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ABSTRACT

A general theory of vibration of damped linear dynamic
systems is given. The limitations on the use of the usual normal
mode theory in determining the response of damped systems were
first studied systematically by Caughey when he derived necessary
and sufficient conditions for the uncoupling of systems in N-space.
Systems which cannot be uncoupled in N-space may still be solvable
by modal methods on transforming them to ZN-space and using the
results of Foss. However there exist systems which cannot be
solved by the usual modal techniques in either N-space or 2N-space.
Such systems Which include some passive physically realizable
systems require the general theory for a complete determination of
their motion. For weakly coupled systems the simple perturbation
analysis presented gives surprisingly accurate approximations to the
actual response of the systems. In any design problem questions of
stability arise, particularly when dealing with non-symmetric
systems, and therefore a discussion on the stability of these
systems is given,

The second part of the thesis is concerned with linear continuous
systems. Exactly solvable continuous systems are rare and in
general recourse must be had to numerical methods. The inter-
changeaility of the differential and integral formulation of continuous
systems is noted, As in the discrete systems constructive necessary
and sufficient conditions are derived for a damped system to possess

the same set of complete eigenfunctions as the undamped system. In



the discretization of continuous systems the main problem of
practical interest is the error bounds on the solution of these discrete
approximations when _compared to the exact solution. Unfortunately
the literature is very poor in this area but what is known is applied

to the systems under discussion.
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INTRODUCTION

Modern mechanics came into being shortly after the
Renaissance and to this day forms one of the cornerstones in the
disciplines of engineering and the physical sciences. In contrast to
the earlier development of mechanics at the time of Archimedes, the
rapid growth of the science during the seventeenth, eighteenth, and
nineteenth centuries is indeed impressive. This growth must be
attributed in large part to the constant interactions of mathematics
and mechanics during these centuries. There was no imbalance in
this interaction for one can truly say that without the stimulus of
mechanics the development of mathematics would have been con-
siderably slower.

It is in modern mechanics that onc finds the foundations for the

(1)

study of the vibrations of linear systems. Newton, in his Principia,
first formulated the equations of motion of a mass in a force field.
La,gra,ngc(z) dcveloped the general theory of the small oscillation of
conservative vibrating systems in his book, Mefcanique Analytique.

As early as 1753 Daniel Bernoulli had introduced one of the fundamental
concepts in the analysis of linear systems, namely - that of super-

(3)

position. Routh' ' by 1877 had succeeded in obtaining the solution of

the small oscillation of conservative systems by means of normal
mode techniques. Finally Lord RayleighM) tackled the problem of

damped systems and used the concept of the dissipation function with

great success.



Rayleigh worked with both discrete and continuous systems and
seems to have been the first to approximate continuous systems by
discrete systems. Due to the comparative ease of conceptualization
and the more readily available mathematical tools,considerably more
work has been done on the discrete system than on the continuous
system. To trace the historical development of the analysis of linear
systems in the last one-hundred years, the work done on discrete
systems will first be treated. This will be followed by a state-of-the-
art discussion of continuous systems. Against this background of the
historical development, the contribution of this work to the theory of
linear vibrating systems will be noted. At this point, it is important
to realize that the thesis is concerned with time invariant linear
systems. A linear system is one in which, if ¥1 and ¥, are the
responses to the excitations Xy and X, respectively, then a1y + a,y,
is the response to the excitation alxl + azxz, where al and 3’2 are
arbitrary constants. A time invariant linear system is simply a
linear system the elements of which have responses that are invariant
under translation in time, i.e., if x(t) is the output of an element
from the. input y(t), then, if this element is time invariant, x(t+ 7)
is the output to the input y(t+ 7).

Around Rayleigh's time, mathematicians became interested in
matrix analysis and it was soon obvious that matrix notation was
ideally suited for use in the analysis of lumped parameter time in-
variant systems. Many of the complexities in Rayleigh's work were

eliminated once the problems were formulated as matrix problems.



At the turn of this century most physicists were satisfied with their
understanding of the vibrations of lumped parameter systems. They
realized that not all such systems can be solved by modal methods,
as understood by Routh, but apparently felt that Rayleigh's intuitive
observation about the negligible effect of the small coupling damping
terms in the uncoupled equations of motion effectively completed the
theory for all interesting physical problems. After World War I,
engineers began to analyse the vibrations of many complex structures
including, for example, airplane wings, frames and rotors of high
speed rotating machinery. It is extremely tedious, using Rayleigh's
techniques, to calculate, directly, the normal modes of systems with
more thé,n three degrees of freedom. However, iterative methods
were developed at this time to rapidly approximate the normal modes
of a system. With the advent of large memory digital computers
many of these iterative techniques are still used to solve very large
order systems,

Despite many advances made, there was one notable gap in the
theory of discrete linear damped systemé. This was the question of
discovering what type of damping matrix would allow the system to be

(5)

uncoupled in N space. Caughey ' in 1958 derived necessary and

sufficient conditions for the uncoupling of damped systems in N space.

(6)

A further step forward was made by Foss when he for mulated the
damped problem in ZN-space and succeeded in deriving orthogonality
conditions and solutions of systems not solvable by modal methods

in N-space.



It was around this time that the author(7) became interested in
the discrete problem. After some work under Dr. Caughey it became
apparent that not all systems, even all passive systems, were capable
of solution by modal methods. Thus, the justification of the general
the ory of vibration of damped linear systems as given in Chapter I
The great advantage of the general theory is that it does not depend on
having symmetric sign definite matrices as did the earlier theory and
s0 may be readily used in such problems as flutter analysis and
systems possessing gyroscopic motions. Needless to say, all such
systems can in fact be solved by other methods, e. g., by integral
transform techniques - but with greater computational difficulty. One
of the main virtues of the modal method, besides its relative simpli-
city of computation, is the physical insight it gives into the synthesis
of the system under discussion.

In passing, it should be remarked that normal mode methods, as
such, do not play as big a role in the analysis of electrical circuits
as they do in the analysis of mechanical systems. This is due to the
development of specialized techniques of analysis, such as 4 pole
parameter methods, very suitable to the standardized sections
common in electrical work. In filter analysis and transmission line
analysis many of the techniques used depend entirely on symmetries
not usually found in mechanical systems. However, the work of the
electrical engineer in the area of feedback control has added greatly
to the understanding of linear systems. Although the concept of

transfer function is valid for mechanical vibrations, it is rarely used.



But in the area of stability much useful work has been done by the
practitioners of the servo-mechanism art. Until recently the methods
of Routh and Hurwitz(s) were the usual techniques used to determine
the stability of linear systems. However, the work of Liapunov(9’10’ 1)
has spurred great interest in the stability problem and within the last
few years many theorems concerning sufficiency conditions for the
stability of systems have been proved. It is interesting to note that
considerably more work has been done and sharper results are avail-
able for linear time varying systems than for the linear time invariant
systems. In the present work some results of applying Liapunov's
Second or Direct Method to linear time invariant systems are given.
In many engineering problems a more or less qualitative type
analysis is extremely valuable. This is so because generally speaking
an exact analysis of a complex structure is more costly and rarely
warrantcd by the accuracy of the parametcrs usced. In carthquake
engineering the responses of buildings to earthquake forces are
needed. However, the design engineer cannot determine either from
his design or experimentally the precise parameters of his structure.
It is for reasons of this type that the perturbation analysis developed
in this work is presented. This analysis makes it possible to quickly
determine the approximate response of a system. In the same vein,
some results on the bounds of eigenvalues are noted.
Returning now to the historical development of continuous

systems one is immediately struck by the place of Sturm and

(

Liouville 12) in the development. Essentially, they formulated a



theory for self adjoint differential operators quite analogous to the
then existing theory for discrete systems. It was by no means a
simple transfer of ideas from the discrete to the continuous, for
functional analysis is, by its very nature, considerably more difficult
than mafrix analysis. Nowadays mathematicians have succeeded in
developing a very general theory of linear operators, of which
matrices, linear differential operators and linear integral operators
are examples, but unfortunately its very generality precludes its
use in engineering analysis. Without in any way trying to detract
from the work of the professional mathematician, it is well to
remember that to the mechanician, mathematics is only a tool, and
in the final analysis it is the physical insight into the problem that
counts.

By the use of the Sturm-Liouville theory many self adjoint
second order differential systems can in fact be solved exactly. Self
adjointness roughly corresponds to symmetry and so far not much
work has been done On non-self adjoint systems. In the continucus
problem one is quickly faced with the question of numerical inte-
gration. Although there exist numerous methods of numerical
integration, very little research has been reported on the error bounds
in the numerical integration of the type of differential equation of
intere st in this work. This is somewhat upsetting, in the sense that
until the numerical analysists are able to solve the problem of
stability, convergence and error bounds for general equations the

theory of the continuous system will be incomplete by that amount.



In the last fifty years a very beautiful and complete theory of
integral equations has emerged. Due to the interchangeability of the
integral and differential formulations of the continuous system,greater
insight into these systems has been obtained by the use of this theory.
Some work is available on the numerical solution of integral equations.
This work is reported and applied to the systems under discussion.
Again the question of error bounds on the solution arises but,as before,
very little work on this aspect of the problem has been done. However,
there is an adequate theory available for integral equations with
symmetric kernels and this has been used to advantage.

There are, of Course, some continuous systems which are
exactly solvable. In the past the greatest emphasis was on undamped
solvable systems. By extending the ideas of Caughey to the continuous
problem, it is possible to develop a theory of classically damped
continuous systems. As in the discrete case constructive necessary
and sufficient conditions are given to test whether a system is classi-~
cally damped. Moreover, a sufficient criterion for the form of the
damping term is given so that the system is classical. In the
engineering literature the usual method of solving continuous
systems numerically is to approximate such systems by some
physically equivalent discrete system. A critical analysis of this
approach, as distinct fr.om the numerical analysist's attack on the
problem, is given and some general results for uniform and non-
uniform vibrating sections are noted.

The range of problems capable of being solved by the methods



discussed in th_is work is very wide indeed. By the addition of
concepts from stochastic processes, the response of linear systems
under random excitation was determined by Caughey. (13) The
results are not directly useful in non-linear analysis except where it

is possible to use linear approximations to the non-linear system.



-9-

CHAPTER 1

DISCRETE SYSTEMS —~ GENERAL THEORY

Introduction

In this chapter a general review of the well known results in
the analysis of lumped parameter time invariant linear systems is
given. The necessity for Caughey's classification of systems into
classically damped and non-classically damped systems is seen
immediately. Constructive necessary and sufficient conditions for
systems to be classical are derived. Foss's transformation of the
problem to 2N-space is noted. Due to the form of the matrices in
2N-space it is seen that not all problems can be solved by the usual
modal methods. The existence of the possibility of matrices whose
Jordan canonical form is not strictly diagonal sheds new light on the
synthesis of linear damped structures. The question of exciting pure
modes is discussed. Finally, a brief section deals with practical
computer programs for determining the response of these systems.

It is well to note that although the theory was developed with
the solution of the discrete system in mind, it is useful in the

numerical solution of continuous systems.

Theory
In the analysis of the vibration of any complex mechanical
structure the first problem is to derive the equations of motion. To
do this, one has to assign .coordinates to the system and by application

of suitable physical laws derive relations between the coordinates to
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determine the motion. Not all physical systems are so constituted
that their equations of motion can be written in symmetric form, e. g.,
gyroscopic systems. However, the equations describing the behavior
of passive physically realizable linear systems can always be trans-
formed to a symmetric set of equations. Moreover, the use of either
energy or variational methods in the derivation of the equations of
motion of these latter systems results directly in symmetric
equations. Using the more direct approach of Newton's Second Law
may, e€ven with passive systems, result in a non symmetric set of
equations.

(14)

Lagrange's kquations, one of the ener gy methods available,
are particularly adapted to the formulation of the equations of motion
of complicated dynamic systems. Among the advantages of using
Lagrange's Equations, ovef the direct application of Newton's Laws
are:

1) The possibility of selecting a set of coordinates which may
considerably simplify the algebraic and numerical work
involved in solving for the displacements of the system.

2) The equations of motion are derived in exactly the same
way for all sets of coordinates.

3) Only the potential and kinetic energies of the various
elements are needed and so there is no difficulty about
the algebraic signs of the displacement and velocities.

Before using Lagrange's Equations it is necessary to define:

1) Generalized Coordinates (q;): A set of independent co-
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ordinates used to completely describe the motion of the
system.
2) Holonomic System: A system so constrained that its
number of degrees of freedom equals the number of
| coordinates required to completely specify its motion.
3) Non-holonomic System: A system so constrained that the
number of degrees of freedom is less than the number of

coordinates required to completely specify its motion.

The generalized coordinates are not necessarily confined to be
cartesian coordinates and mavy in fact be angles, quantities with the

dimensions of energy or angular momentum, etc. They are usually

chosen with regard to the geometry of the system. If the generalized

coordinates are not independent or if the system is non-holonomic

it is not possible to use Lagrange's Equations in the straight forward

manner presented below. However the application of Lagrange's

Equations to holonomic systems avoids much of the geometrical con-

siderations usual to the direct use of Newton's Laws.

Derivation of the Equations of Motion of a Holonomic System

With N Degrees of freedom using Lagrange's Equations.

Let 9> i=l, 2,... N be an independent set of generalized
coordinates, used to specify completely the motion of the system.
Lagrange's Equation in the usual form is

d o 0

T - T = Q i=1,2,...N. (1.

dt’ oq, 9q i
1

Where T is the kinetic energy of the system of masses, the dot {.)

1)
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over the q; represents differentiation w. r. t. time.
Qi is the Generalized Force and is defined from the increment
of work done by the forces of the system when it moves through dis-

placement dqi

N
= . , . 1.
aw =) Q dg, (1. 2)
j=1
From Eq. (1. 2)
ow  _ s _
E _Qi iz, 2,...N (1. 3)

If the masses are in a conservative force field of potential energy V

then
Q. =-3V and &Y = i=1,2,...N
i q; E)qi

In this case Eq. (1.1) reduces to

d oL 9
a4 o= 2 1,-90 (1. 4)

where L. = T-V the Lagrangian function of the system. If the force
field consists of a conservative part and a non-conservative part,

e. g., in a system of masses coupled by springs (conservative) and
viscous dampers (non-conservative), it may be advantageous to

write Q.1 = -8V/8qi + Fi i=l, 2,...N where V represents the
potential energy of the conservative field and F, the contribution of

the non~conservative field to Qia In this case (1. 1) may be rewritten as

d oL 9L
I oy Bq. F, (1. 5)

For linear time invariant systems the form of T and V are as follows
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™=z

]
H
Nlo—-a
=z

-
1
)
L
U
o

Where mpij are constants with dimensions such that T has the

dimensions of ener gy(MLz'l‘ -2 ) .

N N :
1
V=3 Z Z koij 93 9 (1.7
i=1 j=1
where kpij are constants with dimensions such that V has the

dimensions of energy (MLZT-Z). Eqs. (1. 6) and (1. 7) may be con-

veniently rewritten in vector matrix notation as follows
1l ¢,y T .
T=5 fad "M
1 T
V=3 fa}  (x] fab

where [M] o and [K] o are N x N matrices with ijth elements mpij

(1. 8)

and kpij respectively. éq} and {q; are N x 1 column vectors
with il elements q; and qi respectively. Superscript T indicates the

transpose of the matrix or the vector.

In linear time invariant systems the form of Fi is restricted to
{F) = - [M] bad- [c] (a} - [K} I {f(t)g (1. 9)
where gF} is a N x 1 column vector with il element Fi’ the generalized

force at coordinate q; i=l, 2,...N, where [M] g5 18 @ Nx N skew

,.th
symmetric matrix with ij element m ij
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Ceomg g m g 1]
(1.10)
m ., =0 i,j=1,2,...N.
ssii
[K] ss is a N x N skew symmetric matrix with ijth element kssij

[C] is a general N x N matrix
éf(t)} is a N x 1 column vector with il element fi(t), the actual
external force applied at coordinate q,-
The constant elements of the three matrices [M] 55’ [C] and [K] os
have dimensions such that each Fi’ i=l,2,...N, of the vector gF}
has the dimensions of force or torque.

In passive systems, as a direct result of Maxwell's Reciprocal

Theorem, the following constraints are placed on the coefficients:

[M] 55 and {K] 45 OT€ null matrices.

[ ] is a non negative definite symmetric matrix.
[ ] [ ] a symmetric matrix, is non negative definite.
[ ] [ ] a symmetric matrix, is non negative definite.

Actually [MJ _— [M] ;F is generally a positive definite matrix,

£

Applying Lagrange's Equations (From Eq. (1. 5) ) to the linear

system described by Eqs. (1. 8) and (1. 9)

4 8 .2 - i=1,2,...N (L 11)

L=T—V=%§qu[M]P€fl§ --,i-gqg [K]p{q; (1. 12)
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Substituting Eq. (l.12) into Eq. (1. 11)

N
). [‘mpif' mpig) 45 (K gyt kpji)qijl -
IS

N

) [mssij 437 © 55 95 kssijqu Tt isL,2,...N
=1 |

Rewriting Eq. (1.13) as a vector-matrix equation

[ 42+ [s).] €53 -+ [e]ed
+“K]P+ [x], + [K]ss}gq} = {(t)]

Let T
]:M]p + [M]p = [M] g @ symmetric matrix

[K] + [K] T = [K] a symmetric matrix
Clp P s

Equation (1. 14) may now be rewritten as
[m] fab + [c]fad + [x] fa] = {2}

] =[]+ M,
(%] = [x]e* [¥]as

where

(1. 13)

(L. 14)

(1. 15)

(1. 16)

As any matrix with constant elements may be decomposed into a

symmetric and a skew symmetric matrix there are no restrictions on

' the elements of [M] s [K] and [C] in a general linear dynamic

system.
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Development of the Normal Mode Theory
(3)

Lagrange(z) and Routh' ™’ confined their attention, for the most
part, to passive conservative systems. The equations of motion of
such systems may be written as

[M] {x1 + [K] {x] = fr0)} (L.17)
where Ex} is a N x 1 column vector, the il element of which,xi’is
the ith generalized coordinate. [M] and [K.J are symmetric non-
negative definite matrices, [M] generally being positive definite.

Equations of type (L. 17) arise in such well known problems as
multi degree of freedom mass spring systems, and approximate
solutions to the undamped torsional vibrations of crank shafts.

Due to the special form of the matrices in Eq. (l; 17), it may be
uncoupled in N-space and solved as a superposition of modal solutions.
To achieve this, one has to invoke a theorem from matrix algebra
which states that "Given two N x N symme tric matrices [A} and
[B] ,with [A] positive definite,there exists a non-singular matrix

such that
)™ [A)[9]- [1] =1 the scentity matrts
[ly] ! [B] [L?] = {D} , a diagonal matrix. "

(1. 18)

The diagonal elements of [D] are the roots of the following

polynomial in A

I [A.[A] - [B]:IH - 0 (1.19)

i. e., the eigenvalues of [A] -1 [B]
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The columns of [q] are the eigenvectors of [A]ul [B] s

nor malized so that

OHSIOR

As Eq. (1.17) is a linear differential equation, superposition holds
~ and in the usual fashion one first solves the homogeneous equation
(with gf(t)} = gog) , taking the initial conditions into account, and

later the inhomogeneous equat ion with zero initial conditions.

Solution to the Free Vibration {(Homogeneous) Problem

The equations of free vibration may be written as

[M]éx} ¥ [1\] fx} = fol (1 20)
[M] and [K] are symmetric matrices and [M] is a positive definite

matrix. Due to the theorem quoted above there exists a transformation

[V]T [M] [‘5’] =1 (L 21)
[Lj’]T [K] [tf]= [?] a diagonal matrix with

diagonal elements equal to the eigenvalues of [M]—l [K}

[(y} such that

To solve Eq. (1. 20) let

(=} =[y] fr®} (L 22)

Substituting Eq. (1. 22) into Eq. (1. 20)

M)} + [x][9] §7 @} = fol (L 23)

Premultiply Eq. (1. 23) by [LY]T

(o)™ [M[y] § 2 o)+ [¢]" [x][4lfn @ = fol (L 24)

Substituting Egs. (1. 21) into Eq. (1. 24)
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£ w8 + [K]{’){(t)g =fol (L.

Equation (1. 25) is a set of uncoupled equations of type

';z'i(t) + Kii qi(t) =0 (1.

Each of the equations in Eq. (1. 26) is the equation of motion of a
. single degree of freedom linear oscillator with the well known

solution

7i(t) = a; sin 7/ Eii t+ bi cos \V K., ¢t (1.

11
2 bi arbitrary constants i=1,2,...N

From Eq. (1.22) and (L. 27)

11 11

Exg-—. [Lg]gai sin “\/—f—f‘tg-l' [‘f] gbi cos ﬁ—-‘t} (L.

To determine a’i and bi’ i=1,2,...N, the initial conditions are used:

"

{0t
(01}

gx(t)g t'—:O
¢ x()} o0

From Eqgs. (1. 28) and (1. 29)

M {biE = {x(0)]

(o] - [4] " o} 3

and

(4] VR =} = (o]

g g\/TK_—'alg - [q]'l §5(0)3 (L

(1.

25)

26)

27)

28)

29)

30)

31)

From Eqgs. (1. 30) and (1. 31) the constant vectors gaigand gbig may

be determined. Knowing a; and bi’ i=l,2,...N, Eq. (1. 28) gives the
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solution to the free vibration of the undamped system described by

Eq. (1. 20).

Solution to the Forced Vibration (Inhomogeneous) Problem

The equations of motion of the forced undamped system may

be written as

[M] £53 + [x] §x} = {0
x4 = gl

On substituting Eq. (1. 33) into Eq. (1. 32)

P[] W} + [<][9]fg w3 - fao

Premultiplying Eq. (1. 34) by [q’] T and using Eq. (1. 21)
fi o) + (K] fpo} = [4° gaod

[L:f]T gf(t); - {g(t)} , a N x 1 column vector

As before let

Let

Using Eq. (1. 36), Eq. (1. 35) may be rewritten

() + Bl - feo)

Equation (1. 37} is a set of uncoupled equations of type

7.0+ K, 7(t) = g(t) i=1,2,...N

(1.

(1.

(1.

(1.

(1.

(L

Each equation in Eq. (1. 38) is the equation of motion of the forced

vibration of a single degree of freedom linear oscillator.

.th . R .
solution to the i ~ equation is well known, and is given in Duhamel's

form

32)

. 33)

34)

35)

38)
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t
0 = [ nen @ o . 39)
0
With zero initial conditions, 7.(0) = @1(0) =0

h(f) =——— sin VE, T (L 40)

K,

ii

where hi('Z), the fundamental solution,is the response of the uncoupled

oscillator to a delta function at t=0 starting with zero initial conditions.
From Egs. (L. 33), (1. 39) and (1. 40) the solution to the forced vibration

of the undamped system is given by

VK
From Eq. (l.41) it is easy to show that in this case

{x(0} = {x0} = {o

Therefore,to obtain the solution to the for ced vibration problem with

t
{x] = [Lg] }J L sin R, (t-2) g,(®) 4T (1. 41)

non-zero initial ‘conditions_, gx(O); and ES{(O)? yone has to superimpose
the solution to the homogeneous problem (Eq. (1. 28) ) on the solution

to the inhomogene ous problem (Eq. (1. 41) ).

Rayleigh!s Work with Damped Systems
(4) .

Rayleigh introduced the concept of the dissipation function

which, in the development given above, gives rise to the ferm
N
ci.qj in the generalized force F
=1

include the dissipation function, the equations of motion may be

i For passive systems which

written as
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[M] fx} * [C] {Xg + [K] §X} = Ef(t)g (1. 42)

Here, the matrix [C] is symmetric and [C:I gx} is the linear
viscous damping term of the system. Rayleigh foresaw the difficulty
of trying to solve Eq. (l.42) by the then available modal methods.
Unless the system can be uncoupled in N-space the modal scheme of
solution, given above, breaks down. To ensure the uncoupling in
N-space Rayleigh worked with systems which are now said to possess
Rayleigh type damping, i.e., sysfems such that
[c] . a[M] + B [K] (L 43)
| a , B arbitrary constants
As ]:M] and [K] can be diagonalized simultaneously by [l_ﬂ, so
also can [C] for
Given [qﬂi‘[kq [ ]
and  [¢ T kK][Y] - [E]
won (o] (4] - [[<u] o[ <]

= oI+ P [K] = [E] , a diagonal matrix (1. 44)

Hence, passive systems possessing Rayleigh type damping may be

uncoupled in N-space by a simple extension of the method used above

on the undamped system.

Outline of the Solution to Passive Rayleigh Damped Systems

Let the system

[M] gx; v [c] {xl+ [x] §x] - {£t)] (1. 45)
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possess Rayleigh type damping [C] = a [M]+ B [K] . To solve
Eq. (1.45) let

(3 = [yl{n o] 0. 46)

Substituting Eq. (1. 46) into Eq. (1. 45), premultiplying by [(f] T, the
system is uncoupled and the ith equation is
’}Z i(t) + Cii ’?Zi(t) + Kii ’IZi(t) = qi(t) (1. 47)
i=1,2,...,N
where -
C..~a+ B K,.
ii ii
ggi(t)} = [(g]T gf(t)} , 2 N x1 column vector (1. 48)

Equation (1. 47) may be solved in an analogous fashion to the undamped
system (Eq. (1. 20) ) by first solving the homogeneous problem with
the .initial conditions,x(O) and k(O),and superposing on this solution the
response to the for ced system with zero initial conditions. The

solution to the homogeneous form of Eq. (1. 47) is

C..
i
Qifﬂ e °

_ [Ty |2 _l
+ b, cos Kﬁ— (&_) t (1. 49)

where a; and bi are arbitrary constants determined from the initial
conditione in a similar manner to that used above for the undamped

case. In the solution to the inhomogeneous form of Eq. (l.47) the

Duhamel Integral is again used
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t
740 = J h(t-2) g;(%) dg

7,(0) = 9';1(0) =0 (1. 50)
where (C,
Y -
1 2 . _  [Cy)?
h®) = .\/_ cii 5T © sin Kii— l—z—— t {1. 51)
Kilz—

By using Eqgs. (1. 46), (l.48), (1. 49), (1. 50) and (1. 51) the general
solution to passive systems with Rayleigh type damping may be

obtained.

Caughey's Work with Damped Systems

Caughey divided the class of passive damped systems into two
mutually exclusive sets.

Classical Systems: Those passive systems which can be

uncoupled in N-space and which possess the same normal modes as
the undamped system.

Non-Classical Systems: Those passive systems which cannot be

uncoupled in N-space and which do not possess the same normal modes
as the undamped system.
Note: The designation normal mode comes from the fact that when the

IO -
)" [][4] -[%

s 2,...N, column vector of the matrix [g]
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SO RCI LIRS 05
fl, [ £yl -
(b ) £l -

(5, [ {4, - %,

Hence the vectors {lf}l and glf}J (i#j) are normalized with respect

o [].

Caughey showed that a nccessary and sufficient condition for a

1
o

i#j

passive system to possess classical normal modes is that the damping
matrix [C] be diagonalized by the same transformation which un-
couplcs the undamped system, obtaincd by setting [C] = 0 in the
damped system. He, furthermore, derived sufficient conditions for
[C] for the system to be classical. Here it will be shown that these

conditions are also necessary.

Proof of the Necessity and Sufficiency of Caughey's Series

For Passive Systems to be Classically Damped

The Caughey Series
N-1
] e] =) e
a7 e] =), 2
£=0

where a, are arbitrary constants relates the damping matrix [C]

to the inertia and stiffness matrices [M] and [K] , respectively.

[M] -1 [K]} ! (L. 54)

Using some of the ideas of Caughey's original sufficiency proof it will
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be shown below that this series is a‘necessary and sufficient con-
dition on the damping matrix [C] for a passive system to be
classical.

In a passive system [M} is symmetric and positive definite,
{K:l and [C] are symmetric. It is well to point out that the re-
ducti_on of [M:] to an identity matrix, I, instead of to a diagonal
matrix [ﬁ] , does not reduce the number of systems which can be
uncoupled in N-space and are here called classical systems.

[M] » being a symmetric matrix, can be diagonalized by an

orthogonal transformation [’Z] , ioe.,

[2]" [7] -
[Z}T[ ][ ] [ﬂ] , & diagonal matrix
[

The diagonal elements of ] are the eigenvalues of [M] . The
transformation matrix ["z] is not unique if [M:] pPossesses repeated

eigenvalues. For, suppose that the first a of the diagonal elements of

[ﬁ] were identical, the matrix

7], = [7] [R] . (L 55)

where
a N-a
a [A] 0
[R] = - a partitioned matrix
N-a| O I

' e s T .
and [A] is any ¢ x @ orthogonal matrix (i.e., [A] [A] = 1), will
diagonalize [M] (as an orthogonal transformation). As [M] is a

positive definite matrix, the diagonal elements of [K/I] are all positive
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-1/2 th
is a diagonal matrix whose i

_ -1/2
exists, [M]

/2

and so [i\_/l]
diagonal element is (mi)- where ﬂi is the ith diagonal element of
[IT/I] . It is therefore possible to reduce [M:{ to an identity matrix,
I, by a transformation {Q] = l:'l']l [I\_/i] e as follows

(" [M] [@] =1 [e]T=[m] [%]f (L 57)

Hence if [C] and [K} are both diagonalized by [’Z]l {(as an orthogonal

-1/2

transformation) they are also diagonalized by [Q] e.g., if

['Z]lT [K] ['Z] = [K]l a diagonal matrix

()] fo] - () [F)F (] )pm] o ] ]
a diagonal matrix, (1. 58)
as the product of diagonal matrices is also a diagonal matrix. Thus
the reduction of [M] to an identity matrix does not decrease the
number of passive systems solvable in N-space. Furthermore, it is
possible to premultiply the original equation by [M] -1 and proceed to
uncouple the system as follows. The equations of motion are
[M] §x)+ [o] fx}+ [x]{=} = frw (L 59)

Premultiply Eq. (1. 59) by [M]_l
§xb + [M]'l [C]Exg + [M]"l [K]Ex} = [M]-lgf(t); (1. 60)
Now to uncouple the system it is necessary to diagonalize [M]_l [C]

and [M]-l [K] by the same similarity transformation. It is easy to

show that [Q} is the required similarity transformation, for



= [—]—1/2[6] [IT/I] e a diagonal matrix

si‘nce | [Z]T [M]'l [Z] } [1\—,1] - [M_] 1/2 [M]‘l/z
[ [ fa] (8] ] s egons e

Hence,it is easy to see from Eq. (L 58) and (1. 63) that whether a
similarity transformation or an orthogonal transformation is used the
uncoupled equations are the same.

Proceeding with the proof of the sufficiency of the Caughey
series, it follows from the above that in classical systems, [M]—l [K]
and [M]—l I:C] must be diagonalizable by the same similarity transfor-

mation [Q] . To prove the sufficiency of the series one assumes that
[Q]'l ( [M]"I[K]) [Q] = [E]l , a diagonal matrix (1. 64)

and shows that
N-1
[M[c] =) a,([M[x] (1 65)
£=0

is diagonalized by [Q] . From Eq. (L 65)
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B ebla] -3, [P B ]

Looking at a typical term of the series on the R. H. S. of Eq. (1. 66) and

expanding

o [ (M) )T Q]
o BB [ e

S L di 4

o] -~ (oI " ]

Loa

for r factors

= ar( [K]l)r a diagonal matrix (1.67)

(€], = [af" o] =] [o]

Hence each term on the R. H. S. of Eq. (1. 66) is a diagonal matrix and

where

as the sum of a series of diagonal matrices is itself a diagonal matrix,
~1 . . ‘g .

[M] [C] as given by the Caughey series, satisfies the requirements of

a classical system. The necessity of the series expansion of

[M]—l [C] follows once it is shown that given any arbitrary diagonal

matrix [C] there exists a unique set of a, £=0,L ..N-l.

2
From the above

N-1

I (7 (e o) < [e] - ) au(ED (. 68

£=0
where now [E]l is a diagonal matrix with specified diagonal terms.

Rearranging Eq. (1. 68) as a vector matrix equation

€C§1= [V]fa} (1. 69)

where {C}l is a N x 1 vector, the ith element of which is the ith
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diagonal element of [C]l. g a.g is a N x 1 vector, the ith element

of which is a,
i-1

LR RS ORD.LLL BN
11 11 11 11
LK Rl R ... g N
22 22 22 22
[V:l = . , a N x N matrix
(1 70)
&, RE K} ... gVl
‘ NN NN NN NN
where K; is the ith diagonal term of the diagonal matrix [K]l .
ii
Now “ [V] ” is the well known Vandermonde Determinant
2 N ;
= 1T - % 0.1
i, j=1 -

From Eq. (1. 71) [V]_l exists if and only if there are no.r two diagonal
elements of [E]I , the same. This implies that a unique set of
a,s £=0,1...N-1 exist for a given vector {C}l, provided [M]-l [K]
has no repeated eigenvalues. Therefore,the Caughey series expansion
of [M:‘~1 [C] is a necessary and sufficient condition for passive
systems to be classically damped provided [M]—l [K] does not
possess repeated eigenvalues.

If [M]-l [K] has repeated eigenvalues the conditions for the
validity of the Caughey series expansion are sufficient though not

necessary for the system to be classical. In this case the minimum
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polynomial is of degree (N-a), where ¢ is the sum of the multiplicities
of the repeated eigenvalues less their number. By the Cayley-
Hamilton Theorem the Caughey series may be reduced to an (N-q)

term ser.ies
N-1 N-1-q
Z Z [ [K])’e (1. 72)

Hach b,ll’ £=0,1,..,N-1-d¢ 1is a combination of a“is and the coefficients

of the minimum polynomial( t=1,2... N—l.), Suppose that the first 8
eigenvalues of [M]—l [K] are identical (the position of the repeated
eigenvalues on the diagonal of the reduced form of {M]-] [C} depends
on the position of eigenvectors as columns of [Q] ). It is easy to see
that the reduced form of [M]—l [C] , as given by Eq. (1. 72) has the

tfollowing properties:

g, ,1:1,..,p=z b, (K ! (1. 73)

where I_fl is the repeated eigenvalue of [M]“1 {K] of multiplicity B.
11

S,,° z bl(R‘lﬁ)’Z . (i B+l BFZ....N) (L 74)

where Kl , i=p+l, pr2...., N 1is one of the set of distinct eigenvalues,
ii
From Eqgs. (1. 73) and (1. 74), it is possible to uniquely determine

the (N-B+1) terms bg’ £=0.....N-B, on arbitrarily specifying the

(N-B-1) quantities C, , C, , i=ptl, p+t2..... N, of the diagonal matrix
11 i
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[E]l If a completely arbitrary diagonal matrix [5]1, is specified,
i.e., with no restrictions on the equality of the first g diagonal terms,
as above, one needs to add to the series of Eq. (1. 72) a further scrics
derived as shown below.

In the case of repeated eigenvalues of [M]_I[K] , the similarity
transformation [Q] is not  unique, as shown above. If [Q] is a
similarity transformation which will diagonalize [M]"l [K] , then,

[Q:] [R] will also diagonalize [M]-l [K] where [R] is any partitioned

matrix of type

[R] = ; [A] is any non-singular matrix

X J (L. 75)
For convenience let us designate [Q]* as one similarity transformation
that will diagonalize [M]_l [K] , then any [Q] = [Q]*[R} will also
diagonalize [M]"l [K] and [M]'l [c] as given by Eq. (L 72).

Consider the matrix product

TR '
B | |A||C| |A ’ 0 -
SRR E GG R
N-p 0 ; 0 N-B8
I N-p|
where [A] is anjr B x p non~-singular matrix. [C]ﬂ is a diagonal

B x B matrix, with diagonal elements

(_:pii’ i=1,2,...,B.

Applying the similarity transformation [Q] to Eq. (1. 76)



o] [z, )[a] <[] | R e |

(1. 77)

Hence, if to Eq. (1. 72), [Eﬁ] , as defined by Eq. {1. 76) is added a
necessary and sufficient condition for the form of [M]—l [C} is

-1
obtained for passive systems when [M] [K] has B repeated eigen-

values, i.e.,

13 o s o LI

£=0

That [M]—l [C] , as given by Eq. (L 78) may be diagonalized by the
same transformation that diagonalizes [M]_l [K] follows from the fact
that each term of Eq. (l. 78) is similar to a diagonal matrix (using

transformation [Q] ). The necessity of the condition on [M]_l [C]

results from the fact that any diagonal matrix, [E]l’ of order N may be

partitioned - -
B
. pl|C ,+C, I, |0
[c]l = Py B (L. 79)
—
N-p | 0 'c e

Where I‘3 is a B x B identity matrix, [C—]II\I-B is a (N-p) diagonal
matrix with ith diagonal term

51 s
i+ B, 1+ p
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It was shown above that given any set of El , i=1,2...,N-B and
' i+ B, i+ B

61 there exists a unique set of b,, £=0,1...N~1-8 to contribute the

ﬂ)
11
first term of Eq. (1. 78). The second term is obtained once [6][3

and [A] are specified.

Necessary and Sufficient Conditions for Classical Passive Systems

Although the series developed above are useful for synthesis the
question of an operational necessary and sufficient condition for a
passive system to be classical still arises. It will now be shown that
given a passive system with matrixes [M] s [K} and [C] the system

is classical if and omnly if [M]-l [K} and [M}—l [C] commute, i.e.,

(a7 () )™ [e] = ][] (] ] (1 80)
To show the necessity of Eq. (1. 80), from Eqgs. (1. 62) and (1. 63) the
passive system is classical if a similarity transformation [Q] exists
such that

[Q]ul([M]-lv [K] } [Q} = [E]l , a diagonal matrix of order N

and (1. 81)

[Q]-l ('[M]-1 [C] ) [Q] = [C—:‘l’ a diagonal matrix of order N
(1. 82)

o]« [ [Kl) (2] [_Q]—l ([™] *eh [o] - B, [cl, (1. 83)
)™ [} (][] =[][R] [e][]7 (. 84)

likewise

7 (e [ - el el [R) [
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As [E]l’ and [K]l , are both diagonal matrices
[6]1 &), - [K]I[C]l (1. 86)
From Egs. (L 83), (L 84), and (L. 85)
[M]“I[K] [M]'l[c} - [M]”l[c]_[M]'l[K] (L 87)

which proves the necessity of the condition.
To show the sufficiency of Eq. (1. 80) for the system to be
classical, as [M] and [K] are symmetric and [M] is positive

definite there exists a similarity transformation [Q] such that

[Q]—l ([M]—1 [K]) {Q] = [E]l , @ diagonal matrix of order N
' (L 88)

From Eq. (1. 80)
oI (M ]y [e][a] ™ ([M™[c] [q]
=[] M7 [e]) [@] [o) [M] [x][o] 0. 89)
Eq. (1. 89) may be reduced on substituting Eq. (1. 88)

) (o G e o] - P D[R, oo

[Q]'l ([M]—l [c])[gj = [X] a N x N matrix (L 91)

On substituting Eq. (L 91) into Eq. (1. 90)

[R-]l [X] = [X][R]l (1.92)

Taking the iji" term of both sides

Let

X

Rys X5 = %5 K5 (1.93)
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where Xij is the ijth term of [X]
Xij: 0, i#j if Klkk# Kl,.’ 1] (1. 94)
JJ
Hence, if the eigenvalues of [M]_l [K] are distinct (i.e., El..# Kl.,
i#3j), [X} is a diagonal matrix and the condition given by Eci1 (1. é%))
ie sufficient for passive systems to be classical. If the eigenvalues of

[M]-l [K] are repeated then the matrix [X] may be partitioned as

follows

(1. 95)

where [X]a is a ¢ x ¢ matrix.

[}_{‘}N-a is a (N-a) diagonal matrix corresponding to the (N-«)
distinct eigenvalues of [M]-l [K] As [M] and [C] are symmetric
and [M] is positive definite the canonical form of [M] -1[C:} is a
diagonal matrix. Therefore there exists a similarity transformation

[R} , wWhere -

[R] N . , (1. 96)

such that [R]-l [X] [R] is a strictly diagonal matrix.

e - [0

i.e., [A}_l [X‘Ja [A] is a ¢ x ¢ diagonal matrix. But in this case,

with a repeated eigenvalues of [M]_l [K} s
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-1 -1 -1 — )
[ [} (i [ [ ] - [, +  tosona
matrix with the first ¢ diagonal elements identical.

Thus the necessity and sufficiency of Eq. (1. 80) for passive systems to

be classical has been proved.

Foss's Work With Passive Non Classical System

Although Foss(é) did not, as Caughey had done, derive necessary
and sufficient conditions on the damping matrix [C] for solvability in
N-space, he did realize that not all passive systems can be solved in
N-space. Using a method well known to mathematicians, but first

(15)

applied to vibration problems by Frazer, Duncan and Collar, he
formulated the problem as follows:
The equations of motion of passive systems may be written as
[M]{X% +[c]fx! +[ x| §x} = fan (1.97)
where [M] s ]:C] and [K] are N x N symmetric matrices with [M]
positive definite. To Eq. (1.97) add the identity

) §xd - [ e - fol (1. 98)

to obtain the following set of equations

[M} gxg + [c] gxg+ [K] Ex} - gf(t);
[M] Exg - [M] gx§ = EOZ (1.99)

‘L'his set may be rewritten in ZN-~space

[R] (214 [s]{z} - EF(t)} (1. 100)

where
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(1. 101)

éF(t)} - gf(ot)g s (21 - gxg

[R] ‘and [S] are symmetric 2N x 2N matrices but neither of them
are positive definite. %_F(t)z and gz“g are 2N x 1 column vectors.
Foss assumed that a modal solution to Eq. (1.100) was possible. This,
in general, is not true except in the case of distinct eigenvalues of
[R]'l [S] . Basically, the dilliculty is that the ordinary eigenvectors
of [R]-l [S] need not span the 2N space when there are repeated
eigenvalues. However, proceeding on Foss's assumption of the

existence of a complete set of ordinary eigenvectors,

[_u] =_[R]'1[s} = z [M]ill{c] ![M]_Z [K] , a 2N x 2N matrix,
| (1.102)

may be diagonalized by a similarity transformation [§], the columns
of which are the eigenvectors of [R:lL and [S] . From the fact that
[R] and [S] are symmetric

[@]T [R] [@] = [R‘] , a diagonal 2N x 2N matrix

' (1.103)

T = . .

[i] [S] [@l = [S] , a diagonal 2N x 2N matrix

Eématiohs (1.103) are the orthogonality conditions in 2N space and may

be expanded in terms of N-space quantities. From the form of

Eq. (1.100) it is easy to see that the i*® column , %§}i)0f {@J may
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be partitioned

EQ}i I (88
(81l | i,2...,2n (1. 104)
, £¢1} is a N x 1 column vector, @, is an eigenvaluc of {R]-l [S] .
" It is well to note that the g¢ ig ,i=1,2,..., 2N in general are
vectors with complex elements and that the a; occur as complex
conjugate pairs.

To complete the solution of Eq. (l.100), let

tz% = [ﬁ]g’l(t)} (1 105)

where g’y(t)} is a &N x 1 column vector. Substituting Eq. (1l.105) into

Eq. (1.100),

[R] [:@]E".Z(t)} + [5] [@] fr (o} = {F(t)z  (L.106)

Premultiplying Eq. (1.106) by [@]T

o [=8] e} + [8°[s) ) oo} - [ fr}  aom
On substituting Eq. (1.103) into (1.107)
[R‘] £} + ['s‘]gq (t)} =£G(t)} (1. 108)
“where gG(t)g = [@]T gF(t)§ a 2N x 1 column vector. Equation (1.108) is
a set of uncoupled equations of type
R,; 7,6+ 3, 7,(t) = G,(0) (1. 109)
i=l,2,...,2N

with general solution
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. —11 (t-€) B S
1 Rig Rij
1,06) = — e G,(t)dZ + 7,(0) e (L. 110)
R.. *
ii 0
now —
Sii th -1
A _ 4., the i cigenvalue of [R] [s] (L.111)
.. ii ¢
11
and

{921(0)} - [‘6]—1 §Z<0>§ (1. 112)

From Eqgs. (1.105), (1.110), (1.1l11) and (1. 112) the general solution of
Eq. (1.100) is

. -Sf_ii (t-¥)
f21- [8)fr 0] - [8] _L— Df o G, (%) aZ
+[8) e F [@'1{2(0)}
5.

(1. 113)

is a diagonal matrix with diagonal elements

From Eq. (l.113) it is seen that the initial condition EZ(O)E

influences the solution EZ} in a rather complicated way. However,

ZN
-a, (t-7)
(x1=) (2o f o 8
i=l

iio

. ZN £ -a, (t-£)
‘S_X.g= Z L a e U
R {i
i=1

ii 0

G,(Z)dr) {¢i§

(1. 114)

G, (2)dz) €¢1E (L. 115)

provided §X(0) % = {5{(0)§ = {og°
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General Theory of Vibration of Damped Linear Systems

As there is essentially no difference in procedure when solving
those passive systems not capable of being solved by normal mode
methods in either N or 2N space, and the general system characterised
by a non | symmetric non-singular inertia matrix [M] and non
symmetric damping and stiffness matrices [C] and[K] respectively,
the following treatment may apply to both of these types of systems.

It may also be used for systems solvable in either N or 2N space by
the normal mode methods described above.

Foss's 2N formulation does not depend on any properties of the
matrices [M] s [K] and [C] and therefore it is possible to formulate
all linear discrete systems as problems in 2N space.

[R] (2] + [s] (2] - grmz (1. 116)
where [R] and [S] are as defined above by Eq. (l.101) with no

restrictions on the r_natrices [M} s [I? and [C] .
| B )b |
2 Mt ][]

[R]—l exists if and only if [M]-l exists and in this work

attention will be confined to systems with non singular inertia
matrices. For a transformation sequence which will transform any
system with a singular inertia matrix into a system with a non-
singular inertia matrix reference should be made to a report by Dr.

(16)

Caughey and the present author.

Premultiplying Eq. (1.116) by [R]—l and simplifying, one finds
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G, (M ]lw ]

r o] {21 = ol (1. 117)
1] I (3

Substituting Eq. (1.118) into Eq. (1.117)

fz1+ [a] (2] = {0} (L 119)

To solve Eq. (1.119) a theorem from matrix algebra is required: -

n"Every square matrix A is reducible to Jordan's canonical form

by a similarity transformation [z] » l.e.,
[Z]fl [A] ['Z] = [J] , the Jordan canonical form of [A] "

The Jordan canonical form of a matrix with distinct eigenvalues is a
strictly diagonal matrix with diagonal elements equal to the eigenvalues.
In this case the columns of [z] are the eigenvectors of the matrix,
Eigenvectors are not uniquely defined in magnitude but for distinct
eigenvalues have a unique direction. The Jordan form for a matrix
with repeated eigenvalues may or may not be diagonal. In either case
the eigenvector associated with a repeated root is unique neither in
magnitude nor direction. In the case where the Jordan form is a
diagonal matrix the diagonal elements are the eigenvalues and the
columns of [Z] are eigenvectors of the matrix. The non-diagonal
Jordan form arises whenever there are less ordinary eigenvectors

associated with a repeated eigenvalue than the multiplicity of the
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eigenvalue. For symmetric matrices it is always possible to obtain
the same number of eigenvectors, associated with a repeated eigen-
value, as the multiplicity of the eigenvalue. The Jér dan form of a
matrix with less eigenvectors than the order of the matrix, is a
matrix of the same order,with diagonal elements equal to the eigen-
values, the elements imme diately above and parallel to the diagonal
are .either equal to 1l or 0 and all other elements are zero. The
elements, off the diagonal, equal to 1l can occur only when the two
nearest diagonal elements are identical. A few examples of the

Jordan form of matrices are given below:

31 0
[a] - 0 20 I[a- a1 II = Ca-nea-20 2-3) (L 120)

1 1 01 0 -1 1
[T]‘ ={0 1 0 ; [z] ={0 1 O (1.121)
110 1 1 -1

0
0| , the Jordan canonical form of [A] .
3

This is an example of a strictly diagonal Jordan form associated with

a matrix which has no repeated eigenvalues.

'[A] = § i g: H[A- AI] I = (A-D)%( A-2)

i. e., the eigenvalues of [A] are 1, 1, 2.
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The similarity transformation ['Z] to reduce [A] to Jordan

form is given by Eq. (l.121)

[ ) ) -

The columns of [’2’] are eigenvectors of [A] and there are two

(1.122)

OO
O - O
OO

distinct eigenvectors associated with the eigenvalue 1 of multiplicity

two.

Finally, two examples of non-diagonal Jordan form matrices are

given

9 a3
R Ifa- 21il= (A -2)

i..e., the eigenvalues of [A]are A=2,2,2.

Using the transfor mation matrix

(1. 123)

[ 1
~
[S——
1t
OO
1
—
= O =
—
S
N 1
=t
=
>
[ IR
—
~
[
"
O O
[an R (SR
OO

Associated with the eigenvalue 2 of multiplicity 3 there is only one

ordinary eigenvector

{’ZI'S= {g) Z (1.124)

The other columns of ['Z] are generalized eigenvectar s of rank 2 and

3 respectively. A vector gXKg for which

[ }K—IEXK} ‘0
)] g -

(1. 125)
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is called a generalized eigenvector of rank K corresponding to the
eigenvalue Aoa It is easy to show that generalized eigenvectors of

different rank are linearly independent and that
[A] - A1 jgx §= X Za generalized eigenvector of rank K-j
o K K-~j

(j < K+1),corresponding to the eigenvalue A o A generalized eigenvector
of rank 1 is an ordinary eigenvector. There are various

technique S(l7’ 18,19)

available for determining the generalized eigen-
vectors of a matrix but these will not be discussed here. Due to
Eq. (1.125) the generalized eigenvectors occur in chains and this is

repeated in the form of series of elements equal to 1 in the off diagonal

terms, e. g.,

rank 1 2 3 1 2 1
5 -1 1 1 0 0 2 1 0 0 ¢ O
an |b 3 -1-l 0 0 2-1 0 0 0 0O
{0 0 4 0 1 1 H_ 0 0 1 2 0 0

[A] =lo 0 0 4-1 11" L%Jo 0 0-2 0 o (1.126)
0 0 0 0 3 1 0 0 0 0 1 -1
0 0 0 0 1 o 0 0 0 1 1
Eigenvalue 4 4 4 4 4 2

”[[A] - /\I]“ = ( R-4)5( A=-2), i.e., 4is an eigenvalue of multi-

plicity 5 and 2 is an eigenvalue of multiplicity 1.

i ]

ERNIGE

, the Jordan canonical form of [A]

[so B ow il N an B on B ]

(1.127)

QOO |h O

b~ ]|]OCOC O

QO P IOOO

OO OO ON
CO QIO b

! 1

From Eqgs. (1.120) and (1. 127) it is seen that the position of the off

diagonal terms, equal to 1, depends on the chains of generalized

eigenvectors.
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To complete the solution of Eq. (1.119), let

fz} - [7]{?“)3 (1.128)

Substitute Eq. (1.128) into Eg. (1. 119) and premultiply by [’Z] -1

[‘Z]'l [T] {’2 5+ [’Z]."l [A] [Z] = ['Z]_lfN(t)i (1. 129)

Equation (1. 129) may be simplified

fpwl + [J] (7] = (4w}
where [J] = [Z] -1 [A.} [Z] is the Jordan canonical form of [A]
and

{”,af(t)} = [7}_1 {N(t)} , & 2N x 1 column vector (1.130)

If [J} is a strictly diagonal matrix, Eq. (1.130) is a set of completely

uncoupled equations with the ith equation

izi(t) + 3, 7400 = /”ti(t) (1.131)

This system may therefore be solved by exactly the same procedure
as was used on the solution of passive systems by Foss's method in
ZN-space. If [J] is not a strictly diagonal matrix then it is still
possible to solve Eq. (1. 130) by first solving the 2N-th equation and
proceeding upwards until the complete set is solved. The 2N-th

equation is always completely uncoupled and has solution
F T anan® T aNenNt
Tonlt) :f e /JZN(t-lz)dm Va0 (1.132)
0

where JZNZN is the 2N-th diagonal element of [J] . Proceeding
upwards through the (2N-1)-th (2N-2)-th --- equation until a

coupling term is reached at the ith equation. The ith and the (i+1)-th



-46-

equations may be wrillen {in general) as

PO+ I, 0y, 1) = F ) (L.133)

Tt ®F Ty i i = Fi® (L 134)

" From the form of ]:J}
Titir1™ Jid
k -J..t

-J..T
7 ) =f e ™ K t-0dE+ 7. (0) e - (1. 135)
2 ‘

On substituting Eq. (1.135) into Eq. (1.133)

t

- it “Jiit
Vio)+ 355 7500 = Hy0) - fe Hiat-01aE+ 7,,1(0)
0
(1. 136)

Solving (1.136)

t -3.7 ¢ -3, (t-7) 4 -3,(T-7)
2.0 =f c ,ﬁi(t-z)dz-f . je Y VALY

0 | 0 0

3. It

11

+ (00 e dz+ #;(0) e

RS I S -3t
= J e di(t—’lf)c_lr + t7i+1(0) e + 71(0) e !

+IJ’ ;Jii(t-%/jiu(?)dz i
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But

t I 7 Cf =J.(t-2)
f ° ERUAL dZ:f(t-z) e BN meT
0 0

0
QIR ; -3, (6-E)
7i(t) :f e ﬁfi(t-m)dftﬂf (t-Z) e {"fiﬂ(z)d'z
0 0
-J. .t -J..t
ty0)e P rty (0)e (1.137)

Proceeding upwards, in this manner, until the first equation is solved

the solution to the original system may be obtained by substituting

[2] = [z]{z )]
o= (2] fzo

(1. 138)

Discussion on Classes of Linear Systems

Although the general theory can be used to solve any discrete
linear system, it is to the advantage of the analyst to use the usual
normal mode approach in N-space or Foss's formulation in 2N-space
for those problems which can be solved by these methods. In the
definition of Classical Systems, Caughey assumed that the system
was passive and hence that the matrices [M] s [K] and [C] were
symmetric. As the Jordan canonical form of a symmetric matrix is
strictly diagonal many simplifications result from dealing with
passive systems. However, there are many non symmetric systems

which are solvable in N space by similarity transformation and now



-48-

a brief discussion of these systems is given.
From the above work, it is easy to see that the essential
criterion of solvability in N space is that given the three matrices

[M] s [K] and [C} there exists a similarity transformation [’Z’}
such that

(2] ] [2]
[z ] &[]
z] 1 [c] [7]

for if ['Z] exists, then independent of the precise form of {M]

[M;}J the Jordan canonical form of [M]

[K]J the Jordan canonical form of [K] (1.139)

[cL the Jordan canonical form of [C:'

J‘J
[KL and [C]J (i. e., diagonal or non-diagonal) the system may be

solved in a manner similar to that shown above in the general 2N
formulation. Confining attention for the moment to those systems in
which [M]J, [K]J and [C]J are strictly diagonal matrices and in which
[M]—l exists (actually, [M] is generally symmetric and positive
definite) it is easy to see that Eq. (1.139) reduces to the existence of

(7] such that
[t [ ) 2
GRAReIn

If [M]-l and [C] are diagonalizable by the same similarity

[E]l a diagonal matrix
(1. 140)

[ff]l a diagonal matrix

transformation [‘Z] s0 is [M]_l [C] but the converse does not hold

as is easily seen from the following example

b <[ 3]0k ) bt e) - 2]
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As j_M]-l [c] is normal, i.e., [M]'l[c]( [M]"l[c] e
( [M]_l [C} )T [M]-l [C] it can be diagonalized by a similarity
transfor mation, [M] io symmetric and so can be diagonalized but
as [C] is in Jordan canonical form it cannot be further reduced.

| There are many necessary and sufficient conditions for a
matrix [A] to be similar to a diagonal matrix, including, for example,
(i) [A] is non defective (elementary divisors are linear), (ii) minimum
polynomial of [A] has distinct factors and (iii) certain conditions on
the principal idempotents of [A] are obeyed. However, most of the
well known necessary and sufficient conditions are not in a readily
usable form. The easiest sufficient condition to check is that [A]
be normal, i.e., [A] [A]T = .[A]T [A] I [A] is separated into its
symmetric and skew-symmetric parts [A]s ar_id [A]ss respectively,

this condition reduces to

o, [ale - [4)ea L),

From the proof given in the discussion of classical systems, it
is seen that, for general [M] , [K] and [C] matrices, the Caughey
Series with additions due to repeated roots Eq. (1. 76) is still a
necessary and sufficient condition on [C] for system diagonizability
in N-space provided [M]_l [K] is diagonalizable. Furthermore, if
[M] -1 [K] is diagonalizable the condition of commutability of
[M]_l [K] and [M]_l [C:[ is now only a necessary condition for
system diagonalizability in N space. This follows, in the case when
[M]_l [K] has repeated eigenvalues, from the fact that the Jordan

canonical form of [X]a, - the ¢ x ¢ matrix of Eq. (1. 95), may not be
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reducible to strictly diagonal form as it was in the case of classical
systems.

In many systems [M] is symmetric and positive definite and
[K] and [C] are both normal matrices. In this case it is necessary
and sufficient for [M]-l [K] and [M]—l [C] to commute for system
diagonalizability in N-space. It is possible for systems to possess
matrices [M] s [K] and [C] such that the same similarity transfor~
mation will reduce each matrix to either a diagonal or non-diagonal
Jordan form. Such systems involving non-diagonal Jordan forms in
N-space are not easily recognized and are best solved by the general
theory in 2N-space. It can be shown that systems with non-diagonal
Jordan forms in N-space also have non-diagonal Jordan forms in 2N-

space.

Excitation of Pure Modes

In a previous work( 7 by the author it was shown that a pure mode
of vibration may be excit\ed in classical systems by either initial con-
ditions or by a distribution of for ces. Caughey( 5) first recognized that
classical systems have real eigenvectors and that, when vibrating in a
pure mode, all the masses pass through their equilibrium points
simultaneously. It was further shown that for passive systems
solvable only in 2N-space a pure mode could be excited by initial
conditions , but not force excited. From the general formulation in
2N-space it will now be shown that it is always possible to select
initial conditions so that the system will vibrate in any pure mode

associated with an ordinary eigenvector.
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The equations of motion in 2ZN-space may be written as

i I Ei%+[A]§Z} =g,y (t)?

tz5 - % % %}J 4 - g[ ] éf(t)}} [a] - [M}:i [C] [M]: [K]

(1. 142)
If the system is not force excited E}j (t)% = gog and, as shown above

Eq. (1.142), may be solved as follows. Let

EZ% = [’Z] g’}f (t)g (1. 143)
where ljlz} -1 [A] [’Z] = [J] the Jordan form of [A] . On substituting
Eq. (L.143) into Eq. (1.142) and premultiplyihg by | 7]~

fwl+ 1]z w} = §o} (L 144)
§7(0)} = [Z}-l fz(0) (1. 145)

If [J] is a strictly diagonal matrix with diagonal elements Jii

i=1,2,...,2N. The solution to Eq. (l.144) has the form of

-3t
y.(t) = 7.(0) ®oo4i=1,2,...,2N (1. 146)

Hence, from Eq. (l.143) it is seen that the system will vibrate in the

.th -, _ . ., .
i mode if 0[.1(0)¢0 7[j(0)—0, i=1, 2,...,2N # 1, i.e., if

fz)} = 7,00 {73 (1. 147)

. .th .
where E’Zi‘; is the i row of [Z] or the ith eigenvector of [A} . Now
if {Zl\é is a vector with essentially complex elements (i. e., it cannot
be written as E'Z’i% = a; {Xlg where a, is complex and gX%, a 2N x1

vector with all real elements) EZ(O)} as given by Eq. (1.147) is not real
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and is not an admissible set of zero conditions. However, in this

case there exists another column of ['Z], gti—l—Ng such that

S“’fii = gziﬂ\rg (1. 148)
where — denotes taking the complex conjugate of each element of
g'z i; . Actually due to the real matrices of the system it can be shown
that essentially complex vectors are only associated with complex
roots and that the complex roots occur as complex conjugate pairs
and hence that essentially complex vector s must occur in pairs and

must satisfy Eq. (1.148). From these remarks it can be seen that if
EZ(O)} = 7,00 {Zig + 7;(0) E'ZHNg (1. 149)

the ith mode of vibration is excited provided Jii and Ji+N N 2T
complex conjugate pairs. If Jii is real then the inifial conditions of
the form of Eq. (1.147) are real and will excite the ith mode. In the
case of repeated roots and a cdmplete set of eigenvectors there are no
special difficulties except that the mode shapes are not unique, i.e.,
if E'Zl% , E'Z Zg “r o g'zaz are a set of eigenvectors associated with
an a -fold eigenvalue any linear combination of these eigenvector s is
also an eigenvector and the system may be excited in a pure mode by
suitable initial conditions of type Eq. (1.147) or Eq. (1.148) depending
on whether the eigenvalue is real or complex. But, in this case the
mode shape is not unique.

In the case of repeated eigenvalues of [A] without a complete

set of ordinary eigenvectors it is easy to see that it is not possible to
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excite the system by initial conditions to vibrate in a mode that
corresponds to a generalized eigenvector. For, if the jth column of
[Z] is a generalized eigenvector of [A] of rank r, ’)ZJ(’C) must be

non' zero to have the system vibrating in this mode but as the (jé l)j“th

element of [J} is 1 the (j-1)°% equation is coupled with the -7, i.e.
~J.t t -J.(t-£)

Tt = 7510 e * +0[ogj('z>e Y (1. 150)

3

where ’yj(t), the response of the jth equation, depends on ’%’j(O) and
th
if the j  equation is forced through the coupling of the jth equation

th
with the (j+1})  equation. Due to the fact that yj(t) must have a term

-J.t
of type t°e J the integral term in Eq. (1.150) must contain a term of
0Ls«<r-1
st1 "It
t e J . Hence, it is impossible, in general, to select a set of

initial conditions to excite the system to vibrate in any pure mode
corresponding to a generalized eigenvector. It is, however, possible
to excite the system to vibrate in any mode not associated with a
generalized eigenvector by a suitable combination of initial conditions.
Next, the question of forced excitation of pure modes with zero
initial conditions will be discussed. Assume for the moment that the

ith and (i+N)th (if a complex eigenvalue) mode correspond to ordinary

eigenvectors of [A] . To force excite this mode, [’Z]_l g/j (t); , -

th

a 2N x 1 column vector, must have all zero elements except at the i

and (i+N)th row (if complex eigenvalue) i. e.,
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;U O'FUOO
Fobe
—
=z

(2] o} -4

. (L 151)
Ri4 N(E)

o O

\
On premultiplying Eq. (L. 151) by ['Z'

| S—

M|t £(t)
EA4 0F =R fr T Ry o0 f7, 00 = {[ ) ) } (1.152)
On premultiplying Eq. (1.151) by [S] a 2N x 2N matrix

[s]zN[_[_z_A_]_ '[?J]J and noting that {7} = {ag?;}

t A [M] (.11 t A [M] {Eiz BEC
Ri"[ b 837 [ gzi;(‘{zogi o

As ﬂi, the eigenvalue of the mode of interest, is complex

R,(t) = R, (f)

if
Ry(1) A;[Mm] B} + R, (1) 71,[1\4] }Z& = ff(0)} , areal vector (1.154)

Let
© Ri(t) = ai(t) + '\/——_l‘bl(t), )f cgt '\/—-Tdi_

(83 = R} + VT g

From Eq. (1.153)
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(0[] {824 r, 0 ] 61 o}
(a,(t) + mbitt»Mﬁaﬂw «/‘-ﬁ‘{xiz)Jr (a,(6)-N"T bt M](gRig-m 5113)

Nl
= {O} (1. 155)

Equating real and imaginary parts

Za (t) [M] fR.T -2b.(t) [M]{Ilg = {og (1. 156)

. either  a(t) = b(t) = 0 (1.157)

> {r}-= _'T(i; {11 -1 _ =k, any real constant (1. 158)
iYi ai(t)

Substituting Eq. (1.157) into Eq. (1.153) gives f(t) = 0, i.e., no
free excitation possible. Equation (1.158) implies that the vector g’zig
is an essentially real vector. As classical systems have real eigen-
vectors this shows that it is possible to force excite a pure mode in

classical systems provided Eq. (1.154) is satisfied, i.e.

L

2 RY HR (t) A ) ] £ ‘g} = ot (L 159)

Knowing Ri and £¢1% , it is easy to choose Ri(t) and f(t) so that
Eq. (1.159) is satisfied. For non classical systems with real eigen-
vector.s and complex eigenvalues it is likewise possible to force excite
the system to vibrate in the pure modes corresponding to those real
eigenvectors. If the eigenvalue /-\i is real then unless there is
another real eigenvalue Ri+N such that gpllz = {?{HN} it is
impossible to for ce excite the system to vibrate in a pure mode.

However, in the case where E}Zlg = {;ZS which always occurs

i+N} g

with real eigenvalues in classical systems, it is possible to force
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excite the system in a pure mode.

In the case of generalized eigenvectors it can be shown that due
to the coupling between the modes it is not possible to force excite
the system to vibrate in a pure mode corresponding to these
generali.zed eigenvectors. This case will not be discussed in detail
here as it is easier to prove the statement with the matrix exponential

techniques to be developed in Chapter 2.

Computational Methods

The main methods for finding the eigenvalues and eigenvectors
(19, 20, 21, 22, 23, 24)

of a matrix are Jacob's Method, Given's Modifi-
cation of Jacob's Method, Power Method and Lanczos! Method. The
Jacob and Given's methods work on an annihilation principle and are
confined to real symmetric matrices. The Power method is a
development of Stodola's method for symmetric matrices and gives
good convergence if the matrix is non defective and if the eigenvalue
of interest is simple. The Rayleigh quotient can also be used as an
estimate of the eigenvalues of a positive definite matrix. Lanczos'
method is very well suited to digital computation and it reduces the
matrix to a tridiagonal matrix from which the eigenvalues and eigen-
vector s may be obtained.

There is, then, no lack of methods for determining the eigen-
vector s and eigenvalues of a matrix. However, if the order of the

system is high it is extremely tedious to calculate them by hand

calculator. For any system of order higher than 5 some method of
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automatic calculation is required to facilitate the calculations.

The great virtue of the modal method of solution is the physical
insight it gives into the synthesis of the system. However, it must be
realized that calculating the eigenvalues and eigenvectors of a matrix
may not be the most efficient method of determining the response of
the system. In the next chapter a presentation based on the matrix
exponential is given together with a simple algorithm for numerical
calculation,

In the past ithas been thought that integral tr ansform methods
had to be used if the traditional modal approach was not applicable.
In point of fact the use of integral transform methods results in the
same type of problems as when non-diagonal Jordan forms arise in
the above work. Indeed, the main reason that the integral transform
techniques were successful was that, due to the order of the systems
solved, it was possible to invert the literal matrices of the problem.
If the order of the problem is increased the inversion of the literal
matrices would be a formidable task which must be done by hand as

a computer cannot be programmed to do it.
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CHAPTER 2

FURTHER RESULTS FOR DISCRETE SYSTEMS

Introduction

In this chapter, the discussion of discrete systems is continued.
First, a new formulation of the general theory of vibration of these
systems is given. This formulation using the ideas of matrix exponen-
tials, has the virtue of elegance and compactness besides being in a
form very suitable for digital computation. The question of the
stability of general systems is discussed and some new results,
obtained by using Liapunov's Second Method are given. A section on
perturbation analysis is included to facilitate computation of systems
solvable to within terms of small order in N space. Finally, the
methods available for bounding the eigenvalues of a matrix are

reviewed and applied to the problem under discussion.

The ory

The Matrix Exponential Formulation of the General Theory
(11, 25, 31)

Definition of a function of a matrix: Let A beaNxN
matrix with k (N > k) eigenvalues /11, 22, cees )(k. Repeated eigen-
values are only counted once in this notation. Let f be an analytic

function in the open set containin s Asee-s A,e Letp()) be a
8 Ap Nprerre Ay

polynomial such that
AN =AY 401 rL =Lk

where superscript £ indicates differentiation and Ij is the highest rank

of any generalized eigenvector associated with the repeated eigenvalue
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J
function f ]:A] of the matrix [A] is defined as

f[A]=p[A].

As f(Z) = eZt is an entire function and has the well known

A.. If Aj is a simple eigenvalue of the matrix [A] . rj= 1. Then the

associated infinite power series expansion p(Z)

2 3
Z Z
P(Z) =1+ Z+ Z + 5

+ -
which satisfies all conditions of the above definition, it is permissible
to define
2] 1o e [a]e r [+ 5 [P+ ...
where [A] is any N x N matrix and t is the time variable (scalar), as
the matrix exponential function.
Here, it is not intended to give a rigorous treatment of matrix

functions but to present theorems and useful results that can be applied

to discrete linear systems.

Definition: The minimal polynomial of the matrix [A] is the poly-
nomial LF()\) of least degree such that Lf(A) = 0 and the

coefficient of the highest power of A is unity

k r
i
g =[] -2 (2. 1)
S
where Ai’ i=1,2,...,k are the eigenvalues of [A},

r, is the highest rank of any generalized eigenvector

associated with the repeated eigenvalue Ai’ i=1, 2,..., k.
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From Eq. (2.1)
k k

Z %(M' Z A)H(R}\)J—l (2. 2)

i=l (A- A) i=1

# i
where 92 i(R) are polynomials in A of degree less than T, Consider
(A)7.(R)
¢ (A) = 7 71 (2. 3)
(A-A, )
From Eqgs. (2. 2) and (2. 3) it can be shown that
k
) g, =1 (2. 4
i=1
Ly(/\)—vz(ﬁ)ﬂ(/l 2)3—1 (2. 5)
j=
*1 i=1,2,...,k
%!(7‘1) =0 £=1,2.. . (x-]) (2. 6)
£ _ -
(701 (,13,)_0 !-0,1,0..rj-1 (2. 7)

Let [E;] = g, [a])
where (301(7\ ) is defined by Eq. (2. 3). [A] and [E1] are Nx N

s.qua,re matrices. (k <N)

It may be shown that

[E]] [El] - [El] i=1,2,...k (2. 8)
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[E][_Ei]=[0] £4i=12,...k (2. 9)
k -
Z ' (2. 10)

To demonstrate the validity of Eqs. (2. 8), {2.9) and (2.10) use is made
of the fact that in a matrix polynomial, the factors may be inter-

changed, e.g., to show Eq. (2.8). Consider

g1 /1)9{1(2) ‘

\ (2- ?\)

5”@)71 m PRy . 9 (A) y.(Q)
(A-2, ) E (A-2A5) ° (-2 *

YZ2) =

Let
9?2 4R g 7,Q)
g1(A) = 2T, - T,
(A-A;) (A-A) °
2 2. Ty
¢ 7,50 - 9R) A A-2)
= Zr,
(/\"Ai) *
):'j 21:'_‘_L k rj
H A-29 Igoa-2p | Tl a-29 7,0 -1
j=1 J=1 /
_ _#i : - #i

2r,
(;{—Ri) !

But, from Eq. (2. 2)
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k k

ko rj T
T a2 37,0 1= ) 7,00 T @-a,)
j=1 - 2=1 s=1
#i Fi #4
k r. k ko T
j=1 £=1 s=1
#i £1 £4
From Eq. (2.11) it is easy to see that gi([A]) = 0 as each term of

Eq. (2.11) contains a group of factors which when collected together

are equal to Lf ([A]), i.e.,

k
g (M =4 @A) ) L(ALA) £:,2...k

i=1

where Li(A, 21) is a polynomial with factors (A _Al)’ £=1,2,...k,

As q:([A]) =0 2
[%([A])} ) [El][E1] ) q)i([A]) = [E] (2.12)

Similiarly, Eqs. (2.9) and (2. 10) can be verified.

Theorem: If f is analytic in an open set containing A 1 22, e A K
then
K Ty .
Z 1 o )
-3 Y b fopk) e
£=1 1i=0

where f([A]) and EE are defined above.
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Application of Matrix Functions to Discrete Systems

In 2N space the equations of motion of general linearly damped
gystems may be written as
| 127 +uZ = Ft) (2.14)
where Z, u and F(t) are given by Eq. (1.117). To solve Eq. (2. 14)
using the matrix exponential function, first solve the homogeneous
problem F(t) = gOl

IZ+uZ =0 (2. 15)

£z = [est} §v} (2. 16)
Substituting Eq. (2.16) into Eq. (2.15)
B [B] v+ u [Bt] v = fo?

B+ u] [eBt] v =$0} (2.17)

Note: It is easy to show from the definition of a matrix function that

4
dt

Let

[eBt] = [B] [eBt] and that [eBt] is never singular.

From Eq. (2.17)
B =-u (2. 18)

for Eq. (2.16) to hold for arbitrary Y. Hence solution to Eq. (2 .14) is
Z = [e-Ut]Y

(Y] is obtained from the initial condition f21=§7(0)} at t=0,

From the definition of [e—ut] it may be seen that [e_ut] (=0~ L.

€23 =[] (o0 (2.19)

To solve the inhomogeneous problem of Eq. (2.14),



—b4-

1Z + uZ = Flt) (2. 20)
Consider
t
{213 - f 78 D)] fr(e} at (2. 21)
8]

The kernel of the integral of Eq. (2. 21) is a 2N x 1 column vector with
elements which are functions of t and Z. The integral sign is inter-

preted as operating on each element of the matrix in turn.
t

¢z = -f u[e ) Bz 4t + F(t)
0

Hence gZ'g is the solution to the inhomogeneous problem with

zero initial conditions. Therefore
t

gz§=[e'“t]2(0)+f[e'“(t“”]F(/z)dz (2. 22)
0

is the complete solution to Eq. (2.14) when EZ(t)th(): gZ(O); .

Practical Computation of the Solution

Using the Matrix Exponential Formulation

The infinite power series for [eAt] is not a practical method of

(25)

computation with the possible exception of appr oximations for small
t. The interpolation method, which is based directly on the definition
of a matrix function is the first of three practical methods for the

computation of [eAt} .

Let

() 4 - )
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where p(A) is a polynomial which satisfies the conditions given in the
definition of. the function of a matrix. The computation of [eAt]
involves the determination of an interpolating polynomial p(4 ) and

the evaluation of [p(A)] . Since every matrix [A] of order N has an

associated polynomial L?([A]) of degree m<N

m-~-1 k
[eAt] = Z ai(t) [A]i m = Zri (2. 24)
i=0 i=1

where ai(t) are functions of t, m is the degree of ¢ ([A]), k is the
number of distinct eigénvalues of [A] and r. is the highest rank of any
generalized eigenvector associated with A ;T the ith eigenvalue of A.

m-1

p(A) = Z aili

i=0

As f(A) = eAt; p(A) must satisfy the following conditions

m-1
. t
2 il i-g 4 A
p (Aj)= z : aiAj =t e J (2. 25)
iy (i-2)!
£=0,1, rp j=1,2,....,k
As a simple example of the determination of eAt , let
210
[A] -lo 20 (2. 26)
0 01

As [A] is in Jordan form it is easy to see that

A=2
A, =1
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p(A) = ay+ ajA + aZRZ

From Eq. (2. 25)

=0 j=1 p(2) =ay+ 2a + 4a, = et
. _ _t
=0 j=2  p(1) =ayt a ta,=e (2. 27)
2
=1 j=1 pi(l) = a + 4a, =te”’

Solving Eq. (2. 27) gives

ag = 4et- 3e2t+ ZteZt, a = -4et+ ‘]-eZIc - 31:eZt

azze -e + te
But
2
, |4 40 At ette;it 0
AT=10 4 0 Hence [e }— 0 e Ot
0 0 1 - 0 0 e

If the minimal polynomial has all distinct roots the interpolating

polynomial is

k
i=1
p(}) = Z ! f3,) (2. 28)
1___1 2 (12'21)
#z

i.e., the Lagrange interpolating polynomial.
Although Eq. (2. 48) is suitable for digital computer computation
the use of the interpolating formula when the minimal polynomial has

repeated roots leads to equations of type Eq. (2. 27) which are

difficult to solve, for all t, on computers.
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Computation Using the Fundamental Formula

From Eq. (2.13)
K A Aﬁl]'
Z Z = Oy E, (2. 29)
=1 i=0

Let .
1 i
[Rﬁ]"F[A 311] E,

to simplify the notation. Hence Eq. (2. 29) may be reduced to

Kk rl—l
f([A]) - Z fi(Az) [Rﬁ] (2. 30)
£=1 i=0
From Eq. (2. 30)
k Tyt oyt
[eAt] = Z Z the ! [RM] (2. 31)
2=1 i=0

Although the matrices I:R.(Z i] are expressible by the use of the
quantities Lfi(A), defined above, as polynomials in [A] , the most
efficient method of calculating £( [A]) from Eq. (2. 30) is by inserting
appropriate trial functions f.

As an example consider

-1 0
S

In actual fact the deter minant of [A—) I] may be used instead of the

-2 I[a-21)1 = A-2%a-y
1
5 PR = (A-2)%(A-) (2. 32)

minimal polynomial. If the degree of the minimal polynomial is

less than N, the order of the matrix, the use of the determinant
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results in some [Rzi] being null matrices. In this case

Al= 2, =2, 22=1, r,=1 k=2

f([A]) = £(A,) [R10]+ £1(A,) [R11J+ £2,) [RZO] (2.

To determine [Rlo] s [Rll] and [RZO]

Consider

(@) #A) =1 all A .. £} = £(A,) =1, £(A) =0

A [Rm] + [RZO] (2.

() £A) = (A-2) . KA =0, £A) = -L £4A) =1

- A-D= [Rn] - [Rzo] (2.
Gi) £A) = (A-27 L EA) =0 £y =L fi(Ay) = 0
;o [a-2) 2. (R 50] (2.

Solving for [Rlo], [Rn] and [RZO] from Eqs. (2. 34), (2. 35) and

(2. 36)

[Ryo] = 1- [a-21)% = 4a- A%.31

[R;,] = a-1- [4A—Aa—31] =21+ A%-3A

[Ryo) =[a-21* = a%-4a+ &1 (2.

From Egs. (2. 30), (2. 31) and (2. 37)

33)

34)

35)

36)

37)



At Aqt Ast
At 1 1 2
£ [A]) =e " =e ERIO] +te £R11] te [Rzol
T2 2 o -4 -2 -2 -1 -2 0
Seftl L olatetla 1 o 1liet| Ll 2 o (2. 38)
1 -2 01 6 3 3 1 2 0 |

It is easy to see that the trial functions, f=1, (A-2), (2—2)2 are
obtained from the minimal polynomial f (}) , or H[Aﬂ 1] || in the
case where Lf(ﬂ)_is not known,by successively cancelling one factor
from L? (1), then another from the resulting quotient and so on until
the final quotient is 1. It may be seen that with these trial functions
the matrices [Rﬁ] are readily evaluated, as the linear equations in
[Rli] form a triangular set. Furthermore, the whole process is
ideally Suited for computer programming, but the details will not be

developed here.

Computation Using Laplace Transform

A third method for the practical computation of the matrix
exponential [eAt] involves the use of Laplace transform methods.

Consider the following vector matrix equation
fxd = [a] (=} tzos =0 =1, (2. 39)
where gxz is a N x 1 column vector, with ith element Xi(t), and {A]
is a constant N x N matrix with ij element a;e

Taking the Laplace transform of Eq. (2. 39)

s§x3- x(0) = [a] £x3 | (2. 40)

where s is the Laplace transform variable and g?g is the Laplace

transform of {xg , or
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[e1-a] §31-=1, (2. 41)
. — -1
Sofx) - [SI-A} 1, (2. 42)
: . . At
But the solution to Eq. (2.39) is gx% = e I,.Hence the Laplace
transform of e'At = [sI~A]-1 (2. 43)
It is possible to compute [sI-—A]_1 in the form
[sl-A]‘l L [C(s)] (2. 44)
A(s)
where A(s) = ”[SI-A] H and C(s) is a N x N matrix with elements
which are polynomials in s of degree (N-1) at most. Let
o |Cls)] = [R(s)] (2. 45)
A(s)

where [R(s} is a matrix with elements which are rational functions
of s. |

It is possible to perform partial fraction expansions on the
elements of [R(s)] , {as the denominator of each element is A(s) )

and to expand [R(s)] in the form of a sum
k "¢
[R(S’] = Z Z [Bﬁi} ——r (2. 46)
. S

where [Bﬁ] are constant matrices,

Taking the inversc Laplacc transform of Eq. (2. 46)

K rl-l
i t
[ 2] - Y ) o) & ™ (2. 47
£=1 i=0

This method of computing [eAt] depends on the evaluation of
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the matrices [B,ei]’ For large order systems the direct inversion of
[SI—A] and the use of the partial fraction expansion are not practical.

(25)

However, there is an algorithm available for determining [C(s)]

and [Bli] which may be used on a digital computer for large order
systems.
Once ]I:e—ut] is calculated, the solution to the general linear

system |, Eq. (2.22), may be obtained in an obvious manner.

Stability of Linear Damped Systems
Y(S, 9, 10, 11, 32, 33)

The question of the stabilit of linear systems
is an interesting one, and has occupied the attention of engineers and
mathematicians for many years. The problem is basically bound up
with the algebraic sign of the real part of the roots of the frequency

(8,9,32,33) on the coefficients

equation. The Routh-Hurwitz criteria
of powers of A in the frequency equation provide a very quick
method for determining if a system is stable. In the feedback control

(8,32) and the Root Locus(g’ 32)

field, use is made of the Nyquist Plot
plot for stability analysis. DBoth of these techniques are suitable for
the deter mination of the stability of the systems under discussion in
this work. The Nyquist plot, essentially the mapping of the transfer
function along the Nyquist contour, is readily drawn and an analysis of
the stability of the system is easily made. The method is based on a
theorem in complex variable due to Cauchy. The Root Locus, as its

name implies, is a plot of the roots as some parameter of the system

is varied. The control engineer has available techniques, which
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allow him to graph the root locus with the minimum of calculation.,

Besides the actual stability of the system, the degree of
stability (i.e., a measure of the magnitude of the negative real part
of the roots) is of interest to the design engineer. It is for this
feasou t.hat engineers in general, prefer either the Nyquist Plot or the
Root Locus Plot to the Routh-Hurwitz method for the analysis of the
stability of systems. By its very nature the Root Locus Plot indicates
the degree of stability as a function of the parameter varied. By
changing the Nyquist contour it is possible to deter mine the degree of
stability from a Nyquist Plot. However, the Routh-Hurwitz criteria
indicates if the system is stable but does not give any measure of the
degree of stability.

Mathematicians have been interested in the problem of the inertia
of matrices(34’ 36) for some years. The inertia of a matrix is a three-
tuple quantity (a,b, c), where a is the number of eigenvalues of the
matrix with positive real parts, b is the number of purely imaginary
eigenvalues and c is the number of eigenvalues with negative real
parts. There are many theorems available on the conservation of
the inertia of matrices under various transformations and on sets of
matrices which have the same inertia characteristics. Unfortunately,
these results are too general for the specific problem of the stabilily
of a given matrix -- the question normally of interest to the dynamicist.
However, these theorems on the inertia of matrices are invaluable to

(35)

the linear economic model analyst, and it is to be expected that

within a few years some new results, on the inertia of matrices, of
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interest to workers in mechanics, will be available.
At the present time, the most powerful analytical tool for study-
ing the stability of systems is undoubtedly a technique based on the

(9,10, 1) In fact, he proved the two theorems that

work of Liapunov.
will be used in the analysis of the stability of the systems under

discussion in this work.

Necessary and Sufficient Conditions for

the Stability of Linear Damped Systems

In N space the equations of motion of linear damped systems
may be written as
M%+ Ck+ Kx=0 (2. 48)
where M, C and K are N x N matrices, and x is a N x 1 column vector.
From Eq. (2.48) the frequency equation may be obtained by

substituting x = e\t E_Cfg
eZt[AZM-F AC + K] Eq’g_o (2. 49)

For non trivial solutions of Eq. {2.49)

“[/\ZM+ AC + K] | =0 (2. 50)

Equation (2. 50) is the frequency equation in N space.
In 2N space, provided M-1 exists, the equations of motion may

be written as

) Mlc Mk
L2+ Z =0 (2. 51)
—IN 0 .

. >
where EZ% = a 2N x 1 column vector, and I__ is the identity matrix
x N
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of order N. By substituting Z = eAt {EE in Eq. (2. 51), the frequency

equation in 2N space may be determined

I
H 5 Mic Mk “ . 2. 52)
I, + = . 52
2N I 0
or
M'lc+AI M1k
I | =o (2. 53)
Iy 7\IN

Multiplying each of the first N columns of the determinant in Eq. (2. 53)

by A and adding the (N+i)th column to the ith (i=1, 2,...,N)
] RZIN+ am e+ Mk M1k
d “ =0 (2. 54)
(A) 0 }\IN

Hence, the frequency equation in 2N space reduces to

H[?\ZIN+ am o+ M'IK] | =0

which is easily seen to be the frequency equation in N space (Eg. (2. 50),
provided M_l exists.
From the above work, on the analysis of systems in 2N space, it

is shown that if
[R] = : R a 2N x 2N matrix (2. 55)

is diagonalizable, the motion of the system is a summation of

solutions of type
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(2. 56)

% } R Tt
g 7 £8:3
Hence, if and only if the real part of di’ the ith diagonal element of
the reduced diagonal form of [R] , is greater than or e;lual to Zero
is the ith mode stable. The elements along the diagonal of the
reduced form of [R] are the eigenvalues of [R] -- therefore on
utilizing the concept of superposition of solutions of type (2. 56) it may
be shown that if [R] is reducible to a strictly diagonal matrix it is
both necessary and sufficient for stability of the system that the real
parts of the eigenvalues of [R] be greater than or equal to zero. As
the eigenvalues of [R] are in fact the negative of the roots of the
frequency equation this condition may be stated: If [R} is reducible
to diagonal form, it is both necessary and sufficient that the roots of
the frequency equation have non positive real parts for the system to be
stable.

The situation is somewhat different when the reduced form of
[R] is not strictly diagonal as in this case there is coupling between
the reduced equations. If the reduced form of [R] is not strictly
diagonal then there are at least 2 equations in the reduced systems of

equations having the form

N, + 4 71
oz 47, +7,=0 (2.57)

for some i 1<i4N. From Eq. (2.57)
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~-d.t -d,t

Y =Bi1e oate ! (2. 58)
Hence, unless the real part of d; is strictly positive the mode
associated with ,)Zi—l is unstable, due to the t factor in the second
term of Eg. (2. 58). Therefore using the principle of superposition it
is easy to show that if the reduced form of [R] is not strictly diagonal
it is necessary and sufficient that the real parts of the eigenvalues
associated with the generalized eigenvectors of [R] be strictly
positive for the system to be stable. This fact points out one of the
difficulties of using any of the standard methods for determining the
marginal stability of the system. The marginal stability curve or
the stability boundary is normally determined by calculating the values
of the parameters of the system which make the real part of the least
stable root of the frequency equation zero. The system may or may
not be stable on the stability boundary as normally defined. It is
entirely a matter of the eigenvecfors (ordinary or generalized)
associated with the root whose real part is zero.

If the definition of stability is extended to the forced vibration
problem, i.e., a system is stable if to a bounded input the output is
bounded, it is easy to see that the conditions derived above are also
necessary and sufficient conditions for the forced vibration problem
to be stable. For if the system is diagonalizable in 2N space, the
contribution of the forcing function to the motion of the system is a

summation of terms of type
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; booa (-7 - .
?X} = j'e il* )g.(Z)dZ\ % £¢1§ (2. 59)
; {8

As gi(Z) is the forcing function of the ith uncoupled equation, it is a
finite sum of bounded quantities and therefore is itself bounded. Hence,

it is possible to bound the left hand side of Eq. (2. 59) as follows

. Fola(t- -4, (4,

maxj} _gmax[gi("c)l e dl(t T)dz dlg lg (2. 60)
L.t (=], [ocz2t] O f¢$
-d, -d, (.

£ max lgi(’l')‘ al— (1-e 11:) 1{ 15 (2. 61)

lo=rcezg °* E‘éig

indicates the vector with elements equal to the moduli

X
where \
x |,

i .
of the corresponding elements of Ezg . Therefore, unless di =0

it is necessary and sufficient that the real part of d, (the ith eigenvalue
of [R] ) be non negative for the left hand side to be bounded for all
bounded gi( 7). The case of di = 0 corresponds mathematically to a
zero eigenvalue and physically to rigid body motion. Needless to
remark, rigid body motion falls under the classification of instability
when one uses the above definition of stability (e. g., the rigid body
motion x = at is unstable as x increases without bound for a bounded
input). By the use of the superposition properties of linear systems

it may be shown that a linear lumped parameter system, which is
diagonalizable in 2N space, is stable if and only if the eigenvalues of

the system have non negative real parts.
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Turning now to the question of necessary and sufficient conditions
for the stability of the forced vibration problem when the reduced form
of [R} is not strictly diagonal it will be shown that it is possible to
develop analogous results to those derived above. From Eq. (l.137)

it may be seen that

£ t

y _ax ~d,(t-7)

o frr ™0 @,
. 0

(2. 62)
is the contribution of the forcing function to the motion of the system in
the ith mode if the i+l eigenvector is a generalized eigenvector. Pro-
ceeding in a manner similar to that used above it is possible to show
that the left hand side of Eq. (2. 62) is bounded when gi(t) and g4y 1(1:)
are bounded (all t) if and only if the real part of di is strictly negative.
Using the concept of superposition it may be shown that linear lumped
parameter systems, which are not reducible to strictly diagonal form
in 2N space, are stable if and only if the eigenvalues of the system
associated with the generalized eigenvectors have strictly

positive real parts.

Use of Liapunov's Stability Theorems on Linear Lumped

Parameter Systems

Before using Liapunov's work to develop sufficient conditions
for stability of linear lumped parameter systems the following two

theorems are stated:
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Theorem_}_:_ Let [Y:I ; a N x N matrix, be determined by the

[a]T [¥] + [Y] (a] =1 (2. 63)

Then a necessary and sufficient condition that the real N x N matrix

relation

[A] be a stability matrix is that [Y] be positive definite. A
stability matrix is one whose eigenvalues have negative real parts.
From the above formulation of the equations of motion of the linear

damped problem in ZN-space it is seen that the matrix

- [R] = = [u] a 2N x 2N matrix (2. 64)

must be a stability matrix for the homogeneous solution to decay
asymptotically to zero as t— 0. It was also shown that for a
bounded forcing function, the response is bounded for all time if[u]
is a stability matrix. If one of the eigenvalues has zero real part,
the mode associated with this eigenvalue in the homogeneous response
of the sYstem does not decay as t —» co but it is always bounded
provided there are no generalized eigenvectors associated with this
eigenvalue.

To determine the stability of a system by means of Theorem I,
it is necessary to solve Ei (2. 63) and to test if the matrix [Y] is
positive definite. For large order systems this is a formidable task
and inigeneral a digital computer is needed to facilitate the calculations.

The solution to Kq. (2. 63) is
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~ T
[¥] :f At et Fat (2. 65)
0

provided Ai-k 7\3, #£0 1i,j=1,2,...N where Ai are the eigenvalues of
[A] . In the calculation of the integral in Eq. (2. 65) recourse may be
had to the methods described above for computing eAt. To test if the
matrix [Y] is positive definite is a routine task and can be done by
either determining the eigenvalues of [Y] or the signs of the
principal minors of [Y] .

Although Theorem I is extremely useful as a practical test for
the stability of systems it is of little value as an analytical tool for
determining the classes of matrices which are stable. However,
Liapunov also proved another theorem (Theorem II) which is stated
below, a.nd which can be used for developing sufficient conditions for
matrices to be stable. Theorem II forms the basis of what is generally
known as Liapunov's Direct Method for the determination of stability.

Before stating the theorem it is necessary to define:

Liapunov Function (V(x) ): A function V(x) of the elements of a vector

x = (x5 YRR XN) is said to be a Liapunov function if

(i) V(x) is continuous together with its first and second partial
derivatives in an open .I'egion S about the origin.

(ii) Vv(0) = 0.

(iii) At any point of S, except the origin, V(x) is strictly
positive.

(iv) For xin 8, V(x) < 0.
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Conditions (i), (ii), and (iii) are necessary and sufficient for V(x)
to be positive definite. Generally, Liapunov functions are constructed
from consideration of the physical system one is studying. Kinetic
é.nd potential energy terms, being positive definite, play a large role
in the developrhent of Liapunov functions. However, considerable
ingenuity and familiarity is required to utilize Theorem II to full

advantage, particularly when dealing with non-linear systems.

Theorem II: If there exists in some neighborhood S of the origin

a Liapunov function V(x), then the origin is stable. If moreover
-”\./‘(x) is positive definite in S the stability is asymptotic,

Whether the stability is asymptotic or not depends on whether
the eigenvalues are complex or purely imaginary. In either case,
Theorem II can only give sufficient conditions for the stability of the
system. Although the theorem is not constructive, a considerable
amount of work has been done on the stability of systems using the
results of the theorem and thereby experience has been gained in the
.development of appropriate Liapunov functions for particular types of
systems. As stated, the theorem gives only sufficienf conditions for
stability and it is therefore entirely possible that the sufficient con-
ditions for stability derived by the use of one Liapunov function be
more restrictive than the su:fﬁcient conditions derived by the

application of a differ ent Liapunov function.
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Application of Theorem II to Derive Sufficient Conditions for the

Stability of Linear Damped Systems

Consider the equations of motion of a multi-degree of freedom

linear system in N space
M+ CXkx +Kx=0 (2. 66)

Equation (2. 66) may be written in 2N space with Z a 2N x 1 vector as
the variable, but for present purposes the N space form of Eq. (2. 66)
is more suitable.
In Eq. (2.66) let M and K be both N x N symmetric matrices
and C a general real matrix. Consider the function
Vixk) = % ° Mk + {XTCT+ icTM} {c:x+ sz + xT Kx (2. 67)
As M and K are symmetric matrices, the first and third terms of the
right hand side of Eq. (2. 67) are twice the usual kinetic and potential
energies, respectively, of the system. The second term of the right
hand side of Eq. {2.67) is the inner product of a vector with itself
and is therefor e always non negative. V(x, X) is a Liapunov function if
{i) M and K are symmetric and positive definite.
or (ii) M is symmetric and positive definite
K is symmetric and non-negative definite
C is non-singular
x, X being vectors with real elements.
That V(x, X) is a positive definite function under condition (i) follows
from the fact that the first and third terms on the right hand of

Eq. (2.67) are zero if and only if x = X = 0 and the second term is



-83-

always non-negative. By examining the second term on the right hand

side of Eq. (2. 67)

= §xTeT 4 5Tl fox+ mx!

- §x"cTex) wx=0 (2. 68)

It may be shown that V(x, X) as defined by Eq. (2. 67) is a pousitive
definite function under condition (ii). For, if M is symmetric and
positive definite and K is symmetric and non-negative definite, V(x, k)
is positive for X # 0 all x, as in this case the first term on the right
hand side is positive while the second and third terms are always non-
négative. If X = 0 and x # O the first term is zero and the third term
can be zero, but, from Eq. (2.68), the second term cannot be zero

if C is non-singﬁlar. To show that the system is stable, consider
V(s k) = XTMk+ kO M% + £x0C 4% MY fCx b M}
+ExTc T x Mf {Ckr Mi} + i Kx+ x K (2. 69)
Now from Eq. (2. 66)

M% = - fCx+ Kx

(2. 70)
% TM = -(x1C T+ xTK)

On substituting Eq. (2. 70) into (2. 69)

Vix,k) = % CTk %7 Cx -x KCx-x  C Kx -x KMk -k MKx (2. 71)

But
xTKMk = kTMKx

S Vix, k) = —ZX«TI\/IKX —kT [C + CT]X -XT [KC + CTK]X (2. 72)
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But from (i)} and (ii) M and K are symmetric and M is positive definite,

therefore a transformation Q exists such that

T T = |
Q Q=I, Q MQ=M, a diagonal matrix with all
positive diagonal elements
T —
Q" KQ =K, a diagonal matrix with all

non-negative diagonal elements.
— T —_ '
M=QMQ ; K =QK QT
Cox MKx =x QMQTQEQ x = YTMER Y

where
Y = QTX.

Due to the form of X/I and f(:l the matrix MK is a diagonal
matrix with all non-negative diagonal terms
Y'MEY 20 ally, i.e., allx (as x = QY)

Hence Vix,%) & 0 if
[C-%— CT] and [KC + CTK] (2. 73)

are both non-negative definite matrices. Thus the linear lumped
parameter system described by Eq. (2. 66) is stable in Liapunov’s
sense if the specifications on the system parameters given by (i) or
(ii) and (2. 73) are satisfied. That these conditions are sufficient
though not necessary for the system to be stable may be seen by the

following example:

Let the specifications on the system parameters be:

(1ii) M and K be symmetric positive definite matrices, and C
be a symmetric non-negative definite matrix. These specifications,
(iii), include specifications (i) above. The remaining condition, (2. 73),

for stability requires that
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[KC + CK] be a non-negative definite matrix {2. 74)

But it is easy to show that no further conditions are required in this
case (Sylvester first proved this) for the system to be stable. For,
taking

Vi) =k Mk + xTKx (2. 75)
V(x, x) as defined by Eq. (2. 75) is a positive definite function as M and
K are positive definite matrices. |

\./'(x,k) =-2%T Cx £0as Cis non-negative definite

Hence V(x,X) as defined by Eq. (2. 75) is a proper Liapunov function
and the system is therefore stable. However, the conditions (iii)

specified on M, C and K do not guarantee the non-negative definiteness

of Eq. (2.74). A numerical example clearly shows this

1 -1 1 0
C = , K= (2. 76)
-1 0 10
2 -1
CK + KC =
-1 20

which is not non-negative definite and hence condition (2. 75) is not
satisfied in this case. Moreover, it is easy to show by using Eq. (2. 75)
that if M and K are both symmetric and positive definite matrices the
system dscribed by Eq. (2. 66) is stable if [C + CT] is a non-
negative definite matrix.

As a final example of the use of Liapunov's method the

following theorem is proved.
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Theorem: Let the canonical form of the equation of motion of a

linear lumped parameter system be

I% + Ck+ Kx = 0 (2. 77)
where 1 T
C=C_+C_ cs=§[c+c ]
K=K +K ; C :i[c-cT]
s Ss S8 2

subscript s indicates the symmetric part, subscript ss indicates the

skew-symmetric part of the matrix. Then if Ks is positive definite

and
c l
S sSs
K- [KTCl
SSs 13

is non-negative definite, stability is assured. This, as before, is a

sufficient, though not a necessary, condition.

Proof: Define the function
Vix, X) = kTi: + EXTCT+ kT} €CX+ xz + xT [K+ KT]X (2. 78)

As the first and second terms of Eq. (2. 78) are the inner products of
vectors with themselves and K + KT= ZKS is a positive definite matrix,

V(x,® is a positive definite function.

Ves i =% ke &7 r e xTCTe R ) foxr i ¢ §xTc T 1M fox %)
+ 5T [K+ KT]XA—I- xT[K+ KT].%; (2. 79)

But from Eq. (2. 77)

% = - fCx+ Kx] 2T = oxTcT+ xTrY

—
38
oad
(o}
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S:TCT + '}'(T = —xTKT and Cx + X = -Kx

On substituting Eq. (2. 80) into Eg. (2. 79)

Vi = -G [orcT)xr T [k k7] + 5T k-7 )
+ xT [KTC + CTKl x)

= —Z(XTC %+ x K x+ kK. x+xl [KTC} k)
s S8 ss s

1T | c |K x
LV(x, k) = -2 8 | 88 (2. 81)
x T T X
[K c]s

Hence if

_ST. S8 is a non-negative definite matrix

Ky, |[K cl, (2. 82)

V(x, X) is a Liapunov function of the system described by Eq. (2. 77)
under the given restriction that KS be positive definite. This completes
the proof of the theorem quoted above.

It is well to note that condition (2. 82) implies that Cs be positive
definite., If K is a symmetric matrix Kss = 0, and condition (2. 82)

reduces to

C 0
) R— is a non-negative definite matrix
o |[xc],

i.e., [.C + CT] and [KC + CTK] be non-negative definite matrices --
sufficient conditions already derived under the same specifications

above.
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Sufficient Conditions for Instability of the System

Liapunov proved the following theorem on the instability of

systems.

Theorem III: If V(x, X), with V(0,0) =0, has continuous first partial

- derivatives in 8, a region enclosing the origin, then the origin is
unstable if ’\./'(x, k) is positive definite in S and V(x, X) is able to assume
positive values arbitrarily near the origin. Like the two previou‘s
theorems on stability, it is possible to use this theorem to derive
sufficient conditions for the instability of systems.

Consider the following theorem:

Theorem: For the canonical system

It + Cx+ Kx=0 (2. 83)

If C is a symmetric positive definite matrix, and the symmetric part

of K ie a negative definite matrix the system is unstable.

Proof: Define the (non-energy) function
Vix,k) = k" x+ 3% Cx (2. 84)

V{0, 0) = 0 and V(x,X%) has continuous first partial derivatives in the
entire x-x hyperplane.
V(x, X) is positive provided Sch is positive

. 1. 1 .
Tx + = XTCX+ = XTCX

T
Vix, %) =% "x+ X > 5

But from Eq. (2. 83)

.}ET _ -(kTCT + XTKT)
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T, ..
. Vix, %) = _xT(_Iiiz_mx +oxTy = -xTst+ % i

Hence if KS is a negative definite matrix
V(x,x) is positive all x,% # 0

Therefore as V(x, x), defined by Eg . (2. 84), satisfies all conditions
of Theorem III, the system described by Eq. (2. 83) under the given
restrictions is unstable in the part of the x-% hyperplane where

T, . o
X X is positive.

Further Results on Stability Conditions

When the lumpe d parameter linearly damped system is

formulated in 2N space
dZ _ Az (2. 85)

the matrix A has no obvious characteristics (e. g., it is not symmetric,
all its elements have not the same algebraic sign, etc.) except that it
may be partitioned into N x N matrices involving combinations of the
original matrices in the N space formulation. The application of
Theorem [ (Liapunov's first stability theorem) to the matrix A of

Eq. (2.85) doeé not produce any easily checked criterion that would
provide necessary and sufficient conditions for stability. In fact even
if A has some special form, (e.g., it is symmetric) there are very
few readily available necessary and sufficient conditions that may be
applied.to test for stability. With this in mind, the following results

(

of previous investigators 37) have been gathered in the form of

statements, to show what is available.
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Definitions:

A is said to be Hickian if all the principal minors of
order r has the algebraic sign of (-1).

A is said to be quasi-negative definite if xTAx is negative
for all real non null vectors X.

As xTAx = XTATX

A will be quasi-negative if and only if the symmetric matrix
A+ AT is negative definite.

A is said to have a quasi~dominant main didgonal if there

exists a vector {h} with all positive elements hi’ i=1,2,...2N

such that

2N 2N

iajj’hf,_z e | or feul B> Z |215] %

i=1 j=1
#j #i

Each ag; is negative i,j=1,2,...,2N

A is said to be Metzlerian if ass is negative and a’ij is positive

i#) i,j=1,2,...,2N.

The following statements, of interest to dynamicists, have already
been proved.

(1) Equation (2. 85) being stable does not require that A be Hickian.
(2) A being Hickian does not imply that Eq. (2. 85) is stable.

(3) A being quasi-negative definite implies that Eq. (2. 85)is stable.
(4) A being quasi-negative definite implies that A is Hickian.

(5) A being Hickian does not imply that A is quasi-negative definite.
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(6) If Ais symmetric, it is necessary and sufficient for the
stability of Eq. (2. 85) that A be Hickian (i.e., negative definite).

(7) If A is Metzlerian, it is necessary and sufficient for the stability
of Eq. (2.85) that A be Hickian.

- (8) Equation (2. 85) being stable does not imply that A is quasi-
negative definite.

(9) A being Metzlerian does not imply that A is quasi-negative definite.

(10) A having a dominant main diagonal (hi=1 all i) does not imply that
A is quasi-negative definite.

(11) A having a quasi-dominant main diagonal does not imply that A
is quasi-negative definite.

(12) If A is Metzlerian, then a necessary and sufficient condition for
stability of Eq. (2. 85) is that A have a quasi-dominant main
diagonal.

(13) Equation (2. 85) is stable if A has a dominant main diagonal.

These results, may be applied to the systems of interest in
this work, provided A has the appropriate form. However, A rarely
has a suitable form and it is in this context that the sufficient con~

ditions for stability derived above have proved very useful.

Perturbation Theory

This section is intended to show the power of matrix perturbation
techniques when applied to linear damped systems. The motivation
for the use of these techniques is that quite often the analyst is re-

quired to estimate the effect, on the response of the system, of a
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small change in one or more of the matrices describing the system.
Here, two examples of the use of the technique are given. The un-
perturbed system in each case is restricted to be composed of
symmetric matrices. This restriction is not due to the breakdown
of the technique when applied to more general systems, but is an
attempt to present the main ideas with a minimum of algebraic
complexities. For the application of perturbation analysis to the
general linear system reference should be made to a report by Dr.

16)
Caughey and the present author.

Perturbation Theory Applied to Undamped Systems

Consider the equations of motion of an undamped multi-degree of
freedom vibrating system

¥
M%+ Kx+ EKx=0 (2. 86)

whare M and K are symmetric and positive definite N x N matrices,
£ is a small quantity, and K is any N x N matrix. Assume a solution

of the form

—

Zn  Ant
x=P e _ (2. 87)
Substitute Eq. (2.87) into Eq. (2. 86)
AZM+ K+ EK | =0 (2. 88)
. |

Assume that it is possible to expand ¢ B and 7n into a Taylor series

expansion in € about € =0

A+ €/U +€2U + ...
n n n

n n 2 n (2. 89)
P+ EPTHETQT L.

An
gn

H
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It is well to remark that expansions of the type given by Eq. (2. 89)
are not always valid as the implicit assumption of such an expansion
is that a small change in a matrix produces only a sfna.ll change in
the eigenvectors and eigenvalues. Whereas this assumption is valid
in the case of fhe eigenvalues, it is not necessarily so in the case of

the eigenvector s; for consider

3 -1 0 -1
K = H K =
4 7 0 0

H[K- ZI] H = (7\—5)2 , i.e., the eigenvalues of K are 5,5, K has

. . , ) 2
one ordinary eigenvector 1 and one generalized eigenvector
y eig g g

¢1:{'3; ¢2=%{jg (2. 90)

&
K - KI]H = (A-5-26 )( A-5+2¢ ), i.e., the eigenvalues of

%
[K+ EZK ] are A=5+ 2€ , 5-2€&, the eigenvectors

— {5_1% -3 ~1-£ .
= H = . l
¢ , ¢ % , § (2.91)

From Egs. (2.90) and (2.91) it is easy to see that an expansion of type

[ + e

(2. 89) is valid for Ei but not for ¢ 2'. In general it may be shown
that the series given by (2. 89) is valid for small & provided ¢n
and %n are not associated with repeated eigenvalues. In cases
where gén is associated with a repeated eigenvalue but the mairix

has a full complement of ordinary eigenvectors reference should be

made to the work cited above by Dr. Caughey(lé) and the present
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author. The main difficulty in these cases is to determine which of
the infinite set of eigenvectors to select as the zeroth order solution
in the perturbed system.

Sub.stituting Eq. (2. 89) into Eq. (2. 86)

[(}\i+ zeknun+ 62(}).i+ 2A V) M+ K+ EK*] g¢>n+e¢n+ezgn+ g =0

(2.92)
Collecting powers of £ and equating them separately to zero:
2
£, [/\nM+ K]qﬁn:o (2. 93)
b
&1: [ArfM-l— K]l['n-_: -ZIunUnM¢n-K ¢xn (2. 94)
. 2 § S
£, [Anlvn K] Q"= -2 Anvnmgén-x pr (2. 95)

The zeroth order solution, Eq. (2.93), is merely the unperturbed
solutioh. Provided 'An is a simple eigenvalue, there is no difficulty as

in this case ¢)n has a unique direction. This assumption will be made

here.
The first order perturbation solution may be obtained as follows:
Expanding
N
n_ \ J -
v —Zanj¢ n=1,2,...,N (2. 96)
i=1

Equation (2. 96) is a valid expansion because the eigenvectors of the

2
zeroth order system, [Rn M+ K] ¢n form a basis for the space as
M and K are symmetric and positive definite. Due to these properties

of the zeroth order system the following conditions may be deduced
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T
(Pn M¢k=0 n#Fk

nT n
¢ M g7 =1 n,k=1,2,...,N (2.97)
§7 4% <0

T
¢n K qsn: Anz

7\3; 0 n=1,2,...,N (2.98)

n .
¢ are essentially real vectors
£T
Premultiply Eq. (2.94) by d
T T T T
2 ¢4 n £ n _ £ n 2 *an
AT MY+ 40 kg _-z)un)n¢ M- 5 Kh (2. 99)
Transpose Eq. (2.93) (noting that M and K are symmetric) and post
multiply by Sbn |
T T
2 41 n £ n
ATT MpT+ Pt KPT =0 (2. 100)

Subtract Eq. (2.100) from Eq. (2.99)

T T
2 2 44 n_ £ * n
(AS- A M= -2p 2§ -6 K (2.101)
where
SM =1 n=4
=0 n#d n,f=1,2,...,N

From Eq. (2.101) if n=£

T
n * gn
Po= -¢ zAK (2. 102)
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n#f.on substituting for y/n from Eq. (2.96)

@_2__.?_._ (2. 103)

n - Ap)
n,2=1,2,...,N n#{

To determine LI n=l, 2,...,N, recourse must be had to an appropriate

normalization criterion, e. g.,

T
¢" M@T=1 (2. 104)

T T T
S¢n + e9™ + %" E [M]€¢n+ ey ™+ £°Q% } -1
¢nTM¢n+ 28¢“TM¢“+ 4 )r.... =1

But from Eq. (2.97)

T n
¢" M =1
n?t n
¢ M=
But from Eq. (2. 96)
T
t,l)n Msbn:a n=1l,2,...,N
nn
a =20 n=1,2,...,N (2. 105)
nn

Substituting Eqgs. (2.102), (2.103) and (2.105) into Eq. (2. 89)
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: N jT % 1 n
— 3 2
gbn:¢n-azé—25~%— Flre ... (2. 106)
71 AT
#n n=1,2,...,N
From the above analysis, it is clear that the following restrictions on
the zeroth order system are required
(i) the eigenvalues be distinct
(ii) M the first order correction be small, i.e., A o 0(1)

(iii) a n, £=1,2,...,N be finite, i.e., A i-— 71; = 0(1).

nf

The case in which the eigenvalue s are not distinct has been discussed
above. The problems associated with restrictions (ii) and (iii) cannot
be completely eliminated, although some work has been done in this

area. (38, 39)

e
As the eigenvalues are imaginary and K is a real matrix
;tnz“_l wn n=1:2a°~°:N

From Eq. (2.106)

T
—_ n * .n
5 o WTw +e BK 8", 2 )\ (2. 107)
n n Zcon /
if ¢nTK*d>n>o | 2 |>ew
. RI]. n
T ~ (2. 108)
¢n Kﬂ‘¢n<0 /Rn/<wn

Hence the frequency of oscillation of the nth mode, 2n’ may be
greater or less than the corresponding frequency of the unperturbed

system.
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Perturbation Analysis of Systems with Damping

The equations of motion of a linear damped system may be

written as
M=% + £Ckx+ Kx =0 (2.109)

~ Assuming for algebraic convenience that the system described by
Eq. (2.109) is passive, i.e., M, K and C are symmetric matrices and
M is positive definite. As shown in Chapter I, there are two mutually
exclusive possibilities -- either the system described by Eq. (2.109) is
classically or non-classically damped. If the system is classically
damped the following analysis holds. Let

x= 9% (2. 110)
where

éTM §= 1, §TK§= K, a diagonal matrix

and
@TC § =C , a diagonal matrix.

By'the usual methods, on substituting Eq. (2.110) into Eq. (2.109) and
pre-multiplying by § , the system is uncoupled.

18+ eC g+ Kg=0 (2. 112)
. .th . .
i.e., the i~ equation of Eq. (2Z.111) is

= : 2 L1
T,TEC B+, B, =0 i=,2,...,N

where Ei and coiz are the ith diagonal elements of C and K, respec-

tively |
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- £T

__& F J Z i
Ai=-5 GV oy ( ) )

i.e., N
— 2’
: £c:.L
Oip = @iy ¥ L 2w ) =W (2. 112)

where co; and co, are the damped ( £ # 0) and the undamped ( € =0)

D
natural frequency of the ith mode of the system respectively. From
Eq. (2.112) it may be seen that for classical systems the natur al
frequency of any mode of the damped system is at most equal to the
natural frequency of the corresponding mode in the undamped system.
If the system specified by Eq. (2.109) is not classically damped the
following perturbation analysis approximates very closely the exact
solution under rather general conditions on the matrices of the
system. It is, moreover, considerahly less tedious than the exact
solution obtainable by the methods described in Chapter I. Assume
5 = eR n’ ﬁn

with

B =prepy efamy ...
and >
An: An+ Eﬂn+£ vt (2. 113})

Substituting Eq. (2.113) in (2.109)

[7\121M+ eA_+ K]E% =0 (2. 114)
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Expanding

—)i = RIZI+ £(2 Anun) + E,Z(zhnvn+/Ln2) + ... (2. 115)

By Eqs. (2.113), (2. 114) and (2. 115)

2 ‘ ; _
(A + E(2A_ )+ E,&(Zvan-lr}zi) Foaund) Mg¢n+ V™ £%Q™ %
2 n 2 n
FEMFERF EUH ) CEpT ey e L]
+ K §™ v %™ 3 =0 (2. 116)

Collecting powers of £ and equating each independently to zero:

e [/\iM+ K]gbn:o (2.117)
1 2 n n n .
£ [Anlvn K] W= - [2hnpn¢ + 7(nc¢> ) (2.118)
et PgMe x]Q® = @A, pomg-an e
-2, C¥7-p CP" (2. 119)

From Eq. (2.117) it may be seen that ¢n and Zn are the eigenvectors
and eigenvalues, respectively, of the undamped system spccificd by

Eq. (2.109). It may, therefore be concluded that

£0 alln=1,2,...,N
n

¢n are essentially real vectors
T o
¢ K¢ =0 n# 4

67 gt -

g g -

1
o

n#e (2.120)

I
—
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It is well to note that, as before, for algebraic simplicity, the

eigenvalues of the undamped problem are assumed to be distinct. To
T
determine /un’ n=1,2,...,N, pre-multiply Eq. (2.118) by ¢.€

JZT 2 n n ﬂT n (T on
¢ anM P+ K }: -2A_p ¢ mM@"-2_¢° cé (2. 121)
But from Eq. (2.117)
QT 2 n n
o gRIMLP +RKY ;=o (2.122)
On subtracting Eq. (2.122) from Eq. (2.121)
T T
A2- 29 ¢t mypP=-2a p s, -2_¢t cg” (2. 123)

On setting n={

T
M= -3 (6" c ¢ u-1,2,.. ., N (2. 124)

On setting n#f in Eq. (2.123)

lT ,QTCQSn
¢ Mg,nz_ = AL n; £=1,2,...,N (2.125)
}n— 7‘1

Expanding ()bn, n=l, 2,..., N in terms of the ¢J, j=1,2,...,N, the

eigenvector s of the undamped system (they form a complete set)

N
Y" = Z 2 B’ (2. 126)
j=1

On substituting Egs. (2.126) and (2. 120) into Eq. (2.125)
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T ch n
=o' My =-71ni’-2-_%_ n#4 (2.127)
Zn- 21
The coefficients a n=1l,2,...,N may be determined by the use of

~the normalized condition
"nT —n
¢ M¢" =
from which, as in the case of the first example of the use of pertur-
bation analysis, a__=0, n=1,2,...,N.
nn

In a similar manner the second order perturbation parameters

may be obtained. Letting

N »
_ Z b, ¢ (2. 128)
j=1

it may be shown that

N 2z
by” o |24 et o ) R gt c¢_,

A" A 31) ;\3
#n n#d

T N
n n 1 2
bnn_¢ MQ __Ezanj

j=1

N

T 2 A .T 2
1 .
g (47 e +3 )~ ¢ cdh (2.129)
n v A= AL
J= nJ
#£n n,f=1,2,...,N

From Eqgs. (2.113), (2.126) and (2. 128), the eigenvectors of the

2
damped system, to terms of order £ , are



N N
¢ =971 ¢ Z anj¢-"+ g2 Z bnjgij ‘ (2.130)
j=1 i=1

where a‘nj’ bnj’ n, j=1,2,...,N are given by Eqgs. (2.127) and (2. 129).

If the system is classically damped

q)nTC(P!:O ngd n,£=1,2,...,N

and therefore in this case a_,=b__=0, n#f, i.e.,
nf{ nd

4" =9 n=l,2,...,N (2. 131)

a well known result for classical systems.

Equation (2. 131) merely states that the formulae derived above for
non-classical systems are .correct in the limit as the non-classically
damped systems become classical.

If the system is non-classically damped, then

C{)nTC ¢>£ £ 0
n#d (2.132)

in general. Noting the properties of 7\n and ¢n, n=1,2,...,N as

given by Eq. (2.120), and remembering that the matrix C has real

elements it is easy to show (from Eq. (2.127) and Eq. (2.129) ) that
a 4 are pur ely imaginary numbers

bn.! are real numbers n,£=1,2,...,N

Hence, from Eq. (2.13l), the eigenvectors of the perturbed system may

be written as

‘(’ﬁn = ¢n + 82 (Real Vector) + N-T (£(Real Vector) ) +&3(. )

1

Real Vector Imaginary Vector

(2.133)
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So that the first order correction to ¢n is imaginary and the second
order correction is real.

Likewise, considering the eigenvalucs of the perturbed systems:

-=n 2
A=A e €U

PP VP AT ST . B T 2
= A,m (507 PN & g BT CEN v 3 ) R
n '_12"]-
J= n 3
oo #n

But remembering that A n is purely imaginary:

N QSjT I |
Z( 2955—219')+ O(&4) +.o... (2.135)

From Egq. (2.135) it is seen that the correction to the frequency of the
2
perturbed system is of O( £7).
Ordering the natural frequencies of the unperturbed system as

follows
Wy <, LWy +e00 & con {(all distinct)

It can be seen from Eq. (2.135)

T 2 h] N
~ 2 1 N™ 4N “ 1 cp
COND = @ny 1- & ——-—2—8@ (95 C¢ ) +3 . ) + 0(84)
Nu i

4
= @y (2.136)
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Likewise
2 N .2
1 2 T .2
_ € (¢'c ) g 1T _
“pT P |17 Z = ———($" cf) (2. 137)
: - 8w
j=2 1 lu
Hence from Eq. (2.137) if
N 2 T .2
w T 2 1T
1 7 o gl (¢~ CPH) 2.138)
4). ———7 ($’ cf) 2 cp (
j=2 i 1
iy Zo,

To sum up, the damped natural frequency of the highest mode is less
than or equal to the undamped frequency and the damped natural
frequency of the lowest mode may be higher than the undamped
frequency depending on the form of the damping matrix and the mode
separation. For the above analysis to be valid it is sufficient that

(i) €<l

(ii) the eigenvalues of both the unperturbed and the perturbed

systems be distinct and of O(1})
(iii) the mode separation he such that 7\32- szO(l) i#]
i,j=L, ..., N

Perturbation analysis may be used to advantage if a system
has been solved exactly and the effect of small changes in any of the
parameters of the system is to be determined. If the original
system has repeated eigenvalues or small mode separation the

algebraic complexity of the perturbation analysis does not warrant
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its use over the direct solution of the perturbed problem except in
cases where an analysis of the system over a range of variation in
(e.g., 0 £« £ ¢.1) is envisioned. It should be noted that any solved
system may be taken as the zeroth order system and that it is

. possible to perturb any or all of the matrices simultaneously.

Bounds for Eigenvalues

A problem of some interest in the present work is the rapid
determination of close bounds for the eigenvalues of a matrix. A

122, 23,24, 26,27) . o peen done in this

considerable amount of wor
area, dealing particularly with matrices possessing certain properties
(e. g., normal matrices). Unfortunately, very little can be said about
bounds for the eigenvalues of general matrices. A few well known
results will fir st be quoted, followed by some developments and
adaptations of these results to the linear damped problem. Finally,
reéently proved theorerﬁs of matrix analysis will be discussed and
applied to linear systems. 'i‘he advantage of having techniques avail-
able for the determination of close bounds on the eigenvalues of a
matrix is that it would be possible to determine approximately the
damping and natural frequency of the modes of a linear system with-
out actually solving the problem analytically. It would also be
possible to determine the stability of the system and the effect of
changes in the parameters of the system.

Given the eigenvalue problem

Ax = ) Bx (2. 139)
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where A and B are both N x N real symmetric matrices and B is

positive definite,

T
R(u) =“.l.Au (2. 140)
u Bu

is known as Rayleigh's Quotient; uis any N x 1 real vector. The eigen-

values, 7\1’ of Eq. (2.139) are all positive and are ranked as follows
15}25..”5)1\1 (all 2 0)
The following results are well known.
(i) R(w = Al’ u any N x 1 vector
(ii) R(ui); Ai where u, is orthogonal in B to the eigenvectors
corresponding to ;{1, ?\2, cee 21_1
(iil) R(u) £ AN'
These results may be used to determine the range of the natural
frequencies of passive linear undamped systems. Consider the system
Mx+ Kx=0

where M and K are N x N symmetric positive definite matrices. Let

X =

e\/——'l’wt %

", -Q)&M¢+K¢ =0 (2. 141)
2
W M@ =K¢
Direct application of the above results to Eq. (2.141) yield

wIZ < u:Ku
u” Mu

sw

17;] s u any N x 1 vector

where o and wN are the lowest and highest natural frequencies,

respectively, of the system. Therefore by maximizing and minimizing
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the Rayleigh qgotient for the system, it is possible to deter mine the
range of the natural frequencies of the N normal modes. This
maximizing and minimizing process may be done by trial and error,
by approximating the eigenvector s associated with the lowest and
highest natural frequency {(using physical insight and past experience)
or by some formal mathematical procedure such as the Ritz Method.
The Ritz Method merely determines the best possible set of scalar
multiplicitive factors for a given set of base vectors. |

An extension of these results may be applied to the linear
damped passive system

M+ Cx+ Kx=0 (2. 142)

where M, C and K are symmetric matrices and M is positive definite.

X = €

Let a.t 5
: 17‘ (2. 143)

e "M@+ o Chlr K =0 (2. 144)
Equation (2. 144) is satisfied provided a; and gbl are eigenvalues and
corresponding ordinary eigenvectors, respectively, of the system. If
@, is a repeated eigenvalue and ¢1 is a generalized eigenvector
associated with a; Eq. (2.144) is not satisfied. Premultiply Eq. (2. 144)
—.T ‘

by (}51 the vector whose elements are the complex conjugates of the
: T

i
corresponding elements of gﬁ

2=t g =T i =it g
a." p M¢+ai(]>. Cep '+ ¢ K¢ =0 (2. 145)
As M, C, and K are real matrices, this quadratic equation in a has |

real coefficients. If ay the ith eigenvalue is complex, the sgolution to
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Eq. (2.144) is o, and a_i

gl ; g Py
iz = ~_.'1'K 1. } -2 Rla, :fTC¢1T (2. 146)
¢1 M¢1 ¢1 M¢1
now {95 i}:[ai}-f- '\/——_l_'{biiWhereSai}and{biiare N x 1 real vectors
2 _ Eai'abi}T Kfai"ﬁ“bi;
o3 MfagFDo}

a

i
Therefore applying the above results

2 2 SO
l < oy i=1,2,...,N (2. 147)

where o, and coN are the lowest and highest natur al frequencies of the

system specified by
M=%+ Kx=0
Similarly, it may be shown that
£ . T
21_. 2R{ aié)(N iz, 4,...,N (2. 148)
or

é—

-z £ Rla; e-—

v;}here A 1 and A N &%e the lowest and highest frequencies associated
with the system
MY+ Cy=0
From Eqs. (2.147) and (2. 148) it is possible to determine bounds
for the complex eigenvalues (both damping and frequency) of the
passive system specified by Eq. (2.142). The annulus between circles

of radius wl and UJN specifies the magnitude of a, considered as a
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radius vector, while the two lines perpendicular to the real axis at
distances of - A;/2 and - ZN/Z depicts the range of damping in the
normal modes of the system. It is interesting to note that, as ?(1
is never negative for passive systems, Eq. (2.148) shows that such
systems are always stable -~ a result already shown. Further, it
may be seen from Eq. (2.147) that the natural frequancy of the ‘damped
lowest mode may be greater than the natural frequency of the correspon-
ding mode of the undamped problem but that the natural frequency of the
damped highest mode must be at most equal to the natural frequency of
the corresponding mode of the undamped system. These observations
check with the results of the perturbation analysis presented above.

The sﬁm of the diagonal elements of a matrix, called the trace
of the matrix, is equal to the sum of the eigenvalues of the matrix.
Hence, if the system is classical thé follovﬁng method may be used to

determine the average damping and average frequency of the normal

modes. .
Premultiply Eq. (2.142) by M
g -1 .. -1 ‘
I+ M Cx+ M Kx=0 , (2. 149)
The average damping is given by
N .
1 Za = -1 (trace of M"lC) (2. 150)
ZN i 2N )
i=1

The average of the magnitudes of the complex frequencies is given by
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N

1 2 1 -

- Z ,“i, - (trace of M”'k) (2. 151)
i=1 |

Likewise from the 2N formulation of non-classical systems it may be
seen that

2

2

1 -
Z&N‘ a, =5y (trace of M oy (2.152)

ey
1
-

where a; is the ith eigenvalue in the 2N formulation. If the eigen-
values are complex Eq. (4.152) reduces to the same form as the

N-space classical equation for the average damping (Eq. (2.150) ).

Other Theorems on Eigenvalue Bounds

The Courant-Fischer min-max theory -- an extension of the
Rayleigh Quotient Analysis used above -- has many practical appli-
cations. One of the difficulties of using the Rayleigh Quotient to
estimate the eigenvalues of a matrix is that some of the eigenvectors
must be determined if a close upper bound on the intermediate eigen-
values is desired. The Courant-Fischer min-max theorem on the
eigenvalues Alf A PERERE é)\N of semi-definite systems given by
Eq. (2.139), states that

/ min | max T

u Au
z = e —
-r+l
N-r+ .kq

(2.153)

u uTBu
s

where u must satisfy the N-r conditions of orthogonality

quu =0 s=1,2,...,N-r
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and the vectors q  are arbitrary.

It may be seen from the statement of this theorem that the
eigenvectors are not needed to obtain close bounds on the intermediate
eigenvalues. If the system is classical or only slightly non-classical
(i.e., the damping matrix C = C1 + EC2 where C1 is classical) this
theorem may be used> to determine approximate values for the damping
and moduli of the complex frequencies of each mode of the system.
The values determined will be upper bounds in the case of classical

systems. If, for example, it is desired to estimate the damping in

the (N-r+1}-th mode:

Consider
min | max uTCu
—F (2. 154)
q u u Mu

s
where u must satisfy the N-r conditions
quu =0
qg s=1,2,...,.N-r are any arbitrary set of vectors. From the
Courant-Fischer theorem, Eq. (2.154) gives an upper bound for the
(N-r+l)~th eigenvalue of the system

AMx = Cx

for any given set of q s=1,2,...,N-r. Hence if the system is
classical, Eq. (2.154) can be used to give an upper bound on the
damping in the {N-r+l)-th mode and if only slightly non-classical it
may be used to approximate the damping in the (Nrr+l)-th mode. An

analogous expression may be derived for the magnitude of the complex

frequency of any mode. In passing, it is well to note that no matter
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what kind of system is being analyzed (e. g., classical, non-classical,
reducible to strictly non-diagonal Jordan form, etc,) the trace of
M_IC is equal to the sum of the complex frequencies and the product
of the eigenvalues of M—lK is equal to the product of the complex
frequencies.

(26) 24)

There are a number of inclusion theorems

and separation(
on the eigenvalues of symmetric matrices. The inclusion theorems are
useful in depicting intervals along the real axis in which the eigen-
values of a matrix may fall. Separation theorems relate the eigen-
values of a matrix to the eigenvalues of lower order matrices obtained
by the elimination of rows and columns from the original matrix. The

2N formulation of the linear damped problem gives, in general, a non

definite self adjoint eigenvalue problem, i.e.,

0 M M O
A Z, = Z
My el o lo -kl ?
Let
0 M M 0
R = ; S = (2. 155)
M C 0 -K

'

If it is assumed that M, C and K are symmetric, R and S are both
symme tric but neither of them is positive definite. As the theorems
on the bounds of eigenvalues of systems of type (2.155) require that
either R or S be positive definite (strictly positive) it is reasonable to
expect that rather poor bounds can only be obtained for the complex

frequencies of non-classically damped systems. However, there are
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some results(2_7) available for general matrices and these will be-
given. First it is necessary to premultiply Eq. (2.155) by R-l to

obtain the standard simple eigenvalue-eigenvector equation

-M C -M K
A Z. = Z (2. 156)
171 1 0 1
Let
Ml -k
s | = a 2N x 2N matrix
1]
i I 0
Let
a = max lUijl
ij

The crudest estimate for the bound of the absolute value of any eigen-

value of Eq. (2.156) is _
|A] £ 2na (2.157)

By separating U into a symmetric matrix Us and a skew symmetric
matrix Uss’ where

(053] = [vais] [Ussij]
and let

b= ma.x Usij 5 C = rnax Us
ij 1]

58ij
}\iz yi+r\}-1‘pi i=l, 2,..., 2N,
it is possible to derive better bounds for the eigenvalues

Ixi]s 2Nb;  B; € 2NC all i (2. 153)

Estimates may be further improved by using Frobenius' Theorem.
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max | N 2N
i 518 b i (8 )
2§1:\I 3 min &N
i laul‘j:l o [P PZ ;1 “1]
H /

Bendixon's Theorem vyields bounds closer than Eq. (2.158)

m < Yy, < M
‘ﬁi\é CN N(2N-1) (2. 159)

where m and M are the smallest and largest eigenvalues, respectively,

of U"'v-
=
Pick's Theorem gives slightly better bounds for \ﬁi‘

(1) r<Bi<R.

(2. 160)
(ii) 'ﬁi[ < C ctgw/4N alli

where r and R are the smallest and largest eigenvalues of — 1 U

It is possible to show that Eq. (2.160) (ii) are best possible general

bounds for the imaginary part of the eigenvalues.
(24, 26) .
Further bounds may be obtained by the use of the con-
cept of the field of values. The field of values is merely the set of
values of the Rayleigh Quotient:

xT Ux

T
X x

R(x) =

as x is varied, subject to an obvious modification if U is a matrix
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with complex elements. However, as the theorems on the field of
values usually apply to normal matrices, it is necessary to associate
with U the matrix

A = [a. ] = UTU
13

A is symmetric and positive definite. The following inequalities

hold:
2
ay € Ai‘ < 2,y (2. 161)
ZN 2N 5 1/2
A Z Z a
1"‘ ij
i=l  j=1

where a; and a, _ are the lowest and highest eigenvalues, respectively,

2N
of A.

The results quoted in this section show the type of bounds that
are available for the eigenvalues of systems of interest in this work.
In general these bounds are too wide and they suffer from the serious
defect of being bounds for the entire set of eigenvalues rather than for

one particular eigenvalue. However, Eq. (2.154) is an attempt to

isolate one particular eigenvalue and determine bounds for it.

Gerschgorin Circles Applied to Linear Systems

The main defect of the theorems of the last section is their
universality, i. e., they prescribe bounds for the entire set of
eigenvalues. The theorems of L.evy, Hadamard and Gerschgorin
provide a very simple geometrical method for determining the bounds

on individual eigenvalues. A further advantage of this geometrical
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construction is that, with experience, it is possible to tell if a system
is stable even though the exact values of the eigenvalues are not known.
The theorems mentioned may be combined into one general statement:
The eigenvalues of the matrix U lie inside the closed domain G con-
sisting of all circles K, (i=1,..., 2N) with centers U, and radii r,

where
2N

r; = Z U5 (2. 162)

j=1
#i

When m circles intersect forming a connected domain H precisely
m eigenvalues lie in Hm

Consider the following trivial example of the use of this theorem

-21 -2 0

U = |45 -2 0 (2. 163)
1
5 4 4

It is easy to check that the eigenvalunes of Ul are )\ = 4, 2+N -1 and

2-N-1. Direct application of the theorem leads to a connected domain

H., composed of 3 circles.

3
{i) centre at Ull: -2, radius \2‘ =2
.. B . 1
(ii) centre at Uzz——z, radius |4 4'- 4

1

1
4
(iii) centre at U33=+4, radius |4 + > | =

1
4 5
Now noting that S_lUS has the same eigenvalues as U where S is any

non singular matrix it is possible to separate the circles by letting
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00
10
o 1
a

Transformations of type S, are very useful in applying the theorem to
practical examples as they do not change the centres of the circles but
may reduce the radius. Applying the transformation S to U it is easy

to see that

-2 2 0
-1 1
Sl Uls— 42 -2 0
i 4
2 2 ¢

Hence circles (i) and (ii) are unaffected by Sl but circle (iil) now has
radius 9/ 2a.

Therefore, by letting a=9/2 the radius of circle (iii) is reduced
to 1. (In actual fact in this case the radius could be reduced to zero. )

Now the system of circles consists of HZ and the circle of unit radius

with centre at 4.

2 2 0
U.=8"lus. = 4L -2 o
2 °1 C1°1°7 4

1 8

7 5 ¢

It is possible to reduce the radius of circles (i) and (ii) by letting

1 0 0
.= 0 a 0
2 1o o 1

[

o, 2
ves.lus. = lata o0
3772 “Tav2 4

B

'3 7 *
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Hence by letting a = 2N 2717 the circles (i) and (ii) with centre at -2
will have the same radius, N17/2'. As U3 may be partitioned into a
2 x & symmetric matrix, it is possible to obtain closer bounds on the
eigenvalues. However, the main virtue of the use of the Gerschgorin
circles is that by a process of successive simplification it is
possible to determine quickly, close bounds for any particular root.
From the point of view of stability it is easy to see that the system
will be stable if it is possible to force all the circles to be in the left
hé,lf plane. Another technique that is useful in reducing the radius of
the Gerschgorin circles is based on the fact that U and UT have the

(28)

same set of eigenvalues. Brauer reduced the extent of the domain

in the complex plane in which the eigenvalues lie by the introduction

of Cassini ovals. However, from the geometrical point of view the

(29)

construction of circles is simpler. Ostrowski showed that the

. . . .._a l-a
eigenvalues lie in circles of radii roooCy

2N 2N

0<a <1 where r, = Z Uij| by = Z \Uji (2. 164)
j=1 j=1
#i #£1

i=1,2,..., 2N.

Generalized Rayleigh Principle for Linear.. Damped Systems

The main advantage of the Rayleigh method of determining the
eigenvalues of a symmetric matrix is that it is possible to set out an
iterative scheme of operations which develops a sequence of numbers

. €30
which converge to some eigenvalue of the matrix. Ostrosk:L( ) has



-1240-

done extensive work on developing the Rayleigh Quotient Method for
non-symmetric matrices. Given the matrix U and the following

iterative sequence

-1
g, = [U‘ Au-lI] Ev_1

v=l,2,...
go given
€, AL,

Ve e,

* denote complex transpose

(complex in general) converges to an eigenvalue of the matrix U whose
elementary divisors are linear, provided the modulus of the difference
between )o and thg actual eigenvalue, ¢, is less than a certain
qﬁantity 80 and the norm of the difference vector between the initial
vector fo and the ordinary eigenvector 7 , associated with ¢~ is
less than &° times the norm of %Y . He also derived results using
accelerating convergence techniques for the case of eigenvalues with
non linear elementary divisors.

It is interesting to note that by applying Ostrowski's work to the
linear damped system with

Mc -M7k
[v]-
I 0

the following iterative procedure may be developed.

== [l v o [l B [e]s?
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gz1<+1 s tl [Q]kglk' “Rik‘ [Q]k [M7c + A,t] £

gt 5
where ggkg: zk and gi Ei are given
£k
[Q]k = [Rk1+ Mlc+ 2 M'IK] -t
Ak
T T T
1, -1, wed 1 -1 2 2,1
-E M cE - MUKED + €
A, =k k,gk Skt Su bk (2. 165)

shel + g7 5
&Y k k 2k
k=0,1,..

Sequence (2. 165) may be used to converge on an eigenvalue provided
the initial vectors Eo s goz {complex in general) are sufficiently
close to an eigenvector of U,associated with a linear elementary
divisor. Furthermore, it may be shown that the following equation
in a

2 Mp+ a pTCht PR =0 (2. 166)
has a stationary point when ¢ is an eigenvalue and ¢ is the associated
eigenvector, with a linear elementary divisor,of the system specified
by M, C and K. When ‘gi ~ A Kk C;i (i.e., ¥ %{ is close to being an
eigenvector of the M, C, and K system) it is easy to see that the
solution to Eq. (2.166) is approximated by Eq. (2.165). This means
that in the case of M, C and K being symmetric matrices it is possible
to develop iterative series using only real vectors, for the real and
imaginary parts of the eigenvectors and to deter mine the eigenvalues
from Eq. (2.165). The.deta.ils of these iterative series will not be

. B . . S e e e 2 j N
developed as interest in the

FUGIER A PO
41l 1o dal gol
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cumbersome to use for practical calculation.

In conclusion, it must be noted that there are very few really
effective methods for obtaining bounds for the eigenvalues of a
general matrix. In actual fact, direct application of Rayleigh's method
as given by Eqs. (2.148) and (2.154) generally gives closer bounds for
passive systems than the other methods discussed above. This is
reasonable, in that the matrix U has a rather particular form and
bounds developed for general matrices cannot be expected to give
very close bounds for matrices of such form. However, although the
bounds may be wide, they do give an order of magnitude on the damping

and the frequency spectrum of the system.
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CHAPTER 3

CONTINUOUS SYSTEMS

Introduction

In this chapter a review of well known results in the analysis of
conservative continuous systems is given. Examples of systems which
are exactly solvable are presented. The analogy between the analysis
of the digerete and continuous system is developed and the idea of
generalized viscous damping is introduced. As in the discrete case,
continuous systems are divided into two mutually exclusive classes,
namely, classical and non-classical systems. Necessary and sufficient
conditions for a continuous system to be classical are derived. Finally,
it is shown that if the generalized viscous damping term can be expanded
into an appropriate infinite series, analogous to the Caughey series in

the discrete case, the system is classical.

The ory

The lumped parameter model of the vibration of linear systems
generally depends on an idealization of the distribution of the physical
characteristics of the system. (e.g., in the mass, spring and dashpot
system, the spring has no mass.) In dealing with the vibration of what
is nor mally assumed to be a continuous system (e. g., beam vibrations)
it would appear that large scale lumping of the parameters of such a
system gives a less accurate description of the motion than the usual
partial differential formulation. However, it may be argued that at

the microscopic level the difference equation approach {small scale
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lumping of parameters) is more meaningful than the usual partial
differential equation description. It is not possible to decide such
issues here as in the last analysis it is a matter of experimental
observation as to which for mulation gives the best approximation to
the physical reality.

There are two general approaches to the formulation of the

(40, 41, 42) The first is to

equations of motion of continuous systems.
isolate an element of the body, apply Newton's laws to the element
and take the limit of the resulting equations as the element shrinks to
zero. The other approach is to use the Lagrangian formulation for
continuous systems. This latter formulation, which is analogous to
the discrete Lagranges Equations, is obtained by applying Hamilton's

variational principle to the system to give the following equations of

motion

R o

Xy /! £=1,2,3

3
where i( '7Z£, , is called the lL.agrangian density of
i,3,4,k=1, 2,3

the system and has the dimensions of energy/volume.

=fff L o oy axg

is the usual Lagrangian of the system (i.e., L = T-V where T is the
total kinetic energy and V the total potential (or strain) energy).

Xy 0 k=1, 2,3 are the three continuous indices replacing the
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elements of vector {x} in the discrete formulation. 7, (xl,x x3)

j=1,2,3

are the generalized coordinates of the motion along the three axes X
X, and Xa5 respectively. ?Zl = 8'{1/81:. Fg(ayr/axi, ’)ZJ, X0 1)

r,d,i,k=1,2,3

" is the generalized forcing function associated with 7Z£, 2=1, 2, 3.

In the theory of elasticity there is a general method, (43) called
the Energy Method which is used for the development of the equations of
deformation. This method is in fact closely related to the formulation
specified by Eq. (3.1}, in that the strain energy V, the kinetic energy
T and the generalized force Fl are calculated and Hamilton's
Principle applied.

As in the discrete case, continuous systems are said to be

linear if their partial differential equations of motion are linear. If the

system is linear, I is restricted to be of the form

D IITEO L M W I (%%n(%m

n=0 £=1 m=l n=1 i, j=1 n, s=1
main €2
2 3 ,
Z Z f " 3.2
+ C =01, (3. 2)
n=l f=1

where a, (x t}), b SIJ(X t) and C (x, t) are continuous functions in
1, 20 X3 and t; the superscripts n and m are power indices and each
Fj j=1, 2, 3 must be linear in )Z ’)ZJ and ’iz There are many systems

whose Lagrangian density is not type (3. 2). However, for small dis~

placements from the equilibrium position it is possible to approximate
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the Lagrangian density by a Taylor series expansion to a form of type
(3. 2). This procedure leads to the approximate theories of linear
elasticity, linear acoustic theory, etc.

Substituting Eq. (3. 2) for i in Eq. (3.1) leads to the equations of

- motion of general linear continuous systems

2 3 2 2 3 3
d 1
=l k=1 5}?{) n=1 m=1 i,j=l ®, s=1
K

1l

2
87[i ; 8'7 - n-1 .
(—3'%) (5}'{‘5) _chnﬂ(x’t) 71 F.@ £=1,2,3 (3. 3)
n=1

It may be seen that it is possible to rewrite Eq. (3. 3) in a more

compact form as
3
£] -
m 5, 7, (8 Cyle, ) 7, (08 %) gLyl (6 9= F, (59 (3.4
=1
1=1,2,3

where L'i']x is a linear differential operator with respect to the spatial

coordinates xp X, and Xy m(x, t), c(x,t), k(x,t) and F(x,t) are

functions of x X4 and t. Equation (3. 4) is the equation of motion

1: Xz:
of a general continuous linear time varying system. A time invariant

system has the following property

rsfk

ani(x, t), bmn (x,t) and Cnl(x, t) are functions of X:(Xl’ X

20 %3)
alone. (3. 5)

Hence the equations of motion of a general continuous linear time

invariant system are
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3
g,
mz(x) 7{1(}{, t) & Z kﬁ(x) ngJ; 7j(x, t) = Fz(x, t) {3. 6)
vt j=1 ‘ £=1,2,3

£,
where L 7 is a linear differential operator.

X

Some Common Examples of Linear Time Invariant Continuocus

Systems

(23, 40)

A few common examples of well known linear time

invariant continuous systems are given below:

(i) The equation of motion of a vibrating beam may be written as

2 2
) u . t) + 2 | Ex) %) E-‘ZIJ = £(x, t)
ox ox

where u(x,t) is the transverse motion of a beam with parameters E(x)

2
and I{x). f(x,t) is the externally applied force, e.g., f(x,t) =-P -8-—%
X

if the beam is subjected to an end load P.

(ii) The equation of motion of a plate of constant thickness may be

written as

czutt(x, t) + v4u = f(x, t)

where u(x,t) is transver se motion of the plate, c is a constant and
f(x, t) the external force on the plate. If, for example, a rectangular
plate is subjected to edge thrusts NX, NY and edge shears ny per

unit length
N 2 N o2 N

x 0 u y 3
2
D ox D oy

f(x,t) = -

where D is a constant,
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Damping in Continucus Systems

From Eq. (3.5) it is seen that a term involving the velocity,
’Qlt(x, t), caﬁ only arise in the equations of motion of a time invariant
system through the generalized force term Fﬁ(x, t). This is in agree-
" ment with the discrete case in which the generalized viscous damping
term is introduced into the equations by the generalized for ce terms.
In theoretical physics it is common to introduce the artifice of a

(41)

mirror-image system so that the formalism of the Lagrangian
density and Lagrange's equations may be used with dissipative
systems. The idea of the mirror-image system is to consider
simultaneously with the system having positive damping a system with
negative damping so that the systems taken jointly may be considered

as conservative. For instance, for the diffusion equation the

Lagrangian density is

L=y, (vyh-La2|yrabpo¥ (3. 7)

. . . . 2 . .
where { is the density of the diffusing fluid a” is the diffusion constant
ES
and L}) refers to the mirror-image system. By substituting Eq. (3. 7)
into l.agrange's Equation (Eq. 3. 1) the following two equations arc

obtained (assuming t}) and LP'F are generalized coordinates).
Vz Y = aZ(B p/at) (3. 8)
ve V= % w et (3.9)

Equation (3. 8) is the well known diffusion equation and Eq. (3. 9) is its

mirror image.
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In line with the work on discrete systems presented in Chapters
I and II, the damping in the continuous systems discussed here will be
generalized viscous, i.e., the damping term in the differential

equation will be of the type

j .
) Gyt L) bt (3.10)
I=1 £=1,2,3
£,
where in{ is a linear differential operator in the spatial coordinates

and Clj(x) is a function of x alone. The general differential formulation
of the linear time invariant continuous system is then
3 ij 3 lj
j=l j=1

| (3.11)
Tests on structures and materials(23’ 40) lead one to speculate that the
damping mechanism in continuous systems is extremely complicated. ’
These tests give very strong indication of non linear and hysteresis
damping. However, generalized viscous damping of form (3.10) is
directly analogous to viscous damping in discrete problems and it is
interesting to determine what effect such damping has on the response
of linear continuous systems. Moreover, for small displacements the
response of a system with only slightly non linear or hysteresis type
damping may be approximated by an equivalent linear or bilinear

(41)

system. Furthermore, it should be remarked that very little
work has been done by mathematicians on non linear partial differential

equations. This is so because of the inherent difficulty in the analysis
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of such equations and their comparative rarity in classical physics.

Solution of the Undamped Continuous System

Using the Differential Formulation

The equations of motion of the undamped linear continuous

system may be written as

m(x) u(x, 1) + kG)L, ulx,t) = Fx,1) (3. 12)

where x = (xl, x5 x3) represents the spatial coordinates

al, 1) =Cuy s, 1)y Flx, 1) =4 F (1)
uB(K: L) F3(X: L)
11 12 13
™ (x) 0 0 k(b Rp Lyl k(=)L)
m(x) =| 0 mZ(X) 0 ; k(X)le: K (X)LZZ
0 0 m,(x) I 133 33
34(X) 1x k33( )le

ui(x, t), i=l, 2, 3, are the generalized coordinates specifying the dis-
placement of the medium.

(41, 42, 45, 46, 47)

The two general methods of solution of partial
differential equations of type (3.12) are the integral solution and the
separated solution. The integral solution has the advantage of
generality for usually the integral is invariant under coordinate trans-
formation and once the kernel of the integral (or equivalently the
Green's Function) is known, the solution to the homogeneous or in-

homogeneous problem may be determined -- at least in principle.

However, the integral solution is not always the most satisfactory
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solution as the integral may not be readily integratable in closed form
and recour se must be had to numerical integration. The second
method of solving linear partial differential equations is the method of
separation of the original partial differential equation into a set of
ordinary differential equations each involving only one variable. This
technique docs not have the universality of the integral solution
approach but if it can be used it generally leads to a simpler analysis,
in that the solution of ordinary differential equations is well understood.
However, it must be borne in mind that not all coordinate systems will
allow separation of variables and that there exists some linear partial
differential equations which simply cannot be separated in any
coordinate system. For a partial differential equation to be separable
in a particular coordinate system, the nodal surfaces (u(x,t) = 0 for a
given boundary surface and variable relationships between the general-
ized coordinates u(x, t) on the boundary, e.g., X is the boundary
surface u(X) = a; Bu/afiz‘xzb where a and b are constants and 7 is

the normal to X, each a and b generate one nodal surface u(x, t)=0 )
must coincide with the coordinate surfaces.

Provided the partial differential equation is separable in a given
coordinate system (with respect to some boundary surface) the result-
ing ordinary linear differential equations may be solved by any of the
standard methods. It is important to note that if the equation is
separable then linear combinations of the products of the solutions of
the resulting ordinary differential equations give all possible solutions

to the original problem.
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In the case of the vibration of the undamped continuous system
it is always possible to separate the time and the spatial parts of the
complete solutions.

Let
u(x, t) = X{x) T(t) _ (3. 13)

On substituting Eq. (3.13) into (3.12)

m(x) X(x) T(t) + k{x) L, X(x) T(t) = F(x,1) (3. 14)

To solve Eq. (3.14), the homogeneous problem ( F(x, t) = 0) must first
be solved. Substituting from Eq. (3.11), it is easy to see that the

homogeneous part of Eq. (3.14) may be expanded as follows

m, (x) X;(x) 0 0 'rfl(t)}
mz(x) XZ(X) 0 Ta(t) )
0 0 m4 (%)X 5(x =I"3(t)

— / —‘ 1 W

lill(x)Lﬂ'{XI(x) klz(x)LiiXZ(x) kl?’(x)LiiX:s(x) ‘I‘1 0
¥ . k()L (x) . thzé 0}
33
i k33(x) leX3(X1 T3 0 '
where (3. 15)

X, (%) T(t)
X(x) T(t) = XZ(X) Tz(t)
X3(x) T3(t)

or to simplify the notation

[ g'tf'(t)}+ (%)) gT(t)} -0

where
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m, (x) )gm) 0 0
[M(x)} = 0 mZ(X)XZ(X) 0
0 0 m3(x) X3(x)
kﬁLin(x) . k13(x)L§X3(x)
[K(x)] = . 43
koo (x) Ly~ X3(x)
-1
Ll o e
[M(x)] = 0 ng(X)XZ(x)} 0 1
0 0] €1n3(x)X3(x)}- J

T, (t)
T(t) = Tz(t) (3.16)
T ,(t)

-1
Premultiplying Eq. (3.16) by [M(x)]

§T0]+ [Mea) ™ (ke {1 =0 (3.17)

In Egq. (3.17) let

[a60] = [Mta) ™ [k

[B(x)] [B(X)}z ‘-_.[A(X)] (3.1g)

gT(t)} - e B))t ET(O)} for all x, t (3.19)

where ET(O)g = gT(t)§ att =0
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Now T(t) is a vector with elements which are functions of t only.

Letting
§TON, = 182 £=12,3 =0 if]j
3¢

Equation (3. 18) may be expanded

)
frw, =[1+ t[B(xﬁ-k%;-[B(xﬂZ-k...} géﬁ | (3. 20)
31

7

Bil(x) 61yt Biz(") b0 + B}3(X) d

61.2 1 1 1 34 7
_ gu +t¢ By (x) 01y * Boyx) &, + Byuix) 53“ + ... (3.21)
34

3131(1{)‘ 810t Béz(x) Sz;z * 3133(") 63,

.

where B;. is the ijth element of [B(x)] o

As 1, t, tZ--;——tn--—; are a linearly independent set of functions
of t, the elements of each of the vectors in expression (3. 21) must be
constants if ET(t)g is to be a vector whose elements are functions of
t alone. By letting £=1, 2, and 3, it is easy to see that the matrix

[B(x:\ must be a matrix with constant elements. From Eq. (3.18) it

may also be seen that
[ace] - [c]
where [C] is a 3 x 3 matrix with constant elements. Therefore, in

the undamped case a solution of type given by (3.13) leads to two

diffcrential systems of equations

[at)] =[c]
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ETE = - [C]{Tg (3. 22)
where [C] is a 3 x 3 matrix with constant elements. In (3. 22), it
should be noted that [A(x)] is a matrix whose elements are functions
of u{(x) |

Although it has been shown that the undamped problem is
separable into spatial and time differential systems of equations, it
cannot be concluded that the spatial system of equations can be further
separated into a system of equations, each member of which is an
ordinary differential equation in one of the three generalized coordinates.

If the continuous vibrating problem involves only one spatial
coordinate (e. g., the Euler beam vibration problem) the system can
always be separated into two ordinary differential equations, one in x
and the other int. The separation constants of all linear partiai
differential equations are determine d by the boundary conditions, e. g.,
periodicity or continuity requirements may restrict the allowable
values of the separation constants. Although the final solution is made
up of a series of terms, each one of which is a separable solution, it
is not itself separable. Separation of solutions in two dimensions is
particularly simple for three reasons. In the first case, there; is
only one separation constant, so that the factored solutions form a
one parameter family, which makes the fitting of boundary conditions
by the series solution fairly simple. Secondly, in the two dimensional
problems the conditions for separation are simple, e, g., the

following partial differential equation in u and v
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2 . 2
9 X(%, v) , 9 X(uéV) + f(u,v) X(u,v) = 0 (3. 23)

au v

is separable (under suitable boundary conditions) if and only if
flu,v) = a g{u) + b k(v)

‘where a and b are constants, and g(u) and k(v) are functions of u and v
respectively. Finally in the two dimensional case the condition that
the nodal surfaces and the coordinate surfaces coincide is both a
necessary and sufficient for separation.

Turning to the higher dimensional cases (i. e., three or four
dimensions) the situation is considerably more complicated. In the
first place there are two or three separation constants. Each of
the separated equations may depend on more than one constant, which
would make the satisfying of boundary conditions extremely complicated
Generally, however, the situation is simpler in that one or two of the
separated equations contain only one separation constant.

In some coordinate systems the solution of three or four

dimensional problems are not completely separable, (41) i.e

., the
solution takes the form R(Xl’ XZ,X3) Xl(xl) XZ(XZ) X3(x3) where the
function R(x;, X, x3) is taken outside the usual sum over the allowed
values of the separation constants. Moreover these problems are
generally more difficult than those problems with complete separation.
Hence, the condition of the coinciding of the nodal surfaces and the

coordinate surfaces is a necessary though not a sufficient condition

for separability of the higher dimensional problems.
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The most general analytical tool available to determine separa-
bility of partial differential equations in a particular coordinate
system under suitable boundary conditions is the so-called Stickel
Determinant. However, except for simple well known equations, e. g.,
- the wave equation, the Stdckel Determinant is rarely used in practical

work.

Separability of the Time and Spatial Problems in Damped Systems

The equations of motion of viscously damped continuous systems

may be written as

m(x) utt(x, t) + c(x)L2 ut(x, t) + k(x)Llx u(x,t) = F(x,t) (3. 24)

where x = (xl, X5 X3)

u, (x, 1) F (%, 1
u{x, t) = uz(X, t) H F(x, t) = Fz(x: t)
k(L ko2 kL egul® ]
S AR P A P L e
22
K(x)L, = : k, (%)L’
22
k33(x)L1X
11 12 13 ]
m(x) 0 0 {'Cll(X)le 2 i, cp3txligy,
22 23
mix)=| 0 myx) O ;c(x)L2X=t L eyytaLiE o) 2l
0 0  m,(x) 33
| 3 c33(x) Ly, |

On adding to Eq. (3. 24) the identity
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where p(x,t) = ut(x, t)

the continuous system may be described by the following system

equations

m(x) Pt(x’ t) + c(x) szp(x, t) + k(x) L]X u(x, t)

m(x) p(x, t) -~-m(x) p(x, t)

or
n(x) st(X’ t) + r(X)Lx s(x,t) =F
where _
(u, (%))
upylx t) le(x) 0
u3t(x, t) mz(X)
(6020 | (x,1) )i nlx) =
uz(x, t)
, t
| e )
13
°11(X)L]:zlx ¢13ix) Loy
°21(X)L§;
c3p(x) LZ; c33(x) Lgi
r{x)L =
* —ml(X) -0 0
0 -mz(x) 0
0 0 ~m3(x)

(3. 25)
= F(x, t)
=0
0 0 "
0
m3(x) 0
ml(x) 0
mz(x) 0
m,(x)
3
J > ]
11 13
Ry (K)o kL
22
ko2 by
k (:><)L3:L 33
31 1x k33(X)L1x
0 0 0
0 0 0
0 0 0

(3. 26)
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Now Eq. (3. 26) has a form similar to Eq. (3.15) and therefore the
homogeneous form of Eq. (3. 26) is separable as far as time and
spatial coordinates are concerned. Hence the damped continuous
system is at least separable into time and spatial problems.

As is usual in linear differential equations the complete
solution to the inhomogeneous problem is composed of the sum of the
solution to the homogeneous problem with the given boundary con-
ditions and the solution to the inhomogeneous problem with zero

boundary conditions.

Solutions of the Separable Equations Derived From the

Partial Differential Equations of Motion of Continuous Systems

Provided the system of equations specified by Eq. (3.24 ) can be
separated into four ordinary differential equati.ons (in t, X, X, and x3)
there are well known techniques(‘u) available for completing the
deter mination of the solution. Reduction to quadratures by means of
an integrating factor is generally used for first order differential
equations and may sometimes be used for higher order problems.
Another technique is the series solution the basis for which is found in

complex variable theory. In many cases an integral representation of

the solution is more useful than the set of series solutions (one series
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solution about each singular point of the differential equation) in that
the form of the series solution changes over the complex plane,
depending on the nearest singularity. The integral representation, if
it exists, has no problems of convergence as does the series solution,
but the actual evaluation of the integral at some point of interest may
be far from trivial. The kernel of the integral representation is to
some extent arbitrary but the more usual integral representations |
are nothing more than the well known inverse integral transforms,

e. g., Laplace, Euler or Fourier.

In the literature, a great amount of work has been done on the
solution of special types of partial differential equations under par-
ticular types of boundary conditions. The process of fitting the
boundary conditions generally involves the selection of a particular
set of separation constants. As far as the solution of the separated
equations themselves are concerned, the separation constants are in
general quite arbitrary and it is only when particular boundary con-
ditions are involved that the separation constants must take on a

particular set of values.

Solution of the Separated Equations in Terms of

Eigenfunctions

In the last section, on the solution of the separated equations
(which are ordinary differential equations in one variable) the solution |,
by means of a power series about singular points of the differential

equation was discussed. Such a series is, in a sense, a special case
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of a more general technique known as the determination of the solution
as an eigenfunction expansion. Although, in principle it is possible to
discuss eigenfunctions in n(n> 1) dimensions, the practical determi-
nation of eigenfunctions has been largely restricted to ordinary differ-~
ential equations in one variable. Therefore, unless the partial
differential equation is completely separable, i. e., into ordinary
differential equations, the eigenfunction approach has only theoretical
interest. Furthermore, it is well to note that even if the solution of
the original partial differential equation has been reduced to a set of
eigenfunction-eigenvalue equations, the actual determination of the
eigenfunctions is not easy. In the majority of cases which are of
interest in the applied fields, the eigenfunctions must be obtained by
numerical methods using a digital computer. In the eigenfunction
expansion of the solution, it is the boundary conditions which determine
the eigenvalues, which now take the place of the separation constants.
The determination of a set of eigenfunctions is nothing more than the
solution of a two point boundary value problem. If the end points are
singular points of the differential equation, the boundary condition may
be simply that the solution remain finite there. If the end points are
ordinary points, the boundary conditions may be homogeneous, i.e.,
the ratio between the value and the sioPe of the function equal a
certain constant or that the solution be periodic with a certain
period, etc.

One of the main problems with an eigenfunction expansion of

the solution is the question of completeness of the set of eigenfunctions.
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It is obvious that if a denumerable infinity of eigenfunctions are to
represent a function in function space some restrictions are required
on the function. Such restrictions in effect separate out a subspace
containing all functions which are continuous except at a finite number
- of discontinuities from the nondenumerably infinite-dimensional space.
There is a close relationship between the eigenfunction theory of linear
continuous systems and the normal mode theory of linear discrete
systems. However, the theory of eigenfunction expansions is not as
well developed as the theory of the eigenvector expansion in N
dimensional space. Basically the difficulty is that although a spectral
theory of general linear operators exists, its application to concrete
problems in differential and integral equations is quite difficult. In
the discrete case, the ordinary and generalized eigenvectors provided
a basis for the space which greatly simplified the analysis. Unfortu-
nately, in the continuous system, although an analogous basis exists
its use is greatl& restricted by the difficulties of computation. There-~
fore, at this point, it is proposed to limit the discussion to a subclass
of continuous vibrating systems, namely those systems whose
operators are self-adjoint. Such systems include as special cases

of the well known continuocus undamped vibration problems discussed

in the literature.

Theory of Linear Self-Adjoint Differential Systems

A complete definition of a linear differential operator Ll involves

the specification of the linear vector spé.ce S of functions on which the
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6perator acts. In the present work only differential equations over a
finite interval will be considered. The first requirement for S is that
all functions in it are real valued and IL.ehesque square integrable over
the finite interval of interest (here normalized to 0 —>1 for convenience).
Next the end conditions must be considered for a complete definition
of Ll. The end conditions, of which there are a linecarly independent
set equal in number to the highest order derivative in the differential
operator (n), must be satisfied by all functions in 8. Finally, only
those functions which are Lebesque square integrable, satisfy the
boundary conditions and possess a piecewise continuous nth derivative
are in S. Such a set of functions is known as the domain of definition
or the manifold of Lq-

The adjoint of a differential operator L, is defined by considering

1
v, L1u> =<w,u> = fw(x)u(x)dx (3. 27T)
0
B
and putting w = le where <, > indicates the scalar product in the
space S. To obtain <w,u"> it is necessary to integrate <lv, Llu>

by parts, e.g., suppose L = d/dx and the boundary condition is u(0) =

4u(l)
1 1
<v,Lu> = v-q-l—ldxzx}u - u-ii—zdx
| d dx
0 0

(3. 28)

1
£
e
—
Bl =
=
=
]
=
e
9
1
Og\r—-
e
Blg
&
It
2
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=,

. ’I< - +

. . Ll consists of 2 parts; a differential operator -d/dx and boundary
conditions. The adjoint to d/dx with the boundary conditions u(0) =
4u(l) is the operator -d/dx with the boundary conditions u(0) = % u(l).

1 =4

moreover, the boundary conditions for I"l and L1 are identical the

If L then the differential operator is formally self adjoint; if,

e
b4

operator is said to be Self Adjoint or Hermitian. There is an obvious
connection between self adjoint differential operators and Hermitian

matrices. The boundary conditions in the problems of interest in this
work are homogeneous and linear, i.e., for a second order operator,

the most general boundary conditions are

. u du ]
Bl(u). alu(l) + al'a; + ﬁlu(O) + [Sl'.d_x_. =0
{x=1 1x=0
| % (3. 29)
, d d
B,(u): o ,u(l) + a'z—a—XE + B,u(0) + ‘3'23‘;51! =0
x=1 x=0 )

1 1 1 1
@1s @ @y, @5 ﬁl, ﬁl’ ﬁz and 52 are constants

Two well known differential operators

2 2
d d d d
Lo, == a(x) == L, = b(x) - (3. 30)
1x  dx dx 2x i 2 dxz

occur very often in the separated equations of motion of continuous
systems. They are both self adjoint operators in a suitable domain of

definition, e. g., le is self adjoint provided

<v, L o> = <u, Ly v> (3. 31)

where u(x), v(x) are in the same manifold (i. e., are functions which

satisfy boundary conditions of type (3. 29) ). But
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1

= {V(X) a(x) %—E ~u(x) a(x) -g-:—;} +
0

ok—ﬁ‘__
E
a3
&la
f—p')——s
=
gle

. L. is self adjoint if
1x
1

[v(x) a(x) 2 - u(x) a(x) %’{] -0 (3. 33)
0

where v(x) and u(x) are in the same manifold. Equation (3. 33) can be
satisfied under fairly general conditions, but it is always satisfied if
the boundary conditions of Eq. (3. 29) are unmixed, i.e., Bl(u) and
Bz(u) only contain conditions at either x =1 or x = 0 but not at both.
Likewise if the boundary conditions are periodic in the form
u(0) = u(l); u'(0) = ul(l) (3. 34)

Eq. (3. 33) is satisfied.

The eigenfunctions (ui) and the eigenvalues { ;{i) of a differential

operator leare defined as follows

Ly, u(x) = Riui(x) i=1,2,... (3. 35)

1x

where u; satisfy the boundary conditions of the domain of influence of
le. The completeness of the eigenfunction expansions to be used in
the rest of this chapter depends on the following statement. (45, 47, 48)

A boundary value problem of the following type
Ly, u(x) + As(x) wx) =0 (3. 36)

where le is a regular self-adjoint operator defined over a finite
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domain in which s(x) is positive, 6r zero at most a finite number of
points, possesses a comp_lete set of orthonormal eigenfunctions. This
means that every function W(x) which satisfies the boundary conditions
of the domain of definition of leand has continuous first, second, ....
(n-—l)th derivatives and piecewise continuous nth derivative where n is

the highest derivative in the expanded operator L. , can be represented

Ix

in an absolutely and uniformly convergent {(in the mean sense) series
[es)

wix) = ZC u (x); . c are constants
nn n

n=1
There is a class of problems, known in the liter ature as Sturm-

(45, 46, 47, 48)

Liouville problems, which arise very frequently in the
solution of vibration problems by the separation of variables. The

general Sturm- Liouville problem may be written as

d du
= (P(X) P

-q(x)ut+ As(x)u=0 (3. 37)

under boundary conditions which makes the operator [';1& (p(x) C%z)-q(x)]
self-adjoint. If the operator acts on functions defined on a closed
finite interwval and p(x) and s(x) are different from zero in this interwval,
the system described by Eq. (3.37) is called a regular Sturm-Liouville
system. . If the interwval is infinite or p(x) or s(x) are zero in a finite
interval, such systems are called singular Sturm-Liouville systems.
In Sturm-Liouville problems, the inner product is defined using the
weight function s(x). Sturm-Liouville systems,kas a subclass of

self adjoint systems,are particularly easy to work with in that there

are many computational aids available for use with such systems. As
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an example, Sturm's Comparison theorem depicts the position of the
nodes of the eigenfunctions and shows that the nth eigenfunction of a
regular Sturm-ZLiouville problem has exactly n nodes. There are
various asymptotic approximations for both the eigenvalues and
eigenfunctions of regular Sturm-Liouville systems. The eigenfunctions
of singular Sturm- Liouville can be complete (e. g., Bessel functions)
and are orthogonal provided they are square-integrable with a suitable

weighting function over the interval of definition.

Self Adjoint Undamped Systems

The equations of motion of a self adjoint undamped vibrating

system may be written as

pP{x) utt(x, t) + [le] u(x, t) = F(x,t) (3. 38)

where in the most general case p(x), u(x,t) and F(x,t) are vector
quantities with functional elements, x the spatial coordinate represents
X X, Xg and [le] is a matrix linear differ ential self adjoint

operator, i.e.,

<v, [le] w> = <y, [le] A (3. 39)

the vectors u and v satisfying prescribed boundary conditions where the
inner product sign <,>> is interpreted as the sum of the inner
products (with a suitable weighting function) of the individual vector
components. Since the general formulation is no more difficult,
theoretically, than the simpler two dimensional partial differenti.al

equation formulation, the latter will be used to simplify the notation.
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The equations of motion of a one dimensional self adjoint

continuous vibrating system may be written as

pP(x) utt(x, t) + L. u{x, t) = f,(x,t)

where x is the one dimensional spatial coordinate. L‘lx is a self

(3. 40)

adjoint linear differential operator which has its own manifold, the

elements of which satisfy the boundary and interval conditions of

Eq. (3. 40).

In the well known vibration problems, e.g., string vibrations,

p(x) is the distributed mass, f(x,t) is the time and space varying

exciting force and le is the stiffness operator. Equation (3. 46) may

be written in canonical form by use of the following transformation

z(x, t) :—'U=1='P(X)— u(x, t); p{x) > 0

On substituting Eq. (3. 4l) into Eq. (3. 40)

1

N p(x} Zt'{x’ t) + Lix

z{x,t) = fl(x, t)
{ p(x)

Multiplying both sides of Eq. (3. 42) by 1/N p(x)

1 1 1

Ztt(x: t) + L]I.X zZ(x, t) = — fl(X, t)
N p(x) N p(x) N'p(x]
Now as Lj_ is self adjoint in the domain of Eq. (3. 40)

<u, Li_v> = <:&,1LL(u:>

1x

(3. 41)

(3. 42)

(3. 43)

where u, v satisfy the boundary and interval conditions of Eq. (3. 40).



-149-

| S <N p(x) u, 1 L! 1 Np(x) > = <A p(x) v, 1
N N NP
LI N p(x) u> (3. 44)
p(x)

Hence 1/N p(x) Lt 1/N'p(x} is self adjoint in the domain of the
transformation (3. 41) where u(x, t) is a function in the domain of

definition of Lix' Therefore the canonical form of Eq. (3. 40) as given

by Eq. (3. 43) possesses a self adjoint operator. Letting
— L —— =Ly
N'p(x) N p(x]
and (3. 45)

1
p(x

(%, t) = £(x, 1)

the canonical form of Eq. (3. 40) may be written as
Ztt(x’ t.) + le z(x,t) = {f(x, t) (3. 46)
where le is a self adjoint operator.

It is well to note that all second order systems may be trans-

formed to a formally self adjoint system. Consider

2
- dy dy _
Vit + ny ytt + a(x) dXZ + b(x) e + c(x) v = f(x, t) (3.47)

a(x) > 0 0«cx<1l
where

2
' d d
LX = {a(X) -?d—}-:z + b(X) —d-—}—( + C(X)}

under the following boundary conditions
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d
By(y): a; ¥(0) + o] &

' d
o B, vV + Bl o

xX= x=1

: dy dy
Boly) a, y{0)+ e}, 5= T By vy + By 52

x=0 x=1

The for mal adjoint of Lx may be easily seen to be

2
L. = {f—; alx) - = blx) + c(x)}

2

= L afx) =55 + (2202 -b(x) ) -+ (c(x)+ar(x)-b'(x) )}
dx

where ' indicates differentiation with respect to x. Now if both sides

of Eq. {3.47) are multiplied by g(x) where

g(x)('i’ﬂi'—‘x—’J = g'(x)

a(x) '
or % (3. 49)

g(x) =eprf ———b(xl{;T—«'(x) dx

the original non formally self adjoint system is now reduced to the
formally self adjoint system
g(x) v (x 1)+ Ly v(x.t) = g(x) £(x, )

where

Ly~ fa 200 8l & + gx) o] (3. 50)

is a formally self adjoint operator. The question of reducing a non
self adjoint second order differential equation to a self adjoint system
depends solely on the boundary conditions. For equations of higher

order there is no general method of reducing them to a formally self
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adjoint system.
Returning to the solution of Eq. (3. 46), first solve the homo-
geneous problem

Ztt(x’ t) + le z{x,t) = 0 (3. 51)

As le is a self adjoint operator there exists an infinite sequence

of orthogonal eigenfunctions ¢i{x) with associated real eigenvalues
A o As the ;éi’ i-1,2,... are complete, z{x,t) may be expanded as

follows. Let
2, t) = ) 2y(t) §(x) (3. 52)

i
On substituting Eq. (3. 52) into (3. 51)

Y a0 P+ ) alw L B =0 (3. 53)
i

i
But L1¢i(x) - Ri ¢i(x).

Z"éi(t) B.(x) + Z a,(t) A, B.(x) = 0 (3. 54)

i i
On multiplying both sides of Eq. (3. 54) by ¢j(x) and integrating each

term over x between 0 and 1,

1

1
Z _O["éi(t) ¢i(x) ¢j(x) dx + Z f ai(.t)ﬂi ¢i(x) ¢j(x) dx = 0 (3. 55)
1

i 0

But due to the orthonormalization of the eigenfunctions, Eq. (3. 55) may

be reduced to

'é.j(t) + RJ. aj(t) =0 j=1, 2,. .. (3. 56)
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ajit) = A, cos (/ 741.' th B, sin(N '7[“3. t) j=1,2,... (3.57)

Hence the solution to the homogeneous problem, Eg. (3. 51),is

z(x,t) = Z (Aicosw )\i t)¢i(x) + B, sin(n/ 21' t)¢i(x) ) (3. 58)
1

Ai and Bi must be determined from initial conditions

z(x, 0) = zo(x)
(3. 59)

z,(x, 0) = 2 _(x)

From Eq. (3.58)

20 = ) A 40
i

2 (%) = Z Bi,/fisb(x) (3. 60)

1

.. using the orthonormalization conditions of the eigenfunctions it may

be seen that
1

Ai =[ zo(x) d?i(x) dx
0
(3. 61)

1
By = 55 f ag (%) B,(x) ax A #0

1
0 i=1, 2, ...

The complete solution to the self adjoint system of Eq. (3. 46)
involves the sum of the solution to the homogeneous problem (here
given by Eqgs. (3.58) and (3. 61) ) and a particular solution with zero

initial conditions to the inhomogeneous problem. The particular
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solution may be easily derived as follows. Let

n{x, t) = Zbi(t) b, (x) (3. 62)
i

Substitiiting Eqg. (3.62) into Xq. (3.47), multiplying both sides of the
resulting equation by ¢j(x) and using the orthonormalization property

of the eigenfunctions,

1
bj(t) + 23. bj(t) = ‘[ f(x, t) ¢j(X) dx = gj(t)

¢ NAT
. bj(t) =[ gj(t- T)e Y ar j=1,2,... (3. 63)
0
b.(0) =0
J( )

Hence the complete solution to the self adjoint system spe cificd by

Eq. (3. 46) is

z(x, t) = z [ai(t) + bi(t)} ¢i(x) (3. 64)

i

where ai(t) and bi(t) are given by Egs. (3. 57) and (3. 63).

Linear Formally Self Adjoint Damped Continuous Systems

The equation of motion of linear formally self adjoint damped

continuous systems may be written as

p{x) utt(x, t) + L‘ZX ut(x, t) + Lix u(x, t) - fl(x, t) {3. 65)

p{x)> 0, 0=<x <1

where Ly and Lix are formally self adjoint operators.
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The first term on the left hand side of Eq. (3. 65) is the inertia
term, the second is the generalized viscous damping term, while the
third is the stiffness term. On the right hand side is the forcing
function. As in the undamped case it is possible to rewrite Eq. (3. 65)

in canonical form as follows

ztt(X, t) + sz zt(x, t) + le z(x, t) = f(x, t) ' (3. 66)
where
2(x,t) = NPT wlx, 1) ;3 £(x,t) = ——— £ (x, )
NP ?

Lot g, 1

= ) 2F N

L 1o L

e N )

As L‘lx and L'ZX are for mally self adjoint operators it is easy to see
that so are le and LZx’

The boundary conditions on Eg. (3. 65) must be equal in number
to the maximum of the highest order of the derivatives in the operators
le and sz. However, there is no need for the boundary conditions
to be such that le and L'Zx are self adjoint operators in the manifold
spanned by functions which are acceptable solutions of the problem.

It may happen, for example, that the highest order derivative in Lo,
is lower than the highest order derivative in Ly In that case, only a
subset of the boundary conditions are needed to define the domain of

definition of sz. Needless to savy, sz may not be self adjoint in

this domain (although it is given that it is formé.lly self adjoint) and
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neither need le be self adjoint in the domain defined by all the
boundary conditions of the problem. The problems of interest in
this work contain not only formally self adjoint operators but a
special sub class contain self adjoint operators in the manifold of
. functions satisfying the boundary and interval conditions of the

problem,.

Linear Self Adjoint Damped Continuous Systems

The canonical form of the equations of motion of linear self
adjoint damped continuous systems may be written as

th(x’ t) + LZx zt(x, t) + le z(x,t) = f(x,t) (3.67)

where LZX and le are linear self adjoint operators in the manifold of
functions satisfying the boundary conditions of the problem. The

manifold of functions in which Ly, and L 5 3re separately self adjoint

2
may Or may not have common functions. It should be noted that if

one of the operators has a lower highest order derivative than thc

other, it is possible that the operator with the lower highest order
derivative be self adjoint in a manifold of functions which excludes the
manifold of functions satisfying all the boundary conditions of the
problem. In other words, the boundary conditions of the entire problem
may unnecessarily restrict the manifold of possible solutions as far as
the self adjointness of the operator with the lower highest order
derivative is concerned. It may happen that the boundary conditions do

not restrict this manifold in any way, in which case, the boundary

conditions of the problem are said to be compatible with the subset of
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the boundary conditions required to gspecify the manifold in which the
operator with the lower highest order derivative is self adjoint. This
means, that in this case, any subset (sufficient in number) of the
boundary conditions of the problem may be used to specify the domain
of definition in which the operator with the lower highest order
derivative is self adjoint and that this domain is independent of the
choice of the subset of the boundary conditions, It should be noted, of

course, that the domain of definition of le and L., cannot be precisely

2x
the same in that the operator with the-llower highest order derivative
{say n) has a domain which includes functions which satisfy the boundary
conditions and are continuously differential only (n-1) times (the ntl’1
derivative being piece wise continuous).

To determine orthogonality conditions for the self adjoint damped
continuous system specified by Eq. (3. 67), a procedure analogous to
Foss's method for discrete systems is used. To Eq. (3. 67) add the
identity

zt(x, t) = y(x,t) (3. 68)

The homogeneous part of Eq. (3. 67) may be rewritten using Eq. (3. 68)

Yt(x’ t) + LZX zt(x, t) + le z(x,t) = 0 ' (3. 69)
Let ant
y (50 = B_(x) e
o % (3. 70)
z_(x,t) = ¢n(x) e O

where ¢n(x) and ﬁn(x) satisfy the boundary conditions of the problem.

Substituting Eq. (3. 70) into Eqs. (3. 68) and (3. 69)



-157-

a ¢n(X) = ﬁn(x) (3. 71)

anﬁn(x) T nLZX ¢n(x) * le ¢n(x) =0 (3. 72)

Multiply Eq. (3. 71) by anx) and (3. 72) by Q'm('x) and add the two

equations and integrate over x from 0 to 1.

1 1
@ f g¢n(x) B(®) + @ (x) ﬁn(x)} dx+ @ f @) Ly £ (x) dx
0 0

1 1
+.!.¢HJX)Lb(¢nbddx=-/-ng)ﬁnﬁx)dx (3. 73)
O .
In (3. 74) interchanging subscripts n and m

1 1
@ f ggﬁm(X) B,(x) + & (%) pm(x)} dx+ a f B L, & (x)dx
0 0

1 1
+ f F ()L F_(x) dx = f B_(x) B_(x) dx (3. 74)
0 0

Subtracting Eq. (3. 74) from Eq. (3. 73) noting that le and LZx are self

adjoint in the manifold spanned by functions ¢n(x) and ﬁn(x)
1

1
(o a_) f §¢n‘x) B_(x)+ & _(x) ﬁn(x)g ax+ (a_-a_) f (=)L, & (x)dx
0 0
=0

oif e
i n#a
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] : 1
f (3,09 B0 + §,Lx) () ax = - f B Ly B oxdx (3.7
0 0

n#m
Substituting Eq. (3. 75) into Eq. (3. 73)
1 1
f Bofx) Ly @ (x) dx = f B_(x) B_(x) dx (3. 76)
0 0

Equations (3. 75) and (3. 76) may be reduced,by using Eq. (3. 71)

1 1
(czn+ am) f¢n(x) }Xm(x)dx = -fg?fn(x)sz ﬁm(x)dn (3. 77)
0 0

n#m

1 1
f ?'n(x)le ¢m(x)dx = anamf @ (=) ¢m(x)dx (3. 78)
0 0

n#Fm

Equations (3. 77) and (3. 78) are the orthogonality conditions for the
canonical self adjoint system specified by Eq. (3. 67). By a suitable
change of variables, it may be seen that the orthogonality relationships
for the original system as specified by Eq. (3. 65) are derived from

Egs. (3. 77) and (3. 78) by substituting

NP ) = (x) (3. 79)

where o t

_ % n 1
un(x, t) = ¢n e =

N p(x)

zn(x, t)

to give
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1 1
b ES 3
(a ta_) f p(x) () b (x)dx = f B, () N (=) L, NPT B (x)dx
0 0
1
- f . ) Ly ¢ (x)ax (3. 80)
0 .
and
1 1
Oj o0 VR Ly VBT 6 = e o [ b0 3500 6 Y0
0
or
1 1
f $(x) Ly ;JII:(x)dx =a_a_ f p(x) ¢n*(x) B (x)dx (3. 81)
0 0

Equations (3. 71) and (3. 72) are in the form of an eigenvalue-eigenfunction
equation and may be used to determine the sequence of eigenvalues

a > n=l,2,... and eigenfunctions ¢n’ ﬁn’ n=1,2,... . The actual
determination of the eigenfunctions and eigenvectors is far from

trivial, and in general recour se must be had to numerical analysis.

As in the discrete case the set of eigenfunctions need not be complete

in which case it is necessary to determine the generalized eigen-
functions before completing the solution by mode methods. As is

usual, generalized eigenfunctions are only associated with repeated

eigenvalues.

Classical Normal Modes in Linear Self Adjoint Systems

In direct analogy to the discrete case, classical systems are
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defined to be those self adjoint systems which possess a complete
set of real orthonormal eigenfunctions, i.e., ¢n(x), g{m(x) exists

such that

1
f;zsn(r) @ (%) dx =0 n#m (3. 82)
0

Substituting Eq. (3. 82) into Egs. (3. 77) and (3. 78) it is seen that in

classical systems the following conditions also hold

1

[¢n(x) le ¢m(x)dx =0 n#m (3. 83)
1

f;én(x) Lo, ¢m(x)dx =0 n#m (3. 84)

0

As the set of eigenfunctions is complete, it is easy to see from
Eqs. (3.83) and (3. 84) that they must be the eigenfunctions of le and
LZX' This in turn, requires that the boundary conditions be compatible,
i. e., all the boundary conditions are derivable from the subset required
for the self adjointness of the operator with the lower highest derivative.

As an example, consider the following operators

a® a?
L, =——, L. = (3. 85)
2x dx 1= ! f

The operators defined by Eq. (3. 85) are formally self adjoint and L?.x
will be self adjoint under the boundary condition

u(0) = u(l) = 0 (3. 86)

However, the operator L1X has a fourth order derivative and so

requires four boundary conditions to determine its domain of
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definition. One such set of boundary conditions could be

u(0) = u(l) =0

d
%‘;“ =2 =0 (3. 87)
lx:O x=1
Loy is a self adjoint operator in the domain with boundary conditions

specified by Eq. (3. 87). But, these boundary conditions are not
derivable fr om the subset used to define the domain in which LZX is
self adjoint. The boundary conditions of the domain in which LZx is

self adjoint are easily seen to he

u(0) = u(l) = 0

dzu! _ dzu -0
— = — =
dx | _ dx -
x=0 x=1
dzx;lu ernil
— = — =0 m=0,1,2,... (3. 88)
S N

The first set of boundary conditions in Eq. (3. 88) is the original

boundary condition (Eq. 3. 86) used to define a domain in which Loy

is self adjoint. The second and subsequent sets (m=1,2,...) are

derivable from the first by using the operator le in the following

manner. All the eigenfunctions uy of le satisfy equations of the

following type
L % = A5 % (3. 89)

as i
ui(O) = ui(l) =0, le ui(x) = L1X ui(x) =0

or
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dzu. dzu,
1 = * =0
T2 2
dx dx
x=0 x=1

This process may be continued, iteratively, to develop the
sequence of boundary conditions specified by Eq. (3. 88). As the set
of eigenfunctions is complete and the boundary conditions are linear
and homogeneous, a sequence of boundary conditions derived for the
eigenfunctions are applicable to all functions in the domain of the
operator,

Now, it can be seen from Eq. (3. 58) that the boundary conditions
used to specify the domain of le (Eq. 3. 87) actually exclude some of
the functions in the domain of LZx' In this particular case the eigen-
functions of LZX under the original boundary conditions (Eq. 3. 86) are

un(x) = gin nwx n=1,2,...

Placing the restraints of the original boundary conditions of L, on the

1x
domain of Loy it is seen that such a domain is actually the null space.

Hence, the necessity of compatibility of boundary conditions has
been demonstrated by this simple example. In a similar manner it
can be shown that any two linear self adjoint differential operators can
only possess the same complete set of eigenfunctions if their boundary
conditions are compatible.

It is interesting to note that in classical systems, the eigen-
functions ¢i(x), i=l1, 2,..., associated with both real and complex

eigenvalues are real. Whereas, the eigenfunction in Foss's formu-

lation associated with real eigenvalues are always real, those
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associated with complex eigenvalues need not be real. However, the
reality of the eigenfunctions is not sufficient fér classical systems in

that they must be also orthogonal.

Necessary and Sufficient Conditions for
Self-Adjoint Systems to be Classical

It will now be demonstrated that the necessary and sufficient con-
ditions that the canonical form of the self adjoint continuous conditions
system possesses classical normal modes is that

(i) L

x and L i ore self adjoint operators and the boundary

1 2
conditions of the problem are such that the total set of boundary
conditions are derivable from the subset required to specify the
domain of definition of LlX and LZX (such boundary conditions are

said to be compatible).

() Ly L, =L, L (3. 90)

where the equivalence of the operators L].XLZX and LZxle is verified
by expanding both sides of Eq. (3.90) and checking the coefficients
of the various orders of the derivatives.

Proof of the sufficiency of the condition: Given that le and L

are both s elf adjoint operators in the manifold of the functions

2x

satisfying the boundary and interval conditions of the problem (with
suitable restrictions as to piecewise differentiability) it is required
to be shown that the commutability of the operators (as given by Eq.
(3. 90) ) is a sufficient condition for L, and L, to possess the same

complete set of eigenfunctions. Consider
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< Lax B> 7, .91

where ¢m’ m=l, 2,..., are the complete set of eigenfunctions

"~ and the

associated with the undamped problem, i.e., with le

boundary coanditions of the original problem. Here, it is tacitly
2% 18

If this is not s0, the

assumed in Eq. (3. 91) that the highest order derivative in L

lower than the corresponding derivative in le.,

argument goes through if le is interchanged for LZX

Lo Boe A B m=1,2,... (3. 92)
On substituting Eq. (3.92) into Eq. (3. 91)

Io :7\_; <¢m’ LZxle ¢n = (3.93)

Utilizing the commutability condition Eq. (3. 93) may be rewritten as

Io :}%—— <¢m’ L].XLZX ¢n> (3. 94)
n

As le is a self adjoint operator and the boundary conditions are

compatible, Eq. (3. 94) may be rewritten.

A
Io =7l: <L2x ¢n’ le ¢m> - _Zln— <¢m’ LZx ¢n> (3.95)

n
Hence, from Eqgs. (3. 91) and (3. 95) if An # Rm

<¢m, L2X¢n> =0 nfm. (3. 96)
This completes the proof of the sufficiency of the classically damped

conditions (Eq. (3.90) ) for systems whosc undamped ecigenvalucs arc

distinct. The proof of the sufficiency of the conditions in the case of
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equal roots will be taken up later.

Proof of the necessity of the conditions given by Eq. (3.90) for
systems to be classical: Given that le and LZX are self adjoint
Operators possessing a common complete set of eigenfunctions, i.e.

2

the system is classical

1
f ¢m(x) le ¢n(x)dx =0 n#m
0
1
f ¢m(x) L, ¢n(x)dx =0 n#Fm
0
1
J ¢m(x) ¢n(x)dx =0 n#m
1
f ¢m(x) gSn(x)dx =1 all n n, m=1,2,,.. (3.97)
[§]

It is required to be shown that the conditions listed in Eq. (3. 90) are
necessary.

If the operators le and sz commute and the boundary conditions
are compatible with the self adjointness of le and LZX it will now be
shown that L].XLZX and LZxle are both self adjoint operators in the
domain specified by the boundary and interval conditions of the

problem. Consider

where u and v are functions which satisfy the linear homogeneous
boundary conditions of the problem.

I, L, =1L, L
X

Ix 2% 2x T 1x



-166-

L= <ulL, L v~ (3

- 99)

As L, is a self adjoint operator and as the boundary conditions are

compatible it may be seen that Eq. (3. 99) may be rewritten as
I1 = <lev’ LZXU’ >
= <L2xu’ I"lxV =

As 1., is a self adjoint operator and the boundary conditions are

1x

compatible, Eq. {3.100) may be rewritten as

L= < Lyl v 3

From Egs. (3.98) and (3.101) it is seen that leLZX and similarly

LZXle’ is a self adjoint operator in the coinciding domains of
definition of le and LZx' The converse may be established in a
similar manner. To continue the proof of the necessity of the con-

ditions given by Eq. (3.90) for systems to be classical, it is seen

from Eq. (3.97), since the eigenfunctions form a complete set

le ¢n(x) = Cn ¢n{x)

L, $.(x)=d ¢ (x) n=0,1,... (3

. 100)

. 101)

. 102)

Any two functions u(x) and v(x) satisfying the boundary conditions may

be expanded in an infinite series of eigenfunctions as follows

u(x) = Z a.mp’m(x) ; v(x) :angdn(x) (3. 103)
n

m

Consider

I= <v,L, Lu> (3. 104)
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On substituting Eg. (3.103) into Eq. (3.104)
1, = Z Z abocd <G (x F_(x>
n m

Likewise, let

= <uL, L v> = Z Z ab cd <g(x) B (x> (3.105)
n m

Therefore LZxle is a self adjoint operator in the domain specified by

the boundary and interval conditions of the problem. Hence, as le

and LZX are separately self adjoint in the same domain

L].XLZX - LZxle

and all the conditions specified by Eq. (3. 90) are satisfied. The proof
of the sufficiency of the conditions in the case of equal roots will now

be taken up. A somewhat more general proof than that given previously
for the case of distinct eigenvalues is presented in which the arguments

are based on the self adjointness of the operator LZxle rather than on

the commutability of the operators L, L., . Given that L. ,L._ and
1= 2= Ix* "2x

leLZX are self adjoint operators in the domain specified by the

boundary and interval conditions of the problem, it is required to be
shown that even in the case in which le or sz possesses eigenvalues

of multiplicity greater than 1, the system is classically damped.

Consider
<u, L, Ly v > = <, L, L, u>> (3. 106)
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where u and v satisfy the boundary conditions of the problem. Let

U i=l,2,... be the eigenfunctions of le and
)\i, i=1,2,... the corresponding eigenvalues.
As the s i=1,2,..., form a complete set u and v may be represented

in the following series

nn nn
n n

u:zau ; v = b u (3.107)

On substituting Eq. (3.107) into (3. 106)

—~ 1. = < Z , > .
=~ Z “n'n’ T2x Z Anbnun - bnun LZx Z Ananun/ (3.108)
n n

n

Let
LZXun - Z < m%m (3.109)
m
AsS u n=1,2,..., the eigenfunctions of le satisfy the boundary

conditions which are compatible with the self adjointness of le and

L they are contained in the domain of definition of LZX' Hence,

2x’

n

<um, L, u > = <un,L2Xum> (3. 110)

On substituting Eg. (3.109) into Eq. (3.110) and using the orthonormali-

zation conditions of the eigenfunctions of a self adjoint operator

= ¢ ’ (3. 111)

C
nim mn

On substituting Eg. (3.109) into Eq. (3.108) and using the orthonormali-

zation conditions of the un's
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Z Z a b Ac - Z Z a b A c__ (3. 112)
m ¥ m x

On substituting Eq. (3.111) into Eq. (3. 112)

Z Z a bc (X -2A)=0 (3. 113)
m n
As a ,b m,n=1,2,... are arbitrary,
m n
Cnm:O 7\11# Zm n, m, :1, 2,... (3 114)

c need not be zero
nn

From Eq. (3.109) these observations ( A # ﬂm) lead directly to the
results already derived above.

If, however, Zn = Am’ n, m, =1, 2,..., some further work is
required before reaching the desired conclusion. Suppose there is
an eigenvalue 7(1, of le of multiplicity ¢, i.e., there are a eigen-
functions associated with this eigenvalue. For convenience, let

these eigenfunctions be

where these functions are orthonormalized (using the Gram-Schmidt
process if necessary).
Forming from thie set of eigenfunctions another set of ortho-

normal eigenfunctions as follows
a
e i=l, 2,... 3.115
u, Z 8 uj i=l, 2, a ( )
j=1

it is seen that the orthonormalization condition requires that
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{:gij]T = [g.lj}-l (3. 116)

I'ne sufficiency of the conditions for systems to be classical,

(i.e., LZxle be a self adjoint operator in the domain in which L

and LZX are separately self adjoint) in the case in which Ly, has

eigenvalues of multiplicity greater than 1, follows once it is shown

I1x

that it is possible to select a set of gij‘s i,j=1,2,...a, such that

L,uw =c.u (3. 117)

Now, from Egs. (3.109) and (3. 114)

a
= Z c,. u, i=1,2,...a (3. 118)
13 ]

and from Eqgs. (3.115) and (3. 118)

a a
:Z Z Big 45 Y i=1,2,...qa (3. 119)
£=1 j=1

. from Eqs. (3.117) and (3.119) if

a a

= .. C,.u, 3,120
Z Z 8ij “2j ( )
2=l =1

the sufficiency of the condition has been demonstrated. Substituting

Eq. (3.115) into Eq. (3.120)

a & a ”
Z iy gij uj = Z Z gu CJZj uj (3.121)
j=1 j=1 £=1

or as uj, i=1,4,..., are linearly independent
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a
Z %4 %) = Sy & (3.122)
£=1

which may be conveniently written as
[es)e35] = [eia) [e55] (3.123)

. . . ..th .
where Cij s 2 ¢ X ¢ symmetric matrix whose ij ~ element is c,. ,
i

SEY . : ..th .k
[Cii] 1s a diagonal ¢ x ¢ matrix whaose ii" element is s - From Eqgs.
p i

(3.116) and (3. 123)
[esg] o) (2] =[] (3. 124)

As [c:l] is a diagonal matrix, and [Cij] is a symmetric matrix,
[gij] exists such that Eq. (3.124) is satisfied. This concludes the
proof of the sufficiency of the conditions specified by Eq. {3.90) for
systems to be classical if the eigenvalues of LlX are repeated.
Therefore the conditions outlined by Ej. (3. 90) are both
necessary and sufficient conditions for self adjoint systems to be

classical.

Exawmple of a Classically Damped Continuous System

Consider the two operators
2 2

d d d d .
L = a(x) S 5 L, =-Spx) = (3.125)
1x dxz dXZ 2x  dx dx

le and LZX are formally self adjoint operators. It is easy to show
that L, is a self adjoint operator in the manifold spanned by
X

functions with boundary conditions

u(0) = u(l) = 0 0

N
b

N
—

(3.126)
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To obtain compatible boundary conditions for the problem, consider
the eigenvalue-eigenfunction equation
du, dzu.

i

_ i
Lqui = b(x) e + b(x)

2 = Au (3.127)

Using the boundary conditions specified by Eq. (3.126) the following set

of compatible boundary conditions are derived

du dzu
x=0 (3.128)
2
d
B,(w): b'(1) -&XE + b(l) i%{ =0
x=1 dx ]le
Now leLZx - LZxle if
2 3 " 3 2
d d d d d d
4 a{x) — gb(x) —t ! == 1Db(x) — ga(x) ~—2§ (3.129)

On expanding Eq. (3.129) and equating the coefficients of the various

orders of derivatives to zero, the following conditions must be satisfied

a(x) = bz(x)
2 d3b(") de(x)
b {x) 3A =0 orif b(x) #0, —s = 0 (3.130)
dx dx

for the commutability of the operators. These results show how

restrictive is the class of classical systems.

Constructive Sufficient Conditions for Systems to be Classical

In an analogous fashion to the Caughey series in the discrete case,

it will now be shown that if, in the canonical form of the system, Lo,

may be expanded in a power series
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N
L, = Z an(le)n (3. 131)

n=0
the system possesses classical normal modes. The an's are so
chosen that the eigenvalues of LZX are finite. Consider a typical
term of the series given by Eq. {3.131)

a Lo Lo ae... L (3. 132)
ln terms ———

As L < is a self adjoint operator, it possesses a complete set of

1

eigenfunctions 551(}{)’ i=1,2,... . It will now be shown that if LZX

is given by (3.131) these eigenfunctions are also eigenfunctions of LZX'

From Eq. (3.132)

a (L )" B.(x) = a (1) @.(x) (3. 133)
From Eq. (3.131)
N
L, §(x) = Z a (AN F(x) = e, Bx) (3. 134)
n=0
T P T AL i#]. (3. 135)

From Egs. (3.134) and (3.135) it may be seen that the system possesses

classical normal modes if 1., is a self adjoint operator, the boundary

1x

conditions are compatible and LZX can be expanded as in Eq. (3. 131).
In the discrete case it was possible to show that in the case of

distinct eigenvalues the Caughey series is both a necessary and

sufficient condition for classical systems. If a proof of the necessity

of the condition given by Eq. (3.131) is attempted in the continuous case,
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a major mathematical difficulty, by way of an infinite dimensional
Vandernonde determinant, arises. Unfortunately, the literature is
singularly scarce in references to such determinants. However, it
does appear intuitively reasonable that Eq. (3.131) is both a necessary
and sufficient condition for systems to be classical in the case of

distinct eigenvalues of LIX(N ~> o0)

Solution of Classical and Non Classical Self Adjoint Systems

‘I'he canonical form of the equation of motion of damped con-
tinuous systems may be written as

utt(x, t) + LZX ut(x,t) + L < u(x, t) = F(x,t) (3.136)

1

If the system is classical, the solution goes through in exactly
the same manner as the solution of the undamped problem treated above.
Here attention will be confined to the non classical self adjoint system.
To Eq. (3.136) add the identity
‘%(X’ t) = z(x, t) (3.137)
Assuming that all the eigenfunctions of Eq. (3.136) are ordinary eigen-

functions, i. e., there are no generalized eigenfunctions, let

axt) = ) 4 IE ()

(3.138)
2 t) = ) B (=% ()
n

Substituting Eq. (3.138) into Eqs (3. 136) and (3. 137)
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Y B E ) L, B e Y L B E (0= Fx D
n n

n

) AR MCEDINCR N (3.139)
n n

Multiply both sides of Eq.{(3.139) by ¢m(x) and Eq#)(3.139) by P ()

add the resulting equations and integrate with respect to x from 0 to L.

1
Z J g\gnu)(sn(x) %)+ B_(¥Ly Fox)+ B_(x) B _(x)) gdx
n

] ]
+ Z f?n(t) (;Jm(x)legén(x)_pn(x) pm(x))dx - fF(x, ) F_(adx  (3.140)
n 0O 0

Using the orthogonality conditions derived previously (Egs. (3. 77 and

(3. 78) ), Eq. (3.140) may be reduced to

»

M, € i+ K_¥E F_(b) (3. 141)
1
M, [ L0 P I, B (s
0
1
2
= | B0 B8, e
0
1
F_(t) =fF(x, t) ¢m(x)dx (3. 142)
0

To reduce Eq. (3.141) still further, consider the homogeneous problem
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ut(tXJ t) + LZX u(tX, t) + le u(x,t) =0 (3. 143)
Let a t
u(x,t) = ¢ _(x)e ™

“nf2 Fnl®) + ¢ mtox @/m(x) T Ly @/m(x) =0 (3. 144)

Multiply both sides of Eq. (3. 144) by ¢m(x) and integrate with respect
to x between 0 and L.

1

1 1
am& [ ¢mﬁ(x)dx+ a . f}ém(x)sz¢m(x)dx+ ]Q{m(x)lﬁx ¢m(x)dx -0
0 0

0 (3. 145)
Using the definitions given by Eqs. (3.138) and (3.142), Eq. (3. 145)
may be reduced to
a M + K =0 (3. 146)
m m

m

Therefore, using Eq. (3.146), Eq. (3.140) may be simplified to

. 1
gm(t)—am gm(t) S va Fm(t) (3. 147)
m M #0
m
« t } 1 a (’t—’?.')d 1 5
g (t) = A e m+f F (,t)em 7 m=1,2,... (3.148)
m m M m
0 m
Hence
0 t
a t «a (t~? ) .l
_ n 1 m
u{x,t) = Z {A e +Jf Vi Fm(’Z) e d'zd ¢m(x) (3. 149)
m=1 0 m
where Am, m=1,2,..., are arbitrary constants.
The constants Am’ m=1,2,..., are determined in the following

manner. Supposc



-177-

u(x, 0) = uO(X)

ut(x, Q) = uot(x)

u (x) = Z A_ @ (%) (3. 150)
m
u_ (%) = Z A_a b (x) (3.151)
m

Multiplying both sides of Eq. (3. 150) by ﬁn(x) + LZX ¢n(x) and both

sides of Eq. (3.151) by ;fn(x), add the resulting equations

ug (B (x) + w (L, & (x) + u (x) & (x)

S Y A BB B 09+ 0 0]

m

(3.152)

Integrate both sides of Eq. (3.152) with respect to x from 0 to 1.

1

j guo(x)ﬁn(x) Fu ()L, @G+ ou () ¢n(x>gdx
0

=

- Z Am g g¢m(x) ﬁn(X) * ¢m(X)L2X ¢n('x) te m¢m(x) ¢n(x)} dx

m

(3. 153)
Using the orthogonality condition Eq. (3. 77) and the definition of Mn

given by Eqg. (3.142)
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|

n

1
A= L f f( o (x)B(x) + u (AL, B (x) + u_ (x) ¢H(X)de
0

n=l,2,...
This concludes the treatment of the differential formulation

of the continuous system. As noted above, there is a direct analogy

between the solutions of the discrete and continuous systems. All the

remarks concerning generalized eigenvectors apply equally well to

generalized eigenfunctions but the practical difficulty of deter mining

generalized eigenfunctions hardly warrants any extended discussion

of systems possessing generalized eigenfunctions.
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CHAPTER 4

FURTHER RESULTS FOR CONTINUOUS SYSTEMS

Introduction

In this chapter, the discussion of continuous systems is con-
tinued. The differential formulation of the undamped system of the
last chapter is shown to be equivalent to an integral formulation. Self
adjointness in the differential formulation corresponds to symmetry of
the kernel in the integral formulation. A brief discussion is given on
the analytical solution of integral equations. The concept of viscous
damping as an integral operator is introduced. Necessary and
sufficient conditions for damped integral systems to be classical are
derived.

Finally, the solution of continuous systems by numerical

methods is discussed, Some results on error bounds are noted.

Theory

The Equivalence of the Differential and Integral Formulations of the

Equations of Motion of Undamped Continuous

Systems
Given a self adjoint operator Lx, defined over a finite interval

(0 = 1) with suitable boundary conditions Bl(u) =B, {u) = 0. Further,

2

assume that A = 0 is not an eigenvalue of the operator, i.e.,

Lu=o0 0<x=1 (4. 1)

has only the trivial solution u = 0.
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Now consider the function y(x, t) such that

L y(x,7)=0 x£7
Byly(x,7)) =0 | Bs(y(x,7)) =0 (4. 2)

where y(x, %) satisfies Eq. (4.1) at every point in the interval
0#x=<1 but the point x = ¥ . At this point (which in an arbitrarily
selected point‘rL in the interval) vy(x, aZ) must be continuous but there
are no demands as to the existence uf the derivatives of y(x, 4 ) at
x =%. This means in effect that y(x, '7) is not a function in the domain
of definition of L (e. g., if the highest order derivative in L is two
then all functions in the domain of definition of L must have continuous
first derivatives). To determine y(x, # ) unambiguously, (42) it is
necessary to impose certain conditions regarding the permissible dis-
continuities of its (n-1)-th derivative where n is the highest order
derivative in LX. The actual determination of y(x,% ) is not difficult
if the following step by step technique is adopted.

In line with the discussion above y(x, 7 ) satisfies the following

equation

Lyl p)= $(x=7) (4. 3)

0 =x=1

where & {x- 7Z ) is Dirac's delta function, i.e.,

7+
f S(X—?Z)dx:l ; 0=7% <1
%-

Formally, integrating both sides of Egq. (4. 3) with respect to x from

')Z_to’)z+
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+

v
f L y(x, m)dx =1 (4. 4)
7

Equation (4. 4) is the jump condition at x = 7 for the (n~l)tbderivative
of y{x, 'Y(/ ) where n is the highe st order derivative in LX. All other
derivatives must be at least piecewise continuous. The technique to
use to determine y(x,')z ) is as follows:
Divide y{x, 7 ) in two ranges
Yy (x, z ) Osx 2
yix, 7 =
y_(x, "Z ) 7 £x 41

As the highest order derivative in Lx is n there are n linearly indepen-

2 -1
dent solutions (u=l, x, x e ) of the following equation

LXu =0 (4. 5)

neglecting any considerations as to boundary conditions. Consider

_ 2 n-1
yﬁ(x,’)l)—aﬂo-k aux+ a, X +....,+a£n~lx
4. 6)
2 n-1 {
yr(x,"z ) = &ro+ a_1x+t a_oX I a. 1%
Now v{x, 7 ) must satisfy the boundary conditions
Bily(=,7)) -0
B(y(x,7)) =0
A R (4.7

. :.O
B_(y(x, 7 ))
Substitution of the expressions for yﬂ(x, ')Z) and vy r(x, 7 ) from Egq.

(4. 6) into the boundary conditions specified by Eq. (4. 7) (which in
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general will involve derivatives of YI(X’ 7 ) and yr(x, Z ) at the end
points x = 0, x = 1) leads to n linear equations in the 2n unknowns
Bpgr Bppr mr @y g A a1 A further {n-1) linear

equations are derived from the following sequence of equations

TR 2 NP ACY Bl
VJlﬂ(X’qZ)\xz"Z :Yi(x’%)lxz'iz
y,}‘“?‘(x;é)]xz,z =y§3:2<x. »g)]xz,z (4. 8)

where .
g ) =Ly (s )
£ 7 dscd £
This set of equations arise from the specification of the piecewise
continuity of the first (n-2) derivatives of y(x, 7 ). The final equation
for the determination of the Zn unknowns in Eq. (4. 6) is given by the
jump condition for the (n-l)th derivative of y(x,’{)(x:?"Eq. (4. 4) ).

A simple example will clarify the details of this step by step

technique for determining v(x, 'z ).

Consider
2 2
d d
L =— a(x) — (4. 9)
% dx dx

It is easy to show that LX as given by Eq. (4.9) is a self adjoint operator
in the following manifold
u(0) =u(l) =0

u'(0) =u'l) =0 0£x<1 (4. 10)
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The jump condition may be determined from Eq. (4. 4)

T+ 2 2
‘—-——~Zd a(x) -af—i——- v{x ’}Z’ Jd= =1
’% dx dxz
e 42
j— digz a®) — y(x7) =1
/7_.
e d‘?‘ 7}'
o= ¥ — ylx, ) =1 (4. 11)
- 7
Equation (4. 11) will be satisfied by the following conditions
a’ Ty
G a5 yixy) = 1
dx _ (4. 12)
x—yﬁ
2
(ii) — v(x, '7Z ) is a piecewise continuous at x :’%
dx

(i) may be further reduced to the jump condition for the third

derivative of y(x, 7 ) ’
3 ="y
d 1
—3 v(x, UA ) YD (4. 13)
ax e 1 a(7) #0

In line with Eq. (4. 6), let
B 2 3
Yﬁ(x’%)"a£o+ aﬂer aﬂzx +a£3x

B 2 3
Y (X’7 ) = aro+ arlx+ ar2* * ar3%®

On substituting the boundary conditions (Eq. (4.10))
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a = a + a .+ a
Lo

ro rl r2 "t r3 0
(4. 14)
agp=a g+ 2ar2+ 3ar3 =0
Using Eq. (4. 8) (n=4) the following sequence of equations may be
developed.
Continuity of y'(x, '7 ) at x= v
2 3 2 3 -
agzﬂ +a£37Z —aro+ ar1'>[+ar27z + a 37& (4. 15)
Continuity of y'(x, 7 ) at x= A
2 + 3 . + 2 3 z
a,qz’Z a£37[ =a arz?aJr ar37Z (4. 16)
Continuity of y'(x, 7 ) at x= 'Z
Z.a£2+ 6a£37i/: Zar2+ 6ar37Z (4. 17)
Jump Condition of y''!(x, f)Z) at x= 'Z (Eq. 4.13)
1
- + = .
6a£3 , 6ar3 a(OZ) (4. 18)

From Eqgs. (4.14), (4.15), (4.16), (4.17) and (4. 18) it may be seen that

I A
Ao A1 05 dp2 Za(/)Z) B a(cz) + 23(7)
a = - %3 ;oa = ,}ZZ ;a = - %2 + 1 723
o 6a(')Z) | Za(’Z) P T2 a('Z) 2 a(f)

B D A A L
43 63.(%) Za('lZ) 3a('Z)’ r3

Hence, y(x, )Z ) has been determined uniquely.

One of the most useful characteristics of the Green's function ,

vix, Z), is that it is a symmetric function in x and Z provided the
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corresponding operator Lx is a self adjoint operator in a given domain
of definition. It is this property of the Green's function which gives
the formulation of the self adjoint continuous system as an integral
equation some advantages over the differential formulation.

From Eq. (4.3) it may be seen that

1

<Tu(x), L y(x, € ).>

u(g)

since y(x, g ) satisfies the boundary and interval condition of the domain

<ylx E), Loux)>>

H

of definition of LX-

The Undamped Continuous System Formulated as an Integral

Equation
Consider the inhomogeneous undamped vibrating system
m(x) zy,(x, t) + Ly 20 t) = f(x, t) (4. 19)
Let YI(X’ ’Z ) be the Green's function associated with the linear differ -

ential self adjoint operator le (satisfying the appropriate boundary

conditions of the problem).

Multiply both sides of Eq. (4.19) by yl(% ,X) and integrate each

ter m with respect to x from 0 to L
1 1
fm(x) y1(9z,x) Ztt(x’ t)ydx + z(?,t) = fy1(7,x)f(x,t)dx (4. 20)
0 0

To reduce Eq. (4. 20) to canonical form let

w0 = [mig) e ar.0
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! ()% yyt7. 3 [0 Y2 wyg ek s wgL0 - Fipe 2

or
1
j Y, %) uix, t)yy dx + u(y, t) = F(7, t) (4. 22)
0
where )
v, = [mp) Yy, [mea) 2 <y )
1
F(x, 1) bf (i) 2 vy, ) i, tyax
If
F(x, t) = F(x) eWt (4. 23)
Eq. (4. 22) may be solved by substituting
u('z,t) = u1(’7) e,\/:—,t
1
af v(7,%) wx)dx+ w(y) = F(7) (4. 24)

0

If F(x,t) cannot be expanded in a series of terms of type (4. 23)
(to give a series of linear integral equations of type (4. 24) ) the Fourier

transform with respect to t of Eq. (4. 21) must be taken to give

1
2 ~ ~ ~s .
- W [y(’z,x) u{x, w)dx + ulx, w) = F(x, ) (4. 25)
0
where
W(x, ¢co) is the Fourier transform of u(x, t) u(x, 0) = ut(x, 0)

F(x,c ) is the Fourier transform of F(x,t) =0
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The solution of Eq. (4. 22) is thus reduced to solving a typical in-
(49, 50)

homogeneous Fredholm integral equation and taking an inverse

Fourier transform if necessary. There is a well known body(42’ 49, 50)
of theory available for the solution of Fredholm integral equations. The
similarity between this theory and the theory used to solve the discrete
matrix case is easily seen. Two of the most useful methods for
solving the inhomogeneous Fredholm integral equations are based on
iterative techniques of successive approximations. One method gives
the solution in the form of a series, called the Liouville-Neuman
Series, which can be shown to be a uniformly convergent series under
certain conditions. However, in many practical cases this series
cannot be summed in closed form and therefore only approximations to
the solution can be obtained.

Fredholm, himself, noting the similarity between matrix problems
and linear integral equations, devised the second method of solution.
It can be used for both symmetric and non symmetric integral
equations of the type given by Eq. (4.24). Fredholm's method involves
the determination of an analytic function of ¢, D(e), called Fredholm's
Determinant. D(e) may be calculated from a convergent power series
in a. The coefficients of the powers of a in this series are determined
from multi-dimensional integrals with a kernel related to the kernel
of the integral equation. Finally, the simple Fredholm minor D(’Z’ X, a)
must be determined from another power series in a (with coefficients

which are functions of ’)Z and x). Schematically the process of solution

goes as follows:
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Given the equation

1
a [ v, x) ux)dx+ w, (7) = F(7) (4. 26)
0
Construct
® n ® n
Dia) = Z %Dnan; D(’;Z,x,a) =y('7,x)+ Z %L Dn(7,x)an
n=0 n=l (4. 27)
1
Dln :f Drn—l(x’ x) dx (4. 28)
0
1
D_(7,% =D_ y(oz,x)—mfy(7,s)Dm_1(s,x>ds (4. 29)
0
D =L D(7.%) =y(7,%) (4. 30)

Starting with Eq. (4. 29) D1(7, x) may be obtained by using Do(7, x) as
given by Eq. (4. 30). Likewise Eq. (4. 28) gives Dl' Proceeding in
this way the two series in Eq. (4.27) may be evaluated. In many
practical cases these series have only a few non zero terms.

The solution to Eq. (4. 26) is given by
1

w(7)=F(7)+ a J -P—(-g—(’a’-‘)’—&) F(x)dx (4. 31)

provided D(e) # 0. If D(a) = 0, then a is an eigenvalue of the homo-
geneous equation (FI(X) = 0).

One distinct advantage of the Fredholm method is that it applies
for all ¢ unless D(a) = 0. If D(a) # 0, the only solution to the homo-

geneous problem is the trivial one ul( '7) = 0. If D{(e) = 0 then for
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Eq. (4.26) to have a solution Fl( ')Z) must be orthogonal to the eigen-
functions of the adjoint integral equation associated with the eigenvalue
a (complex conjugate of a).

To solve the problem in a directly analogous fashion to the
discrete case, i.e., by first determining the eigenfunctions of the
integral operator and superimposing the solutions of the homogeneous
and inhomogeneous problems is quite tedious. However, it is important
for analytical purposes to note that the Hilbert-Schmidt theorem
guarantees the completeness of the set of eigenfunctions as far as
acceptable functions in the domain of definition of the integral operator
is concerned. The eigenfunctions of real symmetric linear integral
operators are continuous, those associated with different eigenvalues
are orthogonal and all the eigenvalues are real. The number of eigen-
functions of a real symmetric linear integral operator may be finite or
a denumerable infinity. The number is finite only in the case of
separable or degenerate kernels, i.e., only if y(x, v/ ) may be expanded

in a finite series
N

ye, ) = ) a (b (7)

n=1
where an(x) and bn(’%) are functions of x and 72 , respectively. It may
be scen from the Green's function that such kernels do not arise in
passive systems.
From the point of view of the applied mathematician or the
engincer, the existence of a complete theory of Fredholm integral

equations is not sufficient. In the last section of this chapter some of
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the available numerical approaches to integral equations will be

reviewed.

The Integral Formulation of Linear Damped Continuous Systems

In line with the above work on the undamped system, the
equations of motion of linear damped continuous systems may be

written as
1

m(x,’{) utt“]’t)d + f C(x,7)ut(7,t)d7z + u(x, t) = f(x,t) (4. 32)
0 0

where m(x, ” ) and c(x, 7 ) are the inertia and viscous damping influence
functions, respectively. m(x,7Z ) may be interpreted as the displace-
ment at point x due to a delta function of acceleration (normalized
inertia for ce) at point 7 . In a similar manner, c(x, 7) is the dis-
placement at point x due to a delta function of velocity (normalized
viscous damping force) at point ’Z . The actual determination of
influence functions is quite difficult. In the fields of aer oelasticity(Sl)
and structural analysis some work has been done on determining ex-
perimentally and analytically influence lines for specific probleruns.
Influence lines are merely the form of the displaceme nt of the entire
structure due to a unit static delta function of force at a particular
point. So far the author has not been able to show how to transform all
damped self adjoint differential systems into symmetric integral
systemsof type (4. 32).

In the integral for mulation of the continuous system, the

boundary conditions are introduced into the problem through the in-
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fluence functions. For passive systems the influence functions are
real and symmetric. As in the differential formulation the concept of
classical and non-classical systems is useful in separating passive
systems into those systems capable of solution by direct expansion in
terms of the eigenfunctions of the undamped problem and those re-

quiring solution by Foss's method.

Necessary and Sufficient Conditions for Integral Systems to

Be Classically Damped

The canonical form of the integral formulation of continuous

systems may be written as

1
f 7)utt £)d7 + f 7> 047 + uGs, ) = fx, 1) (4. 33)

where m(x '{ ) and c¢{ X, Y ) are symmetric functions in x and ’?
It will now be shown that Eq. (4. 33) possesses classical normal

modes if and only if

1 1
f m(x,’iz) c(’l[,g’ )dy = f c(x,’y) m(?,g)d‘y (4. 34)
0 0

To show the sufficiency of the condition, consider the integral operator

1

J m{x,7) r(7)d7y = g

As mix 7 ) is a symmetric function in x and ’7 there exists a

complete set of eigenfunctions ¢n(x), n=l,2,..., such that
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1

1
Of! @_(x) mix,7) G (7)d7 dx

On substituting

1
[w]

n#m

= ] n=m (435)

a t
u{x, t) = Q’n(x) e @

into the homogene ous undampe d problem associated with Eq. (4. 33)

1
anZ gr (X, 7) ¢n(’7 )d"’f = ”%n(x) (4. 36)
Consider
1 1
jf J;ﬁm(x) c(x, 7 ) gb’n(oi)dxdoz =1 (4. 37)
0

Substituting Eq. (4. 36) into Eq. (4.37)

1 1 1
_anzj'ff/@;m(x) clx, g7 ) m(7,8) f(s)dsdxd y =L (4. 38)
5 0

On using the condition given by Eq. (4. 34), Eq. (4. 38) may be rewritten

as

1 1 1
2 = —
%h f-[ 0[ %m(x) m(x,’)Z ) C(/7’ S)ﬁn(s)gsd"xd?" I:m'n (4. 39)
0 0

Noting that

ﬁm & == £l

m

Eq. (4.39) may be simplified to
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271 1
« .
__._PZ_ %m(y) c(7,s)¢n(s)dsd7= Inm (4. 40)

a
m

From Eqs. (4. 39) and (4. 40)

291 1

an

[haﬁ f t[¢m(’7)c(7,s)¢n(s)dsd7=0
m <0

m#n

1 1

‘[ [?Sm("z) C(,}Z:S)Sgn(s)dsd')zzo

i. e., the system is classically damped.

2 2 .
If a =a there are some repeated eigenvalues associated

T
with the undamped system. Suppose, for example there is an eigen-
value of multiplicity ¢ with the following set of orthonormalized

eigenfunctions

(x), SAx), ... (x) (4. 41)
1 2 %a

The system will be classical provided the set of orthonormalized
k3 f » * >:< * . 3
eigenfunctions ¢1 (x), ¢2(X)o .o %a (x), obtained from linear combi-

nations of the set given by Eq. (4.4l), satisfy the following conditions
1 1

[!’ Jr¢r:('7) c(’iz,x) ¢r*(x)dxd7= 0 n#m
0

where
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a
¢ (=) = Z 2 B3 (4. 42)
j=1

dmj is the mjth element of the matrix [Al From the orthonormali-

zation of the ?ﬁ n:;(x)‘s it may be seen that

Consider

e
£

11 “ “
}f jfyﬁm(y) o(7,%) @ (x)axdy=1. = Z Z R 4. 43)
00 i=l 4=1
th

is the mn

a a
where Ijﬂ is defined by Eq. (4.37). But Z Z a
j=1 j=1

term of {”ANIHA]T where the ijth element of [I] is Iij = Iji' As [IJ

milie*n

is a symmetric matrix, [A] exists such that

[A] {I][A]T = E—I—] , a diagonal matrix

Thus by a suitable choice of [A} , the requirement specified by
Eq. (4.42) for the system to be classical may be satisfied. Hence, the
sufficiency of Eq. (4. 34) for systems to be classical has been

demonstrated.
The necessity of Eq. (4. 34) for systems to be classical follows

from the following considerations. If the system is classical,

Bl ) ml7,%) F (047 dx=0 ném

¢m(7)c(?,x);b’n(x)d’zdx-—-0 n#m

O‘\u—a O%»—a
e T N

(4. 44)
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n=1m

fgém("g)gffn(o])dzzo n#m
O, =1

From Eq. (4.44 as the ?(m(x)'s are complete and or thonormal

1
f o(x, 77) FN7IT = 2y %H(X) (4. 45)
0

1
Jr m(x, ,Z ) ¢‘h(7 )d%: bn ¢n(x)
0

1

f fc(x”/’%“Z)d“? flm<x,§>¢n<g>d§} dx
0 0

0

1
) f a'mbm ¢n2(x)dx - anbn, (4. 46)
0

Interchanging dummy variables in (4. 46)

1 1 1

é{‘lgf c(x,g)gdn(g)dg fnl(x,’)f)}én(?)d”y dx*—“anbn (4. 17)

0

On subtracting Eq. (4.47) from Eq. (4. 46)
1

1 ]
f J ¢n(7) ¢n(“’5) {b/' [c(xﬂ/)m(x,g )—c(x,‘g )m(x,r;f)] dx d7d§ -0
0 0

(4. 48)

As Eq. (4.48) holds for all n
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1 1

;
l c(7,x) m(x,g)dx:!m(7,x) c(x,f)dx

Thus the condition given by Eq. (4. 34} is both a necessary and
sufficient condition for systems with symmetric integral operators,
to be classical. The analogy between the necessary and sufficient
conditions for systems to be classical in the three different formu-
lations of physical problems, namely discrete, differential and

integral, is indeed striking.

Foss's Method Used with Non Classical Integral Systems

The equations of motion of continuous systems, in the integral

formulation, may be written as
1
( m(x,7/) utt(7’ t)d7 + J c(x, 7 ) ut( e t)d7+ u(x, t) = {(x, t) (4. 49)
0

To Eq. {4.49) add the identity

ut(x, t) = z(x,t) (4. 50)

Rewriting the homogeneous part of Eq. (4.49)
: .
J mi(x, 7 ) Zt(? , t)d’7 + J c(x,')?) ut( ’7,t)d + ufx,t) =0 (4. 51)
0 ,

Let ¢ t
ux,t) = ¢ (x) e © (4. 52)
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Substituting Eq. (4. 52) into Eqgs. (4. 51) and (4. 50)

1 1
anf m(x, 7 )8,(7)47 + o | fe(x,7)¢n(7)d7+ Fx) =0 (4.53)

0 0
o Fx) =B (x) (4. 54)

Equation (4. 53) is an eigenvalue-eigenfunction equation, giving the

following set of eigenvalues and eigenfunctions

1’ gt n
ﬁl(x); BZ(X) ...... ﬁn(X)

Multiply both sides of Eq. (4. 53) by Q’m(x) and both sides of Eq. (4. 54)
hy ﬁm(x), add the resulting equations and integrate with respect to x

between 0 and 1.

11 11
a, [ [¢m(x) m(X,’y)Bn(r)])d?dxﬂ— @ [j—gfm(x)c(x,y) gn(')z )dqzdx
0 0 00’

1 1
' [ (6,09 & 00+« (5, (afax - f B ()B__(x)x (4. 55)
0 0
Interchange the indices n and m in Eq. (4. 55)

1 1 1 |
i

o« f;gn(x)m(x,y)ﬁm(y)dydm @ f;zfn(x)dxﬂ])yfm(y)d’fdx
00 0

1 |
+ [égﬁn(x) </25m(x) + amgsm(x)ﬁn(x)g dx = f ;3n(x)ﬁm(x)dx (4. 56)
0 D
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On subtracting Eq. (4. 56) from Eq. (4. 55)

11
am>{ J J mix, ) Z( 18, 0) s F 6B, (7)) axdy

11
+ gr!%(x) c(x,oz)gﬁm(ﬂg)dxd?[ =0 (4. 57)

J.oifa #a
n m

1 1 1

!Jm(x ggx (x)B (7)) + & _(x)p (7) dxd7+ f{gxn(x ctx.p) g 7))}
0

dxdy =0 (4. 58)

On substituting Eq. (4. 58) into Eq. (4. 55)

1 1 1
-a_ ffm(xvg);f(xﬁ (7)dxdy + (e e >fgxn(x);zfm(x>dx
0 0 0
1
0
or
1 1 1
rr _f
| e BB edY = ) O o 0) (4. 60)
00 0

Equations (4. 60) and (4. 58) are the orthogonality relationships for the
integral formulation of the continuous system.
The solution of the pr oblem in the integral formulation by Foss's

Method goes through in an analogous fashion to the solution in the

differential formulation. The details will not be considered here.
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Sufficient Conditions for Systems to be Classical

If c(x, 7) can be expanded in a series as follows

1 11
C(X;7): ao+ alm(x,’y) + a’z fm(x:g )m(gﬁ 7)d§+ a’3 fjm(xag)m(g: S)
0 0

1 1
m(s,7)dgd8+ ..... + anf....‘fm(x,g)m( ). .. m( ,y)dgd.,..
0

(n-1) fold n factors (4. 61)
where the ;1i, i=1, 2, , are constants,the system is classically
damped. For, consider
1
[t g axay

0
B m 2 ~m 4 cm 2n ~.m
-aoén + alxmgn + azzmgn Foaa. an)m Sn
where Sin =0 n#Fm
=] n =m
and the ?fn(x)'s, n=l, 2, , are eigenfunctions of the undamped
problem. Hence,
1
j ¢u(x) C(X’7) Q/nl('y)dxd'? =0 n £ m
0
= Z a 24 . 4. 63
- 17 m n=1m (4. )
; .

which shows that the system with a damping influence function given by

Eq. (4. 61) is classical. The series for c(x, %) given by Eq. (4. 61) is
/Z g y

analogous to the Caughey series in the discrete case.
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Numerical Methods in Continuous Systems

It was noted above that even in the case of classical systems, the
actual determination of the eigenfunctions and eigenvalues of the
system is in general quite a difficult problem. The number of problems
which are exactly solvable, analytically, are very few, e.g., uniform
beams, some uniform plate problems. The simplest possible generali-
zation of the string problem (one dimensional wave equation), for
example, a string with non uniform mass distribution, leads to an
eigenvalue-eigenfunction equation which may or may not be solvable
in closed form by analytical methods. Although it is very important to
have a general theory of continuous systems, it must be realized that
in practical applications the main emphasis is on the numerical
analysis of the system.

(52,53

Numerical analysis ) broadly defined involves the concept
of approximate analysis. The closeness of the actual solution of the
approximate problem to the exact solution of the original system consti-

tutes the criterion of effectiveness of the numerical analysis. There are

three main concepts in approximate analysis:

(i) Simplification of the model of the continuous structure, i.e.,
replacing the continuum by a multi-degree of freedom discrete
structure which is then solved exactly. |

(ii) Using the methods of the numerical analyst in an approximate
solution of the differential or integral formulation of the problem,

e. g., the finite differences method, the iteration methods, etc.
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(iii) The application of variational principles, in which use is made

of the minimum properties of certain functionals.

As (i) and (ii) are more suited to the type of problems of interest
in this work, a brief discussion will first be given on (iii). The
variational formulation of mechanics gives great insight into the under-
lying structure of the equations and provides the basis for the use of
such techniques as the Rayleigh-Ritz approximation, the Rayleigh
Quotient, Energy Methods, etc. The Rayleigh-Ritz approximation can
be used to advantage in continuous systems. The method involves the
selection of a set of functions which satisfy the boundary conditions of
the problem. The approximate solution is then assumed to be a series
of these functions with arbitrary coefficients. The coefficients are
then selected to minimize or maximize a given integral and in this
sense are best possible for the selected set of functions. The Rayleigh
Quotient, which was also used in the discrete case, gives bounds for
the eigenvalues of linear self adjoint operators. Any function satisfying
the boundary conditions of the operator may be used in the Rayleigh
Quotient. Naturally, the closer the function is to an eigenfunction the
better the approximation to the eigenvalue. Quite often, the static
deflection curve is used to determine the lowest eigenfrequency.
Although many of these techniques were developed for the undamped
problems, their extension to the approximate solution of the damped

problem follows in an obvious manner.
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Lumped Parameterization of Continuous Systems

Replacing the continuum by a discrete N degree of freedom

(4)

system is a technique first used by Rayleigh. It is based on physical
rather than mathematical modeling in that the lumping of the parameters
is done with the physical model in mind. The Myklestad-Prohl
technique is an example of a very successful application of this
approach to the vibration of beams. One question which always arises
with any lumped parameterization scheme is what effect the degree of
lumping (i. e., the number of degrees of freedom allowed) has on the
accuracy of the solution. By replacing a continuous system by a
discrete system, one is replacing functions by vector s and an infinite
set of eigenvalues by a finite set. The question of accuracy is then
twofold, namely, how close the N dimensional vector specifies the
displacement of the N corresponding points of the continuous structure,
and in what sense does a finite set of eigenvalues approximate an
infinite set.

To illustrate some of the difficulties in the lumped parameteri-
zation of continuous systems the solution to an exactly solvable
problem will be compared to the solution of its discrete approximation.
The uniform elastic string in transverse vibration, originally solved
by Lagrange with an excellent account of the analysis in Rayleigh's

(4)

work, provides an interesting example of this type of comparison.
By considering a uniform elastic string of density P held by a tensile
force T between two fixed points, a distance L apart, he shows that

the eigenvalues and eigenfunctions of the continuous system are
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/T
Q):o s I‘E “\/ -)—(—J—- (4‘« 64)
uso = ASO sin E—E X (4. 65)

By considering the string to be composed of N sections, each of length
L/N and placing one half the mass of the section at each end of the
section, he derived the eigenvectors and eigenvalues of the resulting

(N-1) degree of freedom system

sin ZL
N
N N o z;;n N _ (2N rm T
gUrg :Ar . 25 Co_ :g‘—-—l:) suz—z—ﬁ—g “\/70-— (4. 66)
's:'Ln.—(--IEI-—--——-————;\:;)rTT

/

Hence, with this scheme of lumped parameterization, although the
frequencies are in error, the normal modes for the discrete case
are in fact correct, i.e., they give the exact displacement at the
mass points. A measure of the error in the frequencies is

(¢'e] N T

o - w rw-2N sin 5— 2\ 2
Lt = SN L if | L 1 (4. 67)
0 B . Tw 24 ( N} TN << :
w 2N sin 5=
r ZN
(55) . . . .
Duncan uses a different scheme of lumped parameterization in

that he replaces the mass of each segment by a concentrated mass at
the centre. For the case of the uniform string Duncan's results are
identical to those given above using Rayleigh's method of concentrating
the masses. Two other problems in vibration lead to the same

equation as the one dimensional wave equation considered here.
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These are the torsional oscillation  of a uniform elastic shaft and the
longitudinal oscillation of a uniform and straight thin elastic rod. When
using either Rayleigh's or Duncan's scheme of concentrating the mass
{or moment of inertia in the case of torsional vibrations) the elastic
reaction to the displacement of the concentrated mass must be the

same as the elastic reaction of the continuous system at the same point.
If these ideas are extended to the non uniform case it is easy to see

that the Rayleigh method of mass concentration has some advantage

when dealing with shafts formed from many uniform sections.

Frequency Error Law in Non-Uniform Vibration Problems

In the last section it was shown that the error in the natural
frequencies of uniform continuous systems obeying the one dimensional
wave eqguation, when calculated from the Rayleigh or Duncan discrete

approximation, has the form

Cl)roo— SI TI'Z Vr 2 r
ENTTo® o Y |7 ,Mfﬁ) iy o< (4. 68)
r
2\
i.e., itis O ({—§~) | for {r/N) small. Now it will be shown that for non-
{

uniform vibrating systems the error is still O(l/NZ) for (1/N) small.
Assume for the moment that the mode shapes of the discrete
system correspond exactly at the mass concentratiyon points to the
eigenfunctions of the continuous system. This assumption will later be
examined. The approach will be to use Rayleigh's Principle to

determine the eigenvalues of the discrete system and to compare these
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eigenvalues with the exact eigenvalues of the continuous system. The
method will be applied here to the longitudinal vibrations of a non-
uniform elastic rod but it may be used on any non-uniform system.

For convenience of notation, let the section lengths be 2h. The
lumped parameterization method follows Duncan's approach of mass
concentration in the center of each section. The kinetic energy of the
structure, considered as a N degree of freedom system, vibrating in a

pure mode may be written as

§’+h
r -1 ZZ“‘E)I r(x) dx (4. 69)

gi - (2i-1)%  ; 2hN - L
i=l,4,...N
The kinetic energy of the section of the continuous system,
gi_h £ x L gi+h may be written as

§i+h
AT, :%—wzj m(x) uz(x)dx (4. 70)

Expanding Eq. (4. 70) by Taylor series
+h
gi

AT, = —zl,;wzf [m@i)u‘z(gi) s (x-g) $mi(e)u’(E)

e )?
g Crnn (8 )u’(,)+ 4m(§ a5 )u(E)

2

+ 2m(%.) (u'(gi)) + zm<gi)u(§i)uu(gi)} + J dx
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: , 3
_ %,.w‘glem(gi)u‘(gi) b B Lo pul (5 )+ 4m(E Jug )ug))

2
+ Zm(gi)(u'(gi)} + Zm(gi)u(gi)uu(‘gi)ZJr o } (4. 71)

The concentrated mass at %, is
§.+h h (- gi)z
f mx)dx - Em(§1)+ (xAgi)m‘(g’i) + o m"(g'i)+_ o ; dx
5i7h §i7h |
h3
= 2hm(E,)+ 5 mi(E)+ ... (4. 72)
Hence

i3 2
aTiATis =76 g4m'(gi)u(gi)u!(gi)+ Zm(gi)(ul(gi))

¢ 2m(yuE e f+ o)

Therefore for the N sections

T s - ogm? - 4. 73
—"—'Q“)“Z" = ) N———Z—E“ (4. 73)

To calculate the potential energy (strain energy) let k(x) be the elastic
stiffness at point x in the rod.

The stiffness element between x= :gi and X:§i+l’ k( gi’ §i+1)
may be calculated from the following consideration, based on two

springs in series

1 1 1 ”
R _ (4. 74)
KE) K385 Sy
k(%1 K(E;) (4.75)

- M5 E ) T k(g;)-k(Fi )
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The potential energy AViC of the corresponding section of the
continuous system consists of two parts. The first part which is
identical to Eq. (4. 75), is the contribution to the potential energy of
that part of the displacement which is derivable solely from consider-
ation of statics (i.e., given that there is a relative displacement
between the points x:gi and x= gi—%l of (u(gi+1)—u(\‘5’i)) calculate the
potential energy of the section from the consideration of a non-uniform
massless spring). The second part of the potential energy of the
section consists of the contribution of the inertia force due to the
distributed mass. As the inertia load is proportional to h and the
stiffness of the section is also proportional to h (ends assumed fixed),
the relative displacement due to the inertia loads is proportional to h2
and the addition to the potential energy is of order h3. From these

considerations,

.3
AV, =BV, = O(h”)

vV -V _ = O(hz)
C S

From Rayleigh's Principle

\% vV + O(h%) 5
TS =_C 5= w_+Oh%) = e« + O
s T + O(h%)

J——-) (4. 76)

NZ

In order to complete the proof il is necessary to justify the initial
assumption that the displacements at the mass coz;centration points

are the same for the continuous system and its discrete approximation.
This may be done by using the Lagrangian method of solution as follows.

Let u (x), r=1,2,...N, be N displacement functions satisfying
r
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the required boundary conditions of the problem. The mass influence

functions m:S may be calculated from

m:S :f m(x) u (x) u (x)dx (4. 77)

If a set of vectors defined as follows

( w5
u; (%)
g‘%%z ¢ ulEy) . i=1,2,...N (4. 78)
ui(‘;N)
\ /

. . . . S
are used to determine the mass influence coefficients m of the
rs

discrete system it is easy to see, using the expansion procedure

developed above, that

c s 1
Mg m Mg T O(F) (4.79)

The stiffness influence coefficients are the same in the continuous and
discrete systems as the elastic specification of the actual body is
identical to that of the segmented body. Hence from Eq. (4. 79) the
difference between displacement of the actual body at the points x= Ei’
i=1,2,...N, and the displacement of the corresponding mass concen-
tration points in the discrete approximation is O(l/”NZ). But a difference
in displacement of O(l/Na) can only effect the square of the frequencies
obtained from the Rayleigh Quotient by O(l/NZ). Hence the square of

. . . 2
the natural frequencies of the discrete approximation are within O(1/N )
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of the square of the actual frequencies of the continuous system,

In practical computations it is possible to use the foregoingrule
to improve the accuracy of the estimates of the natural frequencies of
the systems. Suppose W is calculated from a discrete appr oxiﬁation

of M and N sections {M, N large) then

2 -2
COZN = o o+ kN
3 2 -2
COZM = Q)O + kM (4. 80)
2 -2 2 -2
2 —C!)NM ""OOMN
Wy = -2 )
M - N

If the mass concentration points were not in the middle of the
section then the error in TC-TS would be O(1/N). Consequently if
the total mass of the section was concentrated at other than the center
the estimate of the square of the natural frequencies would be only
correct to O(1/N). However, by concentrating half the mass al each
end of the section the error in the square of the frequency may be
shown to be still of O(l/NZ). In the literature a rough rule of 13
segments per complete wave length is generally counsidered as
adequate for engineering applications.

It should be noted that, even if there is close agreement between
the mode shapes and frequencies of the discrete and continuous systen,
there is no need for a similar correspondence in the stress distribution.
Questions of stress and ultimate strength cannot be handled by the
discretization process described above.

Gradwell(56) in a recent paper showed that for uniform beams
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with clamped pinned or sliding ends the Rayleigh and the Duncan model
lead to practically equal errors and the errors are of O(l/N4). For
beams with one or both ends free the errors are of O(l/NZ),./ and error
(Duncan) = -1/2 error (Rayleigh).

Livesley(57) working on some beam vibration problems, noted a
similar result with the Rayleigh model of a uniform beam simply
supported. He concludes that the surprisingly small error is due to
the fact that the modes for the discrete case are identical with those
of the continuous system while at the same time the boundary conditions

may be satisfied exactly. This small error could hardly be achieved

with non uniform systems under general boundary conditions.

Solution of Continuous Systems by Numerical Methods

In contrast to the physical motivation for the lumped parameteri-
zation methods of the previous section, the numerical analysts approach
the solution of continuous systems from a purely mathematical point of
view. In the past significant work has been done by the numerical

(21, 24)

analysts on the special problems of mathematical physics. In
the realm of partial differential equations, for example, various
difference schemes have been used for the numerical solution of
diffusion and heat flow problems, transport problems, wave propa-
gation and elastic vibration problems, etc. Questions of stability |
and convergence of the solution of the resulting set of difference

equations have been settled for certain classes of problems. However,

for the general type of linear differential operators used in Chapter 3
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very little work has been done on the effect of mesh size on the
stability and convergence of the solutions of the difference equations.

Much work has been done on determining the eigenvalues and
eigenfunctions of linear differential operators. Here again the
question of error bounds has not been satisfactorily investigated. In
practical engineering analysis two of the more usual methods of
solution are the iteration method and the Galerkin method, The basis
of all iter ation methods is the selection of an initial solution which is
in some sense close to the exact solution and the continued refinement
of this solution by the iteration process until the resulting error is
judged to be small. The Galerkin method expands the solution in a
linear combination of known functions. The best linear combination is
determined from a set of linear simultaneous equations.

In the last few years, great interest has developed in the numerical
solution of integral equations. As in the case of partial differcntial
equations the main emphasis has been on difference methods of
solutions. Linear integral equations with symmetric kernels, like self
adjoint linear differential equations, lead to symmetric difference
equations and so in principle, may be solved by the methods of Chapters
I and II. The question of error bounds on the solution of the difference
equations approximating the integral equation (the error bound being the
modulus of the maximum difference between the actual solution of the
integral equation and the exact solution of the approximate problem)
is an interesting one and has not been fully investigated. Wielandt, (54)

in a recent paper has proposed a method for determining the eigen-
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values and eigenfunctions of symmetric integral operators to within
prespecified bounds. In a similar vein, Kantorovich and Krylov(Sg)
have presented results on error bounds of the complete solution of
symmetric integral equations.

In conclusion, it may be said that in the last decade a considerable
amount of analytical work has been done on the numerical solution of
the equations of mathematical physics. Methods that have been used
in the past in a2 more or less heuristic manner by engineers and
physicists have been subjected to critical analysis. It is to be hoped

that in the near future, the questions on stability, convergence and

error bounds will be settled.
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SUMMARY AND CONCLUSIONS

The classical normal mode analysis, as applied to the vibration
of dampe d lumped parameter multi-degree of freedom linear systems,
was reviewed. It was shown by Caughey that the classical nor mal
mode theory can be used to determine the response of systems, the
damping matrices of which may be expanded in a particular power
series of the matrices of the system. Systems with damping of this
type are called classical systems and include as special cases those
with Rayleigh type damping. Non-classical systems, if solvable by
normal mode methods, must first be transformed to 2N-space and
then the solution obtained using the results of Foss. However, not all
non-classical systems can be so treated, and thus the justification of
the general theory of vibration of linear dynamic systems as presented
in this work.

To avoid unnecessary recourse to the general theory, a con-
structive necessary and sufficient condition for systems to be classical
was presented. To simplify the analysis of weakly coupled non -
classical systems some results from perturbation theory were derived.
The stability of these systems was investigated using Liapunov's Direct
Method. Whereas the normal mode analysis and its counterpart in the
general theory — the generalized eigenvector -~ gives valuable insight
into the physical synthesis of the system it may not be the most
efficient method for calculating the response of the system particularly

when using high speed digital computers. Some discussion on this point
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was presented and a useful algorithm for the deter mination of the
response of these systems was given. A matter of considerable
practical interest in this area is the deter mination of bounds for the
natural frequency and coefficient of damping for each of the uncoupled
modes of the system. Various results from matrix theory on the
bounds of eigenvalues were presented and applied to the problem under
discussion.

The second half of the thesis follows naturally from the first and
is concerned with the response of continuous linear vibrating systems.
In the continuous system one may use either an integral or a differential
formulation. The concepts of classical and non-classical systems are
still valid when dealing with continuous systems. Constructive
necessary and sufficient conditions for continuous systems to be
classical were derived. Whereas in the discrete systems exact
solutions are always obtainable, although considerable computational
effort may be required when the order of the system is high, this is
not so, at the present time, in continuous systems. The reason for
this is that not all linear differential or integral equations are solvable
in closed form.

The numerical solution of continuous systems involve a discreti-
zation process. In effect the continuous system is represented as a
lumped parameter system with many degrees of freedom. The
literature is particularly poor on the approximations involved in the
discretization of linear systems. Some comparisons hetween exactly

solvable continuous systems and reasonable lumped parameter
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approximations were given. A result of Duncan's for uniform
parameters was noted and a discussion of the non-uniform case
followed. The error bounds on the eigenvalue s and the numerical
solution of integral equations with symmetric kernals were discussed.
As a result of previous work by other investigators and this
work, it may fairly be said that the general theory of lumped parameter
linear damped systems is now fully developed. Whereas the theory of
continuous linear systems is satisfactory for most practical purposes,
some further results from numerical and functional analysis must be

obtained before the theory will be fully developed.
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