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ABSTRACT 

The extent of molecular mixing in several two-dimensional 

free turbulent shear flows was measured using a concentration 

probe with a frequency ·response of 100 kHz and a spatial 

resolution of O. 1 mm. The flows investigated were (.i) a shear 

layer in which the gases on either side of the layer are of 

unequal density, (ii) a shear layer in which the gases on either 

side of the layer are of equal density, and (iii) a wake in which 

the gases on either side of the wake are of unequal densities. 

The extent of mixing was measured as a function of Reynolds 

number for the first case. 

It was found that at a critical Reynolds number the extent 

of molecular mixing sharply increased (25%). Power. spectral density 

curves of the concentration time histories also indicated a marked 

increase in the high frequency fluctuations above this Reynolds 

number. A shadowgraph investigation of this phenomenon revealed 

that three-dimensional Taylor-type vortices whose axes of rotation 

are basically in the flow direction exist in the flow in addition to 

the two-dimensional large ·structures previously observed. 

These Taylor vortices were found to be unstable above the critical 

Reynolds number and were producing the increase in molecular 

mixing. The growth and development of the two-dimensional 

large structures were found to be basically unaffected by this 

instability. It is proposed that the fully developed turbulence 

of shear flows is maintained by a combination of the development 
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of the large structures and of the coupling between the large 

structures ~nd these unstable Taylor vorticeso 

These data were also used to predict results for shear 

flows in which diffusion-limited chemical reactions have been 

incorporated. 
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I. INTRODUCTION 

This experimental investigation had its prime motivation 

from a continuing effort at the California Institute of Technology 

directed toward the understanding of turbulent shear flows in 

general and turbulent and molecular mixing in such flows in parti­

cular. 

Within this general framework, the mixing process in a 

two-dimensional turbulent shear layer produced by· two fluids (both 

of equal and different densities) flowing parallel to each other at 

different velocities was studied (see Fig. 1 ). The aim was to 

determine the extent of molecular mixing within the layer and, 

further, to determine what, if any, ·effect Reynolds number has on 

the extent of the mixing. (The possibility, in fact probability, of 

such an effect is evident from Plate 1 which shows shadowgraphs 

of this flow at various Reynolds numbers. In all photographic 

plates, the flow direction is from left to right with the high speed 

side on top. The conditions for all photographs are listed witP, 

each plate.) 

This flow geometry was chosen for several reasons. First 

of all, the flow is well documented both for the case when the 

two fluids are of equal density1' 2 and for the case where the two 

fluids are of unequal densities
3

' 
4

• Secondly, this mixing process 

is similar to the process by which two reactants are mixed in 

many continuous-flow, nonpremixed chemical reactors or combustors. 

However, at present little analytical or experimental data are 

available which can be used to predict the extent of mixing, and 
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thus, reaction rates, even for a shear layer, much less for the 

often complex flow dynamics in practical reactors.. For compari-

son, the mixing in a two-dimensional wake was also 8tudied. 

A further and possibly more important aim of this investi-

gation was to shed some light on the continuing discussion among 

fluid mechani sts concerning the fundamental phenomenological 

laws which govern free turbulent shear flows. Until recently it 

was thought that such flows consisted of two regions, one turbulent and 

the other nonturbulent, with the turbulent region being character-

ized by random three-dimensional motions and the presence of 

vorticity fluctuations. Viscous forces were continuously propa-

gating these vorticity fluctuations into the nonturbulent region 

along the interface between the two regions (entrainment by 

nibbling). By this process the turbulent region was continuously 

being enlarged at the expense of the nonturbulent region. Due to 

the recent discovery of large coherent structure in many turbulent 

shear flows, a new view of turbulence is now emerging S- l O 

This view suggests "that with every shear flow is associated an 

identifiable characteristic structure and that the development of the 

flow is controlled by the interactions of these structures with each 

10 
other ". Thus, an understanding of the development of these 

structures and their interactions with each other should give some 

insight into the actual physical processes in turbulent flows, such 

as entrainment, transport, mixing, noise production, gustiness, 

etc., and should lead to improved methods for analyzing and 

computing them • However, ideas concerning the forms of the 
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large structures in each flow differ greatly. In fact, this view of 

turbulence itself is far from being generally acceptedo For 

example, it has been stated that the basically two-dimensional 

large structure of a shear layer as reported by Brown and Roshko 3 

and others cannot undergo vortex stretching and therefore cannot 

form part of the fully-developed energy cascade from mean flow 

to smallest eddies which is the essential characteristic of turbu-

lence. Further, these isolated large structures when subjected 

to small perturbations would deform indefinitely by self-induction, 

thus, leading to a rapid breakdown to three-dimensionality. These 

are certainly valid arguments. Therefore, a further aim of this 

research was to reconcile these views of the large structure in 

shear flows and thus, to add to the basic understanding of the 

nature of turbulence. 

With these goals in mind, the investigation proceded as 

11 
follows. Using an improved version of the Brown-Rebollo concen-

tration probe, the extent of mixing in the turbulent shear layer 

produced by parallel streams of high speed helium and low speed 

nitrogen was determined as a function of lateral position (y) 

and Reynolds number {Reynolds number based on ~U, vorticity 

thickness, and the kinematic viscosity of nitrogen varied from 

4 4 
O. 3 x 10 to 7 x 10 ). The experimental facility and instrumen-

tation used are discussed in Section 2. The actual procedures 

for data acquisition and reduction are discussed in Sections 3 and 

4. 

7 
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For comparison, two other shear flows were also studied. 

In one flow, the extent of mixing in a shear layer between streams 

of equal density fluids was measured. For this flow, nitrogen 

was used as the high speed gas and a mixture of argon and 

helium arranged to have the same density as nitrogen was used as 

the low speed gas. In the other flow, the velocity of the nitrogen 

was adjusted to be equal to the velocity of the helium, thus 

reducing the shear layer to a wake, the wake of the splitter plate 

which initially separated the two fluids. Thus, the extent of 

mixing in an inhomogeneous, two-dimensional wake was investigated. 

The results and comparison of these three cases are in Section S. 

These measurements of the extent of mixing in turbulent 

shear flows revealed a strong Reynolds number effect on the 

mixing. It was felt that this was due to an instability within the 

large structures. In order to confirm this idea and also to study 

the three-dimensionality of these flows, a shadowgraph investi­

gation was made. These results are presented in Section 6. 

Although the flows studied are nonreacting, the results 

were used to predict the reaction rates for an interesting and 

useful case in which flows containing chemically reactive species 

can be successfully studied analytically. The results for the 

three cases are in Section 7. 
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II. EXPERIMENTAL FACILITY AND INSTRUMENTATION 

2.1 Flow Apparatus 

The experiments were performed in the Brown-Roshko 
3 

flow facility designed to produce a turbulent shear flow between 

two streams of different gases. 

Basically the facility consists of two supply lines, each 

one coming from eight 2000psi bottles, which supply two gas 

streams that are brought together at the exit of two nozzles 

which have been contracted down to 1 11 x 4 11 each. The over-

all size of the test section is 2 11 x 4 11 x 12 11
• 

The settling chambers and screens in the supply lines 

are sufficient to reduce the free stream turbulence level in the 

test section to less than O.So/o. The sidewalls of the test section 

are adjustable to help remove any pres sure gr.adients in the 

flow. The entire test chamber can be pressurized up to ten at-

mospheres in order to vary the Reynolds number. Steady state 

flow is usually established in less than 500 milliseconds after 

the flow is initiated. 

A traversing mechanism, which incorporates a digitally 

controlled motor to step the probes in increments of .001 ", 

moves the probes across the test section at up to 500 steps 

per second. 

2.2 Instrumentation 

2.2a Pressure Data 

Two types of pressure data were required for this in-

vestigation: static pressure scans along the test section used 
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in minimizing the pressure gradients in the flow direction 

(see Section 3.1) and dynamic pressure profiles across the 

mixing layer. The static pressure scans were accomplished 

with the use of a fast pressure scanner (Scanivalve, type-

Wl 260), a device which sequentially communicates each of the 

static pressure ports along both sides of the test section to 

the input of a pressure transducer (a Datametrics electronic 

manometer, 1014A, and Barocel differential pressure sensor, 

511-10). The reference for the sensor was generally the 

static port at x = 1 ". A pitot tube, connected to the same 

type of pressure transducer, was used to obtain the dynamic 

pressure profiles. 

2. 2b Concentration Data 

In order to determine the extent of mixing within the 

shear layer and to compute the mean velocity profiles from the 

dynamic pressure profiles, the local composition within the 

layer had to be determined. For these measurements an im­

proved version of the Brown-Rebollo aspirating probe was 

developed to meet the high frequency and small spatial reso­

lution requirements (Fig. 2a). 

The new probe is estima~ed to have a frequency response 

of 100 kHz . and a spatial resolution of approximately O. lmm.. 

The signal to noise ratio was sufficient to detect concentration 

fluctuations of 1 %. A complete account of the probe construction 

and response estimations is given in Appendix A. A standard 

constant temperature hot-wire circuit designed and built at 
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Caltech by Anthony Perry* and Brian Cantwell::c~:c was used to 

operate the hot wire in the probe. 

2.3 Data Acguisition System 

The short run times (the Brown-Roshko apparatus is a 

blow-down type facility with run times of 2-6 seconds) and the 

high frequencies of the experiments necessitated the use of a 

high-speed data acquisition system. Therefore, all data were 

taken (and reduced) with the GALCIT mobile computer con-

trolled data acquisition system (the "Solo System"). This system 

has the capability of computer controlled data acquisition, re-

duction, storage and output. The heart of the system is a 

Hewlett-Packard 2100 computer (32K memory). The data 

acquisition itself is accomplished with a sixteen channel, 16 bit 

analog-to-digital converter capable of 5 x 10
5 

single channel 

conversions per second or 4 x 105 sequential conversions per 

second. The data, before or after reduction, can be stored 

on either a Hewlett-Packard read/write magnetic tape deck, 7970E, 

or a Hewlett-Packard storage disc, 790 lA. The output devices 

with the system are a Teletype and a Hewlett-Packard digital 

plotter, 721 OA. 

The required interfacing between the Solo System and the 

experiznental apparatus will be briefly discussed in connection 

with the data acquisition procedures in the next section. 

* Reader, University of Melbourne, Australia 
~:c* Research Fellow, California Institute of Technology 
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III. DA TA ACQUISITION PROCEDURES 

3.1 Pressure Gradient Data 

One of the poundary conditions for the exper.iinents was 

to have the shear flows in a zero pressure gradient region. 

However, any vertical fluid colUlllll has a "natural" hydrostatic 

pressure gradient equal to the fluid density multiplied by the 

gravitational acceleration. The effect of this gradient can of 

course be neglected in exper.iinents in which the fluid is air 

or in experiments in which all fluids are of equal densities if 

care is taken in pressure measurements. 

Jn this exper.iinent, which had, in effect, a column of 

helium in direct communication with a column of nitrogen, 

this effect could not be neglected or eliminated, only min.iinized. 

(A discussion of this effect and the minimization procedure are 

in Appendix B.) In order to minimize this effect, the static 

pressure gradient along the test section had to be determined. 

This was done by sequentially sampling the static pressure 

ports on the side walls of the test section with the use of a 

Scanivalve. After allowing 250 milliseconds after each step 

of the Scanivalve for the pressure reading to reach a steady 

state, the pressure was sampled 1000 times in 250 milliseconds. 

The readings were then averaged for each port and the gradi­

ent calculated. The ports at x = 2 ", 3 ", 4 ", 5 ", 6 ", 7" and 8" 

on one wall and at x = 4 11 and 8" on the other were sampled. 

The side walls were then adjusted to give the optimal gradient. 

The side wall positions were different for each free stream 

velocity setting. 
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3.2 Traverse Data 

The stated goal of determining the extent of mixing in 

the shear layer as a function of cross-stream position and 

Reynolds number required measuring the time histories of the 

concentrations of the gases at various x and y ·locations with­

in the layer for a variety of free-stream conditions. The 

procedure for accomplishing this was as follows. The tank 

(ambient) pressure and the free-stream velocities were ad­

justed to the desired settings. The concentration probe and 

a pitot tube both mounted approximately one inch apart on 

the traversing mechanism were placed at a selected x station 

and then moved across the shear layer alternately sampling 

and then stepping. 

The two probes were sampled sequentially for 150 

milliseconds at each point at a rate of 80,000 readings per 

second for a total of 12,000 data points. They were then 

stepped .075 inches to the next y location (stepping rate was 

0.5 inches per second for 150 milliseconds) where another 

12,000 data points were taken. After each data acquisition 

period, while the probes were moving, the data were trans­

ferred from computer memory to disc, thus freeing the memory 

for the next batch of data. The six second run time limitation 

allowed a maximum. of 21 points across the layer (1.5 inches). 

After each six second run, the data were automatically trans­

ferred from disc to magnetic tape and then back into computer 

memory for reduction. The reduced data were then stored on 
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magnetic tape and displayed on the plotter. Each traverse 

was then repeated four times and the mean values from each 

traverse were averaged. This process was repeated for four 

x locations, two different free-stream velocity settings and at 

ambient pressures of one, four and eight atmospheres for a 

total of nearly 25 million raw data points. The electronic 

interfacing between the computer and the experimental appa­

ratus consisted of a master clock (set at the data acquisition 

frequency, usually 80 kHz ) which was gated alternately to 

first allow the 12,000 pulses to go to the A/D converter and 

then divided (to 500 Hz ) and gated to the stepping motor for, 

usually, 75 pulses. This allowed for alternately sampling at 

80 kHz and then stepping at SOOHz. 

3.3 Power Spectrum Data 

Jn order to reduce the time histories of concentration 

to power spectral density curves in a reasonable amount of 

time, a fast fourier transform routine 
12

' 13 was used. This re­

quired Zn data points taken at a frequency at least twice the 

maxim.um frequency of interest (always less than 25kHz ex­

cept for one run at u1 = 3000cm/sec). Therefore, a data 

acquisition rate of SOkHz was used with a cut-off filter, 

Krohn-Hite 3202A, set at 25kHz on the output of the concen-

tration probe. However, the computer memory limited the 

number of data points which could be reduced to 4096 (- 80m sec 

sampling time). This is not sufficient time, however, to give good 

resolution. Therefore, records of 16, 384 data points were taken 
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(328m sec long), reduced in groups of 4:-09~, and the· results 

ave!aged. 

I .. ' 
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IV. DATA REDUCTION 

The first step in reducing the data acquired by the preced-

ing procedures was to convert the voltage output of the concentra-

tion probe to molar concentrations. This procedure is explained 

in Appendix A. 

Discussed in the following sections are the various ways 

that these time histories of concentration and dynamic pressure 

were converted to meaningful results. 

4. 1 Mean Profiles 

The first reduction process performed on the data was to 

ensemble average the data for each point across the mixing layer 

from each probe. This gave 2 2 -P U ( y) I P 1U 1 and C ( y). The con-

centration profiles were then converted to mean density profiles 

(p/p 1 = C + (1. - C) p2 /p 1). An estimation of the velocity pro­

file was found by dividing the mean dynamic pressure by the mean 

density and taking the square root. This procedure neglects 

several fluctuation correlations (p'u', u• 2 , p•u• 2 ). However, 

Rebollo 4 showed that the effect is negligible (at least for the 
2 . 2 

case p 2u2 /p 1u 1 = I). 

4. 2 Intermittency and Mean Profiles within the Turbulence 

Since the flow had a near unity Schmidt nwnber (v /D), the 

concentration histories could be used to estimate the inter~ittency 

function across the mixing layer (percent of time that the fluid is 

.turbulent). If the concentration at some x, y, and t is other than 

0 or 1, it indicates that by some process (ultimately diffusion) 

the fluids from the two sides of the layer have become molecularly 
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mixed. However, since momentum will diffuse approximately the 
' 

same as molecules (Schmidt number unity) this also indicates that 

vorticity will have diffused into the sampled region. If this is an 

indication of turbulence, then the p.ercent of time that the concentra-

tion is other than 1 or 0 will give an estimation of the intermit-

tency function across the layer. In actual fact three curves can 

be defined: (1) the probability of finding pure gas 1 (within 3%), 

(Z) the probability of finding pure gas Z, and (3) intermittency 

(which is unity minus the two above probabilities). 

This procedure of defining turbulent and nonturbulent regions 

also facilitated estimating mean values in the turbulent regions 

(subscripted T) and mean values in the nonturbulent regions (sub-

scripted I). Actually, the concentration data were put into three 

different classifications as illustrated in the drawing. Data from 

(a) were used to find means in nonturbulent regions, data from 

(b) were used to find mean and fluctuating quantities in the turbu-

lent regions, and data from (a), (b) and (c) were used to find 

overall mean and fluctuating quantities. 

1.0 ... 
g 

~ 

• 
C(He) 

0.5 c 

Time 
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Thus, the following quantities were measured or calculated: 

C(y) - ensemble average of concentration histories at 

each y location. 
-2 2 
PU (y)/p 1 u 1 - ensemble average of dynamic pressure 

histories at each y location. 

U(y)/U 1 - mean velocity profiles. 

C(y)1 - average of concentration data in the nonturbulent 

regions (data within 3% of 1 or 0). 

C(y)T - average of concentration data in the turbulent 

regions. 

y 1 (y) - probability of finding pure gas 1 (within 3%). 

y 2 (y) - probability of finding pure gas 2 

y(y) - Intermittency ( I - y 1 - Yz) 

)T - various fluctuating quantities calculated fro~ data 

in the turbulence (as explained above). These 

quantities will be described in the next section. 

4. 3 "Unmixedness" 

One of the goals of this investigation, to determine the 

extent of mixing in a turbulent shear layer, required a "yardstick'' 

with which to measure the extent of mixing. The definition of one 

such "yardstick" is W, the RMS fluctuation of the concentration, 

where 

c• = c - c 4. I 

However, this quantity does not have a well-defined upper bound 

and, if the gases in the layer are perfectly unmixed (concentra-

tion data are always either I or 0), different values of C 
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give different values of .P. However, for comparison with other 

investigations, this quantity, alon.g with ( ~ c• 2 
)T' were calculated 

where C' = CT - CT, CT being concentration data within the 

turbulence. 

A more meaningful measure of the extent of mixing comes 
..... 

from chemical reaction rate estimations:·· For the irreversible 

reaction 

A+B-+P 4.2 

where A and B are reactants and P is the product, the following 

conservation equations can be derived
14

: 

4. 3 

4.4 

where gt is the substantial derivative, Ki is a reaction rate, Ci 

is the concentration of species ~ and T is temperature. This 

approach can be related to the present investigation if it is sup-

posed that A is diluted in the helium and B in the nitrogen. 

Then: 

and 4. 5 

CB= CB+ C'B = CBo (1 - CHe) = CBo(l - CHe - CHe)' 

where Cio is the free stream concentration of species i. 

* This measure of mixedness was suggested by Coleman duPont 
Donaldson. 
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Therefore, 

c• 
A = CAO c• 

He 

CA = CAO CHe 
, 

c• = - CBo C'He' B 

CB = CBo (1-CHe) 

Combining Eqo 4. 6 with the time average of Eq. 4. 3 gives 

DCA 
~= 

This assumes that K 1• = O. Thus, the quantity 
l 

1 - c 12 /C (1-C) = M 

4. 6 

4. 7 

is an indication of how well the fluids are mixed. If it is l(C 1 = O) 

then the fluids are perfectly mixed and the mean values (C.) can be 
l 

used to estimate reaction rates. On the other hand, if this quantity 

is 0, the fluids are completely unmixed (the concentration is always 

0 or 1) and the mean values give a very poor estimation of reaction 

rates. T~erefore, the quantity c• 2 /(l-C) C = 1 - M (the ~mixedness 

of the fluids) was calculated. 
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This definition of unmixedness will obviously amplify the 

experimental "noise" in measuring C' as C - 1 or O. Therefore, 

another measure of unmixedness which avoids this problem and 

still has the proper limits was defined. 

This measure of unmixedness is defined as 

UM= 4.8 

where tl = time when c > c 

tz = time when c < c 

This integral definition is illustrated in the following drawing. 

1.0---­
c ( t) 

0 .5~~..,.,.,.,t-'-'+l,.,-,.-p~,..,...P.~"'"tT7..,..,..,..rrn-- c 

0 
Time 

UM is actually the sum of the crosshatched areas divided by the 

sum of the areas of the rectangles. Obviously, if the fluids are 

perfectly mixed (C(t) = C) UM = 0, and if the fluids are perfectly 

unmixed (C(t) = I or 0), UM = I. Therefore, UM has the proper 

limits. Furthermore, it does not present any experimental 
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problems for 'C" - 1 or O. As will be seen later in the discussion 

of a chem_ically reacting shear layer, this definition also has an 

interpretation relating the amount of product formed to the amounts 

of reactants entrained. 

4. 4 Determination of Dividing Streamline 

In order to properly show all of the traverses for the var-

ious x locations in nondimensional form, a common reference point 

for all of the profiles has to be determined. This point is com-

manly taken to be the intersection of the dividing streamline with the 

y-axis of the data traverse. This point is found by combining the con-

tinuity and momentum equations to derive the following equation: 

where ( )1 denotes free stream conditions on side 1, ( )2 denotes 

free stream conditions on side 2 and y* is the location of the 

dividing streamline intersection point. The application of Eq. 4. 9 

to find y* for a shear layer having similarity properties is rather 

straightforward. However, in applying it to an inhomogeneous 

wake (U
2 

= U 
1

, P 
2 

I P 
1

) more care must be taken. One possible 

approach is as follows. Let 

y* 

ez = J :Yi (1 -uu ) dy • 
Q) 1 2 2 

Then, combining Eqs. 4. 9 and 4. 10 gives 
..._ 
-rldeas similar to these were suggested by Dr. Erik Storm of 

Lawrence Livermore Laboratory. 

4. 10 
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d 
e1 (~~y d 

92 , - dx = 
dx 

or 
d d 

e1 = dx e2, (U2 = u 1) dx 

e1 can be interpreted as the momentum defect on side 1 and 9 2 

the momentum defect on side 2. Equation 4. 12 states that if 

4. 11 

4. 12 

e 1 in'creases (decreases), 92 must decrease (increase) by exactly 

the same amount. In other words, 8 1 + 9 2 = 9 = constant, as 

must be the case (the momentum defect for a wake is constant). 

If 9 1 and 9 2 are continuously changing, then one side of the wake 

must be continuously gaining momentum and the other side continu-

ously losing momentum. As this situation can not continue indef-

initely, Eq. 4. 12 must be interpreted as 

or 

.A. e = o dx 2 

e 119 2 = const. 4. 13 

Since an estimate of the constant in Eq. 4. 13 can be made from 

the initial boundary layers on the splitter plate, Eq. 4. 13 together 

with Eq. 4. 10 can be used to find y* for the inhomogeneous wake. 

(This estimation of y* neglects all fluctuation correlations. ) 

4. 5 Entrainment 

With today's large structure view of turbulence, entrainment 

becomes a difficult quantity to define. The traditional definition 

of entrainment for a shear layer, 
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Y1 

Ve· d f PU ( ) d l=dx pY y 
y* 1 

Y.* 

d I PU Vez = dx ~ (y) dy 

Yz 

4. 14 

where Vei is the entrainment velocity on side i and yi is an arbi-

trarily chosen limit, raises two questions. 1. How should y. 
1 

logically be chosen? 2. Should the fluid which is within the bound of 

y 1 and y 2 , but has not yet become part of the turbulence, be part of the 

entrainment calculation? If the entrainment rate is to provide 

information as to the proportions and rate in which the two fluids 

on either side are entering the mixing layer and becoming 

"entangled" or mixed, then a suitable definition is needed. One 

such definition is 

d 
Ve 1 = -dx 

d 
Ve2 = -dx 

co 

{ 
y'r 
y* 

J 
-a> 

4. 15 

I (pU)T 
y(y) p dy 

1 

where Y (y) is the intermittency function and (PU)T is the average 

within the turbulence of the product of density and velocity. The 

15 complete derivation of this definition is given by Brown • For 

this investigation (P U)T was approximated by PT U. 

It is not entirely clear whether Eq. 4. 14 or Eq. 4. 15 _should 

be used to describe the entrainment. Both definitions ·describe the 
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amount of fluid which has crossed an arbitrary boundary. The 

limit used in Equation 4. 14 is an overall boundary of the shear 

layer based on mean quantities and the limit used in Equation 4. 15 

is the boundary between the turbulent and nonturbulent regions. 

However, for clarity, the quantities calculated using Equation 4. 15 

will be referred to simply as the entrainment rates throughout the 

rest of this work. This is done since these rates are more mean­

ingful in relation to the chemical analysis presented in Section 7 

than the rates calculated using Equation 4. 14. Further, entrain­

ment into the turbulence is more in accord with the large structure 

view of turbulence than is simply a gross measure of entrainment. 

The normalization was chosen so that entrainment rates can be com­

pared directly without having to take differences in density into 

account. 

4. 6 Power Spectrum 

As discussed in Section 3. 3, four records of 4096 concentra­

tion readings each were taken at a rate of 50 kHz for various x and y 

locations and various free-stream velocities. These four records, 

after being put through a Hanning window, were reduced to four 

spectra using a fast fourier transform routine. These were then 

averaged to produce a single spectrum. This curve was then further 

reduced by averaging adjacent points within the curve. The averaging 

window (number of adjacent points to be averaged) was exponentially 

increased from one for the low frequency points to approximately 30 

for the highest frequencies. 
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V. RESULTS AND DISCUSSION 

The initial part of this investigation was to measure the 

extent of mixing for a shear layer of fixed parameters for as 

wide a Reynolds number range as possible. Following are the 

parameters which were kept constant: 

(a) A two-dim.ensional shear layer between high­

speed helium and low-speed nitrogen (s = 

(b) p(x) = constant ( p being static pressure) 

and (c) r = u2/u1 = 0.38 • 

Pz 
pl 

= 7.0) 

Following are the parameters which were changed in order to 

vary the Reynolds number: 

(a) U 1 (and thus U2 ): 1000. 2000 and, for P 
0 

= 1 atm., 

3000cm/ sec. 

(b) P 
0 

(P1 and P2) : 1, 4 and 8 atmospheres 

and (c) x: 2, 3, 4 and 5 inches. 

After these data were taken, two other cases were investi-

gated. In order to determine what, if any, effect the inhomogeneity 

of the flow has on the mixing, the mixing in a constant density 

shear layer was measured (r = 0.38, s = 1.0) and compared to 

the previous results. For this case, the high-speed gas was ni-

trogen and the low-speed gas a mixture of argon and helium 

arranged to have the same density as nitrogen. (See Appendix 

C for a discussion of the method used to measure the density 

of the gas mixture.) The concentration probe was able to re-

solve the concentration of nitrogen in this mixture to within 4%. 

For this case P 
0 

= 4 atms, U 1 = 1000 cm/ sec, and x = 4 inches. 
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The third case investigated was a wake, but not a wake 

in the usual sense of the word. This case was actually the 

investigation of the wake produced by the splitter plate which 

initially separates the two fluids. The flow was obtained simply 

by settling u2 equal to U 1 (r = 1.0, s = 7 .O). This case was 

investigated to compare the mixing in a wake to that of a shear 

layer. Since the structure of a wake is quite different from 

that of a shear layer, the mixing process may be different. 

For this case U = U = 2000cm/ sec., P = 1 atino, and x = 1 2 0 

2, 3, 4, 5 and 6 inches. 

In the following sections are the results for, first of all, 

the inhomogeneous shear layer, then the homogeneous shear 

layer, and, finally, the wake. 

5.1 Shear Layer (r = 0.38, s = 7 .O) · 

5. la Mean Profiles and Spreading Rates 

First of all, in order to acquire a "feel 11 for the extent 

of the fluctuations in the concentration of helium within the 

shear layer, the probe was continuously traversed across the 

layer from the nitrogen to the helium. The result is shown in Fig-

ure 3a. Similar results were obtained by Brown and Roshko. 

Several questions were inunediately raised by this curve. Why 

do the fluctuations appear to be larger on the nitrogen side than 

on the helium side? Why does the concentration appear to 

spend a large amount of the tilne near C = 0.8? The answers 

to 'these questions are discussed in the section on entrainment 

rates. As observed by Brown and Roshko, shadowgraphs of the 
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flow at various Reynolds numbers (Plate la, c, e, g ) show that 

large structures exist in the shear layer and these structures 

appear to be entraining the pure free-stream fluid in such a 

way that it can exist in an unmixed state across the entire 

layer. Thus, large fluctuations in concentration are expected. 

This will be further discussed in Section 6. 

Figure 3b shows the mean concentration profiles as de­

scribed in Sections 3.2 and 4.2. A characteristic length can 

be defined, and thus a growth rate can be found, from this curve. 

If the "edges" of the layer are defined as the points C = 0.1 

and C = 0.9 then 
6 = 0.14 7 (x - x ) c 0 

5.1 

Brown and Roshko used C = O.O 1 and C = O. 99 as the edges of 

the shear layer and, thus, their measured growth rate was some-

what larger. 

Figures 3c and 3d are the mean dynamic pressure and 

the mean velocity profiles, respectively. Another length, one 

which can also be defined for homogeneous as well as inhomo­

geneous shear layers, can be found· from Figure 3d. This 

length is the maxiinum slope thickness of the velocity profile 

or the vorticity thickness and is measured to be 

6 w = 0.119 (x - x
0

) 

This characteristic length will be used throughout the rest of 

this work and will be labeled 6. 

5.2 

Shown in Figure 4 are a few typical time histories of the 

concentration taken at various T'I locations in the layer. .e. is 
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the approximate size of the large structure for that x location. 

It is important to note that these mean profiles were un-

affected by varying the Reynolds number. 

S. 1 b RMS Concentration F luc t uation s 

A rather surprising result was found when the fluctuating 

q uantities were compared on similarity plots. Two curves were 

found for each quantity plotted, one for the profiles taken at 

4 
Reynolds numbers less than 2xl0 (Re = C.6U/VN ) and one for 

the profiles taken at 
2 4 

Reynolds numbers greater than 2xl 0 

This Reynolds number will henceforth be called the "critical" 

Reynolds number (Re ). Data curves above Re will be labeled 
c c 

Re + and thos e below will be l abel ed Re This effect is 
c c 

shown for y'7z and ( ~ ) T in F igures Sa and b. The Rec 

data are shown by the dashed curves. The fluctuations in con-

centration are always less above the critical Reynolds number 

than below. Data taken near Re fell between the two curves. 
c 

One thing to b e noted in Figure Sa is that the nitrogen side 

appears to have a higher degree of fluctuations than the helium 

• I 
side. This will be partially explained in the discussion on en-

trainment. Two things should be noted about Figure Sb: the 

profile is flatter than that of Figure Sa and the Reynolds number 

effect is more pronounced for the turbulent zone calculation 

than for the calculation for the entire data record (hereafter 

called the normal calculation). Thes e observations will be use-

ful in determining why there is a Reynolds number effect in 

the first place. This will be discussed in Section 6. 
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5. le Intermittency and Entrainment 

This same Reynolds number effect can be observed in the 

intermittency similarity curves. Figure Sc-1 is the probability of find-

ing pure nitrogen, Figure Sc-2 is the probability of finding pure helium 

and Figure Sc-3 is the intermittency function. The dashed curves are 

+ . 
for the Re - data. For the Re data, the scatter may be judged from c c 

the plotted points; for all the Rec- data the scatter was smaller by 

about one half. It can be seen from Figure Sc-1 and 2 that below Re , c 

the probability of finding pure gas is higher across the entire shear 

layer. Thus the intermittency function· for Re is more narrow and c 

reaches a lower maximum value than for Rec+. Therefore, the pure 

fluid which is being engulfed into the shear layer is being entrained 

into the turbulence (being mixed molecularly) faster above Re than . c 

below. Pure fluid extends across most of the shear layer less often 

above Re than below. Besides the intermittency function, the entrain­c 

ment' rates into the turbulence are other quantitative measures of 

this effect. Using Equation 4. 15 the entrainment rates were found 

to be Ve 1 /u
1 

= 0.062 and Ve
2
/u

1 
= 0.019 for Rec- and Ve 1 /u1 = 
+ O. 067 and Ve2 /u1 = O. 020 for Rec • This is approximately an 

eight percent increase in the entrainment rates into the turbulence. 

The traditional measurement of entrainment (Eq. 4. 14) would not 

be affected by varying the Reynolds number as the similarity pro-

files of tl~e density and velocity are the same above and below Re • c 

The significance of the Reynolds number affecting the fluctuating 

quantities but not the mean quantities will be discussed in Section 6. 
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Besides these increases in the entrainment rates, another 

important point to note is that over three times as much helium 

is being entrained as nitrogen. This fact accounts for several 

of the points brought out in earlier discussion. Due to this 

difference in entrainment rates, the large structures will have 

a mean concentration near 0.8. Thus the output from the con-

centration probe will, for a large percentage of the time, be 

near this value (as seen in Figs. 3a, 3b and 4). This also 

partially explains why the fluctuations are larger on the nitrogen 

side. On that side, as the large structures pass by the probe 

(see drawing) the concentration will fluctuate from approximately 

0.8 to O.O. On the helium side, however, the concentration will 

fluctuate from 0.8 to 1.0. This only partially explains the larger 

-C=l.O 

c = 0.0 

Large 
Structure 
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fluctuations on the nitrogen side because, as can be seen from 

Fig. Sb, the turbulent zone calculations still give larger fluctu-

ations on the nitrogen side than on the helium side, although 

the difference is not as great as in the normal calculations 

(Fig. Sa). 

S. ld Unmixedness 

Figure 6 shows the results of the unmixedness calculations. 

Figure 6a shows the results for the integral definition (Eq. 4. 8) 

and Figure 6c ·shows the results for the chemical reaction rate defi-

nition. Figures 6b and 6d are the turbulent zone calculations for 

the unm.ixedness. As with the RMS calculations, the unm.ixedness 

values are always less above Re than below. Also, lower values c 

are obtained and the Reynolds number effect is more pronounced 

for the turbulent zone calculations than for the normal calculations. 

Several qualitative statements can be made from the data 

shown on these curves. Firstly, from Figure 6a, fluid which has 

been entrained in the usual sense (Eq. 4.14) is still in a rela-

tively high state of unm.ixedness, has not become mixed on the 

molecular level, especially on the nitrogen side and below Re ·• c 

If the nitrogen and heliw:n were reactive with each other, much 

of the fluid within the layer would not react at the point at 

which it has been entrained; it would "swirl" around within the 

layer without having the opportunity to mix on the molecular 

level, and thus react. Of course, all of the fluid which is en-

trained will eventually react, but only a small portion of the 

total at any x location will have been reacted. Even the fluid 
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which has been entrained into the turbulence is in a high state 

of unmixedness (Fig. 6b). 

Since information about the degree of unmixedness is not 

usually known, 

is sometimes used to calculate reaction rates instead of Eq. 4. 7. 

It can be seen from Figure 6c that this calculation would be in 

error by at least 20%. 

These qualitative results will be made more quantitative 

in Section 7 where these results are used to predict amounts 

of product in a chemically reacting shear layer. 

5. le Probability Density Function 

A useful way of presenting the data in the time histories 

of the concentration is with probability density functions (P.D.F.' s). 

P .D.F.' s are simply graphs of the percentage of time that the 

concentration spends between two limits (normalized to give 

unity area under the curve). Shown in Figure 7 are the P.D.F. 's 

for various 11 locations across the layer. All values above 8.0 

are not shown. It is rather interesting to note that all of the 

results concerning concentration presented thus far can be cal-

culated from the P.D.F.'s. That is one of the reasons why at 

present a considerable amount of effort is being spent on trying 

to model the P .D.F. 's of scalar quantities in turbulent shear 

flows. One popular practice is to model them with a Gaussian 

distribution. As can be seen, at no point in this case do the 
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P.D.F.'s approach a Gaussian distribution. 

The effect of the difference in entrainment rates can again 

easily be seen. The probability of finding the concentration be-

tween 0.8 and O. 9 is relatively high. The probability of finding 

pure gas across the layer is shown by the spikes on the ends 

of the curves. This particular set of curves is the average of 

four runs at x = 4 inches, U 1 = 1 OOOcm/ sec and P 
0 

= 4 ab:ns. 

No attempt was made to average all of the P.D.F.' s above Re c 

and all below Re because each set of runs measured the P.D.F.' s c 

for different Tl locations. These P.D.F.' s will be used exten-

sively in Section 7. 

5. 1£ Power Spectral Density Curves 

In order to gain more insight into the observed Reynolds 

number effect, spectra of the concentration fluctuations were 

obtained both above and below Re for various Tl locations. 
c 

Shown in Figure Sa are curves obtained at Tl = O.O. Curves 

marked (1} are for data below Re , curves marked (2) are 
c 

for data near Re and curves marked (3) are for data above 
c 

Rec • Curves (1) and (3) show a marked difference in high 

frequency, small scale mixing that takes place above and below 

Re ; at f6 /AU = 10 the two sets of spectral curves· are separated c 

by more than two orders of magnitude. The spectrum above the 

critical Reynolds number is qualitatively similar to most high 

Reynolds number turbulent velocity spectra. It is significant 

that the low frequency end of the spectrUin is the same above 

and below the critical Reynolds number. Thus, the overall 
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mechanics and development of the large structure is essentially 

unaltered by the increase in fine scale mixing above Re 
c 

The differences in the spectrum for two Tl locations 

at the same Reynolds number is shown in Figure Sb. This com­

parison is indicative of the difference in RMS fluctuations for 

the two locations. 

5.2 Shear Layer (r = 0.38, s = 1.0) 

S. 2a · Mean Profiles, lntermittency and Entrainment 

As with the nitrogen-helium shear layer in order to get 

a feel for the extent of unmixedness of this constant density 

shear layer, the concentration probe was continuously sampled 

while being traversed across the layer. The results are shown 

in Figure 9a. Again, the extent of the fluctuations of the concen­

tration of nitrogen is quite large, but, in this case, the fluctuations 

are rather symmetric about the middle of the layer. This symmetry 

can more· easily be seen in the mean concentration profiles shown 

in Figure 9b. Shadowgraphs of this flow are shown in Plate 2. 

The remarkably flat profile of the turbulent zone mean concen­

tration is noteworthy. Similar results were obtained by Fiedler
16 

for the temperature profiles in a slightly heated shear layer. 

The iiltermittency and mean velocity profiles are shown in Figurf?S 

9c and d, respectively. The entrainment rates calculated for this 

Thus, only 

slightly more nitrogen was being entrained than argon-helium 

mixture •. A few of the tilne histories used in these calculations 

are shown in Figure 1 O. 
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5. 2b Unmixedness and RMS Fluctuations 

Due to instrumentation problems only one set of data was taken 

for this case (Re = 2xl 0
4

). As will be shown in Section 6, this is above 

the corresponding critical Reynolds number. The unmixedness profiles 

for this constant density shear layer are shown in Figures I la and b. 

Like the nitrogen helium shear layer, these values are relatively large 

and always less for the turbulent zone calculations than for the normal 

calculations. The similarities in the profiles for the two cases (a min-

imum in the middle with larger maxima on the edges) along with the 

fact that the observed large structures for both cases are quite similar 

may indicate that the mixing processes involved are quite similar. In 

other words, the mixing process may be much more a function of 

r (U2 /U 1) than s (P2 /p1 ). · The RMS profiles are shown in Figure llc. 

5. 2c Probability Density Function 

The P. D. F. 's for this case are shown in Figure 12. The 

slight difference in entrainment rates is evidenced by the slight skew­

ness of the P. D. F. 1 s toward the nitrogen side. They are otherwise 

apparently symmetric both in 11 and C. Again, a Gaussian fit to these 

P. D. F. 's would be hard to justify. 

5. 3 Wake ( r ::: 1. 0, s = 7. 0) 

5. 3a Mean Profiles and Spreading Rates 

The continuous traverse profile for this inhomogeneous 

wake is shown in Figure l 3a. Even though the 0 to 1 fluctuations are 

not as pronounced as in the previous two cases, the concentration 

fluctuations are still large. The profile also appears to be surprisingly 

symmetric. 
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The mean concentration and velocity profiles are shown in 

Figures l 3b and c. U is the maxhnum velocity defect. The s 

scatter in the velocity profile is mainly due to the normaliza-

tion. The scatter represents less than 1 % of the free-stream 

velocity, but about 10% of U • This is only a rough estimation s 

of the actual velocity profile since this calculation neglects all 

fluctuation correlations. For this case, several of these cor-

relations (especially P'u') probably can not be neglected. · However, 

no esthnation of their importance can be made from these data. 

A shadowgraph of a wake at this Reynolds number is shown in 

Plate 3e. 

Again, several lengths can be defined from these curves. 

If the mean concentration curve is used to define the growth 

rate and the "edges" of the wake are defined as C = 0.1 and 

c = o. 9 then for e =al + 02 = o. 11 inches, 

( ) 
o. 5 

(oc/9) = O. 67 (x - x
0

)/0 5.3 

If the mean velocity profile is used to define the growth rate of 

the wake and the "edges 11 are defined as the intersections of the 

maximum slope lines of the velocity profile with the line 

5.4 

The 0.5 exponent was suggested by similarity argmnents for a 

homogeneous wake and these data closely fit this growth law. 

Typical time histories of the concentration for various 11 

locations are shown in Figure 14 •. 
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5. 3b RMS Fluctuations, Intermittency and Entrainment 

The RMS fluctuation curves are shown in Figures 15a and 

b. In contrast to the results for the previous cases, these profiles 

are relatively flat. The remarkably flat (~)T profile indicates 

that within the turbulence the level of fluctuation is rather constant 

across the wake. The absolute level of fluctuations is slightly 

less than that obtained for the other two cases. In contrast to the 

case for the shear layer, the intermittency (Fig. lSc-3) is rather 

skewed to the helium side. This is probably due to the difference 

in entrainment rates for the two fluids. These entrainment rates 

we re calculated to be 
o .. 5 

Ve 1 /U1 = o. 22 (x -9 xJ 5. 5 

and f s ve2 tu1 = o. 16 ( 
8 

x - x 
0 

Thus, for small x, the wake entrains fluid at a faster rate than 

the shear layer. 

Other than this skewness to the helium side, this inter-

mittency function is quite similar to those obtained for the other 

two cases. This is rather remarkable considering the difference 

in the large structure for the wake and the shear layer. 

5. 3c Unrnixedness 

The unmixednes s profiles for the wake are shown in Figure 

16. Again, the profiles are remarkably flat and the values of 

unmixedness are lower than for the shear layer (the fluids are 

more mixed on a molecular level). Since the unrnixedness 
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profiles for the wake are dissimilar to the profiles for the shear 

layer, the mixing process involved is probably different for the two 

cases. This of course is expected considering the difference in 

the large structures for the shear layer and the wake. One con­

clusion which can be drawn from these unmixedness profiles and 

the entrainment rates is that, for small x, more product will be 

produced in the wake than in the shear layer if the two fluids are 

reacting. This is because more molecular mixing and more 

entrainment are occurring in the wake than in the shear layer. 

Of course, for large x, the entrainment for the shear layer is 

much larger than for the wake and thus more product is being pro­

duced in the shear layer. What is meant by "large" and "small" x 

will be shown in Section 7. 

5. 3d Probability Density Function 

Typical P. D. F. 's for the inhomogeneous wake are shown in 

Figure 17. The P. D. F. 's are quite symmetric both in T') and C. 

Again, as with the previous P. D. F's, a Gaussian fit would be hard 

to justify. As mentioned earlier, these results will be made more 

quantitative in Section 7 by applying the data to a case in which 

the amount of product produced in a reacting flow can be predicted 

given the behavior of scalar contaminants in a similar nonreacting 

flow. 

Discussed in the next section is a photographic study under­

taken to gain more understanding of the Reynolds number effect 

observed in the inhomogeneous shear layer. The other two cases 

were also studied to see if any evidence for a similar effect in 

each case could be found. 
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VI. PHOTOGRAPHIC INVESTIGATION AND REYNOLDS NUMBER 

EFFECT 

A close look at the shadowgraphs of the nitrogen-helium 

shear layer at various Reynolds numbers reveals why this observed 

Reynolds number effect was somewhat expected. Shown in Plate 

la, c, e and g are shadowgraphs of this flow at various Reynolds 

numberso The critical Reynolds number observed in the measure-

ments occurs at the streamwise position approximately one-third 

of the total length along Plates 1 c and 1 e. (Henceforth, stream-

wise positions will be la be led as the fraction of the total length 

of the plate in question, i.e. , this position will be labeled x = l /3.) 

It is quite easy to discern a marked change in the qualitative 

appearance of the flow at this point. The large structures 

upstream of this point and at Reynolds numbers below Rec are 

still evidently quite sharply defined, while downstream of this 

point and at Reynolds numbers above Rec the structures exhibit 

much more three-dimensional fine scale. The sharpness of this 

transition suggests that this observed Reynolds number effect is 

caused by an instability of some kind. Since the overall behavior 

and development of the large structures are not greatly affected 

by this instability (the linear growth rate continuous through this 

transition and the observation of large structures persists at 

17 
Reynolds numbers much above Rec ), it was felt that ·the insta-

bility was associated with the large structure itself rather than 

with the entire flow field. In order to reinforce these ideas, a 

photographic study of both the plan and side views of the shear 
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layer was undertaken. The results of this study are presented in 

the next section and discussed with regard to the Reynolds number 

effect in Sections 60 2 and 6. 3. 

6. 1 Photographic Investigation 

The simultaneous plan and side views for this investigation 

were obtained by using a beam splitter in the incident parallel 

light beam. Only half of the plan view w~dth is shown. 

Possibly the best way to understand what is happening as 

the shear layer develops and thus to see what is causing the 

Reynolds number effect is to follow the development of the shear 

layer photographically as the Reynolds number is increased past 

Rec· (.A good Reynolds number survey of the shear layer is 

shown in Fig. 20 of Brown and Roshko.) Shown in Plate la and b 

is the shear layer at a relatively low Reynolds number. The 

completely two-dimensional nature of these large structures is 

shown by the upstream portion of both the plan and side views. 

This initial roll-up is essentially due to a two-dimensional 

Helmholtz instability. The nonlinear growth of this instability 

leads to a rotational two-dimensional vortex flow with the vortices 

pairing and amalgamating (see Winant and Browand and Roshko). 

The downstream portion of Plate la and b shows the flow in an 

amalgamation state. This amalgamation process apparently 

produces some three-dimensionality. This three-dimensionality 

produced by pairing can be seen in the first few structures shown 

in ·Plate 1 c, d, e and f (and Brown and Roshko Fig. 20d and e). 

However, high speed movies of this process and pictures of 



38 

structures after a·malgamation show that the three-dimensionality 

quickly dies off leaving again an essentially two-dimensional struc-

ture, as evidenced by the plan views. By this pairing process 

the layer grows linearly (in a mean sense), with the vortices 

correspondingly increasing in scale. 

However, another type of three -dimensionality be gins to 

appear just upstream of the critical Reynolds number position. 

This three-dimensionality corresponds in the photographs to the 

appearance of longitudinal (streamwise) lines and a "dimpling" of 

the surface of the large structures (apparent on the upstream and 

downstream edges of the structure in the plan-view photographs). 

This phenomenon first appears at a Reynolds number (o~U/"N ) 
2 

of approximately 10
4

• A close examination of the plan-views 

suggests that the three-dimensionality is cellular in nature and 

that these structures begin as hairpin vortices (Plate lf, x = 1/3). 

Downstream of the appearance of these cellular structures as 

they are being rolled up into the large structures, they seem to 

become unstable and produce the three-dimensional small scales 

within the large structures. This catastrophic instability of the 

cellular structures always first takes place within the large 

structure itself. This phenomenon occurs at what is being called 

the critical Reynolds number. Several other features are note -

worthy. Once these cellular structures appear, they continue to 

appear in all downstream structures and, in fact, seem to be 

continuous through several structures if the structures are 
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approximately equal in size. Thus, once the cellular structures 

become unstable as they are being rolled up into the large struc-

tures, the large structures become characterized by a considerable 

amount of fine scale mixing, and the thin vorticity layers (braids
18

) 

connecting the large structures become characterized by stream-

wise cellular structures. 

At even larger Reynolds numbers (Plate lg and h), the 

cellular structure instability propagates into the braids, thus 

causing much of the layer to be characterized by small scale, 

three-dimensional motions. Even though there is an increase in 

the amount of three -dimensionality above Re C' the shear layer 

continues to grow at the same linear rate and the basically two -

dimensional large structures continue to pair and grow. The 

significance of this will be explored in Section 6. 3. 

Before proceeding to a possible explanation of this phenom­

enon, the results of a similar photo graphic irive stigation of other 

shear flows will be presented. This investigation was undertaken 

to see if evidence for a similar instability in the shear flows 

could be found. 

First of all, in order to verify that the instability is not 

caused by the density difference in the nitrogen-helium shear 

layer, the constant density shear layer was investigated. Shown 

in Plate 2 is a Reynolds number survey of this flow. The 

shadowgraph technique is still usable due to the difference in 

indices of refraction between nitrogen and the mixture of argon 

and helium. 
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The similarities between this case and the last are striking. 

Again, at the lower Reynolds numbers, the large structures are 

completely two-dimensional (Plate 2a and b, up to x = 1 /5 and 

Plate 2c and d, up to x = l /l 0).- At a Reynolds number of approx­

imately O. 5 x 1 o4
, the cellular structures again appear, beginning 

4 
as hairpin vortices. At a Reynolds number of about 1. 5 x 10 , 

the cellular structures become unstable within the large structures 

producing an increase in fine scale mixing. The repetition of this 

process is clearly shown in Plate 2e and f. Here the cellular 

structures are quite clearly seen in the braid connecting the last 

two structures, both of which show fine scale mixing produced by 

the instability of the cellular structures within the large structures. 

The continued !basic two-dimensional nature of the large structures 

is illustrated in Plate 2g and h. The spanwise correlation can 

clearly be seen in the plan view. The instability of the cellular 

structures within the braids can also be seen throughout much of 

Plate 2h. (The apparent freestream turbulence is due to slight 

cooling of the gas at this high pressure.) Again, it can be seen 

that the growth and development of the large structures, and thus 

the shear layer itself, are basically unaltered by this cellular 

structure instability. 

The next case studied was that of the inhomogeneous wake. 

This case is .quite different from the previous cases for several 

reasons: the Reynolds number of a wa~e is constant, the flow 

has large structures of opposite vorticity, the similarity growth 

laws are different, and it is not clear whether or not a wake has 
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an amalgamation process. However, in spite of these differences, 

the inhomogeneous wake exhibited a similar instability. One 

difference, of course, between the instabilities observed is that 

for the wake, since the Reynolds number is constant, if the 

cellular structure is not present when the wake develops, it will 

not appear later. Likewise, if the cellular structure is present 

anywhere, it will be present everywhere. Plate 3a and b shows 

the wake at a relatively low Reynolds number. The completely 

two-dimensional nature of the large structures is evident. Plate 

3c and d shows the wake at a larger Reynolds number. Again, the 

basically two-dimensional nature of the large structures is seen; 

however, the three-dimensional cellular structure is now present 

throughout the flow. The spanwise correlation is still evident in 

the slightly higher Reynolds number wake shown in Plate 3e and f, 

but now, the cellular structure has become somewhat unstable. 

In Plate 3g and h, the cellular structure has become quite unstable. 

The spanwise correlation, however, is still remarkable. Thus, 

an instability similar to the one observed in the shear layer is 

present in the inhomogeneous wake. 

The final case studied was a homogeneous wake. Plate 4a 

and b shows the wake before the cellular structure develops and 

Plate 4c and d shows the wake after the cellular structure has 

become unstable. Again, a large spanwise correlation is seen in 

both cases even though one has much more three-dimensionality. 

For comparison, the momentum thickness was greatly increased 

for the final photographs of this case. The cellular structure is 
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clearly shown in the upstream portion of Plate 4e. 

6. 2 Explanation of Reynolds Number Effect 

To review what has been observed to this point, the concen­

tration measurements showed that above a critical Reynolds number 

the amount of small scale mixing in the shear layer is substantially 

increased. The entrainment rates into the turbulence are also 

larger above Rec· The intermittency profiles showed that above 

this Reynolds nwnber the probability of finding pure fluid within 

the layer is reduced. Just before this increase in small scales 

occurs, cellular three-dimensional structures appear in certain 

portions of the large structures beginning as hairpin vortices. 

These structures become unstable as they are being rolled up 

into the large structures. Thus, the large structure itself has 

its own instability and above a critical Reynolds number this 

instability generates strong local three-dimensionality and a 

cascade to high wave-numbers within the basically two-dimensional 

large structure. This cellular structure instability propagates 

into the braids connecting the large structures thus producing 

small scale three-dimensionality throughout much of the layer. 

This cellular structure, with its associated instability, repeats 

itself at all Reynolds numbers above Rec· 

Any discussion of the physical characteristics of this 

instability associated with the large structures and the reasons 

for its continued appearance at a Reynolds number above the 

critical value is somewhat speculative at this stage, though much 

can be inferred from the photographs and concentration data. It 
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is useful, however, to construct a model which is at least 

consistent with these inferences, if only to provide a possible 

basis for further experiments. In addition, since the development 

of the large structure is essentially an unsteady process with far 

from simple geometrical features, some physical appr.eciation of 

the mechanisms involved will almost certainly be requir~d before 

any analytical description can be fruitfully tackled. 

Since this new structure is cellular in nature and appears 

to be associated with a secondary flow, it is more than likely 

that this instability arises basically from a Rayleigh type instability. 

Rayleigh 
19 

showed that in a steady, inviscid, purely circulatory 

flow, with tangential velocity v(r), the radial equilibrium is 

unstable if the square of the circulation decreases outward. 

S . d ( 2_2 ) 2 3--7 h r 1 d ( -) . t. . t d ince -d r v = r w ~ , w ere ~ = - -d r v is vor ic1 y an r r r 

w = v /r is angular velocity, this inviscid criterion for circulatory 

flow can also be expressed in the form 

cw< 0 6. 1 

In other words, the motion is unstable whenever the sense of the 

local rotation C is opposite to the sense of the general rotation w. 

Taylor20 carried the analysis a step further and determined the 

effect of viscosity on the stability boundary both experimentally and 

theoretically. 

21 Coles , using dimensional arguments and balancing of terms 

in the equations of motion, showed that the viscous Taylor crite-

rion can be written 

6. 2 
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where n is some appropriate characteristic or mean value for the 

angular velocity w (r) and L is a characteristic scale for the 

secondary flow. By using Taylor's data, he showed that if n 

is approximated by 

6. 3 

where Wi and w2 are the angular velocities on the boundaries of 

the region of instability, then L can be approximated by 
1 

L = d/(1708)4 6. 4 

where d is the thickness of the ·region. 

In order to apply this criterion to the present case, some 

estimation of the terms involved must be made. The flow field 

calculations made by Corcos and Sherman of the inviscid roll-up 

of a two-dimensional shear layer can be used to make these 

estimations. Their Figure 1 (reproduced below) shows the 

streamline pattern and region of vorticity concentration (shaded 

area) for this roll-up process for a reference frame moving with 

the structures. 

Since the regions marked B and C have vorticity of opposite 

sense to the general rotation within the regions,. it is· apparent 

that these regions meet the Rayleigh criterion (Eq. 6. 1) for 

instability. Therefore, rough estimations of the terms in Eq. 6. 2 

will be made for these regions to determine the conditions required 

for these regions to also be unstable according to the Taylor 

criterion. All of the estimations to be made are quite rough and 

only made to see if a Taylor-type instability is consistent with 

the observed conditions within the large structures. What is 
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suggested here is that the Taylor instability gives rise to hairpin 

vortices in which the "head" of the hairpin originates in the 

unstable region of a large structure and is connected to longitu-

dinal vortex lines in the braid. Such a flow structure is shown 

schematically as Section A-A in the drawing. Two pairs of Taylor 

vortices are shown. Such a flow field would show up in the plan­
. .IC 

view as several parallel lines (four are shown) running in the 
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streamwise direction in the braid. These lines would be produced 

by the interfaces between the two gases. If dis the thickness of the 

braid connecting the large structures, then the mean vorticity (C) 

can be approximated by 6U /d. Since the center of the braid is a 

stagnation point, w1 can be taken to be zero. Therefore, if the 

radius of curvature of the streamline on the edge of region B is 

taken to be lOd, then w2 can be approximated as -(6U/2)/10d. 

Thus, according to Eq. 6. 3, 0 = -(8U/2)/10d/2 = -6U/40d. Since 
1 

the width of the region is d/2, L becomes (d/2)/(l 708f4. Upon 

inserting these approximations, Eq. 6. 2 becomes 
2 

or 

v 

( 
d/2 )

4 
2 

(l 708)t 

llUd > 740 
v 

In Taylor's experiment it was found that the spacing 

6. 5 

between vortices (d 1) is approximately egual to the region thickness 

(d). From the photographs taken in this investigation, d 1 was 

found to be approximately one-tenth of the visual thickness of the 

layer (oVis). Since 6w is approximately one-half of oVis' d/ow 

is approximately O. 2. Therefore, the Taylor criterion for 

instability becomes 

6 6U w 
v 

> 4 o. 4 x 10 

The closeness of this estimation of the point of onset of the 

Taylor instability to the observed point of onset is more co.inci-

dental than remarkable. Other equally valid estimations of the 
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terms involved would have obviously given different answers. 

However, what this does demonstrate is that the characteristics 

of the instability observed in this experiment are remarkably 

similar to the characteristics of the Taylor instability and that the 

conditions required for a Taylor instability are present in some 

regions of the large structures. It is also significant that the 

onset of the Taylor instability occurs at a lower Reynolds number 

in the homogeneous case than in the inhomogeneous case. The 

kinematic viscosity used for nondimensionalization in the inhomo-
' 

gen-eous shear layer should actually be an average in some way of 

Thus, since any average of 

vN
2 

and vHe will be larger than vNa' a Reynolds number based on 

vN will be larger than a Reynolds number for the same conditions 
2 

based on an average Vo Thus, the Reynolds number of the onset 

of the Taylor instability will appear to be higher if the Reynolds 

number is based on vN
2 

rather than an average Vo Plate 1f further 

demonstrates this kinematic viscosity dependence. The Taylor 

instability first appears on the nitrogen side of the large structure 

(region B) rather than on the helium side. This behavior is in 

accord with Eq. 6. 6. 

The large structure not only provides the conditions 

necessary for the development of this instability, but it also 

provides a mechanism to amplify it. Once the longitudinal vorticity 

produced by the Taylor instability is present in the braid, the 

vortex stretching due to the high strain rate in the plane of the 

braid (as shown in the drawing) strengthens this vorticity. 
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Apparently, as these Taylor vortex pairs, \\hich have been 

strengthened by the stretching in the braid, are being rolled up 

into the large structure, the additional vortex stretching causes 

the pairs to precess around each other and eventually break up 

into small scale structures. As can be seen in the photographs, 

the generation of small scales is most apparent on the leading 

convex surface of the structure, on the high velocity side of the 

layer, and on the corresponding trailing surface on the low 

velocity side, which, from the above picture, is where the Taylor 

vortices are expected to break down. The precise mechanism by 

which these secondary flows break down to small scale motions 

is not entirely clear, but what is clear is that this motion is 

unstable in the sense that the vortex stretching in the braids and 

the Taylor instability in the large structures are coupled so that 

there is a strong mechanism which can transfer energy fro.m the 

mean flow into three-dimensional motions. 

Two final points concerning the spacing between pairs of 

Taylor vortices (d2 ) should be noted. First of all, the downstream 

disturbance produced by the Taylor vortices in one braid is 

apparently sufficient to determine the positions of the vortices in 

the next braid. Since both braids are connected (in a sense) 

through one large structure, it is quite easy to see how this 

communication of position can take place. This upstream 

determination of the position of the vortices is seen in the photo­

graphs as the apparent continuation of the vortices through several 

large structures. The second point concerns the absolute value 
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of the spacing between the pairs of vortices. In the mean, dz 

was found to be approximately one-half o v· . However, the 
lS 

downstream influence just discussed is sufficiently strong so that 

dz changes in a stepwise manner. Thus, in some cases, dz 

is such that 40, ZO, or 10 pairs can fit across the width of the 

layer (IO cm), and in other cases, ZS, 14, or 7 pairs can fit. 

In other words, the spacing is constant until the point is reached 

at which approximately half the number of pairs across the layer 

is more stable. It is therefore apparent that the spacings between 

pairs of vortices is a function both of o and the spanwise boundary 

conditions. 

6. 3 Implications of the Reynolds Number Effect 

As a final comment on this three-dimensional instability, 

some of the important implications of this phenomenon will be 

pointed out. 

As was discussed in the introduction to this work, the 

basically two-dimensional large structure observed in the shear 

layer was thought to not be able to undergo vortex stretching and 

therefore could not form a part of the fully-developed energy 

cascade from mean flow to smallest eddies, an essential character-

istic of turbulence. Now, with the observed combination of 

production of Taylor vortices and vortex stretching, the process 

by which the large structure becomes a part (in fact, an 

indispensable part) of the cascade to small scales is clearly seen. 

This process is continuously repeated in the development of all 

large structures above the critical Reynolds number and is a 
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basic mechanism in the co~tinued generation of three-dimensional 

turbulence energy. As evidenced by the pictures, there is little 

indication of a cascade to small scales below the critical Reynolds 

number. The high-wave-number energy in the power spectral den­

sity curves below Rec comes from the sharp interfaces in the fl.ow:, 

not from small- scale spatial structures. 

A further consequence of this phenomenon can be seen by 

what the three-dimensional instability does not do; it does not 

significantly affect the linear growth rate of the shear layer. This 

of itself is quite significant and demonstrates the fundamental role. 

which the large structure plays. In the flow both above and below 

the critical Reynolds number, the Reynolds stress clearly derives 

from the large structure. However, above the critical Reynolds 

number, a further mechanism for the production of turbulence 

exists which is not at all related to the Reynolds stress. Thus, 

the Reynolds stress is not a complete measure of the production 

of turbulence energy. 

As remarked earlier, the entrainment rates into the turbu­

lence are increased by this instability phenomenon. Due to the 

breakdown of the Taylor vortices, the active, newly formed turbu­

lence on the leading and trailing convex surfaces of the large 

structure evidently enhances the local entrainment rates at these 

surfaces. This reduces the penetration of irrotational fluid into 

the layer as can be seen from the intermittency plots. Thus, 

above the critical Reynolds number, the entrainment of the fluid 

into the turbulence is partially by "engulfment" due to the induced 
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velocity field of the large structure and the amalgamation process 

and partially by nibbling. The fact that the entrainment rate into 

the turbulence increased by only 8% above the critical Reynolds 

number suggests that nibbling is of lesser importance in 'the flow 

than engulfment. 

The existence of these secondary instabilities helps to 

account for the large v'w' correlations which have been observed 

by some investigators 3• A completely two-dimensional view of 

these large structures cannot account for these large correlations. 

Finally, it is noted that all of these conclusions have been 

drawn from experiments on a mixing layer having a velocity ratio 

of r = l:J7. There is no reason, however, to doubt that the 

results are applicable to mixing layers of any velocity ratio. The 

existence of large coherent structures in wakes at very high 

22 
Reynolds numbers and the strong evidence of a similar instability 

in the homogeneous and inhomogeneous wakes shown in the photo­

g.raphs of these flows suggests that this instability may be an 

integral part of the production of turbulence energy in many other 

* shear flows. 

*Many of the ideas presented in this Section concerning the explana­
tion of the observed Reynolds number effect came to light in dis­
cussions with Dr. Garry Brown and Professor Anatol Roshko. I 
am especially indebted to Dr. Brown for the many hours he spent 
thinking about this phenomenon and sharing his ideas with me. 
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VIIo APPLICATIONS TO CHEMICALLY REACTING SHEAR FLOWS 

7. 1 Discussion of Toor' s Analysis 

The unmixedness results discussed in Section 5 are, for 

the most part, qualitative. Little more can be said in applying 

these results to chemically reacting shear flows than that one 

would expect more product produced for one flow than for the 

other. However, under certain restrictions, the concentration data 

obtained can be used to predict reaction rates for some special 

cases. An analysis of reactions under these conditions was first 

23 
put forth· by Toor • His analy·.,is shows that if a few assumptions 

are made, the probability density functions of the concentrations of 

scalar contaminants in a nonreacting flow can be used to predict 

the amount of product formed in a reacting flow of similar geometry. 

This restriction of similarity between the reacting and nonreacting 

flows requires that the reaction be dynamically passive. This will 

be true if the reactants are dilute and the reaction releases only 

small amounts of heat. 

The reacting and nonreacting flows for this analysis are 

illustrated in Figure 1. C. is the free- stream concentration of 
10 

each reactant (C. << 1 ). In the nonreacting flow, the concentration 
10 

of fluid 1 (CH) is measured as a function of position and tim.ea In 

the reacting flow, reactant A is assumed to be diluted in fluid 1 

and reactant B in fluid 2; A and B are assumed to react irrevers-

ibly by the reaction 

7. 1 
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In order for this analysis to be valid, the diffusivities of all 

species in both flows must be equal (DA = DB = Dp = D 1 = D2 ). 

Also, the reaction rate must be much faster than the diffusion 

rate. Many of these restrictions can be considerably relaxed 

before large errors are introduced. 

The basic idea behind Toor' s analysis as applied to the shear 

layer can be stated quite simply. Once the relative concentration 

of the two fluids in the nonreacting case are known for some posi-

tion, then, given the free- stream concentrations of reactants for 

the reacting case, the relative concentrations of the reactants can 

be found for that position. However, since fast chemistry is as-

sumed, the two reactants can not co-exist; they must react. Thus, 

for a given stoichiometry, the reactant that is in excess can be 

determined; the other reactant concentration will be equal to zero 

and the concentrations of the product and of the excess reactant can 

be calculatedo Thus, the Po D. F o 's of the reactant and product con-

centrations can be found by calculating these concentrations for each 

scalar concentration and using the scalar P. D. F o's to determine what 

percentage of time each occurs. The complete methodology of applying 

Toor' s analysis to this investigation is given in Appendix D. It was 

found to be convenient to normalize all concentrations with the corres-

ponding stoichiometric coefficients. Thus, 

C. = (molar concentration of species i) /N .•. 
l l 

7.2 

7 .2 "Equivalent Laminar Solution" 

Another often used method for predicting the amount of 

product in a reacting shear flow is what can be called an 
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"equivalent laminar solution"
24

• This method uses only mean 

profiles and neglects all concentration fluctuations. It is as-

sumed that all fluid which is entrained into the layer is 

immediately mixed on a molecular level. Thus, for a given 

entrainment rate and a mean concentration profile, it is an 

upper bound on the amount of product which can be produced. 

By this analysis, CAL {the concentration of reactant A as cal­

culated by the laminar solution) would be equal to C Ao CH and 

CBL would be equal to CBo (I - CH) except for the· fact that 

the two reactants can not co-exist. Thus, one concentration 

must be reduced by the reaction and the other completely re-

acted away. Therefore, 

and if c > 0 BL 

7.3 

7.5 

These equivalent laminar solutions will be used mainly to 

show the effect of the umnixedness of the gases on the amount 

of product formed. 
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7. 3 Results and Discussion 

Discussed in this section are the results of applying the. 

analysis of Sections 7. 1 and 7. 2 to the three cases investigated. 

Figure 18 shows the results of these calculations for the 

inhomogeneous shear layer at a Reynolds number above Rec· The 

mean concentration profiles are shown in Figures 18a and c and 

the fluctuation profiles are shown in Figures 18b and d. Two dif-

ferent cases are shown here for comparison. In one· case the 

ratio (a.) of the entrained reactant A to the entrained reactant B is 

set equal to 1, and in the other case, this ratio is set equal to 3. 

The actual definition of a. is 

a. = 7.6 

Thus, the effect of changing freestream concentrations, entrain­

-··-ment rates, or stoichiometric coefficients (see Eq. 7. 2) can be 

shown simply by changing a. 

The effect of varying a. can be seen by comparing Figure I Sa 

with Figure 18c. For a. = 1, since Ve
1 

= 3Ve2 , CBo must be 

about three times as great as C Aoo Thus, since CBo was unity 

for all calculations, CA /CBo approaches approximately O. 3 on the 

helium side and CB/CBo approaches I. O. Obviously, since there 

is more reactant available for a. = 3 than for a. = 1, Figure 18c 

shows a higher concentration of product. 

The equivalent laminar solution profiles are shown for the 

two cases by the dashed curves. The difference between the 
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laminar solution and the P. D. F. solution shows the effect of the 

unmixedness of the gases. For the laminar solution, A and B 

cannot exist at the same Tl location. Therefore, the profiles go to 

zero at the same location. 

The RMS concentration fluctuations are shown in Figures 18c 

and d. ~cp 2 
is normalized with the value of Cp calculated for 

the laminar solution for the point at which both CA and CB go to 

zero. 

The results for the inhomogeneous shear layer at a Reynolds 

number less than Rec are shown in Figure 19. Agaiµ, two cases 

are shown: a. = 1 and a.= 3. The major differences to note be­

tween Figures 18 and 19 are that Cp is lower and the fluctuations 

are higher in Figure 19 than in Figure 180 

The homogeneous shear layer results are shown in Figure 

20, and those for the wake are shown in Figure 21. 

The effect that Reynolds number has on the extent of 

molecular mixing is shown in Figure 22. Plotted in Figure 22a is the 

integral of the product concentration normalized with the integral 

of the laminar product concentration as a function of Reynolds 

number for the inhomogeneous shear layer. P and PL are defined 

as 

= 

and 

co 

J 
-CO 

cP c (y)dy 
Bo 

co 

f CPL 
c-(y)dy 

_co Bo 

7.7 

The rather sharp increase in the amount of product at the critic::al 
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Reynolds number again illustrates the increase in the extent of molecu-

lar mixing above Rec• It is evident from this plot that the extent of 

molecular mixing is constant both above and below the critical Reynolds 

number, the mixing above Rec being approximately 25% greater than 

that below Rec· P /PL for the homogeneous shear layer was found to 

be O. 75· and for the wake, o. 83. These values are for conditions above 

the critical Reynolds num.ber estimated from the shadowgraphs for 

each case. 

Since P has the dimensions of a length, it can be thought of as 

a measure of the "width" of the shear layer. Therefore, to show the 

effect that Reynolds number has on the growth rate based on this 

-width, the Reynolds number based on P can be plotted as a function of 

the Reynolds num.ber based on 6. This is shown in Figure 22b. The 

laminar solution is shown for comparison. 

Some insight into a rather interesting problem can be gained by 

a further application of the results of this analysis. The problem is to 

determine how much excess of one reactant is required in order to 

completely react all of the other. For example, in this case, suppose 

reactant A is an oxidant and reactant B is· a fuel• Then, the 

problem is to determine what freestream -concent:I'ati:on of oxidant 

is required so that all of the entraiJ?.ed fuel will react. As a larger and 

larger percentage of fuel is being reacted, the variation of the flux of 

product past any streamwi,se station will approach the value of entrained 

fuel at that station. Therefore, the required excess of oxidant can be 

determined by finding the ratio of the streamwise variation of 

product flux to the entrained fuel as a function of the ratio of 

entrained oxidant to entrained fuel. Thus, if the flux of product 
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is defined as 

co 

. 
p = f 7.8 

_co 

d ~ 
what is required is a plot of CBo dx (P)/(Ve2CB

0
/U 1) as a function 

of (Ve 1 C Ao/Ve2 CB
0

). The results of this analysis are shown in Fig-

ure 23. Again, the Reynolds number effect is seen quite clearly 

in Figure 23a which shows the results for the inhomogeneous shear 

layer both above and below the critical Reynolds number. The 

results for the homogeneous shear layer and the wake are shown 

in Figures 23b and 23c, respectively. .Figure 23d shows all four 

curves together for comparison. 

The basic result of this analysis is that approximately ten 

times as much oxidant must be entrained as fuel in: order to completely 

react the fuel. Thus, for the inhomogeneous shear layer and for unit 

stoichiometric coefficients, C Ao would have to be a little over 

three _times as great as CB
0
fsince Ve

1 
/Ve

2 
~ 3). Likewise, for the 

wake, C Ao must be approximately seven times as great as 

CB
0

fsince Ve 1 /Ve2 ~ 3/2). 

From the curves in Figure 23, the streamwise dependence 
~ 

of P can be determined. In other words, 
. 

(P)SL = bSL(x - xo) 

for the shear layer and 

for the wake can be found. b. is of course a function of a.. 
1 

7.9 

7. IO 
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Thus, knowing this information, a comparison between the wake 

and the shear layer can be made. Such a comparison will 

determine which case produces more flux of product under similar 

conditions. Obviously, the answer depends on the x station: at which 

the comparison ~s being made. As discussed in Section 5. 3c, it 

is expected that the wake will initially have a larger pr.oduct flux 

since it has better molecular mixing and, initially, more entrain-

ment than the shear layer. This analysis will determine the x 

station at which the shear layer begins to have a larger product 

flux. In order for the comparison to be equitable, the reactant 

fluxes were arranged to be the same for both cases. This 

required that (U l C Ao)SL = (U l C Ao)W and (U2CBo)SL = (U2CBo)W. 

Thus, for (U 1 )SL = (U 1 )W, the free stream concentrations would be 

(C Ao)SL = (C Ao)W = 1. O and (CBo)SL = (CBo)W/O. 38 = 1. O. 

Therefore, s.ince (Ve 1 /Ve2 )SL = 3. 4 and (Ve 1 /Ve2 )w = 1. 4, 0.SL = 

3. 4 and °w" = 3. 7. For these values of a. 

d • 
CBo dx (fS)SL/(Ve2CBo/Ul) = O. 88 

and 

Therefore, 

and 

Finally, the x station at which the product flux will be equal for 

both cases will be 

(x - x ) = ZS 0 
0 

7. 11 
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or, for this case, ( x - x ) = 2. 8 inc he s. 
0 

This means that for . 
these freestream concentrations of reactants, CB

0
(P)W will be . 

larger than CB
0

(P)SL up to (x - x
0

) = 2. 8 inches. 

For the range of a. investigated (0. 1 <a.< 10), the following 
,.:, 

empirical relationships between P and P were found: 

for the inhomogeneous ~hear layer (Rec+), 

(P /P) = 1. 73 + 0. 13 log a. , 

for the inhomogeneous shear layer (Rec-), 

(~fl:>) = I. 76 + O. 13 log a. , 

for the homogeneous shear layer, 

(P tf5> = 1. 39 + o. 11 log a., 

and for the wake, . 
(P/P) = 1..085 - 0.015 loga.. 

7. 12. 

7. 13 

7. 14 

7. 15 

Therefore, by combining the information in Fi-gure 23 with that in 

Equations·?. 12 and 7. 15, this same comparison between the ·shear . - ~ layer and the wake can be. made on the basis of P instead of P. 

-When this was done it was found that CB
0

P is larger for the wake 

than for the shear layer up to (x - x ) = 90 (1 inch). 
0 

One final comparison was made in wh~ch all freestream 

concentrations were set equal ((C Ao)SL = (C Ao>vr (CBo)SL = (CBo>w>· .. -It was found from this analysis that CB
0

P _is larger for the wake 

than for the shear layer up to (x - x ) = 1 O. 9 inches and CB P is 
0 0 

larger up to (x - x ) = 3. 9 inches. This increase in the trade 
0 

off x station is of course due to the increase in freestream concen-

tration flux. 

Curves similar to those in Figure 23 were suggested by Garry 

Brown. 
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VIII. CONCLUDING REMARKS 

This investigation was able to meet, to some extent, the 

goals that were stated in the Introduction to this work. The 

extent of molecular mixing was measured for several turbulent 

shear flows. It was determined that much of the engulfed fluid 

is still in a high state of unmixedness. Even the fluid which has 

been entrained into the turbulent regions is far from being perfectly 

mixed on the molecular level. It was further found that above a 

certain critical Reynolds number, the extent of molecular mixing 

increased. Accordingly, the fluctuations in the concentration 

decreased. These results were made more quantitative by using 

the data to predict the results when a diffusion-limited chemical 

reaction is incorporated into the flow. The results of this analysis 

showed the effect that the lack of molecular mixing has on the 

progress of a chemical reaction. 

Further understanding of the growth and development of 

the large structures in turbulent shear flows came from a rather 

unexpected source. A three-dimensional instability associated 

with the large structure itself was discovered while attempting 

to find the cause of the effect varying the Reynolds number has 

on the extent of molecular mixing. It may now be seen that the 

large coherent structures are not only an integral part of the 

mechanism which controls the growth of the shear layer but also 

play a central role in the production of small scale, three-dimen­

sional turbulence. 
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APPENDIX A 

Concentration Probe 

The probe being used to measure concentration histories 

in turbulent mixing regions is a development of the Brown-Rebollo 

probe in which the resolution has been improved by reduction in 

size. This is ace omplished by stretching a hot-wire (5 x l o- 5 

inches in diameter) across the diameter of a small (0. 2 mm) 

capillary tube (see Fig. 2a). The capillary tube is necked down 

upstream of the wire to a very small throat (0. 01 mm) so that 

when a vacuum is applied to the downstream end of the capillary 

the flow in the throat is sonically choked. The flow past the wire 

2 
is then independent of the freestream velocity (to order ~) and 

is dependent only on the throat conditions (y*, a*, p U*). The 

conditions at the wire are thus functions only of the .properties of 

the gas being sampled. 

The probe is calibrated by· placing it in a chamber in 

which the pressure (P ) and the relative concentrations (C) of the 
0 

two gases to be used in the experiment can be controlled. Thus, 

the voltage output VP b = V(P , C) is determined. These data 
ro e o 

are then curve fitted to give C = C(V P' P 
0

). 

Estimates of the spatial resolution of the probe can be 

made by calculating the captured streamtube diameter, which is 

a function of the sonic throat diameter and the free stream Mach 

number. For example, for a free stream velocity of 1000 cm/sec 

and a throat diameter of O. 01 mm, the streamtube diameter (and 

the lateral resolution) is approximately O. 1 mm. The streamwise 
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spatial resolution is a function of the hot-wire frequency response 

• and the freestream velocity. Again, for a freestream velocity 

of 1000 cm/sec and a wire response of I 00 kHz, the streamwise 

spatial resolution is O. I mm. The wire response is estimated 

from a standard square wave test for a constant temperature 

hot-wire. A sample square wave test response is shown in Fig. 

2b. An interpretation of this response signal can be found in 

Ref. 25. 

An operational calibration of the probe response was 

obtained by making use of the concentration signal (C(t)) itself. 

Interfaces in the mixing region provide very high values of dC/dt 

at the probe. Analysis of the frequency spectra of the signals 

obtained under various conditions (o, U and x can be varied) shows 

whether any differences can be attributed to resolution limitations 

of the probe. In this way it was concluded that the probe has a 

frequency response of at least 45 kHz, which corresponds to a 
..... 

spel:tial resolution of O. 2 mm at u1 = 1000 cm/sec. -r 

..... 
""Much of the work done to improve the concentration probe was done 
by Dr. Garry Brown. · 
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APPENDIX B 

Minimization of the Effect of Hydrostatic Forces 

In the inhomogeneous shear flows studied, the difference 

in the densities of the two fluids produces hydrostatic forces 

which induce streamwise gradients in both pressure and velocity. 

The magnitude of this effect can be seen by a simple application 

of the steady Bernoulli equation, where ( ) A is air, 

1 2 
P 

0 
= p 

6 
+ 2PU + (p A - P)gx • B.l 

The last term is included since the flow is vertical and, therefore, 

the relative hydrostatic forces must be taken into account when 

measuring pressureso Thus, the coefficient of pressure for the 

difference in pressure between two vertical points (subscripts a 

and b) is 

Ps - Ps 
b a 

1 u 2 aP a 

If the fluid is helium, then 

= 

and if the fluid is nitrogen, then 

= 

B. 2 

B.3 

B. 4 

where H is the ratio of the velocities at the two points (Ub/Ua) 

for helium, N is and 

B. 5 

Since this experiment consists basically of two adjacent columns 
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of gas flowing in contact with each other, the static pressure will 

adjust itself (through changing velocities) so that the pressure will 

be approximately uniform at any streamwise station. Therefore, 

CPH will be equal to Cp since p U 2 =. p U 2 for the inhomo-
N N N H H 

geneous shear layer. . Thus, E.qs. B. 3 and B. 4 can be combined 

to give 1 - H
2 

- SH = 1 - N
2 

- SN 

or 2 2 
N - H = SH - SN = S B.6 

Equations B. 3, B. 4 and B. 6 show to what degree the hydrostatic 

forces will cause gradients in the pressure and velocityo For 

example, if CPH and CPN were adjusted to be zero (by positioning 

the side walls) and if the pressures measured were for ports at 

streamwise stations 10 cm apart, then the velocities could change 

by a total of more than 5% for low speed flows. 

Since constant freestream velocities are desired, the static 

pressure should be adjusted so that N and H are as close to unity 

as possibleo In other words, the pressure gradient should be 

adjusted to minimize the sum 

(1 - H)
2 + (1 - N)

2 B.7 

Upon eliminating Hin Eq. Bo 7 by using Eq. B. 6 and using the 

standard minimization technique, the following fourth order 

equation for N is found: 

N
4 

- N
3 

+ N
2

S - NS+ S/4 = 0 B. 8 

The proper root of Eq. Bo 8 can then be substituted into Eq. B. 4 

to determine what pressure gradient will minimize the effect that 

the hydrostatic forces have on the velocities. By using this 
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technique, the decrease in freestream velocity on the helium side 

could be kept to less than 2"1 for U = 1000 cm/sec and less than a 

O. set, for Ua = 2000 cm/sec. The corresponding nitrogen free-

stream velocities increased by less than 2'% and O. 5'1.. A similar 

procedure was used for the inhomogeneous wake. 
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APPENDIX C 

Technique Used to Measure the Density of a Mixture of Gases 

In order to study the mixing process in a constant density 

shear layer, two gases of equal density but different concentration 

probe response were needed. Two such gases are nitrogen and 

a homogeneous mixture of l /3 helium and 2/3 argon. Since the 

mixing of the helium and argon could not easily be controlled, 

some means of measuring the density of the mixture was needed 

in order to determine if the mixture did indeed have the same 

density as nitrogen. 

Such a measurement can simply be made by comparing the 

hydrostatic pressure of the mixture to that of a known gas. Since, 

for a stationary, vertical column of fluid of height h, the pressure 

at the top of the column (p1) is related to the pressure at the 

bottom (p2 ) by the equation 

Pz = P1 + p gh , c. 1 

this comparison of hydrostatic pressures can be made by measuring 

the pressure difference at the tops of two columns of fluid,· one 

being the mixture and the other a known gas, and allowing the 

pr~ssures at the bottoms to be equal. Thus, for the mixture 

column, 

Pz = P1 + P gh m m m 

and for the known gas column 

P = Pi + P· gh Zg g g 

Since Pzm and Pzg are arranged to be equal, 
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Pl - P1 = l\p = (P -P )gh • m g m g m c. z 

The test column can be calibrated in the sense of determining gh 

by comparing two known gases in the above manner. Thus, 

l\pc = (p - p ) g h g c 

where the s.ubscript c is used to denote calibration conditions. 

Combining Eqs. C. Z and C. 3 gives 

which, upon solving 

or 

l\p 
m 

Ape 

for pm 

pm = 

pm 
= 

~ 

becomes 

l\p 
pg - ~pm (P g -P c) 

c 

~- Ap m (Pg-pc) 

PNa ~Pc p:Na 

C.3 

C.4 

In the actual measurements, the gas that the mixture was compared 

with was air and the calibration gas was helium. The pressures 

at the bottoms of the columns were arranged to be equal simply 

by opening the bottoms to the atmosphere. This was a stable con-

figuration since the mixture was lighter than . air. A column was 

needed for the air to eliminate room currents. In order to insure 

at least O. 1 % accuracy in the measure of density, the temperatures 

of the gases and the humidity of the air had to be monitored during 

both the calibration and test procedures. Taking this into account, 

Eq. C. 4 becomes 

c.s 
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where subscript T signifies test conditions. 

This procedure was suggested by Dr. John LaRue of the 

·university of California, San Diego. 
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APPENDIX D 

Analysis for Predicting Chemical Reaction Rates from Scalar 

Probability Density Functions 

The idea of using the probability density functions of scalar 

contaminates in nonreacting flows to predict reaction ~ates for 

similar reacting flows was first proposed by Toor23. The tech-

nique of applying these ideas to the present work are presented 

below. Some of the ideas put forth in Reference 24 are also 

incorporated. 

For a nonreacting shear layer, it is assumed that the 

concentration histories of one of the gases (CH) is· known as a 

function of both position and time. Therefore, the P. D. F. 's of 

the concentration (PH [CH]) can be computed. For a similar shear 

layer in which reactant A is diluted in gas 1 and reactant B is 

diluted in gas 2 (see Fig. 1) and they react irreversibly according 

to 

D. 1 

the concentrations of A, B, and P (CA' CB and Cp) are to be 

calculated as a function of time and position. Thus, for example, 

Cp '2 can be calculated as a function of Tl where 

cP = cP + cp'· 
For this analysis, it is convenient to incorporate the 

stoichiometry of the reaction into the concentrations. Thus, 

C. = (molar concentration of species i)/N .. 
l l 
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This will eliminate the necessity of carrying the N. 's along in the 
1 

analysis but the results will still be valid for all values of N .. 
1 

Next, let 

and 

D. 2 

D. 3 

If the diffusivities of all ~pecies are equal (DA = DB = DP = D1 = D2 ) 

and if the reaction rate is much father than the diffusion rate, then 

D. 4 

and 

D. 5 

This is true since C A/C Ao = CH except when CA is reduced due 

to reacting. But CA will be reduced by exactly Cp. Therefore 

the sum of CA and CP will be CH. A similar analysis applies to 

Z2 except that CB /CBo = 1 - CH . Combining D. 2 and D. 3 with 

D. 4 and D. 5 gives 

D. 6 

Now, since Y = Z1 .= CH' then their P. D. F. 's will be equal: 

D. 7 

With the assumed very fast chemistry, A and B cannot exist at 

the same place at the same time, or 
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D. 8 

Therefore, if 

D. 9 

then obviously, 

CA= X if X > 0 

D. 10 
= 0 if x < 0 

CB = - X if X < O 

D. 11 
=0 ifX>O. 

Thus, 

D. 12 

and 

D. 13 

From the identity 

it can be shown that 

X +CB 
PY[C +c

0
] 

[ ] Ao Bo 
Px x = _...,.,.c..-A_o_+_c~B-o- D. 14 

using BY /BX = ~ /(C Ao + CB
0

), D. 6 and D. 9. 

Therefore, 

D. 15 

and 



73 

Since PH is known, PA and PB can be found. Thus, using the 

identities 

and 

C. - /c.P.[C.] dC. 
1 1 1 1 1 

c. 
1 

C.2 _ ·1 C.2 P.[C.] dC. , 
1 1 1 1 1 

c. 
l 

c.•2 - c.2 
1 1 

(C.)2 
1 

CA' c8 , ~ C A'2 and ~ c8
12 can be calculated. 

D. 16 

D. 17 

D. 18 

D.19 

Equation D. 15 gives the P. D. F. for CA for all time that 

CA > O. There is a delta function at CA = 0 which accounts for 

all the time that B is in excess making CA = O. Although the area 

of this delta function can easily be calculated, it is not necessary 

to do so since the P. D. F. 's are only used as integrands when 

multiplied by their arguments (see D. 17 and D. 18). Thus, 

CAP[CAJ = 0 for CA = O. As an example of the use of D.15, 

consider the following given shape for PH[CAJ and let CAo = CBo = 
0.5. Then 

I 
-=--~..---- p 
CAo+CBo H [

CA+CB ] 
C +c o for o < c A ~ c Ao 

Ao Bo 

forO<CA~0.5 
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1.0 0.5 
CA/CAO 

In order to find c:;;, D. 2 and D4 must be used. Thus 

or 

From D. 19, 

1.0 

D. 20 

D. 21 

Thus, in order to find Cp'2 , Cp2 must be calculated. From D. 20 

and D. 4, 

Since Z12 = CH 2 and C A2 are known, Z1 CA must be determined. 

From P. D. F. analysis, 

D. 22 

Z1CA = f Z1 (CA) CA PA [CA] dCA. D.23 

Since 

CA 

X + CBo 
Z1 = y = CA +CB 

.o 0 
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CA + CBo 
= 

CAo + CBo 
for D.24 

then, 

D.25 

or, 

Z1 CA = D.26 

Therefore, 

c - c 
c • z = C z C z + ( Bo Ao )CZ 

p Ao H C Ao + C Bo A 
D.27 

It is interesting to note that the integral definition of 

unmixedness takes on physical significance when viewed in light of 

this analysis. This integral d~finition is, restated, 

UM = 
1af <c - q d~ +Jee - qdt.a 

./ (1 - C}dti + J c dt.a 

where t1 is the time for C > C and t.a is the time for C < C. 

D. 28 

From the definition of probability densities, it can be seen that 

PJC]dC = dt/T 

where T is the total time of the sample. This simply states that 

PJC]dC is the fraction of time that C is within the limits of dC. 
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Therefore, D. 28 can be rewritten as 

_f (C-C)PJCJ dC + r(C-CJPJC]dC 
c 0 

UM= D. 29 

These integrals can be evaluated by the following analysis. If the 

freestream concentrations are arranged for each C such that 

= c D. 30 

then, whenever C = C, no reactants will be present, only product. 

The reactants will have exactly "burned" each other up. If C > C, 

then A will be in excess and C - C = CA /(C Ao+ CB
0

)o If C < C, 

then B will be in excess and C - C = CB/(C Ao +CB
0

)o Using these 

two relationships, along with Do 30, D. 29 becomes 

UM= 

CAO 

1 c 
f PH[C]dC + CBo f PH[C] dC 

c 0 

+ 
JCBo CB [-cB+CB ] 

P 0 dC 
O CAo+CBo H CAo+CBo B 

1 c 
CAo f PJC]dC + CBo f PJC]dC 

c 0 

From Eqs. D. 15 and D. 16, it can be seen that the numerator is 
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simply the sum of the concentrations of the unburned reactants 

(CA + CB) and the denominator is simply the free stream concentra­

tions multiplied by the percentages of time that each would have 

occurred if the gases were perfectly unmixed. Therefore, UM 

finally can be interpreted as 

UM = D. 31 

where (Ci)UM is the mean concentration that would have been 

measured if the gases were perfectly unmixed. Thus, if the gases 

are perfectly mixed (C(t) = C for all time), then CA = CB = 0 and 

UM = O. Further, if the gases are perfectly unmixed (C(t) = 1 

or 0), then CA = (CA)UM and CB = (CB)UM and UM = 1 . 



• 

78 

REFERENCES 

1. Liepmann, H. W. and Laufer, Jo, "Investigation of Free 

Turbulent Mixing", Tech. Note No. 1257, N. A. C. A., 1947. 

2. Wygnanski, I. and Fiedler, H. E., "The Two-dimensional 

Mixing Region", Journal of Fluid Mechanics, Vol. 41, 1970, 

pp. 327-361. 

3. Brown, G. L. and Roshko, A. , "bn Density Effect~ and 

Large Structure in Turbulent Mixing Layers·~ Journal of Fluid 

Mechanics, Vol. 64, 1974, pp. 775-816. 

4. Rebollo, M., "Analytical and Experimental Investigation of a 

Turbulent Mixing ~ayer of Different Gases in a Pressure Gradient", 

Ph. D. Thesis, California Institute of Technology, 1973. 

5. Mollo-Christensen, E., "lntermittency in Large-Scale Turbu­

lent Flows", Annual Review of Fluid Mechanics, Vol. 5, Annual 

Reviews, Palo .Alto, 1973, pp. 101-118. 

6. Winant, C. D. and Browand, F. K. , "Vortex Pairing: the 

Mechanism of Turbulent Mixing-Layer Growth at Moderate Reynolds 

Number", Journal of Fluid Mechanics, Vol. 63, 1974, pp. 237-255. 

7. Laufer, John, "New Trends in Experimental Turbulence 

Research", Annual Review of Fluid Mechanics, Vol. 7, Annual 

Reviews, Palo Alto, 197 5, pp. 307- 326. 

8. Davies, P. O. .A. L. and Yule, A. J., "Coherent Structures 

in Turbulence", Journal of Fluid Mechanics, Vol. 69, 1975, 

pp. 513-537 0 

9. Murthy, S. N. B. (ed.), Turbulent Mixing in Nonreactive 

and Reactive Flows, Plenum Press, New York, 1975. 



79 

IO. Roshko, A., "Structure of Turbulent Shear Flows: A New 

Look", A.I.A.A. Paper No. 76-78. 

11. Brown, G. L. and Rebollo, M. R., "A Small, Fast-Response 

Probe to Measure Composition of a Binary Gas Mixture", AIAA 

Journal, Vol. 10, No. 5, May 1972, pp. 649-652. 

12. Cochran, William T. et al., "What is the Fast Fourier 

Transform? 11
, IEEE Transactions on Audio and Electroacoustics, 

Vol . .AU-15, No. 2, June 1967, pp. 45-55. 

13. Bergland, G.D., "A guided tour of the fast Fourier trans­

form", IEEE Spectrwn, July 1969, pp. 41-52. 

14 •. Murthy, S. N. B., "Turbulent Mixing in Nonreactive and 

Reactive Flows: A Review", Turbulent Mixing in Nonreactive and 

Reactive Flows, Plenum Press, New York, 1975, pp. 1-84. 

15. Brown, G. L. , "The Entrainment and Large Structure in 

Turbulent Mixing Layers", Fifth Australasian Conference on 

Hydraulics and Fluid Mechanics, Christchurch, New Zealand, 

December, 1974. 

16. Fiedler, Heinrich E., "Transport of Heat Across a Plane 

Turbulent Mixing Layer", Advances in Geophysics (1974) 1 SA. 

pp. 93-109. 

1 7. Dimotakis, P. E. and Brown, G. L. , "Large Structure 

Dynamics and Entrainment in the Mixing Layer at High Reynolds 

Numbers", Tech. Report CIT-7-PU, Project SQUID, 1975. 

18. Corcos, G. M. and Sherman, F. S., "Vorticity concentration 

and the dynamics of unstable free shear layers", Journal of Fluid 

Mechanics, Vol. 73, 1976, pp. 241-26'4. 



80 

19. Lord Rayleigh, "On the Dynamics of Revolving Fluids", 

Proceedings of the Royal Society, London, Series A, Vol. 93, 1916, 

pp. 148-154. 

20. Taylor, Go I., "Stability of a Viscous Liquid Contained 

Between Two Rotating Cylinders", Philosophical Transactions, 

Series A, Vol. 223, 1923, pp. 289-343. 

21. Coles, D., "A Note on Taylor Instability in Circular Couette 

Flow", Journal of Applied Mechanics, September 1967, pp. 529- 534. 

22. Roshko, Ao, "Experiments on the flow past a circular cylinder 

at very high Reynolds number", Journal of Fluid Mechanics, Vol. 

10, 1961, PPo 345-356. 

23. Toor, H. L. , "Mass Transfer in Dilute Turbulent and Non­

turbulent Systems with Rapid Irreversible Reactions and Equal 

Diffusivities", A. I. Ch. E. Journal, Vol. 8, No. 1, March, 1962, 

pp. 70-78. 

24. Alber, Irwin E. and Batt, Richard G., "Diffusion-Limited 

Chemical Reactions in a Turbulent Shear Layer", AIAA Journai, 

Vol. 14, No. 1, pp. 70-76. 

25. Cantwell, Brian J., "Matilda Meter Constant Temperature 

Anemometers", Graduate Aeronautical Laboratories Manual, 

California Institute of Technology, 197 5. 



U
p

p
p

C
A

o
 

=-
=j

x~
~.

'~
'\

:~
/-

-~
-~

 
--

c-
.v

..
.:

-i
~ 
~
J
'
 \

 

-
~
-
Z
 

l-"
--

~
 

-
--

\.
..

..
 

U
zP

tC
ao

 
-

F
IG

. 
I 

IO
m

v 

J
_

 

u 1J
j :e. Pi
 

(
•
 

C
A

 C'
s 

d,
 

d
2

 

•• 

,, 

d
1 

=
 

S
T

R
E

A
M

W
IS

E
 

S
P

A
T

IA
L 

R
E

S
O

L
U

T
IO

N
=

 0
.1

 m
m

 

d2
=

 
C

A
P

T
U

R
E

D
 

S
T

R
E

A
M

T
U

B
E

 
D

IA
M

E
T

E
R

=
 O

.l
m

m
 

d 3
=

 
C

A
P

IL
L

A
R

Y
 O

P
E

N
IN

G
=.

O
lm

m
 

d 4
=

 
C

A
P

IL
L

A
R

Y
 D

IA
M

E
T

E
R

 
=

 0
. 

2 
m

m
 

-5
 

5 
x 

10
 

IN
. D

IA
. H

O
T

 W
IR

E
 

0
0

 
.....

. 
,
M
~

E
P
O
X
Y
 

L
E

A
D

S
(2

) 

T
 
r
A
•
•
~
•
•
-

1%
a"
·P
/:
l~
GL•

•• 

2µ
se
c~
 
~
 

F
IG

. 
2

b
 

H
O

T
W

IR
E

 
T

IM
E

 
R

E
S

P
O

N
S

E
 

F
IG

. 
2

o
 C

O
N

C
E

N
T

R
A

T
IO

N
 

P
R

O
B

E
 



82 
--: 
c:::> 

.t !. 
: t. .. ·~ 
• . . . 

•tr ~~ .. . . .,. l-
""' ...... ., 
.... 

" 
.• .. . ... 

~ 
A 

\ 
~ -... c:::> 0 

••• 
0 0 
>< ~ >< 

• • • 
I .. I 

>< . >< 
~· ...... IC:" ...... .. >- ·~ >--· -. . - ,, 

• c 

" --: ' --: 0 
-6 

~.(· c:::> .. 0 r-...: 
I I II 

f 
VI 

• ... I 
co 

• r<> ... d . ' II 

~ I .... 
.. 

s • CJ) 

~ o· r e·o 
~ w 9·0 ,.. J z·o o· t e · o 9·0 r·o z· o ~ ...J 

in i<I I n<I In /.Q. lJ.... z _z_ 0 
a: 
a.. 

--: --: w 
0 

0 

I 
CJ) 

a: 
w 
> 

..--t" 
<{ 
a: .., I-

:c 
_g. r<> 

(.!) 

lJ.... 

~ 
0 

0 0 

>< >< 
I 

I 

>< >< 

...... ...... 
>- >-.. ,. __ 

--: 
0 

I 

! 

~ 
o· t e·o 9 · 0 t·o -z:·o ~ o· t e·o 9 · 0 v·o z·o 

( &H) :> (&H) :> 



,,. 
~""

 
... 

-
~ 

""" 

~ 
~ 

~ 
~
 

.. 
-

I 
-

... 

-
-

~ 
I
L

 
I 

u 
....

. 
l..J

. 
~
 

11 
.. 

-
J
 .. J

l Iii.
 

u 
-

~
 

... 
" 
. 

~
~
 
~
 

-
-

~
 

I 
lJ 

.. 
I 

I 
... 

'I 
w

 
I 

I 
I 

I 
I 

I 
I 

I 
I 

r-
-1

._
_

J
 

- UJ (a
) 

a • ... 

~
l
a
 -.
 

w
a (d

) 

(b
) 

(c
) 

TI
M

E 
-

10
 t

 
(e

) 
(f

) 

F
IG

. 
4 

T
IM

E
 

H
IS

T
O

R
IE

S
; 

r 
=

 0
.3

8
, 

s 
=

 7. 
0

; 
71

 =
 -.1

0
,-

.0
4

,-
.0

1
,.

0
2

,.
0

5
; 

4:
::

 S
C

A
L

E
 

O
F 

L
A

R
G

E
 

S
T

R
U

C
T

U
R

E
S

 

CX
> 

nw
 I 



! 
o· e·o 

o• ,I a·o 

s·o t·o 

g• '1 t•o 

-. C) 
I 

-: 
0 
I 

84 

0 
>< 

I 
>< 
....... 
>-

N z 

> ... 
:J 
iij 
ct 
m 
0 
a:: 
Q. 

0·1 a·o g•:J t·o 

i(b) 

, .. , .. 
•I 

ti 
!1 •• 1r 
~· /~ 

I •• 
I • ,, 

I 

,' ·"' I. 'f I•• 
I : 

:·f. , .. 
\ (. 
!r: 
~· ~-! ........ . ..._ 

z·o 

IU 
Q) 

a: 
I 

c 
La.I 
:c 
en 
~ 

+;, 
Q) 

a: 
I 

~ z 
~ 
0 
,...: 
II 
(/) 

Cl> 
rt) 

- 0 a 11 

-C) 
I 

0 
>< 

I 
>< -....... 
>-

~ 

en 
LLJ 
...J 
Li: 
0 a: 
a. 
LLJ en a: 
LLJ 

~ 
a: 
~ 



.! o· 

-----·-,,:o~ • 
t • ., 
\ ~· 
\•. 
\~ 
\•_. 
I '110 

/j 
/':: 

/ ,,. 
,,' f 

/ . 
, -

,/ .. ~ 
I • 

I o 
: ..r· 
t 1:0 

\0 

'~· 
'""'-. . .;----------

9• 0 t• 0 

(l~-1) ~/z•'J) 

i·o 

e·o 

.... ------~ ,, .. 
I I ' \ .. 

\ . 
\ f. :. 
I 1• 

/ :. 
/ =-· , .. 

/,' -· ," ,. 
/ •:' 

/ . 
/ ti 

I ·­
: ~--· \ 

\ -· \,·· 
~ .... .... _ . ------ -- -• 

s·o ~·o 

wn 

-
0 

-: 
c:> 

-c 
• 

85 

0 
>< 

I 
>< 
....... 
>-

0 
>< 

I 
>< 
....... 
>-

,.... 
0 

o·t 

,, 
:r 
J'I. 
1: 
11. 
I • 

I ' /~· 
,' .. , ., 

,/ -" , .. , . 
/ -'I 
I oo 
I o , . , .. 
~ ,,. 
' . \ .... 
\ . 
\ .. . ' ..... . ................. . -.... 

e•o s·o t·o 
.1 
(<2-nu~) 

e·o 

, , 
I 

I 
I 
I 
I 
I 

I 

, , 

,,..-----
( }'. 
I :r 

I o 
I .. 

: " ,l ;. 
,,'' I. , .. 

,' -... 
.• 
• 

> • . 
' ' \r 

g•o 

.1.wn 

\ 

' ............ ~· 
---;--.!! __ • 

-: 
0 

I 

-0 

• 

0 
>< 

I 
>< 
....... 
>-

,.... 
"Cl 

0 
>< ·I 
>< 
....... 
>-

'aP a: 
I 

0 
L&J 
:::c 
(/) 

-~ 
+~ 

G> a: 
I 

~ z 
~ 
0 
~ 
II 
en 
af 
rt> 
0 
II 

(/) 
L&J 
..J 
LL 
0 a: 
a. 

~ 
lLJ 
z 
0 
L&J 
x 
~ 
z 
::::> 

U> 

<!> 
LL 



86 

Ert 
Al11l9H90)Jd 

a • -
m 
• c 

.. 
CX) 
rf) . 
0 
II 

... 
z 
0 
~ 
0 
z 
:::> 
LL 

>­
~ 

(/) 

~ z 
t:J I.LI 

-
c 

>-
1-
...I 

m 
<( 
CD 
0 
0:: 
a. 
,_... 



0 
• 

CD 

~ 0 . 
e~ 
0 
0 
.J 

0 . 
C\J 

e 
8' 
.J 

87 

--

-1 .o· o.o 
Log (f 8/AU) 

(a)(I) Re::l.0, 1.13,0.6x104 ; (2) Re= l.5,l.8,l.9xl04,(3)Rem2.3,2.8,5.5xlO .. 

-1.0 o.o 
Log (f8/AU) · 

(b) (I) .,, • -0.10 ,(2).,,. o.oo 

1~0 

Fl G. 8 POWER SPECTRUM CURVES; r = 0. 38 1 s_ = 7. 0 



~
I 

• 
~
 

"! 0 

-
ID

 
N

 
• 

~
 

0 
(,

) 

"! 0 ~
 

0 

(a
l 

~
 - "! 0 

'N
 

z 
U?

 
u 

0 "! 0 °'! o
~
 

-0
.1

 
(b

) 

,,. 

I I
 b

l.L
I U

,l
, 
i.l

o
lJ

ll.
lll

..l
..L

ll.
...

.-
...

. 
0 

• 
o 

I 

0.
1 

-0
.1

 
o.

o 
Y

/lX
-X

O
I 

" 

0.
1 

(c
) 

P
R

O
B

A
B

IL
IT

Y
 O

f 
F

IN
D

IN
G

 
P

U
R

E
 

(I
) 

A
r 

-H
e

 ,(
2

JN
2

;(
3

) 
IN

T
E

R
M

IT
T

E
N

C
Y

 

o.
o 

Y
/lX

-X
O

I 

0 - "! 0 ID
 

5
0

 
1:3

 
"! 0 N

 

0 

0.
1 

-0
.1

 

(d
) 

F
IG

. 9
 

T
R

A
V

E
R

S
E

 
P

R
O

F
IL

E
S

; 
r 

=
 0

.3
8

, s
 =

 1.
0 

Y
/ 

o .
o 

lX
-X

OI
 

o 
_

J
 

.t
 

co
 

0
0

 



89 

... 
. 0 . 

II 

:. en ,. 
co 
rt> . 
0 
II ... ,...... ... 

'lo- U') ._..... 
U> 
0 . .. 
0 
~ 
q 

. 

! 



-! 

o· ' e·o s·o t·o z·o 

t-

~i 
~a 
+k 

90 

.... . 
C) 

~­co 

0 
I 

0 

>< 
I 

>< 
....... 
>-

~-co 
>< 

I 
>< -....... 
>-

:g 

0 

II 

en 

Q) 
rt) 

0 
II 
~ 

en 
LU 
...J 
G: 
0 
a: 
Q. 

en 
en 
LU .... z 

C) 0 
LU 
x 
~ 
z 
::> 

(.!) 

LL 

io ~ ~-
10 oo 

I .!. >< 
I 

10 1"0 
. >< 

:::: 
l~l't >-

-+ IC 

o· t e·o t·o z·o 



91 

o·a o·t 
AlI1ISl:l80Hd 

0 . -
II 

en .. 
CD 
rt> . 
0 
II 

' ... 
z 
0 
l­
o 
z 
:::> 
LL 

>-
1-
(/) 

z 
IJ.J 
0 

>-
1-
..J -m 
<( 
m 
0 
0::: 
Q. 

(\J 

-IL 



92. 

U> .. . . 
. . . . "? 
0 .. "' 

:' 
ci,_ 

a> . . • *' . -. 
C? 0 

x . 0 
I , 

x ...... .. ' • >-, .. "? 
0 . . I ... 0 

,_..: 
II , . Ill . V? . • o 0 I ....: 

• II 

• . fJ) . w 
~ _J 

o· 1 e·o s · o ~·o c:·o Li: 
sn/cn-'n> 0 

0:: 
Cl. 

w 
fJ) 
0:: 
w 

U> > 
~ ~ 
0 .; 0:: 

I-

!() 

(.!) 

"? • "? i:L . 
0 

"' 
0 

"' . • ci 
IO . ~ o,_ ·- :t: a> . 0 
~ ' C? x ...- 0 
0 I 

x x 
I 

' x 
~ 

>-
>- "? .... 0 

'G I 

3 
(.) . 

"' "! 
0 

I 

2 
:0 

0·1 e·o s·o ~·o c:· 0 o· t e·o s·o ~·o c: ·o 
(&H) ~ (&H)~ 



93 

rt> 
C\J 
0 

• 0 .. 
" 

(X) 
... 0 

d ... 
CD 
0 
d 
I ,..... 

() 
,.... ... 

....., .... rt) ....., C\J 
d 
I .. 

CD 
rt) 

• 0 

' ... rt) 
I{) 

• 
~ 

0 
I LI.I 
II 0:: 
E=="" :::> 
.... I-
00 
I'! :::> 
II a: 
fA I-

,..... .. CJ) 
.0 

Q) _: LI.I ....., 
II (!) 
t... 0:: 

,_ ct 
en ..J w 
-~ a:: 0 
0 

" 1-- LI.I 
c::> ~ ..J .... :c ct 

0 
l&J lLJ (/) 
x: ~ ·II .... .... I- ~ 

~ . 
,.... (!) 

g•g 
,, 

LL ....., 
C3HlJ 



~
 

m
 

a 

~~
 .... a ~
 

a ~
 

Cl?
 

0 

~~
 

~
'
"
!
 

a "' a (a
) 

,(
b

) 

., ..
....

 , .,.. 
.. 

. .... 
• 

.,. 
., 

" .
 

~·
 

. 
-0

.6
 

-0
.3

 
o.o

 
0

.3
 

Y
/(

(X
-X

o
)*

8
)0

·5 

. ,. 
...

...
 '•·

 ...
.. 

.,
 •

ti
#

 

• 
-0

.6
 

-0
.3

 
o.o

 
Q

.3
 

Y
/(

(X
-X

o
)H

 8
 )

0
·5 

o.
e 

o.
s 

I•
 

1
) 

11
 

a ·-
... 

• •
 • 

-.. "
 

-
• 

·'
' 

• 
• 

•• 
• 

~~-
' 

• 
.:

'<
21

 
• 

'';
'-

(3
) 

•• 
I 

(l
y-

"'
. 

• 
• 

~~
 

• 
• 

• 
• 

• 
• 

• 
I 

I 
• • 

~~
 

••
 

I 
• 

• 
• 

• 
• 

• 
• 

• 
~~

 
.. 

• 
• 

• 
•• 

• 
-· 

• 
• 

-o
.6

-
-
0
~
3
 

-
-

-
--u

.o
-

-o
5 0

.3
 

Y
/(

( 
X

-X
o

) 
tt

9
) 

. 
(c

) 
P

R
O

B
A

B
IL

IT
Y

 
O

F 
F

IN
D

IN
G

 
P

U
R

E
 (

I)
 N

2,(
2)

H
e\

(3
)1

N
T

E
R

N
IT

T
E

N
C

Y
 

F
IG

.1
5 

T
R

A
V

E
R

S
E

 P
R

O
F

IL
E

S
; 

r 
=

 1
.0

, s
 =

 7.
 0

 

• •
 

o.
.t:

) 

~
 



95 

~ co co 
0 0 

, .. 
-.. If) 

~ 
c:::J I() 

~ 
0 

o_ IO . ci-• ~ ' . ~ • • • '* ~ * . -- 0 • 0 . 17 )( . 17 )( 

" 
0 I 7 0 

• )( • x , - . -' - I ' ..... . >- >-• • 
'II "] • "1 

Cl ' 0 .. I I 
0 •11 . • ,....: II I .. II ... • en •• . 

• U? .. 0 • 0 , 0 . • I I 
II .... 
(/) 

! !! § LLJ 
1----J___J___L __ ...J 

D"l e·o s·o t·o 2·0 o· t e·o s·o t•o z· o rL 
(Q-1)~/z,O J.( (,Q-1) .Q/210 ) 0 a:: 

a. 
(/) 
(/) 
LLJ z 

"! 
0 

~ LLJ 
C> 0 x 

~ 
z 
:::> .. • If) 
U) 

~ 0 ci • 0 in I It> .. o_ • o_ ii: . ~ 
. m • •• '* • '* • - • -0 

•• 17 )( - 17 0 

• 0 I • 0 )( 

r/ )( . I 

• )( -· -I ,. " ' • >- • >-• • "? • ~ • • 0 0 

•• I • I 

~ • • 
• • • co • co . 

• ci ·• . a 
I I 

- e .g 
o·r e·o e·o ,.. 0 z·o 0·1 e·o s·o t·o z·o 

NO J.wn 



96 

! 

u·a 

CD • 
&D 

0 
~ 
II 

0 
• 

II 

.... 
z 
Q ... 
(.) 
z 
::::> 
LL 

>­
I-

co -
~- (/) 

LL1 2 
:c w 
- c u 

~ >-
a 1-

_J 

m 
<t 
m 
0 
a:: 
a.. 



;,
. 

,o
 

c 
Dt 

as
: 

3 
.:~

 
...

...
...

...
...

 
G

•I
 

..: 
C

e/
C

eo
 

+
 

-
m

 
• 

C
e/

C
eo

 
m

 
CA

/C
eo

 
.;~ 

\ 
0 

C
,.

/C
ao

 
.;

 
\ 

C
p/

C
eo

 

x 
C

p/
C

eo
 

~
 

m
 

~
 

D
 

~
 

~
 

~ 
c 

N
 

N
 

~
 

c 

1 
•
•
•
 ~
v
~
.
 ~
1
.
·
 

-0
.1

 
o.o

 
0.

1 
-0

.1
 

o.o
 

0.
1 

Y/
lX

-X
OJ

 
Y/

lX
-X

OJ
 

(a
) 

(c
l 

...o
 

..
J 

a
•
 I 

C?
I 

'? 
a 

• 
3 

+
 U

a
lc

e
o

 
.... 

r-
:i

 
+

 
v

c
'e

'/
c
e
o

 
m

j 
~
 

CD
 

cir
 

0 
v 

c;.
-/c

A
o 

a 
~
 

~
 

o 
vc

A
.2

/cA
o 

"! 
" 

Cp
/1

Cp
JM

A
X

 
m

 

D
 

D
 

~
 

I 
V

 C
p-

/(C
pL

lM
A

X
 

~
 

~
 

C
 

D
 

~
 

N
 

0 
0

1 
;k

':
 

I 
I
~
 ~
~I

 
-0

.1
 

o.o
 

0.
1 

-0
.1

 
o.o

 
• 0

.1
 

Y/
lX

-X
OJ

 
Y/

lX
-X

OJ
 

( b
) 

(d
) 

FI
G

. 
18

 
C

H
E

M
IC

A
LL

Y
 

R
E

A
C

TI
N

G
 

S
H

E
A

R
 

LA
Y

E
R

 
P

R
O

F
IL

E
S

; 
r=

 0
.3

8
,s

=
7

.0
;R

e
t,

D
A

S
H

E
D

-11
LA

M
IN

A
R

11
 

S
O

LU
T

IO
N

 



ro
t 

... 
·'

ti
 



~
~
 

G?
I 

0 ~ a "" . a ~
 

a 

(a
) 

0 . ... m
 . a U

) a 

( 
b

) 

.....
.. 

-0
.1

 

-0
.1

 

a
• 

I 

+
 C

a/
C

ao
 

0 
C

A
ic

ao
 

x 
C

p/
c

80
 

a
•
 I 

+~
Ca

o 
o
~
C
A
o
 

X
 
~(

CP
L)

MA
X o.o

 
Y/

lX
-X

OJ
 

o.
i 

~
 "' ~
 (c

) 

0 . CD
 

D
 co
 

0 

(d
) 

''° 

-0
.1

 

-0
.1

 

a
•3

 

t 
ca

/C
ao

 

0 
C

A/
C

ao
 

x 
C

p/
C

ao
 

a
•
3

 

+
~
C
a
o
 

~
 

o 
vc

A
."

'lc
A

o
 

X
 
~(

Cp
JM

AX
 

o.o
 

Y/
lX

-X
OJ

 

·'• 

F
l G

. 2
0

 C
H

E
M

IC
A

L
L

Y
 

R
E

A
C

T
IN

G
 S

H
E

A
R

 L
A

Y
E

R
 P

R
O

F
IL

E
S

; r
= 

0
.3

8
, 

s 
=

 1
.0

; D
A

S
H

E
D

-11
LA

M
IN

A
R

11
 S

O
LU

T
IO

N
 

0.
1 

"' "' 



<'
 

1
0

 
\-

~ 

a
•
 I

 

J 
a 

• 
3 

+
 

C
e/

C
ao

 
+

 
C

a/
C

eo
 

0 
C

4/
C

ao
 

0 
~/

Ca
o 

~~ 
\ 

)(
 

C
p/

c 8
0 

x 
C

p/
C

ao
 

N
 

"! a • . a "' . a 

I . 
~
 

T
 I

 
I 

I . 
• 1
~
 

•
'
 

I 
' 

-o
.6

 
-o

.:s
 

o.o
 

o.
3 

o.
6 

-0
.6

 
-0

.3
 

o.o
 

0
.3

 
o.

6 

(a
) 

Y
 /(

( 
X

-
X

o
)*

 8
)0

'5 
(c

) 
Y

 /(
( 

X
-X

o
) w

-8
)0

·5 
~
 

0 
a
•
 I 

a
•3

 
0 

~I
 

+~
ca

o 
~
 

+
 
~
C
e
o
 

.... 

~~
 

o 
~
C
A
o
 

~
 

0 
~
C
A
O
 

X
 a

(C
p

L
}M

A
X

 
C

l 

~(
Cp

l}
MA

X 
x 

~~
 

'I? a 

~
 

a ~l 
I 

"' D 

I 
I
~
 

-o
.t)

 
-0

.3
 

o.o
 

o.
3 

o.
6 

-0
.6

 
-0

.3
 

o.o
 

Q
.3

 
0

.6
 

( b
) 

Y
/(

( 
X

-X
o

)*
8

)0
·5 

(d
) 

Y
 /(

( 
x-

X
o)

H
 e

f·5 

F
IG

. 
21

 
C

H
E

M
IC

A
LL

Y
 

R
E

A
C

T
IN

G
 

W
A

K
E

 
P

R
O

F
IL

E
S

; 
r 

=
 1

.0
, 

s 
=

 7
.0

; 
D

A
S

H
E

D
-11

LA
M

IN
A

R
11

 S
O

LU
T

IO
N

 



0 . 101 ...... 

CD 
• ao a B g ca 0 6 6 0 0 I 

0 
0 

CD 1C11 e QC!Qaa 0 • . "'6 6 ·. 
0 

20..-' ~ . 
' 0 in. 

N 
a=l.O . 

0 

_____ .J 

1.0 3.0 4.0 s.o s.o 

(a) 

0 . 
..... 

CD 
• 

0 

,,, 
I 

Q CD . 
x 0 

N 
z 

;) 

' ~ a = 1.0 ::> . 
<l 0 

lO.. 

N 
• 

0 

1.0 2.0 s.o s.o s.o 

(b) 

FIG. 22 INTEGRAL OF PRODUCT vs. Rea 



fl. ·. 

o· 1 

0·1 el> 9l> ~l> a·o 
<'n1oe0 zeA)/(~) ~ oa0 

g 
u 

Cll 

c >1 
~~ 

c§' 
.j 

..::::.. 

C? -I 

g 

102 

0 
,..: 
II 

Cit 

0 

II .. 
2 O'I e·o 9·0 ~·o a·o 

< 101 oe 0iel\l/l::!>T oe0 

0 
..,: . 
• 

CD ,,, 
0 
• 
.... 
,g 0·1 

~ 
0 
m u 
N 

0 >1 
0 ' 0 

" .j 
~ 

0 
0 
...J 

g 
I 

~ 

rt> 
N 

(!) 

Li: 

C? 

""=" 
0 
m 

u 
N 

c t . ~ c 0 
Cl 

0 

-} 
~ 

0 
0 
...J 

0 
..: 
• 
ct) 

~ CD - ,,, 
I 0 . .. 

~ 



103 

PLATE 1 

Inhoznogeneous Shear Layer 

a and b Side and plan views, p = 2 atzns, 
0 

u1 = 600 czn/sec, U2 = 226 cm/sec, 

Re 4 = o. 5 x 1 0 I Cill 

c and d Side and plan views, p = 4 atms, 
0 

u1 = 1040 czn/sec, U2 = 390 czn/ sec, 

4 
Re = 1. 7 x 10 /cm 

-.: 

e and f Side and plan views, p = 4 atzns, 
0 

u1 = 1 0 0 0 cm Is ec, U2 = 378 cm/sec, 

Re 4 = 1. 7 x 10 /cm 

g and h Side and plan views, p = 8 atzns 11 0 

u1 = 993 cm/sec, U2 = 375 cm/sec, 

Re 3. 3 
4 = x 10 /cm 

1 cm = 1. 7 cm for all plates 
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,. 

a and b 

c and d 

e and f 

g and h 
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PLATE Z 

Homogeneous Shear Layer 

Plan and side views, P = 4 atms, 
0 

U 1 = 250 cm/sec, u2 = 95 cm/sec, 

Re = O. 4 x 10 4 I cm 

Plan and side views, P = 4 atms, 
0 

U1 = 500 cm/sec, u2 = 189 cm/sec, 

Re = O. 8 x 10
4

/cm 

Plan and side views, P 
0 

= 4 atms, 

U 1 = 1000 cm/sec, u2 = 378 cm/sec, 

Re = I. 7 x 10 
4 I cm 

Plan and side views, P = 8 atms, 
0 

U 1 = 1 000 cm Is ec, U 2 = 3 7 8 cm Is ec, 

Re = 3. 3 x 1 0 
4 

/cm 
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a and b 

c and d 

e and f 

g and h 
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PL.ATE 3 

Inhomogeneous "Wake 

Side and plan views, P = 2 atms, 
0 

U 1 = u2 = 306 cm/sec 

Side and plan views, P = 4 atms, 
0 

U 1 = u 2 = 400 cm/sec 

Side and plan views, P = 4 atms, 
0 

u 1 = Uz = 710 cm/sec 

Side and plan views, P = 7 atms, 
0 

U 1 = u2 = 900 cm/sec 
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a and b 

c and d 

e and f 

g and h 
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PLATE 4 

Homogeneous Wake 

Plan and side views, P = 1 atm, 
0 

U 1 = U 2 = 1000 cm Is ec 

Plan and side views, P = 8 atms, 
0 

U 1 = u2 = 960 cm/sec 

Plan and side views, P = 4 atms, 
0 

U1 = u2 = 100 cm/sec, 

one-quarter inch thick splitter plate 

Plan and side views, P = 4 atms, 
0 

U1 = u2 = 600 cm/sec, 

one-quarter inch thick splitter plate 
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