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ABSTRACT

This thesis describes the first experimental observations of linear collisionless
damping of perturbations in a pure electron plasma and provides the theoretical proof for
collisionless damping in two dimensional inviscid incompressible fluids. Observations in
the non-linear regime provide evidence for fluid trapping in the potential well of the
perturbation.

The perturbations are in the form of diocotron waves which possess azimuthal
symmetries described by the eigen number m = 2. The plasma is a cylindrical column of
electrons confined in a Penning trap. Diocotron waves are excited by applying azimuthally
propagating electric fields to the electrode structures forming the wall of the Penning trap.

Experiment shows that the damping of diocotron waves is not caused by
dissipation at the electrode wall, and that the presence of such a dissipation decreases the
decay rate of these waves, confirming that the m = 2 diocotron wave is a negative energy
wave.

A self consistent set of equations for the perturbed potential is derived using the
cold two dimensional fluid model. This results in the diocotron equation, which is the
cylindrical plasma analog of Rayleigh's equation for shear flow of an inviscid
incompressible fluid between parallel sheets. The complex form of the diocotron equation
is solved, with homogeneous boundary conditions, for a particularly simple radial density
profile showing that the diocotron resonances are quasimodes of the 2-D fluid. The
solution reveals a complex eigenvalue which is consistent with the observed collisionless
exponential damping of the diocotron wave in the linear regime.

Solution of the diocotron equation with more complicated density profiles is

carried out numerically using the Runge-Kutta method on a computer.
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CHAPTER 1

INTRODUCTION

1.1 Historical Perspective

A plasma is a collection of charged particles that exhibit collective behavior. If a
disturbance in the form of a test charge is introduced into the plasma, the influence of the
disturbance would be attenuated by a factor of e at a distance equal to what is known as
the Debye length. If the Debye length is less than the dimensions of the collection of
particles, then the ensemble constitutes a plasma. |

Plasmas are used in day to day life in the form of neon lamps and are the core
material used for fusion, which may someday provide a clean source of power. They exist
naturally throughout the universe in stars and also surround the earth in the form of the
ionosphere. However, these naturally occurring plasmas are all neutral in the sense that
there are equal number of oppositely charged particles. It is possible to have a non-neutral
plasma, in which case overall charge neutrality is not maintained. It has been shown that
non-neutral plasmas also exhibit Debye shielding and collective behavior [1]. Non-neutral
plasma may be a collection of electrons or positrons or ions. The work described here was
performed on a collection of electrons alone, a pure electron plasma.

Although the experimental study of pure electron plasma started only two decades
ago, work on electron beams had been going on since the second world war. In the course
of the investigations carried out on beams, it was found that hollow electron beams were
unstable resulting in spontaneous vortex formation across the cross section of the beam
[2, 3]. Analyses were carried out which showed that this instability was due to the shear of
electron velocity transverse to the axis of the beam, and hence was termed as a “slipping
stream” instability [4 — 7]. French scientists unsuccessfully attempted to utilize the

instability to amplify electrical signals and created the “diocotron” tube [8]. The word is
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derived from the Greek word “Awwkw” (dioco) for “I chase” which describes the shear
nature of the electron velocity resulting in the instability. Although the tube did not
survive, the name has, so that diocotron instability is more popular in usage than the term
“slipping stream instability.”

As the study of electron beams and diocotron instabilities was progressing, Levy in
1965 showed that a perfect analogy existed between electron dynamics in beams (under
certain approximations) and the flow of an inviscid incompressible fluid [9]; This gave the
beam physicist access to the body of literature on fluid dynamics which dealt with similar
problems, dating all the way back to Rayleigh's landmark paper in 1880 where he derived
the eponymous differential equation describing plane parallel flow [10]. Fluid work in this
area included a prediction of vortex formation (Kelvin's cat's eyes) and asymptotic
algebraic decay of streamline perturbations [11,12]. Levy had shown that the diocotron
instability could be derived from the two-dimensional (2-D) fluid model of the electron
beam, with the unstable nature of the beam revealing itself in a singularity in the Rayleigh
equation. The first substantial theoretical work on diocotron waves came out in 1970,
when it was shown that cylindrical beams (or fluids) with a monotonically decreasing
radial density (vorticity) profiles can have, at the most, only one neutral mode and no
other eigenvalue [13].

Experimental work on confined pure electron plasma did not appear until 1975
[14]. Further study showed that it was possible to purposely excite diocotron waves of
different azimuthal eigen numbers in such a plasma system, and that these waves are
subject to parametric instability [15, 16]. The advantage of a plasma system in studying 2-
D fluid dynamics was recognized and papers have been published dealing with vortex
dynamics in a pure electron plasma [17 — 19].

A recent experiment on diocotron waves in a pure electron plasma with a
monotonically decreasing density profile showed that these waves are damped in the linear

regime [20]. The damping rate is fast enough that collisions could not account for it,



indicating a collisionless decay similar to Landau damping of plasma oscillations [21]. This
is particularly intriguing in light of the fact that there are no complex eigenvalues for the
model equation under these circumstances. More recent theoretical work shows that these

waves are “quasimodes” of the plasma (fluid) system [22].

1.2. Thesis QOutline

The work presented in this thesis is based on the experiment revealing linear
collisionless decay of diocotron waves. This wave is shown to be a damped resonance of a
pure electron plasma (two-dimensional inviscid incompressible fluid) with monotonically
decreasing density (vorticity) profiles. Specifically, it is a characterization of an m = 2
diocotron wave. The letter mrepresents the azimuthal eigen number and signifies the
existence of m vortex patches in the (r, 8) plane of a cylindrical column of electrons. The
study is carried out by observing the currents induced on the walls of the electrode
structure confining the plasma.

Chapter 2 provides a description of the experimental apparatus and associated
instrumentation which enabled measurements in the linear regime to be carried out.

Chapter 3 describes the experimental observations made after exciting the plasma
with a burst of sinusoidal signal. This burst introduces an azimuthally propagating electric
field which travels at the same speed as a diocotron wave, thus exciting it. The same
chapter also describes an experiment which shows that the diocotron waves are negative
energy waves. That is, the presence of dissipation at the wall of the confining electrodes
causes the wave damping rate to decrease, rather than increase. For sufficiently high
resistances, damped m = 2 diocotron waves can be made unstable.

In Chapter 4, a theoretical study is carried out on the perturbations in the (r, §)
plane to derive the governing linear differential equation. The model so formed represents
the differential equation for the streamline function in a two-dimensional inviscid

incompressible fluid. The equation is solved for a particularly simple density (vorticity)
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profile, to reveal that the diocotron waves are eigenvalues of the complex form of the
differential equation.

The theoretical work is extended to more complicated profiles in Chapter 5, the
extension being carried out by a numerical differential equation solver executed by a
computer.

This thesis does not cover all the aspects of diocotron waves. Some assumptions
are made in order to derive the model equation. And some experimental observations open

up more questions. These points are discussed in Chapter 6.

REFERENCES

[1] R.C. Davidson, J. Plasma Phys. 6, 229 (1971)

[2] O. Buneman, J. Electron. Control 3, 1 (1957)

[3] H.F. Webster, J. Appl. Phys. 26, 1386 (1955)

[4] O. Buneman, J. Electron. Control 3, 507 (1957)

[51R.L. Kyhl and H.F. Webster, IRE Trans. Electron Dev. 3, 172 (1956)
[6] J.R. Pierce, IRE Trans. Electron Dev. 3, 183 (1956)

[7] G.G. McFarlane and H.G. Hay, Proc. Phys. Soc. 63, 409 (1953)

[8] A.H.W. Beck, Space Charge Waves and Slow Electromagnetic Waves (Pergamon

Press, 1958)

[9]1R.H. Levy, Phys. Fluids 8, 1288 (1965)

[10] J.W.S. Rayleigh, Proc. London Math. Soc. 11, 57 (1880)

[11] W. Thompson, Nature 23, 45 (1880)

[12] K M. Case, Phys. Fluids 3, 143 (1960)

[13] R.J. Briggs, J.D. Daugherty and R.H. Levy, Phys. Fluids 13, 421 (1970)
[14] . H. Malmberg and J.S. deGrassie, Phys. Rev. Lett. 35, 577 (1975)

[15]J.S. deGrassie and J.H. Malmberg, Phys. Fluids 23, 63 (1980)

[16] T.B. Mitchell, C.F. Driscoll and K.S. Fine, Phys. Rev. Lett. 71, 1371 (1993)



5

[17] C.F. Driscoll and K.S. Fine, Phys. Fluids B 2, 1359 (1990)

[18] K.S. Fine, C.F. Driscoll, J.H. Malmberg and T.B. Mitchell, Phys. Rev. Lett. 67, 588
(1991)

[19] A.J. Peurrung and J. Fajans, Phys. Fluids A 5, 493 (1993)

[20] N.S. Pillai and R.W. Gould, Phys. Rev. Lett. 73, 2849 (1994)

[21] L. Landau, J. Phys. (Moscow) 10, 25 (1946)

[22] N.R. Corngold, Phys. Plasmas 2, 620 (1995)



6

CHAPTER 2

EXPERIMENTAL OUTLINE

2.1 INTRODUCTION

In order to work with a pure electron plasma, it must be possible to produce
electrons and confine them to a plasma while experiments are conducted. A very easy way
of producing electrons is by heating a biased thoriated tungsten filament kept in vacuum.
Once the electrons are emitted, it is a simple matter of collecting them together into a
confinement chamber. A commonly used confinement chamber is the cylindrical Penning
trap shown in Figure 1 where the electrons are trapped within a segmented cylindrical
electrode structure. Trapping cannot be achieved without a steady-state magnetic field.
This will curb the mutual electrostatic repulsion between particles and cause them to be in
steady-state rotation. Theoretically, such a plasma should be confined forever. In practice,
some particles are lost due to anomalous transport processes [1]. The time by which the
total number of electrons decays to some fraction (say half) of its initial value is
considered as the confinement time. It has been shown empirically that confinement time
scales as the square of the confining magnetic field and is independent of the background
neutral pressure when the pressure is below 1078 Torr [1]. The experiments described in
this thesis are performed at pressures around 5x10°8 Torr with a steady-state magnetic
field of 50G. This gives a confinement time of the order of about 100ms. Experiments on
such plasma must be completed before loss of particles causes the density to degrade
considerably. The particles that remain within the confinement region at the end of the
experiment are dumped onto a collector. Since the hot filament still evaporates electrons,

another plasma can be made and experimented upon afier the previous plasma



(a) magnetic field
dump gate
inject gate collector
filament / electrodes
NG _ /
[ ] )
®
®
dipole octupole octupole dipole
PITN Y Q
octupole dipole gate

Figure 1(a) Schematic of Penning trap used to confine the pure electron plasma. Entire
structure is kept under vacuum pressure of about 5x10® Torr. An axial magnetic field is
used to radially confine the electrons, while negative electrostatic potentials applied to the
inject gate and dump gate electrodes allow axial confinement. In the region where the
electrons are trapped, the electrodes are axially segmented to allow different multipole
electric fields to be excited within the plasma. (b) End-view of different electrodes
showing azimuthal sectoring. Electrical signals of different phases may be applied to

different sectors of the octupoles and dipoles.
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has been dumped. In this manner, electrons are generated, confined, experimented upon,
and finally dumped onto a collector. This is a common repetitive cycle used to perform
experiments on non-neutral plasma. Since a single confinement will last only around
200ms, many repetitions of the confine-experiment-dump cycle may be performed in quick

succession.

The experiments that are performed on the plasma must take place within the
200ms duration of trapping. CAMAC (Computer Automated Measurement And Control)
modules are used to automate the process of excitation and recording the plasma
response. In this way, the plasma response may be recorded on a repetitive basis allowing

data to be recorded in a short time.

The response of the plasma is in the form of a decaying sinusoid (see Figure 10).
Typically, 20 sets of plasma responses are digitized for a single set of experimental
settings. The 20 digitized responses are used to average out the random variations
between responses. The signal that is averaged is not the actual response (Figure 10), but
the envelope of the response (Figure 11). Random variations between plasma responses
include random glitches and variations in the electron emission from the filament. Both of
these changes result in a slight alteration of the steady state density profile. The plasma
response is digitized as fast as possible before significant long-term of the density profile

occur.

2.2 VACUUM SYSTEM

The basic structural setup of the experiment is shown in Figure 2. The electrode
structure confining the plasma is kept inside the horizontal section of the vacuum chamber
which fits through the axis of fourteen discrete coils producing the steady-state magnetic

field. The vacuum pressure of 5x10"® Torr is maintained by an NT450 turbo molecular
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pump followed by a mechanical roughing pump. A liquid nitrogen cold trap interfaces the
turbo pump with the vacuum chamber. This helps to reduce the turbo pump lubricating oil
that may back-stream into the vacuum chamber. Measurements of the vacuum are made

by a nude ion gauge connected to a Varian ratiomatic ion gauge controller.

Calculations show that for 2eV electrons with a density of 106cm™ and a
background neutral pressure of 5x10~8Torr, the mean time between electron-electron
collisions is around 50ms and the mean time between electron-neutral collisions is around

20ms (assuming the background neutral is pure nitrogen).

2.3 MAGNETIC FIELD

The 14 discrete coils were chosen to produce the magnetic field for the simple
reason that they were already in the lab. Hence it was decided not to wind a solenoid.
These coils are flat “pancakes” about 36"x32"x1 %" with a 12" diameter bore. The internal
wires are wound around the axis of the bore, providing an axial magnetic field without any
poloidal component. The coils are aligned and the vacuum chamber positioned along the
axis of the coils, supported by X supports at the two ends. Coils are numbered starting
with #1 at near the vacuum pump and #14 at the end flange. Inter-coil spacings were
carefully calculated to produce a uniform magnetic field in the middle of the vacuum
chamber where the electrode structure would rest. The spacings so calculated are shown
in Table 1. Other factors also influence the magnetic field, such as the stray ambient field
and slight coil dissimilarities. As a result, the field is not as uniform as calculated. In order
to compensate for these influences, variable trimming resistors were placed across each
coil to shunt small amounts of current from the individual coils. The value of the effective
resistance used to shunt current so as to produce a uniform field at 50G are shown in

Table 2. The resulting magnetic field (at 20G) is shown in Figure 3 and is uniform to
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between coils | spacing (in)
1 and 2 0
2and 3 1.375
3 and 4 2.963
4and5 2.616
5and 6 2.704
6 and 7 2.708
7 and 8 2.725
8and 9 2.708
9 and 10 2.704
10 and 11 2.616
11 and 12 2.963
12 and 13 1.375
13 and 14 0

Table 1. Spacing in inches between various coils. This spacing is done so as to get the
maximum uniformity within the region where the electrode structure rests (and hence
where the plasma is confined).

coil # | effective shunt resistance ()

1 122.7

2 53.68
3 19.23
4 9.08
5 9.48
6 10.2

7 8.68
8 8.88
9 11.13
10 16.83
11 14.2

12 14.08
13 9.53
14 10.73

Table 2. Effective shunt resistance used for each coil to compensate for ambient field and
differences between coils. Actual resistors used were 1% tolerance resistors in parallel
with a series combination of a 1002 potentiometer and a 272 resistor.
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200

variations in flux density By in mG

2000
-1.75 0 +1.75

distance in feet

Figure 3. Variations in the axial field By as a function of the distance from the center of
the magnetic coils. The zero on the vertical axis corresponds to an actual flux density of
about 20G. The zero on the horizontal scale corresponds to the midpoint between coil 1
and coil 14. Ripples in the field are caused by the discrete coils, the valleys corresponding
to the spaces between the coils. Measurement was taken for a 20G field produced by a
current of 2.4A as measured by a hall effect probe connected to a Bartington model

MAG-01 fluxgate magnetometer.
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within 0.03% and directed the same way as the horizontal component of the terrestrial

field.

In addition to the main confining magnetic field, there are two compensating coils
to alter the vertical and horizontal fields. The currents in these coils would be set during
experiment and adjusted to achieve optimum experimental performance. Most often they
are used to obtain maximum confinement time, which may vary from day to day. Typical

values of current used are, say, 200mA for either coil.

2.4 ELECTRODE STRUCTURE

The electrode structure used in confining the plasma consists of gold plated copper
segments connected together to form a cylinder with azimuthally sectored electrodes as
seen in Figure 1. Different segments have different purposes. The filament is attached to a
cylindrically symmetric segment which forms the north end of the structure. An anode grid
is attached to the other end of this segment. Other electrodes appearing in order to the
south end are: a cylindrical “inject” gate, a dipole with two azimuthal sectors, an octupole
with 8 sectors, another octupole with 8 sectors, a second dipole with 2 sectors, a
cylindrical “dump” gate, and a collector. Each segment of electrodes is separated from the
other by means of hollow grounded disk plates which help to suppress noise between
electrodes. When the plasma is normally trapped, the inject and dump gates are held at
—100V, preventing any electrons from escaping in the axial direction. At the end of
experimenting, the dump gate potential is increased to around +1.5V and kept at that
voltage for 25 us, allowing the electrons to be dumped to the collector plate to which a
nominal +10V is applied. At the end of 25us, the dump gate voltage is returned to
—100V. When the next batch of electrons are to be confined, electrons from the filament
are allowed to move into the “trap” region (consisting of the region under the dipoles and

octupoles where the experiments are carried out) by gating the inject gate to +1.5V for
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25 ps. The trap cannot be overfilled. Electrons from the filament will move into the trap
only as long as the electrostatic potential in the trap is hjgher than the filament potential.
At the end of 25 us, when the inject gate voltage is changed back to —100 V, the electrons
in the trap region would have a radial potential distribution similar to that of the filament.
For this purpose, the filament has a bias of —30V applied to it at all times. The filament
bias is applied to the center of the filament. The current through the filament will cause a
potential drop in the filament increasing from —30V at the center to around —20V at the

outer spiral. Thus electrons from the filament are emitted, trapped and dumped.

All the electrodes are electrically connected to SMA coaxial connectors on the
south end flange of the vacuum vessel. Each sector of an octupole or dipole has an
independent terminal so that different voltages may be applied to different sectors of the
same electrode segment. Connections to any electrode are made from instruments located
in a small control room to the flange terminals by means of RG-58 coaxial cables. The
filament and the magnetic field terminals have separate high current cables. Normally the
filament is run with a current of 8A while the confining magnetic field coils require 6A to

produce 50G.

The magnetic field on the axis of the filament, in the plane of the spiral, due to the
filament current is about 33G. If this filament field were opposite in direction to the
confining field of 50G, a cusp field would be produced diverting the electrons emitted
from the filament away from the trap region. Hence, care was taken during the assembly
to see that the filament field was in the same direction as the confining field. Another
requirement is that the outer spiral of the filament be at a higher potential than the inner
spiral, so as to match the potential of the plasma as it is being trapped. This means the
current in the filament must be in a direction so that the outer spiral has a potential higher

than the inner spiral. This is ensured by winding the spiral with the proper orientation.

A summary of the parameters of the resulting plasma is shown in Table 3.
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EXPERIMENTAL PARAMETERS

magnetic field

central electron density

50G

~1x 10%m™3

plasma temperature 2eV

cylinder radius 25cm

trap length 40 cm

trap duration 200 m (typical)
trap repetition rate 5 Hz (typical)
cyclotron frequency 140 MHz

central plasma frequency ~ 9 MHz

wall rotation frequency 150 kHz (typical)
m = 2 diocotron frequency 500 kHz (typical)
axial bounce frequency 1 MHz

Larmor radius 1 mm

Debye length 1 cm

Table 3. Parameters of the pure electron plasma. The central electron density and central
plasma frequency are calculated by assuming that the normalized density profile, f(p),
varies with normalized radius, p, as f(p) = (1 — p?)*, with the plasma edge at 80 % of the
cylinder radius. Plasma temperature is measured using the technique described in reference
2.
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2.5 EXPERIMENTAL PROCEDURE

Once the electrode structure is in vacuum at a pressure of 5x10°® Torr after baking,
the setup is ready to run pure electron plasma experiments. Connections are made to
ensure proper inject-experiment-dump sequence for the plasma. This involves setting up
the magnetic field to 50G, running a filament current of 8A, and setting up the proper
timing sequence for injecting, trapping and dumping the electrons. The timing sequence is
generated through the CAMAC crate through software from a 386 based IBM compatible
computer. Electrons that are dumped onto the collector are passed through a unity gain
charge amplifier to detect how much charge has been collected. This provides the most
useful diagnostic that electrons have indeed been trapped and dumped. The dumped
charge is in fact a function of the time for which the plasma has been confined, electrons
being lost by virtue of anomalous transport. A record of the variation of dumped charge
vs. duration of confinement (in ms) is obtained by digitizing the dumped charge for
different confinement periods (trap duration) in ms. Such a plot, known as a confinement
plot, is a very useful diagnostic in obtaining information about filament emission as well as
confinement time. A typical confinement plot is shown in Figure 4. Another useful
diagnostic is the record of the emission current. Typical emission currents on a “good day”
are between 100uA and 160 A for a filament bias of —30V, filament current of 8A and
an axial field of 50G.

Once a steady inject-trap-dump cycle has been established, and the confinement
time and emission current are “good” the plasma is ready for experiments. In order to
excite an m = 2 diocotron resonance in the plasma, a 5us burst of sine wave is applied to
one octupole segment with an m = 2 symmetry. The typical frequency for this sine wave
is 500kHz, and is obtained from a Wavetek model 166 signal generator. The setup is
shown in Figure 5. One sector of the other octupole segment is used to detect the

response of the plasma and is therefore connected to a low-noise amplifier. All other
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CONFINEMENT TEST OF 03-68-1992

pecak = 1.4724 U end = 6.073 U time of measurement : 16:03:24
1.60
.100 |
.016 B
o5 L
0 Irap length in nS 500

Figure 4. A typical confinement plot showing the total dumped charge developed over the
line capacitance vs. duration of confinement plotted on a semilog graph. The charge
developed over the line capacitance (about 150pF) is measured directly in volts. The
numbers on the y-axis correspond to these voltages. Numbers on the top line indicate peak
voltage (for minimum confinement duration) and the voltage for the longest confinement
duration. The time required for the total charge to decay by half in this particular case is
around 100ms.
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(a) _nagnetic field

trap octupole octupole trap

collector
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filament T 1
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Figure 5. (a) Schematic of cylindrical structure for plasma trapping and excitation, (b)
phasing of first octupole for exciting an m=2 disturbance, (c) configuration of second
octupole for signal reception, and (d) configuration of second octupole for negative
energy test.
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Figure 7. The electrode structure where the electrons are generated and trapped. Circular
rings separate the various electrodes which are made of gold plated copper. The right end
of the photograph shows the electrode to which the filament is attached.
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Figure 8. The Penning trap with all the electrodes connected to the end flange by means of
rigid coaxial cables. The structure is just about to enter the vacuum chamber from the
south end of the vacuum chamber.
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sectors of the octupoles and dipoles are at d.c. ground. The low noise amplifier consists of
an Amptek A250 hybrid amplifier at the front end, followed by two stages of non-
inverting and buffer amplifiers. This configuration gives a measured mid-frequency gain of
22,500 with a 3-dB bandwidth from 2.2kHz to 1.5MHz and a noise density, measured
with a 502 input resistance, of 5.3 nV/v/Hz. A block diagram representing the processing
of the applied and received signals are shown in Figure 6. The received signal, after being
amplified by the low-noise amplifier located directly at the flange, is passed through two
filter stages, an HP attenuator and another amplifier before being digitized by a DSP
mode] 2210/512 transient recorder. Overall amplification is of the order of 2,000,000, so

that the smallest signal level at the input to the digitizer is about + 1V.
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CHAPTER 3

EXPERIMENTAL RESULTS

3.1 INTRODUCTION

As discussed in the previous chapter, experiments are performed on the plasma
after electrons are injected into a trap region within the Penning trap. When the electrons
are trapped, they will form a cylindrical column of plasma. The particles will be distributed
throughout the cylinder moving in the axial as well as azimuthal directions while radial
motion is hindered by the confining magnetic field. Interaction between the strong
electrostatic repulsion of similarly charged particles and the magnetic field produce a
steady-state azimuthal motion of particles about the axis of the cylinder. Axial motion will
consist of particles bouncing back and forth between the electrostatic traps at the two
ends. For the purposes of understanding the experiment, the axial motion is neglected but
is assumed to average the perturbations throughout the plasma column. The plasma thus
consists of a column of fluid (using the 2-D fluid analogy) rotating about its axis.

The steady-state azimuthal fluid angular velocity,wy(r), depends on the steady-
state density, ng(r), which is a function of the radius. Hence, different layers of the fluid
rotate about the axis at different velocities. It is assumed that the density is highest on the
axis and decreases monotonically towards the electrode wall. Figure 9 shows a possible

radial density profile and the associated angular velocity.

3.2 THE IDEA OF A DIOCOTRON RESONANCE

It has been shown that the pure electron plasma has low frequency resonances
located around the angular rotation frequency of the plasma [1,2] . These are the
diocotron resonances whose frequencies are low in comparison with the cyclotroh

frequency (around 140MHz for a 50G magnetic field). They occur when an azimuthally
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propagating perturbation has the same phase velocity as the speed of angular rotation at a
particular radius (the “resonant radius”). These propagating disturbances are assumed to
vary as €™ %! and are distinguished by an azimuthal eigen number m, indicating the
number of symmetric vortex patches that propagate in the azimuthal direction. This gives
the perturbation a frequency w and a wave speed w/m. For some density profiles (which
are not monotonically decreasing), the diocotron disturbance can arise spontaneously from
noise resulting in diocotron instabilities, a disease that had plagued hollow beam electron
tubes in the early days of beam tube devices [3 — 8]. A criterion to be satisfied for the
occurrence of this instability in fluids flowing between parallel sheets was given by
Rayleigh when he stated that the velocity profile must necessarily have a point of
inflection. For a fluid of electrons in the cylindrical geometry, a monotonically decreasing
density profile is a guarantee against spontaneous diocotron instabilities provided the
cylinder wall is a perfect conductor. It is possible to forcibly excite a diocotron resonance
by purposely inducing a traveling electric field within the plasma [1,2]. This may be done
by applying appropriate potentials to the electrodes. In order to excite the perturbations of
a particular azimuthal eigen number m, the applied voltage should posses the same angular
symmetry as the perturbation. This is done using the octupole sections and the setup
shown in Figures 5(b) and 6(a). Resonance occurs when w, the frequency of the applied
voltage, equals muwy(r,) for some radius r, where 0 < r, < b, and b is the radius of the
wall.

It has been shown, both experimentally and theoretically, that the m = 1 diocotron
resonance is an undamped, or lightly damped, resonance with a frequency, w, exactly
equal to the rotation frequency wy(b) at the wall [1,2,9, 10]. Experimentally, deGrassie
had shown that the m = 2 diocotron has a frequency roughly 3 times wy (b), but is highly
damped in comparison with the m = 1. It was also shown that the decay rate of the

m = 2 response always decreased with the applied voltage. He states explicitly in
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reference 2 that he was unable to reach the /inear regime of the plasma response because

of a low signal to noise ratio with the receiver setup.

3.3 THE EXPERIMENT

The experiment consists in perturbing the plasma, that has density and angular
velocity profiles similar to that shown in Figure 9, with a rotating electric field at the wall
of one of the octupole segments possessing an m = 2 symmetry using the sétup shown in
Figure 6(a). This is done by applying voltages to the electrodes of the octupole segments
using phases as shown in Figure 5(b). The applied voltage will set up a standing wave
within the plasma consisting of two waves traveling in the opposite azimuthal directions,
but the plasma responds to the wave traveling in the direction of plasma rotation. The field
at the wall has the form Ecos(m#)cos(wt), where w is the radian frequency of the applied
sinusoid and E is the electric field. The applied field is not a continuous sine wave, but a
Sus burst containing a few complete cycles and therefore contains a broad band of
frequencies centered around the frequency of the applied signal, which is typically
500kHz. This will induce perturbations in the plasma that will produce a perturbed electric
field at the wall which induces perturbed currents into the electrode. The induced current
is then detected by means of the receiver setup shown in Figure 6(b). A charge
proportional to the induced current will be seen at the input of the low noise amplifier,
which converts it into a voltage for further processing. Thus the perturbed electric field at
the wall, which is a measure of the plasma response, is detected and digitized.

When an m = 2 pulse of some voltage is applied to the plasma, it is found that the
amplitude of the plasma response is maximum only at one particular frequency, indicative
of resonance. Moreover, the plasma response increases linearly with time for the duration
of the applied pulse when the frequency of the signal generator is tuned to the frequency at

which the plasma response is a maximum. This confirms the presence of a resonance. The
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Figure 9. A plot of the radial variation of the normalized steady-state angular velocity
glp)=1- g(p/ @)® 4+ 3(p/a)® — (p/a)'® and normalized steady-state density

f(p) =1—10(p/a)® +15(p/a)® — 6(p/a)™ where a is the ratio of the plasma edge
radius to the cylinder wall radius, a/b, and p is the radius variable normalized to the wall
radius. In this particular case, a = 0.8. This density profile has the characteristic of being

smooth at the plasma edge because g(a) = g—‘ll = %2;‘21! =0.
P lp=a p=a
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(b)

0 Timein xS 200

Figure 10 (a). A plot of the digitized plasma response to an m = 2 excitation for an
applied voltage of 40mV. (b) The same plasma response, but for an applied voltage of
500mV. Main differences between (a) and (b) are (i) the decay rate is smaller for (b) and
(ii) the plasma response in (b) seems to indicate a phenomenon resulting in amplitude
modulation. The amplitude scales are different between the two figures, the response in
(b) being attenuated by 19dB more than the one shown in (a).
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frequency at which this resonance occurs is typically about 500kHz, between 2-4 times the
m = 1 frequency, the lack of precision being caused by the non-reproducible nature of the
plasma between successive trap cycles. As stated before, the plasma response rises
linearly with time during the duration of the applied pulse. When the applied pulse is
removed at the end of Sus, the plasma response decays. A typical m = 2 response for low
applied voltage is shown in Figure 10(a). Figure 10(b) shows the response for a higher

applied voltage.

3.4 RESULTS
(a) LINEAR COLLISIONLESS DECAY

As can be seen in Figures 10(a) and 10(b), the plasma response for a low applied
voltage is an exponentially damped sinusoid. As the applied voltage is increased, the
exponential decay becomes modulated with a lower frequency sine wave and shows a
decrease in the damping rate. It is possible to obtain the envelope of the response and plot
the various response envelopes for different applied voltages on the same graph. Figure 11
shows such a plot where the envelope of the responses for a two decade variation of
applied voltages is plotted on a semilog graph. Each trace on this graph represents the
average of the envelopes of 15-20 responses for the same applied voltage. The bottom
four traces are approximately linear on the semilog plot. For these four traces, the
amplitude of the peak response (at ¢t = 0) scales with the applied voltages of 10, 20, 40
and 60mV. These four traces represent the J/inear response of the plasma, by definition of
linearity. Moreover, the time scales in which the decay occurs, 60us, is much smaller than
the mean time between collisions which is of the order of milliseconds. Hence the linear
response of the plasma is that of an exponentially damped sinusoid, the damping being
caused by a collisionless decay process. Measurements of the ratio of the frequency of the

plasma response to the damping rate show that this ratio is 84 in the linear regime. The Q
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Amplitude (dB)

Time in uS 300

Figure 11. Decay of the envelope of the response to an m = 2 excitation. Responses are,
in order from the bottom trace to the top trace, in response to applied voltages of 10, 20,
40, 60, 80, 120, 160, 200, 250, 300, 400, 500, 600, 700, 1000 mV. Plotted on a semilog

scale with the vertical scale calibrated in dB.
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of the diocotron resonanceis half this value, or Q = 42. The theory behind the
collisionless decay and a model for its occurrence is presented in detail in Chapter 4. As
the amplitude of the applied voltage is increased, the plasma response shows signs of
amplitude modulation by another signal whose frequency is much smaller than the
frequency of the m = 2. It is clear from Figure 11 that signs of this amplitude modulation
begin to appear in the trace showing the plasma response for an 80 mV applied voltage.
However, it is more distinct for the larger applied voltages. Also apparent is that the
frequency of the modulating signal increases with increasing applied voltage. It will be
shown below that the frequency of the modulating signal is proportional to the square root
of the applied voltage, providing evidence for fluid element trapping or bouncing within
the potential well of the diocotron wave. Another noteworthy point in Figure 11 is that the
decay rate of the plasma response to higher applied voltages decreases at later times, a

phenomenon already studied by deGrassie in reference 2.

(b) FLUID TRAPPING

The evidence for fluid element trapping may be seen by plotting the modulating
signal frequency against a corrected applied voltage. Care must be taken to obtain the
modulating signal frequency from the data shown in Figure 11. For a single trace, say the
response to 1000mV, it is seen that the modulating frequency decreases as the plasma
response decays. The plasma response decays because the electric field at the wall decays,
in response to the decay of potential within the plasma. Hence the potential at the radius,
7s, Where the “trapping” or “bouncing” occurs also decays. This means that the bounce
frequency (synonymous with modulating frequency), which is presumed to depend on the
potential at the radius where the trapping occurs ( around r,), will decrease as the plasma
response decays. In order to obtain the bounce frequency in the response for a given

voltage, a least squares fit of a decaying exponential is found for a given trace. This fitted
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100

Bounce Frequency f (KHz)

10 100 1000
Voltage V (mV)

Figure 12. Bounce frequency, f, versus voltage, V', (applied voltage corrected for the
decay) plotted on a log-log scale. Filled boxes correspond to data. Solid line is a least
squares fit f = AV™ where n = 0.44. Together with 21 other data sets, n = 0.55 =+ 0.1.
Dashed lin shows a line where n = 0.5 for comparison.
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exponential is then subtracted from the trace to obtain the modulation. The bounce
frequency is then found by measuring the temporal distance between successive maxima.
Using the decay rate of the fitted exponential, the applied voltage is corrected for decay to
obtain the plasma potential resulting in the bouncing. A plot of the bounce frequency vs.
the corrected applied voltage is shown in Figure 12. A least squares fit shows that the
bounce frequency is given by f = KoV" where n = 0.44 and K| is a constant for this
particular data set. Several other data sets were also obtained showing a similar behavior,
giving a total of 22 sets of data where the bounce frequency could be measured. Identical
fits were carried out on the other data sets also, and together with the present results, a
value of n = 0.55 £ 0.1 was obtained. This is extremely close to the theoretical value of
0.5 predicted for bounce motion as shown by the equation {9, 11]

O m2é(ry) dwp(r)
*~ Br, dr |,

where w; is the bounce frequency and ¢(r,)is the perturbed potential at the radius r,,
where the resonance condition w = muwy(r,) is satisfied and around which trapping
occurs.

It can be surmised that the modulation of the plasma response at larger applied
voltages is caused by fluid element trapping within the potential well created by the m = 2
diocotron wave in the plasma. The idea of the potential well in the plasma is very similar
to that of the Kelvin's cat's eyes in a plane parallel 2-D inviscid fluid with shear flow [12].
In the latter picture, a sinusoidal perturbation in the fluid results in closed contours of the
streamlines, in the frame moving with the perturbation. A similar result is obtained in the
plasma where the sinusoidally perturbed diocotron wave results in closed contours of the
total potential, in the frame moving with the wave. The overall potential ¢,(r, + Ar)

around the radius r, may be written as
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d* ¢,
dr?

2
A
(an) + - 4+ Kjicos(mf — wt)

Ar+
r 2

Ts

d
$1(rs + A1) = ¢o(rs) + %
-

Ts

where the last term represents the perturbation and quantities with a zero subscript
represent steady-state values. K is an arbitrary constant. The steady-state electric field
Ey.(rs) at the resonant radiuswill vanish when traveling with the wave speed
w/m = wy(r,) by virtue of the drift equation of motion (see Chapter 4). Neglecting higher
order terms, the above equation then reduces to

d4,| (or)
$i(rs+ B7) = dofry) + S22 (8D

Ts

+ Kjcos(mb)

around 7. It is apparent that contours of constant potential will form closed loops in the
(Ar,6) plane as shown in Figure 13, identical to the “cat's eyes” picture in reference [10].
These are closed contours of potential around the resonant radius when traveling with the
wave speed. This means that a fluid elements at r, will see other elements at » < r,

traveling faster than them, and elements at r > r, traveling at a slower speed.

3.5 NEGATIVE ENERGY TEST

The previous experiment showed that the m = 2 diocotron wave in the plasma is
damped by means of a collisionless decay process. It was assumed that the wall electrode
was a perfect conductor (made out of gold plated copper). It has been shown theoretically
that an increase in the wall resistance would decrease the damping rate of the diocotron
waves [9]. This is because diocotron waves are negative energy waves, meaning that the
removal of energy from the wave would cause the wave amplitude to increase. This
property has already been experimentally verified for the m = 1 diocotron [13]. It would
seem that the m =1 mode would be easily affected since the resonance occurs at the
electrode wall and is undamped to begin with. But it is not so apparent that the m = 2

diocotron should be affected at all, since it is already damped. If the m = 2 diocotron
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(b) coax transmission line

v

AT
I R \

inductor resistor

Figure 14 (a). Addition of an external resistor to an octupole sector that would decrease
the wall conductivity seen by the diocotron wave inside the plasma. (b) A more practical
setup for selectively allowing the m = 2 diocotron wave in the plasma experience a lower
wall conductivity. The inductor in shunt with the resistor tunes out the capacitance of the
coaxial transmission line that connects the octupole, in vacuum, to the resistor physically
located at the vacuum flange.



36

wave is a negative energy wave, then the damping rate should decrease by the addition of
resistors to the octupole section as shown in Figure 14(a).

Care must be taken while performing this experiment so that the m = 1 diocotron
is not excited. If the m = 1 were excited, it would dominate the plasma response since it
would now turn into an unstable growing mode. To avoid this, the resistor R is connected
to opposite octupole sectors as in Figure 5(d). This ensures that no m = 1 current would
be induced in the electrode, since their phasor sum would cancel out in the resistor.

Another factor which must be considered is the capacitance of the coaxial
transmission line connecting the octupole sector to the terminals at the vacuum flange. At
the m = 2 frequency, the lower capacitive reactance dominates over the resistance R.
Hence an inductor is placed in shunt with R so as to tune out the transmission line

capacitance at the m = 2 resonant frequency, as shown in Figure 14(b).

3.6 RESULT OF NEGATIVE ENERGY TEST

With the above modifications in the experimental setup, an m = 2 diocotron wave
was excited, in the usual manner, while a resistor was connected to two octupole sectors
as in Figure 14(b). The received signal was digitized and the damping rate was found by
x* fitting a damped sinusoid to the digitized signal. The experiment was repeated for
different values of resistor R and a graph of damping rate vs. R was made. The result is
shown in Figure 15. The solid line shows a least squares fit to the data shown with error
bars. It is immediately apparent that the damping rate does decrease with increase in
resistance. The linear decrease in the damping rate can be predicted by theory and is
derived later in Chapter 5 (see equation 24). The exact slope of the decrease of decay rate
with resistance depends on the density profile of the plasma, which could not be measured
with the present experimental setup. If the resistance is high enough, Figure 15 predicts

that the m = 2 diocotron can even become an unstable growing mode! Although no
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Figure 15. Decay rate of the m = 2 response versus resistance when a resistor R is
connected to the wall electrode. Line is a least squares fit of the experimental data
obtained from a large number of responses.
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(b) CONFINEMENT TEST OF 02-07-1934

peak = 1.554 V end = 0.088 V time of mecasurement : 17:25:23

e Trap length in nS . 500

Figure 16. (a) Copy of the photograph of an oscilloscope trace showing an unstable
(growing) m = 2 diocotron mode caused by the 386k equivalent parallel resistance of a
1.5mH inductor (Q = 94) connected to an octupole sector. The frequency of the
instability is about 320kHz. Voltage scale is 5V per division and time base is 50 ms per
division. This shows that the instability occurs roughly around 300 ms after electrons are
injected into the plasma trap. (b) A confinement plot taken at the same time as the
photograph in (a). This shows that at the time that the m = 2 diocotron became unstable,
particles were lost from the plasma.
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experimental data was obtained to quantitatively measure a growth rate, unstable m = 2
diocotron modes have been observed qualitatively as in Figure 16(a). This is a copy of the
photograph of an oscilloscope trace taken when an m = 2 diocotron was destabilized with
the equivalent parallel resistance of a 1.5mH inductor. For this particular experiment, the
m = 2 frequency was measured to be 320kHz. The equivalent parallel resistance of the
inductor was measured to be 386k at 350kHz, implying that the Q of the inductor is 94.
Figure 16(b) shows the confinement plot when the m =2 diocotron wave was
destabilized. The sudden change in the confinement plot at 300ms occurs because the
destabilized diocotron wave resulted in particle transport causing sudden loss of particles.
After the loss of particles, the steady-state density profile must have changed and an

unstable m = 2 diocotron no longer existed.

3.7 INTERPRETATION

As explained earlier, in the beginning of section 3.3, there is a low frequency
resonance in the pure electron plasma. This induces a current in the wall of the electrode.
Upon removal of the source of excitation, the plasma response decays. The negative
energy test shows that the decay is not caused by any dissipative process at the wall. The
time scale in which the response decays is much smaller than any collision time. Hence the
diocotron resonance decays due to some collisionless non-dissipative decay process.

The collisionless decay predicted by the above experiments is not unique to pure
electron plasma. The most famous example is that of Landau damping of plasma
oscillations in neutral plasma, which also was experimentally verified to exhibit trapped
particle oscillations [14 — 17].

Phase mixing is often a term used by researchers to describe Landau damping, and
is very appropriate here also. Experimentally, what one observes is a decay of the induced
current in the wall of the electrode. The induced current at the wall, and hence the electric

field at the wall, is the result of integrating all the perturbations throughout all the radii in
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the plasma. As Figure 9 shows, the angular velocity is different at different radii for
monotonically decreasing density profiles, so the perturbations at different radii are
convected at different rates - a shearing process. Hence the phasor sum of the

perturbations at the wall may cause the electric field at the wall to decay.
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CHAPTER 4

DIOCOTRON THEORY

4.1 INTRODUCTION

The previous chapter showed that when the cylindrical column of pure electron
plasma is excited with a particular frequency, much below the cyclotron frequency and
having an m = 2 azimuthal symmetry, a resonance can be observed. The plasma responds
to this excitation by inducing a current in the wall of the electrode. When the source of
excitation is removed, the induced current at the wall decays exponentially in the linear
regime due to a collisionless decay process. This motivates us to evolve a model
characteristic equation for the pure electron plasma system and attempt to find a complex
eigenvalue w in this system. The sign of the imaginary part of w should be such as to
produce a damping and the real part would correspond to the unique frequency of the
m = 2 resonance. The ratio of the real part of w to the imaginary part is the “Q” of the
resonance, to borrow a term from second order RLC electrical circuits. A previous fit of
the imaginary part of w between theory and experiment proved unsatisfactory, as the
theoretical prediction deviated from experimental observation by two orders of magnitude
[1].

The remainder of the chapter deals with the derivation of the model differential
equation and its solution. All the discussions below assume that the plasma temperature is
zero (cold fluid model) and the cylinder wall is a perfect conductor. A discussion of the

negative energy aspects of the diocotron wave is deferred to the next chapter.

4.2 THE PLASMA MODEL
The pure electron plasma column can be considered as a cylindrical column of

rotating fluid. The axial motion of the fluid is neglected and the column is assumed to be
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an infinitely long cylinder. We can now concentrate our efforts on the 2-D dynamics in the

_)
(r, 8) plane. The electric field F is assumed to be electrostatic. Hence

-
=—-V¢ 1)

where ¢ is the electrostatic potential. Substituting this into Gauss's law, we get Poisson's
equation:

V== | @
€o

where 7 is the density, e is the charge of the electron and ¢ is the permittivity of free
space. The equation for the fluid velocity, neglecting viscosity and temperature, takes the

form

D_'l—)) —-> - —>
nmeﬁz—ne E+v xB

where m, is the electron mass, o is the velocity and 3 = ByZ is the steady state

confining magnetic field in the axial direction. % denotes the convective derivative. Since

we are interested only in the average fluid velocity neglecting cyclotron motion and inertial

effects, the above equation reduces to

7:7)+'7x_l_3)=0

which is also known as the drift equation. Neglecting the inertial effects and cyclotron

effects in the drift approximation is equivalent to assuming that wf,e Jw? < 1. And this

implies that the energy of the system is mainly electrostatic and very little is kinetic.

Solving for o we obtain

ExB

7=
B;

©)

Using (1) and the previous equation, it is easy to show that
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v = —1 ¢ and v, - 194
" Byr 86 *T By or
from which we get V- & = 0 and
Vx 7=Vt =%
€0

Along with equation (2), these equations for the velocity are analogous to those of a 2-D
inviscid incompressible fluid where the fluid vorticity is proportional to the plasma density
and the fluid streamline function is proportional to the plasma potential [2, 3]. Hence the
dynamics of the pure electron plasma are equivalent to those of a 2-D inviscid

incompressible fluid. The continuity equation for the 2-D fluid system takes the form

%ﬁ?-w:o 4)

because the fluid is incompressible.

Equations (2), (3) and (4) constitute the basic equations for the plasma dynamics in
the (r,6) plane, and form the model equations for discussion of diocotron waves in the
pure electron plasma. The variables used above are split into steady-state and perturbed

quantities in the following way
=2 =
E = Eo(r) + E'(r,6,1)
it

9
=o(r) +/ (r,8,1)
n=mng(r) +n'(r,6,t)
¢ = ¢O ('I‘) + ¢,(T’ 0’ t)

where zero subscripts stand for steady-state quantities and the primed variables are
perturbed quantities. Steady-state quantities are functions of only the radius, while all

perturbed quantities are assumed to have azimuthal and temporal dependence of the form

eimf)—iwt
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4.3 STEADY-STATE
From equations (2), (3) and (4), the steady-state equations of the plasma column

will reduce to the following

Vigo(r) = 2 ©®)
vos(T) = —_"EOI;(ET)
or
__1 d¢
wo(r) = rBy dr ©)

where wy(r) is the radially dependent angular velocity. Using equations (5) and (6), it can

be shown that

1—d"('f"Q(‘z)()) = ™€
rdr €0 By

(M

which provides the relation between angular velocity and steady-state density.

From the steady-state picture, it is seen that the radial dependence of the angular
velocity and electrostatic potential are determined by the radial density profile. If the radial
density were uniform, i.e. no(r) were independent of , then a plasma that fills the cylinder
would have an angular velocity that is independent of radius. This is the so-called rigid
rotor profile. Monotonically decreasing density profiles have monotonically decreasing

angular velocity profiles.

4.4 PERTURBED MODEL

If we neglect second-order effects (product of primed variables), the linearized

perturbed equation of continuity will be:

on/ -
£—+%)-Vn'+v'-Vn0=0.
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With perturbations in ¢ and 6 as e"™~%*_ this equation can be further modified as follows:

— wwn'(r) + imuwy (r)n' (r) + v;('r)%nTO =0

giving
w(r)  dno(r)
n'(r) = : (3)
(mwo(r) —w) dr
The perturbed equation for v/, is given by
o oo —L9 _ im
" TBO tol/] TBO
and hence
m dny(r)
() = Wy ©
rBy (mwo (r) — w) dr
Substituting this into the perturbed form of Poisson's equation
n'e
V¢ = —
¢ -
we get:
V2 = me dng &
€or By (mwo - w) dr
or expanding out the Laplacian operator:
d2 1d 2 dng
aé _ﬁ_{ﬁ e ar }¢=o, (10)
dr?  rdr 2 By rimwy —

The primes have been dropped. It is assumed that only variables with a 0 subscript are
steady-state quantities. Equation (10) represents the variation of the perturbed potential in
the plasma from the center (r = 0) up to the wall (r = b). In cases where the plasma edge
(r = a) does not extend up to the wall (i.e. a < b), equation (10) is still valid within the

plasma. In between the plasma and the wall, equation (10) will reduce to the simple form:



d*¢ 1d¢ m?
22T g=0 11
dr? +rdr r2¢ (b

which is seen to be an equi-dimensional equation in ¢, having the solution
¢(r) = Kor™ + K3r™™, where K, and K3 are arbitrary constants.

The form of equation (10) in rectangular coordinates is often referred to as the
Rayleigh equation, or the Rayleigh-Kuo equation [4 — 8). In this thesis, it will be referred
to as the diocotron equation. With normalized units specified below, the diocotron

equation may be written as

¢ 1dg {m2 2242 }
a¢ lee Im . “d lu_y 12
i pdp 7 +p[g(p)—u] ? (12

where p = r/bis the normalized radius, f(p) is the normalized density with f(0) = 1,
g(p) is the normalized angular velocity with g(0) = 1, and v = w/muwp(0) is the wave

speed w/m normalized to the central rotation frequency wp(0). Use is made of the relation

1d

3 (Fee) =21 (13)

which follows from (7).
To obtain an eigenvalue, equation (12) should be solved for the homogeneous

boundary conditions ¢(p = 0) = ¢(p =1) = 0.

4.5 QUASIMODES
For a rigid rotor profile, equation (12) can be solved for all values of m. It has
been shown that the eigenvalues for such a profile are [2]

w=wo[m — 1+ a*™

where o = a/b. This may be done by solving (12) with df/dp = Ofor 0 < p < o and

a < p <1 and then applying continuity of potential and jump in the electric field at
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p = a. This shows that all the eigenvalues for the constant density rigid rotor profile are
real. Hence the diocotron waves for all m numbers are neutral modes of the system.

For the general case when df/dp # 0, equation (12) can be put into the form

d d
&;[ g u)Qd—f] +(1=m)plg— )P =0 (14)

by making the substitution ¢ = p(g — u)y. For the m = 1, equation (14) is easily
integrable and reveals ¢(p) = K4p[g(p) - u] as the only solution that is bounded at the
origin. K is an arbitrary constant. Applying the boundary condition at the wall shows that
the m = 1 diocotron has a wave speed u = g(1). Hence the m = 1 diocotron is an
undamped wave (since the eigenvalue is real) with a frequency equal to the angular
velocity at the wall (p = 1).

It has been shown that for a monotonically decreasing density profile, equation
(12) has only one eigenvalue and that is for the m = 1, as we have seen [2, 9]. There are
no eigenvalues (complex or real) for m > 1!

This leaves the explanation of the experimental results with a problem. Theory
shows that there are no complex eigenvalues for the diocotron equation with a
monotonically decreasing density profile, while the experiment suggests that we look for
complex eigenvalues. This problem is overcome by realizing that the observed resonances
are not normal modes, but quasimodes [9].

It will be shown below that a complex eigenvalue w can be obtained by extending

equation (12) to the complex p plane.

4.6 SOLVING THE DIOCOTRON EQUATION
Discussed below is the method for obtaining an eigenvalue of the complex form of
(12) for the parabolic density profile f(p) = 1 — p? with the plasma extending all the way

up to the wall (that is a = 1).
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Using equation (13), we find that when f(p) = 1 — p?, g(p) = 1 — 323 This shows
that the normalized angular velocity varies between unity at the center (p = 0) and 0.5 at

the wall (p = 1). Substituting for f(p)and g(p) in (12):
d’¢ 1d 2 4
o5 e

a? " pdp 2 1-£ -4
or
d*¢ 1d¢ {m2 8 }
Rl Rl R =0
i T pdp 2 E-pa-w)/?
or
iQfﬂtlﬁ—{—"f+ S }¢—0 (15)
d> pdp |\ p*  pPP-pf

where p, = \/m It is now a simple matter to solve equation (15) subject to
homogeneous boundary conditions for ¢(p).

Equation (15) has two regular singular points: one at the origin, p = 0, and the
other at p = p, (singularities outside range [0,1]are neglected). Frobenius expansion

around p = 0 gives:
2/0\2 1/p\* 1/p\%® 137/p\%
o= 1= () - (2) - (2) - B(2)' - Yo
3\po 12\ pg 30 \ pg 20 \ py
where K, is an arbitrary constant. The above expansion represents the only bounded
solution at the origin, and is valid for lﬁl < 1. Around the singularity p,, a similar
expansion reveals two solutions wy(z) and wy(z) where z = (p — py)/pp. One is analytic

and the other has a logarithmic singularity:

(2) +32+ m?*+2] ; [m?-1 iy m4+m2—15} 5y
= - z - zZ 2
Wil =2 g2 6 36 120

m2—24} 0 [13m2+43} 3 [9m4—173m2-54i| 4
2| —— |+ 2+

—1
P() +[ 2 18 216
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wo(2) = 4wy (2)In(z) + p(2). 17)

The solution for the perturbed potential, valid for 0 < |p| <1, is given by
$o(2) = CLwy(2) + Cowsg(2). (18)

Equations (16) and (18) are the representations of the solutions of (15) in the different

regions. Finding a ¢(p) valid for all | p| <1 lies in finding the values of the complex

constants p,, C; and Cs so as to satisfy the boundary conditions and, in addition, the

following;:

and
Wl _ % (20)
ap lpmp, AP lp=p,

for some p, in the range 0 < p, < p,. Equations (19) and (20) ensures that the solution to
(15) has continuous potential and electric field variations for all |p] < 1. We thus have
three conditions to determine Cq,C> and p, which will allow us to fix ¢(p) to within a
constant of proportionality, since the constant Ky in (16) is not evaluated. Determining p,
will give us the complex value of w to determine the frequency and damping of a
diocotron wave of azimuthal eigen number m.

The location of p, in the complex p plane depends on whether the quasimode is
unstable or stable. Unstable diocotron = Im(w) > 0 = Im(u) > 0 = Im(p,) < 0. Hence
po will be located in the fourth quadrant of the complex p plane if the resonance is
unstable. On the other hand, if the resonance is damped (stable), then p, will lie in the first
quadrant. In either case, the logarithmic singularity in equation (19) causes p = p, to be a
branch point in the p plane. There will be a branch cut extending from p = p, to infinity as
shown in Figure 17(a) and 17(b). The location of p, for a growing diocotron quasimode is

shown in Figure 17(a). In such a case, evaluation of 2 = (p — p,)/p, is straightforward.
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Im[p] Complex p plane
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0 - 1 Re[p]
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Re[p]

Figure 17. (a) Location of p, and the path of integration for the case of a temporally
growing diocotron wave. (b) In the case of a temporally damped diocotron wave, pj, is
located in the first quadrant and the branch cut extends to infinity. The path of integration
has to go around the branch point to remain on the same Reimann sheet and satisfy the

boundary conditions.
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However, when Im(p,) > 0, the path of integration (or continuous variation of p from 0
to 1) must be curved as shown in Figure 17(b), to avoid passing through the branch cut
nd getting into a different Riemann sheet. If this method is followed in evaluating
2= (p—pg)/py in equation (18), then equation (15) can be solved subject to the
homogeneous boundary conditions. The resulting value of po is then an eigenvalue of (15)

for complex p.

4.7 RESULT

A computer program was used to evaluate ¢;(p) and ¢,(p) using the expansions
shown above with 500 terms. The value of p, was varied iteratively to satisfy the
boundary conditions and equations (19) and (20). It was found that for an m = 2
perturbation in a parabolic density profile, p, = 0.9685 + i0.02199. This corresponds to
w/wo(b) = wy — iy, = 2.1252 — §0.0852. The m = 2 frequency has been scaled to the
wall frequency of wy(b). The ratio of the real part of the eigenvalue to the imaginary part

is ff = (2)—'(1)%% = 25, and is twice the @ of the diocotron resonance. Hence for the

parabolic profile Q = %2— = 12.5. Using the same program, the m = 1 diocotron has the

values w/wy(b) = 1+ 140. In other words, the m = 1 diocotron is an undamped mode with
the frequency equal to the wall frequency, as predicted by theory.

The method of solving the diocotron equation by Frobenius expansion, as outlined
above, is by no means unique. It has been shown that the solutions of (12) for the general
family of profiles f(p) = (1 — p°7), where p is a positive integer, can be expressed in
terms of hypergeometric functions [9]. Chapter 5 discusses another method for obtaining
the frequency and damping rate of the diocotron waves. For the m = 2 diocotron wave in
the parabolic profile f(p) = 1 — p?, the result obtained by these three different methods
(Frobenius expansion of the complex equation, hypergeometric functions and numerical

solution discussed in Chapter 5) all agree.
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Does this fit the experimental observations? Our experimental setup cannot
measure the steady-state density profile of the plasma. Hence, it is not possible to predict
the exact m = 2 frequency and decay rate for a practical density distribution. However, it
is possible to compare the Q of the resonance obtained experimentally and theoretically.
The Q observed experimentally is Q = 42. The above theory predicts Q = 12.5, less than
one-third of the experimental value. However, this is a much closer agreement between
theory and experiment than the previous model [1]. The next chapter will reveal that the
difference seen in our case may be attributed to the lack of knowledge about the steady-
state density profile that exists in the experiment. In fact, it will be shown that the
diocotron resonances and the Q are dependent on the density profiles. A value of Q equal
to the experimental value of 42 can be obtained by a profile which is smoother at the

plasma boundary and which does not extend all the way upto the wall.

4.8 SUMMARY

To recapitulate the theoretical result: a linear mathematical model for the
perturbed potential in the pure electron plasma was derived using the Poisson's, drift and
continuity equations. This equation (the diocotron equation) has singularities for real
values of the wave frequency w that lie within the range of angular velocities of the
plasma. Previous theoretical work has shown that there are no eigenvalues for the case
when m > 1in a plasma with a monotonically decreasing density profile. The diocotron
equation was solved using Frobenius expansion by extending the independent variable p to
the complex domain. This method of solution, for an m = 2 disturbance in the
particularly simple parabolic density profile, revealed the existence of a complex
eigenvalue that indicates that the m = 2 diocotron wave in the parabolic density profile is
damped. Moreover, there is a unique frequency associated with it. All this, without any

assumption of collisions or other such dissipative mechanisms to explain the damping! In
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other words, the linear model predicts a unique frequency of propagation and a non-
dissipative decay process.

The ratio of the wave frequency to the damping rate, the Q of the resonance, is
within about one-third of the experimentally observed Q. This is a much closer agreement

than the previous model.
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CHAPTER 5

COMPUTATIONAL RESULTS

5.1 INTRODUCTION

The previous chapter outlined a way of solving the diocotron equation by the brute
force method of Frobenius expansion for the particularly simple parabolic density profile.
Although this example showed clearly the existence of an eigenvalue for the complex form
of the diocotron equation, the value of @ obtained did not correlate exactly with
experiment. It is highly probable that the plasma has a density profile different from the
parabolic one. Moreover, the parabolic profile is not smooth at the plasma edge, and
perhaps the profile smoothness affects the resonant frequency and damping rate of the
diocotron wave. This motivated us to solve the diocotron equation for other less simple
density profiles. One stumbling block was the amount of tedious numerical hand
calculations required for one profile. Other profiles would involve more calculations
because of their complexity. A less tedious alternative to Frobenius expansion was
required, and this was found in the form of numerical solution of the diocotron equation
using the Runge-Kutta technique and run on a computer.

Equation (12), the normalized diocotron equation which is more amenable to
numerical calculations, is reproduced below:

2 2 94f(e)
d¢+1§f—{m +———d—’i———}¢=o.

a* " pdp L P2 plalp) -4

It is immediately apparent that this method would also have problems at the resonant
radius where u = g(p). This is overcome by using a slight positive imaginary part for u
while doing the calculations. Next question is: what value of u should be used? This is

where the method of solving by a computer seems more attractive. It is possible to solve
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(12) for different values of Re(u) ranging from, say —20to -+ 20, normalized to the
central rotation frequency. The advantage is that one can obtain all possible frequencies
where the diocotron resonance may occur, if at all it occurs at more than one frequency.

There is a more powerful reason involved and that is discussed in the next section.

5.2 ELECTRICAL MODEL

In the experiment described in chapter 3, we observed the plasma response to a
short pulse. The pulse was in the form of a voltage applied to an octupole section, and the
response was a current induced in the electrode. This may be represented by the circuit
diagram of Figure 18(a). If V' (w) and I(w) represent the Fourier transforms of the voltage
and current respectively, then I(w) = V(w)/Z(w) or I(w) = V(w)Y (w) where Y (w) is
the plasma admittance function. In the limit that the applied voltage pulse is a delta
function, V(w) =1 and I(w) =Y (w). Then the inverse Laplace transform of Y (w)
becomes the impulse response of the plasma. If V (w) s 1 then Y(w) = I (W)/V(w), ie.

the plasma admittance is the ratio of the current to the voltage. It is shown in the appendix

&)= ()

that Y (w) may be written as

v = —ifar) (2l

V(W) 2n/ \ ¢(p,w)
ie. Y (w) = iwAC (w)F? (21)
E,(p,w)
h Clw) ="+~
waere ) $(p,w) |,

F = sin(mn/8), an angular form factor, and A = I/L is a length form factor. C(w) may
be considered as a frequency dependent “capacitance function” since (21) has the form of
a capacitive susceptance and AC(w) has the dimensions of capacitance. Thus the linear

behavior of the plasma to an applied pulse may be found by essentially calculating Cw).
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(a) }A\ \L

(b)

I

. J
- L -

Figure 18. (a) Circuit diagram representation of the experimental setup for observing the
diocotron resonance. The cross section of the plasma is shown. The octupoles tend a 45
degree angle at the center of the cylinder. Only one sector of the octupole is used for
exciting the plasma. If additional sectors were used, say in an m = 2 configuration, Y (w)
would be changed only by numerical factors. (b) The axial schematic of the plasma
(neglecting end effects) showing that only one octupole sector is used to excite and
receive the plasma.
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The method of calculation is as follows. For a plasma with a given f(p) and
a = a/b, the response for a given m is found by solving (12) for ¢(p = 1) and E,(p=1)
for a certain wave speed w. This gives the C(w) for that frequency w = muwy(0). The
wave speed is then incremented by a small step size and the calculation is repeated. By
repeating this process, it is possible to calculate C(w) for a wide enough range of
frequencies that allows us to calculate the discrete inverse Fourier transform of C(w). It
will be shown below that the response of the plasma is essentially the inverse Fourier
transform of C'(w). That is to say, it is possible to simulate the experiment numerically to

obtain the linear response. And one can do this for any possible profile.

5.3 DETAILS OF THE NUMERICAL METHOD

A program was written to find C(w) for selective density profiles. A useful
representation of a density profile for numerical work is that of a polynomial in the
normalized radius p, with the density smooth at the origin and decreasing monotonically
with p (the study of non-monotonic density distributions is beyond the scope of this
research). Hence the simplest ng(p) would be the parabolic distribution f(p) = 1 — p?
discussed in the previous chapter. More complicated cases are obtained by including more
terms in higher powers of p. It was decided to include only even powers of radius. The
coefficient of higher powers may be obtained by imposing conditions at the plasma edge to
make the profile more smooth when f(p) = 0. We can thus obtain the profiles listed in
Table 4. The primes indicate differentiation with respect to p. For the case when the
plasma does not extend all the way to the wall (i.e. a < 1), the profiles are modified so
that p — p/a, and equation (12) is solved only to p = c. In such cases, the field at the
wall is obtained by solving the normalized form of equation (11) for a < p < 1 with
continuity in ¢(p = ) and ¢'(p = ). The last column in the Table 4, file name, is used to

distinguish the various results in Plates 1-5. The eigen number would be substituted for m
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flp) profile name smoothness at p = a | file name
1-p? simple power two | not smooth mte0x
1-2p> 4+ pt power two (#1) fll@)=0 mtelx
1-3p? +3p* — g8 powertwo (#2) | f'(a) = f"(a) =0 | mte2x
1-pt simple power four | not smooth mfe0x
1—3p% + 208 power four (#1) | f'(a) =0 mfelx
1-—6p* +8p% — 3p° power four #2) | f'(a) = f"(a) =0 | mfe2x
1-—pb simple power six | not smooth mse0x
1—4p5 4+ 308 power six (#1) f(@)=0 mselx
1—10p° +150° — 6p1° | power six (¥2) (@)= f"(a) =0 | mse2x

Table 4. The normalized steady-state density profiles f(p) that are used in the
computational work. First column is the representation of the f(p) as a polynomial in p,
while the second column indicates the name. The third column shows the conditions
imposed on the profile at the edge (p = a) to obtain the coefficients (in addition to the
condition that f(p = 1) = 0). Fourth column gives the short file names that are referred

to in Plates 1-5.
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and x would be substituted by the value of a times 100. For example, the result for an
m = 2 perturbation in a power six (#2) profile with a = 0.80 would have a file name of
2se280.

The use of a non-zero imaginary part for u in solving (12) will result in a slightly
higher damping. This may be compensated for in the inverse Fourier transform by
multiplying the end result with a term like e where o is proportional to the imaginary
part of u. But in comparing C(w) for different profiles and to model C (w) accurately, the
positive imaginary part of u used should be neither too large nor too small. A large value
for Im[] results in an incorrect C(w). To avoid numerical errors, it should be greater than
the maximum value of dg/dp. A value equal to 1/10 of the frequency step size was used
for Im[v].

When computing C(w), the vacuum capacitance of the electrode structure would
be included. In order to concentrate only on the effects of the plasma, this vacuum

capacitance has been subtracted out from the computed C (w).

5.4 RESULTS

Using the techniques described above, equation (12) was used to find C (w) for the
various profiles listed and various azimuthal eigen numbers. Figure 19(a) shows the real
and imaginary parts of the capacitance function for m = 2 quasimode for a simple power
two profile. The two marks on the central horizontal line in Figure 19(a) indicate the
central angular velocity and plasma edge velocity. In this case, where a = 1, the plasma
edge angular velocity is the same as g(1), or the angular velocity at the wall. It is apparent
that C'(w) becomes significant only when u lies in the range of the angular velocities of the
plasma. Moreover, C(w) is more significant for the range of angular velocities near the
plasma edge than near the center. The shape of the function seems to suggest that C(w)

can be approximated as a Lorentz function, or a simple complex pole:
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Figure 19. (a) A plot of C(w) for the simple power two profile with & = 1. The real part
is shown on top and the imaginary part is shown just below it. The common z-axis is the
wave speed u as it varies from 0 at the far left to 1.28 on the far right. The range of
normalized angular velocities for the plasma lies between the two marks on the central
horizontal line. For this profile, the normalized rotation frequency at the plasma edge,

g(p =1) = 0.5. (b) The magnitude of the inverse Fourier transform of C(w), plotted on
a semilog scale. Time is measured in terms of the central rotation periods. This is the
response of the plasma to a delta function in voltage applied at the octupole sector. For
this particular profile, the temporal response is non-exponential with an asymptotic
algebraic decay.
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B

Cl) == [wo — 7]

(22)

where wy, 7, ( > 0)and B ( < 0) are found by fitting the model to the figure. Using this in
(21), the admittance of the plasma would appear to be that of a simple complex pole. For
this form of C(w), the inverse Fourier transform of Y (w) is essentially that of C(w) except
for a constant term. This constant term would correspond to the contribution of the
vacuum electrode structure (without the plasma) to the inverse transform. The result of
this constant term is that when a delta function in voltage is applied, a delta function in
current is obtained in the time domain. Otherwise, the effect of the plasma is contained in
the inverse transform of C(w). Using the above model and comparing with Figure 19(a), it

is seen that wy corresponds to the wave speed where Re[C(w2)] = 0. And 7y, is given by:

_wh—w,
Te = 2

where w;, and w; are the angular frequency points where Im[C(w)] falls to half its peak
value. In a manner of speaking, 7, corresponds to the width of Im[C(w)]. For the simple
power two profile, wy = 2.12 and +, = 0.106 normalized to the frequency g(1). This
roughly corresponds, within the bounds of numerical error, to the complex eigenvalue
obtained in Chapter 4 by solving equation (15) using Frobenius expansion. The higher
damping obtained by the computational method may be accounted for by the use of a
positive imaginary part of u, which should result in higher damping.

The inverse transform of C(w) is shown in Figure 20. This is really an inverse
Laplace transform since w has a slight positive imaginary part. As expected from the
model equation (22), the transient response of the plasma to a delta function is a decaying
sinusoid. The frequency of the sine wave is wy and the initial decay rate should correspond
to 7,. These ideas are intuitively inferred from Figure 19(a). The angular frequency (and
hence radius) where Re[C(w)] =0 is the resonant frequency (resonant radius) of the

diocotron wave and the width of Im[C(w)] corresponds to the decay rate of the temporal
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Figure 20. The inverse Fourier transform of the capacitance function of a plasma with a
simple parabolic profile with @ = 1 and m = 2. The initial response corresponds to a fast

decay. However, the asymptotic behavior corresponds to an algebraic decay.
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response. From Figure 20, it is apparent that there is more happening to the transient
response than a simple exponential decay. It can be seen that after the response decays
away, the amplitude rises again, and then persists for a long time. This behavior is brought
out in a better way by observing the magnitude of the transient response plotted on a
semilog scale as in Figure 19(b). It is immediately apparent that the decay is not at all a
simple exponential process. There is an initial fast decay followed by a sudden dip in the
magnitude, and then an asymptotic algebraic decay. The magnitude of the inverse Fourier
transform of a simple pole would leave a straight line trace on a semilog graph. It is seen
from Figure 19(a) that the simple pole model of C(w) is a rough approximation. Both the
real and imaginary parts of the capacitance function are not symmetric about the resonant
frequency. This asymmetry is heightened in the plot of Im[C(w)]. The part of Im[C(w)]
very near the plasma edge is very abruptly cut off. It is speculated that this asymmetry of
C(w) is responsible for the nature of the response shown in Figure 19(b).

The slow asymptotic decay of the diocotron wave was actually predicted by Case
for perturbations occurring in planar Couette flow [1]. Since the model is the same for
either systems (with exception of the geometry), it is reasonable to assume that the
algebraic decay should occur for the diocotron waves also.

The question arises as to how much of the results of Figure 19 are unique to the
profile that was considered. And how much of it is due to the particular value of the
azimuthal eigen number? To answer these questions, C'(w) was calculated for different
profiles and m numbers. Plates 1-5 show the result of these calculations. They show C(w)
and its inverse transform (magnitude only) next to it. The inverse transforms are all plotted
on the same amplitude and time scales (same as in Figure 19(b)), while all the C(w) are
plotted on the same horizontal scale for the wave speed. The central angular velocities for
all profiles are normalized to one. However, the edge angular velocity g(a) and the wall

angular velocity g(1) are profile dependent. Marks are made on the central horizontal line
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to indicate the central, edge and wall angular velocities. The inset for each drawing of
C(w) is a plot of the normalized density and velocity profiles used in the calculations. The
vertical line in the inset indicates the resonant radius. Plates 1 and 2 show the result for the
various tabulated profiles with a = 1. Plate 3 shows the effect of o on C(w) for the

power two (#2) profile. The effect of the azimuthal eigen number m is shown in Plate 5.

5.5 INFERENCES

All the pictures of C'(w) have the same general shape, which may be approximated
by a simple complex pole model like (22). The most significant portion of C'(w) lies near
the plasma edge. When the profile is not smooth, the imaginary part of C(w) ends
abruptly. The inverse transforms all show an initial fast decay and then an asymptotically
slower decay (algebraic). In between the two, there are points where the temporal
response suddenly dips. Around this dip, the envelope becomes wavy (perhaps due to
some interference between the initial decay and the algebraic decay). The magnitude of the
response at which this dip occurs is lower for smoother profiles. The point in fime at
which the dip occurs is larger for flatter profiles (i.e. profiles that are flatter at the origin
p = 0). This means that for profiles that are both smooth and flat, the dip is not noticeable
for a wide range of magnitude. The initial fast decay rate is larger for smoother profiles.
But the initial decay rate is smaller for flatter profiles. Profiles that are both flat and
smooth show responses that have an initial decay that is exponential.

The parameter o does not seem to have such a profound effect on either C(w) or
its inverse transform. However, it is observable that the profiles with a lower « have a
lower initial decay rate. A comparison of the bottom figures on Plates 2 and 4 show that
although the m = 2 response for a power six (#2) profile with o = 1 is damped, for
a = 0.8 the m = 2 response is undamped! A study of C(w) for the 2se280 profile on

Plate 4 shows that the diocotron resonance occurs at a radius outside the plasma edge.
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A special mention must be made about C(w) for an undamped response. In
calculating C'(w), it was assumed that Im[«] > 0. Hence the imaginary part of C(w) is not
a delta function, as would be expected if the inverse Fourier transform of C(w) were an
undamped sinusoid. Moreover, the discrete nature of the calculation does not do justice to
the proper representation of a narrow peaked response. Hence the amplitude of the
imaginary part of C'(w) should be much larger than shown.

The bottom Figure in Plate 4 is C'(w) for the power six (#2) profile with o = 0.8,
but plotted on a much larger scale (i.e. increased magnification). Observation shows an
additional peak for Im[C(w)], but this peak has a much broader width. The inference is
that for this particular case, two distinct diocotron resonances are possible. The second
resonance is a comparatively highly damped and occurs at a larger frequency. Hence the
temporal response will be dominated by the undamped resonance.

The Q of the resonance for these different profiles vary widely from Q = 4.5 for
the m = 2 in the power two (#2), a = 1.0, case to a Q = oo for undamped resonances.
The m = 2 diocotron in a power four (#2) profile with o = 0.8 has a Q = 42 which

matches the experimentally obtained value.

5.6 DISPERSION OF DIOCOTRON WAVES

The effect of exciting different quasimodes, specifically the m = 1, m = 3 and the
m = 4, on the power four (#2) profile with a = 0.8 is shown in Plate S. Of the three
marks in the central horizontal line of the figure for C'(w), the leftmost corresponds to
g(1) and the middle one is g(c). It is seen that the m = 1 resonance occurs at the wall
rotation frequency and it is undamped. The m = 3 and m = 4 resonances occur within the
plasma. The damping rate of the m = 3 is smaller than that of the m = 4. And these two
resonances occur more or less around the same radius. However, it must be noted that the

m = 3frequency is only about 3/4 of the m =4 frequency. A detailed study of the
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Figure 21. (a) Variation of the diocotron frequency with azimuthal eigen number m for
selected profiles with a = 0.8. All frequency values are normalized to the central rotation
frequency wp(0). (b) Variation of normalized damping rate with m number for the same
cases as in (a) above. Together, these graphs give an idea of the dispersion of the
diocotron waves by the plasma. The frequency and damping rate are the parameters that
describe the initial fast (exponential) decay of the diocotron wave, and are the values that
would be inserted into the electrical model of the plasma represented by the simple
complex pole model for the capacitance function as shown in equation (22).
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Figure 22. The diocotron frequency, as represented in equation (22), is the angular
velocity of the resonant radius where the wave speed equals the angular velocity. The
above graph shows the variation of the resonant radius with the mode number.



73

quasimodes with different azimuthal eigen numbers was carried out with a motivation to
find out, qualitatively, the dispersion for diocotron waves in a pure electron plasma. The
results are shown in Figures 21(a) and (b). Computations were made on powers 2, 4 and 6
(#2) profiles, all with o = 0.8. The behavior of the diocotron wave for different eigen
numbers is more or less the same for different profiles, as may be seen from the graph of
quasimode frequency versus eigen number and quasimode damping versus eigen number.
The quasimode frequency is approximately proportional to the eigen numbér with larger
slopes for flatter profiles. The damping rate is more complicated. It initially increases with
eigen number, but remains constant for high numbers.

Figure 22 shows the variation of the diocotron frequency with the wave speed of
the diocotron resonances. The initial transient response of the diocotron wave is localized
to a resonant radius of the plasma where the wave speed equals the angular rotation
frequency. Hence the wave speed is an indication of the radius of the plasma that
resonates with the diocotron wave. Figure 22 thus depicts the variation of resonant radius
with the eigen number. It shows that for a given profile, the resonant radius first moves
inward as the mode number increases up to m = 4. For higher eigen numbers, the
resonant radius moves outward, but not out to the wall. There is no dramatic change of
resonant radius with very high eigen numbers.

One parameter not shown in the figures is the relative amplitude of the response
for different eigen numbers in the same profile. This is related to the value of B in
equation (22) and to the argument of the sine function in equation (21). The relative
amplitude of the transient response decreases with increase in eigen number. As an
example, the peak of Im[C(w)] for the m = 2 quasimode in a 2te280 profile is higher by a
factor of 15 than the peak of Im[C(w)] for the m = 4 quasimode in the same profile. The
result is that when a plasma is excited by a delta function, although all the diocotron
quasimodes may be excited within the plasma, the transient response observed at the wall

will be dominated by the quasimodes with lower eigen numbers.
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5.7 ALGEBRAIC DECAY

Almost all the results in Plates 1-5 seem to show that the transient response has a
sudden dip in amplitude at some point followed by an asymptotic algebraic decay. Both
the rate of the decay as well the point in time where the transition occurs is profile
dependent. It was surmised that the dip was caused by an interference between the
sinusoid of the exponential decay and that of the algebraic decay. It was decided to
measure the frequencies of the algebraic and exponential parts. It was found that for the
simple power two, power two (#1) and the power two (#2) (all with a = 1), and also the
power two (#2) with a = 0.8 profiles, the ratio of the frequencies of the fast decay to the
algebraic decay was in the ratio of the m = 2 diocotron frequency to m times the edge
rotation frequency for that profile. Since we know the frequency during the fast decay
corresponds to the m = 2 diocotron frequency, this means that the frequency of the
transient response changes from the m = 2 frequency before the dip to m times the edge
frequency after the dip. And the dip was caused by destructive interference between the
two frequencies. We can now surmise the following;

The transient response of the plasma to a diocotron wave consists of two distinct

frequency components in the asymptotic limit:

d(t) = D,e "sin [wmt] + D,h(1/t)sin [mg(a)t]

where D,, and D, are complex constants (providing phase and amplitude information)
and h(1/%) is a polynomial in 1/t (which is valid only in the asymptotic limit). The first
term is caused by the diocotron wave speed resonating with a particular radius of the
plasma. The resonant frequency is m times the angular velocity of the resonant radius. The
second term may be the result of the diocotron wave interacting with the rest of the
plasma. Since the second term is valid only for large ¢, around ¢ = 0 the exponential term
dominates and the transient response is simply that of the first term. At some point in time,

the algebraic and exponential parts become commensurate in amplitude and interfere
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providing the waves around the dip as seen in Plates 1-5. The dip occurs when phasor
addition of the two terms cause destructive interference. In the asymptotic regime, the
algebraic decay dominates.

Both Case and Briggs et al. predicted, on purely mathematical grounds, the
presence of the algebraic decay [1,2]. They ascribed it to the contribution of the
continuum, or the collective contribution of the entire range of angular velocities of the
plasma muwy(p) with 0 < p < a. However, they do not consider any particular density or
angular velocity profile and base their arguments on general grounds. They also do not
suggest any reason why the algebraic decay should be dominated by m times the edge
frequency. Based on the results in Plates 1-5, it is our hypothesis that the algebraic decay
should disappear for density profiles that are very flat at the origin and analytic in the

region around p = a.

5.8 NEGATIVE ENERGY EXPLAINED

Chapter 3 contained the details of an experiment that showed that when dissipation
is introduced at the wall of the electrode, the decay rate of the m = 2 diocotron wave
decreased. From this, it was confirmed that the m = 2 diocotron wave was a negative
energy wave. This had been experimentally verified for the m =1 diocotron, and
theoretically predicted for diocotron waves that were undamped [2, 3]. Described below is
a model for understanding the negative energy behavior of the quasimode based on the
Lorentzian model of the capacitance function developed in this chapter.

Figure 14(a) shows an octupole sector of the electrode structure connected to a
resistor R. This represents what was performed experimentally to confirm the negative

energy behavior. At the junction between the electrode and the resistor, the following

equation is valid:

1
Y = =0.
@)+
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Using equation (22) representing the Lorentzian model of the capacitance function and

solving for w in the above equation, we get:

1
w= 1—+'(K—R)—2[w2 — % KR —i(y, +wKR)) (23)

where K = ABF? (A and F are defined in (21) and B is defined in (22)). Since A is a
positive constant, K < 0 because B < 0 from fitting the model equation (22) to the
actual plot of C'(w). Experimentally, from Figure 15, KR is determined to have a value

around 0.01. Hence the above equation simplifies to

w R wy — i(yy +wo KR). (24)

Equation (23) shows that in the presence of wall dissipation, both the frequency and the
damping rate are changed. Since KR < 1, the shift in the m = 2 frequency is not
significant. The damping rate is changed significantly when wy > 7, (which is satisfied in
the experiments), and it should decrease with increase in resistance. Equation (24) shows
that the decrease in damping rate should be linear with increase in resistance. This is not
inconsistent with the experimental result seen in Figure 15. This is true for any diocotron
quasimode which can be approximated with the model equation (22) with B < 0. As seen
from the figures in Plate 5, this is true for the higher quasimodes with m = 3 and 4. Hence
these, and other similar quasimodes, will also be negative energy waves and their damping

rate will decrease with the addition of an external resistance.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

A pure electron plasma can be confined by means of static electric and magnetic
field within a cylindrical Penning trap. The radius of the confined plasma may not extend
all the way up to the wall. When so confined, the plasma will be in steady-state rotation
about the axis of the cylinder. The dynamics of such a plasma, under certain
approximations, in the two-dimensional (r, ) plane is mathematically analogous to the
dynamics of 2-D inviscid incompressible fluid flow. This analogy allows us to relate the
electrostatic potential to the stream function and the density to fluid vorticity. The angular
velocity of rotation of the fluid is a function of the density (vorticity) profile.

For monotonically decreasing angular velocity profiles, experiments reveal the
existence of resonant frequencies at integral multiples of the angular rotation frequency,‘
and much below the single particle cyclotron frequency. These resonances, the diocotron
resonances, may be considered to be excited at a resonant radius where the diocotron
frequency is m times the angular velocity at that radius. When the plasma is excited by an
azimuthally traveling electric field propagating of azimuthal eigen number m, with a wave
speed equal to the angular velocity of the resonant radius, a sinusoidal current will be
induced at the wall of the electrode. If the source of excitation is removed, and the walls
of the electrode are perfectly conducting, the induced current may or may not decay.
Experiments show that the m = 2 resonance induces a current that decays with time. In
the linear regime of the experiment, the m = 2 response decays exponentially. The time
taken by an m = 2 resonance to decay to 1/e of its initial value is much less than the time
between collisions of the particles. Hence this decay is collisionless. When the excitation

amplitude is large enough to cause non-linear behavior, the induced current is no longer an
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exponentially decaying sinusoid but is modulated by trapped fluid oscillations around the
resonant radius of the plasma.

That the decay of the diocotron wave is not caused by wall dissipation is borne out
by another experiment that shows that the addition of wall resistance causes the damping
rate of the m = 2 diocotron wave to decrease. Hence the m = 2 diocotron wave is a
negative energy wave. Experiments also showed that it was possible to destabilize an
otherwise damped diocotron resonance. This may be done by providing sufficient wall
dissipation.

A self-consistent set of equations for the linear perturbed potential using the fluid
model of the non-neutral plasma reveals the diocotron equation, which is quite similar to
the Rayleigh equation for a 2-D inviscid, incompressible fluid. The uniqueness of the
equation lies in a singularity when the frequency of the perturbation, w, equals m times the
angular velocity, wo (7). Solution of the equation for a particularly simple parabolic profile
with the homogeneous boundary conditions and extension of the radius variable, r, to the
complex domain reveals a complex eigenvalue for w. The sign of the imaginary part of w is
such as to cause damping of the perturbation. The ratio of the real part to the imaginary
part of w is within a factor of 3 of the experimental result. Previous theoretical prediction
based on the kinetic model of the plasma revealed a damping rate which was two orders of
magnitude away from the corresponding experimental result.

Computations carried out with different density profiles show that the resonant
frequency and the damping rate are dependent on the smoothness and flatness of the
profile. Computations supported the theoretical finding of an eigenvalue and provided a
profile with a ratio of resonant frequency to damping rate that matched the experimental
result. It also revealed that diocotron resonances can occur outside the plasma edge.
Further analysis showed that the transient response should decay initially with an
exponential rate, but asymptotically the decay would be algebraic. The frequency of the

algebraic decay ism times the angular velocity of the plasma edge. The point of transition
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from a fast exponential decay to a slow algebraic one is dependent on the profile. For
smoother and flatter profiles, the algebraic decay cannot be seen experimentally.

The diocotron resonance may be understood by representing the plasma
admittance function as one with a simple complex pole in the frequency domain. With
such a representation, it is confirmed that a decrease of wall conductivity should have the
effect of decreasing the damping rate of the mode. The Lorenztian model of the
admittance function of the plasma for diocotron resonances show that this behavior is

common to all diocotron modes, not just the m = 1and m = 2.

6.2 FUTURE WORK

The studies on the diocotron resonance is not by any means over. It was shown
that the experimental observations of the diocotron resonances could be explained on the
basis of the linear fluid model using the drift approximation. This latter approximation
neglects inertial effects like Coriolis and centripetal forces. The drift approximation also
neglects collective effects of viscosity and pressure, both thermal in origin. Calculations
show that inertial effects in our plasma are larger in magnitude than thermal effects. These
thermal effects are responsible for changing higher eigenmodes of the cyclotron
resonances to propagating Bernstein modes [1]. It is not known what effects the inertial
and thermal effects have on diocotron quasimodes. Ironically, observations of the linear
damping do not reveal any phenomena which may suggest revising the model to include
higher order effects.

Viscosity is a dissipative mechanism. Since diocotron waves are negative energy
waves, one would expect viscosity to decrease the damping rate of the resonances. This
must be tested experimentally.

As stated above, an innocuous damped m = 2 resonance can be destabilized into a
growing mode by the addition of sufficiently high wall resistance. If viscosity does

decrease the damping rate of the resonance, then a high enough viscosity should result in
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spontaneous diocotron resonances. Although the viscosity in a non-neutral plasma may
not be so high, this may find application in the study of viscous fluid instabilities.

It has already been observed that axial motion will cause damping of the m =1
diocotron resonance. No work has been done to see if the quasimodes are also affected in

a similar way by including axial motions [2].
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APPENDIX

Derivation of the admittance function Y (w)

Referring to figure 18(a) and (b), if V' (w) is the voltage applied to the octupole and

¢(m, k, w) are the Fourier components of the plasma potential at the wall, then:

Vo, zw) = ZZqS(m, k,w)e™ etz
k m
= qus(m, n, w)eimaeiQan/L.

Then
1 1% . .
E/ . Ve—zanz/Ldz — Z¢(n, m)esz.
-L -

Because V = Ofor—g <z< -land0< z< %,wehave

1/0 i V. .
= Ve zwnz/Ldz: ___/ Ve z27mz/Ld‘z
L —~1 L -

174 ei27rnl/L -1

L 2mn/L
WV sin(nwl/L) o000
=——1" :
L nrnl/L

We are interested in modes withn = 0 = sin(n7l/L)/(nnl/L) — 1. Hence
1 ° —i2mnz/L v imb
Z/_IVe dz=—f=Zn:¢e

where it is understood that ¢(m,w) = ¢. Then

11 5. _.
$p=—— [ Veimdp
L2x -1
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2 ¢p(m,w)
m/2 {sin(mm/8)’

= V(b,w) = (B1)

Equation (B1) gives the relation between the voltage applied to the octupole and the
plasma potential at the wall of the electrode. Now, to find out the relation between the
current J(w) and the electric field E, at the wall. From an application of Ampere's law

applied to electrode wall:

- = 6—5
VxH=J+605t—
oF
= V-(7+eo—a?)=0
= /(7+e0@))-d?=0
at
= /7-d§?+60%f?3)-d?2’=0

where the first integral is evaluated over the area of the outer octupole surface area
carrying the current I and the second integral is evaluated over the inner octupole surface

area facing the plasma.

0
= —/J,dsl — € a/ErdSQ =0.

The negative sign comes in the first integral because the outward surface element vector
located at the outer surface of the octupole (facing the wire) is opposite in direction to the

current density in the wire.

a i _ .
N i S / " E.e™bldo = 0
ot -1

OE,\ 2bl
or I= —-eo( ) —sin(mm/8)
ot /m
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2bl
ie. I(w) = weg— E,sin(mn/8) (B2)
m

where it is understood that the electric field is to be evaluated at the wall. From equations

(B1) and (B2), we get:
_ I(w) _ iwey ZbIE,sin(mm/8)

=3 )
V(w) m 2T Tin(mm/8)

-(o) (51 ) = ()

Y (w) = wAC(w)F? (B3)

where A is a constant with the units of capacitance and F' is a geometric form factor. If
the plasma were excited with an m = 2 configuration, but the response were still obtained
with a single electrode, then Y (w) would only be altered by numerical constants, a factor
of 4 in this case. C(w) is a dimensionless quantity, which is shown below to be a
dimensionless ratio of the electric field to the potential at the wall. It may be considered as

a dimensionless capacitance function. AC(w) would have the dimensions of capacitance.

B _ b db)| =10 _ B

)= =80 dr |~ 80 dp |

p=1 B ¢(p)

=1

Equation (B3) gives the admittance function of the pure electron plasma. Of the quantities
involved in the calculation of Y (w), only C(w) is unknown. This may be calculated by the

method outlined in Chapter 5.



