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Abstract

We develop new methods based on Rohlin-type decompositions of Lebesgue measure on
the unit circle and on the real line to study the boundary behavior of Cauchy integrals. We
also apply these methods to investigate the notion of Krein spectral shift of a self-adjoint
operator. Using this notion we study the spectral properties of rank one perturbations of

operators.
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1
Introduction.
Let ¢ be an analytic function on the unit disk D such that |¢| < 1. Then for every

a« € T = 9D the function (a + ¢)(a — ¢)~! has positive real part. Therefore, there is a

unique positive measure y@ on T such that

Pho = Re 21£
a—

where Pu, denotes the Poisson integral:

/‘5 2E e,

The family M, = {ga},er has many interesting properties. In this paper we shall apply
these properties in two closely related fields: boundary behavior of Cauchy integrals and
spectral properties of rank one perturbations of operators.

Let p be a finite positive Borel measure on T. We can always find a family M, such
that 4 € M,,. After that, we can use the structure of the whole family to study the

boundary behavior of the Cauchy integral

(cu)(e) = [ dute)

or the conjugate Poisson integral

2Im(z€)

(Qu)(=) = 2Tm(Kp)(z) = | T2 du(e).

In Part 1 we will use this approach to give new short proofs to some known facts and
obtain new results on the distributions of boundary values of Ky and Qu.
The first result in this area is probably due to G. Boole who discovered, in 1857, the

following formula in the case when p is a finite positive linear combination of point masses:

el

(0.1) m({Qu >t}) =m({Qu < —t})=— arc‘ca n >0
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(the functions Ky and Qu are defined almost everywhere on T by their nontangential
boundary values).

Later on, this result was extended to the case of an arbitrary positive singular measure,
see [T1], [T2], [D1]. We discuss the results of this type in Section 1.1.

In Section 1.2 we study the asymptotic behavior of m({|Qu| > t}) as t — oo for arbi-
trary measures. The classical result of Kolmogorov states that if y <« m (u is absolutely

continuous with respect to m) then

m({|Qul > }) < Cllull/t

(the exact constant C was obtained by Davis in [D2]) and therefore

(0.2) pm = m{IQul > 1) = o).

The case of an arbitrary measure was investigated by Vinogradov, Hruschev [V-H] and
Goluzina [G]. In Section 1.2 we prove the Vinogradov-Hruschev result in the following
refined form.

We denote by M the set of all finite complex Borel measures on T.

Theorem 1.2.1. Let u € M. Then

. x—weakly
(i) TEX (K>t} * T - |u®l.

Moreover, if y is a real measure then

x—weakly

(i) X {Qu>t) ™M — |’

and

x—weakly s

(iii) TEX (Que—ty - M ——— [u°].

t—o0
Here X(qu>t} is the characteristic function of the set {Qu >t} C T and |u°| is the
variation of the singular component of p.

In Section 1.3 we generalize (0.2) in another direction:



Theorem 1.3.2. Let p,v € M. Then
v L p® & lim tlim t-m({|Kv| >t} \ {IKu| > t/c})=0.

In some problems on rank-one perturbations of operators it is important to understand
how the resolvent function ((A — z)71¢, ¢) of a cyclic self-adjoint operator A depends on
the choice of the vector ¢. In terms of Cauchy integrals this amounts to the problem of
comparing the integrals Ku and Kv of two equivalent measures. Theorem 2 above gives a
partial solution to this problem.

Our methods in Part 1 will be based on the following decomposition of the normalized

Lebesgue measure m on T into the integral of the measures p, , see [Al]:

(0.3) Auadm(a) =m.

(This formula should be understood in the sense that any Lebesgue measurable set
E C T is po-measurable for m-a.e. & and [} po(E)dm(a) = m(E).)
In Part 2 we will concentrate on the convergence of Cauchy integrals to their boundary

values. Our main result is the following
Theorem 2.3.8. Let u € M and f € L'(p). Denote by F the function

K(uf)

Ku ’

which is meromorphic in D. Then for y-almost all £ € T the limit

lim F(z)

z—§

exists, and it equals f(£) almost everywhere with respect to the singular component of the

measure (.

This result will be obtained as a corollary of the following theorem on the boundary

behavior of pseudocontinuable functions.



Let 6 be an inner function on D (|§] = 1 a. e. on T). We will denote by 8*(H?) the
invariant subspace of the backward shift operator in the Hardy space H? corresponding to

6 (for the exact definition see Section 2.1).

Theorem 2.2.4. Let f € *(H?), p > 2, 04 € My. Then for o4-almost all § € T

f(z) — (Uaf)(&)

z—€

£

We will also prove analogous results on the convergence in L? and some estimates on
the LP norms of maximal functions.

In Section 2.4 we will apply Theorem 2.3.8 to solve some known problems on the mul-
tiplication of Cauchy integrals.

As was shown by Clark in [C], if ¢ is an inner function (@] = 1 a. e. on T) then
M, is the system of the spectral measures of all unitary one-dimensional perturbations of
the model contraction with characteristic function ¢. This connection with perturbation
theory is even more transparent in the context of self-adjoint operators, see [Ar], [Do],
[R-J-L-S], [S-W] and [S]. We discuss this connection in Section 3.1.

In Section 3.2 we discuss the notion of Krein spectral shift and its relations with the
objects from Parts 1 and 2. In the rest of Part 3 we use this notion to study spectral
properties of rank one perturbations of self-adjoint operators.

In Section 3.3 we give some sufficient conditions of the existence of an absolutely con-
tinuous perturbation of a given self-adjoint operator.

In Section 3.4 we give a sufficient condition for two operators to be equivalent modulo
rank one perturbation. We supply each result with a number of examples.

In Section 3.5 we provide an example partially answering the question about the exis-
tence of a mixed spectrum.

Finally, in Section 3.6 we give a necessary and sufficient conditions for a given operator

to have only diagonal rank one perturbations.
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Part 1. On the distributions of boundary values of Cauchy integrals.

1.1. Metric properties of conjugate functions.

In addition to (0.3) the family M, has the following properties, see [A1]. If p2 and p2©

are the singular and absolutely continuous components of y, and T={{ €T | |p| =1},

then

(1.11) Xz m = [ utdm(e)
and

(1.12) (1=xg) m = [ utedm(a)

An analogous result for the real line is contained in [S]. Instead of the measures p,
Simon integrates the spectral measures of one-dimensional perturbations of a self-adjoint

operator.

Remark. Formulas (0.1), (1.1.1) and (1.1.2) can be proved simply by integrating a
Poisson kernel over the both parts of the equation, cf. [Al].

Let w: R — T be the mapping

A+

w(A) = P

In this paper we will use (1.1.1) in the following form:

Lemma 1.1.1. Let ¢ be an analytic function in D, |¢| < 1 and ¢(0) € R. Let

{Matoer = My and A = {%%11 > 0} . Then for any t > 0

(1.1.3) X({Qm)t}\A) m = / pgdm(a);

w((;00))

in particular,

(1.14) m({Qu >\ A = [ s fdm(a).

w((t;00))
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Proof. For each a € T, the measure u, is concentrated on the set
Yo =1<¢|lime =a
7€

Since the set & from (1.1.1) coincides up to a set of Lebesgue measure 0 with the set T\ A
and since
1+
Q/J’l =Im i—'—fa
-

we have that up to a set of Lebesgue measure 0

{Qu>th\A=(¢llimpeu(to)r = |J S
¥ a€w((t;o0))

That means that if we multiply both sides of formula (1.1.1) by X{Qu,>¢}\a, We obtain
(1.1.3). Integrating (1.1.3) over T we obtain (1.1.4). A

Remark. If we dropped the condition ¢(0) € R in the statement of the corollary, we
would have to replace the set w((¢;00)) in the formulas (1.1.2) and (1.1.3) with the set
w((t+c¢;00)) where ¢ = Im i#i(%%. Now we will give short proofs to some metric properties

of conjugate functions of positive measures.

We denote by M the subset of M consisting of all nonnegative measures.

Theorem 1.1.2. Let pc My, t>0and A = {d%% > 0}. Then

(i) 1 arctan lell m(A) <m({Qu >t} \A) < 1 arctan el
™ t T t
.. Ll o < Ly L
(i1) - arctan el m(A) <m({Qu < -t} \A) < - arctan T
Proof. Without loss of generality we can assume that ||| = 1. Consider an analytic

function ¢ such that ¢(0) =0 and




-1

Since

a +¢(0)
o = ———= =1,
ol = 222
we have :
1 [ dt 1 1
1.1.5 2 |ld < t; = - = — arctan —.
a5 [l Smseon) = - [ = Careten
We also have : .
(1.16) [ waldme = [ 1 ugdm(a) =
w([t;o0)) w([t;00))
1 1
= — arctan — — / e ldm(a) >
a b Ju(teo))
1 1
> - arctan - - / lusclldm(a) = = arctan—t- —m(A)
because

Lz ldm(a) = ma)
by (1.1.2). Now, if we combine (1.1.4), (1.1.5) and (1.1.6), we obtain (i). Formula (ii) can

be proven in the same way. A
Since for any two sets A and B
m(A) —m(B) < m(A4\ B) < m(4),
Theorem 1.1.2 implies the following result of Tsereteli:

Corollary 1.1.3 ([T1], [T2]). Let p € M4, t > 0. Then

) ljr arctan AE1 ”“” —m({Qu > t})] < m({gr—i— > o}).

<m{ £ > o}

In [T1] it is also shown that using this result one can prove the theorems of Riesz and

. 1 Hull
t
(ii) }71- arctan —

- m({Qu < —t})

Zygmund on metric properties of conjugate functions.
Both Theorem 1.1.2 and Corollary 1.1.3 imply Boole’s formula (0.1). An analogous

proof was obtained in [R-J-L-S|. Davis in [D1] proved (0.1) using the Brownian motion.
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1.2. Reconstruction of the sihgular part of a measure.

Theorem 1.2.1. Let p € M. Then

. x—weakly
(i) TEX {|Kul>e} - T P 1w

Moreover, if u is a real measure then

x—weakly

(ii) TIX{Qu>ty M — ]
and

x—weakly

(i) TN fQuemt) - et 7,

£ 00

Proof. Let us first prove (ii) in three steps.
1) Let u be a singular positive measure. Then for the measures from M., where

p =y € M, we have

x—weakly

(1.2.1) bo —  f1 =4

fa !

Indeed, the definition of M, implies that

(Kha)(z) = (Kpm)(2)

for any z € D. But linear combinations of Cauchy kernels and their complex conjugates
are dense in the space of continuous functions on T.
Now, formula (1.1.2) gives us
TEX{Qu>t} T = wt/ pedm(a).
w((t;00))
Since 7t ~ m, the right-hand side of the last equation has the same limit (if any)

as

1

(1.2.2) —CT)) /w((tm)) Hadm(a).



But since

w(t) e w(oo) =1,

the expression (1.2.2) is just the average over the interval “tending to the point 1.” Thus
by (1.2.1) we obtain (ii).

2) Let u be an arbitrary positive measure from M then the relation
{Qn® > (1 — et} U{Qu* > et}) D

>{Qu>t}>
D ({Qu’ > (1 —e)t}n{Qu** > et})

together with part 2 and formula (0.2) implies (ii).

(This part of the proof can also be obtained from the result of Vinogradov and Hruschev
(see Corollary 1.2.2 below) or from the results of Tsereteli, mentioned in Section 1, via
the following argument, suggested by the referee of my paper “On the distributions of
boundary values of Cauchy integrals” in Proceedings of the AMS.

To prove (ii) for positive measures, let P,(e'?) = lel—;l_ﬁ;‘—z be the Poisson kernel. Start

with the formula
wt-m({Qu) > 1)) — p'(T),
Using linear fractional transformations it follows that

nt - / Pzilg — [ P,du’
Qu>ty 2T imee)
for all z. The result then follows since linear combinations of the functions P, are dense
in C(T). I am thankful to the referee for this remark.)
3) Now, let u = pu4 —pu— be a real measure, py € My, ut L p—. Our proposition easily
follows from the previous part if p, and p_ are concentrated on closed disjoint subsets of

T, i.e., if there are closed subsets Fy and F_ of T such that ||u4|| = p+(Fy), Ft NF_ = 0.
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If now 4 = pry — p— is an arbitrary real measure, consider disjoint closed subsets F. and
F_ of T such that py(Fg) =0,p+(Fy) = ||px|| — € where € is a small positive constant.

Let v4 be the restriction of u4 on Fy. Since

(@u= >t c Qs - > Fhu{-0u- vy > £,

by (0.1) we have:
2

m({QUu—v) > 1)) < 2=

i
(because measures py — v4 and p_ — v_ are positive). Thus, from the relation
(1.2.3) {Qu>N-ettu{Qp—v)>e})D
2{Qr>t}D

D ({Quv>(1 -t} N{Q(n —v) > et})

we obtain:

(1.2.4) TEX{Qu>t} - ™ = TEX{Qu>t) - M + 1,

where 1€ M, [nl| < [Jv]| + % + o(1). Since

x—weakly
7TtX{Qu>t} tm oo 7 [1/],

we obtain (ii).

4) To prove (iii) one should replace u in (ii) by —u.

To prove (i), let us notice that (ii) and (iii) imply (i) for real measures because for any
such measure p we have m({Pu > t}) = o(1/t). Let us also notice that if u is a complex
measure then for any € > 0 there exist real mutually singular measures u1, yo,..., tn and
real constants &y, &y, ..., @, such that for v = 3_7_, e'*" u, we have ||y —v| < e. Since the
measures uj are real and mutually singular , we can prove (i) for v using the same argument
as in pért 3 (we just have to deal with 1, p2, ..., gr instead of py and pu_). Applying (ii)
and (iii) to the real and imaginary parts of u — v we obtain : mtm({|K(p — v)| > t}) < 2e.
Now we can finish the proof using the estimates similar to the ones we used for y and p—v

from part 3. A
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Corollary 1.2.2 ([V-H]). Let p € M. Then

rt-m({|Cul > t}) — [lx°l.

t—

Remark. One can prove the following localized versions of (i), (i) and (iii), cf. [G1].
Let 0 <8, <6, <2m,a=¢",b=¢" andlet I C T be an open arc with the ends a

andb:I:{ew : 91<9<92}. Let p € M. Then

x—weakly

(i) TEX({IKu(>t)nD) T M ——— X(IU{ab}) [l

If u € M then

*—weakly

(ii") TEX({Qu>t}nD) * M ———— X(1u{a}) * [¥’]
and

- *—weakly s
(iii') TEX({Que—t)nn) - T ——— X1u(ey " W7l

1.3. Relations between Cauchy integrals.
Let us consider the following corollary of Theorem 1.2.1.

Corollary 1.3.1 ([T2]). Let pe M. If
Jiza ¢ min(m({Qu > £}),m({-Qu > 1)) =0

then p € m.

This shows that the inverse of the statement (0.2) is also true. The situation is different
when we replace m with an arbitrary measure from M (see the remark after the proof of
Theorem 1.3.2 below). However, we still can obtain some necessary and sufficient condition

for one measure to be absolutely continuous with respect to another measure.
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Theorem 1.3.2. Let u,v € M. Then

v <t Jim lim tom({Kv] > ¢\ {|Kul > t/e}) =0,

Proof. Put n(c) = |v*| — |ep®|. Let ny(c) and n—(c) be the positive and negative parts

of n(e) (n(e) =ns(e) —n-(c), nx(c) € My, nye) L n-(c)).
By Theorem 1.2.1

x—weakly
ﬂ-tX{“CV|>t} -m — WtX{|1C#|>%} m — n(c).

t—oo

But

WtX{lKZu{>t} m — ﬂ'tX{m#D%} m =

= TEX(ikvl>en{Ikul>£} ™ = TEX{kup> £ P[>t} T

Thus

x—weakly

TrtX{“Cu})t}\{“C“')%} -m —— n4(c)

Lo

and, in particular,

mtm({{Kv] > th\ {IKul > 1) = _lIns(o)l

t—

It is left to notice that ||n4(c)]| —cmoe 0 I v° K p®. A

Remark. The proof shows that if measures yu and v were real then we could replace
the sets {|Kv| > t} and {|Kyu| > £} from the statement of the theorem with {Qv >t} and

{Qu > L} or with {Qv < —t} and {Qu < —1} respectively.

Remark. The fact that m({|Kv|>t}) = o(}) as t — oo for any v < m can also be
generalized in the following way:

Let p,v € M, > 0. Then

(1.3.1) vV p' o= m({]% >t})=0(%) as t— oo.
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Proof. We can suppose that ||| = 1. Theorem 1.3.2 suggests that for any € > 0 there

are positive ¢ and T such that for any t > T

m({{Kv] > £} \ {vcm > —Z—}) <f

Thus, forn =1,2,3, ...

m({2"*'T > |Kv| > 2"T} \ {IIC,u{ > ZCT}) < 2:T'

Since p > 0 and ||ju|| =1, |[Ku| > 1/2 on D. Thus,

{

for any t > 0. Hence, if n is big enough (such that 2T > ¢),

Kv
Ku

> t} c {IKv| > t/2)

Kv n+1 = okt k 2'T
{IC,u > 2 T}Ckyn({Q T > |Kv| > 2T} \ ¢ |Kp| > . ).
Hence
Kv 1 - € €
_ n < <
m({ Kn|”? T}) = ZZ SFT = 31T

and because e is arbitrary we obtain (1.3.1). A

The inverse of (1.3.1) is false. Even the weaker statement that m({]—,’%—”:—] > t}) =o(3)
implies supp v® C supp p® is false, as is evident if

1
= —m
€ -1

7’ s 1/251

where delta, denotes a point mass at z, ||| = 1.
We can, however, prove the following:
Let f € LY(T). Let
Sf =) Clos{|Kf] > t}.

>0
Let pyov e Myp=fm+p®. If

m({‘%f > t}) :o(-}) as t— 00
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then
suppv® C (£ Usupppu®).
Proof. Suppose m({l%l > t}) = o(1) but [v*|(F,) < ||v*|| for some r where F, =

Clos {|Kf| > r} Usupp p®. Then there exists an open set E such that [v*|(E) = § > 0 and

lu| < T on E for some T > 0. But Theorem 1 implies that

m(EN{|Kv| > t}) ~

as t— oo

~ o

thus, m({|£2] > t}) > 7 +o(1) £ o(}). &



15

Part 2. On the convergence of Cauchy integrals.

2.1. Spaces of pseudocontinuable functions.

Let H? (0 < p < o0) denote the Hardy class on the unit disk D i.e. H? is the space of

all functions f holomorphic in D for which

£l = sup ([ 170 dmi©)) " < oo,

For p = + o0 the Hardy class H? consists of the functions f that are analytic and bounded
in D
[fllec = sup |f(z)] < +o0.
z€D
Since any HP-function has boundary values almost everywhere on T, one can treat H?

as a closed subspace of LP(m) (for more details see [K] or [Ga]). A function 6, § € H®, is

called inner if |6(£)| = 1 for m-almost every £ in T. We set

HY={feH?|f0)=0},

H? ={felLl?|feH}.
With each inner function 6 we associate the subspaces §*(H?), p > 1:
0*(H?)={fe H? | fo € H? }.

Each function lying in the space 8*( H?) is known to possess the so-called “pseudocon-
tinuation” (see, e.g., [N]). Furthermore, the spaces 8*( H?) are precisely the closed invariant
subspaces of the backward shift operator $*: H? — H?, (S*f)(z) = (f(z) — f(0))/=.

Clark [C] investigated the connections between the measures o, € My and unitary rank
one perturbations of the model contraction. In [C] it was shown that o,’s are the spectral
measures for these operators.

The following theorem was also proved.
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Theorem 2.1.1 ([C]). Consider the operator U, originally defined on the linear hull
of the functions ky with |A\| < 1 and mapping this linear hull into the space L%(c4) of all

o4-measurable functions (mod 0) according to the rule

(Uaka)(z) = (1 = B(0a)/(1 = Xz).

After an appropriate extension, U, becomes a unitary operator mapping 6*(H?) onto

L (04).

Let A, be the conformal automorphism of the unit disk that sends a to 0. Now the
operator given by f — f - @ takes 6*(HP) onto (A, 0 8)*(HP); in the case p = 2
this operator is an isometry. Furthermore, letting {0/, }aer be the family of measures
corresponding to the inner function A, o 6, we have o = it for B = Ag(@). This
observation will enable us to confine ourselves to the case where 6(0) = 0. Under this
assumption, all the o,’s are probability measures, and the formulas become much simpler.
In particular, the operator U}: L?(04) — 6*(H?), which is the adjoint of the unitary

operator U, mapping 6*(H?) onto L?(c4), is now given by

* Lo ,C(fo-d) _ - & o
Uaf = %ipsy = (1= @)K(fou)

In [A2], A. B. Aleksandrov studied the behavior of the map U,: §*(H?) — L?(0,) for

p # 2. His results were obtained as corollaries to the following general theorem.

Theorem 2.1.2 ([A2]). Let p € M(T). With this u we associate the map

Vuf =K(fu)/Ku (f € L'(w)).

The operator V, is of weak type (1,1), and it is a continuous map from LP(u) to LP(m)

(1 < p £2). Moreover, the norm of V, can be estimated in terms of p only.

Further properties of the map V), will be considered in Section 2.3. Since for 1 < p < 2
we have UZ! = V,_ (recall that we assume 6(0) = 0), Theorem 3 implies the following

statements.
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Corollary 2.1.3 ([A2]). Let 1 < p < 2. Then

UZY(LP(0q)) C 6*(HP).

[ 4

Corollary 2.1.4 ([A2]). Let 2 < p < +00. Then
Ua(6*(HP)) C LP(04).

In [A2], it is also shown that though U,(6*(H?)) and L?(o,) coincide for p = 2 by

Clark’s Theorem, this is no longer valid for p # 2 except for some degenerated cases.

Theorem 2.1.5 ([A2]). Let p be a singular measure in M (T), p > 2. Suppose that
V,(C(T)) C LP. Then p is discrete.

Corollary 2.1.6 ([A2]). Let 6 be an inner function and let « € T. Suppose that
Uz (LP(04)) = 6*(HP) for some p € (1,2) or U,(8*(HP)) = LP(o,) for some p € (2, +c0].

Then o, is a discrete measure.

Now the following question arises (see [Sa]): how does the operator U, act on functions
that do not belong to the linear hull of the family {kx}xep? In Clark’s paper [C] it was
shown that if a function f in 6*(H?) extends analytically across an arc of the circle T,
then we have f = U,f almost everywhere with respect to o, on that arc. In [A2] it
was mentioned that the relation f = U,f also holds a. e. with respect to o, in the
case where f € C(T) N 6*(H?). In Section 2.2 we obtain some results showing that the
relation f = U, f remains true for the rest of the functions in 8*( H?); moreover, it can be
understood “literally.”

In [Sa], D. Sarason proved that, given a probability measure x4 in M, (T), the map
V, is an isometry of the space H%(u) (the latter is the closure in L?(u) of the set of all
polynomials of z) onto the so-called de Branges space ( f) (the notation is the same as in

[Sa]), where f =1 —1/Kp. So, in a sense, the map V, is a generalization of the operator
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Us. In Section 2.3 we extend the results of Section 2.2 to the case of V,,, where u is an
arbitrary measure from M(T).
Finally, in §3 we apply the results obtained in the previous sections to some old problems

concerning division and multiplication for Cauchy integrals.

2.2. Convergence of functions from 6*(H?) to their boundary values

We start with some propositions showing that for p > 2 the image U, f of a function
f € 6*(HP) under Clark’s operator U, coincides o,-a. e. with the boundary values

(introduced in a certain way) of f on T.

Theorem 2.2.1. Suppose that 2 < p < +oo, f € *(H?P), and let f have the expansion
f(z) =3 ,>0an2" for z inD. The following statements hold.

1) The partial sums of the series ) anz" are bounded in the LP(o,)-norm by C||fl u»,
where the constant C' depends only on p.

2) The series Y _ anz™ converges in LP(04) to the function U, f.

Proof. We note that the k-th partial sum of the series > a,z" coincides o,-a.e. with
Uof —2FT1U,S** f. This fact is obvious if f € C(T), because the map U, takes continuous
functions to themselves. But if f ¢ C(T), one can choose a sequence {fn}n>0, fn €
C(T) N 6*(H?), for which f, — f in H? and apply a limit argument. By Theorem 2.1.2

and Corollary 2.1.4, there is a constant Cy = Cy(p) such that

“Zk+1 Uas*kaLP(aa) - [[Uas*kf”LP(aa) < COHS*kaHP — 0.A

Corollary 2.2.2. Let f € §*(H?),p > 2, fr(z) = f(rz),0<r < 1. Then
1) fr = Usf in LP(0,) asT — 17,
2) Ifellze(oay < Clifll a2, where C = C(p).

Proof. 1t suffices to apply the Abel-Poisson summation method to the power series of

f and then to use Theorem 2.2.1. A
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Remark. In[A2] it was shown that the inclusion map of 8*(H?) into §*(HY) is compact
if p> ¢ > 1. It can be seen from the proof of Theorem 2.2.1 that this statement yields an

estimate, in terms of p and 6 only, for the rate of convergence of the series 5. a,z" = f(z)

(f € 6*(H?)) and of the functions f. in LP(0,).

Remark. The restriction p > 2 cannot be dropped in the statements of the theorem
and its corollary. This can be seen from the following example.

Let us take an inner function 8 with the following properties:

1) ﬂ-z—z:To(ll € H? for,

2) ﬂ%{—fﬂl ¢ HP for every p > 2.

Such a function can be constructed, e.g., with the help of Theorem 3.3 in [A2]. In the
same paper it was pointed out that 1) implies 04({1}) # 0 for & = (1), and 2) implies
that the point evaluation at 1 is a discontinuous functional on 6*(H?) for p < 2. Therefore,
for any p < 2 there is a function f € 6*(HP) for which the limit

lim f(r)

r—+1-

does not exist. So the functions f. also do not converge as r — 17. Nor does the power
series of f converge in LP(c4).

The above example also shows that for p < 2 the functions f, do not necessarily converge
oo—a. e. However, soon we will see that they do converge for p > 2. In order to treat the
problem of convergence almost everywhere, we have to do some preparatory work.

We say that z tends to £, £ € T, nontangentially (and write z ? €) if z tends to ¢ from

inside the region AY,
A‘P——Dr1{z|{arg(1~z§)\<cp} Where’,&E(O —)
¢ ’ "2

(from now on we denote by arg the principal branch of the argument, so its values lie in

(=m, 7]).
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Let p € M(T), f € L*(u). A point £ € T will be called a Lebesgue point of f with
respect to the measure p if

1

3 o MO = Sz =0 ash—o,

where I(£, h) is the subarc of T centered at £ whose length is 2h.

Lemma 2.2.3. Let u € M(T), f € L' (u). Then for |u|-almost every £ € T

P(fu)/Pu “Z—:Z f(&).
P
Proof. First we consider the case y > 0. Let £ be a Lebesgue point of f with respect to
the measure y. We may assume f > 0 and f(£) = 0. Standard arguments involving the
definition of a Lebesgue point and the properties of the Poisson kernel show that in this

case

(P(fu)/Pu)(r§) —— 0.

r—1-
The passage from a radius to a sector will require some estimates similar to those that
occur in Harnack’s lemma.
Now let u be an arbitrary measure from M(T), and let g be a y-measurable function

such that p = g|p|. The statement of the lemma now follows from the relation

_ P(falu) Pl
PUWIPE= =50 Blglul)

since |[g| =1#0 [pu]—a. e. A

Lemma 2.2.4. Let p and v be measures in M(T), p L v. Then for v-almost every
£ € T we have

(Pu/Pr)(z) 0
£

Proof. We consider the case where v > 0 and u > 0. Let f be a function defined on T

such that f =0 p-a. e. and f =1 v-a. e. Now by Lemma 1.2 we have for v-almost every
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Consequently,

for v-almost every €.

The passage to the case of arbitrary p and v is similar to that in the previous proof. A

Consider the space 8*(HY) = { f € 6*(H?) | f(0) =0}. For f € 6*(HP) we denote the
function §f by f. The map f — f is an involution on the space 6*(H?). In what follows
a function f in 6*(HP) will be called a Hermitian element if f: f.

Some of the proofs of the theorems below rely on the following nice property of Hermitian
elements: if f € 6*(H?),p>2,and f = f~, then argUs f = *5= 04-a. e. In particular,

the function U, f is real o;-a. e., and U_1 f is purely imaginary o_;-a. e.

Theorem 2.2.5. Let f € 6*(H?), p> 2, a € T. Then for 04-almost every £ € T

f(z) — (Uaf)(6)-

z—&

£

Proof. Assuming that f(0) = 0, we represent f as the sum

_f+F, i-F

f 2 2

Since both f + fand i(f — f) are Hermitian elements, it suffices to prove the theorem in
the case of Hermitian f.

In what follows we write f instead of U, f if this leads to no confusion.

Now let f be a Hermitian element, o = 1, and let £ be such that

(A) P(fo0)/Poy = f(€) as = = &

(B) (P(f0-1)/Poy)(=) — 0as = — &

(C)(1—-46(z)) —=0asz —; €.



22

(Lemmas 1.2, 1.3 and the definition of o7 show that o;-almost every ¢’s enjoy the above
properties.)
We note that

P(foy) = 2Rek(for) = 2Re(1j2/€(fa_1)>

= 2(Re({55) Re(i(fr-) - 1 (15) Em(ic7-0))

=1(Po1Q(fo_1) — Qo1 P(fo-1)),
because f is a Hermitian element. Therefore, using condition (A) we get

(221) (U - EF ) — 1)

£

Next, by Holder’s inequality we have

|P(fo-1)] £ VP(o-1)|P(f25-1)]-
In view of condition (B) imposed on ¢, it follows that
1912
(2.2.2) |P(fo_1)| = O(\/PO’...1P01> = O(lll _lzIZ[>

Now we are able to estimate the second summand on the left-hand side of (2.2.1):

S P fin(28) 28) - o(12052)

From condition (C), imposed on the point £ at the beginning of the proof, we derive

Im(1-6)/]1—6% =0(1) as P ¢, and so (2.2.1) yields

1Q(fo1)(z) — f(§).
z—zf

Furthermore, (2.2.2) implies P(fo_1) = o(1). It remains to notice that [ fdo_; = f(0) =

0, and so

f(z)=(1+6(2)) K(fo-1)(2)
= (1+6(z)) (%P(fa_l) + %Q(fa_1)>(z) o f©)a

£
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The rest of this section is devoted to the properties of maximal functions corresponding
to elements of the space 6*(H?) with p > 2.

Let f € L*(u), u € M(T). By f¥ we denote the Hardy-Littlewood maximal function:

1

M m— mm———
f;t (6) - igg [J(I(\f,s)) ﬁ(f,s) ‘f‘ d/“a

where £ € T and I({,¢) is the subarc of T of length 2¢ and centered at €.

In what follows we make use of the so-called Luzin—Privalov “Ice-cream cone con-
struction” (cf. [K]). Let { € T and ¢ € (0,7/2). Into the sector Af we inscribe a
circle T, centered at the origin. The two points at which T, is tangent to the rays
{z | arg(l — z€) = ¢} divide the circle T, into two arcs. We denote by F? the open
region bounded by the shorter arc and the rays { z | arg(1 — 2£) = +¢ }. In other words,
of the three parts into which T, divides A7, I'{ is the one adjacent to the point ¢.

Let E C T. By I'}, we denote the set

Jre.

EEE

For a function f € H? we introduce its nontangential maximal function. Letting ¢ €

(0,7/2) we set
fo(€) = sup [f(2)].
z€I¥

4

Before proceeding with the “maximal Theorem” 2.2.7, we establish an auxiliary statement.

Lemma 2.2.6. Let u,v € M (T), f € LY(u+v), ¢ € (0,7/2). Then there is a positive
constant C such that for v-almost every £ € T and for all z in FE‘P we have
1) |P(fv)| < Cf} P,

2) |P(fu)l < CFIL Pl +v).

Proof. We may assume that f > 0. A standard argument shows that inequality 1) holds

for all points z on the radius terminating at a Lebesgue point of f with respect to v. In
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order to extend inequality 1) from the radius to the sector I‘?, one should reproduce the
argument of the proof of Harnack’s Lemma.
To deduce 2) from 1), one should substitute p+ v for v in 1) and recall that both f and

v are positive. A
Now everything is ready to prove the maximal Theorem.
Theorem 2.2.7. Assume that o € T, ¢ € (0,7/2), f € 6*(H?), p > 2. If p > 2, then

fs € LP(04). If p=2, then f} belongs to the “weak L?” je.,

u({E€T]f2(6) >} < 5,

where ¢ is a constant.

Proof. The crucial estimates will be similar to the estimates in the proof of the pointwise
convergence.

Since (h+¢)% < h} + g}, it follows that we can once again confine ourselves to the case
where f is a Hermitian element.

Now, by Lemma 2.2.6

|P(f0’1)/P0'1[ S C ;\;[.

From this we derive (like we did in the proof of Theorem 2.2.3) that

(223) lQ(fO'._l) - lep(fa—l)/PUI' S C ;\;I.

Holder’s inequality gives

|P(fo-1)| £ V/P(o-1)|P(f2o-1)l.

Furthermore, by Lemma 2.2.6

|P(fPo_1)| < C(fHM,, - Ploy+0-1)
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whence

T~

2.2.4) |P(fo_1)| < \/C (f2)& 01+a " Ploy+o_1) Plo_y)

1|6

< _— 2 .
- Cll1_92Hl+9‘ (f )61+0-1

Next, we use (2.2.4) to estimate the second summand on the left-hand side of (2.2.3):

(2.2.5)

@, - Plfo-)Por| <61 fim(15)] '192]@:_9,

Co /
< . 2\M .
— I]. 9] (f )01+0’_1

Since f is a Hermitian element, we have f(0) = [ fdo_; =0, and so (2.2.3), (2.2.4), and

(f2 O’1+0’_1

(2.2.5) together yield

£ = 31+ 8 P(for) +iQU o)) < OF2 + EC2 fpa 7

The fact that f belongs to both LP(cy) and LP(o-;), combined with the well-known
Hardy-Littlewood maximal Theorem, implies that in the case p > 2 the two summands
in the last expression belong to L?(o; ), whereas in the case p = 2 the first summand is in

L?(o1) and the second one is in the “weak L%(01).” A

Remark. From the proof one sees that the norm of the maximal function f7 can be

majorized by the quantity C||f| z», where C depends only on p and ¢.

2.3. Boundary properties of functions

from the range of the operator V,

In this section we generalize the results of Section 2.2 to the case of an arbitrary measure
p € M(T) instead of the singular measure o,. The space 8*( HP) will now be replaced by
the image of L?(x) under the map V,,: LP(u) — H?(D).

Let R denote the operator from LP(y) to LP(u) defined by the formula Rf =% - (f —

Jo £y
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Lemma 2.3.1. Let p € My(T), f € L' (u), F = V,f, and let 37 5, anz" be the

Fourier series of F'. Then for each k € Z, k > 0 we have

k
(2.3.1) ’ Z anz" = f — Z*TIRFFLf

n=0

p-a. e. on T.

Proof. We may assume that y is a probability measure. Set ¢ = f — [ fdu. We note
that [gdu = 0. We also have

K(Q@.#)(z)zf L -—”g—(@‘dﬂ(f)

J T-2€ ¢ ]
- ([ mzeomeo - [ ws) /-
_ gK()(z)
Consequently,
(88
V,Rf = K(Rf)u) — ( B /") = (Vuf - (V“f)(O))/z — S*Vﬂf.

Ku Ku

Thus, for all k € Z, k > 0 we have V,RFf = S**F. Now we prove the statement of the

lemma by induction. For k¥ = 0, (2.3.1) obviously holds, since F(0) = f.ﬁ.f du. Further, if

k
Zanz" =f—zFIRM1f 4 .a e onT,

n=0
then
k+1 k
Z apz" — Z anz™ + ak+12k+l — (f _ Zk+1Rk+1f) + zk+1((5*kvpf)(0)
n=0 n=0

= f = U RM - (VR £)(0))
— f _ Zk+1 <Rk+1f _ /Rk+1fd/l>

= f—F2RF1f A
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Lemma 2.3.2. Let p € My(T), f € L*(u), F = V,f, and let ) 5, an,z" be the

Fourier series of F'. Then for each k € Z, k > 0, we have

. anzn

< CHJC”Lz(u)’
L2(p)

n=0

where C 1s an absolute constant.

Proof. 1t is sufficient to prove the lemma for an arbitrary continuous function f.

Consider a sequence of singular measures {un}n>0, tn € M (T), converging to u in the
weak™ topology of the space M(T). Since f is continuous, we may deal with the sequence
of functions F, =V, f. Let Si denote the k-th partial sum of the Fourier series of F, and

let S; stand for the similar sum associated with F,. By Theorem 2.2.1,

(23.2) 158l 22(un) < ClNFlL2(0)-

We note that F, — F uniformly on compact subsets of D, and so Sf — Si uniformly on

T. It remains to let n — oo in (2.3.2). A

Remark. Clark’s Theorem and the proof of Theorem 2.2.1 together imply that the

constant C occurring in the statement of Lemma 2.3.2 can be chosen to equal 2.

Lemma 2.3.3. Suppose that either
(A) g =m + fm, where f >0, f € L'(m) or
(B) p = m + v, where v is a singular probability measure in M4 (T).

Then for each function g in L?(y) the Fourier series of V,g converges in L*(p).

Proof. In view of Lemma 2.3.2 and the Banach-Steinhaus Theorem, it suffices to find

a dense subset of L?(u) such that the statement holds for its elements.

Let u satisfy (A). We shall prove that the power series of 1/Ku converges in L2(u). Set
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pr =Kpu(rz), 0 <r < 1. We have

(2.3.3)
/

2 1 —xn 1
Reurdmz‘i/S*n,u - S (:u‘f‘+/ur)d

fr

1 LTI | T, 1
:-(/EZH_S*"_dm+/Z_/ZL_S*n_dm>
2 fir fir fir fir

n
- Re/S*”i EE am
/’LT' /‘l‘r

1
S:«"n____~
pr

Now, since 1/Ku € H®, the functions ]S*”;lr— ]2 are bounded by a constant independent
of r, and they converge to lS*";%-IZ as 7 — 17 m-a. e. Thus, by the Lebesgue dominated
convergence Theorem, [S*":}:V tends to [S*"kl—ﬂf as r — 17 in the weak™ topology of

L>(m). Besides, Rep, — Re Ky in L!(m). Consequently,

(2.3.4) ]

Since p, —— Ky m-a. e. and 1/Ku € H*, we have

12
S**—| Reu,dm.

fr

1
S*n —_—

r

Reyrdm ——
r—s]—

r—1-
(2.3.5) /S*" I g Re/S*"—-—l——— KB
r—1 - K:/i IC/L
Now (2.3.3-5) and the properties of S* yield
“n wn 1 2"Kp .
/5 | Re K dm = Re/S T

Therefore, the power series of 1/Kp converges in L%(u). We set h = P/f + 1, where P is a
polynomial in z and Z. Then V,h = Py + P/Ky, where P; and P, are polynomials in z.
Thus, the series of V, h converges in L?(y). In view of the remark made at the beginning
of the proof, it remains to observe that the functions h of the above form are dense in
L?(p).

Let u satisfy (B). By 6 we denote the inner function for which Kv = 1/(1 — 6). Let
P1 be a polynomial in z, P; a polynomial in Z, and hg a function in L?(v). Consider a

function h in L?(y) defined by

_ { ho v-a. e
Tl @2-0P, + P, +V,hy mea e
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We have

1-6)((2—6)P1 + Vo ho + Vi ho/(1 = 6))
2-6

Vph = ( = (1 — H)Pl + Vyho.

By Theorem 2.2.1, the Fourier series of 8 and V, hq converge in L%(v); they also converge
in L?(m) because both § and V, hy are in H2. Finally, the functions k under consideration

form a dense subset of L%(p). A
Lemma 2.3.4. Let p € M (T). Then the Fourier series of 1/Ku converges in L%(u).

Proof. The measure p can be written in the form u = fm+o, where f > 0, f € L'(m),
and o is a singular measure in M (T). We may assume that ¢ is a probability measure.
Now we shall show that the function 1/Ky lies both in the range of V(s11)m and in the
range of V,i .

Since |[Ku| > 1/2, the function 1/Kpu is bounded. By Theorem 3, K(fm)/Ky is in H2.

Consequently,
K(fm)+1 2 m
Xufrn €L ((f + Dm),
and so
K(fm)+1Y _ K((f +1)m) _ 1
V(f'i-l)m(&'“(f_}_l)) = Ku /’C((f+1)m)*,c_ﬂ‘

Further, consider a function k in L?(¢ + m) such that h =0 o-a. e. and h = (Ko +1)/Ku
m-a. e. (We note that A € L?(m) because 1/Ku is bounded and Ko /Ky € H? by Theorem

3). We have
_ Ko +1) _ L
Vorem(h) = =1 /(zca =g
Now the desired conclusion follows from Lemma 2.3.3. A

The next theorem is a generalization of Theorem 2.2.1 in the case p=2.

Theorem 2.3.5. Let u € M, (T) and f € L*(u). Then the Fourier series of V, f

converges in L?(y).

Proof. By Lemma 2.3.2 and the Banach-Steinhaus Theorem, it again suffices to find a

dense subset of L?(u) for which the statement is valid.
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First we show that if the series of V, f converges in L?(u), then the same is true for

V,(zf) and V,(Zf). Computations similar to those in the proof of Lemma 2.3.1 show that

(Va(zP)(€) = /T 2f(2) dp(=)/Ku€) + EVu F)E),
(VaEH)(E) = é((Vuf)(ﬁ) - /T fdu/'Cm(i))

The convergence of the series of V,,(zf) and V,(Zf) now follows by Lemma 2.3.4.
Since for ¢ € C one has V,c = ¢, the polynomials in z and Z form a dense subset with

the required property. A

Corollary 2.3.6. Under the assumptions of the theorem, we set
Fr=(V,f)(rz), rel0,1).

Then the F,’s converge in L*(y) asr — 1™,

Remark. Clearly, in the theorem (respectively, in its corollary) it is impossible to
guarantee that the series converges to f (respectively, that the functions F, converge
to f). However, the sum of the series and the limit of F,. do coincide with f almost
everywhere with respect to the singular component of the measure p. This is a consequence

of Theorem 2.3.8 below.

Remark. In the statement of the theorem, one cannot replace L2 by L?, p # 2. This
can be seen from the following example.

Let o be a singular probability measure in M_(T), and let p > 2. If o is not discrete,
then the corollary to Theorem 4 implies the existence of a function f in L?(¢) such that
V.f ¢ HP. Consider the measure p = m + o and the function g € LP(u) which equals 0
m-a. e. and equals f o-a. e. We denote by 6 the inner function that equals 1 — 1/Ko.
Then V,g =V, f-(2—-6) ¢ H?. Consequently, the Fourier series of Vg does not converge

in LP(m), so not in LP(u) either. Moreover, the L?(u)-norms of the partial sums S, of
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that series tend to infinity. By Lemma 2.3.1, S, = ¢ — z""!R™g pu-a. e. on T. Therefore,
|IR*|| = o0 as n — oo.

Consider the adjoint operator R*: L(u) — L(u), where ¢ = F;Ll' From the definition
of R one easily derives that R* is given by the formula R*f = 2f — [zf dﬁﬁﬂ. Since
||R**|| — oo as n — oo, the Banach-Steinhaus Theorem implies that for some function
h € Li(u) the norms |[R*"h||1s(,) are not uniformly bounded. Now for the powers of R
and R* we have the relation R** f = (W) holding for all f € LI(u). It follows that
the norms ||[R™(zh)||1e(,) are not bounded, and so the Fourier series of V,(zk) does not
converge in Li(p).

Now we are going to focus on the problem concerning nontangential limits of functions
lying in the range of the map V,. This problem was treated in Section 1 for singular

measures g € M4 (T). In the proof of Theorem 2.3.8 below we reduce the general case to

that special setting with the help of the following statement.

Lemma 2.3.7. Assume that I is an open subarc of the circle T, J = T\ I, p € M (T),
w(J) =0, f € L>®(pn), ¢ € (0,7/2). Then for each ¢ > 0 there exists a discrete measure
o and a function fo € L*(po) such that ||uol|l < [|ull, [[follze(uo) < | fllzee(n), and for all

z in 'Y one has

(1) [Ku(z) = Klro)(2)l < ¢,
(2) IK(fu)(z) = K(fomo)(2)| <e.

Proof. We may assume that I = {e'®,e7*®}, where a € (0,n] (if @ = 0, then p itself
is discrete). We shall show how to partition the arc I into suitable subarcs Iy, k € Z, so
that the desired measure pg could be obtained by replacing y with a point mass on each
of these subarcs.

For each g > 0 one can find a sequence {a, },>o of numbers in [0, o) with the following

properties:
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1) (875} =0,

2) apt1 > a, (n=0,1,2,...),
3) u({e*"}) =0(n=0,1,2,...),
4) ap — o as n — o0,

5) foreach k € N

1 1 <
su - — - 0.
z@% 1 — ze *@k-1 1 —ze ok

We construct such a sequence for a suitable sufficiently small ¢y (the choice of ¢4 will
be specified at the end of the proof). Denote by I}, k € N, the arc between e***-1 and
gl contéined in I. By I_; we denote the arc symmetric to I with respect to the real
axis: Iy = {€| € € I+ }. Now let yo be the measure having the point mass u(I;) at each
e'®* and the point mass u(I_j) at each e, k € N. We define the function f, by letting
it equal ﬁ flk fdu at e*** and ;zjl—_;; fI-k fdu at e7** (k € N).

The conditions ||po|| < ||g|| and || f|| < || fol| are easily verified. Further, for z € T'Y we

have

1 1
= -t S C”/‘LHSO,
1—26 1—ze o

Ku(z) = K(po)(2)l < > |u(Iy)] - sup

kEZ\{0} €L

where the constant C' depends only on ¢. Thus, taking ¢y smaller than ¢/C||y||, we get

(1). Writing the same estimates for fu and fouo instead of u and pg, we arrive at (2). A

Theorem 2.3.8. Let 4 € M(T) and f € L'(u). Denote by F the function V, f, which

is meromorphic in D. Then for p-almost every € € T the limit

lim F(z)

z—§
exists, and it equals f() almost everywhere with respect to the singular component of the

measure p.

Proof. A) First we consider the case where p > 0 and f € L*°(u). We denote the

singular component of u by o. Since g > 0, Theorem 3 yields F € H?, and so the
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nontangential limits of F' exist m-a. e. It remains to prove that they also exist and equal
f o-a. e. Let a subset E C T be such that o(E) = ||o||, m(E) = 0. Since ¢ is a regular
measure, there exist closed sets E;, E;,... with UneN E, = E. Let n be a fixed positive
integer. The set T\ E,, can be written as the union of a countable collection of pairwise
disjoint open arcs I, I,.... By Lemma 2.3.7, for every ¢ > 0 and ¢ € (0,7/2) one
can find a discrete measure pj supported on I and a function ff € L°(uf) such that

kil < wlTe)s | filleug) S Il () and for every z € TX T\I, One has

1 1

~d —/ =dus| <
/Ik1~zg S

1 1

_fd -/ e fEdus
/Ikl‘zﬁ K L 1—zE kK GHE

Let x g, denote the characteristic function of the set E,. We set y. = EkeN Ki+XE, 0.

&
2k
and

£
<'2'7c'.

Let a function f, be equal to f{ uj-a. e. for all k € N, and to f o-a. e. on E,,. Then we
have |||l < [|ull, Wfellzo(u) S I fllze(u). Setting F. = V,, f., we see that the following

relations hold on I’“gn:

_ ’C(f/‘) _ (fsﬂs) ’C(feﬂs) _ ’C(fs/is)
(2.3.6) F-F|< 5 ; [ freot
]/C I I’C f# ’C(fe/-te)l'*'IFsHK:(/»‘e)'“,C“I)

_HHG+WD

By Theorem 2.2.7, the maximal function (F;)} is finite p.-a. e., and consequently also
p-a. e. on E,. From (2.3.6) it follows that F} is also finite pu-a. e. on E,. Let {¢x}r>0 be
a sequence of positive numbers tending to zero. For each ¢, we construct a measure .,
and functions f., and F,, in the same way as u., f., and F, were constructed for . Let

a point £ in E, be such that for all k € N

lim F,, (z) = f(£)

z—§€
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and F; < +0oo ( p-almost every points in E, enjoy these properties). Then for each z € Ff

we have

(2.3.7)
F(2) = F. (2)] < ”CW) _ K(fw)

l K(fi)  K(feohey)

,C/—L K(”ek) K(/‘ek) K:(ﬂsk)
= ()| g 1ok = Ko + ) = K Fese)
< EOnr

Since ex — 0 and all F, tend to f({) along I', the Stokes-Seidel Theorem and (2.3.7)

together imply that F also tends to f(£) along the set F?. Thus,
lim F(z) = f(£)
z—zE

for o-almost every £ € E,. Recalling that | JE, = E, we come to the desired conclusion.
B) Now let u € M, (T), f € L'(u), and let o be the singular part of u. We may assume
that f > 1. By A), the limit

(2.3.8) lim(Vyul/f)(2)
£

exists fu-a. e. (and consequently p-a. e.), its value being equal to 1/f(§) fo-a. e. (and
consequently o-a. e.). Moreover, the function Vj,1/f belongs to H2. Therefore, the limit
(2.3.8) is nonzero m-a. e. on T. Since f € L'(y), one has 1/f # 0 o-a. e. Consequently,
the limit (2.3.8) is also nonzero o-a. e., and it is equal to 1/ f(£) for o-almost every . The

statement of the theorem now follows from the relation
-1
Vif = (Vsul/f)

C) Finally, let p € M(T) and f € L*(u). Let a function g be such that g|u| = . Then

lg| = 1 p-a. e.; the desired conclusion is now implied by B) and the fact that

Vuf =V fa/Viug-a
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Corollary 2.3.9. Assume that y,v € M(T), v is singular, u 1. v. Then
Kp=oKv) asz ? £

for v-almost every €.

Proof. Consider a function f in L®(u + v) such that f =1 v-a. e. and f = 0 p-a. e.

Now, by Theorem 2.3.8,
Kv

Vi f =
wtof Ku+ Kv 2?51

for v-almost every £. A

Corollary 2.3.10. Let f € H' and let  be an inner function. Then
(1-6)f—0 asz;»f

for o1-almost every £.
Proof. Set fm = pu, oy = v and apply Corollary 1. A

Thus, the set {£ € T | (1 —8)f —— 0} is nonempty, whenever f € H! and 6 is a
z—¢

£
nonconstant inner function.

Remark. Since Clark’s operator U,: 8*(H?) — LP(0,) is unbounded for p € (1;2),
the theorems of Section 1 deal with the case p > 2 only. Theorem 2.3.8 enables us to
generalize Theorem 2.2.5 in the following way.

Let f € 6*(HP) and Uy f € L'(04) (ie., f = V,, g for some g € L'(0,)). Then for

o4-almost every £ one has

lim £(z) = (Uaf)(E).
£

Remark. As it was mentioned in the Introduction, for 4 € M (T) the range of the
map V), contains de Branges’s space (f) with f =1 — l}%&[ Thus, the theorems proved in
this section also describe the boundary behavior of functions in H(f) with respect to the

measure K.
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2.4 Applications to multiplication and division problems

for Cauchy integrals

In this section we apply the above results to some well-known problems. The questions
treated here were discussed earlier in [G1, G2, G-K-V].

Let 6 be an inner function. It is well known that 6 possesses a natural extension to
D_ = C\(DUT) as a meromorphic function. Given f € H>, we say that f has a
pseudocontinuation equal to f¢g, where 8 is inner and ¢ is analytic and bounded on D_

with g(oo) = 0, provided that for m-almost every £ one has

lim f(r¢) = lim (8)(re).

We define the Hardy class H?(D_) of the region D_ as the set of all functions f analytic

in D_ and satisfying
sup [ [F(rE)P dm(€) < +oo.

r>1

The following theorem is due to A. B. Aleksandrov.

Theorem 2.4.1 ([A3, A4]). Assume that f € H>*(D) and f has a pseudocontinuation
equal to 8g. Let u € M(T) and 6Ku € HP(D-) for some p > 0. Then there is a measure
v such that

fku=Kv
on C\ T (it is meant that f = 6g on C\ (DUT)).

Now the following question arises: what is the relationship between the measures y and
v? More precisely, when is it possible to let v equal fu? Some results on this matter

can be found in [G1], [G2], and [G-K-V]. Theorem 2.3.8 enables us to prove the following

proposition.

Theorem 2.4.2. Under the assumptions of the preceding theorem, for y-almost every

¢ the limit
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exists. The measure v can be chosen to equal fu:
Ku = K(fu).

Proof. From I. I. Privalov’s results [P] it follows that the absolutely continuous compo-
nent v, of the measure v equals fu, ( pu, being the absolutely continuous component of the
measure u). It was shown in M. G. Goluzina’s paper [G1] that v is absolutely continuous
with respect to p. Thus, v equals gu, where g € L!(p) and ¢ = f m-a. e. on T.

It remains to prove that f has angular limits almost everywhere with respect to u,
(which is the singular component of 1) and these limits equal the values of g p,-a. e.

By Theorem 2.3.8, the function Kv/Kp has angular limits p-a. e.; moreover, for pu,-
almost every ¢
(ICI/

K. ) ()= () — ()

£

In particular, Theorem 2.4.2 can be applied to the following corollary of Theorem 2.4.1,

due to S. A. Vinogradov.

Corollary 2.4.3 ([V]). Let u € M(T), let 8 be an inner function, and let Kp/0 € HP

for some p > 0. Then there is a measure v € M(T) such that Ku/6 = Kv.

Once again, the question of relationship between y and v arises. One of the ways to
construct the measure v for given u and 6 was pointed out in [G2]. Applying Theorem

2.3.8 we get the following result.

Corollary 2.4.4. Under the assumptions of the preceding theorem, the function 8 has
nontangential boundary values of modulus one p-a. e. on the circle T. The measure v can

be chosen to equal p6.
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Part 3. Rank one perturbations of self adjoint operators

3.1 Families M, and rank one perturbations of self-adjoint operators.

We will denote by M(R) the space of Borel complex measures on R with the norm

1/°°g&(t_)

I

We will also use the notation M (R) for the subset consisting of positive measures.
Let ¢ be an analytic function on the upper half plane C. such that |¢| < 1. Then for
any o € T we again can consider a measure gy € M (R) such that its Poisson integral

satisfles

o1 < ydua(t) a+
Pua)a+in) = [ el R 22

The family M, (R) = {fia}aeT preserves most of the properties of an analogous family
on the circle. All the results from Parts 1 and 2 concerning families M, can be easily
adopted to the case of the real line.

As was shown by Clark in [C], if ¢ is an inner function (|¢| =1 a. e. on T) then M (T)
is the system of the spectral measures of all unitary one-dimensional perturbations of the
model contraction with the characteristic function ¢. A similar connection can be made
between rank one perturbations of self-adjoint operators and families M, (R), see [Ar],
[Dol, [S-W], [S] and [R-J-L-§].

If Ay is a cyclic self-adjoint operator, acting in a separable Hilbert space, and ¢ is its

cyclic vector, then we can consider the family of one-dimensional perturbations
Ax = Ao + A%, 9)e,

A € R. If we denote by vy the spectral measure of ¢ for Ay then the relation for the

resolvents

(Ao —2)7 = (Ax = 2)7 = [Mx,0) ((Ax = 2) ') (Ao = 2) 7,
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for any z € C4, gives us

(3.1.1) Fa(z) = T%

where

(3.1.2) Fy(z) = f; /_Z dzyi(? = %((z - A7 e, 9)
(see [Ar]).

Since v is a positive Borel measure on R, Fy is an analytic function with a positive real

part on C4. Thus

F(] = 1 + LP
1-v¢
for some ¢ € H®(C), |¢llee < 1.
Hence by (3.1.1)
. _ . - 1+ _ -

(3.1.3) (Pva)(z +iy) = Re Fo(z + ty) = Re PprpyE iw)\i—;f = cRe 1o
where 8 = ;f:::\\, ¢ = Re ﬁ Thus

Pvy =cPug

where {ug}ger = M,(R).

Remark. The same argument works for the families of unitary operators (in particular
the ones considered by Clark [C]).

Let U; be a unitary cyclic operator in a separable Hilbert space. Let probability measure
p1 € M4(T) be the spectral measure of some cyclic vector v for ;. Then we can consider

the family of one-dimensional unitary perturbations of U :
Uy = Uy + (o = 1)(*,U; o).
For the resolvents we have

(U — Z)_l - (Ua — Z)_l = (U — z)‘l[(*,L{l—lv)v](Z,{a - 2)—17
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and since Kpo = ((Ua — 2) 7 v,v) for z € D, where 4 is the spectral measure of v for Uy,
we have that

__ okpa
o 1+(CY“‘1)IC;L1

If we consider '€ H™ such that ||¢||ec < 1,9(0) =0 and

(3.1.4) Kpio

_n.lte(z)
(P#I)(Z) = Re 1 — 99(2)
for each z € D, then
1
A gy

and by (3.1.4)

Ppro=2ReKpu, —1=2Re

Thus {gq}aer = M, for some ¢ € H>.

As we mentioned before, this result was obtained by Clark [C] for inner ¢ and for one-
dimensional unitary perturbations of the model contraction T, = SP, , where §: f — zf
is a shift operator in H? and P, is the orthogonal projector from H? onto the model space
©*(H?*) = H? © pH2.

Clark’s result shows that if in addition to our conditions the operator U; is singular,
then U — (x, U] 1v)v is a Cy completely nonunitary contraction with the characteristic

function ¢.

3.2 Krein spectral shift.

Let u € L(R), ||u]leo < 7/2 and let Hu be its Herglotz integral:

e =+ [ (4 iy ) wet

hde <]

Then the function exp(—iHu) has positive real part on C,. Thus there exists a unique

measure u € M, (R) such that

(3.2.1) Re [exp(—tHu)] = Pp.



41

Definition. If u satisfles (3.2.1) for some u € M4(R) we will say that u is a shift-

function of u.

Since

(3:22) Il = Refexp(=itufi))] = cos (3 [~ 2293,

T J_ o 1+ 22

we have that ||u|] < 1. Conversely, let u be a Borel positive measure on R such that

llpll = e < 1. Put d = V1 —¢2. Then
Hy £ 1d = exp(—tHuy4)

for some real functions u4 and u_ on R such that ||ut||e < 7/2 and

sin(l/ M)::}:d.
T Joe 1422

The functions u; and u_ are all shift-functions of p. If ||g|| = 1 then yx has a unique

shift-function.

One can also see that if u is a shift function of u then —u is equal to the argument of

the nontangential boundary values of

. {1 [ u(z)de
'H,u—zsm(;/_oo1+x2>

almost everywhere on R.
When p is a spectral measure of a self adjoint operator A, then u is sometimes called a
Krein spectral shift of A.

First, let us point out the following important connections between u and u.

Let ¢ be the function from H*(C) such that ||¢||c £ 1, ¢(0) € R and

1+
1 —

A

Hp =

AS)
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We will denote by Qu the conjugate Poisson integral of u:

: . 1 [ T —t t
Qu(z +1y) = ImHu(z +1y) = ;/_m ((:c—t)2+y2 + t2+1) u(t)dt.

3.2.1. The absolutely continuous component of y is concentrated on the set {|u| <

7/2}. The measure is singular if and only if |u| = 7/2 a. e.
Proof. As we discussed in Parts 1 and 2, p, .. is concentrated on the set

1+¢
-y

{M <1} ={Re >0} = {|uf = [arg(L + )1 —9) ™) < 7/2}. &

3.2.2. For p’-a.e

Qu(z) ——— +o00.
z—>§

¥

Proof. Follows from the definition of u and Fatou Theorem. A

3.2.3. Consider M, = {pqo} (¢ = p1 € M,,). Put

. 1/u(:1:)d:c wc—1
c=sin| = , Y= —.
T Jg 1+ 22 we+1

Then

Qu(z) —— —o0
z—>¢

for pZ-a.e. £

Proof. Notice that the condition

Qu(z) —— —
z=—>E

is equivalent to

Hp — isin (l/ u(:x)d:r) =Hu —ic—— 0

T -0 1+$2 z—>§
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The last condition, in its turn, holds if and only if

1+
1“/\9 23§
j

> 10

l.e. if and only if

o(z) —— 7.
z—E

By the definition of the measures g, this is true for pl-a.e. . A

3.2.4. Suppose that p and v (# p) belong to the same family M. Then there exists
a unique function u such that u is a shift-function of ¢;u and —u is a shift function of cyv

for some positive constants ¢; and c;.
Definition. We will call such u the shift-function of the pair (u;v).

Proof 1. Let pp =y € My, v =py € M,.

1)Existence. Put

: 1+~
c=——.
l—v
Then the function
Fo ke
| |l = ¢

has positive real part. Thus we can consider u such that ||u|lcc < 7/2 and
exp(—tHu) = F.

By the definition of a shift-function, u is a shift-function of ¢;u where ¢; = 1/ ||p]| — ic|.

Also, since Hy = i—tg (recall that (0) is real),
: _ -1 : Yt @ :
Reexp(—tH(—u)) =Re F™" = Re || [[u[| —ic[(1 - Re)_—7 - | lull = 2e| 1 Imy

= | ||u|| = ic|] (1 — Re~y)Pv.
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2)Uniqueness. Let us prove it in the case when ||u|| = 1 (p(0) = 0) and v = —1.

Suppose u is a shift-function of ¢;p and —u is a shift-function of cyv for some positive ¢;

and c¢,. Note that since ||¢|| = 1,
1 >
€1 = COos (—/ u(x)da:) <1.
T Joo 1+ a2
Put
1"‘C1
a =
1+61

and let A,(z) be a Mobius transform of the unit disk D such that \,(0) = a. Then
Aa(1) =1, Ay(=1) = =1 and A,(1) = (1 + a)(1 — a)~!. As we discussed in Section 2.1,

that means that

_ 14+ X 00
Hlewn) = 1—-)dgo¢p
Thus
1—a 1+ X0 l14+a
=c = —222%0) = ,
14a 1—Ao00 l—a

which implies ¢ = 0 and ¢; = 1. Hence u is the shift-function of x4 which is unique because

lpll=1. a

Ideas of Proof 2. Let p=pu; € My, v = p, € M,.
Let u be the shift-function of u/||x||. Let u/||p|] = 1 € My. Then cv = p.y € My for
some v € T and ¢ > 0.

If u. is a shift-function of cy then

1+X,00

Reexp(—tHu.) = Re T h, 00

where A, : D — D is a M6bius transform such that A,(1) = 1.
If u. is the shift function of the pair (i; v) then A, must satisfy A,(1) = 1 and A,(70) = 7

which determines A, uniquely. A

3.2.5. Let u be the shift-function of a pair (y;v). Then

(3.2.3) Qu(z) = —log|z — z| + logc + o(1)
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for some ¢ > 0 as z —; z if and only if 4 has a point mass ¢ at = and
(3.2.4) Qu(z) = log|z — z| + logc + o(1)

as z — z if and only if v has a point mass c at z.

Condition (3.2.3) is equivalent to

/1 (m/2sign(z — y) — u(y))dy

-1 Ty

(3.2.5)

< 0

where signt = t/|t| for t # 0.

Proof. It is well-known that u has a point mass ¢ at z if and only if

C

[Hu(z)| ~ 2l

as z — x which is equivalent to (3.2.3).

Since for u = w/2sign(z — y)
Qu(z) = —log|z — z[ + O(1)

as z —; r and Qu(z +iy) ~ C fil %, (3.2.3) is equivalent to (3.2.5). A
Remark. Suppose p and v belong to the same family M, for some analytic function
@. If 4 and v are linear combinations of point masses at points a,, as, ..,a, and b,, b, .., by,
respectively, a; < b; < a3 < by < ... < a, < by, then the shift-function u of the pair
(u;v) depends only on the sequences {a,} and {bp}: u = 7/2 on (—oo;a;)U (b1;a2)U...U
(bp-1;a,) U (bp;00) and u = —m/2 elsewhere.
That means that for each pair of measures (u',7') such that p' ~ yu, v ~ v and

p', v' € M, for some analytic function @, we have u = p', v = v/ and ¢ = ¢. However in

general there may exist two equivalent pairs belonging to different families.

Example 3.2.6. Let A = {a,} be some enumeration of the set

2% +1

{z € (0;)|z = TR

k,n € N}
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and B = {b,} be some enumeration of the set

2k+1-

{l‘ € (0,1)|$ = W;k,n € N}

Then Alexandrov’s Theorem (see Section 3.4, Theorem 3.4.3') implies that there exist
sequences of positive real numbers {a,} and {8,} such that the measures p = > @,6,,
and v = Y fn6, belong to the same family M,. Let u be the shift-function of the pair
(u; v). For every n € N define v,(z) = u(2?"z —22"~!) on [0; 1] and v,(z) = 7/2 elsewhere
on R; define wy(z) = —u(2?2"(1 — z) — 227 1) on [0; 1] and wy(z) = m/2 elsewhere on R.
Since A and B are symmetric with respect to the point 1/2 and 1/2—z € A(€ B) implies
1/2 — z/4 € A(€ B), all the functions v; and w; are the shift-functions of equivalent pairs

of measures. Suppose that

I
il
Hl
Il
I

U1

1 1 1 1
c= / vidz = / vodr = ... = / widz = / wedz = ...
0 0 0 0

Then by the construction of v; and w; for any n € N

1/2
22"/ udr = ¢
1/2—1/22n

V2 U3 w1 = Wa

Denote

and

1/2+41/2%"
22"/ udzr = —c.
1/2

Since 1/2 € B, by formula (3.2.5) ¢ = —m/2. Since |u| < 7/2, this implies that u = —7 /2
a. e. on [1/4;1/2] which is impossible. That means that the functions v; and w; can not
be all the same. (In fact there must be infinitely many different functions among v; and

among w;.)

The proofs of Theorems 3.4.3' and 3.4.4 give some further ideas on how to construct

different shift-functions for equivalent pairs of measures.
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3.3 Existence of an absolutely continuous perturbation
Let A be a cyclic self adjoint operator, p be its spectral measure. In this section we will
give some sufficient conditions for 4 to have an absolutely continuous self-adjoint rank one
perturbation.

We say that operator B is absolutely continuous on E C R if its singular spectrum

os(B) does not intersect E.

Definition. Let E be a closed subset of R. We will say that point z is deep inside E
if and only if there exists a positive function ¥(¢) on Ry monotonically decreasing to 0 as

t — 0+ such that
1
/ Eb-g-)—dt < oo
t2
0

and

(3.3.1) dist(y, E) < ¥(|z - yl)

for any y € R.
We will prove the following

Theorem 3.3.1. Let A be a cyclic self-adjoint operator, p be its spectral measure.
Suppose that p*—a. e. z is deep in 0,...(A) N [0;1]. Then there exists a cyclic vector ¢ of
A such that A + (%, ¢)¢ is absolutely continuous on [0; 1].

Before we prove Theorem 3.3.1 let us consider some cases when such an absolutely

continuous perturbation does not exist.

Example 3.3.2. If 0,(A) ¢ 0,..(A) then A has an absolutely continuous rank one

perturbation only in some degenerated cases:

Claim. Suppose A has an absolutely continuous rank one perturbation and I is an

open interval such that o, .(A)NI=0. Then o,(A) N I contains at most 1 point.
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Proof. Let ¢ be a cyclic vector of A such that A + (x;¢)é is absolutely continuous, u
be the spectral measure of ¢ for A. If I contains points from the essential spectrum of A
then an absolutely continuous perturbation does not exist because of the stability of the
absolutely continuous and essential spectrum. Thus I can only contain isolated eigenvalues
of A. Let a,b € I,a # b be eigenvalues of A, (a;b) N o(A) = 0. Then p has point masses
at a and b. Hence Fy (defined as in (3.1.2)) is analytic and takes all real values on (a;b).

Thus by (3.1.1) each ux has a point mass between a and b and we have a contradiction.

Example 3.3.3. Condition o,(A) C 0,..(A) does not imply the existence of an ab-

solutely continuous perturbation. The easiest example is u*¢ = xgm, where E =
[0; 1]\ [1/3;2/3], u® = b1/3 + b/3-

It may seem however that if 0,(A) C 0,...(A) and for any two eigenvalues a,b € R of A
0(A)a.c.N(a;b) # 0 then an absolutely continuous perturbation must exist. The following
example shows that it is not true.

If £ € M(R) we will denote by A, the operator of multiplication by the independent

variable in L?(u):
A, f—zf.

Example 3.3.4. Let us construct the standard Cantor null set C on the unit interval:
Let
Co=L=[0;1], C,=LuUl,., Co=I}U..UI}L, ..

where

UL =T\ A

and A} = (a};b}) is the open interval placed in the center of the interval I} such that
m(A7) = 1/3m(I}). Put C = (., Ch.
Let

oo

lus — Z 1/2n+k6b2'

n,k=1
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Put

n 2 n 1 n . n
k= §ak -+ "ébk, E = U(ak;dk)'

Consider u = xgm + p®, A = A,. Suppose A has an absolutely continuous rank one
perturbation A’ = A + (¥;¢)¢. Denote by v and v' the spectral measures of ¢ for A
and A’ respectively. Let v be the shift function of the pair (v;v'). Since v' is absolutely
continuous, v must be constant on each (dy;b%). Since v has a point mass at each b},
v = /2 on each (d}; b}). But then condition (3.2.5) does not hold at any point of C' and

we have a contradiction.

ur next example shows that even when o, C Oq.c. an 1s continuous, an
O t ple sh that h A, A, dp®i t1 ,

absolutely continuous rank one perturbation may not exist.

Example 3.3.5. Let C,a}, b}, d} be as in the previous example. Put

1 2
ck = (ak +05)/2, ek = gak + 3

3 br.

Define u = —n/2 on | J(a}; c) and u = 7/2 elsewhere. Let u° be the measure for which u
is a shift-function. Then p* is concentrated on C. Since condition (3.2.5) does not hold at

any point of C, u® is continuous. Put
E=J(af;00) \ (dF;€f)) -

Consider

p=p’+xem, A=A,

Suppose A has an absolutely continuous rank one perturbation A' = A + (x; ¢)é. Denote
by v and v’ the spectral measures of ¢ for A and A’ respectively. Let v be the shift function
of the pair (v;v'). Since v’ is absolutely continuous, v must be constant (—7/2 or 7/2) on
each interval (d7;e}). Thus on each (d};e}) function u — v is either —7 on (d};cp) and

0 on (c};ef) or m on (cf;e}) and 0 on (df;cp). Hence its Poisson integral P(u — v) does
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not have a nontangential boundary limit at any point of C. But u ~ v and Theorem 2.3.8

implies that the ratio

;}-7:—5 = exp(tH(u —v))

must have nonzero nontangential limits p-a. e. So we have a contradiction.

Remark. Suppose that for p°-a. e. z there exists ¢, 0 < ¢ < 1 such that for any y € R

we have

dist(y, 04.c.(A)) < clz — y|.

Then A, still may not have an absolutely continuous rank one perturbation. Indeed, in

Example 3.3.5 for y*-a. e. ¢ and for any y € R we have

dist(y,04.c.(4)) < |z —y|.

W b

To prove Theorem 3.3.1 we will need the following fact proven in [C-P].

Lemma 3.3.2. Let p be a singular Borel measure on [0;1] such that m(suppu) = 0.
Then there exists f € L'(u) such that

M(w) =

dm
for every = € supp p.

The following Lemma shows that if A is absolutely continuous then there exists its cyclic

vector ¢ and C > 0 such that A + A(x, ¢)¢ is absolutely continuous for all A € (-C; C).

Lemma 3.3.3. For each set E C R there exists f € L* such that f 20,f >0=FE
and IHfI <1inCs.

Proof. Without loss of generality we can assume that m(E) > 0 and m(R\ E) > 0. Put

By
i g l+z?
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Define
g:T—-R

dist(§; R\ (05 ¢))

g(e) = 5o

for any € € (0;27]. Then |Hg(z)] < 1 for any z € D (where Hg denotes the Herglotz
integral of ¢ in the unit disk).
Consider ¢ € H*(D) and ¢ € H>*(C, ) such that

—

+

©-

l+o

1_ " = Hg, 1—_; = exp(iHu),
where u = mxg — m/2. Define
F=ltvoe
l—pod

One can show that then F = Hyu for some absolutely continuous measure ¢ € M (R).
Also |F| <1 on C4 and {ReF > 0} = E up to a set of Lebesgue measure 0. Thus f can

be obtained from the equation fm = y. A

Definition. Let f be a function defined in C,. We will say that f is less than C

(greater than C) at some point € R if

limsup f(z) < C (ligriiilff(z) > -C).
¥

Z—x

Lemma 3.3.4. Consider E C (0;1). Suppose for some z € (0;1) and for any € > 0

m((z — ez +e)NE)
2e

< ¥(e)
where v is a monotonic function on R such that

/lmdt<oo.
o ¢

/E lx?yi <

Then
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Proof. Put E, = EN(z —1/2"z+1/2"). Then

/Elaf—yl <22 m(En \ Bata) <

22n+1W(21n/21n /‘/’ dt. A

We will also need the following corollary of John-Nirenberg Theorem.

Lemma 3.3.5. Consider u € L®(R), ||u||cc £ 7/2. Then for any t > 0

C cos (-,1; Iz ul(i):zz)

m( |Qu| >1Int ) <

for some absolute constant C.

Proof. Since u is a shift-function of some measure p such that

il = cos (2 [ 52052).,

the statement follows from Corollary 1.2.2. A

Lemma 3.3.6. Let u € L™, ||u|leo < /2. Let v be the shift-function of a pair of
measures (n;0). Let I C R be an open interval. Suppose that u > v and m({u—v # 0}) <
€. Then there exists some absolute constant C > 0 such that:

1) If Qu > C, for some C; € R on I, then o*(I) < Ce™Cte.

2) If Qu < C, for some Cy € R on I, then o*(I) < CeC2e.

Proof.

1) Since 0 < u —v < 7r-by Lemma 3.3.5

m({Q(v —u) < —Int}) < —C;

Thus

e‘cle

m({Quv< —Int}NI) <m({Qv—-u)< —-lnt+Ci} <C
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Hence
—cl €

Fan

€

m({|Ho| >t} nI) < C

By the Remark after the proof of Theorem 1.2.1 , that means that ||[c®x;|| <
Cexp(—C )e.

Part 2) can be proven in the same way. A

Definition. Let E C (0;1). We will denote by essClos E the closure of the set of all =

such that
m((z — ez +€)NE)
2e

— 1

as € — (.

Remark. Note that if ¢ = hm + p® is a spectral measure of A then o,.(A4) =
essClos{h > 0}.

Lemma 3.3.7. Let E,F C (0;1), m(F) =0 and F is a set of the type F,. Then there

exists G C E such that essClos G = essClos E and

d
/ y < oo
Glx_yl

for any ¢ € F.

Proof. The statement is easy to prove when F is closed. In the general case, F = |J F,

where F, Fy,.. are closed disjoint sets. For each F, we can obtain G, C E such that

/ dy < 0
Gn l-’f—yl

for any = € F,. After that we can consider open sets H,, D F,, such that m(H,) < 1/2"
and put G = E\ Y[l N H,] where I, = (0;1)\ G,. A

essClos G, = essClos E and

Proof of Theorem 3.3.1. Let p = hm + u®. Without loss of generality we can assume

that supp g C (0; 1).



We can always find disjoint closed sets
FYF? . F", ..

such that m(F*) = 0, p*(JF*) = ||p®|| and for each n condition (3.3.1) holds for u*-a.
e. © € F™" uniformly, i.e. there exists a positive function ¥"(¢) on R4 monotonically

decreasing to 0 as t — 0+ such that

/1 ¢n(t)dt < 00
0

t2

and for p®-a. e. z € F*" andany y € R

dist(y, E) < ¥"(|z — y|).

Denote by p? the restriction of p® on F™, by I} = (ap;b}),I3 = (a};b}),..., the dis-
joint intervals constituting the complement of |JT F k. By Lemma 3.3.2, without loss of
generality, we can assume that

du’®
dm

= 0OQ

(3.3.2)

everywhere on | J F™.

Let us first prove the theorem in the case when

1
(3.3.3) / dy < oo
{R>0} |31c - ?J[

for any z € |JF™.

Step 1.

Consider a shift-function u! of pi. On each interval Il = (al;bl) function u is either
constant (equal to 7/2 or —7/2) or u! = —7/2 on (al;cl) and u! = /2 on (ck;b}) for

some c}, € I.. Let {I} }?2, be the sequence of intervals on which u' has “jumps.” Let

{ch, }e =1}, € I} be the sequence of points in which u' has “jumps.”
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By Lemma 3.3.3 there exists f € L™ such that 1 > f > 0, {f > 0} = {h > 0} and
Hf <lin C+.

In each interval I} let us choose a point d,, such that d}, > cn,, d;

n, 18 & Lebesgue

point of f, f(d},,) > 0 and
(3.3.4) len, — dn, | < 2¢' (min(dist(cy,,; F'); dist(dy, ; F))) .

Now let us define function v' on R as following: v' = u' on R\ Ule},,;d}, |, v! = —u?
on |Jlc},;dL, ] (we “shift” each “jump” of u! from ¢}, to d},,).

Now let us define function w! = v! + ¢g'f, where g'(z) = —signv!(z) on (0;1) and
g! = 0 elsewhere.

On each I} where v! is constant [Hw!(z)| < oo for any z by the choice of f. On the
intervals I} the integral Hw'(z) is finite for any z in I}, \ {d}, }. Since each point d},, is

a Lebesgue point of f and 0 < f(d}, ) < 1 we have

(3.3.5) Qu'(dL, +iy) ~ (1 —2f(d",)/r)logy + o(log y)

asy — 0.

Since |w!| < 7/2 we can consider a measure v; such that w! is its shift-function. Since
{lwt| < m/2} = {|Ju}| < 7/2} by property 3.2.1 of shift-functions v#:* is equivalent to p*°.
Since Qu! < +oc on [0; 1]\ supp u, by property 3.2.2 of shift-functions supp v{ C supp p5.
Also let us notice that for each z € F!

;d},k]) +H(fgl) <

Tk

c / dy +/ || fllocdy .
Uiessds, ] 12 =3l Jsoy e =yl

The first integral is finite for any z € supp p{ by Lemma 3.3.4 because

(H(u! —wh)) (z) = H() _ wsign(dh, — b, )Xe:
k

m((z =tz +t) 0 Uler,sdn,]) _ (1)
2 =
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(here we use the fact that ¢! is monotonic). The second integral is finite by (3.3.3).
Hence Hu;/Hv, is finite on supppuf. By Theorem 2.3.8, together with the fact that
suppvi C supp 41, that implies that v} is equivalent to 3. So v, is equivalent to ;.

Let 71 be a measure such that w! is the shift function of the pair (v1;n;). Let us show
that n, is absolutely continuous on [0;1].

By our assumption %“n—z- = 00 on supp 43, so by Fatou Theorem Qu = 400 on F!. Since
H(u' — w')] < 0o on F!, Qu! > —0o on F. Thus by properties 3.2.3. and 3.2.4 of shift

functions 7, is absolutely continuous on F'. Also Quw! > —oo everywhere on [0;1] \ F

except the points d},. But by (3.2.4) n1({d%,}) = 0 because

(1—2f(dy,,)/™)logy + o(logy) # logy + O(1)

as y — 0. Thus »; is absolutely continuous on [0; 1].

Step 2.

Without loss of generality we can assume that p*({d},,}) = 0 and that F* N {d} } =0
for any n. Then inside each I} there exist open intervals A2 and £2 such that Clos A2 C
(ap;dl), ClosE2 C (d};bL) and F2NIL C (A2 UX2). Let 4, and u” be the restrictions

of uz onto AZ and ¥ respectively. Then by (3.2.2) for any €2 and &2 there exist positive

¢, and ¢, such that for a shift-function uj, of ¢/ u!, we have u!, = —7/2 on R\ A2 and
u'(z)dz 5
J, [, 2
(3.3.6) 1/7r/Rl+x2 /24 &

and for a shift-function u}, of ¢, !, we have ul, = v/2 on R\ £2 and

u'(z)dz

uz)ar 9 _ 2
(3.3.7) 1/7r/n; T+ 2 /2 —¢e%

On each I! define u? as u/, on A2 as u” on £2 and as v! elsewhere. Now we can “shift”
n n n? mn n

2

the “jumps” ¢Z € I? of u? inside each complementary interval I? into the Lebesgue

points {d; } of f to obtain the function v?. If we choose {d2 } in such a way that
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2 2 e 2 2 2 2 ip 2 72
d,, >cn ifc,, €A, andd;, <c, ifc;, €3

22, then {u? —v® # 0} C {u}, # —7/2}
on each A% and {u? —v? # 0} C {ull # 7/2} on each £2. Thus by (3.3.6) and (3.3.7)

m({u? —v? # 0} N A2Z) < 2¢2 and m({u? —v? # 0} N L2) < 2¢2. After that we define
w? = v? 4 ¢%f where g% = —signv?

Then on each I} {¢* #¢'} C (A2 UX2) and

m({g® # ¢} C ({up # —7/2} U {uy # 7/2}) < 2€], + 2¢7.

On each I} supp(w! — w?) C (A% UX2) and

m(supp(w! — w?) N (AZ UT2)) < 2€2 + 262,

If we choose the constants €2 and €2 small enough, we can provide

|H(w! —w?)| < 1/4

on F!. Hence, using the same argument as in step 1, we can prove that w? is the shift-
) g g P P

function of a pair (v?;n?) where ¢? is equivalent to uf + u§ + p®*

and n? is absolutely
continuous.

Step k.

We repeat the construction from step 2 operating with w*~! rather than w!. We choose

the constants ef and ¢% in the following way:

1

en < grpr Aist(AR R\ (075 7)),
1

ek <

n < grgr dist(Thi R\ (d7; b)),

ef,<

1 ) _
gerT o<p(inf Qut ™)

and

1 : k—
ek < T exp(glﬁwi h.




Then in particular we will have

(3.3.8) m(supp(w® ! —w*)) < 1/2F
and
(3.3.9) [H(w* ! — wk)| < 6% < 1/2%

in some neighborhood of Uf “tp

Conclusion.

After each step we obtain a shift-function w* of a pair (v*;7*) where measure v* is

c.

equivalent to Zf ©d + p®¢ and nf is absolutely continuous. Formula (3.3.8) implies that

k

the sequence w”* converges in measure to some function w. Denote by v and n the measures

such that w is the shift function of the pair (v; 7).
Let us first show that n is absolutely continuous.
Consider an interval I¥ = (af; %) C (0;1)\ Uf=1 Fi. Then by our construction w* < 0

on (ak;d*) and w* > 0 on (d¥;b%) for some d¥, a* < d¥ < b%k. Conditions (3.3.2) and

n

(3.3.4) imply that QuF — oo as £ — a¥+ for any n, k. By (3.3.9) and the choice of f that
means that Qu*® — oo as z — af+ for any n, k and that Qu* is bounded from below on

each (a;c] C (af; dk).

n’'-n

k

Let {e;}§2,., be the sequence of points from [a%; d¥) increasing to d* such that e = af,

n(e;) =0 and and [supp(w® — w') N (ak; d%)] C (ex;er) for any [ > k. Then for any | > k
inf ka >C; > —.
(er;e141)

For any | > k define the function w' as w' = w' on I¥ and w' = w elsewhere. Then by

(3.3.9) Qu* > Cr + 7}_—1 on (ex;er). Since for any I >k w' > w* on (ex;er),

1

(3.3.10) inf Qu'=Di>Ci+ 5

(ex;er))

on (er;er41).
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By the choice of the constants ej- and 5} we have

1 dk — ak
(3.3.11) m(supp(w’ — w)) < exp(D;)-= 51 =
and
[ I+1 dfz — €141
(3.3.12) m(supp(w' —w' ™) N (er;e41)) < =

Since n(e;) = 0, by (3.3.10), (3.3.11) and part 2) of Lemma 3.3.6

C(dk — ot
P*((exse) < Cn %)

for all [ > k. Thus

. . C(dk - oF
*((aksdh) < Cnen)
In the same way we can show, that
C(bk — dF)

n°((dk;b5)) < —

Also (3.3.12) imply that Q(w — w*) > —oco at dX. Thus n(d%) = ni(d¥) = 0 and we
have that
Cm(IF)
ok—1

n°(I}) <
Since by our construction ni(ULl F') = 0 and by (3.3.9) |Q(w — w*)| < 1 at each point
from Ule Fi, (UL, F') = 0. Hence

s C
11 < 5

for any k.
In a similar way, using Lemma 3.3.6, we can prove that by the choice of e; and sj- we

have v*((ak;b%)) < C(bk — ak)/2%=1. Thus +*((0;1)\ U° F*) = 0. Also (3.3.9) implies

n''n

‘that

8 3
VX (U Fi) K
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Thus v® ~ p°.
Since for each k {|wf| # 7/2} = {h > 0}, (3.3.8) implies that {|w| # 7/2} = {h > 0}
up to a set of measure 0. Thus v*¢ ~ p%°.

If {h > 0} does not satisfy (3.3.3), then by Lemma 3.3.7 there exists G C {h > 0} such
that essClos G = essClos{h > 0} and

/Glziyida:<oo

for any ¢ € |JF™. Hence we can obtain the shift-function w' of a pair (v';n") where v' ~
' = p*+xeu®c and n is absolutely continuous. Then |w'| = 7/2 a.e. on H = {h > 0}\G.
Denote Ht = HN{w' = r/2} and H~ = H U {w' = —7/2}. By Lemma 3.3.3 there exist
ftand f~suchthat 0 < f* <1, {f* >0} =H*and |Qf*| < 1. Putw=w'+f~—f*.
Let w be the shift function of a pair (v;n). Since {|w| # n/2} = {h > 0}, v*¢ ~ p%°.

Since |Q(w — w')| < oo, pu® ~ v* and 7 is absolutely continuous. A

3.4. The problem of two spectra

In this section we will give a partial answer to the following question.

The problem of two spectra. Let yu and v be two finite Borel measures on R. When
does there exist a cyclic self-adjoint operator A and its cyclic vector ¢ such that A and

A% = A + (x,$)¢ are unitarily equivalent to 4, and A, respectively?

Definition. If such A and ¢ exist, we will say that y and v are equivalent modulo rank

one perturbation.

In terms of the families M, we can say that y and v are equivalent modulo rank one

perturbationif and only if they are equivalent to two measures from the same family.
In this section we will discuss this problem in the case of pure point measures u and v.

The first result in this direction is the following theorem, proved by Gelfand and Levitan.
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Definition. We will say that two sequences of real numbers {a,} and {b,} are well-
mixed if

1)For any ¢ # j there exists k such that a; < br < a; and there exists [ such that
by < a; < by;

2)The supremum and the infimum of the set {a1, b1, a3, b2, ...} do not belong to the same

sequence.

Theorem 3.4.1. Let {an}52, and {b,}52, be two disjoint sequences of real numbers,
limy o0 @n = limp oo bp, = ¢ where ¢ does not belong to {a,} or {b,}. Then there exists
a cyclic self-adjoint operator A and its cyclic vector ¢ such that {a,} are eigenvalues of
A and {b,} are eigenvalues of A + (,¢)¢ if and only if the sequences {a,} and {b,} are

well-mixed.

Proof. To prove this result we can again use the notion of Krein spectral shift.

Define function u on R to be continuous and equal to 7/2 by absolute value everywhere
on R\ ({an} U {bn}). At the points {a,} u must “jump” from n/2 to —n/2; at the
points {b,} u must “jump” from —x/2 to /2. Then we can put A = A, where u is a
shift-function of u. By properties 3.2.3 and 3.2.4 of shift-functions, the operators A and

A® = A + (*, c)c will satisfy the condition of the theorem for some real constant c. A

Remark. In the conditions of Theorem 3.4.1 denote u = 3 578,, and v = 3 L6, .
Note that Theorem 3.4.1 provides us with operators whose spectral measures are only
absolutely continuous with respect to p and v. Therefore it does not imply that x and v
are equivalent modulo rank one perturbation. Moreover, the following example shows that

such u and v are not generally equivalent modulo rank one perturbation.

Example 3.4.2. Puta, =(-1)"/2" forn =1,2,3,..., b1 = =1, b, = ap_1 +(=1)"/4"
forn =2,3,.... Then the sequences {a,} and {b,} are well-mixed.
Let p and v be defined as in the last remark. Suppose that u and v are equivalent

modulo rank one perturbation. Let u be a shift-function of the pair (u';v') where p ~ p'
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and v ~ v'. Such u must be continuous on R\ ({a,}U{b}); v must jump from 7 /2 to —n /2
at any a, and from ~7/2 to n/2 at any b,. Thus u = 7/2 on (1/2%" — 1/42"+1,1/2%7)
and on (—1/2%"~1 417427 —1/227+1) for n = 1,2,... and u = —7/2 on the rest of R.

But then Qu(iy) = —logy +logc+ o(1) for some ¢ > 0 as y — 0. By property 3.2.4 of

shift-functions this implies 4(0) > 0 and we have a contradiction.

If the sequences {a,} and {b,} are finite disjoint and well-mixed then y and v obviously
are equivalent modulo rank one perturbation. More interesting example is provided by the
following theorem.

We will denote by Cg the set of all cluster points of a set E.

Theorem 3.4.3 (Aleksandrov, private communications). Let A = {a,} and
B = {b,} be two disjoint sequences on the unit circle T. Suppose that C4 = Cg = T.
Then there exist sequences of positive real numbers {a,} and {8,} such that the measures

Y anba, and ) 3,6;, belong to the same family M,

Using Aleksandrov’s ideas we can prove the following statement, which we will use in
the proof of Theorem 3.4.4 below
Let 0 < 6; < 6,, 6, — 6; < 2m. We will denote by I(e'®1;e'%) the open arc {e*%]6; <

0 < 02}

Theorem 3.4.3'. Let I = I(e'?;¢e'?), 0 < ¢ < v < 2m. Let {a,} and {b,} be two
sequences of points from I, both of them dense in I. Then for any 0 < € < |¢— | there exist
sequences of positive real numbers {an} and {8,} such that the measures p = 5 ané,,
and v =) finbs, belong to the same family M, and the shift-function u of the pair (u;v)

satisfies

(3.4.1) m(I(e*?; e+ N {u £ —1/2}) < €

(3.4.2) m(I(e’?=9; e N {u # —71/2}) < €
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andu=—-n/20onT\ I
Proof. Put a, = €'®" b, = ¢'¥n where 0 < ¢y < 27 and 0 < ¢, < 27 for any k. For
any two points a,b € I we will denote by J(a;b) the subarc of I with the ends a and b.
Let us reenumerate {a,} and {bn,} in the following way.

Step 1.

Put n; = 1. Choose m; in such a way that

(3.4.3) Pny > On,

and

(min(|gn, — 8] 6n, — 21

Mpnq - ¢n1l < 2

Put my =1if m; # 1 or my =2 if m; = 1. Choose n; in such a way that

1)J(@n,;bm,) contains neither a,, nor b,, and

(min(lem, — 8; lom, — ¢l))?
4 b

l‘lgmz - ¢n2] <

2) the function Fy(z) = :—:%22— satisfies |Fy — 1] < 1/4 at a,, and b, ,

3) the sequences ¢n,, ¢n, and Ym,, ©m, are well mixed.

Step k.

Put nog—1 = min{:|i # ny,na,...,nok—2}. Choose myr_; in such a way that

1")J(@nyy_y 5 bm,,_, ) does contain any elements of the set

{anlaanza "',anzk_ga bm 3 bnza ey bngk_z}

and

(min(’¢n2k—1 - 9); J¢n2k_1 - 99]))2

[S‘szk-—l - ¢n2k-—1l < 92k—1
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2) the function Fir—1(z) = ~—=2k=L satisfies |Foe_1 — 1] < 1/22¥=1 at each point from

2=bmyp_y
{an17an27"'7an2k_27b’nlﬁbn27"‘7bn2k._2})
3’) the sequences ¢p,,...,¢n,,_, and @y, ..., Pm,,_, are well mixed.

Put mok = min{e|t # my, ma,...,mog-1}. Choose nzi in such a way that

1")J(@nyy; bm,, ) does not intersect

{@nyy8ngy s Qngp s bnys Brgy ooy Ongs_y 1

and

min(|@m,, — ); [Pmae — ©]))?
I¢m2k—¢n2kl<( (lom. 22!kl max — #1)) ’

27) the function Fyi(z) = ~——ai& satisfies |Fyx — 1| < 1/2%% on

2
z—bm,,

{a'h LU PERTIPRLL PYNER bn1 ’ bn27 e bnzk—-1 }’
3”) the sequences ¢y, ,...,0n,, and @m,, ..., Pm,, are well mixed.

Now for each [ put 6 = %25;1(‘/9%‘ — ¢n;) + 5. Consider functions Fy =

; k Z—Qnp,; _ .
%k Hi:l v and G = F} 1 Since the sequences @n,, ..., Pn, and @my, ..., Pm, are
1

well mixed, for any k functions Fj and Gy have positive real parts on ID. Thus there exist
positive measures ur and vg such that Hux = Fy —Im F(0) and Hyy = Gy —Im G(0). It
is easy to show that pp = Z:;l aféan‘ and v = Ef=1 ﬂf&bm‘, for some positive constants

ok .ok Bk .., BF Since
. L -1 1 w1 _ _ i
Jim Fi(0) = lim (Gx(0))™" = lim exp(5 ~ 5 D (#m; — ¢n;)) = C € ~iCy
we have that
(3.4.4) klim lerll = klim |lvk]| = ReC > 0.
Conditions 2), 2’) and 2”) above imply that for any k and ¢ < k

(3.4.5) laf —aft1| < Dy2*

)
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and
(3.4.6) 18f - 851 < D/2*

for some absolute constant D > 0. Put a; = limy oo &F, B = limy oo BF, u = PO aiba,,
and v =) 2, (i6s,, . Then (3.4.4), (3.4.5) and (3.4.6) imply that

*—weakly
fin ——— 4
n—oo

and
x—weakly
Vp ——— V.
n—od
Thus

oz — A, = A, 1
s LA | DORAL R
Ftu i]-;Ilz—bni mg bn,  Hv
Hence p and v belong to the same family M, (if u = py € M, then v = pu_y).

If up, is the shift-function of the pair (pn; v,) then conditions 1), 1’), and 1”) imply that

u, satisfles (3.4.1) and (3.4.2). Since u, converge pointwise to the shift-function u of the

pair (u;v) as n — oo, u also satisfies (3.4.1) and (3.4.2).4A

One can easily show that in general the condition C4 = Cp does not imply that the
corresponding measures are equivalent modulo rank one perturbation. The following ex-
ample shows that even if in addition to the condition C4 = Cg we have that A and B are
well-mixed, the corresponding measures still do not have to are equivalent modulo rank

one perturbation.

Example. Let C be the standard Cantor null set on the unit interval [0;1], C =
[0; 1]\ UI, where I, = (zn;yn) are disjoint open intervals. Let A = {a,} and B = {b,}

be two disjoint sequences of points of C such that
(3.4.7) 0,71,22,.. € A and 1,y1,y.,.. € B.

Then A and B are well-mixed and C4 = Cg = C. Define p = > 2%,5% andv =3, 51;61,".

Suppose that p and v are equivalent modulo rank one perturbation. Then there exists the
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shift-function u of the pair (u';v') where u ~ p' and v ~ v'. Function u must be constant

on each I,,. Condition (3.4.7) imply that u = 7/2 a. e. and we have a contradiction.

We can however combine the conditions of the two previous theorems in the following

form.

Theorem 3.4.4. Let A = {a,} and B = {b,} be two disjoint sequences of real numbers.
Let E =IntC4 = |J;—1(zn; yn) where (2,;y,) are disjoint intervals. Denote by F the set
of all isolated points of A: F = A\ C4. Suppose that

1)A and B are well-mixed,

2) Cr C{z1,y1,22, Y2, ..}

3JA\(FUE)=10

Then there exist a cyclic self-adjoint operator A and its cyclic vector ¢ such that

1) A and A + (%, 9)¢ are diagonal

2) A and B are the sets of all eigenvalues of A and A + (*, ¢)¢ respectively.

Proof. Let us define the function u; on R\ E in the following way.

If - € R\ E denote m, = sup{yly < z,y € AU B} and n, = inf{yly > =,y € AU B}.
We put ui(z) = —7/2 if m, € A,n; € B and u1(z) = 7/2 otherwise. We put u; =0 on
E.

If I = (z;y) C C4 is an open interval we will denote by u} the shift function of the pair

(Y anban; > Bubs,)

an€l bnel

for some positive constants «; and f; satisfying the conditions
(3.4.8) m((z;z +e)N{u # —7/2}) < €
and

(3.4.9) m(y —ey)N{u#—71/2}) <€
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(such uf exists by Theorem 3.4.3").

Obviously, if we replace —7 with 7 in the statement of Theorem 3.4.3' it will remain

true. We will denote by u; the analogous shift-function satisfying the conditions

(3.4.10) m((z;2 +€) N {u # +7/2}) < €
and
(3.4.11) m(y —ey) N {u # +7/2}) < €.

Now let us define u; on E in the following way. For each I, = (z,;y,) We compute

(3.4.12) lim sup m(I(zn = €& 2n) O {us # =7/2}) =

e—0 €

C,
and

(3.4.13) lim sup m(Iyniyn +€) 0 {1 # =7/2)) =Cr.

e—0 €

If C; = CF = 0 we put up = uy on In; if CF =CF :1weputu2=u:,*'n on I,; if
C, =0, C} =1 we choose b € BN I, and put up = up on Il =(zp;a) and uy = u}z, on
I = (a;yn); if C; = 1,CF = 0 we choose a € AN I, and put up = u}z on I! = (zn;b)
and uz = ug, on I = (b;yn). In all other cases we put u; =uj on I,. On the set E\ R
we define up = 0.

Now consider the function u = u; + uy. Let z ¢ E. Then the definition of u; implies
that Hu(z) = coif ¢ € A\ E and Hu(z) = ~ooifz € B\E. lf z ¢ AUBU{z1,y1,22,¥2, ...}
then € Caup and [Hu;(z)| < co. By the definition of u; and (3.4.9-13) |Huz(z)| is also
finite.

Also by the definition of us,

Hu(z +1y) = —logy + logc + o(1)
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for some c=¢(z) >0asy > 0foranyz € ANE,
Hu(z +1y) = logy + log e+ o(1)

for some ¢ = ¢(z) > 0asy — 0 for any ¢ € BN E and |Hu(z)| < oo for any z € E\(AUB).
Thus u is the shift function of the pair (3 anbq,; Y. Bnbs, ) for some positive constants

o; and G;. A

Remark. Theorem 3.4.1 and the example after it show that if we drop either 1) or 2)

in the statement of Theorem 3.4.4 then it will no longer be true.

3.5. Pure point and singular continuous spectra

Let A be a cyclic self-adjoint operator and let ¢ be its cyclic vector. Denote 4\ =
A+ A(*,9)¢ where A € R. Let py be the spectral measure of ¢ for Ay. Let us denote
by P and C the sets of A for which p) has nontrivial pure point and nontrivial singular
continuous part on [0; 1] respectively. Then the set PN C will consist of those A for which
the corresponding measures are “mixed” on the interval [0; 1].

One of the natural questions which arise from the recent results on rank one perturba-
tions (see [R-J-L-S]) is whether the set P N C can be empty (or almost empty) when the
sets P and C are sufficiently big (topologically or in measure).

The following example gives a partial answer to this question.

Example 3.5.1.

We will show that there exist a self-adjoint cyclic operator A such that for some cyclic
vector ¢ the operators A+ A(*; ¢)¢ are diagonal for all co < A < 0 and singular continuous
for all oo > A > 0 on [—2;2].

To do that we will construct its Krein spectral shift u. We will start by constructing a
Cantor set on the interval [—2;2].

Let {a,} be a sequence of real numbers monotonically decreasing to 0 and such that

(3.5.1) H(l —ap)=c
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and
(3.5.2) - ﬁu Can) >
' k=n on
Let
Co=I=[0;1,C;=LUL,..Cho=I}U..UI}M, ..
where

I ULy =\ AT
and A7 is the open interval placed in the center of the interval I}} and such that m(A}) =
anm(I}). Put C = (oo, Cy.

The Cantor set C has the following properties:

a)

m k b
Ei?fr;l)C) =0 -a2 2

n

Also we can choose ¢ in such a way that

) 1 1
(303) p Ll-}-tz = '2'

Define u = w/2 on C and u = —m/2 elsewhere on C. Denote U(z) = Hu(z) for z € Cy.

U(z)-U(z)

r—z

Claim. U has a nontangential derivative U'(z) = lim,__,, at a point z € R
¥

ifand only if z € R\ C.

Proof. Since u is locally constant on R\ C, U’ obviously exists there.

Let z € C. Let {I¥ }32, be the sequence of intervals containing z. Denote by i the
middle of the interval I,’fk; put yx = |z — z¢|. Then condition b) above imply that

T .
> Pu(zn + tyn)| > g



70
for come ¢ > 0. Thus U'(z) does not exist.A

Consider a real measure p such that u is its shift-function. Put 4 = 4,, 4, = A +
A(*;1)1. Let py be the spectral measure of 1 for Aj.

By the results from part 2 and (3.5.3)

Ulz) —— /2
z—>¢
pa-a. e. for all A € (0;00). Thus all ux, A € (0;00) are concentrated on the set C. Since
U’ does not exist on C and
F(z) = exp(—iHu(z)) ——— c #0

z—>¢€
bg

pa-a. e., F' does not exist on C for all A € (0; o). Hence by Simon-Wolf criterion [S-W] all
B, A € (0; 00) are singular continuous. Similarly all px for A € (—00;0) are concentrated
on R\ C, where U’ exists, and so they are pure point.

To prove that p = g is continuous, let us notice that since Qu(z) ——— oo p-a. e., u
z—>€

is concentrated on C. Let € C and let the sequence {z, + 1y, } be constructed as in the

proof of the last claim. Put z, = z, + -’—%ﬂ Then

u(t)dt
Qu(zn) ~ / u(t)dt # —log |z, — z| + O(1).
R\(—=¥n;yn) t— y
Thus by (3.2.3) u can not have a point mass at z. Hence y is continuous.

The case A = oo can be proven in the same way.

Remark. To obtain a similar example with [-2; 2] C 0(A) we can insert “small copies”
of C into each complimentary interval I¥, then insert “smaller copies” of C into each new
complimentary interval and so on. If the size of these “copies” of C' decreases to 0 fast
enough, proceeding in the same way as above we will obtain an example of 4 and ¢ such

that A+ A(*; )¢ is continuous for all X € [0; co] and pure point for almost all X € (—o0;0).
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3.6 Stability of the absence of continuous spectrum

In this section we will give a necessary and sufficient condition for an operator to have

only diagonal rank one perturbations.

Theorem 3.6.1. Let A be a self-adjoint cyclic operator. Then the following two con-
ditions are equivalent:

1) All self-adjoint rank one perturbations of A are pure point,

2) o(A) is countable.

Remark. We assume that A itself is included in the set of all its rank one perturbations.

Proof. 2) = 1). Follows from the stability of the essential spectrum.

1) = 2). Suppose o(A4) is uncountable. Without loss of generality we can assume that
o(A) € (0;1). Denote by A = {an}32, the set of all eigenvalues of A. Then at least one
of the sets

F_ = {z|(z — ¢z) N A# 0 for any e > 0}

or

F. ={z|(z;z +€) N A# D for any e > 0}.

is uncountable. Suppose that F_ is uncountable. Then there exists a closed uncountable
set F C F_ such that FNA = 0, m(F) = 0 and F does not contain any isolated
points (F = Cp). Let I1 = (z1;y1), 2 = (z2;y2), ... be disjoint open intervals such that
F = (0;1)\ JIn. Inside each I,, we can choose a, € A such that

yn"’an

<1

Define function u to be equal to 7/2 on each (z,;a,) and —7/2 on each (a,;y,). Then
u is the shift-function of some pair of measures (uo; o). By the construction of u, yo has

point masses at each a,. Condition (3.6.1) implies that Qu < C < oo at each point of

0

F. Thus py = Y a%6,, for some positive constants a,. Also by the construction of u,

suppvp C F. Since condition (3.2.5) is not satisfied at any point of F', v is continuous.
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Let {b,}52, be some enumeration of the set A\ {a,}3%,. For each b, € I} let us choose

¢n € Iy such that

1)
dist(bn; (R \ Ik) U {bl, bg, ceay bn-—-l})
2n+1

|bn — cnl| <

and

1) for each n and k the sequences B, = {a;}2,U{b1,b2,....,0,} and C,, = {c1,¢2,....cn}
are “well-mixed” on I; i.e. between each two points of one of these sequences lying on I
there is at least one point from the other sequence.

For each k define the function u r in the following way:

1) |ug| = m/2 everywhere on R;

2) ug is continuous everywhere except F' U By U Ci;

3) ur “jumps” from 7/2 to —n/2 at each point of By and from —m/2 to m/2 at each
point of Cy.

Let uy be the shift-function of a pair (pg; vx). Then

o0 k
Hh= ) anba, + ) Brés,
n=1 n==1

for some positive constants af and 8F and

k
vk =) Ynben + fivo
n=1

for some positive constants ¥¥ and some positive function fx € L!(1g). Conditions ¢) and
i) imply that the sequence {u;} converges in measure to some function u. Let u be the

shift-function of a pair (p;v). Then pur — p and vy — v in the *-weak topology.

Since
Prk .
= Reexp(—tH{u — ux
P p(—7H( +1)
condition ¢) implies that
1 P 1
1-— < —=F* 14 =

2k " Puks 2k
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ti-a.e. and vp-a.e. By Lemma 2.2.4 that means that

1 1
(3.6.2) Lkt1 = Gklk + BET16c,,, where gp € L' (pg), 1~ o <ok <1+ oF

pk-a. e. and that

1 1
i <1+

Vp-a. €. -
Since Her!l — el ﬂ,’fi% — 0 as k — oo. Since each uy is pure point, that implies,

together with (3.6.2), that u is pure point and that

o0 oo
H = Z C‘fnfsa,, + Z /Bnébn
n=1 n=1

for some positive constants a; and f;. Thus A ~ A,. Also, since v = n + o where 7 is
some positive measure and o is a *-weak limit of the sequence {fx1p}, (3.6.3) implies that
o = fup for some f € L'(vg), f > 0 vp-a.e. Thus A, + (*;1)1 has a nontrivial continuous

part. A

Remark. Note that the case m(F) > 0 could be proved much easier than the general

case.
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