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Abstract

The D; is a pseudoscalar meson composed of two second generation quarks, the
heavy charm and the light strange. The bulk of our knowledge of the D, comes
from secondary production via B decays. These experiments have high statistics but
are poorly suited to absolute branching fraction or production cross-section measure-
ments. The best way to perform those is to use double-tagging of threshold pair
production. Unfortunately, there is no strong resonance near D, threshold, making
it difficult to obtain sufficient statistics.

This thesis makes use of the £ =22.8 4+ 0.6 pb™tintegrated luminosity collected by
the Beijing Spectrometer from the Beijing Electron-Positron Collider at 4.03 GeV.
This energy was chosen because the coupled-channel model of Eichten et al. predicts
an enhancement there of the DD, cross section to somewhat below 1 nb. We
attempt to fully reconstruct hadronic and semileptonic D, pairs from six-prong events
not containing any photons. We combine the y? from kinematic fitting and particle
identification to form a single value, the joint confidence level, for each event.

Using this in the analysis yields five hadronic events, with multiple combinations
per event. Since the D; principally decays to resonant moves, we preferentially select
those combinations which lead to resonant two-body masses. This gives us a signal
containing 7 resonant decays and 3 non-resonant KK~ 7t decays. We use Monte
Carlo efficiencies and knowledge of the ratio B(D} — F*OKJ’) /B(Df - KTK—71)
to estimate the production rates represented by these tags.

We perform a likelihood analysis using those numbers, together with the abso-
lute branching fractions, to obtain a value of o(ete™ — D}D;) at 4.03 GeV =
0.53f8:§3 fg:ggnb, one sigma below the coupled channel model. Using only relative
branching fractions, we fit to a value for the ratio B(D} — F*OKJr) /B(Df — ¢n)
of 1.78 7123 +22 " This is within one sigma of the current world average, and differs

—0.80 —0.24°
noticeably from the model of Bauer, Stech, and Wirbel value of 0.56 & 0.7.
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Introduction



Chapter 1 The Standard Model

The Standard Model postulates that the universe is made of twelve different vector
bosons and twelve spin—% fermions and their antiparticles, as shown in Figure 1.1.
Formed out of the union of electroweak theory and quantum chromodynamics (QCD),
the Standard Model has proven remarkably successful at explaining a wide variety
of data. The Minimal Standard Model (MSM) also predicts a neutral scalar Higgs
boson, associated with electroweak theory and the generation of mass. While there is
strong theoretical motivation for at least one Higgs boson, there is as yet no evidence
for its existence.

The vector bosons in the Standard Model act as carriers of forces, as shown in
Table 1.1. They are associated with the generators for particular symmetry group:
SU(2) @ U(1) for electroweak, and SU(3) for QCD. They couple to particles which
form multiplets under those symmetries. The Standard Model does not fix the relation
between the two, nor predict the parameters within them (such as masses and coupling
constants). Various Grand Unified Theories (GUTSs) attempt to do so, but also predict

behavior such as proton decay which has not yet been observed.

1.1 Bosons

Electromagnetism, the most familiar force, is carried by photons and couples to elec-

tric charge with a strength of o = -2 ~ 317 at large distances. A photon can either

4mhe
| Force | Carrier [ Number | Charge [ Mass[l] ]
Color gluon (g) 8 0 ~ 0
Electromagnetism | Photon (v) 1 0 0
Neutral Weak Z° 1 0 91.187 GeV
Charged Weak w#* 2 +1 80.22 GeV

Table 1.1: The twelve vector bosons.
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Figure 1.1: Fundamental particles in the Standard Model.

(a)

(b)

(c)

Figure 1.2: Feynman diagram for electromagnetic interactions. Emission is read
downward, where (a) emits (b) and turns into (¢). Annihilation is read to the right,
where (a) annihilates (c), producing (b). Pair-production is read to the left, where
(b) spontaneously produces both (a) and (c). All these interactions have a strength
of a.
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be emitted or absorbed by a charged particle, or it can be involved in the creation
(pair-production) or destruction (annihilation) of charged particle-antiparticle pairs.
These are all governed by the same Feynman diagram vertex, shown in Figure 1.2,
read in different ways. In fact, even if a photon doesn’t have enough energy to cre-
ate two real particles, it will continually create virtual pairs, which could themselves
emit virtual photons. However, the amplitude for each of these recursive processes is
suppressed by a factor of a. This allows one to use perturbation theory to calculate
their rate to any desired accuracy.

The Z° couples both to charged particles, and neutral particles like neutrinos.
The W=, on the other hand, couples to weak doublets, whose charge difference is
one. The latter only couples to particles with negative helicity (spin times direction,
& -p). Thus, left-handed particles and right-handed antiparticles form weak doublets,
whereas their mirror images form weak singlets. Particles with mass will generally
be in a superposition of helicity states. The Higgs symmetry breaking which gives
mass to the fermions also leaves the weak bosons with a large mass. This results in
a short-range force whose coupling constant G perm; = 1.12 X 1075GeV ™2 is a million
times smaller than « at nuclear scales. Both of these increase at higher energies, and
become comparable at the weak scale.

By contrast, QCD has a large coupling constant (= %) which decreases with
energy (presumably matching up with the others at the GUT scale, far above any
imaginable experimental energy). QCD, also known as the strong force, couples to
a triplet of charges, known as “color.” Bound states (hadrons) involve either three
colors (baryons) or a color-anticolor pair (mesons). The strong force actually increases
with distance, making it impossible to isolate a colored object. Gluons, as the SU(3)
generators, also possess color, making it theoretically possible for them to form a
bound state by themselves

The real problem with the strong force is that the coupling constant is greater than
one at low energies. Thus, the perturbation series diverges, as diagrams increase in
amplitude the more recursively produced gluons there are. Tree-level diagrams, such

as that on the left of Figure 1.3, ignore this problem, which is associated with gluon



T b T b

Figure 1.3: Tree-level QCD diagram plus a loop correction.

Quantum Numbers Generation Number
Lepton/Baryon | Weak Isospin 1 [ 2 [ 3
L =0, I=+41/2 u =~ 5MeV ¢~ 1.3GeV t ~ 180GeV
B=1/3 I=-1/2 d ~ 10MeV s~ 200MeV | b=~ 4.3GeV
L=1, I =+41/2 Ve < 7eV v, < 027MeV | v, < 31MeV
B = I'=-1/2 |e=0511MeV | p=105.7MeV | 7 = 1777TMeV

Table 1.2: The three fermion generations.

loops like that shown on the right. Tree-level diagrams are often useful for qualitative
descriptions of processes, even if they are not quantitatively correct. However, there
is in general no way to directly calculate QCD bound states, though there are var-
ious tricks and models that can help in particular circumstances. Non-perturbative
methods, such as lattice gauge theory [2] which simulates space-time as a 4D lattice,
hold out some hope of eventually calculating some of these quantities, but have not

quite done so due to theoretical and computational limitations.

1.2 Fermions

There are three generations of fermions, each with a pair of quarks and a pair of
leptons. These are listed in Table 1.2, along with their masses from Ref [1]. Each

negatively charged lepton, along with its massless, neutral neutrino' form a weak

!The MSM predicts massless neutrinos. The possibility of neutrino mass is a hotly debated
theoretical and experimental topic.



d s b
0.97530 £+ 0.00060 0.22100 £ 0.00300 | 0.00350 + 0.00150
—0.22100 £ 0.00300 | 0.97450 4+ 0.00070 | 0.04000 <+ 0.00800
t | —0.01100 4= 0.00800 | —0.04400 4+ 0.01400 | 0.99915 + 0.00035

Table 1.3: The CKM weak mixing matrix amplitudes.

doublet. For quarks, however, these are not formed by two quarks from the same
generation with a well-defined mass. Instead, the eigenstates of the weak force are
linear combinations of the mass eigenstates.? The mixing between the two is ascribed
by convention to the down quarks, and handled by a unitary transformation known
as the Cabbibo-Kobayashi-Maskawa (CKM) matrix.

The CKM matrix, whose elements are usually denoted Vij, is a unitary 3x3 matrix,
and hence can be parametrized by three real numbers plus a complex phase. The
amplitudes from Ref [1] are shown in Table 1.3. The complex phase, if non-zero,
would violate parity and may be responsible for the matter-antimatter asymmetry of
the universe. Due to its small size, and the uncertainty in the other matrix elements,
it has not yet been measured directly. Note that the diagonal terms are large, so
quarks predominantly couple within their own generation.

If we work at energies where the top and bottom quarks are inaccessible, the CKM
matrix reduces to a 2 X 2 matrix parametrized by a single angle. This is known as
the Cabbibo angle, and has a value of sin - = 0.22, giving a mixing of about 5%. In
other words, a charm quark is almost twenty times more likely to decay to a strange
quark than to a down quark. The former is referred to as a Cabbibo-allowed decay,
while the latter is called Cabbibo-suppressed. This is a very important result, as it
is decays of the charm quark that we will be concerned with in the next chapter.

The most interesting thing about quarks is that they carry color charge, and
hence form bound states under QCD. In this thesis we are concerned with qq bound
states known as mesons. A summary of mesons to which we will refer is given in

the Tables 1.4, 1.5, and 1.6, using information from Ref [1]. For long-lived particles,

2If neutrinos have mass, then they would be liable to mixing as well. Otherwise, there is no other
basis in which to decompose the weak eigenstate neutrinos.



Name Mass | Full Width / Quark Principal
(MeV) | Lifetime (c7) Content Decays
ut 105.66 659 m none etv, + 1,
7t 139.6 7.8m ud, ad pwr,
70 135 25.1 nm uii — dd 27y
K* 494 3.7m U, Us pry,, ot
K? 498 2.7 cm ds +ds vis
K? 498 15.5 m ds — ds T
K*(892)° | 896 50 MeV ds + ds K
f0(980) 980 | 40 to 400 MeV | v +dd+s5 | nm, KK
$(1020) | 1019.4 | 4.4 MeV s5 K K

Table 1.4: The muon and important light mesons.

Pseudoscalar Vector
Quarks | Name | Mass (MeV) Name Mass (MeV)
cd | D* |1869.4+0.4 | D*(2010)* | 2010.0 + 0.5
cu D° | 1864.6+ 0.5 | D*(2007)° | 2006.7 + 0.5
cs DF |19685+07] D 2110.0 + 1.9
Table 1.5: Charmed mesons.
Common | Official | Mass | Width Principal
Name Name | (MeV) | (MeV) Decays
J/ J/¢(1S) | 3097 | 0.090 | Light mesons
Y »(2S) 3686 | 0.277 | J/v¢ + mesons
(i Y(3770) | 3770 24 D,D
none | 1(4040) | 4040 | 52 | DY D*(2007)°

Table 1.6: The low-mass éc resonances.
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the lifetime is given in terms of the relativistic path length, ¢, whereas that for the

short-lived resonances is given in terms of decay width.
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Chapter 2 The Accelerator

The Beijing Electron Positron Collider (BEPC)[3], shown in Figure 2.1, was com-
missioned on April 24th, 1984 and began ete™ collisions on October 16th, 1988, two
months ahead of schedule. It is located at the Institute of High Energy Physics in
Beijing, which contained an existing linear accelerator that was adapted to inject
electrons and positrons into a storage ring. There, they collide with each other under
precisely controlled conditions. The design was based on the SPEAR ring at Stanford,
upgraded for greater luminosity.

The energy range of the accelerator is from 3 to 5 GeV, where charmed mesons
and tau leptons can be pair-produced near threshold. Not only would this mean that
there are no extraneous particles in the event, it ensures that the particles in a pair
each have the same energy as the beam. SPEAR and other machines of the late
seventies that operated in this region have either been decommissioned or upgraded
to higher energies, so BEPC is one of the few existing machines capable of precision
measurements in this region. This energy is also suitable for glueball and hybrid
studies, as well as general measurements of the cross-section for various processes in
this regime.

Initial studies focused on the J/4, ¥/, and 7 particles[4]. D, data taking began in
the spring of 1992 and continued until the spring of 1994, apart from machine studies
and calibration measurements at the J/¢ and ¢’. Operating parameters during the
D, run are shown in Table 2.1.

The 202 m linear accelerator alternately injects bunches of electrons and positrons
into the storage ring. Each injection cycle fills one bunch of each in the ring, which de-
grade over the course of the several-hours-long run. Since the electrons and positrons
have opposite charges, they can circle in opposing directions using the same beampipe
and electronics. Powerful magnets bend the particles around the curves; this acceler-

ation causes them to radiate away energy, which is restored by two radio-frequency
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Figure 2.1: The Beijing Electron Positron Collider (BEPC).

Parameter ' Symbol ] Value ‘ Unitﬂ
Center of mass energy E 3-5 GeV
Storage ring circumference L 240.400 m
Bunch spacing ty 801.888 nsec
Number of bunches N 1
Natural bunch length oy 5.20 cm
Number of particles per bunch at injection N, 6.8 x 1010
Revolution frequency fo 1247.057 | kHz
Horizontal beta function at IP M 103.00 cm
Vertical beta function at IP M 8.5 cm
Horizontal spot size at IP o, 592 pm
Vertical spot size at IP oy 38.7 pm
Beam-beam linear tune shift Av, 0.035
Beam-beam linear tune shift Av, 0.035
Beam-pipe inner radius at [P r* 7.5 cm

Table 2.1: BEPC operating parameters.
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(RF) cavities in the straightaways.

This loss is partly intentional, as the lost energy takes the form of synchrotron
radiation (SR). As X-rays of precise frequency and high-intensity, SR is very useful for
materials science studies. While this useful side-effect helps justify the construction
of an accelerator, the difficulty in doing both colliding-beam physics and SR research
simultaneously means the two groups often compete for running time.

Over most of the ring, the magnetic fields are designed to keep the counterrotat-
ing electrons and positrons from intersecting with each other. The exception is the
Interaction Point (IP), located opposite the injection site. There, the two beams are
tocused down to a spot 40 microns high and 600 microns wide, intersecting along
a distance of 10 centimeters. Particles produced by collisions here are seen by the

detector, which almost completely surrounds the IP.



13

Chapter 3 The Detector

The detector at the IP is named the Beijing Spectrometer (BES). Started shortly after
BEPC was begun, it was installed there in April 1989. BES[5] is a fairly standard,
cylindrical, magnetic e*e™ detector, modeled after the Mark III detector at SPEAR.
It is about six meters long and seven meters high, as shown in Figures 3.1 and 3.2. Its
raison d’etre is to measure the momentum and identity of the stable particles produced
by collisions in BEPC, and thereby infer those of the unstable particles. Most detector
subsystems are only designed to detect charged particles, but the electromagnetic
calorimeter can also respond to photons.

The identity of particles is primarily determined from their velocity. The tracking
system, in conjunction with the magnetic field, measures momentum. By observing
the velocity-dependent interactions with other systems, we can then determine the
mass of a particle, giving us its identity. The prime exception to this is the muon
system, which uses the greater strength of hadronic interactions to differentiate pions
from the similarly massive but weakly interacting muons.

The detector proper consists of a central and main drift chamber (CDC and MDC);
a time-of-flight system (TOF); an electromagnetic calorimeter using shower counters
(S8C), and the muon system. Supplementing these are the magnetic field, the hardware
trigger, the luminosity monitor, and the beampipe. Their operating parameters will
vary with time, and must be determined by calibration. The subsystems are discussed
below in the order they would be experienced by a particle produced at the IP. Their
size is given in terms of inner diameter (ID), outer diameter (OD), and length. Both
Cartesian and cylindrical coordinates are used, with z along the beampipe and y

pointing upward.
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Figure 3.1: Side view of the BES detector.
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Figure 3.2: Axial view of the BES detector.

3.1 Magnetic Field

The first thing a particle newly created at the IP experiences is the presence of
a magnetic field. The detector is swathed in an axial magnetic field of 0.4 tesla
generated by an aluminum coil encapsulating nearly the entire detector, with an ID
of 3.48 m, an OD of 4.14 m, and a length of 3.60 m. Within the tracking region, the
field is uniform to within less then 3%.

The incoming electrons are not strongly affected by the field, since they are moving
parallel to it. However, particles from collisions generally have a momentum com-
ponent transverse to the field, which results in a helical trajectory around the axis.
The faster the particle, the greater the radius of curvature. A stronger magnetic
field allows greater resolution of high-momenta particles, which otherwise would look
like straight lines. However, that causes particles with low transverse momentum
to curl up so tight they never reach the detector. At BES, charged particles need
pr > 40 MeV /¢ to get far enough into the detector to be reconstructed.
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3.2 Beampipe

Particles which avoid curling up face their first barrier: the aluminum beampipe.
While integral to the detector, this pipe is part of the system which maintains a
vacuum of 5 x 107! torr throughout the storage ring. It is a cylinder with an ID of
15.0 cm and OD of 15.4 cm, the thickness corresponding to 0.0225 radiation lengths.
This can mean quite a substantial loss of energy for a slow-moving particle, since
energy loss increases dramatically as a particle slows down. What is worse, the
amount of energy lost depends on what kind of particle it is, so cannot be known
until after identification has taken place. Energy loss is a function of velocity, and
hence depends on both momenta and particle type. Kaons with less than about 140

MeV/c of momentum have a good chance of being stopped entirely by the beampipe.

3.3 Luminosity Monitor

Particles which escape the beampipe may enter the detector, and experience a (brief)
lifetime of fame and significance. However, not all particles are so lucky. Some
move at such a shallow angle to the beampipe that they exit it beyond the detector.
However, even these serve a useful purpose, in that they can be used to give us a
precise measurement of the luminosity. This is accomplished by a luminosity monitor,
consisting of four scintillator telescopes located on either side of the IP, as shown in
Figure 3.3.

The particles involved are Bhabha-scattered electrons. Bhabhas are produced by
electrons which either scatter or collide to produce another electron pair. Since by
indistinguishability we can not tell the two processes apart, both channels contribute
to the cross-section. The differential cross-section for this process [6] is:

do o (2—sin®6)(4 —sin®9)?
dQ  8E? sin* ¢ ’

(3.1)

using 0 < 6 < 7 for the angle from the beampipe. Thus, by knowing the number of

Bhabha electrons at a given angle, we can determine the luminosity at the IP. The
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Figure 3.3: Luminosity monitor telescopes.



18
luminosity monitor measures small-angle Bhabhas, which are dominated by scattering
with o oc 1/sin? §; wide-angle Bhabhas enter the detector, and are used for luminosity
measurements and calibration by the offline reconstruction.

The luminosity monitor makes use of the fact that Bhabha electrons are pro-
duced symmetrically. The telescopes are arranged in two pairs, on either side of the
beampipe. The system is triggered whenever two diametrically opposed telescopes
both register a hit within 50 nsec of the beam crossing. This may also include some
false coincidences, however. A second trigger counts coincidences between a monitor
and its opposite number from the previous crossing, estimating the rate for false coin-
cidences. A third trigger, which reads one out of every million crossings regardless, is
used to measure random background, in case there is any intrinsic bias in the counters
themselves.

Hits and coincidences are defined using the two pieces of scintillator (P and C)
and the shower counter (S) associated with each telescope, shown in Figure 3.3.
The scintillators provide a simple yes/no signal, indicating whether or not they were
hit. The shower counter uses a photomultiplier tube! to measure the energy with a
resolution of about 13% in this energy range. For the system to record a hit, the
deposited energy must be within 3.50 of the beam energy.

The telescopes are arranged symmetrically around the IP. However, since inter-
actions actually take place in a finite region around the nominal IP, electrons can
approach the two telescopes from slightly different angles. This is why there are two
separate pieces of scintillator: as shown, the size of the C' counter is carefully matched
to subtend the possible angle of Bhabha events which ended up in the opposing P

counter.

3.4 Central Drift Chamber

If the particle has sufficient transverse momentum, it will enter the detector and

encounter the Central Drift Chamber, which is wrapped snugly around the beampipe.

! Actually located outside the magnetic field, and fed via light pipes.
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The CDC is a gas-filled cylinder with a length of 110 cm, an inner diameter of 18.4
cm, and an outer diameter of 30.2 cm, covering a solid angle of 98% of 4. It consists
of four layers of 48 sense wires running axially, plus field wires which define a sense
cell around it.

The idea of a sense cell is used throughout the detector whenever there is a region
of gas, where the wires are at a high voltage. When a charged particle passes through
the gas, it interacts electromagnetically to strip electrons from the gas molecules.
Due to the electric field, the electrons in the region of the sense cell move towards a
particular wire. This creates a large electric pulse, which travels down to both ends
of the wire.

In the CDC, the gas is 89% Ar,10% CO,,1% CH, and the voltage is nominally
2400 V. By noting which wire signalled, we could identify the transverse location
with a o, of 150 microns. By noting the height of the pulse at either end, we could
estimate z with a o, of one centimeter. The CDC was not calibrated, so it was not

useful for reconstruction, but it did serve an important role in the trigger.

3.5 Main Drift Chamber

In contrast to the CDC, the Main Drift Chamber was critical to the entire experi-
ment. That is because the MDC is used to measure momentum, by carefully not-
ing the curvature of particles in the magnetic field, via the formula pr(GeV/c) =
0.3B(Tesla) R(meters). It also forms the heart of the detector by its size and com-
plexity, with a length of 220.0 ¢cm, an ID of 31.0 cm, and an OD of 230.0 cm, filled with
the same gas as the CDC, but containing 19,380 wires and an electric field initially
set to 850 V/cm.

Of these, 2808 are sense wires. Four sense wires stacked radially make up a sense
cell, with the number of cells per layer ranging from 48 on the inside to 108 on the
outside. There are ten layers, alternating between axial (along the detector) and
stereo (skewed), allowing for more precise z measurements. The position measure-

ments translate into a momentum resolution of o,,/p = 2.1%+/I + p?, with p in units
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of GeV/c, since our curvature error increases for stiffer tracks.

In addition to position, the MDC also keeps track of the amount of energy de-
posited in the gas around each wire (dF/dz), which is a function of the velocity of
the particle. dE/dx pulses have a full-width half-maximum resolution of 8.5%. This
is generally compared against the predicted energy loss for different particle types
traveling with that momenta, and quoted in terms of fractional . The amplification
of the pulse height is strongly correlated to the voltage of the MDC. During the 1993
run, an excessively low voltage resulted in the loss of dE/dz information for many
events, which renders those useless for our particular analysis.

Relative to the IP, the MDC takes up less solid angle with each layer. The track
reconstruction software requires information from at least three layers before it will
even attempt to fit a helix. At the second layer, the coverage is 96% of 47, but this
goes down to about 85% by the tenth and final layer.

3.6 TOF

Particles which make it through all ten layers of the MDC now enter the dedicated
particle identification (PID) systems. Particles which slip out the sides early are
caught by the analogous endcap systems, but those are not calibrated, and are thus
only useful as checks rather than for identifying particles.

The first system encounted measures the time it takes for a particle to travel there
from the IP, and then derives a velocity from this time-of-flight (TOF) and the path
length (measured along the expected helix). The barrel TOF system consist of 48
trapezoidal pieces of scintillator, arranged in a cylinder covering 76% of 47. Each is
284 ¢m long, 5 c¢m thick, and about 15 cm wide, with a photo-multiplier tube at each
end to amplify the photons produced by incoming charged particles. It measures the
time with a resolution that is nominally 300 psec, but in practice sits between 400
and 450 psec.

On each endcap, 24 2.5 cm thick rectangular counters, read out only on one end,

form a ring with an ID of 75 cm and and an OD of 211 cm, slightly less than that



21
of the MDC. These endcap shower counters each cover a solid angle of 10% of 4.

In practice they were used not to measure TOF but merely to signal the presence of

extraneous tracks.

3.7 Electromagnetic Calorimeter

Outside the TOF is the electromagnetic calorimeter, composed of shower counters
(SCs) to measure energy deposited by electromagnetic interactions. It has a barrel
(ID = 247.0 cm, OD = 338.2 ¢m, length = 385.0 cm) covering 80% of 47 and two
endcaps (ID=74.6, OD=192.0, thickness = 41.0 c¢m) covering 7% each. However,
for this experiment the endcap SC was not calibrated, so it was also used only for
extraneous track detection.

Each shower counter consists of 24 layers, with 560 cells/layer in the barrel and
from 174 to 190 cells/layer in the endcap. Each is composed of a lead plate followed
by a gas counter, for a total of 12 radiation lengths. The gas in the counter is one
part argon and two parts CO, bubbled through n-pentane at 0°C'. This operates at a
higher voltage than the MDC, in self-quenching streamer mode, which makes the gas
act as its own amplifier, trading some precision for simpler electronics. The resulting
energy resolution is op/E = 25%/ \/—E_(GTV) , since we are counting the number of
particles produced in an electromagnetic shower. The position resolution is o4 = 4.5
mrad, 0, = 2 cm in the barrel, and ¢, = 0.7 cm, 0, = 13%L in the endcaps, where L

is the tube length.

3.8 Muon System

Beyond the shower counter lie the magnetic coil and return flux. The material present
in these two systems is used to absorb particles which interact strongly. Instruments
embedded in the return flux mark the presence of those which nevertheless make it
out this far. This is primarily of value in identifying muons, which is why it is called

the muon system.
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The only subsystem sitting outside the magnetic field, the muon tracking system is
an octagonal structure consisting of three double layers of proportional counter tubes
interleaved with the iron absorber of the flux return. The absorber and the magnet
together capture most pions, allowing the counters to act as “yes” detectors for muons.
The downside is that all muons with less than about 600 MeV of momentum are also
stopped, limiting its usefulness. Total solid angle coverage is also only 68% of 4.
Still, within its limitations, the system is very useful, since pions and muons have
very nearly the same mass and are difficult to distinguish any other way.

Each tube acts like a single sense cell, where charge division provides an estimate
of the z position. The position resolution is ¢, = 5 cm, and ory = 3 cm. During
reconstruction, the software attempts to match up hits in the muon counter with

tracks in the MDC, as it does with the TOF and SC systems.

3.9 Trigger

Determining whether all this information gets saved out to a tape is the job of the
trigger. The beam crossing rate is 1.25 MHz, and cosmic rays contribute a few kHz,
but there are only 0.2 to 5 good events per second. It takes 10 msec for the electronics
to read out the detector, and another 20 msec for the VAX/785 to store the result,
so even reading 3 events/second would give us a deadtime of 10%. The goal of the
triggering system is to read out only those few events which have a high probability of
representing interesting physics (as opposed to beam gas or cosmic rays). It uses fast
hardware and simple logic on data feeds to estimate the response of various systems.

The interval between beam crossings is about 800 nsec, so the goal is to respond
within that time frame. BES uses a multi-level trigger, with each level taking up one
interval and responding to the previous level. The trigger rate after the first level is
a few kilohertz, but drops to a few hertz after the second level. The first level checks
time and location from the TOF system, and position in the CDC or SC, depending
on whether it is charged or neutral. This is particularly important for eliminating

cosmic rays. The second level uses the MDC to identify the number of tracks, and
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the SC to examine energy deposition. The third-level does a detailed selection, to
classify events as Bhabha, dimuon, charged, neutral, or cosmic.

For the Dy running, the charged, neutral and D,(2) triggers were used. The
last is the ome that was designed to capture physics of interest to us. The specific
requirements were at least two hits in the barrel TOF, at least two tracks in the
MDC, at least one hit in layer 3 or 4 of the CDC, and total shower counter energy

above a given threshold[7].
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Chapter 4 The Data

The BES Collaboration, consisting of various American and Chinese institutions,
was formed in June of 1991, and published its first paper—a measurement of the tau
mass—in November 1992. A history of BES running is shown in Table 4.1, along
with nominal integrated luminosity. 1995 is a transitional year, with only a little ¢/
running, as the D, running has finished, and a major detector upgrade is planned for

later this year.

4.1 Data Processing

The digitized detector readouts are transformed into physically interesting quantities
via a process known as reconstruction. The main task in reconstruction is identi-
tying the tracks from charged particles in the MDC, and deriving momenta from
them. If possible, the tracks are fit to a full three-dimensional helix; otherwise, the
momentum is derived from a circle fit in the x-y plane. These tracks are then as-
sociated with appropriately located hits in the TOF, SC, and muon systems. If a

high-momentum track does not have a corresponding muon system hit, that informa-

L Period ’ Purpose ] Integrated Luminosity [
9/89 - 1/90 | Debugging and Calibration 3 x 10° J/v
1/90 - 6/90 First .J/¢ Run 3 x 10% J /v
11/90 - 1/91 Second J/1 Run 3 x-10° J /v
3/91-5/91 Third J/v Run 3 x 10° J /v
11/91 - 1/92 7 Mass Run 5.0 pb™'
1/92 - 6/92 First D, Run 3.3 pb!
12/92 - 5/3 Second D, Run 7.1 (4.6) pb~!
12/93 - 1/94 First ¢ (2S) Run 2.3 pb~?
1/94 - 5/94 Third D, Run 14.9 pb~*
1/95-4/95 Second ¢ (25) Run 4 pb™!

Table 4.1: BES data taking runs.
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tion is also recorded. Neutral tracks are identified by hits in the shower counter.

The conversion from voltages and wire numbers to energies and positions is han-
dled by means of various calibration constants. These constants are adjusted for each
run using Bhabha-scattered electrons and dimuons, which have a precise energy and a
large, well-known differential cross section. Radiative Bhabhas, from ete™ — ete ,
give electrons with a continuous range of energy to use for calibration. The expected
response of PID systems to other particles is extrapolated from the electron or muon
mass.

Large-angle Bhabhas are also used to confirm the luminosity associated with
each run[8]. We examine the number of Bhabha events with |cosf| < z, for z =
0.60,0.65,0.70,and 0.748. The QED cross-section is calculated to be 247.2 nb, so
knowing the angular distribution and the efficiencies allows us to determine the effi-
ciency. Total systematic uncertainty is on the order of 2.5%, which is larger than the
variance between results from the four different angular regions. We use the largest
region since it has the best statistics.

Total integrated luminosity from all three years comes out to 25.35 + 0.63 pb™'.
However, voltage problems in the MDC resulted in a large part of the 1993 data
having improper dE/dx information. Since this would severely impact our ability to
identify particles, events without usable dF/dx data were removed from the dataset.
This results in 4.6 instead of 7.1 pb™! for that run, giving an effective sample of

22.84+ 0.6 pb~L.

4.2 The Cross-Sections

The cross-sections for charmed meson production near threshold are still only poorly
measured. The best theoretical predictions for their values come from the coupled-
channel model of Eichten, et al. used by the Mark III collaboration[9]. The basic
premise is that whenever a new channel opens, it gains cross-section at the expense
of other channels. It is hoped that this would compensate for the relative difficulty,

due the heavier mass of the strange quark, in producing a D, meson instead of a D°
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| _Production | R [ Crosssection | Events for 22.8 4 0.6 pb™" |
DiD- ~0.15| ~0.8 nb 18 x 10°
DD ~0.02 ~0.1 nb 2 x 10°
D*'D" + D'D* | ~0.60 | ~3.2 nb 73 x 10°
D*ED* ~0.65 ~3.5 nb 79 x 103
D*D~ ~0.75 ~4 nb 90 x 103
Dt — D*= ~0.75 ~4 nb 90 x 10°

Table 4.2: Coupled-channel model predictions at 4.03 GeV.

or D¥.
The Mark ITI coupled-channel model predictions for charmed meson cross-sections
are shown in Figures 4.1 and 4.2, taken from Ref [9]. R is the ratio of hadronic to

dimuonic production rates, oyap/c,,, at a given energy. From the formula ¢ =
86.8Q%nb
5(GeV?2)
the cross-sections for charm decays at 4.03 GeV. Those, and the expected events for

[1], we obtain ¢,, = 5.34 nb at 4.03 GeV. From these plots, we can estimate

22.8£0.6 pb™' (N = oL), are summarized in Table 4.2.

BES decided to run at 4.03 GeV, where the coupled-channel model predicts an
enhancement in the D, production rate, to somewhat less than 1 nb. At this energy,
each D, has an energy of 2.015 GeV, which corresponds to a momentum of 430
MeV. This is different from Mark II1, which ran at 4.14 GeV, above the threshold for
DD, production. That has a larger cross-section, but reconstruction is harder due

to uncertainty in the energy of the D, produced from D7 decay.

4.3 The Hadronic Strip

The D; dataset comprises data taken at an energy of 4.03 GeV during 1992, 1993,
and 1994. It was analyzed at the High Performance Computer Center (HPCC) of
the Texas National Research Laboratory Commission (TNRLC). The full dataset
was broken up into various pieces for different physics and diagnostic analyses. To
identify events which potentially contained hadronic charm events (as opposed to

Bhabhas, dimuons, or cosmic rays), we used the following definitions:
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Figure 4.1: Cross-sections for D meson production relative to dimuon production.
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| Type of Cut | Cut ‘
Momentum Pioiar > 1.5 GeV
Vertex Viy <0.02m, |V, <0.2m
Charged Track | Nenargea < 12 or Pygrer < 10 GeV
Usable Track Nusapte 2> 3 08 Nygmma > 2

Table 4.3: Hadronic strip cuts.

e charged track: Contains main drift chamber information, and a momentum of

P < 4.0 GeV.
® good track: A charged track with a successful helix fit.
o usable track: A charged track with either a helix or a circle fit.

e isolated neutral: A neutral track (cluster of shower counter hits) with E > 50

MeV with cos § < 0.97 away from the nearest charged track.

o Vertex (V): Weighted average of the DCA (Distance of Closest Approach) of
good tracks.

o Scalar Momentum Sum (Pyeqqr): The scalar sum of the magnitudes of the

momenta for all charged and isolated neutral tracks.

Based on these definitions, the cuts in Table 4.3 were made. These were carefully
studied to ensure that they did not reject any actual charm events. The resulting
dataset, called the hadronic strip, was made available to the collaboration for different

analyses. One such analysis is described in the final part of this thesis.
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Chapter 5 Experimental

This chapter covers the current experimental situation, and provides predictions for
the number and type of events we might expect to see. The following chapter compares

this with theoretical models for the D,.

5.1 Decay Rates

Our best information on the D, comes from the CLEO experiment at Cornell[10].
CLEO’s accelerator, CESR, runs at the Y(4S) to produce B mesons. These then
decay to produce various charmed mesons, which can be studied in large quantities.
However, this only allows direct measurements of relative branching fractions.

Historically, branching fractions are measured relative to B(D} — ¢n™), as that
is the easiest mode to measure accurately by identifying the decay »(1020) — KtK~.
To obtain an absolute measurement of that mode requires making model-dependent
assumptions about the production cross-section, the semileptonic branching fractions,
or the ratio Dy — ¢7 /D — K*n. The backgrounds make measuring missing energy
difficult, complicating neutrino identification.

By way of contrast, threshold pair-production provides a clean way to measure
absolute branching fractions with great precision. Unfortunately, the c¢ production
rate above D, threshold is much smaller than that from B decay at the Y(45). This
leads to very poor statistics. Mark III[11, 12] found no events despite searching
several resonant decay modes, but established a 90% confidence level for B(DF —
¢nt) < 4.1% using 6.304:0.46 pb~'of data at 4.14 GeV. Previous work using the BES
data[13] and searching for resonant two-body decays led to two double-tags, which
was combined with a single-tag sample for a result of B(D} — ¢nt) = 471° and an
estimate of o(ete™ — D} D) ~ 200 pb.

However, by dint of their sheer number of events, sophisticated detector, and
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] Mode | Ratio to ¢x [ Fraction (%) |
ot 1.0 35+ 0.4
ru; 0.54 +0.05 | 1.88+0.29

¥ v+ 7 (958)1 Ty, | 3.9+ 1.6 7T4+32
(tO ¢l+l/l)
KK’ 1.01+0.16 | 3.540.7
K+ K-n"(total) 1.37 4.8+0.7
KK (892)° 0.95+0.10 | 3.3+05
K*K-7%*(NR) | 0.25+0.09 | 0.87+0.32
K*(892)*K" 1.2+ 0.3 4.2+1.0
ot 0.39+0.08 | 1.35+0.31
oot 1.8+06 6.4+1.7
K*(892)* K (892)° | 1.6 £ 0.6 5.6+ 2.1
nrt 0.5+0.1 1.9+ 04
nt 14+04 A7T+14
noT 28£05 | 100+22
o 3410 | 120+30

Table 5.1: PDG values for principal D, decay modes.

careful analysis, CLEO has used indirect D, production to make precise measurements
of numerous relative branching fractions, both hadronic and semileptonic modes.
They have even stretched the theory to estimate the absolute ¢m branching ratio
at B(D} — ¢nt) = 3.1+ 0.6707 £ 0.6%. [14]. Their work forms much of the
basis for the Particle Data Group’s summary[l1], which yields B(D} — ¢nt) =
3.5 £0.4%. Table 5.1 lists various two- and three-body modes of interest. We follow
the convention of indicating decays of the D}, with the understanding that the decays

of the D are their charge conjugates.

5.2 Reconstruction Rates

To estimate what we expect to see at BES, we will use the PDG branching fractions
and the coupled-channel model cross-sections. We will focus on Cabbibo-allowed
decays that result in charged tracks, since those are the easiest to measure precisely.
We will also restrict ourselves to decays with no more than three tracks. We will also

consider semileptonic modes with three charged tracks plus one neutrino. These are
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Decay Initial Final Percentage Final
Mode | Fraction (%) State in State | Fraction (%)
Hadronic 3-prong D, decays
ont 3.5 (KTK~)n™t 49 1.7
KK+ 3.5 K+H(K ) 67 2.3
KtK-nt 0.87 Kt*K-7* 100 0.87
K*K? 3.3 Kt(r==n™) 33 1.1
Semileptonic D, decays
oty | 1.88 | (KTEO)IF ] 49 ] 0.94

Table 5.2: Three-prong decays of the D,.

Decay Initial Final Percentage Final
Mode | Fraction (%) State in State Fraction (%)
D, decays including 7°
KK 5.6 (K*n%)(K~7%) | (33)(67) = 22 1.24

opt 6.5 (KTK~)(m ) 49 3.2
D* decays

DO — K7t 4 —

Dt — KtK—nt 1 —

Table 5.3: Background decays of the D, D* and D°.

shown in Table 5.2, with important background modes shown in Table 5.3.
The general formula for the number of events we expect in any given final state
{i,7}is
Nij=o(eTe” — DID;)LB;B; = Np+p-BiB; (5.1)
where o(e*e™ — D D; ) is the cross-section for D, pair production, £ is the total
integrated luminosity and B; is the absolute D, branching fraction to mode . From

Table 4.2 we have an estimate for the number of D, pairs produced, N prp- = 18,000

events. We recast this in terms of the branching fractions relative to ¢,

giving:

Nz‘j == ND;{—DS—B(D:— - §b7T+)B(D:_ — (237T+)bibj == N¢7r¢7rbz'bj7 (53)
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o K K K K'n | K- KS |dei+our

ot 22.0 (5.3) [ 20.9 (6.8) | 5.5 (2.7) | 22.3 (3.8) | 23.8 (5.7)
KK+ [209(6.8)[19.9(88)] 52 (35) | 212 (4.8) | 226 (7.4)
KKt [55(27) [ 52(35) | 1.4(14) | 56 (1.9) | 6.0 (2.9)
KTK? 223 (3.8) | 21.2 (4.8) | 5.6 (1.9) | 22.6 (2.6) | 24.1 (4.1)
¢etv+¢pTr | 23.8 (5.7) [22.6 (7.4) | 6.0 (2.9) | 24.1 (4.1) | 25.7 (6.2)

Table 5.4: Expected number of events in signal modes for Ngrsr = 22. The expected
number that would end up in three-prong versus three-prong final states is shown in
parentheses.

where the number of ¢ pairs produced is

Nipgr = ND;}—DS—B<D:— — ¢rT)B(D} — o) (5.4)
= o(ete”™ — DID;)LB(D} — ¢n™)2 (5.5)

We will make use of these formulas in Chapter 9 to measure the cross-section.

From the coupled-channel model and B(D} — ¢n) = 3.5%, we estimate N4, =
22 events. Using this and the relative branching fractions gives us the predictions
shown in Table 5.4. We follow the practice of combining results from the ¢e*r and outu
channels. Note that the lower diagonal is the charge conjugate of, and equal to, the
upper diagonal, but is still counted separately.

As a first order approximation, we can assume the probability to reconstruct and
properly identify a given track is about 85%.!. For a six-prong event, the overall
efficiency must therefore be below 40%. Thus, we are unlikely to detect very many
events, especially after we introduce additional cuts to remove background. However,
we should be able to reconstruct a few events, allowing us to improve on the Mark
III results.

Another problem is that slow kaons will decay in flight, usually producing muons.
The D, is produced with only 430 MeV, corresponding to a Lorentz boost of By = .22.
The K* and ¢ are both produced with By =~ 0.7, and the daughter kaons have
py = 0.6 and 0.25, respectively. The kaon from the K* will not slow down very

!This is an empirical observation, though roughly correlated to the solid angle covered by the
PID systems.
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much unless it is moving directly backward from its parent. For the ¢, however, one
kaon will always be moving relatively backward. An average boost of 0.7 gives a decay
length of only 260 cm. Since the particle travels in a helix, it could easily decay inside
the drift chamber, severely confusing the reconstruction and particle ID systems.

While this calculation needs to be verified using Monte Carlo simulations, it does
imply that the ¢ mode will be suppressed relative to K *, by as much as a factor
of two. This will not only decrease efficiency, but also complicate relative branching

fraction calculations.
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Chapter 6 Theoretical

For comparison with those experimental measurements, we will use the factorization
model developed by Bauer, Stech, and Wirbel (BSW), as it is one of the simplest,
and makes specific predictions for D, decays. In this the author is greatly indebted
to Chris Matthews[15] for the lucid description and detailed predictions in his thesis.

6.1 Weak Decays

Let us start by examining the tree-level diagrams associated with D, decay[16], as
shown in Figure 6.1. It is important to remember that quarks possess an extra color
degree of freedom, and therefore a W= will naively decay to them three times as
often. However, the color of quarks produced by W* decay—or from the vacuum —
is not correlated with that of the original quarks, but with each other, resulting in
color-suppression of the hadronization process. Also, since many of the diagrams can
end up with the same final state particles, we have to worry about interference due
to their relative phases and amplitudes.

The first mode is annihilation, followed by the equivalent ¢-channel process known
as W? exchange. Since the strange and charm quarks are primarily members of
the same weak doublet, the annihilation mode is Cabbibo allowed. The exchange
diagram, on the other hand, must be suppressed on at least one side, and hence is
less significant.

The annihilation diagram is extremely interesting in the case of leptonic decays of
the W, Since that is the only process that can produce purely leptonic one-prong
decays, it is a very straightforward way to measure the decay constant. It is less
interesting for the sort of two-body, three-prong decays we are interested in, as the
amount of available energy will tend to pop multiple non-resonant hadrons out of

the vacuum. It is also impossible for this mode to produce semileptonic decays at
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tree-level.

Our strongest interest is reserved for the Cabbibo-allowed spectator decays, where
the heavier charm decays to a strange while the initial strange quark passively watches.
If the W* decays to leptons, or to quarks which form their own hadron(s), it is con-
sidered external. An internal decay is one where the quarks from the W#* hadronize
with the two s quarks, despite the color suppression.

The important thing to remember is that these are just the simplest tree-level di-
agrams. Additional diagrams not only contain more weak vertices, but also divergent
gluon loops. Thus, we can not directly calculate the width for any of these pro-
cesses. However, by observing some of the symmetries present in tree-level and single
loop diagrams, we can parametrize our ignorance, and attempt to build a reasonable

model.

6.2 The Factorization Model of BSW

One such model is that of BSW[17, 18, 19, 20], which focuses on spectator decays.
Annihilation and exchange processes are either ignored or added in by hand later.
They start by assuming that the dominant decay is the Cabbibo-allowed charm to
strange transition. This process can be drawn purely in relation to the W=, as shown
in Figure 6.2. The W can either decay to leptons, as shown on top, or to hadrons.
The latter process also includes diagrams for hard gluon exchange, as illustrated

below.

6.2.1 Semileptonic Decays

We will start with semileptonic decays, as they are easier to calculate. The Hamil-
tonian is H = G—\/gL”Jm where the left-handed lepton current is L¥ = a(v)WHy(I+)
and the left-handed hadronic current is .J, = & W,c. The W, = 7,(1 — ~5) projects
out the left-handed component, and can be elided by defining (3¢), = 32V sWye,
where N, = 3 is the number of colors. We can replace the weak eigenstate § with the

Cabbibo-favored component of the mass eigenstate V,,5. To calculate the amplitude
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Figure 6.2: BSW hadronic charm decays.
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for a process like D — Xlv, we therefore need to evaluate the matrix element:

Gr
V2

We can simplify this in two ways. First, since the leptonic and hadronic currents

A(D — Xlv) = (Xiv| L 1#],|D) (6.1)

do not interfere with each other, we can use factorization to split them up, giving:

AD - Xlv) = gE(lvlL"IO) (X|J,|D) (6.2)
V2
That is, the D turns into an X, and the leptons are created from the vacuum.

At this point, rather than continuing to work with quark currents, BSW switches
over to hadrons. The hadronic part of the current now becomes (X|(5¢)g|D). This
can be expressed in terms of the spin-parity and four-momenta of X , D, and the
current ¢ (plus the polarization of X, if any).

The only term that does not come directly from symmetry arguments is the
hadronic form factor £(q?), which is different for each spin-parity state. This term is

assumed to have the form:

h

F(q*)

dominated by a pole at the nearest resonance of mass m with the proper spin-parity
and flavor content, with a decay constant of h. The decay constant, the form factor
at ¢ = 0, is calculated using bound states of relativistic harmonic oscillators, in an
infinite momentum frame where the momenta of the light quarks is small relative to
the heavy quark. This also requires assumptions about the appropriate resonances,
some of which are not known and have to be inferred. Given that, however, the

calculations are straightforward, if tedious.

6.2.2 Hadronic Decays

BSW now apply the same techniques to hadronic decays. The basic Hamiltonian is

HY = —Cj/—g(?W#c) x (aW*d') (6.4)
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Replacing the W, and both quark fields, as before, gives:

HY, = %vcsvud@c),:(adn (6.5)

When we add in tree-level hard gluon exchanges, like the one shown above plus

their mirror images, we get an additional Hamiltonian which looks like:

HY = A%vcsvud[(gc),;(a@L _ 3(5d)(ac)y] (6.6)

2
where A = £ In MEEK is the effective strong coupling constant at this energy.

Adding them together, and dropping the ubiquitous L subscript gives:

_Gr

Hy NG

VesVaale1 (3¢)(ud) + co(3d) (uc)] (6.7)

which is in fact the general form. Higher order corrections merely change the values
of the ¢;, which can be calculated using renormalization group techniques. Switching

over to hadronic currents gives us:

_Gr

Hy =75

VesVadlai(8¢) m(ud) g + aa(5d) i (i) o] (6.8)

Naively, we might expect to fix a; = ¢; +Niccg, and vice versa, corresponding to the
color-suppression of the internal spectator diagram. However, the a; (or, equivalently,
N,.) are treated as free parameters by BSW. The amplitude for the transition from

an initial charmed quark D to the two-body system XY is now proportional to:
(XY|Heg|D) o< ar (XY |(5¢) i (ad) | D) + as{XY|(5d) g (tc) | D) (6.9)

Now, semileptonic decays are inherently factorizable. BSW makes the further
assertion that all hadronic decays can also be factorized, ignoring weak annihilation,

and deferring final-state interactions. So, the two body decays become:

ar (Y |(ad) n|0)(X|(5¢)u| D) + az(X|(5d) r|0){Y | (@c) | D) (6.10)
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| Parameter | Value |

a1 +1.13 £0.03
Qs —0.47+0.03
pal,az '51%

Table 6.1: BSW Parameters
| Name [ Predicted (%) | Measured (%) |

or 2.7+0.1 35+04
KR+ 1.5+ 0.2 33405
KR’ 15402 4241.0
KK’ | 1.25+0.02 3.5+0.7
et 2.8 0.15 1.9+04
't 1.64 £ 0.09 47+14
npt 53+0.3 10.0 £ 2.2
ot 1.49+0.08 120+3.0
PR 3.47 1.85+0.29
ity 2.05 74+3.2
n'ity 0.58 (for both)

Table 6.2: BSW predictions for D, decay modes, compared with measured branching
fractions from Ref [1].

That is, the first term turns D into X and pops Y out of the vacuum, while the
second does the opposite. These can be decomposed in the same way as the currents

from semileptonic decay.

6.2.3 Results

This allows us to obtain predictions for the widths of any two-body charm decay in
terms of a; and ay. The effect of final-state interactions can be derived from the
correlations between these two. The values for these numbers used in Ref, [15] are
shown in Table 6.1, giving the predictions in Table 6.2. Generally, the parameters are
fixed by measuring the decay widths for the different charge states of D — K7. These
values were calculated using older values for those branching fractions, but the net
change is less than one sigma, although the error bars would be smaller. Of course,

the semileptonic results are independent of the a;, and hence the same as before.
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BSW predictions are fairly close for a large number of modes, especially consid-
ering how few free parameters are used. However, it can be seen that it it falls short
in several key channels. In particular, it is significantly off in the key KK and ¢lv
channels. The last is particularly damning, as it is precisely that sort of semileptonic
Cabbibo-allowed decay where factorization is expected to function well.

Because of this, there is a continuing search for better models. The factorization
hypotheses is generally well accepted, so the quest focuses on improved form factors.
Isgur et al.[21], criticize BSW for using infinite-momentum frame wave-functions,
which they claim are poorly understood. They also dislike extrapolating from a
region where the form factor is small, ¢ = 0, to where it is large, ¢ = m. They prefer
to start in the zero recoil (¢ = m) limit, and use a non-relativistic quark potential.
Their analysis suffers from having to add relativistic effects in ad hoc; more recent
attempts have been made using relativistic formalisms like the bag model[22]. None of
those models have yet produced predictions for exclusive hadronic decays as detailed

as those from BSW, so we will continue to use that for this thesis.
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Part IV

The Analysis
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Chapter 7 The Analysis

The goal of our analysis is to prepare a sample of doubly-tagged D, mesons with
high efficiency and low background. Our primary background is from pair-produced
charmed meson which do not contain strange quarks. Therefore, our focus will be on
events with a high strangeness. For hadronic decays, this means events with at least
three kaons. For semileptonic decays, which presumably come via external spectator
processes, we require two kaons on the same side as the missing neutrino.

We will attempt to fully reconstruct events containing six charged tracks, since
the D, primarily goes to three-body final states. Using charged tracks gives us good
momentum resolution, which allows us to make effective use of kinematic fitting. By
using the beam energy constraint, we hope to discriminate against decays where one
or more low-momenta photons are swallowed by the beampipe, such as from a D* or
D, — X7°. These are particularly difficult to distinguish from events with a missing
neutrino.

We check the consistency of the event against all potential hypotheses, both signal
and background. Particle identification is handled by calculating a x? for how well
all six tracks match a given hypothesis. This x? is then added to the x* from the
kinematic fit, allowing us to incorporate all the information into a single variable.

This chapter discusses the algorithms and cuts used to implement this scheme and
produce an n-tuple. The next chapter applies simple cuts to produce a double-tag
sample, then analyzes the efficiencies and backgrounds. The final chapter covers the

physically interesting parameters derived from that sample.

7.1 Datasets

The analysis was performed on the cumulative D, dataset from all three years. A

preselection cut was imposed to only examine those events which had good dE/dx
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[ Channel ] Number ’

D, Hadronic vs. Hadronic 1000 each

D, Hadronic vs. Semileptonic 1000 each

D, Hadronic vs. D, including 7° | 1000 each
D* Cocktail vs. DY — K—nt 10,000
D* Cocktail vs. D* — KT*K~7% | 10,000

Table 7.1: Monte Carlo datasets generated.

information. Several Monte Carlo (MC) simulations were analyzed in the same fash-
ion, to calibrate our analysis. We simulated all the modes listed in Table 5.2. The
various D, modes were decayed against the different hadronic modes. The D modes
were decayed against D* cocktail, which contains the different decay modes in the

appropriate fraction. The number produced for each type is shown in Table 7.1.

7.2 Track Selection

Candidate double-tag events should contain six usable charged tracks (three positive
and three negative), and no isolated neutral tracks. We use the same definitions of
“usable” and “isolated” used in Section 4.3 for the hadronic strip. While real events
must of course conserve charge, we do not impose it as a constraint at this time.
Rather, we only require that there be six charged tracks. We use events with non-
zero net charge to estimate background from high multiplicity events with lost tracks.
By knowing how many appear with the wrong net charge, we can deduce how many
masquerade as real events. For such events, we arbitrarily swap the sign of enough
tracks to balance the charge, then treat it as a normal event.

Figure 7.1 shows the number of charged and neutral tracks per event, plus separate
plots for events with and without charge balance. Figures 7.2 and 7.3 show the
hadronic and semileptonic signal Monte Carlos, whereas the backgrounds from D*
and D, including 7° are shown in Figures 7.4 and 7.5. The comparable numbers of
balanced and unbalanced events indicate a large amount of trickle down due to lost

tracks at this stage.
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Figure 7.1: Number of charged and neutral tracks in real data. The first row contains
all events, the second and third those with and without charge balance, respectively.
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Figure 7.2: Number of charged and neutral tracks in hadronic MC signal. The first
row contains all events, the second and third those with and without charge balance,
respectively.
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Figure 7.3: Number of charged and neutral tracks in semileptonic MC signal. The
first row contains all events, the second and third those with and without charge
balance, respectively.
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Figure 7.4: Number of charged and neutral tracks in D* MC background. The first
row contains all events, the second and third those with and without charge balance,
respectively.
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Figure 7.5: Number of charged and neutral tracks in D, including 7% MC background.
The first row contains all events, the second and third those with and without charge
balance, respectively.
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7.3 Event Classification

To avoid contamination due to lost particles, it is important to account for all the
energy and momentum in the event. We start by looking at the missing momentum,
equal and opposite to the sum of the momenta for all six tracks, 5= S8 5. We then
use this information to classify the event as hadronic or semileptonic. Since this takes
place before particle identification, we must do this using momenta uncorrected for
beam-pipe energy loss.

For semileptonic events, this momentum is associated with the missing neutrino.
To distinguish it from particles trapped in the beampipe, we require pr = m >
200 MeV. For hadronic events, this should be zero, so we require |5 < 150 MeV and
the three-constraint kinematic fit 7 = 0.0 to have a x* < 200. Plots of [7] and pr
for real data and signal MC are shown in Figure 7.6, and for background MC in

Figure 7.7.

7.4 Particle Identification (PID)

For each track, we calculate particle identification information using the standard
BES package, TrackID[23]. We use it to calculate a x? for each of the hypotheses
e, ft,m,and K. Measurements from all the various subsystems listed in Chapter 3
are compared with the theoretical expectations for a given hypothesis at the proper
momentum. For each subsystem, the x? is only considered valid if the y2 < 9.0 for at
least one hypotheses (since there are no other stable particles in this kind of event,
and it is possible for a subsystem to return invalid data). If it is valid, the appropriate
x* is added to each hypothesis, and the number of degrees of freedom is incremented.

Each subsystem also returns the corresponding likelihood generated from the same
function used for the y?. The only exception is the muon system, which returns a
likelihood based on the hit pattern in the three layers. The likelihoods from all the
subsystems are multiplied together to give an overall likelihood for that hypotheses.

These likelihoods are then scaled by the sum of likelihoods of all hypotheses for that
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Figure 7.6: Good event momenta for real data and signal MC.
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]ﬁight—sign [ Wrong-sign [

Hadronic
K*K-nt | Ktg~ K™
Kto—nt 7Kt
ttr~nt | KTK K™+
Semileptonic

KTK-[t KTI-K+
Ktn- [t K*l—rn+
ato=l ati~xt

Table 7.2: Hadronic and semileptonic particle identification triplets.

track, yielding a normalized weight.

Each D, is composed of three tracks, two with the same charge and one with
the opposite charge. Since we are dominated by spectator decays, the lepton from
charm decay will generally have the same sign as the D,. Any “wrong-sign” leptons
are most likely due to background, and hence can be used to estimate the frequency
of random coincidences. Similarly, Cabbibo-allowed hadronic spectator decays would
always contain a right-sign strange quark; Cabbibo-suppressed modes, having the
wrong-sign, would most likely be due to background processes. Table 7.2 shows the
various right-sign and wrong-sign hadronic and semileptonic modes.

The x? and likelihood for each individual per-track hypothesis are both combined

over all the tracks to produce overall PID values for the triplet.

7.5 Combinatorics

The (nominally) three positive and three negative tracks can be grouped into two
triplets, + — + and — + —, corresponding to D, candidates. There are nine such
groupings, or hextets, per event. For each one, we evaluate all the different wrong-
sign and right-sign hypothesis pairs with the appropriate number of kaons. We then
calculate the PID y? for the entire hextet, and calculate the confidence level with the
relevant degrees of freedom. If it comes out to less than 1.0 x 107, the combination
is discarded.

Note that there are several triplets where a kaon and a pion both have the same
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I Type ’ Ng ' Right-Sign ] Wrong-Sign W
Hadronic 4 |KtK 7t x K- Ktn~ | Ktnr Kt x K7t K-
3 | Kt Kt x K ntn~ | K™ n KT X K ntrn-
Semileptonic | 4 KK 7" x KKt~ | K"n K™ x K- [TK—
3 | Ktrmatx K"Kt~ | Kt'n nt x K ITK-

Table 7.3: Particle identification hextets.

charge. Trying all the combinations would significantly increase our combinatoric
background. Instead, we construct the relative weight X, /& = Lx/Lk from the two
likelihoods. The track with the larger value is called a pion, and the other is treated
as a kaon. Other than this, however, all possible combinations are attempted and
evaluated independently. The relevant right-sign and wrong-sign combinations for
D} D7 systems with the appropriate number of kaons are shown in Table 7.3.

For each triplet, we also calculate the invariant mass (m? = (X2, E;)*— (32, 7)%)

and beam-constrained mass (m* = EZ_ — (32, 7))?).

7.6 Kinematic Fitting

We now apply various kinematic constraints using the TELESIS kinematic fitting
package[24]. This returns a x? representing the minimum “pull” needed to make
the momenta of the various tracks satisfy the given constraints. The x? from the
kinematic fit can be used to form a fit confidence level (FCL). Like any other x? it
can be added to the y* from particle identification, forming a joint confidence level
(JCL). This gives us a probability measuring how well we have accounted for all the
particles in the event.

Having assigned particle ID to each track, we now have a set of four-momenta
which should add up to the incoming beam energies, 4.03 GeV, plus a net momentum
of zero. This gives a four constraint (4C) fit for hadronic events, corresponding to
the four-momenta. For semileptonic events, the missing neutrino is modeled by an
extra track with three free parameters, whose mass is fixed to be zero. This reduces
the number of constraints by three, giving a 1C fit.

This four-momentum-conservation (FMC) fit simply uses the momentum and par-
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Name Symbol Constraint Number of Constraints
Hadronic | Semileptonic
Four-Momentum Conservation | FMC ?:1 E, =2Fc0m
S =0 4 1
Equal Mass EM My = m_ 5 2
D;Mass D, M4y = M_ = Mmp, 6 3
‘ K% mass (swum) | K" | e = mgo | 41 ] +1

Table 7.4: Constraints applied via kinematic fits.

ticle ID information to ensure that we have captured all the decay products of the
event. We also attempt an equal-mass (EM) fit to establish that the decay came from
two paired triplets. The additional constraint is that the mass associated with one
triplet must equal that of the other triplet. Put another way, half the energy and
momenta of the event should go into each triplet. This helps select pair-produced
systems, without creating significant bias in favor of the D,.

To identify our signal, we also fit with one more constraint: that the mass of
both triplets be equal to the D, mass, defined by the PDG value of 1968.5 MeV.
We also calculate the various two-body masses from the fitted tracks, to aid us in
searching for resonant decays. We do not impose any sort of constraint or cut on the
two-body masses, allowing us to also search for non-resonant decays. However, for
triplets which may contain a K2K decay, we also attempt an additional calculation.
This is done in parallel with the other triplets, serving as a supplementary check.

The lifetime of the K is long enough for it to travel a considerable distance
from the IP before decaying, perhaps even exiting the beampipe. This would change
the beam-pipe energy correction required for the resulting pions. Additionally, they
would originate from a different location, which would affect the track fit. We use
the KLAMS swimming routine, which is part of TELESIS|24], to find a common
origin for the two pions, then swim the postulated K? back to the IP. We then add
a constraint to the K° mass for those refitted tracks. Note that we do not consider
events with four pions, so we never have two K2 candidates in the same combination.

The various fits attempted for hadronic and semileptonic events are shown in

Table 7.4. Note that all three fits with different constraints, are applied. The fitting
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| Cut Name | Cut Value
Tracks Nuysapie =6 and Npeytrar = 0
Hadronic | 5] <150 MeV and x3_, < 200
Semileptonic pr > 200 MeV
Triplets KKrn, Krn, KKlv
Hextets ng >=3
Particle ID CLprp > 1.0 % 1074
Kinematic Fit Ximer Xay < 50

Table 7.5: Hardwired cuts.

routines converge only for x* < 50. All combinations for which the momentum-

conservation and equal-mass fits converge are saved; the rest are discarded.

7.7 Summary

Table 7.5 summarizes all the hard-wired cuts which are applied.
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Chapter 8 The Double-Tag Sample

The sample resulting from the analysis in Chapter 7 is separated into hadronic and
semileptonic datasets. These datasets are further divided into events with balanced
and unbalanced net charge. We apply cuts to these to derive a clean sample of doubly-
tagged D, decays. This chapter describes those cuts, the resulting double-tags, and

the efficiences and backgrounds associated with them.

8.1 Tag Selection

We start by defining P(D;), the total probability for being a Dy, as the joint confi-
dence level (JCL) from particle identification and the kinematic fit to the D, mass. In
principle all we need to do is to choose the point at which to cut on P(Ds). We look
at its distribution for all events where the fit converged. Figure 8.1 shows the Monte
Carlo signal data, while Figure 8.2 shows real data. We choose P(D;) = 0.001 as
our cutoff. Note that these plots still include multiple combinations per event, which
may account for some of the non-Gaussianness. The resulting MC mass distributions
have a width of 1.8 MeV for hadronic events, and 3.5 MeV for semileptonic.

There is one more cut we need to impose. As shown by the Monte Carlos in

0 are still consistent with

Figure 8.3, a large number of events with D, — X + «
semileptonic decays. To discriminate against these, we calculate X3/, the relative
likelihood for the nominal lepton to be a hadron (7 or K) or lepton (u or e). We
require X, < 0.05, or a factor of twenty greater likelihood. This has the salutary
effect of suppressing the 7° modes by a relative factor of five, as opposed to the

original two. The downside of this is that it also reduces our signal by a factor of

two. These effects will be calculated below.
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Figure 8.3: Leptonic signal and D, including 7° background Monte Carlo.



63

| Name | Mass | Width | Cut |
KT [ 497.672 MeV | 8 MeV | £40MeV
K% 896.1 MeV | 23 MeV | £50MeV

[0 1019.41 MeV | 4 MeV | 220MeV

Table 8.1: Values used for two-body resonances.

8.1.1 Twobody Resonances

Now that we have our signal events, we need to identify from which mode they came.
To start with, we need to define our two-body resonances. Figure 8.4 shows the
distribution of two-body masses for the Kg,F*O,and ¢. The data is drawn from
signal MC events which pass the preceding cuts. We try all possible combinations of
two-body masses which have the correct number of kaons, so there is a fair amount
of combinatoric background.

Table 8.1 shows the nominal mass, the fitted width, and the chosen range for
identifying the three resonances. In addition to the mass cut, any combination which
survives swimming and being constrained to the K° mass is also tagged as a K 2. The

. w0 . . . .
most troublesome mode is the K, since it has a large combinatoric and non-resonant

background.
We use this information to calculate a two-body weight W. For each pair, we
calculate W = —\/21—7—0 exp(_(%g-'ﬁ). For the two charge-neutral pairs in each triplet,

we pick the one with the highest weight. The weight for the entire combination is the
sum of the weights for the two triplets. While the use of a Gaussian weight for the
K™ is non-physical, it does have the benefit of reducing the influence from the tails,

where we would be swamped by non-resonant background.

8.1.2 Combinatoric Reduction

Table 8.2 lists the events and combinations which survive these cuts, with their two-
body weight. A K3, indicates that it was tagged by including the K? mass con-

straint after swimming; the two-body mass shown is the swum mass. No events with

non-zero net charge, or identified as semileptonic decays, survived our earlier cuts.
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| Run  Event | Mass | P(D,) | Tag Mabody | Recoil Mapody | Weight | Ny [

3750 4208 | 1.9800 | 0.0076 | (K~7")x*  1.033 [ K—(K*x ) 0.702 | 3.1e-07 | -3
3750 4208 | 1.9664 | 0.1051 | K*(K~n*) 0.956 | (KT7™)=~  0.707| 0.58 | -3
3750 4208 | 1.9635 | 0.0703 | K*(K~n*) 0953 | KK~ 0.472 | 1.11 3
3750 4208 | 1.9664 | 0.0112 | K*(K~7%) 0.956 | K% K~ 0477 | 2.6 3
4838 11178 | 1.9681 | 0.0861 | K K+ 0.852 | ¢~ 1.011 | 15.39 | 4
5113 19395 | 1.9676 | 0.0169 | KK+ 0.877 | K—(x*7~) 0.292| 12.26 | -3
5113 19395 | 1.9680 | 0.0012 | K*(K~n*) 1.342 | K~(z%t7x~)  0.292 0 3
6422 27143 | 1.9665 | 0.0792 | K K+ 0.874 | KK~ 0.918 | 2196 | 4
6462 31342 | 1.9642 | 0.0038 | KJK T 0501 | K~(K™n~) 1420 44.76 | 3
6462 31342 | 1.9644 | 0.0058 | K3 . K* 0.546 | K~ (K*™n~) 1.420| 7e-07 | 3
6462 31342 | 1.9649 | 0.0225 | K*(r~#*) 0901 | K~ (Ktnr~) 1457 0 3
7108 19638 | 1.9668 | 0.2367 | K K+ 0.904 | K~ (K™n~) 0.828 | 16.61 | 4

Table 8.2: Mode breakdown of final combinations. Mapody 15 the mass for the res-
onance, or the parenthesized pair in the triplet with the highest two-body weight.
N is the number of kaons in the event, and is set negative if there is at least one
wrong-sign triplet present.

Some of semileptonics survived the P(D,) cut, but failed the hadron/lepton cut.

8.1.3 Signal Events

In order to identify which channel a particular event came from, we first need to
pick a particular combination to represent it. To improve our efficiency, we want
to pick the combination that most resembles a D, decay. We use the information
in Table 5.2 to rank combinations as to which is most likely to have come from a
D,. First, we always prefer right-sign (Cabbibo-allowed) combinations over wrong-
sign ones. Second, we select triplets with two kaons instead of one, in those rare
cases where both hypotheses are consistent. We implement both of these by selecting
those combinations with the maximum value of N x for that event. Since there are
in general still multiple combinations remaining, we choose the one with the highest
two-body weight. This should be effective in conserving signal, even if the resonance
widths from the Monte Carlo are not strictly accurate. The decays are then labeled
as either resonant or non-resonant, according to Table 8.1.

The invariant and beam-constrained masses for these combinations are tabulated
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Run Event | Mass Mode Tag Mass Recoil Mass
Invariant | BC | Invariant | BC

3750 4208 | 1.9664 | KT K7t x ngumK_ 2.1232 1.9723 1.9378 1.9822
4838 11178 | 1.9681 KK+ x ¢pn- 2.0131 | 1.9551 | 1.9518 | 1.9696
5113 19395 | 1.9680 | KTKnt x K ntn— 2.0754 1.9670 | 1.9565 1.9631
6422 27143 | 1.9665 KK+ x KK~ 1.9889 1.9648 | 1.9516 1.9624
6462 31342 | 1.9642 K2K+ X K~Ktn~ 2.1083 1.9452 1.9500 1.9655
7108 19638 | 1.9668 | KKt x K-K*r~ 1.9780 1.9663 1.9577 | 1.9667

Table 8.3: Masses of signal events. We have one mass from the equal-mass fit, and
one from each triplet for the invariant and beam-constraint masses.

Run Event | PID CL | Beam Constraint Equal Mass D, Mass

Fit CL ] Joint CL | Fit CL | Joint CL | Fit CLT Joint CL
3750 4208 | 0.2838 | 0.0008 | 0.0056 | 0.0016 0.008 0.0031 | 0.0112
4838 11178 | 0.9368 | 0.0004 | 0.0509 | 0.0008 | 0.0651 | 0.0018 | 0.0861
0113 19395 | 0.1173 | 0.0384 | 0.0317 | 0.0002 | 0.0008 | 0.0005 | 0.0012
6422 27143 | 0.0728 | 0.9465 | 0.1765 0.432 0.0969 | 0.3195 | 0.0792
6462 31342 | 0.4644 | 0.0013 | 0.0216 | 0.0007 | 0.0125 | 0.0002 | 0.0038
7108 19638 | 0.2689 | 0.4446 | 0.3059 | 0.4346 | 0.3039 | 0.2884 | 0.2367

Table 8.4: Confidence levels of signal events.

in Table 8.3, with the confidence levels shown in Table 8.4. Plots of these quantities
for Monte Carlo signal events are shown in Figures 8.5 and 8.6. Note that event
5113/19395, with a non-resonant K~ 77~ , has m,, = 2m,. This is consistent
with pions really being misidentified electrons, pair-produced by a photon. Like all
other non-resonant 77 events, it is considered background, and will be ignored for

the remainder of this analysis.

| Name f Cut l
Consistency with D, JCLp, > 0.001
Hadron/Lepton Xy < 0.05
Cabbibo-Allowed MaX eyent( Nie)
Maximum Two-body Weight | maxyen: (W + w_)
No Non-Resonant K7 My = Mo

Table 8.5: Summary of interactive cuts applied. max yon (X) indicates that X for a
combination must equal the highest value of X possessed by any combination in that
event. W, is the larger of the two two-body weights in the positive (negative) D,
candidate.
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The interactive cuts used in this chapter are summarized in Table 8.5.

8.2 Backgrounds

Since we cut on confidence level rather than mass, we do not have the usual sidebands
we could use for background study. What we can do, however, is drop the D, mass
requirement from our kinematic fit, and just impose the equal-mass constraint. This
gives us a traditional mass plot, where we can look for events near the D, mass. We
define our signal region for these purposes as +5 MeV around the nominal D, mass,
roughly 3¢ on the MC plot in Figure 8.1. For our background estimation, we will
focus on hadronic modes, since that is where we found events. Using a background
of zero for modes with zero events gives a conservative error estimate.

We then cut on the analogous joint confidence level P(m, = m_) > 0.001. The
resulting plots for data are shown in Figure 8.7. Our signal events form the peak at
the D, mass. We also find considerable background just below that. All combinations
with a mass greater than 1.9 GeV are shown in Table 8.6, excluding the signal events
listed in Table 8.2.

Figure 8.8 shows the background broken down into three-kaon and four-kaon chan-
nels. We find a large three-kaon background, with a peak just below the D, mass.
We also find two four-kaon background combinations. The backgrounds for these

channels are discussed in the following sections.

8.2.1 Three-Kaon Background

We find several events with two non-resonant pions about five MeV away from the D,
mass, one of which contains a I . Tables 8.7 shows M, for the two right-sign events
with P(D,) just above 107*. We do not know their source, but we will treat them as
a potential background. We make the conservative assumption that they are located
inside the D, mass region. We further assume that their mass is distributed according

to phase space from K7n decays of the D,. We can then find the mass distribution
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| Run Event | Mass [ P(D,) | Tag Mabody | Recoil Mabody | Weight | N |
3211 7468 | 1.9251 0 K+(K_7T+) 1.109 K’_(7T+7T_) 0.562 | 5e-13 3
3232 3904 | 1.9232 0 (K~7T+)7T+ 0.983 | K~ ([(+7T—) 0.982 0.03 -3
3273 31625 | 1.9263 0 Kt (7T_7T+) 0671 | KK~ 0.935 4.21 3
3927 27132 | 1.9574 | 9.0e05 | K*(K-7+) 1235 | K-(K¥7~) 1.048 | 63009 | 4
4523 37368 19053 | 0 | K*(K-=%) 0982 | K- (r*7) 0923 002 | 3
5082 28884 [2.0054 | 0 | KF(K-n") 0845 | K-(n7n) 0587 145 13
5627 17011 | 2.0008 0 K+(7r*7r+) 0.823 | KVK- 0.885 | 15.28 3
5632 14293 | 1.9395 | 0 | K (K 7') 0768 | (K¥r)r 0813 008 1 3
6091 18333 | 1.9246 | 0 | K at 0.852 | - 1.017 | 90.43 | -3
6294 27137 | 1.9535 | 4.3e-09 (K_7T+)7l'+ 1.115 K—<K+7T ) 1.131 | 4.4e-19 | -3
6204 27137 | 1.9546 | 4.2e-08 | K*(r~7*) 0933 | K~(K+r-) 1.132| 2622 | -3
6294 27137 | 1.9069 0 K+(7T‘7T+) 0.861 K_(K+7T_) 1.097 | 5.2e-16 | -3
6325 7677 | 1.9616 | 0.0003 (K*7r+)7r+ - 1.002 K_(K+7T_> 0.742 0 -3
6679 4387 119739 | 0.0003 | Kt ([(‘W+) 1.112 (K+7T‘)7r_ 1.222 | 1.4e-18 3
6909 36267 | 1.9812 | 3.7e-11 K+(7T_7T+) 0.643 K—_(K+7T*) 0.972 0.07 3
6945 18950 | 1.9498 | 9.6e-14 K+<K_7T+) 1.380 [(_(W+7T ) 0.914 0 3
6945 22767 | 1.9627 | 0.0004 | KK+ 0.806 | K~(z+7~)  0.705 | 17.34 | 3
7142 9389 | 1.9509 | 9.26.19 | KK * 0.910 | ¢r- 1.024 | 66.25 | 4
7355 23066 | 1.9868 0 (K—ﬂ’+)ﬂ'+ 1.491 | ¢ 1.033 0.31 -3

Table 8.6: Background combinations of real data with P(m* =m™) > 0.001 cut.

ll{un Eventj Mass [ My l Recoil W
6679 4387 | 1.9739 | 1.269 | KT K+
6945 22767 | 1.9627 [ 0.705 | K K+

Table 8.7: Non-resonant Knm background events.
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LRun Event‘ Mass ] Tag ] Recoil ]
3927 27132 | 1.9574 | K* Kt | KTK—rnt
7142 9389 ]1.9509 | KK+ o~

Table 8.8: Background events with four kaons.

by projecting the Dalitz plot[25], giving the distribution shown in Figure 8.9.

\/<m72r7r — (Zm,r)z) ((mDs —mg)® — mfm) ((mDS +mg) — mfm)

mﬂ'ﬂ'

(8.1)

P(myr) o

Integrating this £40MeV around the K mass gives a probability of 8.6%. Thus, each
background non-resonant 77 event implies a background of 0.086 in the equivalent
K3 channel. Put another way, the presence of a background event implies an 8.6%

probability that the same mechanism produced something resembling a K 2.

8.2.2 Four-Kaon Background

The background events with four kaons are shown in Table 8.8. The important
parameter 13 not their two-body mass, but their fitted mass: how many of them
would appear inside the D, signal region? We answer this question by asserting
that these background events are due to D* decay, and hence would have the same
distribution.

The distributions for D* Monte Carlo are shown in Figure 8.10. As we saw
in Table 7.1, we are only looking at 4% of the D and 1% of the D* decay width.
However, these are the modes which have the right particle multiplicities to contribute
to our background. This would then represent a production of 80K neutral and 100K
charged D*D events, comparable to what we would expect from the coupled-channel
model cross-sections in Table 4.2 (73K and 79K).

We see that the distribution is very similar to that for the data outside the signal
region. In particular, it peaks at 1.95 GeV, where our four-kaon background is located.
We also note that the P(m, = m_) cut removes any combinations inside the D, signal

region. If we fit to a flat background plus a Gaussian, we obtain an estimate of 1+0.5
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' Mode | Number | Background |
o7 X KOK 1 0.075
KErx KOk | 2 0.075
KK x KUK 0 0.086
KKrnx KK 0 0.086
KKrx K"K 1
K"K x K"K 1

Table 8.9: Measured signal and background events.

D= events inside the 10 MeV signal region. Given that only four out of the 27 events
had four kaons, this would imply a D* background of 0.15 four-kaon events .

To first order, we can assume that the background in our data would be similar,
since we have comparable numbers of total events and four-kaon events. Naively
dividing this number of background events among the two channels we observed

gives 0.075 background events per channel.

8.2.3 Summary

Based on the sidebands and Monte Carlo studies, we estimate 0.32 events of back-
ground, divided among two three-kaon and two four-kaon channels. This are sum-
marized in Table 8.9, along with the signal modes measured. The background will
form part of our systematic error. Given that our background is less than 10% of our

signal, it should have a small effect.

8.3 Efficiencies

Having determined our backgrounds, we now need to estimate our efficiencies. We
do this by examining the D, Monte Carlo on a mode-by-mode basis. The number of
events which survive our cuts are shown in Table 8.10 for hadronic decays and Ta-
ble 8.11 for semileptonics. Note that we combine decays and their charge conjugates,
giving a factor of two which will be accounted for later.

We use this information to obtain our efficiencies. To first order, we can simply

count the number of events in each mode that is correctly identified, and divide
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| To KK [ KKn | on | ¢n | ¢n | on | K+K | K¥K | KKn
From K%K K%K | K%K | K*K | KKn | ¢n | K#K | KKn | KKn | Total
K%K K%K 3 3
K+K KOsg | 75 | 34 109
KKn KOsK | 16 | 124 140
9T KOsK 3 91 1 95
on K+K 67 | 29 2 98
(¢ KKn 100 | 77 | 1 1 89
(¢m om 3 55 58
K#K K+K 55 | 52 | 8 115
K+K KKn 1 11 | 79 | 27 | 118
KKn KKn 6 2 | 31 | 77 | 116
Total 91 | 164 | 91 [ 78 | 116 | 56 | 68 | 162 | 115 | 941

Table 8.10: Counts from hadronic Monte Carlo. Each row represents 1,000 events
which were decayed to two three-prong final states, and detected as that column.

To |Tag on K*K KKn 1 K%K ]
From~\J Recoil| ¢lv . KKiv ¢lv. . KKlv ¢lv. i KKIv [ ¢lv | KKlv
Tag [Recoil BV ev  pv ev | uv jev  pv lev | pv ev i pv lev | pv |ev v oev

o1v v 4 | 4 ! 1 | :
,,,,,,,,, T O Y A P O
or op 1 1 i1 : : j
K*+K*0 P12 |
Hadronic 1 1 1 2 F05 11 L 05 |
o T 22 ;
ev % 11 | 17 118 2 3
K«K [¢p | T T 2 1 T 1] 3 [ 1T O o
K*+K*0 2 i5 1 1
Hadronic : 15705 10505
oty BV i 1 1 7| 6 ‘
ev 1 1 9 28 1 1
KKz ¢p | [T T 1 e s T e
K*+K*0 402 ;
Hadronic : 0.5 j 0.5 P25 2 ; 1
o1y [HY ! | 1 3 4 12
SSSSSOON .-2 SU0U OSSR WOSSURIOS SN BSOSO OSSN NASNURRRN SUURMOONN NSO NSO Vool l22 2 11
K%K | ¢p : i : 4| 2
K*+K*0 j 305
Hadronic ; i ; * P 15125

Table 8.11: Counts from semileptonic Monte Carlo. Each row represents 1,000 events
which were decayed to two three-prong final states, and detected as that column.
Hadronic Monte Carlo tagged as semileptonic is given one-half count per triplet in
the appropriate row.
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To | Tag on |K*K KKn|K%K| R |
Fromi\J Recoil | ¢1v | ¢1v  ¢1v | ¢1v | ¢1v
Tag [Recoil Sum | Sum | Sum | Sum | Sum

olv fsum |42 [ 0 [ 2 [0 |053
on op 2 0 0 0 [0.88
K*+K*0 0 0 0 0 (035
Hadronic 2 0 0 0 | 05
o1v [Sum [ 0 [39 (21 | 0 |053
K*K op 0 3 4 0 |0.88
K*+K*0 0 0 0 0 [0.35
Hadronic 0 0 0 0 |05
oV [Sum [ 1 [3 150 ] 0 |053
KK op 0 1 6 0 |[0.88
K*+K*0 0 0 0 0 |0.35
Hadronic 0 0 0 0 | 05
o1v [sum [0 | 0 [ 1 |58 053
o 0P 0 | 070 6 |oss
K*+K*0 0 0 0 0 035
' Hadronic 0,0 0| 0 |05

Table 8.12: Efficiencies from semileptonic Monte Carlo. Column R indicates the
relative branching fraction of the various modes to three-prong decays. The only
hadronic contribution is from two ¢7 X ¢ events.

by the number produced. However, this ignores cross-talk between modes, which is
particularly important for the K*/K7 and e/u distinctions. Fortunately, we know
the relative production rates for these modes to high accuracy. Therefore, we can
calculate the contribution to each mode from the different components.

For the semileptonic events, we start out by combining the events for muons and
electrons. This is easy, since they have essentially the same branching ratio. Next, we
disregard all the non-resonant K Klv events, which contain most of the background.
This gives us the matrix in Table 8.12. We see that the contribution from background
processes is much smaller than from signal modes, and therefore can be neglected.

However, there is still difficulty with K* /K7 discrimination, as in the hadronic
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91% 158% 7.7% 10.6% 68% 16.2% 112% 2.1%
1.00 1.00 100 1.00 1.00 1.00 1.00 1.00

Table 8.13: K °K+versusK+K-n+ efficiencies. Efficiencies are normalized to 1000
events for hadronic modes and 2000 events for semileptonic.
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modes. These modes are summarized in Table 8.13. We resolve this ambiguity not
by eliminating it, but quantifying it. We calculating the probability for a measured
state to have been produced by a given channel. Since we have low statistics, this will
generally result in fractional events per channel. These will be used in a likelihood
analysis in the next chapter.

To calculate these probabilities, we make use of Bayes Theorem. The probability
that a measured state M; came from a generated state G is:

_ P(M|G)P(Gy)  P(M;|Gi)P(G;)
PGIM) = ==p0G0y = 5, P(M; |G P(Gy)

(8.2)

P(M;|G;) is just the efficiency for measuring mode i as j. The important factor in
P(G)) is the relative production rates. From Table 5.1, we get the relative probability
for generation:

P(D} — K+¥K — Kt(K-t))
P(Df - K+*K—n7)
B(D+ - K°KHB(K" — K~nt)

- B(Df — K*K-7+) (84)
_ 0.95B(Df — ¢1)0.67 (55)
~ 0.25B(D} — ont) '
= 2.55+0.96. (8.6)
(8.7)

Each mode picks up a factor of x for each KK+ in the event. There is also a
multiplicity of two corresponding to the sum over charge-conjugates, for modes where
both triplets do not come from the same decay. The efficiency for a real mode is then
the sum of the efficiencies for all the modes in which it appears.

To illustrate, consider event 7108/19638, identified as KK+ x K+*K-7+. Read-
ing down the appropriate column of Table 8.13 gives a normalization of 5.2%xK? +
(2)(7.9%#)+3.1%. This event is then treated as 44% KOR+x KK+, 52% KK+ x
KYK—7t, and 4% K+ K7+ x K*K-nt. Those generated modes have efficiencies

of 11.5%, 11.7%, and 11.0%, respectively, for being detected in any mode.
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Mode Number Background Efficiency Relative BE
for 6 Prongs | to 6 Prongs
ot x o 0.00 5.5% 0.24
ot x KK+ 0.94 £ 0.03% 0.070 9.6% 2 x 0.31
ot x KTK¥r* 0.06 £ 0.03% 0.005 8.7% 2 x 0.12
KK+ x KOK* 1.30 + 0.15° 0.014 11.5% 0.40
KK+ x K*K¥r* ]0.66+0.12° 0.039 11.7% 2 x 0.16
K*KTr* x K*K¥7% [ 0.04 + 0.03° 0.022 11.0% 0.06
¢t x KK+ 0.00 9.1% 2 x0.17
KY9K* x KIK* 0.8 £ 0.2¢ 0.114 10.9% 2 x 0.22
K*K¥r* x K)K* 1.24+0.2¢ 0.058 14.0% 2 % 0.09
ot x HlFy 0.00 2.1% 2 x 0.26
KYK* x ¢pl*v 0.00 3.0% 2 x 0.34
KE*K¥F 7% x ¢pl*v 0.00 2.7% 2x0.13
KIK=* x ¢l*v 0.00 2.9% 2x0.18

Table 8.14: Effective number of signal and background events. The uncertainty in
the number of events comes from uncertainty in the value of B(D, — K+K~r+)
used in the unfold matrix; superscripts indicate correlated errors. Background is only
assigned to modes with a non-zero number of events. The factor of two in the relative
branching fraction comes from summing over the charge-conjugate decays.

This procedure could be expanded to cover all modes with cross-talk. However, we
do not wish to make use of additional relative branching fractions, since we intend to
measure them. The effect of other channels can be considered part of the uncertainty
in our efficiencies. That uncertainty goes like /N in the number of observed events,
and therefore will be on the order of 10% per channel. These will be factored into
our systematic error.

Table 8.9 shows the modes measured from the data. Table 8.14 shows the effec-
tive number of generated modes this corresponds to, along with their efficiency and

relative branching fractions. We also show the expected contribution from the 0.32

background events.
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Chapter 9 Results

Table 8.14 contains all the information we need to measure relative branching frac-
tions. Using B(D} — ¢nt) = 0.035 + 0.04 and £ = 22.8 + 0.6 pb~, we can also
calculate the cross-section. We accomplish this by means of a likelihood analysis.
For a likelihood analysis, we first calculate a probability density function p(x; 1),
where z is a measurement and p is derived from the physical quantities of interest.
We then define our likelihood as L(u;z) = p(z;u). We choose the value pg which
maximizes log L(x) as our estimator for 1, and define our error bars o from log L(po+

o) =log L{pg) — 0.5.

9.1 Summed Mode Analysis

We start by summing over all the modes in Table 8.14. Our likelihood is then derived

from the Poisson distribution for the total number of events detected:

pre
L(n;p) = P(u;n) = T (9.1)
for n = 5. The expected number of events is:
o= Z’N¢7r¢7r + ﬂ (9.2)

where Ngr4r is defined by Equation 5.5, 3 is the background events, and our total

relative efficiency is

= bibje;; = 0.336, (9.3)

tj
where ¢;; is the efficiency for mode {, 7} and b; is the relative branching fraction,
from Equation 5.2.

We then examine the likelihood function, shown in Figure 9.1, to obtain our best
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Figure 9.1: Poisson likelihood for n = 5.

estimate for y, 1o = 5.07%5. The statistical errors are sufficiently large we can neglect
the background term and invert Equation 9.2 to obtain Nyrgr = 14.9777 With the
¢m branching fraction, that gives N prp- = 12.17%2 x 10%, for a cross-section of
o(ete” — DFD;) = 0531035 nb. This is smaller than, but still within 1o of, the
prediction of 0.8 nb from the coupled-channel model. We see that our statistical

uncertainty is completely dominated by the errors on the Poisson likelihood for five

events.

9.2 Multiple Mode Analysis

There is additional information we can extract from this sample, based on the fact
that we not only know the number of observed events, but also their distribution
among the various decay modes. We therefore construct a probability distribution,

and hence a likelihood, that is a product over the decay channels:

L(i: ) = P i) = [] Plngs ), (0.4)

1j
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where n;; is the number of events in mode {7, j}, and the expected number of events

in each mode is

Hi; = N¢ﬂ-¢ﬂ- bibjﬁij + ﬂzj (95)

These are the same as the components of Equation 9.3, with 3;; being the background
in each channel. P(n;pu) is still the Poisson distribution for n events; however we
generalize n! to I'(n + 1), allowing for fractional event counts.

Using the relative branching fractions, we can fit directly to Ngzer, as above.
Alternatively, we can fix Nyz¢r to one of our measured modes, and then fit for the
relative branching fraction. We use the MINUIT[26] fitting package to obtain the

value and uncertainty of our fit.

9.2.1 Cross-Section

We start by using this method to reproduce the calculation above. Again, we neglect
background. Using all the information in Table 8.14 gives us the likelihood shown in
Figure 9.2. As expected, it is identical to Figure 9.1. The fit returns Ny, 4, = 14.9771,

the same as before.

9.2.2 KK+ Branching Fraction

The main advantage of the multiple mode analysis is that it allows us to compare
between modes. We will use the same events to measure the relative branching
fraction k = B(DF — K °K*+)/B(D¥ — ¢r+). We define B(¢r*) = B(DF — o),
and similarly for B (F*OKJ’). We then derive

B(¢r™) N?*°K+¢7r—

Nyngr = NB(¢n")B(¢n~) = NB(K ' K)B(¢pn™ ) — - . (9.6
g (¢mT)B(om™) ( )B( )B(KOI(+) p (9.6)
The number of KK+ x ¢~ events is
N, = NBRPKH)B(gn~) = Yemk=K _ K-0Kon (9.7)
KK ¥gm 2 2€ -0 Kcpm
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Figure 9.2: Multiple mode likelihood function for Ny4,. The Poisson likelihood for
five events is shown as a dotted line on the lower plot.
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Figure 9.3: Likelihood function for %ﬁ. The Poisson likelihood for three

events is shown as a dotted line on the lower plot.
where n orx KK+ and € or TOK+ A€ the number of observed events and the efficiency
for that mode plus its charge conjugate, hence the factor of two.

The main difference between the branching fraction and cross-section fits is that
the former is non-linear in the fitted parameter, since we get one factor of & for each
K™ in the final state. Since we have calculated our efficiencies as a convolution of the
KK+ and KtK-n+ modes, we keep the ratio x fixed. The fractions for those two
channels are then fit relative to all the other channels, which remain fixed.

This gives us the likelihood function shown in Figure 9.3, with k = 1.72+2.

The fit resembles the Poisson likelihood for three events, except for being strongly

suppressed near zero. This is almost one sigma larger than the PDG value of 0.95 +
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Source Amount ANgrgr | Ao(ete” — DFD;) A%
[14.9] [0.53 nb] [1.72]
Background 0.32 events -14 -0.05 -0.1
Branching Fractions | #o0,/v4 | +2.1-1.7 +0.07 -0.06 +0.25 -0.19
Efficiencies +o./V13 | +0.5-0.5 +0.02 -0.02 +0.02 -0.02
Total Systematic +1.9-2.5 +0.07 -0.09 +0.22 -0.24
Statistical logL —0.5 || +7.7 -5.7 +0.28 -0.20 1.20 -0.76

Table 9.1: Sources of uncertainty in fitted and derived quantities.

0.05.

More significantly, our result is also larger than the BSW prediction of k£ =
0.56 + 0.07, differing by 1.16 £ 0.8, or 1.40. While not as compelling as the CLEO
measurements, this does provide a largely independent confirmation of the weakness

of the BSW model in describing the D — KK+ decays.

9.3 Systematics

There are three main sources of systematic error. The first is from our background.
Due to the large uncertainty, we do not include it directly in our fit. Rather, we fit
both with and without background, and treat the difference as a systematic error.
This should give us a conservative estimate.

The other two sources of systematic error are from the measurement uncertainty
for the relative branching fractions, and the v/N uncertainty for the efficiencies. We
vary each of these up and down in unison to obtain a conservative error estimate.
Since there are four different branching fractions, shown in Table 5.2, we vary all of
them by £0,/v/4. The thirteen different efficiencies in Table 8.14 give a variation of
+0./\/13.

Table 9.1 summarizes the various sources of uncertainty. The total systematic
error is the sum in quadrature of the three. Other sources of error, such as uncertainty

in k, and bias in the Monte Carlo, would be smaller than this.
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9.4 Conclusions

Combining all this information gives the following values for the cross-section and

relative branching fraction:

40.28 +0.07
*e” — DID7) at 4. V = o
o(eTe” — DFD;) at 4.03 Ge 0 53_0‘20 _0.O9nb
B(D; - K K*) | g TL23 +.22
B(D} — ¢nt) T —0.80—0.24

We have seen that the use of kinematic fitting and confidence levels to prepare
a doubly-tagged sample, combined with a likelihood analysis to interpret it, forms a
very powerful tool for working with small datasets. The joint confidence level is a
useful discriminator against background, while pulling in events that would not have
passed cuts on kinematic fitting or particle identification alone. This, combined with
an unfold matrix, allows us to use non-resonant K+K~nt events as part of our tag
sample, to good effect.

The results are in reasonable agreement with predictions, given the low statistics.
Our measurement provides confirmation for the coupled-channel model, and corrobo-
ration of inconsistencies between experimental measurements and BSW. Higher pre-
cision results for threshold-pair production of D, mesons will have to await future

experiments with higher statistics.
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Part V

The Appendix
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Appendix A One Event Displays
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BES run: 3750, Record: 4208, Energy: 4.030

TOF Likelihood dE/dx Likelihood combined Neutrals

Trk 1D Mfit P E Qt eunKp Hits eunKp epnnKp wD Trk E Iso End
1T K™ 20533 0455 1 1 35 [__0O L 2

2 w' 20803 0333 1 OO0 36 o o 2

3 K* 2 0643 0604 8 LTI 25 oecll . ol 2

4 7 2 0.116 T 3 0

5 K~ 2 1.003 o U 17 O O 2

6 m° 2 0.460 o OO 15 _O0] ]

Figure A.1: One-event display for Run 3750, Event 4208.
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BES Run: 4838, Record: 11178, Energy: 4.030

TOF Likelihood dE/dx Likelihood combined Neutrais
Trk ID Mfit P E Qt eunKp Hits eunKp eunKp wbD Trk E Iso End
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Figure A.2: One-event display for Run 4838, Event 11178.
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BES Run: 5113, Record: 19395, Energy: 4.030

TOF Likelihood dE/dx Likelihood combined Neutrals
Trk ID Mfit P £ Qt eunKp Hits eunKp eunKp wubD Trk E Iso End
1 K* 20436 0154 1 __ [ 39 o__[] (] 7 0.231 11
2 o 21017 0863 1 O=_ 36 _[Joo Mo
3wt 2 0701 0.333 8 [T 26 _[J (1]
4 m~ 2 0381 0268 1 _1l__ 30 _[OJ__  _J1
5w~ 2 0542 0441 o OO 20 O N
6 w' 2 0.439 o OO 21 7 1

Figure A.3: One-event display for Run 5113, Event 19395.
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Figure A.4: One-event display for Run 6422, Event 27143.
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Figure A.5: One-event display for Run 6462, Event 31342.
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Figure A.6: One-event display for Run 7108, Event 19638.
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