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ABSTRACT

The plane-strain problem of a stress pulse striking an
~elastic circular cylindrical inclusion embedded in an infinite
elastic medium is treated. The méthod used determines dominant
stress singularities that arise at wave fronts from the focus-
ing of waves refracted into the interior. It is found that a
necessary and sufficient condition for the existence of a prop-
agating stress singularity is that the incident pulse has a
step discontinuity at its front. The asymptotic wave front
behavior of the first few P and SV waves to focus are deter-
mined explicitly and it is shown that the contribution from
other waves are less important. In the exterior, it is found
that in most composite materials the reflected waves have a
singularity at theif wave front which depends on the angle of
reflection. Also the wave front behavior of the first few
singular transmitted waves 1is given explicitly.

The analysis is based on the use of a Watson-type lemma,
developed here, and Friedlander's method (see his book Sound
Pulses, Cambridge, 1958). The lemia relates the asymptotic
behavior of the solution at the wave front to the asymptotic
behavior of its Fourier transform on time for large values of
the transform parameter. Friedlander's method is used to
represeht the solution in terms of angularly propagating wave
forms. This method employs integral transformé on both time

and 8, the circumferential coordinate. The § inversion
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integral is asymptotically evaluated for large values of the
time transform parameter by use of appropriate asymptotics
. for Bessel and Hankel functions and the method of stationary
phase. The Watson-type lemma is then used to determine the
behavior of the solution at singular wave fronts.

The Watson-type lemma is generally applicable to prob-
lems which involve singular loadings or focusing in which
wave front behavior is important. It yields the behavior of
singular wave fronts whether or not the singular wave is the
first to arrive. This application extends Friedlander's
method to an interior region and physically interprets the

resulting representation in terms of ray theory.
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DEFINITIONS

Dimensional Parameters

a
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MW Ut W

&
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shear wave velocity in inclusion

shear wave velocity outside inclusion
radial coordinate

time

radial displacement
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cartesian coordinate
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shear stress in inclusion

shear stress outside inclusion
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l. INTRODUCTICN

The purpose of the present investigation is to determine
the nature of stress singularities that occur when a stress
pulse impinges on an elastic circular cylindrical inclusion
embedded in an infinite elastic medium as portrayed in Figure
l. The two dimensional, plane-strain problem is considered
in which the incident pulse is the same at all points of any
straight line parallel to the axis of the cyliﬁder. The spe-
cific incident pulse considered is a plane-fronted dilatation
wave whose stress has step function time dependence.

There has been interest in this problem in recent years
because its solution provides information about the behavior
of individual fibers in a composite material subjected to
impact loading. Singular stresses which arise from focusing
in fiber-reinforced composites can cause separation at the
fiber-matrix interface and subsequent loss of load carrying
capabilities in the composite.

Papers written on this problem are of two types. Papers
by Ko [1] and by Ting and Lee [2] have analyzed this problem
with fhe goal of determining the scattering effect of the
inclusion on the incident wave. Their eventual goal is to
determine the dispersive effect of an array of such inclusions
on a stress pulse. While these papers briefly mention that
focusing occurs, neither attempts to analyze the nature of the
resulting singularities. Achenbach, Hemann, and Ziegler [3],

however, are predominantly interested in focusing effects and
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analyze the first wave front (dilatational) to focus by
successive use of wave front analysis, similar to geometric
optics, and Poisson's integral representation of the solution
to the wave equation.

It is the purpose of this investigation to corroborate
and extend the findings of Achenbach, et.al. by use of a more
general method of treating stress singularities. 1In addition
to those wave fronts treated by Achenbach, et.al., the wave
fronts associated with the following waves are investigated
here: the shear waves, the diffracted waves, the Stonely
interface wave, reflected exterior waves, transmitted (doubly
refracted), exterior waves, and the interior refracted wave
after many reflections from the interface.

The method of analysis presented here uses a‘Watson~type
lemma which relates the asymptotic behavior of the solution
at the wave front to the asymptotic behavior of its Fourier
transform on time for large values of the transform parameter.
This lemma provides a generalization of Knopoff and Gilbert's
technique [4]. Their method is essentially limited to the
first wave front to arrive while the method presented here
- treats subsequent wave fronts as well. This is especially
important in problems involving focusing as it is often the
later arriving waves which have focused and are singular.
Also in the analysis, Friedlander's technique [5] is used to
represent the solution in terms of angularly propagating wave

forms. Friedlander's technique has been used in exterior
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regions by Miklowitz [6], Peck and Miklowitz [7], Gilbert [8],
and Gilbert and Knopoff [9], to solve problems in which wave
pulses are scattered by cylindrical holes or rigid inclusions
which cannot directly transmit waves. Chen [10] uses a similar
representation to Friedlander's to solve a composite problem
with an inclusion that transmits waves, but for a periodic
excitation of high frequency rather than a transient problem
of the type analyzed here. The use of the aforementioned
Watson-type lemma, translates the high frequency asymptotics
of Chen's type into wave front behavior and is a vehicle for
interpreting Friedlander's representation for an interior

region.



2. METHOD OF ANALYSIS

2.1 Statement of Problem

Consider the plane-strain problem shown in Figure 1. A
plane dilatation wave, propagating in the exterior region,
impinges on a circular inclusion, first striking it at time
t = -1. Both regions are occupied by homogeneods, isotropic,
linearly elastic materials which are perfectly bonded at the
interface.

The problem is formulated in terms of the displacement
potentials D and wa' a = (1,2), where the subscripts 1 and 2
refer to the inner and outer solids, respectively. The radial
and circumferential displacements are related to Py and Wa by

the equations

8y oy
- o 1 o
Uy = 87 r 36 (2.1a)
oy oy
_ 1 o o
Vo Tt 88 T & (2.1b)

where all guantities have been nondimensionalized, their
meaning specified on page X. Let L be the differential

wave operator defined as
L E - 4+ 1 s - 5 —
x 5 2 rodor 2.2 2 . .2°

In the absence of body forces if the displacement potentials

satisfy the wave eguations
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L [¥;] =0 for r < 1, and (2.2a)

LC[CP:L] o
k,

0 for r > 1, (2.2b)

Lyfos] = 1y [¥z]

ks
where the dimensionless speeds of the dilatation and shear
waves are c and c¢/k;in the inclusion, and 1 and k;l in the
exterior region. Then the displacements given by equation
(2.1) are a solution to the displacement equations of motion.

In addition, the stresses are related to the potentials by

the relations

2 2 ,
- _ c2pV2QP + 2C‘2,O( l&pl 1 3 P, 1 BW}. + la ‘yl)
e 1 - - -3 - TR =A sy ’
ry 12 r or rzaez r289 rdrog
T - c2p _2~a?‘cpl _2.3% Lazq_;; B azlh + 18’#1}
ro,; kl2 r3rad rzae r2 ae2 ar2 roxr
(2.3)
2 2 [ 13w, 1 2%, 1 alp . 13
Op, = V %2+ = ~fa§2-_§ gz—'-iéeg + Earae) !
2 ka r 59 X
1 2 2 2
T Za%_?_a% + 1 387, o Vs + la‘yz} .
ros ka2 r3rob r256 r2 ae2 ar2 ror

In the external region, the solution is separated into
scattered and incident parts, denoted by the subscripts sc
and inc, respectively. The incident part is specified to be

the step stress dilatation wave

c

- _©° 2
Pine = 3 (t + rcosh)”® H(t + rcosg) (2.4)

where H is the Heaviside step function.
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Perfect bonding takes place at the interface between the

two solids, hence at r = 1
u, -u = u. vV, =V = V.
1 Ysc inc ' 1 "gsc 7 Yinc ‘
(2.5)
o_ -0 = 0 , T -7 = T .
r r r. r rf roe.
1 sc inc Ch! sc elnc

The initial conditions are, o = 1,2,

a¢a o,

In the exterior domain the scattered waves are outgoing
as r » <, and in the interior the solution is bounded as r -
0. Lastly, the solution is of period 2m in 8, the angular
dimension.

2.2 Types of Waves Generated

The waves that are generated when the pulse strikes the
inclusion are of three types: diffracted, reflected and
refracted. Essentially, the diffracted wave fronts circle
the inclusion and propagate around the interface with some
characteristic velocity, e.g. the dilatation wave speed in the
exterior region. The reflected waves are waves that are gen-
erated in the exterior region when the incident dilatation
wave strikes the interface. The reflected P ray is depicted
in Figure 2. The refracted waves occur when a wave from one
media strikes the interface and generates waves in the second
media. The system of refracted dilatation waves that are
generated when the incident P ray strikes the interface is

also illustrated in Figure 2. The refracted wave bounces
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around the interior, and each time it strikes the interface
it spews refracted P and SV waves into the exterior and
generates a reflected interior SV wave. The geometry and
the analytical nature of these waves will be discussed in

detail in later chapters.

2.3 Friedlander's Representation of the Solution

| The following discussion parallels that of Miklowitz [6]
and Peck and Miklowitz [7] who solved the problem of a stress
pulse striking a circular cavity. It differs from their
discussion in that Friedlander's representation [5] has been
extended to an interior region with the accompanying compli-
cations that result from refraction. This representation may
be obtained by various means. The most direct method is the
application of Poisson's summation formula, which may be
stated

Jg(e)e?™iige

) g(n) = 2%
m=—w

=0

Applied to the Fourier series representation of a typical

response function f£(r,8,t) this gives

£(r,8,t) =5 F(r,n,t)e"®
n=-w
= § £f*(r, 64+2nmm, t) (2.7)
m=-oo
. . B & ieg
where f£*(r,0,t) = J F(r,E,t)e dg. (2.8)
-— 0

f* is called the "wave form" of £, and the sum on m in

equation (2.7) is called the "wave sum."“
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The wave form of the response, f*, has a physical inter-
pretation. This response corresponds to the disturbance
propagating outward in 6. As discussed in the previous sec-
tion these disturbances are of two types; diffracted and
refracted waves. Both propagate along 8. For 6's beyond
the wave front, £* is identically zero, therefore for finite
t, the sum on m is finite. Thus, f* overlaps itself as it
propagates in 6 and the wave sum is simply the sum of the
overlapping responses. Both the total solution f and the
wave form f* are defined on -» <« § < =, but f* is‘not periodic
in 6 while f is of period 2m, hence satisfying that physical
requirement.

The present problem can be cas£ in the wave sum form by
first finding the Fourier series representation of the solu-
tion and then applying the above formulas; however, a more
direct method is as follows. Because the only given function
in this problem is the incident potential, once its expression
in the wave sum form is found, one can simply require that
each term of the wave sum for wsc, wa and @, satisfy the

wave equations

Lig, = I VX =0 forr>1, —-o< 6 < o,
i (2.9)

LC ¥y, =0 forr<1l1, -o < f < o,

K,

and that the boundary conditions are also satisfied term-by-

*
Lcmé

term



* * *
uy - u¥*_ = u. v - Vv = v,
i YUsc Yinc ’ 3 sc inc ’
.1
* * * * * * (2 O)
Or,” % = %% ’ Tre,” Tro = Tro
1 sc inc 1 sc inc

at r = 1 and -» < § < ». When the guiescent initial condi-
tions are added together with the appropriate conditions as

r > o and r » 0, it is clear that the wave sum of the solution
to the above problem is the solution to the original problem.
To complete the formulation of the problem in wave sum form,
the wave form of the incident potential must be obtained.

This is done after the application of integral transforms.

2.4 Transformed Solution

The Fourier transform on time will be denoted by

<=3

F(r,0,w) = Lf(r,e,t)ethdt (2.11a)

with the inversion integral
o+iy

F(r,6,t) = %F I

E(r,6,w)e Wy (2.11b)
tot+iy _

where y > 0. The subsequent Fourier transform on 6 is denoted

@

by o~ N s
f(r,v,w) = f f(r,0,w)e lVecile (2.12a)

with the inversion integral
o«

f(r,0,w) = 5% {m?(r,v,w)eivedv. (2.12b)

The double transform of the wave sum form of the incident
potential is found by applying the Poisson summation formula
to the Fourier series of . _. From equation (2.4), . =

inc inc

ﬁo(w)exp(—iwrcose). where 5O(w) = GO/(~iw)3. The Fourier
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series may be written as
ing

1nc(r o,w) = é méo(w)e—In[ﬂi/len[(wr)e

where the integral definition of Jn' the Bessel function of
the first kind, has been used. Then, applying equation (2.8)

and taking the Fourier transform with respect to § yields

nc(r v,w) = (w)f fe Elgl l l(wr)eie(g_V)dgde .

—Cn =0

@3

Since lei(Z) approaches zero exponentially as v = «, the

Fourier transform theorem gives

Fine vow) = 205 wres Mg n) (2.13)

Applying the double Fourier transform to equations (2.9)
for wzc, W; and @F gives the equations for the Bessel func-
tions. Using only those solutions that are outgoing as r -«

and bounded as r -» 0, one obtains
95 (r,v,w) = AV, )3, (wr/e)

?f(r,v.w) = B(v,w)JlVI(wrkl/c) (2.12)

* = (1)
P C(rl\)lw)_ C(VIU))HV (wr)
Vs (r,v,0) = D(v,w)Hél)(wrkz)
where Hél)(z) is the Hankel function of the first kind of
order V.

The transformed continuity conditions of equation

(2.10) are applied to determine A, B, C and D. To do this



11—~

the following transformed relations are used

reg

il

Hence Xx
[Elx

where [E]

ly
1

d =>=x ivexk
a—.rcpa + r——wa ’ . (2.153)
1ve=x d =%
=% azle ¢ | ] (2.15Db)

2 2.2 2
c 2 kfreps = d =% .o d ==
e [ BEGr - 2 5E iy G1-r 30,

(2.154a)

rzkf c2
2 22,2
pc . d =% o=k wortky 2 =% §_3*]
55 [Zlv(rdrwl ¢1)+(——§——— 2v )w1+2rdrwl '
r7k; c
1 2 2 2 2 =% d =% _. ,~% d == A
r2k2 DZV -w'r kg)@B—Zra;$2—21v(¢2—ra}¢§)],(2.15e)
2

1 2.2, 2

r kg

T . . . .
[A,B,C,D]” satisfies the matrix equation

W.. s W
EJIvI(E)
iVJlV‘(%)

2_ wy_2wss (W
pul(2v 2 )lel(c) c'Jivl(c)
23vnlga (| (-1 @]

k
iVlel(QEl)
k, -
sk
~2ivula), | () - BRI ()]

—uf (2v2-B )3

2n$o(w)exprizlzi)1 (2.16)

2

ler,ez.e5,8. ]

1

wk,
=)

2 2

() - 2 g (@) ]

ol c lvl C

(2.15c)

. d:" g 2::..* d:x*
5 2[21v(rafwg—m2)+(w rkz-2v )¢2+2r35¢2].(2.15f)
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AR
ive 1 ()

e; = -

= (2v*-0’ kD) B () 201 (w)
2iv[wH\§l) ! (w)-—H\Sl) (w)]
—l\)H\El) (wkg)
wkgH\fl) " (wky)

e, =

= 2ivE M (i) - wien M (uiky) ]
(2v2—w2k§)H-\§l) (wks) - ZwkgH\Sl) * (wky)
wav\(W)

y = iVJ[\)! (w)
(2v2-w2k§)lel(w)—2wav’(w)
Ziv[waVl(w) - J|V|(w)]

which uniquely determines x. From symmetry, u;, a =1,2,
must be even functions of § and v; must be odd functions of

8 which implies 3; are even functions of v and 3; odd. Hence,
the absolute value signs in the above equations are dropped

and, instead of (2.12b), the half range inversion integrals
[= ]

'ﬁz(r,e.w) = % iiz(r,v,w)COS(ve)dv (2.17a)
o
GZ(r.G.w) = % jz;(r,v,w)sin(ve)dv ’ (2.17b)
a = 1,2 are used where ?; and t; are given in equations

(2.15a) and (2.15b).
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2.5 A Watson-Type Lemma for the Fourier Transform

Since the governing equations of dynamic elasticity are
hyperbolic, ahy non—spationary discontinuity must occur at
wave fronts. In order for singularities from focusing to
occur the wave front must be converging. Often the first
wave to arrive at a point is not singular while a later wave
caused, for example, by a reflection from a concave interface
will have converged and hence is singular when it arrives at
the point.

In this section a method is prescribed for determining
the wave front behavior of later arriving singular waves
from the integral expressions for the solution without com-
pletely evaluating the integrals in closed form.

The solution near the wave fronts is obtained by ap-
plying a Watson-type lemma to its Fourier time transform.
Essentially, the lemma states that if f(w,g) is the Fourier
transform of f(t,x), x a position vector, and f(t,x) is the
sum of several types of singular functions that commonly
occur in focusing, then the Fourier transform of the most
singular one will dominate asymptotically as w - «. Further-
mofe, this result holds independent of the time of arrival
of the various singular waves that compose f£(t,x). This is
not true for Watson's lemma as it is normally stated for the

Laplace transform of a function, which is why it is not in
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(1)

general applicable to focusing problems. Preliminary

analysis using stationary phase approximations to find the
high frequency behavior of the solution helped suggest the
types of singularities that are considered in the following
iemma. Formally, Lemma: Let the Fourier transform of the

function f£(t,x) be defined as

@

flw,x) = ,relwtf(t,E)dt.

0

4
Suppose f(t,x) = f (t,x) where
n=o 1

£ (t,x) = a_(x) (t-t_(x) PH(t-t_(x)), b € (0,1)

£, (tx) = a (x) (G)-t) HE(x)-t), 4 € (0,1)

£, (t,Xx) ={a2 (x) In|t-t, (x)| for |t-tz(x)| < 1
0, for |t-ty(x)| > 1

fa(t,x) = az(x)H(t-t; (%))

fo(t,x) = hi(t,x)H(t-t,{(x)), £, continuous and

lg%ﬁl <M; for t < T and |h| < M t?, for t > T, where
M, is independent‘of x and t, and n = (0,1,2,...).

Then ) '
z a_(x)T(1-b) W E) o () (1-g)etvts &)
f(w.g{) = =5 + =3

(-iw) (iw)

naa(x)eiwtg(é) as(x)eith(ﬁ)

-1
+ + - + O as @w-ow,

To prove this the transforms of fo’ £,, £, and fjare

directly calculated. To show that £, (w) is ol t), the

(l)If f(p,x) is the Laplace transform of £(t,x), where f is
as above, then the transform of the first wave to arrive
always dominates asymptotically as p - « independent of
how smooth or singular it may be.
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transform of £, is integrated once by parts and the Reimann-
Lebesque lemma applied to the resulting integral for Im{w}>0.
The result holds by analytic continuation as Im{w}-0 and
w > 4.

To use the above lemma it is assumed that the only

singularities present are of the type stated. Hence, if it

m(r,e)eiwto(r,e)

W

is found, for example, that f(w,r,8) ~ as

w=*, the above lemma implies f£(t,r,8) ~ :E%ELﬁllnlt—to(r,e)[
as t - to. This lemma is applied in the next chapter to the
focusing of refracted waves in the following manner. The
Fourier inversion integral on 8 of equation (2.12b) is used

to give an integral representation of the Fourier (time)
transform of the solution. This integral is then approximated
asymptotically for large values of the parameter w using the |

method of stationary phase, and the lemma applied to the

resulting expressions.
3. REFRACTED AND REFLECTED WAVES

3.1 Introduction

When the stress pulse strikes the inclusion, the dis-
cbntinuity in material properties at the interface and the
shape of the inclusion cause the refracted rays to intersect
either on their first pass across the inclusion or on their
second pass following a reflection from the interface.
Whether the first or the latter event occurs depends on the

order of wave speeds of the two materials. While there are
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six possible wave speed orders only two will be analyzed.

They are:

(i) ec>c¢/k > 1> 1/k; & ¢ >k,

(ii) 1 > 1/ky; > ¢c > c/ky ® ¢ < k;l .

Case (i) is of major interest in composite materials since
it is usual for the fiber to be stiffer than the matrix
material and hence have faéter wave speeds. Other wave
speed orders can be analyzed using the methods devised here
for these two cases. Case (ii) is especially instructive
since the wave speeds are ordered completely different from
(i) and represent the opposite physical case of a soft |
inclusion.

A caustic is an envelope of converging rays. When a
ray touches a caustic, focusing or unfocusing can occur.
When focusing occurs singular stresses are found at the wave
front after it has passed through the caustic. Since the
balance of momentum at the wave front yields

au.
njlo;yl = "ps[‘a‘%]

"where jumps in field quantities are indicated by the usual
brackets, and where nj is the jth component of the unit vector
normal to the surface of discontinuity and s is the speed of
the wave, the nature of the stress discontinuities may be
disclosed by simply calculating the discontinuities in the

velocity vector.
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3.2 The Focusing of a Refracted Dilatation Wave for c<l

Consider the directly refracted interior P wave when
c is less than one. If a is the angle of incidence of the
exterior P wave which strikes the interface, the angle of
refraction of the generated P wave is B, where o and B are
related by Snell's law, i.e.

csing = sinpB (3.1)
Using simple geometry, the envelope of converging refracted
P rays is depicted in Figure 3, where, in addition to this
caustic, three of its generating inéident and refracted ray
pairs are shown.

Consider how the solution varies along a refracted ray
that touches the caustic. Let d1p be the distance traveled
along the ray from the interface where it was generated to a
point (r,6) and hlp be the distance along the ray to this
caustic. From Figu;e 3, it is clear that there are three
regions in which (r,e) might lie:

(1) a4 < hlp and there is only one ray per point,

1p

(2) d;p ~ hlp’ a region that includes the caustic as

well as a transition zone where there are two rays
per point,
(3) dlp > h1p and only one ray per point.
Call the collections of all such points for all the directly
refracted dilatation rays R,, R, and Ry, respectively. These

regions are portrayed for § > 0 and ¢ = 1/2 in Figure 4.

When a ray touches this caustic it picks up a singularity
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which propagates along its wave front. Thus points in R;
and Rz see singular stresses from these refracted rays.
Consider the following mathematical analysis that verifies
the above discussion and reveals the orders of these singu-
larities.

Let the part of the radial velocity, ﬁf, that propagates
with the dilatation speed c be denoted as ﬁf(dil)- From the
elementary properties of the wave equation, contributions from
mf propagate with this velocity while contributions from Wf
propagate with the shear velocity c/k;, thus equations (2.15a)

and (2.14) imply
o~ . 2
) (gi1) (Fovew) = --A(v, 03] () . C(3.2)

Equation (2.17a) implies

Tk 1
ul(dil)(r'e'w) ful(d lfr v,w)cosvédy .

The asymptotic behavior of this quantity for large w is of
interest. Once it is known, the lemma of section 2.5 will
be used. For @ = w +iws, we>0 and w, large, the change of

variable v = sp yields

ul wse+ e WY as,

(dil) (r,8,0) = 3= Jc wu1 (@il) (r,sw,w)[e
(3.3)

where Cs is a line from the origin to « inclined at an angle

of —tan—lgﬁ. Consider the contribution from the term elwSe

1
in (3.3), which will be called affd.l), i.e.

Ef?d 1)(r b,w) = %h'y wzf(d l)(r ,Sw,w)e iswy

7 e, S. (3.4)
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As w3 2 ®, Cg is equivalent to a path along the real s-axis
which is indented below any poles of the integrand that might

lie 'on the real s-axis. With this understanding, equation

(3.4) is written

&
k4 _ _1,__ =% iswh
ul(dil)(r,e,w) = 2n£ wul(dil)(r,sw,m)e ds

-

(3.5)
In-the following‘discussion this integral is evaluated asymp-
totically for large w in a manner similar to that used by
Chen [10]. For w large, (A.5) and (A.8) of Appendix A imply
that for se¢[0,min(1,1/c)), i.e., 0 < s < min(1,1/c) = smaller
of either 1 or 1l/c, A(éw,w) may be expanded in a geometric
series, each term of which corresponds to a different re-

fracted ray. It is found, for se[0,min(1,1/c)), that

A(sw,w) ~ AO(S,UJ) [l—éll(S)Ml/C(S) + T ] (3.6)

where

12 1 -_-E”_ il - it
a_(s,0) = 2m0, (my /o (s)my (s))2 a (s) explin (57 +y /()= 1 ()]

‘iU.)B 610 (S)

2 4
ao(s) de, s (mkl+mk2)—83 (mka+umkl)—2e2(nglee—mkzpel)
) C C C
2
+ 4yus (mhlez—mkael) ’
C
510 (s) = (mym +s2) (e§+4szm1m )+u[—282(2m1m +ey) (2mym +ez)
'6_1 k2 —.]5_1 2
C C
2
kikg 2,2 .2 2
+( +m + e, +4 + ,
= (m e, ety ) P (s Tmymy ) tmmy )
C C

2 2 2 2
= (- + +4 +u[2 2 + 2 +
b11 Si0 ( mém}él s”) (ez+4s mlmkz) ml2s™( mém]c;l ey ( mlm'ka ep)

k, k}? 2,2 2 2
+(_47§% (mlq%lm%mkz)]4¢1 (e;-4s mém%l)(mlmk2+s ) .,
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wx(s) = mx(s) - s cos—l(s/x) s
Mx(s) = —iexp(2iwwx(s)) ’
mx(s) = !xz—s2l , e = (ZSzﬁgf) , e, = (Zsz-kg) .

c2

It will be shown that in equation (3.6), Ao corresponds to
the directly refracted dilatation wave before it reflects for
the first time from the interface. —Aoblﬂ@% corresponds to
the same wave after one reflection but before the second re-
flection, and Iy corresponds to other refracted waves. 1In
anticipation of this physical meaning, let ﬁjp be the contri-
bution to the velocity from Ao where p refers to dilatation.
Using the asymptotic forms for the Bessel functions given in

Appendix A gives,

min (g, 1) in/a_ .

a* (r,8,w) ~ j Hpls,rie [elwfd1~ielwfd2]ds
1p o Jo
(3.7)
where y

0o2, () ml/cmlmr/c)2
HlP(S;r) rélO(s)( 2 ’
£gy (877,0) = =50 + 88 + 43 (s) - ¥a(s) + (=)
£, (six,0) = -S-gl + 56 + tv_lé_(S) - d(s) - (s) .

C

Consider the contribution from the second term in the above
integrand. A point of stationary phase, S o exists provided
' _ .
fdg(so,r,e) = 0, i.e.
Yy +B-a+8=0 (3.8a)

where

« =sints , B = sin—lsoc » Yy = sinT—. (3.8Db)
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Equation (3.8a) is satisfied if 68 =0 and when S, is such
that o, B and v have the geometric relationship shown in
Figure 5. Note that a and B satisfy Snell's law, equation

(3.1). Furthermore,
- Pl -__—lp - -—
(s ;r,8) =~ + & 1 tlp(r,e) , (3.9)

where d;, is the distance the incident ray travels from time
t = -1 until it strikes the interface, dlp is the distance
from the interface to the point (r,0) and hence tlp is the
time of arrival of the refracted P wave at the point (r,8),
thus justifying the nomenclature that has been used. The
mathematical restriction that 0 < s, < min(g,l) physically
restricts the incident ray to the positive illuminated zone
0 < a <m/2, and restricts the refracted ray so that dlp <
cosf. Since

_ c c 1
= "fcosy ' cosB _ cosa © 0, for ¢ < 1.,
(3.10)

t?
fd2 (Solrl e)

the method of stationary phase implies the contribution from

this term is

~1iH SaiT) ;
2o /uzTr twhp (. 6) (3.11)
0w -— -
fde(so,r,e)
for dlp < cosB and 6 > 0.
The first term in the integrand of equation (3.4) has a
7

point of stationary phase, S provided fdl(so;r,e) =0, i.e.

Yin T+ B -0a+06 =20 (3.12a)
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where o and B are as in equation (3.5b), 6 = 0 and
' .o~1 _
Yy = sin (soc/r) . ’ (3.12Db)

The restriction that s, < r/c implies dlEf>cosB. The angles «
and B have the same physical interpretation as before and vy’

is the supplement of y as illustrated in Figure 6. Again

d .
- — 1 — =

fdl(so,r,e) —EE + d;- 1 tlp(r,e) , (3.12c)

however,
14 — _ -

£a. (SoiT,08) = =(d, -h J)/A o (3.124)
where

h1p = coszﬁ/(cosB—c:cosa) > cosB,

le = rcosoacosycosf/ (cosB-ccosa) > 0, for ¢ < 1.

Summarizing for § > O,

if d, < cosf

! P

Uy, 8aw) ~

. min (£, 1)
in/4 c .
e . iwfg, (s;x,8) _ .

= 4 Hlp(s,r)e ds,xfd%;>coss.

(3.13)
Consider the solution for dq?> cosB. If the point (r,8) is
restricted to lie on a particular refracted ray specified by
the angle of incidence a = sin_lso, s,€(0,1), then on this
ray, as d1 increases, five cases will be considered and
discussed in terms of the physical description given at the
beginning of this section. The cases are:

« . 7 .
(1) (r,8)eR;, d1p<h1p' s, is tbe gnly zero of fdl(s,r,e)
’ on (O,mln(a,l)).
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(ii) (r,08) €eRy, d1p<h1p and two zeros exist s; and sg,

Sl> S

or where fg' (syr,8) < 0.

111

« s _ 1Z4 . =
(iii) dlp = hlp, fdl(so,r,e) 0, fdl (sg.,x,0) < O.
(iv) (r,0) eRy, dlp:>hlp and two zeros exist sy and sg,sg>sSg,
1
fdl (s;r,8) > O.

(v) (r,8) eRjs, d1p>}H . S only zero.

P
For each of these cases féa(so;r,e) is given by equation
(3.124). The behavior of £ (s;r,0) is depicted in Figure 7.
It is assumed that sg, s; and sy are sufficiently distinct
that the method of stationary phase can be separately applied
to the three points. Hence, the solutions found for cases
(ii) and (iii) do not apply as de - hlp' which is why case
(iii) must be considered separately. Thus, for all the cases

except (iii), the method of stationary phase is applied and

the following asymptotics are found for ﬁrp(r,e,w):

H (sqgir) 21 . |
1P / e*hp | for (i),

—iw M/lfgl(so;r,G)]
Hlp(so,r) / 21 iwtlp
—iw / 174 €
|£5, (s0ix,8) ] i
H,,(s;:1) 2m i .
i (wl / _ elwfdl(sl,r,e)'for (ii)
|£4; (s1:x,8) |

Hlp(so;r)d// 2m eiwtlp
w
Iféll (So7rl 0) ‘

H.,(s,;:1) 2T : .
+ 1p' 2 _ elwfdl (sg,r,e)'for (iv),
—1W Ifdl (Sz;r’ e)l
and
3.14
Hlp(so;r) 21 iwt ( )

7 e 1P, F ‘ ®,d, >cosB, 8>0.
’ tfd&(so7r'9)l or (v), as w~ i B
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For case (iii), dlp = hH?’ fg, is approximated near the
point of stationary phase as
£41 3
f 1(s;hlp) t1p + (so: lp)(s—so) .
Since £ (sg;h. ) = —3é3h /[coszﬁ(h —cosB)z] < 0, the
dir ‘"% "1p 1p 1p d

contribution from near sgy is, for e small and > O,

in/4 Jo €__m £ (SOlhlp)[(s-so)?/E’

iwt .
T m ) ~ o PHip(soirie
1p 1P Jo . So—'a

. . lfl" (So7h1p) lw '
Using the change of variable v= Z (s=-sg), the

above becomes
l t it @
w 1PH, (So;r)e /4 3
L) cosv dv as @ = += ,

h ©
ip  1p \/lf///( o lp)l -

where only the even part of the integrand has been kept.

a¥ (

From integral tables [11]

iwt, +in/4

_ (spir)e™ 1P 2m
A (h. _,w) ~ Tip as w - +o.

1p ' 1p »
-7 c/(él(SO' 1P)l 3H(e/3) (3.15)
w7/s 3

Equations (3.13), (3.14) and (3.15) together with the

lemma of section 2.5 imply for 6 > 0O

p (T8 t) ~ -H (so,r)/ - 2o H(t-t ) as t>t,,
If"(so,r 6) |
(3.16a)
d < cosB. And for d > cosB
1P - 1P



hlp—dlp 1 1p
2T\ b 3
. 1p _ -2
Hlp(.sO'r) (hlbp_dl H(t tlp) H P( ltr)(ﬂfdll (sl;re} lt fdl(sl I',e)[
for d1p e Ry, d < 1 p’
2tH; » (54;T) : Y —
s ( V" Lty ¥ Rl 0/ (-t T Rr-t, )0,
T QAT (5/6) £ (soin ) ]
X
Uip ~ for dlp = h1p’
1 L
V'H (t-£ ;r,0))-H ; (———2]—\-1—9 “Inlt-t, |
o (sa:1) (fdl o Rl S ] e |-ty
for d € Ry, d._>h ,
1p 1P 1P
2), 5 :
—Hlp(So,r) (mq—:%—y 1nlt"t1p|: d, ,€ Ray

dl
S.> s8> S,.
ls =SgrS1,8; ' O * o” "2

L where
The physics of this solution is clear. For d1p< cosB
the solution along the ray given by o (angle of incidence) =
sin—lsO is a nonsingular step function. As dlp increases the
ray reaches the region R,, see Figures 3 and 4, in which there
are two rays per point. The second ray, specified by aEsiddsl
has élready touched the caustic and propagates a logarithmic
singularity at its wave front which arrives at the point (x, 8)
at time t = fdl(sl;r,e). dlp continues to increase until it
~is at the caustic, dlp = hlp’ where a singularity of order
(t-—tlp)_l’/6 is calculated. After touching the caustic, the

ray is again in a region where there are two rays per point;

however, this time it is the ray o = sin_lsO that has
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touched the caustic and propagates a logarithmic singularity.
Lastly, the ray continues into R, another region in which
there is only one ray per point and since it has touched the
caustic it has a logarithmic singularity at it's wave front.
This logarithmic singularity at the wave front agrees with
that found in reference [3] where methods (Poisson's integral
representation of the solution to the wave equation) analogous
to those used in Friedlander's book [5] were used to investi-
gate the singular nature of the solution. However, in that
paper it was incorrectly concluded, as one might from case

(ii) by taking an improper limit, that the discontinuity

-y

increases beyond bounds like (h;p-d;p) * as dip “hyp-
The right hand side of (3.15b) is written symbolically

as dl _hl

1p
where\ H1p is a refraction coefficient,
So specifiés the refracted ray since
a{angle of incidence of external ray) = sin—lso,
B (angle of refraction of internal ray) = sin-lsoc,
d1p is the distance along the refracted ray from where
it was generated at the interface to the point (r,8),
hlp is the distance along the refracted ray to the
caustic, and

tip is the time of arrival of the wave front traveling

along that ray.
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Thus for 6 > 0,

21
-H (so,r) / H(t-t ),for 4 _<cosB,
a¥ (r,e0,t) ~ * “/lfé;(some)l P P
b 4 n (3.17)
Q(H ,so,-lE——iE,t ), for & > cosB.
1p le 1p 1p

Recall that (3.17) is the contribution from the term
eiwSe in (3.3). The role of the neglected term e—iwse in (3.3)
is now clear. Since points of stationary phase existed only
iwse’ e—iwse

for 8§ =z 0 for e will have stationary phase points

only if 8 < 0. Thus the solution for negative § comes from
iwsH

this second term e and it is clear from (3.3) that

t'lr (dll) (rl el t) = {lf (dll) (rl—el t) . : (3‘18)

iws6 ~-iwsHh

wWwhen 6 = 0, both terms e' and e contribute to the
solution. However, since sg, the point of stationary phase,
is zero, an end point of the interval [0,r/c), each term
contributes only half as much. Thus the result is the same
as in (3.17) for 6 = 0.

Do all refracted dilatation rays touch the caustic?
According to the above analysis, a ray touches the caustic
provided the maximum of d1p is greater than or equal to hlp
i.e. if

2cosB = coszﬁ/(cosﬁ—ccosa) . (3.19a)

Equation (3.19a) is satisfied if either
4c2—l)%
302

c =% or sy, = sina 2( (3.19b)
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where o is the angle of incidence of the incoming P wave.
That is, all refracted dilatation rays touch a caustic on

. However, if
4c?-1
3c2

their first pass across the cylinder if c s

%
5
¢ > %, then only those rays such that sina 2( ) touch

the caustic on their first pass.

3.3 Summary of Results for c < k;l

The following notation is adopted with regards to re-
fracted and reflected waves. The subscript 1 or 2 implies
that the solution applies to the inner or the exterior re-
gion, respectively. Subsequent subscripts of p and/or s yield
the "ray history" of the wave and its type, P or SV (éhear
vertical wave) in the following manner. When the incident
exterior P ray strikes the interface it geherates refracted
interior P and SV waves which will have the subscripts 1p and
18, and the reflected exterior P and SV rays with subscripts
Vap and 2s. When the 1pray strikes the interface after trans-
versing the inclusion it generates rays in the interior de-
noted by the subscripts 1pp (reflected P wave) and 1ps (re—
flected SV wave) and in the exterior denoted by 2pp (refracted
P wave) and 2ps (refracted SV wave). 1In turn, the 1pp ray
strikes the interface and similarly generates rays denoted by
subscripts 1ppp, 1pps, 2ppp and zpps. Analogous to the 1p ray
striking the interface, the 1s SV ray strikes the interface
and generates rays with the subscripts 1sp (interior P wave),

1ss (interior SV wave), zsp (exterior P wave) and =2 ss (exteri-

or SV wave). All reflected and refracted rays may be denoted
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in this manner. Some refracted and reflected rays are de-
picted and labeled using this notation in Figure 8. In addi-
tion, the above subscripts will be used to denote guantities
that are associated with a particular ray. d, h and t when
subscripted have the following meanings:

d is the distance along the ray of interest frdm the

“interface where it was generated to the point (r,8).
(Exception: d, is the distance the incident wave
travels from time t = -1 until it strikes the inter-
face.)

h, when positive, is the distance along the ray to the
caustic, i.e. (r,8) 1is on éaustic when 4 = h.

t, when subscripted, is the time of arrival of the wave
front propagating along the ray.

H, when subscripted, has the role of a wave amplitude,
usually the product of several refraction or re-
flection coefficients.

A is a positive definite quantity.

Examples of these are dlp' hlp' tlp’ Hlp and klp of the pre-
vious section.

Using the above notation the following representative

. » . - . - l* l*
interior waves will be considered in this section: le' uls,
.* C* l*

, u and v .
1S 1ps 1ps

In the exterior region there are three types of waves

that can be analyzed by stationary phase: the incident
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* .
wave, the reflected waves and waves refracted into the exteri-
or from internally refracted waves. The first two types, for

c < k;l, are nonsingular. However, the third type can be

* *
singular and is examined here as represented by Y .
. . 2pp 2pp
o] and v, . In this section it is assumed that 6 > O.
2ps 2 ps

The fact that ﬁ* is an even function of § and ﬁ* an odd func-
tion of 8§ determines their behavior for 8 < O.

The geometry of the rays for the directly refracted P
wave ﬁfp is identical to that of ﬁjp of the previous section,

thus as t-t;p
-20

fé; (S’o7rr e)

5
H(t-t ), for & <cosB,
1p 1p

. tanyHlp(so;r)(
vlp(r,e,t)

d.s~h
Q(tanyﬁﬁp,so,_lE__LE, tl

), for a, p>cosB .
ip

p
(3.20)

*

The analysis for the directiy refracted SV waves ﬁls

* * *
and v is analogous to that of and v__. Thus, it is
ls 1ip 1p

found that as t-t;g

-k

uls 1 -2 €

% ~ H1 s (sg:rx) ( - H(t—tls), for dl S< cos(,
;els‘ —-cotX fsa(so;r,e)

' : (3.21a)
lh. * n dl S"h]_ s
Yis | Q(Hls'so’—xjg—__' 1s)
ﬁ* , d1s-his . for dls>cosg
“" 15 - Q(Hiscotx »Sor X 't1s)

is (3.21b)

* o

The external potential ®# has a stationary phase point that
corresponds to the incident wave only if (r,8) is in the
illuminated region, |6|=m/2 or ifo>¥8l>n/2 and r>|1/sins|.
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where sy is such that if

a = sin—lso , (= sin~l(soc/k1), x = x'= sin_l(soc/rkl)

(3.21c)

then
¢ -x -a + 6 =0, for dls< cos(, (3.214)
¢ -7 +x'-a+8=0, for d > cos( (3.21e)

Equations {(3.21d) and (3.2le) are analogbus to equations
(3.8a) and (3.12a) and have ray interpretations similar to

those shown in Figures 5 and 6. Furthermore,

H _(s;r) _ _Tosbo(s) ( M My 2 ' (3.21f)
1s V! rd,o (s) 2mmy v/ ’ )
where
bo(s) = —4se2(mycmky/—sz) + 453(2myémk2—pel)
c

_25e2(e2—2mvgpk) + 2us(e1e2—4szm kay@)'
2

and b,,,e, and my are given in equation (3.6). Also,

c c 1

" - _ _
£, (spir.8) = rk,; cos( + k,cosx ~ cosa 0. (3.219)
1 - . _
fSE (SOIrIe) - —(dls hls)/>\.1vs s (3.21h)
where
— ’ _ 2 . _c
dlS = cos{ + rcosyx ' , h,g = cos”x'/(cos( klcosa),
s = rcos{cosy ‘cosa/ (cos(- Ecosa) > 0,
1
4.6k .
= 282 +q- 1 . (3.211)

It may be noted that for the restriction ¢ < k;l,.all
directly refracted SV waves touch the caustic on their first
pass across the inclusion.

The last interior waves to be considered for c < k;l

* * .
are the SV waves ﬁl S and les which are generated when the
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refracted dilatation wave strikes the interface for the first
time. The ray geometry is depicted in Figure 9. If the con-
dition of equation (3.19b) is met, then the refracted P wave
has a logarithmic singularity at its wave front when it strikes

the interface and generates the waves

*

u

1ps | 1y (sg)-b,(so)))  —2n  |*

o ~ =H; 5 (50)|coty - =5 ln|t~t1psl

1ps m £ (d)(so,r,

(3.22a)

as tot)ps. for dyps < cos{. Where s, is such that

X +¢-a+ 86 +28-m =0, (3.22Db)

a, B, X, { given in equations (3.5b) and (3.21c). And

_ 2 3 ‘ ' :
b; (s) = {4se2(myémkye+ s“)-4s (2my6mk:pe1)—ZSezk%+2myéq%)

_+2“s(e1e2+452m5@mk2}/b0 (3.22¢)

where by, e, and my are given in equations (3.6) and (3.21),
fg(d)(so7r'e) = _E% rciégiosx (igggig;EOSB) o (3.22d)

dlps = cos( -~ rcosy, (3.22¢e)
toga) = kld;ps + 20255 +d, - 1. (3.22f)

Lastly, Hls is given in (3.21f) and §;; in (3.6).

If the conditions of equation‘(3.19b) are not met, then
the generating refracted P wave (1p) is nonsingular when it
strikes the interface but has a converging wave front. The
generated SV wave has a converging wave front and focusing

takes place. The solution is given by



-33-

*
% - __E____E_
ulPS Q(Hls ( 611) SOI X ’ t ps) ,
~ IPS
v dps—h,
1ps Q (Hls * (—cotx)-(811-11) , 55, “'X——Ei,tlps)
, 1ps (3.23)
as tat;pgs, for dypg < cos{, where
h = (2ccosa—cosB)cos2§/(EcosacosB+cosg) < cos(
1pS kl

is the distance from the interface to the caustic along the
generated (ips) ray, and Klps = rcosxcosacosBcosg/(Efosacoss
+ cos() > O.

The analysis of the waves generated in the exterior when
the refracted interior dilatation wave reflects from the inter-
face for the first time is very similar to that performed for

* *
a and V. . The geometry of the generated P ray (z2pp) is

1ps 1ps
depicted in Figure 10. The geometry of the generated SV ray
(eps) is similar. Again, if the condition of equation (3.19b)
is satisfied, then the interior dilatation wave has a loga-

rithmic singularity at its wave front when it strikes the

interface, thus, analogous to equation (3.22a) it is found

that
J*
Y2 pp [1. ] . /_;________
~ BPP
‘.,:pp -H pp(so:r) tand lnlt zpp!//ﬂ( zpp— zlzp) as tj}ii
_ .24a)
and «

2ps [tane] ZKZES
~ - . ; ini{t-t t
. ¥ Hzaps(SO r) -1 n| ps‘,/”( zps—ths) as t- 2pPS .

V2 s ;
b : (3.24b)

And if equation (3.19b) is not satisfied then analogous to

equation (3.23) it is found that



*
% Q(H + Sq. (d -h A  t
Y2pp Hoppr 500 (Qoppopp) /A o Bapp)
* .
¥ Q(H_,. - tand, sg , d -h N , £t ,
Vapp Hopp ° (s ppPapp! Meppr Tapp)
(3.24c¢)
as t - t , and
2pp
*
uzps Q(ngétane,so, (dzps—ths)/szs'tzps)
~ (3.244)
Vaps Q(ﬂHzps' Sor (dzps—heps)/xzps’ taps)
as t = tgps‘ In equations (3.24a) and (3.24c) Sy is such
that
~20 + 5+ 6 + 2B -m =0,
and in equations (3.24b) and (3.24d) sy is such that
- - % +e+ 06+ 28 -1 =0,
where
o = sin_lsO , B = sin—lsoc , b = sin—lso/r ,
-1 -1 (3.24¢€)
X = sin " (sg/kz), € = sin " (sg/rky).

In addition,

i
o mr)z
- o = _
Hzpp(s'r) =5 3w (cai— ducy),
o1 .
Og M1l Myl |72
= 2 e 22 N2 -
HZpS (Slr) r ( 2_” ) (goe 611 9'01):
where
_ 2,,2 . 2 2
ci(s) = (mlmEl+ s7) (ez-4s mlmka)—Zs u(2mlmkfel)(e2—2nqug
2. 2
kik
+ MK3 Kp

2,2 2 2
CZ (mic-mkg —m}il ml )"Ua (el +4S ml mkg) (Inl mkg -8 ) .

C
(3.24F)



~35-

2 2 2 2
cay (8) = (s —mlmkz(e2—4s mlmk2)+25 H(Zlekl—el)(e2—2m1ka

Tz T G
2, 2
pki'k 2,2 , 2 2
g 2(mlmk2+mk1ml)-p (e;-4s mimkg)(mlmkz—s ),
T
(3.24q9)
2 2
gOl(s) =-1mlmkl+s )dse,+us (4s +261)(2m1mk1+e1)
<< cE
_u225(e3+432m1mk1) ’ (3.24h)
Tz
(s) = (mym —52)4se - (452+2 ) (2mymy. —e;)
Yoz 1K 2 ~HS € m_3_~_ k1 1
T €<
—2su2(ef—4szmlmk ), (3.241)
s

and M€ 011, 010 are given in equation (3.6). The dis-

tances de

Alsql

where

and

The t

Lastl

and

are g

and d are
pp 2ps
2pp = rcosd - cosq ,
= rcose - COSsK.
2ps
the caustics are given by 4 = h and d = h .
2pp 2pp 2ps aps
happ = (2ccosa - cosB)/2(cosp-ccosqa)
2 -1
ths = cos % (2ccosa~-cosB) /[k; “cosacosp-cosn (2ccosa-cosB) )
imes of arrival are
tzpp = dzpp + d, + 2cosB/c - 1, taps = dzpsk2+dl+2cos@b.
Y«
A = CcosocosPrcos 2cosB-ccosq
2o Brcoss/ (2cosp ; )
szs = rcosecosucosacosB/[k; cosacosB-cosu (2ccosa~cosB) ]

reater than zero.
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Thus it has been found that when c < k;l, dilatation and

shear waves refracted into the interior have converging wave
fronts on their first pass across the inclusion. If ¢ < %,
then all interior refracted rays touch a caustic and have a
logarithmic singularity at their wave fronts when they strike
the interface for the first time. The generated reflected and
externally refracted waves propagate this singularity. If

% < c < 1 then the interior refracted P rays whose angles of
refraction, B, are less than sin—%/(4c2—l)/3 . while con-
verging, do not touch a caustic before striking the interface.
However, the refracted and reflected waves that are generated
at the interface continue to focus and eQentually form caus-
tics. This is illustrated in Figure 11 where the dilatation

caustics are shown for c = .75.

3.4 Analysis for ¢ > k,

In this instance the directly refracted P rays diverge
on their first pass across the inclusion. However, when they
strike the interface for the first time the reflected P and
SV rayé that are generated converge and form caustics. The
following discussion of the generated P rays and their focus-
ing parallels that given in section 3.2 for the case ¢ < k;l.

Using the fact that when a P ray reflects from an inter-
face the angle of reflection equals the angle of incidence,
and Snell's law which relates the angle of incidence of the

exterior P ray, a, to the angle of refraction of the interior

P ray, B, the envelope on converging reflected P rays is
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depicted in Figure 12 where, in addition to this caustic,
several generating refracted/reflected P ray paifs are shown.
Consider how the solution varies along a reflected ray.
dlpp is the distance traveled along the reflected P ray from
the interface where it was generated to the point (r,6) and
hlpp is the distance along this ray to the caustic. From
Figure 12 it is clear that for 6 > 0 there are two regions
where (r,9) might lie:
(1) dlpp such that 8§ = m. In this region there are two
rays per point, one that has touched the caustic
and one that has not. Call the cbllection of all
such points for all once reflected P rays R}.
(2) dlpp sufficiently large so that § > m, then there
is only one ray per point and it has fouched the
‘caustic. Call the collection of all such points R:.
R: and R: are portrayed for 6 > 0 and ¢ = 1.5 in Figure 13.
R: and R: are analogous to R; and R; discussed in section 3.2
and shéwn in Figure 4. Points contained in R: and_R: experience
logarithmic singularities in stresses associated with the arriv-
al of wave fronts that propagate along rays that have touched
the caustic. Hence, from Figure 13, it is clear that the
interface, r = 1, experiences logarithmic singularities for
sin—l(l/c) < 6 < 2m from positively propagating reflected P
waves and for -2m < 8§ < —sin-l(l/c) from negatively propagating

waves. Thus, every point of the physical interface experiences

a logarithmic singularity from waves that have reflected once.
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u:pp and vf o are the contributions to the radial and

angular velocity from this once reflected P ray. These re-

flected dilatation waves are analogous to the reflected SV

* * .
waves discussed in section 3.3, ulps and v ps” Thus, similar
1

to the result of equation (3.23), it is found that for d1pp<

cosp
" ‘
¥ r,9,t O(H <dy,, 84, (d -h A . t
Gipp N[ 8W g 8ae Sor (@070, 000 /% oo Fapp)
*
v r,o,t Q(-tanyH, - p , (4 -h A , £
1pp ) (~tanyll, g 8132 Sor (5P, pp) /A ppe Bapp)
~ (3.25a)
as t - tlpp’ Hlp and §,,; are given in (3.7) and (3.6). sg
is such that
8 -y + 3B -a -m=0, ' (3.25b)

where o, B and y are given in (3.8b). The geometric signif-
icance of (3.25b) is shown in Figure 14. dlpp' the distance
from the interface where the reflected P ray is generated to
the point (r,8), equals cosf-rcosy and hlpp' the distance to
the caustic, is equal to cosB (2ccosa-cosB)/(3ccosa-cosB), is

always less than cosB, and, hence, focusing occurs for all

rays. In addition,

xlpp = rcosycosacosp/ (3ccosa~cosB) > 0
d1pp 2cosB . . .
and t = + + d;-1, is the time of arrival of
pp c ¢

the wave front.

For dlp > cosB, all of the reflected P rays have focused
and have a logarithmic singularity at the wave front, i.e. for

d > cosB
1pp
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*

L) l )
“ipp| | s pp .
~ - - -
o tany’ Hlp (so)én(so{l%(d ) nlt tlpplast:tipp
1 pp 1pp 1PP (3. 26)
vy’ = sin—l(sOc/r) is the supplement of vy.

The first singular shear waves to reach an interior point
are the reflected SV waves ﬁjps and prs which are generated
when the refracted dilatation wave strikes fhe boundary for the
‘first time. These waves were discussed in seétion 3.3 for the
case c < k;l, In section 3.3 two cases were considered. In
the first case the generating P ray was singular at its wave
front. In the second case the generating P ray was not singu-
lar and the reflected shear waves focused. The second case is
identical to the present situation of ¢ > k;l and the soiution
given in equation (3.23) is also the solution for c¢ > kIl.

Ih the extefior region two types of waves can be singular
when ¢ > k;: reflected waves, and waves refracted into the
exterior by internally refracted waves.

When o, the angle of incidence of the exteriorvP ray,
equals sin-l(l/c), Shell's law, (3.1), implies that B, the
angle of refraction of the interior P ray, is 90° and hénce
this ray is critically refracted. This situation, in a sim-
pler physical context, is discussed briefly for acoustic
waves in Friedlander's book [5]. As is noted there, the
reflected waves experience a logarithmic singularity at their

wave fronts when o > sin—l(l/c). Mathematically, the treat-

ment of these waves is analogous to those of previous sections
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with the difference that sy, the point of stationary phase,

is greater than 1/c. As in all the previous cases, sg= shfla
and since for critical refraction sina > 1/c, asymptotics
other than those of Appendix A must be used. These asymptotics
are given in Appendix B and are used there to determine the
asymptotic behavior of Ezc(dil)(r,sw,w) and $:C(dil)(r,sw,w),
the double Fourier transform of the radial and angular compo-
nents of the scattered wave form dilatational velocities, for
sell/c,1). ‘ﬁ:p and V:p are the parts of the scattered dilata-
tion velocities that are directly reflected from the interface.
When o > sin—l(l/c), the asymptotics (B.5) and (B.6a) and the

method of stationary phase implies

ﬁ* (r,6,w) 0oH, (so)eiwtap “os cosd
2p ~ b a as woe ,
-iw 2d, .+cosq

bk
. 2 .
Vgp(r.e,w) p sing
(3.27a)
where
H = HY + iHT (3.27b)
2p 2P 2p
R 2 2
Hzp = (CORClR + COIClI)/(ClR + clI) (3.27c)
gl = (c..c . -c.c.)/c2 +c?) (3.274)
2p OI1R OR™1I 1R 1T :
where for se[l/c,kyc]
2,2 .2 2,2 kikp 2
COR(S) = s (ez;-4s mlmk;—ZMels (e2—2m1mkg—p(—7;—) my
T

-pzef(mlmk -52), (3.28a)
2
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c. . (s) = mlm (ef-4s? ) -4 2 (e5-2 ) + K
€ < [
4 2 2 :
45y’ mk (mlmk -s“)] , (3.28b)
c
a
an 5 o
C. . (s) = sz(e2+4szm m, J)-2ue s2(e +2 my; )+ klkzm m
1R - 2 1 kg [BASSY 2 mkg 1 33 C2 1 kl
T
+p2e%(mlmk +s2) , (3.28c)
2
C. . (s) = my[m (e2+4szm )—4uszm (e, +2m;m, )
11 1 Uiy, 2 1My ky o2 oM
c =
ki kg, 2 2, 2 2
+ +u”4 + . .28d
g (252) 7 402457 (mmy+s%) ] (3.284)

However, for selk,/c,1l)

2 2 2 2 '
C R(s) = (s —qimkl)(e2—4s mlmk2)+2s u(el—zm%mkl)(eg—Zmlmk)
S = =
+u? (48%m, —ef)(mlmk _s?y, (3.29a)
T =1 2
c
COI(S) = E—mlmkl) . (3.29b)
and
C..(s) = (s®-mym, ) (e+4s’m,m, )-2s2u(e,-2mym, ) (e,+2mym, )
1R o A 1M, M=o My ) 1€ el My
¢z ]
2, 2 2 2
+ e;—-4s"m m +s7), 3.29c
uo (e i@kl)( 1mk2 ) ( )
c-—-
c
lI(s) = p( 2) (mk mé +mlmk ) . (3.294)
T

my,, € and e, are given in (3.6). In addition, s, is such

that
-20 + & + 86 =0 * (3.30a)



~42~

where

a = sin "sg, & = sin—l(so/r), Sq > sin(l/c) . (3.30b)

(3.30a) has the simple ray interpretation of Figure 15. dap
is equal to rcosbd-cosa and is the distance along the reflected
f ray from the interface where it was generated to the point
(r,8) and tzp equals d2p+dl—l and is the time of arrival of a

wave front along this ray.

The lemma of section 2.5 and (3.27) implies that

*
a._(r,8,t) cosd

.ip ~ GOJ 2d cizgsa (HS (SO)H(t—te )
Vpp (£48.8) 2p sind p P

1 ' (3.31)
+H- (sg)ln|t-t |>, as tot__,
2p T 2p 2p

for a > sin—l(l/c). For o and f negative the evenness and
* * . .
oddness of ﬁzp and Vep is invoked. The asymptotic behavior
* *
of the reflected shear velocities ﬁes and ﬁzs are similarly

calculated and are

~

H, (so)H(t-t, )

*
ﬁes(r,e,t) 0ok cosacosu sine ( R

*
vas(r.e.t) A/ﬁes(cosq+k2cosn)+coszﬂ COSE,
2 (3.32)

I
+st(so)%_r_1\t—tasl) as tot_
for o > sin~l(l/c). Where s, is such that
e+ 6 ~-~a-n=20,
- . -1 -1
o = sin "sgy, ® = sin " (sg/ky) and ¢ = sin (so/Tk;) .

Also,

R _ 2 2
Hyg(8) = (9oC gt91C, 1)/ (€ g*C 1)
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and
I _ ~ 2,2
H,s(s) = (90pCip~90rC11)/ (CLR*Ci1) -
If so ¢ [1/c, k,/c] then
gOR(s) = —2s(252e2—ue1(2s2+e2)+u2e§) .
gop (8) = —asmym [ep-25” (1+) 1 (1-u),
'é' 1
T
and
C.r and C . are given by (3.28). If sg5 € [E},l), then

T
_ 2 _ 2
gor (8) = élsez(n%_m}j1 s )—4su(2m%mkl e, ) (28 +ey)
- i

C

+2p23(482m1mk —ef).
= X

C

and Cir and C . are given by (3.29). m., € and e, are given

I
in (3.6). Physically this is analogous to the reflected P
ray of Figure 15, where x is the angle of reflection of the
SV ray and ¢ is the angle between r, the vector to the point
‘of interest, and the reflected SV ray. d,g is the distance
traveled along the reflected ray and t.q is the time of arrival
of the reflected SV wave front, i.e.

des

t = kod

rcoseg — COSH,

2 s + dl‘-l.

The above applies for a > sin—l(l/c). A fact that will
be of importance in section 3.5 is that for sg = 1/c or k,/c
transitional asymptotics for the Bessel function and its

derivative, which also are found in reference [12]), yields
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the same results as those given above in (3.31) aﬁd (3.32).
Heﬁce, (3.31) actually holds for sin—l(l/c) < o < sin—l(kl/c)
and (3.32) holds for sin—l(kl/c) < g < w/2. Furthérmore,
since Hgs and Hgd are zero for s, = 1/c, the solutions on

the reflected rays for a = sin—l(l/c) are not singular. This
result holds as r - 1.

Lastly, as representative of singular waves that are re-
fracted into thewexterior by internally refracted waves, the
contributionscﬁf&:ppp, v:ppp' ﬁ:pps and v:pps, the dilatation
and shear waves generated when the refracted P ray strikes the
interface for the second time, are giyen. Recall that the
inferior P wave focuses after striking the interface for the
first time and has a logarithmic singularity at its wave front
the second time it strikes the interface (see (3.26)). Thus,»

the asymptotics of Appendix A, the method of stationary phase,

and the lemma of section 2.5 imply the following singﬁlar

behavior
2 (r,e,t) 8
uappp r,8, o cos \ l
~ g, H S Inlt-t as t-t R
¢ (r.e,t) —272ppPP " % ging 2PpP 2ppp
2ppp T
(3.33a)
and
a (r,6,t) -sine
2pps ~ 0 H (so) 1n|t-t l as tot
* ( ) ;—-EPPS 2pps 2pps.
v r,o,t coseg
°ppS (3.33Db)

In (3.33a), s, is such that

-2a + & + 8 + 4p = 2w



and in (3.33b), s

o

is

such

- -+ € + 6 +4p =

where o, B,

H
2PPP | g

and

H
zppsi

6§, € and x are

S=SO

where §;0 and §&,,
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that

27

given in (3.24e).

cospB

In addition,

7z 5,

24 (2c

2 Ppp

COs
cosq

B)+4ccosa—cos

k;cosacosn

J bi0
B

(Csl'_clléll)lsz

[cosn(dzpps+cosn)(4c

d11

d10

are

(oo - Jo2) |

S=S4

given in (3.6),

dos are given in (3.24).

d
2ppp

d
2pps

t
2ppp

t.
zpps

rcosd
rcose

a__
2ppPpP

d
2pps

ks

cosq

COsU

AdcosB
c
4cosB
c

Also,

+ dl—l'

cosa

cosB_l)

and c¢,,,

~d

2pps kg

Caz1s

L
cos012

do1 and

where these distances and times have the usual physical

meaning.

So
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3.5 The Interior Dilatation Wave Front After n Reflections

for n Large

From the previous discussion it is clear that the re-
flection of refracted interior waves is an important physical
mechanism in this problem. To further understand this phe-

nomenon consider

1hfp(n)(‘r,e,t) = ﬁEDPPP...p(r,G,t), (3.34)
n p's '
where,by the notation of section 3.3 ﬁfp(n) is the interior
radial component of velocity after n reflections from the
interface.
By loocking at the stationary phase points associated

with various terms in the asymptotic expansions of
T . :
%ﬁul(dil)(r,sw,w) for large ® in (A.9) of Appendix A the
*
term that contributes to G;p(n) is picked out as

R ok 3 L .
(i) Goao(s)(mlm%kfmr/c) eiW(-S”/2+WLk:‘Wl)[eiwwnkflmq
rd,0 (s) 2mw

~e—iwwr/c+iﬂ/4][6ll(S)]neiZway@ )

where ag, &0, %11, my and {x are given in (3.6). Using pro-
cedures analogous to those of section 3.2, it is found for

8 > 0 that
/4

. 1 .
min (x/c )(i)nHlp(n)(s;r)eln

NOS
ds (3.35)

mlml/cmr/c)l/2 ag (810"
2m rd;o

afp(n)(r,e,w) ~

iwjn (s5r,8) |

iwf, (s;x,8)
1e n

c [e

’
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In = Ve T F WV@'(1+2H) T ¥+ SO,
and ‘

£

n Jn ~ 24'r/c .

Note that for n = 0 (3.35) yields (3.7). As in the n = 0

. . , i '
case, discussed in section 3.2, the second term, e wfn’ has

a point of stationary phase if dlp(n), the distance along the
ray from the interface where the last, i.e. nth, reflection
took place to the point of interest (r,98), is less than cosB,
and the first term, eiwjn, has a point of stationary phase if
dlp(n) is greater than cosB. To see this consider the contri-
bution from the second term. A point of stationary phase,

s exists if dfn(so;r,e)/ds =0 e

o’
-y + (142n)B - nw + 6 - o = O, - (3.36)

where

. . =1 o o=1
a = sin s B = sin "sgc and y = sin Ts c/r.

O'
Equation (3.36) has the ray interpretation illustrated in
Figure 16. The restriction that sy < r/c implies y«m/2

which implies dlp(n) <gosP, as was asserted. Consider

Si-§~-;:‘f-12-](so;r,e). Equation (3.35) implies
d2fn(s ir,0) = ~d1p(n) Mip (n)
gs2 ° ' Mp (n)
where
hlp(n) = cosB(2nccoéa—cosB»4:Qn+1)ccosa—cosﬁ]
and

le(n) = rCOSYCOSBCOSQ/[(2n+1)ccosa—cosg] .
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For n large
hyp(n) * cosp and K;p(n) - rcosycosB/2nc .
a2fn ,_ .
Thus for dlp(n)< cosB, ~E§§(so,r,e) > 0 and the method of

stationary phase implies that the contribution from Sg 1is

n
0o, .0 COSQ ag(611) iwt,
gy (1) cosycosB J/2nc(cosB—dlp(n)) 510 © p(n)

s=8
(3.37)
as n and @ - «, where dlp(n) < cosB, 5 > 0 and

+d,-1

d (2cosp)
tip(n) = 1i(n) L0 zos

is the time of arrival of the wave front.
iw3
Similarly, from the first term, e jn, in (3.35), the

contribution from sy for dlp(n) > cosB and § > 0 1is

n .
cosa ao (85) elwtlp(n)

l :

2nc(d1p(n)-cosB) b10 s=s

+

o n-+1 ’
29(i) cosy cosfB
cw

(3.38)
as n and w - ®, where y’ is the supplement of Y-
Using the lemma of section 2.5, the asymptotics (3.37)
and (3.38) imply that if n is odd, say n = 2j+1, j a large

positive integer, then

Lk Oo(hl)JcosycosB 555
ulp(2j+1)(r'e't) ~ c v/énclcosB—dlp(2j+1;T
. ao(an)zj""l H(t~t1p(2j+1),if A1 p (n) < cosB
b10 |s-—:so —;glt—tlp(2j+1)l,if dip(n)> cosp
m

(3.39a)

as t 2 ti1p(2j+1). However, if n is even, say n = 2j+2,

j as above, then
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CcOso
[cosB-dig (29+2) 1

'* . t) ~ l j+l
Uyp (25+2) (x, 6, o5 (-1) cosycosB [ 5—

ao(én)23+2 ‘%Blt*tlp(2j+2)|:if d;p (n)<cosp

d10 if dyp(n)>cosB

S=SO "H(t—tlp (2:]+2) )I
(3.39b)

a5 £ 2 tip(2j+2) -

From these asfmptotics it is clear that for n large
ﬁfp(n) alternately focuses after an odd number of reflections
and unfécuses after an even number of reflections as the wave
propagates in 6. Such behavior is to be expected after one
considers the case of three dimensional focusing that
Friedlander discusses in his book [5]. Since he considers
three dimensional focusing, his converging wave front (initially
a Heaviside step function) has two radii of curvature and hence
two focal points. After passing through the first focal point
he observes a logarithmic singularity which after passing
through the next focal point again becomes a Heaviside func-
tion, i.e. the wave focuses and unfocuses as in (3.3%9a) and
(3.39b). Physically, it is clear that each time.the P wave
reflects from the interface it looses energy into the 6utside
media‘and hence the amplitude should decrease. From (3.39),
the amplitude is proportional to

[8,1 (so) 17 | (3.40)
Since §,,; = (X2—Y2)/(X2+Y2) where from (3.6)

2 kikz 2

2 2 2 2
X" = s"[ez-pue,; ] +m1mk2[23 —pelj +u ( S ) ml?&l > 0 ,

(o
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2 2 2, 2 2, - kiks 2
Y® = mlmkl[Zs u-e, 1 +4s mlmimkzﬁhl(l-u) +H(‘??‘) mémk2>0

C—C— ro

for sg < min(l,1/c), then [6;,(sy)| < 1. Hence |8,, (sg)| =
e ® where b > 0 and [611(so)ln = e_bn. Thus, (3.40) implies
that the amplitude decreases exponentially as n increases.
Lastly, note that since hlp(n) - cosB as n = « and the
length of the ray between two interface reflection points is
ZCOSB, the caustic tends towards the midpoint of the ray for
n large, which is as far as possible from the interface.
Thus, it may be concluded that the wave alternately
focuses and unfocuses as it propagates in §, that its ampli-
tude decreases exponentially in n as n, the number of times
it reflects from the interface, increases and the focal point
méves as far as possible from the interface as n increases.
It is clear, then, that the effects of later arriving waves
which result from large numbers of reflections are not as
important as the effects of waves that have reflected only
a few times such as those calculated in sections 3.2 through
3.4.
One final point of interest that is associated with
multiple reflections is the shape of the caustics. Let S
be the nth caustic, n = 1,2,3,.... Then for ¢ = 1.5 the first
three interior dilatation caustics are portrayed in Figure 17.

Note that these first three caustics (it can be shown that

this is true for all Cn) start at the point r=1, e=siﬂJTl/c).
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Since this point is on the interface it is important to know
just how singular are the stresses there. Recall from the
analysis of 3.4 that the method of stationary phase did not
apply for interior waves when the stationary phase point, sg,
equaled sin (1/c) and hence the conclusions reached about
the order of the singularity at the caustic being (t—to)—l/6
do not apply at this point on the boundary. Recall the

- comments from section 3.4 that followed equation (3.32). It
was found that in the exterior region there was only one re-
flected dilatation and shear wave pair associated with the
stationary phase point so=sin—l(l/c) and that for 6=sin—l(bb),
r » 1 they were nonsingular. Since the incident wave is not
singular, the perfect bonding boundary condition insures that
the point r = 1, 6=sin—l(l/c) does not, in fact, experience
logarithmically singular stresses, let aléne singularities of
the same order as the interior caustics. Hence this point‘is
not, as it appeared at first glance, an interface failure

mechanism.

3.6 A Necessary Condition for the Existence of a Propagating

Stress Singqularity

It has been shown in the previous sections that if the
incident stress pulse has a step discontinuity then logarithmic
stress singularities will propagate at the wave front after

focusing. Suppose, instead, that the incident stress wave had
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been continuous, as given by the incident potential

oof(b)(t+rcose)2+b

H(t+rcosg),b > 0.

Q. =
102 b (b+l) (b+2)

The Fourier transform of this function is

I (b)

- _ OO
(-iw)® °

mincz(r,e,w) 1:1675 exp (-iwrcosg)

By comparing minc2w1th minc and considering the method of

analysis used, it is clear that the Fourier transform with
respect to time of the solution is unchanged except that it
is multiplied by the factor T(b)/(—iw)b. From the convolu-

tion theorem, the solution for D e is the convolution of

2
tb“l H(t) (which has the transform F(b)/(—iw)kﬁand the solu-

tion for Pinee Consider the propagating logarithmic singu-

larity of (3.16b) that arrives at time tip- When it is

tb-—l

convoluted with the function f(t) = H(t), it contributes

at time t = t1p an amount proportional to the integral

tl -
§F (tipw P Mn (g p-w) au.

tl_p—l
Let u = t;p-v. Then the above equals

1

I v linvay = - L , for b > 0.
(o) b2

Hence, the convoluted solution no longer has a singularity
at its wave front after touching a caustic.
It is known from the previous section that the internal

refracted waves alternately focus and unfocus as they bounce
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around the interior. The stresses at the wave fronts were
found to go from step discontinuities to logarithmic singu-
larities and back to step discontinuities. If the incident
stress pulse is continuous, all of these logarithmic singu-
larities would become bounded functions as above. Thus, a
necessary condition for the existence of a propagating infi-
nite discontinuity in stress is that the incident stress pulse
have at least a step discontinuity at its wave front.

Ting and Lee [2] suggested that even if the first
focusing did not cause infinite singularities in stress at
the wave front, subsequent ones might. As is clear from the

above discussion, this is, in fact, not possible.
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4. THE CONTRIBUTIONS OF THE DIFFRACTED WAVES AND THE

STONELY WAVE TO THE INTERFACE SOLUTION

4.1 Introduction and Derivation of a Residue Representation

of the Solution

The nature of the stresses at the interface are of pri-
mary interest since bond failure is a major weakness in fiber
reinforced composites when they are subjected to impact load-
ing. It was found in the previous chapter that the refracted
waves focus and produce singular stresses at the interface.

It is the purpose of this chapter to show that wave fronts
associated with the diffracted P and SV waves, and the Stonely
(Rayleigh-1like) interface wave are not singular and hence are
negligible near their wave arrival times. Since these effects
are negligible the following analysis is intentionally brief.

Le£ ﬁ;(e,t) be the radial component of velocity of a

point on the interface, i.e.

* * *
Gp08) = 8(r8,0)) = d(ree)) (4.1)
r= r=

From (2.14) and (2.15)
T vow) = —iwla ()% @) + ivB(v,w)J (=2)] . (4.2)
uI(v,w = -iy vew) 29 (3 ivB(v,w)d, (— . .

Taking the inverse Fourier transform with respect to v yields

ol

* 1 m:'3-:*
(6,0) = = fo a (v,w)cosvedy.

Change of variable: v=sw, since w=w;+iws, wy>0, this yields
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s¥* 1 j’ ¥
uI(e.w) == Ja qu(sw.w)cossweds , (4.3)
s

p= |

Cg is portrayed in Figure 18b. Using another change of

*
variable 4. may be written

I
=%
uI(SIW) = I], (BIW) + I2 (GIW) (4.4)
where
R 3
I, (6,w) = %ﬁ IC wﬁI(sw,w)elwseds .
s

iwseds

.

1 =¥
Ig (G,w) 51? 'ch/ qu (_SUle)e

. . . : -1 w
C; is the line inclined at an angle of ~tan 1 &3 from
1
~itan"1%
- W1 to the origin and is depicted in Figure 18a.

Consider the poles in the complex s-plane of the integrand

which are the zeros of the function A(v,w)l , where
v=8®

A(VIUJ) = det[E] ’

where [E] is given in (2.16). For w = w,+iwg, w, large, the
zeros of A(sw,w) are of five types. On the positive real

s axis there are an infinite set of zeros associated with the
interior dilatation waves, an infinite set of zeros associated
with the interior SV waves and a zero associated with the
Stonely wave.

In the first and third guadrants of the complex s plane
there are two infinite sets of zeros associated with the
exterior P and SV waves. Using this information, the loca-
tion of the poles of E;(-sm,w) for w large are portrayed>in

Figure 18a. For 6 > 0, consider I,. By completing the closed
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contour in the wupper half s plane, also shown in Figure 18a,

and letting R » « while using Jordans lemma and asymptotics

to prove jcl - 0, one has from residue theory
R

=k 1
Jﬂw UJ'L.lI ("'SU.),LU) elwesds ) (2p) (ZS)
Iz (6,w) + o 5 = 2mi ;L]:O(Rn +R )
(4.5)
2 ok 1
where Ré p) is the nth residue of wﬁI(—sw,w)elwse/(ZW) asso-
ciated with exterior dilatation waves and RéZs) is the nth

residue of the same function associated with the exterior SV

waves.
Secondly, consider I,; again for 6 > 0 and w large, a

similar procedure using the contour of Figure 18b yields

iwls

=] o=k
| wa; (sw,w)e ds o
I, (6,w) - F —E— _ ni(E:O(Rélp)JrRr(lls))}

+ niRST 7 (4.6)

where Rélp) 1wls

(1s)

ciated with the interior dilatation waves, R is the nth

is the nth residue of dﬁ;(sw,w)e /(2m) asso-
residue associated with the interior SV waves and Rgp is the
residue from the Stonely pole. Since all these poles are on
"the real s axis two things occur: the residues in (4.6) are
©
multiplied by mi rather than 2mi and jo in (4.6) is a Cauchy
principal value integral in reference to the interior P and
SV poles as well as the Stonely pole which lie on the path

of integration.
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Thus, (4.5) and (4.6) imply that (4.4) may be written:

e

-k i ek Sk
B (0,0 = = T wer [T (sw,w) T (-su,0) Jas
(4.7)
N Bos 2 2s ) 18
+ nl{i*OEZRé P)+2RI§ )+Rxglp +Rr§ )] +RST}

Hence, by the procedures outlined in this section the
line integral representation of E;(e,w) in equation (4.4) has
been exchanged for the principal value integral (principal
value is for z;(sw,w) part of the integral) and the residues
of (4.7).

In a similar problem, one investigator [10], while seeking
the contribution from diffracted waves, overlooked the exis-
tence of a principal value integral which was analogous to
the one in (4.7). To understand this error consider the
| source of the integral in (4.7). In equations (2.14) the
doubly transformed interior solutions are given as Bessel
functions of order absolute value of v. The |v| was necessary
so that the solution would be bounded as r -» 0, however, its
use destroyed the analyticity of the doubly transformed solu-
tion with respect to v. To restore analyticity, the Fourier
" inversion integrals were rewritten in half range form in (2.17)
and the absolute value signs dropped. The integrands in (2.17),
or for that matter in (4.3), were now analytic and hence com-
plex variable theory could be used to derive (4.7). However,
when the absolute value signs were dropped the evenness of

ek ek .
ﬁa and Uy with respect to v was destroyed and thus
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rld FH N .
uI(—sw,w) # uI(Sw,w). Hence, the integral of (4.7) contri-
butes to the solution. Actually, the author of [10] failed
to realize the need for the absolute value signs from the
beginning and his error followed from that oversight.

4.2 Contribution from P and SV Residues

Consider the contribution to the solution from the

éZp) and Rézs). For high frequency, w large,

residues R
.these residues are associated with the zeros of Héi)(w) and
Hé;)(wkz), which are located in the first and third guadrants
of the complex s plane. The asymptotic evaluation of these |
residues is done using the asymptotic expansions for the
Bessel and Hankel functions given in Olver's paper [13]. ‘This
‘evaluation is analogous to that of Gilbert and Knopoff's [9]
where they evaluated the wave front behavior of an elastic
wave diffracted by a rigid cylinder. It is found that the
nature of these residues, which are associated with externally
diffracted waves, is essentially unchanged when the rigid
cylinder is replaced by a linearly elastic one. RézP) and
Rézs) are exponentially small as w - « and hence as one
would expect from the lemma of section 2.5, Gilbert and
Knopoff show that they contribute velocities which are
infinitely continuous at the wave front. By continuity at
the interface, any waves refracted into the interior also
have an infinitely continuous wave front. As shown in
section 3.6, a necessary condition for a wave front to prop-

agate an infinite stress discontinuity after focusing is
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that it must have at least a simple jump discontinuity in
velocity beforehand. Hence any externally diffracted/inter-
nally refracted waves are nonsingular even after focusing.
Consider the contribution to the solution from the
residues Rélp) and Réls). The asymptotics of appendices
A and B together with the following transitional asymptotics
from reference [12] may be used to evaluate the asymptotic
behavior of these residues for large w, when c >k;.

For v = sw, s = 1/c —»(zw_%@)/cy@, then

Jsw (%)) ~ 2%/2 (5))1/3 Ai ("21/32)

3., (3) ~—p?/2 (g)z/sAi’(—zl/sz)

as @ = «©., Ai(x) is the Airy function which satisfies

ALY (x) - xAL(x) = 0, Ai(0) = 372/ Aii(oye g tP
F'(z/3) T(1/3)

Let aj be the jth zero of the Airy function. The aj's are
tabulated in reference [12] and are real and negative. The

(1p) i
. as w = +® is pro-

asymptotic behavior of the residue
portional to (—iw)“s/2 exp[iwto+iaj(w/2c)1/3k], where t, is the
time bf arrival of the diffracted wave front and A is the dif-

lfracted path length. Since this term is of order w32 as

w = ¢« the lemma of section 2.5 suggests that it corresponds to

a function of time with the behavior (t—’cc,)l/2 as t =» ty. The

function of time that has the above transform is complicated

but can be expressed as an integral by use of the inversion
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integral (2.11b) and the convolution theorem. Using this
representation it is possible to verify that the wave front
behavior is, in fact, continuous. Hence, as with the dif-
fracted exterior wave, no propagating singular stresses can

be generated by focusing.

4.3 Contribution from Stonely Interface.Wave‘

The Stonely pole exists if certain requirements are
satisfied by the material constants of the two materials.
These requirements are guite involved and are explored in
detail in Cagniard's book [14]. If these requirements are
satisfied, he shows that the Stonely pole, s = kST’ exists

and that kgq = cdl/cst > max (k;/c,kz;), i.e. the dimensionless

Stonely slowness, kgp, is larger than the dimensionless shear

wave slowness in either material. As a result, the appro-

priate asymptotics for evaluating the large w behavior of the

contribution from the Stonely wave are those of Appendix B

for the Bessel function and its derivative and for the Hankel

functions again from reference [12], for s > x

(1) ] > wllg (s)
st (wx) -1 EEEETET e °

and

xHéi) "(wx) ~ —mX(S)HS(i) (wx)
where

m, (s) = lsz-le
and

Q. (s) = scosh—l(z)—mx(s) .



-61-

.k
Let u be the contribution to 4. from the Stonely
1(sT), I

residue term miRggp in (4.7) and uI(ST)2 be the contribution
from the principal value integral near the Stonely pole.

Using the aforementioned asymptotics, it is found that

F (k o) eik gmw (8-1/2) —wQy (kg
- S

o3

L
2a (kg (4.8)

where

i
F(s) = ogm~ -[sz(mlmk +sz)4e2—4gs4(2mlmk -e,)
cT T

2 ky 2 2 '
_2[e2(mlmkl—s )—memkz(?;) Jes+2us [el(mlmke—ez)
¢ = C ]
c .

2
_Zmlmklkgj] ,
¢z

2 2 2
Als) = (Sz“mLmkl)(4S mymy-ej)+2s p(2m1mkl—e1)(2mlmk2—eg)
C‘—C— CE
ik, 2 2 442 2y (2
+u (Fil2) (m%mk2+mlgkl)+p (4s mlmkl—el)(s —mlmkg) ,
¢ ¢T
e, = zsz_kf/cz , €5 = 2sz—k§ .

As it would be expected from the transform integral (2.1lla),
=% . . T*

u1(5191(9'W) is the complex conjugate of uI(STVI(e'—w)' Hence,
using the inversion integral (2.11b) to find the function of

time whose transform is the right hand side of (4.8) yields

(9,T) ~ i f 51n(Tw) —wQI(kST) F(kSTa/_

° e RO

as t » 0, where T = t—kSTxe—ﬂ/Z). Integral transform tables

.*
U1(s1),

yield
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2 2. %
F (kST) [ (Ql (kST) +T ) ’Ql (kST) ]

1.1 (9, T) ~ % ’
(4.9)
as T - 0.
T % : :
Secondly, consider ﬁI(ST) . The contribution from the
2

principal value integral from near the Stonely pole is

approximately

kKamte .
f ST F(s)elws(e—n/Z)—wﬁl(s) s

kST—e J2Tw A(s)

Since the role of A(s) = 0 as s—>kST is of interest, the

integral is approximated as
-wQy (kqm) Kgpte _
F(kgple ST o ST iws(0-m/2)

ds .
Nermw Al (kgm) kgp—€ (s=kgp)

Keeping only the even part of the integrand, a change of

variable yields,
“UJQl (kST) +i(.UkST (G—TT/2)

—* (6. 0) 2F (kgqp)e ew(8-1/2)
u W ~ i
1(s7), JFT A (egy) B

A,V/EE F(kST)e"wgl(kST)+iw(e—n/2)kST
2w Al (kST)

—-%
as w — «®. Analogous to uI(ST)l'

applied and it is found that as T-0

the inversion integral is

1 L
Flgp)  [(0F (kgp)+72) %40, (kgp) 12
28 (kgp)  (0F (k) +12) %

-

L x
(4.10)

Note the following:
. -k

. . » o]
(i) Both uI(ST)l and uI(ST)a are of the same orderas w-—®,.
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(ii) Both are exponentially decaying as w-»® and, as one
would expect from the lemma of section 2.5, their corresponding
functions of time are infinitely continuous for all T.
- 0 as T=0 while ﬁ* does not. In fact,

*
I(sST), I(SsT,

is a pulse which is maximum at T = 0.

(iii) u
*

U1(sT),

N s v . > .* '*
With regards to (iii), if VI(ngland VI(ST)2

_the opposite result would be observed, i.e. the main contribu-
*
I(sT

value integral. Hence, both residues and principal value

were computed

tion to ¥ comes from the residue and not the principal
integrals are equally important.

Lastly, note that Miklowitz [ 6 ] obtained results essen-
tially analogous to those of this section for the Rayleigh
wave while investigating the problem of a stress pulse striking
a cylindrical cavity.

4.4 Contribution from the Principal Value Integral from

Near the P and SV Poles

As was the case for the Stonely wave, the principal value
integrals from near the P and SV poles yield contributions to
the solution of the same order in w as their residue counter-
parts. Hence, as was shown in section 4.2 for the residues,
they do not contribute to singular stresses.

In summary, neither diffracted waves nor the Stonely
intefface wave cause singular stresses in the composite.
However, 1f their wave front behavior is to be ascertained,
then contributions from the principal value integral and the

residues are equally important.
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5. CONCLUSIONS

In'the present analysis a Watson-type lemma for use with
the Fourier transform was constructed and used to determine
the asymptotic behavior at singular wave fronts of the solu-
tion of a stress pulse striking an elastic inclusion embedded
in an infinite elastic solid. This lemma is generally appli-
cable to problems which involve singular loadings or focusing
in which wave front behavior is important. Furthermore, unlike
some methods, it yields the behavior of singular wave fronts
whether or not the singular wave is the first to arrive.

Secondly, Friedlander's technique, which formulates the
solution in terms of wave forms associated with propagation
in 8, has been extended tb an interior region, the inclusion.
With no inclusion, i.e. a circular cylindrical hole, Miklowitz
[6] and Peck and Miklowitz [7] found that Friedlander's rep-
resentation yielded reflected waves, and angularly propagating
diffracted and Rayleigh surface waves. It was found here that
when the hole is filled with an elastic inclusion that, in
addition to waves analogous to the above (substitute Stonely
interface wave for Rayleigh wave), there are refracted interior
waves that also propagate in §. Such waves bounce around the
interior by reflecting from the interface.

These techniques applied to the problem of a stress pulse
striking a circular cylindrical elastic inclusion yield the
following results. Dominant stress singularities arise from

the focusing of waves refracted into the interior. 1In order
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for any refracted stress pulse to propagate an infinite singu-
larity at its wave front after focusing, the incident stress
wave that strikes the inclusion must have at least a simple
step discontinuity at its wave front. If this condition is
met then the interior refracted wave bounces around the inte-
rior, alternately focusing and unfocusing after each reflection
from the interface, i.e. the corresponding stress at the wave
front going from a step discontinuity to a logarithmic singu-
larity and back to a step discontinuity. As the number of
reflections from the interface increases, the magnitude of a
coefficient which multiplies the step discontinuity/logarithmic
singularity in stress decreases exponentially and the focal
point becomes as far as possible from the interface. Thus,
the contributions from the first few reflections are the most
important as far as failure at the fiber-matrix interface is
concerned and, hence, are given in detail in sections 3.2, 3.3
and 3.4. In addition, this analysis revealed that some of the
reflected exterior waves are also infinitely singular at their
wave fronts if the dilatation wave speed in the inclusion is
greater than the dilatation wave speed in the exterior matrix
material (which is the case for most composite materials).
Lastly, it was showﬁ that the contributions from the diffracted
waves and the Stonely interface wave are not singular.

As was pointed out above, unless the incident stress
pulse has a step discontinuity the focused waves do not have

an infinite singularity at their wave fronts. A physical
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stress pulse is always continuous, thus, the results found
here>are to be interpreted as a limiting case as the rise
time of a continuous incident pulse becomes small. 1In fact,
it is for this reason that the coefficients which multiply
the logarithmic singularities are important. As the rise
time of the incident stress pulse becomes small, the focused
response in the neighborhood of the wave fronts, while still
finite, are proportional to these coefficients and, hence,
they determine relative stress levels. A related use for
the solution found here is that the asymptotic behavior of
the wave front responsé to a continuous incident stress pulse

may be determined from it by use of the convolution theorem.
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APPENDIX A. THE ASYMPTOTIC BEHAVIOR OF
ek

§Eu1(dil)(r,sw,w) as w-»* FOR se[0,min(1l,r/c)).

From equation (3.2)

oF = _iwo o
ul(dil)(r,sw,w) = - Alsw,w)I, (CF) (A.1)
where from equation (2.16) for v = suw
21 -swrmi/2
A(sw,w) = —= a(s,w)/A(s,w)
iw3
where
a(s,w) = detly, gz.ga.gdl and
v=SW
A = det[E]l
v=sw "’

&*
To find the asymptotic behavior of a, A and then ‘.Jl(dil) for

large w the following asymptotic formulas for the Hankel and

Bessel functions obtained from those of reference [12] are

used. If v = sw and se[0,x), i.e. 0 s s < x, (A.2a)
then
Hél)(wx) ~ /ﬂwmi S exp{iwwx(s)-iﬂ/4} (A.2Db)
1M 7 (x) ~ 1/6—‘%1@—) exp iwwx(s)—in/4§ (A.2c)

exp[-iwly (s)+im/4]

A/2ﬁwmx(s)

ch(wx) ~ -i/zﬁéilexp{;iwwx(s)+iﬂ/4}[l+iexp{21wwx(s)}]
(A.2e)

3, lwx) ~ [1-iexp{2iny ()}1  (a.29)

as w—®, where
mx(s) = |x2-s2| and

b, (s) = m (s) - scos ' (5).



The determinant for a(s,w) given in equation (A.1l) is
expanded and then simplified by using the fact that the
Wronskian, W{jv(z),Hél)(z)}, equals 2i/mz. Products of this
type occur when elements of the vector y are multiplied by
elements of the vector e; which have the same argument.
Following this simplification, the asymptotics of (A.2) are

‘ substituted and result in

4 [vx, - ]
a(s,u) ~ e ey

7° (m m,_ )72
( kl/c kz

lag (s)+a; (s)ie” Moyl (a.3)

where

B 2 4 :
ao(s) = deys (mkl+mk2)—85 (mk2+“mk1)—2e2(mklez_“mkael)
T T c

2
+4us (ﬁklez—mklel) .

C

e, = (25%kx2/c%) |, e, = (28%-%2).

The algebraic form of 'a, is similar to that of ad. It's
explicit representation will not be needed in this work. The
requirement (A.2a) restricts s to the interval [0,min(1l,%,/c)),
where

‘ . 11 if ¢ <k,
min(l,k;/c) = minimum of 1 and k,/c ‘[kl/c if ¢ > k,

The asymptotic behavior of the determinant for A (s,uw)
given in equation (A.1l) is also found by the use of the
asymptotics of (A.2). Their substitution implies that for
large w

4 :
_ow expliw (¥, +y, - - )]
Als,w) ~ — — 2 Mk W;/c SV / (A.4a)

m (mlml/cmkl/cmkz)é




where 4
' ; : 2iw (P, +lp /)
d(s.w) = by0 {1"1[611 Fiuby/e +oz€ levk]/c +6,5€ Kye" e ]}.

(A.4Db)

Cc

2 2 2 2
610 (s) = (mLmk1+s ) (e5+4s mlmk2)+p[—25 (2mklm%+el)(2m1mk2
c c

kiks 2 ' 2,2 2 2
+e -+ (m +m ) + e; +4s m ) m +s7),
2) ( G )‘ %_ . 1m51 JH+u( 1 ?21 % (1ﬁ% )

C

(A.4c)

and

81 (8) 810 (8) = (—mém51+sz)(e§+4s2m1mk2)+p[232(2§E1m%+el)
C

k,k, . 2
H(2mymy teg) (==2) (mléﬁl-m%mkz)l
. C

+p2(ef—4szmimkl)(mlmk2+s2) . (A.44)
c

c

Again, explicit representations of §,, and §;5; will not be

needed. Requirement (A.2d) restricts the applicability of

(A.4a) to s contained in the interval [0,min(1l,1/c)).

The asymptotics (A.3) and (A.4) and equation (A.1)

imply.

2i j -1
A(sw,w) ~ 29 (mlml)%[ao(s)+ia1(s)e lwwkyb]elwwyb

-iw36(SlUJ) T

. (A.5)
as w»», for se[0,min(l,1/c)). Thus, the representation for

ok . .
W1 (@i1) of equation (A.l) and the asymptotic for XJ;(wx) of

(A.2e) imply

w * L 0o [Mydms g (—sm/24y, 06 )
fﬁul(dil)(r'sw’w) r&(s,wi 21 ) e’ Ve

Lagtia, e2 MWWk (el br/e~i/A Sluty i/,

(A.6)
as @2, where (A.2a) restricts s to the interval [0,min(l,r/c)).
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This term is part of the integrand in equation (3.5).

The integral is evaluated asymptotically for large w using
the method of stationary phase. To do this, all exponential

iwf {s)

terms of the type e must appear in the numerator of the

integrand. To achieve this result, 6_l(s,w) is expanded in

a geometric series. From equation (A.4b)

5(s,w) = (1+2) 810 . @.7)

where
, = —i[blleZin”Q:+ 612e2iwwkv@ + élaniw(wkvb+¢Vb)],

From Fouriexr transform theory, w is restricted to the half
plane Im{w} > 0. Thus the limiting procédure W = Wy +iwg
where w; > 0 and w,=+* can be used and for w, sufficiently
large, since wx(s) is positive definite, z is less than one.
Thus, expanding 6—1 in a geometric series

8l = sd T (-2 . (A.8)
n=0

Asymptotic relation (A.6) becomes,
ok

wﬁl(dil) ioo My My/ My / e iw(—sn/2+Wy@"¢1)
217 (I‘,SUJ,UU) ~ rélo (S) T e

'[ao+ia1e2iwwkgk:][eiwwr/c"i”/4_e"iw¢r/c+iﬂ/4]

- i i 2iw (e, +V1sp)
(j‘)n[611621(‘00‘]‘;&:‘l +612621w¢kl/c+6133 o (wkl/c WJ/C ]1’]
n=

© (n.9)

as w»», for se[0,min(l,xr/c)).
The meaning of this representation is explained in

Chapter 3.
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APPENDIX B. THE ASYMPTOTIC BEHAVIOR OF

MIE

==k w =% .
C . AND == ’ AS FOR 1/c,1),c>k
s dRattye) AP 3R {{agyy ) BS woe FOR sell/e d) ek

The double Fourier transform of the radial and angular

components of the scattered wave form dilatational velocities

ek ?‘* -
are usc(dil) and Vsc(dil)' From equations (2.15a), (2.15b)
and (2.14)

o _ a2 (1),

o (qin) (Frvew) = —iwc(v,w)H7 (wr) (B.1a)
and |

e _ v (1)

Vsc(dil) (r,v,0) = 7 C(\),UJ)HV (wr) (B.1Db)

where from eguation (2.16) for v = sw

2”UOe~swni/2

C(SUJ:UJ) = —= C(S'W)/A(S:UJ) ’ (B.lC)
iw3
c(s,w) = det[gl,gg,z,géjl V (B.14)
. v=sW
and
Als,w) = det[E]l = det[gl,gz,gﬁ,gﬁj‘ . (B.le)
V=S V=S

As will be shown later, for v =sw and se(l/c,l), the asymptotic
behavior for w large of ¢, A and then the transformed scattered
dilatation velocities can be found by using the asymptotic for-
mulas of Appendix A, equations (A.2a) to (A.2d) and the follow-
ing formulas that were also obtained from those of reference

[12]. If v = sw and w~», then for s > x
e"‘wa (S)

2mwmy (s)

xJ ) (wx) ~ /5%)@‘ oW (s) (B.2b)

Jv(wx) ~ (B.2a)

and
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where
mx(s) = ‘X2—82|
and
0 (s) = scosh—l(§)—m (s) .
X xR
There are two subintervals of interest: se(l/c,k,/c),

i.e. s contained in the open interval 1/c to k,/c; and se(k,/c,
1). For s contained in the first subinterval, (1/c,k,;/c),
(B.2a) and (B.2b) are used to approximate e, asymptotically
since arguments of the Bessel functions of e; are greater than
the order, and (A.2a) through (A.2e) are used to approximate
€,, €5, €, and y since the arguments of these functions are
less than their orders. If s is contéined in the second sub-
interval, (k,/c,1), then (B.2a) and (B.2b) are used to approx-
imate both e, and e;, while (A.2a) to (A.2e) are used for the |
remaining vectors. Thus, using the notation of (A.2) and (B.2),

it is found that for se(l/c,k,/c)

w4e“’[‘QVc+i”’k2"Vl“Vkl/c) I+in/4

2 1
2m (ml/c M) o my My )72

[co(s)—icl(s)e:z.uw1

C(SILU) ~

-—:i.cz(s)eZi.M}kJ/c —cs(s)eZiw(wl+ka“) ] (B.3a)

and . : .
4eUJE"Ql/c +a (q’1+¢,k2—¢1<1/c) 1-in/4 21wk
A~ UJ2 Lz 520 (1-1d5e l/c)
” (myklmk%k:mlmka)z

(B.3b)
as w-ow, where

Ca = CCI,R + iCG,I s Q= 0,1,2,3-
CaR and CaI are real functions of s. Specifically, for se(l/c,

kl/c) ’
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2,2 .2 2 kKiky 2
COR(s) = s (e;-4s mlmke)—ZMels (e2—2mlmk2)—p( t}e) My my
T
2 2 2 '
vl el(mlmkg s7), (B.3c)
B 2_,.2 4 2
Cor () = mimkl(eg— s mlmkz)— pmy Iy S (eg—2m1mk2)
c T ¢z
+my m ELE%Z —4s2 2m m, (m,m —sz) (B.34d)
" c Kd «c : & ko ke ! ’
e
ki ko12
ClR(S) = 52(e§+452m1mk2)—2uels2(e2+2mk2m1)+p( i}z) my my
T
+H2e%(m1mk +s2), ' (B.3e)
2
and
B 2 2 2
ClI(S) = mlmkl(e2+4s mlmke)—4ps mimkl(e2+2m1mk2)
kikp(2, 2, 2 2
+up£mk2(—:;—) +1 4s mlmkl(mlmk2+s ) . (B.3f)
[e; c -
c
Also,
bso (8) = ¢, (8) , c5(s) = c; (s) 8z, (8). (B.39)

Explicit representations of c, , ¢z and b5, are not needed.
. -1 . . . .
Hence, expanding A in a geometric series as was done 1in

Appendix A, (B.3), B.l) and (A.2) implies

ﬁ*(r,sw,w) m,. mo, 1 eiw(—sn/2+wr)—ﬁvu
$*(r,sw,w) sc(dil)N e e s/my. 520 (s)
Lo (s) e“iZw‘f’il_icl_iczeziw (‘l’kj/c-‘lh )_C3e2iw‘1‘k1/é]
'ngo(iégl(s)eZiw¢k5kﬂn, as - ‘ (B.4)

for se(l/c,k,/c). wx(s) and mX(s) are given in (A.2) and
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Qx(s) is given in (B.2). Using (B.3g), (B.4) simplifies to

ek

u (r,sw,w) [2m, Moy |+ iw (-sm/2+y ) -in/4
~ —_— — e
mw

=¥ wr
v (r:SWIW) sc(dil) S/mr

' .{’i + SE e—i2w¢1+,%fgéﬁi:gil eziW(ka@—¢l)

€, C:

e 521e2i‘”‘”k1/c)“> (B.5)
n=o X

as w=« for se(l/c,k,/c).
In the transitional zones, s ~ 1l/c or s ~ k;/c, the fact
that for s ~ x, J;w(wx) = O(w_V%sz(wx)) as w-=*, may be used
_to show that (B.5) actually holds even in the half opened
interval s contained in (l1/c-¢,k,/c)], where ¢ > 0 but small.
For se(ky/c,1l), a geometric series expansion of the
denominator is not possible. However, a procedure similar to

the above (except (B.2) is also used to approximate e,),

yields

e*

u (r,sw,w) 2my. TO 1 iw(-sn/2+y,.)-in/4

~ o ) — — e
=% r
Vv (rlSWJW) SC(dil) mw W S/mr
(B.63a)
[ . cols) —i2wtl!1]
{1 + e
c, (s)

where, again, Wx and m, are given in (A.2) and

oy = caR + ical , o= 0,1. ’ (B.6Db)

However, for se(k,/c,l), instead of (B.3c) through (B.3f),
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2 2 2 2
COR(s) = (s —m%gkl)(e2—4s mlmk2)+25 p(el—Zm%wkl)(e2—2mﬁq%)

C : C
+u2(452m1mk —e?)(mlmk —sz), (B.6C)
c <t 2
C
_ [kiks)?
Cop () = n{ 22 (g -mamy ) (B.6d)
C

2 2. 2 2 :
ClR(S) = (s —m%mil)(e2+4s mlmkz)—Zs u(el—Zm%mkl)(e2+2mﬂﬁ%)

c

2 2
+H2(e1—4s mimkl)(mlmk2+52) (B.6e)

¢ e
d

an K, ky) 2

ClI(S) = u (mimk2+mlmk1) (B.6£)
M x
where

e, = (252—k§/c2), e, = (Zsz—kg) and m_- = {xz—szl
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lncidén? Dilatation
y Wave Front at t=-1

Mat'l 2

Figure 1. Plane Dilatation Wave Propagating in the
Exterior Region Impinges on a Circular

Cylindrical Inclusion.
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‘Snell's Law; $ind I/¢

‘ Reflected Ray (P}
sin g8 ' |

st Externally

Refracted - a
Ray . “Refracted Ray (P) ﬁ%\
\-lncid@nt

Ray (P)

Aw

j "

i Refracted Ray after
2 Reflections

Refracted
- Ray after | Reflsction

Extei’no!ly
< Refracted Ray (P)

Figure 2. Ray Geometry of the Refracted

Dilatation Waves.
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f— Incident Dilatation Rays, .

. Refracted
Dilatation.

Rhys A
Codsiic»ﬁb

>

csind;= sin B8j

Figure 3. Refracted Dilatation Rays and

‘Caustic For ¢ = %, 8 > 0.
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—ip

Figure 4. Regions R,, R, and R; For

c=%, 8 > 0.
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Refracted —
P Ray

Incident P Ray

Figure 5. Refracted Dilatation Ray For

c <1, &p < cosB.
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Incident P Ray

Figure 6. Refracted Dilatation Ray For

c <1, d1p>~cosB.



Figure 7. fg, (sir,8) as a Function of s.
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Incident P Ray_

y
}

- X
r

Reflected SV Ray (Ips)

Figure 9. Refracted (1p) Wave Strikes Interface
and Generates a Reflected Shear (ips)

Wave.
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- Incident Ray

Figure 14. 'Geomefry of (1pp) Ray for c > 1,

dypp < cosB.
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Reflected P Ray (2p)

Incident P Ray

a\/

U LA \ #x

Figure 15. Ray Geometry,df Reflected

Dilatation (2p) Ray.
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n, number of times
internal P ray has Incident Ray

reflected from intertdace

Refracted P Ray, n=0

n=| ‘
Refracted
P Ray, n=m-|

Figure 16. Ray Geometry of mth Reflected

Interior Dilatation Wave.
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