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Abstract

Water waves generated by underwater landslides threaten coastal communities near heads
of fjords, near heads of underwater canyons, near river deltas, and on volcanic islands.
This work provides a thorough analysis of water waves generated by two-dimensional
underwater landslides using experimental, theoretical, and computational means. Water
wave amplitudes generated by an underwater landslide are a function of the landslide
length, the initial landslide submergence, the incline angle measured from horizontal, the
characteristic distance of landslide motion, the characteristic duration of landslide motion,
and the landslide rate of deformation. Nondimensional wavemaker curves constructed
from the aforementioned parameters allow water wave amplitudes to be predicted. These
wavemaker curves apply broadly to water waves generated by unsteady motion of a
submerged object provided the motion is governed by only one characteristic distance
scale and one characteristic time scale. Water wave amplitude predictions can be used

for hazard mitigation studies.

An analytical solution of underwater landslide center of mass position in time provides
the characteristic distance and time scales of landslide motion. Two-dimensional
experimental results on a 45 degree incline confirm the existence of wavemaker curves
for solid block landslides as a function of nondimensional geometrical quantities and
what is called the Hammack number. The Hammack number is the correct
nondimensional time for water wave generation problems. Water wave amplitudes
generated by solid block landslides can be predicted from the wavemaker curves if the
center of mass motion is known. The analytical solution reproduces the center of mass
motion of solid block and granular material landslides. Experimental results of granular
material landslides on a 45 degree incline show that Iandslide deformation reduces water
wave amplitudes. Therefore, water waves generated by solid block landslides provide an
upper bound on water waves generated by geometrically and kinematically similar
deforming landslides. A criterion for the generation of linear water waves is given along
with criteria for deep (or long) wave propagation down a constant depth channel.
Simulations of water waves generated by underwater landslides were conducted with an
inviscid fluid dynamics code. The waves simulated by the code agree reasonably well

with experimental results.
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Chapter 1

1. Introduction

Tsunamis are water waves generated by impulsive geophysical events such as
earthquakes, volcanic eruptions, or landslides that usually occur at the ocean bottom or
along steep banks. Tsunamigenic underwater landslides involve the failure of a mass of
sediment (or fill) that can range in length over more than six orders of magnitude, with
larger landslides typically occurring less frequently. Damaging tsunamis may result from
the failure of sediment along the steep bank of a fjord, near the head of a nearshore
submarine canyon, at the mouth of a river, or along the coast of volcanic islands. Figure
1.1 indicates the location of large underwater canyons immediately off the California
coastline. Sediment failure may occur spontaneously during extremely low tides or
sediment laden flooding; or, failure may be triggered by an earthquake, storm waves, or
by external loading of the sediment (or fill). A number of damaging underwater
landslides that were on the order of a few hundred meters in length appears to have been
induced by nearshore human construction over the last century. Evidence of
tsunamigenic landslides tens to hundreds of kilometers in length have been documented
at underwater alluvial deposits with typical slopes smaller than several degrees. When
underwater landslides of this magnitude occur, sediment failure is either presumed or
known to be seismic in origin and may involve liquefaction (or translational motion) of
an enormous volume of sediment. Modern sonar soundings and records of underwater
cables sheared apart by sediment failure often form the only quantitative evidence of
tsunamigenic underwater landslides. Some form of wave run-up observation or evidence

is often the only indication of wave heights.



2
1.1 Qualitative Laboratory Scale Results

A qualitative introduction to the experiments conducted for this work will orient the
reader in the following chapters. It is also important at this time to describe some of the
constraints that have shaped the experimental work. The height of a tsunami is often its
most important feature when conducting hazard mitigation studies or when attempting to
explain existing wave damage. An experimental study of water waves generated by
underwater landslides should enable prediction of wave heights near the wave generation
region. In general, wave heights can be predicted based on the initial landslide geometry,
the landslide center of mass motion, and the landslide rate of deformation about the
center of mass. The height of a tsunami helps determine if it should be considered as a
linear or a nonlinear wave. One expects underwater landslides to generate linear water
waves if the nondimensional initial submergence is large or the slope of the incline is
small. Since these conditions are met by most underwater landslides, some authors have
doubted the ability of an underwater landslide to generate significant water waves,
including LeBlond and Jones (1995). An important exception is landslides induced by
nearshore human activity which are often partially aerial and exhibit nonlinear wave
phenomena such as bores. At laboratory scales, breaking waves are subject to surface
tension, viscous, and air entrainment scale effects and are therefore not studied in this
work. Almost all of the water waves generated by underwater landslides in this work will

be shown to have been linear waves.

In the context of this experimental work, a landslide is understood to be any submerged
body (or mass of granular material) sliding down the surface of an underwater incline.
When a solid block is used to simulate an underwater landslide, the results can be scaled
up to any size provided that scale effects do not significantly alter the laboratory solid
block motion or wave propagation. For the size and density of solid blocks used herein,
there are no relevant scale effects. Hence, all that is required to study the water waves
generated by solid block landslides is that the solid block material be able to slide along
the incline material (which occurs at an incline angle 6>20° for the materials used herein).
The situation is not so simple for deformable material landslides. While underwater
landslides can be triggered along oceanic slopes of less than 1°, these events typically
cover many square kilometers and are usually initiated through liquefaction of a sediment
layer by an earthquake. The sediment gravitational force manages to overcome the shear
stress along some shear plane only because an external action has raised pore water

pressures and reduced effective sediment strength in a shorter period of time than
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diffusion of pore water pressure away from the shear plane. Moreover, the sediment
shearing produced by underwater landslide motion is often sufficient to keep landslides

moving over distances of many kilometers.

Water waves generated by an underwater landslide at laboratory scale can have wave
heights that are only a fraction of a centimeter above or below the still water level. So,
although Scott (1989) describes how to scale landslide failure (with corresponding pore
water pressures and effective stresses) to laboratory scale with natural sediment inside a
centrifuge, it would be difficult to measure accurate wave heights in such an experimental
system. Inducing positive pore water pressures on sediment landslides under ordinary
gravitational conditions would also impair the accuracy of wave measurements. For
example, injecting pressurized water into the sediment raises the still water level
measurably, and shaking the sediment induces additional surface waves. On the other
hand, a dense sediment with equilibrium pore water pressures prior to failure can
experience negative pore water pressures during failure. Negative pore water pressures
hold sediment particles together and inhibit realistic sediment failure. Consequently, the
solution used to ensure material landslide failure herein involves two separate measures:
i) granular materials with large particle sizes (about 1| mm in diameter) and
correspondingly large hydraulic diffusivities were used in order to ensure that pore water
pressures remained near equilibrium; and, ii) the incline angle was steep enough for the
granular materials to fail in the absence of external stimuli (which translated into an
incline angle 8>30° for the granular materials used herein). Hence, material failure and
landslide motion were assured a priori for material landslides, as was the generation of

water waves.

Figure 1.2 shows that a cross-section of the southwest face of La Jolla canyon can attain
slopes approaching 22°. Fjord banks can achieve even higher slopes of around 30°. For
all experiments reported herein, a sediment mass accumulated along a steep underwater
canyon or fjord bank was modeled as a right triangle initially at rest on a straight incline
0=45" from horizontal. The right triangle geometry results in a convenient separation of
wavemaker physics as the solid block slides down the incline: the motion of the
horizontal top face creates a trough above the block while the motion of the vertical front
face creates a crest ahead of the block. The combined water movement acts like a
submerged flow doublet when landslide motion first begins. All underwater landslides
studied in this work will initially have a top face parallel to the undisturbed free surface

and a front face perpendicular to the free surface. The use of a single initial landslide
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geometry for all experiments allows for geometrical similarity between experiments. In
addition, the dynamical coefficients for both added mass and drag forces can be
determined empirically as a function of this geometry for all landslides studied. The
combination of incline length and initial block submergence used herein allows most
solid blocks to reach velocities within a few per cent of the terminal velocity near the
bottom of the incline. While the experimental geometry is not natural, it is also not too

far away from real wave generation scenarios.

Figure 1.3 shows four frames of a solid block sliding down and coming to rest at the
bottom of the incline. Dye had been deposited on the block surface just before motion
began in order to visualize the water flow near the block. The first frame (a) shows the
vortex formed behind the sharp edge of the accelerating block, the only large scale
feature of the fluid dynamics that is controlled by viscosity. A dip in the free surface is
formed immediately above the accelerating block whereas the front face of the moving
block has created a positive wave further to the right. The exposure time was long
enough to demonstrate block motion while the framing rate of 5 frames per second
provided a few frames per trial. The second frame (b) shows the formation of a
recirculation region behind the block just prior to coming to rest. The dip in the free
surface seems to be following the top of the solid block. The shoreward side of the free
surface dip is steep enough for significant nonlinear piling up of water and potentially
wave breaking (while propagating to the right away from the shoreline). The last two
frames (c) and (d) show the evolution of the shed vortex and the free surface after the
block has come impulsively to rest. The vortex core consists of small bubbles swept

from the block surface and trapped in a (virtual) line connecting one wall to the other.

Figure 1.4 documents the deformation of a mass of crushed calcite initially the same
shape as the solid block in Figure 1.3 into a gravity current near the bottom of the incline.
The first frame (a) shows the landslide material initially impounded behind a gate that
retracted into the incline in about 40 ms. The shearing of the material by the retracting
gate energized the adjacent layer of particles that then moved about one particle diameter
to the right in the time it took to fully retract the gate. For early times around that of
frame (b), the initially solid mass of material failed and underwent large strains mostly in
the direction parallel to the incline. Particle blurring indicates that the particles further
down the incline are moving faster. In frames (c) and (d), surface shearing by the water
stripped material from the landslide surface to form a gravity current with significant

internal circulation. Particles near the gravity current surface are seen to be nearly



5
immobile relative to the main body of particles. The two wave generation mechanisms
described above were also acting to form a leading positive wave followed by a negative
wave above the material. The waves propagated down the constant depth channel as a
dispersive wave train. Figure 1.5 shows detailed traces obtained from a high speed movie
of a similar mass of crushed calcite moving down the incline. The lines on the right of
each landslide delineate the front face of the landslide from the side and help eliminate
changes in camera perspective. The transition from strained landslide material to flowing

gravity current is perhaps more evident in Figure 1.5 than Figure 1.4.

Figure 1.6 provides a qualitative comparison of landslide failure for three different
landslide materials. Each cross-sectional profile was drawn 0.30 s after the material
landslide began. Results in Section 5.1 demonstrate that elapsed time (as opposed to
distance traveled) is the correct way to compare these three material landslides. There is
one large friction angle material (crushed calcite) and one large density material (lead
shot). All particle sizes are roughly identical at about 3 mm in nominal diameter. The
masses of spheres had an internal friction angles of nearly 30" in water whereas the
crushed calcite had an internal friction angle of 47° in water. All materials can be
considered noncohesive. For each material, the center of mass motion, the rate of strain,
the mode of failure, and the relative strength of water shearing to gravitational forcing are
all different. The crushed calcite landslide apparently retains some memory of its original
shape while the lead shot landslide has significantly collapsed. The glass bead landslide
shows some intermediate behavior. At 0.30 s after release, the lead shot landslide
exhibits a center of mass displacement along the incline of nearly twice the other two
landslides. Indeed, each material shown in Figure 1.6 can be said to be in a different
constitutive regime at early times. The crushed calcite behaves as a strained soil that is
deformed largely by surface shearing; the lead shot behaves like a granular medium in
air; and, the glass beads behave as an immiscible Newtonian fluid mass that is molded by
boundary shearing.

1.2 Novel Contributions

Two-dimensional water waves generated by underwater landslides have been studied
experimentally using solid blocks in the past. The work done to date provides a
qualitative understanding of the water waves generated by underwater landslides but does
not allow for prediction of the wave heights that may result from an arbitrary underwater

landslide. A few underwater landslides have also been simulated numerically without
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gaining much insight into the landslide parameters that control wave amplitude. In this
work, the theoretical wavemaker formalism of Hammack (1972) is applied to underwater
landslides for the first time. Solid blocks of one chosen geometry are then used to
construct the first experimental wavemaker plot for underwater landslides on a 45°
incline. The characteristic wave amplitude obtained from the wavemaker plot are used to
scale other wave characteristics such as the conversion of solid block kinetic energy into
wave energy. Conditions for the generation of linear water waves by an underwater
landslide are given for the first time along with conditions that determine whether far-
field waves in a constant depth channel propagate as deep water waves or as long waves.
The wavemaker formalism is also extended to describe the water waves generated by
deformable material landslides. This marks the first parametric study relating the
observed landslide rate of deformation to changes in the nondimensional wave
amplitudes. This work provides the theoretical foundations and experimental methods to
study the water waves generated by arbitrary underwater landslides. That is, the general
form of the wavemaker plot can be applied to different landslide geometries, different
landslide kinematics, and new far-field bathymetries. As a case in point, simulations of
water waves generated by underwater landslides yield wavemaker curves for a variety of

initial landslide geometries.
1.3 Thesis Outline

This chapter has introduced general features of underwater landslides, described some of
the constraints of laboratory scale studies of underwater landslides, and outlined the novel
contributions contained within this thesis. Chapter 2 summarizes the literature of water
waves generated by underwater landslides, including field observations, experimental
work, and numerical simulations. Some soil mechanics and gravity current literature are
also discussed. Chapter 3 derives the theoretical form of the nondimensional wavemaker
plot. The analysis shows that the landslide kinematics must be known in order to predict
wave amplitudes. Therefore, solid block motion is studied theoretically in Chapter 3 in
order to understand the influence of landslide properties on landslide kinematics and
wave generation. Analytical tools are also developed that are able to predict water wave
amplitudes generated by underwater landslides given landslide kinematics. Chapter 4
discusses the experimental apparatus and procedures used to obtain and interpret the
experimental results presented in the following chapter. Chapter 5 begins with the results
of landslide kinematic observations to be used in the wavemaker formalism. Next, the

wavemaker plots for solid block and deforming landslides are presented along with
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general features of the water waves generated by underwater landslides. For many wave
characteristics, the experimental results are compared with the literature cited in Chapter
2 and the theoretical results of Chapter 3. Chapter 5 also features some numerical
simulations of underwater landslides. Chapter 6 summarizes the thesis and restates the
main conclusions to be drawn from this work. Appendix A compares all wave records of
repeated trials including numerical simulations. Appendix B provides the error analyses
of experimental and simulation results. Appendix C summarizes the raw experimental,

theoretical and simulation data.
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Figure 1.1: Location and tsunami hazard of submarine canyons off of the coast of
California taken from McCarthy ez al. (1993). Major coastal development may be at risk
due to water waves generated by earthquake triggered underwater landslides. High,

moderate, and low are designations given by McCarthy et al. (1993) for tsunami hazard.
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Figure 1.2: Bathymetry near the head of La Jolla submarine canyon taken from Shepard
and Dill (1966). The southwest face of La Jolla canyon has a mean slope of 22° that
faces the shoreline. An earthquake could initiate an underwater landslide if sufficient

sediment were to accumulate on such a slope.




10

Figure 1.3: Four frames from a solid block landslide with dye initially deposited on the
block surface. A starting vortex is formed in the wake of the block. The vortex is shed
when the block comes to rest at the bottom of the incline. A negative wave is clearly

visible above the solid block while it is still in motion.
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Figure 1.4: Four frames from a material landslide of crushed calcite on a 45° incline.
The initial deformation of the material consists of lateral spreading before a gravity
current is formed by shearing the surface of the landslide. A negative wave is visible

above the material when it is in motion.
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Figure 1.5: Profile traces of a crushed calcite material landslide showing material
deformation and development of a gravity current with more temporal resolution than
Figure 1.4. The lines appearing on the front face of the landslide resulted from a

combination of perspective and lighting.



Crushcd qalpite with nominal diameter 3.33 mm, suspension density 1950 kg/m3, and
internal friction angle 47°. Profile from Trial 32 with center of mass 164 mm down incline.

Glass beads with nominal diameter 2.96 mm, suspension density 1935 kg/m3, and internal
friction angle 29°. Profile from Trial 82 with center of mass 183 mm down incline.

Lead shot with nominal diameter 3.11 mm, suspension density 7320 kg/m3, and internal
friction angle 34°. Profile from Trial 86 with center of mass 321 mm down incline.

Figure 1.6: Comparison top to bottom of crushed calcite, glass bead, and lead shot
material landslides at 0.30 s. The cross-sectional profiles were traced from high speed
movies of landslide motion and are shown to size. All materials have similar particle

nominal diameters and initial landslide volumes. Landslides are moving to the right.
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Chapter 2

2. Literature Review

English language literature pertaining to water waves generated by underwater landslides
is reviewed in this chapter. Observations of underwater landslide-generated water waves
are taken from the open literature. Significant variations exist in landslide scale, regional
geology, and wave amplitudes associated with the observations. Experimental studies of
water waves generated by solid block landslides and similar analogs are reviewed,
followed by a summary of attempts to simulate water waves generated by underwater
landslides. Soil mechanics related to undrained soil failure are briefly discussed as they
are crucial to understanding landslide initiation. The precise moment of landslide
initiation and the exact extent of metastable sediment failure are fundamentally
unpredictable as shown in a discussion of sand pile dynamics. The chapter closes with a
brief review of gravity current characteristics that may be relevant for landslide
kinematics. General reviews of tsunamis affecting the United States including Alaska
can be found in Lander and Lockridge (1989), Lander et al. (1993), and Lander (1996).

2.1 Observations of Underwater Landslide-Generated Waves

Underwater landslides can often be related to an increase in pore water pressure along (at
least) the initial failure plane of the landslide. This can be inferred for many loose
sediment banks in nature or measured post facto from nearby sediment samples.
Terzaghi (1956) points out the role that positive pore water pressure plays in inducing
underwater landslides in actively consolidating sediments such as at river deltas. In

general, excess pore water pressure can be induced in sediment by extreme low tides,
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application of an external load (including a new layer of sediment), earthquake ground
motion, wave action, or any combination of these or similar factors. Most large
underwater landslides appear to have been initiated by either an extreme low tide or an
earthquake.

2.1.1 Tidal and External Load Induced Landslides

Bjerrum (1971) describes six documented underwater landslides in Norwegian Fjords
spanning a full century of observation. All six landslides are known to have occurred at
fjord heads near postglacial deltas that delivered cohesionless fine sand and weakly
cohesive silt onto loosely consolidated sediment forming steep underwater banks.
Typical underwater slopes along the edges of the fjords were greater than or equal to 5
per cent (or about 3°). All of the landslides occurred spontaneously at (or immediately
following) an exceptionally low Spring tide. In several instances, construction work on
or near the landslide contributed to the load and/or perturbation of a metastable sediment,
which often destroyed buildings near the construction site and sometimes Kkilled
construction workers upon failure. The sediment motion generated waves ranging from
1-7 m in amplitude observed in the fjords up to several minutes following the slides.
Terzaghi (1956) describes an underwater landslide along Howe Sound in British
Columbia, Canada that closely resembles the slides described by Bjerrum (1971). A pulp
mill was constructed on coarse sand with uniform slopes of 26-28° down to a depth of
230 m. The landslide occurred during an extremely low tide and had a maximum
thickness of 12 m. A wharf and warehouse located on top of the unstable sediment were

destroyed. Terzaghi (1956) makes no mention of wave heights.

Murty (1979) summarizes the history of known underwater landslides in the northern
Kitimat Arm of the Douglas Channel, which is a system of fjords in British Columbia,
Canada. One underwater landslide in 1974 generated a 2.8 m amplitude wave although
the location of the slide remains unknown. Another underwater landslide in 1975
involved an estimated 30 million cubic meters of sediment; the head of the fjord
experienced a depth increase of about 30 m as a result of the landslide carrying sediment
seaward. The landslide occurred 53 minutes following a low tide and in the absence of
seismic activity. Severe damage to the local coastline resulted from several water waves
generated by the underwater landslide with one observed wave crest 4.6 m in amplitude
along with a trough of 3.6 m. Water wave activity lasted for about an hour within
Kitimat Inlet. Using the estimated landslide geometry, Murty (1979) calculated a
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characteristic wave height of H=6.3 m based on an approximate analysis given by Striem
and Miloh (1976). Using the theoretical wave predictions of Das and Wiegel (1971) for a
moving vertical wall, Murty (1979) also calculated a wave amplitude of n=4.3 m at a
distance of 300 m seaward from the landslide. While neither prediction strictly applies to
water waves generated by underwater landslides, it nevertheless appears possible to
predict a characteristic wave amplitude from approximate theoretical considerations.

On November 3, 1994, a partially aerial landslide in Skagway, Alaska, destroyed the
southern 300 m of the White Pass Co. railway dock and claimed the life of one
construction worker. The railway dock was under construction that involved depositing a
large external load of rip-rap and fill along the shoreline. About 30 minutes following a
predicted -1.22 m MLLW tide, an estimated 3-10 million cubic meters of loose alluvial
sediment (at an average initial angle of about 25° near the construction site) slid west into
the harbor creating large waves and inducing a strong 3 minute period harbor resonance
near the tide gauge that took over an hour to decay. No seismic activity was recorded in
the Skagway region immediately prior to the landslide. Estimates of observed wave
heights range from 3-11 m at different locations in the harbor. Cornforth (1995) provides
the soil mechanical properties of the sediment while Campbell and Associates (1995)
provide the detailed harbor bathymetry after the landslide. The Skagway tide gauge
record and harbor resonance characteristics have been studied by Kulikov et al. (1996)
and Raichlen et al. (1996). According to Yehle and Lemke (1972), who studied the
geological hazards in the Skagway region, a similar landslide occurred at the end of the
railway dock in 1966.

River deltas are active sedimentary systems that are generally prone to underwater
landslides. Bornhold et al. (1994) recorded underwater landslide events at river deltas
but do not mention water waves generated by these events. Hamilton and Wigen (1987)
discuss evidence of historical underwater landslides at the Fraser river delta in British
Columbia, Canada. Terzaghi (1956) shows that underwater landslides at the Mississippi
river delta occur because sediment accumulation is sometimes faster than sediment
consolidation. Sediment pore water unable to drain from deeper sediment layers can
build pore water pressures to the point of sediment failure. A relatively recent
underwater landslide near the Var river delta at Nice, France is described by Hamilton
and Wigen (1987) as well as Sabatier (1983). On October 16, 1979, a tsunami of height
around 3 m was observed in Baie des Anges following an underwater landslide that

involved part of a construction site in the port of Nice. Failure may have been induced by
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recent loading of the subtidal platform by a 300 m long bank of dredge spoils. The initial
volume of sediment in the landslide was estimated to range from 1-10 million cubic
meters located along an underwater slope of 4° with significant downstream erosion or
secondary landslides involving up to 100 million cubic meters of sediment. Hamilton
and Wigen (1987) estimate that landslide material was carried at least 90 km down an
adjoining submarine canyon and onto the abyssal plain. At least two submarine cables
were broken by the gravity current.

2.1.2 Earthquake Induced Landslides

Earthquakes provide a ready trigger of underwater landslides with considerable tsunami
generation capability. Waves are typically gerierated when a large mass of accumulated
loose, fine sand or silt is (partially) liquefied along an incline (or failure plane) by strong
ground motion. Water waves generated by underwater landslides are a geological hazard
along the entire Pacific coastline of North America due to the presence of either fjords or
underwater canyons combined with intense seismic activity from Baja California all the
way up to Cook Inlet. McCarthy et al. (1993) have examined the potential for tsunami
generation along the California coastline, pointing out the rapid arrival and potentially
long duration of tsunami activity when waves are generated nearshore. More
importantly, McCarthy et al. (1993) focus on the possibility that 21 large underwater
canyons along the Californian coast have been and will continue to be future sources of
tsunamis due to underwater landslides. Underwater canyons along the California
coastline and elsewhere in the world have been studied and mapped by Shepard and Dill
(1966).

A case in point is the October 17, 1989 Loma Prieta earthquake that significantly
damaged San Francisco and caused underwater landslides at Moss Landing. Moss
Landing is halfway between the cities of Santa Cruz and Monterey and located at the
head of Monterey canyon, an underwater canyon that Shepard and Dill (1966) show is as
immense as the Grand Canyon. A computer analysis of seismic motion and tsunami
generation by Ma et al. (1991) shows that the tide gauge record at Monterey consists of
two superposed signals: a 0.5 m high tsunami generated by seismic uplift in the northern
portion of Monterey Bay as well as a shorter wavelength 0.7 m high tsunami consistent
with underwater landslides along the southern edge of Monterey canyon. Gardner-
Taggart and Barminski (1991) reveal at least three underwater landslides into Monterey
Canyon totaling about 2 million cubic meters of sediment. These landslides occurred
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along the southern face of the canyon within about 500 m from the harbor entrance with
one slump scarp measuring 3-6 m deep over a length of 100 m. The landslide sediment
may have consisted of fresh deltaic deposits from the Salinas river just south of Moss
Landing. Coincidentally, approximately two minutes after the earthquake, a video
camera facing the harbor entrance documented waves with T=2 s period entering the
harbor. Greene et al. (1991) report that the waves entering the harbor were 0.5 m high.
Gardner-Taggart and Barminski (1991) estimate the wave arrival time to be consistent

with landslide-generated water waves.

An excellent case study of the potential damage due to earthquake triggered underwater
landslides is afforded by the Alaskan Good Friday earthquake of 1964 described by
Grantz et al. (1964). The harbors of Whittier, Seward and Valdez were all situated on
saturated, loosely consolidated sands and silts accumulated roughly 100 m thick on
bedrock and forming slopes between 20-35° heading into the fjord. Submarine landslides
destroyed the shoreline of each of these harbors, and occurred at Thumb Cove as well as
other sites within Prince William Sound, often increasing water depth locally by 20 m or
more. Wave action induced by the landslides was often described as water withdrawal
followed by a large positive wave, where Grantz et al. (1964) attribute the positive wave
generation to the curious mechanism of muddy boils from the landslide. Unexplained
wave action at at least eight other locations in and around Prince William Sound
accounted for more than 43 deaths. A group of waves was described at a number of
locations as a small positive wave, followed by a large negative wave, and a large
positive wave reaching up to 10 m in amplitude and running up the coast to heights of
more than 25 m. Such wave groups are consistent with experimental results of water
waves generated by underwater landslides. The observations noted by Grantz et al.
(1964) suggest that tsunamis generated locally by a landslide can be differentiated from
tsunamis generated in the open ocean by bottom motion during a large earthquake.
Tsunamis generated by an underwater landslide often strike within less than a couple of
minutes after an earthquake is felt, involve rapid rising and falling of relatively short
period waves, and run-up of the waves is often not associated with large, persistent inland

water flows.

Heezen and Ewing (1952) provide considerable evidence of underwater cables being
broken by oceanic gravity currents, most often within submarine canyons but sometimes
along continental slopes. Evidence of an underwater landslide resulting from the 1929
Grand Banks earthquake is summarized by Heezen and Ewing (1952). Twelve
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underwater cables were broken in 28 places for up to 13 hours following the earthquake.
The breaks occurred in a successive pattern of increasing depth over a distance of 570 km
and across a fan up to 340 km wide. The average underwater slope was about 2° with
half of the cable breaks occurring along slopes less than 1°. Kuenen (1952) estimated that
the Grand Banks underwater landslide was around 50 m thick, contained 760 cubic
kilometers of sediment, and eroded a layer of bed sediment 11 m thick. A tsunami on the
order of 30 cm in height with a period of one to two hours caused loss of life and damage
to fishing boats along the southern coast of Newfoundland, particularly at Placentia Bay.
Heezen and Ewing (1952) mention the possibility that the wave may have been generated

by the underwater landslide.

Striem and Miloh (1976) attribute several ancient drawdowns of sea level along the coast
of Israel to underwater landslides triggered by earthquakes. These events are
characterized by a recession of the sea because the landslide would head away from the
coastline. Striem and Miloh (1976) extrapolated the results of Wiegel (1955) to estimate
a drawdown of 10 m that would lay bare 1 km of sea floor for about one hour. A single
solitary wave was assumed to have been created by the underwater landslide. A
characteristic wave height was estimated by assuming that 1% of the landslide potential
energy was converted into water wave energy. Striem and Miloh (1976) describe at least

four historical events with such characteristics.
2.1.3 Wave Induced Landslides

Storm waves may also trigger underwater landslides, although the available evidence
indicates that these events are typically smaller than those described above. The rate of
sediment transport down Scripps Canyon, La Jolla, California, has been studied by Inman
(1953), who documented losses of up to 9000 cubic meters of fine sand accumulated at
the canyon head following a single storm event. Transport of the sediment may have
been gradual or it may have involved a sequence of underwater landslide events. Even if
the transport occurred mainly as a single underwater landslide, it may have been
impossible to discern the waves generated by the underwater landslide from the storm
waves. Regardless, the head of Scripps canyon is located a mere 300 m from the
shoreline and sediment transport rates down the canyon can be quite large; the canyon
walls form 20-30 degree slopes, parts of which face the shoreline. Figure 1.2 shows that
the canyon walls are able to accumulate sediment that could be dislodged during an

earthquake or storm.
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Shepard and Dill (1966) correlate massive transport of underwater sediment with large
storm swells. Greene et al. (1991) report that divers returning to the site of slump scarps
at the head of Monterey canyon after two stormy months could no longer locate any
remaining evidence of the scarps. On the other hand, Bornhold et al. (1994) did not
discover any correlation between turbidity currents in a British Columbia fjord and storm

activity.
2.2 Water Wave Generation Experiments

Almost all of the experimental work on water waves generated by underwater landslides
reported to date in the literature was performed by Wiegel (1955). Exploratory work on
water waves generated by slumping gravel piles and sand impounded behind a vertical
gate was described by Wiegel (1955) but was discontinued in favor of solid block
landslides. Wiegel (1955) generated water waves in a constant depth channel by
releasing solid blocks of different sizes, shapes, and densities with some initial
submergence along an incline 22°-54° from horizontal. Resistance wave gauges recorded
the surface time histories at given distances down the horizontal channel. The leading
wave in the far-field wave train was always found to be a positive, long wave traveling at
the theoretical long wave celerity. Wiegel (1955) found that the leading wave amplitude
increased with increasing block density, decreasing initial block submergence, and
increasing incline angle. The typical wave period was found to increase with increasing
length of the submerged block and decreasing incline angle. Immediately above the solid
block landslides, a trough was measured in the free surface followed by a free surface
rebound of similar magnitude. Wiegel (1955) calculated that around 1-2 per cent of the
block potential energy went into wave energy. Energy conversion increased with

decreasing initial submergence and decreasing channel depth.

Tsunami generation by the vertical motion of a piston initially flush with a channel of
constant depth was studied experimentally and theoretically by Hammack (1972). Piston
motion was controlled hydraulically and given either an exponential or a sinusoidal
position versus time profile. Hammack (1972) found that if the piston motion was much
slower than the wave propagation out of the generation region, then the wave heights
measured were independent of the aspect ratio (depth to width) of the two-dimensional
generation region. Nondimensional wave heights were found to depend on the inverse

power of the nondimensional time of wave generation. This constituted a single
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wavemaker curve for all bed motions slower than wave propagation. Since the wave
amplitude was made nondimensional by the characteristic distance of bed displacement
while the nondimensional time involved the characteristic time of bed motion, the wave
amplitude was directly related to bed motion. Kajiura (1970) studied the same

wavemaker geometry theoretically using the long wave approximation.

Prins (1958) studied experimental water waves generated by an initial rectangular
elevation or depression over a region of the free surface propagating down a constant
depth channel. Hammack (1971) pointed out that the initial wave profile studied by Prins
(1958) would arise only through very fast vertical motion of a wavemaker body over a
finite vertical distance. This implies that the time scale of wave generation would need to
be much faster than the time scale of wave propagation out of the generation region for
the results of Prins (1958) to apply to underwater landslides. However, water waves
generated by underwater landslides are most often situated in the opposite asyrhptotic
regime whereby water waves leave the generation region much faster than the wavemaker
body moves. Since Prins (1958) studied water waves generated by a net volumetric
displacement of water, solitary waves were observed to emerge from the wave train
during some of the experiments. These observations apparently caused Striem and Miloh
(1976) as well as Murty (1979) to confuse the leading wave in a group of linear waves
(called an Airy wave herein) with a solitary wave. For a fully submerged landslide, there

is no net displacement of volume.

Heinrich (1992) conducted one underwater landslide experiment with a weighted block
that slid on rollers down a 45° incline. The solid block comprised a right triangle 0.5 m
long on the front and top with a mass of 140 kg and a mean density of 2040 kg/m3. The
water depth in a constant depth channel was 1 m and the top of the block was initially 1
cm below the free surface when the block was released from rest. The experiment was

conducted in order to validate numerical simulations.

Iwasaki (1982) measured water wave heights resulting from the transient horizontal
motion of a sloping incline in a constant depth channel. The measured nondimensional
maximum wave amplitudes were related to the nondimensional time of wave generation

and the slope of the moving incline in the form of wavemaker curves.
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2.3 Numerical Simulations of Landslide-Generated Waves

Heinrich (1992) simulated water waves generated by a solid block sliding down an
incline at one end of a long, horizontal channel. The two-dimensional Navier-Stokes
equations for incompressible water were approximated by a standard finite difference
method incorporating a marker and cell scheme for the free surface as well as the moving
solid boundaries. The code was validated by simulating a propagating solitary wave as
well as the theoretical predictions of Hammack (1973) for tsunami generation. The
motion of the block was simulated at each time step within the code by integrating the
surface force (obtained using the free-slip boundary condition) and solving a separate
equation of motion. Agreement between the experimental and simulated results is
exceptional in both the near-field and for the dispersive wave train in the far-field.

Heinrich (1992) also studied water waves generated by aerial landslides.

The coupling between surface waves and a deformable gravity current has been studied
by Jiang and LeBlond (1992). The two-dimensional gravity current was modeled as a
dense, viscous, homogeneous fluid that was immiscible with the surrounding water. No
entrainment of water into the gravity current (dilution) and no deposition of suspension
(sedimentation) were allowed to occur. Jiang and LeBlond (1992) assumed that a given
volume of landslide fluid deformed as it slid down an inclined slope between 2-12° and
onto a horizontal surface. The initial distribution of the landslide fluid on the incline was
parabolic in height with the length of the parabola along the incline much larger than the
water depth. The density current was assumed to be laminar despite being initially 690 m
long, 24 m high, and traveling for over 4 km. The shallow water (or long wave)
approximation was employed so that the vertical pressure distribution was assumed to be
hydrostatic and the vertical component of the fluid velocities was assumed to vanish.
This means that the surface waves generated by the landslide would not be dispersive and
the triangle waves described by Whitham (1973) can be expected as an asymptotic wave
form. The vertical velocity profilé within the landslide fluid was assumed to be parabolic
for all times and positions along the incline (with no slip along the incline and no shear
between the two fluids). Based on these assumptions, an elegant finite difference scheme
was developed for the shallow water wave equations coupled to conservation of landslide
mass and momentum expressed by landslide height and maximum velocity. The effects
of landslide density, viscosity, size, initial depth, and coupling with the surface waves
were investigated. A leading positive long wave and subsequent trough above the

landslide were found to have amplitudes up to S m on a 4° incline. A smaller trough
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traveled shoreward. The energy transfer ratio from landslide potential energy into wave
energy for these shallow water waves could reach instantaneous values between 5-15 per
cent. More recent work by Jiang and LeBlond (1993) has incorporated a Bingham plastic
constitutive relation to simulate an underwater mudslide that can solidify. Interestingly,
LeBlond and Jones (1995) seem to use the previous results to discount tsunami

generation by underwater landslides.

Harbitz (1992) has simulated the two-dimensional tsunamis generated by two of the three
Storegga slides off of the coast of Norway. Geological evidence indicates that all three
slides transported 5600 cubic kilometers of sediment along 300 km of Norwegian
coastline roughly 500 km into the Norwegian sea. The average slope in the direction of
the slides is currently 0.5°; the slides were probably triggered by earthquakes. All three
slides occurred between 50,000 and 6,000 years ago, leaving marine sediments and taxa
4-6 m above sea level along the coasts of Scotland, Iceland, and Norway. Based on
criteria given by Hammack (1973), Harbitz (1992) established that a linear, long wave
momentum equation with linear, depth averaged continuity equation could describe the
tsunami generation and propagation. The finite difference scheme included a recursively
calculated bottom shear stress for the waves and depicted the current North sea
bathymetry with a resolution of 12.5 km squares. Landslide motion along the sea bottom
was prescribed by a cosine function in time, similar to the piston motion employed by
Hammack (1973). The landslide was assumed to remain laminar because of the large
viscosity of the dense sediment suspension comprising the gravity current. The initial
acceleration of the landslide was found to strongly influence simulated wave heights. A
single initial acceleration a,=0.016 m/s2 was chosen based on separate simulations of
landslide motion versus time. Estimated water wave run-up values were between 5-10 m
along Scotland, Iceland, and Norway. For the parameters used in the simulation, bottom
shear stress between the gravity current and the water accounted for 40% of the shallow

water wave generation.

Villeneuve and Savage (1993) derive a wave equation governing long wave propagation
in shallow water that includes nonlinear and dispersive effects to the same perturbative
order. The wave equation was then used to study water waves generated by moving beds.
Five wavemaker geometries were simulated by Villeneuve and Savage (1993): a
conventional piston wavemaker, horizontal motion of a submerged wedge, horizontal
motion of a submerged shelf, horizontal motion of an incline, and rotation of a

submerged plate. All five wavemaker geometries involved a net displacement of mass
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and the appearance of solitary waves. Wave amplitudes were not studied as a function of

boundary motion.

Iwasaki (1987) studied the water waves generated by an initially submerged rectangular
block falling vertically in a constant depth channel. Block motion began at t=0 and
proceeded at constant velocity until the block rested on the channel bottom. Water wave
generation was simulated by an inviscid boundary element method code.

2.4 Soil Mechanics, Sand Piles and Natural Sediment

Underwater landslides can often be related to an increase in the sediment pore water
pressure. External construction loads imposed on a sediment are initially supported by a
pore water pressure increase until normally consolidated; storm waves and earthquakes
can cyclically load or shear loose sediment such that grain contact can be lost and pore
water pressure increased; low tides lower the sediment retaining force causing mean pore
pressures deep in the sediment to become temporarily excessive. Scott (1963) describes
the mechanics of soil consolidation. Terzaghi (1956) provides the basic soil stability
analyses that apply to underwater landslides. Soil stability analysis is often based on a
single critical friction angle beyond which failure must occur. The actual occurrence of a
landslide cannot be predicted. Terzaghi (1956) observes that a metastable bank of
sediment may initiate an underwater landslide through small perturbations such as mild
earthquakes, local blasting operations, artesian water flow, or pile driving operations that

would otherwise be incapable of causing large scale soil failure in a stable bank.

However, experiments conducted on sand pile landslides indicate that a single angle of
repose may be too simplistic for geologically active regions where sediment is constantly
in flux through the system. Bak (1993) considered the evolution of a sand pile as grains
were continuously added at the top of the pile. By adding grains to the sand pile, local
landslides occurred as the pile grew but the fundamental shape of the whole sand pile
remained the same. The role of the landslides was to redistribute the sand grains in such
a manner as to keep the angle of repose nearly constant. A critical state was reached
whereby a lesser sand pile angle would allow the pile to become steeper while a greater
angle would be subject to frequent landslides that would broaden the sand pile.
According to Bak (1993), landslides have no overall scale since there is theoretically no
typical landslide size for a given sand pile size. Consequently, nondimensional landslide

size was related to the probability of occurrence by a simple power law relationship.
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The results of Nagel (1992) and indicate that there are actually two angles of repose for a
sand pile: one angle that is stable to small perturbations and another a few degrees larger
that is the maximum possible angle of repose of the sand pile and leads to catastrophic
landslides. The catastrophic landslide almost always spans the whole sand pile and
reduces the angle of repose to near its equilibrium value. Angles in between the two
critical values give rise to metastable sand piles subject to failure for sufficiently large
perturbations. Hence, by steadily tilting a sand pile, Nagel (1992) obtained quasi-
periodic landslides of roughly similar volume, evidence that refutes the observations of
Bak (1993). The stability of a sand slope was examined using a simple heuristic model
by Jaeger et al. (1990) in a manner that captures the two angles of repose just described.
Meakin and Skjeltorp (1993) review the sand pile literature.

2.4.1 Natural Sediment Observations

Underwater canyons play an important role in redistributing natural sediment. The
budget of littoral sediments off the coast of California is discussed by Komar (1976) who
notes that submarine canyons are an ~important factor in funneling sand and sediments
from near shore to deep water. Inman (1953) has performed repeated sediment surveys at
the head of La Jolla canyon and provides the mean size of the fine quartz sand to be
around 0.13 mm in diameter at the canyon head. Natural sorting of sediment into nearly
uniform grain size appears to be a common feature of geological regions prone to
underwater landslides. Shepard and Dill (1966) provide detailed qualitative descriptions
of La Jolla and Scripps canyons as well as the bathymetry of these and other canyons.
Shepard and Dill (1966) provide an appendix listing the physical dimensions of many
submarine canyons around the world. Quadfasel et al. (1990) discuss underwater

landslides as a means of deep-water renewal in the Sulu sea.

Side-scan sonar imagery of Kitimat Inlet, British Columbia by Prior ef al. (1982) revealed
evidence of subaqueous slides varying over several orders of magnitude in size as well as
a multitude of transverse cracks and scallops in sediments along steep underwater banks
with slopes of 4-10°. Sediment was estimated to accumulate at rates of between 2-5
mm/year with smaller sized sediment settling farther out in the fjord. Further evidence
that underwater landslides are rather common on the banks of fjord deltas is provided by
Yehle and Lemke (1972) as well as Prior et al. (1981), although most landslides are

apparently too small, too slow or too deep to produce noticeable waves. Typically,
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chutes or scallops in fjord deltas are 2-5 m deep, 10-30 m wide, and found on the front
slope of the delta in 5-30 m of water along slopes inclined 11-16°. Bornhold et al. (1994)
have studied the frequency of turbidity currents in British Columbia fjords and found
roughly twenty significant events per year with no correspondence between the time of
events and extreme tidal ranges. In fact, the majority of events correlated with periods of
elevated river discharge although not necessarily with individual discharge peaks. In one
instance, the failure of a causeway under construction at the head of an inlet a few
kilometers from the detection device was not detected as a turbidity current. This shows
that turbidity currents resulting from an underwater landslide do not necessarily travel

many kilometers down a fjord.

Greene et al. (1991) document the liquefaction of an 8 km? layer of sediment 9-15 m
under Moss Landing spit as well as the 0.3-0.65 m subsidence and 1.3 m lateral spreading
of the sand spit that destroyed the Moss Landing Marine Laboratories during the Loma
Prieta earthquake. The canyon head is a mere 100 m from the sand spit. Moss Landing
spit had undergone liquefaction during the 1906 San Francisco earthquake and parts of
Moss Landing pier have apparently been disappearing into the canyon at regular intervals

in the past century.

An important conclusion drawn by Bjerrum (1971) is that an initial underwater landslide
often formed a gravity current, entrained sediment, and undercut the base of a much
larger underwater landslide. Hence, a relatively benign initial underwater landslide can
amplify its effects to ultimately generate large water waves through secondary landslides.
Terzaghi (1956) disputes this claim and proposes the slow and successive slumping of
landslides observed in the Province of Zeeland of the Netherlands as a model of sediment
mobility. It is quite probable that both authors are correct for different geological settings

and geometrical configurations of sediment.
2.5 Underwater Landslides and Gravity Currents

Natural and experimental gravity currents are extensively reviewed by Simpson (1987).
Turner (1973) proposes that two-dimensional gravity currents should spread linearly with
distance and have the density fall off inversely with distance. However, Harbitz (1992)
models the enormous Storrega underwater landslides as a sliding solid block while Prior
et al. (1982) provide sonar scanning evidence that certain large portions of a landslide

remain intact when sliding down a slope of 1° or less. Prior et al. (1982) point out that
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this behavior is also observed in terrestrial landslides of weak mudflows and quick clay
flowslides. Shaller (1991) describes the appearance of geological records of large
landslides on earth and Mars.

2.5.1 Gravity Current Velocities

Underwater landslides in Norwegian fjords apparently resulted in gravity currents. In
three cases, Bjerrum (1971) estimates that mean gravity current speeds reached 10-25
km/hr (or about 3-7 m/s) based on a succession of broken underwater cables and an
anchor dragging a barge. Broken underwater cables allowed Hamilton and Wigen (1987)
to calculate a gravity current velocity of 22 km/hr (or 6 m/s) along a 0.5° slope far from
the original underwater landslide at the Var river delta. Based on the timing of
underwater cable breakage during the 1929 Grand Banks event, Kuenen (1952) estimates
that the gravity current had velocities varying between 18-108 km/hr (or 5-30 m/s). The
Grand Banks underwater landslide achieved maximum speeds of around 72-108 km/hr
(or 20-30 m/s) early on in the motion down steeper slopes of about 2°. Based on
numerous terrestrial observations, Terzaghi (1956) proposes a maximum underwater
landslide velocity of around 5-15 km/hour (or 1-5 m/s). Mechanistic interpretations of
landslide run-out still involve open questions for both terrestrial and underwater
landslides. There is no doubt however from observations of terrestrial landslide motion
and deposition, as well as sonar observations of underwater landslide deposits, that
landslide run-out can occur considerably faster and extend further than Terzaghi (1956)
was willing to accept. Shaller (1991) provides a detailed review of these issues and

summarizes known landslide evidence and observations.

While the existence of gravity current terminal velocity in nature has not been proven to

exist, Harbitz (1992) notes that the terminal velocity of a finite mass gravity current is

Cd po

where pg is a typical suspension density and T is the landslide thickness. Harbitz (1992)

often scaled as

suggested using a drag coefficient Cyg=0.002 for underwater landslides. With typical
values for the landslide density pg=1700 kg/rn3 and slide thickness T=120 m, the

maximum velocity of the first Storegga slide was estimated to be about 35 m/s. Harbitz
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(1992) treated the landslide as a solid body without entrainment. Jiang and LeBlond
(1992) simulated underwater landslide velocities between 20-45 m/s on inclines from 2-
12° along with typically little coupling between the landslide motion and the water
waves. However, the rheology employed by Jiang and LeBlond (1992) was simplistic
compared to the rheology of fine suspensions developed by Brady (1993). Moreover, the
gravity current dynamics explored by Parker et al. (1986) were neglected. Britter and
Linden (1980) have shown that a typical value of the drag coefficient in equation (2.1) is
Cyg=0.004. For Reynolds numbers larger than 103 and for incline angles 5°<6<90°, Britter
and Linden (1980) found that the front velocity of a steady turbulent gravity current was
essentially independent of both the Reynolds number and the incline angle. Britter and
Linden (1980) attribute the invariant front velocity to increased entrainment at steeper

angles which retards the advance of the gravity current.
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Chapter 3

3. Theoretical Analyses

The first goal of this chapter is to establish that a wavemaker curve exists for water waves
generated by underwater landslides. The correct nondimensional construction of a
wavemaker curve (yielding a characteristic wave amplitude) is found from a scaling
analysis of the governing differential equations. The development assumes that the
landslide center of mass motion is governed by a single characteristic length scale s, and
a single characteristic time scale t,. An analysis of solid block motion validates this
assumption and provides analytical expressions for the characteristic length scale s, and
time scale t,. Material landslide motion is observed empirically along with rates of
deformation about the center of mass motion. A linear water wave generation analysis
provides approximate near-field wave amplitudes above an underwater landslide. A more
involved and elaborate analysis of near-field wave generation is achieved using fully

nonlinear simulations of water waves generated by underwater landslides.
3.1 Dimensional Analysis and Scaling Considerations

This section begins by assuming that underwater landslide motion can be described by
only one characteristic distance s, and one characteristic time t,. It is therefore assumed
that all other distance and time scales associated with landslide motion are either
negligibly small or too large to matter. Given this assumption, the characteristic distance

8o and time t, are then defined by the canonical equation of motion
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S t
s =f(g) (3.1)

provided an explicit function f(t/ty) exists. Hammack (1972) used two bed time-
displacement histories in the form of equation (3.1) in his study of tsunami generation
although he defined characteristic times of motion tcoct, rather than te=to. Given
landslide motion in the form of equation (3.1) with corresponding expressions for s, and
t,, considerable information can now be obtained from dimensional and scaling analyses
of the landslide and wavemaker problems. For example, a scaling analysis of the
governing differential equations yields the form of the wavemaker plot in Section 3.1.3.
However, the form of equation (3.1) is valid only for landslide center of mass motion
whereas landslide deformation about the center of mass introduces another (albeit larger)
time scale into the problem. Even though the initial assumption strictly holds only for
solid block landslides, the results of this section will guide the rest of the theoretical work
in this chapter as well as the data presentation of the experimental results in Chapter 5.
This section begins with the dimensional analysis of solid block landslide motion down
an incline as well as near-field water wave generation. A similar analysis is applied to
material landslides with the appearance of many more independent variables than for the
solid block analysis. This section closes with a general scaling analysis of the governing

partial differential equations.

A more precise meaning of dimensional analysis will now be given. The most commonly
encountered dimensions in this work are mass, length, and time. Buckingham (1914)
showed that for a dependent physical quantity Q; that is a function of n-1 independent
physical quantities Qp, ... , Qn comprising a total of j physical dimensions, the functional

relation

Q1 = f(Qy, ..., Qn) (3.2)

may be substituted by an equivalent but different functional relation

I = gz, ..., Iny) (3.3)

where the n-j quantities []; represent independent, nondimensional groupings of the Qj.
Physical intuition and experience are important guides when choosing a list of physical

quantities Q; for dimensional analysis that is neither redundant nor missing important
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physical quantities. The nondimensional numbers []; may represent simple geometric
length ratios or well established nondimensional numbers named after famous scientists.
Regardless, the end result of dimensional analysis is to reduce n dimensional parameters
to n-j nondimensional numbers and thereby simplify a parametric analysis of the
dependent quantity Qj.

Scaling analysis is to be understood as something completely different from dimensional
analysis, although the conclusions often appear similar. The simplest form of scaling
analysis amounts to writing approximate expressions for each force relevant in a physical
problem and normalizing by the dominant force to find the relative importance of the
remaining forces. A list of n forces therefore results in n-1 nondimensional force ratios
that are often recognized as common dimensionless numbers. A related scaling analysis
can be based on other quantities such as length scales or time scales. However, a more
rigorous scaling analysis involves providing a typical scale for each dependent and
independent variable in a differential equation along with its initial conditions and
boundary conditions. After some suitable division, one obtains a nondimensional
differential equation with nondimensional initial and boundary conditions. In front of
each differential term one finds nondimensional numbers that render the differential
equation scale invariant when all of these numbers have identical values. Since many
differential equations involve a local force balance, the two types of scaling analyses
described above often produce identical nondimensional numbers and both methods will
be used herein. The art in scaling analysis rests in choosing force expressions or variable

scales that are representative of the particular physical problem at hand.
3.1.1 Dimensional Analysis of Solid Block Landslides

Consider a solid block landslide of size b and density py, initially submerged a depth d in
water along an incline of nondimensional angle 0 to horizontal as shown in Figure 3.1.
The solid block has a critical friction angle y with the incline material and therefore a
nondimensional Coulombic friction coefficient Cp=tany. Coulombic friction can be
considered to represent the choice of landslide and incline materials. A rigorous
application of Buckingham's Pi theorem requires a choice of dependent variable. There
are three interesting choices of dependent variable that can be made as of now: i) the
characteristic length scale of landslide motion s, ii) the characteristic time scale of
landslide motion to, and iii) a characteristic wave amplitude 1} chosen within the near-

field wave generation region. The solid block landslide experiment involves up to seven
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independent quantities g, d, b, pb, po, 6, and Yy for each chosen dependent variable. It
follows from the Pi theorem that the dependent variables can be written as unknown

functions fj

%9 =f1(%,92,9,\v) (3.4)

b\ £ =fz(%,§—b-,6,w) (3.5)

d
p =65 00 (3.6)

of four independent nondimensional numbers, where the gravitational acceleration g
enters only in equation (3.5). A five-dimensional space is needed to represent solid block
trial results if these independent nondimensional numbers are utilized to characterize the
trials. In general, there are too many nondimensional numbers to be presented on a single
two-dimensional wavemaker plot. One is therefore motivated to consider even more

powerful ways of organizing experimental results.
3.1.2 Dimensional Analysis of Granular Material Landslides

Dimensional analysis of the chosen near-field wave amplitude for a granular material
landslide involves many more quantities than the previous analysis for a solid block.
Even for materials with a uniform particle size, granular material landslides introduce
new quantities that describe particle size, particle shape, and particle interactions.
Nevertheless, the Pi theorem guarantees the existence of an unknown function giving a

nondimensional wave amplitude

2,00 ¢ SF.vs,0,0,) (3.7)

where D is the particle nominal diameter, py, is the material density, e is the particle
coefficient of restitution during collisions, SF is the particle shape factor, vy is the
characteristic solid volume fraction, and ¢ is the internal friction angle of the material. In

general, fluctuational quantities (such as granular temperature or slip velocities) and
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additional wall properties (such as a wall coefficient of restitution) were left out of the list
of quantities governing the granular material wavemaker. A more comprehensive
dimensional analysis of granular material flows can be found in Savage (1992). A similar

dimensional analysis of a characteristic rate of landslide deformation provides

b d
LV, e = ts (5 »

where the rate of deformation I is expressed in radians per second. Due to the large

5_p_n'17€98F,VS’e’¢9\|I) (3'8)

Po

=lw)

number of independent nondimensional numbers, a manner of consolidating the numbers
into physically relevant compound quantities is sought. Examples of useful compound
quantities are provided by equations (3.4) and (3.5) above that will in turn be used in a
scaling analysis of wave generation. Theoretical predictions of landslide motion down an
incline and of landslide rates of deformation further legitimizes such an organizational

framework.
3.1.3 Scaling Analysis of Wave Generation

In this section, the independent nondimensional numbers needed to prescribe similarity of
the inviscid wave generation problem are considered. A near-field wave amplitude is
chosen as dependent variable of interest. In this work, the maximum near-field wave
amplitude Nmax Serves as a characteristic wave amplitude of the entire wave generation
process. Other choices for a characteristic wave amplitude, such as a suitably averaged
mean wave amplitude further removed from the generation region, are also possible but
are not considered herein. Therefore, the scaling analysis is very general in its
implications for water waves generated by submerged, unsteady objects. Water waves
generated by underwater landslides are governed by the conservation of mass and
momentum. In two dimensions, these conservation equations can be expressed as three
partial differential equations subject to well-posed boundary conditions. The free surface
is subject to the kinematic and dynamical boundary conditions. The surface of the
landslide is subject to kinematic boundary conditions. For an inviscid fluid, the
remaining surfaces are governed by no-flux boundary conditions. Since the dynamical
free surface boundary condition is derived from the conservation of momentum, the
boundary condition contributes no new information to a scaling analysis. Likewise, the
landslide kinematic boundary conditions contribute no new information since the

landslide motion is part of the scaling analysis.
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The scaling analysis involves four differential equations. The x spatial coordinate is
taken as horizontal and increasing to the right while the z spatial coordinate is taken as
vertical and increasing upwards. For an incompressible liquid of uniform density,
conservation of mass can be written

g—i+—3—;— =0 (3.9

where u is the horizontal velocity and v is the vertical velocity. The inviscid equations of

motion are given by Euler's partial differential equations

du ou Ju 1P

St Vot ok = (3.10)
Po
%—Z+ug—l+v%+§—%—g—+g=0 (3.11)
O

where p,, is the water density, g is gravitational acceleration, and P=P(x,z,t) is the static
pressure field in the water. The kinematic boundary condition on the free surface
z=1m(x,t) can be written

VLI (3.12)

which ensures that the free surface motion follows that of the water at z=m\(x,t). In order
to proceed, all field variables and position coordinates need to be associated with a scale

that is relevant to the wave generation process.

The scaling analysis is carried out for a solid block landslide with the initial geometry
depicted in Figure 3.1. Measures of landslide size and submergence can be generalized to
other geometries of interest if the need arises. The scaling relations provided
immediately below apply to the motion of any submerged body that undergoes unsteady
motion according to equation (3.1) and has a component of that motion in the vertical
direction. The focus of the wave generation scaling is on the region immediately above
the landslide and involves characteristics of the landslide motion in equations (3.4) and

(3.5). The time scale of solid block motion is anticipated to be much longer than the time
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scale of wave propagation out of the generation region above the block. Therefore, the
equations of motion are scaled in the same manner as the "creeping” analysis of
Hammack (1972). This choice in scaling analysis must be verified a posteriori.

Nondimensional quantities are denoted by primes.

The pressure P=pogdP’ scales with the hydrostatic pressure at the surface of the solid
block. The horizontal velocity u=/gd u' scales with the initial long wave celerity Vgd
above the solid block. All related wave problems scale the pressure and horizontal
velocity in this manner. The time

t (3.13)

=—b———t'
\lgd

scales with the characteristic time of long wave propagation over the surface of the solid
block. This time scale governs wave propagation out of the generation region and is
expected to be smaller than the characteristic time of solid block motion t,. The
horizontal position x=t,Vgd x' scales with distance traveled by a long wave over the block
during the characteristic time t, of solid block motion. The horizontal length scale
A=toVgd can also be considered a characteristic wavelength of the wave generation
process since the leading waves leave the generation region at the local long wave
celerity. The vertical position z=dz' scales with the initial submergence d of the solid
block. The scale of the free surface amplitude is found from conservation of volume.
The top face of the solid block spans a characteristic volume bsysin® per unit width. The
corresponding trough in the free surface above the solid block should have an equal
volume given roughly by AH/2 per unit width, where H is the wave height and A is the

characteristic wavelength. Solving for the characteristic wave amplitude H/2 yields

_bsosin®

" ovgd |

1

H .
n=35n (3.14)

which scales with the component of the characteristic distance s, in the vertical direction.
It is important that the wave amplitude depend on the motion of the solid block since this
is the source of wave generation. Last of all, the vertical velocity v=s4sin@v'/t, scales
with the vertical component of the characteristic solid block velocity su/t,. Note that the

x and z directions must scale differently for the scaling analysis to capture the wave
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generation properly: the x-direction always scales with water wave features while the z-

direction always scales with underwater landslide features.

Having proposed scales for each field variable and the position coordinates, these need to
be inserted into the four partial differential equations (3.9) to (3.12). Upon insertion of
the scaled variables, the conservation of mass gives

odu'  sosin@ gv'

wt d 37" 0 3.15)

while the nondimensional Euler equations become

QE_'_,_ b u,ég'+bsosin6 V,@_{_
ot T yVgd X tydvgd 07
b JdP'
t T e = O (3.16)
o b v Dbsosing av
N " toVgd K T todVgd o7
+~—~g—l—’&—-—[%g+1]=o (.17

sosin0+gd
and the nondimensional kinematic surface boundary condition yields

, _on b ,on’
V——atT+t0\lg_aua—xr.

(3.18)

In the limit as 6->0, the long wave equations are recovered. This is another reason for
including the sine of the incline angle. Following Hammack (1972), the nondimensional
coefficients in front of the differentials can be broken into four basic nondimensional

groups

M=g.M=0,M=t\5, =2 (3.19)

oo
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where []; is a geometric length ratio, [ is the geometric angle of the incline, [13 is a
typical expression of nondimensional time for wave problems, and [I4 scales the
characteristic distance of landslide motion with the other two length scales. For the
chosen landslide configuration, there are two nondimensional numbers governing
geometric similarity and two nondimensional numbers governing dynamic similitude.
Wave generation problems are similar when all four nondimensional numbers []; are
identical. Equations (3.19) form the essential components of Hammack's (1972)
wavemaker formalism arrived at through scaling of the governing differential equations

and boundary conditions.

It is advantageous to consider aggregates of the basic nondimensional groupings in
equations (3.19) in order to arrive at simpler physical interpretations of the connections
between landslide motion and wave generation. Dynamic similitude of the wave

generation problem also results if the two nondimensional numbers

. S, Sin 6 vegd
Sg = IlysinIlp = odn ,Haoz{l—ﬁ=t&—bg-— (3.20)

are identical. Geometric similarity still requires identical values of [1; and 1. The
Submergence number Sg is the ratio of the vertical length scale of wave generation to the
initial landslide submergence. When scaling an underwater landslide, the characteristic
length of the landslide motion s, must therefore scale with all other length scales. The
Hammack number Ha, is the ratio of the time scale of wave generation to the time it
takes waves to leave the generation region. The subscript for Ha, denotes the
characteristic time t=t, since the Hammack number also serves as a nondimensional
wavemaker time as shown in equations (3.31) and (3.97) below and in Section 5.2.1. The
two nondimensional numbers Sg and Ha, can substitute for the two nondimensional
quantities I3 and [14. A characteristic near-field wave amplitude can therefore be

considered as a function of the four nondimensional numbers

n

So sin O

=Hlao £(2.6,5¢. Ha,) | (3.21)

where there is no Reynolds number because viscosity has been neglected. Equation
(3.21) is clearly analogous to equation (3.6) despite the superficial differences. The

importance of the landslide dynamics in the wave generation problem are highlighted by
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the use of t, and s, in the scaling analysis since the characteristics of wave generation
must depend on the solid block motion. Values for t, and s, are found in Section 3.2.1
below when analyzing solid block dynamics.

The inverse of the Hammack number Ha, appears in front of the nonlinear terms in
equations (3.16) to (3.18). Hence, in the limit

Ha, > oo (3.22)

the governing differential equations and boundary conditions all become linear in the first
approximation. The additional condition

52 9 (3.23)

must be made in order to ensure that the Submergence number Sg remains bounded.
Only when Hay»Sg are all nonlinear terms guaranteed to vanish. If it is established that a
given underwater landslide generates linear water waves, then the generic water wave

integral solution

o]

D = 2k [ 100 expl kX -1 w(0) ) dk (3.24)

-00

can describe wave propagation, where the dimensionless expression f(x)dx implicitly
contains all of the necessary geometrical information about the waves. Therefore, any
characteristic wave amplitude in the wave basin is linearly related to all other

characteristic wave amplitudes through the wave height H.

The Froude number Fr is a familiar nondimensional number where Fr2 is proportional to
the ratio of inertial to gravitational forces. Since this nondimensional number is usually

associated with the gravitational term in Euler's equations, it follows that

__l_ = .—__ghk)____ (3.25)
Fr2 s sin0+gd
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where one finds after multiplying by the Hammack number Ha, a new nondimensional
group gto2/sesin®. Hence, given geometric similarity, underwater landslides are similar
only if their initial accelerations are identical. The usual Froude scaling of water waves is
recovered such that all lengths change by the same scale factor while the time changes by
the square root of the scale factor. Hughes (1993) shows that this must be the case for
Euler's equations on dimensional grounds even if the scaling analysis fails to recover the

usual forms of the nondimensional numbers.

A short digression into the viscous effects experienced by underwater landslides is in
order here. In Figure 1.3, a starting vortex was shown to exist behind solid block
landslides. Separation of the flow near the landslide vertex would not occur in an
inviscid fluid. The forces associated with the vortex is examined in section 3.2.1.1
below. The underwater landslides studied in this work rapidly achieved Reynolds
numbers based on instantaneous landslide velocity u(t) and landslide size b on the order
of Re=50,000. Therefore, a boundary layer rapidly forms around landslides and
contributes to drag. Skin friction contributions to landslide drag is shown to be negligible
in section 3.2.1.3 below. There remains the question of what Reynolds number one
obtains from performing the scaling analysis on the Navier-Stokes equations rather than

Euler's equations. One new nondimensional grouping is found

Re = 2¥gd (3.26)
Vo

where the long wave celerity ¥gd plays the customary role of a velocity. For most
underwater landslides studied herein, the Reynolds number given by equation (3.26) is on
the order of Re=103.

Some significant simplifications can be expected in equation (3.21) based on wavemaker
theory and previous experimental results. Hammack (1972) considered the generation
and propagation of linear and nonlinear water waves by the vertical motion of a
horizontal piston initially flush with a constant depth channel. Hammack (1972) showed
that Ha, is the only dynamical number relevant for linear wavemaker problems. That is,
the Submergence number Sg does not appear in a linear wave solution analogous to
equation (3.24). A linear wavemaker analysis in Section 3.3 also shows that Ha, is the
only dynamical number relevant to wave generation. Hence, linear wave amplitudes near

the underwater landslide have the general functional form
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n 1 b
= f{5.0,H . 3.27
sosin®  Hao ( ) 27

When the angle 6=45° is fixed, only two independent nondimensional numbers remain in
the wavemaker problem. The condition Hay»1 given by equation (3.22) will be met

whenever the nondimensional initial submergence d/b is much larger than

d b
b gto2

(3.28)
where b/gt,2=~0.1 for most landslides studied herein. Smaller Hammack numbers are
therefore associated with smaller initial submergences. If equation (3.28) is satisfied,
then strongly nonlinear phenomena such as bores and wave breaking should be absent
from wave generation and propagation. As the initial solid block submergence
approaches zero, Hap<1 and surface waves are unable to escape the wave generation
region faster than the solid block motion. The result is a dramatic change in wave
generation above the solid block: a water bore propagates shoreward over the block and
is sometimes followed by a reflected wave that becomes a plunging breaker. At
laboratory scales, these nonlinear phenomena are subject to surface tension, viscous, and
air entrainment scale effects. Therefore, breaking waves were not studied in this work.

This experimental study has been limited to cases where Hag>2.

There are two general features of the wavemaker curves found by Hammack (1972) that
appear in this work too. For a given wavemaker geometry, Hammack (1972) found a
power law relation for the characteristic wave amplitude as a function of the Hammack
number Ha,. This first feature of the wavemaker curve is valid in the region Hag» 1 that

in general corresponds to linear wave generation. In this work, the power law relation

n Kk
sosin@®  Hap"

(3.29)

is fit to experimental data, where the constant coefficient k and the exponent n depend on
the nondimensional geometric quantities the initial submergence d/b and the incline angle
0. As the Hammack number decreases, the time scale for waves to leave the generation

region approaches the time scale of landslide motion. Therefore, the second general
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feature of the wavemaker curve is that the power law relation in equation (3.29) can be
expected to break down near some minimum Hammack number Ha, mjn on the order of
unity. The wave amplitude data still constitute a wavemaker curve although the power

law description of the curve in equation (3.29) ceases to be valid below Hag min.

Hammack (1996) has noted the implicit use of the Hammack number in certain long
wave generation problems. Following Hammack (1996), consider a piston wavemaker
oscillating with stroke s,=S and period t,=T in shallow water of depth h. The wave

height H can be written in nondimensional form as

= Kkh (3.30)

Zljes

where the wavenumber is k=2m/A and the wavelength is A=TVgh . It follows

immediately that

L (3.31)

where the vertical water depth h plays the same role as the horizontal extent of the
wavemaker b above. Hence, the Hammack number, as opposed to the Froude number,
governs other wavemaker problems as well. Moreover, equation (3.31) reveals that, in
this simple horizontal wavemaker example, the Hammack number becomes the
customary nondimensional time TVg/h since the water depth and the extent of the
wavemaker are identical. The Hammack number in equation (3.31) therefore reduces to a
conventional expression of nondimensional time solely because of the simple wavemaker
geometry. This very fact has been noted by Iwasaki (1982), who considers the correct
nondimensional time scales for three related wavemaker problems, including a piston
wavemaker. It therefore appears that the Hammack number is a general expression of

nondimensional time for wavemaker problems.

The Hammack number is an important nondimensional quantity that governs wave
generation processes. The name is given to the nondimensional number for the first time
in this thesis. The Hammack number first appeared in its present form in Kajiura (1970)
from a long wave analysis of water waves generated by vertical piston motion in a
constant depth channel. The relevance of Ha, to water waves generated by underwater
landslides was pointed out by Hammack (1971) in a discussion of Wiegel et al. (1970).
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A complete scaling analysis was then developed in Hammack (1972) and published in
Hammack (1973) for the case of tsunamis generated by vertical piston motion in a
constant depth channel. Three Hammack numbers appear explicitly for the three
wavemaker problems considered by Iwasaki (1982): vertical motion of a piston in a
constant depth channel, horizontal motion of a piston wavemaker, and horizontal motion
of a sloping wall. Iwasaki (1982) shows that long wave generation for all three
wavemaker problems can be reduced to a single equation with different but related

definitions of characteristic quantities.
3.2 Theoretical Landslide Dynamics and Kinematics

The characteristic time t, and distance s, of the solid block motion have already been
shown to be useful for scaling water waves generated by underwater landslides.
However, the theoretical waves community has traditionally considered wave generation
and wave propagation separately. For most theoretical wave propagation problems,
either an initial wave amplitude or wave impulse profile is used as the input for an
analytical solution. Here, the wave amplitude profile needed to consider wave
propagation is derived from the solid block motion during wave generation and therefore
the two aspects of the water waves cannot be separated in the near-fieild. Many authors
studying wave propagation assume that one or the other profile is known and proceed
with the analysis. A rather forthright paper is that of Noda (1970), who comments that
"the dynamics of the landslide motion are not considered" and are assumed to be known.
In order to study the motion of the solid blocks, straightforward analytical solutions of a
plausible equation of motion are sought. The characteristic time t, and distance sq
emerge from the final model of solid block motion. A model of material landslide

deformation is then proposed at the end of this section.
3.2.1 Solid Block Landslide Theory

Consider a solid block of known dimensions and mass instantaneously released from rest

along a straight underwater incline. The solid block inertia is acted upon by a sum of at

least six distinct external forces with components parallel to the incline. One can write
d2s

mbaz-z Fa +Fg + Fp + Fy + Fq + Fy (3.32)
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where Fj is the added mass force, Fg is the component of the gravitational force acting
along the incline, Fy, is the buoyancy force acting along the incline, Fy, is the dynamic
friction force between the block and the incline, Fyq is the drag force induced by the water,
Fr is the force associated with lubrication drag. Dynamic friction and lubrication forces

can exist simultaneously because of imperfections in the solid block bottom.

The inertial and added mass forces both depend on the instantaneous solid block
acceleration a(t). A known added mass coefficient Cp, is assumed to characterize the
added mass force. The gravitational, buoyancy, and Coulombic friction forces are
assumed to be constant in time. The Coulombic friction coefficient C,, between solid
block and incline materials is assumed to be a known constant independent of block
position or velocity. The drag force can be separated conceptually into three distinct
forces: 1) the steady state form drag Fq resulting from the skin friction and the pressure
distribution on the surface of the solid block long after reaching terminal velocity, ii) the
unsteady drag force Fy induced by the starting vortex, and iii) the unsteady Basset drag
Fgp induced by diffusion of the viscous boundary layers during solid block acceleration.
Form drag depends on the instantaneous block velocity u(t) squared and be characterized
by a drag coefficient Cq. Lubrication along the bottom of the solid block retards motion
according to the first power of the solid block velocity u(t), a lubrication coefficient Cs,
and a mean gap height h, between the incline and the bottom of the block. The motion of
the solid block is assumed to be well characterized by four constant dynamical
coefficients Cp,, Cp, C4, and Cy. Of these four coefficients, the lubrication coefficient C¢
and the mean gap height h, are not known a priori, so the importance of the lubrication
force cannot be gauged in advance. However, the starting vortex and Basset forces are

easily shown to be negligible.
3.2.1.1 Scaling Analyses of Two Unsteady Drag Forces

Equation (3.32) contains two drag forces that arise due to unsteady fluid dynamics.
Scaling analyses show that the starting vortex induced by the motion of the solid block
can be neglected in a force balance and that the diffusion of vorticity leads to a negligible
Basset or "history” drag term. The strength of the vorticity sheet separated from the

block apex can be approximated as

(3.33)
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where the instantaneous velocity is u=agt for short times t=0+ and I is the circulation
shed by the solid block apex. Integrating equation (3.33) provides an estimate of the
vortex strength in time by assuming that all circulation is immediately fed into the vortex
core located near the initial position of the solid block apex s=0. The velocity induced by
this vortex and its image on the surface of the solid block is roughly

Wy = —=7-—-=73-1 (3.34)

where r=s/y2 is the shortest distance from the vortex to the solid block for an incline at
0=45" and s=a,t2/2 for short times. The dynamic pressure associated with the velocity
scale uy acts over the downstream surface area A=bw and induces an additional drag
force on the solid block. The component of the vortex drag force opposing motion down

the incline is approximately

E _Pou’bw _ 2 poulbw
Y 2 2 T9m2 2 2

(3.35)

which acts like an additional drag force with drag coefficient Cg=2/9n2~0.023. Clearly,
this drag coefficient is negligible when compared to the drag coefficient on the order of
unity ordinarily experienced by the solid block because of form drag. For short times, the

Basset force scales like

<
-t

Fg = moao "\ 574 (3.36)

where vo=10-6 m?/s is the kinematic viscosity of water, mo is the mass of displaced
water, and A=bw as before. Even after one full second, Fg=5x10-3 N which can be

neglected given that gravitational forcing is constant and on the order of 1 N in
magnitude for all solid blocks studied herein.

3.2.1.2 General Analysis of Solid Block Motion
Equation (3.32) is an ordinary differential equation that governs solid block motion.

Given the information regarding each force in Section 3.2.1, it is possible to solve the

differential equation in a compact form prior to modeling the remaining six forces on the
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right hand side of equation (3.32). One must assume for now that the dynamical
coefficients are constant and divide through the differential equation by the parameters in
front of the solid block acceleration. The equation of motion expressed in the coordinate
s along the incline can be approximated with three positive, constant coefficients k1, kp,

and k3 in the form

d?2s _ du
—(iti = a‘t‘ = kl-kzu—k3u2 =
= -k3(u-A)(@u+B) = P(u) (3.37)

with initial conditions s=0 and u=0 at t=0, and where A, B are known roots of the
quadratic right hand side with B>A>0. Note that A is not used to represent area in this
section. Three cases are considered in this section: the case where kp#0 and k3#0, the
case where k3=0, and the case where kp=0. These three cases correspond to i) all of the
forces remaining in equation (3.37) being significant, ii) negligible form drag, and iii)
negligible lubrication, respectively. The point of the exercise is to show that the
polynomial in velocity P(u) on the right hand side of equation (3.37) yields solutions with
very similar properties. Once the importance of lubrication is ascertained, then a
particular case can be chosen to study actual block motion. The constant coefficient k3 is

given by

Ka = CapofwcosOsinb
> 7 7 2 (mp + Cp my)

(3.38)

where k3 represents the constant quantities of the drag force divided by the constant
quantities from the inertial and added mass forces. The values of the characteristic

velocities A and B are readily found from the following two expressions

(mp - mp) g (5sin 6 - C;, cos B)
mp + Cpp my

ki =ksAB = (3.39)

_ _ Crpotw
kz = k3 (B-A) = o Pe (3.40)

where kj represents the constant gravitational, buoyancy and dynamic friction forces

while kp represents the constant quantities of the lubrication force both divided by the
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constant quantities from the inertial and added mass forces. Equations (3.39) and (3.40)
can be inverted to obtain the quadratic expressions for the velocities A and B

2 Cr o A - 2 (mp - my) g (sin 6 - C;, cos 6)

A2 + ‘ : =0 (341
ho Cq po cos 6 sin 6 CapofwcosBsin®

B2 . 2 Cr o B . 2(mb—m0)g(s1n6~(?ncose) =0 (342)
ho Cq po cos O sin 6 Cd po £ wcos 0sin 6

where the positive root is understood otherwise.

It is most efficient to consider first the general nonlinear, autonomous, ordinary
differential equation and then study specific cases. For example, the initial acceleration
of the block will always be ag=k; since the block starts from rest with u=0. The initial
acceleration of the block will always be positive (k1>0) provided that the density of the
block is greater than that of the surrounding medium (tap water herein). This definition
of a positive acceleration implies that s increases going down the incline as shown in
Figure 3.1. Solving equation (3.37) with a regular Taylor series about t=0 shows that the
three cases all have solutions of the form

2 2
s(t) = %l 2 + k16k2 3 4 K1k ;f kaki® 4, (3.43)

where k1#0 since u=0 would become a stationary point of the differential equation and no
motion would occur given the initial conditions. If kp#0, then the time at which the

second term becomes important in the Taylor series is

t = — (3.44)

whereas, if ko=0, then the series consists of powers in t2 and the second term becomes

, 6

The time scales provided by equations (3.44) and (3.45) indicate the approximate

important around

duration of quadratic acceleration for the purpose of curve fitting the early motion of the
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solid block with a parabola. These time scales are also proportional to the characteristic
time scale of motion ty as will be seen in the following three sections. Another general
fact that follows from the differential equation is that a terminal velocity u=A is
approached exponentially as t->co since u=A is the only stable stationary solution of the
differential equation (with u>0). Solid block position as a function of time is depicted in

Figure 3.2.
3.2.1.2.1 Case One of Solid Block Motion

The first case is a general solution of the differential equation (3.37) with the
specification that ko0 and k3#0. The differential equation is separable and is readily

integrated using the method of partial fractions. The first integration (that satisfies the
initial condition u=0 at t=0) yields

_ds _ AB[1-exp(-kp 0]
u(t) = dt = B+ Aexp(-kat)

(3.46)

where the approach to the terminal velocity ug=A is seen to be exponential in time.

Defining a new independent variable
m = exp(-ka t) (3.47)

allows the second integration to be performed, once again using the method of partial
fractions. Requiring s=0 at t=0, the position versus time curve of solid block motion is

A+B A+

B
L, In(A+B) + S=In [A exp(-ky ) + B] (3.48)

s(t) = At -

which for t=0* does indeed behave as an initial acceleration ag=k of the solid block. The

characteristic distance of solid block motion

(3.49)

is the distance used to render s(t) nondimensional. The characteristic time of solid block
motion ty=1/k; resides in the exponential function and at t=4t, the instantaneous block

velocity u(t) has reached approximately 99% of its terminal velocity. As the exponential
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function vanishes for t>4t,, the asymptotic position versus time of the block becomes

linear

s(t: t>4t) = ugt+ s= (3.50)

where this line misses the origin s=0 at t=0 as indicated in Figure 3.2. According to the
linear asymptotic motion s(t: t>4t,), the false origin of the linear motion at t=0 was the

negative position

s*=-é§;—Bln(§ﬂ)=- o In(AEE (3.51)

which is always proportional to the characteristic distance of motion s,. The asymptote

reaches s=0 at a time

A+B A+B AB AB
t*_=_-lsl—’:=A-'l-(21n( ha )—0 ks ( ks )

(3.52)

which is always proportional to the characteristic time of motion t,. By definition, the
terminal velocity is ug=s+/t+ so that it is always be proportional to so/t,. Therefore, it

seems logical to define a nondimensional terminal velocity

oty A
Upd = s ~ A+B (3.53)
as well as a nondimensional initial acceleration
_%k® __AB 3.54
apd = So = B2- A2 3. )

which are naturally constant for a given solid block.

3.2.1.2.2 Case Two of Solid Block Motion

The second case involves solid block motion with negligible form drag when compared
with lubrication. It is interesting to observe that the general scaling relations found
immediately above also hold true here. In this case k3=0 and equation (3.37) is easily

integrated to obtain
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ds(t)

uty = 8O _ k; [1-exp(kot)] (3.55)

which obviously approaches the terminal velocity u=kj/k, exponentially with a

characteristic time ty=1/ky. The position of the solid block versus time is

s(t) = A [exp( kpt)-1] (3.56)

which has a characteristic distance so=k/kp2. For large times, the solid block motion can
be considered a straight line that passed through s+=-k/kp2=-s, at t=0. Alternatively, the
asymptote of the large time motion passes through s=0 at tx=-sx/u=so/u=1/kp=t, which is
coincidentally the characteristic time of motion. As a result, the nondimensional terminal
velocity is always upg=1 and the nondimensional initial acceleration is always apq=1
regardless of the dynamical coefficients and of the particular solid block.

3.2.1.2.3 Case Three of Solid Block Motion

For the third case, if lubrication forces are in turn negligible, then k=0 and it follows that
A=B and k1=AZk3. The terminal velocity in this case must be written

u=A= lli—; . (3.57)

Instead of using partial fractions here, it is advantageous to recognize the differential of

the inverse hyperbolic tangent function. The solution for the velocity is

a0 _

u(t) = = Atanh (Akst) (3.58)

which approaches the terminal velocity exponentially as t->co based on the definition of
the hyperbolic tangent and geometric series. The characteristic time of motion is

to=1/Aks3 for this case. The position versus time curve satisfying the initial conditions is

s(t) = k% In [cosh (A k3 )] (3.59)
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which represents the natural logarithm of the hyperbolic cosine. Clearly, the
characteristic distance is given by so=1/k3. By eliminating the exponentially small term
in the hyperbolic cosine, the virtual origin of the asymptotic motion is found to be

In2
S* = X = -soIn2 (3.60)

and the axis s=0 is crossed at time

In2
= Aks =toIn2 . (3.61)

tx = -

w
£ 1%

The nondimensional terminal velocity is upg=1 while the nondimensional initial
acceleration is apg=1 which are once again both independent of the dynamical
coefficients and of the particular solid block. Apparently, the nondimensional quantities
ung and apg become complicated only when there are two competing retarding forces.

This completes the study of the three cases.
3.2.1.3 Lubrication and Solid Block Motion

A scaling analysis is now performed that compares the magnitude of the lubrication force
to that of the form drag force for a solid block sliding down an incline. The roughness
and irregularities on the bottom of all four blocks are approximately h=0.1 mm in height.
Imperfections on the solid block bottom enable both Coulombic friction and lubrication
forces to exist simultaneously although the usual normal force of the block on the incline
may be reduced or increased. In addition, construction of the incline left regions that are
a fraction of a millimeter above or below a mean straight line in waves of wavelength
A={¢. The combination of block imperfections and incline waviness enables some degree
of lubrication between block and incline to occur. Consider a solid block with a typical
length ¢=~0.1 m along the bottom and a typical terminal velocity ug=0.5 m/s. Inertial terms

may be neglected during lubrication if

! W2

Polet B _ 005 « 1 (3.62)
Ho £ '

where po=1000 kg/m3 is the density and Wo=10-3 kg/m-s is the dynamic viscosity of water

used in this section. In Section 3.2.1.2 it was shown that u;=A while equation (3.57)
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shows that the terminal velocity A scales with the square root of the solid block length
172, Therefore, equation (3.62) scales with ¢-1/2 and larger landslides have increasingly
negligible inertial terms. The fluid flow can be considered quasi-steady if

Po o h?
Ho Ut

= 0.04 « 1 (3.63)

where a,=2 m/s2. The initial acceleration is size invariant and depends primarily on the
landslide density. Therefore, equation (3.63) also scales with £-1/2 5o that larger
landslides have increasingly quasi-steady flows. Under these conditions, consider the
flow in the gap as a general Couette-Poiseuille flow with the top wall traveling to the left
at the instantaneous block velocity u(t). This is the reverse of the usual perspective where
the solid block is sliding down to the right and is obtained from the simple transformation
u(t)->-u(t). The gap height between the solid block and the incline can be approximated

as a straight line in a local coordinate system traveling with the block

h(x) = hy + (hg - h)> 7 (3.64)

where hy, is the gap on the left (or front) of the block, hR is the gap on the right (or rear)
of the block, and the case hy>hr is considered -- the flow is reversible so that the
pressure merely changes sign if hg>hy,. For a linear gap height, White (1991) provides
the nondimensional pressure supporting the solid block and driving the Poiseuille flow as

hy,
K(Z(_)EAPhL2= (1'"‘)(1‘ ) (3.65)

£ h h 2
Hou <1+¢)[1-(1-H;;);]

where AP=P(x)-P.. is the local pressure difference. The pressure difference is assumed to
vanish at both ends of the solid block whereas it vanishes identically when hy=hg. In
reality, there may persist a pressure difference in the wake of the solid block on the order
of 100 Pa due to the separation of a streaming flow with u=0.5 m/s. A typical value of
Ah=hy -hr for a solid block on the incline is Ah=hgr~0.1 mm from imperfections in the
PVC laminates so that hr/h;=0.5. For hr/hp=0.5, the maximum nondimensional
pressure Kmax=1 occurs close to x/¢/=0.7. For hr/hp =0.9, the pressure difference is

almost parabolic with the maximum nondimensional pressure Kpax=0.1 occurring near
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x/£=0.5 and little lubrication actually occurs. White (1991) provides further plots of K(x)
as a function of hr/hy .

The nondimensional pressure difference K(x) can be used to estimate the mean gap
height needed to support the solid block, or to calculate the shear force incurred by
lubrication. The normal force exerted by a typical buoyant solid block on the incline is
about N=2.5 N in water. If the pressure rise within the gap is assumed to be purely
parabolic, then the maximum pressure difference needed to support the solid block is

3N

APmax = N = 750 Pa (366)

where A=/w is the bottom area of the block. Equation (3.66) scales with length of the
landslide since the submerged weight depends on the landslide volume for a given solid
block density. One can use the condition N=0 to calculate the maximum possible
lubrication force acting on the solid block. When N=0, there is also no dynamic friction
force acting on the solid block. Using a typical value of Kyax=1 that follows from
hr/hy =0.5, the value of hy, needed to support the solid block at terminal velocity is

h = A RmexMout o0 (3.67)

AP max

whereby hg=0.13 mm, which is in close agreement with the roughness and irregularities
of the solid block surface. Therefore, the gap height described by equation (3.64) is
plausible and a block may indeed experience no normal force to the incline. Equation
(3.67) shows that the lubrication gap height must grow proportional to £1/4 in order to
support larger landslides. '

The shear stress incurred by lubrication is comprised of a Couette shear stress superposed
with a Poiseuille shear stress induced by the pressure difference AP. The contribution of

the Poiseuille flow to the rate of strain vanishes identically when averaged over the length
of the solid block. Define hy=(h; +hr)/2 as a mean gap height and a characteristic height
of the block above the incline, where hy=3hgr/2 when hy =2hgr. Averaging the Couette
flow rate of strain over the block length (using equation (3.64) for the linear gap height)
yields



m(h) - ul2_u (3.68)

for hr/hy.=0.5 and where Ab/In(2)=3hr/2=h, are numerically similar expressions of a
mean gap height given that Ah=hj -hr=hgr=0.1 mm. The maximum possible lubrication

force is therefore

Cepouw/
Frmax ~ — g~ (3.69)

where Cg=1 for Ah=hy -hg=hgr=0.1 mm from equation (3.68). For a 0.1 m long solid
block sliding at its terminal velocity on an incline at 8=45°, the minimum ratio of form
drag force to lubrication force is

b
Fa_ o Poltho G4 4 (3.70)

Ftmax Mo 4

which is a modified Reynolds number and whereby the lubrication force is seen to be
negligible -- a drag coefficient of C4=1.6 was used in the calculation. Equation (3.70) is
proportional to £1/2 which shows that the drag force increases more rapidly with landslide
size than the lubrication force. One can estimate that the two forces would have similar
magnitudes for solid blocks of length £=0.1 mm. Since the lubrication force is
proportional to the solid block velocity whereas the drag force is proportional to the block
velocity squared, there must exist a velocity ux at which the two forces are hypothetically
equal and lubrication could still support the block weight. That special velocity is

1/3
_ [ 256 i N

~ 0.03 m/s (371
9C¢2 po2 2w ( )

and corresponds to a gap height of about hy =64 pm. While this scenario is plausible, it
would typically last less than tx=20 ms given u(t)=aot for small times and a,=2 m/s2.
Even more important, equation (3.71) and the time t+=u+/a, are both independent of the
solid block length whereas the characteristic time of motion t, is proportional to £1/2,
Therefore, the lubrication force can safely be neglected over the entire block motion for
the solid blocks studied in this work.



54
3.2.1.4 Summary of the Equations of Motion

Based on the foregoing analyses, the best description of submerged solid block motion
down an incline appears to result from the third case considered in Section 3.2.1.2.3. For
this case, the force balance of a solid block on an incline can be approximated by the

equation of motion

2
(mb+Cmm0)%t—§ = (mp - Mgy) g (sin 0 - C, cos 0) -
- 05Cqpow £cos0sin 0 ($) (3.72)

with an added mass coefficient Cp,, a Coulombic friction coefficient C;, and a drag
coefficient Cq. The lubrication force in neglected in equation (3.72). Experimental
values and functional dependencies of the dynamical coefficients are examined in
Chapter 5. The theoretical initial acceleration of a solid block follows directly from
u=ds/dt=0 in equation (3.72) and is given by the remaining two terms as

d?s(0)  _ (mp-mp) g (sinB-Cycos )
dt? =% = my + Gy my

(3.73)

where Cp, is evaluated at the initial submergence d/b of the solid block for a given incline
angle 0. The terminal velocity of a solid block is obtained from equation (3.72) when

d2s/dt2=0 so that

ds(eo) 2 (mp - mg) g (sin 8 - C,, cos 0)
= u = - (3.714
dt ' V Capow £cosOsinb 3-74)

where the numerator is once again seen to be the motive force behind solid block motion.
Based on the analysis in Section 3.2.1.2.3, it is readily shown that

[\%}

Uy
S0=‘__7‘:0=.

o (3.75)

& |&

for this equation of motion. Hence, only one characteristic length scale s, and one

characteristic time scale t, govern the motion of a solid block wavemaker. Moreover, the
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equations (3.75) provide analytical expressions for the characteristics of motion based on
observable quantities, namely the initial acceleration and the terminal velocity. The
equation of motion can be put in the canonical form of equation (3.1) by introducing

nondimensional distance, time and velocity quantities

s=sos',t=tot',u=S—°u' (3.76)

so that the differential equation governing the motion of the solid block can be written

nondimensionally as

3.77)

Assuming constant dynamical coefficients, the theoretical solution of the solid block

motion down the incline as a function of time is
2
s® = 2 1n [eosh (21)] = soln [cosh ()] . (3.78)
do Ut to

Solving equation (3.78) for the time tx to reach a given distance s+ provides

:—: = ln[exp(z—:)+'\’ exp(—zs%*)—l ] (3.79)

which is a useful analytical expression for judging the extent of an underwater incline
relative to the characteristic time of landslide motion and wave generation. By
integrating equation (3.77) once or differentiating equation (3.78) once with respect to
time, the velocity of the solid block at any instant of time is given by

ut) = u tanh( ) = °tanh( ) (3.80)

By introducing equation (3.80) into equation (3.77) or differentiating equation (3.78)
twice with respect to time, the acceleration of the solid block at any instant of time is

given by

a(t) = a, sech? ( ) sech2( ) (3.81)



56

It should be emphasized once again that the solid block motion depends on only two
observable quantities ag and u;. However, it is also clear that the initial acceleration and
the terminal velocity (and by extension s, and t,) are functions of only d/b, pv/po, 6, and
y so that equations (3.4) and (3.5) are also satisfied and can now be replaced with known
functional relationships. Therefore, the desirable contraction of landslide motion from
four nondimensional quantities into two observable quantities has taken place. Also, the
original assumption that landslide motion depends on only one characteristic distance s,
and one characteristic time t, has been shown to be true for the case of solid block

landslides.
3.2.2 Material Landslide Theory

Material landslides differ from solid block landslides because landslide form changes as it
moves (oftentimes because of motion itself). Several attempts have been made by the
author to model the center of mass motion of a material landslide in the same manner as a
solid block landslide. For example, one can make the dynamical coefficients functions of
distance traveled or of time elapsed and seek (in the very least) series solutions of the
center of mass motion. These series solutions do not differ in any essential way from the
Taylor series expansion of equation (3.78) about t=0*. In particular, the first term in each
series solution must be identical to the quadratic term that initiates solid block motion. In
addition, the higher order effects introduced by variations in dynamical coefficients may
not be detectable for material landslides conducted for this work since equation (3.45)
shows that the quadratic term can dominate motion up to t=/'6 t,. For specific materials,
the deformation of the material landslide into a gravity current may be too slow to detect
any change in center of mass motion for the relatively short incline used herein.
Regardless, the single most difficult problem with these models is that they introduce
unknown coefficients into the description of landslide motion. However, if the difference
in center of mass motion between solid block and material landslides is small, then it is
nearly impossible to accurately determine these coefficients through curve fitting of the
landslide motion. It is shown in Chapter 5 that the center of mass motion of material
landslides closely resembles that of solid block landslides. Therefore, the pragmatic
approach of using equation (3.78) to describe the center of mass motion of material
landslides is employed from now on. In addition, material landslide position data can be
curve fit to yield the important scaling quantities s, and t,. The accuracy of these curve

fits is surprisingly high for many material landslides.
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3.2.2.1 Model of Deforming Landslides

The objective of this section is to characterize material landslide rates of deformation
based on observed landslide cross-sectional area and center of mass height above the
incline. Close examination of Figure 1.5 reveals that the cross-sectional area of the
crushed calcite landslide increases with time while the center of mass height above the
incline decreases at first. At early times, the material landslide appears to deform while
keeping the approximate shape of an isosceles triangle. Therefore, a self-similar model
of landslide deformation is developed for an incline at an angle 6=45° to horizontal. The
analysis assumes that all material landslides conducted for this work deform while
remaining isosceles triangles (at least for early times). Material landslide cross-sectional
area and center of mass height above the incline are the only two observations available
to describe the geometry of the isosceles triangle in time. Two rates of strain are obtained
from these observations of material landslides and converted into rates of deformation

using simple geometry.

Consider an isosceles triangle of material resting on an incline with both edges of the
triangle making an angle o(t) with the incline. The initial value of the angle is
0.(0)=0=45" and the rate of change of the angle c/(t) in time is sought as a measure of the
macroscopic landslide rate of deformation. The landslide cross-sectional area A and the
height of the center of mass above the incline z. constitute the two measured independent
variables. The height of the center of mass above the incline z. is defined in Figure 3.1.
The length of the triangle base £ is defined in Figure 3.6. The area of the triangle is
3z. ¢

A = 5 (3.82)

which can be used to solve for the length of the triangle base along the incline ¢. Taking
the derivative of both sides of equation (3.82) with respect to time and dividing by the
instantaneous cross-sectional area yields

1 dA 3 dzc 3

Adt T2z a F a2y

&

(3.83)

o

t

which shows that the rate of change of area with respect to time is the sum of two
orthogonal rates of strain. For a uniformly deforming isosceles triangle, the two

orthogonal rates of strain are constant throughout the material. Therefore, the rate of
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change of area in time is proportional to the trace of the rate of strain tensor and is

simultaneously a local and a global measure of the total rate of strain.

It follows directly from the definition of the tangent function and equation (3.82) that the
internal angle o between the triangle edge and the incline is given implicitly by

2
tan a(t) = 2 Iic (3.84)

where 0(0)~0=45°. The two angles a.(0) and 6 are not necessarily equal since the top

face of the material landslide was not exactly horizontal. Taking the implicit derivative
of equation (3.84) with respect to time and solving for the rate of deformation dov/dt gives

r(t) == =

dot 1 2 dze 1 dA
t A 972 z. dt T A dt] (3.85)

where the definition of cos(0r) has been used along with equation (3.82). Equation (3.85)
provides the triangle rate of deformation and is readily evaluated based on experimental
observations, provided of course that the experimental landslide cross-sectional profiles
appear like isosceles triangles at short times. In the ideal initial case where a=0=45",
equation (3.85) reduces to the more simple form

1 dA

_ 1 dze dA
I'® = zo dt T 2A dt (3.86)

since A/9z.2 is identically unity. For all materials studied, the initial values of A9z o2
in Table C.12 were between 0.80 and 0.98 (with an arithmetic mean of 0.89) so that the
simpler equation (3.86) is an excellent approximation of equation (3.85). A mean value
Ao/92..52=0.89 corresponds to a mean initial angle 0(0)=48" from equation (3.84).

The initial value of the rate of deformation evaluated at time t=0" is used to scale wave
amplitudes in chapter 5. As noted in the introduction to Section 3.1, the landslide rate of
deformation introduces another time scale into the wave generation problem. This time
scale was neglected when developing the wavemaker formalism in Section 3.1.3. In
general, it is found in Section 5.1 below that 1/I"t, which provides the nondimensional

rate of deformation I'to<1. If the nondimensional landslide deformation {I'tol is small
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enough, then it can be considered as a perturbation to the solid block analysis given in
Section 3.1.3. This idea is developed in Section 5.1.6 as well as Section 5.3.

3.3 Theoretical Linear Wavemaker Analyses

Water waves generated by solid block landslides are often linear waves if the initial block
submergence is sufficiently deep. Wave generation can therefore be studied with linear
transform techniques provided the wavemaker geometry corresponds to a particular
transform geometry. Two usual choices are Fourier transforms for an infinite constant
depth channel and Hankel transforms for an infinite straight incline. Small motions along
the solid boundary in either geometry can be treated by perturbatidn methods in
combination with linear transforms. For two-dimensional wavemaker studies, conformal
mappings in the complex plane can also be used to transform an underwater landslide
into one of the standard transform geometries. For a two-dimensional solid block and
incline geometry composed of straight lines, a Schwartz-Christoffel transformation maps
the entire fluid boundary onto the edge of a half plane using a complex integral. If the
underwater landslide is allowed to move a finite distance in real space, then a convolution
integral in time is introduced and the linear solution requires yet another integral. These
are admittedly simple descriptions of some mathematically involved techniques.
Examples of such calculations can be found in Stoker (1957), Wehausen and Laitone
(1960), and Mei (1983).

Noda (1969) modeled linear water waves generated by a horizontal piston wavemaker in
a constant depth channel. This two-dimensional wavemaker geometry is readily analyzed
using Fourier and Laplace transforms. Noda (1971) also modeled the experimental
results of Prins (1958) using an initial free surface profile and linear wave propagation.
The fact that the initial free surface profile is only known when the wavemaker moves
rapidly compared to the speed of wave propagation was discussed in Section 2.2.
Iwasaki (1982) has studied long waves generated by the horizontal motion of a sloping
bottom. Tuck and Hwang (1972) have shown how to analyze this wavemaker geometry
using Hankel transforms. Iwasaki (1987) has calculated the linear water waves generated
by a submerged two-dimensional box falling vertically at constant velocity. Iwasaki
(1990) has also calculated the linear water waves generated by a two-dimensional box
sliding horizontally at constant velocity along the bottom of a constant depth channel.

None of these linear water wave models contains transient wave generation using realistic
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underwater landslide motion. Therefore, wave generation in these models cannot be

properly related to the landslide kinematics.

Before committing to any specific mathematical analysis, one should clearly state the
desired outcome. For this work, the most useful purpose of a linear wavemaker theory is
to predict a characteristic near-field wave amplitude for a sufficiently submerged
underwater landslide. The chosen characteristic near-field wave record is that above the
middle of the initial landslide position. This position is designated mathematically by
x=0 and can be considered an approximate plane of symmetry with respect to the top face
of the solid block. The symmetry is evident from the free surface profiles in frames (a)
and (b) in Figure 1.3. The maximum absolute wave ambiitude recorded at x=0 is the
chosen characteristic wave amplitude of the entire wave generation problem. Given the
complicated geometry of solid block landslides depicted in Figure 3.1, either a Schwartz-
Christoffel transformation needs to be applied to the geometry or some geometrical
simplifications need to be made. For example, the region immediately above a solid
block landslide has the geometric appearance of a constant depth channel. For short
times, the solid block has not advanced very far down the incline and the position x=0 is
still located above the top of the block. Therefore, at early times, an observer at x=0
looking down onto the block sees vertical motion but does not yet know that the solid
block is also moving forward. Choosing an analysis with this approximate geometry has
the additional advantage of being very similar to that performed by Hammack (1972),
who considered the vertical motion of a piston initially flush with a constant depth
channel. Kajiura (1970) studied the same wavemaker geometry by assuming that long
waves were generated by a slightly different piston motion. By choosing to study water
waves generated by an approximate geometry, the linear wavemaker theory results must
be interpreted as being proportional to the experimental results and not as being equal to
them.

3.3.1 Near-field Wavemaker Analysis

The motion of a solid block landslide has been studied theoretically in Section 3.2. The
solid block is now considered as a wavemaker with a characteristic wave amplitude
depending directly on solid block motion. An approximate linear theory is developed in
this section to predict the maximum near-field wave amplitude at x=0 above the initial
solid block position. The theory is approximate for two very different reasons: i) the

maximum near-field wave amplitude occurs at a relatively small time so that a Taylor
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series expansion about t=0* can be used to describe vertical solid block motion, and ii)
the theory employs an approximate geometry in order to find a simple yet practical linear
wavemaker solution. The theoretical wave amplitudes are compared with experimental
wave results in Section 5.2.3 below. The linear wavemaker theory can also be used to
predict wave amplitudes for hypothetical solid block landslides provided a linearity
criterion developed in Section 5.3.2 is met. The model requires five inputs: the landslide
size b, the initial landslide submergence d, the incline angle 0, the landslide initial
acceleration a,, and the landslide terminal velocity u;. There are three geometric and two

dynamical quantities.

The maximum near-field wave amplitude occurs at a relatively small time t=t; in the
solid block motion. Therefore, the full analytical form of equation (3.78) is not needed to
accurately describe solid block motion. The nondimensional solid block motion along

the incline can be expanded into a Taylor series given by
s(t) t 1t 1 ¢ 1 6 Ny 8
—S;—=ln[cosh(-—(;)] =§”—‘-—“"o—+—*——6-—-—+

t10 t12 14 Ng tl6
L+ Ns _Ne t'2 N7 7 Ng t?> (3.87)
Ds tol() Dg t012 D4 tol4 Dg t016

where the numerators and denominators are provided in Table 3.1, and s, and t, are
defined by equations (3.75) above. Equation (3.87) describes solid block motion along
the incline and accounts for the need to input the initial acceleration a, and the terminal
velocity u;. The vertical component of solid block motion is s(t)sinf which marks the
only use of the incline angle in this theoretical development. The vertical motion of the
solid block is analogous to the vertical motion of the piston in Hammack's (1972) work.
Equation (3.87) converges uniformly to s(t)/s, provided t/to<In(2+V3)=1.32 according to
the Taylor series expansion of In(1+x). Since only the first few terms of the infinite
series is used, the finite sequence becomes asymptotic outside of its radius of
convergence. The asymptotic series can be used to describe solid block motion to within
the error implied by the next term of the alternating series. The first four terms of
equation (3.87) are compared with the exact solution given by equation (3.78) in Figure
3.3. Two terms from the Taylor series describe most of the solid block motion up to

around t/ty=1.
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Table 3.1: Numerators and Denominators in the Taylor Series

Expansion of Theoretical Solid Block Motion

Term,i | Numerator, N; Denominator, D;
3 1 45

4 17 2520

5 31 14 175

6 691 935 550

7 10922 42 567 525

8 929 569 10 216 206 000

When the solid block motion is input into a wavemaker theory, the generation and
propagation of waves can be described in terms of s, and to. The linear wave generation
theory of Hammack (1972) is used as an approximation of the wavemaker geometry
immediately above the solid block. This means that wave generation is assumed to occur
in a constant depth channel of depth d corresponding to the initial submergence of the
solid block. Consider the initial solid block position in Figure 3.1. The fact that the
incline rises at 45° to the left of the solid block and can reflect waves back over the block
is ignored in the wavemaker theory. It is likely that water waves generated by the solid
block will not have time to propagate up the incline and back before the maximum near-
field wave amplifude occurs. If the leading disturbance travels at the long wave celerity

up the 45° incline and back, then the minimum time needed for the return trip is

2 f - \/E (3.88)

which for a typical initial submergence d=75 mm found in this work takes t=0.35 s. This
is almost exactly the time at which the maximum near-field wave amplitude occurs for
most underwater landslides conducted herein. The fact that there is no constant depth
channel to the right of the solid block is also ignored in the wavemaker theory. This
geometrical approximation actually slows wave propagation away from the solid block
towards the constant depth channel and should not seriously affect the prediction of near-
field wave amplitudes. Therefore, the approximate linear theory will correctly model

wave generation up to at least the occurrence of the maximum near-field wave amplitude.
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The approximate linear theory only captures the near-field wave generation due to
vertical block motion. According to the approximate geometry considered in this section,
a piston spanning x=tb/2 and initially flush with a constant depth channel of depth d is
allowed to accelerate vertically downward. This description of the geometry accounts for
the last two model inputs. The chosen characteristic wave amplitude is located at x=0
above the middle of the piston. This description of wave generation neglects forward
motion of the block. The maximum near-field wave amplitude occurs at around t=t,. It

follows from equation (3.78) that
s(to) = 0.43 s, (3.89)

where a typical value is s,=0.2 m in this work. Therefore, a typical solid block with
b=0.09 m will have advanced horizontally s(t,)cos8=0.06 m along an incline at 6=45°.
The solid block will have advanced less than the length of the top face of the block. The
approximate nature of the geometry is evident although the approximation itself is
justifiable. The mathematical simplifications that arise from the approximate geometry

are considerable.

In the work of Hammack (1972), the overall extent of vertical piston motion was
typically small compared to the channel depth. Therefore, linearization of the piston
motion about the channel depth represented a reasonably accurate and justifiable first
order perturbation. A further approximation arises in the linear theory developed here
from the linearization of the piston boundary condition. The kinematic boundary
condition of the piston is linearized about its initial depth d despite the large amplitude of
piston motion. Since the motion of the incompressible water in the section spanning
x=1b/2 must follow the motion of the piston, the linearized boundary condition properly
captures the water kinematics at the depth d. After all, incompressible water has a
uniform velocity within the piston bore from the surface of the piston up to depth d.
However, the linearized boundary condition does not capture the correct wave celerity
immediately above the solid block. All waves generated above the piston propagate as if

the piston surface were still at depth d even if the piston is significantly deeper.

The wavemaker geometry considered here is that of a constant depth channel in which a

piston initially flush with the channel bottom moves vertically down. Let the function
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€(x,t) represent the difference between the piston and the channel bottom at z=-d as a

function of time. The mathematical expression of the vertical piston motion is
C(x,t) = -s(t) sin 8 H(b2/4 - x2) (3.90)

where s(t) is the solid block motion along the incline given by equation (3.87) and H is
the Heaviside function. The Heaviside function is defined as H=1 when the argument is
pésitive and H=0 when the argument is negative. The Heaviside function is used to
represent the fact that the piston between x=1tb/2 is the only part of the channel bottom
that is moving vertically.

The resulting linear water wave problem is given in terms of a velocity potential by
Hammack (1972). By taking a Fourier transform of the spatial coordinate x and a
Laplace transform of time, an ordinary differential equation for the velocity potential in
the vertical coordinate z arises that is readily solved. Let the function 1(t,x) represent the
difference between the free surface and the still water level at z=0 as a function of time.
The linear free surface amplitude 1(t,x) is a function of the velocity potential solution
found for this wavemaker geometry. In terms of the transformed Fourier and Laplace
coordinates x and q, respectively, the linear wavemaker solution of the free surface

amplitude is given by Hammack (1972) as

q2 §(x,9)
K) = 3.01
n(@:x) (g2 + ®?) cosh xd (3:91)

where {(k,q) is the transformed piston motion and w(i,d)=\ kgtanh(xd) is the familiar

water wave dispersion relation for a depth d. The transformed piston motion is given by

2 s sin 0 P(1/, b
(k) = - 23 sin O P(/q) sin ~5- (3.92)
K
where the polynomial in the transformed time coordinate 1/q is

12 16 272, 7936
Pt Sto? T qlted Pt | qllgl

P(l/q) =

353792 + 22368256 1903757312
qi3 612 q15 1,14 q!7 ¢,16

(3.93)
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from the Laplace transform of equation (3.87). Using equation (3.87), the Taylor series
expansion of the solid block motion, prior to taking the Laplace transform amounts to
taking the Laplace transform of equation (3.78) and then considering the asymptotic
inversion for large q of equation (3.91). This fact is related to the asymptotic analysis
known as the method of Laplace. The connection between small time and large q is
readily seen by comparing successive terms from equation (3.87) with equation (3.93).

The Laplace inversion of equation (3.91) is straightforward. Inserting equation (3.93)
into equation (3.91) shows that there are three poles in the complex g-plane at q=0, g=iw,
and g=-i®. The pole at q=0 is of first order for the first term in equation (3.93) and
increases in order by two for each successive term. The other two simple poles yield the
function cos(t) in the integrand of the Fourier inversion integral. The fact that only the
wave amplitude at x=0 is sought simplifies the Fourier inversion integral: the factor
exp(-ikx) becomes unity. Each term in equation (3.93) has a separate Fourier inversion

integral

(=]

1n(t,0) 2 sin (kb/2) [cos(wt) - 1]
— = 3 dg +
Sosin® Mo K cosh (kd) w?
0
2?2
4 sin (kb/2)  Lcos(@) - 1+——] :
K +
T to* K cosh (xd) w4
0
2w? tdet
32 sin (kb/2) Lcos(@) - 1+—75—- 77
3 dg + ... (3.94)
T to k cosh (xd) o

0

where each integrand is even in the wavenumber x allowing the integration to be taken
over only the positive real K-axis. Therefore, each numerical coefficient in equation

(3.94) is simply two times the corresponding numerical coefficient in equation (3.93).



66
An example of a water wave generated above the initial solid block position can be seen
in frames (a) and (b) of Figure 1.3. A trough in the free surface about the same length as
the solid block A=b was generated above the block. For a solid block landslide with a
nondimensional initial submergence of d/b=0.9, it follows that

Kdz2—§—9z6>n (3.95)

which indicates that a deep water wave was formed above the block. For deep water

waves, an approximate form of the dispersion relation
®?(x,d) = xgtanh (kd) = Ikl g (3.96)

can be used to simplify the mathematical analysis. Equation (3.96) was used in equation

(3.94) in order to evaluate the approximate linear wave amplitude.

Expanding the cosines in equation (3.94) using Taylor series (with infinite radius of
convergence) about t=0* gives the wave amplitude at x=0 as a series solution in time.
The first term from each integral in equation (3.94) is independent of the dispersion
relation because the circular frequencies in the numerator and denominator cancel. The
dispersion relation in equation (3.96) is substituted for ®?2 everywhere else. The result is

a small time asymptotic solution of the free surface amplitude at x=0

nGOT L 2 (I L Ha2b2)
sosin® 2t 12 24d2 7t

11 IpHag2b2 13 Hagd b4\ 6

457736042 T 720d% /g8

1711 Hao?b? I3 Hagt b4 14 Haob b6) S
25201 2520a2 T 20160d% © 40320d0

(3.97)

where the Fourier integrals I, are pure numbers dependent on the nondimensional initial
solid block submergence d/b. The Taylor series for the piston motion, equation (3.87)
with Table 3.1, is seen to be recovered in equation (3.97) multiplied by the integral I;.

The integrals I, are Fourier integrals along the real axis given by
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o

i n-2
L =2 [SEDI2, (398)
0

where y=kd is the nondimensional integration variable and B=b/2d is a measure of the

aspect ratio of the wave generation region. The integral index n begins at unity. The
Fourier integrals In(B) are functions of only the wavemaker geometry and not functions of

the solid block kinematics or of time. If an exact geometry corresponding to Figure 3.1

had been used to solve for the linear wave amplitudes, then it would be the form of the
exact integrals I,(B) and their numerical values that would have changed. Exact integrals

would also be explicit functions of the incline angle, which enters into the approximate

geometrical analysis in only a basic manner.

Every other Fourier integral I;(B) can be evaluated analytically using complex contour

integrals. The first Fourier integral

L) = 2 f ;liéfhy; = 4 tan"! [exp (%E)]—n (3.99)

yields an analytical solution by differentiating the integral with respect to B and
evaluating a contour integral in the complex y-plane. The contour follows the entire real
axis Im(y)=0 and then returns along the straight line Im(y)=in. There is a single pole
located at y=in/2 with a residue that is readily evaluated. The solution

dl ‘

is then integrated with respect to  under the condition that I;(0)=0 to obtain the right
hand side of equation (3.99). All odd indexed Fourier integrals I(B) give rise to contour
integrals with the same contour of integration. These Fourier integrals can be found by
integrating equation (3.98) n-2 times with respect to B so that the power of y in the
integrand becomes zero. The integrations with respect to B are elementary and provide a

basic contour integral to solve. One simple pole is located at y=in/2 within the contour of
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each contour integral. The solution of the contour integral is then differentiated n-2 times
with respect to [3 in order to recover the desired analytical solution to In(jB).

Despite the elegant mathematics that allow half of the Fourier integrals I(B) to be solved
analytically, the integrals were in fact solved numerically within a Mathematica program
that provided the approximate linear wave amplitude at x=0 given the inputs d, b, a,, and
u;. The first eight terms of equation (3.97) were employed in the program whereas only
the first four terms are given in equation (3.97) above. The Mathematica program first
evaluated the magnitude of all eight terms near the maximum near-field wave amplitude.
The appropriate number of terms in the asymptotic series was then chosen in order to
provide the best possible accuracy. For most calculations, eight terms from equation
(3.97) gave the most accurate solution; for some solid block trials, six or seven terms
from equation (3.97) were more accurate since subsequent terms in the asymptotic series
began diverging. Almost all calculations had errors of less than 1% based on the
magnitude of the last term kept in the alternating series. The local minimum in the wave
amplitude was then sought near t=0.35 s using the Newton-Raphson algorithm
"FindRoot" in Mathematica applied to the derivative of equation (3.97) in time. The
algorithm found the time tyax corresponding to the occurrence of the maximum near-field
wave amplitude. Evaluating equation (3.97) at time tyax gave the approximate linear
theory solution for the characteristic wave amplitude N)pmax. Equation (3.97) yields the

functional form of the maximum near-field wave amplitude

Nmax 1 d 1 toVgd
== f(=—, Hap= 3.101
Sosin® T (b 2B o b ) ( )

which is the same form given in equation (3.27) provided the incline angle is held
constant. The nondimensional initial submergence d/b is related to the aspect ratio B of
the generation region above the piston. Ha, is the only independent nondimensional

number that contains the landslide dynamics through the characteristic time t,.
3.3.2 Far-field Airy Waves

In a two-dimensional constant depth channel, the leading wave propagating away from a
localized free surface perturbation is an Airy wave. In other words, an Airy function
Ai(x,t;h) gives the correct transition from quiescent water surface to dispersive wave

groups for linear water waves propagating down a channel of constant depth. The
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general analysis belongs to a class of turning point problems in applied mathematics and
physics. A basic example is the Airy ordinary differential equation
d2f

— _yf= 3.1

which demonstrates exponential type growth or decay when y<0 and oscillatory behavior
when y>0. The proof given here can be found in Mei (1983) or Whitham (1973).
Consider a general Fourier transform solution to a linear Cauchy-Poisson water wave

problem in the region x»0

o0

D = 5= [ £00) exp x x- i 000 O dx (3.103)

~00

where @(x)=\ kgtanh(xh) is the water wave dispersion relation, h is the water depth in
the channel, and f(x) is assumed to be well behaved near x=0*. The leading waves are
always the longest wavelength components of the spectrum of f(x) since long waves
travel faster than deep water waves and the long waves separate out from shorter waves
due to wave dispersion. Let y=xh be the nondimensional variable of integration and
consider the phase ¢(x,t;x) of the exponential function near the leading waves k=0*
(which corresponds to long waves with A->0). Using a Taylor series expansion of the
dispersion relation (k) and keeping only the first two terms of the expansion yields

ox,tK) =y % -t '\/ % \lytanhy =~

- E (G2 e

where the phase indicates that a wave front propagating at the long wave celerity exists.

If the solution of the integral near the wave front is sought, then the function f(x) can be
replaced by f(0) since k=0*. The purpose of this development is not to quantify the last
two approximations but rather to explain the origin of the Airy wave behavior. Defining

two new variables

R =-y (_%\/E)m (3.105)
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S = -213 (1-t\/’ig_h) (-t'\/g)ZB (3.106)

allows the integral in equation (3.103) to be put into the familiar form of the Airy

integral. For the new variable of integration R, the integral can be written

f(O)h (4h )6 R3 .
Y = (2% ({2_g f exp(i 3-+i SR) dR (3.107)

-0

where the integral yields 2wAi(S) by definition of the integral representation of the Airy

function. Reorganizing the result back into the original coordinates gives the asymptotic

solution
nxn 4h\ T(2g)}3 x-tVgh
= f(O)(-t2—g) Al[(th @ ] (3.108)

for x»0 and x~tVgh where it is now clear that a wave front is propagating at the long
wave celerity given that the Airy function has an absolute maximum near Ai(-1). The
value f(0) provides a characteristic nondimensional wave amplitude near the Airy wave
maximum. Equation (3.108) is strictly valid only near the absolute maximum of the Airy
function, but the fundamental shape and location of the leading wave is correctly
established for any linear wave propagating in a constant depth channel. However, the
wavy part of the Airy function decays algebraically far from the leading wave whereas
many wave problems exhibit a sequence of wave groups. Moreover, the leading wave
need not be the largest wave of the first wave group as is shown in Chapter 5. A more
complete analysis of the asymptotic solution in terms of a series of Airy functions can be
found in Chester et al. (1957) that can capture the profiles of wave groups. A carefully
documented application of the series expansion to water waves can be found in Noda
(1969).

Two figures of experimental results are provided here to demonstrate the properties of
Airy waves. A programmable wave board was used to create a repeatable two-
dimensional disturbance in a wave tank filled with 35 cm of water. The water waves

generated by the wave board had similar characteristics to the water waves generated by
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underwater landslides studied in this work. Wave gauges were used to measure wave
amplitudes at different distances from the wave board. Figure 3.4 shows that the
maximum leading wave amplitude travels at the long wave celerity based on the channel
water depth. Figure 3.5 demonstrates that the maximum leading wave amplitude decays
with the expected -0.33 power law with distance. Similar leading wave behaviors can be
expected for water waves generated by underwater landslides if the waves propagate in a
two-dimensional channel of constant depth. The leading wave is referred to as an Airy
wave herein. Mei (1983) shows that waves generated by a tilting body will decay more
rapidly with propagation distance than the Airy waves derived in this section for a more
general disturbance. This implies that far-field wave amplitudes depend primarily on the
center of mass motion of a landslide since wave components generated by landslide

deformation rapidly decay.
3.4 Nonlinear Wavemaker Simulations

Oftentimes, the integral solutions obtained from linear transform methods have to be
solved numerically by some form of quadrature. This usually involves brute
computational force since the step size of the quadrature in transform space needs to be
small enough to capture the smallest wavelengths of the oscillatory integrand. The net
result is that numerical integration of linear wavemaker integral solutions is often only
two orders of magnitude faster than a fully nonlinear water wave simulation on the same
computer. However, if convolution integrals in time and conformal mappings of a
complicated boundary are also needed, then the fully nonlinear problem typically
becomes faster to solve than the linear solution represented by a triple integral. In light of
these basic observations, nonlinear simulations of water waves generated by underwater
landslides become a necessary tool for generating accurate wavemaker curves. The only
drawback is that such involved numerical simulations are still too lengthy to be used to

span the entire space of nondimensional wavemaker parameters.

The development and implementation of a large (10,000 line) fluid dynamics code can
often be the subject of a Ph.D. thesis in its own right. On the other hand, applications of
these codes to existing fluid dynamics problems can be rewarding in practical and
important ways. The goal of this section is to describe the application of an existing fluid
dynamics code developed by Dr. Stephan Grilli at the University of Rhode Island to the

problem of water waves generated by solid block landslides.
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3.4.1 Introduction to the Numerical Simulation Model

Descriptions of the BEM code used herein can be found in Grilli et al. (1989) with recent
modifications given in Grilli and Subramanya (1994). The summary of the BEM code
provided here and in Section 3.4.3 below is taken from these papers. Water waves are
often described using inviscid and irrotational fluid dynamic models since viscous effects
are negligible in many wave generation and propagation problems. For the fluid
dynamics code used herein, the Laplace partial differential equation of the velocity
potential is first converted into a Boundary Integral Equation (BIE) using Green's third
identity. Integration is then performed over discretized boundary elements using a
Boundary Element Method (BEM). The influence of each boundary element on every
other boundary element is calculated at each time step. A full matrix of O(N2) is inverted
to solve for the velocity potential where N is the number of boundary elements. The
Laplace partial differential equation is in fact solved twice: once for the velocity
potential and once again for the derivative of the velocity potential with respect to time.
Consequently, sufficient temporal derivatives exist to perform an accurate Lagrangian
updating of the free surface using Taylor series expansions of the material derivative
about the current free surface shape. Recent applications of the BEM code to shoaling
and breaking of solitary waves can be found in Grilli et al. (1994a) and Grilli ef al.
(1994b). These simulations serve as two of many significant validations of the numerical
simulation technique and of the use of potential flow to describe the generation and
propagation of water waves. In Section 5.4, simulation results are first compared with

experimental results and then used to calculate wavemaker data.
3.4.2 BEM Code Description

For water wave BEM codes, the velocity potential is solved subject to weli—posed
boundary conditions for Laplace's equation. Typical boundary conditions imposed on the
domain consist of a specified potential, a specified normal flux, or more complicated
mixed and free surface boundary conditions. The fully nonlinear potential flow boundary
conditions for the free surface are implemented in the code used for this work. Hence,
water waves can propagate over any bathymetry and undergo correct shoaling, reflection
and dispersion. The BEM code becomes singular once a breaking wave strikes the free
surface due to the singularity in the free space Green's function. Hence, the initial
submergence and motion of an underwater landslide simulated by the BEM code must

not incur wave breaking.
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As with many computer simulations, accurate and efficient numerical simulations may
depend more on the skillful implementation of established techniques then on errors
inherent to the solution technique itself. The simulations reported herein are no
exception. The Laplace partial differential equation of the velocity potential represents
the conservation of volume in an inviscid fluid flow. Therefore, a useful measure of
simulation accuracy is the volume of fluid contained by the boundary elements. The
BEM code used for this work calculates the simulation domain volume at each time step
and records changes in the volume as both an instantaneous error during a time step and

an accumulated volumetric error.

An exceptional feature of these simulations is the extremely accurate O(At3) time
stepping solution of the free surface motion using Taylor series expansions in local
boundary coordinates. These benefits are acquired with the simultaneous loss of viscous
effects such as wave energy dissipation, flow separation, and skin friction. Section 3.2
shows that some of these viscous effects play a negligible role in solid block kinematics.
Fluid separation near the solid block vertex is clearly an important viscous effect that
controls block motion. However, the role of fluid dynamic features such as separation on
wave generation remain to be determined. Inviscid and irrotational simulations are not

able to reproduce the starting vortex and flow separation depicted in Figure 1.3.

The BEM code uses the two-dimensional free space Green's function to solve a linear
partial differential equation by integrating over the boundary of the simulation domain.
At corners in the domain, two nodes are superposed to account for the two normal
vectors. The velocity potential and normal fluxes at the two nodes are subject to
continuity conditions. The BEM code used for this work was designed to have only four
corner nodes placed at the four corners of a rectangular wave tank. Hence, tﬁe three
corners of a solid block landslide are treated with approximate boundary conditions

described immediately below and in Section 5.4.

The corners of an underwater landslide represent local singularities in an exact potential
flow solution. Such singularities could be a large source of error in potential flow
simulations. In reality, viscous effects and inexact geometries prevent such singularities
from being fully realized. Therefore, it is both realistic and advisable to avoid such
singularities in the numerical simulation too. In the BEM code, six corner elements of

nondimensional size O(10-3) were used to round out the geometry and provide accurate
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potential gradients near the theoretical singularities. The boundary conditions employed
on the corner elements were modeled to provide a smooth transition from the
theoretically derived boundary conditions on either face of the landslide. The smoothness
of the boundary condition transition around a corner mimics the smoothing behavior of
the velocity potential by the Laplace partial differential equation. Hence, creating
approximate boundary conditions near the singularities limits the magnitude of
computational errors as well as the distance with which they can propagate into the

solution domain. However, volume will no longer be conserved by the simulations.

Corners of a simulation domain can present a problem to the BEM code since the angle
with which adjacent elements see one another becomes large at the same time that the
rate of change of the velocity potential also becomes large. The polynomial fitting
technique used to represent the velocity potential along the boundary combined with the
Gaussian quadrature of the boundary integrals fail to capture these rates of change
properly. Adaptive integration was employed on both sides of all four corner elements
that subdivides elements into two equal parts until the angle of sight is less than 40°. A
maximum of four subdivisions could be made resulting in up to 16 elements where there
was once only one element. Further subdivision fails to improve the solution appreciably
while significantly increasing the computational expense of checking the angle of each

subdivision relative to every other one.

The time step used in a simulation involving flow or wave phenomena is often controlled

by a Courant number. The Courant number is defined for this work as

_ At\g(d+s(®)sin 0)
Armin

Co

(3.118)

where At is the time step at a given time in the simulation and Aryj, is the smallest
element length on the free surface at that time. The Courant number is a measure of how
far a wave can travel along a single boundary element during a given time step. In the
code, the time step is determined based on a user defined optimum Courant number that
depends on the specific problem being simulated. For the BEM code used in this work,
the Courant number must be Co<0.§ for stable wave propagation. In general, a smaller
Courant number gives rise to a more accurate numerical solution of free surface waves
since Taylor series expansions used to move the free surface become more accurate as the

time step is reduced.
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Another important simulation detail involved matching the length of the first three
elements of the incline beach with the first three elements of the free surface. The incline
beach was located immediately behind the landslide and was subject to highly unsteady
wave action. Matching element lengths on an inclined beach allows adaptive integration
to be used effectively on the last three elements. The fully nonlinear boundary conditions
and Lagrangian updating of the free surface are therefore accurately exploited at the
juncture of the incline and the free surface. Subsequent elements on the incline and free
surface are usually far enough away from each other that such refinements are no longer
needed to produce an accurate wave run-up and run-down solution. One additional detail
needed attention: the predicted run-up or run-down would not quite follow the incline at
each time step due to small errors in the Taylor series expansion of motion. In order not
to have any compounded errors in free surface position, the horizontal coordinate of the

free surface juncture with the incline was forced to lie on the incline at each time step.
3.4.3 Boundary Motion and Boundary Conditions

This section provides the geometric equations needed to describe the landslide position
and motion at each time step within the BEM code. The boundary conditions on the
surface of the underwater landslide are also derived in this section. These equations
represent modifications that were made within BEM code subroutines that update
boundary node positions and prescribe boundary conditions for the velocity potential and
its derivative in time. In all, five subroutines were modified so that an underwater
landslides became another wave generation option within the BEM code. A separate
computer program was also written that converted the inputs of the solid block landslide
problem into an initial simulation domain and separate input data for the BEM code
specifically needed for the underwater landslide simulation option. This cdmputer

program will be described first.

In this work, an underwater landslide is modeled initially as a right triangle that
undergoes translational motion on a straight incline with angle 8=45° from horizontal.
The top face of the landslide is initially horizontal with length b while the front face of
the landslide is initially vertical with length ¢ as shown in Figure 3.6. The choice of such
model landslides is primarily a function of experimental expediency as explained in
Section 1.1. The incline is taken as sufficiently long for landslide motion to develop over

several characteristic time scales t, before reaching the bottom of the incline. For
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underwater landslides with Hag» 1, this implies that almost all water waves have been
generated and have left the generation region before the landslide itself is affected by any
significant changes in bathymetry. This condition can be verified for an arbitrary

underwater landslide using equation (3.78) or equation (3.79).

The size of the simulation domain should be as small as possible since the duration of a
given simulation scales with the square of the number of boundary elements. Moreover,
accuracy of the numerical solution increases with node density so that a large simulation
domain can incur huge computational costs for a specified node density (or accuracy).
Therefore, the simulation domain is minimized for each computation according to the
specific landslide center of mass motion. One way to minimize the computational
domain is to limit the duration of the simulation since the landslide will not have traveled
very far down the incline. If one is only interested in the maximum near-field wave
amplitude, then a simulation need not run longer than t=2t,. Using equation (3.78), the
landslide center of mass will have traveled s=1.33s, in that time. Given the minimum
length of the incline, a constant depth channel can then be introduced into the simulation
domain. The channel needs to be long enough that waves reflecting off the far wall
cannot return to the wave generation region before the simulation ends. Once again, a
shallower channel has a slower long wave celerity and therefore can be shorter in length.
These ideas are now translated into exact formulae used to calculate the size of the

simulation domain.

In order to calculate landslide motion, a user must input the incline angle 6, the initial
landslide size b, the initial landslide submergence d, the initial landslide density ps, and
the three dynamical coefficients Cp, C4, and Cy,. The incline angle is always 6=45" in
this work. The initial acceleration a, and terminal velocity u; are readily calculated from
equations (3.73) and (3.74), respectively. Likewise, the characteristic distance So and
time t,, of the landslide motion are readily calculated from equations (3.76).

The minimum size of the simulation domain can now be calculated. The distance
traveled by the landslide center of mass during 2t, is roughly 1.35s,. The minimum
depth of the simulation domain hyyjj is therefore the initial landslide submergence d plus
the height of the front face of the landslide c=btan® plus the vertical component of the

landslide motion along the incline or

bmin = d+c+ 1.355s,sin 0 (3.109)
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where the simulation is assumed to stop at t=2t,. Since the size of the simulation domain
is clearly connected to the duration of the simulation, simulations cannot be run longer
than t=2t, and are therefore limited to simulating a near-field characteristic wave
amplitude. The corresponding horizontal extent of the free surface above the incline is
clearly hpjn/tanf. The horizontal extent of the constant depth channel must be toVgh in
order to keep long waves from reentering the generation region during a simulation time
of t=2t,. Dividing equation (3.109) by tan6 and adding the constant depth channel

length, the minimum horizontal extent of the entire free surface is

d
tan O

AXpmin = +b+1.35s,cos0+t,Vgh (3.110)

where a vertical wall is assumed to exist at the right end of the simulated wave tank. The
geometry of the simulated wave tank is therefore very similar to that of the actual wave
tank described in Section 4.1 and shown in Figure 4.1. The landslide vertex and two
intersection points of the landslide faces with the incline are now shown to be important

points in the simulation domain.

Some boundary nodes in the simulation must be redistributed at each time step in order to
achieve landslide motion. The only moving boundary nodes other than the free surface
are on the surface of the landslide. The incline itself does not move although the two
portions of the incline exposed to the water change in size as a function of time.
Therefore, boundary nodes along these two portions of the incline need to be stretched or
compressed. For example, the redistribution of boundary nodes may begin at the incline
bottom and place nodes along the incline up to the bottom of the landslide, more nodes up
the front face of the landslide and across the top face of the landslide to the incline, and
finally distribute nodes up the incline all the way to the free surface. Since the incline
does not move, the landslide vertex is a useful reference point from which to describe
landslide motion and locate the intersections of the landslide faces with the incline. The
landslide vertex begins at a known position and follows the landslide center of mass
motion. In the simulations, the intersection of the still free surface with the incline is

taken as the origin. Therefore, the initial location of the landslide vertex is

Zo = -d 3.111)
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where the vertical z-axis increases upward. At any time in the landslide motion, the

landslide vertex is located at
Xy() = Xo+s(t)sin® , zy(t) = zo-s(t) cosO (3.112)

where s(t) is given by equation (3.78). It is convenient to describe the top and front faces
of the landslide using radial coordinates situated at the landslide vertex and moving with
the landslide center of mass.

The intersection point of the top face of the landslide with the incline is found from the

vertex using the equations
Xa = Xy-b (3.113)
Zy = Zy (3.114)

where xy and zy are given by equations (3.112). The point (X,,Z5) is needed at each time
step in order to redistribute nodes along the top landslide face and the upper portion of
the incline. The intersection of the bottom face of the landslide with the incline is given
by

Xb = Xv (3.115)
Zh = Zy-C . (3.116)

The three points (Xy,zv), (Xa,Za) and (Xp,zp) represent the three corners of solid block
landslides for which approximate boundary conditions are employed. This completes the
description of solid block motion within the BEM code since the redistribution of nodes

is a trivial task given these three points.

The BEM code solves for the velocity potential and the derivative of the velocity
potential with respect to time. Both quantities satisfy Laplace's equation and therefore
need well-posed boundary conditions. The boundary conditions for the free surface are
established within the BEM code and were not modified for simulations of solid block
landslides. The boundary conditions for the solid walls of the simulated wave tank are

trivial no-flux boundary conditions given by



m=0 ot = 0 3.117)

where n is the outward pointing normal vector. Vectors in the next two pages will be
denoted by boldface type. The incline, channel bottom, and far wall of the simulated
wave tank had boundary conditions prescribed by equation (3.117).

When solving for the velocity potential, the boundary condition on the solid block surface
simply represents the component of center of mass velocity normal to the surface. For
rigid body motion with no rotation, the general boundary condition is expressed

g% = v-n (3.118)

where v is the center of mass velocity vector and n is the outward pointing normal vector.

For the top face of the solid block, the boundary condition becomes

gg = % sin 0 (3.119)

while, for the front face of the solid block, the boundary condition is

g—g -% sin@ . (3.120)

The inviscid fluid is of course free to flow tangentially along the solid block surface.
Equations (3.118) and (3.119) are intuitively straightforward boundary conditions.

The boundary conditions for the derivative of the velocity potential with respect to time
on the solid block surface need to be carefully derived. Clearly, the component of the
center of mass acceleration normal to the surface will be part of the boundary conditions.
In addition, second derivatives of the velocity potential along the solid block surface can
be expected. For rigid body motion with no rotation, the general boundary condition is

024 9% 9%
’a"ﬁ——a—t = an - v an as + v-n 'a_sé" (3121)
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where a is the center of mass acceleration vector and v is the center of mass velocity
vector. Along the top face of the solid block, the boundary condition is

920 d2s ds a2¢ ds 2%
ot = g S in® + g cos® 35 + g sin 32 (3.122)

while, along the front face of the solid block, the boundary condition becomes

929 d2s d a2¢ ds . 9%
Mmoot = a2 sin @ + 7 an 3 - sin 0 32 (3.123)
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Figure 3.1: Schematic diagram of the initial conditions of a solid block landslide on a
straight incline at an angle 8 from horizontal. The solid block has a size b and an initial

submergence d. At some later time, the center of mass position is given by s(t), the

center of mass velocity by u(t), and the center of mass acceleration by a(t).
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Figure 3.2: General form of solid block position as a function of time. All three cases
begin at rest with an initial acceleration. All three cases also approach the asymptote
exponentially. The asymptote is a straight line defined by the position s+ and the time t=
shown on the axes and giveﬁ by equations ( 3.60) and (3.61), respectively.
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Figure 3.3: Comparison of theoretical solid block motion with the 2, 3, and 4 term Taylor
series approximations of the exact motion. Differences are noticeable for 2 terms after
t/ty=0.9, for 3 terms after t/ty=1.1, and for 4 terms after t/t;=1.3. The maximum near-field

wave amplitude is usually reached around t/ty=1.
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Figure 3.4: Distance that the Airy wave maximum has traveled from the piston
wavemaker as a function of time. The linear least-squares curve fit of the experimental
data yields a celerity c=1.87 m/s that is almost exactly the long wave celerity co=Vgh
=1.85 m/s for the water depth h=0.35 m of the constant depth channel.
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Figure 3.5: Amplitude of the Airy wave maximum as a function of the distance traveled.
The power law least-squares curve fit of the experimental amplitudes yields a -0.37

power law decay whereas linear wave theory predicts a -0.33 power law decay of wave

amplitude with distance.
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c= (N2

Figure 3.6: Schematic figure defining the length ¢ along the incline, the length b of the
top face, the length c of the front face, and the width w of the solid blocks. While the
blocks are defined as having a horizontal top face and vertical front face for an arbitrary
incline angle, only an angle 8=45" from horizontal was studied experimentally. ‘
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Chapter 4

4. Experimental Apparatus and Procedures

This chapter describes the experimental wave tank, wave gauges, solid blocks, and
materials used to produce and measure water waves generated by underwater landslides.
In addition to describing the wave generation experiments, experiments conducted to
determine solid block dynamical coefficients and material characteristics are detailed in
this chapter. The methods used to measure landslide motion and shape in time are also

described.
4.1 Wave Tank and Wave Gauge Characteristics

Wave generation experiments were conducted in a wave tank 10.1 cm wide, 9.14 m long,
and 66 cm high constructed half of Lucite and half of wood lengthwise. An incline 45°
from horizontal constructed entirely of Lucite spanned the depth at one end of the wave
tank. See Figure 4.1 for a schematic of the wave tank and incline. The incline was sealed
with 3.18 mm diameter rubber o-ring chord and held in place by normal forces applied to
the side of the wave tank. For a solid block landslide, a 0.62 mm thick Nylon sheet
covered the incline from wall to wall during solid block trials in order to smooth over
four slots cut into the incline for the vertical gate shown in Figure 1.4. The clean Nylon
sheet was placed in the water just prior to performing experiments and each block was
put in the water just prior to the trial itself. Th solid block was allowed to slide a few
times down the incline in order to remove air bubles trapped on the block surface.
Material landslides were impounded behind the gate before it was rapidly drawn into the

incline to begin a trial. A wave absorber was placed at the opposite end of the wave tank
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that could reduce reflected wave amplitudes by up to 70%. The wave tank was filled
with tap water, mixed with a relatively small amount of pool chlorine, and allowed to
degas for a day before performing trials. Water temperature was always between 19°C
and 20.5°C during experimentation. The water density p,=998.2 kg/m3 and water
dynamic viscosity po=1.002x10-3 kg/m-s at 20°C are used for calculations herein.

The wave absorber at the far end of the wave tank was built in two successive parts. The
first part consisted of 125 vertical sheets of galvanized screen separated by 1.6 mm of
water with each sheet spanning the width and depth of the wave tank. The screen was
made of 0.22 mm diameter wire and comprised an orthogonal mesh of 50 wires per
decimeter crossed with 70 wires per decimeter. The screen mesh possessed known wave
dissipation characteristics based on the work of Goda and Ippen (1963). The second part
of the wave absorber consisted of 0.85 m long sheets of rubberized horsehair piled
between the screen sheets and the vertical wall at the end of the wave tank. The horsehair
sheets filled in the top half of the wave tank since that was where dissipation of wave
kinetic energy was most needed. Rubberized horsehair is a common and effective surface

covering for wave absorption on an inclined laboratory beach.

Resistance wave gauges comprised of two parallel 0.254 mm diameter stainless steel
wires stretched taut over 13 cm and separated by 3.18 mm were used to record the wave
heights. The frame of each wave gauge was constructed of 4.76 mm stainless steel rod
and was electrically grounded to shield the gauge characteristics from nearby metal
objects that could change the local electric field. The wires are electrically insulated from
the frame and each other except when immersed in a relatively conducting fluid such as
tap water. Whenever possible the near-field wave gauge wires were immersed 3 cm in
the water while the far-field wave gauge wires were always immersed 7 cm into the
water. A 4.5 volt 2400 Hz excitation was provided by a preamplifier to the wave gauge.
The output from the bridge circuit was demodulated and amplified before entering a data
acquisition system. Schematics of the wave gauge construction and of the wave gauge
circuit can be found in Figures 4.2 and 4.3, respectively. Wave gauge signals were
acquired by a MacADIOS-8ain analog to digital board controlled with Superscope II
software by GW Instruments. The accuracy of the 12 bit digitized signal over a 20 volt
range was +5 mV. Trials were recorded with a sampling rate of either 360 or 720 points
per second. Calibration curves were acquired with a sampling rate of 10 points per

second.
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One wave gauge was positioned above the middle of the initial landslide location at x=0
while another wave gauge was located 4.25 channel depths away. These positions were
chosen to provide a characteristic wave height above the wave generator as well as the
far-field dispersive characteristics of the generated waves. The need for both near-field
and far-field wave characteristics is exemplified by the water waves generated in Prince
William Sound, Alaska following the 1964 Good Friday earthquake: some harbors
experienced the immediate damage of near-field waves during the earthquake while other -
harbors experienced groups of large waves arriving several minutes following the
earthquake. For simplicity, a constant depth channel has been used to study the far-field
wave characteristics. The first wave gauge was positioned above the middle of the initial
landslide location using two orthogonal rulers placed along the side of the clear wave
tank. The position was accurate to within a millimeter in the direction of the channel.
Duct tape attached to the wave gauge frame allowed the gauges to be submerged a similar
depth each trial thereby producing consistent wave gauge characteristics. Measuring tape
fixed to the top of the wave tank allowed the relative horizontal positions of the wave
gauges to be known to within one millimeter. The second wave gauge was located 4.25
channel depths from the first wave gauge using the measuring tape on top of the wave
tank. The end of a flexible tape measure was used to ensure that both wave gauges were

centered widthwise.

Hand controlled stepper motors were used to calibrate the wave gauges by counting the
number of steps and converting steps into a displacement. The calibration of the stepper
motor displacement versus step number was accomplished with a dial gauge accurate to
2.5 um. The linear curve fit shown in Figure 4.4 relating the number of steps N to the

wave gauge displacement D
D = 0.003299 N (4.1)

was identical for both motors. No backlash or hysteresis was measured, probably
because the weight of the wave gauge assembly on the threads was sufficient to maintain
continuous contact regardless of the direction of motor rotation. Equation (4.1) was used
to relate the number of steps used in the wave gauge calibration to the displacement of the

wave gauge.

Wave gauge calibrations were performed at least every 45 minutes and involved repeated

departures from an initial zero level to some maximum relative position and back in
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about 10 seconds. This type of dynamic calibration has been discussed by Pearlman
(1963) and represents an effort to minimize errors due to meniscus reversal, wire wetting,
and zero level voltage drift. Dynamic wave gauge calibration essentially simulates a
wave coming and going thereby capturing similar behavior of the water near the gauge
wires. The meniscus height on a thin wire is described theoretically by Lo (1983). Using
a magnifying glass, the meniscus height on the wave gauge wires was estimated to be less
than half the wire diameter. Whenever the wave gauge positions were moved along the
wave tank, the gauges were calibrated again.

The digital voltage record of each calibration was filtered with a 33% "Smoothing Filter"
in Superscope and then smoothed with a sliding average of 10 points prior to extracting
calibration data. For a positive displacementbthe minimum voltage from the zero level
and the maximum voltage from the smoothed voltage peak were read to give a voltage
difference AV, for a negative displacement the opposite voltages were read. Calibration
voltage difference AV versus net displacement AD data were fit by a cubic (or up to fifth
order) polynomial as shown in Figure 4.5. The fourth order least-squares curve fit in

Figure 4.5 is

AD = -1.65x10-3 + 3.59x10-1 AV + 1.77x10-2AV2 -
- 9.70x10-4 AV3 - 4.12x104 AV4 4.2)

where AV is in volts and AD is in centimeters. Equation (4.2) shows that the curve fits
usually missed the origin of AV versus AD by a small amount since the condition AD=0

when AV=0 was not imposed on the curve fit.

The calibration curves were used to convert a voltage signal from a trial intc; a wave
amplitude. In order to employ the calibration curve, a zero level voltage had to be chosen
about one second before the trial began so that the initial wave amplitude is zero. The
zero level voltage was sampled from the trial record after applying a 33% "Smoothing
Filter" and then smoothing with a sliding average of 30 points. This single value was
then subtracted from the unprocessed voltage signal to yield a trace of voltage differences
ready to be converted to wave heights. Small vertical shifts in the calibration curves such
~ as that in equation (4.2) were neglected so that a voltage difference of zero yielded a

wave amplitude of zero
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4.2 Solid Block Experiments

The interpretation of solid block wave generation experiments depends on the quality of
the physical property and solid block motion information. These are provided by a
separate set of measurements and experiments from the main body of this work.
Measured and calculated solid block properties are provided immediately below. The
special methods needed to conduct solid block landslide experiments are then given. The
experiments performed to determine solid block dynamical coefficients are described last.

4.2.1 Solid Block Properties

Underwater landslide experiments were conducted with four solid blocks, where block
number 2 could be modified to have (at least) eight different densities. All solid blocks
were constructed from 8 sheets of PVC nominally 12.4 mm thick and glued together such
that each laminate was parallel with the side walls of the tank. A large hole was drilled
through the center of mass enabling a brass (or lead) ballast to be inserted into each solid
block. All blocks with the subscript "n" (for normal) have a nearly identical density of
about pp=1860 kg/m3 achieved by a given-sized brass ballast and water trapped in the
remainder of the hole. In the middle of the top face of each block a small metal eyelet 2
mm wide and with an 8 mm outer diameter was screwed into the PVC. A thin Nylon

fishing line was attached to the eyelet to hold the block in place prior to a trial.

Figure 3.6 provides a schematic of a solid block and defines five relevant length scales.
Table 4.1 provides the relevant physical characteristics of all solid blocks used herein.
Since the solid blocks have two angles of 6=45", it follows that the length along the

bottom of a solid block is
? =J2b=+2c 4.3)

and the volume of the solid block is

wh2 w2
2

Vp = =~ - 4.4

All lengths were measured with an accuracy of half of a millimeter. Small variations in

solid block thickness and length voided attempts to make more accurate length
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measurements. Therefore all lengths are known to within an error of about 1%. The
solid block volumes are therefore known to within about 3% since. they were calculated
from equation (4.4). All four solid blocks are depicted in Figure 4.6. The solid block
masses were measured on a Sartorius analytic balance accurate to 0.1 g. This represents a
typical error in solid block mass of only 0.02%. The mass of displaced water was
calculated from the solid block volume according to

My = po Vb (4.5)

where the error in m, is also about 3% since there is negligible error in the water density.
The solid block density calculated from the equation

Pb = Yo (46)

has an error that is dominated by the solid block volume Vy. Likewise, a reasonable error
in the solid block density is also 3%. These errors determined the accuracy of quantities

listed in Table 4.1, although additional decimal places are provided.

Table 4.1: Solid Block Physical Characteristics

Block # £ (cm) w (cm) mp (kg) m, (kg) | Pb (kg/m3)
+0.05cm | +005cm | £0.0001kg | +0.01kg | %60 kg/m3
4p 5.60 9.95 0.1431 0.078 1835
3, 8.65 9.90 0.3399 0.185 1835
2 12.05 9.90 0.4404 0.359 1225
2, 12.05 9.90 0.5250 0.359 1 460
2% 12.05 9.90 0.6136 0.359 1710
20 12.05 9.90 0.6723 0.359 1870
2 12.05 9.90 0.6958 0.359 1935
24 12.05 9.90 0.7840 0.359 2 180
e 12.05 9.90 0.8664 0.359 2 465
% 12.05 9.90 0.9872 0.359 2745
1n 17.60 9.90 1.4496 0.765 1 890
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4.2.2 Solid Block Landslides

The initial configuration of a solid block landslide experiment is shown in Figure 4.7.
The wave gauge location is above the middle of the initial solid block position. The
Nylon sheet covering the Lucite incline during solid block landslides is barely visible.
Solid blocks were released from rest by letting go of the Nylon fishing line that held the
block in place prior to an experiment. Just prior to a trial the Nylon fishing line was
pinched between the forefinger and the incline so that "letting go" consisted of raising the
forefinger. The absolute time of letting go was determined by shining a 10 mW He-Ne
laser partially across the front of the solid block and partially onto a photodiode. The
photodiode was contained in a black plastic container with a small hole on the front in
order to minimize the intensity of 60 Hz fluorescent light flickering. When a systematic
change in the photodiode voltage was detected, a very sensitive electronic triggering
circuit emitted a voltage pulse along with the actual photodiode signal to the data
acquisition system. The voltage pulse could detect the solid block motion before the
photodiode signal changed by the resolvable voltage difference of £5 mV and so was
used at all times to establish when a solid block trial began. Experiments were repeated
once no waves could be detected on the data acquisition system and fluid motion ceased

which could be as short as every three minutes.

Solid block motion for the first 20 solid block trials (25-31, 41-44, and 47-55) was
recorded by high speed movie camera. A LOCAM II camera ran a 100 foot roll of
Eastman 7222, Double X, 200 ASA, 16 mm film at about 100 frames per second. The
precise framing rate was known to within +0.01 Hz from an LED inside the camera with
an electronically controlled flashing rate of 100 Hz. The LED left a light mark on the
film that could be seen on the left side of the frame. Since the framing rate was almost
never exactly 100 Hz, the position of the light mark moved slowly either up or down the
frame as the movie was projected. Let the light mark return to its original position in N
frames. If the framing rate f; is less than the LED frequency =100 Hz, then the light
mark goes up the frame and there will have been N+1=f»/(f,-f1) light marks during the N
frames. Solving for the framing rate gives fj=100N/(N+1). This equation simply means
that there are exactly N frames in N+1 full periods of the flashing LED as can be readily
verified by examining the movie film. On the other hand, if the framing rate f; is greater
than the LED frequency, then the light mark goes down the frame and there will have
been N-1=f/(f;-f) light marks during the N frames. Solving for the framing rate
provides f;=100N/(N-1). The two equations are directly related to using a known
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frequency to produce beats in an unknown frequency and then using the beat frequency to
calculate the unknown frequency. Since typical values of N were on the order of several
hundred, the corrections to the expected framing rate of 100 frames per second were
small. Four trials and a calibration grid of 101.6 mm (four inch) squares could be
recorded on a single roll of film. The calibration grid was deposited in the water against
the near wall of the wave tank and ensured that the projected image was uniformly
magnified over the entire projected image with a known magnification factor.

Solid block motion is often detected by eye on the movies four or more frames after the
trial has actually begun. A method is described in the LOCAM camera manual whereby
the initiation of an event can be recorded on the movie film using another LED. The
initiation of solid block motion could be found to within a fraction of a frame by a single
LED mark on the movie film triggered by the same photodiode triggering circuit
described above. Since a single movie frame lasts about 10 ms and is 8 mm wide, a ruler
could be used to locate the relative position of the LED mark and hence the beginning of
a trial to within about £1 ms. The mark was designed to appear on the film about 19.5
cm after the frame being exposed on a region of the film that was still moving through the
camera with constant velocity -- the film is held stationary during frame exposure and so
cannot be used for timing events more accurately than the framing rate (or 10 ms for all
solid block movies). A calibration procedure is described in the LOCAM camera manual
in order to find the precise distance from the exposed frame to the LED mark for each roll
of film. The electronic system for recording the LED mark failed to work for Trials 41,
42, 43 so that the initiation of solid block motion had to be inferred from the position
versus time record of the solid block. This method of locating the beginning of a trial
was deemed accurate to within a single frame (or £10 ms). In addition, the LED
calibration procedure failed to leave a detectable mark on the film of Trials 51-54 so that
a typical distance of 19.4 cm had to be used to locate the beginning of a trial also to

within about one frame of accuracy.

Movies of solid block motion were used to construct position versus time records in order
to estimate the solid block initial acceleration. The movies were projected onto a surface
with a uniform magnification of between 2.2-4.7 times based on a square calibration grid.
The position of the top face of the solid block was marked on a large piece of paper for
the first 20 frames or so of block motion with an accuracy of about +1 mm on the sheet of
paper. The results were then divided by the magnification factor as well as sind5°=1/v2
to obtain the position along the incline in real coordinates. The experimental initial
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accelerations were obtained by curve fitting the first 15 frames (about 0.15 s) of the solid
block position versus time with the parabola s(t)=aot2/2, which is the leading term in the
Taylor series of equation (3.78) about t=0*. Figure 4.8 shows the curve fit s(t)=apt2/2 of
the observed solid block position in Trial 48 where error bars indicate one standard
deviation. The initial acceleration obtained from the curve fit is a,=2.09 m/s2.

In order to save image processing time and improve acceleration accuracy, the
acceleration of solid blocks during Trials 55-80 was obtained from a solid-state
accelerometer. In the following chapter, calculations of solid block inertia based on
position versus time movie records are shown to incur large errors. The accelerometer
was contained within a 6.4 mm diameter cylinder that was 21.6 mm long. The cylinder
was centered within a 7.6 mm by 7.6 mm square casing that was 12.7 mm long. The
casing was fused to a 12.7 mm by 15.9 mm base that was 1.3 mm thick with screw holes
available to fix the accelerometer to the solid blocks. Two screws were used to attach the
accelerometer to the top face of either solid block 1, 2, or 3. These blocks were presumed
to be massive enough and the accelerometer small enough not to significantly alter solid
block and water motion. Solid block 4 was too small to attach the accelerometer onto the

top face with screws and so was not studied with an accelerometer.

The accelerometer could measure gravitational acceleration with an amplitude that varied
with the cosine of the angle between the accelerometer base and horizontal. The linear
relation Vec<kgcosO between accelerometer voltage and effective gravity was verified by
fixing solid block 2 to a leveled indexing head from a milling machine. The indexing
head was used to rotate the solid block through increments of 15° while recording the
accelerometer voltage. Figure 4.9 shows that the response of the accelerometer was
linear over the 5-10 m/s? acceleration range tested. The zero level voltage and amplitude
of the accelerometer signal were controlled by external electronics. Based on the static
accelerometer calibration shown in Figure 4.9, the accuracy of accelerometer
measurements is typically much less than 1% of actual acceleration values. Most of this
error can be attributed to instrument drift over the duration of the static calibration. The
accelerometer was used for much shorter durations during a solid block landslide and so
would incur much less drift error. For calibration purposes, gravitational acceleration is
taken to be g=9.81 m/s? herein.

In order to overcome the effects of drift, the accelerometer was calibrated for each solid

block trial by i) measuring the acceleration prior to releasing the block and ii) by resting



96
the base of the solid block horizontally in the constant depth channel after the termination
of the trial. The influence of solid block acceleration on the accelerometer output must be
bounded by the two calibration points which represent known accelerations in the frame
of reference of the solid block oriented with the incline. The calibration points were
found by filtering the accelerometer signal with a 33% "Smoothing Filter" and then
smoothing with a sliding average of 100 points. The two calibration voltages were then
extracted from the voltage record -- one before and one after the actual trial. Figure 4.10
provides the unfiltered acceleration versus time from Trial 76. The process of letting go
of the Nylon fishing line typically lasted between 20-50 ms based on the time taken to
reach maximum acceleration and typically incurred no measurable upward acceleration
whatsoever. The maximum acceleration in Figure 4.10 was reached just prior to 20 ms
after the trial began. This maximum acceleration was taken as the initial acceleration of
the solid block. Thereafter, the acceleration steadily declined towards zero with the
exception of an unexplained rise and fall at around t=0.3 s. This was a regular feature of

solid block acceleration traces and may have reflected a bump in the actual incline.
4.2.3 Experimental Dynamical Coefficient Determination

The dynamical coefficients needed to describe solid block motion are determined
experimentally herein. The main effort related to this section involved reducing the
errors inherent in measuring solid block initial accelerations and terminal velocities to the
point where errors in the characteristic distance s, and time t, of solid block motion were
acceptable. Since reasonably accurate dynamical data have been obtained, general values
for the dynamical coefficients Cy, Cpp, and Cq can be found and wave data should
collapse in a correct nondimensional wavemaker plot. The dynamical coefficients allow
the solid block motion to be generalized beyond the experiments presented herein; the
collapse of wavemaker data will indicate a general wavemaker curve for water waves
generated by underwater landslides. In passing, the theoretical simplification in Chapter
3 of a constant added mass coefficient can now be justified based on these experimental

results.

Trials 25-31 and 41-42 were performed with all of the computerized data acquisition and
timing devices described in Section 4.2.2 above. However, when removing the lead
ballast from solid block 2 after Trial 42, the PVC laminates comprising the block came
apart and needed to be reglued. It will become apparent in the next chapter that the

subsequent block dynamics differ just enough to produce generally larger wave
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amplitudes. The dynamical analyses performed in this section apply solely to the new
solid block 2 used in Trials 47 and onward. Accurate dynamical data for the old block 2
trials are not available. Consequently, the results from this section should be applied to
old block 2 trials with caution. However, sufficient trials have been performed such that
curve fits of the accumulated data are not significantly affected by the absence or
presence of the older block 2 data regardless of the larger dynamical errors.

4.2.3.1 Solid Block Coulombic Friction

The Coulombic friction was analyzed in a separate water tank with the same solid blocks
and Nylon incline surface used in the wave generation experiments. The incline angle
could be readily adjusted and measured to within less than 1° of accuracy. The dynamic

Coulombic friction coefficient can be written
Ch = tany 4.7)

where the critical incline angle from horizontal  is the critical angle at which a solid
block is able to slide without accelerating or decelerating. Three methods were devised
to determine ¥ experimentally: i) finding the static Coulombic coefficient by increasing
the incline angle until the block started sliding, i) pulling the solid block gently up the
incline and finding the angle at which it no longer slid back down and iii) finding the
critical angle at which a solid block, once set in motion down the incline, continued
moving. Interestingly, none of these methods yielded the same critical angle although
they differed by only 22°. The largest critical angle was found to be that associated with
the static Coulombic friction. In general, static Coulombic friction is greater than
dynamic Coulombic friction. A solid block set in motion down the incline was alw;ciys
found to continue accelerating down the incline. Hence, the measured angle was
typically a little bit above the critical value. However, this critical angle was typically 4°
less than the static critical angle and was the smallest critical angle. The intermediate
values of y obtained by pulling the solid block up the incline were used as the critical

incline angle herein and were typically half way between the other two critical angles.



98
4.2.3.2 Solid Block Initial Acceleration and Added Mass

The initial acceleration of solid blocks was found from movie records for the first 19
solid block trials and directly from an accelerometer for 26 subsequent trials. The initial
acceleration aq of a solid block is an important characteristic of the entire block motion
along the incline and depends on the added mass of surrounding water. Since the solid
blocks are typically twice as dense as the ambient water and Cy=1, the added mass does
not dominate block inertia. In general, the added mass coefficient associated with the
initial acceleration is a function of two parameters Cm=Cmp(d/b,0). The number of
nondimensional parameters is short, in part because the added mass is evaluated at t=0*
before the solid block has actually gone anywhere. Moreover, the influence of the incline
angle 6 on the added mass coefficient is not studied herein. By measuring the initial
acceleration of solid blocks, the dependence of the added mass coefficient Cy, at t=0* on
initial submergence can be found for the given incline angle 6=45".

4.2.3.3 Solid Block Terminal Velocity and Drag

Accurate measurements of the terminal velocity can be used to determine the drag
coefficient of a solid block. Since the apex of the solid block is sharp and forms the
starting vortex shown in Figure 1.3, the drag coefficient is assumed to be independent of
the instantaneous block Reynolds number Re=pobu/ll, (as are other objects with well-
defined points of separation). Hence, a constant value of Cq is able to determine form
drag over the entire block motion. For a typical block size and initial acceleration, Re=1
when t=2 ps which is too early in the solid block motion to account for the rise time in
the solid block acceleration shown in Figure 4.10; at terminal velocity the Reynolds
number is on the order of 103. It has been shown above that the starting vortex has a
negligible contribution to the drag coefficient of the solid block. Under these conditions,
the drag coefficient should be a function Cd=Cq(8) of only the incline angle provided the
top face of the solid block is defined as horizontal while the front face is defined as
vertical. Theoretically, the terminal velocity is given by

o = 2 (mp - mg) g (sin 6 - C, cos 6)
' Cd pow £ cos 0 sin 0

_ V (Pb - Po) £ g (sin B - C, cos 0) 4.8)
Cd po
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where the general definitions of b=/cosB, c=/sinB, and V=wbc/2 have been used to
simplify the expression. The solid block terminal velocity was found by letting the block
slide 80 cm down the incline and then counting the number of clock cycles it took to
traverse two laser beams. The two laser beams were practically parallel and crossed the
wave tank just above the incline surface at the toe of the slope. Two photodiodes and a
sensitive trigger circuit were used to begin and end counting clock cycles at 2x10°+ 1 Hz
when the laser beams were cut by a block. A straight 12.5 mm thick Lucite sheet was
inserted between the usual incline and the Nylon in order to reduce experimental scatter
induced by the wavy incline. Between 10 and 16 measurements of the terminal velocity
were taken for each solid block when the laser beams were separated by 77.2 £ 0.1 mm.
Three measurements of the terminal velocity were made for each solid block when the
laser beams were separated by 29.4 £ 0.1 mm. For the heavier solid blocks, the smaller
laser separation distance (farther from the point of release) increased the measured
velocity by a few per cent. There was no practical way to further increase the sliding

distance or decrease the laser separation in the wave tank.
4.3 Material Experiments

The ability to interpret (and predict) the results of material landslide wave generation
experiments depends on a wide variety of measured properties. These are typically
provided by a separate set of experiments from the main body of this work. Measured
and calculated material properties are described immediately below. The special methods
needed to conduct material landslide experiments are then given. The methods used to

determine material landslide motion and deformation are described last.
4.3.1 Material Properties

An underwater landslide often has well-defined local material properties prior to failure
or away from the failure plane. A list of physical variables that describe the local state of
a landslide material was established in Section 3.1.2. One such variable is the material
solid volume fraction which is employed in soil mechanics, in suspension rheology, and

for granular media properties alike. The material solid volume fraction vs in a total

volume V, occupied by material and water is
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vs = o5 (4.9)

given a solid material volume Vp,. Both volumes were measured in a 1 liter graduated
cylinder accurate to within +5 ml since there was practically no air trapped within the
material interstices. The material volume Vi, was determined by the displacement of the
water surface after material was added to the cylinder. The total volume V, of material
and water at the bottom of the cylinder was read from the location of the horizontal
material surface. Given a typical total volume V=370 ml and a typical material volume
V=215 ml, the expected accuracy of the volume measurements is +1.4% and +2.3%,
respectively. The theoretical accuracy of the typical solid volume fraction vg=0.58 is

therefore £0.02 or £3.7% of its typical value.

The measurements of volumes and solid volume fraction for each landslide material are
provided in Table 4.2. Almost all solid volume fractions are between the random loose
packing limit vg=0.50 and the random close packing limit v¢=0.63 given by Shapiro and
Probstein (1992) for monodisperse suspensions. The more angular crushed calcite and
garnet sand have lower solid volume fractions. Almost all spherical particles had solid
volume fractions between 0.58-0.61 with the exception of 3 mm lead shot which had a
solid volume fraction of 0.65. The oblate spheroid geometry of the 3 mm lead shot in
combination with its very high density may have contributed to the high particle packing.
Uniform spheres can achieve a theoretical maximum solid volume fraction for a face
centered cubic lattice of Vs max=7 V2 /6=0.74.

The mass of the landslide materials used in most experiments is provided in Table 4.2
from measurements on a Sartorius analytical balance accurate to 0.1 g. The error in the
measurement is negligible compared to that of the solid volume fraction. There were four
trials performed with landslide masses other than those shown in Table 4.2. These are
Trial 40 with a 572.7 g mass of crushed calcite, Trial 91 with a 945.4 g mass of 3 mm
glass beads, Trial 92 with a 367.3 g mass of 1 mm glass beads, and Trial 93 with a 252.8
g mass of 1 mm glass beads. Most of these experiments were conducted to study the role
of particle size divided by landslide size as a nondimensional variable governing
landslide motion and wave generation. Additional properties of landslide materials are

given in Table 4.3.
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The material volume and mass were employed to calculate the material density
pPm=m/Vp, to within about +4% accuracy for three landslide materials. However, a model
S-100 specific gravity balance from Henry Troemner Inc. was used to obtain much more
accurate material density values for the majority of the landslide materials. The balance
relied on four readings to calculate the specific gravity: m; of the empty basket in air, mp
of the basket containing the material sample in air, m3 of the empty basket in water, and
my of the basket containing the material sample in water. Figure 4.11 shows the four
measurements being made for 3 mm steel shot. The equation

Pm _ . _ mj - my
0o =v= mi - my - m3 + my (4.10)

yields the specific density, where the density of water p, was given in Section 4.1 to
within +0.1%. Readings from this sensitive balance had a combined accuracy and
repeatability of less than +1 kg/m3 which means that the material density is actually

limited in accuracy by uncertainty in the water density.

The initial suspension density (sometimes called the bulk density) of a material landslide

was calculated from
Ps = Vs Pm + (1 -Vs) po (4.11)

where pm is the known material density. Taking the logarithm of both sides and

differentiating the right side with respect to only the solid volume fraction gives

d 1 dv 1 dv
Ps St S  @.12)
Ps 1+ ——— Vs Vs

vs (Y-1)

which shows that the error in the suspension density is reduced to £1.9% or about half the

error in the solid volume fraction for most landslide materials.
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Table 4.2: Mass Characteristics of the Landslide Materials Used For Trials

Material Vo (ml) | Viy (ml)f Vs m (g) | pm (kg/m3)| ps (kg/m3)
£5ml | £5ml | +0.02 | £0.1g | +1kg/m3 | £40 kg/m3

Crushed Calcite 355 195 0.55 523.6 2732 1950

0.5 mm Glass Beads | 375 225 0.60 566.0 2471" 1882

1 mm Glass Beads 350 210 0.60 536.9 2 520 1910

3’ mm Glass Beads 365 220 0.60 567.1 2563 1935

12 mm Marbles 385 230 0.60 565.9 2499 1899

2 mm Lead Shot 360 220 0.61 | 24254 | 11025* 7114

3 mm Lead Shot 375 245 0.65 | 2619.0 10 727 7321

3 mm Steel Shot 370 220 0.59 | 1716.2 7954 5102

Garnet Sand 360 190 0.53 776.0 4 097 2 640

* Density calculated from landslide mass and material volume.

Note that additional decimal places are provided for quantities in Table 4.2 in order to
avoid propagating round-off errors in calculations. Additional properties of landslide
materials are given in Table 4.3. Since the material mass and material density have errors
of less than 0.1%, the material volume Vp, can be calculated from

Vin = = . | (4.13)

Pm

with much higher accuracy than the displaced water volume given in Table 4.2. The
solid volume fraction and suspension density can then be recalculated with about half the
error shown. However, such accuracy would not assist in the evaluation of experimental
results discussed in Chapter 5 since the solid volume fraction varies by at most £0.01 and
the suspension density varies by at most +1% for steel shot. Experimental errors for
landslide motion and deformation are expected to be much bigger in magnitude. Note
that the buoyant density of the suspension prior to a landslide is given by

Ps-Po = Vs (Pm - Po) (4.14)

since the suspension is treated as a separate bulk fluid even though it also contains water

in the interstices.
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The internal friction angle ¢ and incline friction angle y were determined experimentally
for most landslide materials. The internal friction angle ¢ governs failure throughout the
mass of landslide material while the incline friction angle v is related to the Coulombic
friction (or sliding) of the landslide material on the Lucite incline. Eight Lucite sheets
10.2 cm by 30.4 cm were given Lucite sides 2.2 cm high to laterally contain the landslide
material being tested. The material resting on the sheet approximated an infinite slope in
soil mechanics. A material with a nominal diameter of 3 mm could have about 10
random monolayers deposited on the Lucite sheet with 45 particles spanning the width
and 150 particles spanning the length. As explained in Section 2.4, failure is governed
solely by the angle of inclination in cohesionless materials with no excess pore water
pressure and no external load. If the internal friction angle ¢ was being determined, then
a random layer of landslide material had been deposited on the Lucite sheet and held in
place by a thin layer of silicone sealant. The measurement of the friction angle was made
after the silicone dried the random monolayer of particles in place. One end of the Lucite
sheet rested on the bottom of a wave tank filled with water while the other end was
slowly raised within the water by a point gauge. When the material failed, as shown in
Figure 4.12 for the 3 mm steel shot, then the vertical height of the raised end of the Lucite
sheet was measured. Clearly, the sine of the friction angle was the measured height
divided by the length of the Lucite sheet. Each material was tested three to five times. If
the incline friction angle Yy was being determined, then the material was deposited
directly onto the Lucite sheet and tested. The average results of the measurements are
summarized in Table 4.3 for all landslide materials tested. The errors indicated in Table
4.3 are due solely to repeatability.

Material particles are characterized herein by their nominal diameter, their standard
deviation from the nominal diameter, and their shape factor as a measure of -particle
symmetry. Garnet sand particles are the only landslide particles that are not described in
this manner. The size distribution of garnet particles was found from sieving the sand.
Therefore, its size analysis deviates somewhat from materials with larger particles that
could be readily manipulated and individually measured. Moreover, the sieving results
reveal that garnet sand has a log-normal particle size distribution. The garnet sand used
herein has a geometric mean of He=400 um and a geometric standard deviation of
0g=1.3; therefore, about 68.3% of all garnet particles have sizes between [g/G¢g=308 um
and LgGe=520 um. The nominal diameters of all other material particles are distributed

in a Gaussian manner as typified by Figure 4.13 for 3 mm lead shot. Crushed calcite also
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has a Gaussian distribution of nominal diameter because the particles being used in this

work were extracted from only one sieve size fraction.

The nominal diameter of a particle is the diameter of a sphere with the same volume as
the particle. Vanoni (1975) provides the nominal diameter as

3
D = \/ % Vplf3 = 1.2407 V173 (4.15)

where Vj is the volume of a given particle. All particles other than the crushed calcite
and garnet sand were assumed to be either spherical or ellipsoidal so that the volume
could be calculated based on the measurement of up to three principal axes. The only
particles that were visibly ellipsoidal were the 3 mm lead shot particles but the 3 mm
glass beads and 12 mm marbles were also measured along three perpendicular axes. The

volume of an ellipsoid with principal axes dj<do<d3 is given by

_Twdidpds

v 5

(4.16)

where each axis was measured by hand with a Vernier caliper accurate to £0.01 mm. The
3 mm steel shot and smaller glass and lead particles appeared to be perfectly spherical so
that only one diameter was measured per particle. The volume of crushed calcite
particles was found first by classifying a given particle into one of three shapes with well
known volumetric formulae: prisms, parallelepipeds, or pyramids. For each shape class,
three principal lengths dj, dp, d3 were measured with the Vernier caliper. The volume of
the particle was then calculated from the appropriate formula and converted into a

nominal diameter.

It was decided to continue measuring particle sizes until the mean nominal diameter
calculated from the sample particles was known to within chosen bounds. The expected
per cent error in the mean for some sample from an unknown probability distribution

follows from the Central Limit Theorem of statistics and is given by

c

% Error = 100%
nVN

(4.17)
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where L is the sample mean, © is the sample standard deviation, and N is the sample size.
The error for the mean size of crushed calcite particles was +2.1% from a sample of
N=101 particles and that of the 0.5 mm glass beads was £1.6% from a sample of N=47
particles. All other particle mean sizes were sampled until the expected error in the mean
dropped below +0.4% which required sample sizes ranging from N=20 particles to
N=462 particles. The mean nominal diameters are given in Table 4.3 along with the

sample standard deviations about the mean.

If one contemplates some of the possible ways to describe mathematically the geometric
deviation of a material particle from a sphere, the odds are quite favorable that any given
method will be related to the particle shape factor. Vanoni (1975) defines the shape
factor of a particle based on the three principal distances that prescribe the particle

volume di<da<ds

dj
SF = —— (4.18
\dy d3 )

where SF<1 for any particle other than a cube and a sphere. Strictly speaking, equation
(4.18) applies only to oblate spheroids or ellipsoids with well-defined principal axes and
round surfaces. However, the extension of the definition to particles with angular edges
and rough surfaces is unavoidable for the materials used herein and the shape factor
thereby becomes more a measure of particle symmetry than of particle sphericity. The
mean shape factor for four landslide materials is given in Table 4.3. The shape factor was
calculated from the same three principal measurements used to calculate the particle
volume and nominal diameter. Given the mean shape factors of the 3 mm glass beads
and 12 mm marbles, the assumption that the smaller glass beads and lead shot are
spherical seems justified. In other words, appearances were not deceiving and a shape
factor SF=1 can safely be assumed for the smaller glass beads and lead shot. The biggest
mean error in the shape factor is 2.4% for the crushed calcite while all other shape factors
had mean errors of less than 0.5%. The shape factor was normally distributed for all four
landslide materials measured as shown in Figure 4.14 for 3 mm lead shot. There appears
to be a direct correlation between shape factor and the incline friction angle. If this
observation has a factual basis, then the shape factor for garnet sand should be even less
than that of crushed calcite.
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Table 4.3: Physical Properties of Landslide Materials

Material ) | v | D(@mm) | o (um)| SF u, (m/s)
Crushed Calcite 47+2 | 2042 | 3328 694 | 0653 | 025
0.5 mm Glass Beads| NM | NM 0.500 56 NM 0.07
1 mm Glass Beads | 30+2 | 5+2 1.257 41 NM 0.18
3 mm Glass Beads | 29+2 | 6+£2 2.959 43 | 0982 | 037
12 mm Marbles NM | NM 12.16 126 | 0995 | 0.49
2 mm Lead Shot 3242 | 5+2 2.059 132 NM 0.82
3 mm Lead Shot 34+2 | 1242 | 3114 57 | 0825 1.00
3 mm Steel Shot 28+2 | 6+2 3.311 18 NM 0.76
Garnet Sand 38+2 | 35+2 | 0.40* 13* | NM 0.09

* Geometric mean and nondimensional geometric standard deviation given on page 103.
NM: not measured.

The terminal velocity of a single particle of the landslide material has some potential
scaling uses in the discussion of landslide motion and deformation. The particle velocity
up given in Table 4.3 is the unhindered, theoretical terminal velocity of a mean-sized
particle for each landslide material. The nominal diameter was used in the formula for
the particle velocity

4 (Pm-PoyD ,
up = ,\/ §(—-‘PPT&’)@g (4.19)

where C4=Cg(Re) is given graphically and analytically by White (1991) and the Reynolds
number Re=pou,D/, is based on nominal diameter as well. The corrections for terminal
velocity with shape factor given by Vanoni (1975) suggest that the terminal velocity for a
typical crushed calcite particle should be up=0.25 m/s (instead of 0.41 m/s) and that there
should be no significant shape factor effect on any other material particles including
garnet sand. The accuracy of the particle velocities provided in Table 4.3 is typically
+5% since the drag coefficient, with an approximate error of £10%, was by far the largest
source of error in the calculation. The per cent error in the drag coefficient is halved by

the square root in equation (4.19).
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4.3.2 Material Landslides

A material landslide was initiated by retracting a vertical gate down into the Lucite
incline. The gate motion into the incline was rapid enough to release the sediment mass
in almost the same shape as when it was initially impounded behind the gate. The lead
and steel shot landslides deformed by about a single particle length during gate retraction.
The downward motion of the gate was necessary to minimize disruption of both the
landslide material and the water free surface. When a gate is pulled up, the shearing
induces material motion away from the incline that can completely alter the initial
appearance of the sediment mass. In some cases not shown herein, almost all of the
material was raised off of the incline due to gate motion towards the water surface.
Moreover, the gate must be pulled through the water surface generating small waves and
splash that interfere with detection of the underwater landslide-generated waves.
Nevertheless, the downward gate motion sheared the landslide material which visibly
energized a few adjacent particle layers in most materials studied. However, the main
material mass remained intact and the water surface was minimally disturbed by gate
motion. It is not yet known if a shear wave propagating through the landslide material
affected the subsequent landslide motion or deformation. It is also important to note that
retracting the gate must change the state of stress in the landslide material regardless of
gate shearing: the landslide material goes from being supported by a solid retaining wall
to being unsupported. Therefore, it is difficult to attribute observed landslide failure to
either gate motion or a new state of stress. The aim of this thesis work is to describe
wave generation based on observed landslide motion and deformation, not to explain the

experimental landslide motion and deformation.

Three material landslide experiments (Trials 40, 81, and 82) were recorded with a
framing rate of about 400 frames per second. The equations that gave the framiI{g rate in
Section 4.2.2 are only slightly modified: if the light mark goes up the frame and returns
to its original position in N frames, then the framing rate is £f1=400N/N+1; if the light
mark goes down the frame and returns to its original position in N frames, then the
framing rate is fj=400N/N-1. Naturally, the LED mark only appeared just about every
fourth frame. All other material landslide trials were recorded at framing rates very close

to 100 frames per second.

The gate was sufficiently thin and the incline was sufficiently rigid that gate retraction did

not generate significant water waves. The gate was made of 0.4 mm thick stainless steel,
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protruded up to 115 mm above the incline, and was 98 mm wide. Figure 4.15 shows the
gate fully extended along with some of the Delrin pulleys used to guide the string that
retracts the gate. The maximum wave amplitude measured from gate retraction alone was
50 um and occurred 0.150 s into a trial as shown in Figure 4.16. This wave record was
obtained above the middle of solid block 2 as it was held in place immediately behind the
gate in water h=0.373 m deep -- in other words, the wave record is the same as many
other near-field wave records with the exception that the landslide never moved. The far-
field wave gauge did not record any wave amplitudes above the noise level of the wave
gauge. The wave pattern shown in Figure 4.16 was not detected in any of the material
landslide wave records and peaked too early in time to affect the maximum near-field
wave amplitude Nmax that usually occurred at around t=0.3 s. Hence, the water waves

generated by the gate retraction are considered negligible in these experiments.

The gate was retracted in about 40 ms by a Nylon braided string connected to a falling
weight by a sequence of Delrin pulleys mounted on glass ball bearings. About 15 kg of
lead fell vertically almost 0.5 m along sleave bearings before pulling the string taut and
retracting the gate. The retraction mechanism is depicted in Figure 4.17. Since a roughly
constant string tension was acting on the gate and the only retarding forces were dynamic

Coulombic friction and viscous skin friction forces, the gate motion is approximated by
S t t ‘
5 = 2 - . exp(- t ) (4.20)

where s, is the initial gate protrusion and t, is the time constant of gate motion. This
solution is identical to equation (3.56) except for the value of the initial gate position.
Equation (4.20) is in the same form as equation (3.1) since gate motion can.be
characterized by one characteristic distance and one characteristic time. The time
constant t, is an unknown constant that depends on the amount and type of landslide
material. Figure 4.18 shows a curve fit of the observed gate motion with equation (4.20)
where s,=10.7 cm and t,=20.9 ms. In order to determine the time of complete gate
retraction s=0, the position ratio s/s, was measured for each high speed movie frame.
Since the time interval between movie frames was either 10 ms or 2.5 ms (depending on
the framing rate), the time constant t, could in principle be determined uniquely from the

gate position observations.
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However, equation (4.20) cannot be inverted in analytical form to provide time as a
function of position. Another method was sought whereby the beginning of each trial
could be accurately determined to within a fraction of a movie frame. The gate position
versus time was calculated seven times on a spreadsheet for time constants t,=16, 18, 20,
22, 24, 26, and 28 ms at time intervals of 0.5 ms. For each material landslide trial, the
nondimensional position data for each movie frame were grafted onto the spreadsheet
calculations of nondimensional position. The time constant t, that correctly reproduced
the known time interval (10 ms or 2.5 ms) between the position data was chosen as the
best model of the gate motion. The fraction of a movie frame at which s=0 was
extrapolated from the spreadsheet with a temporal accuracy of 1/20 of a frame. The
fractional movie frame at which s=0 was taken as the beginning t=0 of a material
landslide trial. The relative time of each subsequent movie frame was found by
subtracting this fractional movie frame and converting frames to time using the framing
rate. This method could locate the beginning of a material landslide trial to within £0.5
ms. For a time constant of t,=16 ms, the gate would retract in 29.5 ms; whereas, for a
time constant of t,=28 ms, the gate would retract in 51.5 ms. The gate motion was
uniformly distributed over all time constants considered with a weighted average of 41

ms to become fully retracted.

The material landslide center of mass motion and deformation rate were found by tracing
the landslide outline for individual frames from the high speed movie record. For a
typical landslide, every third or fourth frame was traced with the first trace occurring
before the trial began. Landslide outlines were traced by hand on 11x17 inch paper using
a black felt marker. The accuracy of the tracing process was estimated to be £1 mm
around the landslide perimeter on the sheet of paper. Four registry marks were spaced
101.6 mm (four inches) apart along the outside of the incline. Two of the registry marks
were always located with a black dot on the landslide traces. The two black dots were
situated exactly 25.4 mm (one inch) below the bottom of the landslide on the paper.
Therefore, the absolute vertical and horizontal position of the landslide centroid could be
established from the two registry points as described in Appendix B. The traces were
reduced 70% onto 8.5x14 inch paper and scanned by an HP Scanlet 4C at 600 dpi. The
black and white image was loaded into a Power Mac computer by DeskScan II 2.2
software and saved as a PICT file. The PICT file was imported into NIH Image 1.61

software in order to process and analyze the image.
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NIH Image identifies and analyzes particles including particle area, perimeter, and
centroid. The area and perimeter are reported as pixel numbers while the geometric
center of a particle is given as an absolute pixel position in the coordinate system of the
scanned image. The first step in image processing was to fill in the outline of the
landslide with solid black. Any spurious pixels remaining from the photocopying process
were erased since they would otherwise be counted as a particle. Any particles that had
detached from the main body of the landslide had to be connected to the landslide by a
thin black line or else they would be counted as separate particles. Any open region
surrounded entirely by landslide material had to be cut open with a thin white line or else
the program would fill the empty space in and count the area. The two registry points
were left as separate particles to be analyzed since their known separation distance would

provide the size of a single pixel in the area and perimeter analyses.

Precise error estimates of material landslide motion and deformation rates are provided in
Appendix B. However, important sources of error are introduced here in a qualitative
manner. When tracing a material landslide, only the profile of the deforming landslide
against the near wall was supposed to be traced. However, the lighting of certain
materials and the position of the camera occasionally made it difficult to distinguish the
top or front of the landslide from the profile. For most material landslides, the first
twenty frames (or so) showed part of the front face of the landslide in perspective. This
effect was easily compensated for, but, since the demarcation between the landslide
profile and front face became blurred by particle motion and surface shearing, the
correction may have been less than ideal. Last of all, the garnet sand and 0.5 mm glass
bead landslides formed significant wakes behind the landslides where water and particles
mixed. These wakes were included in the landslide trace despite the fact that the low
particle concentrations implied that very little landslide mass was actually present. This
effect needs to be considered when calculating the center of mass motion of a Jandslide

since the centroid of the landslide trace and center of mass are no longer identical.
4.3.3 Experimental Material Deformation Rate

For the material landslides studied herein, material failure involved the acceleration and
dilatation of a noncohesive, porous material that underwent deformation due to
gravitational and surface shearing forces. Moreover, the eventual gravity current may not
have traveled sufficient distance to reach an asymptotic structure along the relatively

short experimental incline, thereby limiting the utility of steady state scalings. Last of all,
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the prospect of finding an analytical solution of motion based on fundamental,
nondimensional coefficients is poor, especially given the complicated fluid dynamic
forces that shape the gravity current. Therefore, a descriptive model is used to
characterize landslide motion by decomposing the landslide shape and position into a
center of mass motion and a rate of strain. The center of mass motion of a material
landslide follows directly from the landslide traces and image processing analysis
described in the previous section. The rate of strain of the material landslide is inferred
from the spreading of an isosceles triangle with the geometric center of the triangle
located at the landslide center of mass. The mathematical description of this model was
developed in Section 3.2.2.1. The motivation for this phenomenological model is the
observation that most material landslides look like spreading triangles at early times.
This can be seen, for example, in Figure 1.5 where the crushed calcite landslide appears
triangular until around 0.23 s have elapsed. Garnet sand and 0.5 mm glass beads are the
only materials for which this simple description of landslide deformation may not apply
since the initial material mass essentially split into two distinct pieces early on in the
landslide motion. Figure 5.10 shows four frames from the movie of the 0.5 mm glass
bead landslide.



112

<
]

(o]
—
(@)
=
3

%
L

b 0.210 m
, h
0.773m (a) Top View
9.140 m
x/h = 4.25
N\
0.660 m
v
/— GATE
3 .
. I
I
I
RO
450
/\/

(b) Front View

Figure 4.1: Schematic representation of the wave tank and incline with a fully extended
gate. Typical near-field and far-field wave gauge locations are indicated by an x on the
free surface. The landslide size b, landslide initial submergence d, landslide cross-

sectional area A, and constant channel depth h are all defined.
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Figure 4.5: Least-squares curve fit of the calibration data of the near-field wave gauge
performed for Trial 48. The fourth order polynomial of net displacement as a function of
voltage difference is given by equation (4.2) in the text. The calibration curve is a typical

example of the results obtained for this work.



117

Figure 4.6: Photograph of the four solid blocks used in this work with block 1, being the
largest and block 4y, being the smallest. The subscript n denotes "normal”. The eyelets
used to support the solid blocks prior to a trial are visible on the top face of each block.
The hole containing the brass (or lead) ballast is visible on the side of each block.



118

Figure 4.7: Photograph taken just prior to a solid block landslide. Nylon fishing line
holds the block in place. Half of the 10 mW laser beam can be seen shining on the lower
front face of the block; the other half of the beam is striking the photodiode in the black

container. The wave gauge wires are above the middle of the top face of the solid block.
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Figure 4.8: Parabolic least-squares fit of the solid block position data from Trial 48.
Error bars give the standard error in position and time. The parabolic curve fit represents
the first term in the Taylor series expansion of solid block motion and provides the initial

acceleration of the block. The initial acceleration is 2.09 m/s2 here.
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Figure 4.9: Static calibration of the accelerometer by rotation on a level indexing head
shows that the voltage signal is linearly proportional to the acceleration given by (g cos0).
The least-squares fit of the calibration data provides a = 7.7421 + 0.48176 V with an

accuracy of greater than 99%. The error is due largely to voltage drift during calibration.
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Figure 4.10: Acceleration of solid block 3, in Trial 76 as measured by the accelerometer.

Acceleration rapidly rose to a maximum at about 20 ms and decayed thereafter as the

solid block approached terminal velocity. The small rise in acceleration at 0.3 s may be

due to waviness of the incline surface.
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Figure 4.11: Determination of the specific gravity of steel shot by four measurements on
a sensitive Troemner balance. Clockwise from top left: empty basket in air, basket with
steel shot in air, basket with steel shot in water, and empty basket in water. The specific

gravity of the steel shot follows from these measurements in equation (4.10).
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Figure 4.12: Measurement of the internal friction angle of steel shot by tilting a Lucite
sheet until the material spilled onto the bottom of the wave tank. The Lucite sheet had a
random monolayer of steel particles glued to the bottom to simulate internal failure. Two

lead weights held the Lucite sheet in position while it was tilted.
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is plotted in normal coordinates as per cent lass than. A straight line is indicative of a
normally distributed nominal diameter. One standard deviation occurs at £34.1% from

the arithmetic mean at 50%.
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Figure 4.15: Perspective photograph of the back of the fully extended stainless steel gate.
Four slots were available on the incline for the gate although only one slot was used. The
gate was pulled to the bottom of the incline when retracted. The Delrin pulleys with glass

ball bearings can be seen under the Lucite incline. See Figures 4.1 and 4.18 as well.
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Figure 4.16: Near-field wave record due to gate retraction alone. The amplitude and
duration of the wave record is insufficient to alter the wavemaker curves generated from

the experimental data. A typical material landslide trial would have a maximum near-

field wave amplitude of 0.5 cm at 0.4 s.
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Figure 4.17: Photograph of the gate retraction mechanism. The large pulley on top of the
mechanism would guide the braided Nylon cord to the top of the wave tank where the
rest of its path is shown in Figures 4.1 and 4.16. Pulling on the cord at the left would
release the sliding lead weights. The cord connected to the gate was pulled taut just

before the weights struck the padding at the bottom of the mechanism.
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Figure 4.18: Least-squares curve fit of gate position data with equation (4.20).
Knowledge of the gate retraction in time allowed the beginning of a material landslide to

be determined to within about £1 ms.
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Chapter 5

5. Experimental Results and Discussion

<.

The purpose of this chapter is to describe water waves generated by underwater
landslides and to determine how to predict the amplitude of a chosen characteristic wave.
The results presented in this chapter support the central claim of this thesis: namely,
given an initial landslide geometry along an incline, the characteristic time t, of landslide
motion and the initial landslide rate of deformation I suffice to predict the maximum
wave amplitude above most underwater landslides. The maximum wave amplitude along
with the landslide center of mass motion can in turn be used to determine many other
wave characteristics such as per cent conversion of solid block kinetic energy into wave
energy. The chapter begins by determining the dynamical coefficients for solid block
landslides sliding along an incline at 45°. Following this, the experimental wave results
for solid block and material landslides on an incline at 45° are presented. The central
thesis of this work will have been verified for an initial landslide submergence d/b=0.9.
This experimental study is limited to landslides where Hay>2 as is commonly found for
natural underwater landslides. Numerical simulations of underwater landslides
broadened the range of initial geometries (compared to experimental results) while
providing a theoretical test of the wavemaker formalism. The error bars shown on all
figures represent one standard deviation and are usually found independent of the data in
the figure. All corresponding error analyses can be found in Appendix B. The basic data

and derived quantities for most trials discussed in this chapter are listed in Appendix C.
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5.1 Landslide Motion and Deformation Results

Landslide kinematics are of key importance to constructing nondimensional wavemaker
curves and carrying out numerical simulations of water wave generated by underwater
landslides. However, it is almost impossible to measure the initial acceleration or
terminal velocity of all landslides during an actual trial. The theoretical analyses
performed in Chapter 3 describe the solid block and material landslides in terms of
measurable dynamical coefficients. Therefore, by independently obtaining the landslide
kinematics and dynamical coefficients, accurate estimates of landslide motion are readily

available even if experimental values are unavailable for a particular trial.
5.1.1 Solid Block Coulombic Friction

The method used to obtain the dynamic Coulombic friction coefficient is described in
Section 4.2.3.1. Table 5.1 provides the experimental results for the critical friction angle
W between the four PVC solid blocks and the Nylon incline, along with the associated
Coulombic friction coefficients Cp, and the effective gravitational forcing gefr of the solid
blocks down the incline (given that pp>po). Solid block characteristics are provided in
Table 4.1. The errors indicated in Table 5.1 are standard errors evaluated in Section
B.1.1. The subscript n for a solid block denotes "normal” ballast.

Table 5.1: Solid Block Dynamic Coulombic Friction Data

Block # v (") Ch=tany geff = g (sin 8 - C;, cos 0)
In 17£0.5 0.31£0.01 4.8 m/s?2 +0.15 m/s?
2n 17£0.5 0.31£0.01 4.8 m/s2 +0.15 m/s2
3n 18+0.5 0.33 £ 0.01 4.7 m/s2+0.15 m/s2
4n 18+0.5 0.33+£0.01 4.7 m/s2 +0.15 m/s2

5.1.2 Solid Block Initial Acceleration and Added Mass

The method used to measure the initial acceleration of solid blocks was described in
Section 4.2.3.2. Figures 5.1-5.3 show (typically) three measured initial accelerations of

blocks 1,, 25, and 3, for each chosen initial submergence along with a 3rd or 4th order
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polynomial least-squares fit through the data. All measurements of the initial
acceleration were made in the wave tank with the same incline, initial solid block
positions, and water depth as Trials 55-80. The error bars on the figures represent one
standard deviation and are calculated from independent error estimates in Section B.1.2.

The initial acceleration of block 1, can be calculated from
ag(d) = 1.8711-9.1844 d + 85.38 d2 - 246.79 &3 5.1

where d is the initial submergence in meters, a, is expressed in m/s2, and equation (5.1) is
valid for d<180 mm. The initial acceleration of block 2, can be estimated from

ao(d) = 2.0891 - 22.831d +403.9 d? - 2992.3 & + 7766.7 d* (5.2)

which is valid for d<120 mm. Likewise, the initial acceleration of block 3, can be

calculated from
ao(d) = 2.0371-16.067 d + 159.98 d2-38.921 d3-2725.1 d4 (5.3)

and equation (5.3) is valid for d<130 mm. The initial acceleration of blocks 2,-2; was
measured five or six times each at one initial submergence (d=74.5 mm) and one incline
angle (0=45°). Once again, this is the same initial solid block submergence and the same
incline angle as those used in Trials 55-80. The mean initial accelerations are given in
Table 5.2. The mean value of the initial acceleration is used for all solid block trials that
are missing an accurate initial acceleration, namely for trials where solid block motion
was recorded by high speed movies. The initial accelerations used in solid block trials
can be found in Table C.2.

The accelerometer results are about three times more accurate than the movie based
initial accelerations according to Figure 5.4 and standard error estimates in Section B.1.2.
Accuracy is needed in order to construct unambiguous wavemaker plots. However, it is
possible that the presence of the accelerometer (and the wire connecting the
accelerometer to the amplifier) altered the initial acceleration when compared with the
non-intrusive movie measurements. In order to gauge the influence of the accelerometer,
the initial accelerations obtained from high speed movies are correlated with the mean
initial accelerations obtained from the accelerometer for solid blocks 1p, 25-2j, and 3.

Section 4.2.2 describes how initial accelerations are obtained from high speed movies of
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solid block motion. Figure 5.4 shows that the slope of a linear least-squares fit through
the origin is almost unity. Therefore, a line of equivalence was not added to the figure.
The error bars on Figure 5.4 represent one standard deviation. The relatively poor
correlation coefficient r=0.84 can be attributed to the large error in the movie based
results since the 16% uncertainty in the curve fit closely resembles the 17% error
estimated for the movie based initial accelerations. Given the accuracy of the
accelerometer results and the slope of unity in Figure 5.4, the mean initial accelerations
given by equations (5.1) to (5.3) and Table 5.2 are substituted for initial accelerations
obtained from high speed movies in all plots of experimental data. The substitution is
made for all solid block trials performed before Trial 55. Only after making the

substitution does the wavemaker curve become evident from the experimental results.

Table 5.2: Mean Initial Acceleration and Added Mass Coefficient for Blocks 2,-2;

Block # a, (m/s2) Cnm

20 0.83+0.11 0.85 £ 0.07
2a 1.20£0.14 0.79 £0.07
2p 1.45+0.04 0.88 £0.07
24 1.95+0.03 0.81+£0.07
2e 2.22+0.27 0.68 +£0.07
21 2.41£0.05 0.77 £0.07

The added mass coefficient represents a generalization of the previous initial acceleration
results for arbitrary solid block size or initial submergence. The added mass coefficient

Cp at t=07* is calculated from the theoretical equation for the initial acceleration

(mp - mp) Zeff  Mp
Cyp = - 5.
m ap Mg mg 54

where the effective gravity is gefr=g(sinf-Cpcos0). Equation (5.4) is dependent on the
accuracy of all quantities on the right hand side of the equation. For example, taking the
partial derivative of Cy, with respect to a, yields

oCn _ - (mp - my) eff
g = s (5.5)
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which is around -1.7 s2/m for all normal solid block trials since mp/mo=2, gefr=4.8 m/s2,
and a,=1.7 m/s2. Consequently, any random errors in the initial acceleration are
amplified when calculating the added mass coefficient. The sensitivity of the added mass
coefficient to the initial acceleration is derived from the ratio my/my=2 whereby large
changes in added mass are needed to explain small changes in the initial acceleration.
The contribution of errors in the gravitational forcing gefr to errors in the added mass
coefficient is considered in Section B.1.3.

As shown in Section 4.2.3.2, the added mass coefficient Cy, at t=0* is a function of the
nondimensional initial block submergence d/b and the incline angle (fixed at 6=45°).
Equation (5.4) is used to convert all acceleration data in Figures 5.1 to 5.3 into added
mass coefficients. Figure 5.5 shows a least-squares curve fit of the added mass

coefficient Cy, at t=0* versus nondimensional initial submergence d/b
Cm(d/b;6=45";t=0%) = 0.41469 + 1.4574 d/b -
- 1.3389 (d/b)2 + 0.32534 (d/b)3 (5.6)

over the range 0<d/b<2. Equation (5.6) provides a reasonable estimate of the added mass
coefficient despite the spread in the data. There are no error bars on Figure 5.5 because
they become too dense to be understood. Section B.1.3 derives standard errors of +28%
for added mass coefficients calculated from equation (5.4). Equation (5.6) has the
characteristic rise and fall with increasing submergence of related curves given by
Brennen (1995). A typical added mass coefficient in Figure 5.5 is C=0.8. For solid
blocks 24-2; listed in Table 5.2, the mean of all six added mass coefficients is C,=0.8.
Since the added mass coefficients in Table 5.2 are calculated from mean initial
accelerations, they show considerably less scatter than the added mass coefficients in
Figure 5.5 (specifically at d/b=0.87). All blocks listed in Table 5.2 should have the same
added mass coefficient since they are all exactly the same size and had the same initial
submergence. Since solid block 4, was not studied with an accelerometer, an added mass
coefficient of C;=0.60 % 0.14 was estimated from Figure 5.5 (given that d/b=2.13) and
used to calculate a theoretical initial acceleration of ag=1.75 £ 0.10 m/s2. Only one initial
submergence d/b=2.13 was studied for solid block 4,
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For a two-dimensional square block inclined at 45° to a flow and immersed in an infinite
bath of water, i.e., d/b=e, Sarpkaya and Isaacson (1981) propose the added mass
coefficient C,=0.76. Figure 5.5 covers the opposite limit of zero initial submergence so
that C,=0.76 should be viewed as a reasonable asymptotic value off the right hand side
of the figure. However, it is not clear what role separation plays in determining this
added mass coefficient. The added mass coefficients given by Figure 5.5 and Table 5.2
are for the initiation of motion before a shear layer has had time to form. Once shear
layers are formed, there is no longer any guarantee that the added mass coefficient is
single valued versus instantaneous submergence and the history of solid block motion
may matter. The reason for this is that the fluid domain is no longer simply connected
given the presence of a shear layer in the wake of a solid block. Heuristically, fluid
separation changes the apparent solid block shape. Hence, the added mass coefficients
given in this section should not be used to describe solid block motion for finite times
after the block is released. Regardless, variations in the added mass coefficient of a solid
block between Cp,=0.6-1.0 can arguably be considered negligible for the purpose of
calculating the block motion for t>0. Solid block motion is simply not that sensitive to
the added mass coefficient because mp/my=2. Hence, the analytical solution of solid
block motion, equation (3.78), can be considered an accurate approximation of the actual
solid block motion using a mean value of Cy=0.8. To verify this argument, equation
(3.72) was integrated numerically' using C,=0.8 and again using equation (5.6) by
replacing the initial submergence d with the instantaneous solid block submergence. At

=0.33 s, the difference in solid block position was no more than 2%.
5.1.3 Solid Block Terminal Velocity and Drag

The method used to obtain the terminal velocities of solid blocks is described in Section
4.2.3.3. The largest of all velocity measurements for a given solid block was taken as the
terminal velocity and is shown in Table 5.3. Mean measured velocities gave much larger
errors as well as unreasonably large drag coefficients. A drag coefficient was then

calculated from the terminal velocity according to the equation

Ut poA

where A=w/{cosOsin0 is the solid block projected frontal area. The drag coefficient

calculated for each solid block is shown in Table 5.3. Based on these measurements, a
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mean drag coefficient of Cg=1.7 £ 0.17 was calculated. The mean drag coefficient was
used instead of the minimum drag coefficient in order to provide the most accurate
estimates of theoretical terminal velocities for all solid blocks. The standard error
estimates in Table 5.3 are derived in Section B.1.4. The analytical solution of solid block
motion, equation (3.78) with C,=0.8 and Cq=1.7, indicated that all solid blocks should
have been within 0.5% of terminal velocity when the velocity was measured at the
bottom of the incline. The smaller and less dense solid blocks had much smaller
discrepancies. The experimental terminal velocities shown in Table 5.3 were used in the
calculation and presentation of all solid block wave data and are listed again in Table C.2.
Solid block characteristics are provided in Table 4.1.

Table 5.3: Terminal Velocities and Drag Coefficients of Solid Blocks

Block # u; (m/s) Cq

In 0.65+0.020 | 1.88+0.19
25 0.37+0.011 | 1.60+0.16
2, 044+0.013 | 1.73+£0.17
2h 0.54+0.016 | 1.60+0.16
24 0.56+0.017 | 1.75+0.18
24 0.65+0.020 | 1.67+0.17
2e 0.71+£0.021 | 1.62+0.16
2] 0.80+£0.024 | 1.57+0.16
3n 043+0013 | 2.12+0.21
45 042+0.013 | 1.44+0.14

The drag coefficient Cg=1.7 found in this section is employed solely for theoretical
calculations and numerical simulations. The relatively large error in the drag coefficient
is due in part to the square of the terminal velocity in equation (5.7) which ends up
doubling the error of the terminal velocity. Conversely, the solid block terminal velocity
is not very sensitive to the drag coefficient given the inverse power of Cyq>1 within the
square root. Hoerner (1965) proposes a drag coefficient of Cg=1.55 for two-dimensional
squares inclined 45° to a uniform flow over a Reynolds number range of 104<Re<106.
The drag coefficient is constant since bluff bodies with well-defined separation points

usually show little Reynolds number dependence once Re»1. For most solid block trials,
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the Reynolds number based on instantaneous velocity and block size is theoretically of
order unity at around t=vy/bay=10 s after releasing a solid block. Hence, almost all of

the solid block motion satisfies Re»1 for the density of solid blocks studied herein.
5.1.4 Comparison of Block Motion

Figure 4.8 shows a parabolic curve fit of the solid block position data acquired from the
high speed movie record of Trial 48. Sections 4.2.2 describes how the position data was
obtained. Figure 5.6 compares the same experimental data along with the expected solid
block position calculated from equation (3.78). The initial acceleration of block 24 was
taken from Table 5.2 while the terminal velocity was taken from Table 5.3. The values of
t, and s, are given in Table C.2. The solid line in Figure 5.6 represents the analytical
solution of solid block motion and agrees quite well with the data, especially at later
times where the relative error in the data is smaller. The two other dashed curves
represent solid block motion that results from standard errors in the characteristic distance
S, and time to. These standard errors are derived in Section B.1.5. Figure 5.6 shows that
relatively small errors in the characteristics of solid block motion can correspond to large
differences in block position versus time. Therefore, the agreement between the
experimental data and the independently derived theoretical prediction is a testament to
the accuracy of the acceleration and velocity measurements provided above. Conversely,
accurate position versus time data can be used to accurately determine the characteristics
of motion if a theoretical prediction of motion is available. This is a valuable observation

regarding the material landslide center of mass motion described in the next section.

Figure 5.7 compares the acceleration profile from Figure 4.10 of Trial 76 with the
theoretical acceleration profile obtained from equation (3.81). The initial acceleration
used in equation (3.81) was obtained from the experimental acceleration profile so that
the two curves agree at around t=0.02 s. The terminal velocity used in equation (3.81)
was taken from Table 5.3 and accounts for the time constant of acceleration decay. The
rapid rise of the measured acceleration is probably related to the relaxation time of the
Nylon fishing line holding the solid block in its initial position prior to the trial. Figure
5.7 shows that the acceleration has zero slope at t=0* for an idealized solution of motion
that neglects lubrication forces. A sharp decay in the measured acceleration near t=0 is
indicative of the action of lubrication. This is shown, for example, by taking the
derivative of equation (3.55) with respect to time in Section 3.2.1.2.2. The general

comparison of theoretical and measured acceleration decay is acceptable although the
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experimental measurement is alternately below and above the theoretical curve. The rise
in acceleration at around 0.3 s is a general feature of acceleration measurements for all
solid blocks studied. The rise in the acceleration may be associated either with incline
waviness or with the coupling between fluid dynamics and solid block motion. The solid
block acceleration would increase after going over a rise in the incline due to a
simultaneous increase of the effective gravitational forcing and of block lubrication.
Examples of coupling between fluid dynamics and solid block motion that may explain
the rise in acceleration include the additional drag of the starting vortex at early times and
the flow of water above the solid block towards and away from the incline associated

with run-up and run-down.

5.1.5 Material Center of Mass Motion

Before discussing the results of the material landslide center of mass motion, it is
important to observe landslide dynamics that would otherwise get smoothed over in the
integration of cross-sectional area. The methods used to record and study material
landslides are described in Sections 4.2.2 and 4.3.2. Figure 5.8 shows movie frames from
Trial 91 involving 3 mm glass beads, Figure 5.9 shows movie frames from Trial 84
involving 2 mm lead shot, and Figure 5.10 shows movie frames from Trial 87 involving
0.5 mm glass beads. Four registry marks spaced 101.6 mm (four inches) apart along the
outside of the incline are clearly visible in each photograph. As mentioned in Section
4.3.2, gate retraction typically lowered the solid volume fraction near the front face of the
initial landslide position. Solid volume fractions slightly lower than random loose
packing strongly enhance particle mobility and the flow characteristics of the material.
The vertical geometry of the front face of the material may also have induced interior
failure of the solid material at short times. The net result of these two effects is to
promote the formation of a small gravity current ahead of (both temporally and spatially)
the main mass of deforming material. Neither Figure 5.8 nor Figure 5.9 show any
significant effects that can be attributed directly to gate retraction. However, the collapse
of the front face of the 2 mm lead shot landslide in Figure 5.9 did cause the formation of
a jet of material that began accelerating along the incline at around 0.15 s. At early times,
the lead shot landslide in Figure 5.9 resembles the experimental results given by Savage
and Hutter (1989) for a gravel landslide in air. Figure 5.10 displays the precursor gravity
current of the 0.5 mm glass bead landslide at 0.30 s. In the interim leading up to the

frame at 0.60 s, the larger mass of material had formed a gravity current that appeared to
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feed the precursor grévity current with mass while the two distinct events merged into a

single gravity current.

Gravity currents at later times often displayed wave behaviors analogous to wave
behavior associated with other fluid dynamic systems. The word "wave" is used to
denote a measurable (in this case observable) traveling event in the same sense as
Whitham (1973). Figure 5.8 shows that the 3 mm glass bead landslide developed what
appears to be three wave events on the gravity current head 0.42 s into the landslide
motion. However, by the time the glass bead gravity current reached the bottom of the
incline, there remained what appears to be only one large gravity current head quite
similar in appearance to the initial landslide shape. The appearance of a typical gravity
current head can be found in Ippen and Harleman (1952) or Simpson (1987). A gravity
current head itself can be described as a wave event associated with jump conditions in
transport quantities. Additional wave events on the surface of a gravity current may be
associated with a Kelvin-Helmbholtz type shear instability. Figure 5.9 shows that the two
wave events at 0.27 s merged into one larger wave event as the lead shot gravity current
reached the bottom of the incline. There appears to be a dynamic ordering whereby
larger wave events near the back of the gravity current overtake smaller wave events in
the front. Single wave events in horizontal gravity currents were observed by Bonnecaze
et al. (1993) among others but the author knows of no other observation of the
superposition of multiple wave events. The 0.5 mm glass bead landslide in Figure 5.10
began to show similar wave behavior until what appears to be a shock wave began
forming at around 0.60 s. The apparent shock wave appears to emerge from the
separation of the gravity current nose from the surface of the incline and is clearly visible
at 0.84 s. The author knows of no other observation of a shock wave leading an
underwater gravity current. However, the apparent shock wave in Figure 5.10 does
appear very similar to the numerical solutions of Bonnecaze et al. (1993) calculated for a
horizontal gravity current. Therefore, it appears that the usual gravity current head can
evolve into a shock wave on a sufficiently steep underwater incline. None of these local

dynamic effects are apparent from the center of mass motion along the incline.

The centroid calculated by NIH Image for a landslide trace assumed that the mass was
evenly distributed throughout the cross-sectional profile; the image analysis was
performed on a black and white image of the landslide profile that could not indicate
density variations. For early times and for materials with either large densities or large

particles, the assumption of a uniform solid volume fraction throughout the landslide
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profile appeared to be valid. Therefore, the centroid of the landslide profile is directly
associated with the center of mass of the landslide. At later times, closer attention is
given to the center of mass position of material landslides with large entrainment of water
(or particle dilution) in the landslide wake. For three glass bead landslides near the
bottom of the incline, one trace was made of the gravity current profile while another
trace was made of the dense core of the landslide excluding the landslide wake.
Naturally, neither trace had the same centroid position. In all cases studied, the complete
gravity current centroid had not progressed as far along the incline and was situated
higher above the incline. By arbitrarily assigning a relative density of one half to the
landslide wake, errors in the centroid position along the incline of 5% and in the centroid
height above the incline of 3% were found. These errors were neglected for all landslides
not composed of glass beads or garnet sand since landslide wakes were either easily
discernible or non-existent. A more complete description of this analysis can be found in
Section B.1.6.

Figure 5.11 shows the landslide centroid position of a 3 mm glass bead landslide as a
function of time. Figure 5.12 shows the landslide centroid position of the 3 mm steel shot
landslide as a function of time. Figure 5.13 shows the landslide centroid position of the
0.5 mm glass bead landslide as a function of time. The error bars in the position data of
Figures 5.11 and 5.13 indicate the potential error between the centroid and the center of
mass for these rapidly deforming landslides. The motion of all three landslides appears
very similar in shape. In fact, the center of mass motion of a material landslide along the
incline appears to follow the same analytical solution as solid block motion down the
incline as anticipated in Section 3.2.2. The agreement is still surprising not least because
the analytical solution assumes constant values of the Coulombic friction and drag
coefficients whereas all material landslides underwent significant deformation and some
material agitation. The analogy between material landslide motion and solid block
motion should fail once random particle collisions and particle rolling motions become
important. However, the agreement appears to be excellent regardless of the material
density, material particle size, particle angularity, mode of landslide deformation, or
landslide rate of deformation. Therefore, equation (3.78) is used to curve fit the position
data in order to extract a characteristic distance s, and time t, for material landslide
motion. These characteristics of motion are needed in order to construct a wavemaker

curve for material landslides.
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One explanation for the center of mass motion of material landslides lies in the
observation that densely packed arrays of particles several monolayers thick were
observed sliding along the incline in the core of 12 mm marble and 3 mm steel shot
gravity currents. In other words, significant particle collisions and particle rolling
motions never developed within the landslide along the incline. Figure 5.18 shows
pictures of a crushed calcite landslide sliding along the incline. Similar behavior for the
other landslide materials would indicate that all landslides were sliding along the Lucite
surface even if the top surface was being deformed and mixed by, among other causes,
the shearing action of surrounding water. Naturally, material sliding may simply be a by-
product of having chosen a smooth Lucite incline for the experimental apparatus. This
observation should not be extrapolated to natural underwater landslides. For example,
equation (3.70) suggests that large landslides should be dominated by Coulombic friction.
However, Shaller (1991) shows that this is actually‘a very poor assumption and that large
landslides can experience much longer run-out in air and water than would otherwise be
predicted by Coulombic friction. Campbell et al. (1995) suggest that long run-out
landslides are a consequence of macroscopic rheology that results from particle

interactions.

Table 5.4 summarizes the results of the curve fits of landslide centroid position along the
incline as a function of time. All curve fits appeared very similar to those shown in
Figures 5.11 to 5.13. Table 5.4 also provides the standard errors given by the
KaleidaGraph general curve fitting algorithm described in Section B.1.6. Regardless of
the material, most material landslides studied have characteristic lengths s, between 15-
30 cm as well as characteristic times t, between 0.25-0.40 s. These characteristics of
motion resemble typical solid block characteristics of motion given in Table C.2. All
three crushed calcite trials were repeated trials and have reasonably similar characteristic
motions. Trials 89 and 90 involving 1 mm glass beads were similar to Trial 35 in initial
volume but had different initial submergences. Trial 92 involved a smaller mass of 1 mm
glass beads so that significantly different characteristics of motion are to be expected.
Trials 34 and 82 are repeated 3 mm glass bead landslides and both landslides have very
similar characteristics of motion. Trials 37 and 83 are repeated 12 mm marble landslides
and both landslides have characteristics of motion that agree to within the normal errors
shown. Table 5.4 provides one extra decimal place to avoid round off errors. The reader
should note that curve fits for Trial 38 involving 3 mm lead shot, Trial 84 involving 2
mm lead shot, Trial 85 involving garnet sand, and Trial 93 involving 1 mm glass beads

failed to converge to accurate characteristics of landslide motion. In all four cases, the
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final values of s, and t, were highly sensitive to the desired accuracy of the curve fit and
in some cases failed to converge whatsoever. The standard errors when the curve fitting
algorithm stopped (or was stopped) were on the order of 100 per cent of the
characteristics of motion. These four trials are therefore excluded from all further
analyses involving material landslide motion including some aspects of wave generation

and propagation that incorporate the characteristic time to,.

Table 5.4: Material Landslide Center of Mass Motion

Material Trial So (cm) to (S)

Crushed Calcite 32 13.5+0.6 0.290 + 0.008
Crushed Calcite 33 124+0.9 0.272+0.014
Crushed Calcite 40 11.6 +0.9 0.271 £0.014
0.5 mm Glass Beads | 87 263123 0.531 £0.029
1 mm Glass Beads 35 179+£1.0 0.342 £ 0.014
1 mm Glass Beads 89 20.7+1.4 0.379 +£0.019
1 mm Glass Beads 90 214+1.9 0.390 +0.022
1 mm Glass Beads 92 14.8+3.6 0.312 £0.028
3 mm Glass Beads 34 18.1+1.2 0.319+0.014
3 mm Glass Beads 82 17.1£0.5 0.324 £ 0.006
3 mm Glass Beads 91 19.2 £0.8 0.317 £0.009
12 mm Marbles 37 26.0+£2.7 0.353 +0.022
12 mm Marbles 83 28.0x+ 1.0 0.364 + 0.008
2 mm Lead Shot 39 304+54 0.252 £ 0.028
3 mm Lead Shot 86 38.4+5.1 0.295 +0.024
3 mm Steel Shot 81 29.5+3.9 0.271 £0.021

There is no essential difference between a sliding material mass and a sliding solid block
at early times in their respective center of mass motions. Therefore, the initial
acceleration of a material landslide is given by equation (3.73) with Cy=tany found from
Table 4.3 and C,=0.8 borrowed from the solid block motion studies described in Section
5.1.2. The two materials in Table 4.3 for which the incline friction angle was not
measured had to be excluded from the calculation. The experimental value of the initial

acceleration was given by
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~ So
ap = 1,2 (5.8)

where s, and t, were taken from Table 5.4. The data are tabulated in Table C.10. Figure
5.14 shows that the agreement between the theoretical predictions and the observed initial
accelerations is quite good. A least-squares linear curve fit through the origin has a slope
of m=0.92 and a correlation coefficient r=0.96 indicating that the theoretical prediction is
in general a little large. The per cent error between the two initial accelerations is on
average 10.6% with a standard deviation of +14.6% about the mean. Given the normal
errors in sq and to, Section B.1.6 shows that the error in the initial acceleration should
actually be £30.3%. Therefore, the theoretical prediction does better than could be
expected and equation (3.73) is justified to describe the center of mass motion of

deforming landslides in numerical simulations.

Figure 5.14 also shows that glass sphere initial accelerations do not collapse to nearly a
single point as suggested by equation (3.73). Rather, the initial accelerations derived
from equation (5.8) exhibit ordering by particle size. Material characteristics that depend
on nominal diameter represent the only significant differences between the glass spheres.
Figure 5.15 compares the ratio of experimental to theoretical initial acceleration of glass
sphere landslides with the nondimensional particle size D/b. The data for Figure 5.15 can
be found in Tables C.9 and C.14. For nondimensional particle sizes D/b ranging from
0.015-0.15, the ratio of initial accelerations can be approximated by the curve fit

E(—)?z—': ~ 1384 (£)*° (5.9)
which has a correlation coefficient r=0.92. The theoretical initial acceleration becomes a
better predictor of the actual initial acceleration for larger particle sizes. For 12 mm
marbles, the observed initial acceleration matches the theoretical prediction. For 1 mm
glass beads, the experimental initial acceleration is typically about 30% smaller than
expected. This discrepancy may be attributed to negative pore water pressures within the
deforming landslide that increase Coulombic friction with the incline by increasing the
normal force. Since 1 mm glass bead landslides are observed to form a dilatational flow,

negative pore water pressures must be induced within the landslide core to draw in water.
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The idea that gravity currents have terminal velocities assumes that an asymptotic gravity
current structure can be achieved and maintained over sufficiently long distances.
Kuenen (1952), Striem and Miloh (1976) and Harbitz (1992) all employ simple analytical
expressions for the gravity current terminal velocity that resemble equation (2.1) based on
the landslide thickness. However, the work of Parker et al. (1986) reveals the
complicated dynamics governing gravity current deformation and motion, especially
when sediment entrainment and deposition with a sediment bed are taken into account.
Regardless, the exceptional agreement between the observed centroid motion and
~ equation (3.78) for all landslide materials studied allows a gravity current terminal
velocity to by predicted based on experimental results. Even if this velocity is
hypothetical, it will still serve the same scaling purposes as the terminal velocity of a
solid block landslide. An a priori prediction of the gravity current terminal velocity is
available from equation (3.74) using the drag coefficient Cg=1.7 found for solid blocks in
Section 5.1.3 and the initial suspension density from Table 4.2. The experimental

prediction of the gravity current terminal velocity is calculated from

u =~ 20 (5.10)

where sq and t, are given in Table 5.4. The agreement between both predictions of the
gravity current terminal velocity is indicated in Figure 5.16. Table C.11 contains the
corresponding data. A least-squares linear curve fit through the origin has a slope of

=0.83 and a correlation coefficient of r=0.94 showing that the a priori prediction is in
general a little large as would be expected. Still, the agreement is rather surprising given
that the initial suspension density is used in equation (3.74) whereas gravity current
densities typically drop with distance traveled down the incline. The per cent error
between the two terminal velocities is on average 9.4% with a standard deviation of
+17.4% about the mean. Given the normal errors in s, and t,, the error in the terminal
velocity should actually be +22.4%. Once again, the theoretical pfediction does better
than expected and equation (3.74) can be used to describe material landslide center of

mass motion in numerical simulations of deforming landslides.

Figure 5.16 also exhibits ordering by glass sphere and lead shot nominal diameter.
However, equation (3.74) should be considered a fortuitous scaling quantity rather than a
prediction of material landslide terminal velocities. Instead of using equation (3.74), the

relation between the experimentally inferred terminal velocity and the single particle fall
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velocity is examined here. The particle fall velocity relative to the material landslide
terminal velocity probably controls the degree of mixing in the landslide wake, where
relatively small settling velocities allow for the development of a significant material
landslide wake. Figure 5.17 plots the ratio of experimental terminal velocity to single
particle fall velocity versus the nondimensional particle size of glass sphere landslides.
The data for Figure 5.17 is located in Tables 4.3, C.9 and C.14. The approximate
equation

-1.39

S0 - 1.26 + 0.00471 (%) (5.11)

to l.lp

describes the variation of nondimensional terminal velocity with a correlation coefficient
r=0.99 and is valid for nondimensional particle sizes D/b ranging from 0.015-0.15. The
exponent -1.39 in equation (5.11) is too large to be induced solely by the particle fall
velocity dependence on nominal diameter given by equation (4.19). Therefore, additional
curvature must arise from either i) the smaller or ii) the larger nominal diameter spheres
permitting larger experimental terminal velocities. Inspection of Table C.11 reveals that
it is the 12 mm marble landslides that had the larger experimental terminal velocities.
The conclusion is straightforward: larger particles permit larger experimental terminal
velocities through less mixing and smaller landslide wakes. Mixing incorporates
surrounding water with no intrinsic inertia into the moving landslide mass. Mixing also
lowers the instantaneous suspension density. Hence, mixing slows down a material
landslide. For a given material density, mixing can be suppressed by larger particle sizes.

5.1.6 Material Landslide Rate of Deformation

As in the previous section, this discussion begins with photographic records of deforming
material lands_lides. Trials 40, 82, and 81 contained marked particles that can be observed
on each movie frame and tracked during landslide failure. In order to resolve the marked
particles, each landslide was recorded with the movie camera close to the wave tank and
tilted 45° clockwise so that the landslide traverses the frame horizontally from left to
right. The experimental methodology is described in Section 4.3.2. Figures 5.18-5.20
show movie frames from Trial 40 involving crushed calcite, Trial 82 involving 3 mm
glass beads, and Trial 81 involving 3 mm steel shot, respectively. Figure 5.18 shows that
crushed calcite underwent very little strain in the core of the gravity current. This is not

surprising for a granular material with an internal friction angle of 47° sliding along an
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incline 45° from horizontal. While particles were being sheared from the surface at
t=0.39 s, most of the particles within the landslide core still had very similar relative
positions. Figure 5.19 demonstrates the significantly higher rate of deformation
associated with glass bead landslides. Moreover, particle motion within the gravity
current was sufficiently strong that marked particles regularly appeared and disappeared
from view due to transverse particle mixing. The steel shot in Figure 5.20 underwent
very rapid stretching of the landslide nose while the tail of the gravity current deformed
relatively little. The steel shot landslide rapidly acquired sufficient velocity for a few
~ particles to detach from the gravity current. Similar behavior was observed in the two-
dimensional simulations of a granular medium landslide along a 45° incline (in the
absence of interstitial fluid) performed by Campbéil et al. (1995). For all three materials
described here, the use of an isosceles triangle to describe the initial landslide rate of
deformation as described in Section 3.2.2.1 is seen to be justified. At early times, the
simulated landslides of Campbell et al. (1995) also appeared like isosceles triangles.

If the mean particle size of a landslide material is much smaller than the initial size of the
landslide, then the material can be considered as a continuum that has no inherent length
scale other than the size of the landslide -- although the constitutive properties of the
continuum may still depend on the particle size. Therefore landslide size should grow in
relation to the distance traveled down the incline. In fact, Figures 5.21 and 5.22 show
that the landslide cross-sectional area of Trial 91 involving 3 mm glass beads and the 3
mm steel shot landslide grew linearly proportional to the elapsed time of landslide
motion. The error bars represent one standard deviation and are derived in Section B.1.8.
Hence, the initial rate of area change in time needed for equation (3.85) can be found
from a linear curve fit of the data as a function of time as shown on Figures 5.21 and
5.22. On the other hand, Figure 5.23 shows that the landslide area of the 0.5 mm glass
bead landslide grew linearly proportional to the distance traveled down the incline.
Garnet sand was the only other landslide material with an area that grew in proportion to
the distance traveled. Clearly, the larger internal friction angle, the larger material
density, and the angularity of garnet sand did inhibit significant cross-sectional area
growth. Therefore, a completely different landslide dynamic appears to govern the
deformation of landslides with smaller nominal diameters. The analysis of Figure 5.17
suggests that particle size and material density control the degree of mixing between
material particles with surrounding water and thereby determine the mechanism of cross-
sectional area growth. Or, linear growth of cross-sectional area in time may be the short

time asymptotic behavior of landslide growth for all materials and the incline was too
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short to capture growth in proportion to distance traveled for most materials. The initial
rates of area change in time for the 0.5 mm glass bead and garnet sand landslides were

found from a linear curve fit of the data at early times.

The results of all linear curve fits for the initial rate of area change in time can be found
in Tables 5.5 and C.12. The standard errors are estimated in Section B.1.8. The initial
rate of area change in time is a measure of material dilatation induced by gate retraction,
gravitational forcing, particle interactions, and landslide surface shearing to name the
" primary sources of cross-sectional area growth. Area growth in Table 5.5 seems to reflect
particle size more than any other material characteristic in Tables 4.2 and 4.3. A more
detailed attribution of the initial rate of area change to different material characteristics is
not possible due to the limited number of materials studied and the errors inherent in the
measurements. For an identical material density, large particles resist mixing due to their
relatively large settling velocities. However, small particles may also resist mixing at
early times due to their relatively low hydraulic diffusivity that permits negative pore
water pressures to develop during dilatational flows. For all material landslides, water
apparently flowed into the material landslide from all directions except through the
incline. Uniform flow into a sink may change the absolute pressure near the sink but it
would not impart any directionality to the flow. Therefore, a uniform change in the
absolute pressure around an underwater landslide would not alter its center of mass
motion. The surface waves induced by landslide growth alone can be approximated by a
submerged line sink with a corresponding flow rate and initial submergence. This
calculation is made in Section 5.3.1 below. It is highly unlikely that there is any
significant water flow through the material landslides due to center of mass motion.
Material landslide cross-sectional area is inversely proportional to the mean solid volume
fraction of particles in the landslide. Therefore, the suspension density of material

landslides is continually decreasing with time.

Material landslides with small particles rapidly become diluted by the entrainment of
water, most notably in their wakes. Some difficult questions arise. For example, does
part of the landslide continue to contribute dynamically to landslide motion while other
parts get left behind? Or, is area even a meaningful characteristic of a highly deformed
gravity current displaying nonlinear wave activity? Excluding the wake area from
landslide traces could reduce the landslide area by 40% for 0.5 mm glass beads and 25%
for 1 mm and 3 mm glass beads. In fact, excluding the wake area from the last trace of

the 0.5 mm glass bead landslide produced a landslide cross-sectional area that appears to
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suggest linear growth of area in time of the dense landslide core. However suggestive,
these issues are best left to studies devoted specifically to gravity current deformation.
Wave generation is inherently tied to earlier events in an underwater landslide. That is
why the initial rate of deformation is sought in this section rather than some more
complicated measure of landslide deformation over time. It is worth noting here that
these experiments had the benefit of not undergoing entrainment of sediment during

landslide motion and deformation.

Table 5.5: Material Landslide Initial Rates of Deformation

Material Trial | /Ao dA/dt | zeodzydt | T'=dovdt
(s s (rad/s)
Crushed Calcite 32 | 155+020 | -040+0.09 | -1.17£0.20
Crushed Calcite 33 | 1924025 | -046+0.11 | -1.41+024
Crushed Calcite 40 | 1.83+024 | -052+0.12 | -1.42+0.24

0.5 mm Glass Beads | 87 0.83+0.11 -0.52+0.12 | -0.93+0.16
1 mm Glass Beads 35 2.35+0.31 -0.60+0.14 | -1.77+0.30
1 mm Glass Beads 89 2.33+0.31 -0.33+0.08 | -1.49%+0.25
1 mm Glass Beads 90 2.62+0.34 -049+0.11 | -1.79+0.30
1 mm Glass Beads 92 2.26 £0.29 -0.70+0.16 | -1.83+0.31
1 mm Glass Beads 93 2.82+0.37 | -0.55+0.13 | -1.96+0.33
3 mm Glass Beads 34 241+0.31 -0.98+0.23 | -2.18+0.37
3 mm Glass Beads 32 1.75+£0.23 -0.89+0.20 | -1.75+0.30
3 mm Glass Beads 91 1.61 £0.21 -0.55+0.13 | -1.34+0.23

12 mm Marbles 37 1.17£0.15 -0.59+0.14 | -1.15%+0.20
12 mm Marbles L 1.44 £0.19 -0.55+0.13 | -1.26+0.21
2 mm Lead Shot 39 2.16+0.28 -1.50+0.34 | -2.53+0.43
2 mm Lead Shot 84 1.57+0.20 | -1.67+0.38 | -2.41+041
3 mm Lead Shot 38 1.92 £0.25 -1.48+0.34 | -241+041
3 mm Lead Shot 86 0.83+0.11 -1.59+0.37 | -1.99+0.34
3 mm Steel Shot 81 1.53+020 | -1.71+£0.39 | -2.42+0.41

Garnet Sand 85 0.52 +0.07 -0.82+0.19 | -1.07%0.18
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The definition of the centroid height above the incline can be found in Figure 3.1. Error
analyses are carried out in Section B.1.7. Figure 5.24 shows the change in centroid
height above the incline as a function of time for Trial 91 involving 3 mm glass beads. It
is noticed that a change in the landslide deformation takes place at around t=0.2 s. Before
that time, the landslide is spreading and the center of mass is dropping; after that time, the
landslide centroid begins to rise, probably on account of stronger mixing with
surrounding water. A linear curve fit over the first seven height measurements yields the
initial normal rate of strain given in Table 5.5 and needed for equation (3.85). The term
" "normal" is used to denote the direction normal to the incline. This behavior was also
typical of crushed calcite, 1 mm glass bead, and marble landslides. Such a change in
landslide deformation is absent from Figure 5.25 probably because the 3 mm steel shot
was too dense for these size particles to have begun significant mixing by the time the
landslide reached the bottom of the incline. The normal rate of strain was therefore found
from a linear curve fit over all data. All lead shot landslides had similar behavior in the
normal rate of strain as the steel shot landslide. Figure 5.26 shows that the 0.5 mm glass
bead landslide underwent a change in landslide deformation similar to that seen in Figure
5.24 before a marked rise in the landslide centroid occurred. The garnet sand landslide
also underwent a marked rise in the landslide centroid height above the incline probably
on account of the strong mixing experienced by that landslide. Since the minima in
Figures 5.24 and 5.26 occur around the same time, it follows that the rate of landslide
mixing is highly dependent on the size of the glass bead particles. This effect was first

discussed in connection with Figure 5.17 above.

Regardless, all material landslides experienced an initial drop in the center of mass height
above the incline as seen by the negative signs in Tables 5.5 and C.12. Error analyses for
the initial normal rate of strain are described in Section B.1.7. Rapid spreading of a
material landslide at early times almost certainly lowers the landslide center of mass. The
initial normal rate of strain appears to depend on the material density more than any other
material characteristic. It is the component of gravitational forcing normal to the incline
that is primarily responsible for the spreading failure of material landslides at short times.
The gravitational forcing is in turn proportional to the landslide mass in Table 4.2. A
comparison of 3 mm glass bead and crushed calcite initial normal rates of strain may
indicate that a large internal friction angle inhibits landslide spreading. This observation
is also apparent from Figure 1.6. However, a more detailed analysis of the initial normal
rates of strain was not pursued due to the limited number of materials studied and the

errors inherent in the measurements.
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The initial landslide rate of deformation I was calculated from equation (3.85) with data
from Table 5.5. Values of the initial landslide rates of deformation are given in Tables
5.5 and C.13. The error provided in Table 5.5 represent one standard deviation and were
calculated based on an analysis in Section B.1.9. The initial landslide rates of
deformation shown in Table 5.5 are a measure of how fast the initially horizontal top face
of a material landslide rotates clockwise. Given the assumption that the landslide retains
the shape of an isosceles triangle at early times, the vertical front face of the landslide is
" assumed to rotate a similar amount counter-clockwise. Figures 5.18 to 5.20 show that
this does indeed occur. Therefore, the initial landslide rate of deformation is a direct
measure of the geometrical departure of material landslides from solid block geometry at
early times. Unlike the growth in landslide cross-sectional area, the change in landslide
shape should actually affect the pressure distribution along the surface of the landslide
and hence alter wave generation. All three crushed calcite trials have reasonably similar
initial rates of deformation. All five 1 mm glass bead trials also had similar initial rates
of deformation. Trials 34 and 82 as well as Trials 38 and 86 demonstrate the differences
in the initial rate of deformation that can be expected for repeated trials. The initial rates
of deformation I" vary from -50°/s to -140°/s so that after a time At=0.1 s the angle o has
varied between -5°<Aca~T'At<-14°. It is shown in Section 5.3 that these rates of
deformation are significant enough to affect wave amplitudes. Table 5.5 provides an

extra decimal place in order to avoid round off errors.

The nondimensional quantity I't, is the hypothetical angle change in radians of the top
face of a triangular material landslide if the initial landslide rate of deformation were
‘maintained over the entire characteristic time of center of mass motion. The
nondimensional landslide deformations I't, were calculated from data in Tables 5.4 and
5.5 and are given in Tables 5.6 and C.13. Additional calculations provided in Section
B.1.9 show that the nondimensional landslide deformations are typically accurate to
within #25% at one standard deviation. Figure 5.24 shows that the initial rate of normal
strain can be maintained up to at least t=0.2 s while a typical characteristic time for center
of mass motion is t,=0.3 s from Table C.10. Hence, I't, provides a meaningful
characteristic landslide deformation. Based on the material landslide center of mass
motion described in Section 5.1.5 as well as the preceding analyses of landslide growth
and normal rates of strain, it is not surprising to be unable to attribute the nondimensional
landslide deformation to particular material characteristics. In Section 3.2.2.1, the

nondimensional landslide deformation was proposed as a perturbation to water waves
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generated by solid block landslides. The values of the nondimensional landslide
deformation in Table 5.6 do not necessarily satisfy the usual idea of a perturbation
quantity ITtol«1. However, the discussion in Section 5.3.2 shows that the initial landslide
rate of deformation is in fact a perturbation parameter relative to wave generation. Table

5.6 provides an extra decimal place to avoid round off errors.

Table 5.6: Nondimensional Material Landslide Deformations

Material Trial -I't, (radians)
Crushed Calcite 32 0.34 +0.07
Crushed Calcite | 33 0.38 +0.09
Crushed Calcite 40 0.38 £ 0.09
0.5 mm Glass Beads | 87 0.50+0.11
1 mm Glass Beads 35 0.60x+0.13
1 mm Glass Beads 89 0.57+0.12
1 mm Glass Beads 90 0.70+0.16
1 mm Glass Beads 92 0.57£0.15
3 mm Glass Beads 34 0.70+£0.15
3 mm Glass Beads 82 0.57+£0.10
3 mm Glass Beads 91 0.42 +0.08
12 mm Marbles’ 37 041+0.10
12 mm Marbles 83 0.46 £ 0.09
2 mm Lead Shot 39 0.64+0.18
3 mm Lead Shot 86 0.59+0.15
3 mm Steel Shot 81 0.66 +0.16

Bagnold (1954) discovered two distinct asymptotic regimes for the behavior of large,
neutrally buoyant particles in a uniform shear flow. Zeininger and Brennen (1985) have
shown that the ideas of Bagnold (1954) can be applied to the characteristic flow rate of
hopper flows for a variety of granular media in air and water. The initial landslide rate of
deformation I" given in Table 5.5 allows for the regimes of material landslides to be
estimated for underwater landslides. Bagnold (1954) showed that the "grain-inertia"

regime has shear stresses proportional to
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T « ppmD2L2T2 (5.12)

where pn, is the material density, D is the particle nominal diameter, I is a characteristic
rate of strain, and L is a nondimensional geometrical packing factor. According to
Bagnold (1954), the geometrical packing factor

v,l/3
173 -y i3

L

(5.13)

Vs.max

represents the ratio of particle diameter to mean particle separation, where Vg max=0.74 is

the theoretical maximum solid volume packing of monodisperse spheres. Larger values
of the solid volume fraction vg can produce significantly larger values of the geometrical
packing factor L since equation (5.13) diverges as Vs->Vsmax. The "macro-viscous"

regime was found experimentally to have shear stresses proportional to
T < WoL32T (5.14)

where |l is the dynamic viscosity of water. The ratio of equation (5.12) to equation

(5.14) forms the nondimensional Bagnold number

Pm D2L12T
Ho

Ba = (5.15)

that describes the relative importance of the two flow regimes. According to
.experimental results, a Bagnold number Ba<40 constitutes "macro-viscous" behavior
whereas a Bagnold number Ba>400 corresponds to "grain-inertia” behavior. A "macro-
viscous" mixture can be considered as a conventional suspension whereas a "grain-

inertia" mixture can be considered as a granular medium.

The observation that the lead shot landslide in Figure 5.9 resembles the experimental
results given by Savage and Hutter (1989) for a gravel landslide in air can be
reinterpreted as saying that the 2 mm lead shot is behaving like a granular medium even
though the landslide is immersed in water. The same can be said about the comparison of
the steel shot landslide in Figure 5.20 with the two-dimensional granular media
simulations of Campbell ez al. (1995). More to the point, Zeininger and Brennen (1985)
have shown that the nondimensional flow rates of lead shot in air and in water are
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identical in a hopper flow with a Bagnold number Ba=1000. The regime of each material
landslide performed for this work can be checked by evaluating the initial Bagnold
number using the values in Tables 4.2, 4.3, and 5.5. The Bagnold number will of course
vary in time and only the initial Bagnold number is considered. In fact, the only material
landslides for which Ba>400 were the marble experiments. All lead and steel shot trials
had initial Bagnold numbers between 100<Ba<300 so that the initial motion and
deformation of these landslides may actually be slightly different in air. The crushed
calcite, glass bead, and garnet sand landslides all had Bagnold numbers Ba<50 and
" therefore behaved more or less like suspensions when liquefied. While these constitute
interesting calculations, the "macro-viscous" shear stress in equation (5.14) was
apparently not correlated with the initial gravitational shear stress along the bottom of the
landslides with Ba<40. Therefore, it appears that these concepts cannot be used for

quantitative or predictive analyses of underwater landslides.
5.2 Solid Block Landslide Results

Solid block landslide experiments form an important benchmark from which more
complicated underwater landslide experiments can expand the wavemaker formalism of
Section 3.1.3. Water waves generated by solid block landslides are described first. Solid
block motion is then combined with the observed water wave records to produce
wavemaker data. While the wavemaker curves provided in this section are limited to the
chosen solid block and incline geometries, they provide the correct (albeit primitive)
formalism for studying water waves generated by general underwater landslides. The
experiments performed with material landslides merely modify the present results based

on landslide rates of deformation.
5.2.1 Near-field Wave Characteristics

In section 1.1, Figures 1.3 and 1.4 demonstrated that the vertical face of a landslide
generated a positive wave in front of the landslide while the horizontal face of a landslide
generated a negative wave above the landslide. In addition, Figure 1.3 demonstrated the
initial flow of water from the front face of the landslide along streamlines connected to
the top face of the landslide. As noted in Section 1.1, the essential features of such a flow
field are captured by a submerged flow doublet at the block vertex. Figure 5.27
superposes near-field wave records of Trials 20 and 22 for different wave gauge

positions. In both trials, the old block 2, was released from rest with an initial
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submergence of d=59 mm. Solid block Trial 60 is almost a repeat of Trials 20 and 22.
Given that the wave gauges were in the near-field above the incline, the solid block size
is used to nondimensionalize wave gauge positions. A wave gauge with measuring wires
above the middle of the initial solid block position is considered to be at x/b=0.
Immediately above the initial solid block position, the free surface is drawn down by
block motion and then rebounds. About two block lengths away, the leading positive
wave can be seen prior to the arrival of a large negative wave. Given s4=~0.203 m and
ty=0.365 s for Trial 60 in Table C.2, equation (3.78) shows that the free surface minimum
~ at x/b=2.09 and t=0.8 s corresponds to passage of the solid block under the wave gauge.
The free surface trough following the landslide motion was first pointed out in the
discussion of Figures 1.3 and 1.4. The maximum wave amplitude at x/b=2 is nearly twice
as large as that immediately above the initial solid block position. At x/b=4.18, a larger
positive wave is measured far ahead of the solid block along with passage of a significant
negative wave. The free surface minimum at x/b=4.18 occurs a little bit ahead of the |
solid block position at t=1.1 s. Hence, the ability of solid block motion to create a trough
above the top face of the block is apparently lessened with increasing depth. Wiegel
(1955) notes that the trough in the free surface above the landslide is analogous to the
trough found above a moving hydrofoil. The comparison is interesting because in both
cases the trough is generated by the pressure distribution along the surface of the
wavemaker and in both cases the trough follows the position of the wavemaker.

Figure 5.28 shows the superposed near-field wave records at x/b=0 for solid block 2
Trials 28-31, 41 and 42. Each trial had the same initial submergence d=74 mm and was
conducted on a 45° incline. The initial geometry of each solid block trial is given in
Table C.1. The dynamical coefficients of the solid block trials shown in Figure 5.28 are
assumed to be constant in time and identical for the six wave records. Therefore, only the
solid block mass (or density) changed in equations (3.6) and (3.78). Error analyses of
near-field wave records are conducted in Section B.2.1. In Figure 5.28, larger solid block
densities are clearly associated with larger wave amplitudes as was also found by Wiegel
(1955). A change in solid block density changes the characteristics of motion appearing
in the Hammack number and the nondimensional wave amplitude in equation (3.27).
Therefore, the block density becomes the central parameter used to find the loci of the
wavemaker curve for a given initial landslide geometry and identical dynamical

coefficients.
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Despite several noteworthy differences in the wave records, the general characteristics of
each wave record look remarkably similar: the free surface forms a relatively large
negative wave followed by a free surface rebound with decaying oscillations. Appendix
A provides the near-field wave records of all trials repeated more than once for the sake
of wave record comparison. All wave records in Figure 5.28 appear to share a similar
motion at very early times. Near t=0%, the initial wave motion at x/b=0 follows the
quadratic behavior of the solid block motion given by equations (3.97) and (3.99)

_ agsin@ 12 2 sm(By)
nwo) = -——5— ycoshy

= a"smet {4 tan! [exp (5 B)] n} (5.16)

where B=b/2d and the term in the braces is always less than . All assumptions made in
deriving equation (5.16) are described in Section 3.3.1. The subsequent large amplitude

negative wave is the single most important feature of wave generation at x/b=0.

In fact, the maximum near-field wave amplitude (taken as a positive number) is used
below as a characteristic wave amplitude for the entire wave generation and propagation
problem. Figure 5.27 shows that wave records obtained at different near-field locations
offer different values of the maximum near-field wave amplitude; One is free to choose
the location that will be used to characterize other wave amplitudes. For this work, the
location x/b=0 is chosen. From now on, the term "maximum near-field wave amplitude”
is reserved for the positive number Mpax recorded at x/b=0. However, one must
acknowledge that completely different choices for a characteristic wave amplitude are
also possible. For example, one might choose instead a characteristic wave amplitude far
from the generation region or a time averaged wave amplitude at some important location
relevant to some other wave problem. Equation (3.27) does not depend on the definition
of the characteristic wave amplitude in order to guarantee the existence of a wavemaker

curve.

The shoreward side of the negative wave propagating away from the incline is highly
dispersive and can give rise to higher frequency water waves observed in the wave

records of Figure 5.28 at around one second. Following the negative wave, there is a free
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surface rebound in the form of a smaller positive wave. The rebound occurs sooner for
more massive blocks although the amplitude of the rebound is nearly constant. Wiegel
(1955) also observed free surface rebounds with amplitudes comparable to the maximum
near-field wave amplitude. The free surface oscillations that follow the free surface
rebound are exponentially damped in what appears to be a nearly critical manner. To see
this, let the Hammack number Ha=NEd/b represent nondimensional time. It follows
from the method of Laplace (or steepest descent) applied to the integral solution equation
(3.94) of Section 3.3.1 that the wave amplitude above the middle of the solid block
" decays proportional to

S
NEO) o« —— . (5.17)

H
Ha cosh -

for sufficiently long times after the wave front has left the wave generation region. The
exponential damping of free surface oscillations above an underwater landslide can
therefore be predicted by linear water wave theory. Equation (5.17) highlights the facts
that the nondimensional, linear wave amplitude is a continuous function of the Hammack
number and that the use of the characteristic time ty in the wavemaker formalism was
meant to imply that the maximum near-field amplitude occurs at around t=t,. For most
experiments, t,=0.35 s which is close to the actual time of the maximum near-field wave
amplitude. While the time of the maximum near-field amplitude can only be expected to
be proportional to the characteristic time of motion, the similarity between the two times
is an important clue as to the connection between solid block motion and wave

generation.

Section 4.2.3 noted the existence of old and new block 2 results. Having chosen a
characteristic wave amplitude, one can now examine if the maximum near-field wave
amplitudes of repeated trials differ significantly. Figure 5.29 compares the maximum
near-field wave amplitudes of 10 repeated trials. The maximum near-field wave
amplitude Tyax was found by taking the absolute value of the maximum wave amplitude
extracted from a near-field wave record using the subroutine "Pulse Analysis”" in the
Superscope software. The results of the analysis are given in Table C.3. The standard
error in the maximum near-field wave amplitude is estimated in Section B.2.1. The
abscissa denotes the wave amplitudes for block motion recorded with a high speed movie
camera whereas the ordinate denotes wave amplitudes for block motion recorded by an
accelerometer. The purpose of Figure 5.29 is to show that trials performed with the old
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block 2 typically had smaller wave amplitudes than similar trials performed with the new
block 2. This is seen by the fact that all circular symbols are located to the left of the line
of equivalence. There was probably a difference in the block Coulombic friction with the
incline between the old and new block 2. There is also a noticeable trend for the new
block 2 to have slightly smaller wave amplitudes with the accelerometer present, but the
trend is not statistically significant. Smaller wave amplitudes would indicate that the

accelerometer retarded solid block motion.

The maximum near-field wave amplitude measured above the middle of the initial
landslide position was chosen as a characteristic wave amplitude. However, other
measures of near-field wave amplitude can be devised and two of these are now
examined. For example, a plausible measure of the near-field wave amplitude would be
the area between the negative wave and the horizontal axis N=0. The amplitude integral
extends from t=0 s until the wave crosses 1=0 at time tx and is therefore dependent on the
shape of the wave record The nature of the near-field wave records is such that
differences in the time of zero crossing tx from one trial to another have little effect on the
value of the amplitude integral. The amplitude integral I(0) can be made nondimensional
by the characteristic quantity toN\max. The dimensionless ratio I(0)/toNmax is expected to
depend on wave interactions with the incline, wave nonlinearity, and the underwater
landslide geometry. For a fixed incline angle, these effects are all related to the
nondimensional initial submergence d/b. Figure 5.30 shows the resulting plot. Error bars
represent one standard deviation and are calculated in Section B.2.2. The data for Figure
5.30 can be found in Tables C.1 and C.6. A power law curve fit through the origin yields

0.36

L s (D) (5.18)

to Mmax

over the range 0.3<d/b<2.2 with a correlation coefficient r=0.77. Equation (5.18) should
probably be a function of incline angle 6 since the shape of the near-field wave record
would depend on wave interactions with the incline. Figure 5.30 indicates that the
amplitude integral I(0) of the near-field wave record remains relatively large compared to
the scaling quantity toNmax for large initial submergences. Regardless, the amplitude
integral is seen to provide no new information about the wave amplitude as its value can
be predicted uniquely from the characteristic quantities t, and max as well as the initial

landslide geometry. Since the maximum near-field wave amplitude is ultimately a
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function of geometry and kinematics, wave shape is seen to also be a function of

geometry and kinematics.

Another measure of near-field wave amplitude can be obtained by squaring the near-field
wave record and integrating from time t=0 to infinity. The integral that results is a
measure of the total wave potential energy passing through the wave gauge location in
addition to being another measure of wave shape. The near-field energy integral was
integrated until the wave amplitude was less than the (voltage) drift away from the axis
Nn=0. In practice, the integral extended until 4 s from the beginning of the trial. The
energy integral can be compared to the characteristic quantity toNmax?. Figure 5.31
shows the variation of Ep(O)/t(mmax2 with nondimensional initial block submergence.
Error analyses of the nondimensional ratio Ep(O)/tonmax2 are located in Section B.2.3.
The data corresponding to Figure 5.31 can also be found in Tables C.1 and C.6. A power

law curve fit through the origin provides

E@ 1586 ()0 (5.19)

to nmaxz

over the range 0.3<d/b<2.2 with a correlation coefficient r=0.79. The exponent in
equation (5.19) is very similar to the exponent in equation (5.18). Equation (5.19) should
also be a function of incline angle 8. The total potential energy measured at the origin
Ep(0) remains relatively large compared to the scaling quantity toTmax2 for large initial
submergences. The near-field energy integral is seen to provide no new information
about the wave amplitude since the total wave potential energy can be predicted from the
characteristic quantities t, and Tymax as well as initial landslide geometry. Hence, the
near-field energy integral can also be predicted solely from landslide geometry and
motion. In general, there appears to be no need for a separate measure of the wave
amplitude other than the maximum near-field wave amplitude Nmax.

5.2.2 Far-field Wave Characteristics

Dispersive waves propagating down a constant depth channel disperse according to the
nondimensional product kh, where K is the wavenumber and h is the channel depth.
Therefore, distances down the channel in the far-field are often expressed as fractions of
the channel depth as x/h. This basic fact of water wave propagation introduces a new

length scale into the geometry of the wavemaker problem and one may inquire under
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what conditions the channel depth is important to the characteristics of far-field waves.
For example, if water waves generated by underwater landslides propagate as deep water
waves, then it is safe to assume that the channel depth plays little to no role in the
characteristics of far-field waves. More to the point, it is convenient to seek a channel
depth criterion whereby water waves generated by underwater landslides will indeed
produce deep water waves. If far-field waves propagate as deep water waves, then the
nondimensional product xh in the dispersion relation

® = £\ kg tanh kh (5.20)

no longer contributes to wave propagation since tanh(xh)=1. For deep water waves, it
follows that the only horizontal length scale far from the wave generation region is the
wavelength A contained in the definition of the wavenumber K in equation (5.20).
Therefore, distances down the constant depth channel should be expressed
nondimensionally as x/A for deep water waves.

This section begins with some basic observations of far-field wave records measured at
the location x/h=4.25, where the near-field wave gauge is located at x/h=0. As shown in
Section 5.2.4, x/h=4.25 is far enough away from the wave generation region to provide
the features of the dispersive wave train. Figure 5.32 shows the far-field wave records
corresponding to Figure 5.28. An error analysis of far-field wave records can be found in
Section B.2.4. The characteristics of each wave record in Figure 5.32 look similar: the
wave front consists of a leading positive wave followed by a dispersive wave train of
modulated wave amplitude. The leading positive wave is generated by the front face of
the accelerating solid block as shown in Figure 5.27. Once again, denser solid blocks
generated larger wave amplitudes as in the previous section and as shown by Wiegel
(1955). The peaks and troughs of the dispersive wave trains in Figure 5.32 are not
aligned and appear to show varying degrees of wave dispersion. This may be an
indications that these are deep water waves and the far-field wave gauge should have
been located at the same value of x/A rather than the same value of x/h. Appendix A
provides the far-field wave records of all trials repeated more than once for the sake of

wave record comparison.

As shown in Section 3.3.2, the leading waves in Figure 5.32 are Airy waves that
accomplish the transformation from exponential wave growth to dispersive wave

oscillations. The wave amplitude decays with distance according to
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nmax
M < 43 (5.21)

while the celerity of the Airy wave is the long wave celerityVgh in the channel. Wiegel
(1955) observed far-field waves generated by submerged solid blocks and confirmed
these properties of the Airy wave. Therefore, while the dispersive wave train may
propagate as deep water waves independent of the channel depth, the Airy wave always
- propagates at a celerity controlled by the channel depth. The maximum Airy wave
amplitude is used as a characteristic far-field wave amplitude. The Airy wave is followed
by a damped sinusoidal wave envelope that contains groups of water waves. For linear
water waves, the nodes of the wave envelope separate distinct wave numbers in the wave
train through which no energy may be transferred. Whitham (1973) shows that nodes
travel at the group velocity of their respective wavenumber. For the experiments
described herein, it is shown immediately below that almost all of the wave energy is
contained within the first group of waves. Therefore, the first node has a large enough
wavenumber (or small enough wavelength) that the largest waves travel ahead of the first
node. Indeed, the maximum far-field wave amplitude occurs near the middle of the first

wave group rather than at the leading positive wave.

If the waves in the constant depth channel are deep water waves, then the far-field wave
characteristics depend on only two general characteristics of the wavemaker itself: the
ability to generate a leading positive wave followed by a negative wave and the fact that
water waves leave the generation region faster than they are generated, i.e., Hap»1. These
characteristics should hold for most underwater landslides in nature except perhaps for
the largest earthquake induced underwater landslides on slopes less than several degrees
or very shallow landslides induced by nearshore human activity. These possibilities are
explored in more detail immediately below. A criterion needs to be established to
estimate if landslide-generated water waves propagate as long waves, deep water waves,
or with some intermediate behavior. The conventional boundary xh>r used to denote
deep water waves can be converted to a criterion on the channel depth h. If the far-field
wave train is comprised of deep water waves, then water waves propagating along the
incline towards the constant depth channel cease to feel the incline prior to reaching the
toe of the incline. This is why the toe of the incline was not used as a reference position

in this work.
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A typical far-field wavelength should be related to a characteristic wave period which in
turn should be proportional to the characteristic time of landslide motion. Wiegel (1955)
observed that the wave period increases with increasing block size and smaller incline
angles but appears independent of water depth, initial submergence, or solid block mass.
Equation (3.73) for the initial acceleration and equation (3.74) for the terminal velocity

can be combined with equation (3.75) to yield

\/(mb -mg) g (sin® - C, cos ) Cqgpo w £ cos 0 sin 6

to

where equation (5.22) is proportional to £1/2 and increases with decreasing 6. These

trends correspond with the observations of Wiegel (1955). Since the characteristic
wavelength A=t,Vgd also depends on the time scale t,, it follows that the wavelength is

also proportional to £1/2 which explains the observations of Wiegel (1955) regarding
wavelength. The volume of a solid block landslide

2
Vp = % cos 0 sin O (5.23)

can be used to simplify equation (5.22) since mp=ppVp and my=p,Vp. The characteristic

time scale t, becomes for any incline angle 6

_ V2 (Pb +Cm po)
\ Ca po (b - Po) g (sin 6 - C; cos 6)

(5.24)

to

and the dependence of the time scale on the length of the landslide has been made
explicit. Equation (5.24) can be applied to material landslides if pg is used in place of pp
and suitable dynamical coefficients are known. Equation (5.24) shows that the Hammack
number Ha, is proportional to £-1/2 since b=fcosB. Therefore, for a given landslide
density and initial submergence, longer landslides have smaller Hammack numbers. The
increase in the characteristic time scale t, with increasing landslide length is not strong

enough to offset the growth in landslide size.

The far-field wave records are naturally amenable to Fast Fourier Transform (FFT)
analysis because the wave records begin and end with negligible wave amplitudes (and

slopes) and because wave dispersion makes the different frequency components visually
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recognizable. A typical far-field wave record sampled at 720 points per second could
provide 4096 points for an FFT of base 2. However, the resulting frequency step
Af=720/4096=0.18 Hz in the FFT analysis was too large to resolve the dominant wave
frequency of around f=1 Hz because almost all of the wave energy was contained within
the first six or seven frequency bins. The frequency resolution was so poor that a figure
depicting a typical FFT analysis is not included. Consequently, a direct correlation
between the dominant wave frequency and the characteristic time scale of landslide
motion was not sought. Since the dominant frequency is related to the dominant wave
- period by T=1/f, it is apparent that T=1 s is a typical dominant wave period for this work.
Since t,=0.35 s, it follows that T=2t, is a better predictor of far-field wave periods than
the characteristic time of landslide motion alone. This fact is readily apparent from near-
field wave records as well: the duration of the large initial trough is approximately 2t,.
Hence, typical far-field wavelengths

A =2t Vgd (5.25)

follow from Section 3.1.3. The factor of two was added to convert the characteristic
wavelength into a better estimate of the dominant wavelength. A longer estimate of the
dominant wave period clearly increases the dominant wavelength. The additional factor
of two probably arises from the fact that the scaling analysis assumed a channel of depth
d whereas waves rapidly propagated beyond the solid block into deeper water where the
long wave celerity would be higher. '

Since the dominant far-field period and wavelength can now be estimated, it is possible to
classify the far-field waves shown in Figure 5.32. For the typical time scale ty=0.35 s and
submergence d=75 mm encountered in this work, a dominant wavelength A=600 mm can
be expected from equation (5.25). Figure 5.32 shows typical wave heights of around H=7
mm in a constant depth channel h=373 mm. The nondimensional ratios H/A=0.012 and
h/A=0.62 describe waves that can be classified as linear, deep water waves according to
Dean and Dalrymple (1991). Therefore, in hindsight, the far-field wave gauge should
have been positioned based on characteristic wavelengths propagated by the wave train
rather than channel depths propagated by the wave train. If the near-field waves are not
deep water waves at the time of generation, then they would experience wave shoaling as
they propagate over the incline into deeper water. At some particular depth, the waves
would no longer feel the incline and disperse according to their wavelengths as given by

the deep water dispersion relation. The next paragraph provides a criterion for that depth.



163

In order to find a criterion for water waves generated by underwater landslides to
propagate as deep water waves in a constant depth channel, equation (5.25) for the
dominant wavelength is combined with the deep water wave criterion. It follows that the
far-field waves have a product kh>T (or equivalently h>A/2) only if

h>t,Vgd (5.26)

" since the wavenumber is defined as k=2m/A. For a typical characteristic time t;=0.35 s
and a typical submergence d=75 mm encountered in this work, far-field waves propagate
as deep water waves whenever h>300 mm. The typical channel depth used in this work
was h=373 mm. Therefore, equation (5.26) was satisfied by all but the block 2, Trials 41
and 68 which had small characteristic times of motion. A few trials with large initial
submergences came close to not satisfying equation (5.26) as seen in Table C.7. This fact
explains the highly dispersive nature of the wave train, but also results from an arbitrary
choice of the channel depth h employed herein. In general, far-field wave characteristics
depend not only on the near-field landslide characteristics but also on the channel
bathymetry (and specifically on some characteristic water depth compared to the

dominant wavelength).

For some large, natural underwater landslides induced by earthquakes, long waves with
little dispersion can be expected. For example, the numerical simulations of Harbitz
(1992) showed that the Storegga landslides off Norway generated long waves. The
criterion kh<m/10 (or h<A/20) associated with long waves gives the criterion

h < &Tg—“od (5.27)

for the channel depth. For large underwater landslides along mild slopes, the

approximation d=h turns equation (5.27) into the criterion

g ty2
h < 100 (5.28)

in order for far-field water waves to propagate as long waves. An example of long wave
generation is in order here. If one uses the dynamical coefficients Cy=0, Cg=1.7, and
Cm=0.8 in equation (5.24) along with pg=2000 kg/m3 and 8=4°, then the time scale of
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wave generation becomes t,=2.6¢1/2 where the numerical coefficient has units 2.6 s/m?/2.
Introducing this time scale into equation (5.28) gives the nondimensional criterion
h/£<0.66 in order to generate long waves on a 4° slope. A number of approximations
have been made before arriving at the depth criterion h/¢<0.66, but it is clear that an
underwater landslide several kilometers long would generate long waves in most coastal
waters. The Hammack number in this example is given by Haoz8.2\fh72 where the
approximation d=h has been used once again. The Hammack number will usually be
greater than unity for long underwater landslides, although it is quite likely that

Hao<Hao min and a power law approximation to the wavemaker curve is not available.

Far-field wave amplitudes can be related to near-field wave amplitudes. The reader
should keep in mind that this section applies only to far-field waves that are deep water
waves and that have propagated briefly along a 45° incline. The objective is to
demonstrate that two characteristic wave amplitudes generated by a given solid block
landslide can be related. Since most of the waves studied herein are linear dispersive
waves, the characteristic near-field wave amplitude must be linearly proportional to a
characteristic far-field wave amplitude. The maximum Airy wave amplitude at x/h=4.25
was chosen as the characteristic far-field wave amplitude. Figure 5.33 shows a linear

curve fit through the origin between the two characteristic wave amplitudes

Nairy(4.25) = 0.30 Nmax (5.29)

with a correlation coefficient r=0.87. Standard errors in the maximum near-field wave
amplitude are evaluated in Section B.2.1 while standard errors in the maximum Airy
‘wave amplitude are evaluated in Section B.2.4. The data for Figure 5.33 can be found in
Tables C.3 and C.4. The maximum Airy wave amplitude at x/h=4.25 is typically 30% of
the maximum near-field wave amplitude. Given the larger standard errors in the far-field
wave records as well as the reduced wave amplitudes, the scatter in Figure 5.33 is

uhavoidable.

As discussed above, the leading positive wave far from the generation region behaves as
an Airy wave, travels at the long wave celerity, and decays algebraically with distance
with a -1/3 power. Therefore, the maximum Airy wave amplitude is given for the

constant depth channel used in these experiments by
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hy 173
Nairy(®/h) = 0.48 Nmax (; ) (5.30)

in the far-field delineated by x/h>2.5. Given that the maximum near-field wave
amplitude can be predicted from landslide geometry and motion, it follows that the
maximum Airy wave amplitude can also be predicted anywhere in the far-field provided
the incline angle is 45°. While the Airy wave travels at the long wave celerity Vgh away
from the wave generating region, the hypothetical origin of the Airy wave is not located
- at x=0 when t=0. In fact, a hypothetical origin x=x,<0 results from the incline being
shallower than the constant depth channel and leads to the wave train arriving later than
expected. The simplistic approach that x=0 when t=0 does no harm.. However, a typical
correction for the hypothetical origin would be xy/h=-2 based on the block 2 far-field
wave records in Appendix A. Hence, a single near-field wave amplitude nyax suffices to
predict far-field damage potential while the channel depth suffices to predict time of
wave arrival. Since the maximum near-field wave amplitude can be predicted, then so
can the maximum Airy wave amplitude for all distances far from the generation region

along a constant depth channel.
5.2.3 Solid Block Wavemaker Plot

A wavemaker plot is more than a tool to predict wave amplitudes for arbitrary landslide
motion. As the Hammack number approaches Hag pmin from large values, wave
generation increasingly follows the motion of the wavemaker. That is, waves can no
longer escape the wave generation region faster than the wavemaker moves. Therefore,
the shape of a wavemaker curve is directly associated with the mechanics of wave
generation and propagation. Much of the experimental work presented in this section has
Hammack numbers close to Hag min. This results mainly from the size of the
experimental system and the density of the solid blocks. One set of solid block 2
experiments and some linear theory solutions based on Section 3.3.1 permit evaluation of
Hammack number exponents in equation (3.29). The linear theory results also suggest
values for Hag min that vary with the initial landslide submergence. A criterion for
underwater landslides to generate linear water waves is derived that can be directly

associated with different wavemaker curves.

As in the "creeping" wavemaker analysis presented by Hammack (1972) and repeated in

Section 3.1.3, the maximum near-field wave amplitude is presented as a function of the
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Hammack number Ha, and the nondimensional submergence d/b for a fixed incline angle
0=45°. The characteristic distance and time scales were calculated from equations (3.75)
or so=ui?/a, and ty=uy/a,. Experimental values for the initial acceleration were either
obtained from an accelerometer during the experiment (for Trials 55-80) or from the
mean acceleration data given in Section 5.1.2 above (for all previous solid block trials).
Experimental values from Table 5.3 were used for the terminal velocity. The maximum
near-field wave amplitude was extracted from the wave record as described in Section
B.2.1. The initial submergence d of each solid block was measured just prior to
- performing the trial. Standard errors appearing on solid block wavemaker plots are
estimated in Section B.2.5. All experimental data used to construct solid block
wavemaker plots can be found in Tables C.1 and C.3.

Figure 5.34 shows the wavemaker plot of all solid block trials with initial submergences
between d/b=0.85-0.87 on an incline with 8=45°. Wavemaker data were generated by
varying the density of block 2 which in turn changes s, and t,. The Coulombic friction
coefficient should be the same for all trials shown on Figure 5.34. Hence, the two
nondimensional quantities 'y and y given in equation (3.6) are interchangeable with s, and
to since the number of independent variables is conserved. The substitution is always
justified for solid block landslides by equations (3.1), (3.4), and (3.5). Figure 5.34 is
considered to represent the typical degree of data collapse that can be expected from these
wavemaker experiments. Nevertheless, small errors in the characteristics of motion
simply displace the experimental wavemaker data by a small amount. Hammack (1972)
appears to get better data collapse in part because data are presented with log-log axes
over almost three decades of Hammack numbers and in part because the wavemaker
motion was hydraulically controlled. Curve fits of the data can yield useful analytical
approximations of the wavemaker curve. A power law least-squares curve fit of the data

in Figure 5.34 yields

Mmax _ 0.33
So Hao2.01

(5.31)

with a correlation coefficient r=0.87 over the range 3<Hay<4.5. Equation (5.31) applies
only to an incline 6=45° from horizontal and initial submergences between d/b=0.85-
0.87. The term sin® given in equations (3.21) and (3.27) has been dropped since all

experiments reported herein were performed with an incline angle of 45°. This curve fit
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gives no information regarding the minimum Hammack number Hag min for which

equation (3.29) can be expected to be valid.

Figure 5.35 shows the resulting wavemaker plot for the maximum near-field wave
amplitude of all solid block trials reported in Appendix C. The data are seen to be
ordered by the nondimensional submergence of the solid block with larger submergences
located farther to the right. In order to clarify that Figure 5.35 contains a family of
wavemaker curves, the approximate linear wavemaker theory from Section 3.3.1 was
" used to evaluate nondimensional maximum near-field wave amplitudes. The
experimental block size b, initial submergence d, initial acceleration a,, and terminal
velocity u; from Tables C.1 and C.2 were assumed to be exact and input into equation
(3.97) to calculate theoretical wavemaker data based on experimental inputs. The
Hammack numbers are unaltered but the nondimensional maximum near-field wave
amplitudes differ. The results of the approximate linear theory calculations are
summarized in Table C.4. The standard errors in the nondimensional maximum near-
field wave amplitudes incurred by using approximate experimental data are evaluated in
Section B.2.6. Figure 5.36 shows the theoretical wavemaker data calculated from the
approximate linear theory developed in Section 3.3.1. The ordering of the theoretical
results with nondimensional initial submergence d/b is clearly seen in Figure 5.36.

The approximate linear theory results should be able to provide a criterion for the
generation of linear water waves by underwater landslides. Given that the theoretical
equation (3.97) can give rise to wavemaker data that appear similar to experimental
results, one should ask under what conditions the theoretical maximum near-field wave
amplitudes becomes proportional to the experimental results. Figure 5.37 shows that the
linear theory nondimensional wave amplitudes can be used to predict experimental
nondimensional wave amplitudes provided the nondimensional initial submergence
d/b>0.8. The horizontal error bars in Figure 5.37 arise from uncertainty in the
experimental solid block motion as described in Section B.2.6. A linear curve fit through
the origin of the data with initial submergence 0.8<d/b<0.87 provides

Experimental 22 ~ 0,273 Theoretical 2% (5.32)

(o) 0

with a correlation coefficient r=0.83. All experimental results with d/b>0.8 appear to fall

along the curve fit whereas all experimental results with d/b<0.75 are situated above the
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curve fit. The approximate linear theory underpredicts wave amplitudes when d/b<0.75,
which can be interpreted as a nonlinear effect. Equation (5.32) should be independent of
the incline angle provided the leading long wave does not have time to reflect off the
incline and propagate back to x=0 prior to the occurrence of the maximum near-field
wave amplitude. Equation (3.88) provides the minimum time for reflected long waves to
return to the origin for an incline 45° from horizontal. A more general criterion for the

generation of linear water waves by underwater landslides is now sought.

" Equation (5.32) provides a useful tool for predicting linear water wave amplitudes above
an underwater landslide. However, the criterion for linear water waves to be generated
by underwater landslides

d

5> 038 | (533)

is insufficient as provided. Landslide kinematics must somehow determine the linearity
of water waves and so one must reconsider the role of the Submergence number Sg in
wave generation. In order for equations (3.16) and (3.17) to be linear, the criterion

Sg/Hay«1 in equation (3.23) or equivalently the criterion

u; sin O

Jgd

% » (5.34)

must be met, where equations (3.20) and (3.75) have been employed. Equations (5.33)
and (5.34) may in fact be the same linearity criteria given typical values of the terminal
velocities u=0.5 m/s and initial submergences d=75 mm studied herein. With these
typical values and an incline angle 6=45°, one finds the linearity criterion d/b»0.4. In
fact, the only trials that did not satisfy equation (5.34) were the block 1, trials and block
2, Trials 52, 56, and 57 with d<50 mm. These are the same trials that showed
considerable scatter in the far-field wave characteristics in Section 5.2.2 above. For
linear water waves, it follows from equation (3.24) that any characteristic wave amplitude
in the wave basin can be linearly correlated with any other characteristic wave amplitude
as shown in Figure 5.33. One simply evaluates the wave height H once and for all based
on one chosen characteristic wave amplitude at some given x and t. This is the basis
behind equations (5.29) and (5.30) that relate the maximum near-field wave amplitude to

the maximum Airy wave amplitude. In addition, linearity guarantees that one can make
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an equivalent wavemaker plot with any chosen characteristic wave amplitude. This fact

has not been exploited in this work.

Equation (5.34) is readily evaluated for a variety of practical underwater landslide
scenarios. The implications for long underwater landslides on shallow inclines are
particularly interesting. In particular, the left hand side of equation (5.34) is proportional
to £-1 since b=¢cos® while the right hand side is proportional to £1/2 from equation (4.8).
If Cp=0, then the right hand side of equation (5.34) is also proportional to sin3/26. Hence,
~ for a given initial submergence, linearity in water waves generated by long underwater
landslides would arise from a tenuous balance between landslide length and incline angle
from horizontal. For example, an underwater landslide initially submerged d=100 m on a
4° incline that has a terminal velocity of u=30 m/s must be less than b=1500 m in length
in order to satisfy a basic inequality in equation (5.34). It is simply not possible to make
a blanket statement such as "long underwater landslides generate nonlinear water waves."

Nor can the converse be asserted. Each case must be examined individually.

Now that a reliable linearity criterion has been established and most solid block
experiments have been shown to produce linear water waves that are proportional to
equation (3.97), linear theory calculations can be used with confidence to construct
wavemaker curves and provide values of Hay min. Theoretical wavemaker curves are
calculated by first choosing a nondimensional initial block submergence along the 45°
incline. Choosing the initial landslide geometry fixes the wavemaker curve for a givén
Coulombic friction coefficient. A solid block number (or density) is then chosen. The
initial acceleration of the solid block landslide is then calculated from one of equations
(5.1) to (5.3). Initial accelerations can also be calculated from equations (3.73) and (5.6)
with Coulombic friction data from Table 5.1. Terminal velocities for solid blocks studied
in this work can be taken from Table 5.3. Equation (5.34) can be verified before
evaluating equation (3.97). Varying the solid block density (or mass) and calculating the
Hammack number and the nondimensional maximum near-field wave amplitude then
produces a few loci for the approximate theoretical wavemaker curve. As the solid block
density increases, Hammack numbers decrease and an inflection point in the wavemaker
curve appears. The value of the Hammack number at the inflection point is designated
Hag min. To the right of the inflection point, a power law least-squares curve fit of the
nondimensional wavemaker data yields values for k and n in equation (3.29).
Multiplying the numerical value found for k by 0.273 then provides a prediction of the
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actual solid block wavemaker curve. The wavemaker curve to the left of Hag i, may
still involve linear water waves but cannot be described analytically by equation (3.29).

Four wavemaker curves are now calculated from equation (3.97) and compared with
experimental solid block results with d/b=0.8 on an incline at 45°. A power law curve fit
of block 2 wavemaker predictions with nondimensional submergence d/b=0.87 provided

Mmax _ _0.210
So  Hagl625

(5.35)

over the range 3.3<Hay<4.5 with Hay min=3.3. Despite the different exponents in
equations (5.31) and (5.35), the two curves cross near Haoz3.3 and differ by at most 14%
(at Hag=4.5) over the entire range 3.3<Ha,<4.5. A power law curve fit of block 2
wavemaker predictions with nondimensional submergence d/b=1.0 gave

nmax - 0275
So . Hagl’®3

(5.36)

over the range 3.6<Ha,<7.6 with Ha, in=3.6. A power law curve fit of block 2

wavemaker predictions with nondimensional submergence d/b=1.5 yielded

Mmax _ _0.297
So  Hagl628

(5.37)

over the range 4.2<Ha,<8.5 with Ha, pin=4.2. A power law curve fit of block 2

‘wavemaker predictions with nondimensional submergence d/b=2.0 provided

Mmax _ 0311
So Haol.562

(5.38)

over the range 4.6<Ha,<9.3 with Ha, mjn=4.6. Figure 5.38 compares the approximate
linear theory wavemaker curves with experimental solid block wavemaker data. Half of
the experimental data are seen to lie to the left of the corresponding values of Hag min.
Nevertheless, agreement is within one standard deviation for most of the experimental
data that fall within the range of the curve fits. In general, equation (3.29) need not be
used to describe the wavemaker curve. Hence, the approximate linear theory can be used

to predict wavemaker curves for underwater landslides that generate linear water waves.
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Wiegel (1955) found experimentally that underwater landslides on smaller incline angles
had smaller wave amplitudes if all other parameters were held constant. Equation (3.27)
suggests an approximate way of collapsing nondimensional wave amplitudes for different
incline angles. The characteristic near-field wave amplitude is proportional to the sine of
the incline angle since only the vertical block motion is considered for near-field wave
generation. However, this simple approach to collapsing characteristic wave amplitudes
obtained from different incline angles would almost surely fail since it is nearly
" impossible to have the same characteristics of motion for different incline angles.
Consider instead landslide motion with C=0 as well as nearly constant Cq and C, over a
range of incline angles including 45°. Water waves generated by an underwater landslide
at an incline angle other than 45° are compared with water waves generated by an
underwater landslide at 6=45°. Similar near-field geometries are created by keeping the
nondimensional initial submergences d/b of the two solid block landslides constant while
allowing the incline angle to vary. The characteristics of solid block motion s, and t, are
assumed to be known for the given incline angle other than 45°. Equations (3.73) to
(3.75) show that the characteristic distance

so5in @ = ot CmMo (5.39)
Capowb
is invariant with incline angle for a given solid block mass my and a given length of the
top face b of the block. The solid block density must therefore decrease as the incline
angle is increased in order to keep myp and b constant. Equation (5.24) shows that the
characteristic time of solid block motion t, is proportional to 1/sin6 given that Cy=0 and
b=fcosB. It follows immediately that the Hammack number Ha, at an angle other than
45° should be multiplied by V2 sin8 in order to find the corresponding Hammack number
at 45°. If\2 sin® Ha, is greater than the inflection point in the wavemaker curve, then
the wavemaker curve at 0=45° with the correct nondimensional submergence d/b yields
an approximate nondimensional wave amplitude for wave generation at the given incline
angle. If V2 sin® Ha, is less than the inflection point in the wavemaker curve, then the
wavemaker curve at 45° represents a different physical mechanism of wave generation
altogether and cannot be used. It should be noted that this analysis is approximate not
only because C,=0 but also because the interaction between the waves and the incline

would be different for different incline angles. Incidentally, equations (5.23) and (5.39)
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demonstrate that the characteristic distance s, of landslide motion is proportional to the

landslide size £.

Considerable insight can be gained into the wave generation problem if one examines
equation (3.29) a little more closely. By examining the cases when the exponent n=1 and
n=2 in equation (3.29), two expressions for the maximum near-field wave amplitude can
be derived that no longer involve the Hammack number. If the whole integer n=2 is
assumed to be generally correct for solid block landslides, then the maximum near-field

" wave amplitude is given by

k ap b2
Nmax = ] (5.40)

and any dependence of wave generation on the terminal velocity disappears. In the case

where n=1, the maximum near-field wave amplitude is given by

kutb

Nmax =

(5.41)

]

and any dependence of wave generation on the initial acceleration disappears. Sabatier
(1983) derives a similar equation for the maximum near-field wave amplitude in the case
of a two-dimensional compact landslide moving down an incline at constant velocity.
The two results in equations (5.40) and (5.41) are given to show that any power 1<n<2
between the two cases given here influences the theoretical mixture of terminal velocity
and initial acceleration acting on the wavemaker process. Moreover, equations (5.40) and
(5.41) show that a larger near-field wave amplitude results from larger landslides and
smaller initial submergences as shown by Wiegel (1955). Similar results would be found
for any value 1<n<2. This is important since the ordering of the nondimensional
wavemaker curves for a given Hammack number in Figure 5.38 yield larger
nondimensional wave amplitudes for larger nondimensional initial submergences. The

result in nondimensional space is therefore counterintuitive.

It is interesting that in neither the experimental nor the theoretical wavemaker results just
shown was the exponent n=1 found by Hammack (1972) recovered for the wavemaker
curves. This observation leads to some fascinating conclusions. While the wavemaker
geometries in Hammack (1972) and this work differ significantly, the approximate linear

theory results from Section 3.3.1 are able to predict the maximum near-field wave
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amplitude when the experiments satisfy d/b>0.8. Therefore, the original éssumption that
the wave amplitudes immediately above the solid block at short times only feel the
motion of the top face of the block appears justified. Hence, the differences in exponent
n cannot be readily attributed to differences in geometry. This implies that the exponent
in the wavemaker formalism is a function of the wavemaker kinematics and in particular
of the analytical expressions for the characteristics of motion s, and t,. The exponent n is
not a function of the precise definition of the characteristic time t, and distance s, of
landslide motion since the choices made by Hammack (1972) are linearly proportional to
~ the more general definitions implied by equation (3.1). The exponent in the wavemaker
curve would be unaltered by any linear rescaling of the characteristic time t, of landslide
motion. However, Hammack (1972) could control s, and t, separately whereas the
characteristics of landslide motion are coupled according to equations (3.4) and (3.5)
herein. Physical quantities such as the landslide density are therefore able to alter the
shape of the wavemaker curve through equations (3.73) to (3.75).

The wavemaker curve is central to water waves generated by underwater landslides. It is
a powerful predictive tool for calculating the maximum near-field wave amplitude.
Should the dynamics of a given underwater landslide not be known whereas the
bathymetry and landslide size are known, then the loci of nondimensional maximum
near-field wave amplitudes -- i.e., the wavemaker curve -- can still be found. For
sufficiently large Hammack numbers, the exponent of the Hammack number in equation
(3.29) can be assumed to have a value n=1.6 that approximates the theoretical results in
this section. All that is required to complete the wavemaker curve is a single simulation
with some arbitrary landslide motion (provided Hag>Ha, min) that allows one to solve for
“the coefficient k. If the actual landslide motion can be pinned down, then so can the
maximum near-field wave amplitude. The power of the method lies in coupling the

wavemaker motion to the wave generation in a nondimensional curve.
5.2.4 Description of the Total Wave Potential Energy

The propagation of large water waves incurs relatively small energy losses provided wave
breaking does not occur. However, the dispersive properties of a linear wave train
propagating down a channel of constant depth superficially conceals the fact that energy
is in fact being conserved. Closer inspection reveals that the wave train travels at the
group velocity of energy propagation rather than the individual wave celerity. Hence,

waves exist only where there is energy and waves can be interpreted as a physical
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manifestation of the wave energy. It follows that a measure of the wave train energy is
more relevant far from the generation region than any single measure of wave amplitude.
This section examines how the far-field wave energy is related to the near-field wave

generation process.

The simplest measure of wavevenergetics available from wave gauge records is the total
wave potential energy passing through a given point in the constant depth channel. The
total wave potential energy passing through the wave gauge location x/h is proportional
" to the energy integral

Ep/h) = [ n2(tx/h) dt (5.42)

where the temporal extent of the wave train changes with nondimensional distance x/h
and the free surface eventually comes to rest at some large value of time. Error estimates

for the energy integral are described in Section B.2.3.

Figure 5.39 shows the variation of the energy integral Ep with wave gauge position for a
solid block trial repeated 3 times with three wave gauge records per trial. The first and
last wave gauge positions were each measured twice in order to verify that the second and
third trials produced similar wave amplitudes. The two results farthest to the left are
above the middle of the initial solid block position and have energy integral values
around Ep(0)=0.19 cm?2-s. In the vicinity of x/h=0.5, a peak in the energy integral occurs
that is nearly twice as high as the value recorded above the solid block. Hence, at a near-
field position x/b=1, almost all of the wave energy appears to be invested in potential
energy. Half of the potential energy is steadily transferred to Kinetic energy over the next
two depths of wave propagation and dispersion. Once equipartition of energy (or wave
equilibrium) is achieved, the wave potential energy is seen to remain constant with
distance from the wave generation region at about Ep(e0)=0.15 cm?2-s. The kinetic energy
of a linear wave train need not be measured far from the generation region because of the
equipartition of wave energy between kinetic and potential energies. The first location of
equipartition of wave energy actually serves as a reasonable indicator of where the far-
field wave propagation region begins -- e.g., in this case about x=2.5h. Therefore, wave
gauges located a distance x/h=4.25 from a landslide are demonstrably in the far-field. It
is desirable to convert the far-field criterion x/h>2.5 into a form applicable to deep water
wave propagation in the far-field. Given a characteristic wavelength A=300 mm
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calculated in Section 5.2.2 and a typical channel depth h=373 mm, the far-field criterion
for deep water waves becomes x/A>3.0.

From dimensional and physical considerations, it seems logical to expect the far-field
wave potential energy at x/h=4.25 to be related to the near-field wave potential energy at
x/h=0. In practice, the far-field energy integral was summed for 5.5-6 s or until waves
reflected off of the far end of the wave tank reached the wave gauge. The energy
integrals Ep(0) and Ep(4.25) calculated for solid block landslides are given in Tables C.5
~ and C.6. Figure 5.40 shows that a unique relation between the two energy integrals exists
since the ratio Ep(0)/Ep(4.25) is a nearly constant function of the nondimensional initial

submergence. A power law curve fit yields

Ep(4.25)
Ep(®)

- 0702 (§)*" (5.43)

over the range 0.3<d/b<2.2 with a correlation coefficient r=0.19. Considerable scatter
exists in the energy integral ratio, however a clear trend is established. In order for
equation (5.43) to be unique, deep water waves must exist in the far-field. These results
do not indicate how the near-field and far-field energy integrals would be related if the
depth of the constant depth channel no longer gave rise to deep water waves. Moreover,
equation (5.43) can be expected to be a function of the incline angle as well as any
intervening bathymetry that might alter wave propagation. There is also no obvious way
to isolate how much wave energy is trapped within the near-field and how much energy is
dissipated on the inclined beach. Both of these effects would clearly be a function of the
incline angle ©.

Figure 5.31 shows that the near-field energy integral is a function of the characteristic
landslide quantities imax and t, and initial landslide geometry. Figure 5.40 shows that
the near-field energy integral is directly related to the far-field energy integral through
initial landslide geometry. Hence, wave energetics are in general a function of the
characteristic landslide quantities N\max and t, and initial landslide geometry. Given that
the maximum near-field wave amplitude Nmax can be predicted for a given t, and initial
landslide geometry, the wave energetics are ultimately reduced to landslide geometry and
motion. There must therefore exist an energetics curve for some characteristic measure

of wave energetics that parallels the wavemaker curve.
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5.2.5 Solid Block Energy Conversion

Previous authors have considered the conversion of solid block potential energy into
wave energy for free falling blocks. This idea only works when there is a clear starting
point and end point in the landslide center of mass motion or else the landslide could
have a theoretically infinite potential energy. For example, Wiegel (1955) found typical
energy conversions of 1-2% using this method for solid blocks sliding along an incline.
These energy conversion values were subsequently used by Striem and Miloh (1976) as
~ well as Murty (1979) to estimate characteristic tsunami heights. Using a similar
definition of efficiency, Sabatier (1983) derives theoretical energy conversion maxima of
around 5% provided the underwater landslide length is shorter than the water depth and
landslide velocity is smaller than the long wave celerity. However, given that solid
blocks sliding down an incline dissipate energy due to Coulombic friction and deposit
energy into the fluid medium through viscous dissipation, the kinetic energy acquired by
the solid block at terminal velocity is used herein instead of the potential energy. In a
non-dissipative system, the two energies are naturally interchangeable. Both kinetic and
potential energy approaches were used by Striem and Miloh (1976) in order to estimate
characteristic wave heights. Both methods yielded similar wave height estimates.
However, Striem and Miloh (1976) assumed that a single solitary wave was formed by an

underwater landslide.

Section 5.2.2 showed that the far-field dispersive wave trains measured in this work
propagate as deep water waves while Section 5.2.3 showed that most of the observed far-
field waves can be considered as linear waves. Therefore, a linear water wave energy per
unit width is used here to estimate Kinetic energy conversion into wave energy. General
properties of linear wave trains can be found in Dean and Dalrymple (1991). For an

infinite wave train of sinusoidal waves, the energy per wavelength per unit width is

E

2
= pognzmax A (5.44)

where Tmax is the characteristic wave amplitude and A is the wavelength. There is no
conflict in using the maximum near-field wave amplitude for a far-field measure of
energy conversion because Section 5.2.4 shows that far-field wave train energy is directly
related to the maximum near-field wave amplitude. For the wave generation process
studied herein, the characteristic wavelength (or horizontal length scale) is A=toVgd. This
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is the same horizontal length scale used in the scaling analysis of Section 3.1.3 and the
same wavelength used in Section 5.2.2 above. Assuming that the water waves generated
by underwater landslides are linear, the characteristic energy conversion from solid block

kinetic energy to water wave energy per unit width is

= pogtoTlmax2 Vg d _ anognmax2 vgd
pp U2 A mp ao Uy b2

(5.45)

" where A=b2/2 is the cross-sectional area of the solid block and to=u¢/a,. The energy
conversion is a nondimensional quantity that can be viewed as a characteristic efficiency
of the wave generation process. The energy density of linear water waves is independent
of the water depth and the specific wavelength of the water waves. Therefore, the energy
conversion should not depend explicitly on the channel depth h or the incline angle 0.

Figure 5.41 shows that a single function can predict the energy conversion of a solid
block landslide as a function of the nondimensional initial submergence. The energy
conversion was calculated from equation (5.45). The masses mp and m, were obtained
from Table 4.1 while all other data needed to calculate energy conversion were obtained
in the same manner as in Section 5.2.3. The resulting values of the energy conversion are
listed in Table C.7. Error bars in Figure 5.41 represent one standard deviation and were
calculated in Section B.2.7. Most solid block experiments converted between 2-8% of
the maximum solid block kinetic energy into a characteristic near-field wave energy. The
per cent energy conversion naturally increased as the initial submergence of the solid
block decreased. The power least-squares curve fit of the characteristic energy
conversion

e 100% =~ 3.82 (%)'0'62 (5.46)

has a correlation coefficient r=0.69. Equation (5.46) is valid over the range 0.5<d/b<2 for
an incline at 6=45°. Equation (5.46) can be used to predict the maximum near-field wave
amplitude if landslide geometry and kinematics are known. In fact, solving for Nmax
yields the square root of the product ayu; in the numerator which suggests a power law of
n=1.5 in the wavemaker curve of equation (3.29). A similar power was suggested by the

theoretical results curve fit by equation (5.35).
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5.2.6 Example of an Application

A simple example demonstrates the utility of the results presented so far in this work.
This example shows how practical engineering estimates can be extracted from the more
fundamental aspects of this research. The example may seem somewhat simplistic and
contrived since it has been chosen to match the experimental work, however, there are
some important lessons to be drawn. For example, the solid block wavemaker on a 45°
" incline can serve as a practical upper bound for water waves generated by a natural

underwater landslide along a steep bank.

Consider a long row of rectangular concrete blocks submerged along a 30° slope of
loosely consolidated sediment such that half of each block is buried. For the purpose of
this approximate calculation, the bank is assumed to have a slope of 45°. The blocks
stretch along the edge of a straight shoreline and moor vessels that traverse a relatively
narrow lake lengthwise. The blocks extend b=1.5 m along upper surfaces that are parallel
to the lake surface and are submerged by d=1.3 m. The lengths are designed to match
most of the block 2 experiments. For the purpose of clarity, this end of the lake can be
considered a popular destination for tourists who paddle a 400 m distance in canoes from
a town at the other end of the lake. The lake has a nearly constant depth of h=6.5 m from
the toe of the steep bank to the town where there exists a vertical retaining wall along
which a promenade and stores are situated. The lake depth also corresponds to the
geometry of the block 2 experiments. The promenade is elevated one meter above the
mean water level of the lake. The town council is concerned that a local earthquake may
induce waves in the lake that might endanger people or property. Do water waves
generated by soil failure around the concrete blocks pose a credible hazard to the town?

And how long after an earthquake would water waves arrive?

Soil stability analyses indicate that the soil would fail during a modest earthquake and
that the concrete blocks would have an initial acceleration of about ay=2 m/s? based on
the failed soil shear strength along the failure plane. An estimate of the theoretical
terminal velocity of the concrete blocks sliding (or tumbling) down the bank is ui=4 m/s
assuming that pp/po=5. Using the standard landslide motion theory, it follows that the
characteristic time of motion is t,=2 s and the characteristic distance of motion is ;=8 m.
The initial submergence of the generation region is d/b=0.87 and the Hammack number is

Hay=4.8. The solid block wavemaker curve equation (5.31) from Section 5.2.3 provides
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Nmax=0.0155,=12 cm. Solving for the energy conversion from equation (5.46) yields
€~0.042 along with another maximum near-field wave amplitude estimate of Njmax=23 cm
from equation (5.45). Neglecting the effective displacement of the wave origin X, the
wave travels a distance of approximately x/h=62. Therefore, the Airy wave arriving at
the retaining wall has an amplitude 0.12Mpax OF Mairy=1.4 cm and arrives 50 s after the
earthquake. Given that the process of wave run-up would approximately double the wave
amplitude at the retaining wall, the water height should reach 3-6 cm above normal water
~ Ievel. The wave amplitude is small enough to be negligible for the postulated mechanism
of wave generation. The town would not be endangered by these water waves.

5.3 Material Landslide Results

The material landslides studied herein deform rapidly enough to alter the waves that are
generated. This section demonstrates the extent that landslide rates of deformation can
alter the nondimensional wave amplitudes observed for solid block landslides. In order
to relate material landslide results to solid block landslide results, material landslide
motion is decomposed into the center of mass motion s(t) and a rate of deformation I'(t).
The material landslide center of mass motion is described by the same analytical solution
used to describe solid block motion. The initial rate of landslide deformation is taken as
the characteristic rate of deformation and considered to have the strongest ability to alter
wave generation. For a given landslide center of mass motion, a large initial rate of
deformation implies a rapid flattening of the material landslide. Since a perfectly flat and
thin underwater landslide cannot generate significant water waves, landslide deformation
would likely lead to smaller water waves for a given center of mass motion. Note that an
increase in landslide cross-sectional area must be accompanied by an influx of water so
that a material landslide is also acting like a submerged sink. Overall, volume is still
conserved within the wave tank.

5.3.1 Material Landslide Wave Records

Wave records from Trials 87, 35, 34, and 37 involving glass spheres of nearly identical
initial landslide geometry, initial solid volume fraction, material density, and incline
friction angle yet significantly different nominal diameters (0.50, 1.26, 2.96, and 12.2
mm, respectively) are shown in Figures 5.42 and 5.43. Error analyses for near-field and
far-field wave records are located in Sections B.2.1 and B.2.4, respectively. Figure 5.42

" compares near-field wave records measured at x=0. Near-field wave characteristics of
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material landslides closely resemble those of solid block landslides shown in Figure 5.28.
Figure 5.43 shows the far-field wave records corresponding to Figure 5.42. Far-field
wave characteristics of material landslides also resemble those of solid block landslides
shown in Figure 5.32. The results presented in Section 5.2.2 regarding solid block
landslides suffice to describe the features of far-field water waves generated by material
landslides. As mentioned in Section 3.3.2, Mei (1983) shows that water waves generated
by a tilting body decay more rapidly with propagation distance down a constant depth
channel than the far-field Airy waves. This implies that the dominant far-field wave
~ amplitude and wave period depend primarily on the center of mass motion. Far-field
wave records for water waves generated by deforming material landslides are given in
Appendix A and do not show any qualitative difference with far-field water waves
generated by solid block landslides.

If the four trials shown in Figures 5.42 and 5.43 had been solid block landslides, then the
water wave amplitudes would have been nearly identical because the glass particles all
have similar material densities and solid volume packing fractions. However, larger glass
spheres are seen to produce larger wave amplitudes in both Figure 5.42 and Figure 5.43.
Therefore, water waves generated by material landslides can be highly sensitive to
material properties such as nominal diameter, at least at laboratory scale where D/b=100.
One is tempted to attribute the wave amplitude differences in Figures 5.42 and 5.43
solely to differences in the landslide rates of deformation that depend on material particle
size. However, Tables 5.4 through 5.6 as well as Figures 5.15 and 5.17 reveal that in fact
the center of mass motions and the initial rates of deformation differ significantly for all
four materials. The apparently simple correlation between wave amplitude and particle
nominal diameter is actually concealing more complicated coupled nonlinearities that one
may assume govern material landslide shape, motion, and wave generation. For example,
hydraulic diffusivity, pore water pressure and suspension viscosity all depend on particle
nominal diameter. The correct analysis of wave amplitudes must therefore be made in
the five-dimensional space of nondimensional wavemaker parameters: the dependent
quantity Nmax/Sosin®, and the four independent quantities 6, d/b, Ha,, and I't,.

A deforming material landslide acts as a flow sink for surrounding water through a
variety of mechanisms including shear thinning of granular material at the landslide base
and shear induced mixing with the surrounding water. Tyvand (1992) has considered the
water wave generated by a submerged line source initiated at time t=0. Shortly after

turning on the sink, the free surface is approximated by
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__dQet
NN = - (547)

where d is the submergence of the sink and Q, is the volumetric sink rate per unit width.
Given a typical sink rate of Q,=dA/dt=0.01 m?2/s from Tables C.11 and C.12 as well as a
submergence of d=80 mm, the free surface displacement at x=0 for a time t=ty=0.3 s is
approximately 1(t,,0)=80 pm. Clearly, the action of the granular landslide as a sink of
~ water does not affect the free surface considerably. This result justifies neglecting the
initial rate of area change in time as a source of wave generation as discussed in Section
5.1.6. The initial rate of deformation I' has a much more pronounced effect on the

pressure distribution about material landslides and hence on water wave generation.
5.3.2 Material Wavemaker Plot

The role of landslide deformation was assumed a priori to be a separable modifier of the
maximum near-field wave amplitude. However, Section 5.1.6 showed that the initial
landslide rate of deformation is comparable in duration to the characteristic time of the
center of mass motion since II'tyl is of order unity. The time scale associated with
landslide deformation 1/T is typically 0.6 s in Table 5.5 or about twice a typical time
scale of center of mass motion t, in Table 5.4. Therefore, landslide deformation was

slower than the center of mass motion for all materials studied. The nondimensional
' landslide deformation I't, is based on a comparison of time scales of landslide motion.
However, the initial rate of deformation could have also been made nondimensional by
the characteristic time scale of wave propagation out of the generation region. In this

case, there results the nondimensional group

r'b
\/gd

« 1 (5.48)

where the largest value is 0.25 for the 3 mm lead shot Trial 38 and a typical value of
equation (5.48) is 0.15 for most material landslides reported herein. The inverse of
equation (5.48) is a deformation Hammack number that is even larger than Ha, since
1/T'>ty,. Therefore, material landslide deformation is a perturbation of wave generation
even though IT'tyl is of order unity. Deformation of long underwater landslides has the

potential to significantly affect wave generation provided there is a measurable rate of
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deformation. The rate of deformation of long underwater landslides in nature is

apparently still an open question.

The discussion accompanying Figures 5.42 and 5.43 demonstrates that density no longer
plays a central role in determining the loci of a material landslide wavemaker curve. For
example, Figures 5.15 and 5.17 showed that material landslide center of mass motion can
depend on the particle nominal diameter. In other words, material landslide center of
mass motion is coupled to the initial landslide rate of deformation in an apparently
" complicated manner. In fact, both material landslide center of mass motion and initial
rate of deformation can be expressed as functions of the material quantities as shown by
equation (3.8). The solution to understanding water waves generated by material
landslides lies in constructing wavemaker plots that relate nondimensional wave
amplitudes to nondimensional landslide motions. Material properties and identifying
characteristics are entirely ignored other than their role in prescribing the material
landslide center of mass motion and the initial rate of deformation. Solid block
maximum near-field wave amplitudes defined a single wavemaker curve for a given
initial landslide geometry. For a given initial material landslide geometry, maximum
near-field wave amplitudes define regions of the (Mmax/sosin6,Ha,) plane dependent on
the initial landslide rate of deformation. A unique wavemaker curve no longer exists for

a given landslide initial geometry and center of mass motion.

Figure 5.44 shows a wavemaker plot for material landslides with d/b=0.9 and 6=45". The
initial geometry of these material landslides corresponds closely to the initial geometry of
the solid block landslides represented by Figure 5.34. The characteristic distance s, and
time t, of landslide motion were obtained from Table 5.4. The nondimensional landslide
deformation I't, was obtained from Table 5.6. The relevant error estimates for Figure
5.44 are contained in Sections B.1.6, B.1.9 and B.3. The data used to construct the
wavemaker plot can be found in Tables C.8, C.13 and C.14. The nondimensional wave
amplitudes are seen to fall below equation (5.31) found by curve fitting the wavemaker
results in Figure 5.34. Moreover, there is a general trend for larger nondimensional
landslide deformations to be associated with smaller nondimensional wave amplitudes.
Figure 5.45 shows the same data as Figure 5.44 indexed by landslide material rather than
nondimensional landslide deformation. Wavemaker data for repeated trials are seen to
agree to within the error bars of one standard deviation. Over the range of Hammack
numbers shown in Figures 5.44 and 5.45, nondimensional wave amplitudes generated by

deforming material landslides vary from 0.5-0.9 times the nondimensional wave
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amplitudes generated by solid block landslides with similar initial geometries and center
of mass motions. It follows that a hazard mitigation study conducted in a region
susceptible to underwater landslides can use solid block results to obtain a maximum
possible wave amplitude while completely ignoring landslide deformation. In general,
one can hypothesize that solid block landslides with a<6=45" would generate smaller
waves on an incline at 6=45°. This hypothesis was never tested in this work.

5.4 Numerical Simulations of Wave Generation

The focus of numerical simulations was the generation of water waves in the near-field
above the incline. In particular, the simulation domain was designed to simulate water
waves generated by underwater landslides slightly b"eyond the occurrence of the
maximum near-field wave amplitude. Longer simulations in the same domain would
have placed the landslide below the constant depth channel while a larger simulation
domain would have become a prohibitively long computation. Numerical simulations
provide wavemaker data for some solid block landslides not studied experimentally. The
numerical simulations are shown in Section B.4 to have a typical error in the maximum
near-field wave amplitude of 5.6% due to errors in the conservation of volume. -

Simulation results are summarized in Tables C.15, C.16 and C.17.
5.4.1 Application of the BEM Code

It is desirable to run numerical simulations with entirely nondimensional quantities. For
nondimensional simulations, the number of independent inputs is lowered, the
simulations are readily scaled to any reasonable size, and the computer manipulates
quantities that are almost all of O(1) away from sipgular regions of the computational
domain. The correct length scale with which to nondimensionalize near-field lengths is
the solid block size b. According to the requisite Froude scaling, the characteristic time
scale is given by Vb/g. Therefore, equation (4.8) for the landslide terminal velocity
becomes nondimensional without introducing any new nondimensional quantities. It
follows that all dimensional accelerations are divided by the gravitational acceleration g.
A characteristic mass scale is established by dividing all densities with the density of
water po. The net result is that simulations are conducted with the same dimensional

equations as given in Sections 3.2 and 3.4 but with b=1, g=1, po=1, and pp=Y.
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As mentioned in Section 3.4.3, a separate computer program was written that would
convert user chosen inputs into a simulation domain and landslide center of mass motion.
The solid block density pp and the nondimensional initial submergence d/b had to be
chosen by the user. The dynamical coefficients also needed to be specified in order to
calculate center of mass motion. The Coulombic friction coefficient Cy, had to be input
by the user. The values for the drag coefficient Cyq=1.7 and the added mass coefficient
Cm=0.8 were fixed in the simulations. The shape of the simulation domain is discussed
in Section 3.4.3 and is identical to the wave tank depicted in Figure 4.1. The node
* density along the free surface was set at 40 nodes per characteristic wavelength. There
were 5+4h nodes along the vertical right side of the numerical wave tank. Along the
horizontal bottom, the node density was 5 nodes per characteristic wavelength plus an
additional five nodes. The node density along the incline was set at 30 nodes per
characteristic wavelength. The front and top face of the solid block both consisted of 21
nodes, which typically represented a node density twice that of the free surface.

The first 10 time steps of a single simulation were repeatedly run with different values for
the Courant number and the solid block corner size in order to characterize rates of
volumetric change. The results for the different Courant numbers are discussed first.
Over a range 0.2<C0<0.6, the volumetric rate of change was found to be proportional to

q < Col82 (5.49)

so that a smaller time step leads to significantly increased simulation accuracy. A
Courant number Co=0.2 was chosen for the simulations reported in this work. The BEM
code was run on a Sun Ultra-170 at the University of Rhode Island. For a typical
simulation consisting of 300 nodes total, each time step in the simulation would take
roughly 20 seconds. With a Courant number Co=0.2, a typical simulation required
around five hundred time steps and therefore took approximately three hours to complete.
Smaller Courant numbers would have made the simulations considerably more time

consuming. An actual experiment lasted at most two seconds.

The three corners of a solid block landslide were described by an approximate geometry
and treated with approximate boundary conditions. Two new points were defined a
distance € on either side of each solid block corner. A new corner point with a less acute

angle was joined to these two new points. The location of the new corner was calculated
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as half of the old corner position and a quarter of both new points located a distance €
from the corner. The two line segments joining each new point consisted of seven nodes.
The boundary condition along a line segment was expressed as three quarters of the
adjacent solid block boundary condition and one quarter of the boundary condition from
the opposite face. The volumetric rate of change was found to be proportional to

(5.50)

over the range 10-4<e<10-2. The inverse power in equation (5.50) indicates that the
singularity at the block vertex is responsible for most of the volumetric change in the
simulation domain. To verify this conjecture, the accumulated volume change from an
entire simulation was plotted as a function of time. The plot appeared to be a graph of
solid block position versus time. Therefore, the rate of volume change was proportional
to the solid block velocity. In order to minimize the simulation error, the nondimensional

corner size was chosen to be 5x10-3 for all simulations reported in this work.
5.4.2 Results from the BEM Code

Computer simulations of water waves generated by underwater landslides offer detailed
profiles of the free surface that can depict wave generation. Figure 5.46 shows three free
surface profiles from early times during Run 1, a nondimensional computer simulation of
Trial 67. The characteristic time of motion for the simulation is tsg/b =3.83 and can be
found in Table C.15. The three free surface profiles therefore occur at about 0.1t,, 0.2t,
and 0.3t,, respectively. The left hand side of Figure 5.46 corresponds to the initial
intersection of the free surface with the incline at position x/b=-d/b-1/2=-1.37 since
d/b=0.87 and the nondimensional length of the top face of the solid block is unity. The
right hand side of Figure 5.46 is approximately at the toe of the incline which occurs at
x/b=3.12 in this simulation. The top face of the solid block initially extends from
x/b=+0.5. In the simulation, the free surface trough is centered over the rear half of the
solid block at early times. Run-down along the incline is evident on the far left of Figure
5.46 although the different axis scales make the run-down appear vertical. The run-down
corresponds qualitatively to the sea level drawdown described by Striem and Miloh
(1976). The positive wave generated in front of the solid block has a maximum wave

amplitude initially one landslide length ahead of the front face of the block at about
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x/b=1.5. For these nondimensional computer simulations, the characteristic wavelength

is given by

% - E—g—Vbd = 3.57 = Ha, (5.51)

which provides a new interpretation of the Hammack number as a nondimensional
wavelength. Regardless, the characteristic wavelength appears to be a reasonable
- predictor of the wavelength evident in Figure 5.46. The idea that the initial water flow
about an underwater landslide acts like a flow doublet located near the landslide vertex
has been mentioned before in Sections 1.1 and 5.2.1. The free surface profiles in Figure
5.46 depict the expected result if water were injected by the front face of an immobile
solid block and withdrawn from the top face at an equal flow rate. The initial horizontal
location of the flow doublet appears to be slightly ahead of the block vertex at x/b=0.5
and shows very little horizontal motion at these early times. An asymmetry in the free
surface is clearly evident that would not be present for water waves generated by a real
flow doublet in a constant depth channel. Iwasaki (1990) considers an analytical model
of a horizontal underwater landslide traveling at constant velocity in a two-dimensional

channel that generates water waves with similar wave profiles.

Since the simulation domain was designed to contain the landslide dynamics for a
simulations duration of t=2t,, it is not possible to compare a simulated near-field wave
record with an entire experimental wave record. Figure 5.47 compares the wave record at
x/b=0 for Run 1 to the near-field wave record of Trial 67 up to a time t=0.8 s. The two
wave records agree until about 0.1 s but then diverge from 0.1 s to 0.3 s. For this
particular comparison, the form of the simulated wave record is correct although the
amplitude is too small by a factor of about 1.7. The fact that the experimental results are
approximately two times larger than the simulation results is superficially hard to explain.
Gaps between the solid blocks and the wave tank sides should result in slightly smaller
waves than the conceptually perfect seal that exists in numerical simulations. Also, the
small volumetric excess of water appearing during the numerical simulations increases
the computed wave amplitudes. Both of these errors are in the opposite sense of the
observed difference in nondimensional wave amplitudes. The real explanation probably
lies in the fact that an inviscid simulation cannot inherently reproduce fluid separation
and therefore generates a different pressure distribution over the block surface. In

particular, the simulated pressure distribution cannot produce form drag. However, form
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drag only becomes important after about one time scale or t,=0.33 s from Table C.2.
Before form drag becomes important to wave generation, added mass effects generate
water waves. Added mass effects should be properly simulated by an inviscid code at
early times. This probably accounts for the good initial agreement between wave records
in Figure 5.47. It follows that the wave profiles in Figure 5.46 are probably realistic.

Figure 5.48 compares the nondimensional wave amplitudes of Trials 50, 51, 57, 67, 68,
73, and 79 with nondimensional wave amplitudes from analogous simulations.
" Simulation analogs had nearly identical initial landslide geometries, solid block densities,
and Coulombic friction coefficients as the corresponding experiment. Table C.17
indicates which simulation runs correspond to which solid block trials. The data can be
found in Tables C.3 and C.17. Because the comparison is made between nondimensional
wave amplitudes, small errors in the characteristics of motion that affect the dimensional
wave amplitude should result in a negligible difference on a nondimensional wavemaker
plot. Experimental results are seen to be larger than the simulation results by about 40%.
Harbitz (1992) found that shear stresses between a gravity current and the surrounding
water accounted for 40% of water wave generation. The straight line curve fit through

the origin provides the relation

Experimental 11_181_1_@5 = 1.42 Numerical Tl;nax (5.52)

0 (o]

with a correlation coefficient r=0.89. The correlation between the two sets of results is
quite good given the standard errors in the data. The error bars represent one standard
deviation and are derived in Sections B.2.5 and B.4. Equation (5.52) is not meant to

suggest that a linear relation should exist between nondimensional wave amplitudes. -

The scaling of time in Section 3.1.3 was based on the time it takes the leading long wave
to travel over the top face of the solid block. This quantity naturally represents the
shorter time scale since to»bA/gd whenever Hag»1. However, in Section 5.2.2, it was
pointed out that the dominant wave period and wavelength scaled with the characteristic
time t, of landslide motion rather than the characteristic time scale of wave propagation.
The self-consistency of numerical simulations enables one to compare both time scales to
a chosen characteristic time scale from available wave records. The occurrence of the
maximum near-field wave amplitude tyax Was chosen as a characteristic time from the

numerical simulations. The characteristic time scale of wave propagation
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b /g _.|b
@\/b —\/d (5.53)

reduces to a simple function of the initial submergence d/b in the nondimensional
simulations. Figure 5.49 shows that the occurrence of the maximum near-field wave
amplitude tpy,x found from simulations depends primarily upon the characteristic time of
landslide motion t,. Table C.15 contains all of the data shown in Figure 5.49. The time

- of the maximum near-field wave amplitude is approximately given by
tmax = 0.69 ty (5.54)

with a correlation coefficient r=0.89. A relation such as equation (5.54) was originally
postulated to exist in Section 5.2.2 but was not verified with experimental results. This
correlation is the first direct link between the characteristic time of landslide motion and a
characteristic time associated with the observed water waves. However, Figure 5.49 also
shows that, at tsVg/b =3.8, the value of tmaxV g/b is ordered somewhat by initial
submergence. In addition, the data for d/b=0.87 and d/b=2.13 show an interesting
crossover near tO\/E/F =~6. So, while the characteristic time of landslide motion dominates
the occurrence of the maximum near-field wave amplitude, the characteristic time of

wave propagation has subtle influences of its own.

Figure 5.50 shows the simulated wavemaker results obtained from solid block landslides
with block densities ranging from pp=1100 kg/m3 to pp=2745 kg/m3 and a Coulombic
friction coefficient C,=0.344. The incline angle was held constant for these solid block
landslides at 6=45°. Wavemaker data are provided for nondimensional initial
submergences of d/b=0.87 and d/b=2.13. Both sets of wavemaker data display a power
law behavior for larger Hammack numbers. For d/b=2.13, a power of n=1.55 is found
while, for d/b=0.87, a power of n=1.20 is found. The simulation results also demonstrate
the inflection point indicative of where Equation (3.29) ceases to be valid. For d/b=2.13,
the power law behavior ceases to apply around Hag min=5.5. When d/b=0.87, the power
law behavior ceases to apply around Hag min=3.5. These values agree quite well with
those displayed in Figure 5.38. While these transition Hammack numbers are different
for different nondimensional initial submergences, they both correspond to the solid
block with density pp=2745 kg/m3. In fact, the wavemaker data for the different initial

submergences appear primarily to have been translated along both axes.
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Figure 5.1: Initial acceleration of solid block 1, as a function of initial submergence
measured with a solid-state accelerometer. The least-squares polynomial curve fit is
provided in equation (5.1). The initial acceleration is generally between 1.6-1.7 m/s2

over a wide range of initial submergences.
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Figure 5.2: Initial acceleration of solid block 2, as a function of initial submergence
measured with a solid-state accelerometer. The least-squares polynomial curve fit is
provided in equation (5.2). The initial acceleration is generally between 1.5-1.8 m/s?

over a wide range of initial submergences.
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Initial Acceleration ao (m/s2)
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Figure 5.3: Initial acceleration of solid block 3y, as a function of initial submergence
measured with a solid-state accelerometer. The least-squares polynomial curve fit is
provided in equation (5.3). The initial acceleration is generally between 1.5-1.9 m/s2

over a wide range of initial submergences.
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Figure 5.4: Correlation between mean accelerometer measurements of initial acceleration
and high speed movie based curve fits of initial acceleration for particular solid block
experiments. The least-squares linear curve fit through the origin yields a slope of 1.01.

The accelerometer results can therefore be used in place of the high speed movie results.



193

1.4 i T T T T T T T T T T T T ¥ T T T T
All Blocks | N
o m  Solid Block 1 ]
&) e 8. e SolidBlock2 } -
g §88 W e SolidBlock 3 | ]
.9 ¢, 0 _
3) & .  J |
b=
D]
3 $oo o T1
[72] ¢ 'S -
g & OE— i
= i
< ]
0.2 ]
. ]
O 1 i I ! i 1 I 3 1 1 1 1 1 ] 1 1 1
0 0.5 1 1.5 2 2.5
d/b

Figure 5.5: Raw data of added mass coefficient computed from equation (5.4) as a
function of the nondimensional initial submergence d/b at time t=0*. The least-squares
polynomial curve fit through all data is given in equation (5.6). The amplification of

random errors in the acceleration data is clearly evident.
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Figure 5.6: Comparison of solid block position data from Trial 48 with the analytical
solid block motion of equation (3.78). The independent values So=Ut%/a,=0.216 m and
to=ut/a,=0.333 s follow from Table C.2. The error in the characteristic distance is

ds=0.11s,, while the error in the characteristic time is dt=0.08t,,.
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Comparison of acceleration data from Trial 76 with the analytical

acceleration equation (3.81). The initial acceleration was obtained from the acceleration

record while the terminal velocity came from Table 5.3.
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Figure 5.8: Four frames from the movie records of the 3 mm glass bead landslide of Trial
91. The initial frame was exposed shortly after complete retraction of the stainless steel
gate. The evolution of material landslides from deforming triangular material masses into

a gravity current 1s seen to involve various wave events.
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Figure 5.9: Four frames from the movie records of the 2 mm lead shot landslide of Trial
84. The initial frame was exposed shortly after complete retraction of the stainless steel
gate. The evolution of material landslides from deforming triangular material masses into

a gravity current is seen to involve various wave events.
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t=0.016s

Figure 5.10: Four frames from the movie records of the 0.5 mm glass bead landslide of
Trial 87. The initial frame was exposed shortly after complete retraction of the stainless
steel gate. The evolution of material landslides from deforming triangular material

masses into a gravity current is seen to involve various wave events.



199

T s
. /§/f f
T / ]
5 10! & “
3 I / 1
2 I /./ ]
g 5 yoe :

- i / i

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

Figure 5.11: Position of the material landslide cross-sectional centroid along the incline
as a function of time for Trial 91 composed of 3 mm glass beads. The data are curve fit
by equation (3.78) to yield a characteristic distance s,=19.2 cm and time t,=0.32's. The

landslide initial size was b=112 mm with initial submergence d=97 mm.
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Figure 5.12: Position of the material landslide cross-sectional centroid along the incline
as a function of time for Trial 81 composed of 3 mm steel shot. The data are curve fit by
equation (3.78) to yield a characteristic distance $,=29.5 cm and time t,=0.27 s. The

landslide initial size was b=85 mm with initial submergence d=74 mm.
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Figure 5.13: Position of the material landslide cross-sectional centroid along the incline
as a function of time for Trial 87 composed of 0.5 mm glass beads. The data are curve fit
by equation (3.78) to yield a characteristic distance s,=26.3 cm and time t,=0.53 s. The

landslide initial size was b=85 mm with initial submergence d=75 mm.
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Figure 5.14: Correlation between the theoretical initial acceleration predicted by equation
(3.73) and the initial acceleration sy/t,2 obtained by curve fitting the landslide centroid
motion down the incline. The least-squares linear curve fit through the origin has a slope

of 0.92. The line of equivalence is also shown on the figure.
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Figure 5.15: Ratio of experimental to theoretical initial acceleration as a function of
nondimensional particle size for glass bead landslides. Only material characteristics
dependent on the particle size varied significantly. The theoretical initial acceleration

becomes a better predictor of the actual initial acceleration with larger particle size.
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Figure 5.16: Correlation between the theoretical terminal velocity predicted by equation
(3.74) and the experimental terminal velocity so/t, obtained by curve fitting the landslide
centroid motion down the incline. The least-squares linear curve fit through the origin
has a slope of 0.83.
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Figure 5.17: Ratio of experimental terminal velocity to single particle fall velocity as a
function of nondimensional particle size for glass bead landslides. The power -1.4 in the
curve fit is too strong to be induced by only the particle fall velocity dependence on D.

Larger particles permit larger experimental terminal velocities through less mixing.
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Figure 5.18: Four frames from the movie records of the crushed calcite landslide of Trial
40. The initial frame was exposed shortly after complete retraction of the stainless steel
gate. Marked particles in the landslide core demonstrate very little relative displacement

until they appear close to the landslide surface.
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1=0015s t=0.040s

Figure 5.19: Four frames from the movie records of the 3 mm glass bead landslide of
Trial 82. The initial frame was exposed shortly after complete retraction of the stainless
steel gate. Marked particles in the landslide core demonstrate significant relative motion

over the entire landslide cross-section.
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Figure 5.20: Four frames from the movie records of the 3 mm steel shot landslide of
Trial 81. The initial frame was exposed shortly after complete retraction of the stainless
steel gate. Marked particles in the landslide core demonstrate more relative displacement

near the nose of the landslide.
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Figure 5.21: Normalized cross-sectional area of a 3 mm glass bead landslide as a
function of time. The rate of strain associated with area growth is 1.61 s1 over all of

Trial 91. There is additional uncertainty in the area for short times due to perspective.
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Figure 5.22: Normalized cross-sectional area of a 3 mm steel shot landslide as a function
of time. The rate of strain associated with area growth is 1.53 s-1 over all of Trial 81.

There is considerably less uncertainty in the area of the steel shot landslide.
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Figure 5.23: Normalized cross-sectional area of a 0.5 mm glass bead landslide as a
function of landslide centroid position along the incline. The derivative of the area with

respect to position is 0.082 cm-1 for all of Trial 87.
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Figure 5.24: Normalized centroid height above the incline for a 3 mm glass bead
landslide as a function of time. The initial rate of strain associated with centroid lowering

is -0.55 s~ for Trial 91. After 0.2 s have elapsed, the centroid begins to rise due to the

formation of a growing gravity current.
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Figure 5.25: Normalized centroid height above the incline for a 3 mm steel shot landslide
as a function of time. The rate of strain associated with centroid lowering is -1.71 s-1
over the entire Trial 81. The large density of steel shot does not permit the formation of a

gravity current.
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Figure 5.26: Normalized centroid height above the incline for a 0.5 mm glass bead
landslide as a function of time. The initial rate of strain associated with centroid lowering

is -0.52 71 for Trial 87. After 0.4 s have elapsed, the centroid begins to rise rapidly as
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landslide particles are mixed with the surrounding water.
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Figure 5.27: Three near-field wave records measured at different positions x/b for a
repeated solid block 2, trial with initial submergence d=59 mm. The maximum negative
wave amplitude follows the solid motion while a positive wave is generated ahead of the

front face of the solid block.
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Figure 5.28: Comparison of six near-field wave records obtained at x/b=0 above the
middle of the initial landslide position. Different density blocks were released from rest
with an initial submergence of d=74 mm. The maximum near-field wave amplitude

depends on the block 2 density whereas the rebounding positive wave does not.
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Figure 5.29: Comparison of maximum near-field wave amplitudes for solid block trials
observed with a high speed movie camera versus similar trials measured with an
accelerometer. Old block 2 waves are seen to be consistently smaller than the new block

2 results plotted along the ordinate. The accelerometer may affect waves slightly.
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Figure 5.30: Ratio of the near-field amplitude integral I(0) to the scaling quantity toNmax
as a function of nondimensional initial submergence. The initial submergence is a
measure of wave nonlinearity and alters the interaction of waves with the incline. The

amplitude integral 1(0) remains relatively large for large initial submergences.
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Figure 5.31: Ratio of the near-field energy integral Ep(0) to the scaling quantity toNmax 2
as a function of nondimensional initial submergence. The initial submergence is a
measure of wave nonlinearity and alters the interaction of waves with the incline. The

total potential energy measured at the origin remains relatively large.
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Figure 5.32: Comparison of six far-field wave records obtained at x/h=4.25 in the
constant depth channel. Different density blocks were released from rest with an initial

submergence of d=74 mm. The far-field maximum Airy wave amplitude depends on the

block 2 density.
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Figure 5.33: Maximum near-field wave amplitude correlation with Airy wave maximum
measured 4.25 channel depths from x=0. The linear least-squares correlation through the

origin is given by equation (5.29).
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Figure 5.34: Wavemaker plot for solid blocks with d/b=0.85-87 on an incline at 6=45".
A power law least-squares curve fit of the data yields the exponent n=2.01 and the
coefficient k=0.33 given by equation (5.31). The wavemaker curve is defined in this

figure by changes in block density while Coulombic friction remains constant.
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Figure 5.35: Wavemaker plot for solid blocks over a wide range of nondimensional
submergences d/b on an incline with 6=45°. The data are organized into families of

wavemaker curves depending on the value of d/b. All solid block trials analyzed in this

work are presented on this figure.
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Figure 5.36: Approximate linear theory wavemaker data based on the actual landshide
initial geometry and motion of all solid block trials shown in Figure 5.35. The families of

wavemaker curves are more evident. The predicted nondimensional wave amplitudes are

about three times too large.
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Figure 5.37: Correlation between linear theory predictions of the nondimensional

maximum near-field wave amplitude and measured experimental values of the

nondimensional maximum near-field wave amplitude. The linear curve fit through the

origin for 0.80<d/b<0.87 is given by equation (5.32).
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Figure 5.38: Comparison of corrected linear theory wavemaker curves and experimental
results expected to generate linear water waves. Most experimental results are within one
standard deviation of the appropriate wavemaker curve. The power law curve fits of the

linear theory wavemaker curves cease to be valid above Npax/se of about 0.03.
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away from the wave generation region, the energy integral Ep, has a constant value.
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Figure 5.40: Ratio of the far-field energy integral E,(4.25) to the near-field energy
integral Ep(0) as a function of nondimensional initial submergence. The initial
submergence is a measure of wave nonlinearity and alters the interaction of waves with

the incline. More energy escapes the incline with decreasing initial submergence.
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Figure 5.41: Characteristic conversion of solid block kinetic energy into wave potential

energy. The power law least-squares curve fit is provided in equation (5.46). Most solid

block landslides convert between 3-7% of their ultimate kinetic energy into wave

potential energy that propagates down the channel.
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Figure 5.42: Four near-field wave records of material landslides involving different
diameter glass spheres. Materials composed of larger spheres generated larger waves
even though the suspension densities were nearly identical. Both centers of mass motion

and initial rates of deformation varied for all four landslides.
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Figure 5.43: Far-field wave records of the same material landslides shown in Figure
5.42. Materials composed of larger spheres typically generated larger waves. The

appearance of waves generated by material landslides is very similar to those generated
by solid block landslides.
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Figure 5.44: Wavemaker data of deforming material landslides with initial submergences
d/b=0.88-0.90. The material landslides are characterized by their nondimensional

landslide deformation I't,. Rapidly deforming landslides can reduce nondimensional

wave amplitudes to half of solid block wave amplitudes.
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Figure 5.45: Same wavemaker data as Figure 5.44 of deforming material landslides with
initial submergences d/b=0.88-0.90. Material landslides involving identical materials can
cover a wide range of Hammack numbers and nondimensional wave amplitudes. The

absolute size of the 1 mm glass bead landslides varies significantly.
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Figure 5.46: Simulated wave profiles at three different nondimensional times early in the
wave generation process. The origin x/b=0 is located above the middle of the initial solid
block position. The intersection of the incline and the still water level is at x/b=-1.37.

The nondimensional solid block size is unity. Positive wave generation is clear.
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Figure 5.47: Comparison of simulated wave record with corresponding solid block
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until about 0.3 s. The form of the simulated wave record is correct although the

amplitude is too small by a factor of about 1.7.
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Figure 5.48: Comparison of simulated nondimensional maximum near-field wave
amplitudes with corresponding experimental results. Experimental results are
consistently larger by about 40%. The inviscid simulations could not produce separation

and therefore had a different pressure distribution .over the block surface.
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Figure 5.49: Correlation between the simulated nondimensional characteristic time of
solid block motion and the nondimensional occurrence of the maximum near-field wave
amplitude. Some of the variability is due to the different initial geometries of the

simulations. All incline angles were fixed at 45°.
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Figure 5.50: Wavemaker data depicting two simulated wavemaker curves are shown for
solid block landslides at two different initial submergences along an incline at 45°.
Values for Hag min are evident from the inflection points in the wavemaker curves and are

in agreement with the values inferred from approximate linear theory wavemaker data.
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Chapter 6

6. Summary and Conclusions

This chapter summarizes the thesis results, restates the major conclusions, and describes

some future research considerations.
6.1 Summary

The goal of this thesis is to be able to predict water wave amplitudes above an underwater
landslide. Of particular concern has been the damage potential of water waves generated
by underwater landslides. A review of the underwater landslide literature showed the
wide variety of sizes and circumstances associated with landslide occurrence and wave
generation. It was argued in Section 1.1 that a steep incline would be needed to study
laboratory scale landslides so a single incline angle 6=45" was chosen. A distinct
separation of wave generation mechanisms was achieved by choosing two-dimensional
landslides with a horizontal top face and a vertical front face. Underwater landslide
motion was assumed to be governed by only one characteristic distance s, and one
characteristic time t, in equation (3.1). A scaling analysis of the governing differential
equations yielded the nondimensional form of a wavemaker curve provided in equation
(3.21). An analysis of solid block motion revealed the analytical forms of the
characteristics of landslide motion in equations (3.73) to (3.75). Experiments conducted
on an incline at 45° from horizontal proved the existence of the nondimensional
wavemaker curve for solid block landslides. The wavemaker curve was obtained by
varying the mean block density for the same initial landslide submergence d/b=0.87. A

power law curve fit of the data is given by equation (5.31). The approximate linear
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wavemaker model result in equation (3.97) was shown to predict nondimensional wave
amplitudes whenever d/b>0.8 on an incline 45° from horizontal after being multiplied by
an empirical coefficient 0.273. In addition, far-field wave characteristics such as total
wave train potential energy and conversion of solid block kinetic energy into wave
potential energy were shown to scale with near-field wave characteristics whenever
linear, deep water waves were generated by the landslide. The underwater landslides
studied in this work converted between 2-8% of the kinetic energy acquired by a sohid
block into wave potential energy. The criterion to generate linear water waves when
Hag»1 is given by equation (5.34) while the criterion to have deep water waves in the far-
field is given by equation (5.26). Numerical simulations covering a wide range of
landslide densities and two nondimensional initial submergences provided a more
complete picture of the water wave amplitudes generated by underwater landslides. The
numerical simulations also provided minimum Hammack numbers Hag min above which
power law wavemaker curves are valid. Experiments conducted with deforming material
landslides revealed nondimensional wave amplitudes 50-90% smaller than those of solid

block landslides with identical initial geometries and center of mass motions.
6.2 Conclusions

The unsteady motion of any underwater object that is governed by only one characteristic
distance s, and one characteristic time t, generates water waves according to one of two
wavemaker formalisms. Both formalisms are given by Hammack (1972) while the case
of slow landslide motion relative to wave propagation is repeated here in Section 3.1.3.
For the generation of two-dimensional water waves, a characteristic near-field wave

amplitude can be expressed as an unknown function

n

So sin 0

=Hlao £(2,0,Sg,Hao ) (3.21)

where the Hammack number Hay,=ty,Vgd/b is the correct nondimensional time for water
waves generated by underwater landslides and the Submergence number Sg=sosint/d
relates the vertical component of the characteristic distance of motion to the initial

landslide submergence.

Two characteristic wave amplitudes are given particular attention in this work. The

maximum near-field wave amplitude is the absolute value of the largest wave amplitude
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measured above the initial landslide position at x/b=0. The maximum Airy wave
amplitude is the maximum amplitude of the leading wave in the wave train at x/h=4.25.
It was decided to construct wavemaker curves based on the maximum near-field wave

amplitude.

Two criteria are given for the generation of linear deep water waves by an underwater

landslide. These linearity criteria are Hay»1 and

d W sin O
b > ——_\/g_d . (5.34)

Underwater landslides satisfying these criteria generate water waves with significantly
simpler wave behavior. For linear water waves, the maximum Airy wave amplitude is
directly proportional to the maximum near-field wave amplitude as shown in Figure 5.33.
Most water waves generated by underwater landslides studied herein were linear water
~ waves. Equation (5.34) scales with landslide length raised to an exponent of half 205,

The near-field water waves recorded at x/b=0 all appeared very similar: the free surface
formed a relatively large negative wave followed by a free surface rebound with decaying
oscillations. In the far-field at x/h=4.25, the wave front consisted of a leading Airy wave
followed by a dispersive wave train of modulated wave amplitude. Far-field wave
propagation was shown to exist when x/h>2.5 or x/A>3. For linear water waves

generated on a 45° incline, the maximum Airy wave amplitude
hy 173
Nairy(5/h) = 0.48 Timax () (5.30)

can be predicted any distance down a constant depth channel. The Airy wave always
propagates as a long wave at the long wave celerity. The remaining wave train

propagates as deep water waves if the channel depth satisfies

h > toVgd (5.26)

where A=ty\'g d is a characteristic wavelength of water waves generated by underwater
landslides. Much of the wave train propagates as long waves if the channel depth

satisfies the criterion



(5.27)

The leading Airy wave in the far-field wave train propagates at the long wave celerity and

therefore always depends on the channel depth.

Experimental maximum near-field wave amplitudes measured at x/b=0 above solid block
landslides sliding down a 45° incline confirmed the existence of nondimensional
wavemaker curves in Figures 5.34 and 5.35 as a function of the nondimensional initial
submergence and of the Hammack number Ha,. For 8=45° and d/b=0.87, a power law

curve fit of the experimental data gave

Mmax _ 0.33
So Ha02-01

(5.3

where the factor sin® in equation (3.21) was omitted. Maximum near-field wave
amplitudes of solid block landslides can be predicted from a wavemaker curve if the

landslide initial geometry, initial acceleration and terminal velocity are known.

Equations (5.40) and (5.41) show that an analytical form of the wavemaker curve allows
absolute wave amplitudes to be predicted above a solid block landslide provided
Hap>Hag min. Results from Sections 5.2.3 and 5.2.5 suggest a typical exponent n=1.5 for
solid block landslides on an incline at 45°. If this exponent can be generalized to
different incline angles, then a scaling for water wave amplitudes generated by
underwater landslides is obtained. For a vanishing dynamic friction coefficient C,~=0 and
Hag>Ha, min, equations (3.73), (3.74) and (5.23) provide a maximum near-field wave
amplitude that is proportional to

175 6inl 759 cos 150 175
Mmax ©< 4075 < 4075

(6.1)

where / is the landslide length along the incline, d is the initial landslide submergence,
and c=/sin0 is the height of the vertical front face of the landslide.

Numerical simulations of water waves generated by underwater landslides were

conducted with a fully nonlinear inviscid boundary element code. Figure 5.48 indicates
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the agreement between numerical simulations and experimental results: water waves
simulated by the BEM code are typically 30% smaller than experimental results.
Wavemaker data were constructed from simulation results for nondimensional initial
submergences d/b=0.87 and d/b=2.13. A power law wavemaker curve was shown to
apply only if Hag>3.5 when d/b=0.87 and Ha,>5.5 when d/b=2.13.

An approximate solution of linear near-field water waves generated by a solid block
landslide is provided by equation (3.97). Figure 5.37 shows that the linear water wave
solution can be used to predict maximum near-field wave amplitudes that are

proportional

Experimental "2 ~ 0.273 Theoretical ~22% (5.32)

(o) (0]

to experimental wave amplitudes provided linear water waves are generated.

Initially triangular material landslides deformed in a manner very similar to a spreading
isosceles triangle at early times. The initial rate of change of area in time depended most
strongly on the nominal particle diameter. The initial normal rate of strain depended
primarily on the bulk density of the landslide. The initial landslide rate of deformation is

calculated from

da 1 2 dz. 1 dA]

I = (3.85)

dt A 9 7.2 zc dt A dt

and combined with the characteristic time of center of mass motion to give a new
nondimensional number in the wavemaker formalism I't,. The nondimensional landslide

deformation I't, is a measure of the isosceles triangle spreading during the characteristic

time of center of mass motion.

As a gravity current developed, multiple wave events were observed superposed on the
gravity current head with larger wave events traveling faster down the incline. A material
landslide composed of 0.5 mm glass beads was observed to form a leading shock wave

rather than the usual gravity current head.
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Material landslides and solid block landslides generate similar wave records with similar
nondimensional wave amplitudes. For an identical initial geometry and center of mass
motion, solid block landslides have larger nondimensional wave amplitudes than
deforming material landslides. Figures 5.44 and 5.45 show that nondimensional wave
amplitudes generated by deforming material landslides range from 0.5-0.9 times the
nondimensional wave amplitudes generated by solid block landslides. Material
landslides with larger nondimensional landslide deformations tend to produce smaller

nondimensional wave amplitudes for a given initial geometry and center of mass motion.

6.3 Future Research Considerations

Two future research directions are being considered at this moment. The first direction
involves further numerical simulations of water waves generated by underwater
landslides. The boundary element code used in this work can be further refined for
studies of underwater landslide-generated waves. For example, landslide shapes that are
not susceptible to flow separation could be simulated. Also, a more complete analysis of
the wavemaker parameters can be carried out. A viscous, finite volume, fluid dynamics
code can also be employed to study water waves generated by partially aerial landslides
or underwater landslides with very small initial submergences. Lagrangian free surface
updating in a finite volume code enables the wave breaking expected during such
landslides to be simulated. Therefore, highly nonlinear water waves generated by
underwater landslides can be studied. Viscous simulations would allow for more

accurate near-field wave amplitude predictions over a wider variety of initial conditions.

The second research direction involves the dynamics of underwater landslides. A wide
range of landslide phenomena were observed in the course of studying water wave
generation for this work. The initiation, propagation and deposition of an underwater
landslide appears to provide ample research opportunities covering the entire gamut of

experimental, theoretical, and computer based fundamental research.
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Appendix A

A. Wave Records

The wave records of all solid block and material landslide trials that were repeated more
than once are provided here. Since roughly half of all trials were repeated more than
once, this appendix displays a large portion of the near-field and far-field wave records

obtained for this work.
A.1 Solid Block Near-field Wave Records

Figures A.1-A.11 show 27 out of the 43 near-field wave records obtained above the
middle of the initial solid block position. The eleven figures show the superposed near-
field wave records of all experiments that were repeated more than once for the purpose
of comparison. Some interesting differences emerge from the comparisons. For
example, Figure A.5 shows the influence that the accelerometer wire can have on the
near-field wave record by creating rapidly oscillating ripples in the free surface as it
entered the water; solid block motion in Trial 29 was recorded by a movie camera. For
all accelerometer trials, most of the wire was folded under the water free surface to
minimize this complication. The differences in the maximum wave amplitudes present in
Figure A.6 remain unexplained as does the fact that Trial 56 fits patterns established by
solid block experiments better than Trial 52. Figure A.8 clearly shows how Trial 30
(performed with the old block 2) has a smaller wave amplitude than similar trials repeated
with the new block 2. Recall that all block 2 trials up to and including Trial 42 involved
the old block 2. Regardless, Figures A.8 and A.9 indicate the agreement that can be
obtained in the near-field wave records with the experimental apparatus and method
described in Chapter 4. Figure A.11 has several unexplainable differences in the wave
records and yet the important characteristics of both trials agree to within independently

established error bars that are provided in Appendix B.
A.2 Solid Block Far-field Wave Records

The eleven Figures A.12-A.22 show the superposed far-field wave records of all

experiments that were repeated more than once for comparison. Once again, some
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interesting differences emerge from the comparisons. Figures A.14-A.16 demonstrate the
increased noisiness of the far-field wave gauge as well as the degree of repeatability that
can be expected from very small wave amplitude trials. Figures A.18-A.20 provide
another indication of the agreement that can be obtained in the far-field wave records
with the experimental apparatus and method described in Chapter 4. The old block 2
results are no longer obviously smaller than the new block 2 results. The only figures for
which both the near-field and far-field wave records had substantial differences were
Figures A.11 and A.22 involving Trials 51 and 64.

A.3 Material Near-field Wave Records

Figures A.23-A.27 show 11 out of the 21 near-field wave records obtained above the
middle of the initial material position. The five figures show the superposed near-field
wave records of all experiments that were repeated more than once for the purpose of
comparison. Figure A.24 stands out as the only figure in which the agreement is not
exceptional. Nevertheless, the differences between Trials 37 and 83 are almost within

standard errors.

A.4 Material Far-field Wave Records

Figures A.28-A.32 show the superposed far-field wave records of all experiments that
were repeated more than once for comparison. Figures A.29-A.31 agree to within
standard errors despite the apparently large discrepancies between the wave records.
Figures A.24 and A.29 involving Trials 37 and 83 are the only two repeated material
landslide trials where both the near-field and far-field wave records differ substantially.
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Figure A.1: Comparison of measured near-field wave amplitudes above the middle of the
initial solid block position for Trials 44 and 61. Block 1, was released from rest with an
initial submergence of d=45.0 mm. The agreement between the two wave profiles is

exceptional.
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Figure A.2: Comparison of measured near-field wave amplitudes above the middle of the
initial solid block position for Trials 43 and 78. Block 1, was released from rest with an

initial submergence of d=73.5 mm. The agreement between the two wave profiles is

exceptional.
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Figure A.3: Comparison of measured near-field wave amplitudes above the middle of the
initial solid block position for Trials 41 and 68. Block 2, was released from rest with an
initial submergence of d=74.5 mm. The agreement between the two wave profiles 1s

within standard error bounds.
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Figure A.4: Comparison of measured near-field wave amplitudes above the middle of the
initial solid block position for Trials 28 and 69. Block 2, was released from rest with an

initial submergence of d=74.5 mm. The agreement between the two wave profiles is

exceptional.
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Figure A.5: Comparison of measured near-field wave amplitudes above the middle of the
initial solid block position for Trials 29 and 70. Block 2y, was released from rest with an
initial submergence of d=74.5 mm. The agreement between the two wave profiles is

within standard error bounds despite the noise in Trial 70.
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Figure A.6: Comparison of measured near-field wave amplitudes above the middle of the
initial solid block position for Trials 52 and 56. Block 2, was released from rest with an

initial submergence of d=40.0 mm. The agreement between the two wave profiles is

poor.
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Figure A.7: Comparison of measured near-field wave amplitudes above the middle of the
initial solid block position for Trials 25, 47 and 67. Block 2, was released from rest with

an initial submergence of d=74.5 mm. The agreement between the three wave profiles is

exceptional.
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Figure A.8: Comparison of measured near-field wave amplitudes above the middle of the
initial solid block position for Trials 30, 48, 71 and 74. Block 24 was released from rest
with an initial submergence of d=74.5 mm. The agreement between the four wave

profiles is within standard error bounds.
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Figure A.9: Comparison of measured near-field wave amplitudes above the middle of the
initial solid block position for Trials 31, 49, 72 and 75. Block 2. was released from rest

with an initial submergence of d=74.5 mm. The agreement between the four wave

profiles is within standard error bounds.



265

0-4 i T T T T ' T T T T ¥ ¥ T T T T T T T ¥ T T T T T T B

Trial 42 -

0.2 L} — -Trial 73 e j

: /’f“x

B s
3 -0.2 H\ [
E \\ /

B I :

£ 04f _

= 6 \ / :

3 o - \\./\ . A

V,

-0.8 —/ i

_1 1 L 1 1 1 L L 1 1 i 13 i 1 1 L 1 L 1 1 1 1 1 ]

0 0.5 1 1.5 2 2.5 3

Figure A.10: Comparison of measured near-field wave amplitudes above the middle of
the initial solid block position for Trials 42 and 73. Block 2; was released from rest with
an initial submergence of d=74.5 mm. The agreement between the two wave profiles is

exceptional.
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Figure A.11: Comparison of measured near-field wave amplitudes above the middle of
the initial solid block position for Trials 51 and 64. Block 3, was released from rest with
an initial submergence of d=81.5 mm. The agreement between the two wave profiles is

within standard error bounds despite the apparent wave spike at t=1 s.
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Figure A.12: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 44 and 61. Block 1, was released from rest with an
initial submergence of d=45.0 mm. The agreement between the two wave profiles is

exceptional.
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Figure A.13: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 43 and 78. Block 1, was released from rest with an

initial submergence of d=73.5 mm. The agreement between the two wave profiles is

exceptional.
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Figure A.14: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 41 and 68. Block 2, was released from rest with an

initial submergence of d=74.5 mm. The agreement between the two wave profiles is

within standard error bounds.
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Figure A.15: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 28 and 69. Block 2, was released from rest with an

initial submergence of d=74.5 mm. The agreement between the two wave profiles is

poor.
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Figure A.16: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 29 and 70. Block 2y, was released from rest with an

initial submergence of d=74.5 mm. The agreement between the two wave profiles is

poor.
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Figure A.17: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 52 and 56. Block 2, was released from rest with an
initial submergence of d=40.0 mm. The agreement between the two wave profiles is

exceptional.
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Figure A.18: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 25, 47 and 67. Block 2, was released from rest with
an initial submergence of d=74.5 mm. The agreement between the three wave profiles is

within standard error bounds.
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Figure A.19: Comparison of measured far-field wave amplitudes above the middle of the
" initial solid block position for Trials 30, 48, 71 and 74. Block 24 was released from rest

with an initial submergence of d=74.5 mm. The agreement between the four wave

profiles is within standard error bounds.
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Figure A.20: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 31, 49, 72 and 75. Block 2. was released from rest
with an initial submergence of d=74.5 mm. The agreement between the four wave

profiles is within standard error bounds.
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Figure A.21: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 42 and 73. Block 2; was released from rest with an

initial submergence of d=74.5 mm. The agreement between the two wave profiles is

exceptional.
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Figure A.22: Comparison of measured far-field wave amplitudes above the middle of the
initial solid block position for Trials 51 and 64. Block 3, was released from rest with an

initial submergence of d=81.5 mm. The agreement between the two wave profiles is very

poor.
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Figure A.23: Comparison of measured near-field wave amplitudes above the middle of
the initial material position for Trials 32, 33 and 40. Crushed calcite was released from

rest with an initial submergence of d=74 mm. The agreement between the three wave
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Figure A.24: Comparison of measured near-field wave amplitudes above the middle of
the initial material position for Trials 37 and 83. Glass marbles were released from rest

with an initial submergence of d=74 mm. The agreement between the two wave profiles

is poor.
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Figure A.25: Comparison of measured near-field wave amplitudes above the middle of
the initial material position for Trials 34 and 82. Three millimeter glass beads were
released from rest with an initial submergence of d=74 mm. The agreement between the

two wave profiles is exceptional.



281

0.2
| A
0 \ / \'\:,:f "‘-"_fr T e - ]
E : |
o -0.2 [
; - y
i - v
g o4 | /ﬂ . Trial 39
® L / —— -Trial 84
5]
? ny
-0.6 v
0.8 T
0 0.5 1 1.5 2 2.5 3
Time (s)

Figure A.26: Comparison of measured near-field wave amplitudes above the middle of
the initial material position for Trials 39 and 84. Two millimeter lead shot was released

from rest with an initial submergence of d=77 mm. The agreement between the two wave

profiles is exceptional.
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Figure A.27: Comparison of measured near-field wave amplitudes above the middle of
the initial material position for Trials 38 and 86. Three millimeter lead shot was released

from rest with an initial submergence of d=74 mm. The agreement between the two wave

profiles is exceptional.
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Figure A.28: Comparison of measured far-field wave amplitudes above the middle of the
initial material position for Trials 32, 33 and 40. Crushed calcite was released from rest

with an initial submergence of d=74 mm. The agreement between the three wave profiles

is exceptional.
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Figure A.29: Comparison of measured far-field wave amplitudes above the middle of the
initial material position for Trials 37 and 83. Glass marbles were released from rest with
an initial submergence of d=74 mm. The agreement between the two wave profiles is

poor.
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Figure A.30: Comparison of measured far-field wave amplitudes above the middle of the
initial material position for Trials 34 and 82. Three millimeter glass beads were released
from rest with an initial submergence of d=74 mm. The agreement between the two wave

profiles is poor.
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Figure A.31: Comparison of measured far-field wave amplitudes above the middle of the
initial material position for Trials 39 and 84. Two millimeter lead shot was released from

rest with an initial submergence of d=77 mm. The agreement between the two wave

profiles is poor.
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Figure A.32: Comparison of measured far-field wave amplitudes above the middle of the
initial material position for Trials 38 and 86. Three millimeter lead shot was released
from rest with an initial submergence of d=74 mm. The agreement between the two wave

profiles is within standard errors.
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Appendix B

B. Error Analyses

Every plot of experimental or simulation data in this thesis shows standard errors if those
errors are greater than the symbol used to denote the data. This appendix derives these
error estimates. Significant effort has been made to ensure that error estimates are
independent from the actual data being shown. Therefore, agreement of data to within
the error bars shown represents an affirmation of the error estimates in this appendix as
well as a general understanding of the accuracy and repeatability of the experimental

methods employed for this work.
B.1 Landslide Motion and Deformation Analyses

It was found early on in this research that inaccurate landslide kinematics could conceal
trends in the nondimensional wavemaker formulation. Therefore, much of the work
presented in this section evolved from the need to reduce the errors derived from
landslide kinematics as much as possible. Hence, the purpose of this section is to

estimate the accuracy of the landslide motion data.
B.1.1 Solid Block Coulombic Friction

The error in the critical friction angle y was taken as half of the 1° precision available
from the protractor used to measure the incline angle. The resulting error in the
Coulombic friction coefficient Cy, is nearly +3% for all solid blocks, a fact that follows
either from the nearly linear behavior of the tangent function for such a small argument or
from direct substitution of y.+Ay in equation (4.7). The effective gravitational forcing
when 6=45" + 0.5° is given by the fourth column of Table 5.1 with an error found by
substituting the smaller bound for 6 and the larger bound for y or vice versa. The error is

once again around +3%.
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B.1.2 Solid Block Initial Acceleration

Based on the static accelerometer calibration shown in Figure 4.9, the accuracy of
accelerometer measurements is typically much less than 1% of actual acceleration values.
Therefore, almost all of the error in the initial acceleration measurements was derived
from some lack of repeatability. Sources of error include spurious vibrations of the wave
tank, drift in the zero level of the accelerometer, unintentional differences in the way the
Nylon fishing line holding the solid block was released, small differences in the initial
block position and incline surface, or even differences in block-incline friction induced
by different contact (or block settling) times. The curve fits of the initial accelerations of
blocks 1,-3, shown on Figures 5.1-5.3 are sufficiently rich to capture the inflection points
present in the data and appear to be good predictors of mean initial accelerations.
Assuming that there is a single variance 62 that describes the distribution of data about
one of the curve fits over all initial submergences d, then the Central Limit Theorem from
statistics dictates that the observed mean of the results tends towards a Gaussian
distribution about the actual mean as the number of experimental points goes to infinity.
That is, any suitable curve fit approaches the expected initial acceleration as the number
of experimental points goes to infinity over some small range of initial submergences.
Since the range of initial submergences is arbitrary for a relatively flat function as=k, the
least-squares curve fit is used to represent the observed mean even if the number of
samples for any given initial submergence is small. In practice, all that is desired is an

estimate of the repeatability of the initial acceleration about the curve fit so

% Error = 100% %@ (B.1)

suffices to provide a reasonable estimate of the standard deviation G, where a, is the
observed initial acceleration and ay(d) is the curve fit mean result. The repeatability of
the initial acceleration gives rise to a 5% error at one standard deviation about the curve
fit for all three solid blocks and over all initial submergences tested. Since most initial
accelerations are around 1.7 m/s2, there exists an almost constant standard deviation of

6=0.09 m/s2 for solid blocks 1,-3; and the original assumption is now justified a

posteriori.
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For solid blocks 2,-2; listed in Table 5.2, the five or six measured initial accelerations
provide errors of between +2-13% with the standard deviation for each block given in the
table.

The two independent techniques used for estimating the error in the initial acceleration
obtained from high speed movies of solid block landslides are now described. The first
technique examined the inherent sensitivity of the parabolic curve fits to the number of
position measurements available. Since it not clear for exactly how long the parabolic
curve fit remains valid in time, the last two measurements were systematically removed
from the plot of position versus time for Trial 54 with the curve fit recalculated each time.
The five distinct initial accelerations for this one trial had a standard error of +5%. The
second technique examined the error incurred by not knowing the start of a solid block
trial to within better than one movie frame. Position versus time data from Trials 44 and
50 were displaced both right and left by 0.01 s and then curve fit by a parabola. The
mean error incurred in the initial acceleration by a one movie frame uncertainty in the
start of a trial was £16%. This mean error can be considered a standard error since the
starting time of a trial was known to better than 1 frame in about 63% of the solid block
trials studied -- those trials for which a proper calibration of the timing LED on the film
was available. Given that both of these errors are independent and that variances are
additive, the expected error for an initial acceleration obtained from a high speed movie is

+17% at one standard deviation. This error estimate is shown in Figure 5.4.
B.1.3 Solid Block Added Mass Coefficient

Errors in the gravitational forcing gefr also contribute to the error in the added mass
coefficient. Taking the logarithm of both sides of equation (5.5) and differentiating

yields
dCn _ (mp+Cymy) [ dag | dgefr
= — 2
Cm Cmmy [ do * Beff ] (B.2)

where the solid block mass my and displaced water mass my are considered known
quantities with little to no error as shown in Section 4.2.1. Given a £5% error in the
initial acceleration from Section B.1.2, a £3% error in the effective gravitational forcing
from Section B.1.1 as well as mp/mg=2 and C,=0.8, the added mass coefficient C, can

only be known to within +28% at one standard deviation for the initial acceleration
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measurements shown in Figures 5.1-5.3. The cumulative 8% error of the two inputs is
amplified around 3.5 times by the fraction in front of the square brackets of equation
(B.2). The standard errors are not shown on Figure 5.5 because they would obscure the
data. However, the spread of the data gives an accurate impression of the per cent error

just derived.

For solid blocks 2,-2; listed in Table 5.2, the mean of all six added mass coefficients is
Cn=0.8 while the standard deviation 6=0.07 of the six blocks indicates a standard error
of 29%. This error in the added mass coefficient of these six blocks is based on the mean
values in the table rather than on the raw data used to construct Table 5.2.

B.1.4 Solid Block Terminal Velocity and Drag Coefficient

The mean drag coefficient of Cyg=1.7 £ 0.17 varied by £10% at one standard deviation.
Using the mean value of the drag coefficient Cyg=1.7 in equation (3.74) yielded theoretical
terminal velocities accurate to within +3% at one standard deviation from the maximum
measured velocities. According to equation (3.78), the measured velocities should
theoretically be very close to the actual terminal velocities. Hence, terminal velocities are
known to within 3% at one standard deviation. The +3% error in the terminal velocity
can be used to calculate another estimate of the error in the drag coefficient by taking the

logarithm of both sides of equation (5.10) and differentiating

dCq  2du; , dgerr , dA
= — 3
Cq u T Zeff A (B.3)

where the error in the projected area is expected to be around 2% from measurement
accuracy and solid block clearances with the side walls. Given the error in the effective
gravity from Section B.1.1, it follows that the drag coefficient is known to within +11%
at one standard deviation. This is almost exactly the same error in the drag coefficient as
found in Table 5.3. While the two methods of estimating the error are not completely
independent, the agreement is reassuring and was certainly not a foregone conclusion.
The relatively large error in the drag coefficient is due in part to the square root in
equation (3.74) for the terminal velocity which ends up doubling the error of the terminal
velocity. Hence, the solid block terminal velocity is not overly sensitive to the drag

coefficient given the inverse power of Cg>1 within the square root.
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B.1.5 Solid Block Motion Characteristics

Given the £5% error in the initial acceleration from Section B.1.2 and the 3% error in
the terminal velocity from Section B.1.4, the standard errors in s, and t, follow from

2du; | dag

dso _ dag

S - + 2 (B.4)
QEQ _ duy day

6= + Y (B.5)

where sy is known to within £11% while t, is known to within +8%. These error
estimates are needed in Section 5.2.3 when constructing wavemaker plots and in Section

B.2.5 when estimating the errors of the wavemaker plots.
B.1.6 Material Motion Characteristics

In order to convert landslide traces from pixel coordinates to real space coordinates, a
conversion factor had to be determined for each movie frame. Registry marks were
evenly spaced 101.6 mm (four inches) along the front of the wave tank parallel to (yet
below) the incline. Each landslide trace had two black dots drawn on the piece of paper
at the location of different registry marks. The distance in real space along the incline
between the two black dots was either 101.6 mm (four inches) or 203.2 mm (eight inches)
depending on the movie magnification and the instantaneous landslide position. The
black dots were placed 25.4 mm (one inch) below the surface of the incline as measured
on the piece of paper. The conversion factor F from pixel distance to real distance was
found by dividing the real spacing between the registry marks by the distance in pixels
between the registry marks. The distance in pixels between the two registry marks was

calculated from the centroid (xj,z;) position of each black dot given by NIH Image

dia = V(x1 - x2)2 + (21 - 22)2 (B.6)

where the coordinate system is established for each scan by the scanner and has no
bearing on the development given here. The absolute error in locating the black dots on
each sheet of paper was 0.5 mm over an absolute separation distance of between 24.6
mm and 37.9 mm depending on the magnification of each movie. Using a typical

separation distance of 305 mm applicable to most movies, the accuracy error in the
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conversion factor F is about £0.2%. Over a typical sample size of 16 conversion factors
per movie, the conversion factor had an error of £0.25% at one standard deviation.
Considering the mean conversion factor of F=0.03437 cm/pixel for all material landslide
movies as a typical value, an error of £0.32% or +1.1x10-4 cm/pixel is found at one

standard deviation.

The registry marks allowed the absolute position of the landslide centroid along the
incline to be calculated in real space for each landslide trace. The first step was to locate
the intersection of the straight line joining the two black dots with the perpendicular line
going through the landslide centroid. The straight line connecting the two black dots

formed an axis parallel to the incline with a slope

Z1 - Z .
=12 (B.7)

X1 -X2

in the coordinate system of the scanned image, where the black dot centroid with
coordinates (x2,z7) is further down the incline. If the landslide centroid given by NIH
Image is denoted by the point (xc,z¢), then the closest point on the straight line to the

point (xc,z¢) defined an intersection point

XC
Zc-Z1+mX1-Tn-
Xt = 1 B.8)
m - —
m
Z] = m X[+ Yy -mxg (B.9)

where (x1,z1) are the coordinates of the black dot centroid further up the incline. The
straight line connecting the intersection point to the landslide centroid was perpendicular
to the straight line connecting the two black dots. The intersection point was calculated

for each landslide trace.

The second step involved calculating the distance in pixels between the intersection point

(x1,21) and the black dot centroid (xp,zy) further down the incline. The distance in pixels

dca = V(xc - %02 + (zc - )2 (B.10)
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gave the converted distance Fdc 2 in real space. The landslide centroid could now be
assigned an absolute position along the incline for each landslide trace merely by
knowing which registry mark corresponded to the point (x3,z2). The third step required
identifying the registry mark corresponding to the point (x2,z3) in the first landslide trace
of a given material landslide trial. As subsequent frames were traced, the point (x2,z7)
would occasionally jump to the next registry mark. For each jump to a successive
registry mark down the incline, an additional 101.6 mm (four inches) was added to the
centroid position along the incline. Therefore, each landslide trace in a given material
landslide movie had the correct relative centroid position along the incline in real space.
The last step was to subtract off the centroid position of the first landslide trace in the
movie from all centroid positions in the movie so that s=0 at t=0 without changing the
relative centroid positions. Repeated tracings of a single movie frame in Trials 33, 38,

and 89 indicate a repeatability of about =1 mm in the centroid positions.

The method used to calculate the framing rate to within £0.01% is given in Section 4.2.2.
The method used to determine the beginning of a material landslide trial to within 1 ms
was given in section 4.3.2. Neither of these errors is significant and the time associated
with each high speed movie frame can be considered exact to within +1 ms. The data for
material landslide centroid position along the incline as a function of time was curve fit
by equation (3.78) using the KaleidaGraph general curve fitting algorithm. The result of
the curve fits was a characteristic distance s, and characteristic time t, for each material

landslide trial. Three such curve fits are shown in Figures 5.11 to 5.13.

The normal errors in the characteristic distance and time scales were established directly
by the KaleidaGraph general curve fitting algorithm for each least-squares curve fit of
equation (3.78). These normal errors were based on the reliability of the fit to the data
and are an important feature of the KaleidaGraph software. The curve fitting algorithm in
KaleidaGraph utilizes the Levenberg-Marquardt algorithm to minimize the %2 merit
function. Press et al. (1992) describe the application and programming of the fully
nonlinear and recursive Levenberg-Marquardt algorithm for minimization problems. The
normal errors in the curve fit parameters are a direct result of evaluating the second
partial derivatives of the %2 merit function with respect to the curve fitting parameters
near the minimum of the %2 merit function. Moreover, the normal errors given by
KaleidaGraph software are the correct statistical measures of the standard errors in the

curve fitting parameters based on the sample data.
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The curve fitting algorithm within KaleidaGraph had trouble converging for certain
position versus time records of centroid motion down the incline. For the lead shot
landslides of Trials 38 and 84, all of the data appeared to be within the domain of the first
term of the Taylor series given in equation (3.87). The result was that data being curve fit
with two parameters s, and t, only contained information for the initial acceleration
a9=So/ty?. Fitting a single parameter curve with two parameters often results in an infinite
number of combinations of the characteristics of motion that would fit the data. One
could watch the curve fit of the data diverge with each subsequent iteration. Trials 85
and 93 each had poor data that rendered convergence of the curve fit very slow and the
values of the fitted parameters highly inaccurate. Errors on the order of 100% were found
in the curve fit parameters with the value of the errors dependent on the desired accuracy
of the curve fit. For all other curve fits, values of the parameters converged after a few
iterations and were independent of the accuracy sought. For all material landslides listed
in Table 5.4, the mean error in the characteristic distance s, was £14.5% while that of the
characteristic time t, was £7.9% both at one standard deviation. These errors are not
significantly different from those found for solid block characteristics of motion in
Section B.1.5 above. However, if one calculates an initial acceleration ay=sy/to? from
equation (5.8), then one can expect a standard error in the initial acceleration of £30.3%.
Likewise, a terminal velocity ug=sy/t, calculated from equation (5.10) has an error of
+22.4% at one standard deviation. These errors are shown in Figures 5.15 and 5.17.

As the gravity currents approached the bottom of the incline in glass bead Trials 87, 89
and 91, one trace was made of the entire gravity current profile while another trace was
made of the dense core of the landslide excluding the landslide wake. The distinction
between gravity current core and wake was easily perceived as a rather sharp gradient in
the brightness of the landslide profile -- see Figures 5.8 and 5.10 for examples. The mean
difference in landslide centroid position along the incline for the three trials was 9.8%. In
all cases studied, the entire gravity current centroid had not progressed as far along the
incline as the dense core because of the presence of a wake. By arbitrarily assigning a
relative density of one half to the landslide wake, errors in the centroid position along the
incline of 4.9% can be expected. These errors were neglected for all landsiides not
composed of glass beads or garnet sand since landslide wakes were either accurately
reproduced during tracing or non-existent. Figures 5.11, 5.13 and 5.23 indicate the

expected standard error in the centroid position along the incline.
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B.1.7 Material Landslide Center of Mass Height

The centroid height above the incline was found by first calculating the distance in pixels
between the intersection point (x,z[) and the material landslide centroid (xc,zc) in the

scanned coordinates. The distance between these points in pixels

dcy = V(xc - xp? + (z¢ - z12 (B.11)

provided the converted distance Fdc 1 in real space. The landslide centroid could now be
assigned an absolute height perpendicular to the incline for each landslide trace.
However, the distance in real space between the straight line connecting (x1,z1) to (x2,z3)
and surface of the incline needed to be subtracted from Fdc 1. This distance is known to
be 25.4 mm (one inch) on the sheet of paper with the landslide trace. Therefore, a
conversion factor was needed to convert distance on the sheet of paper to real space
distance. For each material landslide movie, the landslide trace with the conversion
factor F closest to the mean conversion factor for all landslide traces was found. The
distance between the black dots on the sheet of paper was then accurately measured. The
real distance between the black dots (either 101.6 mm or 203.2 mm) divided by their
separation on the sheet of paper provided this specific conversion factor. The distance
25.4 mm was multiplied by this conversion factor and subtracted from all distances Fdc 1
for that material landslide movie. The result was the landslide centroid height
perpendicular to the incline z; described in Section 5.1. Repeated tracings of a single
movie frame in Trials 33, 38, and 89 indicate a repeatability of about £0.5 mm in the
centroid heights. Three plots of centroid height above the incline in time can be found in
Figures 5.24 to 5.26.

The error in the centroid height above the incline due to formation of a landslide wake
was calculated from the same three trials described in Section B.1.6. The mean
difference in landslide height above the incline for the three trials was 6.5%. In all cases
studied, the entire gravity current centroid was situated higher above the incline than the
centroid of the dense core. By arbitrarily assigning a relative density of one half to the
landslide wake, errors in the centroid height above the incline of 3.3% were found. These
errors were neglected for all landslides not composed of glass beads or garnet sand since
landslide wakes were either accurately reproduced during tracing or non-existent.

Figures 5.24 to 5.26 show the resulting error bars at one standard deviation.
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The initial normal rate of strain was found from a linear curve fit of the data near t=0.
Since it was not clear how far the linear curve fit should extend in time, two or more
curve fits were attempted around what appeared to be the limit of linear behavior judged
by eye. Since a rate of change was being extracted from the data, reasonably small
changes in the temporal extent of the curve fit could result in appreciable changes in the
slope of the linear curve fit -- i.e., differentiation exacerbates errors in data. Therefore, an
error in the repeatability of the initial normal rates of strain for each trial was sought. A
mean standard error of +23% was found for the initial normal rate of strain of all trials.
Only Trials 83 and 90 had errors significantly higher than the mean at +45% and +43%,
respectively. The initial normal rates of strain and their corresponding errors can be
found in Table 5.5.

B.1.8 Material Landslide Area

The cross-sectional area of a material landslide was analyzed over the duration of
landslide deformation during a trial. Every third or fourth movie frame was traced for a
typical material landslide giving on average 16 landslide profiles per trial. The area was

measured by NIH Image and converted from square pixels to square centimeters using
A = NF2 (B.12)

where N is the number of square pixels and F is the conversion factor from pixels to
centimeters derived in Section B.1.6. The perimeter of a landslide trace was also

provided by NIH Image and converted to centimeters by
p = NF (B.13)

where N is the number of perimeter pixels on the edge of the black and white image.
With the maximum scanning density of 600 dpi, the size of each pixel on the sheet being
scanned was 42 um. The ability of a 42 pm grid to resolve surface length depends on the
size of the surface roughness and the fractal dimension of the surface rendition in pixels.
No error analysis on the perimeter is attempted. Instead, the perimeter is used as an error

estimate of the area repeatability below.

Repeated analysis of the same image revealed a scanning error of up to 0.4% in the pixel

count of the traced area. This error is probably associated with the orientation of the
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image relative to the quantized pixel grid. The error estimate in the area calculation is

therefore given by

e L (B.14)

which amounts to an accuracy error of at most £1% at one standard deviation. The
repeatability of landslide area traces was estimated from the equation

dA 005
= —A—P (B.15)

where p is the perimeter of the cross-sectional profile and a tracing error of £0.05 cm was
assumed over the entire perimeter in real space. The values found from equation (5.19)
were typically consistent over an entire landslide and were even similar between landslide
experiments. This is not surprising given that most material landslides had similar
surface to volume ratios. The mean error in repeatability was 4.6% for all traces over all
trials with a maximum mean error of 6.2% for the traces of the 2 mm lead shot landslides.
This error estimate agrees with the worst observed repeatability of landslide area found
when the same movie frame was traced several times. Combining the mean repeatability
error and the accuracy error provides a standard error in landslide area of about 4.7%.
This method of arriving at landslide area appears to be remarkably robust. This standard

error is shown in Figures 5.21 to 5.23.

However, two other sources of error need to be considered in addition to the customary
analyses provided above: i) perspective changes and ii) blurring of the front face of the
landslide. In particular, the insidious effects of perspective were measurable despite
attempts to reduce the effect with careful lighting. Even for the best backlit experiments
performed with dark particles, the easily delineated front face of the landslide blurred
once surface shearing began to mobilize particles. For many material landslides, the
center of mass motion had already carried the front face past the movie camera before the
perspective of the front face of the landslide became blurred by particle motion. Calcite
landslides formed a notable exception in part because the irregular shape of the material
particles apparently made them easy to loft in the surface shearing flow. However,
almost half of the material landslides were performed with clear glass beads for which
perspective of the front face of the landslide became a shady region of subtle grays. The

response to this dilemma was to calibrate the experimenter's eye to the rate of
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disappearance of the front face of the landslide with distance down the incline provided
the said experimenter acknowledge the deficiency during the first few (usually four or
five) landslide traces (out of 15-20 total traces). It is difficult to gauge reliable error
estimates for the corrected landslide area during the first few traces. However, deliberate
~ attempts to completely include the entire visible front face of the landslide amounted to
around 15% errors in the landslide area at early times (close to t=0%). Science is clearly

inept without the occasional assistance of skillful artisans.

Examples of area change with either time or position can be seen in Figures 5.21 to 5.23.
All but two material landslides (involving 0.5 mm glass beads and garnet sand) had linear
variations of cross-sectional area in time. Therefore, linear curve fits were made over all
area data for these material landslides. There was no estimate of accuracy available for
these curve fits. Instead, a measure of repeatability was sought for the rate of change of
area in time for all trials repeated more than once. A mean standard error of £13% was
found for the initial rate of area change in time. No trials had errors significantly
different from the mean. The initial rate of change of area in time and the corresponding

errors can be found in Table 5.5.
B.1.9 Landslide Rate of Deformation

Equation (3.86) is sufficiently accurate to serve as the source of an error analysis of the
initial landslide rate of deformation. A typical value of the initial normal rate of strain is
-1 s-! with a standard error of +23%. A typical value of the initial rate of area change in
time is 1.5 s-1 with a standard error of £13%. The typical value of the initial landslide
rate of deformation 2.5 rad/s has expected bounds of 2.08 rad/s and 2.93 rad/s based on
the standard errors in the initial normal rate of strain and the initial rate of area change in
time. The initial landslide rate of deformation therefore has an error of £17% at one
standard deviation. This per cent error was used to calculate the standard errors given in
Table 5.5.

The error in the nondimensional landslide deformation I't, given in Table 5.6 was

calculated from the chain rule of calculus

d(C't,) = dT to + I dt, (B.16)
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where t, and dt, are found in Table 5.4 while I' and dI' are found in Table 5.5.

Therefore, each error shown is calculated from standard errors for that particular trial. An
estimate of the expected error for all trials is found from

d(T to) dr  dt,
— 0 - 4 =0 17
Tt r to (B.17)

which has typical values of £25% at about one standard deviation. The errors calculated
from equation (B.16) and shown in Table 5.6 agree quite well with mean errors calculated
from equation (B.17). The error in the nondimensional landslide deformation applies to
Figure 5.44 although there is no clear way to indicate errors in I't, on the graph.

B.2 Solid Block Landslide Analyses

The computerized wave data acquisition used for this work allowed for a quantitative
error analysis of every step of water wave measurement and processing. Therefore,
reliable error bounds at one standard deviation are derived for measured and calculated
characteristic waves quantities. Some references are made to wave measurements not
included in this work. More than seventy near-field wave measurements were made with
a laser rangefinder immersed in the water immediately above the solid blocks. The data
were never used because the laser rangefinder failed to provide accurate solid block
motion. However, the wave records are reliable and many experiments were repeated
five times. In many instances, this is the only data set able to provide repeatability errors
for wave measurements. Reliable error estimates for landslide kinematics and wave
measurements have allowed reliable error bounds to be calculated for the nondimensional

parameters in the wavemaker formalism.
B.2.1 Near-field Wave Measurements

The mean slope of the near-field wave gauge calibration curve in the region of zero
displacement for the twenty Trials 25-44 was 3.7 mm/V. The A/D board had a 12 bit
resolution of £5 mV over the range +10 V which for a typical near-field wave gauge
gives an error of £19 um at one standard deviation. Likewise, the mean peak to peak
noise for the twenty Trials 25-44 provided a typical error of £54 um at one standard
deviation. The stepper motors had an accuracy of one step or £33 um. There were also

accuracy errors incurred when curve fitting the calibration points with a polynomial. A
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typical measure of these errors is the displacement of the curve fit at zero voltage
difference which in theory should be zero. The near-field polynomial curve fits of the 12
solid block trials from Trial 25 to Trial 44 were offset from the origin by £101 um at one
standard deviation. A comparison of the maximum near-field wave amplitudes for 25
trials (not reported herein) using a calibration curve before the trials were performed and
another immediately after the trials were performed gives an excellent measure of the
wave amplitude accuracy. The two calibration curves were used to convert each voltage
signal into two maximum near-field wave amplitudes for each trial. The expected
accuracy of the maximum near-field wave amplitude was the larger of 210 ywm or +4.1%
of the wave amplitude at one standard deviation. This error, found by comparing
different calibration curves, is almost equal to the +207 um sum of the aforementioned
accuracy errors and is therefore used below. The error expressed in length applies to
smaller wave amplitudes while the error expressed in percentage applies to larger wave
amplitudes. The error in the maximum near-field wave amplitude due to repeatability
was found from 12 distinct solid block experiments (not reported herein) with each
experiment repeated five times. The repeatability of the maximum near-field wave
amplitude was the larger of 96 um or +1.8% of the wave amplitude at one standard
deviation. Given that accuracy and repeatability errors are independent, the total error in
the near-field wave gauge measurement can be taken as the square root of the sum of the
two variances. A typical error in near-field wave amplitude would therefore be the larger

of £231 um or +4.5% of the wave amplitude. This error estimate is shown on Figures
5.29 and 5.33.

Based on the repeated 2,, 2p, 25, 24, 2¢ trials shown in Appendix A, the pointwise
repeatability of the near-field wave record was +229 um at one standard deviation. The
pointwise error in repeatability is greater than that of the maximum near-field wave
amplitude due to the increasing signal drift at larger times when the water level is
supposed to settle back to zero. The mean drift rate in the zero level voltage was 1.8x10-4
V/s with a typical variability of #3.6x10-4 V/s at one standard deviation. The voltage
drift rate was measured from the changes in zero level voltage at the beginning and end of
the 12 wave gauge calibrations for solid block trials from Trial 25 to Trial 44 lasting
between 250-350 s. After four seconds, the error in wave amplitude due to voltage drift
alone could be in the range of £20 pm at one standard deviation. Another source of drift
is residual wetting of the wave gauge wires after a wave has passed. This form of drift is
harder to quantify. The wave gauge calibration procedure is supposed to correct for this
effect but the rates of water rise and fall differed between the gauge calibration and the
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actual experiment waves. The maximum near-field wave amplitude is close enough to
the beginning of the trial to not be subjected to significant amounts of drift and is
therefore more repeatable. The pointwise error in near-field wave measurements just
derived applies to Figures 5.27, 5.28, 5.42, and half of the figures in Appendix A.

B.2.2 Amplitude Integral

The error in toNmax Was calculated in the usual fashion and resulted in an error of £12.5%
at one standard deviation given error analyses from Sections B.1.5 and B.2.1. A
comparison of the amplitude integrals for 25 trials (not reported herein) using a
calibration curve before the trials were performed and another immediately after the trials
were performed provided an error of +146 um-s or +5.2% at one standard deviation. The
repeatability of the amplitude integral for all 2, 24, 2¢ trials was £200 um-s or £5.3% at
one standard deviation. The resulting error in the amplitude integral is therefore £248
pum-s or 7.4% at one standard deviation. This is approximately the same error found by
integrating the near-field errors discussed in Section B.2.1 from t=0 s until about tx=1 s.
Both error estimates made here are employed in Figure 5.30. The nondimensional ratio
I(0)/toNmax in Figure 5.30 has an error of £19.9% at one standard deviation.

B.2.3 Energy Integral

The error in toNimax2 Was calculated in the usual fashion and resulted in a standard error
of £17% given error analyses from Sections B.1.5 and B.2.1. A comparison of the near-
field energy integrals for 25 trials (not reported herein) using a calibration curve before
the trials were performed and another immediately after the trials were performed yielded
an approximate accuracy error of +1.4 mm2-s or £11.0% at one standard deviation. The
repeatability of the near-field energy integral for all 2, 24, 2 trials was 3 mm?-s or
+13.7% at one standard deviation. The resulting error in the near-field energy integral is
+3.3 mm?2-s or £17.6% at one standard deviation. The close agreement between the two
errors given here is fortuitous, although they must be similar in magnitude. The energy
integral error given here is more than double that of the amplitude integral because the
energy integral extended until about t=4 s which increases the error associated with drift.
These errors are shown on Figure 5.31. The nondimensional ratio Ep(O)/tonmaX2 in

Figure 5.31 has an error of £34.6% at one standard deviation.
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A measure of the accuracy of the far-field energy integral was obtained by applying
before and after calibration curves to Trials 26, 29 and 30. An accuracy of £0.3 mm?2-s or
3.6% at one standard deviation was found. The accuracy is not exceptional: the far-field
calibration curves had relatively small curvatures converting relatively small waves
amplitudes when compared to the near-field. The repeatability of the far-field energy
integral for all 2y, 24, 2. trials was £8.7 mm?-s or +33.5% at one standard deviation. The
far-field energy integral is seen to be quite sensitive to the highly variable rates of drift.
The resulting error in the far-field energy integral is +8.7 mm?2-s or £33.7% at one
standard deviation. Figure 5.40 shows error bars for the nondimensional ratio
Ep(4.25)/Ep(0) with values of +51.3% at one standard deviation.

Since the error associated with the energy integral depends on the wave gauge used to
measure the wave record, no single error estimate would be appropriate for Figure 5.39.
It was decided to set vertical error bars for the data at £25% to provided an approximate

indication of the expected error in the energy integral.
B.2.4 Far-field Wave Measurements

The mean slope of the far-field wave gauge calibration curve in the region of zero
displacement was 5.4 mm/V. Therefore, the A/D board wave resolution was typically
427 pm at one standard deviation for the far-field wave gauge. Likewise, the mean peak
to peak noise provided a typical error of 144 um at one standard deviation. The far-field
wave gauge was consistently noisier than the near-field wave gauge. The stepper motor
once again had an accuracy of £33 pm. The polynomial curve fit usually missed the
origin by +46 pm at one standard deviation. Summing the accuracy errors yields an
expected accuracy of a far-field wave amplitude of 250 um at one standard deviation.
Another measure of the accuracy was obtained by applying before and after calibration
curves to Trials 26, 29 and 30 and comparing maximum Airy wave amplitudes. An
estimate of the accuracy error of the maximum Airy wave amplitude was £30 pm or
1.9% at one standard deviation. The larger estimate of the accuracy error +250 pum is
used below, especially given the noise in the far-field signal. The repeatability of the
maximum Airy wave amplitude for all 2y, 24, 2¢ trials was £330 um or £14.8% at one
standard deviation. There is much less repeatability in far-field wave records. Summing
the variances yields an error in maximum Airy wave amplitude of £414 um or 18.6% at
one standard deviation. The per cent error given here was inferred from the repeatability

error. Figure 5.33 shows the standard error in the maximum Airy wave amplitude.
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Based on all repeated 24, 2, 25, 24, 2e trials, the pointwise repeatability of the far-field
wave record was £326 pum at one standard deviation. The pointwise error in repeatability
is greater than the error of the maximum Airy wave amplitude due to the increasing
signal drift at larger times when the water level is supposed to settle back to zero. The
mean drift rate in the zero level voltage was 1.3x10-4 V/s with a typical variability of
+0.9x10-4 V/s at one standard deviation. After four seconds, the error in wave amplitude
due to voltage drift alone could be in the range of £8 um. The pointwise error in far-field
wave measurements given here applies to Figures 5.32, 5.43, and half of the figures in
Appendix A.

B.2.5 Wavemaker Curve

The error bars on Figures 5.34 and 5.35 represent one standard deviation and are the
culmination of many separate error analyses. To begin with, the error in the characteristic
distance s, is given by equation (B.4) as +11% error at one standard deviation. Likewise,
the error in the characteristic time t, is given by equation (B.5) as a standard error of
+8%. For a perfectly well known gravitational acceleration, the Hammack number has an
error given by

dHa, dt, A, dd | db

Hao—-g‘+2—a+—b— (B.18)

which results in a £9.5% standard error since the error in each distance measurement is
approximately +1%. The error in the initial block submergence results from the 0.5 mm
accuracy of the submergence measurement while the error in the block size results from
the 0.5 mm precision of solid block construction. The error in the nondimensional wave
amplitude Nmax/se is clearly £15.5% at one standard deviation given results from Section

B.2.1. These error estimates also appear in Figures 5.37 and 5.48.

The existence of a wavemaker curve theoretically relates the maximum near-field wave
amplitude error to errors in the landslide geometry and kinematics. If the theoretical
wavemaker curve equation (5.40) with n=2 is exact, then there is an intrinsic error in the
maximum near-field wave amplitude of +8% at one standard deviation. On the other
hand, if equation (5.41) with the exponent n=1 is exact, then one finds an intrinsic

standard error of +4.5% in the maximum near-field wave amplitude.
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B.2.6 Linear Theory Predictions

If the solid block motion used to calculate theoretical wave amplitudes of corresponding
solid block trials were exact, then there would be no horizontal error bars in Figure 5.37.
However, errors in Ha, found in Section B.2.5 above become part of the theoretical error
when comparing experimental and theoretical nondimensional wave amplitudes. The
correct way to take the error in Ha, into account is to use equation (5.35). Taking the
natural logarithm of each side of equation (5.35) and differentiating yields the error in the
Hammack number multiplied by the factor n=1.625. There results an error in TNmax/So of
+15.4%.

B.2.7 Energy Conversion

The vertical error bars in Figure 5.41 were calculated from

= - i
e Nmax 2d 7 ag U¢ b

de 2 dnNmax dd  dap | du + 2db (B.19)

which provides a standard error of £19.5%.
B.3 Material Landslide Analyses

Standard errors in the characteristics of material landslide motion are given in Section
B.1.6. The error in the maximum near-field wave amplitude from Section B.2.1 was used
as well. The error analyses of material landslide wavemaker plots was carried out in the
same manner as described in Section B.2.5 for solid block landslides. The standard error
in the Hammack number Ha, is found to be £9.5% while that of the nondimensional
wave amplitude is £19% at one standard deviation. These errors are indicated on Figure
5.44. However, Figure 5.44 does not indicate the +25% error in the nondimensional

landslide deformation calculated in Section B.1.9 above.
B.4 Numerical Simulation Analyses

Laplace's partial differential equation arises from conservation of volume in an inviscid

fluid flow. Therefore, an accurate ideal fluid simulation that uses Laplace's equation
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should do an excellent job conserving mass. In the very least, any loss of mass should be
minimized as discussed in Section 5.4.1. The relative volume change per unit width
AV/V, was calculated at each time step by the simulation. Since most of the volume
change can be attributed to the landslide vertex, the characteristic wave height calculation
made in Section 3.1.3 can be used to evaluate the expected error in the numerical
simulations. Replacing bsesin® in equation (3.14) with AV(to) gives the error estimate

AH  AV()
5 = . \/_g_a (B.20)

in the maximum near-field wave amplitude. The numerical simulations have a typical
error in the maximum near-field wave amplitude of 5.6% due to errors in the

conservation of volume. This error appears in Figures 5.48 and 5.50.
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Appendix C

C. Raw Data

The data used to construct figures in Chapter 5 are provided in this appendix.
Experimental data are identified by the type of landslide and ordered by increasing trial
number. Numerical simulations are ordered by increasing run number. The notation in
the tables is consistent for a given type of landslide: solid block, material, or simulated.
The entry "NA" in the tables means either "not applicable” or "not available." The
numbers appear as they did in the KaleidaGraph spreadsheets; they were not truncated to
the significant decimal place. All trials were performed with an incline angle 45° from
horizontal. Equation numbers in parentheses sometimes describe a column to avoid
notational ambiguity. The solid block characteristics of motion in Table C.2 were
calculated from equations (3.75). Equation (3.97) in Table C.4 yielded the linear theory
prediction of the nondimensional maximum near-field wave amplitude. Equation (5.26)
in Table C.7 provided the channel depth corresponding to deep water waves propagating
in the far-field. Equations (5.8) and (5.10) estimated the experimental initial acceleration
and terminal velocity of material landslides, respectively. The initial acceleration a, in
Table C.10 and the terminal velocity u; in Table C.11 are theoretical values calculated
from equations (3.73) and (3.74), respectively. The particle velocities in Table C.14 were
taken from Table 4.3. The computer simulations employed a Coulombic friction

coefficient Cn=0.344 and a nondimensional solid block size b=1.
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Table C.1: Solid Block Landslide Initial Geometry and Long Wave Celerity

Block # Trial b (m) d (m) Vg d (m/s) d/b

2n 25 0.086 0.0745 0.85489 0.86628
P 26 0.086 0.1160 1.06630 1.34880
2n 27 0.086 0.0970 0.97548 1.12790
2a 28 0.086 0.0745 0.85489 0.86628
b 29 0.086 0.0745 0.85439 0.86628
24 30 0.086 0.0745 0.85489 0.86628
e 31 0.086 0.0745 0.85439 0.86628
2 a1 0.036 0.0740 0.35202 0.86047
2 472 0.086 0.0740 0.85202 0.86047
Tn 43 0.124 0.0740 0.85202 0.59677
Tn 44 0.124 0.0450 0.66442 0.36200
2 47 0.086 0.0730 0.84624 0.843%4
2d 48 0.036 0.0730 0.84624 0.84834
2e 49 0.086 0.0730 0.84624 0.84884
7 50 0.040 0.0850 0.91315 2.12500
30 51 0.061 0.0820 0.830689 1.34430
n 52 0.086 0.0400 0.62642 0.46512
3n 35 0.061 0.0520 0.71423 0.85246
20 56 0.086 0.0400 0.62642 0.46512
Zn 57 0.086 0.0500 0.70036 0.58140
3n 53 0.061 0.0620 0.77988 1.01640
3, 59 0.061 0.0715 0.83751 1.17210
2n 60 0.086 0.0595 0.76400 0.69136
Tn 61 0.124 0.0450 0.66442 0.36290
Zn 62 0.086 0.0640 0.79236 0.74419
3n 63 0.061 0.0760 0.36346 1.24590
3n 64 0.061 0.0810 0.80141 1.32790
Tn 65 0.124 0.0500 0.70036 0.40323
20 66 0.086 0.0690 0.82273 0.80233
2n 67 0.086 0.0745 0.85489 0.86628
2% 63 0.086 0.0745 0.85489 0.86628
2a 69 0.086 0.0745 0.85489 0.86628
b 70 0.086 0.0745 0.85489 0.86628
24 71 0.086 0.0745 0.85489 0.86628
2e 72 0.086 0.0745 0.85489 0.86628
2 73 0.086 0.0745 0.85489 0.86628
24 74 0.086 0.0745 0.85489 0.36628
2e 75 0.086 0.0745 0.85489 0.86628
3n 76 0.061 0.0865 092118 1.41800
Tn 77 0.124 0.0555 0.73787 0.44758
Tn 78 0.124 0.0735 0.84914 0.59274
2n 79 0.086 0.0925 0.95259 1.07560
3n 80 0.061 0.1045 1.01250 1.71310
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Table C.2: Solid Block Landslide Characteristics of Motion

Block # Trial a, (m/s2) u; (m/s) to (s) So (m)
2n 25 1.6321 0.5585 0.34220 0.19112
2n 26 1.6112 0.5585 0.34664 0.19360
2n 27 1.6314 0.5585 0.34234 0.19120
2a 28 1.1972 0.4415 0.36878 0.16282
2b 29 1.4490 0.5369 0.37053 0.19894
24 30 1.9478 0.6484 0.33289 0.21584
2e 31 2.2201 0.7095 0.31958 0.22674
20 41 0.8256 0.3691 0.447706 0.16501
21 42 2.4142 0.8036 0.33286 0.26749
In 43 1.5590 0.6517 0.41802 0.27243
In 44 1.6082 0.6517 0.40524 0.26409
2n 47 1.6321 0.5585 0.34220 0.19112
24 48 1.9478 0.6484 0.33289 0.21584
2e 49 2.2201 0.7095 0.31958 0.22674
4, 50 1.5625 0.4198 0.26867 0.11279
3n 51 1.6473 0.4271 0.25927 0.11074
2n 52 1.6505 0.5585 0.33838 0.18899
3 55 1.6088 0.4271 0.26548 0.11339
2n ‘ 56 1.6505 0.5585 0.33838 0.18899
2n 57 1.6543 0.5585 0.33761 0.18855
3 58 1.6577 0.4271 0.25765 0.11004
3 59 1.6094 0.4271 0.26538 0.11334
2n 60 1.5318 0.5585 0.36460 0.20363
In 61 1.6200 0.6517 0.40228 0.26217
2n 62 1.7132 0.5585 0.32600 0.18207
3 63 1.5650 0.4271 0.27291 0.11656
3 64 1.5608 04271 0.27364 0.11687
1n 65 1.5795 0.6517 0.41260 0.26889
2n 66 1.6289 0.5585 0.34287 0.19149
2n 67 1.6786 0.5585 0.33272 0.18582
20 68 0.8200 0.3691 0.45012 0.16614
24 69 1.1617 0.4415 0.38005 0.16779
2h 70 1.3880 0.5369 0.38682 0.20768
2d 71 1.8855 0.6484 0.34389 0.22298
2e -T2 2.1885 0.7095 0.32419 0.23002
2] 73 2.4171 0.8036 0.33246 0.26717
24 74 1.9174 0.6484 0.33817 0.21927
2e 75 2.0908 0.7095 0.33934 0.24076
3n 76 - 1.5067 04271 0.28347 0.12107
1y 77 1.6126 0.6517 0.40413 0.26337
Iy 78 1.5326 0.6517 0.42523 0.27712
2n 79 1.6458 0.5585 0.33935 0.18953
3n 80 1.8001 04271 0.23726 0.10134
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Table C.3: Solid Block Landslide Ha,, Sg and Maximum Near-Field Wave Amplitudes

Block # Trial Hai- Sg Nmax (cm) Tma L/.l So
2n 25 3.4017 1.8140 0.549 0.028726
2n 26 4.2997 1.1801 0.417 0.021540
2n 27 3.8832 1.3938 0.514 0.026883
2a 28 3.6659 1.5453 0.315 0.019347
2b 29 3.6833 1.8882 0.391 0.019654
24 30 3.3091 2.0487 0.547 0.025342
2e 31 3.1768 2.1521 0.640 0.028226
25 41 4.4291 1.5767 0.269 0.016302
2 42 3.2978 2.5560 0.757 0.028300
1n 43 2.8723 2.6032 1.040 0.038175
Iy 44 2.1713 4.1498 1.250 0.047332
2n 47 3.3672 1.8512 0.620 0.032441
24 48 3.2756 2.0908 0.703 0.032570
2e 49 3.1447 2.1963 0.757 0.033386
4, 50 6.1335 0.9383 0.176 0.015604
3n 51 3.8121 0.9549 0.273 0.024653
2n 52 2.4648 3.3408 1.152 0.060957
3n 55 3.1084 1.5418 0.448 0.039511
2 56 2.4648 3.3408 0.889 0.047040
2n 57 2.7493 2.6665 0.674 0.035746
3, 58 3.2940 1.2550 0.394 0.035805
35 59 3.6435 1.1209 0.399 0.035203
2n 60 3.2390 2.4200 0.629 0.030889
1 61 2.1555 4.1196 1.282 0.048900
2n 62 3.0036 2.0116 0.673 0.036964
3, 63 3.8630 1.0845 0.379 0.032516
35 64 3.9988 1.0203 0.337 0.028835
1y 65 2.3304 3.8027 1.299 0.048310
2n 66 3.2801 1.9624 0.657 0.034309
2n 67 3.3074 1.7637 0.598 0.032181
20 68 4.4745 1.5769 0.314 0.018900
2, 69 3.7779 1.5926 0.372 0.022171
2 70 3.8452 1.9712 0.508 0.024461
2d 71 3.4185 2.1164 0.682 0.030586
2e 72 3.2227 2.1832 0.709 0.030824
2] 73 3.3049 2.5358 0.808 0.030243
24 74 3.3616 2.0811 0.679 0.030967
2e 75 3.3733 2.2852 0.719 0.029863
3, 76 4.2807 0.9897 0.293 0.024201
In 77 2.4048 3.3555 1.227 0.046588
1, 78 29119 2.6660 1.139 0.041101
20 79 3.7588 1.4488 0.565 0.029811
3, 80 3.9382 0.6857 0314 0.030986
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Table C.4: Solid Block Landslide Linear Theory and Amplitude Integral

Block # Trial (3.97) Nairy (cm) | toNmax (cm-s) 1(0) (cm:-s)
2y 25 0.10600 0.197 0.18787 0.323
2y 26 0.09532 0.159 0.14455 0.261
2 27 0.10130 0.163 0.17596 0.300
24 28 0.09378 0.108 0.11616 0.238
2p 29 0.09305 0.141 0.14488 0.275
24 30 0.11080 0.208 0.18209 0.330
2e 31 0.11830 0.241 0.20453 0.368
25 41 0.06789 0.074 0.12026 0.163
2] 42 0.11090 0.273 0.25198 0.410
Iy 43 0.10850 0.449 0.43475 0.577
i 44 0.12260 0.488 0.50654 0.685
2n 47 0.10630 0.239 0.21216 0.352
24 48 0.11110 0.283 0.23402 0.392
2e 49 0.11860 0.303 0.24192 0.415
4y 50 0.07037 0.039 0.04729 0.097
3 51 0.11410 0.063 0.07078 0.191
2n 52 0.11930 0.259 0.38982 0.457
3n 55 0.12120 0.137 0.11893 0.247
2 56 0.11930 0.213 0.30082 0.418
2y 57 0.11470 0.211 0.22755 0.392
3n 58 0.12320 0.117 0.10151 0.224
3n 59 0.11390 0.115 0.10589 0.228
2y 60 0.09832 0.188 0.22934 0.388
1y 61 0.12420 0.368 0.51573 0.729
2n 62 0.11720 0.167 0.21940 0.379
3n 63 0.10760 0.103 0.10343 0.203
3n 64 0.10560 0.112 0.09222 0.201
I 65 0.11780 0.292 0.53597 0.715
2n 66 0.10680 0.156 0.22527 0.373
2n 67 0.11090 0.196 0.19897 0.347
20 68 0.06707 0.104 0.14134 0.242
2, 69 0.08924 0.123 0.14138 0.262
2h 70 0.08666 0.142 0.19650 0.309
24 71 0.10510 0.179 0.23453 0.372
2e 72 0.11560 0.182 0.22985 0.379
2] /3 0.11100 0.192 0.26863 0.420
24 74 0.10800 0.246 0.22961 0.381
2e 75 0.10740 0.200 0.24399 0.384
3n 76 0.09851 0.078 0.08306 0.173
Iy 77 0.12080 0.245 0.49587 0.671
Iy 78 0.10550 0.390 0.48433 0.635
2n 719 0.10380 0.155 0.19173 0.329
3n 80 0.12090 0.091 0.07450 0.179
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Table C.5: Solid Block Landslide Energy Integrals

Block # Trial toNmax? (cm2s) | Ep(0) (cm?s) | Ep(4.25) (cm?-s)
2n 25 0.10314 0.166 0.128
2n 26 0.06028 0.108 0.092
2n 27 0.09045 0.134 0.099
24 28 0.03659 0.066 0.023
2h 29 0.05665 0.096 0.039
24 30 0.09960 0.164 0.134
2e 31 0.13090 0.213 0.206
24 41 0.03235 0.051 0.017
2 42 0.19075 0.283 0.400
1, 43 0.45214 0.580 0.781
I 44 0.63318 0.683 0.745
2y 47 0.13154 0.212 0.244
24 48 0.16452 0.256 0.365
2e 49 0.18314 0.290 0.467
44 50 0.00832 0.015 0.008
3 51 0.01932 0.043 0.017
2n 52 0.44907 0.375 0.197
3 55 0.05328 0.093 0.046
2n 56 0.26743 0.283 0.131
2n 57 0.15337 0.227 0.126
3 58 0.04000 0.073 0.035
3n 59 0.04225 0.074 0.037
24 60 0.14425 0.217 0.142
Iy 61 0.66116 0.745 0.661
2 62 0.14765 0.231 0.202
3n 63 0.03920 0.058 0.033
3n 64 0.03108 0.059 0.040
1y 65 0.69622 0.761 0.554
2n 66 0.14800 0.216 0.153
25 67 0.11898 0.176 0.163
26 68 0.04438 0.059 0.023
2, 69 0.05259 0.078 0.038
2p 70 0.09982 0.127 0.083
24 71 0.15995 0.215 0.225
2e 72 0.16297 0.229 0.250
2] 73 0.21705 0.288 0.348
24 74 0.15591 0.229 0.272
2e 75 0.17543 0.239 0.271
3n 76 0.02434 0.042 0.026
Iy 77 0.60843 0.693 0.537
| 78 0.55165 0.667 0.753
2n 79 0.10833 0.159 0.115
3 80 0.02339 0.046 0.023
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Table C.6: Solid Block Landslide Nondimensional Wave Characteristics

Block # Trial I(O) / to Mmax EP(O) / to nmaxz Ep(425) / Ep(O)
2n 25 1.7193 1.6095 0.7711
2 26 1.8056 1.7918 0.8519
2y 27 1.7049 1.4815 0.7388
23 28 2.0488 1.8037 0.3485
2p 29 1.8982 1.6947 0.4063
24 30 1.8123 1.6465 0.8171
2e 31 1.7992 1.6272 0.9671
2o 41 1.3554 1.5765 0.3333
2 42 1.6271 1.4836 1.4134
1n 43 1.3272 1.2828 1.3466
1y 44 1.3523 1.0787 1.0908
2 47 1.6591 1.6117 1.1509
24 48 1.6751 1.5561 1.4258
2e 49 1.7154 1.5835 1.6103
4y 50 2.0513 1.8024 0.5553
3n 51 2.6984 2.2253 0.3954
2 52 1.1723 0.8351 0.5253
3n 55 2.0768 1.7454 0.4946
2n 56 1.3895 1.0582 0.4629
2n 57 1.7227 1.4801 0.5551
3 38 2.2066 1.8252 0.4795
3n 59 2.1533 1.7515 0.5000
2 60 1.6918 1.5043 0.6544
Iy 61 1.4135 1.1268 0.8873
2n 62 1.7275 1.5645 0.8745
3n 63 1.9626 1.4796 0.5690
3n 64 2.1796 1.8985 0.6780
Iy 65 1.3340 1.0930 0.7280
2n 66 1.6558 1.4595 0.7083
2y 67 1.7440 1.4792 0.9261
20 68 1.7122 1.3294 0.3898
2, 69 1.8532 1.4831 0.4872
2h 70 1.5725 1.2722 0.6535
24 71 1.5861 1.3442 1.0465
2e 72 1.6489 1.4052 1.0917
2 73 1.5635 1.3269 1.2083
24 74 1.6593 1.4688 1.1878
2e 75 1.5738 1.3624 1.1339
3n 76 2.0829 1.7259 0.6191
1y 77 1.3532 1.1390 0.7749
Iy 78 1.3111 1.2091 1.1289
2y 79 1.7159 1.4678 0.7233
3n 80 2.4026 1.9664 0.5000
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Table C.7: Solid Block Landslide Energy Conversion and Channel Depth

Block # Trial Ob (kg/m3) e (%) h Lrn) (5.26) (m)
25 25 1870 3.9940 0.3730 0.293
2n 26 1870 2.9126 0.3730 0.370
25 27 1 870 3.9965 0.3730 0.334
2a 28 1460 2.9043 0.3730 0.315
2b 29 1710 2.5958 0.3730 0.317
24 30 2 180 2.4547 0.3730 0.285
2e 31 2 465 2.3828 0.3730 0.273
20 41 1225 4.3637 0.3730 0.381
2] 42 2745 2.4224 0.3730 0.284
Iy 43 1 890 6.0992 0.3678 0.356
1, 44 1 890 6.6608 0.3678 0.269
2n 47 1870 5.0423 0.3730 0.290
24 48 2 180 4.0135 0.3730 0.282
2e 49 2 465 3.2999 0.3730 0.270
4, 50 1 835 2.8702 0.4155 0.245
30 51 1 835 2.7191 0.4060 0.233
2n 52 1870 12.742 0.3730 0.212
3, 55 1835 5.9707 0.3730 0.190
2n 56 1870 7.5884 0.3730 0.212
2 57 1 870 4.8654 0.3730 0.236
3, 58 1 835 4.8938 0.3730 0.201
3n 59 1 835 5.5514 0.3730 0.222
2n 60 1870 4.9922 0.3731 0.279
1n 61 1890 6.9552 0.3730 0.267
2n 62 1870 5.2996. 0.3730 0.258
35 63 1835 5.3105 0.3730 0.236
3n 64 1 835 4.3463 0.3730 0.244
Iy 65 1 890 7.7201 0.3731 0.289
2n 66 1870 5.5156 0.3730 0.282
2n 67 1870 4.6075 0.3730 0.284
20 68 1225 6.0067 0.3730 0.385
2 69 1460 4.1743 0.3730 0.325
2b 70 1710 4.5743 0.3730 0.331
24 71 2 180 3.9420 0.3730 0.294
2e 72 2 465 2.9665 0.3730 0.277
2 73 2745 2.7658 0.3730 0.284
24 74 2 180 3.8424 0.3730 0.289
2e 75 2 465 3.1934 0.3730 0.290
3n 76 1 835 3.5171 0.3730 0.261
In 77 1 890 7.1080 0.3730 0.298
In 78 1 890 7.4166 0.3730 0.361
2n 79 1870 4.6744 0.3730 0.323
3n 80 1835 3.7161 0.3730 0.240
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Table C.8: Material Landslide Initial Geometry and Long Wave Celerity

Material Trial b (m) d (m) Vg d (m/s) d/b
 Crushed Calcite 32 0.084 0.073 0.84624 0.86905
Crushed Calcite 33 0.085 0.073 0.84624 0.85882
3 mm Glass Beads 34 0.085 0.073 0.84624 0.85882
1 mm Glass Beads 35 0.084 0.075 0.85776 0.89286
12 mm Marbles 37 0.084 0.076 0.86346 0.90476
3 mm Lead Shot 38 0.090 0.076 0.86346 0.84444
2 mm Lead Shot 39 0.085 0.080 0.88589 094118
Crushed Calcite 40 0.082 0.076 0.86346 0.92683
3 mm Steel Shot 81 0.085 0.074 0.85202 0.87059
3 mm Glass Beads 82 0.083 0.074 0.85202 0.89157
12 mm Marbles 83 0.084 0.072 0.84043 0.85714
2 mm Lead Shot 84 0.087 0.075 0.85776 0.86207
Garnet Sand 85 0.087 0.075 0.85776 0.86207
3 mm Lead Shot 86 0.085 0.072 0.84043 0.84706
0.5 mm Glass Beads | 87 0.085 0.075 0.85776 0.88235
1 mm Glass Beads 89 0.085 0.049 0.69332 0.57647 .
1 mm Glass Beads 90 0.085 0.100 0.99045 1.17650
3 mm Glass Beads 91 0.112 0.097 0.97548 0.86607
1 mm Glass Beads 92 0.068 0.059 0.76078 0.86765
1 mm Glass Beads 93 0.057 0.050 0.70036 0.87719
Table C.9: Material Landslide Physical Properties
Material _ Trial D (mm) Ch _ Ps (kg/m3) D/b
Crushed Calcite 32 3.328 0.36397 1950 0.03962
Crushed Calcite 33 3.328 0.36397 1950 0.03915
3 mm Glass Beads 34 2.959 0.10510 1935 0.03481
1 mm Glass Beads 35 1.257 0.08749 1910 0.01496
12 mm Marbles 37 12.16 0.09629 1 899 0.14476
3 mm Lead Shot 38 3.114 0.21256 7 321 0.03460
2 mm Lead Shot 39 2.059 0.08749 7114 0.02422
Crushed Calcite 40 3.328 0.36397 1965 0.04059
3 mm Steel Shot 81 3.311 0.10510 5102 0.03895
3 mm Glass Beads 82 2.959 0.10510 1935 0.03565
12 mm Marbles 83 12.16 0.09629 1 899 0.14476
2 mm Lead Shot 84 2.059 0.08749 7114 0.02367
Garnet Sand 85 0.400 0.70021 2 640 0.00460
3 mm Lead Shot 86 3.114 0.21256 7321 0.03664
0.5 mm Glass Beads | 87 0.500 0.09629 1 882 0.00588
1 mm Glass Beads 89 1.257 0.08749 1910 0.01479
1 mm Glass Beads 90 1.257 0.08749 1910 0.01479
3 mm Glass Beads 91 2.959 0.10510 1935 0.02642
1 mm Glass Beads 92 1.257 0.08749 1910 0.01849
1 mm Glass Beads 93 1.257 0.08749 1910 0.02205




Table C.10: Material Landslide Characteristics of Motion
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Material Trial to (8) So (m) (5.8) (m/s?) | a, (m/s2)
Crushed Calcite 32 0.28960 0.13520 1.6120 1.5282
Crushed Calcite 33 0.27215 0.12425 1.6775 1.5282
3 mm Glass Beads 34 0.31909 0.18132 1.7808 2.1280
1 mm Glass Beads 35 0.34165 0.17895 1.5331 2.1314
12 mm Marbles 37 0.35338 0.25982 2.0806 2.0940
3 mm Lead Shot 38 NA NA NA 42538
2 mm Lead Shot 39 0.25233 0.30367 4.7695 4.8927
Crushed Calcite 40 0.27051 0.11579 1.5823 1.5439
3 mm Steel Shot 81 0.27086 0.29477 4.0178 43177
3 mm Glass Beads 82 0.32403 0.17086 1.6273 2.1280
12 mm Marbles 83 0.36429 0.27977 2.1082 2.0940
2 mm Lead Shot 84 NA NA NA 4.8927
Garnet Sand 85 NA NA NA 0.9931
3 mm Lead Shot 86 0.29484 0.38447 4.4228 4.2538
0.5 mm Glass Beads | 87 0.53112 0.26339 0.9337 NA

1 mm Glass Beads 89 0.37949 0.20729 1.4394 2.1314
1 mm Glass Beads 90 0.39005 0.21365 1.4043 2.1314
3 mm Glass Beads 91 0.31714 0.19216 1.9106 2.1280
1 mm Glass Beads 92 0.31164 0.14843 1.5283 2.1314
1 mm Glass Beads 93 NA NA NA 2.1314

Table C.11: Material Landslide Characteristics of Motion and Initial Shape
Material Trial | (5.10) (m/s) Uy (m/s) Ay (cm?) Zc.o (Cm)
Crushed Calcite 32 0.4669 0.5423 41.812 2.2771

| Crushed Calcite 33 0.4565 0.5455 40.713 2.1861
3 mm Glass Beads 34 0.5682 0.6419 39.441 2.1615
1 mm Glass Beads 35 0.5238 0.6358 36.579 2.1029
12 mm Marbles 37 0.7352 0.6227 42.181 2.4141
3 mm Lead Shot 38 NA 1.6096 43.010 2.3730
2 mm Lead Shot 39 1.2035 1.6561 40.894 2.3354
Crushed Calcite 40 0.4280 0.5400 37.155 2.1688
3 mm Steel Shot 81 1.0883 1.3435 37.644 2.2769
3 mm Glass Beads 82 0.5273 0.6344 36.675 2.1562
12 mm Marbles 83 0.7680 0.6227 36.146 2.1302
2 mm Lead Shot 84 NA 1.6755 36.602 2.2150
Garnet Sand 85 NA 0.4976 36.624 2.1630
3 mm Lead Shot 86 1.3040 1.5643 42.462 2.2652
0.5 mm Glass Beads | 87 0.4959 NA 34.665 2.0135
1 mm Glass Beads 89 0.5462 0.6395 34.864 2.0100
1 mm Glass Beads 90 0.5478 0.6395 35.441 2.0795
3 mm Glass Beads 91 0.6059 0.7369 62.889 2.8488
1 mm Glass Beads 92 0.4763 0.5720 23.531 1.6753
1 mm Glass Beads 93 NA 0.5237 15.504 1.3225
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Table C.12: Material Landslide Initial Rates of Strain

Material Trial | 1/A, dA/dt (s71) | 1/z¢ o dzo/dt (s1) Aol 9 zg o2
Crushed Calcite 32 1.55 -0.4025 0.89597
Crushed Calcite 33 1.92 -0.4560 0.94657
3 mm Glass Beads 34 2.41 -0.9805 0.93798
1 mm Glass Beads 35 2.35 -0.6006 0.91908
12 mm Marbles 37 1.17 -0.5934 0.80420
3 mm Lead Shot 38 1.92 -1.4806 0.84866
2 mm Lead Shot 39 2.16 -1.4968 0.83309
Crushed Calcite 40 1.83 -0.5195 0.87768
3 mm Steel Shot 81 1.53 -1.7123 0.80680
3 mm Glass Beads 82 1.75 -0.8886 0.87650
12 mm Marbles 83 1.44 ' -0.5510 0.88507
2 mm Lead Shot 84 1.57 -1.6700 0.82892
Garnet Sand 85 0.52 -0.8242 0.86978
3 mm Lead Shot 86 0.83 -1.5860 0.91949
0.5 mm Glass Beads | 87 0.83 -0.5201 0.95005
1 mm Glass Beads 89 2.33 -0.3305 0.95883
1 mm Glass Beads 90 2.62 -0.4904 0.91064
3 mm Glass Beads 91 1.61 -0.5474 0.86101
1 mm Glass Beads 92 2.26 -0.7035 0.93156
1 mm Glass Beads 93 2.82 -0.5516 0.98494

Table C.13: Material Landslide Initial Rates of Deformation, Ha, and Sg

Material Trial T (s]) Tt Ha, Sg

[Crushed Calcite 32 “1.1704 ~0.3390 2.9176 1.3096
Crushed Calcite 33 -1.4139 -0.3848 2.7095 1.2035
3 mm Glass Beads 34 -2.1810 -0.6956 3.1768 1.7563
1 mm Glass Beads 35 -1.7693 -0.6045 3.4887 1.6872
12 mm Marbles 37 -1.1510 -0.4067 3.6325 24174
3 mm Lead Shot 38 -2.4081 NA NA NA
2 mm Lead Shot 39 -2.5344 -0.6395 2.6298 2.6841
Crushed Calcite 40 -1.4224 -0.3848 2.8485 1.0773
3 mm Steel Shot 81 -2.4213 -0.6558 2.7151 2.8167
3 mm Glass Beads 32 -1.7484 -0.5665 3.3263 1.6327
12 mm Marbles 83 -1.2616 -0.4596 3.6447 2.7476
2 mm Lead Shot 84 -2.4124 NA NA NA
Garnet Sand 85 -1.0737 NA NA NA
3 mm Lead Shot 86 -1.9940 -0.5879 2.9152 - 3.7759
0.5 mm Glass Beads | 87 -0.9339 -0.4960 5.3597 2.4833
1 mm Glass Beads 89 -1.4942 -0.5670 3.0954 29914
1 mm Glass Beads 90 -1.7925 -0.6992 4.5450 1.5107
3 mm Glass Beads 91 -1.3374 -0.4241 2.7622 1.4008
1 mm Glass Beads 92 -1.8289 -0.5700 3.4867 1.7789
1 mm Glass Beads 93 -1.9614 NA NA NA




318

Table C.14: Material Landslide Maximum Near-Field Wave Amplitudes

Material

Trial

(5:8)/ 2o 0. 19_/ Up Nmax (CmM) Mmax / So
Crushed Calcite 32 1.0548 1.8674 0.420 0.031065
Crushed Calcite 33 1.0977 1.8262 0.400 0.032193
3 mm Glass Beads 34 0.8369 1.5358 0.420 0.023163
1 mm Glass Beads 35 0.7193 2.9099 0.327 0.018273
12 mm Marbles 37 0.9936 1.5005 0.488 0.018782
3 mm Lead Shot 38 NA NA 0.791 NA
2 mm Lead Shot 39 0.9748 1.4677 0.713 0.023479
Crushed Calcite 40 1.0249 1.7122 0.449 0.038777
3 mm Steel Shot 81 0.9305 1.4319 0.654 0.022187
3 mm Glass Beads 82 0.7647 1.4251 0.405 0.023704
12 mm Marbles 83 1.0068 1.5673 0.371 0.013261
2 mm lLead Shot 84 NA NA 0.708 NA
Garnet Sand 85 NA NA 0.308 NA
3 mm Lead Shot 86 1.0397 1.3040 0.840 0.021848
0.5 mm Glass Beads | 87 NA 7.0844 0.273 0.010365
1 mm Glass Beads 89 0.6753 3.0346 0.523 0.025230
1 mm Glass Beads 90 0.6589 3.0431 0.288% 0.013480
3 mm Glass Beads 91 0.8979 1.6376 0.566 0.029455
1 mm Glass Beads 92 0.7170 2.6460 0.327 0.022031
1 mm Glass Beads 93 NA NA 0.269 NA

Table C.15: Simulation Initial Geometry, Characteristics of Motion and Ha,

Run d/b to Va/b So/b trmax N /b Ha,

1 0.87 3.8306 2.2243 2.606 3.5729
2 0.87 5.6930 1.6866 3.511 5.3101
3 0.87 3.5937 2.9536 2.394 3.3520
4 2.13 3.8306 2.2243 3.285 5.5906
5 1.35 3.8306 2.2243 2.918 4.4507
6 1.08 3.8306 2.2243 2.752 3.9809
7 0.58 3.8306 2.2243 2.398 2.9173
8 2.13 5.6930 1.6866 3.959 8.3087
9 2.13 3.5937 2.9536 3.072 5.2449
20 0.87 7.9682 1.5824 5.942 7.4323
21 0.87 4.2372 1.9575 2.812 3.9522
22 2.13 7.9682 1.5824 4.588 11.629
23 2.13 4.2372 1.9575 3.480 6.1839
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Table C.16: Simulation Maximum Near-Field Wave Amplitude and Error Analysis

Run Mmax/b | AV-104/Vy | Vo/1b2 | AV/1.b2 AH/2b

T 0.04847 1.635 43.833 0.007168 | 0.0020062
p) 0.02146 0.653 50.634 0.003306 | 0.0006227
3 0.06532 2.185 52.856 0011549 | 0.0034454
7 0.02083 2.176 66.035 0.014369 | 0.0025703
5 0.03327 1.074 51.864 0.010238 | 0.0023003
6 0.04061 1.805 47281 0.008534 | 0.0021433
7 0.06493 1.363 39.042 0.005349 | 0.0018334
3 0.00012 0.622 78.807 0.004910 | 0.0005900
9 0.02821 3254 75.936 0.024700 |. 0.0047112
20 0.01434 -0.698 66.002 -0.004610 | -0.0006201
21 0.03791 1217 43340 0.005274 | 0.0013346
22 0.00495 0.255 103.01 0.002630 | 0.0002262
23 0.01626 1512 66.502 0.010055 | 0.0016260

Table C.17: Simulation Maximum Near-Field Wave Amplitude and Solid Block Trial

Run TNmax / So Trial
1 0.021791 67
2 0.012724 68
3 0.022115 73
4 0.009365 50
5 0.014958 51
6 0.018257 79
7 0.029191 57
3 0.005406 NA
9 0.009551 NA
20 0.009062 NA
21 0.010367 NA
22 0.003128 NA
23 0.008307 NA




