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Abstract

We investigate some problems in algebraic coding theory and finite ge-
ometry by relating them to polynomials in two variables and applying Weil’s
theorem. We prove absolute irreducibility of polynomials arising in this way

using Bezout’s theorem.

In Chapter 2 we investigate certain cyclic codes, and we show that there
are codewords of a certain weight by proving that some polynomials are ab-

solutely irreducible and applying Weil’s theorem.

In Chapter 3 we investigate the existence of hyperovals which have the
form {(1, z, f(z))} in finite projective planes of even order, and we show that
there must be three collinear points by proving that some polynomials are

absolutely irreducible and applying Weil’s theorem.

In Chapter 4 we discuss Galois rings of order 4™. We construct a rela-
tive difference set from these, and hence an affine plane, which we prove is
Desarguesian. We also construct binary codes from the Galois rings, and we
prove that there are codewords of a certain weight in the natural generaliza-
tion of the Preparata and Goethals codes by proving that some polynomials

are absolutely irreducible and applying Weil’s theorem.
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CHAPTER O

Introduction and Summary

In this thesis we will study how the existence of certain objects in com-
binatorial structures can be related to solutions of a system of polynomial
equations in several variables. A form of the Weil bound due to W. Schmidt
[SC] on the number of rational points on curves over finite fields shows that
one can weaken the hypothesis of nonsingularity of a curve f(z,y) over F, to
absolute irreducibility, and still obtain a bound essentially the same as that
of Weil. We show that some questions in (1) algebraic coding theory and (2)
finite geometry can be answered by finding absolutely irreducible factors of .
certain polynomials and utilising the bound. We also develop various methods

for establishing the absolute irreducibility of polynomials in two variables over



finite fields using techniques from algebra and classical algebraic geometry.

In Chapter 2 we consider binary cyclic codes which are generated by a
polynomial of the same degree as that which generates the 2-error-correcting
BCH code of length n = 2° — 1, which has minimum distance 5 for all n.
The codes we study are indexed by an odd integer t, the 2-error-correcting
BCH codes 053) being the case t = 3. We prove that the other codes Cgt) are

different:

Theorem 2.1. For fixed t = 3 (mod 4), t > 3, the codes cl? of length
n = 2° — 1 have minimum distance at most 4 for all but finitely many values

of s.

The proof involves relating codewords of weight 4 to solutions of a poly-
nomial equation g4(z,y,z) = 0. We use algebraic geometry, in particular

Bezout’s theorem, to show that ¢¢(z,y, z) is absolutely irreducible.

We also consider values of ¢ = 1 (mod 4), where the analysis is much
more complicated. It becomes harder to show that g:(z,y, z) is absolutely

irreducible, partly due to that fact that there are infinitely many exceptions.

Theorem 2.1 is due to the author of this thesis. It and the results in section
2.4 up to and including Theorem 7 will appear in a paper to be published in
the Journal of Algebra and co-authored with H. Janwa and R. M. Wilson. The

results from Theorem 8 onward do not appear in that paper and are solely
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due to this author.

In Chapter 3 we consider hyperovals of the form {(1,z,2*)} (as z runs
through GF(q), plus two more points) in the finite projective plane PG(2, q)
where ¢ is even. We show that such a hyperoval exists provided a polynomial

equation gx(z,y,z) = 0 has no solutions over GF(q). However, we show:

Theorem 3.1. For any fixed k = 2 (mod 4), k > 6, the set D(k) is a hyper-

oval in PG(2, q) for at most a finite number of values of gq.

The proof involves showing that the polynomials gx(z, y, z) are absolutely
irreducible, which involves analysis of the singular points and resolving those

singularities.

We also consider values of £ = 0 (mod 4), where things are more compli-
cated. There are infinitely many exceptions, namely when % is a power of 2,

and we conjecture that these are the only exceptions.

Most of our results, including Theorem 3.1, were also obtained by Segre
and Segre-Bartocci much earlier. We did not know about the Segre-Bartocci
paper at the time these results were found. Segre and Bartocci’s methods

differ slightly from ours.

In Chapter 4 we introduce Galois rings GR(4™), which have recently
become of great interest to coding theorists. We give a complete, brief in-

troduction to the subject. These rings have become of interest because they
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give simple constructions of excellent binary codes, for example the Preparata

codes.

From a proof that the Preparata codes have minimum distance 6, we con-
struct a relative difference set in a Galois ring. From this relative difference set

we construct an affine plane. We prove that this affine plane is Desarguesian.

We investigate the most obvious generalizations of the Preparata and the

Goethals codes. One such family of codes consists of all vectors in (Z4)?"

- which are orthogonal to every row of the matrix

1 1 1 1 RIS R 1
01 ¢ € ... g ... 272

0 1 €& ¢ ... gL geT-Y
0 2 265 210 ... 2551’ el 255(2"‘—2)

where £ is a primitive (2™ — 1) root of unity in the Galois ring GR(4™).

Codewords of a certain weight in this generalization C are related to the
solutions of a certain polynomial equation h(z,y) = 0. We prove that h(z,y)
is absolutely irreducible, which enables us to determine the exact minimum

distance of these codes for m > 9. In fact,

Theorem 4.4. The code C' has minimum Lee weight 8 for all values of m,

except when m = 5, in which case the minimum Lee weight is 12.

The m = 5 case is the best known (64,2%7) code, the previously best
known has distance 10. This code also has more codewords than any known

binary code of length 64 and distance 12. It appears in a paper co-authored
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with A. R. Calderbank [CMG2], and the proof that the distance is 12 is given

in that paper and is not given in this thesis.

We obtain similar results (Corollary 4.5 and Theorem 4.6) for other fam-

ilies of such codes, which are the Z4 analogues of the 2- and 3-error-correcting

binary BCH codes.

Some of these coding theory results in this chapter will appear in a paper
co-authored with A. R. Calderbank, P. V. Kumar, T. Helleseth [CMGKH].
Theorem 4.3, Corollary 4.5 and Theorem 4.6 are part of this author’s contri-

bution to that paper.



CHAPTER 1

Preliminaries

In this chapter we give some definitions and results which will be used in

each of the following chapters.

Let h(z,y) be a polynomial that is defined over a field &, and let P =

(a, B) where a, 8 € k, the algebraic closure of k. Write
h(:l: +a,y+ ﬂ) = Ho(.’li,y) + Hl(x’y) + HZ(‘Tay) + -

where each H;(z,y) is 0 or homogeneous of degree ¢. If m is the smallest integer
such that H,, # 0 but H; = 0 for ¢ < m, then m is called the multiplicity of
h at P, and is denoted by mp(h). In particular, P is on the curve associated

to A if and only if mp(h) > 1. Also, by definition, P is a singular point of h if
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and only if mp(h) > 2. The m linear factors of H,,, with ¢ replaced by z — a

and y replaced by y — 3, are the tangent lines to h(z,y) at P.

If P = («, ) is a singular point of h, then the equations
Oh Oh
h(avﬂ) “‘Oa 5;(0"5)_07 %(a7ﬂ)‘0

are simultaneously satisfied. However, to include points at infinity we should
consider the projective homogeneous version of A(z,y), which we denote by
h(z,y,z). Then all singular points of h(z,y,z) are found by simultaneously

solving
oh Oh Oh
h(m,y,z)zO, gg(x,ywz)“‘()’ a_y(xay7z):0a E(Q?,y,Z):O.

Now let u and v be projective plane curves over k, and assume that v and
v have no common component. The intersection multiplicity I(P,u,v) of u
and v at P is the unique nonnegative integer satisfying and determined by the
seven properties listed on pages 7475 of Fulton [F]. For our purposes, there
are two important properties. The first is that I(P,u,v) # 0 if and only if
both mp(u) and mp(v) are nonzero. The second important property is that
I(P,u,v) > mp(u) - mp(v), with equality occurring if and only if u and v do

not have a common tangent at P.

We will use the following theorem from classical algebraic geometry, whose

proof can be found in Fulton [F].



Bezout’s Theorem. Let u and v be projective plane curves of degrees m

and n respectively having no components in common. Then
EI(P,u,v) =m-n,
P

where the sum is extended over all points P = (a, 8) and o, 3 € k.

We will use Bezout’s theorem to prove that certain polynomials h(z, y, 2),
which arise from combinatorial problems, are absolutely irreducible, i.e., ir-
reducible over the algebraic closure of GF(2). Our most common method
of proving the absolute irreducibility of h(z,y,z) will be to assume that it
is reducible, say h(z,y,z) = u(z,y,2) - v(z,y,2), and obtain a contradiction
by applying Bezout’s theorem to the curves u and v. Of course, h(z,y,z) is

absolutely irreducible if and only if h(z,y) is absolutely irreducible.

The reason the absolute irreducibility of h(z,y) is useful is that we can
then apply the following theorem of Weil, which guarantees us zeroes of h(z,y)
with distinct coordinates over all GF(2™), except for possibly a finite number

of values of m.

Here we give the following stronger statement of Weil’s theorem, proved
in [FJ, p.51].
Theorem. Let f(z,y) be an absolutely irreducible polynomial of degree d
with coefficients in GF(q) and let T’ be the affine curve defined by the equation
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f(z,y) =0. Then
¢+1-(d-1)(d-2)\/g-d<|T(GF(g))| g+ 1+(d-1)(d-2)Vq,

where T(GF(q)) denotes the number of rational points (z,y) over GF(q) on
I

We will use this theorem to guarantee us the required zeroes of h(z,y, z).
The existence of such zeroes will be related to the combinatorial problems
under consideration. In chapters 2 and 4 the existence of zeroes of a polynomial
h(z,y,z) will be related (in different ways) to the existence of codewords of
a certain weight in some codes. In chapter 3 the existence of zeroes will be

related to the existence of hyperovals in finite projective planes of even order.

The following two Propositions will be used frequently in the sequel.

Proposition A. Let h(z,y) be an affine curve. Write h(z + a,y + () =
Hp + Hpty + - where P = (@, ) is a point on h(z,y) of multiplicity m.
Suppose that H,, and H,, are relatively prime, and that there is only one

tangent direction at P. If h = uv is reducible, then I(P,u,v) = 0.

Proof: Since h = uv we have
h(z +a,y+B) =u(z + a,y + Bv(z + o,y + B)
Hp4+Hppr 4+ =0, + U1+ ) Vo + Vg1 + -+ 4).
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Ifa=0o0rb=0(ie. P ¢ uor P ¢ v)then we are done, so assume
a,b > 1. We claim that U, and V, are relatively prime: for if ¢(z,y) is a
nonconstant polynomial that divides both of them, since H,, = U,V, and
Hy+ = U;Vb_,_l + Uat1Vs we would have that ¢(z,y) divides H,, and Hpmy1,
a contradiction. But also U, V, = H,, = (cz + dy)™ for some constants ¢ and

d. Therefore either U, or V} is constant, and I(P,u,v) = 0. a

We now present some other results in a different direction, which can also
be used in irreducibility arguments. Bezout’s theorem is useful when dealing
with the algebraic closure because it lives there. One might also reduce the
problem to a finite number of extensions of GF(g), and eliminate possible
factorizations over these extensions. We will use the next proposition, which

is a well known Frobenius automorphism argument.

Proposition B. Let h(z,y) be an affine curve of degree n defined over GF(q).

For parts 2 and 3 assume h(z,y) is irreducible over GF(q).
1) If P = (o, B) is a point on h of multiplicity 1 (a nonsingular point) with

coordinates a, 8 € GF(q"), then h has an absolutely irreducible factor
over GF(q").

2) If P = (o, 3) is a point on h of multiplicity m with coordinates o, 8 €
GF(q"), then h has an absolutely irreducible factor over GF(¢™).

3) If h has an absolutely irreducible factor defined over GF(q") (and no
subfield), then r divides n.

10



Proof: The first assertion follows from the second. To prove the second asser-
tion, let hy(x,y) be an absolutely irreducible factor of h(z, y) with mp(hy) > 1.
We may suppose that the coeflicients of A; lie in some extension of GF(q"),

say GF(q™), and no intermediate subfield. We show that ¢ divides m.

If o is the Frobenius automorphism of GF(¢™) fixing GF(q"), then the
t distinct conjugates of h; under o will contain P with the same multiplic-
ity. Since the product of the conjugates is h, there are at most m distinct

conjugates, and in fact the number of distinct conjugates is m/mp(h;) = ¢.

For part 3, there are r distinct conjugates, their product is h, and so each

must have degree n/r. a

We remark that if m = 2 in part 2, then the hypothesis of irreducibility

can be dropped, as in part 1 where m = 1.
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CHAPTER 2

Double-Error-Correcting Cyclic Codes and
Absolutely Irreducible Polynomials

over GF(2)

2.1 Introduction.

A binary cyclic code C of odd length n may be thought of as the set of all
polynomials p(z) over GF(2) of degree < n so that p(¢) = 0 for all { in some
given set S of n-th roots of unity in some extension of GF(2). The minimum
distance of C is the least number of terms (monomials) that appear in any
of these polynomials p(z). To say a code is e-error-correcting means that the

minimum distance is > 2e + 1. Elements of C are called codewords. The least
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common multiple g(z) of the minimal polynomials over GF(2) of members of

S'is a divisor of z™ — 1 called the generator polynomial for C.

A fundamental problem in coding theory is to determine or bound the
minimum distance of a cyclic code given its root set S or given its generator
polynomial. We will consider codes of length n = 2% — 1 for positive integers
s. It is well known and easy to see that the code with root set S consisting
6f a single element ( has minimum distance 3 if { is a primitive n-th root of
unity and 2 otherwise; the former are called cyclic Hamming codes and the

latter are of little interest.

Let w be a primitive element in the finite field GF(2°) and let ¢t be
the binary cyclic code of length n = 2® — 1 consisting of all binary polyno-
mials p(z) so that p(w) = p(w?) = 0. That is, C{? is the cyclic code whose
generating polynomial is the product mq(z)m(z) where m;(z) denotes the
minimal polynomial of w' over GF(2) (assuming m;(z) # me(z)). We will
assume that ¢ is odd. The degree of m;(z)m.(z) is < 2s and is ‘usually’ equal
to 2s, for example when s is large with respect to ¢, so when we think of ¢ as
ﬁ)_ced and consider the sequence Cﬁt’ , these codes have dimension n — 2s, i.e.,
they contain 2"~2¢ codewords, with a finite number of exceptions. Our main

result here is the following theorem.

Theorem 2.1. For fixed t = 3 (mod 4), t > 3, the codes ¢V of length

n = 2°® — 1 have codewords of weight 4 for all but finitely many values of s.
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When t = 3, the codes C§3) have minimum distance > 5 and are the
classical 2-error-correcting BCH codes. For a fixed ¢t > 3, the codes Cgt) will
never again have distance 5 for all values of s. We can, however, still ask for
distance 5 for infinitely many values of s, e.g. for all s odd. Such values of
t do exist; ¢ = 5 has been known for a long time. In contrast, when t = 7
the codes C{") have distance < 5 once s is larger than 17, see [VLW1]. For
t = 2 + 1, the codes Cgt) have been shown to have minimum distance > 5
when (z,s) = 1, and these codes play a role in the construction of generalized
Preparata codes [BVLW]. It was noticed in [VLW2] that for ¢t = 22! — 2¢ + 1
the codes C’gt) also have minimum distance > 5 when s is odd and (7, s) = 1;
in [JW] the condition that s be odd was shown to be unnecessary. It is not
hard to see [VLW2] that the minimum distance of C{? cannot exceed 5 when

s> 3.

It would be interesting if there were other values of ¢ for which infinitely
many of the codes C{) are 2-error-correcting, but we think this is not the

case.

It is easy to relate codewords of weights 3 and 4 in C{ to the zeros
(a, B,7) over GF(2?) of the polynomial
XY, Z2)=X"+Y'+ 2"+ (X +Y + 2)*

over GF(2). The code C{" has codewords of weight 4 if and only if there
exist distinct nonnegative integers i,7,k, £ < n so that w and w' are roots
of p(z) = zt + 27 + 2% + 28 = 0. If we write & = ', 8 = wi, v = WF,

14



§ = w?, this is equivalent to the existence of four distinct nonzero elements
a,B,v,6 € GF(2%) so that

a +B8 +v +6 =0,

ol 444y +6'=0.

A codeword of weight 3 is equivalent to four distinct elements «,3,v,6 €
GF(2?), one of which is zero, satisfying the above system of equations. In sum-
mary, there are codewords of weight 3 or 4 in C? if and only if fi(a, 8,7) =0

for some distinct a, 8,7, € GF(2?).

We are only interested in points on fi(X,Y, Z) with distinct coordinates
and as fi(X,Y, Z) is clearly divisible by (X + Y )}(X + Z)(Y + Z), we consider

the polynomial

X'+Y '+ 2"+ (X +Y + 2)!
(X+Y)X+2) Y +2)

gt(X’KZ) =

It is shown in [JW] by an application of Weil’s theorem that if g,(X,Y, 2Z)
is absolutely irreducible, i.e., irreducible over the algebraic closure of GF(2),
then ¢,(X, Y, Z) has zeros (a, 8,v) with distinct coordinates except for a finite

number of values of s.

Factorizations of ¢4(X,Y,Z) for t = 2' + 1 and t = 2% — 2" + 1 were
described in [JW] where it was also shown that g¢¢(X,Y,Z) was absolutely
irreducible for infinitely many values of . For example, it was shown that
9:(X,Y, Z) is nonsingular, and hence absolutely irreducible, whenever ¢t =

' 2p + 1 where p = £3 (mod 8) is a prime. Here we prove that ¢,(X,Y, Z) is

15



absolutely irreducible for all ¢ > 3 with t = 3 (mod 4), as well as for infinitely
many values of ¢ = 1 (mod 4). These cases give us ample evidence to make

the following conjecture.

Conjecture 1. The polynomial g:(X,Y, Z) is absolutely irreducible for all t

not of the form 2 + 1 or 2%* — 2* + 1.

As we have pointed out, by Weil’s theorem Conjecture 1 implies the

following.

Conjecture 2. Forfixedoddt > 3, t # 2 +1 or 2% —2i 11, the codes C of
length n = 2° — 1 have codewords of weight 4 for all but finitely many values

of s. In particular, these codes would have minimum distance at most 4.

2.2 Singularity Analysis of the Polynomials.

It will be more convenient to work with the affine parts of the homoge-
neous polynomials f; and ¢g;. We use the same names:
X Y)=X"+Y ' +1+ (X +Y + 1),

X' +Y'4+1+(X+Y +1)
(X+1)(Y +1)(X+Y) ~’

gt(Xa Y) =

and we consider the algebraic curves defined by these polynomials over the

algebraic closure of GF(2).

Write t = 22/ + 1 where £ isodd and ¢ > 1. Let A\=a + 3+ 1. Over a

16



field of characteristic 2,
(z+a) =(z +a)(:v2i +a2i)é —at +al g+ qt~2 22 +at—2‘—1x2"+1 4.
where the dots indicate terms of higher degree in z. So we have
ft(X+aaY+ﬁ) - FO +F1(X’Y) +F2‘(XaY)+F2‘+1(XaY)+
where
Fo = fi(a,f) =o'+ 8 +1+ ),
Fl(X, Y) — (at—l + )\t_l)X + (ﬂt——l + /\t—-l)Y’
F(X,Y) = (o + A2X2 4 (82 4 A2y 7 (*)
Fpip1(X,Y) = (at—z"—1 + /\t—z‘—l)Xz‘+1 + (ﬂt—-z"—l + /\t—z‘—1)y—2"+1
FAT 2y 4 XY,
From [JW], or directly from the above with a few simple computations,
P = (a, ) is a singular point of f;(X,Y)ifandonly if o, 8, and A = a+8+1

are ¢-th roots of unity. The multiplicity mp(f) of such a singular point is
either 2¢ or 2 + 1 since \ # 0 implies Fyi; # 0.

If g¢ = uv and a point P has I(P,u,v) # 0, then mp(g:) = mp(u) +
mp(v) > 2, and so P is a singular point of ¢;(X,Y, Z). It is straightforward
to check that the projective curves g:(X,Y,Z) have no singular points at
infinity. Therefore, since the only points P that give a nonzero contribution

to the sum in Bezout’s theorem are singular points of ¢:(X, Y, Z), we may just

work with the affine part of ¢,(X,Y, Z).
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Suppose that P = (a, 8) # (1,1) is a singular point of ¢,(X,Y"). Further-
more, in the expansion of f;(X +a,Y + §), suppose that Fy:(X,Y") # 0 at P.
To apply Proposition A to g; we need to know the greatest common divisor
of (Gn(X,Y) and Gr41(X,Y)), where m = mp(g¢). This can be found from
(Fy: (X,Y), Fi11(X,Y)) as follows.

Letting w(X,Y) = (X + Y} (X + 1)(Y + 1), we have
X +aY+8)=wX +aY+F) g(X+aY+P),
so
Fu(X,)Y)+ Fi 1(X,)Y) 4+ - = (Wo+ Wi (X, Y) + - )(Gm(X,Y)

+ Gt (X,¥) + )

where polynomials with subscript ¢ are 0 or homogeneous of degree .

Remark 1. Suppose that Wy # 0, which is equivalent to assuming that

m = 2¢. Multiplying out and using (*) gives
FQ:’ = WoGzi = (UX + TY)T.’
F2i+1 = W0G2i+1 + Wlei,

where 02' = a!=2" £ M=? and 72 = #1-% + A1=2"| It follows from these
equations that (F2i, F2|'+1) = (Ggi ; G2|’+1). d

Remark 2. Suppose that Wy = 0, which is equivalent to m = 2 — 1. As
in Remark 1 we get

Fp = WiGqi_;y = (06X +1Y)%,
F2i+1 = WlGZi + W2G2i_1.

18



It is clear that (up to scalars) W, = o X + 7Y, and so (Fyi, Fyiy;) = 0 X +7Y

by Lemma 3 (see next section). Hence (G,i_;,Gsi) = 1. O

For the record we record that Wy = (a + 1)(8 + 1)(a + 8) and W; =
(14 82X + (1 + a)?Y.

2.3 The Case t = 3 (mod 4).

The following theorem is equivalent to Theorem 2.1, as stated in section

2.1, by the remarks made there.

Theorem 2.1'. If t = 3 (mod 4), t > 3, then ¢,(X,Y) is absolutely irre-
ducible.

Proof: Let t = 2+ 1, £ odd, be given. Suppose ¢:(X,Y) = u(X,Y) - v(X,Y)
over some extension of GF(2) with the degrees of u and v both > 1. Let
P = (a, 3) be a singular point of g;(X,Y) and hence of f;(X,Y). From (*)

and using the notation there,

EX,Y)=(a' + X3 HX2+ (871 + A7 HY?,

FBX,Y)=(a2+X )X+ (B2 + 27 )Y + 27 2(X%Y + XY?).
The point P = (1,1) has multiplicity 3 on f;, but also has multiplicity 3 on
w(X,Y)=(X+1)(Y +1)(X +7), and so is not on g;. Thus F»(X,Y) # 0, |
somp(f;) =2.

From Remarks 1 and 2 above, it suffices to show that (F3,F;) = 1 at
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every P. Once we know this, applying Proposition A and Bezout’s theorem

to u and v completes the proof.

Suppose that Fp(X,Y) = (6 X + 7Y)? and F3(X,Y) are not relatively
prime. It ié then clear that F3(X,Y) is divisible by ¢ X + 7Y, so F3(7,0) = 0.
But this leads to a contradiction:

F(X,Y)=*X3+ Y3 + \3(X?Y + YV2X),
0= Fy(r,0) =c*r® + 7t0® + X\ 207(0 + 1), |
0 =027 + A2 = (@=L + A"1)(8~1 + A7) + 472,
=a+p+A=1,

where the last equation is obtained from the preceding one by multiplication

by afBA. O
2.4 The Case t =1 (mod 4).

The situation when ¢ = 1 (mod 4) is complicated by the fact that there
are the interesting exceptions stated in section 2.1. Another complication is
that there are many more singular points. We present some partial results
towards our conjectures here. Throughout this section, ¢t = 24+ 1, £ > 1 is
odd, and P = (&, 3) is a point on f;. We carry over the same notation from

section 2.2,

First we gather some facts about the homogeneous polynomials F5:(X,Y")
. and F2i+1(X, Y) as in (*).
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Lemma 3. F,i(X,Y) has distinct linear factors.
Proof: For the proof let F(X) = F3i1,(X,1). By differentiating, we get
FI(X)=(a"? +A"2)X2 1 272 = (cX + d)?,

where c = a1 + A1 and d = A7, Assume § # 1 so that ¢ # 0. Then F has
distinct roots if and only if d/c = /(1 + ) is not a root of F. It turns out
that F(d/c) = 0 implies that A = 0, a contradiction. If 3 = 1 then a # 1 and

reverse the roles of X and Y. a

Referring to the properties of I(P, u,v), we note that if F5:(X,Y) =0 at

P, Lemma 3 implies that I(P,u,v) = mp(u)mp(v), i.e., equality occurs.

Lemma 4. Suppose P = (a, ) is a singular point on g+(X,Y) where o ¢
GF(2'). If g; = uv, then I(P,u,v) = 0.

Proof: 1t is clear from (*) that X + Y divides Fy:(X,Y) and Fyi((X,Y).
But then by Remark 2, (G5i_1,G4:) = 1. By Proposition A, if g; = uv then
I(P,u,v) =0. a

Lemma 5. Suppose that exactly one of the coefficients in Fy:i(X,Y) is 0. If
g: = uv, then I(P,u,v) = 0.

Proof: Recall from (x) that

F(X,Y) = (o' + A172)x? 4 (1% 4 A1-2yy?
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Fpip(X,Y) = (o~ +272)X2H+ L A2 X2y 4 -2 xy?
T AT YT
Suppose the coefficient of Y? s 0, the same argument works in the other
case. We now distinguish two cases: first, if B2 4 A% # 0 then clearly
(Fyi, Fyipq) = 1. It follows that (G2i,Gqiy1) = 1 (by Remark 1) and Propo-

sition A implies that I(P,u,v) = 0.

Next suppose that [3’? 272 = 0, which means that 8 = ) and o = 1.
It is clear that (Fyi, Fpiyy) = X, which implies (Gqi_;, G9i) = 1 (by Remark

2) and again Proposition A implies that I(P, u,v) = 0. a

The mazimal cyclic code By of odd length £ consists of all binary polyno-
mials p(z) of degree < £ so that p({¢) = 0 where (¢ is some fixed primitive £-th
root of unity in an extension of GF(2). In [JW], it was shown that singular
points P = (a, ) for f; where a, 3,1 are distinct exist if and only if B, has
codewords of weight 4. For many values of £ it is possible to see that B, has
no codewords of weight 4, for example, if £ is a prime congruent to +3 modulo
8, and more generally if either —1 or 3 is congruent to a power of 2 modulo Z.

For more infinite classes, see [JW].

Theorem 6. Suppose that t = 5 (mod 8), ¢t > 13, and that the maximal
cyclic code By has no codewords of weight 4. Then ¢:(X,Y) is absolutely

irreducible.

Proof: By the remark above there are no singular points P = (&, 3) where
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«, 3,1 are distinct. Suppose g; = uv. Write t = 4¢ + 1 where £ > 3 is odd. If
P = (a, o) is a singular point where a ¢ GF(4), then I(P,u,v) = 0 by Lemma
4. If P = (a,1) or (1,a) and o ¢ GF(4), then I(P,u,v) = 0 by Lemma 5.
Hence the only singular points P which could possibly have I(P,u,v) # 0 are
(@, @) or (a,1) or (1,a) where &® = 1 in all cases. Also, mp(f;) = 5 in all

cases.

If « # 1, we have mp(g;) = 5 — 1 = 4, and then using Lemma 3,
I(P,u,v) = mp(u)mp(v) < 4 Ifa =1, mp(¢;) = 5—3 = 2 and so

I(P,u,v) < 1.

Combining all this and applying Bezout’s theorem gives (deg u)(deg v)
<6-4+4+1=25. If =25, then t = 21 and this case was proved in [JW]. So we
may assume that £ 2> 9 and t > 37, which implies deg u + deg v > 34 which

is impossible. O

The values of t = 1 (mod 4) and less than 100 satisfying the hypotheses
of Theorem 6 are 21,37,45,53,69,77,93. We mention that if ¢ = 5 (mod 8) then
P = (1,1) is a singular point of multiplicity 2. Applying Proposition B shows
that ¢;(X,Y’) has an absolutely irreducible factor over GF(4).

Theorem 7. Suppose that the maximal cyclic code By has no codewords of
weight 4, and that GF(2") does not contain a nontrivial £-th root of unity, i.e.
(£,2' —1) = 1. Then ¢4(X,Y) is absolutely irreducible.
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Proof: By the remark before Theorem 6, there are no singular points P =
(a, ) where a, 3,1 are distinct. Recall that the coordinates of a singular
point must be /-th roots of unity, and as before suppose that ¢; = wv. If
P = (a,@) is a singular point where o ¢ GF(2'), then I(P,u,v) = 0 by
Lemma 4. If P = (a,1) or (1,a) and « ¢ GF(2'), then I(P,u,v) = 0 by
Lemma 5. Since GF(2!) does not contain any nontrivial £-th roots of unity,
we see that the only possible point with a nonzero intersection multiplicity is

P =(1,1). Now we have
(deg u)(deg v) = I(P,u,v) = mp(u)mp(v),

where the first equality is by Bezout’s theorem, the second by Lemma 3. It

follows that deg u = mp(u) and deg v = mp(v), but then
2" — 2 =mp(u) + mp(v) = deg u + deg v =210 — 2,

which is impossible. O

The values of t =1 (mod 4) and less than 100 satisfying the hypotheses
of Theorem 7 are 21, 25, 41, 45, 53, 69, 73, 77, 89, 93, 97.

Here is an infinite family where B, does have codewords of weight 4.

Theorem 8. Ift = 2/(2it1 — 1)+ 1 then ¢(X,Y, Z) is absolutely irreducible.

Proof: Recall that the coordinates of a singﬁlar point must be ¢-th roots of

unity, and as before suppose that g; = uv. If P = (o, @) is a singular point

24



where o ¢ GF(2'), then I(P,u,v) = 0 by Lemma 4. If P = (o, 1) or (1,a)
and a ¢ GF(2'), then I(P,u,v) = 0 by Lemma 5.

IfP= (‘a, B) is a singular point, then o, 3 € GF(2'*!). Since GF(2') N
GF(2+1) = GF(2), it is clear that if a and § are in GF(2'), then the only
possible point with a nonzero intersection multiplicity is @ = (1,1). If a €
GF(2'), B ¢ GF(2'), then o = 1. Hence by Lemma 5, I(P,u,v) = 0. Similarly
if 3 € GF(2), o ¢ GF(2'). '

The remaining case is where o, 8 ¢ GF(2') and a # 3. We now show
that I(P, u,v) = 0 for these P.

Suppose that Fy:i(X,Y) = (¢ X + TY)? and Fyi,(X,Y) are not rela-
tively prime. It is then clear that Fy:,,(X,Y) is divisible by X + 7Y, so
Fyiyq(r,0) = 0. Note that 02 = o172 £ A2 = 4% + A% and hence
0 =a+ A=1+ 4. Similarly 7 = 1 + a. But this leads to a contradiction:

Fpm(X,Y) = (% + \")XTH L A2 X2y 4 A2 xy?
+ (ﬁ—z‘ + A—z‘)yz‘ﬂ
and as we have said,

0= Fyipa(r,0) =(e™ + A7) L+ + 47 (1+0)" (14 6)

FATT (L)L A (BT AT+ B

Multiply this by A% and noting that Ao r1= (1_%@)2' we get

0=(EBY (14 a1 £ (14 0P (14 8) + (1 + o)1+ )P

+ (T arpr
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Now divide by (1 + &)(1 + 8) and simplify:

0 :0‘—2;(1 + ﬁ)zi_l(l + a)zi +(1+ a)2‘—1 +(1+ ﬂ)z"-l
57 (1 0 L )
—(1 487 M e (14 el +1) + (L +a)? (B8 +1)
1+ e 4 (14 ) 14

Hence

o (1+a)" 7 = g% (1487

012' ﬂ2'
1+a)?  (1+H7
@ _ B
a+l pg+1
a=p

which is a contradiction.

The upshot of all the above is that

(deg u)(deg v) = I(Q, u,v) = mg(u)mg(v),

where the first equality is by Bezout’s theorem, the second by Lemma 3. It

follows that deg u = mg(u) and deg v = mg(v), but then
28 — 2 =mg(u) + mg(v) = deg u + deg v = 2'(2"F! — 1) - 2,

which is impossible. O

The first four values of ¢ in this infinite sequence are 7, 29, 121, 497.
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2.5 Some More Values of ¢.

The values of ¢ < 100 not covered by the above theorems are t =
49,61,81,85. We have used other methods including Hensel’s Lemma im-
plemented on a computer to prove that g;(X,Y) is absolute irreducible for all

3 <t <100, except when t = 5,9,13,17,33,57,65 where it is not true!
Before we analyze some specific values of ¢, let us make a remark.

Remark 3. Let t = 21+ 1. Let P = (a, 3) be a singular point such that

o and J are not both elements of GF(2*). In this case we have
F(X,Y) = (a2 £ A72) X2 4 (612 4 A1-2yy?',

and
Fpip(X,Y) = (@72 $272)X2+1 L \-2'x2y
FATTXYY 4 (Y AL
Note that F,i = 0 <= both o, 8 € GF(2'), in which case both « and 3 are
in GF(2Y). So Fyi # 0. If one coefficient of Fy: is 0, see Lemma 5.

Assume now that both coefficients of F5i are nonzero. We can rewrite
Ly as
Fu(X,Y) = (06X +17)*
where 0 = a1~ + A\1=2' and r? = 51-2" FAL2 By Lemma 3, the GCD of

F,i and Fyiy is either 6 X 4+ 7Y or 1. Also, as a, 3 # 1 it follows from Remark
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1 that (Fyi, Fyiyq) = (Ggi,Gaiyq). So if the GCD is 1, then Proposition A
implies that I(P,u,v) = 0.

Suppose that F3:(X,Y) and Fyi1(X,Y) are not relatively prime, and
that neither o or 8 is in GF(2?). Setting ¥ = 1, this is equivalent to saying
that a = 7/0 (the only root of Fyi(X,1)) is a root of Fyi (X, 1). Combining
the two equations and simplifying gives

az'. 4+«
a=—-". 2.1
This does not lead to a contradiction in general. We can show that (2.1) gives

a contradiction in the following special cases.

If « € GF(2'), 8 ¢ GF(2'), the simplification above reduces to a =
a/(1+ ). But as in the proof of Lemma 3, F3i,(a) # 0, and so I(P,u,v) =0
in this case. Similarly if 8 € GF(2'), a ¢ GF(2!), then a = (1 + @)/ and

Fji11(a) = 0 implies that A = 0, a contradiction. So I(P,u,v) = 0 here too.

Finally, in case a, 8 ¢ GF(2') but A € GF(2}), then we can write

o +a+ A% + A _
B +8

But Fhi (1) = 0 = a~? = B~% = a = B, a contradiction. Hence

1.

I(P,u,v) = 0 in this case. O

We will now do these four values of t (namely 49,61,81,85) by hand. First

let us see what the Frobenius automorphism arguments give. Let GF(4) =
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{0,1,a,b}, and suppose that 3 does not divide ¢. It is easy to check that
(a,b) is a point of multiplicity 1 on g¢; (since 1 +a + b = 0). It follows from
Proposition B in Chapter 1 that ¢+(X,Y,Z) has an absolutely irreducible
factor over GF(4). We also have:

Proposition 9. Suppose ¢;(X,Y, Z) is irreducible over GF(2), and let t =
210 +1. If go(X,Y, Z) factors into r absolutely irreducible factors over GF(2"),
then r divides the GCD of t — 3 and 2! — 2.

Proof: Each absolutely irreducible factor contains the point (1,1) with the
same multiplicity. Hence r divides the multiplicity of (1,1), which is 2! — 2.

By Proposition B, r also divides ¢t — 3. O

For example, if t = 5 (mod 8), then ¢ = 2 so r = 1 or 2. This includes
t = 61 and 85. If t = 49 then (46,14) = 2sor = 1 or 2. If t = 81 then
(78,14) = 2 so r = 1 or 2. Hence for these values of ¢, g:(X,Y, Z) can only
factor over GF(2) or GF(4).

We can finish off these values of ¢ using a computer. One way is to imple-
ment Hensel’s Lemma. Another way is to compute the product of g;(X,~) and
its Galois conjugates, where v is an element of some extension of GF(2). Then
factor this binary polynomial in one variable into irreducibles over GF(2) and
draw conclusions (if possible) about the factorization of g:(X,Y) into binary

factors.
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Theorem 10. g49(X,Y") is absolutely irreducible.

Proof: Taking v to be an element of GF(27) gives a binary factorization of
the product into two irreducibles of degree 161. This implies that if g49 = uv
over GF(2), then u and v have degree 23. But viewing the factorization when

v € GF(2%) leads to the conclusion that this is impossible.

It remains to eliminate the possibility that g; = uv over GF(4), in which

case u and v must have degree 23 and are conjugates.

We shall use Bezout’s theorem to eliminate this possibility. If this hap-
pened, the product of the degrees would be 232 = 529. Since t = 49 =
2*3 + 1 the coordinates of a singular point must be elements of GF(4) =
{0,1, a,b}. Hence the only possible singular points are (1, 1), (a, a), (b, b) and
(1,a),(1,b),(a,1),(b,1). These all have multiplicity 16 except (1,1) which has
multiplicity 14. Since Fig = 0 at all these points, I(P,u,v) = mp(u)mp(v)
by Lemma 3. Since mp(u)+mp(v) < 16 we know that I(P,u,v) < 64. Hence

YI(P,u,v) < 7-64 =448 so it cannot possibly equal 529. O

Theorem 11. g¢5:(X,Y’) is absolutely irreducible.

Proof: Write t = 81 = 2*5 + 1 and note that Bs has no codewords of weight -
4. By the remark before Theorem 6, there are no singular points P = (a, §)
where a, 8,1 are distinct. Recall that the coordinates of a singular point must

be 5-th roots of unity, and as before suppose that ¢ = uv. If P = (a,a)
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is a singular point where a ¢ GF(2%), then I(P,u,v) = 0 by Lemma 4. If
P =(a,1) or (1,a) and a ¢ GF(2*), then I(P,u,v) = 0 by Lemma 5. Since
GF(2*) contains all the 5-th roots of unity, we see that the only possible points
with a nonzero intersection multiplicity are P = (a, a) where o® = 1. At these

points I(P,u,v) = mp(u)mp(v) because Fig = 0 and Lemma 3.

If @ =1, then mp(gs1) = 14 = mp(u) + mp(v) and so I(P,u,v) < 49.
If a # 1, then mp(gs1) = 16 = mp(u) + mp(v) and so I(P,u,v) < 64. By

Bezout’s theorem,
(deg u)(deg v) = Y I(P,u,v) < 4- 64 + 49 = 305.
P

But (deg u)+(deg v)=78, and so the only possibilities are deg u=1,2,3,4. If
deg u=4, then mp(u) < 4, and hence I(P,u,v) = mp(u)mp(v) < 48. Then
EpI(P,u,v) <548 = 240 but 4 - 74 = 296, a contradiction. The cases deg

u=1,2,3 are done in exactly the same way. 0

Theorem 12. g¢6:1(X,Y") is absolutely irreducible.

Proof: Write t = 61 = 2215 + 1, and note that Bis is a Hamming code and
therefore has codewords of weight 4. Recall that the coordinates of a singular
point must be 15-th roots of unity, and as before suppose that ¢; = uv. If -
P = (a,a) is a singular point where o ¢ GF(2?), then I(P,u,v) = 0 by
Lemma 4. If P = (a,1) or (1,&) and « ¢ GF(4), then I(P,u,v) = 0 by

Lemma 5.
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If we show that I(P,u,v) = 0 for all singular points (a, 3) where a, 3,1
are distinct, then the only possible points with a nonzero intersection mul-
tiplicity are P = (a,f) where a,8 € GF(4). There are seven such sin-
gular points, namely (1,1),(a,a),(b,b) and (1,a),(1,b),(a,1),(b,1), where
GF(4) = {0,1,a,b}. These all have multiplicity 4 except (1,1) which has

multiplicity 2.

Hence I(P,u,v) < 4 for all these points except (1,1) when I(P,u,v) <1,
and so

(deg u)(deg v) = ZI(P,u,v) <4-4+41=25.
P
But (deg u)+(deg v)=>58, and so we have a contradiction.

It remains to show that I(P,u,v) = 0 for all singular points («, 3) where

a, 3,1 are distinct. Suppose P is such a point. We will use Remark 3, and so

we have to obtain a contradiction to
o+t
R
being a common root of Fy(X) and F3(X).

a =

S

Note that a* = a and so a € GF(4). Since 6* = a3 + A7% and ¢ =
B3+ A% and a,8,\ € GF(16) in this case, we get ¢ = a® + A* and

T = 3% + A3, Hence
(WBP+1_atta
(Ma)+1 445

from which we get
aX® +o* + a(Ma)® +a =X + 8+ B(V/B)® + 8.
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Using a + 8 = A + 1 this becomes
NA+D+M+ D)+ A+1)+21a 2+ 23572 =0,

Taking square roots we get A> + 14+ M/a + /B = 0. This gives

148 14«
+
B

Multiplying this equation by af and dividing by o+ 2 yields af+a+8+1 = 0,

= 0.

a+f+

 whence (a + 1)(B + 1) = 0, which is impossible. a

Theorem 13. gg5(X,Y) is absolutely irreducible.

Proof: Write t = 85 = 2221 + 1. If P = (@, a) is a singular point where
o ¢ GF(2?), then I(P,u,v) = 0 by Lemma 4. If P = (a,1) or (1,a) and
a ¢ GF(4), then I(P,u,v) = 0 by Lemma 5.

If we show that I(P,u,v) = 0 for all singular points (a,8) where a, 8,1
are distinct, then the only possible points with a nonzero intersection mul-
tiplicity are P = («,3) where o, € GF(4). There are seven such sin-
gular points, namely (1,1),(a,a),(b,b) and (1,a),(1,b),(a,1),(b,1), where
Gf’(4) = {0,1,a,b}. These all have multiplicity 4 except (1,1) which has

multiplicity 2.

Hence I(P,u,v) < 4 for all these points except (1,1) when I(P,u,v) < 1, |
and so

(deg u)(deg v) = ZI(P,u,v) <4-4+41=25.
P
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But (deg u)+(deg v)=82, and so we have a contradiction.

It remains to show that I(P,u,v) = 0 for all singular points (e, ) where
a, 3,1 are distinct. We have verified this on a computer using Remark 3

showing that a cannot be a root of F3).
g

Here is another argument. Such singular points are related to codewords
of weight 4 in the code B,;, which has 84 such codewords. Each codeword
gives rise to 6 singular points, so there are 504 such points. Each of these
points has multiplicity 5 on gss. By Theorem 14 if I(P,u,v) is nonzero then
I(P,u,v) = 4. But recall that I(P,u,v) > mp(u)mp(v) and mp(u)+mp(v) =
5. The only way this can happen is if mp(u) = 4 and mp(v) = 1. But this
means that I(P,u,v) = mp(u)mp(v), and this can only happen if v and v

have distinct tangents at P. But Fy # 0, so this is impossible. O

This argument can be generalized to give some stronger results, see for

example Corollary 15 and its consequences.

2.6 Verification of Bezout’s Theorem.

In this section we show that Bezout’s theorem can be verified directly in
the cases t = 2! + 1 and ¢ = 22! — 2 + 1 where ¢,(X,Y, Z) is not absolutely
irreducible, in the hope that this will provide some insight into why it does

not work in the other cases.
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1. t =2 + 1.

Let t = 2' + 1 and suppose that P = (a, 3) is a singular point of g;.
Then & and B are (t — 1)-th roots of unity, and so they are both 1. So g;
has only one singular point @ = (1,1). From the factorization of ¢; given in
[JW] we can see that @ has multiplicity 1 on each of the 2° — 2 linear factors
X +aY +1+a. If we write g, = GH for any G and H, then

mg(G) + mo(H) = mg(g:) = 2' ~ 2 = deg (¢;) = deg G + deg H,
and so mg(G) = deg G and mg(H) = deg H.

By Lemma 5 we get that all the tangent directions at @) are distinct, and
so I(Q,G,H) = mg(G)mg(H). It follows that

I(Q,G, H) = (deg G)(deg H),

which is what Bezout’s theorem gives in this case.

2. t=13.

We know from [JW] that ¢13(X,Y") factors into 2 absolutely irreducible

factors over GF(4) as follows:
AX,)Y)=14+a+aX +aX* +X°+(1+X +aX +aX* + X3 + X*

+aXY + (X + X2+ aX)Y? +aXY?  +(1+ X +aX)Y* +aV°
and
BX,Y)=a+X+aX+X* +aX* + X+ (1 +aX + X’ +aX?+ X°+

aXHY + (X +aX)Y2 4+ (X +aX)Y P+ (1 +aX)Y* + (1 +a)Y?,
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where a satisfles a®> + a + 1 = 0 in GF(4). If P = (, ) is a singular point
of ¢g13, then & and § are cube roots of unity. So there are 9 possible singular
points, but (a,a?) and (a?, a) are ruled out because 1 + o + # must also be
a cube root of unity. Using Mathematica, one can compute the multiplicities

on A and B of the 7 singular points:

P (1,1) (a,a) (a*,a®) (l,a) (1,a®) (a,1) (a%,1)
mp(913) 2 4 4 4 4 4 4
mp(A) 1 2 2 2 2 2 2
mp(B) 1 2 2 2 2 2 2
I(P, A, B) 1 4 4 4 4 4 4

The figures for mp(g13) = mp(A) + mp(B) follow from the fact that fy = 0,
and so mp( f13) = 5. In calculating I(P, A, B) we use Lemma 5, which implies
that I(P, A, B) = mp(A)mp(B). It is now clear that

(deg A)(deg B) =25 =Y I(P, A, B),
P

verifying Bezout.

3. t =5T7.

This is the next case in the family ¢+ = 2/(2° — 1) + 1, when i = 3. We
know from [JW] that ¢gs57(X,Y") factors into 6 absolutely irreducible factors of

degree 9 over GF(8). Hence it factors into two irreducibles of degree 27 over

GF(2). Call these A and B. If P = (a,f) is a singular point of gs7, then «
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and § are in GF(8). There are 43 singular points, 24 with «, (8,1 distinct, 6
each with & = 1, 8 = 1, or @ = 3, and also there is (1,1). The respective

multiplicities on g57 are 9,8.8,8,6.

Using Mathematica, one can compute the multiplicities on A and B of the
43 singulai‘ points: In calculating I(P, A, B) we use Lemma 5, which implies
that I(P, A, B) = mp(A)mp(B).
P mp(A) mp(B) I(P,A,B)

(1,1) 3 3 9
(1,at) 4 4 16 -6 = 96
(a,1) 4 4 16-6=096
(at,a%) 4 4 16 -6 =96
(a%,a)° 3 6 18-3 =54
(a®,a)® 3 6 18-3 =54
(a%,a%)° 3 6 18-3=54
(a®,a%)” 3 6 18-3=54
(a%,0)° 6 3 18.3=54
(®,a)° 6 3 18-3=54
(a%,a%)° 6 3 18-3=154
(a®,a®)” 6 3 18-3 =54

In this table the entry (a?,a)? denotes the point and its Frobenius images.

Also, ¢ runs from 1 to 6. We now see that
(deg A)(deg B) =729= Y I(P, A, B),
P

verifying Bezout’s theorem.

We also computed the multiplicities when A is an absolutely irreducible

factor of degree 9 and B is the complementary factor.
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2.7 Resolution of Singularities

In this section we resolve the singularities on the curve ¢,(X,Y,Z) and

thereby compute the intersection multiplicity I(P,u,v) at a singular point P.

A reference for this is [F] or [A].

Theorem 14. Let t =24+ 1 and P = («, ) be a singular point on g; such
that 1, a, B are distinct and Goi # 0. If g = uv then either I(P,u,v) =0 or
2,

Proof: By Remark 2 we know that (Fyi, Fyiy1) = (Gai,Gpiyq). By Lemma 3,
either (Fyi, Fyipy) =1or o X +7Y. If (Fyi, Fyiyy) = 1 then I(P,u,v) =0 by
Proposition A. If (Fyi, Fyi 1) = 06X + 7Y then Fyi(7,0) = 0. Assume this

from now on.

(X +a,Y+8) =uX+a,Y+8v(X+a,Y +5)

Gy +Gaipr+ - =Ua+Usgr+ - ) Vo + Vog1 +--).

Hence
Ua.Vb = G2.' = (UX + TY)T. and G2i+1 = Ua.‘/b-l—l + Ua-l-l‘/b-

But Fjiy; has distinct linear factors by Lemma 3, so eithera =1l or b =1
(if both a and b are > 1, then (¢X + 7Y)? divides G5i;; and hence Fyiy,
by Remark 1). So we may assume that mp(u) = 1 and mp(v) = 2! — 1 as

mp(fi) = 2¢, and mp(w) = 0 where f; = uvw.
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Now u and v have a common tangent at P, so
I(P,u,v) > mp(u)mp(v) = 2° — 1.
In fact, by Bezout’s theorem,

I(P,u,0) = mp(u)mp(v) + ) me(u)mq(v)
Q
where the sum is over all @ infinitely near to P. We will show that this sum

is equal to 1.

Since g, and f; are locally the “same” at P (the factors (X + 1)(¥V +
1}(X +Y) do not pass through P so mp(f;) = mp(g¢)) we will work with f;.

Resolving the singularity of one will resolve it for the other.
We have Fy:(X,Y) = A*(Y—~AX)2i, where A = ¢ /7, and so there is only

one point in the first neighborhood, namely P; = (0, 4). Next we compute

F(X,Y + A), where f(X + o, XY + 8) = X2 f(X,Y).
FX,Y +A) = Fyu(L,Y + A) + XFpia (LY + A) +---

= A'Y? ¢+ X(Fyi41(1,A) + X(--)) + higher order terms
=X (@ + A7)+ AT AL AT AT 4 (87 42242

+ XY (A2 +(87% + A"¥)A%) + higher order terms.

We see that the degree one term in this expansion is zero if and only if

Fyi1(7,0) = 0, which we are assuming.

But the degree two term is not zero. To see this, note that it is zero if
and only if A7 = (87! + A™1)A if and only if /0 = (1 + «)/B. But if this is

true, then 7/c is not a root of Fyiy,, as in the proof of Lemma 3.
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Hence mp, (f') = 2, and this implies mp, (u) = mp, (v) = 1, as mp, (w) =

The important observation here is that the coefficient of XY is nonzero.
This meané that f' has two different tangent directions at Pj, and so any
points @ in the first neighborhood of P, (the second neighborhood of P) are
to be considered simple points on f;. So either mg(u) = 0 or mg(v) = 0 for
these points (). By the refined version of Bezout’s theorem, see [A] or [F], we

get
I(P,u,v) = mp(u)mp(v) + mp, (v)mp, (v) = (2! - +1=2¢

and this completes the proof. O

The following Corollary is extremely useful.

Corollary 15. Let t =2+ 1 and P = (a,3) be a singular point on gt such
that 1,a, B are distinct and G4 # 0. If g; = uv, then I(P,u,v) = 0.

Proof: If I(P,u,v) # 0 then I(P,u,v) = 2' by Theorem 14. But mp(g;) =
2' +1 = mp(u) + mp(v) and I(P,u,v) > mp(u)mp(v). The only way this
can happen is if mp(u) = 2° and mp(v) = 1. But this implies I(P,u,v) =
mp(u)mp(v), which implies that the factors u, v have distinct tangents at P,

which is not true. |

The preceding Corollary implies that if £ is sufficiently large with respect

"to 1, then gt 1s absolutely irreducible. This is because the product of the
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degrees of u and v is at least 24— 3, but £ pI(P,u,v) is bounded by a function
of the form f(2).

The preceding Corollary also implies that if ¢ = 5 (mod 8) then g, is
absolutely irreducible, because the assumption in Theorem 6 that B, has no
codewords of weight 4 can be dropped. The same assumption can be dropped

in Theorem 7.

We now study a different type of singular point, where both coordinates
are in the field GF(2'). These are the only possible singular points that have

nonzero intersection multiplicity.

Theorem 16. Let t = 2/ + 1 and P = (a, 3) be a singular point on g; such
that both a,8 € GF(2'), and so Fyi = 0. The roots of Fyiy,(X,1) lie in
GF(2%).

Proof: Denoting /\2iF2a+1(X, 1) by f(X), we calculate

f(X)= (#) Xy x4 X+ (120) .
Let ¢ = ((1 +ﬂ)/a)2i =(1+p)/aand b=((1 +a)/ﬂ)2; = (14 a)/fB, so that

FX)=cX¥ T 4 XY + X +b

=(cX +1X¥ + X +0b.
Define T(z) = (z + b)/(cz + 1). Then calculate that T?(z) = z. Let 8 be a
root of f(X ), which means 62" = (6 +5)/(c + 1). Hence

0 +b 6% 44

. _ 2T = T(0)?% = (622 = ¢g2"

6 = T2(9) =
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completing the proof. O

Note that the only fixed point of T is the square root of (a® +a)/(3% +3).
For suppose T(z) = z, then (z + b)/(cz + 1) = z and so z? = b/c = (a® +
)/ (8% + B).

Corollary 17. All the irreducible factors of Fyi,(X,Y) over GF(2') have

degree two, except for one factor which has degree one.

Proof: Linear factors over GF(2') correspond to fixed points of T, and there

is only one fixed point. O

We can prove a general theorem from the methods above, and then we

give another proof of Proposition A using resolution of singularities.

Theorem 18. If P = (a, ) is a singular point of a curve defined by F(z,y) =

0, write
F(‘t+a1y+ﬂ) :Fm(xay)+Fm+1(‘7"’y)+”'
where m = mp(F'). Suppose there is only one tangent direction at P, and

that (Fm, Frny1) = 1. Then P has only one infinitely near point, which is in

its first neighborhood and is simple.

Proof: We have Fp,(z,y) = A*(y — Az)™, and so there is only one point in
the first neighborhood, namely P, = (0, 4). Next we compute F'(z,y + A),
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where F(z + a,zy + 8) = 2™ F'(z,y).
Fllz,y+ A) = Fn(LLy+ A) + 2Fmy1(Ly + A) + -+~

= A"y™ + Z(Fm+1(1, A)+y(-- )) + higher order terms.

It is clear that P, is simple if and only if F,4+1(1,A4) # 0 if and only if

y — Az does not divide Fin41 if and only if (Fip, Frpy1) = 1. O

This gives another proof of Proposition A.

Corollary 19=Proposition A. With the hypotheses of Theorem 13, if F =
uv then I(P,u,v) = 0.

Proof: By the refined version of Bezout’s Theorem,

I(P,u,v) = mp(u)mp(v) + qu(u)mq(v)
Q

where the sum is over all @ that are infinitely near to P. Hence I(P,u,v) =
mp(u)mp(v) by Theorem 18. This equality implies that v and v have distinct
tangents at P. Since there is only one tangent direction at P, one of mp(u)

or mp(v) is zero and hence I(P, u,v) = 0. a

2.8 The Genus of ¢;(X,Y, Z).

If C is an absolutely irreducible curve given by F(X,Y) = 0 of degree n, -

then the genus of C is given by

o(0)= T =D syp),
P
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where the sum is over all distinct points P € C, and

JIEDY mP.-(F)(m2p.-(F) —1)

where this sum is over all points P; such that P; = P or P; is infinitely near

to P.

Theorem 20. Ift = 3 (mod 4), t > 3, then the genus of g,(X,Y) is given by

g:(t——4)2(t—5)_N

where N is the number of singular points of ¢;(X,Y).

Proof: By Theorem 18, every singular point P has just one point infinitely

near to it, which is simple. O

Corollary 21. If B, has no codewords of weight 4, then ¢:(X,Y") is nonsin-

gular.

Corollary 22. Ift =2'—1,t > 7, then the genus is g = (t — 5)(t — 7)/4.

Proof: Ift =2' ~1 =20+1, then £ = 2'"! — 1 and so @, 8 € GF(2'1). There
are £ — 1 choices for @ and ¢ — 3 choices for § (8 cannot be 1,a,a + 1). Hence

the genus
g= (t__.f%(L_P_) —(£-1)(¢-3)
t-4H(t-35 @(@t-3)(t-17)
= 2 ) 2
_(t=5)(t=1)
= ———4—_——_-
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CHAPTER 3

Hyperovals in Projective Planes and
Absolutely Irreducible Polynomials

in Characteristic 2

3.1. Introduction.

An oval in the finite projective plane PG(2, q) is a set of ¢ +1 points with
the property that no 3 are collinear. If ¢ is odd then such a set is maximal
with that property. A celebrated theorem of Segre (1955) states that all such
ovals are given algebraically by irreducible conics. If ¢ is even however, the
situation is much more interesting. Here a set of points in PG(2, ¢) of largest

possible size such that no 3 are collinear has cardinality ¢ + 2, and is called a
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hyperoval. No classification analagous to Segre’s for ¢ odd is known.

From now on in this chapter we assume that ¢ is even. A hyperoval can be
constructed from a (nonsingular) conic by adjoining the point at which all the
tangents of the conic meet, the nucleus. Such hyperovals are generally called
regular hyperovals. However for ¢ > 8 there also exist irregular hyperovals

which are not of the form conic plus nucleus, see [G1],[G2],|OKP] for example.

We represent the points of PG(2, q) as homogeneous triples with coordi-
nates from GF(gq). It is well known that all hyperovals can be written in the

form
{(1,2, f(z)) : 2 € GF(g)} U {(0,0,1),(0,1,0)}

where f(z) is a polynomial with certain properties, see [H],[G2]. Denote the
above set by D(f(z)) for any f. In this chapter we shall examine the case
where f(z) is a monomial, say f(z) = zF. If ¢ = 2¢, Segre showed that the set
D(z*) is a hyperoval for the following values of k and the values of € indicated:
k= 2!, when (i,e) = 1 ([S1], 1957),
k = 6, when (2,¢e) =1 ([S2], 1962).
We wish to consider other values of k. In particular, we wish to consider the
question of whether there are other such infinite sequences, i.e., other fixed
values of k for which D(z*) is a hyperoval for infinitely many ¢. Our main .
result is the following theorem, which was proved by Segre and Bartocci in
[SB]. Our work was completed before we found out about this paper of Segre

and Bartocci.
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Theorem 3.1. For any fixed k = 2 (mod 4), k > 6, the set D(zF) is a

hyperoval in PG(2, q) for at most a finite number of values of q.

In [M] the permutation properties of 1 +z + -+ + z*~! on GF(q) are
studied. It follows from [LN, p.505] that this polynomial is a permutation
polynomial if and only if D(z*) is a hyperoval. Hence our result sheds some
light on this problem. It is now trivial to see that k must be even in order for
DA(xk) to be a hyperoval, since 1 +z +--- 4+ 2¥~! maps both 0 and 1 to 1 if &

is odd. So we assume k is even from now on. Values of k£ which are functions

of e have been studied, see [G1], but we do not consider this here.

In case D(z¥) is a hyperoval, we might call it a monomial hyperoval in
honour of f(r) being a monomial. The main thrust of this chapter is that apart
from Segre’s examples, monomial hyperovals (for fixed k) are rare. Following

[H], we will write D(k) instead of D(z*).

In section 3.2 we shall prove the connection between the polynomials
9x(X,Y, Z) and the hyperovals D(k). Section 3.3 contains singularity analysis
of the polynomials ¢gx(X,Y, Z). We shall completely factorize gx(X,Y, Z) for
k = 2! and k = 6 in section 3.4, and there we will reprove Segre’s theorems. In
sections 3.5 (and 3.7) we will use Bezout’s theorem to prove the main theorem.
Section 3.6 contains consequeﬁces of the results in this paper. Finally section
3.8 presents a conjecture and some more evidence, namely some values of

k = 0 (mod 4) for which D(k) is a hyperoval for only a “few” small values of
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3.2. Hyperovals and Absolute Irreducibility.

The set D(k) being a hyperoval in PG(2, q) is equivalent to the determi-

1 1 1
det| X Y Z
Xk vk 7k

being nonzero for all distinct X,Y,Z € GF(q). Divide the determinant by

nant

(X +Y)X + Z)Y + Z) and call the resulting polynomial gx(X,Y,Z). In
other words, we define a binary polynomial gx(X,Y, Z) by

XY 4+ YXE+XZF4+ZXF+YZF + ZYF
(X +Y)X +2Z)Y + 2)

g(X, Y, Z) =

Our main theorem rests on the following, which is similar to Proposition 1 in

[TW].

Theorem 3.2. If the polynomial ¢x(X,Y,Z) is absolutely irreducible over
GF(2), then D(k) is a hyperoval in PG(2, q) for only a finite number of values

of q.

Proof: If the polynomial gx(X,Y,Z) of degree k — 2 is absolutely irreducible
over GF(2), then applying Weil’s theorem (from Chapter 1) shows that the
number N, of (projective) rational points (z,y,z) on gp(X,Y, Z) where z,y, 2
are in GF(2°) satisfies

INe — 2°] < (k — 3)(k — 4)2¢% + (k — 2)? (1)
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for every e. Once we show that the number of such rational points where
some of the coordinates are equal is at most 3k — 2, it will follow that there

are rational points over GF(2¢) with z,y, z distinct for all e sufficiently large.

To this end we let p(X,Y,V) = gx(X,Y, X + V), and note that projective
points (z,y,2) on gx(X,Y,Z) with ¢ = z are in 1 — 1 correspondence with
projective points (z,y,0) on p(X,Y, V). A simple computation (using the fact
that & is even) shows that

P(X,KO)—W-

Again we let ¢(X,W) = p(X,X + W,0), and note that projective points
(z,y,z) on g(X,Y, Z) with 2 = 2 # y are in 1 — 1 correspondence with affine
points (z,1) on ¢(X,W). Since ¢(X,1) = X* + (X + 1)*, there are at most
k — 1 projective points (z,y,z) on gx(X,Y,Z) with ¢ = 2z # y. A similar
argument holds for points (z,y,z) with ¢ =y # 2 and y = z # z. Counting
the projective point (1,1,1) we get that there are at most 3k — 2 rational

points (z,y, z) on gx(X,Y, Z) with z,y, z not all distinct. O

From the form of the Weil bound in (1), we can compute the value of ¢,

say eg, for which N, > 3k — 2 for all € > e;. See section 6 for small k.

Armed with this theorem, our task now is to demonstrate the absolute
irreducibility of the polynomials g(X,Y, Z) 6ver GF(2). This is how we shall

prove the results alluded to in section 3.1.
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Bearing in mind Segre’s results, ¢gx(X,Y, Z) cannot be absolutely irre-
ducible when k& = 2' or k¥ = 6. We shall completely factorize gx(X,Y, Z)
for these values of k in section 3.4, and there we will reprove Segre’s theo-
rems. In section 3.5 we prove that gr(X,Y, Z) is absolutely irreducible for all
k =2 (mod 4), k > 6. In section 3.8 we prove absolute irreducibility for some

values of k£ = 0 (mod 4).

3.3. Singularity analysis of the polynomials.

It will be shown later in this section that (fortunately) we are allowed to
work with the affine parts of the homogeneous polynomials fx(X,Y,Z) and

9x(X,Y, Z). There will be no confusion if we use the same names, and so

X, Y) =XYF+rvXr + X YF 4 X +Y
XY 4L YXE 4+ XA+ YE L X +Y
(X+)(X+1)(Y +1) ’

and we consider the algebraic curves defined by these polynomials over the

g(X,Y) =

algebraic closure of GF(2).

The singular points can be found by equating the first partial derivatives

to zero. We easily calculate (k is even)

9fx
aX

Ok

76T =Xk 41.

(X,Y)=Y* 41,

Hence if P = (a, ) is a singular point of fix(X,Y), then o« and 3 are k-th
roots of unity. Write k& = 2%¢ where £ is odd and ¢ > 1. Then a and 8 are

£-th roots of unity, and so fx(X,Y) has ¢? singular points (it is easy to check
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that there are no singular points at infinity — the three partial derivatives of
f(X,Y,Z) are X¥+Y* X% 7% Yk 4 ZF and if these all vanish and Z =0
then X =Y = 0 which is impossible).

Next we pin down the multiplicities of these singular points P = (a, §)
on fi(X,Y), and how things change for gx(X,Y). We compute that

k
X +aY +8)=) (D (@7 XY + 87V X + (B+ 1)a™ X/

J=1
+(a+1)877YY)

=R(X,)Y)+ R(X,Y)+---

using a* = 1 = B*. Since (’;) is even for 1 < j < 2' and odd for j = 2¢, we see
that all singular points of fx(X,Y) have multiplicity 2¢, except (1,1) which

has multiplicity 2¢ + 1. This claim follows from

(X, V) =B+ 1 ¥ X2 +(a+1)572Y?,
o o (2)
Frpn(X,Y)=a XYY +572Y? X,

where the second equation owes itself to the evenness of (2‘-’_11).

Defining w(X,Y) := (X +Y)(X + 1)(Y + 1) we note the following multi-
plicities on w: mp(w) =3 if P = (1,1), mp(w) =1if P =(1,a) or (a,1) or
(a0, @) where a # 1, and mp(w) = 0 for all other singular points P = (a, §).

At long last we arrive at the multiplicities for gx(X,Y).
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P mp(gx)
(1,1) 2t —2
(a,1) 2t — 1
(1,a) 20 —1
(a, ) 2t -1
(a, B) 2t

There are 3(£—1) points of multiplicity 2! —1, and so there are (£—1)(£—2)

siﬁgula.r points of multiplicity 2 on gx(X,Y).

Our method of proving absolute irreducibility will be to assume that
9x(X,Y, Z) is reducible, say gx(X,Y, Z) = u(X,Y, Z)v(X,Y, Z), and obtain a
contradiction by applying Bezout’s theorem to the curves u and v. If a point P
has I(P,u,v) # 0, then mp(gx) = mp(u) + mp(v) > 2, and so P is a singular
point of gx(X,Y, Z). We have seen that the projective curves gx(X,Y, Z) have
no singular points at infinity. Therefore, since the only points P that give a
nonzero contribution to the sum in Bezout’s theorem are singular points of

9x(X,Y, Z), we may just work with the affine part of gx(X,Y, Z).

Let us see what the Frobenius automorphism arguments give. The fol-

lowing is a Corollary of Proposition B in Chapter 1.

Corollary 3.3. If k = 4 (mod 8) or if k = 1 (mod 3) or if k = 2 (mod 4),
then gx(X,Y) has an absolutely irreducible factor over GF(4).
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Proof: If k = 4 (mod 8) then by the table above, the point (1,1) has multiplic-
ity 2 on g;. If 3 divides k —1 then check that the point (w,w?) has multiplicity
1 on gi, where GF(4) = {0,1,w,w?}. If k = 2 (mod 4), then (1,w) is a point

of multiplicity 1. O

3.4. The Case k = 2' or 6.

In this section we study the polynomials gx(X,Y) when &k = 2* and & = 6.

First let us examine k = 2°.

AX+LY+ ) =(X+1’YV+(Y +1)¥X 4+ X4V
=X'Y +Y¥X

=xy [ X+
~EGF(2%)*

Replace X by X +1,Y by Y +1, and divide by (X + Y )(X +1)(Y +1) to get

Theorem 3.4. When k = 2' we have the following factorization,

a(X,Y) = II &+w+y+1).
‘YEGF(Z")\{O,I}

Corollary (Segre). When k = 2' the set D(k) is a hyperoval in PG(2,2¢)
if and only if (i,e) = 1.
Proof: We have to show that gz(X,Y) has the necessary rational points over
GF(2°) if and only if (,€) > 1.

Suppose that ¢ and e are relatively prime and that there exists a,b €
GF(2°) with a # b,a # 1,b # 1 such that g¢(a,b) = 0. By Theorem 4, there
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exists v € GF(2')\{0,1} such that a + vb+ v + 1 = 0. But this implies

y=(a+1)/(b+1) € GF(2')N GF(2¢) = GF(2), a contradiction.
Conversely suppose (z,¢e) > 1, and choose a, b distinct in GF(2')N GF(25)

but not in GF(2). Letting v = (a 4+ 1)/(b + 1) shows that gx(a,b) = 0 by

Theorem 4. O

We remark that P = (1,1) is the only singular point in this case, and it

has multiplicity 2° — 2.

Next we consider ¥ = 6. We could just plonk down the factors here and
say no more about it, but we feel that finding them is instructive, and so we
describe the process. We use two little results from section 3.8 that could
easily be placed here, but we feel they are more at home there. Here (using

Lemma 3.9) is the polynomial under consideration:
(X, Y)=Y*+ Y1+ X)+ Y1+ X + X))+ Y1+ X + X2+ X?)

+1+X+X%2+ X%+ X4

First, from section 3.3 the only singular points are P = (o, ) where
1,a, B are distinct and ® =1 = 33. If GF(4) = {0,1,w,w?} this means there
are two singular points, namely (w,w?) and (w?,w), which have multiplicity
2. Also (1,w) is a point of multiplicity 1, aﬁd applying Proposition B shows
that g¢(X,Y’) has an absolutely irreducible factor over GF(4).
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Next compute g¢(X,0) = 1 + X + X? + X* 4+ X* which is irreducible over
GF(2). This and the previous paragraph forces (by Proposition 3.8) g5(X,Y)
to either be absolutely irreducible or to have two absolutely irreducible factors

of degree 2 over GF(4).
In fact the latter is true. The factors are
AXY)=1+wX + X+ (w+wX)Y + 12
and its conjugate
B(X,Y) =14+ X + X? + (W® +?X)Y + Y2

These can be found using a version of Hensel’s lemma, which lifts the fac-
torization of g¢(X,0) = A(X,0)B(X,0) into irreducibles over GF(4) to the
factorization g¢(X,Y) = A(X,Y)B(X,Y). We will explain this further in
section 3.8. This “lifting” was implemented using Mathematica. We have

proved:

Theorem 3.5. When k = 6 the polynomial g¢(X,Y’) is not absolutely irre-
ducible, and we have the factorization gi(X,Y) = A(X,Y)B(X,Y), where
A(X,Y) and B(X,Y) are absolutely irreducible and are given above.

Corollary (Segre). When k = 6 the set D(k) is a hyperoval in PG(2,2°) if
and only if (2,e) = 1.

Proof: We have to show that ¢g¢(X,Y) has the necessary rational points over
'GF(Qe) if and only if e is even.

59



If e is even, then g¢(w?,w) = 0. Done.

Suppose now that e > 1 is any odd integer. We claim that A(X,Y) and
B(X,Y) have no rational points over GF(2¢). For suppose that A(a,b) =0
where a,b € GF(2%). Visibly we can assume (a, b) # (0,0). Then

b+ bw+abw+a’+aw+1=0,

and provided a + b + ab # 0 this implies w = (a + b+ 1)*/(a + b + abd) €
GF(4)NGF(2°), which is a contradiction. But if a+b+ab = 0 then a+b+1 =
0=>ab=1=1+4+b"14b=0=1+b+b? =0 which is impossible. Similarly
for B(X,Y). O

3.5. The Case k =2 (mod 4).

We first make two quick remarks to aid us in moving between fi(X,Y)
and gx(X,Y). Recall the notation of section 3.3, and suppose that P =
(o, 8) # (1,1) is a singular point of gp(X,Y’) such that F5:(X,Y) # 0 at
P. To apply Proposition A to g; we need to know the greatest common
divisor (G (X,Y), Gm+1(X,Y)) where m = mp(g;). This can be found from
(Fpi(X,Y), Fyi11(X,Y)) as follows.

Again letting w(X,Y) = (X + Y)(X + 1)(Y + 1), we have

filX+a,Y+8)=w(X +a,Y + B)ge(X +a,Y + ),

and so

FZ‘(XaY) + F2‘+1(X’Y) + = (WU + Wl(Xay) + )(Gm(XaY)
+Gm(X,Y) +-)
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where polynomials with subscript ¢ are 0 or homogeneous of degree ¢.

Remark 1. Here we assume W, # 0 which is equivalent to m = 2.

Multiplying out and using (2) gives
Fyi = WoGgi = (06X +7Y)*
Fyiy1 = WoGaipq + WiGy,
where 02 = (B+1)a~? and 7' = (a+1)3~2". It follows from these equations

that (F2i,F2i+1) = (Ggi,G2i+1). il

Remark 2. Here we assume Wy = 0 which is equivalent to m = 2¢ — 1.

As in Remark 1 we get
Fyi = WiGai_y = (06X +7Y)?
Foipy = WiGai + WaGai_y.
It is clear that (up to scalars) W; = oX + 7Y, and so (Fyi, Fhiyy) =

0X + 1Y because Fyi1(X,Y) has distinct linear factors (an easy exercise, as

in Lemma 3 of Chapter 2). Hence (Gyi_1,G3i) = 1. O

Remark 2 will not be used; we include it for completeness.
By Theorem 3.2, the following theorem is equivalent to Theorem 3.1.

Theorem 3.6. If k = 2 (mod 4), k > 6, then ¢gx(X,Y) is absolutely irre-
ducible.

Proof: Suppose gx(X,Y) = u(X,Y)v(X,Y) over some extension of GF(2)
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with the degrees of u and v both > 1. We wish to apply Bezout’s theorem to

v and v, and so we want to compute the intersection multiplicities I( P, u,v).

Write k = 2¢ where £ is odd. From the table in Section 3.3 we know that
the singular points on g; are P = (a,5) # (1,1) wherea # 8, a # 1, 8 # 1.
Furthermore, there are (£ —1)(£ — 2) of these points, they all have multiplicity
2 on gx and fi, and Wy # 0.

From equation (2) we get
F(X,)Y)=(cX +7Y)?
FB(X,Y)=XY(a™2X +87%Y),
where 62 = (f+1)a~? and 72 = (o +1)#~2. We would like to know the GCD

(Fy, F3). Clearly this GCD is either 1 or a scalar multiple of a™2X + §72Y.
If (F2, F3) = 1, then Remark 1 and Proposition A imply that I(P,u,v) = 0.

Suppose for the moment that F3(X,Y) and F3(X,Y") are not relatively
prime. It follows that F3(87%,&™?) = 0, which implies (8 + 1)372 = (a +
1)a™2. This in turn implies a1 + 71 = (a1 + )2 a1+ 1 =0 or
l1=>a '+ 8 1=1= f=a/(a+1). Hence, for each « there is at most one
B such that (F3, F3) # 1 at P = (o, 8). Note that if this § exists, (a+1)¢ =1

because a and § are £-th roots of unity.

This tells us that there are at most £ — 1 points («, 3) where (F3, F3) # 1.

These points are (a, /(e + 1)) where o = 1 = (a + 1)%.

For all other singular points P, Remark 1 and Proposition A imply
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I(Pyu,v) = 0.

To maintain the flow of the argument, we will postpone until the section
3.7 the proof of the following claim. The proof involves performing a resolution

of the singularities.
CLAIM: If P is a singular point such that I(P,u,v) # 0, then I(P,u,v) = 2.

Assuming the validity of this statement, we finish the proof as follows.

This claim along with the above calculation gives

ZI(P,U,”U) < 2(£ - 1)’

P
(and in fact equality holds if and only if (@ + 1)¢ = 1 for all £-th roots of
unity @ # 1). If equality does not hold, then ), I(P,u,v) < 2(£ — 2) since
I(P,u,v) =0 or 2. But deg u + deg v = deg gx = 2¢ — 2 = (deg u)(deg v)
> 2¢ — 3, and so Bezout’s theorem gives a contradiction.

Hence equality must hold, and Bezout’s theorem now says
(deg u)(deg v) =20 — 2 = deg u + deg v,

which can only happen if deg u = deg v =2. This is precisely what happens

when k = 6. As k > 6, this completes the proof. O
3.6. Some Consequences

We state explicitly some consequences of the previous sections for partic-

ular values of k, including the previously known results of Segre.
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First we note some projective equivalences among these hyperovals. If
D(k) is a hyperoval, then so‘ is D(m) wherem =1/k, 1 -k, 1/(1 - k), (k—
1)/k, k/(k — 1), and everything is modulo ¢ — 1. (If (k,¢ — 1) # 1 then D(k)
is not a hyperoval.) These hyperovals are all projectively equivalent. This

follows from manipulations with the determinant in section 3.2, or see [H].

k = 2. Then D(2) is a hyperoval in PG(2,2°¢) for all e.

This follows from the Corollary to Theorem 3.4.

k = 4. Then D(4) is a hyperoval in PG(2,2¢) if and only if e is odd.

This follows from the Corollary to Theorem 3.4.

k = 6. Then D(6) is a hyperoval in PG(2,2¢) if and only if e is odd.

This follows from the Corollary to Theorem 3.5.

k = 8. Then D(8) is a hyperoval in PG(2,2¢) if and only if (e,3) = 1.

This follows from the Corollary to Theorem 3.4.

k = 10. Then D(10) is a hyperoval in PG(2,2°) if and only if e = 5.

From Theorem 3.6, we can be sure that D(10) is not a hyperoval for all
e > e, for some ey. We can compute ey from equation (1), which says that ¢q .
is the smallest positive integer satisfying 2¢° —(10—3)(10—4)2¢/2—(10-2)% >
3-10—2. This gives eg = 11. From a (computer generated) table [W] of values

of k for which 1+ z+---+zF1isa permutation polynomial on GF(2¢), we
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see that the only valueof e < 11 is e = 5.

In PG(2,32), D(10) is projectively equivalent to D(4) and D(8).
k=12. Thén D(12) is never a hyperoval in PG(2,2°).

In section 3.8 we will show that ¢;2(X,Y") is absolutely irreducible. Ar-
guing as above for k¥ = 10, we find that eg = 13 and the statement follows

from the table in [W].

k = 14. Then D(14) is a hyperoval in PG(2,2¢) if and only if e = 4.

Same proof as for & = 10, except here we find that eg = 14. In PG(2, 16),
D(14) is projectively equivalent to D(2) and D(8).
k = 16. Then D(16) is a hyperoval in PG(2,2¢) if and only if (e,4) = 1.

This follows from the Corollary to Theorem 3.4.
k = 18. Then D(18) is a hyperoval in PG(2,2¢) if and only if e = 7.

Same proof as for k = 10, except here we find that e; = 16. In PG(2,128),
D(18) is projectively equivalent to D(16) and D(8).

= 20. Then D(20) is a hyperoval in PG(2,2°) if and only if e = 7, and

possibly e = 16.

Same proof as for k = 10, except here we find that e = 17. In PG(2,128),
D(20) is not projectively equivalent to any of Segre’s hyperovals, see [H2]. It

is equivalent to one of the hyperovals of Glynn [G1].
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We can make such a statement and find the value of ¢g for any k =
2 (mod 4), but if k is large it becomes harder to check the values of e < ¢ by

computer.
3.7. A Technical Lemma

In this section we prove the claim made in the proof of Theorem 3.6, upon
which we have long been procrastinating. The proof will involve “resolving”
the singular points P which have the property that (P, u,v) # 0. A reference
for this is [F] or [A].

Assume the same notation as section 3.5 and the proof of Theorem 3.6.
So we are assuming k = 2/, £ is odd, g; = uv is reducible, P = (a,8) is a
singular point of ¢g¢(X,Y) and has multiplicity 2. Let P be a singular point
such that J(P,u,v) # 0. This implies that mp(u) = 1 = mp(v).

To begin we observe that the tangent directions to v and v at P are equal

(by the properties of I(P,u,v), this will imply I(P,u,v) > mp(u)mp(v) = 1).

This follows from
CLAIM: U; is a scalar multiple of V.

Proof: As I(P,u,v) # 0, we must have (G2,G3) # 1, and so by Remark 1
(F3,F3) #£ 1. We also have f = a/(a+ 1) and Wy = a + 8 = o3. Because
WoU1Vi = F; we see that U3 V; = (@™2X + 72Y)2. It is then easy to see

that U; and V; are scalar multiples. This completes the proof of the claim. O
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Next we compute G2(X,Y) and G3(X,Y") explicitly where
(X +a,Y+8) =G +G3 + G4+ -+

is the expansion of gx about P. We know from the claim that G; = U1 V; =
(72X + B72Y)2. As in the beginning of section 3.5 we have F3; = W,Gs +
W1Ga, and since W1 = (14 8)°X + (1 + a)?Y this gives
>W0G3 = afG; = F3 + WG,

aBGs = XY (a™2X + 872Y) + (1 + 8)°X + (1 + @)?Y) (a2 X + 7%Y)”

= (72X + 67%Y) (a(a1+ X+ lo 21)2 Y)

after some simplification. This gives G5 in the form we need. Now we may

proceed with the blow-up at P.

Lemma. If we have I(P,u,v) # 0 at P, then I(P,u,v) = 2.

Proof: Compute
(X + 0, XY +08)=Go(X, XY) + G3(X, XY) + Go( X, XY) + - -
= X?gy(X,Y)
where in this proof the omitted terms signified by - - - will always be monomials

of total degree at least 3, and

0(X,Y)=G2(1,Y) + XG3(1,Y) + X2G4(1,Y) + - --

_ _ X, _ _ 1 +1)4
et 4Y2+55(a YY) (cv2(<:v+1)2 +(aa2 ) Y2)
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+X2G4(1,Y) + -

is the proper transform of g;(X,Y’). From the expression for G5(1,Y) we get
that Py = (0,a™%/872) is the only point in the first neighborhood of P.

We next want mp, (g;), the multiplicity of P; on g}. So compute (where

A=a72/p7?)
(XY +4)=a™ +57H(Y + 4) + EXE <a—2
- 1 + 1)
+8 2(Y+A)> (a2(a+1)z (aa2 )

+ X’G4(L,Y + A) + -

(Y + A)2>

X 1 (a+1)* (a+1)a™*
- aﬂ(ﬁ 2Y) (a2(a + 1)2 + a? Y? 4+ a? ﬁ_4>
+ﬂ_4Y2+X2D+"'

- 1
B (ﬂ LS a(a+1)253XY+DX2) T

after some simplification, and where D is the constant term in G4(1,Y + A).

This shows that mp (g}) = 2, but the key observation here is that the
coefficient of XY is nonzero. This means that g} has two different tangent
directions at P;, and so any points Q in the first neighborhood of P; (the
second neighborhood of P) are to be considered simple points on gx. So either
mgq(u) = 0 or mg(v) = 0 for these points ). By the refined version of Bezout’s

theorem, see [A] or [F], we get
I(P,u,v) = mp(u)mp(v) + mp, (i)mp (v) =1+ 1 =2,

and this completes the proof. O
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3.8. A Conjecture and Some Evidence

With limited but nonzero confidence we advance the following conjecture:

For any even positive integer k, k # 2' or 6, the polynomial gx(X,Y) is

absolutely irreducible.

This would imply that there are at most a finite number of ¢ such that
D(k) is a hyperoval in PG(2,q). The preceding sections provide evidence for
the conjecture. This conjecture itself provides evidence for conjecture B in

[G1] concerning monomial hyperovals.

Now we fulfill the promise of section 3.6, and prove the absolute irre-
ducibility of ¢12(X,Y). We shall prove the same result for £ = 20,24,28 at
the same time. The methods can be used for other values of k and other

polynomials in general.

We will use the following proposition, a form of Hensel’s lemma (see [JW]).
We say that a polynomial A(X,Y) is regular in X when the degree of A(X,0)
as a polynomial in X is equal to the total degree of h(X,Y). We remark that

all factors ¢(X,Y) of such a polynomial A(X,Y) must also be regular in X.

Proposition 3.7. Let h(X,Y') be a polynomial over a field F that is regular
inX. If

h(X,0) = ao(X)bo(X)
' where ao(X) and by(X) are relatively prime polynomials in F[X], then there

65



is at most one pair A(X,Y), B(X,Y') of polynomials over any extension of F

with the properties that
MX,Y)=AX,Y)B(X,Y), A(X,0)=ae(X), and B(X,0)=by(X).

If such polynomials A(X,Y) and B(X,Y) exist, then all their coefficients lie
inF.

For a proof see [JW]. The construction of A(X,Y) and B(X,Y) can be
implemented with Mathematica. This is what we did in section 3.4 when we

found the factors of g¢(X,Y).

Next we give another well known criterion for irreducibility.

Proposition 3.8. Let h(X,Y) be a polynomial of degree n over a field F

that is regular in X. Writing

n

h(X7 Y) = Z ci(X)Yi7

1=0

if ¢g(X) is irreducible over F, then h(X,Y) is irreducible over F.

Proof: Suppose p(X,Y) = 3"I_ pi(X)Y*, ¢(X,Y) = 3i_, ¢:i(X)Y", and that
WX,Y) = p(X,V)g(X,Y) in F[X,Y], 0 < r,s < n. Clearly then co(X) =
po(X)go(X). By regularity of h, po(X) has degree r and so is a proper divisor
of ¢o(X). O

We will also use the following Lemma about the structure of the polyno-

mials gx(X,Y).
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Lemma 3.9. If we write
k_ .
gk(X,Y) = C,‘(X)Yt,

0

then ¢;(X) =1+ X + X%+ + XF2-¢

N

1

Proof: First calculate

XF4+ X

A T4 2, . k—2
X(X 1 1) I+ X+X"+--+ X775

CO(X) = gk(X,O) =

Then check from the definitions that gi(X,Y) = co(X) + Ygr—1(X,Y). O

Corollary 3.10. If 2 is primitive modulo k — 1, then gx(X,Y) is irreducible
over GF(2).

Proof: Immediate from the last two results and the fact that 1+ X +---4+ X"

is irreducible over GF(2) if and only if 2 is primitive modulo n + 1. O

For example, when k=1220,60,68,84, if we apply Corollary 3.10 and
Corollary 3.3 we may conclude that gx(X,Y") is either absolutely irreducible

or has two absolutely irreducible factors over GF(4).

We need the following Corollary to ensure that we can use Proposition

3.7.

Corollary 3.11. 1) The polynomials gx(X,Y) are regular in X for all k.
2) Fgr(X,Y)=A(X,Y)B(X,Y) is reducible, then A(X,0) and B(X,0) are

relatively prime.
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Proof: The first assertion is obvious. The second assertion is due to the fact
that ¢o(X) and ¢;(X) are relatively prime, and this is because their roots are
the nontrivial £ — 1 and k£ — 2 roots of unity respectively. Then note that any
divisor of A(X,0) and B(X,0) would also divide co(X) = A(X,0)B(X,0) and
c1(X). O

Theorem 3.12. ¢4(X,Y) is absolutely irreducible for k = 12,20, 24, 28.

Proof: As we stated after Corollary 3.10, for & = 12,20, gx(X,Y) is either
absolutely irreducible or has two absolutely irreducible factors over GF(4) of

degrees 5,9 respectively.

For k =12, factor ¢p(X) =1+ X + X%+ - + X0 = (1 + W2 X + X% +
X3+ wXt 4+ X%)(1 +wX + X% + X3 4+ w?2X* 4 X5) into irreducibles over
GF(4), and try to lift this factorization to a factorization of ¢12(X,Y") with
Proposition 3.7. This was checked with Mathematica and did not work. Hence

g12(X,Y) is absolutely irreducible.

For k = 20, factor co(X) = 1+ X + X? + .-+ + X8 = o(X)a@(X) into
irreducibles over GF(4), where a(X) = 1 + w?X + W? X3 + 02Xt + WX5 +
wX® + wX?® + X° Again try to lift the factorization — it does not work.

Hence g20(X,Y) is absolutely irreducible by Proposition 3.7.

For k = 24 we have a slightly different argument. Factor ¢o(X) = 1 +
X+ X2+ + X% = qy(X)bo(X) into irreducibles over GF(2), where ay and
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bo have degree 11. Attempting to lift ag(X) and bo(X) to find a factorization
fails, so we conclude from Proposition 3.7 that go4(X,Y") is irreducible over
GF(2). Then Proposition B (3) implies that if go4 is not absolutely irreducible,
it must factor into eleven quadratics over GF(2!!) or two degree 11 factors

over GF(4). The latter is impossible by the factorization of ¢o(X).

By the table in section 3, the point (1, 1) has multiplicity 6 on g24(X,Y).
Proposition B shows that there must be an absolutely irreducible factor with

coefficients in GF(2%), and possibly a subfield.

The previous two paragraphs imply that g24(X,Y’) is absolutely irre-
ducible.

For k = 28, factor ¢o(X) =1+ X+ X2+ - + X2 = (1+ X° + X18)(1 +
X3 + X%)(1 + X + X?) into irreducibles over GF(2). Trying to lift each

possibility fails, so g2s(X,Y) is irreducible over GF(2) by Proposition 3.7.

Since 28 = 4 (mod 8), there is an absolutely irreducible factor over GF(4)

by Corollary 3.3.

The previous two paragraphs force go5 to either be absolutely irreducible
or to have two absolutely irreducible factors over GF'(4) of degree 13. Factor-
ing co(X) over GF(4) and trying to lift all possibilities (there are only four)

fails. By Proposition 3.7, go5(X,Y") is absolutely irreducible. O

We can also prove the above cases by hand.
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Proposition B proves the hyperoval result for ¥ = 4 (mod 8) or k£ =
1 (mod 3), and e even. This provides evidence for conjecture A of [G1], which

states that the only hyperovals of the form D(k) when e is even occur when

k=2t

It seems that the argument of Theorem 3.6 does not easily generalise to
the case k = 0 (mod 4). Not least of the complications is that it is not true —
some exceptions are k = 2¢. We conjecture that these are the only exceptions.
Another complication is that there are many more singular points, and the

intersection multiplicities become harder to handle.
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CHAPTER 4

Binary Codes and Relative Difference Sets

From the Integers Modulo 4

4.1. Introduction.

In this chapter we shall use Galois rings over the integers modulo 4 to
construct a relative difference set and also some binary codes. We shall use
the techniques of the previous chapters to determine exactly the minimum

distance of these binary codes.

We now give an introduction to the theory of Galois rings over Z4, the

integers modulo 4, which can be found for example in [HKCSS].

The Galois ring GR(4™) is an extension of Z4 of degree m containing
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“a (2™ — 1)** root of unity. To begin, let ho(X) € GF(2)[X] be a primitive
irreducible polynomial of degree m. Then there is a unique monic polynomial
h(X) € Z4[X] of degree m such that h(X) = hy(X) (mod 2), and A(X)
divides X2 =1 —1in Z4[X]. Let £ be a root of h(X), i.e., £ is the congruence
class of X in the ring Z4[X]/(h(X)), so that £2"~! = 1. The Galois ring
GR(4™) is defined to be Z4[¢], which is the ring Z4[X]/(h(X)). Every element
¢ € GR(4™) has a unique 2-adic representation ¢ = a + 2b, where a and
b are taken from the set D = {0,1,£,62,... 627 ~2}. The Frobenius map
f from GR(4™) to itself is the ring automorphism that takes any element
¢ =a+2be GR(4™) to ¢/ = a? +2b%. This map f generates the Galois group
of GR(4™) over Z4, and f™ = 1. The relative trace from GR(4™) to Z4 is
defined by
T(c)=c+cf -+, ce GR(4™).

One essential difference between the Galois ring R = GR(4™) and the
Galois field F' = GF(2™) is that R contains zero divisors. These are elements
of the radical 2R which is the unique maximal ideal in R. Let x: R — R/2R
denote reduction modulo 2. Then w = pu(€) is a root of hy(z), and we can
identify R/2R with GF(2™), taking the elements of GF(2™) to be u(D) =

{0,1,w,w?,...,w?" 2}, We shall often denote u(z) by Z.
4.2. Relative Difference Sets and the Desarguesian Plane.

In this section we use the Galois ring to construct a relative difference
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set. From this we construct an affine plane, and we prove that this plane is

Desarguesian.

A relative difference set with parameters (n,n,n,1) is an n-subset D of a
group G of order n? with a normal subgroup N of order n such that an element
g # 0 of G has a (necessarily unique) representation g =d — d' (d,d' € D) if
and only if g ¢ N.

It is shown in [G] (see also [J]) that if n is even and G is abelian, then n
must be a power of 2, G must be isomorphic to a direct sum of copies of Zy,

and N must be elementary abelian.

Let G = R = Z4[¢], let N = 2R be the maximal ideal, and let

D ={0,1,£,€%,...,62" %)

be as above. We claim that D is a (2™,2™,2™ 1) relative difference set in R.

Of course, R is isomorphic to (Z4)™ as an additive group.

To show that D is a relative difference set in R, we must show 1) that
the differences ¢! — £/ are distinct, and also 2) that £€* — ¢/ is never an element

of N = 2R = 2D. This was shown in [HKCSS], page 308. It is also used in

proving that the ‘Preparata’ codes have minimum distance 6.

The proof of 2) is simple: if £' — ¢/ = 2y, then reducing modulo 2 gives
w' +w? =0 in the finite field GF(2™), which is impossible.

We can now construct an affine plane of order 2™, whose points are the
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4™ elements of R, and whose lines are the 4™ translates of D by elements of
R, and also the 2™ cosets of N in R. Call this affine plane A. Note that by
the difference set property, the elements of D are a set of coset representatives

for N in R.

We introduce some notation: since £* + £/ € R, we may write it in the

form a + 2b, say
£i + é‘] - ég(i»j) + 24 /é’i-f-j_

The fact that the 2-ish part is \/¢*+7 follows by squaring £ + £/, applying
Frobenius and subtracting these two equations. We remark that reducing this

equation mod 2 gives w' + w’ = w9 in GF(2™).

Theorem 4.1. The affine plane A is isomorphic to the Desarguesian affine

plane AG,(2™).

Proof: We define a 1 — 1 correspondence y: GR(4™) — GF(2™)? by

P(E +267) = (W, w)

with the convention that either ¢' or €7 could be zero. We claim that v is an

isomorphism of the affine planes 4 and AG,(2™).

We must show that 1 takes lines of A to lines of AGo(2™). Let r = £14-2¢7
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and consider the line
Dr={rr+lr+&r+&, . . r+& ..}
= {4260, 1+ +280 + 20,6 e 426, ]
= {4287, €909 4 2(¢7 4 /87,0 po(gd 4 EE), LY
Then

Y(D+r)= {(wzj,wi), (wzj + wi,wg(o’i)), e (wzj + wH'k,wg(k’i)), .. }

Translating the first point to the origin, this is
={(0,0), (wi,wg(o’i) + wi), ey (wi+k,wg(k’i) + wi), .. }
={(0,0), (&', 1),..., (W ,w*),...}.

But this is certainly a line in AG2(2™) since the ratio of the first to the

second coordinate of each point is w’.

It is clear that

$(N) = {(0,0),(1,0),(w,0),...,(w",0),...}

and that any coset N + £ of N is mapped under ¢ to the translate of this

line by (0,w"). O

We remark that A has 4™ obvious automorphisms of order 4, namely

the translations by elements of A, and so Aut(AG2(2™)) contains a copy of
(Zy)™.
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In fact, these automorphisms are contained in the subgroup

{1 e auttacaem) : S = B+ 0.8 = §))

where a € GF(2™),v € GF(2™)?. This subgroup has order 2°™. Any auto-
morphism of the form f(z) = Bz + v has order 4, provided B is a matrix over

GF(2™) of order 2 and v # 0.
4.3. Cyclic Codes over Z4 and Absolute Irreducibility.

In this section we determine the exact minimum distance of some binary
codes which are obtained from codes over Z4 via the Gray map. First we

explain this construction. More details can be found in [HKCSS].

A linear code over Z4 with block length N is an additive subgroup of
(Z4)N. We define an inner product on (Z4)N by (a,b) = a1by + -+ + anbn
(mod 4), and then the notions of dual code (C+), self-orthogonal code (C C
C1) and self-dual code (C = C*) are defined in the standard way. We shall
say that two Z4-linear codes are equivalent if one can be obtained from the
other by permuting the coordinates and (if necessary) changing the signs of
certain coordinates. The automorphism group Aut(C') consists of all monomial
transformations (coordinate permutations and sign changes) that preserve the

set of codewords.

Several weight enumerators are associated with a Z4-linear code C. The
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complete weight enumerator (or c.w.e.) of C is

cwec(W,X,Y,Z) = Y W@ xmiaynale) gnala)
acC

where n;(a) is the number of components of a that are congruent to 7 modulo
4. Since a monomial transformation may change the sign of a component,
the appropriate weight enumerator for an equivalence class of codes is the

symmetrized weight enumerator (or s.w.e.) given by
swec(W, X, Y) = cwec(W, X, Y, X) .

The MacWilliams identity over Z4 expresses the symmetrized weight enumer-

ator of the dual code C+ in terms of swec(W, X, Y):

1
swegt (W, X,Y) = ‘—C'—‘swec(W+2X+Y,W—Y,W—2X +Y).

In [HKCSS] they define the Gray map ¢, which is a distance preserving
map or isometry from ((Z4)V, Lee distance) to (GF(2)*¥, Hamming dis-
tance). Recall that the Lee weights of the elements 0, 1,2,3 of Z4 are respec-
tively 0,1,2,1, and that Lee weight of a vector a € (Z4)" is just the rational
sum of the Lee weights of its components. This weight function defines the

Lee metric on (Z4)N.

The Gray map ¢ is defined on Z,4 to GF(2)? by
0+~ 00

1—01
211
310
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and ¢ is extended to (Z4)N in the obvious way. It is evidently distance
preserving. Note that this definition is not quite the same as in [HKCSS];

they would compose this definition with the permutation

(2,N +1)(3,2)(4, N +2)(5,3) - (246, N +4)(2 + 1,i + 1) - (N, 2N).

If C is Z4-linear, since ¢ € C implies —c € C it follows that ¢(C) is fixed
under the “swap” map o that interchanges the 2i — 1 and 2: coordinates in

each codeword. In other words, ¢ applies the permutation
(1,2)(3,4)---(2¢ = 1,20)--- (2N — 1,2N)

to the coordinates. This is a fixed point free involution in the automorphism
group of ¢(C).

The binary image ¢(C) of a Z4-linear code C' under the Gray map need

not be GF(2)-linear, so that the dual code may not even be defined.

A binary code C; is said to be distance invariant if the Hamming weight
distribution of the translate u+C3, u € C; is independent of u. A binary linear
code is clearly distance invariant, but so is the binary image ¢(C) of a Z,4-
linear code C under the Gray map. It is shown in [HKCSS] that the Hamming
weight distributions of ¢(C) and ¢(C+) are MacWilliams transforms of one

another.

Necessary and sufficient conditions for a binary code to be the Gray image
of a Z4-linear code, and for the Gray image of a Z4-linear code to be GF(2)-
linear, are given in [HKCSS]. They proved that binary Reed-Muller codes of
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length 2™ and orders 0, 1,2, m — 1, m are Gray images of Z4-linear codes, but
that extended Hamming codes and the [24,12, 8] binary Golay code are not.

Another theorem on such restrictions on a binary code is given in [CMG1].

We now use parity checks over the Galois ring R to define cyclic codes over
Z4. For example, we may consider the code which consists of all 2™-tuples

over Z4 which are orthogonal to every row of the matrix
111 1 -+ 1 -+ 1
0 1 ¢ €2 ... ¢ ... gr-2 )
The Gray image of this code is the ‘Preparata’ code, an optimal code of
minimum distance 6.
Also shown in [HKCSS] is that the code with parity check matrix
11 1 1 - 1 - 1
01 ¢ €& ... g g2 -2
0 2 2¢% 2¢6 ... 2¢% ... 253(2"‘—2)
is the Goethals code of minimum distance 8.

We wish to consider the Z4-linear codes C3, C, and Cj3, of length 2™,

with respective parity check matrices

11 1 1 ... ]_' e 1
0 1 ¢ € ... ¢ ... g2
0 1 ¢ ¢ ... g3em-2)
11 1 1 e 1. e 1
0 1 E 62 v 61 .. 52"‘_2
01 & 6 ... g ... gem-p
0 2 265 2610 ... 2¢5 ... 25(27-2)
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and
1 1 v 1 ... 1

£ ... gi. e 52”;—2
€ €8 .. 531‘ e 53(2 -2)
65 510 . 551 . 65(2"‘—2)

OO O
e i

The codes C, and C3 are the Hensel lifts of the extended 2- and 3-error-

correcting BCH codes respectively.

We will first study the code C. It is proved in [CMG2] that C is invariant
under the affine group, which we now define. It is well'known (see [MWS])
that the extended BCH codes are invariant under the doubly transitive group
G of affine permutations of GF(2™) given by

T—az+b, (4.1)

where @,b € GF(2™) and @ # 0. Following [HKCSS] we can describe G in
terms of D = {0,1,£,€2,...,627 2} rather than the field GF(2™). Now G

consists of permutations of D given by
z — (az + 0?7, (4.2)
where a,b € D and a # 0. Note that
plaz +b) = p((az +8)*") =az + b,

so that equations (4.1) and (4.2) are describing the same permutation. The

order of G is 2™(2™ — 1).

We now study conditions under which C has a codeword of weight 8 with

" 8 entries equal to +1 and the rest 0, i.e., a codeword of type 1802" 8.
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We suppose that the entries +1 are indexed by elements z1,...,zg in D

and we write
8 N
f(z)= H(z —z)) =22 —012" 4 092° —032% + 042 + 0622 — 072+ 03 .
=1

After applying an affine permutation we may suppose z; = 0 so that gz = 0.

The parity checks that define C give
S1=85,=853=5,=Ss=0 and 25;=0.
Now we apply Newton’s Identities:
S -1 =0

gives g1 = 0.

Sy — S101+202=0

gives 205 = 0.

S3 — Sp01 + 5103 +03 =0

gives o3 = 0.

Ss — 5401+ S309 — 5203 + S104 —05 =0
gives 205 = 0.
S¢ — S501 + S402 — S303 + Sy04 — S105 + 206 =0
gives 205 = 0. The reduction of f(z) modulo 2 is the linearized polynomial

7(2) =22 4+ 5.2 +572 .
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Since 7(2‘) is a linearized polynomial, the set of roots is closed under addition
and Ty,...,7g is a 3-dimensional subspace. After applying an affine transfor-

mation we may suppose
_{517“-)58} = {0,1,:c,1+:z,y,1+y,x+y,x+y+1} 3

for some z,y € GF(2™). However it is not true that every 3-dimensional
subspace of this form determines a codeword of weight 8. Direct calculation
gives
f(z) =28 + Gyt + G622 + 512,

where

Ga=1+a®+z* +oy+ 2Py +y® + 2y’ + 2% + ot

Fo =27 + ot +y? +yt + oy +229% + oty + oyt + 242 + 2ty

and T =2’y + 2y’ + 2ty + oyt + 2ty? + 2%y

The field elements z, y must be such that ¢ = 0.

Lemma 4.2. There exists a codeword in C with Lee composition 1802 —% if
and only if there exist distinct x,y € GF(2™), neither of which is 0 or 1, such

that

Proof: Necessity has already been proven, since this polynomial is the ele-

mentary symmetric function @¢ that appears above. The entries +1 in c are
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indexed by field elements taken from the set S = {0,1,z,1 4+ z,y,1 +y,z +
y,1 4+ +y}. We suppose that s € S is obtained from z, € D by reduction

modulo 2. To prove sufficiency we need to show

Si=>z=0, (4.3)

s€ES
SES

285 =2) 2 =0. (4.5)
s€S

Now let S, € GR(4™) denote the r*! power sum symmetric function of
the elements z,, and let o, € GR(4™) denote the r*! elementary symmetric
function of the elements z,. We may reduce S, and ¢, modulo 2 to obtain S,

and @, respectively. We have previously shown that

51 ZEZ =E3 2—6'-5 =_56=0.

We apply Newton’s Identities to obtain

S;—01=0 (4.6)

Sy — Si01 + 202 =0 (4.7)

S3 — Sp01 + S1o2 +03 =0 (4.8)

Ss — Sy01 + S309 — S03 + S104 —05 =0 . (4.9)

We begin by writing 51 = a + 2b, where a,b € D. Passing modulo 2 gives

=5, =0, =0, and so a = 0. Now 2b? = 205, and since 7, = 0 we have

e

b = 0. This proves equation (4.3).
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Now (4.7) and (4.8) imply S; = 0 and S3 = 03, so we need to prove that
o3 = 0. Again we write o3 = a+2b, wherea,b € D. Thena =53 =0soa =0.
Direct calculation gives 26> = 2(0y05+0304 +06), and since 7, = &y = 65 = 0

we have b = 0. This proves (4.4).

Now (4.9) implies S5 = o5. To prove (4.5) we need to show 2S5 = 0, but

this follows directly from &5 = 0. This completes the proof. O

Remark. The proof of Lemma 4.2 shows that S5 = 2b for some b € D. We

have

202 = 2(0109 + 0208 + 0307 + 0406 + 010)

and each of the terms on the right-hand side is equal to 0. Hence S5 = 0. This
proves that if there exist z, y as in the statement of Lemma 4.2, then there is a
codeword of type 1802” ~% in the Hensel lift of the extended 3-error-correcting
BCH code. This is the linear code over Z4 consisting of all sequences (c,)

satisfying

Zc,,:Zcza::Zc,xs:Zcsz:O.

z€D z€D z€D z€D

We now apply Bezout’s Theorem to prove that
h(z,y) = 22 + z* + y* + y* + oy + 2%y® + 2ty + zy* + 2*y% + 2%yt

is absolutely irreducible. First we check tﬂat h(z,y) has no linear factors

over the algebraic closure GF(2). This is easily verified by checking that
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h(z,cz + d) cannot be identically zero for any c¢,d € GF(2). Since Bezout’s
Theorem applies to projective plane curves, we must consider the projective

version of h(z,y), which we denote by
h(z, Y,z) = x2z4+y224+x4z2+y4z2—+—:1:4y2+a:2y4+a:4yz+:vy4z+:vyz4+x2y222 .
If h(z,y,2) is not absolutely irreducible, then

h(z,y,z) = u(z,y,z)v(z,y, 2)

where u(z,y, z) has degree 2 or 3, and v(z, y, z) has degree 4 or 3 respectively.

Bezout’s Theorem implies Y, I(P,u,v) = 8 or 9.

If a point P has intersection multiplicity I(P,u,v) # 0, then the multi-
plicity mp(h) = mp(u)+mp(v) > 2, and so P is a singular point of A(z,y, 2).
This means we need only sum over singular points of h(z,y,z). These are

found by simultaneously solving

oh

5;::c4y+xy420.

J—l-‘—‘y42+yz4=0, — =z'z+22* =0,

Oz Oy

The only solutions that also lie on the curve, i.e., also satisfy h(z,y,2) =0,
are (z,y,2) = (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1) and (1,1,1).
The lowest degree forms in h(z + 1,y,2), h(z + 1,y + 1,2), and h(z +
Ly+1l,z+1)arey? +yz+2%, 22 +22+zz+yzand 22 +y2 + 22 +zy + 22+ y2
respectively. Symmetry of h(z,y, z) implies that all singular points P have

| multiplicity 2, that is, mp(h) =2 = mp(u) + mp(v).
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Since each of these forms has distinct linear factors, it follows that
I(P,u,v) = mp(u)mp(v) =0 or 1.

Since there are only 7 singular points we have Y I(P,u,v) < 7, which is the
P

desired contradiction.

Theorem 4.3. For m > 7, there exist distinct field elements a,b € GF(2™),

with a,b # 0 or 1, such that h(a,b) = 0.

Proof: Let Ny, denote the number of rational points (a,b), a,b € GF(2™)
on h(z,y). Since h(z,y) is absolutely irreducible over GF(2), we may apply

Weil’s Theorem from Chapter 1 to prove
Np 22™4+1-20V2m -6

It is easy to verify that there are at most 4 rational points (a, b) where a = b
or one of a,b is 0 or 1. We observe that N, > 4if m > 9. For m = 7, we

verified the result by direct calculation. O
Now we combine this theorem with Lemma 4.2.

Theorem 4.4. The code C' has minimum Lee weight 8 for all values of m,

except when m = 5, in which case the minimum Lee weight is 12.

We have proved this theorem for m > 7. The particular case m = 5

was first obtained by Calderbank and McGuire [CMG2] using the group and
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a computer. It was also proved by hand in [CMGKH]. We do not prove it
here. It is shown there that k(z,y) has no rational points over GF(32). Note
that codewords of weight 6 in the extended binary 2-error-correcting BCH
code B; determine codewords in C' with Lee weight 12. The Gray image in
the m = 5 case is a (64,2%7,12) binary code, which is the best (64, 237) code
presently known. The highest theoretical minimum distance possible is 13. It
would be extremely interesting if the other codes in this family (which have

22" _5m -2 codewords) also had minimum distance 12. But they don't.

Corollary 4.5. The Hensel lift of the extended binary 2-error-correcting BCH

code, C,, has minimum Lee weight 8 for all values of m.

Proof: This Hensel lift consists of all codewords (¢,) satisfying
Zczz Zc,x: Zczx?’:O.
z€D z€D z€D

It contains the code C and it is contained in the Goethals code which has min-
imum Lee weight 8. For m > 7, the corollary follows directly from Theorem
4.4. The particular case m = 5 was proved by Calderbank and McGuire via

computer calculation. O

The codes in this family have 22" _4m 2 codewords, and are much

worse than the Goethals codes.

We also have the following theorem about Cj.
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Theorem 4.6. The code C3, the Hensel lift of the extended binary 3-error-

correcting BCH code, has minimum Lee weight 8 for all values of m > 7.

Proof: The minimum Lee weight is at least 8, because this code is a subcode
of the Goethals code. The rest of the theorem follows from the remark after

Lemma 4.2 and Theorem 4.4. O

We remark that when m = 5, the code C3 has minimum distance 14.
This was proved (by hand) in [CMGKH]. The Gray image in the m = 5
case is a (64,2%2,14) binary code, which is the best (64,2%2) code presently
known. The highest theoretical minimum distance possible is 16. It would
be extremely interesting if the other codes in this family (which have 227 _

6m — 2 codewords) also had minimum distance 14. But they don't.
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