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Abstract

In this thesis we study the ring of modular deformations of an absolutely irreducible
mod p representation which is modular by studying the congruences between new-
forms of weight 2 and varying p power levels. This fills in a missing case in the
literature of the study of congruences between modular forms of varying levels.
The results of §1.3, §1.4 and §1.5 give a thorough analysis of congruences in the
(p, p) case. The results we prove along the way in Chapter 1 shed light on the mul-
tiplicities with which certain 2 dimensional representations arise in the Jacobians
of modular curves. In §1.7 we apply the study of congruences in the (p, p) case to
prove lower bounds on the ring of modular deformations. This lower bound has

been proven earlier in Gouvea.

In Chapter 2 we study local components of Hecke algebras which arise by
studying Hecke action on the space of mod p modular forms of fixed level and all
weights. We relate the computation of dimensions of ring of modular deformations
to certain properties of Hecke exact sequences. These exact sequences arise from
the phenomenon that mod p there are inclusions between modular forms (identified

with their g—expansions) of different weights.

In Chapter 3, which is joint work with D. Prasad, we raise a natural ques-
tion about the nature of Fourier coefficients of cuspidal eigenforms which may be
viewed as asking for a version of the Chinese Remainder Theorem for automorphic

representations and answer it in some simple cases.



Chapter 0
Introduction

It has been known for some time, as a consequence of the work of numerous
mathematicians, that newforms for congruence subgroups of SLy(Z) give rise to a
compatible system of f-adic representations, and if the p-adic representations at-
tached to two newforms are isomorphic for any prime p, then the newforms are in
fact equal. But the corresponding statement is not true for the mod p reductions
of p-adic representations attached to newforms, as different newforms can give rise
to isomorphic mod p representations which arise from reduction mod p of the cor-
responding p adic representations (this is well defined if we assume that the mod p
representation is absolutely irreducible). This is a reflection of the fact that distinct
newforms can be congruent modulo p. To study the different levels from which a
given modular mod p representation can arise is interesting, and has been much

studied.

Thus if we consider the image of the classical Hecke operators in the ring of
endomorphisms of the Jacobian Jy(.S) of the modular curve X(S) then the resulting
Z algebra is of finite rank over Z. We denote it by Ts. Then to any maximal ideal
m of Ts of residue characteristic say p, we may attach, after the work of Eichler-

Shimura, a representation:

pm : Gal(Q/Q) — GLy(Ts/m)

(we shall assume that p,, is absolutely irreducible) such that it is unramified at all
primes r prime to pS, and for such primes tr(p, (Frob,)) is the image of T} in Tg/m
and det(pm, (Frob,)) = r. Then on viewing p,, abstractly, one may try to classify all
the pairs (Tas,n), where n is a maximal ideal of Ty, which give rise (in the above
fashion) to a representation isomorphic to py, in a non trivial way (i.e., n should be

associated to a newform of level M). This classification has been essentially carried
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out in the work of several people — Mazur, Ribet, Carayol, Diamond, Taylor — for
all M prime to p. In Chapter 1 of this thesis we study the case when we do not
impose this condition. We shall colloquially talk of this as the (p, p) case.

This case differs in many salient points. It follows from the classification of
Carayol that the exponent with which any prime ¢ different from p occurs in the
factorisation of any M as above is bounded. As a consequence of the more precise
result we prove in Chapter 1 (this is the heart of the thesis), we see that arbitrarily
large powers of p can divide such a M. We present a complete analysis of congru-
ences in the (p, p) case in this chapter. The (p, p) case is anomalous in various ways.
For instance one cannot use the theorem of Langlands and Carayol to guess the
congruences which arise in this case as one may do in the non (p, p) case. Because
of Theorem 2 and Theorem 3 of Chapter 1, we know more about this. Theorem 2
essentially says that levels can always be raised to levels with high powers of p in

them while Theorem 3 analyses the case of low p powers.

The determination of the levels M from which p,, can arise as above is essen-
tially a question of studying congruences mod p between forms of varying levels.
This has been studied mostly after the original method of Ribet. According to this,
one has to study in detail the degeneracy maps and in the most crucial step, deter-
mine the kernel of a natural degeneracy map JO(M)2 — Jo(Mp). The (p, p) case is
anomalous here too, because if M is prime to p this kernel is finite and in a certain
technical sense irrelevant, but if M is not prime to p this kernel in general contains
an abelian variety. In Theorem 1 of Chapter 1 we pin this kernel down using the
theory of modular symbols. This allows us to prove Theorem 1. We believe that
the use of modular symbols in this context, which has been initiated in this thesis,
will prove to have more applications. We also analyse in §1.4 of this chapter the

minimal p power level which divides any level M which can give rise to p,.

The (p,p) case is different in yet another way. As, it is known that if m
is a maximal ideal of Tg, and the residue characteristic m is prime to 25, then
Jo(S)[m] is of dimension 2 over Tg/m. But we prove that in the case when the

residue characteristic of m is p and m is non ordinary at p, then the dimension of
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Jo(S)[m] over Ts/m tends to infinity as the power of p which divides S tends to
infinity.

We also apply our study of congruences between forms of weight 2 in the (p, p)
case to study the ring of modular deformations of p,,,. There is an elaborate theory
of this due to Hida in the case when one is studying ordinary modular deformations.
In the recent work of Wiles the Galois deformations of p,, with certain properties are
shown to be modular. But one of the motivating problems of this thesis was to study,
in Mazur’s original universal deformation ring, the locus corresponding to modular
deformations. In this case one does not expect all deformations to be modular and
some work of Hida [H 2] strongly suggests that in fact the Krull dimensions of
Mazur’s ring and that of the ring of modular deformations are different. We have
not succeeded in proving this but apply our results in the last section of Chapter
1 to give a lower bound on the ring of modular deformations, which is probably
also the right dimension of the ring of modular deformations. This lower bound has

been proven earlier in [G].

In order to study more closely this dimension, in Chapter 2 we study mod
p modular forms of fixed level and all weights. We strengthen some results of
Jochnowitz about local components of Hecke algebras, and relate the question of
determining the structure of local components, and in particular their dimension,

to studying certain naturally occurring extensions of Hecke modules.

In Chapter 3 (which is joint work with D. Prasad) we study another aspect of
eigen cuspforms. The Fourier coeflicients of cuspidal Hecke eigenforms are rather
mysterious and little is known about them. We pose a converse question to Deligne’s
theorem which proves bounds on these eigenvalues. This can be viewed as asking
for a version of the Chinese Remainder Theorem in the context of automorphic
representations. We answer this in the only case in which there is a known way to
explicitly construct eigen cuspforms, i.e., in the CM case. We also pose and answer

in simple cases a similar question about Galois representations.



Chapter 1
Congruences between cusp forms: the (p,p) case

1.1. Introduction

The question of raising levels of a cuspidal eigenform for a congruence subgroup
of SLy(Z) has been studied in many papers after the method inaugurated by Ribet
[R]. Raising of levels in various contexts has found many applications: for instance,
in the lowering of levels, ¢f. [R 1], in attaching Galois representations to Hilbert
modular forms, cf. [T]. Perhaps motivated by these applications, the question of
raising levels has mainly been studied for raising the level by p modulo a prime £,
when p and £ are distinct. In this chapter we would like to study the so called (p, p)
case, which in a certain sense completes the picture which has emerged in the papers
[R], [D-T]. We state this theorem below. We may view this as saying that cuspforms
of varying p power level are tightly webbed together by many congruences mod p
in a systematic way. Our method of proof follows the procedure for raising levels
in [R], but differs in one significant detail. At one of the crucial points in the proof
in [R], a lemma of Thara was used to control the error terms and show them to
be irrelevant, i.e., Eisenstein. We do not have recourse to this lemma at a similar
point in our proof of the theorem below. So we have to take a different tack and
use instead the modular symbols isomorphism of Manin, as interpreted in the paper
of Ash and Stevens [A-S]. The use of the modular symbols isomorphism performs
the task of converting a problem in degree 1 cohomology to what turns out to be
an easier problem which belongs to degree 0 cohomology of a different situation.
This is similar to the use of the Jacquet-Langlands correspondence in [D-T], which
allows one in certain situations of congruences which are studied there, to switch
to a definite quaternion algebra where controlling the error terms becomes easier
for a similar reason. Our study of this (p,p) case was motivated by the effort to

understand the ring of modular deformations of a mod p representation which is
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absolutely irreducible and is modular, i.e., arises in the well known way from a
maximal ideal of a Hecke algebra. We will give some applications of our theorem

to this situation. It is perhaps time to state the theorem.

Theorem. Suppose f is a newform of weight 2 for the group I'o(Np"), (N,p) =1
and that the mod p representation f gives rise to is absolutely irreducible. Then
for any s > max(r,2), there exists a newform g, of weight 2 for the group I'o(N'p*),
where N'|N, such that:

f=g (modp),

where p is a place above p.

In the theorem, by a congruence between modular forms, we mean a congruence
of the Fourier coeflicients outside Np and in general throughout this chapter by a
congruence mod p between newforms we shall mean that they give rise to isomorphic

(absolutely irreducible) mod p representations.

We can then think of the question of lowering the p part of the level of absolutely
irreducible mod p modular representations. The answer in principle should be a
consequence of the proof in [E| of the weight part of Serre’s conjectures as it is a
well known principle that there is a correspondence between the minimal p part of
the level of a newform of weight 2 mod p and the least weight at which it arises
(mod p) from a level which is prime to p. But we make this explicit in §1.4. The
above theorem still leaves open the question of mod p congruences between forms of
level N, Np and Np?. We study this in §1.5 and prove a theorem which completely
settles this question (at least assuming that p > 5). Theorems 4 and 4' analyse
congruences in the (p, p) case further. The criterion for congruences between forms
of low p power levels is a little involved and depends on finer properties of the
corresponding mod p representation at p such as finiteness etc. Thus we see at
the end of §1.5 that if we gather together all the results we have either proven or
noted as existing in the literature then we have obtained a rather complete picture

of congruences between newforms of weight 2 in the (p, p) case.

We now give a schematic outline of the chapter. In §1.2 we prove the main
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technical result in the proof of the theorem above (which is also Thorem 2 of §1.3).

We calculate the kernel of a natural degeneracy map:
Jo(Np")* — Jo(Np™*1)

and show that (cf. Theorem 1 of §1.2) upto an error which we calculate to be
Eisenstein, it is what one would expect, i.e., a copy of Jo(Np™™!) considered as
embedded in Jo(N pr)2 using degeneracy maps which we will make precise in §1.2.
We note that a special case of this question has previously been studied by S. Ling
in [L], which corresponds to putting N = 1 and r = 1. In §1.3 we apply the result
in §1.2 to raise levels as in the above theorem. In §1.4 we analyse the question of
lowering the p power level of a mod p representation (which is absolutely irreducible
and modular) using the results of [E]. In §1.5 we prove a result about congruences
between forms of low p power levels which corresponds to cases left out in Theorem
2 (cf. Theorem 3). This together with Theorems 2, 4, and 4’ and §1.4 gives a rather
complete picture of congruences in the (p,p) case. In §1.6 we apply Theorem 2
(in a slightly generalised form, for which see Remark 5) to study the multiplicities
with which certain two-dimensional representations occur in Jo(Np”). In §1.7 we
use Theorem 2 to get information about the ring of modular deformations of an

absolutely irreducible mod p representation which is modular.

1.2. Calculation of a kernel

We set up some notation. In what follows N is assumed to be prime to p and

r > 0. We recall that there are the standard Atkin-Lehner degeneracy maps:
a1+ Xo(Np™1) — Xo(Np")

and

Uy o Xo(Npr+1) — Xo(Npr)

These have the usual modular interpretation, i.e., on viewing Xo(Np™*!) as asso-

ciated to the (naive) moduli problem of classifying pairs (E, Cypr+1), where E is
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an elliptic curve and Cpr+1 is a cyclic subgroup of E of order Np™*!, and viewing

Xo(Np") analogously, a; is the map described by:
ai1(E,Cypr+1) = (E,Cnpr)
and «, is the map described by:
&y (E, Covprs1) = (E/Cp, Cuvprsr [C),

where Cn,r and C, are the cyclic subgroups of order Np" and p respectively of

CNpr-i-l .

By the Picard functoriality of the Jacobian, these degeneracy maps induce maps
ar* and a,* from Jo(Np”) to Jo(Np™ 1), these being the Jacobians of the respective
modular curves. These maps are injective as the covering Xo(Np™1) — Xo(Np")
does not factor through any non-trivial unramified covering. We denote by « the

sum of these two degeneracy maps. Thus « is the map:
a: Jo(Np™)? — Jo(Np™th)
which by definition is given by:
a(z,y) = ar*(2) + o™ (y).

The image of « is called the p-old subvariety of Jo(Np™*1), the quotient of Jo(Np"t1)
by the p-old subvariety is called its p-new quotient and the connected component
of the kernel of the map dual to a which arises by the autoduality property of the
Jacobian is called the p-new subvariety of Jo(Np™t!). From the point of view of
[R], to study congruences, amounts to understanding the canonical isogeny between

the p-new quotient and the p-new subvariety.

Now we bring into play the Hecke action, our discussion being taken from §3 of
[R 1], except that we use the symbols T}, for the Albanese action as we explain. For
this it is convenient to start with a general modular curve X,(M) and its Jacobian

Jo(M). Shimura’s ring R(To(M), A"), cf. [S], induces self-correspondences of the
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curve Xo(M), which induce maps of Jo(M) in two ways, one by using the Picard
functoriality of the Jacobian and the other by using the Albanese functoriality. We
shall consider the image of the Hecke ring, as the algebra of these correspondences
is usually called, in End(Jo(M)) using the action induced by the Albanese functo-
riality. We denote this ring by Tas. It is a finitely generated Z algebra which is
generated by the images of the correspondences T, in the endomorphism ring, which
arise from the sum of the correspondences induced by double cosets ['o(M )y (M)
where v € A', det(y) = n, by Albanese functoriality. The endomorphism associated
to this induced by the Picard action is denoted by £,. These actions are related
by the Rosati involution of the Jacobian and can be seen to be intertwined by the
Atkin-Lehner involution w, i.e., wThw = £,. If M divides M', and if they have the
same radical, then there is a natural surjection from Ty to Ty, which takes T,
to Th,, obtained by restricting the action of the former T,, to the image of Jy(M)
in Jo(M') under the natural degeneracy map. As S5(T'o(M)) is identified with the
space of regular differentials of Jo(M) on viewing this as the Albanese variety of
Xo(M), Ty, induces the classical operator T}, on S(Ty(M) (this is the main reason
that we depart from the convention of [R 1] and call 7,, what is called £, there).
As an endomorphism of an Abelian variety is determined by its action on differ-
entials, this association is one to one. The two actions of Hecke on the space of
regular differentials are related by the main involution ¢, i.e., if T, corresponds to
the double coset T'o(M)yI'o(M), then the action of £, corresponds to the double
coset T'o(M )y To(M).

Now we recall the correspondence between maximal ideals m of Tj; and two-
dimensional Galois representations over Tas/m occurring in Jo(M). We assume
that the Galois representation p,, associated by Eichler-Shimura to this, for more
details see [R 1], is absolutely irreducible. We consider the finite dimensional Ty;/m
vector space Jo(M)[m]. Then as a Tar/m[Gal(Q/Q)] module it is shown in [M 1]
and [B-L-R], using the Eichler-Shimura relations, that Jo(M)[m] is isomorphic to
the direct sum of a certain number of copies, say ¢, of a two-dimensional vector
space over Tjs/m which as a Galois module is isomorphic to p,,. ¢ is referred

to as the mulitiplicity with which p, occurs in Jo(M). We signal an abuse of
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notation that we will be guilty of in that we will refer to a maximal ideal of Ty,
and the corresponding one of Ty which arises by pull back under the natural map

Tar+ — Ty, with notation as above, by the same name.

We now revert to our specific situation of Jacobians of Xo(Np"), for varying
r 2 1. Typr+1 restricts to produce endomorphisms of the p-old and p-new subvari-
eties. We note that by our definition Ty ,r+1 includes the pth Hecke operator which
induces the operator U, on cusp forms of weight 2 and with p dividing their level.
Throughout this chapter we shall denote what is usually called U, by T, as we
are considering only forms at levels which are divisible by p. (As another general
reference for the Hecke action we may refer to the discussion in Chapter 2 (§5.4 and
§5.8) of [M-W].) We say that the action of Hecke on the p-new and p-old subvari-
eties factors through the p-new and p-old quotients respectively. For the moment
we drop the subscript which denotes the level for which one considers the Hecke
action. We call the p-new and p-old quotients T P~™¢" and T P~°d respectively.

Then the phenomenon of congruences arises because the natural injection
T — T PReW o« T p—old

is not surjective (the image has finite index, the prime divisors of this index being
those modulo which there will exist congruences between p-old and p-new forms).
As the space of regular differentials of the p-old and p-new subvarieties are identified

with the p-old and p-new forms respectively, this is sensible notation.

We denote by J the image of Jo(Np™™1) in Jo(Np™)* under the map 8 which
is defined by:
B(z) = (—ap*(z), 1" (2)).
Here as in the above we are abusing notation by conflating the degeneracy maps
arising from varying p power levels, as the gain in accuracy in putting subscripts
of r all over the place may be outweighed by the resulting clutter of symbols. We
note that the mapping £ is injective and that J is in the kernel of a. Now we may

state the main result of this section.

Theorem 1. If we denote by A the kernel of «, the quotient A/J is a finite
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Hecke module which is Eisenstein, i.e., the group of connected components of A is

Eisenstein.

Remark 1. By a module for the Hecke algebra being Eisenstein we mean that
the maximal ideals which are in the support of the module give rise to Galois
representations which are reducible. For the rest of this section, we will consider
Hecke algebras which have been deprived of the Hecke operators corresponding to
primes dividing the level for the technical reasons that the degeneracy maps we
defined above are not equivariant with respect to the pth Hecke operator and that
the action of the Hecke operators which involve primes dividing the level are not
self-adjoint, i.e., the endomorphisms they induce on the Jacobian by Albanese and

Picard functoriality need not be the same.

Proof. We begin by noting that J is the connected component of the identity of
the kernel of @. This one may see by looking at the maps induced by the degeneracy
maps on the space of regular differentials on Jo(Np") viewing this as the Albanese
variety of Xo(Np"). Then this space of differentials is identified with S2(To(NpT)).
From this we conclude that J is the connected component of the identity by noting

that if:
f(z) +g(pz)=0

for f,g € S2(T'o(Np")) then g € So(To(Np™1)) (cf. [A-L]), as then this tells us that
J is the largest Abelian subvariety of the connected component of the identity of
A. Thus we see that the quotient we are interested in studying, namely A/J, as a
Hecke module, is identified with the group of connected components of A and as

such is finite. We are interested in studying the exact sequence:
0— A= Jo(Np")' 5 Jo(Np™*)

and in calculating A. We instead study the analogous exact sequence in group

cohomology:

0 — K — HY(To(Np"), M)* SH (To(Np™t1), M), (1)
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Here we are again abusing notation and conflating the map « and its counterpart in
group cohomology. We really have to study parabolic cohomology, but it is easily
seen that it is enough to control the kernel K in (1) (K is defined by means of
the exactness of (1)) and so we will work with ordinary cohomology. The above
two sequences are well related if we are considering torsion free groups. But in the
presence of torsion too H'(Yr, M), with Y1 being the open curve associated to a
congruence subgroup I' of SL;(Z), is isomorphic to the subgroup of H(T', M) (we
shall only consider M with trivial I" action) which consists of homomorphisms of T’
(:=T/ £1) which are trivial on the normal subgroup generated by the elliptic ele-
ments. Because of this it is easily seen that it is enough to study group cohomology
to prove Theorem 1 even if the groups we are considering are not torsion-free. The
underlying principle in what follows is that the kernels and cokernels of the natural
maps between ordinary, compactly supported and parabolic cohomology have only
maximal ideals of the Hecke algebra which are Eisenstein in their support. Here we
consider the Hecke operators acting on cohomology groups via the standard action,
cf. [S, Chapter 8]. So to study the localisation at a non-Eisenstein maximal ideal of
any of these cohomology groups considered as Hecke modules, the particular kind
of cohomology we study is not of consequence. Furthermore the modular symbols
isomorphism provides a useful description of H! with compact support. We will

now elaborate on this.

In (1) we are taking cohomology with respect to a module M on which the
relevant group acts trivially. The module of interest to us will be C/Z. For the
sake of being specific let us recall the degeneracy maps in the context of group
cohomology. The analogs of a;* and a,*, which we denote by the same symbols,

are given by:

ar*(f)(e) = f(=)

@ f(z) = f(mzn™?)

where,

feHl(l"o(Npr), M), z eDo(Np™)
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_(p 0
i (0 1) '
We check easily that a1*(f) and a,*(f) are elements of H}(To(Np™t!)). Then we

define a as before to be the sum o;* + a,*. We have an analogous map § which

and the matrix 7 is:

is defined as in §1.1 in terms of these degeneracy maps. To prove the theorem we

have to show that the maximal ideals in the support of
K | B(HY(To(Np™™1)))

are Eisenstein.

At this point we will use modular symbols. A convenient reference is [A-S].
We exposit briefly the theory of modular symbols in a form which is most useful to
us. For this we consider P*(Q) with the natural action of SL,(Q). We define D to
be the free abelian group generated by P!(Q), which again has a natural action of
SLy(Q). We define Dy to be the degree 0 subgroup of D, i.e., Dy is defined by the

following exact sequence:
0—-Dy—D—7Z—0,

where the map from D to Z is given by Y _ n;P; being mapped to > n;. We consider

the dual sequence:
0 — Homgz(Z, M) — Homz(D, M) — Homgz(Dy, M) — 0.

Here M is any module. For a congruence subgroup I' of SLy(Z) (we consider M as
a I' module with trivial action), on taking the fixed points under the action of I" of

this sequence, the relevant part of the resulting long exact sequence is:

0 — M — Homgr (D, M) — Homgr(Do, M)HHY (T, M) — H(T',Homz(D, M)).

2)
We note that by Shapiro’s lemma the last term of (2) is isomorphic to @ H*(U., M),
where ¢ runs over the cusps of the compactified curve associated to I', and U, is

the stabiliser of ¢ in I". The map v may be made explicit easily. One can check
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that fixing z € P1(Q), v(f)(r) = f(7(z) — z). This does not depend on the choice
of z. We also note that the above sequence is an exact sequence of Hecke modules.
For the definition of the Hecke action on the terms of (2) we can again refer to
[A-5]. (The reader may also look into [A-S, Proposition 4.2] where it is shown that
Homr (Do, M) is isomorphic to HCI(YP, M), Yr being the open curve associated to
I" and T' a congruence subgroup of SLy(Z).) We see that the maximal ideals of the
Hecke algebra in the support of the kernel and cokernel of 4 are Eisenstein. Thus

we conclude that:
HI(P,M)m = Homz[r](Do,M)m (3)

as Hecke modules, m being any maximal non-Eisenstein ideal of the Hecke algebra
and by the subscript m we mean that we have localised at m. We denote the

left-hand side of (3) by Hp. We call the right-hand side the space of modular

symbols.

Using (3) we can now give a proof of Theorem 1. Suppose that (f,9) is in the

kernel of @. So we have that:
flz) +g(ren™!) =0 (4)
for all z € [o(Np™*!). We set up some notation to ease the exposition. So define:
I':=To(Np")
I :=aly(Np")r~?
M":=rnr'.
We define h; and hy, elements of HY(T', M) and H(T', M) respectively, by:
h(z) = —g(z), z €T

and
ho(ran™) = f(z), z €T,

Using (4), we see that h; and hs restrict to HY(I'", M) to give the same element,
which is the restriction of —g, as hy—hy eH (I, M) restricts to H (Do (Np™1)°, M)
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to 0. (Here the superscript 0 denotes the subgroup consisting of elements whose
upper right hand entry is divisible by p.) Then on using the injectivity of the
restriction map in our present situation, we conclude that h; and h, restrict to
the same element, namely —g, in H(I', M). Under these circumstances we have
to examine the obstruction to the restriction of g to H}(I'"', M) coming from the
restriction of an element of H!([o(Np™~1), M). We can use (3) to see that the
obstruction is Eisenstein. The image of ¢ in the Hy, of (3) where m is any non
Eisenstein maximal ideal, on using (3), with the group I'" being used for the I' of
(3), gives rise to a modular symbol which is invariant under the action of both I'
and I'. But [o(Np™™!) is generated by I' and I'' in SL,(Z). Thus, on using (3)
again, we see that the image of ¢ in H,, does come from restriction of an element
of HY(Do(Np™™1), M),,. Thus we may consider the image in H(T'\(Np™+1), M),
of ay*f + a,*g as an element of H'(To(Np"), M), and from (4), it restricts to 0
in HY(To(Np™t1), M) . Upon once again using the injectivity of restriction maps
between H'’s of groups of varying p power level, we see that we have proven the
theorem as it has been shown that the only maximal ideals in the support of A/J

are Eisenstein.

Remark 2.

2.1 It is not true that I'o(Np”™~!) is isomorphic to the amalgamated product T'xpu I
though this does map surjectively to it. One may in fact see that this amalgam (and
even any quotient of it by a finite subgroup) cannot act discretely and faithfully
on the upper half plane in general, as its H? which we may calculate by using the
Lyndon exact sequence (see example on page 127 of [Se 2] for this), is too large for
it to do so. We may also note that this H? is highly non-trivial as a Hecke module,
containing as it does essentially all the information about p-new forms for the group
Io(Np™t1). Thus Theorem 1 (or rather its proof) shows that these rather different

groups have essentially the same abelianised quotients.

2.2 It is likely that Theorem 1 can be given a different proof using the method in
Lemma 2.5 of [W] though the (p, p) case is explicitly excluded there.
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2.3 We note that Theorem 1, in a sharper form, has been proven before in the
special case when N =1 and r = 1 in [L]. There it is proven that the kernel of the
map in this special case is isomorphic to the Shimura subgroup. The method in
[L] is completely different, uses reduction mod p of modular curves, and relies on
the fact that Jo(p) has toric reduction at p and hence perhaps will not work in the

more general setting of Theorem 1.

2.4 One can easily see that in the setting of Theorem 1 too the anti-diagonal
embedding of the Shimura subgroup lies in the kernel of a. We recall that the
Shimura subgroup is by definition the kernel of the map Jo(Np") — J;(Np") and
in terms of group cohomology is associated to the image in H(T4(Np"), M) (for
suitable coefficients M) of homomorphisms of (Z/Np™)* under the inflation map
from the quotient I'g(Np")/T'1(Np") (see [L-S] for a more exact statement). From
this description the claim follows as we note that if a homomorphism ¢ of T'y(Np")
factors through 't (Np”) then (a,*¢)(g9) = (a1*¢)(g) for any g € To(Np™t1). As
Ling San pointed out to us, it is easy to see from Corollary 2 to Theorem 1 of [L-S],
that the image of the anti-diagonal copy of the Shimura group is either trivial or of

order p in A/J according as r is even or odd (assuming r > 1).

2.5 One can check that in the setting of Theorem 1, for r > 1, the finite group A/J
is p-torsion. This follows from the shape of the matrix R of §1.3. From this one
in fact checks that ker(R)/J, which is easily seen to be a finite group, is p-torsion.
We only briefly indicate the argument as we do not really need it in this chapter.
R of §1.3 is nothing other than the composition aV.a where oV is the dual map
to a. From this we see that if (z,y) is in the kernel of R then T,z + py = 0 (see
proof of Theorem 2 in §1.3). We consider the image of (z,y) in ker(R)/J. We
need to show that this is annihilated by a power of p. For this we consider the
image of z in Jo(Np")/a,*(Jo(Np™™1)) and write it as a;*(z) +w for z eJy(Np™1)
and w in the p-new subvariety of Jo(Np") (we are of course abusing notation and
denoting an element of Jo(Np") and its image in the quotient being considered by
the same symbol). Then we see that the image of T,(z) in Jo(Np")/a,*(Jo(Np™™1))
is in a;*(Jo(Np™~1)). This follows from the fact that we are assuming r > 1 and
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thus 7, annihilates the p-new subvariety of Jo(Np"). From this we deduce that
A/J cannot have point of order ¢ for any prime ¢ different from p. It remains to
determine exactly the p-torsion of the group of connected components of the kernel

of a (which we have seen in Theorem 1 to be Eisenstein).

Remark 3. The method of proof of Theorem 1 yields the following result:

If a is the natural degeneracy map:
Jo(Np")™ ' — Jo(Np™t™)

then the group of connected components of its kernel is Eisenstein. « is the sum
of the maps a,i* for 0 < ¢ < n where a,:* is the map induced by the map o :
Xo(Np™™) — Xo(Np") which is given by a,i(E, Cnprin) = (E/Cpi, Cnpr+i [Cpi).
Here as usual Cppr4n is a cyclic subgroup of E of order Np™*™ and C,: is its
subgroup of order p' etc. We shall have use for this remark in §1.6.

In fact we state a more precise result after setting up some notation. For
1 <1< j <n+1 we consider the abelian subvariety A; ; of Jo(Np’“)n+JL given by
the image of Jo(Np"~7%%) under the map z — (0, - - -, —api-i*(x), -, 01*(z), - ,0)
where the denoted non-zero entries are in the ith and jth place respectively. We
use the convention that A;; is 0 if j —¢ > r. We are of course continuing with
our by now institutionalised abuse of notation by not distinguishing between what
are morally the same degeneracy maps but which technically are different as they
arise from different p power levels. We feel confident that this shall not cause any
confusion. With this said, we can now state the generalisation of Theorem 1.

n+1 N

Theorem 1'. If A, is the kernel of the above degeneracy map a : Jo(Np")
Jo(Np™ ™), then the sum of the A; ;’s as above is the connected component of A,

and the group of connected components of A, is Eisenstein.

Proof. The proof is quite similar to the proof of Theorem 1 and so we shall be
brief. In fact the case n = 1, which is the case settled in Theorem 1, is the key case
from which the others follow by a simple argument as we now indicate. We denote

the sum of the A; ;’s by J, (which is easily checked to be in 4,) and claim as in
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the statement of the theorem that J, is the connected component of the identity of
A,. As in the proof of Theorem 1, for this it is enough to look at the degeneracy
maps induced on the space of regular differentials. Then again by using the result
in [A-L] we are done by using induction on n (the n = 1 case has been handled
in the proof of Theorem 1). As we see that if Y 7 fi(p'z) = 0, then by [A-L], fn
is of level Np™~!. Then by subtracting (0, -, —fn(p2), fu(2)) from (fi, -+, fn)
we see by induction that our claim is true. Now we come to the statement about
the group of connected components being Eisenstein. Thus if (z¢,- -, 2,) is in the
kernel of @ we rewrite ¢ api*(2;) as Yop @i *(2;)+apn*(25). Then we note that

0 a,i*(2;) lies in a*(Jo(Np™™~1)). On using Theorem 1 in the case of the
degeneracy map JO(NI’D’“L""'l)2 — Jo(Np™™), we see that if (2q,--,z,) is in the
non-Eisenstein part of the kernel, then ay,n-1*(z,) which is in Jo(Np™t"~!) arises
by pull back by a; from Jo(Np™t"~%). We see by iterating this process that z, in
Jo(Np") is in fact in a1 *(Jo(Np™™1)), ie., o = a1*(y) for y € Jo(Np™!). Now
by subtracting (0,- -+, —a,*(y), a1*y) from (zo,- - -, zn) we see that we are done by

induction on n (the case n = 1 being Theorem 1).

Remark 4. We also note an application of modular symbols in the raising of levels
situation considered by Ribet in [R]. In this paper the crucial point was to calculate

the kernel of the degeneracy map
a: Jo(N)? = Jo(Np).

By considerations similar to the preceding we see that the non-Eisenstein part of
the kernel of « arises from an element of Homp(Dg, M) where I" here is the analog of
To(N) in the group SL2(Z[1/p]). We would like to show that any Hecke eigenform
in this space of modular symbols is forced to be Eisenstein. This follows from the
congruence subgroup property which is known for SLy(Z[1/p]) (see [Se 3] for this).
To see this implication we need only note that on using the exact sequence (2) made
with T' the subgroup of I's(N) type of SL2(Z[1/p]), we see that Homp(Dy, M) is
Eisenstein as we know this to be true for H*(T', M) (for M as before considered as

a trivial I" module) as a direct consequence of the congruence subgroup property
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enjoyed by SLy(Z[1/p]). Thus we can avoid using the description of Ihara (used in
[R] and for which see [Se 2]) of SL2(Z[1/p]) as an amalgamated product.

1.3. Raising the level

We now come to the result about raising levels in the (p,p) case. We shall
supplement this result in §1.5 by studying congruences between forms of level N,
Np and Np? (mod p) which is ignored here. We restate and prove the theorem of

the introduction.

Theorem 2. Suppose f is a newform of weight 2 for the group I'o(Np"), (N,p) =1
and that the mod p representation f gives rise to is absolutely irreducible. Then
for any s > max(r,2), there exists a newform g, of weight 2 for the group I'y(N'p?),
where N'|N, such that:

f=g (modp),

where p is a place above p.

Remark 5. We note that for large enough s our form ¢ cannot arise from twisting
from the form f as we are requiring that ¢ be a form for the group I'o(Np®). (This
fact is used crucially in the application of Theorem 2 to prove Theorem 5 in §1.7.)
For if g were to arise by twisting, then the twist would have to be by a character
whose conductor has the same radical as Np and then the resulting form cannot
be on I'g(Np®) if the order of the character is greater than 2, as we may see by
considering nebentypes. As there are only finitely many characters of this type, we

see that for large enough s the form ¢ the theorem produces cannot be a twist of f.

Remark 6. It is well known that there are only finitely many Hecke eigensystems
mod p which can occur in cusp forms of weight 2 and level Np™ (by this we mean
of level Np" for varying r). In fact one knows that any such eigensystem (mod p)
already occurs in S2(I'1(Np?)). For this we refer to the discussion in §2 and §3 of
[R 2]. Thus one knows that there are many congruences mod p between newforms
of weight 2 and varying p power level. Theorem 2 provides a more precise version of

this qualitative fact. For instance after Theorem 2 one knows that f mod p occurs
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in the p-new quotient of S3(I'o(Np®)) for infinitely many s. The general fact we

have quoted does not seem to give this (but see Remark 8 below).

In Theorem 2 by a congruence between modular forms, we mean a congruence
of the Fourier coefficients outside Np and in general throughout this chapter by a
congruence mod p between newforms we shall mean that they give rise to isomorphic

(absolutely irreducible) mod p representations.

Proof of Thorem 2. We follow the method initiated by Ribet in [R]. There the
general strategy to prove that a maximal ideal of the Hecke algebra Ty« is a prime
of fusion, i.e., arises by pull back from the p-old and p-new quotients of Trpe, is to
produce a Hecke module for which the Hecke action factors through the p-old and
p-new quotients and then show that the maximal ideal in question is in the support
of this module. A natural candidate for such a module is the (finite) module given
by the intersection of the p-old and p-new subvarieties of Jo(Np*). Thus we need to
be able to calculate, in the light of this strategy, the maximal ideals in the support

of this module.

For this we observe that because of the autoduality of the Jacobian, the natural

degeneracy map
a: Jo(Np*™')* — Jo(Np*)

induces a map :
o Jo(Np*) = Jo(Np*~1)"

By Theorem 1 we know that the group of connected components of the kernel of
a is Eisenstein. This entails that the group of connected components of the kernel
of @V is Eisenstein, as these two groups of connected components are in Cartier
duality with each other. This general fact about abelian varieties can be seen by
an argument which we owe to Ribet. As we note that if T : A — B is a map of
abelian varieties, then it can be viewed as taking place in 3 stages. At the first stage
one considers the quotient of A by the connected component of the identity of the
kernel of T. At the second stage one considers the quotient by the image in this
of the (finite) group of the connected components of the kernel of 7. At the third
stage one considers the inclusion of A / ker(T') into B. Then the kernel of the dual
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map TV : BY — AY may be unscrewed corresponding to the above 3 stages. The
kernel of the dual map corresponding to the third stage is the connected component
of the identity of the kernel of TV. The kernel of the map dual to the second stage
is the group of connected components of the kernel of TV. The kernel of the dual
map corresponding to the third stage is 0. From this the result follows as it is well
known that the kernel of an isogeny is in Cartier duality with the kernel of its dual
map. From this it follows that the group of connected components of the kernel of
aV is Eisenstein as the Hecke operators T}, for (n, Np) = 1 are self adjoint under

this pairing.

The connected component of the identity of the kernel of oV is by definition
the p-new subvariety of Jo(Np®). By a well known computation we see that the
composition @¥.a when written as a 2 by 2 matrix of endomorphisms of Jo(N ps_l)2

is given by:

T*
R=[(2 “r).
(TP p)

T," is the image of T}, under the Rosati involution of the Jacobian. To be explicit,
T, for us is defined by (ap)«.a1*, which induces the usual operator T, on cusp
forms (whose level is divisible by p). (We believe there is a small error in §13 of
[M-R] (which of course does not affect anything in their paper) where the operator
given by (al)*.a; is called T, and it is stated that T,.a1* = ay*.T, with T, on
either side of the equation denoting the action at the appropriate level. But it may
be checked that, denoting this operator by the neutral symbol B, B.aj = p.aj
where o} and o} are maps from Jo(Np*~?) to Jo(Np*~'). This contradicts the
property claimed for what is called T}, in §13 of [M-R]. This is one place where our
conflation of degeneracy maps is likely to cause vertigo! We labour this point as it
has confused us). The description of R results from this description of the Hecke
operators using degeneracy maps, and on noting that the maps «; and «, have
degree p. We remark that with our conventions, T,.a1* = a1*.T, with T, referring
to the appropriate action at the respective levels (we remind ourselves that by the

assumptions in Theorem 2, s — 1 > 1). We note that, in the case when r > 2, a
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newform f of weight 2 for the group I'o(Np"), where r > 2, is annihilated by T,
for the well known reason that with our assumption that r > 2, T, decreases the
level of f. For the case r <1 of the theorem, we produce from f a p-old form f" of
level Np? whose L series has no Euler factor at p, but whose Euler factors outside
p agree with those of f. Thus the maximal ideal we are interested in proving to
be a prime of fusion, is the maximal ideal of residual characteristic p associated to
either f or f" of TNpe(N ?) (where by this we mean the Hecke algebra deprived of
the Hecke operators T, where (n, Np) is not 1). Having said this we shall now only
consider the case r > 2 of the theorem as the other case is entirely similar. We shall
denote this maximal ideal corresponding to f by m. On taking this into account
and noting the shape of the matrix R we can write down p torsion elements of the
abelian variety A;? associated to f of the form (z,0) (see [S, Theorem 7.14] for
this association; for purposes of orientation we may recall that Ay is a subvariety
of Jo(Np*~1) whose space of regular differentials is spanned by f and its Galois
conjugates under the standard Galois action on g-expansions), which lie in the
kernel of R, but are not in the kernel of a, and such that their images under a are

not in the group of connected components of the kernel of aV.

Namely, we see that if V is a two-dimensional vector space over TNps-l(N P Im
(we are identifying m and its image in Ty ,e-1 (NP)} which affords the representation
pm (see §1.2) and occurs in Jo(Np*~1), then (V,0) is mapped injectively to the
intersection of the p-old and p-new subvarieties of Jo(Np*). It is mapped injectively
by inspection as we have noted in §1.2 that the map «1* is injective. It is mapped to
the intersection as firstly by what we have noted about the behaviour of T}, it does
lie in the kernel of R. Secondly the image of (V,0) under « has trivial intersection
with the group of connected components of a¥ as V is absolutely irreducible as a
Galois module and we have shown earlier that this group of connected components
is Eisenstein. (It may be useful to note that the kernel of R has the following
filtration:

0CQ; €Oy CO; Cker(R).

The successive quotients here are identified respectively with 8(Jo(Np*~2)), the

group of connected components of «, the intersection of the p-old and p-new subva-
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rieties of Jo(Np®) and the dual of the group of connected components of a.) This
then shows that m is a prime of fusion as it is in the support of the intersection
of the p-old and p-new subvarieties which follows from what we have just said that
this intersection contains a mod p Galois representation isomorphic to pn,. Thus

we obtain the result claimed in the theorem.

Remark 7. We note that in the context of Theorem 2 the only prime with respect
to which one can raise the p power level of the newform f is p. (In this remark
by congruence between cusp forms we mean term by term congruence of all the
Fourier coefficients. This makes good sense in the situation of r > 1 of Theorem
2, as the T, of higher level restricts to give T, of lower level and 7T, annihilates
newforms in So(I'g(Np®)) for s > 1 as we remarked earlier. It may be checked
that in the setting of Theorem 2 for the case r > 1 we can raise the levels in this
stronger sense to get a form ¢ for the group I'o(Np®) which is an eigenform for
the Hecke operators at level Np®, and whose minimal p power level is p*.) This
may be seen on using the characterisation of newforms of Serre as the kernel of the
intersections of the natural trace maps, noting that the trace map preserves the
integrality of the Fourier coefficients outside p and the fact that the degree of the
covering Xo(Np™1) — Xo(Np") is p. (We also refer the reader to Remark 2.5 of

§1.2.)

Remark 8. We discuss the relation between Theorem 2 and twisting. As per
Remark 5, for large enough s, the form ¢ the theorem provides cannot arise by
twisting. We now assume p > 5. We may apply Carayol’s lemma, cf. [C], to
produce from a newform f in S>(I'o(Np")) a Hecke eigenform A in S2(T'o(Np®),¢)
congruent to f mod a place above p, for s > r, where ¢ is any character of order
a power of p and conductor dividing p® which can be specified in advance. If we
consider the extreme case when the conductor of ¢ is p® (s > 2), then we know that
the automorphic representation corresponding to h is principal series at p. In this
case we may twist h by ¢’ where ¢ has p power order and is such that (¢')* = ¢!

(we are assuming that p > 2, so this is possible). In this case the resulting form,

say h.s, is easily checked to be in the p-new part of Sy(To(Np?*)). Thus we see
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that the use of Carayol’s lemma gives a weaker result than Theorem 2 (but which
is still sufficient for the application to Theorem 5) which will say that for any s > r
(and s > 2), f occurs mod p in the p-new part of S3(T'o(Np?*)). In fact this lemma
of Carayol does help us in further understanding, in conjunction with Theorem 2,

congruences in the (p, p) case as we point out in Theorem 4’ of §1.5.
1.4. Lowering the level

In this section we discuss the lowering of levels in the (p, p) situation. Namely,
given a newform f of weight 2 on I'g(Np") we would like to find the minimal p
power level at which it occurs, i.e., we would like to find the least s such that
S2(To(Np?®)) contains a form which is congruent to f mod p. We will use the
terminology that f occurs in S3(Tg(Np®)) to signify this and we shall call the least
such s the minimal p power level of f (so s is in fact the minimal exponent of p in
any level in which f occurs mod p in the space of weight 2 cusp forms). Throughout
this section we assume that the mod p representation attached to f is absolutely
irreducible and that p > 5. We state a proposition which settles this question in
terms of the behaviour of the mod p representation attached to f when considered

as a representation of the decomposition group at p.

Proposition 1. The minimal p power level of f is either 0, 1 or 2. We can

determine this minimal level in terms of the following trichotomy:

(a) If the mod p representation attached to f (which we denote by ps ) is finite

at p, then the minimal p power level of f is 0.

(b) If py p, is not finite at p but as a representation for D, (the decomposition
group at p) has a one-dimensional unramified quotient, then the minimal p power
level of f is 1.

(c) If neither is the case then the minimal p power level of f is 2.
(For the notion of finiteness of p at p we refer to [Se].)

Proof. The proof just consists of quoting results from [E] and [Se]. That the
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minimal p power level of f is at most 2 follows from the fact, see [R 2] and Remark
6 of §1.3 of the present chapter, that f occurs in S2(To(N)NT1(p?)). Then we may
in fact see that f occurs in S5(Ty(Np?)) on using a well known lemma of Carayol

about lifting of nebentypes, cf. [C].

Now we use the results in [E] and [Se] to determine exactly the minimal level.
We first note that it is well known that f occurs in Sg(I'g(V)) for some k. For
the sake of being more self contained we recall briefly the conjecture of Serre about
the least weight from which an absloutely irreducible modular representation arises,
from a level N which is prime to p. This conjecture is proven by Edixhoven in [E].
In our proof of the proposition the only case of this conjecture of Serre which is
relevant is the case when the mod p representation we are considering is reducible
when restricted to the decomposition group D, at p. Thus we consider an absolutely
irreducible mod p representation associated to a newform ¢ in Si(I';(NV)) for N, as
usual, prime to p. We denote this by py ,. Then Serre attaches to this an integer
k(p) (= 2) which is now proven in [E] to be the least weight k' (> 2) at which p, ,
arises from a form in S (I';(N)). Serre’s invariant k(p) only depends upon the
restriction of pg, to D,, the decomposition group at p (in fact it depends only on
the restriction to the inertia group at p). Now we assume that this restriction is

not irreducible as that is the only case we need to look at here. Then py ,|D, is of

Xﬁ€1 %
0 Xat’:‘z

where x is the mod p cyclotomic character and ¢; are unramified characters. « and

the form:

B are well defined mod p—1. We assume first that the wild part of the inertia group
at p acts trivially and in this case normalise so that 0 < o < 8 < p — 2. Then k(p)
is defined to be 1+ pa+ F if (a, B) # (0,0) and p otherwise. In the other case when
the wild inertia group does not act trivially one normalises so that 0 < o < p— 2
and 1 < § < p—1 and then defines a and b to be the maximum and minimum of
a and 3 respectively. Then if 3 is not o + 1, Serre sets k(p) in this case equal to
1+ pa +b. In the case when § = a + 1, k(p) is defined to be 1+ pa + b if p is peu
ramifié at p and 1+ pa+b+p— 1 otherwise. For the notion of peu ramifié, as for all

of this paragraph, we refer to [Se|. Now we go back to the proof of the proposition.
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We see that by Proposition 4 of [Se] and the main theorem of [E] a necessary
and suflicient condition for the minimal level of f to be 0 is that p (as we shall call
py,p) is finite at p (this step in [E] uses crucially Mazur’s principle, for which see [R
1]). This follows from these results in [Se] and [E] on noting that the determinant
character of p is the mod p cyclotomic character y as then it is predicted in [Se] as
we have recalled, and proven in [E], under our further hypothesis that p is finite at

p, that k(p) is 2. This proves part (a) (in an if and only if form) of the proposition.

So we may now assume that p is not finite at p. Then a necessary condition for

f to have minimal p power level equal to 1 is that p when restricted to D, should

p|Dp = (Xgl ;) (*)

where ¢; for ¢ = 1,2 are unramified characters. This follows from Deligne’s theorem

have the form:

(cf. Theorem 2.5 of [E]) on noting that if f has minimal p power level 1 then it is
ordinary at p and that the weight filtration of an eigenform in S3(T'o(Np)) is < p+1.
(In fact it is either 2 or p+1 as a consequence of [A-S]. By the weight filtration of an
eigenform we shall mean the least weight at which it arises mod p from a level prime
to p, i.e., after [E], the k(p) of the corresponding mod p representation p). Thus a
necessary condition for f to have minimal level 1 is that the mod p representation
should have a one-dimensional unramified quotient. Conversely if (%) holds, it was
conjectured in [Se] (see pg. 187) as we have recalled, and is proven in [E], that k(p)
is then either 2 or p + 1 and it is 2 if and only if p is either completely reducible
when restricted to the inertia group at p or peu ramifié at p. This latter condition,
in the case when p|D, is of the form (x), is shown to be equivalent to p being finite
at p in §8 of [E]. Thus under our assumption that p is not finite at p it follows
that f occurs in Sp4+1(To(V)) but not in S3(I'o(N)). But now from a result of Ash
and Stevens [A-S, Theorem 3.5] we see that f occurs in S3(I'g(Np)). Thus we have
proven part (b) of the proposition. On taking into account the fact that we started
the proof by quoting, i.e., that the minimal p power level of f is < 2, we see that

we have proven the proposition.

Remark 9. We note that using the results of [E] and [A-S] one may settle the
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question of the minimal p power level of a form f more generally, i.e., assuming
that f occurs in Sy(I'y(Np")) rather than the more restrictive assumption that it
occurs in S3(T'g(Np™)). We state the result. We will of course by the minimal p
power level mean the least s such that, mod p, f occurs in S3(I';(Np®)). Denoting
the associated mod p representation by p we can determine the minimal level in
terms of the invariant k(p) of Serre. (Here we note that the k(p) in [Se] is never 1
while in [E] it can be 1. We use the original definition of Serre.) We deduce from
[E] and [A-S] that the minimal level of f is 0 if k(p) is 2,is 1if 2 < k(p) < p+1
and is 2 if k(p) > p+ 1. By [C] (we recall that we are assuming p > 5) we also note
that the nebentype with which f occurs in the minimal level may be taken to have
order prime to p. Proposition 1 is a particular though more self-contained case of

this.
1.5. Congruences between forms of level N, Np and Np?

The study of congruences between eigenforms of level N, Np and Np?, which
has been avoided in Theorem 2, can also be carried out. Congruences between forms
of level N and level Np (even mod p) can be handled by the methods in [R]. One
may analyse congruences between forms of level N and Np? and between those of
level Np and Np? using our method. The case of congruences between forms of
level Np and Np? is somewhat delicate. Throughout we are continuing with our
assumption that p > 5 and that the mod p representation attached to the forms
we shall consider is absolutely irreducible. As usual by a congruence mod p we
shall mean that the associated Galois representations of residue characteristic p are
isomorphic. We now state and prove a theorem which studies congruences between

forms of low p power levels.

Theorem 3. We can classify congruences between forms of level N, Np and Np*

as follows:

1. If f is a newform in S3(I'g(N)) then a necessary and sufficient condition for
there to be a congruence (mod p) between f and a p-new form in S3(To(Np)) is
that a,(f) = +1 (mod p) where p is a place above p as usual.
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2. If f is a newform in S3(T'o(N)) then f is always congruent (mod p) to some form
in S3(To(Np?)) which is p-new.

3. If f is a newform in S2(T'g(Np)) then f is congruent (mod p) to a p-new form in
S2(To(Np?)) if and only if py,, is finite at p.

Proof.

Case 1. The sufficiency follows from [R] as is remarked upon in [R 3]. The
necessity is seen by using Deligne’s theorem that the mod p representation attached
to a form of weight 2 which has level divisible exactly by p, when restricted to the
decomposition group at p, has an unramified quotient on which it acts by a character
of order dividing 2 (see §1.4). Thus if the level of f can be raised as above, the
corresponding mod p representation is reducible at p and hence on using Theorem
2.5 and 2.6 of [E] (see also §1.4) we see that the above condition is necessary as
the cited theorems in [E] force the eigenvalue a,(f) to be £1 modulo p. (We are
grateful to K. Ribet for a helpful discussion about this case.)

Case 2. The level of a newform f of weight 2 and level N mod p can always be
raised to get a congruent newform of weight 2 and level N'p? where N'|N. This
follows from the procedure of the proof of Theorem 2 as from f we can produce a
p-old form f' of level Np (the Euler factors of whose L series outside p agree with
those of f) which is not ordinary at p. Then again the form of the matrix R in §1.3

in the case of going from level Np to Np? proves what we claimed.

Case 3. Now we have to deal with the case when f is a newform in S3(T's(Np)).
If the corresponding mod p representation is finite at p (see [Se] and §1.4) then the
level of f can be raised to get a newform g congruent to f mod p and level divisible
by p? as by Proposition 1 of §1.4 we see that f is congruent to a form in Sy(Tp(N))

and then we use Case 2 for going from level N to Np?.

If the mod p representation attached to f is not finite at p then we have to
prove that the p level of f mod p cannot be increased to p?>. We note that Theorem
2 shows that one can always raise the level to get a newform g of level divisible by

p" for any r > 2.
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So we now suppose that we have a newform g of weight 2 for T'g(Np?) such that
the corresponding mod p representation is not finite at p. Then in order to prove
Case 3 of the theorem we need to prove that the p part of the level of g cannot be
lowered. As otherwise g would be congruent to a form in S2(Ty(Np)) which is new
at p (as py,p is not finite at p). From this it follows that the mod p representation
attached to g is reducible when restricted to the decomposition group at p (by a
theorem of Deligne used above). We may also assume that the p, ,|D, (D, is the

decomposition group at p) is not completely reducible. As otherwise it will have

x%er 0
0 Xb€2 )

Now if neither of a and b is congruent to 0 mod p — 1 we get that g (by [E]; see

the form:

also §1.4) cannot occur mod p in any Sg(I'o(N)) for k¥ < p 4 1 and hence cannot
occur in 52(T'o(Np)) by a result in [A-S] that we have used often already. If only
one of a or b has non-zero residue class mod p — 1, say a, then we see by looking at
determinant character of p; , that a =1 (mod p — 1). But then p, , is finite at p
(see Proposition 4 of [Se]). Thus from now we assume that p, ,| D, is not completely

reducible.

Now we consider two cases. One is when the p component of the automorphic
representation corresponding to g is a principal series or twist of a special represen-
tation at p. Then we claim that ¢ arises as a twist from a form h in So(T;1(Np)) by
a primitive character of conductor p. For this it is enough to look at the case when
the p component of 7, is principal at p. It is then of the form 7(£;, £;) where &; are
quasicharacters of Q, of conductor p. This has to be the case by our assumption
on the nebentype of g. This justifies the claim. (We note that by using the lemma
of Carayol, cf. [C], any newform in S3(To(N) N T, (p?)) already occurs mod p in
S2(To(Np*)NT1(p)) and then again we may again argue as we have done.)

Using [A-S] (Theorem 3.4 and 3.5) we know that A mod p has weight filtration
< p+ 1. Then on using this and Theorems 2.5 and 2.6 of [E] together with our

assumption that the mod p representation associated to g is reducible, we see that
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the mod p representation associated to h when restricted to D, is given by:

(52 )

where ¢;, for ¢ = 1,2, as before are unramified characters and y is the mod p
cyclotomic character and a has non-zero residue class mod p — 1. This follows
because from the definition of the invariant k(p) of Serre, pj ,|D, has either an
unramified quotient or an unramified subspace (as the filtration of A mod p is
< p+1). But from Deligne’s theorem (Theorem 2.5 of [E]) it has an unramified
quotient. We note that the determinant character of p p is ramified at p (as the
determinant character of p, , is x and p > 2). Thus we see that as pj ,|D, is not
completely reducible, it cannot have an unramified subspace and hence is of the

form ().

Now our assumption that ¢, mod p, occurs in S3(T'o(Np)) fetches us a contra-
diction as we claim that then it has both an unramified quotient and an unramified
subspace which contradicts the fact that py ,|D, is not completely reducible (we
are using here the fact that the determinant character of p, , is ramified at p). The
claim is true because by Deligne’s theorem quoted above the mod p representation
attached to a p-new form in S2(T'o(Np)) has an unramified quotient when restricted
to D,. But as g arises from h by twisting by a primitive character of conductor p
and as the filtration of ¢ is < p + 1 (by our assumption that, mod p, g occurs in
I'o(Np); in fact under this assumption it has filtration exactly p + 1 as the corre-
sponding representation is not finite at p, cf. §1.4), we see from the definition of
k(p) in [Se] and (*) that the twist has to be by x ™. From this it follows that p, ,
when restricted to D, has an unramified 1 dimensional subspace. This completes

the treatment of the case when 7, is principal or twist of special at p.

(It is possible to give a different argument than the one above to prove what we
want in the principal series case and which is similar to the argument we are about
to give in the supercuspidal case below. As, in the case when 7,(g) is principal, the
abelian variety associated to ¢ will acquire good reduction, by virtue of a theorem of

Langlands and Carayol, over Q(y,). This extension is tamely ramified at p and then
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arguing as we do below in the supercuspidal case, we are done. This alternative
argument in the principal series case was pointed out by D. Prasad after having

seen an earlier version of our proof of Theorem 3.)

Now we deal with the other case, i.e., when the p component of 7, is super-
cuspidal at p. Thus assuming that n, is supercuspidal at p and the p part of its
conductor is p? we see that the p component of r, is the Weil representation asso-
ciated to a primitive character, say €, of conductor p of the unramified quadratic
extension of Q, which does not factor through the norm character (we recall that
we are assuming that p is greater than 2 and refer for instance to the cuspidal case
in [C] for more details on this). As we are in the (p, p) situation we cannot use the
Langlands and Carayol theorem to deduce from this information about the p-adic
representation associated to g when restricted to D,. But we may use the theorem
of Carayol, c¢f. [C 1], in conjunction with the Néron-Ogg-Shafarevich criterion to
conclude that py , becomes finite at a place above p of K for K a tamely ramified
extension of Q, (as the abelian variety associated to such a g acquires good reduc-
tion over an extension K of this type). But the mod p representation associated to
a form fin S3(I'o(INp)) which is not finite at p (i.e., is not associated to a finite flat
group scheme over Z,) remains so even when restricted to the ring of integers of
any tamely ramified extension of Q,. As we see (see the discussion in Proposition
13.2 of [Gr]) that after making an unramified base change from Z, to the ring of
integers R of an unramified extension L of Q,, the Galois module V affording py,p

when restricted to Dy, (for p a place above p) has the form:
0 pp®EY -V >Z/pQE —0

where E is the finite extension of F, which is given by Tn,/m, m being the maximal
ideal associated to f. This follows from the theorem of Deligne (Theorem 2.5 of [E]).
By Kummer theory such an extension corresponds to an element in L*/L*? @ EV.
Here by definition EVY is Hom(E,Z/p). As V is not finite at p the class of the
extension does not come from R*/R*? ® EV (as such extensions over R correspond
to a class in Ext' p(E, BV ®u,) which by Kummer theory, as R is a discrete valuation
ring, is isomorphic to R*/R*? ® EV). But then it follows from this that the above
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extension will not correspond to a finite, flat extension even after making a base
change to the ring of integers of a tamely ramified extension of Q,. As we see that

as V is not finite at p, at least one extension of the form:
0> pp@EY - V' - Z/p—0

with V' a Galois submodule of V' gives rise to a class in H(L, u, @ EV) = L*/L** ®
EY which does not come from H'f, , s (R,up ® EV) = R*/R*? @ EV. The cor-
responding statement will remain true even after going to the ring of integers of a

tamely ramified extension of Q,.

(We need to go through this additional step as the E action need not extend
to the maximal finite flat extension associated to V' over the ring of integers of K
as the ramification index of K could well be > p — 1; see [Ra]. We are using in the

above the following general fact (for which again the reference is [Ra]):

Let G = Gal(K/K) and let
0-X—->Y—->2->0

be an exact sequence of G-modules. If Y is the generic fibre of a finite flat group
scheme ) over the ring of integers of K then there are unique finite flat group
schemes A" and Z such that this sequence is the generic fibre of the following exact

sequence of finite flat group schemes over the ring of integers of K:
0—-X—=Y—-2Z-0.
As another reference for the above we may refer the reader to Appendix B of Milne’s

book [Mil]. We are grateful to D. Prasad for pointing out this reference.)

Thus we have proven that the p part of the level of a p-new form in S5(T(Np?))
which is supercuspidal at p cannot be lowered if the corresponding mod p represen-

tation is not finite at p. This completes the proof of Theorem 3.

Theorem 2, the result in [C] about lifting nebentypes (cf. Remark 8), the results

of §1.4 and Theorem 3 yield a fairly complete analysis of congruences between cusp
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forms in the (p, p) case. We can sum up these discussions in the form of the following

theorem.

Theorem 4. If f is a newform in S3(T'g(Np*)), then we may determine the different
p power levels at which f (mod p) occurs as follows (we assume as usual that py p,

the mod p representation attached to f, is absolutely irreducible):

1. If ps, is finite at p then f occurs mod p in So(To(Np )P~ " for all r > 0,
except possibly r = 1. It occurs in S3(To(Np))* ™" if and only if a,(g) = %1
(mod p) for p a place above p and g in S32(T'y(N)) a newform congruent to f mod
p.

2. If py,p is not finite at p, but if the mod p representation restricted to D, has

an unramified quotient then f occurs (mod p) in Sy(To(Np™ )P~ " for all r > 1
except r = 2. It does not occur in S3(Ty(Np?))"™ " and nor does it in So(Io(N)).

3. If ps p is neither finite at p nor does it have an unramified quotient when restricted
to D,, then f occurs mod p in S3(To(Np"))*™"*" if and only if r > 2.

Proof. This is just a summation of Theorem 2, Proposition 1 and Theorem 3.
Remark 10.

10.1 In some cases one can obtain finer information than is stated in Theorem 3. For
instance if f is a newform in S2(T'o(V)) and if its associated mod p representation
is absolutely irreducible, but non semisimple when restricted to D,, then one may
check from the proof of Theorem 3 that the congruent form g which Theorem 3
will provide us which is p-new in S5(T4(Np?)), is supercuspidal at p. This follows
from the proof of Case 3 of Theorem 3 (more accurately the principal or twist of
special subcase) on noting that if it were not supercuspidal the mod p representation
aatched to g would be completely reducible when restricted to D, (as it would have

an unramified quotient and subspace).

There are many f’s as above, i.e., such that the restriction of the mod p repre-
sentation to D, is non semisimple: for example see remark on page 274 of [Se 1]

where it is remarked that it is expected (or more precisely the author of [Se 1] asks
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a question which would have this as the affirmative answer) that most primes p at
which an elliptic curve has good, ordinary reduction have the property that the mod
p representation associated to the elliptic curve is non-semisimple when restricted

to D,.

This remark also gives a systematic way to construct irreducible mod p represen-
tations which come from forms which are supercuspidal at p and such that their
restriction to D, is not semisimple. H. Hida has pointed out to us that it should
also be remarked that the mod p representation attached to a form f e S2(T'o(V))
can be irreducible when restricted to D,, even though in this case 7,(f) is princi-
pal. As by the theorem of Fontaine and Serre (Theorem 2.6 in [E]), if the mod p
representation attached to a newform f in S2(T'o(V)) is irreducible, then if a,(f) is
0 modulo a place above p, the restriction of the corresponding mod p representation

to D, is irreducible.

10.2 We may also remark that the oft cited lemma of Carayol, cf. [C], along with
the results in [E] can easily settle the question of determining the various p power
levels at which a form can appear when we switch to the I'; type situation. But
we may also try to refine the analysis and even analyse the various combinations
of level and nebentypes with which the form will appear mod p (we are grateful to
Fred Diamond for suggesting that this issue should also be resolved). We state the

result. In the following by a character we shall always mean a primitive character.

Theorem 4'. Let f be a newform of weight 2 for the group T'o(N) N Ty(p?).
Then the various p-power levels and nebentypes with which f occurs mod p may be
determined as follows (we as usual assurme that the mod p representation associated

to f is absolutely irreducible):

1. k(psp) =2 : If s > 1 then f occurs mod p in the p-new part of Sy(T'o(Np®), %),

where 1 is any character of conductor p” (r < s) and of order a power of p.

f occurs in the p-new part of S3(T'o(N)NT'1(p)) if and only if a,(g) = £1 (mod p)
for g a newform in S3(Tg(N")), for N'|N, congruent to f mod p and p a place above
.
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2. 2 < klpsp) < p+1: Ifs > 2 then f occurs mod p in the p-new part of
S2(To(Np®),v) where s > 2 and ¢ is any character of conductor p” (r < s) which

mod p is congruent to the nebentypus character of f.

For the case when s < 2, f occurs mod p in the p-new part of Sy(T'o(Np?),) for
any 1 of conductor dividing p* if 2 < k(pyp) < p+1. Ifk(psp) = p+1, then f
occurs mod p in the p-new part of S3(Tg(Np?),v) if and only if the conductor of
is p? and ¢ has order p. f occurs in S3(T'1(Np)). It does not occur in Sp(To(N)).

3. k(psp) > p+1: f occurs mod p in the p-new part of Sy(T'o(Np®),) where
s > 2,1 is any character of conductor p” (r < s) which mod p is congruent to the

nebentypus character of f. It does not occur in Sa(T'o(N) N Ty(p)).

Proof. To justify this we apply Remarks 8 and 9 and Theorem 2 of this paper in
tandem with Theorem 3.1 of [A-Li].

Case 1. We know that f occurs in So(T's(IV)) by [E]. The claimed criterion for f to
occur in S3(To(N)NT1(p)) follows from the arguments used in Case 1 of Theorem
3 on noting that if &, a newform in S,(I'o(N)), is congruent to a p-new form in
S2(To(N)NT1(p)), then it is in fact congruent to a p-new form in S2(To(Np)). We
may and will assume that r > 2 (i.e., ¢ is not the trivial character; the other case
is already dealt with in Theorem 4). We now come to the s > 1 subcase of Case 1.

We further consider two subcases:

s > 2r. In this case we use Theorem 2 to produce a h in the p-new part of
S5(T'o(Np*)) which is congruent to f mod p. We choose a character ¢ of con-
ductor p”, of order a power of p and such that €2 = ¢ (this may be done as we are
assuming that p > 2). Then we twist & by ¢ to obtain h. which is in the p-new part
of S2(To(Np*),¢) (by Theorem 3.1 of [A-Li]) and is congruent to f mod p.

r < s < 2r. The case s = r is dealt with by Carayol’s lemma. So if we have
a primitive character 1 of conductor p” (r < s) and of order a power of p then
the lemma of Carayol will imply that f occurs (necessarily in the p-new part) of
S2(To(Np™),v)). Let us denote the congruent form by ¢g. Then it is easily seen that

the automorphic representation corresponding to g is principal series at p. The local
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component at p of 7, is in fact of the form (e, 2) where the ¢; are quasicharacters

of Q, with one of them being unramified (see Lemma 10.1 of [H)).

Now let us assume further that s is greater than r + 1. Then in this case we

" and of order a power of p (this

can twist ¢ by a character ¢ of conductor p*~
exists by our assumption of the previous sentence). In the case when s = 2r we
demand further that the character ¢ we twist by is such that the conductor of ¥e
and e is still p” (this can be done by our assumption that p > 5; in fact p greater
than 2 suffices here). Then the resulting form ¢', by what we have noted about the
p-component of 7y, is easily checked to occur in the p-new part of S2(T'o(Np*®), '),
for ¢’ a character of conductor p” and of p power order (as we are assuming that
s £ 2r and in the case when s = 2r we have been careful in our choice of ¢). This
can be seen either from what we have noted about the local component at p of m,
or Theorem 3.1 of [A-Li]. But then as all characters of conductor p™ and of p power
order are conjugate under the action of the inertia group of Gal(Q,/Q,) (we are
imagining that we have fixed an embedding of Q — @p), we may see that f occurs
mod p in the p-new part of Sa(T'o(Np?®),v).

We now treat the case when s = r + 1 which is treated differently to the above.
It is easily seen that we need only consider the case when r > 2. In this case we
consider the form ¢ in S3(T'o(N)) which is congruent mod p to f. Then we twist the
form by w to get g, w being the Teichmuller character. Then by Carayol’s lemma
we see that g, occurs mod p in (the necessarily p-new part of) So(To(Np"), Ypw?)
(this follows from our assumption that r > 2). Denote this congruent form by h,,.
But now it is easily seen that we can twist A, by w™! to obtain a eigenform in the
p-new part of S3(T'o(Np?®), ) which is congruent to f mod p. This finishes off Case
1.

Case 2.

We deal first with the subcase s > 2 of this case. By [E] we note that f mod p
occurs in the p-new part of So(I's(Np),w*(¥)=2) (we are abbreviating py,, to p and
w 1s the Teichmuller character whose mod p reduction had been called x in §4).

Now exactly as in the proof of Theorem 2 we may show that f occurs mod p in the
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p-new part of So(To(Np®),w* P =2) for all s > 3. At this point we can now argue

as we have just done in Case 1 and thus we shall be brief.

s > 2r. Twisting the p-new form congruent to f in S3(To(Np?®),w*(P)=2) by suit-
able character of conductor p”, we are done in this case by another application of
Theorem 3.1 of [A-Li].

r < s < 2r. Here again we use Carayol’s lemma to produce a congruent form
in (the necessarily p-new part of) S2(To(Np"),v) which will necessarily have its
local component at p to be principal series. Proceeding exactly as in the analogous
subcase of Case 1, considering separately the cases s different from r+1 and s = r+1,
we see that f mod p occurs in the p-new part of S3(To(Np®), ') where ¥’ is a
character of conductor p” which is congruent to ¥ modulo a place above p. Then
we are home by acting on this congruent form by a suitable element of the inertia

group at p just as we saw earlier in Case 1.

Now we come to the subcase of Case 2 which corresponds to s < 2. We know by [E],
as we have noted, that f mod p occurs in the p-new part of SZ(I’O(Np),wk(”)_2). If
the invariant k(pysp) is not p+1, then what we have claimed follows on noting that
if g is a newform in S3(To(Np),w*) and k is not congruent to 0 mod p — 1, then
ap(9)a,(g9) = p. Then by virtue of this fact we see, by an argument similar to the
proof of Theorem 2, that f occurs mod p in the p-new part of Sy(I'y(Np?), wk(#)=2),
Also by Carayol’s lemma it occurs in (the necessarily p-new part of ) So(T'o(Np?), 1)
for any character of conductor p? which is congruent to w**)=2 modulo a place above
p. If the invariant is p + 1 then what is claimed in the case s = 2 follows from our

proof of Case 3 of Theorem 3.

Case 3. By [E], [A-S] and Carayol’s lemma we know that f occurs mod p in
S2(To(Np?),wkP=2) Any eigenform in the p-new part of this space has pth eigen-
value 0. After this what we have claimed follows from an argument which is too

close to the one given in the earlier cases to bear repetition.

10.3 It may be interesting to analyse the local behaviour at p of the automorphic

representations corresponding to the congruent forms we produce in Theorem 4.
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The answer is likely to be a little involved as 10.1 above suggests. As we see from
this that starting from a form f in S3(To(NN)) such that the mod p representation
(assumed to be irreducible) is non semisimple when restricted to D,, we produce a
newform in the p-new part of S2(T'o(NNp?)) which is congruent to f and supercus-
pidal at p. But by Remark 8 we see that we can get a p-new form in S5(I'; (Np?))
which is congruent to f mod p and is principal series at p (as we can choose the
nebentype character of a congruent form to have conductor p?). We hope to come
back to the question of analysing the behaviour of the congruent forms at p in a

future work.

10.4 We also remark that from Theorem 3 we may deduce that there cannot be
a mod p congruence between a newform f (where as usual we assume that the
corresponding mod p representation is absolutely irreducible) in S3(T'y(p)) and a
newform in S5(To(p?)). As we see from Mazur’s principle in [R 1] that the mod p
representation associated to f cannot be finite at p (as this would mean that py,
arises from S3(SL(Z)) which is a contradiction). Then we are done by Case 3
of Theorem 3. In the light of Theorem 2 and Theorem 3 we may conclude that
even in the (p, p) situation of this chapter, congruences are always reflected in some
geometric property of the Jacobian, i.e., all congruences can be obtained by studying

intersections of p-old and p-new subvarieties of the Jacobian.

10.5 We give a numerical example which illustrates our results which we take from
the tables of Cremona, cf. [C]. We see that the arguments in Case 2 of Theorem
3 (these are valid for p = 2,3) predict congruences between the unique form of
level 11 and some newform of level divisible by 4 (respectively 9) and dividing 44
(respectively 99) mod 2 (respectively 3). We note that it is known that the mod ¢
Galois representation associated to the elliptic curve 11A is absolutely irreducible
for all primes £ not equal to 5 (see page 309 of [Se 1]). We check that the forms
associated to the elliptic curves 11A and 44A are congruent mod 2 (i.e., from the
tables in [Cr], we verify that their eigenvalues at Hecke operators T, for all primes
< 97 and not equal to 2 are congruent mod 2). Looking at the table we also check

that the forms associated to the elliptic curves 11A and 99C are congruent mod 3
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(i.e., their eigenvalues for T, for r < 99 and not 3 are congruent mod 3). Similarly
for p = 5, we check that the forms associated to the elliptic curves 14A and 350E are
congruent mod 5. The nature of the illustrative examples is of necessity selective
because the table we are consulting lists only newforms (of weight 2) with rational

Fourier coefficients.

1.6. Mainly multiplicities

In this section when we speak of the Hecke algebra we shall mean the full Hecke

algebra, i.e., with all the Hecke operators including Tj,.

We note that if m whose residue field is of characteristic p, is the maximal ideal
in the Hecke algebra Ty,- associated to f, or f" (this is the p-old form associated
to f of §1.3), and V is the associated irreducible Galois module of dimension 2 over
the residue field of m, then using the map «, we can embed different copies of V
into the intersection of the p-old and p-new subvarieties as above. In our proof of
Theorem 2 we chose a particular embedding, i.e., one of the form (V,0). But the
diagonal and anti-diagonal embeddings of V in Jo(N pr)2 are mapped injectively
into the intersection too. The fact that they are mapped to the intersection follows
from the considerations in the proof of Theorem 2 when one takes into account the
relation Tp*.al* = p.op* and the fact that if T, induces the zero endomorphism on
the abelian subvariety A; of Jo(Np") attached to a newform f for I'o(Np”), then
T,* also induces the zero endomorphism of Ay. To see that they are embedded,
we will treat only the case of V embedded diagonally the other case being similar.
If (z,z), for z € V is in the kernel of «, then under our assumption that V is
irreducible as a Galois module, Theorem 1 shows that (2, z) = (—a,*(z1), a1 *(z1)),
for 21 € Jo(Np™™!). But we note that from this relation a(z;,z1) = 0. Assuming
r > 2, we use Theorem 1 again to conclude that (z1,z1) = (—ap*(z2), a1*(2)), for
zy € Jo(Np™~2). We continue in this way to produce a sequence of points z;,- -+, z,
where z; € Jo(Np™™%), a(z;,;) = 0 and (z;-1,zi—1) = B(z;), to revert to notation
of §1.2. Now we can use the result in [R] to get a contradiction as it is proved in [R]
that the kernel of the map a : Jo(N)? — Jo(Np) is Eisenstein. This contradicts our
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assumption that V is absolutely irreducible. The same argument shows that if X
is a Hecke stable submodule of Jo(Np") which has no maximal ideals of the Hecke
algebra which are Eisenstein in its support, then « is injective on the diagonal and

anti-diagonal copy of X in Jo(Np’)z.

By a further elaboration of these ideas one may in fact show that the natural
map a: V xV — Jo(Np 1) is injective. To see this we argue by contradiction and
pick the minimal s such that a two-dimensional Galois representation isomorphic
to V occurs in Jo(INp®) and such that the map V' x V — Jo(Np*t1) is not injective.
The case when s = 0 being the theorem of Ribet that we have already quoted, cf.
[R], we may and do assume that s > 1. But if we have that a;1*(z) + a,*(y) = 0
for z,y € V, then either we contradict the injectivity of a;* and «,* or by using
Theorem 1 we see that y = a;*(z), for non-zero z € Jo(Np®~1), which contradicts the
minimality of s, upon once again using the absolute irreducibility of V as a Galois
module, as this shows that V' arises from Jo(Np*~!) by pull back by a;. (We note
that this paragraph does not render redundant the preceding paragraph because,
as we have already noted, in the argument in this paragraph the assumption that
V is irreducible is crucial while to prove injectivity for « restricted to the diagonal
and anti-diagonal embedding of a Hecke module X in Jo(N pr)2 we only need to
assume that there are no Eisenstein ideals in the support of X (so for instance it

could be the sum of several 2-dimensional irreducible representations such as V). )

The same argument (essentially) shows that if V' is an absolutely irreducible
two-dimensional Galois representation associated to Jo(Np”)[m], then the natural
map

VxV = Jo(Np™) (+)
from t+1 copies of V to Jo(Np™t?) is injective. We argue as before but use Theorem
1" which shows that any (non-Eisenstein) element of the kernel of the sum of the

natural degeneracy maps o™ + -+ + o™ from
JO(Npr)t-’rl N JO(Npr+t)

is of the form (—,---,a:1*(z)) where z € Jo(Np™™!) and where we are continuing

with our abuse of notation in conflating degeneracy maps arising from varying p
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power levels. Thus we use induction on ¢, the case t = 1 being already handled. We
pick a minimal s, which we suppose to be greater than 0, such that a Galois module
isomorphic to V occurs in Jo(Np®) and the map corresponding to () is not injective.
Then by what we have noted about the shape of the kernel of the degeneracy map
in this situation, we see either that we contradict the minimality of s or we are
reduced to the case t — 1. Here again our hypothesis that V is irreducible is crucial
as we are using the fact that if V intersects non-trivially the image of the pull back
of the Jacobian of a lower level then it in fact lies entirely in the image of the pull
back. The base case when s = 0 is handled by a straightforward generalisation of

Ribet’s theorem which will say that the natural map
Jo(N)™ — Jo(Np)

has Eisenstein kernel. This shows that two-dimensional Galois representations occur

with high multiplicity in Jo(Np"**). We state this in the form of a proposition.

Proposition 2. If m is a maximal ideal of T ,r+¢, as in the discussion above (and
hence of residual characteristic p), then if m arises by pull back from T Npr from an
ideal which is new of level divisible by p", r > 1, the multiplicity of Jo(Np™t*)[m)]
is at least t + 1.

Proof. From the above discussion it is enough to note that 7}, annihilates the image
of V.x ... xV in Jo(Np"t!). This follows from our assumption that r > 1 and the

relation Tp.a,* = p.as™.

Remark 11. We can give a more appealing form to the above proposition. As
what we can say from the above discussion is that Jy(Np™)[m], for m any maximal
ideal of characteristic p of the Hecke algebra Type~ which contains T, (i.e., is non-
ordinary), is infinite dimensional as a Tnpe /m vector space. Here by T Npe We just
mean the inverse limit of Txypr, for r > 1, taken with respect to the natural maps
which send T, to T}, and by Jo(Np™) we mean the direct limit of Jo(Np"), r > 1,

induced by the maps o;*. We may naturally consider Jo(Np>®) as a Tnpe module.

Remark 12. Much work has been done on the question of multiplicities, but for

a study of this question which is close to the present situation see [M-R]. In [M-R]
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examples of higher multiplicity are shown to occur in Jo(Np?). But one may in fact
see that multiplicity 1 already fails for Jo(Np?) by the above methods. For this one
need only look at a maximal ideal m of Ty, which is not ordinary at p (such a m
is bound to exist if we assume that Xo(V) has genus greater than 0). Then if we
assume that pp, is irreducible and consider the associated Galois representation V
which is 2 dimensional over Ty ,/m and which occurs in Jo(Np) then the image of
V x V under the degeneracy map Jo(N p)2 — Jo(INp?) furnishes examples of higher
multiplicity occurring in Jo(Np?). As, by the above, the degeneracy map is injective
on V x V and all the Hecke operators (including T},) act diagonally on the image of
V x V, the Hecke operators away from p being equivariant with respect to o (Tp in
its turn annihilates the image of V x V under a). In contrast to the proposition, it
may be noted that in the case when the residual characteristic of a maximal ideal
of a Hecke algebra is prime to 2 times the level, then the corresponding multiplicity
is 1. This is proved in [R 1] using the techniques of [M 1]. We may also note
that we do not know if multiplicity 1 holds for the p-new quotient of Jo(Np"). The
proposition does not rule this out although as a consequence of the above discussion

one cannot expect multiplicity 1 for the p-new subvariety.

Remark 13. If we consider the natural degeneracy map:

a: Jo(Np")" ™! — Jo(Np™t™) (%)
(see Remark 3 of §1.2) then the composition of the dual map:

aV JO(NpT+n) N Jo(Npr)n+1

with a when written as a (n + 1) X (n 4 1) matrix of endomorphisms of Jo(Np")
(we shall denote this by R,) has (7, j)th entry given by api .api* and for j <1 this
is sz‘—j . Further we note that the diagonal entries of the matrix are p” as these are
the degrees of the map a,:’s. From this we see that if A is an abelian subvariety of
Jo(Np") on which T, acts as the zero endomorphism, then A[p"] when regarded as
embedded in Jo(Np")" ™! via a — (a,-- - ,0) (with all entries except the first equal

to 0), is in the kernel of R,. Also by inspection we see that « is injective on this
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copy of A[p"]. We have seen in Theorem 1’ that the group of connected components
of the kernel of @ and hence that of the kernel of oV is Eisenstein. Thus we see that
a embeds A[p"] in the connected component of the identity of the kernel of aV if
we assume that the ideals in the support of A[p"] are non-Eisenstein. The space
of regular differentials of this abelian variety is spannned by forms whose minimal
p power level is greater than r. We may state this qualitatively in the form of the

following proposition.

Proposition 3. We assume r > 2. Then the intersection of the sum of the
images of Jo(Np") under the degeneracy maps in Jo(Np™) with the direct limit of
abelian subvarieties of Jo(Np>) whose space of differentials is spanned by forms
whose minimal p power level is divisible by p"*! has infinite p exponent, i.e., is not
annihilated by any fixed power of p (assuming that there is a maximal ideal in the

support of Jo(Np")?""** which is non-Eisenstein; this is generally the case).
1.7. Modular deformations

In this section we assume that p > 5. Mazur, in [M], has defined the universal
ring of deformations of an irreducible mod p representation of the Galois group of
Q. If the mod p representation is itself modular, then it is of interest to study the
locus in the space of all deformations which corresponds to modular deformations.
In [M] a lower bound on the Krull dimension of the ring of deformations is given.
We would like to give a lower bound on the ring of modular deformations. There
is a discrepancy in the bounds. We are not sure if it arises from the limitations
of our proof, or represents a genuine gap between all deformations and modular
deformations. This lower bound has been proven earlier and is Proposition I111.6.13
of [G]. In [G] information of the p-adic Hodge structure of the p-adic representations
corresponding to classical eigenforms is used. We present a different, more modular
approach. We have two proofs of this which are rather different in spirit. One
of the proofs relies on weight variation, and relies upon results of Serre, Tate and
Jochnowitz, cf. [J], while the other, which we give here, relies on level variation,

and uses Theorem 2. The ring of modular deformations is identified with a local
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component of a certain universal Hecke algebra, whose definition we will recall

presently. For this we need to set up some notation.

We denote by h., the Z, algebra generated by the image of the Hecke operators
T, in the ring of endomorphisms of the space of cusp forms of weight 2 for the group
I'1(Np") with coefficients in Q,/Z, which we denote by S»(T';(Np"), Qp/Zyp). Here
we suppose that (V,p) = 1 and r > 1. Then we may take the inverse limit of the
h,’s with respect to the maps which are induced on them by the natural inclusion
maps:

S2(T1(Np™), Qp/Zp) — S2(T1(Np*), Qp/Zy)

for s > r. Then we define the universal Hecke algebra in our situation by:
R = lim A,..

h"MY is a semi-local ring and we write it in terms of its local components as
huniv _ H R:
- ?
t

where the R; are complete local rings. It is known that 2*™" has only finitely many
components which is equivalent to the fact that there are only finitely many Hecke
eigensystems of weight 2 and level Np™ mod p (see Remark 6 of §1.2). We shall fo-
cus our attention on a given local component, say R, and denote the corresponding
maximal ideal by m. We further assume that the corresponding mod p representa-
tion is absolutely irreducible. Then it follows from Mazur’s theory of deformations
in [M] that R is Noetherian. This is shown in [H 1] and we refer to that for a
discussion of these issues. We briefly recall the relevant part of the discussion in
[H 1]. R (deprived of Tp) is the ring of modular deformations of the corresponding
mod p representation which R gives rise to. In [H 1] it is shown (based on Wiles’
theory of pseudo-representations) how to attach a representation of Gal(Q/Q) into
G Ly(R) which interpolates the representations of Eichler-Shimura attached to ho-
momorphisms of R into Q which correspond to classical Hecke eigenforms occuring

in S2(To(Np")) for varying r. From the properties of this representation proved in
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[H 1], it follows that the deformation ring of Mazur surjects onto R(NP) by which
we mean R deprived of the Hecke operators T, for n not coprime to Np. But the
deformation ring of Mazur is Noetherian and R is finitely generated over R(NP).
Thus R is Noetherian. We now assume that R is a non-ordinary local component
as there is a very well developed theory of ordinary components due to Hida, cf.
[H]. By R being non-ordinary we mean that 7}, is in the maximal ideal m of R. Now

we can state the following theorem.

Theorem 5. The Krull dimension of R is greater than or equal to 4.

Proof. We need to recall that there is a perfect pairing between the Hecke algebra
and the space of cusp forms. For this we refer to [H], and just state the result. We

define the pairing,
huniv X S — QP/ZP

by the usual formula:

(h; f) = ar(f|h). (1)
Here S is by definition (J;2, S2(T'1(Np"), Qy/Z,). Then in [H] it is proven that this
gives a perfect pairing, i.e., S and A"™" are Pontryagin duals of each other. We have
a natural action of the one units of Z," on S given by the usual diamond action.

By definition we see that the fixed part of S under this action contains:
So = _ S2(T1(Np) NTo(Np"), Qy/Zy).

(One may in fact deduce from results of Katz [Ka] that this inclusion is actually an
equality: but we do not need this fact. We thank H. Hida for pointing out that this
equality we had blithely asserted in an earlier version is non-trivial.) We denote the
fixed space under I" of § by S$' and the group of one units of Z,* by I' and choose
a topological generator for it, say 4. Then by a standard result we see that the

pairing (1), induces a perfect pairing;
R/ (Tp,p,7—1) x S'R[T)] = F, (2)

where the tilda sign denotes the kernel of multiplication by p and the subscript R

refers to that part of the space of cusp forms on which m is topologically nilpotent.
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We can see that the image of the sequence (7y,7 — 1,p) in each local component
is regular. We may see this by firstly noting that by the arguments in [J], T} is a
transcendental element in each non-ordinary local component (in fact by Theorem
6.3 of [J] one may see that R is a power series ring in the variable T, over R(?)),
Secondly v — 1 is not a zero divisor in R / (T}), as if for some T € R / (T},) we have
that (y—1).T = 0, then if T' is not the zero endomorphism in R / (7},), there exists
a g, with ¢|T, = 0 and such that ¢|T is not 0. Then by twisting ¢ by a character y
of Z,™* of sufficiently high p power order (we denote the resulting form by gy ), We
can ensure that g, |T|(y—1) is not zero using the well known commutation relations
between twisting and the Hecke action, cf. [G]. (We note that g, is again in S[T},].)
Then the fact that (T,,7—1, p) is a regular sequence in each local component follows
from the fact that T' is a pro-p group as by twisting by characters with values in
Qp/Zyp, we see that for any local component R, the image of the corresponding
maximal ideal m in the ring of endomorphisms of S~o is not the unit ideal (here we

are using the assumption that p is not 2).

Now we may use Theorem 2 which shows that a cusp form f can be propagated
mod p to arbitrarily large p power levels. More precisely, under the assumption that
the local component R is non-ordinary we see that if f is an eigenform associated
to R occuring mod p in S3(T'o(Np") NT;(p)) for some r, then the theorem applies,
as the proof works even with the slightly different level condition on f we have, and
we can increase the p power level of the form f arbitrarily mod p. This is because
the proof of Theorem 2 shows that any eigencuspform f of weight 2, which is killed
by T, has the property that it is congruent to newforms with arbitrarily large p
power levels, i.e., the dimension of the subspace So(I'o(Np*) N T'1(p))[T,] on which
m is nilpotent tends to infinity with s. In other words the space (TS’TD rlTp] is an
infinite dimensional F, algebra. We see this upon using Theorem 2 and the fact

that if © is the operator:

6(2 ang") = Z(n,p):lanqn

then © maps S3(Io(Np™) N T'i(p)) to itself for r > 1 (and as R is non-ordinary

preserves the R part of the space), its image is the kernel of T}, and the kernel of
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© on S3(To(Np") NT'1(p)) is given by the image of Sa(To(Np™~1)NT(p)) under V

where V is defined by:
V(Z anq") = Z anq™?.

These are well known facts which may be deduced from [A-L]. Then on using perfect
pairing (2) and the fact recalled above that R is Noetherian, we see that R has Krull
dimension at least 4 as we have shown that (T),,v — 1, p) is a regular sequence in R
and that R/(T,,v — 1,p) is infinite dimensional as a F, vector space and hence as

it is Noetherian has Krull dimension at least 1.

Remark 14. We note that by an argument similar to the above we can easily see
that any ordinary local component has Krull dimension < 2. This follows upon
using the facts that a newform f for the group I';y(Np"), r > 1, with nebentype
whose conductor is Np®, for s < r, is annihilated by 7, and the result of Katz we
alluded to above. The fact that the Krull dimension of such a local component is 2
is harder and follows from Hida’s theorem that any such ordinary local component

is finite and flat as a module over Z,[[X]], cf. [H].

Remark 15. We have reason to believe that this lower bound is in fact the dimen-
sion of non-ordinary local components of the Hecke algebra. In the unobstructed
case of the deformation problem it is proven in [M] that the dimension of the uni-
versal ring is 4. This maps surjectively to the corresponding local component of
our Hecke algebra when it has been deprived of the Hecke operators T, for n not
comprime to Np. But it is unlikely that all deformations are modular, as we are con-
sidering unrestricted deformations. Thus as in the unobstructed case the universal
ring is a power series ring, it seems likely that the dimension of the corresponding
T, deprived local component of the Hecke algebra will be at least, and hence by

Theorem 5 exactly, 1 less than the dimension of the universal ring.
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Chapter 2

Mod p modular forms

2.1. Introduction

In this chapter we study the space of mod p modular forms of Serre and
Swinnerton-Dyer especially with a view to understanding the structure of the mod
p Hecke algebra. We rely upon the paper of Jochnowitz, cf. [J], heavily to obtain
some information about local components of the mod p Hecke algebra. The new
ingredient is the fact that it is now known from the deformation theory of Mazur,
cf. [M], that the local components are Noetherian. This allows one to strengthen
some of the results of [J]. We also include in the last section of this chapter specu-
lation about certain sequences of Hecke modules which we believe hold the key to

understanding local components better.

2.2. Varying the weight

We fix a congruence subgroup I' of SLy(Z) and for any integer k¥ > 2 denote
by Ax(T") the space of weight k modular forms for I' such that the coefficients of the
Fourier expansion at infinity are in Q and are integral for the valuation induced by
a choice of a prime ideal above p. We denote by M the image of A in Q[ [ ¢ ] ]
where hereafter we eliminate the mention of I' as we will consider modular forms
only for this fixed I'. We denote by M the reduction modulo the chosen prime
ideal lying above p. Then we have inclusions K/I\; C M/k:;,/_l. We denote by M e
where aeZ/(p — 1), the union of the My’s for k > 2 and k = a mod (p—1). On this
space we may define a filtration w by defining w(f) to be the least k such that f is
in the image of M} under the reduction map. As usual we have the Hecke action.
We only note here that the action of the p th Hecke operator, which we denote by
U, is
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Z anq" — Z anpq".

We denote by M the space €, M?¢. This is for us the space of mod p modular
forms for the group I' which comes equipped with a grading mod p—1. On the space
of mod p forms one has several interesting operators, chief amongst these being the

© operator and V' which are defined by their effect on ¢ expansions by :

@(Z anq") = Znanq”
V(Z anq™) = Zanq"".

These preserve the space of mod p modular forms. Their effect on the filtration
is given by w(6(f)) < w(f) + p+ 1 and w(V(f)) = pw(f). These results follow

from [Ka 1]. It is the existence of these operators which makes the theory of mod

and

p modular forms more tractable than that in characteristic 0, as was discovered by

Serre, Swinnerton-Dyer and Tate.

We note the basic relations between the operators U, V and O considered
as operators on the space of mod p modular forms. ker(©) = Im(V), ker(U) =
Im(0), V is injective and U is surjective. These facts follow from the definitions of

these operators on noting that UV is the identity map.

Note that any f M has the decomposition:

F=>f

where f;eF,[ [ ¢]] is such that only exponents of g of the form q"pi, where (n,p) = 1,

occur with non-zero coefficient. As f; is checked to be given by
fi=0r71(flum)

we see that it is a mod p modular form. The filtration of f; satisfies, w(f;) <

w(f) + p®> — 1. So in particular the filtrations of the f; ’s are bounded. This
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suggests that the image of M inside M= @V”@p"l(ﬂ) is small. Here @ denotes
unrestricted direct sum. We note that the operator @21 is idempotent. We denote
it by ®. We remark that if p does not divide w(f), then we have w(f|®) > w(f).
We note that on @V”@(M ) the operator U is nilpotent. Using the lemma of
Jochnowitz, w(f|U) < w(f) if w(f) > p+ 1, we show in the following Proposition
that the image of M in M is rather small.

Proposition 1. M/@V"@(M) is a finite dimensional F, vector space.

Proof. We denote the vector space in the Proposition by S. We note that U
acts bijectively on S. Note that by the lemma of Jochnowitz that we have quoted,
the dimension of a finite dimensional subspace of M on which U is injective has

bounded dimension. This implies that the space S is finite dimensional.

We rewrite the proof of the lemma of Jochnowitz.

Write f = ®(f)+g|V. Note that f|U = g. We also have that w(g) < 1”—(—&53—2—_—1.

From this the result follows.

Remark. The lemma of Jochnowitz and the above proposition occur already in

the article of Serre [Se 4].

In the light of the above Proposition, understanding modular forms mod p is
reduced to studying @(M) Note that one may also characterise this vector space

as the kernel of U acting on M.

We may deduce some amusing consequences from the Proposition. For exam-
ple, it immediately implies that there exists a r, such that any f € M can be written

as

PV)
Yimo @iV’
where ge@(ﬁ), P is a polynomial and a;eF,. Thus if f|R(V) is an element of M,
for fe®(M), then R(V') is a rational function with denominator of bounded degree.

f=ydl

Here we remark that the non-zero elements of F,, [ [ V'] ] act injectively on F, [[¢]],

so all this makes sense!
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‘Now we study local components of the mod p Hecke algebra. We set up some

notation. The inclusion

M, C Mk+p—1

induces a map of the Hecke algebras hgy,—1 — hi where h, in this chapter is the
image of the Hecke operators in the endomorphisms of J,VTT We define the limit
Hecke algebra H as the algebra obtained as the inverse limit of the A,’s taken with
respect to these maps. H is a semi-local ring with finitely many local components,
cf. [J]. We focus on a local component R and denote its maximal ideal by mpg and
assume that U belongs to mp as in the other ordinary case it follows by Proposition
1 that the local component is uninteresting. In [J] it is proven that local components
for which the operator U is nilpotent, have Zariski tangent space dimension bigger
than 2. In fact using her arguments, which prove that any local component R
on which U is nilpotent has the property that R/(U) is infinite dimensional over
F};, and the fact which is known by Mazur’s theory of deformations that any local
component is Noetherian, we see that all local components for which U is nilpotent,
have Krull dimension > 2. We now give an argument for this after stating it as a

proposition.

Proposition 2. If R is a non ordinary local component of H, then R is a power
series ring in U over R(P) where by this we mean the subalgebra otf H topologically
generated by operators T, for (n,p) = 1. Further, if we assume that p > 3 and that
the mod p representation attached to R is absolutely irreducible, then the Krull

dimension of R is at least 2.

Proof. The first part is proven as Theorem 6.3 of [J] but we recall the main point
of the proof. We need to check that no expression of the form Y ¢;U* is 0 in R
where the ¢;’s belong to R(®. We assume that n is the least i for which ¢; is not
0. Then thereis a ¢ in M on which m r acts nilpotently and such that ¢, does not
kill g. We may assume that ¢|O is not 0 by applying an appropriate power of U to
g. Then ¢|®|V™ is not in the kernel of U™ but is in the kernel of U™ for all m > n.

This shows what we wanted.

Now we prove that the Krull dimension of R is at least 2 under the assump-



51

tions in the proposition. We denote by K/E% the subspace of M on which mp 1is
locally nilpotent. By Corollary 6.6 of [J] it follows that Mg / V(]\f/};g) is an infinite

dimensional vector space over Fp' From this it follows upon using the perfect pairing
R x ]\7}; — Fp

that R(®) is infinite dimensional as a F, algebra. Now we use the fact, known
from [M], that R and hence R(®) is Noetherian. This follows from [M] on noting
that the universal ring corresponding to the mod p representation associated to R
is Noetherian and surjects onto R(NP) where N is the level of I' and as usual by
this notation we mean R deprived of operators T, which are not coprime to Np.
This surjection is a consequence of the construction in [H 1] of a big representation
into GLg(ﬁ) which deforms the corresponding mod p representation and where R
is the chracteristic 0 Hecke algebra which surjects onto R. As E(?V?) is identified
as the Z, algebra generated by the traces of the Frobenii for primes outside Np
(at which this representation is unramified) by the properties of this big modular
deformation we check easily that the deformation ring of Mazur surjects onto ]%.
(The situation in [H 1] is slightly different but the method of proof which uses the
pseudo-representations of Wiles is easily checked to work in our situation as we are
assuming that p > 3 and that the mod p representation is absolutely irreducible.)
For the precise definition of R (in the context of cusp forms) we refer to the later
part of this section. Thus we know that R(® has Krull dimension at least 1 and

hence that R has Krull dimension at least 2.

Its also proven in [J] that most local components have Zariski tangent space
dimension > 3. It is hoped that the Krull dimension of local components is bounded
by 2 for reasons we shall go into later. Thus this indicates that the non-ordinary
local components, as we shall henceforth call the local components for which U is

nilpotent, are not regular.

We now suggest a method for proving that the Krull dimension of local com-
ponents of the Hecke algebra are bounded by 2. For this we need only study the

space

Pvrear)
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as this is the subspace on which U is locally nilpotent. In order to study one of
these local components, R, it will be enough to study R/(U) by Proposition 2. This
acts naturally on the part of M which is killed by U. There is a perfect pairing
between R/(U) and the subspace of M on which the maximal ideal of R is locally
nilpotent intersected with the kernel of U. For this we may again refer to [J]. The
pairing, which is given by (T, f) = a;(f|T), has the property that the Hecke action
with respect to this pairing is self adjoint. So as notation we denote R/(U) by R,
and the above space which it is in duality with, by Mp.

Denote the kernel of U, viewed acting on M , by M. We may consider M as
a module for the Hecke algebra H quotiented by U. We see, using the fact that
all eigenforms have filtration < p? — 1, proven in Ash and Stevens [A-S], that Me
is an essential extension of My, where a = k (mod p—1),and k >p? — 1, as H
modules. Here we use the terminology in the appendix of the book of Matsumura,
cf. [Ma]. This is a direct consequence of the result of Ash and Stevens, and the
fact that an eigenvector of all the Hecke operators T}, is determined upto scalar by
knowing all its eigenvalues. Everything above also holds when we only look at the
kernel of U and consider the resulting exact sequences as H/(U) modules. In order
to prove bounds on the Krull dimensions of local components it will be enough to
find a Hecke operator T),, such that the above statements are true as F,[T},] modules

for sufficiently large k. We expand on this remark.

What we see is that for sufficiently large k, Mp is an essential extension of
(Mp)r as R module. If we could show an analogous statement for the subspaces in
the kernel of U for the subalgebra generated by a single element say a Hecke operator
T, for some n, then we could bound the Krull dimension by linear algebra (Jordan
canonical form) as this will show that (Mpg)y is of bounded rank when considered
as a F,[T,] module. This amounts to showing that the kernel of T, — A, acting on
Mp, where T, — X\ € mp, is finite dimensional. This of course seems rather hard
but at least gives scope for computation. For example one may try to compute all
the eigenvectors for T, acting on mod 3 forms of all weights > 2 and level 1. This

is just the polynomial algebra in A. There is only one local component for which
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U is nilpotent. Calculations have been done by Prof. Maeda in this case (whom we
thank heartily). The computations are a little inconclusive though they do show

that the eigenvectors of T3 are rather sparse.

On a theoretical level, the above approach leads to some interesting questions.
One of the distinctive features of mod p modular forms is that there are only finitely

many eigensystems. The finiteness of the number of eigensystems comes from the

fact, due to Serre and Tate, that the quotients Mgy,—1/ JTI; are only finitely many,
upto isomorphism, when considered as Hecke modules. From this one deduces the

fact that

0— My — Myyp_1 — 5Sp — 0

is an essential extension of Hecke modules for large enough k. Here SS; is defined to
make the above sequence exact as Hecke modules. As remarked above, this is seen
on combining the above mentioned result of Serre and Tate, with the fact that an
eigenform for all the Hecke operators is determined upto scalar by its eigenvalues.
In a possible approach to get hold of an operator T}, with the properties described

above, and which we describe slightly later, the following question comes up :

Given a integer r > 2, is it true that for sufficiently large k in the congruence
class of r mod p — 1, the following exact sequence is an essential extension of Hecke

modules:

0 — My/M; — Mysy—1/M, — S5, »0 2

The above method of proof, when J\Z was taken to be zero, will not work as
we no longer have the fact that eigenforms are determined by their eigenvalues upto
scalars in the space M / M,. But we can answer this question affirmatively in most

cases (see Proposition 4 of §2.3).

Another issue which comes up is to determine the structure of Mz as a R

module. Denoting the maximal ideal of R as above by mpg, we see that M pg[mg]
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is a R/mpg module of rank 1. If we knew the same about Mpg/mrMpg, then we

would be home by Nakayama’s lemma. But we do not know how to prove this.

The tentative approach we would suggest to the question of determining Krull

dimensions of local components of Hecke algebras is the following:

We will first try to prove a much stronger form of the above. Thus what we will
need is that we should be able to answer the above type of question with an explicit
bound on the k which will work, in terms of r (see Conjecture 2 of the next section).
This question is probing the relationship between the two natural filtrations on the
space of modular forms, i.e., one coming from the weight and one coming from the
degree of nilpotence with respect to the maximal ideal of the local component. We
see from the fact that the Krull dimensions of local components are at least 2 that
the relationship between the two may not be straightforward for M. There may
be a relationship between the filtrations when one passes to the kernel of U, i.e.,
M. (We study this more in the §2.4 of this chapter.) Then we will have to prove
a version of the theorem of Serre and Tate to say that there are only finitely many
isomorphism types amongst the Hecke modules (M)gir(p—1)/(M)i, for a fixed r,
such that the isomorphisms respect the filtrations. Then for any given p, it may be

possible to find the T, of our dreams by a finite amount of computation.

We now prove something concretely about local components of the character-
istic 0 Hecke algebra. In Theorem 5 of Chapter 1 we gave a lower bound for local
components which corresponded to absolutely irreducible mod p representations in
the Hecke algebra which was made by varying the p power level. But in the optic
of this chapter we shall give a similar lower bound on local components of Hecke
algebras made with varying the weight. It is theorem of Shimura that these two
Hecke algebras, i.e., one made with varying level and the other with varying weight,
are isomorphic via an isomorphism which takes T, to T, cf. [H]. But perhaps it is
good to give a proof in the spirit of this section. The appeal to Theorem 1 in the
proof of Theorem 4 of Chapter 1 will be replaced by an appeal to Proposition 2 of
this chapter in the discussion below. A background reference for what is to follow

is [H 3]. We base our discussion on that.
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We fix an integer N prime to p and assume that p > 5 (for safety!). We
choose a finite extension K of Q, and define the space of cusp forms for I'; (V) with

coefficients in K by:
Se(T1(N),K) := Sk(T1(N),Q) @ K

where we take the tensor product over Q and where as usual by Si(I'1(V), Q) we
mean the space of cusp forms of weight k£ such that the ¢-expansion at one, and
hence all the cusps of the curve X;(IV), has coefficients in Q. We denote the ring of
integers of K by Ok. Then we define S*(T;(V), Ok), or more briefly S* as both
I'1(N) and K will be fixed in our discussion, by:

Sk .= @ Si(T1(N), K) N Oxkllq]]

1< <k

where of course we are identifying cusp forms with their ¢ expansions at some fixed
cusp. Then by definition we have, for any &' > k inclusions S* — S¥ and taking

the union and p-adic completion we shall denote the resulting object by S, i.e.,

S = G Sk
k=1

where we take the completion with respect to the p-adic topology on Og/[[g]] given

by the sup norm.

We as usual have the standard Hecke actions on all these spaces and we may
consider the O algebra generated in the ring of endomorphisms of S* by the Hecke
operators T,. We denote this algebra by H*. Then we may take the inverse limit
of H¥’s corresponding to the above inclusion maps. We denote the resulting object
by H. Now we need to indicate topologies on & and H to state a duality result
between them (which may help in orienting the discussion a little). On H we put
the natural inverse limit topology. On § we put the p-adic topology which is given
by [|fll = sup,an(f), where f € S is f =Y 7" a,q™. Then the natural pairing:

HxS — O
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is given by (T, f) = a1(f|T). Then by Proposition III.1.2 of [G] we know that this
pairing induces an isomorphism between & and the (continuous) dual of H, i.e.,

Homo, conts(H, Ok ) in the notation of [G].

We have an embedding of the Iwasawa algebra Z,[[X]] inside H which comes
from the action of I := 1 4 pZ, on § , ¢f. [H 3]. Denote a topological generator of
T by 7. Then M/(r,y — 1) naturally acts on S := (S @ F)". Here F is the residue
field of K and 7 is a uniformiser. The superscript I' denotes taking fixed points
under T. It follows from the description of the action of I' in [H 3] that S has as
a quotient the space of mod p cusp forms of fixed level N and all weights (i.e., the
subspace of F[[¢]] given by the mod p reduction of §). This space thus has the same
definition as the space of modular forms mod p (for I'i(N) and all weights) which
we defined earlier in the section, with obvious modifications. In fact by a theorem of
Katz (more precisely the variant of it for cuspidal forms) quoted as Theorem 1.1 in
[H 3], it follows that S coincides with the space of mod p cusp forms for I'y (V). We
may also note that the above pairing evidently induces the pairing we had defined

earlier between mod p modular forms and the corresponding Hecke algebra.

The action of v on f e Si(T1(N),K) is given by f|y = +Ff. This action
extends continuously to §. By the earlier paragraph H/(w,y — 1) surjects onto the
mod p Hecke algebra which will be the analog for the space of cusp forms of the H
we defined earlier. Now pick any local component R of H such that the associated
mod p representation is absolutely irreducible. The image of v — 1 is not a zero
divisor in the image of R in the ring of endomorphisms of S @ F as we justify below.
Note that R acts on this space through its quotient E/ 7R. But Proposition 2 (to
be precise its natural (and identically proven) analog in the context of cusp forms)
implies that the Krull dimension of a local component of the mod p Hecke algebra
acting on the space of mod p cusp forms for I'; (V) and of all weights is at least
2 assuming that the component is non-ordinary. Thus we see that we have proven
the following theorem modulo the claim that the image of v — 1 in the action of R

on & ® F is not a zero divisor.

Theorem 1. IfR is a non-ordinary local component of H such that the associated
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mod p representation is absolutely irreducible, then the Krull dimension of R is at

least 4.

Proof. After what we have said we just need to prove that the image of ¥ — 1 in
the quotient of R cut out by its action on S ®F is not a zero divisor. We denote the
space with which it is in topological duality with in § by Sg. To prove our claim we
need to check that if T in R is not 0 in its action on Sg ®F then T.(y—1) is also not
0. }~2/ rR actson S r ®F. There exists a non-zero element of this space which is not
in the kernel of T. We may easily check that we may choose this non-zero element
to be the image of some element fy of Sx(I'1(N), Ok) in Sg @ F. Denote this image
by fi. Let n be the valuation of k with respect to p, i.e.,, n = vy(k). Then we
choose k' such that it is congruent to k¥ modulo p — 1 and such that v,(k') > n+ 1.
Then we see easily that there is a fi in Sp(T'1(N), O ) which is again in the part
of the space in duality with R and congruent to f; modulo p*t!. We see this
by multiplying by the Eisenstein series E(,_1),n (see [H 3]). Now it follows from
[Ka] that f; and fir cannot be congruent modulo any higher power of p. We then
consider the element ¢ := f;T_ff‘i. This is in §. Then we see that the image of
g|T|(y — 1) is not 0 in Sg @ F. For this we only need to note that ~ acts on a form
f of weight k& by flv = v*f. As then we check that

— _(~F _ ,
oiTh —glr = DAL 207 Vi T ()

isnot 0 (in S ®F). As, by our choice of k', we see that () is equal to a non-zero
scalar multiple of f; |T in S@F. We have thus shown that v —1 is not a zero divisor

in the action of R on Sr @ F and thus we are done.

We have given the alternative proof using weight variation that we had alluded

to in §1.7 of Chapter 1.

2.3. Varying the level

Instead of varying the weight as above, we now fix the weight to be anything

> 2, say 2, but vary the p power level. In the same way as above, we can consider
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the space of modular forms mod p of weight 2 for the ‘group’ (I') =I'N To(p™)
identifying forms with their g-expansion, going mod p and so on. We assume that
I" has no p in its level. This time we have a filtration with respect to the p-power
level the form comes from, i.e., we define 4(f) = r if the minimal p power level of a
lift of f to a characteristic 0 form of weight 2 for the group I is p”. Just as before
we have the operators U, V, ® and though their meaning is different the effect on
g-expansions is the same. We have that ker(®) = Im(V), ker(U) = Im(®), V is
injective and U is surjective. Further we see that while U decreases the filtration
of a form f if £(f) > 1, V always increases the filtration by 1. We see also that
L f|®) < 4f)+ 1 and in fact £(f|®) < I(f) if £(f) > 2. All this may be seen
by using lemmas in the paper of Atkin-Lehner, c¢f. [A-L], and is in good analogy
with what we saw in §2.2. We study non-ordinary local components of the Hecke
algebra in this situation. So fix such a local component, say R. Just as before one
has a decomposition of the kernel of U. Using this one can imitate the argument
of Jochnowitz and prove that R is a power series ring in U over the subalgebra
generated by the Hecke operators outside p. In this situation also we may try to
find a Hecke operator T, which is highly non semi-simple (in the sense of §2.2) in
its action on the space of modular forms. We remark that in this setting the kernel
of U grows systematically with level. One may easily see that for r > 1 we have
that
dim ker(Ul5;-) = dim(M;) — dim(M, ).

Here by dim we mean dimension as Fp vector space. As must be evident, we are
using the natural notation that M, denotes forms of filtration < r in this context.
In this case if we think about similar questions as in §2.2 and investigate the rela-
tionship between the two natural filtrations, i.e., one coming from the level filtration
and the other from the degree of nilpotence with respect to the maximal ideal of
a local component, we see that the local component being Noetherian immediately
implies that the level filtration grows much faster upon using the dimension formula

for the space of cusp forms of weight 2 and given level.

The fact analogous to §2.2 that the dimension of non-ordinary local components

is at least 2 follows from Theorem 1 of the previous chapter immediately. Thus
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Theorem 1 of that chapter may in fact be viewed as an analog of the theorem of
Serre and Tate (which is for varying weights), quoted as lemma 3.4 in [J], in the
context of varying levels. We may also prove this using Proposition 2 and the well
known relation, see [H], between the Hecke algebras obtained by varying weight and

varying p power level.

2.4. A comparison of filtrations on mod p forms

In studying local components of Hecke algebras acting on the space of mod
p modular forms of fixed level and all weights, a question comes up which asks
about relationships (if any) existing between two naturally occurring filtrations on
the space of mod p forms. One filtration is the classical one due to Serre and
Swinnerton-Dyer which comes from the least weight in which the ¢ expansion of
a mod p form occurs which we have discussed in §2.2. The other, which arises
from looking at the mod p forms and writing them as the direct sum of spaces on
which the maximal ideals of the Hecke algebra are respectively nilpotent, comes
from the degree of nilpotence of the modular form lying in the space corresponding
to the local component R, i.e., it is defined to be the least n such that m™ kills the
form where m is the maximal ideal of the corresponding local component R (we
shall always assume that R is non-Eisenstein in what follows). Then it is natural
to ask what are the relations between these two filtrations. This question is of
interest in determining algebraic properties of local components which have proven
to be elusive. As far as the author knows, local components have been essentially
studied in detail only in [J], though in the particular case of ordinary components,
there is much more known even without reducing mod p due to the work of Hida,
cf. [H]. There was little known about local components till Mazur introduced his
idea of deformations. From his theory, as remarked before, it follows that the local
components are Noetherian. It is somewhat surprising that this fact is not known
without using deformations. The Noetherian property of local components has
strong implications for the structure of mod p forms and can be used to study some
exact sequences of modular forms which arise from the peculiar property of char p

that there are inclusions between spaces of modular forms of different weights on
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identifying forms with their ¢-expansion. We are in particular interested in studying

the following exact sequence:
0—>/]\7[;—>M/k:;:1-—->55k—>0 (1)

as a sequence of Hecke modules. It is a fact that we have noted before that this
sequence is an essential extension of Hecke modules for k large enough. By this
we just mean that M is maximal with the property that it contains E and the
resulting exact sequence is split as a Hecke module. This is a direct consequence
of the fact that there are only a finite number of eigensystems mod p. The study
of this exact sequence we have come to believe holds the key to understanding the
structure of local components of Hecke algebras. 55}, is defined by the exactness of
the sequence. But there is another more direct interpretation of S5y which depends
on an idea of Serre which interpretes this, at least for k large enough, as functions
on supersingular elliptic curves, cf. [E]. The mere existence of such a sequence as
(1) produces a relationship between the filtrations we alluded to above. Thus it
is an immediate consequence of the fact that SS; has bounded dimension (which

follows from the dimension formula for Si(I') for I' any congruence subgroup of
SLy(Z)) that the part of M}, on which m is nilpotent is contained in M[/m\“?“”] for
some constants a and b. We can make a and b explicit. It can for instance be easily
checked that we may take a to be any number which bounds the dimensions of the
SSi’s and we may take b to be the weight filtration of the eigenform corresponding
to m, which is unique upto scalar. Henceforth by m we will mean those mod p
forms of weight k£ on which m is locally nilpotent, for a fixed local component R and
the corresponding maximal ideal m (so we are dropping the subscript R with which
this space was adorned in §2.2). But to get information about local components we
need also to be able to control the terms of the nilpotency filtration in terms of the
weight filtration. It is unrealistic to expect that there is a similar linear relation in
the other direction as it has been shown in §2.2 that the dimension of non-ordinary
local components is at least 2 which makes this impossible. But we may modify our
space /]\Zf; a little and look only at the part which is killed by the Atkin operator U.

Then we may make the following conjecture.
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Conjecture 1. There exist constants « and § such that we have the following

inclusion for all n: M[m"] — Mgn43.

Here by M as before we mean that part of the space which lies in the kernel
of U as in §2.2 of this chapter. The reasons we have to make this conjecture are
not very substantial but such as they are, arise from the perfect pairing between
the local component R and the corresponding space of modular forms. If R is a
non-ordinary local component, then U is transcendental in this component as noted

in §2.2. We have a perfect pairing:
RxM— Fp.

Here R is by definition R/(U). Then we expect that R has Krull dimension 1,
motivated by the calculation of dimensions of deformation rings in certain cases
(the unobstructed case) in [M] and some work of Hida [H 2]. We note that the

above pairing induces a perfect pairing:
R/m™ x M[m"] — F,.

We would thus expect that the dimension of M[m?"] grows linearly with n. This
is the reason we have for making the above conjecture. To study this conjecture
we return now to (1) and study some of its properties in greater detail. Thus with

self-explanatory notation we have to study the exact sequence:
0= My = Mpypg = 88— 0 (2)

as a sequence of R modules. We can make a related conjecture to the one stated

above about this exact sequence.

Conjecture 2. There exists a constant z such that for any r the exact sequence:

M M

—

M, M,

—Cr — 0 (3)

0—

is an essential extension of R modules for any k > r + z. Here Cy is defined by (3).
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These two conjectures have an air of compatibility. At the moment both these
conjectures are beyond us. We state and prove two propositions related to these

conjectures.

Proposition 3. With notation as in Conjecture 2, (3) is an essential extension for

k large enough (we are imagining that r is fixed).

Proof. We note that there exists a n such that M, is contained in M[m"]. Then
the weight filtration being exhaustive, we note that as R is Noetherian, there exists
a k such that M[m"™*!] is contained in M;. Then we claim that this k£ works. As
if (3) were not essential with this k, there exists a S strictly containing My such
that the sequence corresponding to (3) made with S instead of M splits as a Hecke
module. Then as R is commutative and as its maximal ideal m acts nilpotently on
M, we get that there is a non-zero f which is not in My but which is killed by

m"™*1, This contradicts our choice of k.
We note that Proposition 3 is a very weak form of Conjecture 2.
Proposition 4. Conjecture 2 implies Conjecture 1.

Proof. We assume conjecture 2 and then prove the first conjecture by induction on
the n of that conjecture. Let us assume that the eigenform corresponding to m has
weight filtration y. Thus M[m] < M,. Now we assume that M[m"] — M, ,4,.
Then according to conjecture 2, the sequence:

Manty+y M
Mzn+y M:rn—}-y

corresponds to an essential extension. But from this we may deduce that M[m™*!] s

0—

= Co(nt1)+y — 0

Ma(n41)+y as if f e M[m™"1], then the one-dimensional vector space spanned by

M

the image of f in 7™ — is stable under the Hecke action and thus by what we have

+y
just said we conclude that conjecture 1 holds with the constants a and 3 being set

equal to = and y respectively, completing thus the inductive step.

We are wont to believe that conjecture 2 (if it is true!) is less intractable than

conjecture 1.

This proof of Proposition 3 will not give the explicit dependence of k on r which
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we ask for in Conjecture 2. To make progress with these conjectures we essentially
have to make quantitatively precise the fact that the action of R on M is highly
non semi-simple. This gives a different approach than the one suggested in §2.2 to
the problem of determining the dimension of local components of the mod p Hecke

algebra.

We may even express a more outrageous hope. We note that M has the strong
property that it has no submodules for R which are decomposable. This again
follows from the fact that an eigenform for Hecke operators is determined by its
eigenvalues upto scalar. We would conjecture that the same holds for M / My for
large enough k. We may see easily that this implies both the conjectures above. As
for proving this, we of course again have not a clue. We may also ask if the only
infinite dimensional vector subspace of M which is stable under the Hecke action
is the whole of M. This would again imply that the Krull dimension of R is 1.

To conclude, in this chapter, besides the occasional affirmative results we prove,
we have drawn a line between studying algebraic properties of local components of
Hecke algebras and properties of sequences of Hecke modules. The lower bound
we prove in Theorem 1 in this setting on the dimension of (non-ordinary) local
components is very likely to be the right dimension. But we have not been able to

prove that.
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Chapter 3
On Fourier coefficients of eigenforms
3.1. Introduction.

It is a theorem of Deligne (and Deligne-Serre for weight 1) that for a cuspidal
eigenform of the Hecke operators on the upper half plane which is of weight k, the
eigenvalues of the Hecke operators T}, are algebraic integers a, with |a,| < 2pk—1/2,
In §3.2 of this chapter we pose a converse question to this, and analyse to what ex-
tent CM forms can be used to answer it. In §3.3 an analogous question is asked
in the setting of Galois representations which can be thought of as the non-abelian
analogue of the Grunwald-Wang theorem in Class Field Theory, and we answer
it in one simple case. We may view these questions as asking for a kind of Chi-
nese Remainder Theorem in the setting of automorphic and Galois representations

respectively. The results of this chapter are obtained jointly with D. Prasad.
3.2. CRT for automorphic representations

The aim of this section is to pose the following question and provide an answer

to it in some very particular cases.

Question 1: Suppose that we are given finitely many primes p;,---,p,, and alge-
braic integers «; for every 1,1 < i < r, which have the property that o(a;)o(a;) =
p;*~1 for some integer k > 1 and for every embedding o : Q — C. Then does there
exist a cusp form f of weight k£ which is an eigenform of all the Hecke operators

such that the Euler factor at p; of the L-series of f, for every i, 1 <7 < r, is

1
L, (f,s) = —7
p,(f 5) (1_#)(1_%

Assuming the Shimura-Taniyama-Weil conjecture according to which all ellip-
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tic curves over Q are modular, this question can be settled rather easily in the
affirmative in the case when k = 2 and a; = «; + @; are rational integers as follows.
By a theorem due to Honda and Tate, we can find an elliptic curves E; over the
finite fields F; with p; elements such that the cardinality of E;(Fp,)is 1+ p; —a;. If
E is any elliptic curve whose reduction modulo p; is the elliptic curve E; for every
¢, 1 <t <r, then the L-function of EF is the Mellin transform of a desired modular

form.

When k& = 2 but a; are not integers, we can’t imitate the above proof even
assuming the generalised form of the Shimura-Taniyama-Weil conjecture according
to which abelian varieties with real multiplication over Q also arise as factors of the
Jacobians of the modular curves Xo(N). The problem being that it is not clear if
we can lift an abelian variety with real multiplication over the finite field F,, to one
over Q. There is then the problem of doing this for finitely many primes p1,-- -, p,
simultaneously. We, however, don’t even know if an abelian variety over F, can be

lifted to one over Q!

In this chapter we analyse to what extent CM forms can be used to answer the
question. Here is the main result. All the numbers «; appearing in the theorem
below will have the property that ¢(a;)o(a;) = p;*~! for some integer & > 2 and

for every embedding o : Q — C.

Theorem 1. Assume that a; = a; +@; is an integer such that p; does not divide a;
for any 1, 1 <1 < r. Then there is a CM cuspidal eigenform f such that the Euler
factor at p; of the L-series of f is

1

(1-2)(1- =)

Lp(f,s) =

if and only if the quadratic imaginary fields K; = Q(1/a? — 4p*~1) are independent

of 2.

Proof : We first recall that a CM modular form f = f) is associated to a
Groflencharakter A of a quadratic imaginary extension K of Q. This Grofencharakter

A can be thought of as a homomorphism A : Ix(¢) — C* (where Ik (c) is the group
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of fractional ideals prime to ¢ where ¢ is an ideal of K) such that for any aeQg with
a =1 (mod c), where O is the ring of integers of K, A((a)) = a*@® for some
integers a,b. As fy is a modular form, one moreover has a > 0, b > 0, and ab = 0.
(One way, and not necessarily the best way, of seeing this last fact is to note that
the Hodge-Tate type of representations attached to newforms is of the type (x, *)
where one of the *’s is zero. Then we note that the Galois representation attached
to A has this Hodge-Tate type if and only if ab = 0 as otherwise the representation
will arise as a twist by a power of the norm character of a representation attached
to a classical eigen cuspform and hence will not be Hodge-Tate of the required type

(we refer to [Mi] for the fact that fy is an eigencuspform when ab = 0).)

The modular form fy is an eigenform of the Hecke operators and has the

following Euler factor at primes p coprime to c:

=3t Toampey i () =77
Ly(fr,s) = W‘); if (p) is inert

T if (p) = 2.
We now assume that the quadratic imaginary fields K; = Q(y/a? — 4p*~1) are all
the same, say K, and in that case we construct a Groflencharakter \ of K such
that the associated modular form f) has the desired Euler factors at p;, 1 < ¢ < r.
We first note that as £ > 2 and p; fa;, the prime ideal (p;) splits in the quadratic
imaginary fielld K = K; = Q(y/a? — 4pF~!) (as one can take the square root of
a? — 4pF1 in Q,,). Let (p;) = m;7; be the factorisation of the ideal (pi) in K as

the product of prime ideals in K. Since a;&; = pf"l, and m;7; = (p;), it follows

from the assumption p; /Ja; (possibly after replacing a; by @&;) that (ay) = Trf"l,

(@) =7;""

Let P, denote the group of principal ideals (z) with £ =1 (mod ¢). Denote
by oo the character on P, given by poo((2)) = z¥~1. (This is well defined for ¢
large enough as the group of units of K is finite; moreover, ¢ can be taken to be
coprime to any given ideal which we take to be [[(p;).) Let uo be any extension of
oo to I(c). Our problem of the construction of A will be solved as soon as we can

demonstrate the existence of a Groflencharakter A which is unramified at m; and
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m; for all 1, 1 < ¢ < r, with A(m;) = a4, and A(7;) = @; and whose infinity type
is either (a,0) or (0,a) for some integer a > 1. From the relation (a;) = 7F71, it
follows that for the desired A\, A/po(7;) and A/po(7;) must be roots of unity, say
wi,w;. Conversely if we can construct a Groflencharakter v which is unramified at
7; and 7; for all ¢, 1 <7 < r, with v(n;) = w;, and v(7;) = w}, then A = vy will
be the desired Groflencharakter. The existence of such a Groflencharakter v is a
consequence of the theorem of Grunwald and Wang, cf. [A-T], completing this part

of the theorem.

To prove that the fields K; must be the same for the existence of a CM form

f, it suflices to prove the following lemma.

Lemma 1. Let f be a CM form such that the Euler factor at p of the L-series of f

is [1 — app~* 4 p*~172¢]71. Assume that a, is an integer with p fa,. Then f arises

from a GréBencharakter on the quadratic imaginary field K = Q(4/a2 — 4p*~1).
Proof : Suppose that f arises from a Gréflencharakter A on a quadratic imaginary
field L. Looking at the Euler factor at p attached to the L-series of f, we find
that p must split in L. Write the factorisation of (p) in L as (p) = n7. Since the
Euler factor at p of the L-series of f is [1 — app™® 4 p¥7172%]71 it follows that
A7) + A(®) = ap, and AN(7)A(F) = p*~1. Therefore A\(7) and A(7) lie in K. From
the defining condition of a GroBlencharakter, it follows that there is an integer A > 1
such that A\(m)* € L. It can be checked that a power of z + VY with z,y rational,
y <0, and zy # 0, is rational only if z + ,/y is a rational multiple of the third
root of unity w. It follows that A\(m)* is an element of K but not of Q if p does not
divide a, (we are using the condition k > 2 here). As \(7)* liesin L, K = L.

The case when a, is a non-zero integer but pla, can’t be obtained by CM
forms as the next lemma shows. As the case when a, = 0 can be obtained by
any Groflencharakter of any quadratic imaginary field in which (p) is inert, this

completes all the cases in which CM forms can be used.

Lemma 2. Let f be a CM form such that the Euler factor at p of the L-series of f

is [1 — app™* + p¥~172¢]71. Assume that a, is a non-zero integer. Then p does not
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divide a,.

Proof : Suppose that f arises from a Groflencharakter A on a quadratic imaginary
field L. Looking at the Euler factor at p attached to the L-series of f, we find
that p must split in L. Write the factorisation of (p) in L as (p) = 77. Since the
Euler factor at p of the L-series of f is [1 — a,p™® + pF~1725]71 it follows that
A7) + A7) = ap, and A(m)A(T) = pF~1. If pla,, then for all integers b > 1,
PIA(TR) + A7),

Assume without loss of generality that the infinity type of X is (a,0). Then
there is an integer h > 1 such that (7)" is a principal ideal generated by, say v, and
such that

Aty = 4

and
A7) =7°.

Therefore v* +7* is divisible by p which is obviously not possible.

Remark 1 : The weight 1 case of Question 1 can be completely answered using
CM forms. One simply has to take a quadratic imaginary field in which the prime
ideals (p;) split as (p;) = m;7; and construct a finite order GréBencharakter \ on
L using the Grunwald-Wang theorem which is unramified at the primes m; and 7;,

and has the property that A\(m;) = a;, and A\(7;) = @; for every ¢, 1 < < r.

We also remark that one can ask a question related to Question 1 which has a
negative answer. So we may fix a totally real algebraic integer, say «, and a positive
integer N, and a prime p which does not divide N, and then ask if there exists a
cuspidal eigenform, say f, of some weight & > 1, for the group I'o(N), such that
the eigenvalue of the p th Hecke operator T, on f is @. Then the answer is no as
the part of the Gouvea-Mazur conjectures already proven by Coleman [Co], implies

that the “slopes” of the eigenvalues of the Atkin operator U,, acting on the space
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of cusp forms of all weights, for the group I'o(Np), are discrete. Thus in particular
there exists a number ¢ in the interval (0,1), such that there are no “slopes” in the
interval (0,¢). Then any « with the property that its p-adic valuation, with respect
to which the slopes have been measured, is in the interval (0, ), provides a negative
answer to the question. We see this, as if there is a feSg(I'o(N)), k > 1, which is
an eigenvector for T, with eigenvalue o, then at least one of the roots, which we

2 k=1 say a, has valuation in the interval

will call a and b, of the equation z* —ax +p
(0,e). But then f'(z) = f(z) — bf(pz), is an element of Sk(To(Np)), which is an
eigenvector for U,, with eigenvalue a. This contradicts the choice of e. We refer
to [Co] for the precise definition of “slopes” and more about the Gouvea-Mazur

conjecture.

Remark 2 : There is by now a well-known result for automorphic representa-
tions, cf. Rogawski [Ro|, that there are automorphic representations whose local
components are pre-assigned discrete series representations at finitely many places.
However, in question 1 we want to construct automorphic representations whose
local components are pre-assigned unramified principal series at finitely many finite
places, and a discrete series at infinity when k& > 2. It is unlikely that this question
can be handled by techniques of harmonic analysis alone, as it is essential to specify
the data which is used to define the unramified principal series at the finitely many

local places, in the situation of question 1, to be of arithmetic kind.

3.3. CRT for Galois representations

Here is the non-abelian version of the Grunwald-Wang theorem, and is the

Galois theoretic analogue of question 1 for weight 1.

Question 2: Suppose that we are given semi-simple matrices A;,- -, 4, in GL(n, C)
such that the eigenvalues of A; are roots of unity. Then is there a continuous irre-
ducible representation ® : Gal(Q/Q) — GL(n,C) which is unramified at the primes
p; such that the conjugacy class of the image of the Frobenius at p; under the

representation @ contains A; for every i, 1 <7 <r?
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Remarks :

3.1. If we do not insist on the irreducibility of the representation ®, then such

a representation can be easily constructed by the Grunwald-Wang theorem.

3.2. The answer to question 2 is no in the generality in which it has been
posed here. The reason is that even though there are semi-simple matrices, say in
GL(2,C), for which the ratio of the eigenvalues are arbitrary large roots of unity, the

finite subgroups of GL(2, C) which act irreducibly on C? are much more restricted.

3.3. One should therefore consider question 2 only for those matrices A;,---, A,
which belong to a finite subgroup G C GL(n, C) which acts irreducibly on C*. How-
ever, the example of Wang, cf. [A-T], shows that one may not be able to construct

a representation of Gal(Q/Q) with values in G with the above local constraints.

3.4. We can ask more generally for the existence of a representation of Gal(Q/Q)
with given restriction to the decomposition groups Gal(@p/ Qp) which takes values

in a finite subgroup G C GL(n,C) for finitely many primes p.

At the moment we are unable to say anything about question 2, or its more
general form in remark 3.4, except for the following proposition. In the following
proposition, we have fixed embeddings of Q in @p for every prime p; we will abuse

notation to include the prime at infinity also in the following proposition.

Proposition 1. Let G = S,,, and suppose we are given p; : Gal(@pi/(@pi) — G for
1 <4 < r. Then there exists p : Gal(@/@) — G such that the restriction of p to
Gal(Q,,/Q,,) is conjugate in G to p; for every i.

Proof : Let G; denote the image in G of Gal(@pi/Qpi) under p;. Let X be
the set X = {1,2,---,n} on which S,, and therefore every G;, operates. Write
X = UsX, i, a disjoint union, such that every X, ; is invariant under G;, and G;
operates transitively on the set X, ;. If n,; denotes the cardinality of X, ;, let

G4,; denote the image of G; in the symmetric group Sy, ;. Therefore we have maps

Tayit Gi = Ga,i, and 7 0 Gi — [, Gai.

Let K; be the fixed field of the kernel of p; so that K; is a Galois extension of Q,,
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whose Galois group is canonically isomorphic to G;. Let K, ; denote the extension
of Qp,; contained in K; which corresponds to the surjection 7o ; : G; — Gq,. As
7 ¢ G; = ][, Ga,i is an injection, the compositum of K, ; is K;. Let Hyi CGaoy
denote the subgroup of G4, which is the stabiliser of an element (which will be
arbitrarily chosen) of the set X, ;. Let L, ; be the subfield of K, ; fixed by H, ;.
The degree of L, ; over Q,; is ny ;. Let f, ; denote an irreducible monic polynomial
over Qp, of degree n,; one of whose roots generate L, ;. We assume, as we may,
that the polynomials f, ; are distinct for distinct a. Then K, ; will be the splitting
field of f4 i, and K; will be the splitting field of the degree n polynomial f; =[], fa.:
which has no multiple roots. Now let f be a polynomial over Q which approximates
fi well enough so that the roots of f generate the field extension K; of Q,, and such
that there is a matching of the roots of f with those of f; over K; such that the
action of Gal(@pi /Qp,) on the roots of f and f; is the same after this identification.
This is possible by an extension of Krasner’s lemma which does this when f; is
irreducible. For the general case we claim that any monic polynomial f which
is near enough to f; also has factorisation f = [] f, with deg f, = deg fa:, fao
irreducible monic and near to f, ;. For this it is enough to check that the mapping
which takes the n-tuple consisting of the coeflicients of f, to the n-tuple consisting
of the coefficients of f is an open mapping. Because of the open mapping theorem
for Qp, it suffices to prove that the jacobian of such a mapping is non-zero at the
point defined by fo;. This is a simple consequence of the well-known fact that
the mapping (21, -+,25) — (81, -+, Sn) where s; is the i-th elementary symmetric
function has non-zero jacobian at any point (z1,--+, 2, ) with z; # z4 if [ # k. This
completes the proof of the claim from which we deduce that the roots of f; and f
generate the same field. Now using the roots of the degree n equation f, we get the
desired map p : Gal(Q/Q) — S, whose restriction to Gal(Q,,/Qp,) is conjugate in

Sn to p; for every 1.
Remark 4: We don’t know if the Proposition above is true even for G = A4,,.

Remark 5: The problem of extending local representations to a global one is much
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subtler than the problem of constructing extensions of global fields with given local
extensions. This is evident even in the case of a global cyclic extension in which
case when the local field extension is unramified extension of the same degree, the
local representation will be the additional data specifying which generator of the

cyclic group the Frobenius corresponds to.
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