latitude

in the interior.
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3.9 Fquations for barotropic models

In this section the elevation of the free surface will appear
explicitly in the calculations. In the interior it will be taken as s

linear function of £.

nt o=y ¢ (3.9.1)

The characterlstic thickness of the layers will be taken as Do’ the
depth of the ocean, neglecting the elevation of the free surface. And
the characteristic size of the variation in elevation of the free sur-

face is as in 2.4.6. Then if
Mo

8Ny

= et ——— - .2
20 sin6 ’ (5.9.2)

14

then the characteristic sizes of the velocities and horizontal di-

mensions are, as in 2.4.6,

A

x' ~ N, u' o~ fEng
(3.9.3)

y'' ~R, v~ g, -

The non-dimensionalized equations of motion take the form

- vy + Ny = 0, (3.9.4)
U7k + "y +buy Ny s 0, (3.9.5)
(Dlul),X + (Dlvl),y =0, (5'9'6)

~ vyt -eDy =0, (3.9.7)



ugvg,X + ngg’y + §u2 + n)y - eDl,y =0, (3,9,8)
(Dgup) o+ (Dvp) =0, (3.9.9)
Bl + D2 =1 (5_9.10)

Equation 3.9,1C gives the connection between Dl and D2, the sum of

whose thicknesses has been normalized to unity. The parameter

e = f27F Do/nO messures the relative effect of the density stratifica-

- Rz

tlon versus the free surface on the veloclities, In these equations,

the approximation Eaiei << 1 and no << DO have been used. The density
=)

in the upper layer 1ls p; and in the lower layer is po.

The Integrals of motion are,

-‘.r_lL}E_E = F ( . ) - + = @ ( ) ( 11)
Dl - l .¢l 2 2 Vl q - l Il!l 5'9‘

vy +{ 5

_—'ﬁi"— = FE(‘J}E) 2 _ilf V2 + 1 - eDl = Gg(‘l“g) .

In the infterior the expression for nisn = e . The coeffi-
cient ni/no may be normalized to unity. This does ngt restrict the
choice of physically different boundary conditions. This can be veri~
fied by noting that the expressions for 1 and Dl in the Interlor are

taken to be

q(c,t) = ¢ , Dl(oo)g) =a + bf . ‘ (3.9.12)

With 3.9.5 and 3.9.8, both with the non-linear terms discarded, this

implies that
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uy (o0o,t) - 1 (3 3)
Up(00,t) = l-eb )

So the physical ratios of velocities end layer thicknesses may inde-

pendently assume any values by means of the parameters e, a, and b.

Other normalizations are possible, but this one seems most convenient,
Using the potentlal vorticity integrals 3.9.11, and the geo-

strophic relations, the equations analogous to 3.3.3 and 3.3.4 are,
n,XX - CDlFl(w]) = - §2 ’ (j.9.ll¥)
- - — = - 2
s = Pp ey ~ ST () = . (3.9.15)

These may be changed, by addition and subtraction, to the following

equations,

Ty = O1F () =~ 65, (3.9.16)

-}

oDy o + U0 - D[P (¥y) + Fp(up)1} =0 . (5.9.17)

If
n=% . D =g,
Tx = In Dl’X =Y, (3.9.18)
ot o =Yg
Then
Y 2= Yo (3.9.19)
Yoy = WOF (%) - 2, - (3.9.20)
Y5’X =Y, , (3.9.21)
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Y = - 2E0) - D () F 0, (3.9.22)
Yo =F Y3 Y, (3.9.23)
Yé,x = % (1~Y3)(Y2—eY4) . (3.9.2k)

The use of the geostropic equations, together with 3.9.12 gives,

analogously to 3.3.18,
Y1(o0,8) = {a log ¢ + b(t-1)} , (3.9.25)

Y2(c0,t) = (1-eb){(1-a) log ¢ -b(t-1)} (3.9.26)

Then the equation for n at the coast, Nas 18 obtained in the same way

as 3.7.11.

t {¥1(o0,¢) + ¥=(oo0,t)}

=
n

i

eft b ~ b1 - 3 (a#b8)® + (awb)}  (3.9.27)

The initial conditions for equations 3.9.16-3.9.24 can be ob-
tained by first guessing a value for hy and then using 3.9.27 for the
corresponding value of Mo Then the Bernoulll integrals glve the values
for the velocitles, which may be entered into the geostrophic equations
to give n’x and Dl,x' Y5 and Yg are set to zero at x = 0. The offshore
-golutions are obtailnable by a simple extension of these ldeas, ag was

discusgsed in 3.7 for the offshore level of no motion solutions. ‘he

same numerical technique is used here as in Section 3.7: guess hj,
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integrate the gystem of first order equations and use the behavior for

large x to iterate toward a solution.

5.10 Behavior of barotropic models

The numerical technigue of the pfevious section will give solu-
‘tions for various values of 2y, b, and e. In this section the properties
of the solutions as a function of these parameters wilill be discussed.
Detailed comparison with cbservation is deferred to the next chapter.
The purpose and format of the diagreams are the same as for figures 18-

23, and are described in section 3.8.

Figures 24 and 25.--For the case in which the upper layer thick-—

ness was a constant increase or decrease as a functlion of latitude, as
e increases from zero, the density effects restrict the correct solu-
tion to lower latitudes. For b <0, as e -» 00, ve = 00 and therefore
Vo 22 Vi, If this limit is properly scaled,it corresponds to the upper

layer becomlng a level of no motion. To show this, imagine that in

equations 3.9.2 and 3.9.3 that (x,u,v) are scaled using pg;gl D, instead
of No* Then the parameter eul would only appear as the coefficient of

n in equations 3.9.4-3.9.10. That is, the equations containing e

would be
“tv tZn, =0 (5.9.4a)
vyt g n)x .9.
WV,  + V.V +¢u P =0 (3.9.5a)
1'1,x 11,y 1 e n,y T
-tv . -D =0 (3.9.7a)
2 e n,x 1,x T

1
+bu, + 3 - D =0 . (3.9.82)
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Thus, with this different scaling 1t is explicitly seer that e = co

corresponds to the upper layer becoming a level of no motion. Since

& = 00 corresponds to either g 0 or Qi;pl Do + o , i.e., the strati-
Tication becoming dominant over the effect of the free surface; it may
be said that the upper layer level of no motion corresponds to negligi-
ble effect of the free surface.

If the upper layer becomes a level of no moticn, an imposgible
limit msy be expected. When the upper layer velocity vanishes identi-
cally, the solution for hp, and therefore for h; = (l-hg), is completely
determined. But when the velocitles are small but not identically zero,
the conservation of potential vorticity gives, for the sequence in
figure 18 if Vl,x'a 0, Eé =27%, This is different from the limit for
h; when the velocity in the upper layer is ldenticelly zero.

In contrast to the discussion in 3.8 for filgure 19, no simple
conclusion like h; + hp = 1 can be drawn from the Bernoulll integral
for the rescaled equations, & v% + % N = % , because all the terms
are small. But an Impossible limit is still to be expected because of
the above potential vorticity argument, and indeed, for e = 4.0 no
solution can be found., Thus e - co 1s an Impossible limit.

The difference between e » oc for b < o, an impossible 1limit,
and 7 > oo for the baroclinic case, a correct limit when b > O, occurs

because in the baroclinic case the thickness of the lower layer can

adjust to satisfy the conservation of potentisl vorticity.
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As e goes to zero, the correct solution goes to that limit in
which the upper layer has the same thickness at the coast as it did at
t = 1.0, and goes to 1ts proper asymptotic value for large x. Of
course, in the limit, this variation in thickness of the upper layer
across the stream has no effect on the velocity because e = C. The
disappearance of the solution as e gets larger for the case of positive
b 1s not surprising, because when e = l/b, the lower layer becomes a
level of no motion, an impossible limit is expected, and, in fact,
no solution can be found for e = 3.8. This shows that the one-moving-
layer baroclinic model may not be regarded as the limit of a two-layer

barotropic model. It ig an impossible limit.

Figures 26 and 27.--IFf 1n the interior the interface between

the two densities is horizontal, then, even if e # O, the difference in
density has no effect on the input fluxes, and it 1s clear that a pos-
sible solution is the one In which the solution for the homogeneous
layer holds, and in which the interface is at the same depth through-
out the entire region. These figures show, however, that for e % o,
the horizontal interior may not be regarded as equivalent to the homo-
geneous solution, because for arbltirarily small slopes a discontinuity
in the solution appears at some latitude. In these figures e = 1.0,
and the discontinuity appears at £ = 1.7. Thus the horizontal inter-
face between p; and ps is. an incorrect limit. If the upper layer thick-
ness increases slightly with latitude in the interior, then along the

coast 1ts thickness decreases with latitude, and if 1t decreases in
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the interior, then 1t increases alohg the coast. In both cases, no
value of e gives an off-shore countercurrent.

Thege four figures show that the correct way to pass from a two-
layer model to the homogeneous model, which can extend to indefinitely
large values of £ , is for e to go to zero, that is,for the effect of
the free surface to be dominant over the density structure. Or to put
it another way, the one-layer baroclinic mcdel may be extended beyond
the latitude to which it would otherwise extend by adding large com-

ponents of the barotropic model.

3.11 Summary

The constant-potential-vorticity solutions showed that a thin
upper layer could not extend very far north unless the stratification,
¥, were large. For a thick upper layer, a solution with an Iinshore
countercurrent 1ln the lower layer could be found up to near { = 2.0,
but the water in this countercurrent could not have come from the
interior, so that the solution is physically meaningless. The inshore
countercurrent can be eliminated by large stratificatlon together with
making the upper layer in the interior less than roughly % the total
thickness, which 1s the kind of density structure observed in the
ocean. This result suggests that if some other density structure
existed, perhaps becauge of climatic change, the Qulf Stream in the
growth region would not be as smooth as is observed. Large stratifica-

tion is also the proper limit for passing from the two-moving-layer
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model tc the one-~layer model. If the internal stratification goes to
zero in a two-layer baroclinic model, then an incorrect solutiomn
approaches the one-layer solution.

Numerical computations with non-constant potential vorticity
(baroclinic models) verify that large stratification extends the solu-
tions northwerd and 1s the proper limit for passing to the one-moving-
layer baroclinic case. The computations also show that the level-of-no-
motion solution resulting from a horizontal lower interface is an im~

possible limit.

Numerical computations with barotropic models show that the
proper limit for passing from the two-layer case to a homogeneous
layer is for the effect of the free surface variation to dominate over
the internal density structure. It was also shown that a one-moving-
layer baroclinic solution may not be regarded as the limit of a two-
moving-layer barotropic model in which the velocity in the lower layer
goes to zero, because no solutlion exlsts as this limit 1s approached.
It 1s an impossible limit.

The results of this chapter are summarized in figures 29 and
30 for baroclinic and barotropic models respectively. For cxample the
upper portion of figure 29 shows that for passing to the cne-layer
baroclinic model, y » o0 is a correct limit, y - 1 is an incorrect

limit, and the lower layer becoming horizontal 1g an impossible limit.



- 80 -
CHAPTER IV
COMPARISON WITH OBSERVATION

4,1 Restrictions on comparison with observation

The primsry purpose of this investigation of dinertial boundary
currents has been to discover the qualitative effects resulting from
the density structure of the ocean. However, it would be interesting
to see I1f more detalled agreement with observation can be obtained
than was previously possible. Before these comparisons are attempted,
however, some mention should be made of the effects of mechanisms
which have been excluded from the model.

Perhaps the mogt fundamental objection arises from the discov-
ery by Bryan (lh) that as the horizontal eddy viscosity goes to zerc,
no steady state can be obtained in numerical solutions of the homo-
geneous, barotropic model with an Imposed wind stress. In his solu-
tions, the reglon of the boundary current in which the water fluxes
toward the coast (whilch 1s the regicn of interest in this work) is well:
behaved, the time average is close to the analytical steady-state
models. However, where the flux is away from the coast, the solution
takes the form of a series of countercurrents in which even a small
horizontal eddy viscosity can dissipate the relative vorticity caused
by changes in latitude. Thils result was anticipated by Fofonoff (25)
in his review article. It is not surprising that the time variation
is present, because the large shears in the northern reglon must lead
to instability. If it is instability which leads to the time varia-—

tion, then a steady-state analytical solution may yet be found.
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If Bryan's results are intefpreted as meaning that no inertially
dominated flow can be in a steady state, then the gignificance of steady
state theorles becomes questionable. However, since steady state in-
ertial models give a good representation of Bryan's results in the
.growth region, it 1s plausible that close analogs of the present strat-
ified-ocean results will be valid in the time varying case.

In addition to the Instabllities of horizontal shear found in
Bryan3s work, there are instabilities related to the density structure.
Ippen and Harleman (27) have observed in experimental fluid flows that
internal waves on the Interface between two moving layers begin to
break for Froude number of order unity. In many of the models in thig
paper tﬁe Froude number exceeds unity, and these transitions might oc-
cur. More recent work on stratified hydraulic Jumps has been performed
by Long (28) and Yih (29).

Stern (%0) has shown that infinitesimel disturbances will not
grow on a one-layer baroclinic model if the gradient of potential vor-
ticity across the stream does not vanish. Slnce the potential vortic-
ity is monotonic in the present models, this would imply that all re-
sults in this paper, except perhaps for the constant potential vorticity
case, are stable. Unfortunately, Stern does not include the variation
of the Coriolis parameter in his analysis, and the results are strictly
valid only for small valueg of the veloclity (small values’of the Rossby
number, %% )‘so that the significance of his result is not so clear in
the present context as it is for zonal flow. However, in géneral, the
possibility of infinitesimal disturbances drawing on the available

kinetiec and potential energy should be kept in mind.
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Bottom topography is not discussed in the theory, yet it has
an important effect. Greenspan (51) has emphasized the importance of
bottom topography for the existence of steady boundary layer solutions.
It is quite clear that 1f the depth changes, so must the relative vor-
tlcity; a variation in depth is equivalent in many ways to varlation of
the Coriolis parameter,

Warren (12) has shown that the bottom topography controls the
detailed path of the stream after it has left the continentsl shelf.
The path of the Gulf Stream through the Carilbbean shows clear topog-
raphic influence, and the Florida Straits are shallow enough to cut off
much of the water fTluxing towsrd the coast between 10° and 17°N in
figure 3. This water would otherwise play a role iIn the stream.

Filgure 3 shows considerable density structure in the upper
layers which cannot be adequately modeled by anything short of a
continuum thecory. The failure in this work to deduce an offshore
countercurrent from a two-moving~layer model makes 1t seem possible
that the countercurrent might be associated with a north-south gradient
of density at z = 0, because that is practically the only qualitative
feature which cannot be modeled with the class of interiors available.
A continuum model is necessary for this question because 1t will avoid
the infinite values of potentisl vorticity which result from a layer
of zero thickness in the infterior. I have not been able to handle
these infinite values with numerical techniques. A continuum model
might also"join" the correct and incorrect solutions and therefore show

the discontlinuities to be artifacts of the finite number of layers.
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It might be thought that it would be possible with this numeri-
cal computation scheme to discuse how the upper layer could return to
the interlor with an eastward flux over a large range of latitude,
while the lower layer maintained the boundary current by continuing to
accept & westward flux. However, this toplc lies beyond the scope of
this work because a given value of the stream function, as i1t returns
to the interior, must carry with it the same potentisl vorticity with
which 1t entered the inertial regime. Thils regquirement 1lmposes a
severe restriction on the densgity strueture where the streamline returns
to the interior. For some cases I have shown that it is not possible
to determine any density structure to accept the return inertial flow.
However, it 1s not necessary to give these results here because even
1f such density structures did exist, and if inertial solutions could
be computed to fit them, the meaning of the result would be unclear,
because the result would imply that the interior density structure at
a lower latitude forces a particular density structure at a higher lati-
tude by means of the inertial boundary current. It is more plausible
to me to think of the Gulf Stream as a boundary layer on an internal
thermocline region which is determined by a balance between diffusion
and advection of heat. Bryan's results do indieate that the interior
can be thought of as determined independently from the boundary layer
and also that any search for broad, steady, purely inertial, fluxes
returning to the interior from a simple boundary layer i1s likely to

be fruitless.
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The effects of vertical and lateral eddy diffusivity are daif-
ficult to evaluate. However, if one accepts as a typical vertical
eddy kinematic viscosity, 1 e sec_l, and as a typical horizontal
viscosity, lO5 cm? sec—l, then the Navier-Stokes expressions indicate
that over the course of the accelerating portion of the stream, eddy
viscosities might easily destroy secondary inertial phencmensa, How-
ever, there 1s no reasonable way to apply such comment about viscosity
in a systematic manner. In summary, comparison with observation must
be restricted to the lower growth region of the Gulf Stream. Effects
of unsteadiness, instability, bottom topography, continuous stratifica-
tion, and viscoslty are neglected. Since I cannot put error limits

on these effects, neglecting them can only be justified by comparison

with observation.

4,2 Comparison of baroclinic models with observation

Figure 3 gives the data for the interior from which plausible
two-moving-layer model boundary conditions must be extracted. Some
approximation 1s inevitable, and choosing a proper model 1s tc some
degree a matter of guess or intultion. To me one of the most plausible
models consists of an upper layer bounded below by O, = 27.0, and a
lower layer with a bottom voundary of Ut = 2'(.5, The parameters a, b,
and ¢ are evalvated by requiring the upper layer to change from a

thickness of 400 meters at 15°N, which is taken as ¢ = 1.C, to a thick~

1f

ness 6f 750 meters at 20°N, which is approximately £ 2.C. . Between
the same limits, the bottom of the lower layer is taken to vary be-

tween 900 end 1000 meters depth. Characteristic 0£ valuegs chosen for
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the layers are 26,0, 27.25, and 27.75 for the upper, lower, and bottom
layers respectively. These data give zg parameters of the normslized
level of no motion model, a = .111, b = .333, ¢ = .778, and 7 = 3.5,
This model is close to one consisting of an upper layer of constant
potential vorticity overlying a layer whose lower boundary is horizontal
(vhich would make it a layer of no motion). The level of no motion
chosen is plausible because Stommel (1) gives the level of no motion

in this sectim between 1000 and 1300 meters on the basis of water

mass considerations.

Because the above parameters are close to the impossible limilt
of figure 19, it is To be expected that no solution exists., Indeed,
the same indications of the non-existence of a solution found in sec-
tion 3.8 in the discussion of figure 19 are found here alsgo. That 1s,
for each { there is no indication of a solution anywhere except in =
small region where the convergence is exceptionally slow, and where
one of the asymptotic fields does not change sign.

These criteria strongly Indicate that for these modelling pa~
rameters there is no solution., It was shown in section 3.8 that the
physical reason for this is that slow motions In the lower layer make
it impossible for v)x to be large enough so that pctentisl vorticity
can be conserved.

Presumably, in the actual stream, as the water flows north,

" because v camnot be large, the relative vorticity caused by changes
in latitude must be dissipated by horizontal eddy viscosity; Also

presumsbly, if in the real flow, or in an imagined "model"” or "ideal"
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flow, the "natural” turbulence were not sufficient to dissipate this
excess vorticity, then the steady, boundary layer flow would break
down and sufficient unsteady turbulence would be generated to dissipate
the advected vorticity. DPerhaps, in fact, this is the cause of some
unsteady motiong in the ocean.

Figure 21 shows the "solution" for these model parameters. It
may or may not be instructive to compare this with cbservation and to
note that the "solution" for the upper layer is close to what it would
be 1f the lower layer were a level of no moﬁion. This latter solution
is shown by the crosses. This oehavior 1s, of course, the same as in
figure 19. The upper layer comes to the surface at { = 2.08, which,
for a B plane tangent at 25°N corresponds to a latitude of 33°N. This
is about 2° south of Cape Hatteras. The agreement of this upper layer
with obgervation is good, as it should be since, in effect, i1t is
Charney's (21) model.

On the other hand, for the lower layer, the agreement is poor.
To gee thils, first note that the po,ps interface may e identified
fairly accurately with the 6°C isotherm. In the computed "solution"
thig interface rises across the stream by no more than the equivelent
of 100 meters between { = 1.0 and 2.0. But from figure 7, the 6°C iso-
therm rises by 70C meters across the stream. So in the lower layer,
where the inertial theory is expected to be worse, the "fake" solution
gives excessively poor agreement with observation.

In summary, including the lower, slowly-moving layer in =

baroclinic inertial theory seems to be impossible because the slow
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veloclties are Incompatible with the large relative vorticltiles caused
by changes in.latitude. Because Charney (21) did not consider these
lower layers,he was able to achieve good agreement with cbservation.

If the adyection of warmer water from more southerly latitudes
causes the warm core and the associated countercurrent, it mlight be
possible to reproduce such features with a two-moving-layer model.
Constructing such a model will be the next attempt in a comparison
wlth observation.

From figure 3, one possible model is a horizontal interface be-
tween p; and ps at a depth of 160 meters (corresponding to o = 26.1),
and a lower layer bounded below by a = 27.0 and going from 400 meters
at t = 1.0, to 750 meters at ¢ = 2,0. (Another possibility is cer-
tainly one in which the upper layer decreases in thickness with lati-
tude. Such models have been computed and glve essgentially the same
results as this one.) Characteristic o, values are 25.0, 26.6, and
27.5 for the upper, lower, snd bottom layers respectively. These data
give the parameters a = 0.4, b = 0.0, ¢ = -.15, ¥ = 2.7. The sclution
for these parameters lg shown in figure 32 by one of the standard dis-
grams and by a cross—-section at ¢ = 1.6. There is no countercurrent
in this crogs~sgection, and there was none for any of a comprehensive
class of other solutions computed for varying shapes of the upper layer
and values of ¥, In figure 32 the fallure of the solution to go to

the dashed lines which give the proper asymptotic values is, of course,

due to the divergence of the solutiorn for large X.
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To my knowledge no profile like that of the upper layer in
Tigure 32 has ever been observed. It seems Intultively plausible
that such structures would be especilally subject to instabilities, and
that they might easily be destroyed by the viscous layer in which the
velocily goes to zero al the coast.

However, this type of profile is found for all cases in which
the thickness of the upper layer in the interior decreases with lati-
tude, and thus avpears to be fundamental., This may be an Indlcation
that an inertial theory will never be eble to discuss an offshore
countercurrent, which exists, perhaps, orly 1f turbulence is introduced.
On the other hand, the countercurrent may depend crucially on the sur-
face gradient of density in the Interior, which can be discussed in
an inertial continuum model.

The fact that none of the correct solutions have a warm core
can be understood in a way already mentioned. In the analytic solution
computed for a layer of constant potential vorticity between two levels
of no motion, hi Increases with latltude. Since for the present
"warm-core’ models the upper layer approaches a level of no motion, hy
increases with latitude for them also, mesking a warm core impossible.

Warm cores can, however, be found in the incorrect class of
solutions. (See figures 21 and 23), but they do not give & counter-
current. Filgure 33 is a plot for such a warm core solution for a =
0.7, b = -.25, ¢ = -.75, v = 2.0, and { = 1.9. It is on the incocrrect
branch for case 2 in figure 21. The two solutions represent the closest

-

computed "bracketing" solutions. The velccity in both layers for both



- 89 -

solutions is positive_out to x = 1.8, The warm core is shown by the
fact that D; around x = 1.0 is greater than the asymptotic thickness
as indicated by the dasghed line.

Because crosgs—-gections in which the warm core thickness van—
ishes at some non-zero value of x, like figure Zhe, were not discussed
numericaelly, it is important to show, if possible, that they will not
give a countercurrent. I have cobtained some results if the lower layer
kag constant potential vorticity, which is a very representative model.
Unfortunately, however, IThave not been able completely to exclude =
countercurrent even for constant potential vorticity.

To vegin the discussion, suppose the north-south cross-section
looks like figure 3ha, 80 that the lower layer has constant potential
vorticity. The plan views of the boundary layer could lock like fig-
ures 34 b, ¢, or d. It will be shown that countercurrents in the sur-
face water are impossible in figures 34b and c, but no result is ob-
talned for figure BMd. In these Tigures the solid curve represents
the Intersection with the free surface of the surface between p; and
Pp>. In 34b there is evidently a countercurrent in the upper layer.

The dashed curve in each figure represents a V¥, streamline which enters
the stream south of the pi,p- intersection.

If figure 34b represented the solution to the boundary condi-
tions given by 34ka, then one would expect a countercurrent, as indi-
cated by the dashed line, at a cross—section which is everyvhere south
of the solid curve. However, cross sections at analogous points have

been computed, and give no countercurrents (see, for example, figure
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21, the incorrect solution), indicating that figure 3L4b does not ob-
tain.

So 1t is reasonable to ask next if there can be an off-shore
countercurrent north of Em in figure 34c. To show that there canuot,
first note that at such s cross—section vy at the s0lid curve must be

positive. Filgure 3ke gilves the principle features of such a cross-

: . 1 v =X :
section. Since v, = q (7Dl,x + DE,X) and v, = i (Dl,x + DE,x)’ if
vy > 0, then so is Ve Since Dl =0 for x > X,s then *the veloeity to
L
—aga(x—xc)
the right of x_ must be v, = vg(vc) e where VE(XC) is the

positive value of Vo at X, and & 1s some positive number. So the
velocity 1s of one sign, positive, and there 1s no off-shore counter-
current.

Only figure 34d has not been excluded, but I can think of no
way to do so. So the question of off-shore countercurrents remains
apen. Fortunately, it seems that the ohsexved boundary conditlions can
be fitted satisfactorily by two-moving-layer models without requiring
that Dl = O for some { in the interlor, so that this gap in knowledge
may not be so serious.

In summary, the atitempt to model the upper 200 meters, or the
range 700~1000 meters of the Gulf Stream by one layer of a two-layer
theory must be sccounted a fallure, so far as comparison wlth observa-
tion is concerned. In the range T00-1000 meters it appears that the

reason is that the transport is so small that there cannot exist the

relative vorticity necessary for large changes in latitude, so that the
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vorticity must be dissipated either by "natural" turbulence, or turbu-
lence caused by breskdown of the steady inertial flow system.

For the upper 200 meters the explanation is not so clear, It
may be Tthat turbulerce is especlally active in surface layers and
destroys the inertial flow. Or perhaps continuously stratified models
are needed in this region. For thin surface layers, as discussed in
gection 3.3, it may be that non-linear terms must be considered in the
X momentum equation.

It 1s, however, just possible that continuously stratified

models could solve all these problems.

4.3 Comparison of barotropic models with observation

The barotropic model is actually insppropriate for = compsarison
with observation because, as Stommel (1) has shown, the water below
about 1500 meters appears to move eastward in the interior. However,
it might still be expected that the upper layer would be insensitive
te the lower layer and that a falrly realistic model might be con-
structed from an upper layer of approximately constant potential vor-
ticity and a value of e sufficient to give a small westward value to
the velocity in the lower layer. It turns out, not too surprisingly if
the results of chapter IIT are remembered, that any plausible model of
this type has no solution. Such models are close to impossible limits.
For example, if the upper layer is taken to change from 400 to 8C0
.meters between ¢ ~ 1.0 and 2,0, if the total depth ig taken as 4C00
meters, and if e 1s selected so that the ratio of the upper layer

velocity to that of the lower is 5.C; then no solution can be found
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even at { = 1.03. The same result is obtalned when, to take account
of the fact that the stream in the Florida strailts and along the Blake
Plateau is in water of less than 1000 meters, a plausible barotropic
model is given for only this upper region.

-The failure of this latter model strongly suggests that if the
botiom water through the Florilda straits and on the Blake plateau flows
in the same direction as the main stream, then i1t does not conserve
the Inertlsal Integrals. Here, a8 in the comparison of baroclinic

models with observation, viscosity might dissipate the advected vor-

tleity.
4.4 sumary

Both baroclinic and barotropic models fail to give good, or
in some cases any, description of the surface and deep layers of the
Gulf SBtream. These results suggest that the one-moving-layer inertial
models very likely give almost the best result that can be obtained
for a purely inertisl flow of global dimensions, and that adding more
detall to a purely inertial model will probably only increase the de-
tall of disagreement with observation. This does not necessarily mean
that the success of the single-~layer models is 1llusory, only that
they select that part of the stream which is most dominated by inertial
effects. However, thils conclusion must be preliminary until solutions

for continuum models are available.
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CHAPTER V
SUMMARY AND RECOMMENDATIONS FOR FURTHER RESEARCH

Although the solution of the mathematicel problems posed is
fairly complete and ciear—cut, ite net contribution to the vhysical
problem of the Gulf Stream seems only to =dd more uncertainty than
existed previously., Ib seems a general result that if any realigtic
detail 1s added to the one-moving-leyer baroclinic models of Morgan
and Charney, then either no solution can be found, or if = solution
is found, i1t is valid only for small intervals of latitude. For ex-
ample, an infinitesimal surface layer with a finite density gradient
makes it lmpossible to find a correct solution ocutside of an infinites-
mal range of latitude, at the northern end of which, cross-stream
geostrophy breaks down, as at the "nose" in figure 1k,

To the north of such points there are incorrect solutions, as
in figure 18, and in a continuously stratified model, perhaps correct
and incorrect solutions "join" and perhaps there is no discontinuity.
However, if the results of the present work are really an indication
that a steady, inertial Gulf Stream is imposslble, what new terms must
be added to the equations of mction to get a useful model? Will in-
cluding non-linear inertial terms in the x momentum equation join the
correct and incorrect solutioms? Or is turbulence necessary? Is
turbulence generated because steady inertial flows cannot exist? Or
does "intrinsic" turbulence itself destroy the steady flows’ Or can

all the problems be resolved by a continuum approach? Until these
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problems are resclved, the significance of the results of Morgan and
Charney is thrown into question.

The meaning of the failure to find an inertial, off-shore
countercurrent is also not clear, Is 1t possible that a type of in-
terior boundary condition different from those congidered could give
a two-layer inertial countercurrent? Or 1s it necessary to introduce
continuous stratification, a-geostrophy, or turbulence?

The principle positive result of the thesis is, of course,
the understanding of the nature of the various limits~-those of in-
finite and vanishing stratification, and those giving levels of no
motion. This mnderstanding should help in future attempts to solve
the problems suggested above.

Some investigations which may be of value to settle these
questions are:

1. Analysis of two-layer models using horizontel eddy

viscosities.

2. Analysis of two-layer models, one viscous and one

inertial.

5. Existence theorems for two-layer models, especially

with regerd to countercurrents.

L., Existence theorems for continuum models,

5. A discussion of what nappens in the one and two-layer

barocliniec models after cross-stream geostrophy breaks

down.
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APPENDIX I
CONTINUOUS STRATIFICATION, AND VERTICALLY AVERAGED MODELS

1. Continucus stratification

In the present work one~ and two-moving layer models have been
considered. But it is possible to imagine models with an indefinitely
large number of layers, and the question arises, what is the continuum
limit? 1If there are many layers, then each individual layer will be
arbitrarily thin, and the vertical velocity, w, can be calculated from
W o= uz + vzy, where z represents the value of the vertical coordinate
for the particular layer under conslderation., Thilis shows that although
in the many-layer models w does not explicitly appear, just as it does

‘not in the one- and two-layer models, it can be calculated, which is
neceggary for a continuum limit.

The value of z for a given layer would be found by integrating
g% dp from the surface to the layer under consideration. ‘lhe analog
of the layer thickness is g%, and p may be regarded as the coordinate
replacing z. In the momentum equations in chapter III, the non-linear
and Coriolis terms were not changed by golng from a one to s two~m0ving
layer model. But the pressure gradients did change. In the continuum
limit the pressure at density p 1s the integral from the layer to the
surface of gp g% dp.

When the changes outlined above are effected in the transition
from a few layers to a continuum model, the result is exactly the

equations of motion in the well~known quasi~Lagrangisn coordinate
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system of Starr (32). The quasi-Lagrangian equations are simply a
transformetion of the baslc equations, using only the assumption of
"hydrostatic balance" in the vertical momentum equation; the ssme as-—
sumption is used in the present work. Thus, in the limit of many
layers, the present theory does go over Lo a continuum theory.

In tkhe continuum theory the analog to the conservation of po-

tential vorticity derived In the present work is

v, -u, +f
a2y
dt oz - ‘

dp

This result is derived by Starr, and is in agreement with our previous
discussion of the analogy between D and g% .
For an arbiltrary coordinate system, and without using the

hydrostatic approximation, Ertel (33) has derived the more general

theorem, valid also for compressible flow

a1, .= = = 1.
EE[E{vxva-EQ}-vp} =C .

Jacobs (34) has found the corrections to the equations in a
cartesian coordinate system if the "hydrostatic” condition is not

valid, He shows that the equations become much more complicated.

2, Vertically averaged models

In the present work, the shallow-water equations have been
used for one or two layers of constant denslty as an approximztion to

continuously stratified flow. Another way to get equations is to
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vertically integrate the equations of motion, and divide by the depth
to get an "average” equation of motion. When non-linesr terms are of
importance in the equations, as in the boundary layer in the present
theory, some rather drastilic assumption must be made in order to evalu-
ate the integrals of the non-linear terms. All the assumptions which
can be made are so arbitrary and untrustworthy that Carrier and Robin-
son (13), who used vertically averaged equations, evaluated the non-

linear terms "by assumption,” they simply set, for example,

. o
Jru uX dz =-[.uaz . 5§L[udz .

The motivation for using vertically integrated boundary layer
equations 1s that in the intericr, if the motions are presumed slow,
the vertically averaged equations are far more reliable; and it is de-
sired to it this good interior theory to a suitable boundary layer.

However, at the present time, even the Sverdrup relation,a
result of vertically averaged equations, seems untrustworthy. In the
vertical average of pressure gradients there are terms due to bottom
topography, and near the Mid-Atlantic ridge, these are cf the same
order as the B term. Also, 1f the unsteady motions observed by
Swallow (9) have auto-correlations of only 10% then the resulting
turbulent stresses will also be of the same order as the B term.

In general, then, even the Sverdrup relation is questicnable,
so that there i1s little motivation to used vertically averaged equa-

tions.
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The best plan for steady models is probably to consider the
interior by detailed, diffusive thermocline theoriles using the full
equations, and to treat the boundary layer by shallow water equations,

using layers of different densities.
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APPENDIX II
NUMERICAL TECINIQUE

The subrcutine used for the actual integration is one which
has been used by many workers at Caltech. It was written by XK. E.
Redner of the Computer Sciences Corporation, The user must give a
supplementary routine for evaluating the derivatives and the subrou~
tine will perform the Integration and control the errors.

It has been programmed to allow the option of either fixed
interval size or varlable interval size with automstic error control.
The method of Runge-Kutta-Gill is used tc start the integration proc-
ess and is used to restart the integration whenever the interval size
hes been changed. Let the system of equations to be solved be given

in the form:

I

Yi = fi (t, Yl’ Yg: e, ¥ )y 1=1,2, ¢4 ,n

IT 1

Yi(to) B Yio

2

Let Y, Dbe the value of Y, at t = t_, f, +the derivative at t =t
in i n n

1
ang At the interval size of the independent variable t.

n

The Runge~Kutta-Gill method uses the formulast

k.,
io

]

1‘0 .
A (t, Yin)

II 2 vy Ly Ly
in 3 2

qil = k10
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_ At (1)
kg =ovf, (8+ 5, 17)
2 1) b
5 Y§.n) = Y§n) + 75 (e - ayy)
Ao =Py Ejq Feq 4y
B - At (2)
kie —At_xit+-——-—2,Yin)
(%) ,(8) . be
IT & L A N R ITY)
q15 = b2 ki2 + s qio
X, =atf, (t+ o6, ¥9))
1% 1 A
1 5
_L(3) .1 1
Yint 1 - Yn T8 Kis T3 Ys

where
o J7 ) 5 V2
bl =2 2 ¢, =~ 2+ 5
- 5 - _2ye
b, =2+ V2 c, = =2 5
The Adams-Moulton predictor-corrector formulas are:
re v®) oy s L% s5e s9e ey -9t )
i,n4l i,n 24 i,n i,n-1 i,n-2 i,n-3
” () _ At (p) _
113 Yi,n+l :L,n+ ok (9£,n+l * lgfi,n 5fj.,n—l + fil,n——2
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The corrector formula is applied only once so that only two derivative
evaluations are needed for each Adams~Moulton integration step. The
starting values are obtained using the Runge-Kutta-Gill method.

If the variable interval size mode 1s chosen, the interval size
is determined as follows:

let

() _ (e) 1
I - Max 1,n+l i,n+l
n+l ~ 1LD ?

el

(c)

i,n+1

lw)
!

, .001} .

An upper bound, ﬁ; on the truncation error estimste, E

n+1’ is

input to the program. This is equivalent to specifying the number of
significant figures which are to be preserved locally throughout the
integration. A lower bound, E, is computed by E = .02 E.

IfESE ;< E, the interval size, At, is unchanged. If
-12

- = At _
En+l 2 I, the program compares T to Lﬂﬁi where Lytmin = 2 Ad;max
At

where At is inserted by the user, Ir I < At , an error
max

min
return is made. If 1:— Ayt in ? At is replaced by —tg , Tthe condi-

tions at time t are restored (i.e., Y,

el 1,n-17 £, n~l)’ and three

Runge-Kutta-Gill integrations, and two Adams-Moulton integrations are

performed. It may be seen that the last Adams-Moulton Integration step

was an integration from time t to time t + éﬁi The truncation

error estimate, Eq+l » 1s computed at this point and the program con-

tinues ag above.

1 =
If ¢ [t + At - tn+l] =0 mod 2, where j is a positive
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integer and to + (J—l)AtmaX < bl < to + JAtmax , the program com~—

pares En+l to E. If En+l < E, the program performs integrations to

times tn+2 and tn+5

En+§ < E and 2At < Atmax 5 then At is replaced by 2At.

by the method of Adems-Mounlton. If En+ <E and

2

While the truncation error test will gﬁarantee that the local
error does not exceed ﬁ, the cumulative error will usually exceed E.
Hence, E is chosen small enough to allow for an accumulation of trunca~
tion error.

Starting values for the Adams-Moulton method are always ob-
tained using the Runge-~Kutta-Gill method whenever the interval size
is changed, Jjust as at the beginning of the integration. An initial
value for the interval size is input to the program when using the
variable mode.

Both the Runge-Kutta~Gill method and the Adams~Moulton method
incorporate round-off control features. Thils is accomplished by keep~
ing the Y

in double precision and forming the sums Y + Ainn in

in in

double precision. The derivative evaluations are all performed in
single precision. The procedure has been shown to be very effective

in controlling the growth of round~off error.
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FIGURE CAPTIONS
Figure 1.

Chief features of the surface water circulation in the North
Atlantic. From Stommel (1).

Figure 2.

Schematic diagram of the surface and abyssal circulations in
the Atlantic Ocean. From Stommel (1),

Flgure 3.

North-socuth denslity section in the Atlantic near 66°W. Sta-
tions plotted are: Atlantis 5176-5202, 5232-5235, 5237-526%, Crawford
312~328, The symbol, o, ig 1000 (p—l), where p 18 the densgity. The
corresponding temperature and salinity sections have been plotted by
Fuglister (10).

Figure L,

Depth of the 10°C isothermal surface in the North Atlantic.
Depth is gilven in meters. Stommel (1).

Figure 5.

Topography of the Florida Straits, depth is in fathoms.
Stommel (1).

Figure 6.

Topography of the western North Atlantic. Depth is in fathoms.
Stommel (1).

Figure 7.
Temperature and velocity sections across the Gulf Stream.

From Worthington (11). It is the density which is dynamically Important
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in the stream, however the lines of constant salinity, and therefore of
density, parallel the lines of ccnstant temperature., In the upper fig-
ure the "warm core" is clearly visible, and in the lower figure is the
countercurrent associated with the warm core.
Figure 8.

The genersl pattern of flow for all models in the present work.
From the interior, x = 0o, water flows toward the coast. At ¢ = 1.0
(or y = 0, since £ =1+cot QO ¥), the water turns north, forming the
boundary current, which extends northward to values of { dependent on
the dynamics.
Figure O,

The solution for a constant-potential-vorticity model with
Yy =2.0, & = 1.0. BSolution plotted in the h;, { plane, where h; is the
thickness of the upper layer at the coest and { 1s the latitude coordi-
nate. The symbols like (++—+) give the signs of (hi, hs, Vi, va) at
the nearest calculated point. The veloecities at the cocast are VS and
vS. The correct solution has hy = 0.5 at { = 1.0, and extends north.
Figure 10.

Representation of the solutlon of constant-potential-vorticlty
Gulf Streams by finding the solutlon of two simultaneous quadratics in
hy and by, the layer thicknesses at the coast.
Figure 11,

Expanded view of the correct solutions in figure 9.
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FPlgure 12,

Cross~sections of the Gulf Stream at selected points of figure
11, The layer of density p; is shown by the symbol D1, and similarly
for Ds.

Figure 13,

Shows the existence of off-shore solutions in which the upper
layer moves away from the coast for parameters y = 2,0, & = 1.0, The
solid line shows the intersection of the ¥; = O streamline with the
surface. Along this line, D; = O. Note that more than one off-shore
golution can exist for one value of (.

Figure 1k4.

Thickness of the upper layer, hi, at the coagt as a function
of the latitude variable, { , for the case 6 = 1.0, & = 0.1 (y = 1.1).
The lower diagram shows an incorrect solution, and the non-uniformity
near { = 1,0 is shown in the text to indicate that & - C is an incor-
rect limit.

Figure 15.

Thickness of the upper layer at the coast as a function of the
latitude variable { for the case 6 = 1.0, & = 10.0. (y = 11.0.) The
veloclity at the coast, vg becomes negative at the coast for ¢ > 1.k,
Therefore the limit © - co 1s not physically reasonable,

Figure 16.

The correct solution for & = 1.0, 6 = 16.0. (y = 17.0.) The

dashed lines show the layer thicknesses in the interior, the solid

lines show the layer thickness at the coast. The soluticn is plotted
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only to the point where h’§ = 00. To the left 1s a representation cf
the density structure. The variable 3 i1s ¢defined in section 3.3%. The
small insert shows hi, the thickness of the uvper layer, as a function
cf {, the latitude variable, near the point where h; = 0. Note that
the maximum value of { occurs for hy > O.

Figure 17.

The thickness of the upper layer, h;, as a function of x, the
east~west coordinate, showing convergence of machine integrations for
succesglve approximations to hy for the parameters a =0, b = 0.3,
¢ =0, 7y =2,0, £ =1.457, The dashed line shows the correct asymptotic
solution.

Figure 18.

The upper layer thickness at the coast, h;, is ploLted as a
function of the latitude variable, { , for a sequence of bharoclinic
models showing that as the layer thicknesses increase less rapidly with
t in the interior, the correct sclution for the boundary layer can ex-
tend to larger values of {. The detailed format of the figure is dls~
cussed in section 3.8.

Figure 19.

The uvpper layer thickness at the coast, h;, 1s plotted as a
function of the latitude variable { for a sequence of baroclinlec models
showing that as the interface between p- and ps become horizontal it
becomes Impossible to find s solution. The sequence tends 4o an im-
possible limit. The crosses represent this limit which is the solution

for a single layer of constant potential vorticity. The question marks
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at the data points for ¢ = 0.9 and 0.99 show that convergence to a
solution was guestionable at these polints, indicating an approasch to
the impossible limit, The detalled format of the figure 1s discussed
in section 3.8.

Figure 20.

The upper layer thickness at the coast, h;, is plotted as a
functior of the latitude variable { for a sequence of baroclinic
models, showing that as the stratificatilon, y , Is increased, the cor-
rect solution goes to the limlt of a single layer of constant potential
vorticity, represented by the crosses. Iarge ¥ 1s a correct limit. As
y 1.0 it 1g the incorrect solution which approaches the limit. So
v =2 1.0 is an incorrect limit., The detailed formzt of the figure is
discussed in section 3.8.

Figure 21.

The upper layer thickness at the coast, hi, 1s plotted as a
function of the latitude variable { for a sequence of baroclinic
models, showing that if the upper layer decreases in thickness as a
Punction of { in the interilor, then increasing 7 causes the correct
solution to extend farther north. RBut y cannot be greater than 5.0,
for then the upper layer is a level of ro motion, an Impossible limit.
And for y = M.S, no sclution can be found. As 7y - 1.0, the incorrect
solution goes to the solution for a homogeneous baroclinic layer, show-
ing again that ¥ - 1.0 1s an incorrect limit. The crosses show Ihe
1limit for y - 1.0, while the x's show the limit for y - 5.0. The de-

tailed format of the figure is discussed in sectiorn 3.8.
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Figure 22.

The upper layer thickness at the coast, hi, 1z plotted as =
function of the latitude variable, ¢ , for a sequence of baroclinic
models, showing that for fixed stratification, y , as the upper layer
changes from an increase toward a decrease with latlitude in the inter-
lor as a function of {, 1ts behavior at the coast changes from a de-
crease tc an increase as a function of latiiude. For no value of the
slope does 1t extend beyond { = 1.5. The slope of the p=, ps inter-
Tace, together with 7, restrictsthe solutions to lower latitudes. The

detailed format of the figure 1s discussed in sectlon 3.8.

Figure 23.

The upper layer thickness at the coast, hi, is plotted as a
function of the latitude variable, { , for a sequence of baroclinic
models, showing that as the upper layer decreases more rapidly with
latitude, the solution is restricted to lower latitudes. 'The detailed
format of the figure is discussed in section 3.8.

Figure 24.

The upper layer thilckness at the coast, h;, 1s plotted as a
function of the latitude variable, { for a sequence of barotropic
models, showing that if the upper layer decreases in thickness with
latitude in the interior, that increasing the stratification, e, re-
stricts the correct solution to lower latitudes. The limit e - O is
.clearly correct for a transition to a homogeneous, barctrople model,
The limit e -» oo , when scaled, gives uy = v1 = 0, a level of no motion

and an impossible limit. In fact, for e = 4,0, no solution can be
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found. The detailed format of the figure is discussed in section 3.8.
Flgure 25,

The upper layer thickness at the cost, h;, 1s plotted as a
function of the latitude variable, { , for a sequence of barotropic
models, showing that if the upper layer increases in thickness with
latitude that iIncreasing the stratification, e, restricts the correct
soluticon to lower latitudes. The limit e - 0 is correct for a transi-
tion to a homogeneous barotropic model, For e = 4.0, the lower layer
becomes a level of no moticn, and is an Ilmpossible limit. For e = 3.8
no solution can be found. The detailed format of the figure is dis-
cussed in section %.8.

Figure 26.

The upper layer thickness at the coast, h; , is plotted as a
function of the latitude variable, { , for a sequence of barotropic
models, showing that as the upper layer Increases more rapildly in
thickness with latitude in the interior, that the correct solution is
restricted to lower latitudes, Also, as the p;, p- lnterface becomes
khorizontal there ls non-uniform convergence to the homogeneous model
limit in which the two layers have equal thicknesses and velocities
everywhere, It is an incorrect limit. The detailled format of the
figure is discussed in section 3.8.

Tigure 27.

The upper layer thickness at the coast, hi , is plotted as a

function of the latitude varisble, { , for a sequence of barotropic

models, showing that as the upper layer decreases more rapidly in
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thickness with latitude in the interior, that the correct golution i1s
restricted to lower latitudes. Also, as the po, ps interface becomes
horizontal there is non-uniform convergence to the homogeneous model
limit in which the two layers have equal thicknesses and velocities
everywhere., Tt 1is an incorrect limit. The detalled format of the
figure is discussed in section 3.8.

Figure 28,

The correct solutions for thosge figures marked by an asterisk
in figures 18-23%, The dashed lines show the layer thicknesses in the
interior, the solid lines show the layer thicknesses at the coast.

To the left is a representation of the density structure. The variable
f is defined in section 5.3, The solutions are not plotted past the
points where either hs = O or h’§ = QoC.

Figure 29.

Illustration of the character of the limits of various sequences
¢f solutions for baroclinic medels. TFor example, for the transition %o
a one~layer baroclinic model, 7 - 1 is an incorrect limit, y = 0o is a
correct 1limit, and letting the po, ps lnterface be horizental is an
lmpossible limit.

Figure 30C. Illustratiocn of the character of the limits of varlous se-
quences of solutions for barotropic models. For example the lower
left~hand corner shows that e - 0 is a correct limit.

‘Figure 31.

Results of calculations for a two-layer Gulf Stream using
boundary conditions obtained from observed data. The question marks

indicate that convergence to a solution is doubtful because the param-
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eters are close to an impossible limit. To the left is a representation
of the density structure. The variable 8 is defined in section 3.3.

The dashed lines give the layer thicknesses in the interior, and the
so0lid lines give the layer thicknesses at the coasst. The corner gives
the solution for an upper layer D = .111 + .333 ¢, just like Dy, over

a level of no motion. The questionable solution is close to this

limit.

Filgure 32,

Results of calculations for a two-layer Gulf Stresm using
boundary conditions from observed data which might have given an off-
shore countercurrent, a = 4, b =0, ¢ = ~.15 and ¥ = 2.7. In the
upper figure the dashed lines indicate the layer thickness 1n the in-—
terior, and the solid lines show the layer thickness at the coast. To
the left 1s a representation of the density structure. The varlable 6
is defined in sectiorn 3.3. The solution cnds when hs = 0. The lower
diagram gives a cross-section at ¢ = 1.6. The failure of the solution
to go to the dashed lines which glve the proper asymptotic values
shéws the divergence of the numerical integration for large X.

Figure 33,

A "warm core" solution from the incorrect class of solutions
in figure 23. The two solutions for large x are the two closestcom-
puted "bracketing" solutlons. The existence of the warm core is shown
by the fact that the layer thickness of the upper layer near x = 1.0

is greater than the asymptotic thickness as shown by the dashed lines.
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Figure 3k,

Sketches useful for discussing the existence of off-shore
countercurrents. Figure 3ha shows a north-south section through the
interior. Dy = 0 at gm. The upper layer has density pp and the lower,
p2. Flgures Bhb,c,d gshow posslble patterns for the streamlines. The
solid line 1s the Y5 = O streamline where Dy = 0. The dashed lines
repregent other streamlines. The possible existence of these various
vatterns is dlscussed in section L, 2, Figure 3lte shows an east-west
cross—section with a warm core.

Figure 35,

A "warm core" solution from the incorrect class of solutions
in figure 26. The two solutions for large x are the two closest
computed "bracketing" solution. The existence of the warm core is
shown by the fact that the layer thickness of the upper layer near
X = 1.0 1s greater than the asymptotic thickness as shown by the dashed

lines.
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Figure 1.

Chief features of the surface water clrculation in the

North Atlantic.

From Stommel (1).
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Figure 4. Depth of the 10°C isothermal surface in the North
’ Atlantic. Depth is given in meters. Stommel (1).
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Figure 5. Topography of the Florida Straits, depth is in fathoms.
Stommel (1).
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Figure 6. Topography of the western North Atlantic. Depth is
in fathoms. Stommel (1).
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Figure 8. The general pattern of flow for all models in the present
work. From the interior, x = oo, water flows toward the
coast. At { = 1.0 (or y = 0, since t = 1 + cot o, v), the
water turns north, forming the boundary current, which ex-

tends northward to values of { dependent on the dynamics.
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Figure 9, Representation of the solution of constant-potential-vor-
ticity Gulf Streams by finding the solution of two simul~
taneous quadratics in h; and hp, the layer thicknesses at

the coast.
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Filgure 12. Cross-sections of the Gulf Stream at selected points of
figure 1l. The layer of density p; is shown by the symbol
Dy, and similarly for Ds.
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Figure 20.
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LIST OF SYMBCLS

parameters of layer thicknesses

undetermined coefficients

layer thicknesses

constant layer thickness

ratio of strétificétion to free surface effects
potential vorticity integrals of the motion
Corlolis parameter

Bernoulll integrals of the motion

acceleration of gravity

thickness of layer iat thg coast

algebraic combination of the solutions of the character-
istic equation for constant potential vorticlty

pressure in layer 1

radiue of the earth

vector velociby

horizontal and vertical cartesian velocities
vertically integrated horizontal velocities
dependent variables for numerical integration
horizontal and vertical carteslan coordinates
value of x where the upper layer thickness vanishes

roots of the characteristic equation for constant
potential vorticity

meridional gradient of the Coriolis parameter

parameter describing stratification
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ratio of layer thickness in the intericr for constant
potential vorticity

small non-dimensional nurber, the ratio of horizontal
scales

a north-south transformed coordinate, the non-dimensional
Coriolils parameter

surface elevation

latitude, or ratic of density gradients of the upper to
the lower layer in constant potential vorticity case

latitude of tengenqy of the heta-plane
characteristic scale of x

viscoslty of sea water

density of layer i

1000 (p-1)

shearing stress across a horizontal surface
stream function

earth's angular velocity
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