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ABSTRACT

This thesis describes theoretical and experimental aspects as
well as'potential applications in the field of coherent optics known as
Phase Conjugate Optics (PCO). By utilizing nonlinear optical tech-
niques, real-time phase or wavefront reversal of an arbitrary incident
electromagnetic field can be realized. The nonlinear optical interac-
tion gives rise to what is referred to as the‘"phase conjugate replica"
(of the incident monochromatic wave) by performing the operation of com-
plex conjugation upon the incident wave's complex spatial amplitude in
real time. This conjugate wave, which is also designated as being a
"time-reversed" wavefront, has the property of exactly retracing the path
of the incident field. The ability of the conjugate wave to correct for
inhomogeneous linear and nonlinear (intensity-dependent) phase aberra-
tions as well as po{arization distortions is proved. In particular, the
theory of a degenerate four-wave nonlinear optical interaction as provid-
ing for the phase conjugator is presented. The effects of linear and
nonlinear losses upon this interaction are discussed. The quantum mech-
anical origin of the third order nonlinear optical susceptibility
responsible for the four-wave mixing process is analyzed for both single-
and two-photon allowed transitions in an atomic (or molecular) system.
The analogies of four-wave mixing with that of real-time holography are
discussed. The theory of phase conjugation via four-wave mixing in op-
tical waveguides is presented.

Several of the above characteristics of conjugate fields are veri-

fied experimentally where phase conjugate fields via degenerate four-wave



-vi-

mixing were observed both in the bulk and in waveguide geometries, using
carbon disulfide as the nonlinear medium. Amplified time-reversed wave-
front generation as well as a mirrorless optical parametric mode of

oscillation have been observed, both in agreement with theoretical pre-

dictions.

Potential applications of PCO are discussed in three different
regimes: spatial-frequency, temporal-frequency, and spatial/temporal
frequency domains. In the first category, the ability of PCO to correct
for image modal dispersion in optical waveguides as well as the use of
PCO to perform real-time coherent image processing and nonlinear microscopy
is discussed. Temporal-frequency domain applications of PCO to be analyzed
include the use of a nearly degenerate four-wave mixing process as a
narrowband, wide field-of-view optical filter, capable of an amplified
bandpass. The ability of a PCO interaction to renarrow (transform limited)
optical pulses which have been temporally spread due to propagation
through (group velocity) dispersive channels is analyzed. A potential
application of PCO in the field of nonlinear laser spectroscopy is pre-
sented. Specifically, the scattering of a probe photon off a two-photon
coherent state (created in a three-level atomic system) is shown to yield
a conjugate replica. This conjugate replica is capable of providing sub-
Doppler width resolution of the two-photon resonance. Further, in the
transient regime, the optical free-induction decay of the conjugate wave
is capable of yielding detailed spectral features of the three-level system
such as the anharmonic contribution to a (nearly) harmonic potential.

This technique, performed in the time domain, is known as o-beat spec-

~troscopy.
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Finally, a detailed theoretical and experimental study is pre-
sented of a laser resonator in which one (or both) of the mirror(s)
comprising the optical cavity is replaced by a phase conjugate mirror
(PCM). This novel resonator, which is termed a phase conjugate resona-
tor (PCR), combines many of the spatial- and temporal-frequency aspects
of PCO interactions discussed above. The stability criterion, trans-
verse and longitudinal mode spectra, and the PCR output energy, as well
as the frequency locking features of the laser modes to the PCM are

discussed.
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Chapter I

INTRODUCTION

1.1 General Background

In recent years, a new application area has emerged in the field
of quantum electronics, and specifically in the subfield of coherent op-
tics, called "phase conjugate optics." This term has been accepted in
the literature to describe a class of nonlinear optical interactions that
yield phase conjugate, or "time-reversed" replicas of given (monochro-
matic) electromagnetic fields. These two terms have been used synony-
mously in the literature and are in fact formally equivalent in the present
context. The phase conjugate replica of an electromagnetic field is, by
definition, a second field whose wavefronts at each point in space propa-
gate exactly in the reverse direction relative to that of the original
wave. Thus, this backward-going wave retraces the path or trajectory of
the original field, and therefore evolves in what one may describe as a
"time-reversed" sense. As an example, the conjugate replica of a diverg-
ing spherical wave from a given source would be a converging spherical
wave that would propagate essentially "backward" to the initial source.

Historically, the requirement for a device that can generate such
time-reversed wavefronts emerged in the fields of radar and optics. There
was a need to overcome phase distortions that transmitted signa1sr
acquired as a result of propagation through aberrating media, for example,
the atmosphere. It was recognized that if one can generate a new field
whose phase fronts are reversed in sign at each point in space, this new
field can now essentially "unravel" the initial distortions as it propa-

gates back through the same aberrating medium.
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One device utilized to achieve this is called a "phased array"”
[1-3]. The phased array consists of an ensemble of (dipole) radiators

whose relative phases can be determined externally. Due to the

finite number of such radiators (assume N such dipoles), the number of
resolution elements, or equivalently, the total spatial infdrmation‘hand]ing
capacity of the system, is therefore restricted to ~ N. Since each such
element requires its own electronic network, practical devices can

easily become expensive and bulky, with restrictive bandwidths, or re-
sponse times. Such phased arrays have been also employed in the optical
regime, with the term "adaptive optics" or "coherent optical adaptive
techniques" (COAT) used to categorize the field [4]. These adaptive
optics schemes have been recently applied to such diverse fields as laser
communications systems, and high power lasers. The COAT systems, which

do not use phase conjugation in a formal sense, have the capability of
operating in real time, being limited by the bandwidth of the system

(which decreases with increasing N).

As a second technique useful in correcting or compensating for op-
tical propagation or imaging through phase distorting media, the optics
community has exploited the field of holography [5].

There are well-known techniques by which one can generate what has
been called a pseudo-scopic or conjugate field by merely "reconstructing”
a hologram with the reference (plane) wave illuminating the hologram
from the side opposite to where the original reference wave propagated

during formation of the hologram. This results in a diffracted wave that

essentially retraces the path of the initial object beam [6]. Drawbacks
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of this scheme lie mainly in the fact that it is inherently a_@glgj—
step process; that is, one must first construct the hologram, develop
the emulsion, then lastly reconstruction follows. Consequently, the
successful application of this technique requires that the distorting
or aberrating medium be stationary during the entire process.

An additional, less major, problem is the finite number of reso-
lution elements which depends upon the specific film (or thermoplastic)
chosen. Finally, since the diffraction efficiency never exceeds 100%,
the holographic scheme output intensity is limited.

Another technique recently considered by which backward-going rays
can be generated is through the use of an array of retroreflectors, or
corner cubes [7,8]. This scheme gives rise to what has been defined
to be "approximate phase conjugation”" in that a truly time-reversed
replica of an input field is not generated in all cases. This is true
since the corner cube scheme only works on odd terms in a power series
that describes the phase fronts of the incoming wave; In addition,
there can be undesirable diffractive effects due to the finite size of
each individual retroreflector element.

A further technique is one which involves the generation of phase
conjugate wavefronts via nonlinear optical interactiohs. This class
of interactions will be discussed in the next three sections, and con-

stitute the subject matter of the remainder of this work.

1.2 Phase Conjugate Optics

As mentioned in the last section, there exists a coherent optical

technique by which real-time processing of electromagnetic fields can
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be performed. Specifically, the phase conjugate (or time-reversed)
replica of electromagnetic fields may be realized in real time by the
use of nonlinear optical interactions. The branch of optics which deals
with the generation and utilization of such phase conjugated fields is
known as Phase Conjugate Optics (PCO). The major distinguishing fea-
tures of PCO interactions relative to the above mentioned techniques
(COAT, conventional holography, etc.) are as follows:

(i) These interactions occur essentially instantaneously, being

limited primarily by the response time, 1, of- the atomic or

3 -12

molecular system utilized (t ~ 107 to < 10" "“sec at optical

frequencies).

(ii) The resolution size of the phase conjugator is essentially
limited by the wavelength (1) of the incoming field.* In cases
where the nonlinear medium is rarefied, the resolution size is

']/3, where p is the density of the atomic (or

on the order of p
molecular) species participating in the interaction (assuming
A< p']/3). This applies to nonlinear interactions that are

phase matched for all input angles.

(i11) The phase conjugate replica intensity can, for the class of
time-reversed wavefronts generated by optical parametric in-
teractions (and under the proper conditions), actually exceed
the intensity of the input field (which fs to be conjugated).
Thus, for these cases, the "phase conjugate mirror" is an
amplifying device. This amplifying feature of an output field
is a common result of general (not necessarily conjugate)

parametric interactions.

*Diffractive effects due to the conjugator's finite aperture can
further limit the spatial frequency bandwidth (see, e.g.,[27]).
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(iv) The interaction is purely optical, therefore obviating the use
of electromechanical components.

These nonlinear optical (phase conjugating) interactions can be separ-

ated into two major classes: stimulated interactions and optical

parametric interactions. These two classes will be described briefly

below.

1.3 Phase Conjugation via Stimulated Optical Processes

In 1965, Wiggens and coworkers [9] noticed that the backscattered
wave produced in stimulated Brillouin scattering (SBS) interactions in
N2 gas possessed divergence angles on the order of that of the forward-
going field. This apparently was the first observation of a time-
reversed wave; however, it was not discussed in that context. Zel'dovich
et al. [10] in 1972 explored this phenomenon in more detail, and were
the first to identify (theoretically) the backward-going Stokes wave as
being essentially propoktiona] to the phase conjugate of the exciting
field. They further proved experimentally that this backward-going
wave was capable of correcting for phase aberrations. This was accom-
plished by passing an input ruby laser plane wave beam through a piece
of glass that was etched in hydrofluoric acid (HF). The etched glass
represented a phase aberration which increased the divergence of the
beam. The output field was then focused into a light pipe (3 mm diam-
eter, 1 m long tube filled with methane) which gave rise to a backward-
going field as a result of SBS. The divergence of this wave was mea-
sured after it retraversed the same piece of frosted glass, and was

seen to be nearly the same as that of the initial forward-going plane
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wave. This was the first demonstration of the‘aberration compensating
property of time-reversed waves generated via stimulated optical pro-
cesses. Nosach et al. [11] showed the ability of the SBS interaction

to correct for aberrations within a gain medium by situating a ruby laser
amplifier in place of the glass aberrating plate used in Zel'dovich's
geometry. Since the appearance of these two papers, a myriad of works,
primarily in the Soviet literature, were published that further described
theoretically and experimentally the conjugation aspects of stimulated in-
teractions [12]. More recently, Wang and Giuliano [13] measured the
divergence of the aberrated and corrected beams in more detail, further
verifying the distortion compensating aspects of SBS interactions. Also,
the problem of phase conjugation via stimulated optical interactions in
optical waveduidé; has been ané]yzéd f14} . As of this date, work in
SBS/phase-conjugate interactions is still being pursued at several

research laboratories.

A second class of stimulated optical interactions, namely stimu-
lated Raman scattering (SRS), has also been shown to be capable of
yielding time-reversed waQes. Phase conjugation via SRS has been
treated experimentally and theoretically in the bulk [12], analyzed in
optical waveguides [14], and observed using picosecond laser pulses [12].

Stimulated scattering type conjugators have both advantages and
disadvantages. The major advantage lies in the fact that only one input
optical field is required to effect the desired interaction--that of the
field desired to be conjugated. A second feature is that the interac-
tion is capable of yielding a high conjugate return efficiency (defined

to be the ratio of the backward to forward field strengths). Conjugate
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returns in excess of 80% have been measured [12,13] and are in

agreement with theoretical predictions. There are, however, several

drawbacks to this class of PCO interactions. First, since SBS and SRS
are nonlinear (in terms of the input intensity) processes, the require-
ment exists for a minimum input optical intensity below which a neg-
ligible conjugate return can be obtained. Further, since acoustical
phonons (for the case of SBS) or optical phonons (for SRS) are generated,
these stimulated interactions correspond to inelastic photon scattering
processes. This results in a backward;going (Stokes) wave of lower fre-

quency than the input wave. Hence, a truly time-reversed replica

is not strictly generated, which can be a drawback in certain applica-
tions. We finally remark that these stimulated processes are not
capable of generating an amplified conjugate wave which may also be

undesirable.

1.4 Phase Conjugation via Optical Parametric Interactions

The second class of phase conjugate interactions, which will be

the major topic of this thesis, involves the generation of time-reversed
replicas using nonlinear optical parametric interactions. This approach
involves the mixing of several optical fields within a common nonlinear
optical medium. If the directions (i.e., K vectors) and frequencies of
the various optical fields participating in the interaction are properly
chosen, the result of the interaction will yield an output field whose
complex amplitude is proportional to the complex conjugate of the desired

input field. Depending on the specific mixing process and geometry
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chosen, the system can either give rise to conjugate replicas for any
input field direction, or may be 1imited in the angular acceptance of
this input field (due to phase matching constraints). This latter state
of affairs is typically undesirable in that the number of resolution
elements or spatial information (of the input field) capable of being
time-reversed will be limited.

Apparently the initial experimental efforts were undertaken (inde-
pendently) by Stepanov and coworkers [15] in the USSR, and by Woerdman
[16] in the Netherlands, both in 1970. These initial experiments em-
ployed a degenerate four-wavevmixing process to generate the backward-
going wavefront. Also, Anan'ev [17] recognized the possibility of wave-
front correction via this process. Although these experimental results
did indeed demonstrate the time-reversed nature of the nonlinearly-
generated output field, the theoretical understanding was rather quali-
tative. The impact of these two early experiments apparently was not
fully appreciated by the optics community, as evidenced by the lack of
reference to them in the literature. In 1976, Yariv [26] independently
described how the specific process of three-wave nonlinear optical mixing
can yield phase conjugate replicas of input wavefronts subject to limited
angular acceptance ranges. These predictions were verified in experiments
by Avizonis, et al. [44,45]. Hellwarth [27] analyzed the degenerate four-
wave mixing scheme using a scalar diffraction perturbation approach. He
showed rigorously that this mixing scheme overcomes the phase matching
limitations inherent in the above three-wave mixing process. Paralleling

these efforts was the ongoing work in an area that has been given the name
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of real-time, dynamic, or transient holography [18-23]. As evidenced

by its title, this area involves the simultaneous formation and recon-
struction of a hologram (or diffraction grating) in a myriad of materials.
At about the same time, other studies were directed toward understanding
the dynamical proper?ies (e.g., diffusion coefficient of the carriers

in semiconductors) of the materials responsible in forming the transient
hologram, and apparently not (at least initially) aimed at realizing the
conjugate nature of the output field so generated. Eichler [25] gives

an excellent review (at that time) of the field. Yariv [24] has since
discussed the formal operational analogies between four-wave mixing and
real-time holography, thus in essence unifying these two fields. Yariv

and Pepper [28] applied the formalism of nonlinear optics to the four-wave
mixing process and predicted the possibility of amp]ificétion of the
conjugate wave and also the possibility of oscillation. These predictions
were verified in experiments by Bloom et al. [46,56], by Pepper, Fekete, and
Yariv [48], and by Jensen and Hellwarth [47]. Since that time numerous
theoretical analyses have appeared describing phase conjugation in two-
level systems [29], two-photon allowed transitions [30], molecules [31],
radiatively cooled vapors [32], plasmas [33], and aerosols [34].
Theoretical problems such as molecular motion [35], pump depletion [36,
37], nonlinear distortions [38], transient four-wave mixing (e.g.,

photon echoes) [39-41], as well as the use of optical waveguides [42,43]
(as opposed to bulk media) as the interaction configuration have been
considered. On the experimental side, phase conjugate wavefronts have

been observed in waveguide geometries [49,50] using CS, as the nonlinear
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medium. Using four-wave mixing in the bulk, time-reversed wavefronts
have been observed in a myriad of materials by the use of various.
physical mechanisms such as the generation of free [16,51] and local-
ized electrons [52,53]; saturation-induced nonlinear susceptibility in ruby
crystals [54], dyes [20], and vapors such as sodium [22,56-58], Rb
[59], and SF6 [60]; and in liquid crystals [55]. Thus, phase conjugate
' generation has been observed (both on a pulsed and cw basis) in the
visible, the near I.R. and at 10.6 ym. Related to the above techniques
in resonant media, phase conjugate fields have been observed via photon
echoes [61,62]. Also, conjugate polarization-rotation effects have been
observed recently [63], as have atomic motional effects [63]. In addi-
tion, phase conjugate fields have been generated from within laser
resonators using an additional intracavity nonlinear element as well as
the saturation effects of the laser éain medium itself as -constituting
the nonlinear optical medium [64,65] .

There have been a myriad of potential applications discussed using
phase-conjugate optical interactions, including Doppler-free spectroscopy
[47,30,66,67], optical filtering [68-70], channel dispersion compensation
[71,72], phase conjugate resonators [73-76] (i.e., a laser cavity whose
conventional mirror is replaced by a phase conjugator), the measurement
of the tensor elements of the third order susceptibility (x(3)) [47],
phase correlation measurements [77], spatial diffusion of excitation
measurements [78], spatial convolution and correlation [79], and non-
linear microscopy [79]. Also, the use of phase conjugate interactions
in the areas of optical gating; temporal convolution, correlation, pulse

shaping, and encoding; MOPAS@ and laser fusion have recently received

*
Master Oscillator Power Amplifier
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much attention. Finally, a recent study [80] has shown that the use of

a phase conjugator has the ability to correct for nonlinear refractive
index distortions, thus in principle enabling one to compensate for
self-induced aberrations [81] such as self-focusing or thermal bloom-
ing. Since the field of phase conjugate optics is still in its infancy
(although two reviews have already been published [12,82], and several
conferences have designated sessions to deal specifically with its recent

advances), many promising and exciting applications are yet to be explored.

1.5 Outline of the Thesis

In this work we shall discuss both the theory and several potential
applications of phase conjugate optics. We will concentrate almost
exclusively on degenerate (and nearly degenerate) four-wave mixing.
Properties of phase-conjugated fields in terms of propagation, time-
reversal, and polarization will be the topic of Chapter II. We wi]]
consider the nature and propagation of phase-conjugate fields through
linear, nonlinear, lossless, and lossy (or gain) media. In addition, we
will discuss comparisons of phase-conjugators with conventional (ideal)
mirrors in terms of both macroscopic (i.e., electromagnetic field) and
microscopic (i.e., photon) viewpoints. Thus, Chapter II will essentially
treat the phase conjugator as being a "black box."

Chapter III will concentrate on the physics of the optical non-
linearities which lead to phase conjugated wavefronts. Using the formalisms
of nonlinear optics, a general description necessary for the generation
of phase conjugate fields via three- and four-wave nonlinear interactions

will be presented. The remainder of the chapter will concentrate



-12-

exclusively on four-wave mixing as the primary scheme to realize phase
conjugation. Specifically, a coupled mode (plane wave) approach will
be used to describe the interaction. The ability of this process to
generate conjugate replicas of arbitrary wavefronts will be established.
Next, we will discuss briefly both linear and nonlinear optical compet-
ing processes and their effect upon the desired phase conjugate inter-
action. Next, a quantum mechanical description of the optical non-
linearity within the conjugator for both one- and two-photon transi-
tions will be analyzed. This description will be cast in terms
of the time evolution operators with the associated Feynman diagrams
as well as in terms of a density matrix formalism using a perturbation
approach (this approach neglects limiting mechanisms such as saturation;
however, the ease of application of the formalism to the problem of four-
wave mixing is well worth the price). The chapter will conclude with a
brief description depicting the operational analogs (as well as the dif-
ferences) of four-wave nonlinear optical mixing with real-time holography.
In Chapter IV we will discuss four-wave mixing experiments that led
to the observation of phase conjugate fields. The experiments, which were
performed both in the bulk and in waveguide geometries, used carbon disul-
fide (CSZ)’ a transparent, isotropic liquid, as the nonlinear medium.
Specifically, we have observed amplified phase-conjugate wave generation
as well as optical parametric oscillation in the bulk under pulsed (ruby)
laser excitation; we have also observed backward-wave generation on a cw
basis (using an argon-ion laser as the source) in a CSZ-fil?ed optica]
waveguide. Each experiment will be prefaced with a brief theoretical

description germane to the specific geometry chosen. Results borne out
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from the experiments will be compared with the theoretical formalisms
discussed in Chapter III. The various diagnostic techniques utilized
to verify the nature of the conjugate field as well as to distinguish
the observed fields from potential competing effects will be discussed.

Several potential applications of phase conjugate optical inter-
actions will be the topic of the last three chapters. These three
chapters will focus upon applications which utilize basically different
aspects of PCO: Specifically, several applications that make use of
the "spatial-frequency domain" will be considered in Chapter V. Appli-
cations in this domain to be discussed will include the restoration of
pictorial information due to propagation in optical waveguides, real-time
holographic schemes (i.e., spatial convolution, correlation, Van der
Lugt filters, etc.) and nonlinear microscopy.

Chapter VI will focus upon several "temporal-frequency domain"
applications of PCO. Specifically, the use of a "nearly degenerate”
four-wave nonlinear optical interaction will be shown to be capable of
yielding a wide field-of-view, narrow bandpass optical filter. Next,

a phase conjugator will be shown to be capable of compensating for
channel dispersion and hence to be capable of effectively renarrowing
optical pulses which were temporally broadened as a result of transmis-
sion through a (single mode) dispersive optical channel. The analysis
will be extended to investigate general forward- and backward-going
phase conjugate interactions. The chapter will conclude with an appli-
cation of PCO interaction in the field of nonlinear laser spectroscopy.

Specifically, using a time-dependent density matrix perturbation
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approach, we will analyze the scattering of a probe photon off a tran-
sient Doppler-free two-photon coherent state. The resultant free-
induction decay signal, which in fact is a conjugate replica of the
probe photon, will be shown to yield information regarding the various
dephasing rates of the nonlinear medium. Further, the degree of
anharmonicity (for a nearly harmonic atomic or molecular potential) will
be manifested by examining the amplitude fluctuations of the free-
induction decay signal. The 1atfer measurement, which is performed in
the time domain, is referred to as a-beat spectroscopy.

The last chapter will describe an application of PCO that util-
jzes both the spatial- and temporal-frequency domain aspects of PCO
interactions. Specifically, we will consider the use of a phase conju-
gator as forming a "mirror" that replaces a conventional mirror in an
optical resonator. We will analyze the stability criterion, as well as
the resonator modes of such a "phase conjugate resonator" using the
ABCD formalism. The remainder of the chapter will be devoted to de-
scribing an experiment we performed where laser oscillation was observed
in such a novel resonator. Various aspects of the experiment including
the energy output, modal features, temporal output, and oscillation
frequency will be described, as well as the experimental diagnostic
tests performed to check the theoretical predictions. Finally, the
concept of a Gaussian-tapered phase conjugate mirror will be considered

in an appendix.
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Chapter 11
PROPERTIES OF PHASE-CONJUGATED WAVEFRONTS

2.1 Introduction

In this chapter we will discuss the basic properties regarding the
effect of a phase conjugate interaction upon a given incident electro-
~magnetic field. The specific details pertaining to the mechanism of
the conjugator itself will be considered in the next chapter; thus, in
the present context, the conjugator is to be regarded as being the pro-
verbial "black box." We will discuss the “time-reversal" properties of
the phase conjugator with respect to its ability to “"unscramble"
undesirable wavefront distortions. To this end, we will discuss
the effects of the phase conjugate interaction upon both "phase
aberrations" and "polarization aberrations" that can be incurred by an
incident field whose time-reversed replica is sought. The latter form
of aberration will be shown to be a special case of the more general
phase aberration (when considering rotating or vector fields).

The above properties will be discussed from both a macroscopic
(i.e., field) and a microscopic (i.e., photon) viewpoint. In terms of
the latter description, the helicity, as well as the angular and linear
momentum photon aspects of the phase conjugator will be considered.
Throughout the discussion,‘we will compare and contrast the properties
of a phase conjugate interaction (which can be viewed as a novel "mirror")

with those of an ideal, conventional (i.e., a "real") mirror.
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We will conclude this chapter with a discussion of the ability
of phase-conjugate mirrors to correct for nonlinear (i.e., intensity-
dependent) optical phase distortions. These aberrations which are self-
induced and result in undesirable effects such as self-focusing and
thermal blooming will be shown to be amenable to compensation via a
phase conjugate interaction. Another special case of aberrating media,

that of phase and amplitude distortions, will be treated in the Appendix.

2.2 Phase Conjugation as "Time Reversal"

In this section we present arguments that yield the important re-
"sult that the operation of phase conjugation upon an optical field is
equivalent to the generation of a new field that propagates or evolves
exactly in the reverse direction (at each point in space) relative to
that of the original wave. That is, the phase conjugate replica of a
given field can be described as a "time-reversed” replica of this
original wave. The causal aspects of "time reversal" will be discussed
in Chapter VI.

Consider an electromagnetic field

E](r,t) Re{y(¥) expli(wt - kz)]}

Re{A](?) exp(iwt)}
(2.2-1)

This field is a monochromatic wave of radian frequency w, propagat-
ing essentially in the positive z-direction. The complex amplitude

w(?), can describe any spatial amplitude or phase information imposed
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upon E]. We note that w(?) can also describe the polarization state
of the field.

The field conjugate to E1 is defined to be

E,(¥,t) = Re{y*(F) exp[i (wt + kz)]}

Re{AY(F) exp(iut)} = Re{A,(¥) exp(iut)}
(2.2-2)

E2 corresponds to an optical field of radian frequency w, and has a
complex spatial function, AZ(:), which is equal to the complex conju-
gate of that corresponding to E] (i.e., A2 = A?). It is seen that E,
evolves in the same manner as if one replaced t with -t in E1; we
thus call E2 a "time-reversed wavefront," or a "phase conjugate
replica" relative to E]. The "device" that generates E2 can be de-
scribed as being a "phase conjugator," or a "phase conjugate mirror"
(PCM).

That E, is a valid solution of the Maxwell's equations can be
shown as follows. We consider the propagation of E1 and E2 through a
common, lossless, linear dielectric medium, described by a field-
independent permittivity, e(r). The field E, obeys the scalar wave
equation (in cgs)

2 pe (¥ 52
V°E - —5 =0 (2.2-3)

E
c2 at2

Substitution of E] given by the first equation in (2.2-1) into

(2.2-3) yields
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V2 + [wlue(¥) - Ky - 2ik ¥ -0 (2.2-4)

The complex conjugate of (2.2-4) is given by
*
Vzw* + [wue(?) - k2]¢* + 2ik %%_-= 0 (2.2-5)

which is recognized to be the wave equation describing the propagation
of EZ' This is easily verified upon substitution of (2.2-2) in (2.2-3).
We therefore see that the conjugate replica (Ez) of E] satisfies the
wave equation, and therefore describes the propagation of a field having
the same equiphase surfaces as E] at each point in space and propagating
opposite to that of the incident wave E]. If we assume that a PCM is
located at the plane z =Zs then the above arguments hold for all z2<z.
We note that the time-reversed replica of the magnetic field vec-
t -
or H2
. > ->
all z<z . This ensures that Sz(t)= -S](-t) for all z<z, where

5
is related to its incident counterpart ﬁ] by ﬁé(t)= -H](-t) for

§[= c(E><ﬁ)/4ﬂ] is the Poynting's vector.

The treatment of two special yet important classes of distorting
mechanisms (and their effect upon conjugate-wave propagation), that of
nonlinear optical phase distortions and amplitude distortions, will be
the topic of Section 2.5 and the Appendix, respectively.

A frequently quoted application of phase conjugators is theijr abil-
ity to compensate for undesirable phase distortions or aberrations
encountered by electromagnetic fields upon propagation through
linear, lossless media such as turbulent atmospheres or poor optical
quality components. Figure 2.1 shows a typical exampie. Consider an optical
(monochromatic) plane wave propagating from left to right (given by the
solid lines) that is incident upon a phase distorting medium. After

passage through this medium, the field has acquired a spatially dependent
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phase ¢(x,y). The resultant equiphase fronts are no longer planar.

This field is now assumed to be incident upon a phase conjugator. The
effect of the phase conjugator is to give rise to a new field (dashed
curves) which exactly retraces the path of the input wave having a phase
term equal to -¢(x,y). As this wave (which propagates from right to
Teft) retraverses the same distorting medium, the spatially dependent
phase distortion exactly cancels. Thus, the original planar wavefronts

are recovered.

We now compare pictorially the differences between a conventionat
mirror and that of a phase conjugate mirror with respect to the propaga-
tion of an optical field through a phase distorter. Specifically, we
assume a plane wave (again a monochromatic field) to be incident upon a
narrow slab of glass of length L, whose phase delay is characterized by
its linear index of refraction, n. In Figure 2.2a the effect upon
propagation through this glass and a subsequent reflection off of a con-
ventional mirror is shown. For simplicity we do not consider the dif-
fractive effects due to the finite cross section of the glass. After
the plane wave propagates (from left to right) through this glass slab,
its equiphase surface develops a "bulge" due to the acquired phase delay.
After retroreflection from the real, plane mirror and subsequent passage
back through the glass slab, an additional (equal) phase delay is again

encountered, resulting in a phase "bulge" of twice the size. Thus, the
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Fig. 2.2 Comparison of a conventional mirror (a) with a conjugate mir-
mirror (b) in terms of its effect upon a phase aberrator.
(a) A monochromatic plane wave (1) is incident upon a dis-
torting element (a glass cylinder) emerging with a bulge (2).
The wave reflected from a conventional mirror (3) traverses
the cylinder in reverse, resulting in a doubling of the bulge
depth. (b) A conjugate mirror yields a reflected wavefront
(3) which is identical to the incident wave (2). The result
is a perfect smoothing of the bulge in (4), so that (4) and
(1) have identical equiphase surfaces.
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overall phase distortion accumulated is equivalent to propagation through
a similar glass slab of length 2L. Figure 2.2b depicts the same geometry
but having the real mirror replaced by a "phase conjugate mirrbr." The
profound difference between these two mirrors is that the latter now
reverses the phase (in addition to the direction of propagation). The
.phase bulge is therefore effectively "advanced" with respect to the re-
mainder of the phase front. Thus, upon subsequent traversal through

the glass slab, the original planar wavefronts are recovered.

Regarding the causal aspects of the phase conjugator, we note
that (in Figure 2.2) the bulge-induced changes in the incident plane
wave are a mapping of equiphase fronts, and are not to be considered as
temporally delaying the energy flux of the field. If the latter were
the case, the conjugate mirror would have to have a priori information
concerning the temporal sequence of the (arbitrary) incident field, thus
violating the causal aspects of the interaction. This apparent paradox
is resolved once we recognize that we are dealing with monochromatic
fields; thus the waves are defined to be present for all times. Any
sequencing of temporal information would be in violation of this initial
condition, since additional frequency components would be introduced
into the input field. We note for future reference that the conjugator
gives rise to "time-reversed" replicas only at a §jﬂgl§_fréquency. If
the input frequency differs from the "operational frequency" of the conju-
gator, a perfect, time-reversed wavefront is not generated. The asso-
ciated transient effects (or equivalently, the effects of phase con-

jugation upon a polychromatic —or broadband input frequency spectrum)
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will be discussed in Chapter VI.

To conclude this section, we remark that the ability of the

phase conjugate mirror to time-reverse an arbitrary monochromatic wave-

front is due to the fact that the conjugator is a linear device (in a
spatial mode sense). That is, the input and (conjugated) output waves
are related to each other linearly. Thus, an arbitrary input field can
be decomposed into a superposition of plane wave components, with the

conjugate mirror time-reversing each component. This one-to-one mapping

of input and output plane waves therefore makes possible the utility of
the conjugator to operate on general wavefronts. Most of the spatial
domain applications of phase conjugators follow directly from this
fact. We leave the formal proof of these assertions to the next chap-
ter. We also remark that thus far we have considered only scalar fields
(i.e., ¥(r¥) is a tensor of rank zero). In the next section we extend
the analysis of phase conjugate operations to vector representations of

p(r).

.+
2.3 Effects of Phase Conjugation upon Arbitrary Rotating E-Fields

In this section we consider a special, yet important case of
phase aberrations: that of polarization aberrations. This type of aber-
ration is relevant in that general aberrations can not only affect the
shape of the wavefront, but also the polarization state of the field.
Examples of such phase distortions can be stress-induced birefringence

of optical components, misaligned anisotropic optical elements, or
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polarization scrambling effects of optical fibers. These undesirable
effects can occur both within a laser resonator itself and upon propaga-
tioh outside the laser. We will show below that the effect of the phase
conjugator is to time-reverse this polarization state (or rotating E-
field) and thus "unravel" or "unwind" this field as it retraces its
original trajectory. That the conjugator can give rise to a time-
reversed rotating vector field will follow from the previously-mentioned
linearity of the interaction with respect to an arbitrary'superposition
of input modes. This statement will be rigorously proved in the next
‘chapter. Whereas we have previously considered scalar (spatial) modes,
we now consider these modes to be the various components of a more gen-
eral vector field.

Consider a monochromatic optical field at radian frequency w,
possessing an arbitrary polarization state, and propagating primarily
in the +z direction, as defined in the [I] —coordinate system (see
Figure 2.3). The most general polarization state is that of an ellip-

tically polarized wave [2], which we represent by

e = rellre, el v £ el enpli (ko9
£ 2

A L
- > [1] )
= Re{y(r)-"~ exp[i(ut-kz)1} (2.3-1)
where Eiﬁ are the complex amplitudes, and EEI](EEI]) are the unit vec-

tors for the left(right) handed circular polarizations (LHCP and RHCP,
. t
respectively) for the 2 h plane wave "mode." We have approximated a

transverse Fourier integral representation as a summation over dis-

th

crete modes for simplicity. Since each £~ mode is conjugated in a
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linear fashion, we will restrict our discussion to one such plane wave
component (which propages in the +z direction). We shall thus drop
the % subscript with the understanding that for a general field one
must sum (or, more accurately, integrate) over all such spatial modes.
Without loss of generality, we assume the Ei to be real; any nonzero
phase can be interpreted as corresponding to a rotation of the ellip-
tically polarized state (by an angle equal to half the phase difference
between E_ and E_)[2].

The unit vectors for the two circular polarization sfates in

(2.3-1) can be rewritten as

EEI] - L +i48) | (2.3-2)

where Ex and Ey are the unit vectors along the x and y directions, re-
spectively. $(?) is thus a vector generalization of the previous analo-
gous scalar quantity [c.f., equation (2.2-1)].
The vector field (E])is incident on a phase conjugator located at
7 = 0. Following the definition of its operation [equation (2.2-2)], the

conjugate“field,—fz, is given as

B0F, 8 = ref(g, ) 4 £ el expli(uteka)]}  (2.3-3)
From the definition of EEI], it follows that

ex[11glL] - (2.3-4)
- ¥

and we can therefore rewrite equation (2.3-3) as
EEI](?,t) = Re{(E+€EI] + E;EEI]) exp[i(wt+kz)]} (2.3-5)

+ -
In order to fully appreciate the significance of EZ’ we now define



two (right-handed) coordinate systems, described by a superscript [I] and
[II]. The former system has its z-axis pointing along the direction of
propagation of E1, while the Tatter system has its z-axis oriented to
point along the direction of the conjugate field, EZ' Figure 2.3 shows
these two coordinate systems, along with the polarization and propagation

vectors. From the figure, we see that

oLl gtud g gt (2.3-6)
£ 7S |

-5
A11 the above descriptions relating E] and EZ have been made in
->
the [I]-system. Since E, propagates opposite to E], it is best de-
scribed in the [II]-system. Using the definitions above [equations

(2.3-6)1, we can describe EZ as

EEI”(?,t)' = Re{(E+€£II]+E_€EII]) exp[i(wt-kz)]} (2.3-7)

Therefore, from equation (2.3-1) we immediately find that

1] _ I i
E][] - i ] (2.3-8)

-+
Hence, the conjugate wave (E2) which has the same polarization and
+

eccentricity as E1 propagates exactly in the reversed direction relative

>

to E As mentioned earlier, this feature follows from the conjugator's

1°
Tinear relationship of the incident field to the conjugate field. The
generalization to input fields having arbitrary spatial and polarization
modes easily follows from the results of the preceding section.

We now compare the effects of the conjugate mirror with those of

a conventional mirror for the special case of an incident unity ampli-
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tude left-handed, circularly polarized plane wave. The wave is given
by

e F,e) = RefelH expli (wt-ka) 1} (2.3-9)

The effect of a (perfect) real mirror is to maintain the sense of rota-
tion of the E-f1e1d by virtue of the boundary conditions (regarding the

tangential components of the fields). Therefore

real
el1] mirror,  l11, EEII] (2.3-10)

where we have used equation (2.3-6) to again relate the two coordinate

systems. The reflected field from the real mirror, which we define to

be E3, is given in the [II]-system as

e,e) - Ref 111 expli (ut-kz)]) (2.3-11)

Thus, the real mirror transforms a LHCP wave to a RHCP wave, and vice
versa.
The operation of the conjugate mirror yields, using the same in--

cident field given by (2.3-9), an output field (in the [II]-system) as
e #,1) = el [T expli(ut-kz) 1) (2.3-12)

Therefore, as opposed to the operation of the real mirror, the
conjugate mirror transforms a LHCP wave to a LHCP wave and vice versa.
To an observer traveling with the field, the conjugate field exactly
retraces the spatial locus of points of the "tip" of the rotating
-

E-vector corresponding to the incident field. In the next section we

will investigate the phase conjugate interaction from a microscopic
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point of view.

2.4 A Photon Angular Momentum and Helicity Description of the Phase
Conjugate Interaction

In this section we will briefly examine a photon picture de-
scribing the conjugate mirror interaction. Specifically, we will
consider the photon angular momentum and helicity aspects as a result

of the interaction of a photon with a phase conjugator.

In order to explore these properties on a quantum level, we
recall that a LHCP(RHCP) photon, described earlier by the field unit
vector E+(€_), possesses a Hi(~fi) component of angular momentum along
its direction of propagation [2,5]. Using this definition we see that
the angular momentum eigenstates of E], EZ’ and E3 (from the last
section) are given by LZ = +f,4, and i, respectively (in the [I]-
system). Therefore, the angular momentum change (along the z-axis),

or equivalently, the photon spin change, upon reflection is given by
[8(L,) = (L) 5 - (L,)]

0 real mirror
A(LZ) = (2.4-1)
: -2h phase conjugate mirror
From (2.4-1) we therefore see that for the case of a conjugate
mirror there is a photon spin-flip upon conjugation with no such spin
change for a conventional mirror. |
We next wish to examine the effect of these two types of mir-

rors upon the helicity state of the photon. The helicity operator,

H , is defined by [5]
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T_) >
H = _:;LE__ (2.4-2)
ILlip]
where P = 4k and lL,LZ>'=h|1,il> for photons.
>
Using the above definitions, the helicity states of E], EZ’ and E3 are
given by +1, +1, and -1, respectively. We can now calculate the helic-
jty changes. From (2.4-2), and realizing that the "reflected" photon
has its K-vector or linear momentum directed along a direction opposite
to the incident vector (for both types of mirrors), the resultant helic-
ity change upon reflection is given by [A(H)EEH2 3" H1]
-2 real mirror
A(H) = (2.4-3)
0 phase conjugate mirror
We note that for a RHCP input field, the magnitude of the
results in (2.4-1 and -3) are unchanged, except for a sign change.

From the above arguments we see that a conjugate mirror essentially

"unwinds" the helix that describes the input photon trajectory, or equiv-

alently, gives rise to a photon spin-flip. Thus, the sense of both the
angular and linear momentum vectors of the photon are reversed. In con-
trast, the real mirror yields no such spin-flip, leaving the reflected
photon angular momentum unchanged, while reversing only its linear
momentum. These ideas are summarized in Figure 2.4, where both the wave
and photon pictures are given for both a real mirror (Figure 2.4a) and a
phase conjugate mirror (Fig. 2.4b).

Hence, as expected, both the photon and field descriptions re-
garding the action of the phase conjugate mirror (and the corresponding

comparison with a real mirror) agree with each other. As mentioned
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helicity change upon reflection for each case.
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earlier, superpositions of photons (or fields) can now be formed in
order to evaluate the properties of a general (monochromatic) complex,
conjugate wave. In the next chapter, we will investigate the specific

details of the conjugator itself from both a classical (field) and a

quantum viewpoint, with emphasis upon phase conjugation via four-wave

mixing.

Before proceeding, we emphasize the fact that the kinematic
properties of the phase conjugator as discussed in the last several
sections assumed the existence of an "ideal" conjugator. In reality,
however, these "time-reversal" properties may not all strictly hold.
For example, for certain classes of conjugators, not all incident (ar-
bitrary) wave fronts may realize the same "reflection" coefficient.
This could be due to angle-dependent effects such as phase mismatching
of the input and conjugate waves (to be discussed in the next chapter),
or thermal motion effects within the conjugator itself (see Refs. 35 and
63 of Chapter I). Further, the "reflectivity" may not be uniform, due
to either the geometrical configuration of the conjugator or saturation
effects (to be discussed in the next chapter).

There may also be additional dynamic constraints due to the

conjugator which may affect the angular momentum (or helicity) properties

that relate the input probe and the (conjugated) output field. For
example, the thermal effects as mentioned above may lead to an angle-
dependent polarization rotation of the input and output fields. This
may not be desirable in terms of correcting for stress-induced bire-
fringence of optical componénts (or other polarization scrambling ef-

fects). Further, the angular momentum selection rules that relate to the
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specific quantum levels of the atomic (or molecular) species which con-
stitute the nonlinear medium, or equivalently, the tensorial elements
of the nonlinear susceptibility [3,4] could affect the ability of the
phase conjugate mirror to "time reverse" arbitrary rotating input

-5
E-fields that are incident along arbitrary directions.

We conclude on a positive note by mentioning that the time-
reversal properties of the PCM as discussed thus far in this chapter
have all been verified experimentally. One must be judicious in
selecting the given class of the PCM (e.g., type of nonlinear inter-
action), the geometry (e.g., specific shape of the medium; orienta-
tion, wavelength, and polarization state of any additional input
fields), as well as the specific nonlinear medium comprising the PCM
in order to satisfy one's needs (e.g., operating wavelength effici-

ency, desired reflection coefficient, angular acceptance range, input

signal intensity range, input polarization state, etc.).

2.5 Comnpensation for Nonlinear Optical Phase Distortions via Optical

Phase Conjugation

The ability of nonlinear optical phase conjugate mirrors (PCM)
to correct for linear phase (refractive index) inhomogeneities has been
demonstrated both theoretically and experimentally [1]. In cases in-
volving propagation of high intensity optical beams, there can occur
higher order, field-dependent, nonlinear contributions [6,7] to the
index of refraction such as thermal blooming or self-focusing that one

would wish to compensate. These distortions are often manifested in
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high intensity atmospheric propagation of laser beams, thermally-in-
duced Tensing within intracavity laser gain media, or in high intensity
transmission through optical fibers. In this section, we extend the
analysis of Section 2.2 to consider the effect of conjugate-wave propa-
gation through media characterized by a more general complex permittiv-
ity containing linear and nonlinear field-dependent contributions [10].
A typical geometry is sketched in Figure 2.5. We consider a

monochromatic electromagnetic field at radian frequency w, which

propagates essentially in the +z direction, and is given by

E](?,t) = y(r) exp[i(wt-kz)] + c.c. (2.5-1)

This field encounters a region of space characterized by a complex
intensity- and spatial-dependent permittivity, €. After passage
through this medium, the resultant field s incident upon a PCM

which gives rise to a (conjugate) field given by

EZ(?,t) = f(¥) exp[i(wt+kz)] + c.c. (2.5-2)

This field (Ez) propagates along the -z direction and therefore back

through the nonlinear medium.

We now investigate under what conditions the complex conjugate of the
wave equation satisfied by E1 and the wave equation of E2 are identical.
When that happens, then f(¥)=y*(¥) everywhere (prior to the PCM), and the

"time-reversed" propagation occurs, as discussed in Section 2.2.

We consider the general case when both fields coexist in time (the
compensation scheme will also work for the case of temporally separated

fields). Hence, the total field in space is given by

E(F,t) = [w(r) exp(-ikz) + f(¥) exp(ikz)] exp(jwt) +c.c.
(2.5-3)
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We assume that the isotropic nonlinear medium can be described

by the following permittivity

e =gy (1) + [ ep(F) EIP + ie () (2.5-4)
n:

where the first term describes the linear, spatially-dependent refrac-
tive index inhomogeneities, and the summation depicts the nonlinear
(intensity-dependent), spatially-dependent refractive index contribu-
tions. The term proportional to !El2 (n=1), for example, is called

the intensity-dependent refractive index (or the optical Kerr coeffici-
ent), and is responsible for the nonlinear effects discussed earlier.
Finally, the last (imaginary) term describes the loss (or gain) proper-
ties characterizing the medium.

In the analysis that follows, we retain only the first order non-
linear index term in the above power series. It can be easily shown
that the analysis will yield similar results for all successive intensity-
dependent terms of €.

" Assuming "slow" variations of ¢, i.e., %{de/dxlk << 1, the wave
equation is given by
2

vE - [e(7) + e,(F) |512] 9E-0  (in cgs) (2.5-5)

c 52 .

Substitution of the field (2.5-3) into (2.5-5) yields
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2 2 N
C

2
x exp(-ikz) + {vzf(?m‘-”——g e(F) + i (r) - KAIF(F)
c
2 ->

u

"7 = (P £(F)+2ik L} exp(vika) = 0 (5 5.)

Using (2.5-3) we express |E|2 as

E1% = [0 124 1) 2+ 9 (R)F(F) exp(2ika) + p(F)F¥(F) exp(-2ikz)
(2.5-7)
which, when substituted in (2.5-6), gives
> wzuso(?) W 5
VIP(*")“[—‘—C-Z—-HE (F) - K2Tp(P) + PR 4+ 2]F(7) | “]
. C
< PF) - oqp B0(F)
KU(Y') - 21k lgér) = 0 (2.5-8)
and 2 N
wpey(r) Wl @) %)
(r)+[ +1€I( r) -k ]f( )+ 2 (F)2]v(¥ | 1F(F)] ]f r)
C C
. 2ik a;g?’) - 0 (2.5-9)

In arriving at (2.5-8,9) we set all terms having the exponential
dependences, exp(-ikz) and exp(+ikz) equal to zero separately, and
neglected any nonsynchronous terms (in this case having exp(*3ikz)
dependence).

Note that as a result of the existence of the nonlinear index

term (i.e., €y 7 0), and the coexistence of the counterpropagating fields



- 46 -

[i.e., [2.5-3)], we see from (2.5-7) and (2.5-6) that an additional
synchronous term in exp(+ikz) results, which involves the term from

the product yv*(¥)f(¥)w(¥). This term accounts for the additional fac-
tor of Iw(r)l2 in the differential equation in f(r); a similar sym-
metric coupling yields the added !f(?)l2 term in the differential equa-
tion in y(¥).

Taking the complex conjugate (2.5-8) results in
2 > 2 >
» wpe (r) N L wuey(r)
VU (F) + [ ey (F) - kP (F) + ——— (P12 + 21 (1) 1)
c c

< pR(F) + 2ik AU < (2.5-10)

Upon inspection of (2.5-9,10), we see that the following two condi-

tions need be obeyed in order that y*(r) and f(v) satisfy the same wave
equation
(1) () = ()]
and (2.5-11)
(i1) er(r) = 0

The first condition dictates that the phase conjugate mirror must be
adjusted to yield a unity magnitude (nonlinear) reflectivity (i.e.,
IR| = 1, where R is the complex reflection coefficient characterizing
the PCM). The second condition is satisfied when the nonlinear medium

possesses no loss {or gain).
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Under these two conditions, y*(¥) = f(¥), and thus the

form of E2 as defined in (2.5-2) is

Ez(?,t) = y*(¥) exp[i(ut+kz)] + c.c. (2.5-12)

The field E2 is thus found to be the "conjugate wave" of E], as
discussed in Section 2.2. We conclude that under the conditions given
in (2.5-11), the use of a PCM is capable of yielding a time-reversed
replica of an incident monochromatic field which has been initially
aberrated as a result of propagation through a general, nonlinear
(intensity-dependent), inhomogeneous phase disforting medium, provided
the amplitude of the reflected conjugate wave is adjusted to be equal
to the incident wave before it enters the nonlinear medium. This last

condition was not necessary in phase compensation in linear media.

Perhaps a more subtle point regarding the coexistent forward and
backward-going fields case is that, in addition to the discussion above,
inherent in the wave'equations (2.5-9,10) is a nonlinear coupling of
fields ¥(r) and f(r) via the intensity-dependent medium itself. In the
language of nonlinear optics [6,8], various third order phase-matched
nonlinear polarizations are formed within the medium (as a result of a
nonzero 82(?), providing a coupling of fje]ds ¥(r) and f(¥) into them-
selves as well as into each other. Under the condition that w*(?) =
f(r), these couplings are all symmetric, resulting in identical propaga-

tion evolutions as discussed earlier.
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In practice it may not always be possible to realize a PCM of
unity (magnitude) reflectivity. The "effective" reflectivity can then
be set to unity by using a laser amplifier (assumed to be in the unsat-
urated regime) in front of the PCM such that the product of the double-
pass gain of the amplifier and the PCM reflectivity is equal to unity.
This geometry is sketched in Figure 2.5. An added bonus of this scheme
is that any (non-intensity dependent) phase and/or polarization distor-
tion of the amplifier is corrected by the PCM.

Prior to concluding this section, we discuss a remark made by
Bridges and Pearson [10]. The authors mention that for phase aberra-
tions distributed along the propagation path from the near-field region
to the far-field (focal plane) region, their COAT [as well as our PCO]
system could not yield perfect compensation. This is due to the phase

distortions in the far-field transforming to amplitude distortions at

the transmitter plane, which was shown earlier in this section to be
incapable of perfect compensation.

Alternatively, this result follows physically from the fact that
due to the finite size of the target, diffractive effects result in
amplitude distortions at the phase conjugator's input plane. In the
Fraunhofer 1imit [11], the field distribution at the conjugator input
plane is essentially the spatial Fourier transform of the product of the
aperture function of the target with the spatial phase distortion element.
These amplitude distortions are due to the interference of the various,
complex plane wave (monochromatic) components which are radiated from

the target. Now, due to the finite size of the conjugator, only a
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finite number of these plane wave components are time reversed. This
fact, coupled with the diffractive effects of the conjugator's finite
aperture itself, results in a "conjugate" output wave that cannot
exactly retrace the path of the input field. Of course, a phase con-
jugate mirror of essentially infinite spatial extent (or equivalently,

possessing a system f-number approaching zero)

can compensate for finite sized targets, since all1 plane wave comnonents

that are diffracted.from the . target are received by the PCM and are thus
perfectly time reversed, regardiess of the location of the phase aberrator.

In conclusion, we have shown that any nonlinear (intensity-
dependent), spatially-dependent phase aberration can be compensated
by the use of a PCM. Thus, undesirable distortions such as atmos-
pheric thermal blooming and even intracavity (circulating laser in-
tensity) induced lensing effects can be corrected through the use of
a PCM outside the resonator, or as its use in replacing one (or both)
of the mirrors comprising a laser cavity [9], respectively. We note that

catastrophic self-focusing, which can Tead to other nonlinear effects

such as stimulated Brillouin or Raman scattering, optical damage, or
beam breakup, obviously cannot be corrected by the scheme discussed

herein.
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Appendix 2A

Conjugate Wave Propagation in Linear Lossy (or Gain) Media

In this appendix we discuss the conditions under which a PCM can
compensate for phase aberrations when the distorting medium is also
lossy. For simplicity, we assume that the medium is of length L, and is

characterized by an (intensity) absorption coefficient, o .

We take the forward- and backward-going fields as

E](F,t) = v(r) exp[i(wt) - (ik+0/2)z] + c.c. (2.A-1)

and

r,t) £'(r) exp[i(wt) + (ik+a/2)z - %L] +c.c.

o

£(r) exp[i(wt) + (ik+0/2)z] + c.c. (2.A-2)

respectively. We assume that the PCM is located at the plane z = 0.
The wave equation is given by

o Hlep - ieg) 2¢

V°E - = 0 (2.A-3)
c2 at2
. _ 2 2,,,2 _ 2 -
Now, taking eg =M (1 - a"/74K%), ep = n"a/k [6], and w = kc/n;
substituting E. = E]+E2 in (2.A-3) we get, collecting and setting the

synchronous terms exp(+ikz) separately equal to zero, the two following

equations:
expl-0z/2] {vy*(¥) + 2(ik-o/2) 2} - g (2.A-4)
and

(2.A-5)

f
o

expl+az/2] {V2F(¥) + 2(ik + as2) 2ELr)

9 ()
oz
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where the complex conjugate of the differential equation
y(r) has been taken.

We therefore see that if

k >> a/2 (2.A-6)

then at a given z-plane, the above two differential equations are

identical if
£(r) = exp(-az) v*(¥) (2.A-7)

The condition (2.A-6) implies that each wave has its amplitude
change negligibly over an optical wavelength. We therefore see, in

general, that as long as

£(r) = a(z) v*(¥) | (2.A-8)

where a(z) is a z-dependent, complex quantity characterizing the linear
distorting medium, then the action of a PCM will result in a backward-

going field that unravels the phase distortion. Hence, aside from a constant
amplitude or phase factor due to a(z), the shape of the equiphase sur-

faces, even in the case of lossy (but spatially homogeneous) media,

is the same for both E] and E2 at a given transverse spatial plane, thus

resulting in a time-reversed wavefront.
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Chapter III

PHASE CONJUGATION VIA OPTICAL PARAMETRIC INTERACTIONS

3.1 Introduction

In the last chapter, we discussed the basic properties of phase
conjugators and how they affect an incident wave as seen from both a
microscopic (i.e., photon) and a macroscopic (i.e., field) description.
We are now in a position to investigate the mechanisms of the phase con-
jugator itself. The class of phase conjugator devices we will consider
here consists of those involving optical parametric interactions; or
from a photon point of view, those involving elastic photon-atomic scat-
tering procésses. We will consider two special cases: that of three-
wave and four-wave mixing, and in the process we will compare and con-
trast these two approaches. In the appendix we tabulate several addi-
tional mixing processes that can yield phase conjugate replicas.

Using the formalisms of nonlinear optics we will analyze the
specific case of phase conjugation via degenerate four-wave mixing in
some detail using a plane wave, coupled-mode treatment. It is to this
process that the major portion of this work will be dedicated. Ve will
then extend the analysis to consider conjugation of arbitrary incident
wavefronts (i.e., multiplanar spatial mode fields). We will then dis-
cuss briefly the effects of certain competing linear and nonlinéar loss
mechanisms upon the conjugaticn process.

We will also present a cursory description of the third order
nonlinear optical susceptibiiity which couples the various interacting

fields (and which was treated as a phenomenological parameter in the
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previous treatment) from a quantum mechanical viewpoint. We will util-
ize both the time evolution operator formalism (along with the associated
Feynman diagrams) and a density matrix perturbation approach, in treating
this problem. As specific examples, we will analyze both one- and two-
photon transitions (using two- and three-level quantum systems, respec-
tively) in arriving at an expression for the desired, steady state, third
order nonlinear coupling function.

The chapter will conclude with a brief discussion of the opera-
tional analogs (and also the various differences) of four-wave nonlinear
optical mixing with real-time holography. This will provide the motiva-
tion for several of the "spatial-domain" applications to be discussed in
Chapter V.

The results of this chapter will be relevant to the analysis of
several experiments we performed (to be discussed in the next chapter),
as well as to providing a formalism upon which a myriad of application
areas using four-wave phase conjugators can be examined, several of which

will be considered in the last three chapters of this work.

3.2 Phase Conjugation via Three-Wave Mixing

We now consider a specific case of phase conjugate wavefront gen-
eration by nonlinear optical mixing: that of phase conjugation via three-
wave mixing, first proposed by Yariv [1] and experimentally verified by
Avizonis, et al. [2,3]. The scheme involves the nonlinear mixing of
two input waves: a "probe" wave, E], at a frequency w with wavevector
E] w) and an intense "pump" wave, EZ’ at a frequency 2w with wavevector
>
k

(
2(Zw). These two fields are incident simultaneously upon a medium, which
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couples the fields to yield a third wave, E3, which is proportional to

E;E2 The medium is assumed to pos-

2
sess a nonzero second order nonlinear optical susceptibility,X ﬁL)'

and of frequency Wy = W = 2w-w

We consider these fields to be of the form

s 1 . >
E;(Fot) = 5 A(r)) exp{ifu;t - ki-?)} +c.c.

i=1,2,3 (3.2-1)

where Ai are the complex amplitudes of the fields,and A3 x A?A2 is
sought. A nonlinear polarization [4,5]1 is formed in the medium as a

result of the mixing of the two input fields:

exp{1[ (20-w)t - (ky(20) - k; () F1)
% c.c. (3.2-2)

If the pump wave, E2, is a plane wave, then the nonlinear polari-
zation gives rise to a conjugate replica of E] which, in this case
propagates in the forward direction. Since the nonlinear polarization
has a wavevector EZ(Zw)-E](w), and the field E; propagates with a wave-
vector EB(w), constructive interference of the nonlinear dipoles within

the medium occurs if

|ak[L = [ky(20) - Ky (w) ~ks(w)|L < 2 (3.2-3)

where L is the interaction length. This condition, known as the phase

matching constraint,ensures that the wavefronts of E3 add up in phase

throughout the medium S0 as to yield a maximum output amplitude.
Although this process radiates a wave (E3) that is the conjugate

replica of the probe field (E]), it has several drawbacks. First, for
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typical nonlinear media [5] ZW/IALI is on the order of 100 um, there-
fore limiting the maximum interaction length for efficient nonlinear
coupling. A second drawback is that the phase matching constraint is
angle dependent. This Timits the angular acceptance range of the probe
wave that will satisfy (3.2-3) for a given interaction length. Also,
since the probe and conjugate waves copropagate, the system requires an

additional optical element [1] to realize a backward-going (time-reversed)

conjugate replica: a conventional "real" plane reflecting mirror, effec-
tively changing E3-+ -Ei for each plane wave component of E3. Finally,
these three-wave mixing processes are restricted to media lacking inver-
sion symmetry [4,5]; otherwise, x&f) js identically equal to zero.

A11 the above drawbacks and limitations can be obviated by utiliz-

ing a degenerate four-wave nonlinear mixing process.

3.3 Phase Conjugation via Degenerate Four-Wave Mixing

In this section, we present a coupled mode analysis of phase con-
jugation via backward-wave degenerate four-wave mixing. The geometry
is shown in Figure 3.1. We assume two intense counterpropagating cw
pump waves, denoted by E] and EZ’ to be incident on a medium of Tength
L possessing a third-order nonlinear optical susceptibility Xéf). We
assume that X&E) is a constant characterizing the medium; its physical
origin will be examined later in the chaﬁter. Also incident simultane-
ously on the medium is a third (probe) wave, E4, propagating along an

arbitrary direction relative to the pump fields whose phase conjugate

replica is sought. The desired output wave is defined to be E3.
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A11 four fields are taken to be plane waves of the form

1 . > |
q(ﬁt)=§A1Ui)mmhh%t-kfrﬂ-+cm. (3.3-1)

where Ai is a complex amplitude and c.c. denotes the complex conjugate,
and all fields are taken to be of the same frequency, (i.e., degenerate).

The two pump fields couple with the probe wave via the third
order nonlinear optical susceptibility within the medium to yield a

nonlinear polarization of the form

(w =w=w+w-w) ] L .
3 = l— (3) A AZAZ exp{1[(w+w-w)t ‘(k]+k2_k4)'?]}

PuL 5 XNL P

+ c.c. (3.3_2)

which radiates to give rise to the field, E3. This field in turn

couples with the pump waves to form a resultant nonlinear polarization

given by

(wymw=wtw-w) -
poi L x(3) AAAY explil(whomu)t- (Rq#hy-Ky) 7]

- (
NL T 7 XL M1273

+ c.C. (3.3_3)

Since the pump waves propagate in opposition to each other, the

-
sum of their k vectors is equal to zero

- >
k](w) + kz(w) = 0 : (3.3-4)
and, based upon the phase matching constraint, we also have

Ky(w) + §4(w) = 0 (3.3-5)
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This implies that the conjugate wave (E3) will propagate in opposition

to the probe wave (i.e., E3 = -ﬁﬁ), thus yielding a time-reversed

replica of the probe field. We note that this condition is independent
of the direction of the probe field, thus enabling the conjugation
process to have the same nonlinear gain (or efficiency) for any arbitrary
‘probe wave input angle. Also, since the phase mismatch is identically
equal to zero, constructive interference of the nqn]inear (conjugate

generating) dipoles occurs for any interaction length.

Without loss of generality, we take the fields E3 at E4 to lie
along the z-axis. We wish to solve for the spatial evolution of the
field amplitudes A5(z) and Aj(z)within the nonlinear medium (occupying
the space 0 < z < L). This is accomp]ished‘by solving the wave equation
for the probe and conjugate fields with the proper nonlinear polarization
acting as the driving term:

2
Amr 3 _p ,
2 5t2 AL

B

VE. - & 2 _E. =
i C2 t2 i

2
2 2 i=3,4
3
(3.3-6)
where we assume p = 1, with £ denoting the Tinear permittivity of the

medi um,

Neglecting depletion of the pump waves, i.e., putting

i _ o1
@ "0 iThe (3.3-7)

and invoking the adiabatic approximation



- 6] -

2
d Ai

2

k dA

|«
|

’k A, , » 1=3,4 (3.3-8)

dz

we obtain the following coupled mode equations

dA
.a_§ = ik* AZ .
and (3.3-9)
*
Eﬁi = ik A
dz 3

The complex coupling constant, x, is given by

2mw (3)
K= R XL M ’

(3.3-10)
where n is the linear index of refraction of the nonlinear medium.
Since the coupled mode equations require two boundary condi-
tions, we can choose to specify the signal and conjugate wave ampli-
tudes at their respective input planes as A3(z=L) and A4(z=0). The

solutions, subject to these boundary conditions are

A3(z) = %%§+E+§ AL(L) }ET Slngjf - M (0) (3.3-11)
and -

_ilklsin|k|z cosik|(z-L) px
) = K*COSIK‘L A3(L) * =os KiL A4(0)

A case of particular interest is one where there exists only a

single input probe field, A4(O), with A3(L) = 0. Under these conditions

the reflected wave at the input plane is, from equation (3.3-11),

A3(0) = -1‘(-'](-;—!— tan|k[L) A%(0) (3.3-12)
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while the forward-going probe amplitude at the output plane is

_A00)

3.3-13)
4 cos |k|L (

I
—~

From equations (3.3-12) and (3.3-13) we note some of the major features
of this interaction. First, from (3.3-12) we see that A3(O) « AZ(O),
thus rendering the interacting medium equivalent to a "time-reversal”

mirror, with the output wave propagating in a direction opposite to

and thus retracing the path of the input field. Second, from (3.3-13),
the forward-going field at the output plane is always an amplified

version of its initial amplitude. Next, the nonlinear power reflection
coefficient, defined to be

A3(O) 2

K4205

=
i

2

can exceed unity when |k|L > m/4, thus yielding an amplified, time-
reversed output. This can be accomplished in practice by either in-
creasing the interaction length (i.e., L) or by increasing the pump
field intensity (since k* « A]Az). Finally, in the limit

|c|L + m/2, the reflectivity becomes infinite, resulting in a mirror-

less self-oscillation mode. That is,

A3(O) A4(L)
A4(O) s A4(0) > ® (3.3-]5)

even with no input probe present. This system is a special case of an

optical parametric oscillator [6]. Figures 3.2 and 3.3 depict cases of
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amplified reflection and oscillation, respectively, where the spatial
evolution of the probe and conjugate wave (power) is plotted as a func-
tion of the normalized interaction length, |k|z. We note that in our
model, the oscillation mode is possible only if E]-PEZ =0 (i.e.,
exactly counterpropagating pump waves) for the degenerate case. We

will show in Section 6.2 that for any nonzero phase mismatch (thus viol-
ating the above constraint), oscillation ceases.

The above features of amplification and oscillation follow physi-
cally from the fact that both E3 and E4 continuously couple to each
other throughout the nonlinear medium at the expense of the pump photons.
In Figure 3.4 we sketch diagrammatically the nonlinear process from a
photon point of view. At each interaction "site" two pump photons are
annihilated, with the simultaneous stimulation of one photon along the

direction of the probe photon (having identical quantum numbers of the

probe photon)and a second photon (having opposite quantum numbers) along

a direction counterpropagating with respect to the probe photon. We
thus see that the probe photon imparts no net linear momentum, and hence
no radiation pressure to the "conjugate mirror," for the degenerate,
lossless case. This is in contrast to a perfect real mirror, where a
net photon momentum transfer of Zhg-is imparted.

Alternatively, one can view the "interaction" as an elastic scat-
tering of pump photons off of the interaction site into the appropriate
directions, consistent with conservation of total photon number and
momentum. Thus, the forward-going photon flux always exceeds that of

its input; the conjugate photon flux can exceed that of the corresponding
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input flux if there exists a sufficient number of interaction sites within
the medium, or alternatively, if the nonlinear gain |k|L exceeds /4.

This fact can be seen by the following simple argument. Recall that from
(3.3-14), the power nonlinear reflection coefficient is given by

R = tanZIKIL. Now, from (3.3-13), we define the power transmission coef-

ficient of the probe field as ’

2
| x| 3

T E K;T67 = sec  |K|L (3.3-16)

One can now define the effective gain (in excess of unity) experienced

by the forward-going wave as

G=T -1 (3.3-17)

since, in the 1imit of |k|L > 0 (i.e., no nonlinear interaction) we
expect no amplification of A4. From (3.3-14,16, and 17) we see that
G = R, implying that any photons gained by the forward-going beam are
equal to the number of photons generated for the conjugate wave.

We also note that for small nonlinear gains, the non11hear power
reflection and transmission coefficients become

|| L << m . » 2
R ———— ([x[L) 5 T->1+0O[(|«[L)] (3.3-18)

respectively, where the small angle approximation for tan(s) ~ 6 was
used. The small signal Timit for R was first derived by Hellwarth [7].
Due to the small gain approximation, the possibility for amplified

reflection, transmission, or oscillation was not revealed. This result
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for R can be obtained from the coupled mode equations directly by assum-
ing no depletion of the probe wave (in addition to the pump fields).
Hence, dA,/dz = 0, and the differential equation for A3(z) [the first
of equations (3.3-9)] can be integrated directly, yielding (3.3-18).
The photon picture as described in Figure 3.4 can be made ex-
plicit by the following discussion. Assume that the participating elec-
tromagnetic fields can be quantized. We further assume that each field (Ez)
has nﬁ’photons initially. Thus, the initial photon state of the system

has the form [5]
[1> = ln] Ny sNgsN,> (3.3-19)

The perturbation Hamiltonian [5] of the system is given by

> 1. >
o= - B o= -GpPyLcE (3.3-20)

>
where PNL is the nonlinear polarization as given by (3.3-2). Hence, we

can write (3.3-20) as

0 o« X(3)E]E2E§EZ (3.3-21)

or, in terms of the creation (a?) and annihilation (ai) operators [5],
+ ‘
a4 ! (3.3-22)

consistent with the previous arguments.

We thus have the following nonzero matrix element:
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Hes = <FIH'|i> =

Tt
<n]-1,n2—1,n3+1,n4+1la]a2a3a4|n]n2n3n4> (3.3-23)

Using the definition of these operators (i.e., a+|n> = /ntl|n+l>,
and ajn> = v/ |n -1>) leads to the following transition rate
2
|

T « 'H%i o« n]nz(n3+1)(n4+1) (3.3-24)

We see from (3.3-23) by inspecting the final state |f>, and the
definition of the operators, that the result of the perturbation Hamil-

tonian is to annihilate one photon from each pump beam (E, ,), and to

1,2
stimulate (or create) a photon in both the probe (E4) and conjugate

(E3) states. This result is, of course, in agreement with the pre-
vious field description leading to (3.3-16,17) and also with the schem-
atic representation shown in Figure 3.4. We further see from (3.3-24)
the possibility of mirrorless oscillation, since there exists a nonzero
transition rate even in the absence of probe or conjugate . photons
(i.e., if n3==n4==0, I # 0), which is in agreement with the arguments
leading to (3.3-15). Finally, energy is conserved in the above descrip-

tion, since the total photon energy in the initial state is E(]i>) =

ﬁu(n]+n2+n3+n4), whereas the total energy in the final state is

E(]f>) = ﬁhi(n1-1)'+(n2f1)7+(n3+1)-F(n4+1)] = E(li>). This result will
be seen to be consistent with a quantum mechanical description of the
interaction (see Sections 3.8 and 3.9 ), where we will show that the

atomic (or molecular) species responsible for the nonlinear coupling
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remains in the same energy state before and after the interaction:thus

the photons, or, equivalently, the interacting fields, possess the
same total energy prior to and following the nonlinear mixing. (This
is merely a restatement of the elastic photon-atom scattering descrip-

tion alluded to earlier.)

3.4 Conjugation of Arbitrary Wavefronts via Degenerate Four-Wave Mixing

Thus far we have considered only plane waves for the probe and
conjugate fields. However, since the coupled mode equations are linear
in terms of A3 and A4, with the resultant solutions being independent
of their propagation directions, the principle of superposition can be
applied. That is, for an arbitrary probe wave, one can formally
decompose linearly this field into its plane wave components, each com-
ponent having a well defined complex amplitude with its associated wave
vector. Now, each of these components will give rise to its own conju-
gate replica by virtue of equation (3.3-12), all having the same non-

linear reflection coefficient (this assumes of course a "spherical"

nonlinear medium, such that all components encounter the same nonlinear

gain, |k|L). This set of conjugated components can now be superposed

in order to yield the resultant conjugate replica of the input field.
The above statements can be provéd formally as follows: We use

the same notation as in Section 3.3 and take the four fields as

£ (Fat) = 7 A (xuy2) A c.c.

(3.4-1)
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The waves propagate predominantly in the z-direction, but in contrast

to Section 3.3 we allow the input wave A4 and the reflected wave A3 to

be arbitrary complex functions of the transverse coordinates rather
than plane waves. The pump waves A],A2 are again taken as nondepleted

plane waves.

A](x,y,z) = Az(x,y,z) = const. (3.4-2)
- - _

k1 + k2 = 0

wyp twy =gty (3.4-3)

The four waves are coupled through the nonlinear polarization as in

(3.3-2,3)

i ) 1 (3) « Tugt -i(kqtky-kg)er
PaL(wgeytuymug) = 5 "AjAAz e T e ’
> = -
1 @)y e Tugt TR T
PyL(wgmortuymw,) = 5 i AJAA e T e (3.4-4)

(3)(, = 3
Assume x| (w4—w]+u@-u§) = x&L)(w3=w]+w2-w4). The wave propagation

equation with the nonlinear polarization as the squrce term is giyen by

N
= Am 7 .
E CZ 5 P (3.4-5)
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Equating terms of the same dependence on both sides, we get, assuming

..+
k3 + k4 =0, u=1, scalar amplitudes , and
dA. dA, )
d22 << ki ik and ‘ki Ai s for i= 3,4,

the following two relationships

. 3 2 _  Ar 2 *
-2ik (X,y,2) + V A(x,y,z) = 4 w2 XA A A (3.24-7)
4824’ 4\ %5 c24 17273

We expand A4(x,y,z) and A3(x,y,z) in terms of Fourier transforms involv-

ing the transverse coordinates x and y

> (3.4-8)
e ik, >
Ay(x.y,2) = J Ay(k)o2) e 11 dzkL
> '”-2 - -+
Ay(xay,2) = J Ay(K s2) e 11 dzkl
N R T I-
- J Ay(-k|.2) e Ll dzkl (3.4-9)

2

where we assumed gi << k%, so that E3(x,y,z) and E4(x,y,z) satisfy

(3.4-5). Substituting (3.4-8,9) into (3.4-6,7) and equating the terms

with the same x,y dependence, we get

2 + 4ﬂXw2

21 k3 32 3(k-l_ Z) + kJ_ 3 -L,Z) = C2 3 A A A4( k-L,Z) (3'4_10)



- 73 -

2
47X
ik, o K 2 v - 4 *xp 7
21k4 37 A4(k-L9Z) + k_l_ A4(k_l_’2) = -"——CZ A1A2A3(-k_l_’2) (3,4—]])

Next, we rearrange (3.4-10,11), take the complex conjugate of (3.4-11),

and use
- _w -> _ W o i
k4 =2 nk4 » k3 = - nk4 (3.4-12)
The result is
-k2 A
3 A.(Kpaz) = 1 —=— A(K,.2) + ik* A*(-K,,2) (3.4-13)
sz Mol 2) = 1 Al al-kps '
c
2
9 * 7 s * 7 . > _
§A4(k_|_’z) =1 ) W " A4(k-]_,2) + '|KA3(-k-L,Z) (3.4 ]4)
c
where
2
el
c 2(%-n)
Rep]acing\Ei-by -?l in equation (3.4-14) we get
8A+ _-Kk?_ ' . 15)
=5 3(5L,z) = -1 —= AB(KL,Z) + ik A4(-KL’Z) (3.4-
3 * - - .>\k_2L * - . ng 4 -|6
= A4(-KL,Z) = -1 A4(-KL,Z) + 1KA3(5L,2) (3.4-16)
where ) = %§-= iﬂ Integrating (3.4-15) and (3.4-16), we get
('C'n) ) «
-1 —= z
4

A3(FL,2) = e {Cqcos[k[z + Czsin]Klz} (3.4-17)



AZ("I_{LsZ) = '.I—;_*‘ {—g-z' A3(T<-Lsz) + i _4'1? A3(k.l_,2) }
2

= e {iCysinlklz - iCycos ||z} lE&- (3.4-18)

As in Section 3.3, we take the field A4(x,y,0) as given and A3(x,y,L)= 0.

+
In  the Fourier domain this amounts to specifying A4(KL,O) and taking

AZ(-EL,O) —_ lE-,L- C, = 1AZ(-I<1,0)

_> »
AB(KL,L) = 0 == Cjcos[k|L + Cysinfx|L =
These conditions are used to defermine C2 and C], giving

. K* e, T
C2 =1 TETA4(—|(-L,0)
¢, = -CztaanlL

so that (3.4-17) and (3.4-18) yield

2
Ak
. _ -i—ﬁz K*A4( 0)
A3(kJ_’Z) =1e€ ﬁmS]HIKI(Z~ L) (3.4-]9)
AKk2
x, > -1 "Z# Z x> cos |kl (z - L)
A4(-KL,2) = e A4(-k ,O)' cos | L (3.4-20)

The Fourier transform of the reflected wave at z=0 is
-> _ K* *, _
A3(KL,O) = - TET—1(taanlL) A4(-KL,O) (3.4-21)

where k is independent of';L. The reflected wave at z = 0 is uniquely
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determined by the parabolic equation
2i(- Wy o 2 - -
2i(- 2 n) =5 As(x.y,2) + Ve As(x,y,2) 0 (3.4-22)

and the boundary condition at z = 0

gl

-+ k- >
Ay(x,y,0) = f A4k} ,0) e L1 dzk_l_

> ik, -r 2
= -1 (+5F tan LJA—k,O Ll o, (3.4-23
T‘T‘ lK] ) 4( l. ) e i. ( )
The incident wave obeys the differential equation
21(2n) & A, (x,y,2) + ¥ Ay(x,y,z) = 0 (3.4-24)
c 3z 4 "I t 4 Y )
and the boundary condition
E >
ikyer
_ > 2-+
Bylxoy.0) = [ mg(kp0) e Ll By (3.4-25)

Taking the complex conjugate of (3.4-25) and also replacing ;L by -;L

results in
(21 £n) 2= Aj(x.y,2) + T AX(x,y,2) = O (3.4-26)
* *, T ik_l_‘?‘_l_ 27
A4(x,y,0) = f A4(-EL,O) e d KL (3.4-27)

We thus find that at z < 0, A3(x,y,z) and AZ(x,y,z) obey the same
differential equation (3.4-22 or 26) and, within a hu]tip]icative con-
stant (equal to (-ik*/|[«|)tan|k|L), the same boundary condition (3.4-23

or 27). It thus follows from the uniqueness property of the solutions

of (3.4-22) that
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. .2 <0) = i ik *
3(X Y,Z < ) ](TE]_ tan{K[L)A4(X,.Y,Z) (34_28)

which is the desired result; this result reduces to that of the plane wave
case as derived in Section 3.3 (in the limit of no transverse dependence

of the fields A4 and A3).

3.5 One-Mirror Assisted Parametric Oscillation

In the above discussion we derived a condition for mirrorless
oscillation, |k|L » m/2. This mode of oscillation, which would occur
most probably along the direction of the pump waves, may be undesirable
due to the degeneracy of both the frequency and direction of the oscil-
lating fields with respect to the pump fields. In certain nonlinear
media, polarization discrimination can be used to distinguish between the
pump and oscillating waves (the experiment discussed in the next chapter
utilizes this scheme). To solve the problem, we may add a single reflec-
for along an arbitrary direction as shown in Figure 3.5. The presence of
this mirror, assumed to be at z = L, now imposes a new boundary condition

given by

Ay(L) = rA (L) (3.5-1)

where r is the amplitude reflectivity of the mirror. Using this boundary

condition in equation (3.3-11), the oscillation condition now becomes
S | |
[|L = tan (T?T) (3.5-2)

We see that in the limit of zero reflectivity (|r] -~ 0) the (now

mirrorless) oscillation condition |k|L = m/2 is obtained, consistent
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with equation (3.3-14). However, when the reflection coefficient (de-

fined to be R3 = [r[z)approaches unity, the oscillation condition

becomes
]KIL = /4 (3.5-3)

thus yielding a condition which is a factor of two less than that of the
no-mirror case. This result has been experimentally verified recently

by Bloom, et al. [g] using sodium vapor as the nonlinear medium. In the
next chapter, we discuss an experiment we performed using a transparent
nonlinear medium (CSZ)’ which also yielded one-mirror assisted parametric
oscillation.

The above result for the oscillation condition makes physical
sense in that a value of |k|L = /4 yields a nonlinear reflection coef-
ficient, R, of unity for the conjugate mirror. We note that a passive
resonator comprised of two unity-reflectivity lossless mirrors (R,R3= 1)
satisfies the amplitude oscillation condition constraint when analyzed in
the conventional, self-consistent formalism [5].

The above scheme may be of practical use if the conjugator is
placed within an existing laser oscillator. Assuming that the laser
(with this intracavity conjugator)is still above its oscillation threshold,
the laser intracavity fields would constitute the two counterpropagating
pump waves (A] and A2 in Figure 3.5). One can then couple out the laser
photons by merely placing an "output coupling" mirror of the desired
curvature in the vicinity (e.g., at the z=L plane) of the conjugator.

This system could be important for use in high power lasers, which may

require water cooled optics. Hence, the two laser mirrors as well as the
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"output coupling" mirror may be highly reflecting and water cooled; the
laser output would then emerge from the z = 0 surface of the phase con-
jugator,

In conclusion, we note that this scheme has been applied to a
plane wave analysis describing the phase conjugator. Care must be taken
when treating the more general case of Gaussian modes within this one-
mirror oscillator. This situation will be considered in Chapter VII.

However, despite this fact, the above results are qualitatively accurate.

3.6 Effects of Linear Losses upon Degenerate Four-Wave Mixing

Thus far in this chapter we have assumed that the nonlinear opti-
cal processes which gave rise to phase conjugated fields occurred in
lossless media. In this and the next section, we will consider the
effects of various loss mechanisms, as well as competing nonlinear opti-
cal processes upon the interaction of interest. We start by considering
linear losses; the effects of nonlinear losses such as pump depletion,
self-focusing, other third order (i.e., elastic photon scattering)
processes, as well as stimulated Brillouin and Raman scattering, will
be discussed in the next section.

We now consider the effects of linear losses denoted by an inten-
sity absorption coefficient, o, upon the phase conjugate interaction.

We assume this loss factor to be a constant. independént of the intensity
of the interacting fields; that is, an unsaturable loss mechanism.
Physically, this can be due to Rayleigh scattering, where the optical
frequencies are far from any material resonances. Many maferia]s,

nominally transparent, have small absorption coefficients in the visible
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region of the spectrum due to U.V. and I.R. transitions. The linear
losses will be shown below to eventually dominate the interaction when
the interaction lengths exceed 1/a. These lengths, which can be on

the order of 100 m, can be realized in optical fibers (to be considered
in the next chapter ),

We thus characterize the medium by two parameters: the loss fac-
tor o, and the third order nonlinear optical susceptibility X§5)~ We
note that rigorously, o and x&f) are intimately related to each other
due to the fact that quantum mechanically they both arise from the inter-
acfion of the input photons with the various quantized levels character-
izing the medium. For simple resonant systems such as two-level systems
[9], or rotation-vibration structures [10], the connections between o
and X&E) can be shown explicitly. In the former case, atomic motion ef-
fects can also be treated [11]. However, in more complex systems, such
as transparent liquids and solids or glasses, there is no simple tract-
able relationship between these two parameters, due to the photons'
interaction with a large number of nonresonant energy levels. Hellwarth
[12] discusses and tabulates these parameters from a phenomenological
viewpoint for many common materials.

Since the Toss factors merely attenuate all the participating
fields, we expect that the various features described in the last
sections which characterize the phase conjugate interaction to still
hold. However, we now anticipate that the overall efficiency of the in-
teraction will decrease, and that the onset of oscillation will be more

difficult to realize. We further expect that a system with linear

Tosses to faithfully yield a phase conjugate replica by recalling the
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discussion of Appendix 2A. There we considered the ability of a (loss-

less) phase conjugator to compensate for phase aberrations incurred as

a result of propagation through a lossy medium possessing linear refrac-

tive index inhomoéeneities. Although the amplitude of the time-reversed
field did not match that of the incident wave, phase compensation was
predicted, since the necessary condition for compensation is that the
equiphase surfaces of the forward and conjugate-waves match at each

point in space (and not necessarily the amplitude). In the present case,
‘the losses are concentrated within the conjugator itself, as opposed to
being present in the aberrating medium.

We consider a geometry where the counterpropagating pump fields
propagate along some arbitrary (x) axis, over a distance Lp within the
nonlinear medium; the probe and conjugate fields propagate along the
z axis over a distance L, not necessarily orthogonal to the pump field

axis; the geometry shown earlier in Figure 3.1 applies. We write

. - = OX
E, = %JA] eilwt-kx) =2 7% C.C.
and 1 (3.6-1)
. 5 o{x-L_)
E2 = %-AZ e1(wt+kx) e2 P yec.c.

for the pump beams, while

.,
A - = az
Ey =5 Ay o f(wt-k2) e 2+

and (3.6-2)

]
e o1 Gilutrkz) Z (L)

3 2 3 + C’.‘C.



- 82 -

describe the probe and conjugate fields, respectively. A1l fields are
assumed to be of the same frequency (i.e., degenerate) and are taken to
be plane waves for simplicity; a is the linear (intensity) absorption
coefficient.

We form the nonlinear polarization pair at W= 0 and W= W

and insert these functions into the wave equation (with u = 1)

. 2
2 lerter) e g Py
J Y Y

j=3,4 (3.6-3)

which now is seen to contain a complex permittivity to describe the

Tinear losses- We obtain straightforwardly the following coupled mode

equations :
B dA? - % a(L +L)
(ik - o+ =ihge 2 P % (ik)
and (3.6-4)
1
dA - Lol -L)
(ik+3) 5= icabe 2P &%)

where k* is defined by equation (3.3-10). In the wave equation,

= n2(1-a2/4k2) and €; = nza/k, which follows after assuming

in the unperturbed case (PNL==O); k = wn/c.

R
E o ei(wt-kz) e—az/Z

In deriving equation (3.6-4), we followed the same procedure and

approximations as in the lossless case (c.f., Section 3.3). We now

assume that

ik + 5 ik (3.6-5)

4 -1, .
cm ') is much greater than o for most transparent

since k(= 2n/x ~ 10
materials (o ~ 10'4cm'] for C52 at A~ 1 pm). This assumption is also con-
sistent with the adiabatic (or WKB) approximation, which physically means

that the interacting fields do not change appreciably over a wavelength.
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Solving equation (3.6-4) subject to the boundary condition for
a single (probe) input, A4(z=0) = A4(0) and A3(z=L) = 0, yields the
following result for the amplitude reflectivity,

_ ) -L
E3(z=0) ) A3(z) e ?-a(z )

r = =
E,(z=0) 1
4 * - 5 oz
Alz) e ¢ 220
- %—uL
-2ik* e P tan(x_..L)
- eff (3.6-6)
where
-al
2 ¢ 2
Keff \/|K| e P-(3) (3.6-7)

The oscillation condition results when the reflectivity approaches
infinity, or equivalently, when the denominator of (3.6-6) vanishes. We
thus obtain the following transcendental equation for the oscillation

condition:

Ko g
o

tan(KeffL) = -
(3.6-8)
We note that both the reflectivity and the oscillation condition
reduce correctly to their respective lossless expressions [(3.3-12)
and |k|L = m/2 , respectivelyl, in the limit of a >~ 0. In this limit,
Keff ™ lc|. To examine the effects of g upon the interaction explicitly
we plot in Figure 3.6 the nonlinear power reflection coefficient,

R = |r|2, as a function of interaction length for two different values
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of |k|. These two values of |k| correspond to the case where the non-

linear medium is CS, (xéi) " 1.2)(10']2esu; a = 1.37 x10"%en™? or
59 db/km), and is irradiated with pump beams (at 1.06 um wavelength)
of 796 kw/cm2 and 159 kw/cmz, respectively. This corresponds

to |k| = 1.16 x 107 em™? and 2.33 x 107 em L, respectively, where

!Kl[cm']] = (32)(107 ﬂ3/c)(Xﬁﬁ)[esu]/k[cm]nz)(\JI]IZ[W/cm?] Y. The
Tong interaction lengths shown in the figure can be realized using
optical fibers (see next chapter); in fact, for a CS2 filled optical
fiber of 20 wm I.D., the two above values for |«| can be realized using
a cw laser of 2.5 and 0.5 watts (within the fiber), respectively.

Also plotted for each value of |k| is a second curve assuming
no linear losses (0=0). We have neglected competing effects such as
stimulated Brillouin or Raman scattering, and have assumed that the
laser coherence length is greater than the interaction length (the
Taser coherence length places a fundamental limit upon the maximum
interaction lTength due to destructive interference effects of the non-
linearly induced dipoles); we further assume that the pump and signal
interaction lengths are equal (Lp= L). From the figure, we see that
due to the presence of linear losses, the nonlinear reflection coeffi-
cient is lower than that obtained without loss. In addition, to
achieve oscillation requires longer interaction lengths, or equiva-

lently, greater nonlinear gains. Further, for "insufficient" pumping

(<| = 2.33 x 10'4cm"1), the linear losses dominate over the non-
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linear coupling coefficient, resulting in the lack of oscillation. In
this case, Keff becomes pure imaginary, with the tangent functions being
replaced by hyperbolic tangent functions in the expressions for r. Hence,
the maximum reflection coefficient occurs at an interaction Tength on

the order of L0 £ 1/0,, as shown in the figure. This value for the

p
optimal interaction length is not unlike those obtained for other third
order nonlinear optical processes such as SRS in long fibers [13] under
similar (1inear) lossy conditions. We finally note that the region
between oscillation peaks in the figure is not physical, due to nonlinear
pump depletion or saturation (i.e., photon number -comservation), which
were neglected. In actuality, once oscillation begins, a small increase
in the interaction length would result in an increased oscillation out-
put power [14-16] and not a decrease in the reflectivity as the figure
indicates. This assumes that another oscillation peak follows the one
considered; after the last oscillation peak, the linear losses finally
begin to dominate the other processes, ultimately resulting in a cessa-
tion of oscillation. |

It is seen from the expression for the nonlinear reflectivity
(3.6-6) that the pump beam interaction length enters through the ex -
ponent that multiplies «*, thus rendering an effective decreased pump beam
pump Ipump e-uLp) as well as appearing in K cc. This sug-

gests that by choosing interaction geometries that minimize the pump

intensity (I

beam interaction length relative to the signal/conjugate length, one

can realize more efficient conjugators. To illustrate this effect, we
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show in Figure 3.7 the family of locus of points satisfying the oscil-
lation condition [equation (3.6-8)], where |«|[L, the nonlinear gain,
is plotted as a function of oL, the signal extinction coefficient, for
several values of the pump-to-signal interaction length ratio, Lp/L.
We see that for a fixed value of |k|L and oL, one can optimize the
phase conjugate efficiency (at least in terms of the oscillation con-
dition) by minimizing [maximizing] the ratio Lp/L for the lossy (a>0)
[gain{a<0)] case.

In the limit of large al, the oscillation requirements (i.e.,
the necessary magnitude of |k|L) impose such great demands upon the pump
intensity that competing effects (such as SRS, SBS, self-focusing, etc.)
thus far neglected, become appreciable. For alL small, the oscillation
condition is seen to approach |«x|L = w/2, consistent with the lossless
case analysis.

Also sketched in Figure 3.7 are the two values of |k|L vs. al
(the straight lines) that were considered in plotting Figure 3.6. It
is seen ‘that for the larger value of |k|, oscillation is possible (at
the intersection of the straight line and the Lp/L.=1 curve, point "A").
On the other hand, for the smaller value of |k|, one cannot realize
oscillation (for Lp/L = 1), which is consistent with the results pre-
sented in Figure 3.6. However, it is seen in Figure 3.7 that if we
choose Lp/L==0.1, then (at "B") there exists a point where the oscil-
lation condition is satisfied(at |«|[L = 1.45xm/2) for the smaller

value of |k|.

Finally, in Figure 3.7, we plot the locus of points for the

oscillation condition of the case of o < 0, that is, four-wave mixing
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Plot of the locus of points that satisfy the oscillation condition
[equation (3.6-8)] as a function of |k|L and al, for different values
of the pump-to-signal interaction length, L,/L. Algo s?own are plots
of |k|L vs.aL (straight lines) for IK? ="1.%6 x 10-3cn-! and

|| = 2.33 x 10-4em-1 for CS,; dots indicate possible oscillation points.
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in the presence of a linear, unsaturable gain. For this plot we set
Lp/L = 1, It is seen that the resultant oscillation condition requires

values of |k|L < m/2 as expected.

3.7 Effects of Nonlinear Interactions upon Degenerate Four-Wave Mixing

In this section we will discuss briefly the effect of nonlinear
processes upon degenerate four-wave phase conjugators. We will consider
first how pump depletion affects the efficiency of the interaction. Next,
other third-order processes such as self-focusing will be discussed.
Finally, stimulated, inelastic interactions (SRS, SBS, etc.) will be con-

sidered.

A. Pump Depletion

Thus far in our analysis of four-wave mixing we have assumed that

the pump fields were not affected by the presence of the probe field

within the nonlinear medium, hence not strictly conserving the total
photon number. The only loss mechanism we considered was that involv-
ing linear losses. The nondepleted pump approximation (i.e., neglecting
nonlinear losses) can be justified as long as the probe field amplitudes
are small (|A3,4| << IA]’ZI) and also when the nonlinear gain is small
enough to be far from the oscillation condition (|k|L < m/2). The use

of the nondepleted pump approximation results in the simple, coupled

mode analysis discussed in Section 3.3. However, when the above condi-
tions are no longer met, a more detailed analysis is required, which must
conserve the total photon number, in order to more precisely evaluate

parameters such as the nonlinear power reflectivity and, more important,
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the fidelity of the "time-reversed" wave so generated. Qualitatively,

one expects that the nonlinear reflectivity is reduced from that of the
nondepleted approximation, and further, that the conjugate wave "degrades,"
that is, it begins to deviate from a perfect time-reversed replica of the
input probe field. This latter effect is expected to occur at large non-
Tinear gains since, among other things, the spatial regions within the
nonlinear medium,corresponding to large probe amplitudes, will result in
smaller local nonlinear reflectivities. This implies that the conjugator
will have a nonuniform (spatially dependent) reflectivity. Hence, the
conjugate wave will acquire this effect in the form of a transverse
spatial modulation of its amplitude, thus yielding a degraded time-
reversed replica.

In the analysis that follows, we assume that all four plane wave,

interacting fields propagate colinearly within the nonlinear medium. As

mentioned previously, polarization discrimination can be used to dis-
tinguish between the pump field pair and the probe/conjugate wave pair.
Further, we assume that the medium also possesses a linear loss, charac-
terized by an (intensity) absorption coefficient a which is assumed
real.

Following the same procedure leading to the coupled mode equations
(3.3-9), we form two new nonlinear polarizations at Wy and W, by writing
equations (3.3-2) and (3.3=3), replacing A, and A, with A, and Ag (along

with the corresponding frequencies and wave vectors), respectively. Using
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the adiabatic approximations for A] and A2 via (3.3-8), we arrive at

the following set of coupled mode equations

ﬁ= iBAZ Ay A, - 2 AY

z 374 72 7™

dA

2 _ . * 0

az " IBA3 A A -5 A,

dA

3o * 3.7-1
az - BA Ay Ay - 5 Ay ( )
d—A—L iBAT Ay A, - 2 AY

z 172737 2™
_ 2mw (3). . e . .

where B = 7ﬁ?'XNL ; B is assumed to be real for simplicity, and o is

the intensity (nonsaturating) absorption coefficient. In this form we
see that the pair A1 and A4 propagate along the same direction. The
same is true for the pair A2 and A3. The two pairs propagate in oppo-

site directions with respect to each other.

We wish to solve these four complex, coupled differential equa-
tions (actually a set of eight equations) for the spatial evolution of
their complex amplitudes, given the values of each complex amplitude at
its respective input plane: A](O), A2(L),'A3(L), and A4(O). Given values
for o and B, equations (3.7~1) were solved numerically using the follow-
ing self-consistent iteration procedure. The complex amplitudes A](z)
and A4(z) were first assumed fixed and constant over the entire interac-
tion length, L; that is, A](z) = A](O) and A4(z) = A4(0) for 0 <z < L.

Using these values, A2(z) and A3(z) were solved by numerically integrat-
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ing their respective differential equations from z = L to z = 0, given
the boundary conditions A2(L) and A3(L). The differential equations for
A1(z) and A4(z) were then numerically integrated fromz = 0 to z = L,
using the values for Az(z) and A3(z) from the previous integrations, as
well as the initial values for A](O) and A4(O). The procedure would then
repeat until a self-consistent set of solutions was obtained. We assumed
the solutions to be self-consistent when the set of complex amplitudes of

the four fields at their respective output planes agreed within a preset

fraction with that from the previous iteration. We note, however, that the
above numerical technique did not converge as the oscillation condition
was approached, due to the large exchange of photon flux from the pump
to the probe/conjugate fields.

Results of two different cases are shown in Figures 3.8 and 3.9
where the spatial evolution of the pump fields along with the conjugate
and probe fields (i.e., iA1-|2 i=1,2,3,4, respectively) within the non-
Tinear medium is plotted as a function of the normalized interaction
Jength (L). For both plots, we have assumed that the input fields (at
their respective input planes) are given by A1(z=0) =1/V/2. , A2(z=L) =

1//2, A4(z=L) = 0, and A;(z=0) = /3/2; with 8 = 7/2 and L = 1. These
values were chosen so as to yield a unity nonlinear reflection coeffi-
cient (i.e. |k|L = m/4), if the effects of pump depletion and linear

losses are neglected. The difference between Figures 3.8 and 3.9 is

!
o
~—
»

that in the former case we assumed no linear losses (i.e., a =

while for the latter case we assumed large linear losses (i.e., a = 2,
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which implies that al/2 > |k[L). We note that the large value of A,
relative to A]’2 was chosen to "stress" the system relative to the
small-signal case.

Referring to Figure 3.8, we see that as a result of pump deple-
tion the nonlinear (power) reflection coefficient U!E[As(O)/A4(O)[2) is
37% as compared to the small-signal value [from (3.3-14)] of 100% for the
parameters chosen. In addition, the (power) transmission coefficient
(T = |A4(L)/A4(O)|2) is v 137%, as compared to the small signal value
of 200%. We thus see clearly the effects of pump depletion upon the
interaction efficiency. For comparative purposes, we also plot the spa-
tial evolution of lA4|2 and iA3!2 assuming no pump depletion
(dashed curves), as obtained from (3.3-11).

There are several additional interesting features to be recog-
nized from Figure 3.8. First, since we have assumed no linear losses,

we see from (3.7-1) that

d(1a; 1% + 18,1%)

dz
and
d(1A51% + 18,19
dz =0
4
— (L A1 =0 (3.7-2)

Hence, the sum of the pump wave intensities, as well as the sum of the
probe and conjugate pair intensities remain constant throughout the non-
linear medium. The last result in (3.7-2) is merely a confirmation of

the conservation of photons; that is, without losses, the elastic scat-
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tering of photons does not modify the total photon number within the
system. The above features can easily be seen from the figure. We
further note that the pump wave photon flux does not vary symmetrically
(in a spatial sense) in terms of the depletion (i.e., the point within
the medium at which the value of |A]|2 = lAzl2 occurs at  z =0.31,
not at 0.5). The asymmetry is, of course, introduced as a result of
the fact that A4(0) # A3(L). However, from (3.7-2) and the boundary
conditions chosen [A](O) = AZ(L)],despite this asymmetry, the pump wave
amplitudes at their respective output planes are equal. We also remark
that from (3.7-2) and the boundary conditions chosen, the increase in
photon flux in terms of the conjugate wave at its output plane is equal
to the corresponding increase in the probe wave flux (recall that we
proved this for the small signal case in Section 3.3). We finally men-
tion that even though'we displayed results here assuming purely real

input amplitudes, similar results were obtained upon specifying complex

amplitudes for the various input waves. The numerical results also (cor-
rectly) bear out the conjugate nature of the field A3 when we set
A3(L) = 0, and choose a complex probe wave input amplitude.

We now direct our attention to Figure 3.9 , which is basically
identical to the previous figure, except now we assume a (large) linear
intensity loss factor of o = 2. We see that the nonlinear power reflec-
tion coefficient is drastically reduced relative to.the lossless case
discussed above (i.e., R = 1.33%, as compared to ~37% previous]y).AAgain,

|c|L = ©/4, which yields R = 100% in the lossless, small signal approxi-
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mation. For the parameters chosen in generating Figure 3.9, we see
that in terms of loss mechanisms, the linear loss factor (a) totally
dominates the nonlinear loss effects. To show this explicitly, we also
plot in the figure (dashes) the spatial evolution of one of the pump
waves (A]), along with that of the input probe wave (A4), assuming only
a simple linear loss effect; that is, !A]’4(z)!2 = IA1,4(0)(2 exp(-0z).
‘We see that the effect of the nonlinear process is to s]ight]y-amp1ify
the probe wave, while barely modifying the pump wave's spatial evolution
within the interaction region. To verify this fact further, we see that
now both pump waves vary spatially in a nearly symmetric fashion, with
their respective amplitudes intersecting (i.e., being equal) rather close
to the midpoint of the nonlinear medium. As a final check, we calculated
the nonlinear power reflection assuming only a linear loss mechanism
present, using (3.6-6).; Assuming the same input pump wave amplitudes

as above, we obtain a value of R = 1.59% compared to ~1.33% from

the figure. The slight overestimation is due, of course, to the

neglect of nonlinear pump depletion. Therefore, for large linear losses
(i.e., a > [k|) and nearly equal input field amplitudes, we can safely
neglect nonlinear pump depletions in terms of estimating conjugate re-
flection coefficients.

Recent analytical analyses by Marburger and Lam [14,16] and by
Hsu [15] consider pump depletion as well as other nonlinear contributions
(and their associated effects) in describing the conjugate wave nonlinear
reflection coefficient under all pump-to-probe ratios and nonlinear gains.

They, however, neglect linear losses, as considered here.
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B. Additional Nonlinear Optical Processes

In this section we mention briefly other various mechanisms which
are generated as a result of X.&i), as well as other nonlinear processes
and their effect upon the conjugation process. We will discuss elastic
four-photon scattering processes such as self-focusing, nonlinear phase
distortions, and other phase matched, degenerate, third-order processes.
These mechanisms must be considered, since they all depend on the same
nonlinear susceptibility that is responsible for the generation of the
phase conjugate fields. Also, inelastic interactions will be discussed.

We first consider self-focusing. If a wave E(?) having a trans-

verse amplitude dependence propagates through a medium possessing a non-

Tinear index, the local index is modified according to

n(F) =n_ + n,|E(F)|? (3.7-3)

where "o is the Tinear index of refraction, n, is called the nonlinear

jndex and is related to the nonlinear susceptibility as

(3)
n, = 2N (3.7-4)
n

0

Since the pump wave amplitudes are typically much greater than the
probe or conjugate amplitude, we 1imit our discussion to the former quan-
tities. We see that if the pump waves péssess any transverse amplitude de-
pendence (e.g., Gaussian in shape), they will give rise to a distributed
positive or negative lensing effect within the medium, depending upon the
sign of n,. This state of affairs leads to essentially an increase in
the number of effective plane wave "modes" contained within each pump

field, the result being a "cross-coupling" of pump plane wave components
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(not necessarily counterpropagating) with the probe wave. This would
lead to a degradation of the fidelity of the conjugate wave. Qualitatively,

if we assume that each pump wave (Ai) has N such plane wave modes {given

2

by Ai (i=1,2), then the nonlinear polarization yields N° possible non-

P
Tinear mixing terms given by

A A
PuL [pz | ookl 7 ][qZ oty Flge T

We see that only N of the product fields will be phase matched (i.e.,

>

-
k]p+ k2q
in a distortion of the time-reversed wave (even though their efficiency

= 0 for p=q).The remaining N(N-1) product fields will result

is decreased somewhat due to phase mismat;hing). Here we have assumed E4
to be a plane wave for simplicity; in the general case there will be
additional distortions, since a given "mode" of the\probe field may be
coupled into an undesirable conjugate wave hode, leading to further degra-
dation. Note that as the self-focusing becomes more pronounced, an in-

crease in the number of pump wave modes results, which gives rise to even

more severely distorted conjugate wave replicas.

In the Timit of large optical powers, a catastrophic self-focusing
effect will take place which would ultimately render the phase conjugate
mirror useless. This occurs when the input laser power exceeds a criti-
cal value [5,17] of

3

n
0C

Pe ™ — 137 | (3.7-6)
¢ 24ﬂw2 3 ‘
*NL
The value predicted by (3.7-6) places an upper 1imit upon the nonlinear
gain coefficient (|x|), given the beam's cross section. We note that

the deleterious effects of self-focusing can be controlled somewhat by
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the proper choice of the pump beams' transverse spatial profile.

The use of optical fibers or waveguides as providing for the non-
linear medium is one possible scheme for avoiding self-focusing prob-
lems, since one can realize rather large intensities (and hence large
values of |k[) over long interaction lengths with only modest input
powers (which may be orders of magnitude less than PC).

Even in the absence of self-focusing (i.e., if we assume no trans-
verse dependence of the pump waves), there are still other undesirable
effects that can be present, which involve the same, third-order, non-
Tinear susceptibility that provides for the phase conjugate interaction.
That is, there may be additional sets of product fields by which phase-
matched, third-order nonlinear polarizations can be realized. One such

example would be the presence of terms as

(w39w4) (3)

PaL = XNL

* * . > -
(AJA] +A2A2)A3’4 exp[i (w3’4t - k3’4-r)] (3.7-7)

This nonlinear polarization merely modifies the local index of
refraction [c.f. (3.7-3)]. However, if the two pump waves are unequal
in amplitude, undesirable nonlinear phase shifts result which basically
affect the frequency dependence and the fidelity of the conjugation in-
teraction. Marburger and Lam [14,16], as well as Jensen [18], discuss
these effects in more detail.

As a final example of undesirable (and in this case, unavoidable)
third-order effects, consider the special case of a colinear pump and
probe geometry. Assuming that the proper tensorial components of ngal

are nonzero, one can separate out the pump from the probe/conjugate

fields by polarization discrimination. (This is precisely the geometry
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employed in an experiment we performed, to be discussed in the next
chapter.) However, in the colinear case, there can exist undesirable

backward-propagating fields that result from the following nonlinear

polarization
(w3)- (3)A*AA i (w,+ Kotk -k, )- ¥ 3.7-8)
PNL = Xy Ay ARy exp[1(w2 w4-w])- (k2+k4- ])-r] (3.7-

Physically, this process is equivalent to replacing one of the pump
fields (A]) with the probe wave and vice versa. Thus, the overall
backward-going, phase-matched, output wave is seen to be, from (33-12)
and (3.7-8), in the 1imit of negligible pump depletion (and neglecting
any nonlinearly-induced phase distortions)

A4(0) = [-i TE‘T‘ tan(]«c[L) A% (0) + [- %E—l—tanh(]KIL)]AZ;(O)(SJ_g) |
Recall that only if A4 and A] copropagate, in the degenerate case,

does this undesirable wave (the second term) result. The undesirable out-

put wave is essentially equivalent to replacing the nonlinear medium with a
real mirror. Two comments regarding this undesirable wave are in order.
First, the phase matching constraints of the nonlinear interaction 1imit
the "acceptance angle," or equivalently, the number of modes of the wave
A4 capable of yielding an apparent "real" reflection. Second, this
"real" reflectivity [19] can never exceed unity by virtue of the effec-
tive forward-going "pump field" being A4 itself. Of course, the desir-
able (conjugate) wave does not suffer from the above ‘two constraints;

all modes of the probe wave A4 are capable of the same efficiency (or
reflectivity), and reflectivities exceeding unity are possible.

Marburger and Lam [16] discuss this case further with regard to nonlinear

phase shifts and the oscillation condition,
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We conclude this section with a brief discussion regarding inelas-
tic nonlinear optical interactions, and their effects upon the desired
phase conjugation interaction. Specifically, we will consider stimulated
Brillouin scattering (SBS) and stimulated Raman scattering (SRS) proc-
esses. These interactions [5] are inherently inelastic in nature, since
they involve the scattering of an input photon within a given medium
into an output photon of lower energy with the concomitant creation of
an acoustical phonon (in the case of SBS) or an optical phonon (in the
case of SRS). Since the output photon is frequency shifted downward

T for SRS), these photons are to be

(by ~1 cm'] for SBS and 1000 cm™
considered as being no longer active in terms of participating in a de-

generate four-wave, phase conjugate generation process. Hence, SBS and

SRS can be viewed as being a (nonlinear) source of pump wave depletion.
Again, we Timit our discussion to the pump waves, since they will ul-
timately experience the nonlinear effects described here due to the
fact that |A],2l2 >> |A4|2 (typically). Since both SBS and SRS are
"threshold" interactions [8], one must first exceed a critical input
optical intensity prior to the onset of "oscillation" (recall that the
onset of self-focusing requires a critical input power ). The effec-
tive threshold intensities may be increased somewhat by the use of
broadband optical excitation (this technique is practical in the case

of SBS, where the gain bandwidth is ~ 5)(10'3cm']; the corresponding
1

bandwidth of SRS, being typically ~ 5 cm ', is far too broad in fre-

quency with respect to coherence lengths, etc.) for the pump fields.
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Therefore, the threshold intensities for SBS and SRS, as well as the
self-focusing critical power (for a fixed beam cross section) will
place upper limits on the value of || and therefore limit the maximum

nonlinear conjugate reflection coefficient for a given interaction

geometry,

3.8  On the Origin of Xéi) in a Two-Level System, Assuming Single Photon

Transitions /
In this and the next section we present a description using

a quantum mechanical viewpoint regarding the origin of the third order
nonlinear optical susceptibility Xéf). Recall that previously we have
described X&E) as a phenomenological parameter which characterizes a
given medium. We now consider the nature of Xéf) for two different
atomic (or molecular) systems: a two-level system, and a three-level
system, assuming allowed dipole transitions. The former case will be
discussed below; the latter system will be analyzed in the next section.
For both cases, we will use a time evolution operator formalism [20]
with the associated Feynman diagram description to evaluate xég). In
addition, in the three-Tevel systems (next section) we will use a den-
sity matrix approach [5] to calculate Xéﬁ)’ and compare the results
with those of the former approach. 1In bhoth approaches, we will rely
on a perturbation expansion to simplify the analysis. This enables us
to exploit simple diagrammatic rules to obtain the expression for X&E)
almost by inspection. Due to this perturbation technique, however,

higher order effects such as saturation would require the addition of

higher order perturbation terms, which we will not consider here. We
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note that in certain cases, the density matrix equations can be solved
exactly, thus yielding saturation effects [9]. However, the Feynman
diagrammatic approach is a very powerful technique as well as being
quite physical in nature, and is thus easy to grasp and utilize.

We note that in the analysis to be discussed in this and the
next section, we will consider the steady state value of X&E)- We
thus assume that all the participating optical fields are monochromatic
and are on for all times. The transient effects of a three-level system

irradiated by pulsed optical fields will be considered in Chapter VI,

with respect to two-photon coherent states.
(3)

NL °? '
dielectric polarizability, defined classically to be

(3)

a3 - e EyEEX (3.8-1)

In order to evaluate ¥ we must solve for the third order

where N is the atomic (or molecular) density. Quantum mechanically, the

expectation value is defined by

<p> = <y(t)|uly(t)> (3.8-2)

where|w(tz>is the wave function of the system. By employing a perturba-
tion evaluation of (3.8-2) which is thiprd order in the optical fields,
X&E) can be found by using (3.8-2) in (3.8-1). We will use the time
evolution operator perturbation technique in order to express |w(t)>to
the various desired orders in the perturbing fields.

Prior to considering specific cases, we first review the time

evolution operator formalism as presented by Yariv [21] in terms of its
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application to nonlinear optics problems in general. We consﬁder a semi-
classical treatment: that‘is, the atomic system is described by
Schrddinger's equation, whereas the optical perturbation is approximated
in terms of macroscopic harmonic electromagnetic fields (i.e., not
quantized). This approximation is valid, since we are considering fields
with Targe photon densities.

The problem of evaluating the eigenfunction'w(t> of an atom sub-
jected to an external electromagnetic field can be solved by using

Schrodinger's equation

Hly> = o v (3.8-3)

An equivalent approach is to introduce the time evolution opera-

tor, U(tb,ta) which operates on a wave functionlw(ta» to yield a new

wave function at a different time, tb
ol ) = vttt ) foce, ) (3.8-4)
where U(tb,ta) satisfies
BU(tb,ta)

HU(t, ,t,) = i Ty (3.8-5)

If H is time independent, PlEHO, where BHO/Bt = 0. Thus we get from
(3.8-5) |

g
U(tb,ta) = exp[-i ??'(tb'ta)l
= % [m> <mlexp[-1wm(tb-ta)] (3.8—6)’

where W, = Em/ﬁ, and [m> is an eigenfunction with eigenvalue E, That

is,
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Hy[m> = fiw_|m> (3.8-7)

These eigenfunctions form a complete orthonormal set. Hence,

: - . - 8-8
% |m> <m| I <m|n> 8 (3.8-8)

For our case we take the Hamiltonian to be
H(t) = HO + V(t) (3.8-9)

where HO is the unperturbed Hamiltonian, and V(t) represents the time-
dependent perturbation of the atomic system as a result of the interact-
ing optical fields.
Formally, (3.8 -5) can be expressed in its integral form
t

o
Uty at,) = —,}H H(t) U(n,t)dT+ I (3.8-10)

ta

Following standard techniques[20,21 ] we assume that U(tb,ta)

can be expanded in a power series in powers of V(t) as

(2)

ut, ) = 00 L)+ 0 ey + 0@ e e )+ oo

e v ulMe ) (3.8-11)

where , as an example, the first three terms are given by
iH
(0) = exole 0 (4 .
U (tb’ta) - exP[ ",ﬁ (tb ta)]
P (0)
(1) - (-l 0)
UMt at) = (R Ut at) V(t) U (L, ) dt

ta
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B h
U(z)(tb,ta) = (-}ﬁl)zf J dt]dtzu(o)(tb,t]) V() U(O)(t] ty)
ta ta

x V(tz)U(O)(tz,ta) (3.8-12)

where t >t >ty > .00 > t.. We see that in general, from (3.8-4)

and (3.8-11), hp(tbz>can be related tolw(ta>>by

Iw(tb>= u(t, ’ta)}w(tb»" RZO I\p(l)(tb)>= {,;fou(z) (t, ’ta)} ‘\P(ta>
(3.8-13)

We now follow the procedure given by Yariv [21] to solve for the

th order in the perturbation <u(2)> along the

induced dipole moment to & ;

ith axis (where £ = p+q)

<u§p+Q)> - <w(p)luiw(Q)> - <n|U+(p)(t,O)uiU(q)(t,0)}n> (3.8-14)

where AJr denotes the Hermitian conjugate of the operator A. We have

used the fact that lw(p)>and ‘w(q)>can be expressed by (3.8-13) as

|zp(‘”(t)>= s (e,0) [oop= v e 0y > (3.8-15)

Note thatlw(£)>invo1ves the perturbation (contained in U(Q)) to the gth

power and we have assumed that at t = 0 the atom is initially in the
ground state [n>.
Since we are concerned with evaluating perturbations that are

third order in V(t), we have from (3.8-12) and (3.8-14), the constraint

.ptq=3 (3.8-]6)
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In what follows, we will be concerned only withlw(ﬁ)(t» having
¢ =0,1,2, and 3 in (3.8-15). Once we have calculated (3.8-12), we

will use (3.8-15) in (3.8-14) to form the nonlinear polarization
p(3) o ne(3)s | (3.8-17)

This polarization will, in view of (3.8-16), contain the electric

field to third power so that we can write

(3) . (3) p g px )
PNL = XNL E]EZE4 (3.8-18)

where the fields have been chosen to be consistent with the phase con-

jugation interaction of interest. We thus obtain X&E) from (3.8-17)

and (3.8-18) as

(3)

N E) s M
NL *
E1E5E,

(3.8-19)

Using (3.8=6) in (3.8-12) and (3.8-15) results in the following

perturbed wave function to the desired orders as discussed above

[0} = v (et ) in> = expl-ia, (t-t)1n>,  (3.8-20)

t
e = v et ) n>

1]
]
N~
S r~1
—
3
v
A
3
[1)
x
O
|
]
—t
£
3
—~
+
]
ot
—
~
—
=
—~
+
"’
N

X

exp[—iwn(t]-to)]|n> dt,

(3.8-21)
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t >
Iw(Z)(t>= U(Z)(t,t0)|n> = (%)2 Z J ]J

m,S
e OO
t %

x expl-wg (t-t1)]]s> <s| V(t;)
X exp[-iwm(t]-tz)]inp x<m|V(t2)

x exp[-1u, (t,-ty)]n> dt,dt, (3.8-22)

<
L
(78]
S
Camnl
o+
\\/
1]

U(32t,t )| n>

0
b >t tJZ > t3
t, bt

X exp[-iws(t—t1)][s> <s|V(t])

x exp[-iwz(t]-tz)]|£> <2!V(t2)

x exp[-iwm(t2-£3)]|m> <m|V(t,)

x expl-iu (ts-ty)]|n> dtadt,dt, (3.8-23)

Since we are concerned with the steady state values for the per-
turbed wave functions (and hence for the evaluation of the nonlinear
susceptibility), we take the lower 1imit of the above integrals to be

t = -, We thus consider the perturbing optical fields to be turned on

adiabatically from t = =c,
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By virtue of the three perturbing optical fields that we are
considering, the perturbing Hamiltonian (assuming only dipole allowed

transitions) becomes

V(t) = 7§‘{ ) ‘E exp[i(w,t - k )]+ c.c.} (3.8-24)
L= 1,2,and 4

In what follows we drop the wave vector terms; we will insert them
in the final results below. We note that the form of the above pertur-
bation Hamiltonian is a result of the dipole approximation, which
applies here, since the optical wavelengths are much greater than the
atomic dimensions (by 3 to 4 orders of magnitude).*

Using (3.8-24) in '(3.8-21)‘and performing the prescribed inte-

S0 -w )

gration, we obtain terms of the form (where W m ™ %n

(i) exp[1(+w - W, t]

1
Iw (t) - — . m> (3.8-25)
> i % 1mn 1 | wmn_w1—1y l

where E§+) = E. E(')

* . . . - =
i Ej = Ei’ and ; is the projection of 1 along Ei’ In

order to arrive at the above expression, we introduced a convergence

factor, v, such that the perturbing fields at t < 0 become

E(t) » 1im 't E(t)

vot (3.8-26)

This procedure removes the divergence at t= -~. This is physically

equivalent to neglecting any transient responses of the atomic system to
the perturbing fields, which is exactly what we want, since we wish to
investigate the steady state polarizability of the system. The proce-

dure is equivalent to solving for the steady state response of a

*Based on this approximation, k and ¥ in (3.8-24) are to be considered
as being "c-numbers" (a 1a Dirac) and not quantum mechanical operators.
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damped harmonic oscillator driven by an external harmonic force. We
remark that the transient response of an optical system driven by the
same set of fields given above has been analyzed using a time evolution
operator approach (with regard to phase conjugation processes) by Yariv
and AuYeung [22]. We further remark that Yariv [21] has identified

the convergence factors (y) in (3.8-25) with the finite linewidth, or
equivalently, with the Tifetime of a given transition. In the analysis
that follows, we set alTl such convergence factors to be Y. The precise
description of the y's in terms of the various relaxation times of the

atomic system will be given later, where a density matrix approach will

(3)
NL

Returning to the above result, (3.8-25), we note fhat

be employed to calculate the same X

IlPil)(t)>[|w(:))(t)>] involves an emission [absorption] of a photon of
i 4

radian frequency ws . The result of this perturbation thus scatters
the atomic system from the ground state (|n>) to a final state (|m>),
with the summation of (3.8—25) taken over all such possible states.
We have dropped the phase factor exp(iwnto) from (3.8-25), since it
cancels out in the calculation of physical observables (e.g., <u>).
We next calculate the second-order perturbed wave function by

using (3.8-24) in (3.8-22). The result is seen to be

1,2 2(2) g(2)
I‘Pﬁz,mj@: A U
(3.8-27)

(U-i )mn (Uj)sm exp[i ("wn iw-i iwj)t] ‘S>

- W, tWs =1
(wmn tuy 1y)(wsn+w1 w; Y)
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We see that (3.8-27) contains 16 possible combinations of 0¥

and iwj in the final wave function. Symbolically, this wave function
implies an emission (absorption) of a photon at w55 followed by a sub-
sequent emission (absorption) of a photon at wj’ as indicated by the

(+) [(-)] sign. Physically, w; causes a scattering of the initial state
[n> to a state |[m> at time t,, followed by an interaction with the second
photon Wy which scatters the atom to the final state, |s> at time t
(where t > t] > tz). Again, thevsummation is taken over all possible
quantum levels in the atomic system.

In an analogous manner, the third-order wave function can be written

as

(“i)mn (US)Zm(”k)sz eXp[i("wniwiiwjiwk)t] (3.8-28)

(wmniwi_iY)(wlniwiiwj_1Y)(wsniwiiwjiwk_1Y)

|s>

3. 216 possible combinations, involving sum-

In (3.8-28) there are 6
mations over two sets of intermediate states (|m> and |2>), with the

atoms finally being scattered into state. |s>, as a result of the per-

turbations introduced by the three photons.
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We now consider the possible interaction processes that yield
nonlinear dipoles of the form (3,8-14) subject to the condition
(3.8 -16) for the case of single (dipole-allowed) photon transitions
involving a two-Tevel system. The other constraint is that the product
of the three fields have the form as in (3.8-18). The energy level
diagram, along with the interacting photons is shown in Figure 3.10a.
From equations (3.8-25), (3.8-27), and (3.8-28) we see that
the possible sets of perturbed wave functions yielding the desired non-

linear dipoles are given symbolically as

(3) (2

W = @l ) e
+ <¢£j:,w4,_w2(t) Iuilw(o)(t)> + (1 2 terms)

(3.8-29)

The first term involves a first-order perturbed wave function which
originates in the ground state and is scattered to the excited state
|[b> via absorption of a photon at Wy This wave function is coupled
via H; toa second-order wave function which scatters from the ground
state |a> to the excited state |b> via absorption of a photon at Wy s
and subsequently scatters back to the ground state |a> via emission of
a photon at Wy o

The second term in (3.8-29) involves a third-order wave function
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which is excited to |b> via wy, scatters to [a> via emission of Wy
and finally is excited again to [b> via w,. This wave function is
coup]eq via U to a zeroth-order wave function which is unperturbed,
and hence remains in the ground state, |a>.

We see that the above processes can be depicted schematically
in terms of Feynman diagrams, as shown in Figure 3.10b-e. Each photon
changes the state of the system (solid line). A photon pointing toward
(away) from a vertex implies an absorption (emission) of aquantum at ws
in effecting the change of the eigenstate.

For brevity we evaluate here only the first term in (3.8-29).
It can be shown that the second term, together with the associated per-
mutations of w1 and Wo 5 yields identical results.

The first term yields, using (3.8-25) and (3.8-27)

vl @) e = g

. exp[i(-w]-wb)t] 4

' exp[i(~w,+w -0, t]
* 4 "2 -30
“AEg By Vo Ta i) (Sograyey 12 i:> (3.8-30)

Setting Wy T Wy =W, =W (the degenerate case), assuming line-
center operation (y = wy.), defining luabl = ]ubal = |u| and including
the other contributing terms in (3.8-29), we get

E,ESE t _
Wl - 12 :slg oot (3.8-31)




- 116 -

Using the definition for the nonlinear polarization given by

(3.8-18) , we have

3 3 ) > > >
e = x EjEgEy explilut- (kytky -k, )71} (3.8-32)
1-photon

where we have included the wave vector part of the macroscopic fields
from (3.8-24).  The third order nonlinear optical susceptibility is

thus seen to be from (3.8-19), assuming parallel field polarizations

, 4
(3) o iNjul”

- XNL - o33 (3.8-33)
1-photon ¥

>

We therefore see from (3.8-32) that if K]+k2 =0 (i.e., counter-
propagating pump fields), the nonlinear polarization will give rise to
a field that radiates at frequency w in the -E4 direction, with an ampli-
tude proportional to E}. This field is recognized as the conjugate

replica of E4, as discussed in Section 3.3.

3.9 On The Origin of Xéi) for Two-Photon Transitions

In this section we will derive the third order nonlinear optical
susceptibility assuming that the three incident optical fields given in
(3. 8-24) interact with a three-level system. The energy levels con-
sidered are shown in Figure 3.17a. We assume that there exist dipole
moments connecting the ground and intermediate states, and the inter-
mediate and upper levels; further, no dipo]e—a]]owed‘transition
connects the ground and upper levels. We will first
use the time evolution approach as described in the last section. The

section will conclude with a brief derivation of the susceptibility



Yoy o€ Lo Vo S Lo
- K13AL309dsau mAMPVona_ncm fAHpv meem Amva_mAMpVA%va_.AHpv m Amva_gow pasn sweuabeip uewudaq (8)-(q)
‘WA}SAS |9A9|-394Y3 € 404 satouanbaay uojoyd andul pue weaberp |3Ad| ABudul (e)Ll-g bl

! o) 9_ (2) <
0 (0)
(]
(0|
' m - - 0
™~
— }
] Vsl N3‘.—3I
2
ASE&_: W &9_::
o O~ <o |
}
<o Pamy ~ NN
{D|
g N2 Ime a1 —
| bm_ |
: «l . S RS N
i 1y 2 aVaVaVaulix o =
n&:& — NN
! &l
¢ | |

]



- 118 -

using a density matrix approach.
(3)

A. Time Evolution Operator Evaluation of XNL
2-photon

Using the notation of the last section, the nonlinearly induced

dipole moment is given by

~w1 5
+ <w£ii,—w2,w4(t)I%IW(O)(t)> + (1 %52 terms) (3.9-1)

The associated Feynman diagrams are sketched in Figures 3.11b to 3.1le.
As discussed in the last section, the results are not modified upon
exchange of‘w] and Wo 3 thus each term need only be evaluated once,
with the result multiplied by a factor of 2.

We will outline only the derivation of the first term.
From the Feynman diagrams , we see that lw(z)(ti>corresponds to the ab-
sorption of two (pump) photons which leads to a transitidn'UJtheupperleve]
|c>. This now couples withlw(])(tix which absorbs a photon at Wy s thus
inducing a transition to the intermediate level |b>, wfth the resul-
tant dipole moment in (3.9 -1) coupling states |c> and |b>.

Using (3.8-27) for,w(z)(tz> we get

EX B uy u, - expli (~w_-wq-w, )t]
'wfi) . (t>= ( ]2) 1 72 1b? 2Cb a "I 2 1c>
172 M7 (wygmw=ivp, o mupmwy=ive,) (3.9-2)

and from (3.8-25) we get forlw(])(tz>
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exp[i(-wa-w4)t]

() . Ey
v 4(t>= (ﬁ‘) ba |b> (3.9-3)

(Dpg = 9y = 1Vp,)

(3)

Forming <p‘~/> assuming that Wy = Wy = wy = was before, assuming

parallel field polarizations, and setting A2 = Weg - (m]+w2) correspond-

ing to the two-photon resonance offset, we get

201 s
[ep (8517,

2

* 2

(3), _ E1fafalup,|
?

A1+'Yba)(A2*'Yca)

<u = -
4ﬁ3( 2,2

exp(iwt) (3.9-4)

where A] 2 Wy is the energy offset from exact resonance with the inter-
mediate state. An extra factor of two has been inserted to account for
the exchange of 0y and Wo . Using (3.8-18), we get the contribution for

the nonlinear polarization for the first term (I) of (3.9-1) to be

(3) - ,(3)
PRL” = XNL EVERE] exp {ilut - (ky+ky- K,)- 71} .
2-photon(I) (3.9-5)

where we have inserted the wave vector factor in the perturbing fields.

It thus follows from (3.8-17,19) and (3.9-4,5) that

2—ph0t0n(1)

2 2 .
X(3) - Nlubal I“cbl (A2'1Yca) (3.9-6)
NL ‘ 3,2, 2 2., 2 :
M (A1*Yba)(A2'+Yca)

We therefore see that from (3.9-5), the nonlinear polarization radiates
-5
the desired conjugate field along the backward (-k4) direction of the

probe field if the pump fields are counterpropagating (i.e., Eﬁ-*zé = 0).
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Applying the same procedure for the evaluation of the second

term in (3.9 -1) leads to the following result

2 2 A2 ;
X&ﬁ) - N3 !Ubal hlbcl ) A'I-Wba) (Az‘iYca) (3.9-7)
2-photon( ) 4 (A 4'Yb ) (A2 Y 3)
I1

Forming the resultant sum from (3.9-6) and (3.9-7) yields the final

value for the two-photon nonlinear susceptibility

2 2 . ]
Xt T UL A1(A1"2”b 21 (By-iv )
S 01+ a)” Ba*vea) 5 o g

Equation (3.9-8) has the interesting property that if the
interacting photons are resonant with the intermediate state (i.e.,

Ay = 0), then X(3) + 0. This result needs to be qualified. First,

1
we have restricted the evaluation of x(3) to a limited set of
Feynman diagrams. For the field polarizations chosen, a complete
description of the problem requires additional contributions from
single photon transitiens (recall last section). In addition, the
physica1 nature of the convergence factors (y's) needs further con-

sideration. . The density matrix approach (see next subsection) is

a technique which considers these points in more detail.

(3)
NL2-photon
Before concluding this section, we wish to discuss briefly a

B. Density Matrix Evaluation of x

second, and more complete, approach usefu] in evaluating nonlinear op-

tical processes: that of the time- dependent density matrix perturba-
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tion technique. Recall that a major advantage of the time evolution/
Feynman diagram treatment as discussed above lies in its ease of
evaluating resonantly enhanced optical processes, virtually by inspec-
tion. The "cost" of resorting to this method, however, is that several
other processes of interest may be overlooked and, perhaps, a more fun-
damental drawback is that the linewidths obtained (i.e., the y's)
resulted from the ad hoc insertion of a convergence factor necessary

in performing the various temporal integrations. In the density matrix
approach, the linewidths enter the formalism from the onset, and are
thus treated in a more physical fashion. This formalism yields results
that will be shown to differ subtly from the evolution operator
approach, and at the same time are to be considered as being more accu-
rate and complete.

We note further that in general when we consider an ensemble of
atoms, the system is not necessarily in a pure state at the onset (as
was assumed in the time evolution formalism). Typically, one knows
only the equilibrium population distribution, which is usually given by
the Boltzmann distribution function [23]

Pan = Pgq exp[-(En-Eg)/kT] (3.9-9)

where Pnn denotes the population density of the nth state with energy

E,s Pyg 1s the ground state density. Also, the lineshape of each energy

level is not precisely known in general, due to collisions, spontaneous

emission, etc. [24].

The density matrix equation of motion is given by [5,25]
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gf'pmn - '4% [H’p]mn- %ﬁn(pmn - Bmn) (3.9-10)
where the subscripts (m and n) denote the energy level indices, and
[A,B] is the commutator of the operators A and B. In (3.9-10), Prn
is a matrix element of the density operator, p, and is defined to be
Prn = <p|n> <m|y> where the bar denotes a statistical average over
the ensemble; the ln>'s form a complete orthonormal set describing
the atomic system. Eﬁn is the equilibrium density matrix element,
which is diagonal in the energy representation. We assume that the

only level populated under the thermal equilibrium condition is the

ground state (since ﬁwmn >> KT for the energy levels considered),

We note that for m = n, Tmn equals T] (known as the longitu-
dinal relaxation time). T;l describes the relaxation rate of the nth

state and is given roughly by [5]

Tl oA T %- (3.9-11)
spont inelastic
where tSpont is the spontaneous (radiative) lifetime of the nth state,
and Tine]astic is the inelastic collision time.

Form#n, T equals T, (known as the transverse relaxation
time). T%l thus accounts for the decay of the off-diagonal density
matrix elements, due to dephasing collisions. T%l is given roughly by

[26,27]
-1 To=1, +-1,
T 1 C
m 27 o * Tond * v (3.9-12)

where other factors which can make Pan decay, such as phase-
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interrupting collisions [28], velocity changing collisions [29], etc.
are lumped into Yin (where we assume that Yon = Ynm)‘ For the analy-
sis that follows, we assume that T] and T2 are numerical constants
that characterize the atomic system.

In terms of the density matrix, the expectation value of the

dipole moment operator is given by [5]
<py> = Trace(pui) (3.9-13)

We now wish to solve equation (3.9-10) for p, and subsequently
to evaluate <ui> in order to obtain an expression for Xéf)- We proceed
by using a perturbation expansion in V of Pmn [5]

- ,(0)
Pmn = P *

() ,

mn

o (3) , ... (3.9-14)
where p(g) depends on the perturbation to the gth power or, in our
case, (V.= -ﬁFE)Q. Recall from (3.8-9) that H = HO + V(t).

Upon substitution of (3.9-14) into (3.9-10), we obtain the
well known result [5]

g () (2)

. 2) , P _ i 2-1) 9-
dtmn - T pén) ' —$ﬁ;'_ 7%-[V(t)’p( ]mn (3.9-18)

where W = (En-Em)/ﬁ.

We see that, if we know the commutator involving the perturba-
tion to order k with respect to the density matrix, we can

evaluate the time dependence of pp, to order k+1. We desire to obtain
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(3),

<M3 » which therefore requires knowledge of pég). The specific
product of the perturbing fields we wish to consider is again of the
formvE1E2Ez. In the analysis that follows, we assume that p%o) = 1
and’pég) = 0 for all other values of m and n.

We assume that the interaction takes place in a three-level system,
as shown in Figure 3.1la, which implies that the density matrix is a
3 x 3 array.

Now, assuming that the only nonzero dipole operators are ﬁéb

(thus ﬁba> and ﬁBc (thus ﬁﬁb) and that there are three interacting har-

monic electromagnetic fields present, the perturbation Hamiltonian

becomes
0 Hab 0
~ - >
V(t) = -i-E = - %‘ Eba 0 abc '{E1exp[i(w]t- k]'r)]
-5
0 Hep 0
-y ] -
+ E2 exp[1(w2t-k2-?)] (3.9-16)

tE, exp[i(w4t-k4-?)]+ c.c. }

Upon inspection of (3.9-13) and (3.9-16), we see that the only nonzero
(3)

elements in <ui~’> that contain terms that are third order in the applied

fields are
3 (3),.
< u§3)> = Dgg)(U21)i * 023 (“32)1 te.oc (3.9-17)
We obtain p%S) and pég) as follows. The solution of (3.9-15) is given by

[5]



- 125 -

t

. (o -1y )(t'-t)
(%) _ =i f mn mn Vit (2-1), ‘
oty == | e [V(t') e (t')]  dt
mn A ) mn (3.9-18)
0
= o . . _ =]
where Won = Oy and we have set the linewidths Ymn = Tmn'

In the analysis that follows, we set to +> -, since we assume
that the perturbing fields are on indefinitely. Thus, we neglect any
transient effects (consistent with the evolution operator ana]ysis'of
the preceding subsection).

The nonzero elements of the commutator in (3.9-18) are seen to be,

using (3.9-16),

- ' iV
(V12021 = P12Y21) (V12022 = P11V12 = P13Va2) (V32023 = P1pV23)
. - - oV
Vaol = [(pqoqq * Vogear = P22¥21)  (VarPr2 * VosPse = P2itiz pp¥3p)  (Vg1py3 ¥ VagPas - P22'23)
. . v - oo,V
(V3pPa1 = P32¥21) (V3pPpp = P31Vy2 - P33V32) (V3ppp3 = P3pV23)
(3.9-19)

From the form of (3.9-19) we see that there are five density
matrix perturbation "pathways" (or "sequences") that give rise to the
desired third order terms in (3. 9-17). We have assumed that the only
nonzero zeroth-order density matrix element is given by p§?) = 1.
Figure 3.12 shows these five sequences.

We note that from the above density matrix sequences,

Dg%) and pég) give rise to population shifts of levels 1 and 2, respec-
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tively, thus modulating the atomic densities spatially. It can be shown
that these two terms arise from a product of fields proportional to
EiEﬁ' In the next section we discuss the holographic analogs of certain
four-wave processes; we point out here that p§$) and pég) being of the
form above, imply  the formation of a hologram through the spatial modu-
lation of population densities. On the other hand, the term psg), being
proportional to a product of fields EiEj (in our case the pump fields),
oscillates at 2w and therefore has no direct holographic analog (the next
section as well as Section 6.4 discusses this further). The term p§§)
is called the "two-photon coherent state" [30] contribution to X(3) [31].
Applying the above formalism [via (3.9-18) and (3.9-19)] to third
order in the fields, assuming that only p( ) #0 (Npgo) = N), seeking
the desired form of the field product, retaining only terms that are
nearly resonant ("the rotating wave approximation"), and using (3.9-17)

(3),

9

with the definition of the nonlinear polarization P(B) N<u
results in the following expression of P&E) after tedious, yet straight-

forward algebra : ' N
T 1(-w1+w2+w4)t "'i("k-l+ 2+ 4)'Y‘
e e

(01t 17,,)

(3) _ _N
pid/ = EYELE,(u ). ()
NL (25)3 17254 \Mpa’7 ‘Hap/2

(Uba (Uab A i ] )]
X T T + ——= )
[k-w1+w2+w4'wba'1Yab) ((“’2"”1"-Ybb7 (wymwy=1y,,

Wep? s e, 1 )
(mwptwpteg=wap =1y ) | lwpmwy=Tvpp)
-

-> -+
W ex(w]+w2-w4)t e-1(k]+k2—k4).
E{E,E ( ) =3

=+

+
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2 3 by 1 o
(o Foy=w,=wy =17 5 ) (wy=g=Typp ) (wy=wy=1v,,),

] .
(w1+“2 4%~ Vpe) zwl'w4-iybb7):}

ubC ( (qu)B (Hba)4 (Uba (ucb) ]
[(-3 R N R | (s R B (IR ‘Yég

(3.9 -20)

[-(uab) (Hpa) . (W)

(“bc cb (“ba)4

In (3.9-20) we have added the wave vector factors to account for the spa-
tial evolution of the fje]ds. We thus see that the first term in the
equation gives rise to a backward-going conjugate wave (= ET) if we set

Eé + §4 = 0, and assume degenerate fields, while the second term yields

a conjugate wave (« EZ) if K] + EZ = 0. The various contributions can

be realized through the proper selection of the interacting fields' polar-
ization orientations. Recall that (u--) defines the projection of the

kth vector field Ek along the dipole moment u L

To be complete, we must also add terms that are permuted in the
various fields to (3.9-20). Several interesting features are to be
noted from this equation. The first product of terms contained within
each square bracket from each curly bracket involves interactions
only among states |a> and |b>; these are recognized to be the
terms responsible for phase conjugation from a two-level system, as dis-
cussed in the last section; here, however, the form of the resonant

denominators is to be considered as being more physical in nature as
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compared to (3.8-32) and (3.8-33). The very last square-bracketed

term is due to the interaction of the pump fields with the two-photon
transition directly. It is here that we wish to point out the subtle
differences between the density matrix approach and that presented ear-
1ier using the time-evolution operator method. If we make the same assump-

tions regarding this term as were invoked in arriving at (3.9-8), we get:

p(3) N 2 Vca

NLZ-photon 4

* 2 2
16284 T ™ Ty 2 12
2 " VYea

N TS YL TS (3.0-21)
2 ; 3-21
(%% Yap et 1A(Yap-Yp )T

Thus, only if Yab = Ybe does this result reduce to that derived using the

time evolution approach (3.9-8).

We conclude this section by noting that any polarization rota-
tion effects of the phase conjugate interaction are contained in the
product of the (uij)k terms in (3.9-20). That is, there exists in gen-
eral an angular dependence of the probe to conjugate polarization
states for a given set of pump wave polarizations, subject to the selec-
tion rules of the interacting atom. As an example of this effect, we
consider the two-photon contribution to P&E), and assume for simplicity
that all the interacting fields are colinear. We compare the polariza-
tion effects for a ALZ = 0 and ALz = 2 two-photon ai]owed transition.

In the former case, the pump waves must both add up to zero angular

momentum*; therefore, so must the signal (E4) and conjugate (E3) fields.

*For this discussion we consider only the z-component of the
angular momentum.
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Hence, in this case, from a helicity point-of-view (as discussed in
Section 2.3) the conjugate wave is truly time-reversed from both a
spatial phase and an angular momentum viewpoint (e.g., RHCP - RHCP).
However, in the ALz = 2 case, the pump waves' anguiar momenta must add
to 2fi; thus the conjugate wave's angular momentum must be in the same
direction as that of the input signal wave. This interaction proceeds
if LZ of the signal and pump waves have the same sign. (Recall that the
nonlinear optical process also stimulates a photon in the direction of
the signal wave.) Hence, in this case, the conjugate return wave will
be spatially time-reversed, but will not possess a time-reversed
rotating E-vector (e.g., RHCP > LHCP); the conjugator will therefore
resemble a real perfectly reflecting mirror from this latter viewpoint.
For a complete description of the polarization properties of the inter-
action, one must permute the interacting fields in the preceding argu-
ment as well as include additional nonzero terms in (3.9-20).

We therefore see that, although the density matrix approach is
not as easy to manipulate as the time evolution technique, it does
yield all possible contributions to Péf) which are allowed to occur,

including angular-dependent polarization effects, given the selection

rules of the atomic species, and the quantum numbers of the pump waves.
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3.10 Degenerate Four-Wave Mixing as Real-Time Holography

It has been pointed out [19] that some degenerate four-wave mix-
ing is analogous to real-time or dynamic holography [32,33]. In this
section we will point out briefly these formal analogies, and also dis-
cuss some of the differences. We note a special case, that of phase
conjugation via a two-photon coherent state [31] has no direct analogy
with holography(as discussed in the last section).

The identification of this class of nonlinear optical interactions
as being equivalent to holography immediately establishes potential appli-
cation areas that were previously relegated to conventional holographic
techniques. Examples of such applications will be the topic of Chapters
V and VII.

Consider the procedure of hologram recording and reconstruction
as shown in Figure 3.13. The first step (Fig. 3.13a) shows the record-
ing of a thin hologram using an interference between a "reference" beam
A] and a "signal" beam A4. The resulting transmission function is

* *
T« (A4 + A1)(A4 + A])

= |Agl%+ [A[Z + AT+ ARY (3.10-1)

A](x) and A4(x) denote the complex amp]ifudes of the reference and ob-
Ject fields, respectively, in the hologram plane z = 0.

In the reconstruction step, the hologram is illuminated by a
single reference wave A2 impinging from the right in a direction opposite

to that of A] as shown in Figure 3.13b, We thus have A2 = A? so that the
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Fig. 3.13 Conventional holography. (a) Recording of a hologram;
(b) Reconstruction of a hologram so as to yield the "pseudo-
scopic image."
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diffracted field to the left of the hologram is

_ - 2 2 * * *
Ay = TA, ([Agl7 + A" + AgAT + AgAL DA
_ 2 2 *,2 2
= (|A4| MO+ (ADS A+ A7 Ay (3.10-2)

The first term on the right side of (3.10-2) is proportional to the inci-
dent field A2(= AT) and is of no intefest in the present discussion. The
term (A?)ZA4 will, in a thick hologram, have a phase factor exp[-i(ZE] -
E4)¥?] and is thus phase mismatched, i.e., will not radiate [5]. The

term of interest is

Ay = [A12 S = AgA, AY (3.10-3)
which at z < 0 corresponds to a "time-reversed" phase conjugate replica
of the original object field A4. It has been shown formally in Chapter
IT that such a field compensates in its reverse propagation for the dis-
tortion undergone by A4, provided the propagation medium remains sta-
tionary during this time.

Let us next recall the four-wave mixing geometry of Figure 3.1,
and the analysis given in Section 3.3. Comparing (3.3-12) to (3.10-3),
it is clear that formally the nonlinear mixing of Figures 3.13 and 3.1
is equivalent. The analogy can be appreciated more fully if we write

(3.3-12) 1in the Timit of |k|L << 1. In this case
As(z <0) = |AJA|Ay (2 < 0) (3.10-4)

which form is identical to (3.10-3). As a matter of fact, if we overlay
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Figure 3.13b on 3.13a, the resulting figure is equivalent to Figure 3.1.
This establishes the formal analogy between the two operations, and
hence the real-time holographic nature of four-wave mixing.

It should be emphasized that the two processes represent different
physical phenomena, and that the analogy is only operational.

Four-wave mixing can thus be viewed as constructing and recon-
structing a hologram "essentially" simultaneously, or more precisely,
within the relaxation times of the atoms (see below). Of course, since
we assumed that both pump beams are present at the same time, there are
actually two "holograms" of interest formed in the nonlinear medium (each
due to the interference of the probe wave with one pump field), which
are both read out by the other pump beam, with the same overall efficiency,
assuming a stationary nonlinear medium (nonstationary media are discussed
by Wandzura [11]).

Quantum mechanically, one can view each pump beam and the probe
field as spatially modulating the susceptibility of the medium [ 9].

If the medium is nearly resonant with the photon fields, then this modu-
lated complex susceptibility (x) can be viewed as fbrming both a phase-
type (via the real part of x) and an amplitude-type (via the imaginary
part of X) "hologram." For transparent media the “hologram" formed is
_primarily phase-type in nature, being spatially modulated via the non-

linear refractive index (where n = n0+n2|E]2, n, being the nonlinear

2
index) characterizing the medium [5,12].

One difference between conventional holography and four-wave mix-
ing Ties in the fact that the third order susceptibility is actually a

fourth rank tensor. Thus, a nonzero, nonlinear polarization can result
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even if the pump and probe waves have orthogonal polarizations. This
property, in fact, will be discussed in relation to experiments we
performed (see Chapter IV). This is not the case in conventional holo-
graphy, where the recording medium (e.g., film emulsion) has essentially
a square Taw response with the transmission function being proportional
to E]-EZ (or E2°E*). Therefore, if the polarization of El (or EZ) is
orthogonal to E4, no hologram is formed.

Yariv and AuYeung [22],using a time evolution operator formalism
and a density matrix approach, treat the case of "transient" four-
wave mixing, where an atomic (or molecular) medium is exposed to a
sequence of three optical pulses., They conclude that, using the geom-
etry of Figure 3.1, a conjugate wave can be realized only if the probe
pulse is either the first or second pulse incident upon the medium
(both single- and two-photon transitions were considered); the other
two pulses are those of each of the pump fields. Thus, the first
two pulses essentially "write" the hologram by spatially modulating the
population difference of the levels considered, and the third pulse dif-
fracts off this spatially modulated "grating." The first two pulses
must be temporally spaced by less than the dephasing time of the medium
(TZ’ or the transverse relaxation time), while the third pulse must
occur within the spontaneous decay time of the medium (T], or the
longitudinal relaxation time) after the second pulse in order for the
process to be most efficient. This scheme thereforé reinforces the con-
cept of constructing and reading out a hologram in real time. Addi-

tionally, the first two pulses must have parallel polarizations in
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order for the grating to be formed (also in operational agreement with

the square law nature of conventional holographic recording media).
The nonlinear polarization for this process can be written vec-

torially as
3(3)

PuL (3.10-5)

-
“A@rﬁﬁ2+ME

L Th=a

2 1

where a "hologram" is written by one pump wave plus the probe, and the
second pump wave is diffracted off the hologram. Alternatively, the
term in the parentheses can be considered to yield a spatial modulation
of atomic densities at zero optical frequency (i.e., temporally sta-
tionary) and hence a spatial modulation of the susceptibility, from
which the other pump wave scatters, yielding the conjugate wave.

On the other hand, note that from the last term of (3.9-20), a
nonlinear polarization can also exist in the form

where the interaction takes place in a three-level system, for example.
This has no direct holographic analog, in that E]-EZ can be chosen to
be zero. Yet, as long as E]ofz # 0, a conjugate wave will result. The
term within the parentheses gives rise to the so-éa]]ed two-photon
coherent state, which oscillates at an optical frequency of 2w,with the
probe field scattering off this "dynamic" temporally (not spatially)
modulated nonlinear index, yielding the conjugate wave[31]. This subtle
departure from the holographic analog is very useful in certain four-wave
interactions [34,35,36] and will be discussed further in Section 6.4.

This process also gives rise to an experimental geometry where the pump
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and probe fields can be made orthogonal, thus increasing the signal-
to-noise figure of the conjugate wave (to be discussed in the next

chapter).
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Appendix 3A

Phase Conjugation via N-Wave Mixing

In this appendix we show how one can generalize the generation of
phase conjugated wavefronts to nonlinear optical mixing involving differ-
ent geometries as well as higher order parametric interactions.

We assume a set of N monochromatic plane waves given by (3.2-1),
where the first N-1 of these fields are the input waves [D.C. fields
(w=0) can also be present]. We define the field E1 as being the input
(probe) wave whose phase conjugate replica is sought.  The next N-2
fields (E2,E3,o--,EN_]) are intense input plane waves which are defined
to be the pump waves. The N-1 input waves are incident upon a medium
that possesses a nonzero (N—])th order nonlinear optical susceptibility,
xﬁ?-]). The directions, frequencies, and field polarizations of these
N-1 input waves are chosen so that an outpﬁt wave EN o E? is generated
as a result of the interaction (other possible products of the N-1
fields are assumed tobe phase mismatched and do not radiate construc-

tively). Specifically, the following nonlinear polarization at fre-

quency wy is formed in the medium:

P&N) - x&ﬁ'” Iy exp‘[i(-w]uﬁl-?)]
- > [*]
x NH] {AQ exp[i(wgt-kg-r)]} % (3.A-1)
2=2
(wN)

A difference frequency contribution of the gth pump wave to PNL
is denoted by the superscript [*] , which implies a conjugation operation
upon AQ as well as a reversal of the sign of both wy and Ez'

From the form of (3.A-1), a phase matched, conjugate wave is gen-
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erated if the product of the pump waves yields the following resulting

*
frequency and wavevectors

e
o 2%y

- “pump ~
= Zwl
and
N-1 (3.A-2)
> -
k = ) [£],k, (w,)
pump 2, L2
!' 0 backward-wave conjugation
= >
]\ 2k1(w]) forward-going conjugation
(3.A-3)
> won(wy) Ny
where |k2| = and n(wz) is the linear index of refraction (in the

-
nonlinear medium) at frequency W« Each w, (and corresponding kz) is

2
either positive or negative, depending upon whether a sum [+]2 or dif-

ference [-]2 frequency is employed.

The phase matching constraint [5] is given by

IAKIL = |k

- > :
oump " k](w]) - kN(wN=w])]L < 2m (3.A-4)

* =S
Note that kpump is merely a vector sum of the pump field wavevectors,

and is not to be considered as corresponding to a physical wavevector
in itself.
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where L is the interaction length. For both the wavevector constraints
*

given in (3.A-3) the input amplitude (Al) is conjugated (i.e., Ay < Al)’

resulting in time-reversed wave fronts at frequency Wy only in the

former case (K = 0) does the output field (EN) propagate in a

pump
direction opposite to E1 at each point in space; the latter case requires

an additional reflection [1] off a "real" (plane) mirror in order to

yield the desired replica of E The mirror in effect changes [ -KN’

1’ N

thus yielding a backward-going conjugate replica.

We note that for Epump = 0, the phase matching condition is satis-
fied exactly for all Eﬁ (since E] = -EN) and hence for all L; thus,
there is no restriction upon the input angular range of the wave to be

->
pump = 2k'| (w] )1,

the phase matching constraint can be rigorously satisfied for only one

conjugated. On the other hand, for the latter case [E

input probe wave direction. This 1imits both the efficiencies and the
angular input acceptance range [1-3] for forward-going conjugation
processes.

Using the above formalism, several cases of three- and four-wave
mixing (N=3,4, respectively) leading to phase conjugate waves (i.e.,
E3’4 S A?) are shown in Figure 3A.1. 1In 3A.la,b forward-going, three-

and four-wave [37] conjugate geometries are shown; in 3A.lc, a degener-
ate, backward-going four-wave mixing geometry is shown. We note that
the N-wave mixing processes where N is an odd integer are limited to
nonlinear media Tacking inversion symmetry, while the even-N processes

can, in principle, take place in any (even isotropic) medium.



Kpuup = K2 (wp) 8 2K (w))

P
o

—
kl ((U')

- 141 -

((Uz =2w,)

(2,3)
XNL

(a)

(wz + w3 = 20.),)

(3)
XNL

Kpump= Kalwp) + kalwg)  (B)

= 2K (wy)

K (w))
—————

- ——
® +iker
E4 [ & A' e ™

wg =(wrtwz)-w,

N\

Kslys) |
(w]=w2=w3) %\

(3)
XNL

i.z(wz)
(c)

W3,4= Wy-w,

k3'4(‘U3,4)
——

E3'4 a ATe.ikl?

Wy = (Wa+wz)-w,
E;(QQ)
—

>kpump = E(wfw,) + i;(w3= w)=0

Fig. 3A.1 Geometries for 3- and 4-wave phase conjugate interactions.
(a) 3-wave and D.C. induced 3-wave geometry (utilizing

X(Z) and X(

3), respectively); (b),(c) 4-wave geometry. Note

that (a) and (b) yield forward-going conjugate fields and

thus have angular acceptance limitations, while (c) yields a

backward-going conjugate replica and is capable of ~4n
angular acceptance.
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The above general approach enables one to evaluate rapidly a
system as a potential phase conjugator, given the available optical
sources, geometry, and nonlinear media (e.g., resonances, tensorial
aspects of xy » etc.). A recently published letter [38] deals (inde-

pendently)with these topics.
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Chapter 1v

OBSERVATION OF PHASE CONJUGATED WAVES
VIA A DEGENERATE FOUR-WAVE NONLINEAR OPTICAL INTERACTION
IN AN ISOTROPIC, TRANSPARENT MEDIUM

4.1 Introduction

In this chapter we will discuss two experiments that were per-
formed using a degenerate four-wave nonlinear optical interaction to
yield phase conjugate fields. Both experiments utilized carbon disul-
fide, a transparent liquid, as the nonlinear medium. The basic
description of these experiments will be given in the first part of this
chapfer. Each experiment confirmed various aspects of the effects of a
phase conjugate interaction upon an incident optical field. The first
experiment was performed in a bulk nonlinear medium using a pulsed ruby
laser as the source; the second experiment was performed with the non-

Tinear medium in an optical fiber using a cw argon ion laser as the source.

In the course of this chapter, various diagnostic tests will be discussed
that confirmed the conjugate nature of the interaction. Finally, a brief
theoretical description of the basic four-wave nonlinear coupling in an

optical waveguide will be given.

4.2 Degenerate Four-Wave Mixing in Bulk CS2

In this section we will describe an experiment that demonstrated

the ability of a degenerate four-wave mixing interaction in a bulk non-
Tinear medium to yield phase conjugate (time-reversed) fields. In addi-
tion, we observed an amplified phase conjugate replica of a given input
signal, as well as a one-mirror assisted optical parametric oscillation

mode. These results will be shown to be consistent with the theoretical
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descriptions of the Tast chapter and those presented below. e
will discuss several diagnostic tests performed that verified
both the time-reversal character and the degenerate frequency nature of
the observed output waves. The experiment utilized a pulsed (Q-switched)
ruby laser as the source and carbon disulfide, an isotropic, transparent
liquid substance, as the nonlinear medium. A colinear mixing geometry
was used (i.e., all fields propagated along a common axis) to
realize long interaction lengths (hence greater nonlinear coupling) with
polarization discrimination employed to separate the pump and signal
fields.

The experimental arrangement is shown in Figure 4.1. Stripped
of details, which will be discussed below, it consists of a CS2 cell
which is pumped simultaneously by laser beams A] and A2 of the same fre-
quency, w, polarized in the plane of the figure (parallel, m-polariza-
tion) and which travei in opposition to each other. Simultaneously, an
orthogonally polarized (s-polarization) probe beam A4 at w is introduced
from the left and propagates ina directidn antiparallel to that of A].

The experiment consists of (1) measuring the intensity of the non-
linearly "reflected" beam A3 with polarization parallel to that of A4_
(i.e., orthogonal, s-polarization) as a function of the pumping inten-
sity (v A]Az); (2) demonstrating one-mifror assisted parametric
oscillation, i.e., finite outputs at A3 and A4 with no corresponding
inputs; and (3) to establish that A3 is the phase conjugate of A4.

Due to the material properties of CSZ’ it is necessary to pro-

vide additional background governing its nonlinear susceptibility.
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The polarization of a material is, in general, a function of the ap-
plied optical fields and is conveniently expressed as a power series

of these applied fields as [1]

2) e + 3 tepE 4 - (4.2-1)

P= X-E+ X(
The first term contains the Tinear susceptibility of the material, ¥,
which characterizes the linear index of refraction, dispersion, and
absorption of the medium. The next term contains the second order
nonlinear optical susceptibility, X(Z)’ which describes effects such
as second harmonic generation, and sum or difference frequency wave
generation of two fields. This term is absent in isotropic media, due
to the presence of an inversion symmetry [2]. The third term (which is
therefore the lowest order nonlinear polarization in isotropic media)
contains the third order nonlinear optical susceptibility, X(3), which
describes effects such as four-wave mixing, self-focusing, two-photon
absorption, and Raman scattering processes.

th

The i~ component of the third order nonlinear optical polariza-

tion in an isotropic medium can be written as [1,3]

n

P.(w)

(3) *
; § 6[%i35; E;(w) Ej(w) Ej(w)

-+

SHA NN NP R A

(3) E.(w) EX(w)] (4.2-2)
where j is summed over the field polarizations present.
In terms of the holographic analogs (and notations) presented in

the last chapter, we note that the first two terms yield nonlinear
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-

+*
polarizations of the form (A]-A4)Kz. Thus, the DProbe and one of the
pump beams interfere and form a grating in the nonlinear medium via the
1135 2" Xiji3
off this nonlinearly generated grating, yielding the desired conjugate

nonlinear index (« ¥ ); the second pump beam then diffracts
wave. The last term, however, gives rise to nonlinear polarization of
the type (K]-KZ)KZ, and is hence reminiscent of phase conjugation via a
two-photon coherent state; the probe polarization need not necessarily be
parallel to either of the pump beams, thus not forming an analogous
holographic-type diffractive process. As we describe below, it is pre-
cisely this Tatter term that is exploited in our experiment, since we
wish the probe beam to have its polarization vector orthogonal to that

of the pump beams. -

(3)
ijke

tractable due to the multitude of electronic and rotation-vibration

Since the quantum mechanical description of X is not easily

levels needed for consideration in a transparent molecular medium such
as CSZ’ the tensor elements of (4.2-2) are treated as consisting of two

phenomenological components. The analysis involves the use of the Born-

Oppenheimer approximation [3] in treating the electronic and molecular

degrees of freedom for molecular media. The result for X§§§1’ for ex-
ample, can be written as [3]
W3 =1 (o + 2p) (4.2-3)

ijji 24
where ¢ is the "electronic contribution" which is due to the optically-
induced deformation of the electronic clouds surrounding the nuclei;

B is the "nuclear contribution" which is due to the nuclei's response

to the applied fields. The response (and relaxation) time of ¢ is typi-
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cally on the order of an optical period (or subpicosecond) for trans-
parent media. The corresponding times of B are strongly material depén—
dent and can vary from picoseconds (e.g., 2.3 psec for CSZ[4,5]) to tens
of nanoseconds (e.g., 40 nsec for MBBA near its transition temperature
[61). Since the Q-switched laser output pulses are typically 15 nsec
long, we can safely assume that both components that comprise the third
order susceptibility for CSZ respond instantaneously on these time scales.
Thus, the nonlinear polarization generated in our experiments would have
a temporal dependence involving only that of the applied fields.
Further, we also expect that the nonlinear polarization reflects
the spatial and phase dependence of the pump beams. Thus in the small
nonlinear gain 1imit, where tan(|k|L) ~ |k|L, and assuming that the pump
waves- are nearly planar, the output field amplitude would be of the form

from eq. (3.3-12)

| f (r,t) fo(r,t) f(r,t)
- 4 TR AL 2\ (3)
A3 (A.4 e ) (A]e ) (Aze XNL L
(4.2-4)
where f, is a complex function describing both the temporal and
spatial dependence of the jth wave. If all input fields have the

same Gaussian temporal and spatial dependence, for example, then the
conjugate wave amplitude would be temporally shortened (by a factor

of v/3) as would the spot size.

Returning to the tensorial nature of X(i)’ we see from equation

(4.2-2) that the nonlinear coupling between the various waves for our
experimental conditions is given by [1,3]

(w3=w=w]+w2-m4) ) X(3) (m]=m) (m2=m) A*(-w4=-w)

Py yXXy 11X A2x 4y

(4.2-5)
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where the two pump waves are m-polarized, and the probe wave is s-
polarized. Thus, the conjugate wave is polarized parallel to the probe
field. As discussed earlier, this choice of polarizations is reminis-
cent of forming a two-photon coherent state via the pump beams. The
probe field interacts subsequently with this state, yielding the
desired conjugate output wave.
The employment of a colinear geometry for both the signal

(A3,A4) and pump <A1’A2) waves enabled us to use very long interaction
paths (> 40 cm) and thus realize high gains and even oscillation. This
- colinear geometry entails the use of X(3)

YXXY

. (3) (3) _ . N
Since for CS, [3], nyxy/ Xexxy = 0-706, the small Toss in coupling is

in the nonlinear coupling.

easily tolerable.

The nonlinear reflection coefficient was measured using the ex-
perimental arrangement illustrated in Figure 4.1. The pump source was
a passively Q-switched ruby laser, operating in both a single longitu-
dinal and transverse mode [71. The laser output was monitored for each
shot to ensure single mode and single pulse operation. A typical out-

put pulse energy was 7 to 13 mJ with a duration of 15 ns. The typical
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intensity spot size was determined to be 2.2 mm diameter, using a vari-
ation of the technique described in Ref. [8]; Appendix 4A discusses
our approach.

The output beam was reflected by a 2:1 spherical mirror collimator
and folded to yield an optical path delay of 40 ns before entering the
interaction region. Thus, return signals wére prevented from reaching
the laser throughout the duration of the pulse. A 1 cm thick cell
containing varying concentrations of CuC]2 in H20 was used to attenuate
the laser beam for various input energies [7]. The beam passed next
through a calcite Glan laser prism (P]), and then into the CS, medium,
which was contained in a 40 cm long, 2 cm diameter glass cell. Mirror M]
retroreflected the pump beam, giving rise to a counter-propagating com-
ponent AZ' The cell was tilted off-axis to prevent Fre;ne] reflections
from interfering with measured fields. Prism P] served a dual function:
it passed the pump beam (A]), "t" polarized into the interaction medium,
and in addition, coupled an "s" polarized probe A4 pulse of order 10'3
times that of the pump energy (energy determined by the orientation of
wave plate, ¢). This probe was then beam-split, and passed through a
calibrated beam splitter-mirror system (BS],MZ) providing a sequence of
reflected beams, each being reduced in intensity by a factor of two,
which were incident upon the film plane. For comparison, a Fresnel
reflected (via 852) pump beam was also recorded. Both of these beams
were attenuated through neutral density stacks (NDS and NDR) prior to im-
pinging on the film plane, which employed type 47, 3000 ASA high speed

oscilloscope film. We note that the laser spot size was determined
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photographically, using the same sequence of reflected spots (following
the procedure of Ref. [8]); thus, both the nonlinear reflection coeffi-
cient and the spot size could be determined for the same given run. The
laser energy was monitored by a calibrated Fresnel reflection (off BSZ)
using a Gen-Tec model #ED-100 pyroelectric detector and model #PRJ-D
digital readout.

The forward-going probe beam, A4, propagated through prism PZ’
oriented to pass s-polarized fields (thus serving to eliminate any
scattered ok Fresnel reflected m-polarized fields from interfering with
the measurement), and was then coupled into the CS2 cell through a
spherical mirror M3 and another Glan laser prism, P3 (oriented similar
to that of P]) between the cell and M]. Thus, prisms P] and P3 con-
strained the probe beam to interact only in the CS2 cell. The purpose
of M3 was to focus and confine the probe to propagate within the pump
beam volume.

The phase conjugate nature of the reflected wave, i.e., A3(O) o
AZ(O), was established through the use of the mirror My (see Fig. 4.1).
This mirror focuses the collimated input probe beam A4 on the mid-plane

f A phase conjugate reflection A3, being a "time-reversed" replica

3
of the input wave A4, should emerge from the CS2 cell with virtual
emanation from the focal spot at f3 and thus be collimated. That this
was the case was established using the beam spot photographs (taken by
reflecting A; off BS]) in the film plane.

The nonlinear nature of the reflected wave was also established

through its temporal (pulse shortening), spatial (well-defined spot

size) and frequency (via Fabry-Perot spectra) characteristics. Figdre
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4.2 shows several Fabry-Perot spectra, taken to indeed verify that
the conjugate wave was degenerate in frequency (within the resolution
of the instrument) and also that other competing (inelastic) nonlinear
processes such as stimulating Raman scattering and stimulated Brillouin
scattering were not present. The Burleigh Inc. Fabry-Perot interferom-
eter utilized A/200 flatness, high energy density mirrors .of +97% re-
flectivity and a spacing of 1.91 cm. Thus, the free spectral range is
n 8 GHz with v 150 MHz resolution (i.e., a finesse of v50). Figure 4.2a
shows the conjugate wave as well as a reference pump wave. Within the
resolution of the Fabry-Perot, these fields are seen to be degenerate
in frequency. Figure 4.2b shows the system except with the counter-
propagating pump beam (Az) blocked. Note the absence of the conjugate
wave, as expected. As a check of the ability of the Fabry-Perot to
detect SBS shifts, Figure 4.3 shows a Fabry-Perot spectrum with the
probe wave intensity chosen to be above the threshold for SBS; note
the secondary ring, which is displaced fractionally away from the refer-
ence wave, in accordance with the expected SBS Stokes shift of 5.8 GHz
in C52 [2].

As a second check for the absence of other third order nonlinear
processes in our experiment, the laser energy was measured before and
after the 052 cell to insure that the pump intensity was below that for
the onset of stimulated Brillouin scattering. Also, the laser spot size
was measured on either side of the cell to verify that self-focusing
was not taking place.

As an additional check to verify the absence of competing non-

linear processes, the temporal evolution of the pump wave A1 was measured
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after passage through the CS, cell. Since the retro-mirror (M]) that
gave rise to the counterpropagating pump wave (Az) was not exactly 100%
reflecting, there was adequate residual transmitted optical intensity
to be detected. Figure 4.4 shows the temporal evolution of the pump
wave A1 prior to the CS2 cell and also after passage through the mirror

M The amplitudes have been attenuated for visual purposes. These

1°
measurements were made under experimental conditions (i.e., all interac-
ting beams were present). We see that the temporal profile of the pump
beam is essentially unaffected by the nonlinear interaction. The slight
flattening of the residual pump pulse may be due to pump depletion ef-
fects. Hence, in conjunction with the previously mentioned diagnostics,
the absence of competing nonlinear effects* can be safely assumed. We
note that the over-all detector oscilloscope response time is approxi-
mately 0.5 to 1 nsec for our system.

The presence of a spherical mirrorMBinsures that only reflected phase
conjugated radiation is collimated in the film plane. The presence of un-
wanted s-polarized radiation due to residual birefringence in the optical
components, imperfect extinction in the polarizers, and ellipse rota-
tion in Cs, [9] gave rise to a divergent output and did not affect the
measurement of the reflection coefficient materially. In addition, any

output fields that were proportional to A4(0) (as discussed in Section

3.7B for the case of a colinear gebmetry) would also result in a

*Se1f—focusing, for exampie, could give rise to a "pulse-steepening"
effect which was not seen. See J. Marburger and W. G. Wagner, "Self-
focusing as a pulse sharpening mechanism," IEEE J. Quant. Electron.
QE-3, 415 (1967).
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divergent output.

Figure 4.5 shows the measured reflection coefficient as a function

of the pumping pulse energy, Ep‘ We note that for energies exceeding
11 mJ the reflection coefficient exceeds unity. Also plotted in Fig.4.5

is a least square fit of the function

R = tanz(a sp) (4.2-6)

which is in the form predicted by (3.3-12). The value of o thus deter-
mined is employed, using (3.3-12), to calculate the value of Xﬁiiy of CSZ'
The result is

oay oe28) x 10712 esu (4.2-7)

compared with a generally accepted value [3] of X(3) v 1.8 x 10_]2 esu.

This check serves to reassure us that the observed reflection is due to
the four-wave mixing process described by (3.3-12).

We note that inarriving at (4.2-7) the measured Fresnel losses of
both the CS2 cell optics and glan prisms were conéidered, as was the
Tinear loss due to the CSZ’ The expression given in equation (3.6-6) was
then used with Lp =L (i.e., equal pump and probe interaction lengths)
to extract x&i).

Not shown in Figure 4.5 are the error bars for the data points
which were estimated to be +25% and -12.5% for each measured value of
the nonlinear reflection coefficient (these values are asymmetric owing
to the factor-of-two difference between measured energy values of the
sequence of photographic spots mentioned earlier); the horizontal error

bar is +5% for each energy measurement (specifications of the Gen-Tec
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energy meter). Finally, the theoretical fit for the nonlinear reflec-
tion coefficient was corrected for the temporal conjugate pulse shorten-
ing effect described by (4.2-4) and also measured, thus forming the non-
Tinear power reflection coefficient as being the ordinate of the plot.

In conclusion, we note that the observation of nonlinear reflection
coefficients in excess of unity is in conflict (i.e., greater) with the
upper limit implied by (3.7-6) for CSz, given our geometry. The peak
power of our pump laser was measured to be more than an order of magnitude
greater than the critical self-focusing power for CS2 (recall, however,
that catastrophic self-focusing effects were ggg_seen). The apparent ex-
planation for this discrepancy is that the pump beam quality of our
Q-switched ruby laser was such that its output was presumably comprised
of a large number of filaments (~ 20-50), with each one having an output
power less than that required for self-focusing. In fact, later in our
experimental efforfs, we had the end faces of the ruby rod from our pump
laser repolished and AR coated. After this processing, self-focusing effects
were clearly seen onn passage of the pump beam through the 40 cm long CS2
cell. In fact, the maximum attainable nonlinear reflection power reflec-
tion coefficient (for our geometry) after processingwas not greater than

25%, which is now in rough agreement with that predicted by (3.7-6).
We note that the typical Tinewidth of a Q-switched ruby laser

(operating in a single longitudinal and transverse mode) is found to be

roughly v v 100 MHz [10]. This value is greater than Mvgps by
about a factor of 2 [2], thus (theoretically) obviating the problem

of stimulated Brillouin scattering (SBS) from interfering with the phase
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conjugation parametric interaction (for our experimental parameters).
This fact is also in agreement with our experimental results, where SBS

was not seen (see Figure 4.2).

We conclude this section with a comment regarding the pump laser
coherence length. The coherence length (LC) of ruby lasers is typically
1.5 meters [10], which includes frequency chirping effects [10]. (This
value is obviously less than that assuming transform limited output
1ineshapes, when LC " c/A\)L v 3 meters. ) This value, being greater than
the length of our nonlinear medium, and also greater than any path length
differences of the interacting fields assures us that the third-order
nonlinear dipoles generated throughout our nonlinear medium construct%ve]y
interfere, giving rise to the results as predicted in Section 3.3 (where

monochromatic fields possessing infinite coherence lengths are assumed).

4.3 One-Mirror Assisted Optical Parametric Oscillation

In this section, we describe an experiment that revealed an optical
parametric oscillation mode in a degenerate four-wave mixing geometry.
From the coupled mode analysis described in Section 3.5, we concluded

that the oscillation condition for the geometry considered is given by

kL = tan™' (1/]r]) (4.3-1)

where r is the amplitude reflectivity of the added mirror (see Figure

3.5). We thus see that (4.3-1) implies that the oscillation condition
is reduced by a factor of 2 (compared to the case without an external

mirror), to a value of |k|L = m/4 when the external mirror is totally reflecting
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(|r] = 100%). We therefore expect the onset of oscillation to occur when

the conjugate mirror reflection coefficient is also "totally reflecting”
(or |A3/A4| = 100%). Physically, this geometry therefore forms a passive
“resonator" bounded by a conventional mirror on one end and a conjugate
mirror on the other. The modes of such optical cavities, and further
experimental results will be the topic of Chapter VI.

Self-oscillation was observed using the apparatus shown in Figure
4.6. The difference between this and the previous experimental geometry
(Figure 4.1) is two-fold: first, prism P1 is used to couple out any oscil-
Tation ("s" polarized) signal, while passing the pump beams. Second, the
absence of prism P3 now allows the totally reflecting flat mirror, M1, to
serve a dual function: (1) it retroreflects the pump beam (A]), thus pro-
viding for its counterpropagating component (Az); and (2) M] serves as a
reflector for the orthogonally polarized oscillation field. As discussed
above, this reduced the oscillation threshold by a factor of 2.

At pumping intensities exceeding 8.8 MW/cm2 and with no input field
(A4(O) = 0) an intense oscillation pulse with orthogonal (s) polarization
resulted. The oscillation pulse energy was approximately 1% of the pump
energy. We note that the spot size of the oscillation beam was
smaller than that of the input pump beam. This is due to the fact that
the coupling constant « 1is proportional to the product of two beams, A1
and A,, each with a Gaussian intensity profile [c.f. (4.2-4)] . We note
that the value of the pump intensityat the oscillation threshold corresponds
to a power reflection coefficient of ~60%, thus being less than the
theoretical value of 100% expected for oscillation to occur. This is to

be expected, since in our system the oscillation grew not out of black-
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body photon noise modes, but from (depolarized) Rayleigh scattered pump
photons within the CS2 and associated optics. Finally, due to shot-to-
shot laser output power fluctuations, coupled with the strong nonlinear
dependence of the conjugate mirror reflectivity near the oscillation
threshold (R « tanzKL), one would not expect very precise agreement of
experimental values with theoretical predictions. Similar results have
been observed for one-mirror assisted oscillation in sodium vapor [11].

A typical set of temporal pulse shapes is shown‘in Figure 4.6a.
The first pulse is the laser output, while the second pulse (properly
delayed and of arbitrary amplitude) is the output due to the osci11ation.'
The nonlinearity of the interaction is also evident from this datum.
Since the nonlinear gain requires the temporal overlap of the pump beams,
the evolution of the gain in the time domain is essentially the temporal
convolution of the two Gaussian pulses. This results in a nonlinear gain
with a sharper and shorter Gaussian temporal characteristic. Fabry-Perot
spectra of these signals verified the degenerate frequency nature of the
oscillator output. Figure 4.7 shows a typical set of such spectra. In
4.7a the parametric oscillator output is seen to be degenerate in fre-
quency with respect to the reference pump fields (again within the
150 MHz resolution of the instrument),while in Figure 4.7b no oscillator out-
put is seen with the rear mirror (M]) blocked. The parameters of the
Fabry-Perot are identical with those used in the former experiment.
Thus no additional frequency components, and hence no competing nonlinear
optical processes were observed. Finally, the threshold nature of the
oscillator output was verified by the nonlinear increase of its output

as a function of input pump energy.
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In conclusion, we have demonstrated that, in addition to phase
conjugation, the process of four-wave mixing can result in amplification
and oscillation, in accordance with theoretical predictions. Polarization
discrimination was used to separate pump and signal beams. The temporal,
spatial, and frequency characteristics of the observed signals were shown
to be consistent with those expected from such a nonlinear interaction.

The use of a colinear geometry affords the possibility of per-
forming real-time holographic operations and (time-reversed) image com-
pensation at efficiéncies large enough to be of more practical interest

than previously observed.

4.4 Phase Conjugation via Four-Wave Mixing in Optical Waveguides: Theory

In this and the following section we will .consider phase conjuga-
tion via degenerate four-wave mixing in optical waveguides. We will
first present qualitative arguments and discuss several features pertain-
ing to the use of optical fibers or waveguides as suitable geometrical
media for optical phase conjugators. Next, we will present a derivation
to prove the feasibility of geﬁerating phase conjugate fields by accom-
plishing the nonlinear interaction within a multimode optical waveguide.
In the next section, we will outline an experiment we performed which
used a liquid filled (in our case CSZ) optical fiber as the nonlinear
medium and a cw argon ion laser as the source. Experimental results
will be compared with the theoretical discussion présented below.

Thus far in this work we have considered nonlinear optical inter-
actions in bulk media. By virtue of the wagnitude x%ﬁ? in the media
discussed, one requires large optical intensities to realize sufficient

nonlinear gains; hence, in bulk media, this constraint necessitated the
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use of high peak power, Q-switched laser sources, as well as focusing
optics to increase the intensity. For the third order interactions in
bulk media considered thus far, the non]inear‘efficiency €hulk scales as
Ebu]kq’XéE)IL’ where the pump beam intensity and the interaction length
are given by I and L, respectively. As an example, if we consider Gaus-
sian beams, and allow the interaction to take place in the region of the
focal plane of an optical system and over an interaction length on the
order of the confocal parameter [2] (L=-nm§/x, where W, is the radius of

the spot size), the efficiency scales as ¢, .\ X;i%p/ﬂwg) (ﬂwg/x) - XéE)P/X,
for a given laser power Pbu]k = P. :
If, on_the other hand, we assume the interaction to occur in an
optical waveguide (or optical fiber) possessing the same nonlinear sus-
ceptibility (Xéf)), then one can exploit the fact that the optical wave-
guide is capable of maintaining a fixed beam profile, or eigenmode, over
its entire length [12]. This fact has made possible many interesting
device applications as well as the investigation of numerous nonlinear

optical phenomena in fibers and other optical waveguides [13]. Thus,

for third order interactions in waveguide geometries, the nonlinear effi-

ciency ¢ (3)(P /ﬂrg)L, where s is the core

guide Scales as Eguide VXNL ‘Tguide
radius of the fiber of length L, and the laser power is Pquide‘ Hence, the
ratio of these efficiencies goes as
Cguide (_U:) Fouide
€ bulk 're/ Fhulk (4.4-1)
For typical optical fibers Py v 1- 100X and L~ 1-100m. »
6

Thus the first factor of (4.4-1) can be on the order of 10 .

Therefore, as opposed to using pulsed, high
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power lasers (P~ MW) in the bulk, one can in principle realize similar
nonlinear efficiencies using cw lasers having only several watts of op-
tical power in optical fibers. There are, however, several limitations
that provide constraints upon both the efficiency of the interaction

and the information processing capability of such fiber systems. First,
there exist Tength constraints. The degenerate four-wave interaction,
being dependent upon the complex field amplitudes of the various beams
present, requires that all the interacting waves maintain a definite
phase relationship throughout the nonlinear medium. Therefore, the
coherence length [10] of the laser must exceed the interaction length
in order for constructive interference of the nonlinear dipoles (which
radiate the conjugate wave) to take place. Second, the interaction
length should not exceed the linear loss e-folding length. That is,

L < 1/a,where o is the linear loss coefficient (recall Section 3.6).
Another set of constraints involves the consideration of competing non-
linear effects such as stimulated Raman or Brillouin scattering. These
effects have been considered in detail in arriving at maximum power
handling capabilities for given fibers [14,15]. We note that since these
Raman-type gains depend upon the local laser intensity (as opposed to the
laser amplitude), these effects do not involve the additional laser
coherence Tength constraint. Another constraint involves the spatial
information handling capacity of the fibers. Since a given fiber can
confine or support a finite number of eigenmodes (analogous to the
number of eigenstates possible for a given quantum mechanical particle

in a box), this number of modes places an upper limit upon the number
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of diffraction limited resolution elements which can be phase conjugated.
Thus, for a given laser power and fiber parameters there is a trade-off
between the number of resolution elements capable of conjugation and the
nonlinear gain attainable. This therefore forms an equivalent nonlinear
gain-spatial bandwidth product that would characterize a given fiber.
Having motivated the use of optical waveguides as potential guid-
ing media for the realization of efficient nonlinear optical phenomena,
we next present an analysis of phase conjugation by four-wave mixing in
multimode optical fibers. It will be found that complex image fields
can be phase-conjugated and amplified without loss of spatial information,
i.e., without mode mixing. A ca]cu]étion shows that this can be done on
a cw basis with moderate (v 1 watt) pump powers in a few meters of fiber.
This suggests that four-wave mixing in fibers is a serious candidate for
real-time holographic applications including image transmission and

compensation for distorting media.

The basic geometry involved in the experiment is illustrated in
Figure 4.8. An input field Ei is incident on a fiber whose core medium
possesses an appreciable third-order nonlinear coefficient X(S). The
input field Ei may correspond to an image field transmitted by another
fiber or to some other field whose phase conjugate is sought. The fiber
is multimode with a number of propagating modes essentially equal to the
number of resolution elements contained in the incident field E;. The
number of confined modes N for a given waveguide geometry and input

wavelength ()) is approximately [16]
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N = (218 (A2 (4.4-2)

where a is the effective radius of the guiding layer (or fiber core) and
N.A. is the "numerical aperture" of the waveguide. For a step index con-

figuration, the N.A. is given by [16]

N.A. = (nz-n )1/2 = (2nAn)]/2 (4.4-3)

1

where n, and n, are the index of refraction of the core and cladding
layer, respectively (An = no-nys in the second equality we assume
that N, vong = n).

The fiber is pumped simultaneously by two strong, oppositely
traveling fields, Ep] and Ep2’ whose frequency is the same as that of Ei'
A reflected field Er’ generated by the four-wave mixing interaction, will
be shown to be a complex conjugate of the input field. For sufficiently

intense pump waves, Er will be an amplified phase conjugate version of

the input field Ei' The set of propagating eigenmodes of the fiber is
denoted by {E (x,y)}. The pump waves are taken as
2

E 6: (x,y e + c.c.

pl

1(wt4-s]z) | (4.4-4)

E., = —;-Epz(x,y) e "+ c.c.

p2

where Ep](x, y) and 8p2(x’y) are the respective transverse modal
distributions. The pump fields will be coupled ideally into the lowest
order propagating mode of the fiber so that their confinement over the

full interaction length is assured. We thus have !Epj(x,Y) = EEPZ(X,Y) EEZ],
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Hellwarth [18] treats the case where the pump waves are multimode. MWe
will see that the single mode pump wave approach is the more efficient
scheme. The input signal wave Ei and the reflected output wave Er are

expanded in terms of the propagating eigenmodes E&ﬁx,y) of the fiber as

i(wt -8 z)
E; = ;—Z B.(2) £, (x,y) e, c.c.
m
(4.4-5)
t+8
E. = 5 5 ) Az(Z)éi (x,y) eT(w " 8y2) +c.c.
L

The complex amplitudes Bm(O) are determined by the input conditions. We

are seeking a solution for Bm(z) and Am(z). The wave equation is

2 2 '
VE - ue(F) -:?g - —37 Py, (Frt) (4.4-6)

The functions Ez(x,y) satisfy (@.4-6) with Py = 0

A 2 =
(.5;2_ + -3-;2- - 8.) &, (x,y) + wue(¥) C(xy) =0 (4.4-7)

and are orthonormal such that

=]

” dxdy &, (.)€ (xuy) = 5, (4.4-8)

Q0
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Substituting equation (4.4-5) into equation (44 -6)

&+ 2,2 2 |
) [(F=+ 5= 8% + e (¥) )2+ 2, 1 L ) i
g ax2 ay2 2 (¥ ))2 162 4 z ]f; exp[1(wt+-e£z)]-+c,v,
- LZaZ P, (F,t)
5t NL*T?

(4.4-9)

Using (4.4-7) to eliminate the first factor inside the square bracket,

and assuming that IdZAQ/dzzl << léiAzl leads to

dA

2
. dA, . =¥ p (¥
% g, Hf—dsl exp[1(wt4‘812)]'*c-c- = 242 pNL(r’t) (4.4-10)

In a similar fashion we obtain for the input field

a8 w02
] -ig dzf expLi(ut - £ p)) e = N by (Bt @aa)

The induced nonlinear polarization is third order in the field ampiitudes

and is taken as

wrwtw-w _ (3)
PrL = X7 EpqEpoEy (4.4-12)

Substituting (4.4-12) into (4.4-10), we obtain

dA B,z 18,2
% 8, Hi&éﬁ(x’Y)e 272w uX é?fEDZ Z B;(z)éﬂm(x,y) e (4.4-13)
In a similar fashion from (4.4-11)
-iB _z (3) :
me _ iw uX -18,2
L&, dsz(w - - 5p15pzzA’;(z>é£<x,y) e ¥

(4.4-14)
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or by conjugation (and taking E’p]’ E’p2’ and x(3) as real)

| ;5 ig 2 1.wzux(s) 1'822
% b @ Cplooy) e T o= & p2 I Ay (2) €, (x.y)
(44-15)
Multiply (4.4-13) by ES and integrate over the cross section using
(44-8)

dAs - iwqu(B)

. i(B -8.)z
F: 2, g, B (z)e M3 J féplépzemfs dx dy  (4.4-16a)

Cc.S.

and from (4.4-15)

*
dBS _ w uX(3) )
dz 26

m

i(B -8.)z
Ap(z) e M ST [ g & & dacdy  (44-160)
c.S.

Equations (44 -16) are the basic coupling equations. We note that a given

mode As of the réﬂected field is coupled to all modes Bm of the incident
field. This is undesirable, since it causes a loss of spatial information.
Two physical facts combine to remedy this mode scrambling: (a) We note
that for a length of fiber L >> ZW(Bm-BS)-1,modes A  and B_ are grossly
mismatched so that no cumulative power exchange between them can take
place unless Bm = BS. (b) In addition, if the pump f1e1ds£ x,y) and
Epz(x,y) are more or less uniform over the cross section, then the overlap

integrals appearing in (4.4-16) are zero unless m=s. The combined ef-
fect of (a) and (b) is that a given reflected mode AS of the reflected

field couples almost exclusively to the incident field mode of the same

index, i.e., to Bs' We thus have:

dA
dz 285

2 (3
s . sl )5 £ (4.4-17a)
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dB?: iwqu(3)€ £ A

dz ZBS pl p2's (44-17b)

Since the input field E. is specified, the mode amplitudes B, (z=0) are
given. Another boundary condition is that the reflected field Er is zero

at the output end z=1L of the fiber, so that As(L) = 0. With these

boundary conditions we can solve (4.4-17), obtaining

A(z) = 1B§(O)(sin KgZ - tan kL cos k z)
Bs(z) = BS(O)(tan KSL sin KgZ * €OS KSZ) (4.4-18)
| LxBE £
where ¢_ = p1 p2 :
s 28, * Equations (4.4-18) display the same ampli-

fication and oscillation features as the plane wave case outlined in

Chapter III. We are particularly interested in what happens to the

image information. We find that at z=0,

A (0) = -iB’;(O) tan kL (4.4-19)
The total reflected image field can be reconstructed, using equation
(44 -5) as
= = T ]
Er(x,y,z 0) = -i tan «L % > BE(O) Gz(x,_y) exp(iwt) +c.c. (4.4 -20)

where, neglecting the weak dependence of Ko On s, we took Ke = K. The
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original input field is, according to (4.4-5)

B,(0)

i 4.4-21
E;(x,y,2=0) = Z"T_ éz(x,y) et 4 coe. ( )
%

so that as far as the total complex field amplitudes are concerned, we

have

—-— 3 3 * -~
Er(x,y,z-O) = -i tan(xL) Ei(x,y,z-O) (4.4-22)

The reflected field at the fiber input is thus an amplified (for

kL > m/4) complex conjugate replica of the input field.

The tremendous advantage of performing the phase conjugation inside
a fiber is due to the fact that pump waves can be launched as fiber modes
so that large pump intensities over the whole interaction path can result
from moderate pump powers. If we consider, as an example, a mu]tjmode
fiber with a core diameter of 20 um which is filled with CS, and take the

-12

two pump wave powers as 1 watt, we obtain (using X(S) = 1,2x10 esu)k

=~ §x 10'4 cm'1

, 50 that kL = 1 is achieved with a fiber length of
L = 20m. It should be noted that if the pump propagates as a low order
mode, the overlap integrals of (44.-16) may be appreciable for near-
lying modes, i.e., incident and reflected modes of different indices caﬁ
interact. This interaction, however, is negligible, since the phase mis-
match (BS-Bm)L can be shown to be >> 2w iﬁ the above example.

The theory and example presented above clearly demonstrate the ad-
vantage of performing four-wave mixing in long fibers. Under such

conditions, it is important to consider the effect of optical absorption.

If the intensity absorption coefficient of the four waves involved in
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the interaction is taken as o, we obtain instead of equation (4.4-22),

-2ik tan(KeL) exp(- %-aL)

E (X’.Yso) =
r o tan(KeL) + 2Ke

*
E.i(x9.ya0) (4.4_23)

where « = [Kzexp(-aL)-(%-a)Z]]/z. This equation follows from the ar-
guments presented in Section 3.6 if we assume equal pump and probe
interaction lengths (i.e., L= Lp £ L) in equation (3.6-6). It follows
from (4.4-23) that for substantial reflections we need fulfill

ol << 1, k> a/2. If aL >> 1, then

E.(x,y,0)

= .1 _l K
Efxy,0) - 71 expl-zal) &
(4.4-24)
The pump intensity in the above example is below that for the onset of
stimulated Brillouin scattering in C52 and also is such that amplified

spontaneous Stokes radiation is insignificant [14,15].

4.5 /Demonstration of Degenerate Four-Wave Mixing in a Liquid-Filled
Fiber

~In this section, the observation of cw backward-wave generation
using degenerate four-wave mixing in a nonresonant medium will be re-
ported. The interaction took place inside a 3m long CS,-filled 4 um
i.d. optical fiber. Defining the backward-wave conversion efficiency
as the ratio of the reflected wave intensity to thé input wave inten-
sity, a 0.45% conversion efficiency was measured with a pump power of

6 mW inside the fiber.
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In the experiment sketched in Figure 4.9, the pump and the probe
waves originated 1in a cw single transverse and longitudinal mode
argon ion laser, operating at a wavelength of 514SR using an intra-
cavity, temperature stabilized etalon. The laser output had a 10 m
long coherence length, which ensured the coherence of the nonlinear in-
teraction over the entire fiber length. The two fiber ends and the ob-
jective lenses were carefully aligned to allow maximum coupling of the
two linearly polarized pump beams into the lower order fiber modes.
Typically, fifty percent of the incident light was coupled into each end.
Each fiber end was securely positioned inside a stainless steel CSZ-
filled cell (not shown in the figure). The CS2 inside the cell was
under a nitrogen pressure of 80 psi (4100 Torr) which prevented the
1iquid from boiling when illuminated by the focused pump beams. The probe
beam, whose power was roughly equal to that of the pump beams, was intro-
duced nearly parallel to the forward-going pump beam, EpZ’ and was
coupled into the fiber by the same objective lens. Since the probe beam
was s]ight]& separated from the on-axis pump beam, the coupling effici- |

ency was typically a factor of five lower than that of E A1l the

p2’
beams were chopped (at 57 Hz) to reduce the duty cycle (and consequently
to inhibit the degradation of CSZ) of the optical fields as well as to
allow the use of temporal discrimination techniques for the detection

of the backward signal. The probe beam also passed through an optical
jsolator consisting of a linear polarizer and quarter-wave plate prior
to coupling into the fiber. This isolator served two functions. First,

it minimized any spurious Fresnel reflected probe signals from interfer-

ing with the backward-going wave. Second, being a polarization
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dependent phase "aberrator," the isolator would pass only the conjugate
probe field, which could correct for this phase "distortion." Hence, the
conjugate reflection of a RHCP field, which is a]éo a RHCP wave, will be
passed by the isolator in contrast to a LHCP wave which is the result of
a Fresnel reflection, as discussed in Section 2.3.

Due to the proximity of the probe and ﬁump fields (constrained
by the aperture of the objective lens), additional background noise arose
from both the forward-going pump, Ep2 (via Fresnel reflections), and the
counterpropagating pump, Ep] (due to the residual throughput from the
fiber). Attempts to reduce these background noise sources via polariza-
tion discrimination were not utilized due to polarization scrambling of
the fields within the 3 m long fiber. In order to extract the conjugate
signal from the background by temporal discrimination techniques,
the pump beams and the probe beam were chopped with different "on" dura-
tions as shown in Figure 4.10. The conjugate wave was generated only in
the time interval when both the pumps and the probe passed through the
chopper. During the interval when the beams did not overlap in time,
the light detected was due to the Fresnel reflection of Ep2 and the
residual throughput of Ep1, plus residual Fresnel reflections of the
probe wave that leaked through the isolator. The conjugate signal was
obtained by subtracting the signal detected during the non-overlapping
time intervals from that of the overlapping time interval. The conju-
gate signal disappeared when either pump beam was blocked. For an input
power of 6 mW in each pump beam within each fiber end, a conversion ef-

3. -1

ficiency of 0.45% was observed. For n=1.628, a=2.5x10 "cm = [13]

-11

and (ZﬂX(3))/n =1.1x10 esu [3], equation (4.4-23) predicts a
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conversion efficiency of 0.23%. The discrepancy between theory and ex-
periment can be attributed to the rough estimate of the conjugate signal
as well as the values of o and X(3) used in (4.4-23).

The pump powers employed were well below the threshold for both
stimulated Brillouin scattering and Raman scattering (14,15}, The back-
ward wave was observed only when both pump waves and the probe wave over-
lapped in time, even at a larger pumping power; thus other nonlinear
effects such as optically induced birefringence or thermally induced
index of refraction changes could not have generated the signal that was
observed. Although there is polarization scrambling inside the fiber,

a simple consideration of the magnitudes of the various third order sus-
ceptibility tensor elements [3] shows»that the dominant backward-wave
signal is indeed proportional to - the complex conjugate of the probe
signal.

In a separate experiment, we used only two waves, Ep] and EpZ’
which were chopped with different duty cycles. In this case, a 1.6 m
long 7 ym i.d. CSZ-filled fiber was used. Prior to entering the objec-
tive lens, Ep2 passed through a crosshair made of fine wires, so that
its diffracted wave had additional structure surrounding the central

spot. The purpose of the crosshair was to divert some energy of E_, to

p2
higher order fiber modes. The light in the higher order modes essential-

1y served as the probe wave [17], as mentioned in the previous experiment.
A backward-going wave was also detected as in the previous case. With
E 2 blocked, a bright spot was observed that was due to the residual

P
light from Ep] emanating from the fiber. When both Ep1 and Ep2 il1lumin-
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ated the fiber, we observed additional spatial structure in the form
of a peripheral ring, which was not due to the Fresnel reflection of

E At higher pump powers, distinct dots were seen that surrounded

p2’
the central bright spot. This indicated that a backward-going wave
with its energy mainly located in the higher order fiber modes was
generated.

In conclusion, a cw backward-wave generation by four-wave mixing
in optical fibers was demonstrated. In addition, the phase conjugate
interaction was shown 'capable of correcting polarization dependent
aberrations and distortions such as optical component birefringence.
The lifetime of the CSZ-fi11ed fiber was rather short (on the order of
a few hours), especially when subjected to continuous laser beam il-
Tumination. Other Kerr media such as benzene or possibly a mixture of

CS2 and benzene may alleviate this problem and thus yield potential

practical device applications.
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Appendix 4A
Evaluation of the Gaussian Spot Size of an

Optical Beam by a Photographic Technique

In this appendix we discuss the photographic technique used to de-
termine the Gaussian spot size in our pulsed laser experiments. Not
only does this technique yield the spot size, but in conjunction with a
reference beam, it can yield the beam energy. The procedure basically
follows the description of reference [8]; the major difference, and
hence the advantage of our approach, is that the spot size (as well as
the relative energy) can be obtained in one shot (laser pulse). Previous
techniques, such as that of reference [8], or "energy in the bucket"
methods require several laser shots and thus assume that the laser out-
put parameters remain constant over all the shots recorded in performing
the measurement. The measurement of the relative laser energy.to that of an
optional reference beam provides a further "bonus" of the technique.

The basic geometry is shown in Figure 4A.1. The laser output beam
whose spot size (and even relative energy) are sought is directed as shown
into a (parallel) mirror-beam splitter system that beam splits and re-
flects a sequence of beams that are incident upon a recording medium (in
our case, type 47 polaroid film emulsion). In our system we employed a
50% beam splitter for the given input optical polarization state. Hence,
a sequence of parallel spots, each being reduced by é factor of two from
the preceding spot, is recorded on the film. Also (optionally) incident
upon the film is a reference beam, whose energy is known--for example

through the measurement of a calibrated Fresnel-reflected spot upstream.
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Both beams pass through neutral density stacks prior to impinging upon
the film plane to insure a nonsaturating film exposure. Of course, the
energy of the reference spot need not be measured if one desires a
relative comparison of this reference with the spot sequence of the
other beam. In fact, for our experiment, this technique provided the
direct measurement of the nonlinear reflection coefficient, where the
“"reference spot" was that of the conjugate wave (A3), while the
sequence of spots was generated by the probe field (A4) (see Section 4.2
and Figure 4.1 for details).

The procedure used to determine the spot size is to measure the
"radius" chosen to correspond -to the same exposed point of each spot.
Since we are examining the same degree of exposure for each spot
in the sequence, this technique does not require that the system
operate within the linear region of the recording medium (e.g., the
Tinear region of the Hurter-Driffield curve [10] for film emulsion).
0f course, if we also wish to measure relative energies (e.g., the
measurement of the nonlinear reflection coefficient), then the linear
portion of the H-D curve must be used; we verified operation within this
region for our experiment by utilizing various calibrated neutral den-
sity stacks to compare the spot sequence with various (attenuated) ref-
erence spots.

Assume a sequence of N photographed Gaussian spots, with the
intensity of each successive spot attenuated by a factor of two. The

nth spot in the sequence has an intensity
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I(r) = glen(r)l2 (4.A-1)

where g is a numerical constant. The radial dependence of the field

goes as

e {r) = € (0) exp(-r’/a®) (4.A-2)

We wish to extract the value of "a," the Gaussian spot size. By virtue

of the beam-splitter/mirror pair, we have

e (r) = e (r) /22 (4.A-3)

where so(r) corresponds to the first (greatest amplitude) field.
We now assume that we can measure the "radius" of each spot at the

same contrast point on the film. Hence, we compile a list of radii, ro

for the sequence of spots, with the value for " > Tpat

Since each measured value of the radius corresponds to the same

intensity, we have

I(r=r)) = I (r=r) = ¢, | (4.A-4)

n

Using (4.A-2 and -3) with (4.A-4), we obtain

2 Eo(o) 2 2,.2
gle (r )%= g S(n72) exp(-2r /a%) = C, (4.A-5)
Solving(4.A-5) for n yields
2 2 |
n o= re o+ C (4.A-6)
a2£n2 n 2

where C2 is another constant.
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We see that (4.A-6) is of the form
y = mx+b (4.A-7)

where m=-2/(a2£n 2) and b = CZ’ X = ri, and y = n.
Therefore, for a given set of measured data {n,rn}, a least
squares fit to the function (4.A-7) can be obtained, with the intensity

spot size given by

o Wz (4.A-8)

where m is the best fit slope to (4.A-7). The "effective" beam area is

. _ 2
given by Aeff =27m Wr-
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Chapter V
SPATIAL DOMAIN APPLICATIONS OF PHASE CONJUGATE OPTICAL INTERACTIONS

5.1 Introduction

In this and the remaining chapters, we will discuss and analyze
several applications of Phase Conjugate Optical interactions (PCO). As
discussed in Chapter I, one can categorize potential applications to lie
in three different domains: spatial, temporal, and spatial-temporal
regimes. This chapter will focus upon the first category; that is, ap-
plications that exploit the spatial-mode features inherent in phase con-

jugate processes.

We will discuss first the ability of a phase conjugate system to
compensate for various undesirable phase and/or polarization distortions
in bulk media [1,2]. Next, the conceptof image transmission through mul-
timode guided structures, e.g., optical fibers, and the ability of PCO
interactions to compensate for modal-dependent phase aberrations will be
briefly reviewed [3,4].

Guided by the holographic analogs of degenerate four-wave mixing (DF-
WM) optical processes as discussed in Chapter III, we will investigate
a c]ass‘of coherent image processing techniques which can be realized in
real time using DFWM. These techniques will include spatial convolution
and correlation of optical fields (or intensities) with the associated

matched filters (or Vander Lugt filters) [5], and pattern recognition

schemes[6]. Finally, the application of DFWM as applied to the field of

nonlinear optical microscopy will be discussed.
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As discussed earlier, one may realize the above-mentioned
applications using other classes of conjugators. However, DFUM and other
backward-going conjugate schemes (see Sections 3.2 through 3.4) are a
"natural" for the spatial domain type applications due to their large
"spatial-frequency bandwidth” (i.e.,n 47 angular acceptance range). On
the other hand, forward-going conjugators (see Section 3.2 and Appendix 3A)
which suffer from phase matching constraints as well as from finite
length-induced distortions may find limited use in certain spatial

domain applications.

5.2 Correction of Phase Aberrations in the Bulk and in Multimode Wave-
guides

A major class of potential applications for phase conjugators lies

in the area of phase aberration correction (or compensation). As was
discussed and proved in Chapter II, the "time-reversed" fields generated
by a phase conjugate mirror satisfy Maxwell's equations for waves propa-
gating in a backward direction through various media. Hence, unwanted
or undesirable phase distortions encountered by an electromagnetic wave
as a result of propagation through an aberrating medium may be corrected
or removed if the distorted wave is conjugated and'retraverses the

same (or similar) stationary medium. We .recall from Chapter II that this
technique can compensate for both spatial and polarization type aberra-
tions, for a'po1arization type distortion is merely a special case of
the more general tensor~dependent permittivity e(v). Applications of

this scheme in bulk media include laser communication scenarios [1,2],
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autotracking devices, as well as potential laser fusion schemes. The
general characteristics of these applications are illustrated in Fig-
ure 5.1. Here target 2 is illuminated by the output of a Tow power
laser oscillator 1 (e.g., pulsed). The reflected 1ight 3 is collimated
by lens 4 and traverses the amplifier 5 in reverse (away from the tar-
get). The distorted wave front 6 is incident on the conjugator 7, and
is reflected as a conjugate wave 8. The wave retraverses the amplifier
5, emerging as a plane wave 9, which is focused on the target as a
diffraction limited spot. If the conjugator possesses a nonlinear gain
large enough so as to reproduce the same amplitude at the target (for
example) upon each round trip, then the system can be capable of yield-
ing a mode of laser oscillation. The conjugator and the target thus
form a unique "resonator," bounding the aberrating (and/or amplifying)
medium. In this mode of operation, no additional optical source is
necessary to illuminate the target, as the system itself, via the
oscillation modes, provides diffraction limited target illumination.

The nature of the "target" depends upon the specific application.
For a laser communication system, the target could be a laser trans-
mitter, with the phase conjugator regarded as being a laser transceiver.
The conjugator thus forms a narrowband receiver/amplifier (recall from
Section 3.3 that the forward-going wave is amplified), as well as being
capable of encoding amplitude and/or phase (via the pump waves) modulated
conjugate waves that propagate back to the transmitter. The high power
- amplifier (#5 in the Figure) could symbolically depict a turbulent

atmosphere, and/or a laser amplifier. The conjugator would compensate
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for any phase distortions encountered during each round trip.

For the "autotracker" application, the target may be a moving
object possessing a "glint." If the target's motion during a round
trip time (i.e., twice the photon transit time between the target and
the conjugator) spans a transverse distance (perpendicular to the optical
axis) small compared to the spot size, then the system could "track"
this moving target via constant illumination upon the glint. This
illumination would be in the form of a diffraction limited laser beam
focused onto the glint.

The scheme shown in Figure 5.1 may also be of use in potential
laser fusion systems, with the target being a pellet (e.g., Deuterium).
The distorting medium could be a series of laser amplifiers, with the
conjugator obviating any phase aberrations. In this mode'of operation,
the system would be capable of optimally extracting the stored energy
within the amplifiers in the form of a diffraction limited output beam
incident upon the target.

We conclude the discussion of bulk media phase conjugator appli-
cations by recalling the discussion of Section 3.5, where a one-mirror
assisted optical parametric oscillation mode was discussed. We postulated
that by placing a four-wave mixer within an existing laser resonator, the
intracavity laser fields could provide the required counter-propagating
pump beams. Further, by placing an additional mirror in the vicinity
of the conjugator (as in Figure 3.5) a preferred direction of a parametric
oscillation would result along this axis if |k|L>7/4. The laser output
can thus be coupled out from the front surface of the conjugator, with

a radius of curvature determined by the external mirror and its location.
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A second class of spatial domain applications using phase conju-
gators involves the retrieval of pictorial information upon transmission
through multimode fibers [3,4]. Consider a situation where one desires
to transmit a two- or three-dimensional spatial image along a given
length of a multimode optical fiber. Due to the fact that each confined
waveguide mode propagates with a different phase velocity B (where
n2k < B g_n]k, N and n, being the refractive index of the core and
cladding, respectively; k is the wave number), there results an undesir-
able modification (i.e., distortion) of the resultant field [3,11]. How-
ever, since this phase aberration is well-defined in the sense that a simi-
lar fiber of equal length yields the same distortion, then the use of a
phase conjugator at the midpoint of a given fiber channel, for example,
with the conjugate signal directed to propagate along the second half
of the fiber, would result in an effective cancellation of the phase
distortion at the output end of the fiber. The generalization of this
scheme to polarization scrambling and/or nonlinear (intensity-dependent)
phase distortions follows directly from the discussion presented in
Chapter II.

We note that all the above spatial domain applications are a
direct consequence of the linearity of the phase conjugate interaction
with respect to multiplanar spatial modes‘of the input (probe) field.
The phase conjugator can thus be viewed as a device that compensates

for spatial-mode dispersion encountered as a result of monochromatic

field propagation through various media. In the next chapter, we will
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show the ability of a phase conjugator to compensate for group-velocity

dispersion encountered as a result of broadband (pu]sed) field propagation

through dispersive channels.

5.3 Real-Time Spatial Information Processing via Degenerate Four-Wave
Mixing

It has been shown in Chapter III that degenerate four-wave mixing

can be operationally associated with real-time holography. Guided by
these analogies, one can easily envision a myriad of potential applica-
tion areas using this nonlinear optical interaction. Specifically,

one can replace most conventional coherent holographic image pro-

cessors [6] with four-wave mixing elements. Thus, the many procedures

required to realize conventional holographic devices--namely, the expo-
sure, development, alignment, and reconstruction steps--can now be per-
formed in real time, essentially insténtaneous1y. Further, the finite
grain size of most holographic recording materials (film emulsions, etc.)

which can place constraints upon the resolving power in.certain

applications is essentially eliminated by the use of nonlinear optical
devices. This follows, since the effective "grain size" of most non-
linear optical devices is the spacing between optical interaction sites,
Qﬁich is on the order of lattice constants for solids, and is p_]/3 (p
is the density) for liquids and vapors. Typical numbers are 10-1003 for
solids and liquids, and 108 to 1 um for vapors (corresponding roughly to

1 Torr down to 10'2 um of pressure, respectively.)
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In this section we will show how a degenerate four-wave non-
Tinear optical interaction can be used to perform, essentially instantane-
ously, the operations of spatial convolution and correlation of spatially
encoded optical fields. We note that various schemes which use other
nonlinear optical interactions (viz., three-wave mixing) to realize
these operations have been recently discussed [7]; these three-wave
interactions suffer from the phase matching constraints discussed earlier
and also from wavelength-dependent scaling factors.

Consider the nature of the resultant field produced as a result
of the simultaneous mixing of three optical fields, all of radian fre-
quency w, incident upon a thin medium possessing a third-order nonlinear
optical susceptibility, Xﬁﬁ), centered at the common focal plane of two
identical Tenses (or mirrors) of focal length f. The geometry is illus-

trated in Figure 5.2. Each field is specified spatially at the front

focal plane of its respective lens with the following amplitudes:

E, = %—A](x,y.z) e1(kz'.‘*’t)' + c.c.

" E '_—'-;—Az(x,y,z) e-1(kz+wt) + ¢.C.
. (5.3-1)

Eq = —;—A4(x,y,z) e](kz-wt) + c.c.

where A],4(x,y,0) = u]’4(x,y), and Az(x,y,4f) z uz(x,y). Fields

E] and E2 are esgsentially counterpropagating, with E4 being parallel to
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tﬁese ffelds and separated either.spatially [e.g., shifted by (xs,ys)] or
via orthogonal polarizations. The Uy contain the input information to
be convolved or correlated, which can, for example, be in the form of
phase and/or ahp]itude transparencies. The u; are assumed to be i1-
lTuminated by unity amplitude plane waves, all of the same frequency w.

We wish to evaluate the spatial amplitudes of A

A, and AZ

1* 72
in the region of the common focal plane, fc as shown in the figure. We

first make use of a familiar result of scalar diffraction theory, which
relates the spatial amplitude of a given e]ectromagnetic field u(x,y,z)

at a plane z > 0, given the initial distribution at the plane z=0

u(x,y). This result is [6]

1 . i
u(x,y,z) = 555 exp(ikz) exp[%% (x2+yzﬂ

oo

x J J dx'dy' u(x',y') exp[FE (x'24y'%)]
x exp[ﬂz—'i (xx' +yy')] (5.3-2)
where the Fresnel approximation [6]
z3 >> = [(x—x')2 + (y-y')?']2 (5.3-3)

4 max

has been imposed and k = 27/A. We will see that this condition
will place constraints upon the information-handling capacity of the

system.
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We next make use of the transmission function of a thin lens (in
the paraxial approximation) which relates the field distribution after

the lens to the input distribution, and is given by [6]
ik 2,2
-77 (x4y%) 5.3-4
h=elknd  T2F (5.3-4)

where the linear index of refraction, maximum thickness, and focal

Tength of the lens are denoted by n, A, and f, respectively.

After propagating through lens L], A] has the following form (in
the Fresnel approximation) in the region of the focal plane (fc):
eiknA e1'kz
-_A](x,y;f_<_z < 3f) = BT v ——

o %1<F(2-;Zc‘)(x'2+ y'z)] .
o Flug(xtyte fo=55 £, =% (5.3-5)

y

In (5.3-5), F[a] =@ 1is the spatial Fourier transform of a, given by

o]

Flal =‘[ de'dy' a(x',y') exp EZﬂi(fXx' + fyy'ﬂ (5.3-6)
where fx and fy, the transform variables, are the spatial frequencies

along the x and y axes, respectively.

Similarly, the complex amplitude of E2 has the form (after propagating

through lens L2)
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: e'iknA e'ik(4f-z)
Ay (Xsy3 fgzs 3f) = AT

. i _Zy 02, '
y'©)
x }EZ(X"Y')e_ X ] T (5.3-7)
f

X

Anticipating the mixing process of interest, we express the com-

plex conjugate amplitude of E, (after propagating through lens L]) as

. o-ikna -ikz
Ri(xys f< 2 < 3f) = —57

-

(z--})(x-zw'z)] ) *
[4(x 'Y ')e? £ = i £, = K%

The fields A in (5.3-5), (5.3-7), and (5.3-8) become directly

(5.3-8)

proportional to the Fourier transforms of their respective us if the

terms inside the square brackets in the exponents can be neglected. This

happens when

' 2
|z-2F| << 2f21
Tmax (5.3-9)
where " nax is the maximum spatial extent of the set {ui}.

We now place a medium centered at the focal plane fc of thickness
z, [satisfying the constraint (5.3-9)] which possesses a third order non-
Tinear optical susceptibility, x&i) . Without loss of generality, we
assume a transparent, lossless medium, and neglect linear refractive ef-

fects.
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The complex amplitude of the nonlinear polarization at w = wtw-w
generated by the mixing of the three waves is, according to equation
(3.3-2

(3) A

Poi = Xi3 A%
NL; = Xijke M15%2, "

24y,
(5.3-10)

where repeated indices are summed over the field polarizations. The
resultant field, E3, which satisfies both photon energy and momentum,

is given by [6,8]

Amw > FE O LS
A = - ' 4
3(?) —;'Z"J Py (") G(X,X") d”x (5.3-11)
where |
ikr
- 1 e’
G(x.x') - ﬁ - (5.3']2)

is the Green's function that satisfies the wave equation. Using
(5.3-5), (5.3-7), and (5.3-8) in (5.3-10) and (5.3-11), as well as con-
dition (5.3-9), integrating over the volume of the nonlinear medium, and

"propagating" back to z =0 through lens L], we get

_ . 21w Z0 .
AB(XO"YO’O) = =1 —E—;:é?z_ exp[21k(nA+2f)]
FLaj(f of ) Go0F o F ) ax(f, .03 (x,y)
1V x2y” T2V x?y) AV Ty NL Y Xg Yo
5 Ty o
(5.3-13)

(3)

where xy; (x,y) is the proper tensor element in (5.3-10) connecting
fields 1, 2, 3, and 4.
If x&i) is spatially homogeneous, the output field can be written

in the form
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A3(x°,y°,0) = wu](-x,—y) *uz(-x,-y)*u4(-x,-y) (5.344)
where
A 3)
v = -1 E M epr2ik(na + 26))
A f

In (5.3-14) the symbols * and o& denote the standard operations of convo-
lution and correlation, respectively [6]. The convolution (*) and corre-

lation (x4) operations are defined by

axbs= J Ja(g,n) b(x-£,y-n)dEdn (5.3-15a)
and o

aXb = J Ja(E,n) b*(£-x,n-y) dE dn (5.3-15b)
respectively.

Equation (5.3-14) is our primary result. We obtain the spatial

convolution of Uy and u, by taking U, as a point source. This leads to
A3(x0"y0’0) = Y U] * U2 (5.3-]6)

Similarly, the correlation operation is performed by placing in-

formation on fields Uy and Ugs with a point source for Uy yielding

where the us in (5.3-16) and (5.3-17) are the inverted images of the
input fields [c.f., (5.3-14)].

The correlation of u, and Uy is similarly obtained by using a point
source for Uy - For Gaussian beams (which will be discussed below), the

finite spot size in the focal plane (fc) of the "point source" input will
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ultimately 1imit the spatial frequency bandwidth of the above operations.

We can now appreciate the advantage of using a degenerate four-
wave mixing approach to real-time operations. The third field (which
corresponds to the point source input mentioned above) provides an opti-
cal carrier frequency upon which the convolution or correlation informa-
tion is placed. No frequency scaling factors are present (c.f., refer-
ence 7), the entire system requires only a single frequency source, and
within the Fresnel approximation, the phase matching  condition is
satisfied. Finally, the "degenerate" operations of autoconvolution and
autocorrelation can be performed with a single optical frequency.

The approximations used in the above discussion place upper

limits on both the resolution (or spatial fregquency bandwidth), and the
efficiency (or nonlinear gain) of the interaction. The Fresnel approxi-

mation is related to fmax’ the greatest spatial frequency present, by

(5.3-18)

This same approximation also places an upper 1imit on the input field
spot size, which is given by

31/4
(220

d <

(5.3-19)

Hence, the maximum number of resolution elements possible is derivable

through (5.3-18) and (5.3-19), yielding

_ lef ]
Nmax = (5.3-20)

Using values of 10 cm and 0.5y for f and A, respectively, leads to a

1

value of 1O3cm' for fmax’ which corresponds to a grid of 1000 x 1000
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resolution elements. Therefore, since the phase matching condition is
satisfied for all the field momentum components in the Fresnel approxi-
mation, this technique can be useful for complex spatial information
processing.
The second constraint, (5.3-9), yields an upper 1imit to the non-
1inear gain of the interaction. From (5.3-9) we obtain
2 2

27w
0

5 (5.3-21)

<< =
Z0 bO

where W, is the spot size in the focal plane. For Gaussian beams, the
value of b0 corresponds to 2m times the confocal parameter [9]. The

spot size in the focal plane of the Gaussian "point source" (or the field
corresponding to the optical carrier frequency) determines the maximum
spatial frequency of the convolution or correlation operation. It can be

shown that the number of resolution elements is
2
N = (d]/dz) : (5.3-22)

where d] is the spatial extent of the input field, and d2 is the input
aperture size of Gaussian "point source," assuming both are satisfying
the Fresnel approximation limitation upon the spot size (5.3-19). It
follows that for a given input power and choice of lens focal length, the
output power with information present in the two input fields is related

to that for no information present by

P = P N (5.3-23)
OUtinfo OUtno info///
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Thus, we see that there is a tradeoff between the spatial band-
width product, N, and the output power (or nonlinear gain) of the

interaction., For the lens and optical wavelength used above, we find

for C52 (using a value of X&i) n 1.8)(10']2e.s.u.) that P N
OUtinfo
1,24 " 0.5 MW, with d; =1 cm, and d, = 0.01 cm. This
4

corresponds to N v 10", Other media such as 811251020, ruby, resonantly

200 watts for P

enhanced vapors (e.g., Na), etc., should provide adequate nonlinear
efficiencies to realize the above spatial operations (and resolution ele-
ments) with modest input intensities.

We next give a brief discussion regarding a potential source of
nonlinearly-induced spatial distortions. Recall that from Section 3.3,

the output (conjugate) amplitude scales as

A;(0) = AF(0) tan(]k|L)

)3+ (3 )A]A L)>

3 1,.(3
B00) Tt Aol + Sl A Ao)® 4 Gl

2

+ ..0] (5.3-24)
However, since the desired convolution or correlation operations neces-
sarily require an output field given by (5.3-13), the small aﬁg]e
approximation to tan(|k|L) must be valid. Hence, as the nonlinear gain,
|k|L, becomes larger, and the higher order terms contained in the power
series expansion of (5.3-24) become appreéiab1e, distortions in the de-
sired output operations result. We are thus limited to a nonlinear

interaction where the amplitude changes for all the input fields are

minimal (which is satisfied in the above numerical example).
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We note that aside from the constraint given above, the previously
mentioned limitations imposed by the Fresnel approximation apply equally
to conventional coherent holographic image processors [5,6] having the

same geometry as shown in Figure 5.2

In conclusion, we have shown that a degenerate four-wave mixing
interaction in the common focal volume of a two-lens system can lead
(for small nonlinear gains) to the operations of spatial convolution and
correlation of optically encoded fields. This interaction operationally
corresponds to a real-time holographic analog of a Vander Lugt filter
system [5]. The extension of these concepts to real-time matched filters,
pattern recognition [6], and other forms of image processing follows
directly. The implementation of this scheme to integrated optics using
geodesic lenses [10] or graded fibers [11] is a viable possibility, con-

sidering the increased intensities present in optical wavequides.

5.4 Nonlinear Microscopy via Real-Time Holography

We conclude this chapter with a discussion of the implementation
of the geometry discussed in the previous section for use as a nonlinear
optical microscope [12] . The technique of nonlinear microscopy basically
involves the mapping (or probing) of a material for spatial regions having
varying nonlinear optical coefficients. This diagnostic procedure has
potential applications in the study of optical damage of materials and
defect analyses, for example. Due to the specific nonlinear mechanism of
a particular solid, these effects may be more strongly manifested in
spatial variations of the nonlinear optical coefficient as compared to

similar variations of the linear refractive index.
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Thus far, the Titerature [12] has revealed fhat such spatial vari-
ations of nonlinear coefficients have been investigated only for the case
of the second-order susceptibility, Xg?&' In their experiments, Hellwarth
and Christensen [12] employed the process of second harmonic generation to
investigate crystals of ZnSe, CdTe, CdS, and GaAs. In the discussion
that follows, we present a brief analysis to investigate the spatial
properties of the nonlinear index of refraction, n, (recall that
n, = gﬂ-xéi)). Knowledge of the spatial frequency spectrum of n, may
be relevant in analyzing optical damage mechanisms. For example, the
presence of large n, spatial domains may reduce the local threshold for
potentially catastrophic optical damage mechanisms, such as self-
focusing, etc.

Consider a geometry identical to that shown in Figure 5.2, where
the nonlinear medium (located at the common focal plane of the two-lens
system) has a spatially dependent xﬁf). If we now assume that all three

input fields u; are "point sources," then the output field is, according

to (5.3-13),

/

« 3,
Ay(x,5¥,0) Jf[xm_(x,y)]fx elo. ¢ . % (5.4-1)

where we have further assumed that the system meets all the constraints
as discussed in the last section.
We thus have an output field that maps the spatial periodicities

of the nonlinear optical components in a material. Hence the nonlinear
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structure of a medium (which, for example, may be apprOXTmate1y
homogeneous in its linear susceptibility) can be revealed.

In conclusion, the application of real-time image processing can
be utilized both as a material probe and as a data processing device.
The use of four-wave nonlinear mixing to real-time convolution and cor-

relation has been proposed and analyzed.
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Chapter VI
TEMPORAL DOMAIN APPLICATIONS OF PHASE CONJUGATE OPTICAL INTERACTIONS

6.1 Introduction

In this chapter we will consider several potential applications
of phase conjugate optics (PCO) that involve the "temporal-frequency"
(as opposed to the spatial frequency) aspects of the interactian That
1s, we wish to investigate the properties of phase conjugatdrs when the
probe wave either (i) differs fractionally in optical frequency from the
pump waves, or (ii) contains a broad frequency spectrum. In the former
case, which we call "nearly degenerate" four-wave mixing, all the
participating waves are monochromatic. However, due to the frequency
differences of the fields, phase matching constraints now affect the
bandwidth of the system. The result of this constraint makes it possible
for the “"phase conjugate mirror" (PCM) to act as a narrow optical band-
pass filter, even if the third order nonlinear optical susceptibility
which couples the fields is nondispersive. In the first part of this
chapter we will show this fact explicitly. Using the coupled-mode for-
malism, a frequency-dependent PCM reflectivity will be derived. The
resultant "filter" bandwidth will be shown to depend not only upon the
phase mismatch, but also upon the nonlinear gain of the system. This
filter formalism will be useful in evaluating the PCO application that
follows, as well as deriving the modes of optical cavities bounded by a
PCM (see next chapter).

Next, we will investigate the broad spectrum case [(ii)] mentioned

above; that is, the properties of a PCM, when the input probe beam possesses
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a broad frequency spectrum, or equivalently, it is pulsed. We will show

that if this pulse has been temporally broadened due to propagation

through a dispersive channel (via group velocity dispersion, for example)
the PCM is capable of essentially "renarrowing" the pulse as it subse-
quently propagates (after conjugation) through a second, equivalent
channel. The analysis will use the results of the nearly-degenerate
filter function described above. The result of the pulse renarrowing

is that one may increase the operating bandwidth (or data rate) of such
a dispersive channel, limited ultimately by the filter bandpass dis-
cussed above. In the process of this discussion, we will also consider
certain causal aspects with respect to temporal sequencing of information
incident upon the PCM. The ability of other classes of conjugators to
yield group velocity dispersion compensation, along with their poten-
tial bandwidth constraints,will be discussed in an appendix.

We will conclude this chapter with a rather interesting application
of PCO in the field of laser spectroscopy: that of probing the so-called
two-photon coherent state of a given atomic (or molecular) species.

The concept of a two-photon coherent state was introduced in Chap-

ter III, when we discussed the origin of x&i) in a two-photon allowed
transition. There, we considered monochromatic fields, thus evaluating
the steady-state aspects of such a system. In the present chapter, we
generalize the analysis to consider a sequence of optical pulses, which
"prepare" and subsequently "scatter" off this two-photon coherent state.
We will show that it is possible to perform Doppler-free laser spectro-

scopy to study the various relaxation times of the system (i.e., TA-andTé).
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Additionally, by examining the so-called optical free-induction decay
signal of the two-photon coherent state, one can determine the degree
of anharmonicity of a nearly harmonic potential in the time domain, a
technique recently referred to as "a-beat spectroscopy." The analysis

will utilize a time-dependent, density matrix perturbation approach.

6.2 Narrow Optical Bandpass Filter via Nearly Degenerate Four-Wave

Mixing
In Chapter III, we have shown that the process of degenerate four-

wave mixing is capable of generating phase conjugate (or time-reversed)
and amplified fields. These effects have been verified experimenta]]y
as described in Chapter IV. Further, as discussed in Chapter III, this
four-wave nonlinear interaction has been shown to be operationally
analogous to real-time holography. In these cases, all the interacting
fields were taken to be of the same optical frequency. In this section
we show that this interaction can be used to obtain narrow optical band-
pass filtering.

| The "filter" characteristics to be presented here (specifically,
the frequency-dependent phase and amplitude dependence of the nonlinear
reflection coefficient) are relevant to‘ana1yzing problems such as broad-
band (nondegenerate) signal inputs to phase conjugators. Examples include
channel dispersion compensation (see next section), and to deducing the
modal features of optical resonators where one (or Both) of the cavity

mirrors is replaced by a phase conjugate mirror (see next chapter).
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The filter effect in the small nonlinear gain 1limit has been
independently proposed [1], and experimental evidence of the filter
bandpass (also in the small nonlinear gain regime) has been recently
verified [2]1. 1In principle, any nonlinear interaction can be utilized to
perform filtering functionsdue to phase matching constraints. However, in
general, these interactions require a specific angle of incidence of the
field to be filtered, and yield an output wavelength differing from its
input. Using a nearly degenerate four-wave mixing approach provides
for a Targe field of view for the input field and an output fje]d of
essentially the same wavelength. In addition, the conjugate nature of
the output field can be used to spatially filter out various noise
fields, thus increasing the signal-to-noise performance of the filter.
The degree of spatial filtering and detection geometry will, however,
1imit the field-of-view of the filter. Being essentially an active
device, the filter will be capable of yielding an amplified output band-
pass. As the filter gain increases, its bandpass will be shown to
become sharper, with a concomitant decrease in the passband sidelobe
structure. Finally, physical analogs with real-time holographic diffrac-
tion gratings will be shown to be consistent with the resolving power
of the filter.

We assume the interaction to take place in a nondispersive, loss-
Tess medium. Consider the frequency dependence of the amplitude of a
field E3 generated as a result of a nonlinear interaction involving the
simultaneous incidence of two intense counterpropagating pump fields E]

and E2 of frequency w, upon a medium possessing a third-order nonlinear
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(3)

optical susceptibility X\L - Also incident (simultaneously) upon the
medium is a third weak field E, of frequency w+3, [(8/w) << 17,
propagating along an arbitrary direction. The geometry is shown in
Figure 6.1. The fields, which we assume to be monochromatic plane

waves, are taken as

>

T) =1 i - -
Ei(r,t) =3 Ai(ri) exp[1(w1t K; r)] + c.c. (6.2 j)
_)‘
where r is the distance along ki’ Without Toss of generality, we

(3)

assume that XNL is polarization, frequency, and spatially (i.e., homo-
geneous and isotropic) invariant. The nonlinear polarization coupling

fields A3 and A4 is given by

-5

(03=w-8) | H{lwtw- (w+8)]t- [k +K,-K, 17}

= Ly ) Aa A e

PL 7 XL MMy

+c.c. (6.2-2)

Since K] + EZ = 0, the resultant field that minimizes the phase

mismatch will propagate along a direction opposite that of A4 as shown
in Figure 6.1. Forming a similar nonlinear polarization at frequency
Wy and following the procedure outlined in Section 3.3 results in the

following set of coupled mode equations:

dA : .
3 _ * _1Akz
dz 1 K§ A4 e
(6.2-3)
dAZ . 2
= = i g,A, e 10Kz

dz 43
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(w)
A1 (PUMP)
(w — 6)
A3 (O) — - A3 (L)
NONLINEAR
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w ---.»
| |
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: I
z=0 z=L
(w)
A, (PUMP)

Fig. 6.1 Nearly degenerate four-wave mixing geometry. The pump waves
(at frequency w) are assumed nondepleted. The probe field

A4 is at frequency w+d.
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- where the complex coupling coefficient is given by K Z"wszL(S)AIAZ/"C

and the phase mismatch is

|ak| = 2nm([ar] /A%) = 2ns/c (6.2-4)

Note that |AX|is the wavelength difference between the fields A, and A

3
In arriving at equation (6.2-3) we assumed that the pump fields (A] 2)

4"

were nondepleted and used the adiabatic approximation,[dzAi/dzzl <<
|k;dA,/dz].

The solutions to equation (6.2-3) using the boundary conditions

of Aj(z=L) = A5(L) and A,(2=0) = A,(0) are
A3(Z) = Eifgfif (e 1KL/2 g cos(pz) - 1%5-51n (82)] A3(L5
| +1 § sin (g(z-L)) A*(0))
AZ(Z) = E:ié;iig {iK4 e~ 1AkL/2 sin{Bz) A3(L) +

[Bcos(8(z-L)) + isk sin(B(z-L})]a; (0))
. 2 * A !i
where D = g cos(BL) - (iAk/2)sin(BL), and B E.[K3K4 + (Akyz)z]i (6.2-5)

For the filter application, we assume that A3(L) = 0, with only
a single input at z=0. In this case, the reflected wave at the input

plane (z=0) becomes

A3(0) _ -j K3 tan (BL) A4 (0)

8 - 1A5-tan (8L)

(6.2-6)

We can now appreciate several filter characteristics of the four-
wave interaction. First, A3(O) o AZ(O), implying the near (since

Ak # 0) time-reversed nature of the filter output. Hence, through
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spatial filtering, the signal-to-noise ratio of the filter can be im-
proved. For example, passing the input signal (to be filtered) through
various optical elements (spatial filters, lens, etc.) will result in
a time-reversed, filtered field; in contrast, undesirable noise terms
(e.g., Rayleigh-scattered fields) will be minimized on passage through
the given optical train. Second, the wave A3(O) can be greater in
amplitude than the input field (i.e., amplification) for the proper
range of Ky and Ak. Also, from equation (6.2-2) we note that the out-
put frequency is downshifted by the same amount as the input frequency
is upshifted with respect to the pump wavelength, and vice versa.

There are several useful 1imits that can be imposed on equation
(6.2-5) to verify its physical nature. If, for example, we let Ak~>0,
the resultant expressions for A3(z) and AZ(Z) approach those of Section
3.3, equation (3.3-11), where a degenerate mixing case was considered.
Another useful limit is that of weak nonlinear coupling, i.e.,

IKQ/AKI +~ 0. In this case, the power reflection coefficient, defined as

l 3(0) (6.2-7)
becomes
AkL
-> 2 __.____n(
R el (AkL (6.2-8)

In equation (6.2-8) and what follows, we set Ky = K4 = g, since
8/w << 1. We note that the sincz(x) dependence of equation (6.2-8) is
a typical result of coherent, phase-mismatched, nondepleted interac-

tions [3]. This result can be obtained directly by assuming in equation
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(6.2-3) that dAZ/dz = 0 (i.e., weak perturbation of the input fields)
and simply integrating the remaining differential equation for A3(z).
We note that the filter character in this Timit has recently been veri-
fied experimentally [2]. The expression in equation (6.2-8) is also
consistent with that expected of a real-time holographic analog of the
four-wave interaction [4]. The nonlinear mixing process can be viewed
as forming and illuminating a real-time diffraction grating. Accord-
ing to equation (6.2-8), phase matching occurs when (AkL/2) < .
Using equation (6.2-4), this constraint impiies that the wavelength
resolution of the interaction goes as (AA/A) < (A/L). This result fis
consistent with that of the resolving power of a grating [5] (AM/A) ~
(1/mN), where m is the order of the grating and N is the number of lines
illuminated. Setting m=1, corresponding to the first order and realiz-
ing that in the nonlinear medium the maximum path-length difference
(MPLD) is 2L, where the resolving power is, in general [6] AA/A
A/MPLD, verifies the analogy (recall that the MPLD for a grating is
mNA). The holographic analog only holds for m=1, since higher orders
in the nonlinear case are phase mismatched.

The filter-bandpass characteristic is obtained by using equation
(6.2-7), yielding

R = Let]? tan® (a1)

(6.2-9)

Using (6.2-9) we plot in Figure 6.2 the power-reflection coeffi-
cient R versus a normalized wavelength-detuning parameter ¢ for several

values of the nonlinear gain |k|L. By definition, y = [(Ak/Z)(ZnL/AZ)],
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Fig. 6.2 Power reflectivity R versus normalized wavelength detuning ¥
for several values of the nonlinear gain |k|L. For the ex-
ample given in the text, unity along the abscissa corresponds
to AA/2 = 0.0772 3 or Av = 9.26 GHz. -~
v = [(ar/2)(2nL/2%)].
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which is also equal to the phase mismatch AkL divided by 2w. In the
wavelength detuning parameter, AA/2 corresponds to the difference in
wavelength of the probe field (A4) relative to the pump fields (A]’z).
For an interaction length L of 1 cm, a wavelength A of 0.5 um, and a
linear index of refraction n of 1.62 (that of CSZ)’ a value of unity

in Figure 6.2 corresponds to a wavelength detuning AX/2 of 0.0772 R

or 9.26 GHz. We note that the sincz(x) nature of the response holds
only in the 1imit of weak nonlinear coupling (i.e., |k/Ak]<<1). As
lk|L increases, the bandpass becomes more sharply peaked, with the zeros
of the response occurring at decreasing values of the frequency offset.
This follows from the fact that the amplitude of the output wave in-
creases with |k|L and because zeros of the tangent in equation (6.2-9)
occur at smaller values of (AkL)2 as |k|L increases. The filter is
seen to exhibit a power-reflection coefficient exceeding unity as

|k|L > m/4 over regions of the bandpass.

The wavelength response of the filter becomes apparent if we
recast the family of curves of the previous figure normalized to unit
power reflectivity, as shown in Figure 6.3. Several prominent features
are to be noted. First, as |k|L increases, the bandwidth dramatically
decreases. Second, the side-lobe structure of the filter also de-
creases with increasing nonlinear gain, yielding a sharper, better
defined, and amplified bandpass. Physically, these features follow if
we recognize that the filter is analogous to a real-time distributed
Bragg-reflecting resonator with an internal gain medium. Since the
finesse of a resonator increases as we add gain to the cavity, a

sharper response (or Q) results [7]. We see that, as the oscillation
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condition is satisfied, the bandpass approaches zero, being Timited ulti-
mately by the linewidth and/or the coherence length of the pump sources.
The bandwidth (which we define to be the full-width at half maxi-

mum) characteristic of'the filter as a function of the nonlinear gain
(|c[L) is shown explicitly (solid curve) in Figure 6.4. Also plotted in
the figure for comparative purposes (dashed curve) is the normalized re-
solving power ¥ = Sv/Av of é Fabry-Perot [11] (where &v 2 ?'IAv, and ¥

is the cavity finesse, given by ¥ = w/R exp(gL)/[1-R exp(2gL)];
Av = ¢/2nL, is the free spectral range of the cavity) as a function of

the gain of an intracavity (nonsaturating) medium. We have (arbitrarily)
chosen the Fabry-Perot parameters to be (gL)th =1.13, R = .104, L=1 cm,
and n=1.62, so as to most closely resemble that of the corresponding
four-wave mixing parameters. The characteristic to observe in the figure
is the fact that both respective bandwidths décrease,monotonica11y as

the (nonlinear) gain increases. Of course, as the oscillation condition
is approached, both the above theories need to be modified, as neither
considers saturation mechanisms (e.g., pump depletion and stimulated emis-
sion for the respective cases).

It is of interest to note that at the oscillation condition

(|c|L ~ n/2), a slight phase mismatch (|Ak|L> 0) results in a drastic
decrease of R, implying cessation of osci]]ation. Since the phase mis-
match can in general be the result of either modifying the probe frequency
and/or varying the direction of the pump beams with réspect to each other
(with the concomitant change in the interaction length), we can appreciate

the sensitivity of the oscillation condition to the pump beam alignment.
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Fig. 6.4 Optical frequency bandpass (FWHM) of the filter versus non-

Tinear gain, IKLL. For comparison, the normalized linewidth
of a (nonsaturating) gain-filled Fabry-Perot resonator is
shown versus gain. The bandpass approaches zero at the oscil-
lation condition due to the assumed monochromaticity of the
pump fields (Ay ,). For the parameters given in Figure 6.2,
unity on the ordinate corresponds to Av = 9.26 GHz.
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We note that since the four-wave interaction yields ampli-

fication of the forward-going wave (A4), it too has a similar bandpass

characteristic to that of its counterpropagating component, except that
it is superimposed upon a unity transmission bandpass. The amplitude
transmission coefficient is defined to be t = A4(L)/A4(0), and we have
assumed again that A3(L) = 0 (implying a single input probe field). Thus
the "background" unity transmission bandpass, coupled with the lack of
conjugacy of A4, tends to 1imit the possibilities of filtering via the
transmission mode.

We remark that (as opposed to thé degenerate case; see Section 3.3)
there is a net photon momentum transfer, FPCM’ (or, equivalently, a non-
zero radiation pressure) imparted to thePCM. It can be shown that BPCM =
(-26-ﬁn/c)£ﬁ per input probe photon (of frequency w+ §), where we have

neglected the (linear) dispersion of the PCM [i.e., n(wt 8 ) = n(w) = n].

We have shown how the process of nearly degenerate four-wave
mixing can yield a real-time, active, narrow optical bandpass filter.
The interaction has a large (v 4w) field of view and has a frequency
response that depends on both the interactioh length and pump intensity
for a given medium. The actual field of view for a given device will,
however, be limited by the specific optical detection scheme employed
and the degree of spatial filtering. Spatial filtering of the time-
reversed, phase-conjugate output wave can, however, be used to minimize
noise sources. Finally, the filter is capable of yielding an amplified
bandpass for large-enough nonlinear gains. Recent works have dealt with
the filter propertfes in waveguides(see the dfscussion in Section 4.3

and reference 8), in resonantly enhanced media [9], and also the effect
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of nonlinear phase changes upon the filter bandpass [10].

6.3 Compensation for Channel Dispersion by Nonlinear Optical Phase
Conjugation

In this section we will discuss how the process of nonlinear op-

tical phase conjugation can be utilized to compensate for the dispersion

in optical communication channels, and hence to correct for temporal
pulse broadening. Specifically, a four-wave nonlinear optical inter-
action is shown to achieve pulse renarrowing. Spectral bandwidth con-
straints of the input pulse are presented for typical phase conjugate
interaction parameters.

In general, pulse spreading in an optical channel (e.g., an opti-
cal fiber communication 1ink) Timits the maximum modulation frequency
or data rate possible (for a given channel length and at a given operat-
ing wavelength), and is thus undesirable [11,12]. This phenomenon
arises from contributions such as frequency-dependent, waveguide [13],
material [14], and modal dispersion [15]. (Fcr reasons to be mentioned
Tater, we will not consider the latter mechanism, and 1imit our treat-
ment to single mode guides.) The result is that different frequency
components of a given pulse propagate with differing phase and group
velocities, Teading to a temporal spreading as well as a "chirping" of
the pulse at the output port of the channel. One ppssib]e technique
to circumvent this problem is to frequency chirp the pulse (prior to
insertion into the channel) such that the dispersive properties of the
fiber essentially compress the pulse upon propagation through the channel

[16]. That is, if one "arranges" the input pulse such that the slower
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propagating frequency components enter the fiber prior to those components
that propagate at greater group velocities, then the fiber dispersion
characteristics will cause the latter frequency components to "catch-up"
with the former components by the end of the 1ink. As we will show below,

the effect of the phase conjugate interaction does essentially this:

Due to the frequency-flipping effect of the interaction (recall discus-
sion of the last section), the output "instantaneous" frequency spectrum
is inverted about the carrier frequency (i.e., the pump wave frequency).
Hence, if this interaction were to take place midway along a dispersive
channel, the resultant inversion of the spectrum, in conjunction with
the conjugation operation (or phase reversal) would yield an undistorted

temporal pulse shape at the output port of the link.

We now wish to explore theoretically what happens following conju-
gation to a short electromagnetic pulse which has traversed a dispersive
channel. We find, reassuringly, that the group delay of the pulses is
not time reversed, i.e., pulses retain their relative temporal order.

The effect of group velocity dispersion, dvg/dw, however, is time re-
versed to first order. This implies that pulses broadened in propagation

can be renarrowed following conjugation by merely propagating through

a second channel. We remark here that the concept of equalization or
estimation and chirp techniques as applied to phase compensation due
to pulse propagation is a well-known concept in data communication
systems and in radar applications [17]. In addition, chirp compensa-
tion using four-wave mixing has been analyzed [18].

The model analyzed is shown in Figure 6.5. An input pulse
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iw t
F(8) = g(t) e ©

is incident on a dispersive channel. W is the optical carrier fre-

quency, while the pulse envelope is g(t). The Fourier transform of

g(t) is F(a)

g(t) = J F(a) % 4o (6.3-1)

so that

= i(w +Q)t
J F(Q) e1( o*?) o - (6.3-2)

£(t) =

Since the width of g(t) is very large compared to the optical period

2m/w, it follows that @ << w, over the region where F(Q) is appreciable.

Thé propagation constant through the channel is B(w) so that the

output pulse fz(t) is

dqe

i 1‘[(@0+Q)t - B(wom)l‘l] (6.3-3)
fo(t) = JF(Q)e

=00

w here L] is the length of the channel.

Expanding g(w) in a Taylor series near Wy

- 9 .
B(wo'*'ﬂ)" B(wo) + —B-—UBK Q + 5 —é-u-j-g- Q + ;.. (6.3-4)
leads to
2
w . 3B 1 0% .2
i (wt-8 L) io(t- 52 1) - » 28 0,1 (6.3 5)
fo(t) =e ° ° F(o)e 3w do
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aB

where B = B(wo). The term = L, can be written as L]/vg, where
vg = dw/oB is the group velocity. The temm §~§-which can be written
v oW
as[} _l?. 559] corresponds to group velocity dispersion and causes fz(t)
v
g

~ to be broader than f](t)’when f](t) is a transform limited pulse. |
The pulse fz(t) undergoes phase conjugation — the result being

the pulse f3(t). To be specific, we will assume that the phase con-
Jugation is achieved by four-wave mixing in a non-dispersive medium
with two (essentially cw) pump waves, Ay and A,, at wy+ We further
assume that the response time of the non-linear interaction is shorter
than the pulse duration. This causes [c.f. (6.2-2)] a Fourier component at
wy * Q2 to be "reflected" at a frequency wy = 2 s0 that the sum 2w0 of the
pump frequencies is equal to the sum of the incident and reflected fre-

quencies, as discussed in the last section. In general, an incident

Fourier compone?t A §xp[i(wo+9)t] is reflected from the conjugator as
. i(w -Q)t
r(Q) e1¢(Q)A*e 0 where r(Q) exp[i¢(Q)] is the complex reflection

coefficient of the conjugator at w04-Q (r is the magnitude of the reflec-

tivity) given by equation (6.2-6). The total reflected wave is

‘ . 2
i-a(t-38 L) + 2 28 oPL) + o(a)]
ow '

i(w t+8 L,)
o] o1 do

*
fa(t) = e r(Q)F (Q)e
oo - (6.3-6)
The wave f3(t) is incident on a medium of length L, whose propagation

constant at Wy - Q2 can be expanded as
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. 2 .

' _ oR' 1293 2
B'(w,-0) = B} - —55-—-9 + —2--—%—-» Q9 +.... (6.3-7)
ow
The output f4(t) is given by
'i(wot+80L1 -B(')Lz)
f4(t) = e
@ i[-a(t-28 -38% )+—]—(§-2§L _ o L)%+ (2)]
x J r(Q)F*(Q)e dw™l w2t 2y 271 2 2 do

(6.3-8)

)
The total group delay, %%-L1 + %%~ 29 js the sum of the individual

channel delays. The aroup velocity dispersion term which involves the

second order derivatives in (6.3-8) disappears, to first order, if

2 2

a = a B‘ ' .\3"9
—z by ==L (6.3-9)
ow ow

This requires that the sign of azs/awz be the same in both channels.

At the output of channel Z)the pulse is renarrowed. For maximum
renarrowing)it is necessary that: (a) r(9) be a constant over the
spectré] range of tﬁe envé]ope functfon F(Q)§ and (b), that

¢(Q) = a + b , where a and b are two real constants.

Under these
conditions the output from channel 2 is

i(wt+p Lr-BIL, + a) i[-n(t-281. 280 _p)]

-0

fﬁ(t)= e

(6.3-10)
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Thus,
f,(t) = rlw.) e"“’[em"t *(t-t )] 6.3-11)
4 wo g -g (.'
where
b= Boly - By o,
and

_ B 3B’
=l Tl T b,

which corresponds to the total group delay; the nonlinear reflection co-
efficient magnitude r(wo) is assumed to be that evaluated at the center
frequency, Wy -

We find that in addition to conjugation and a reflection of the
frequency spectrum from W +0 to Wy - Q , the four-wave mixing process
introduces a group delay of b, Under these conditions and neglecting
higher orders in the expansion (6.3-4), the pulse at the output of
channel 2 regains its original width.

To check the assumptions mentioned above concerning the phase con-
jugator, we plot in Figure 6.6 the calculated complex reflection coeffi-
cient r(2) exp[i¢()] of a typical conjugator given by equation (6.2-6),
divided by AZ(O). We find that for Q < 4 GHz the deviation of ¢(Q)

from the requisite straight Tine dependence is very small compared to

10

7 so that pulses with a width of 2 2 x 10" seconds can be renarrowed

by conjugation. Under these conditions, the constants a and b in the
in the expansion of ¢(2) are ¢p - m/2 and nL/c, respectively, where L
and n are the interaction length and linear refractive index of the

phase conjugator, and qb is the phase of the pump waves. Thus, the
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additional group delay due to the four-wave interaction is given by
té = nL/c.

As a further check of the above formalism, we plot in Figure 6.7
the output amplitude from the conjugator versus time (solid curve) as
calculated from equation (6.3-8). The input pulse to the conjugator is
also shown (see dashed curve), and was chosen to havea (transform-limited)
Gaussian time dependence and be of unity amplitude at line center.

The FWHM for this input pulse is 118 psec, corresponding to a
bandwidth of ~7.5 GHz. We note that from the preceding discussion the
acceptable input bandwidth to the conjugator (given our parameters) was
not to exceed 4 GHz (or FWHM to be greater than 200 psec) in order for
the output pulse not to be distorted. Hence, the parameters of the
input pulse used to generate Figure 6.7 clearly "stress" the system.

The manifestation of this situation is apparent upon inspection of the
output pulse shown in the figure. First, the output pulse is slightly
broadened relative to the input pulse (viz. 160 psec output vs. 118 psec
input FWHM). Next, the ouptput pulse is delayed in time somewhat more

than predicted by the Tinear approximation to the frequency-dependent phase
phase shift of the conjugator as discussed above. The linear model yields
a delay of tg = nL/c = 50 psec, while the actual calculated output delay

is seen to be 73 psec. '

We also see that the peak amplitude of the output pulse is ampli-
fied (R ~ 1.5) relative to that of the input pulse. However, this value
is less than that predicted for the steady-state case (i.e.,

tan (|k|L) ~ 2.4 for our parameters; see Figure 6.6). The reduction
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of the amplitude of the PCM reflectivity is due to the fact that the

input pulse bandwidth exceeds the acceptable value (for our parameters).
In fact, upon inspection of the amplitude reflectivity (see Figure 6.6),
we see that R>~ 1.5 to 1.8 over a bandwidth range of 7.5 GHz centered
at w, which is in approximate agreement with the peak value of R = 1.524,

plotted in Figure 6.7.

On the phi]osobhica] side, it is interesting to note that according
to (6.3-11), the effect of conjugation plus the "flipping" of the fre-
quency spectrum is to time-invert the effect of group velocity dispersion
(and all additional terms in (6.3-4) that are even in powers of Q), but
not the group delay (along with other terms odd in powers of Q). The
group de]ays(aﬁ/aw)L], and (BB'/aw)L2 of the two legs are additive. The
application of the term "time-inversion" to the conjugation process
should thus be highly qualified.

We remark that the above scheme will not renarrow pulses which have
temporally spread due to modal group velocity dispersion (occurring in
multimode channels), since each mode is, in essence, an independent (or
discfete) channel. The technique presented in this section can, how-
ever, compensate for other dispersive effects of each mode separately.

We note that for other nonlinear interact{ons which involve phase con-
jugation and frequency-flipping effects §uch as three-wave mixing [i.e.,
Wout = 2w - (w + Q)] and other forward-going conjugate generators (see, for
example, Appendix 3A) can also give rise to pulse renarrowing, as de-

scribed above. An analysis of the complex frequency-dependent transmis-

sion coefficient due to a three-wave mixing process and a forward-going,
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four-wave interaction yields a constant phase factor similar to that
given above. However, due to the copropagating nature of the input and
output fields in these interaction geometries, the acceptable input fre-
quency spectrum (F(2)) depends primarily upon material dispersion, and,
to first order in Q, the medium does not introduce an additional over-
all group delay. Thus the acceptable bandwidth for pulse renarrowing
should be greater in forward- vs. backward-wave conjugate interactions.
In addition, the former scheme yields a conjugate wave that propagates
in the forward direction, which may be desirable. Appendix 6A discusses
the bandwidth Timitations of the two schemes in more detail. We note
that interactions that yield phase conjugate fields without frequency
flipping (e.g., SBS of SRS) may also be useful in pulse renarrowing.

We emphasize that the interactions considered here do not compen-
sate for overall group delays (as discussed above), and therefore do
not violate the causal aspects‘of phase conjugate interaction. Thus,
the notion of compensating for phase aberrations(reca11 Section 2.2 and
Figure 2.2) does not violate causality, since that argument assumed
monochromatic fields; the "bulges" shown in Figure 2.2 are equiphase
fronts and do not imply temporal sequencing of energy flux. Temporal
’sequencing would imply the existence of nonmonochromatic signal fields
and hence the analysis of this section would apply.

In conclusion, we have shown that nonlinear optical conjugation
of a dispersion broadened pulse can be used to obtain a renarrowed pulse
by subsequent traversal through a second channel. The input frequency

bandwidth is essentially limited by the phase matching requirement of
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the specific nonlinear mixing scheme for nondispersive media (additional
linewidth-dependent constraints would apply for dispersive media) and for
the case of small nonlinear gains (e.g., tan(|«|L) ~ [k|L). The band-
width decreases further as the nonlinear gain becomes larger (in a non-
linear fashion as does the filter bandpass discussed in Section 6.2 and
shown in Figure 6.4). We note that the use of resonantly enhanced media
would require the use of a highly frequency-dependent (complex) con-

jugator reflection coefficient [9] in equation (6.3-6).

6.4 Transient Two-Photon Spectroscopy via Phase Conjugate Optical

Interactions

In this section we discuss an application of PCO in the field of
nonlinear laser spectroscopy--that of probing Doppler-free, two-photon
transitions [19] in atomic (or molecular) species on a transient basis
(the steady state was considered in Section 3.11). We will use a time-
dependent density matrix perturbation approach similar to that treated by
Yariv and AuYeung [20], where the transient generation of phase conjuaate
wavefronts was analyzed. Specifically, we will limit our analysis to
the so-called two-photon coherent state (TPCS) [21]. We will show that
a probe photon which interacts with a TPCS gives rise to a conjugate wave
[22,23] (i.e., a time-reversed replica) which may be useful for the many
applications of PCO as outlined in this thesis. Further, by creating the
TPCS in a transient sense (i.e., by using pulsed optical sources, for
example), the temporal behavior of this state can provide one with in-
formation regarding various decay times that characterize the atomic

system [22,23]. In addition, if one forms a TPCS in a nearly harmonic
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system (e.g., via the rotation-vibration resonances of a molecule), the
subsequent radiative decay of the state (known as the optical free-
induction decay) after all the optical fields have been terminated results
" in amplitude fluctuations, the period of which is proportional to the
degree of anharmonic contributions to the molecule's potential well.
This latter technique is referred to as "a-beat spectroscopy" in the
literature [24]. Prior to discussing the TPCS further, we begin by
motivating two-photon Doppler-free spectroscopy (TPDFS). The app]ication
of TPDFS to phase conjugation has been discussed recently [22,23,25,26].
Consider an ensembie of atoms (or molecules) at low pressures in

thermal equilibrium. If one desires to probe the natural Tinewidth GvN

of a given transistion, the measured linewidth will be typically much
greater than Svy due to, for example, Doppler-broadening [3] (SvD).
Hence, the determination of va would be obscured due to the thermally-
induced broadening effects. One technique that can circumvent this
problem is to employ TPDFS.

This technique eliminates Doppler shifts to first order, enabling

one to probe 1inewidths on the order of &v The method operates as

N
follows. Assume an allowed two-photon transition to exist in the éystem
at frequency O If one now irradiates the sample with a laser of fre-
quency w, such that 2w = Wy then atoms can be promoted to the upper
level if the selection rules are satisfied. In addition, the transition
rate can be increased if a system is chosen so as to incorporate an
(dipole-allowed) intermediate state having a resonance near w. Now,

assume that a geometry is chosen such that the sample is irradiated with

counterpropagating beams, each of frequency w. Assume further that the
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polarization states of these two fields are chosen such that a two-

photon transition requires one photon from each of the counterpropagat-

ing beams (as opposed to two photons from a single beam) in order to

occur. For example, a ALZ= 0 transition (e.g., nS » n'S) would require

a RHCP (LHCP) photon from each beam; a ALZ= 2 transition (e.g., S - D)

on the other hand, would require a RHCP photon from one beam and a LHCP

photon from the second beam (of course, 2 photons from either beam

would induce a transition, but they only interact essentially with the

zero velocity group of the atoms). It is easily seen that if the atom

has a velocity component v in the direction of one beam, the atom will

“"see" a Doppler-upshifted photon (at frequency w+) from that beam; how-

ever, the same atom will "see" a Doppler-downshifted photon (at frequency

w.) from the other beam, such that the frequency sum of the two photons

corresponds to M Hence, to first order, the Doppler-shift is can-

celed. Specifically, the two photons have their frequencies modified

(as viewed in the atoms rest frame) as

o = w[___l%%ﬁ___

] 12, ]

1+

il

where B = v/c. The sum frequency is therefore

(6.4-1)

- (6.4-2)

Therefore, the Doppler-shift is effectively canceled to first (and

all successive odd) order(s)in 8. Since B ~ 1072

at typical tem-
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peratures, the higher order Doppler-effects are seen to be negligible.
Thus, the above scheme affords a large number of thermal atoms (i.e.,
nonzero velocity groups) to collectively participate in the interaction

with a rather narrow (sub-Doppler) linewidth.
As a result of this Doppler-free transition, a TPCS is formed. The

TPCS may be viewed as a zero-momentum, coherent superposition of the ground
and upper states, which oscillates at wj = 2w. The state is one of zero
momenfum, since the linear momenta of the two counterpropagating laser
photons which 1nducedvthe transition cancel exactly. Further, all the
atoms participate in the resonance, irrespective of their velocity.

By probing this TPCS one can make precise measurements of the
resonance. This may be accomplished in the frequency domain by scanning
the frequency of a probe laser, and hence measuring the linewidth of the
interaction [19]. Alternatively, one may perform measurements in the
time domain by investigating the transient response of the TPCS. Tech-
niques such as quantum interference effects [27], spatially separated
fields [28], Stark switching [29], saturation dips [30], and other broad-
band pulsed excitation techniques [22,23] have been used to this end. In
these approaches, one can further investigate the various dephasing and
other relaxation times [22,23] that characterize the TPCS through the use
of varying temporal delays of the beams that create and/or probe the TPCS.
Other coherent transient techniques such as the right angle photon echo
[31] and the tri-level echo [32] have also been used to measure these
relaxation times. Several reviews have been written that summarize both

the techniques and the physics related to these transient effects (such
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as optical free-induction decay, etc.) [33,34]. The technique of "u—beat
spectroscopy,"as applied to ensembles of two-photon allowed transitions

in atoms has been analyzed [24]. We will discuss below a specific appli-
cation of the latter technique with respect to the determination of
anharmonic contributions to molecular potentials. The elegance of this
scheme is that since the spectroscopic information is obtained in the time

domain, the need for highly stable, cw tunable lasers is obviated. Hence,

one can}use broadband, pulsed sources aS well as Stark switching tech-
niques (as referenced above).

The connection [22,23] between the probing of the TPCS and that
of optical phase conjugation becomes apparent if one recognizes that the
the two counterpropagating fields discussed above may be considered
as being the two pump waves present in the standard four-wave
mixing geometry (see Figure 3.1). The zero-momentum state of the TPCS
now interacts with the probe photon so as to yield a backward-propagat-
ing (conjugate) photon. Now, by frequency scanning the probe wave (as
discussed in the steady-state case of Section 3. 9), or by investigating
the transient behavior (to be discussed here) of the conjugate wave, the
properties of the transition may be obtained (e.g., resonance structure,
relaxation times, splittings, etc.). A major advantage of utilizing a
conjugate-type interaction for this investigation is that the time-
reversed propagation of the output photon may be exp{oited to yield a
greater signal-to-noise ratio for the desired measurements. Thus by
spatial filtering and/or polarization techniques, various background

noise sources (such as fluorescence) may be reduced. Further, by creat-
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ing the TPCS in a pulsed (transient) manner, the pump (or exciting)
fields would be off during the actual generation of the conjugate wave.
We begin our analysis by considering the interaction of a sequence
of three optical pulses with a three-level atomic (or molecular) system.
The notation and relevant energy levels considered are shown in Figure
3.11a. (Most of the descriptions and notations presented here will

follow those of Section 3.9 ). The atoms are subjected to

three pulses of duration & of the same optical frequency w, and propagate

along arbitrary directions 'ﬁi:

—

E;(F,t) = 5 E,(t) expli(ut - k;-F)] + c.c., i=1,2,4  (6.4-3)

The pulse envelopes are shown in Figure 6.8. The perturbing Hamil-
tonian, along with the (assumed) allowed dipole matrix elements, are
the same as given in (3. 9-16). We assume for simplicity that only one
field is incident upon the medium at a given time. Further, we neglect
(i) atomic motion of the species, and (ii) saturation effects. With
respect to the former approximation, we note that although the formation
of the TPCS is independent of atomic motion, the subsequent probing of
the TPCS will be dependent upon the velocity distribution (due to, for
example, Doppler-induced near]y—degeneréte four-wave mixing as viewed
in the atom's rest frame). The latter approximation basically assumes
that all the Rabi frequencies are smaller than any inverse relaxation
times. The above assumptions enable us to use a velocity-independent,
density matrix perturbation approach (as outlined in Section 3.9) to

analyze the present problem.
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We wish to evaluate the response of the atomic medium subsequent
to the third (i.e., the last) optical pulse. Physically, the atomic
oscillator is being driven sequentially, and we expect that this damped

oscillator will relax (i.e., radiate) at its resonant frequency (or

frequencies) after the external driving forces are off. This relaxation

- process is called the optical free-induction decay of the atomic system.

Returning to Figure 6.8, we want the first two pulses (E1,2) to
correspond to the pump waves and thus form the TPCS, with the last (probe)
pulse (E4) scattering off this state. Yariv and AuYeung [20] have
analyzed a related scheme where the probe pulse was the first(second)
pulse, with one of the pump waves being the second(first} pulse. These
two fields were shown to give rise to a spatial modulation of the atomic
population densities, which then decayed exponentially at the longitudi-
nal decay rate (i.e., the spontaneous lifetime) of the system. If
during this Tifetime the third pulse (the other counterpropagating pump
wave) was incident upon the medium, it was shown to scatter (diffract)
off this spatially modulated “"grating," yielding the desired conjugate
wave. In their analysis [20], the firstitwo pulses were required to
possess nonzero, parallel polarization field vector components in order
to realize conjugate wave generation.

In the present analysis, the probé pulse interacts lgﬁﬁll_to
yield the conjugate wave. Both Yariv's [20] scheme and the present tem-

poral pulse sequence [22,23] follow from the different allowed density

matrix "pathways" as shown in Figure 3.12. The pathways that yield

second order diagonal density matrix elements (i.e., p§$) and pég) o



- 251 -

EiE;) imply a transfer of level populations and thus correspond to the
holographic analogs of four-wave mixing as discussed in Section 3.10.
These diagonal elements oscillate at zero frequency and decay as T].

The remaining nonzero density matrix perturbation pathway involves the
second order element p§§), otherwise known as the two-photon coherent
state [21]. As we show below, it arises from products of fields of the
form EiEj (in our case, the two pump waves), and oscillates at wy = 2w
after excitation, thus forming a temporally modulated grating at that
frequency. The TPCS decays at the dephasing rate of the system (i.e.,
T2, or the transverse relaxation time). The subsequent scattering of

the probe pulse off the TPCS, with the generation of the conjugate wave
has no direct holographic analog (as discussed in Section 3.10). We note
that experimentally the various density matrix pathways can be realized
by the proper temporal sequencing and/or polarization states of the three

interacting optical fields.

For the analysis we use the same density matrix perturbation
scheme (in the rotating-wave approximation) whose solution is given by
equation (3.9-18). We wish to obtain the expression for the induced third-
order nonlinear dipole moment as given by (3.9-17) for the density matrix
pathway (as shown in Figure 3.12) that involves pgg). The Tower and
upper 1imits of the integral are given by t = t; -6/2and t = t. + §/2,
respectively for i = 1, 2, and 4. We assume that the only nonzero un-
perturbed density matrix element is p§$) (as described in Section 3.9).
Substitution of the commutator [V(t'), p(o)], given by (3.9-19) into

(3.9-18) yields the following first order perturbed density matrix element
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for P12 (as a result of the first pulse, El) for times after Eq:
(0) Topat = Yapt
P12 17 72 2% (W)= wpam 17,p) 21 .

. . 8
where AZ] =21 e s1n(§-92])

o1 = wpmwp, = dvgy

and where (“ij)k is the component of the dipole moment Eij which lies
along the field Ek; i connects states |i> and |j>. We see that since
Wy = W (6.4-4) is the major contribution to p%l)(t); other nonresonant
terms have been neglected.

Substituting the above result into the commutator (3.9 -19)
and evaluating the resultant integral (3.9 -18) over the second pulse

(Ez) gives rise to the following expression for the second order density

matrix element P13 (for times after the pulse E2)
(0) 0ot ~Yact
(2) 8, 1,2 P17 (Mgpdy(upe )y EqEse ALY
3 (t>ty+3) = (- 5 :
[w1"wba '1Yab][w2"wcb"1(Yac_Yab)]
where ' (6.4-5)

i, ,t
P 32°2 . ,§
A32 =27 e s1n(§-932)

and

32 ° YW 1.(Ya\c "Yab)
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(2)

We see that P13 corresponds to the two-photon coherent state
[21] which is proportional to the product of the (pump) fields E] and
E2’ oscillates at the two-photon transition frequency Wea (which is not
necessarily the same as twice the pump frequency 2w) and decays at the
corresponding dephasing rate Yac In arriving at (6.4-5), we again
have retained the near resonant term (i.e., the rotating wave approxima-
tion).

We see from Figure 3.12 that there are two nonzero density matrix
elements which occur as a result of the perturbation induced by the
third (i.e., probe) pulse, E;3 the nonzero elements are pgg) and pég ).
Since we are interested in probing the resonances (among other atomic
parameters) of the atomic medium, we will evaluate the induced third
order nonlinear dipole at times after all the pulses are off. In this way,
the only fields detected will be a function of the atomic (or molecular)
levels and not those of the exciting laser(s). This is called the opti-
cal free-induction decay of the medium. We therefore follow the same
procedure as above and obtain the following expressions for the nonzero

third order density matrix elements (again evaluated at times after the

last pulse E4):

(3) Sy -
p1p (>t * )

(0) * iwbat-Ya bt .
P11 (Mgp)y (upe ) o (e EqEoE e Aorhsphos

I:“’1'wba-wab][“’Z'wcb'i(Yac-yabﬂ[“’cb'w4'1(Yab"\fac)]

(- 5p)°

(6.4-6)



where Aé3 = 2ie

and

(3) 8y - (13

pp3’(t>tg+3) = (5x)

(0) * “Vpet '

P11 (ap)y (Mpedp (mpa)y EqEpFy @ WARMT (6.4-7)

[m1'wba' 1.Yab][w2'wcb"i(Yac"Yab)][mba'“’l’f"”chnyac):‘

uucbt

X

it
N A7 S N
2ie s1n(§-912)

where /\]2

QiZ e W 1(ch - Yac)

Now, forming the nonlinear polarization by using (6.4-6,7) in

(3. 9-17) and the definition Py = N<w> (with p§?) + 1) yields

> >

-
3 =i (kqytko=k, )T
(3) s -8 2 2 * 1752754
PaL (E>tg+g) > o3 Nlupg I7 Tugpl™ EqEEy e
“ca §
i—==t-1y,t -y (to-ty +5) -y, (t, -t,)
x e ° ab sin(%;) e ab72 71 20 Tacty 2 (6.4-8)

The polarization given by equation (6.4-8)radiates the conjugate
wave if the pump waves are counterpropagating (i.e., 214-E2550), and if
wcé/Z ~ w. In arriving at (6.4-8) we have assumed the "small area" limit
(n8/2 << 1 for all Qij)’ set all polarization vectors parallel for simpli-

city, assumed that Yab = Yp S Yab> added a factor of two in order to

o
account for the permutation of E] with EZ’ and included the spatial phase

variation of the fields as given by (6.4-3). Further, we have assumed
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near-resonant denominators (i.e., all Q are pure imaginary, or equivalently,
the Yij dominate over any frequency differences), and we defined
A= Wpa~Wep thus A determines the anharmonic contribution of the hoten-
tial (for a purely harmonic potential, A -~ 0). Recall that we have
neglected atomic motion; in general, one must integrate a velocity-
dependent nonlinear dipole moment over an assumed velocity dis-
tribution in order to yield the macroscopic nonlinear polarization.

Let us examine some features of (6.4-8). First, we see that if
A # 0, there exists an amplitude beat-frequency of roughly A/2. This
follows from the fact that there are two contributions to the third-order
induced dipole, arising from the allowed transitions coupling levels a
and b as well as 1evels b and c (given by the density matrix elements in
(6.4-6) and (6.4-7), respectively). These two contributions interfere
coherently in the time domain, thus giving rise to the amplitude beating.
This effect has been termed "o-beat spectroscdpy" by Levenson [24]. He
applied the technique to an ensemble of two-level (dipole forbidden)
atoms, of differing two-photon energy spacings. In our case, the observed
beating in the time domain is a measure of the characteristics of a single

atom; hence an ensemble of identical atoms could give rise to the beating.

The next aspect of our result, equation (6.4-8), that we will
discuss relates to the overall decay rafes of the polarization. We
see that as a result of the specific density matrix sequence analyzed
(which involves only off-diagonal matrix elements), the various decay
times are those that correspond to the transverse, or dephasing 1ife-

times. It is seen from (6.4-8) that the amplitude of Péi) is maximized
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if the two pump photons overlap in time, and also if the probe photon

is incident upon the TPCS at the time of its creation. Further,

the conjugate wave decays as exp(-yabt); thus, the temporal beating
discussed above is damped by this decay rate. We see that one may infer
the various dephasing rates by varying the time delay between the two
pump waves, or between the creation of the TPCS and the subsequent
scattering of the probe wave off this state [22,237]. We note that the
other density matrix perturbation pathways (see Figure 3.12) involve
both transverse and longitudinal decay rates [20].

We remark that if one wishes to determine the anharmonic con-
tribution (A), the experimental region of interest for a given system
is Timited to v, < A < T']; where T is the response time of the detec-
tion apparatus. These limits ensure that {i) a sufficient number of
amplitude beats occur during the decay of the conjugate, optical free-
induction decay; and (ii) the detection apparatus can respond fast
enough to resolve these temporal beats. Levenson [24] has pointed out
that the o-beat technique may be useful for splittings which are too
large for quantum beats [19], yet too small for frequency-domain spectros-
copy.

We emphasize that the generation of a conjugate wave by the inter-
action of a TPCS with a probe wave has nd direct holographic analogs,
since (in holographic terms) the reference and reconstruction beams
(i.e., the pump waves) both interact with the system and even terminate

prior to the incidence of the object wave. Further, the polarization

vectors of the two pump waves need not be necessarily parallel to
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the object wave (subject only to the selection rules of the atomic
species) in order to realize the conjugate return field. Yet, despite
this, a (near) pseudoscopic image is still generated, since all the
phase information from the various interacting fields is retained in
the interaction medium during the dephasing 1ifetime(s).

In conclusion, we have shown by using a time-dependent &ensity
matrix perturbation analysis that the scattering of a probe wave off a
two-photon coherent state is capable of yielding a conjugate wave [22,23,35
36]. In addition, by investigating the temporal and amplitude decay
of the conjugate field, one can infer various parameters that char-
acterize the atomic (or molecular) medium such as the various dephasing
lifetimes [22,23], as well as the degree of anharmonicity in nearly
harmonic systems. Thus this scheme may be useful for wavefront reversal
applications, as well as an interesting spectroscopic tool. The el-
egance of this scheme as a spectroscopic tool can be appreciated when
one realizes the conjugate nature of the return wave. Hence, by
utilizing the spatial, temporal, and polarization properties of the
time-reversed wave, various undesirable background noise sources such
as fluorescence and/or scattering of the input fields can be minimized--
thus yielding a greater signal-to-noise ratio than is possible with

many other spectroscopic techniques.
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APPENDIX 6A

Acceptable Input Bandwidths for Group Velocity Dispersion
Compensation Schemes

In this appendix we will investigate the maximum input bandwidth
(and hence the shortest transform-limited pulse width, or maximum data
rate) allowable for efficient group velocity dispersion compensation via
optical phase conjugation. We will consider several cases of forward-
going as well as backward-going conjugation geometries as discussed in
Sections 3.2 and 3.3, and Appendix 3A. For brevity, we consider only the
kinematical constraints or phase matching restrictions in arriving at the
various bandwidth Timitations. The dynamics for a given process involves
a solution in terms of the amplitude evolution which may be obtained, for
example , by using a coupled mode formalism similar to that presented in
Section 3.3. Since the magnitude of the nonlinear gain can have a profound
effect in terms of decreasing the bandpass for a given system (recall the
arguments presented in Sections 6.2 and 6.3), one must ultimately consider
this additional constraint. However, it was shown in Section 6.3 that
the maximum acceptable bandpass is ultimately limited by the kinematical
constraints. We therefore 1imit our discussion to this regime (equival-
ently, the small signal, or small nonlinear gain 1imit). Further we assume
that the wavelengths involved are far frdm any material resonances char-
acterizing the conjugator; thus, we take the non]inear susceptibility fo

be a nondispersive, phenomenological constant,

A. Bandpass for Phase Conjugation via Forward-Going, Nearly Dengeherate

Four-Wave Mixing

The geometry for this interaction is given in Figure 3A.1b, where
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all four fields are assumed to be colinear and copropagating. We take
the special case where the pump waves Ez(w) and E3(w) are of the same
frequency; that is, the degenerate case. The probe and conjugate fields
are taken as Eq(wt§) and E;(w-8), respectively, where |8/w] << 1. The
field conventions are chosen to be consistent with that of the figure.

We consider a nonlinear polarization of the form

(wy)
4’ _ 1 .,(3) * -
PuL = 5 Xyl Ez(w) E3(w) E1(w+6) + C.C. (6.A-1)
which gives rise to the conjugate wave. Photon energy conservation re-
quires that the conjugate wave be of radian frequency w, = ww-(w+s) =
w-8. This "frequency flipping" property is the same as that discussed in
Section 6.2 (for the backward-going conjugate scheme). The conservation

of photon momentum results in the following phase mismatch
- > - - >
|Ak|L = |k2(w) + k3(w) - k](w+6) - k4(w-6)|L (6.A-2)

where L is the interaction length.

We see that due to the copropagating nature of the probe and con-

jugate fields, the vector sum of the pump wavevectors is nonzero.
Therefore, aside from dispersive effects (to be discussed below), any
increase in the probe wave vector magnitude (implying a frequency in-
crease) results in a corresponding decrease in the conjugate field's
wave vector, such that their sum is roughly equal to the total

pump wavevector's magnitude. We therefore expect that, in general, for

copropagating conjugate-wave schemes, the acceptable bandwidth will be

greater than that of backward-wave (counterpropagating) conjugators. Of
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course, the sacrifice to be made in the former case is that the scheme-
works most efficiently for one choice of propagation direction (i.e.,

there exist spatial-mode bandwidth Timitations, as discussed in Chapter

I11).
To show the above bandwidth claim in more detail, we rewrite
(6.A-2) as
[AK[L = 2 n(w) +2 n(w) - {28 n(grs) - L28) gy |1 (6.A-3)

where n(w) is the frequency-dependent linear refractive index.

If we assume that we are far from any material resonances, and that

|8/w] << 1, we can expand the index of refraction about the pump wave fre-

quency as

n(wts) = n_ £ n's + - nve? £ .... (6.A-4)

- o~ 0 Vo T '
where n_ = n(w) ; n' = an = EEE ; t
o = nw) 5 nl =5 P one = ;. etc.
w W |w
Using (6.A-4) in (6.A-3) yields
62 ] 1t
[Ak|L = 7;-|2n0 +wnp| L (6.A-5)

For efficient nonlinear coupling to take place (i.e. constructive
interference of the distributed set of nonlinear dipoles in the medium),
—}
we require that |Ak[L < 2m.

Hence, the filter bandpass subject to this condition becomes
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/ 2rc

Using typical values for the dispersion of transparent media (e.g.,
glass) in (6.A-6) and neglecting the wng term yields a bandpass of

n 10]3

Hz or a pulse width of 0.1 psec for an interaction length of 1 cm
at a wavelength of 0.5 ym. This technique therefore yields an acceptable

temporal bandwidth which is nearly three orders of magnitude greater than

that of the backward-going, four-wave mixing scheme considered in Section
6.3 (and to be discussed later in this appendix). The present scheme is

1imited, however, in its spatial-mode bandwidth.

B. Bandpass for Phase Conjugation via Forward-Going,

Three-Wave Mixing

For this geometry, as shown in Figure 3A.la, all three fields are
again colinear and copropagating. The pump field complex amplitude is
now given by E2(2w) and is at frequency 2w, while the corresponding sig-
nal and conjugate amplitudes are given by E1(m+6) and E3(w-6). The non-
linear polarization at wg for this case is given by

(wg)
PrL %—xﬁf) E,(20) EX(w+s) + c.c. (6.A-7)

As discussed in Appendix 3A, a D.C. induced four-wave mixing geometry
will yield a similar result.
Conservation of photon energy again yields a conjugate wave of

frequency Wy = w-8, and a corresponding phase mismatch as

> > >
|AKIL = [ky(20) - Kkqlwt6) - kylw-8)|L (6.A-8)

Wle see that since all waves are copropagating, we expect a large bandpass
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for the same reasons as discussed above. However, since the pump wave
is now at 2w (as opposed to two separate pump waves each at w), we
expect the bandpass to be decreased somewhat, in general, due to dis-
persive effects.

Following the procedure above and using the same Taylor expansion

for n(wts), we get the bandpass

n

(2mc/L) - 2um(2w) - n | (6.A-9)

S

< .
v ]Zn' + on''
) 0

As expected, due to the difference in frequency of the pump and signal
fields, we see a decrease in the bandpass due to the dispersion of the
medium. However, this added term can be seen to vanish if the standard
phase matching techniques used for three-wave nonlinear optical mixing
schemes are invoked (e.g., angle . or polarization tuning effects in bire-
fringent uniaxial crystals, etc.). If this is done, then the bandwidth

limitation of (6.A-6) is recovered.

C. Bandpass for Phase Conjugation via Backward-Going, Nearly Degenerate

Four-Wave Mixing

For completeness, we now discusg the bandwidth 1imitations for the
standard phase conjugate geometry as shoWn in Figure 3A.Tc. The major
difference in this approach relative to the two above schemes is that
now the resultant wavevector magnitude for the pump waves is identically
equal to zero. As discussed in Chapter III, it is this fact that makes
this approach so attractive for phase conjugation applications, since
signal waves of arbitrarily incident directions are time reversed equally

(assuming an identical interaction length for all angles). However, in
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terms of the filter bandpass, the zero resultant magnitude of pump wave
vector considerably reduces the bandpass. This is due to the vector
sum of the probe and conjugate wavevectors for this counterpropagating
geometry being zero only for the degenerate case. Any deviation of the
probe frequency from that of the pump waves' frequency yields a nonzero
phase mismatch, even in the case of a nondispersive medium, since this
phase mismatch is dependent upon the difference of the probe
and conjugate wavevector magnitudes.

Recall that the phase mismatch is given by (see notation of

Figure 3A.lc)

>

|AK|L = |E2(w) + Kyw) - K (w+0) - Ky (w-6) |L (6.A-10)

consistent with the conservation of photon energy and the desired non-

Tinear polarization (see Section 6.2). Since for our present geometry

>

-
k2+k3 = 0, equation (6.A-10) becomes

lak|L =

W+6) 1 (urg) - fu=8) n(w_cg)‘L (6.A-11)

c c

Using the Taylor expansion for n(w§), we get

~ 8 . "
|ak|L = = 'Z(n twnl) + n’s

2
]

L (6.A-12)

If we (justifiably) neglect the last term in (6.A-12) we finally get the

acceptable filter bandpass to be

e
T .A-13
R s AT (6.4-13)

We therefore see that even in the absence of any material dispersion
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(né-*O), the acceptable filter bandpass is considerably less than the
preceding two cases. The presence of material dispersion contributes only
second order to the bandpass decrease. For the same conditions as

given in the above two cases, the resultant bandpass is 9 GHz (see Sec-
tion 6.2), yielding a minimum pulse width of ~100 psec. This valué corre-
sponds to a data rate which is roughly three orders of magnitude less

than the forward-going conjugate interactionsdiscussed above in terms of
the potential use of the scheme for the compensation of channel disper-
sion. Recall, however, that we have considered only plane waves in this
treatment. As alluded to earlier, the use of forward-going conjugate
schemes can lead to spatial amplitude and phase distortions for nonplanar
(i.e., multi-spatial mode) input fields. Hence, a system evaluation is
necessary in order to establish the proper priorities (i.e., temporal

bandwidth vs. spatial bandwidth).
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Chapter VII
THE PHASE CONJUGATE RESONATOR: A SPATIAL/TEMPORAL DOMAIN
APPLICATION OF PHASE CONJUGATE OPTICAL INTERACTIONS

7.1 Introduction

In this chapter, we will focus upon an application of phase
conjugate optics that realizes many of the major features of this
interaction mentioned in the previous chapters, Specifically, we con-
sider the case of laser osc%]lation in a resonator in which one of
the mirrors is replaced by a phase conjugate reflector which utilizes
four-wave mixing. There are several characteristics that make this
resonator configuration especially attractive. The well-known "time-
reversal" feature, and hence the spatial domain app]icaiion(s) dis-
cussed earlier of the conjugator serves not only to compensate for
various potential intracavity phase aberrating elements (e.g., gain
medium phase and/or polarization distortion, poor quality optical
components, etc.), but also gives rise to profound differences in the
resonator stability criterion as compared to conventional Fabry-Perot
laser resonators [ 1]. Further, the frequency filtering nature and
the associated temporal domain features of the conjugator yields a
type of "frequency locking" of the resonator output frequency to the
frequency of the pump laser (which excited the conjugate mirror). It
also renders the transverse modes present in the resonator to be
degenerate in frequency, thus giving rise to a "transverse mode-
locking” condition, which enables the mode volume in the resonator
to "fit" 1nto'an aperture (subject to the limitations imposed on the

angular acceptance range of the conjugate mirror). If the effective
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aperture within the resonator is chosen to be the transverse gain pro-
file, for example, then the use of a phase conjugate mirror can es-
sentially "milk" the oain medium optimally for its stored energy.
Finally, by temporally pumping the conjugate mirror, one can Q-switch
this "phase conjugate resonator,” PCR. In the next section, we present
an analysis for this type of resonator which, using the Gaussian

beam propagation formalism, considers resonator stability conditions,
longitudinal and transver§e mode spectra, and the frequency dependence

of the phase conjugate mirror. This will be followed by a discussion of

an experiment performed using a ruby laser as the pump source, and
carbon disulfide as the conjugator's nonlinear medium. Laser oscil-
lation was observed in a resonator confiquration which was unstable in
the conventional sense. Further, we observe a laser output energy that
is comparab]é with that of a similar, conventional Fabry-Perot laser.
Several additional observed aspects regarding the resonator will be
discussed, including frequency locking of the oscillator output to the
pump beams, and Q-switching properties due to the pulsed nature of the

conjugate mirror.

Finally, in an appendix at the end of this chapter, we will dis-
cuss briefly a special, yet important case dealing with phase conjugate
mirror geometries; that of the ray matrix for a phase conjugate mirror
as generated by Gaussian spatially-dependent pump beams. The resultant
"Gaussian tapered" reflectivity nature of the conjugate mirror has im-
portant consequences in terms of the modal characteristics when used

in place of a conventional mirror that forms a laser resonator.



- 271 -

7.2 PCR Stability Criteria and Mode Spectra

In this section, we present a derivation of resonator

stability criteria and mode spectra of a laser resonator in which one
of the mirrors is replaced by a phase conjugate mirror, "PCM." The
geometry of this phase conjugate resonator, "PCR," is shown in Figure
7.1. The PCM is assumed to be formed via a degenerate four-wave non-
linear optical interaction. The conjugate wave (of field Ei)’ E. |
is generated as a result of the simultaneous incidence of two counter-
. propagating plane waves, A] and AZ’ with Ei onto a medium possessing a
third-order nonlinear optical susceptibility, Xéil all located within
the PCM (as shown in Figure 7.1). In the analysis that follows, we
neglect the depletion of the pump waves A1 and A2 as a result of the
nonlinear interaction. We also neglect diffraction losses within the
PCR, and self-focusing within the PCM. We further assume that the

nonlinear medium is nondispersive, and is also capable of instantaneous

response.

A. Matrix of the PCM (degenerate case)

We first discuss a matrix formalism that describes the operation
of the PCM for the case where all the interacting fields are of the
same radian frequency, w. The stabjlity ériterion is then derived for
both one and two round-trip self-consistent situations.

Consider a Gaussian field, E., propagating along the z-axis, to be
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incident upon the PCM.  The beam field is described by [1]

2 . 2
W (2)

E, = ei(?) expli(wt - kz - ;g(z)

i ] (7.2-1)

where ei(?) is the complex amplitude of E. (which may include any
transverse mode dependence); p and w are the radius of curvature
and the spot size of the incident field, respectively. This field

can also be written as

>
es () exp [i(ut - kz - kr yq (7.2-2)

E. —
2q1

1

"

The complex radius of curvature q; is defined as

= 1 i\ )
qi(z) o(z) ~ ﬂwz(z) (7.2-3)

The effect of the PCM is to "reflect" such an incident field so as to
yield its conjugate replica as discussed in Chapter III, leaving the

wave front and the spot size unchanged. The reflected field is thus

2 2
* o : kr' r
E. = ei(r) exp[i{wt + kz + 75~)- ;73 (7.2-4)
which can also be expressed as
£ = M) exp [iut + ke - KT (7.2-5)
r ;(r) exp [1{w z - 2 .

r\
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The reflected field complex radius of curvature subject to (7.2-3) and

(7.2-4) is given by

.
L (7.2-6)

An observer traveling with the reflected beam will find the spot size
unchanged, but will see an opposite sign for the curvature of the wave

front.

If we introduce the ABCD matrix formalism [1,6], the (reflection)

effect of the PCM can be represented by the matrix

V(A B) : (] O)
oD 0 - . (7.2-7)

(7.2-8)
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Note the conjugation operation upon q;» as opposed to the conventional
formalism [ 1] where the input field is not conjugated. We note that
this matrix also describes the reflection of rays from the conjugate
mirror. That this matrix (7.2-7) and the condition given by (7.2-8)
satisfy the constraint (7.2-6) can be easily verified by substitution.
It follows directly that the ordinary ABCD formalism for treating
the propagation of Gaussian beams through a sequence of lens-like
media [ 6] can be applied also in the case when one of the elements
is a PCM. The matrix representing the PCM is given by (7.2-7). The

"q" parameter at any plane following the PCM is related to the input

qul by

*
Ag. + B
=11 T (7.2-9)

Cra; * Op

qout

where the subscript "T" implies that the matrix elements correspond to
that of the resultant matrix for the given sequence of optical elements,
including that of the PCM,

Since all the matrices thus far are assumed to be real, the con-
Jugation operation imposed by (7.2-9) can be performed at any plane.
We note that care must be taken when tréating propagation through
media described by matrices having complex elements, An example of
such a matrix will be discussed (when considering Gaussian pump beams)

in Appendix 7B. In this case, one must first evaluate the complex
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g-parameter just prior to the PCM (using the conventional formalism),
apply the operations given by (7.2-7 and 8) to describe the effect of
the PCM, then finally evaluate the resultant g-parameter at the

desired plane "after" the PCM,

B. Stability Condition for One Round Trip (degenerate case)

In this section, we will derive the stability condition for the
PCR, assuming that one round trip of the field is required to define
an eigenmode of the cavity. In this and the next section, we will
restrict our discussion to the degenerate case, That is, all the
interacting fields (viz. the pump, signal, and conjugate waves) are
of the same radian frequency.

Consider the situation sketched in Figure 7.1. The resonator
is bounded on one end by a mirror having a radius of curvature R,
containing arbitrary intracavity optical components described col-
lectively by an A'B'C'D matrix, y‘, for optical propagation from
left to right, and again by g";‘for propagation from right to
left. The resonator is bounded on the other end by a PCM. In
order to investigate the stability criterion for such a cavity, we
apply the standard self-consistent formalism in which we demand that
the complex radius of curvature of the beam reproduce itself after one
round trip. Choosing a plane to the immediate right of the real
mirror, we trace a beam that propagates to the right and get, after

one round trip, the following matrix product:
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Ay B (1 o\ [A" BN (1 0} [A" B\ (75 900)

M. = =
= \q 2 q/\ev o \o -1 \er b
1 0\ (1 0
=1, (7.2-10b)
' 1 0 -1
where we have used the relation
M= () (7.2-10c)

which can be shown straightforwardly, using the reciprocity property
of the group of optical elements represented by M' (or M"), where M
is given by (7.2-7). The derivation of equation (7.2-10c) is sketched
in Appendix 7A.

~The above result [equation (7.2-10b)] is merely a reaffirmation
of the fact that an arbitrary sequence of passive and lossless optical
elements followed by a PCM is equivalent to the PCM alone. This is
due to the time reversal occurring at the PCM and the reciprocity of
the passive components.

Now we impose self-consistency; that. is, we demand that the field
be reproduced at the aforementioned plane after one round trip. Using
(7.2-8) this condition is

¢, +0,/q"

1. L (7.2-11)
q A] + B]/q
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The result of this constraint yields the followina two conditions:

+D, =0 (7.2-12a)
and

-C, =0 (7.2-12b)

B.L1s +(25)%1 + (A, - D
- 2 TTw2 ( 1 ]) 1 .

1
P

Using the values of Ay, By, Cy> and Dy from (7.2-10) in equation
(7.2-12), we get |

o= -R . (7.2-13)

Hence, the radius of curvature of the Gaussian beam is equal to that

of the real mirror at the real mirror's plane. This conclusion is

also independent of the sign of the mirror's curvature. Also, there is
no dependence of the stability conditions onn the cavity length or any
other optical components within the cavity. In addition, there is

no constraint on the spot size (w) of the resultant mode (subject to
the angular acceptance limitations of the PCM), This freedom of spot
size in conjunction with the frequency degeneracy of the transverse
modes at the pump frequency (to be discussed later), leads to the
concept of "spatial mode locking" of transverse modes. In Figure

7.2a, we sketch a typical Gaussian mode that is self-consistent for

the one-round-trip, degenerate frequency case.

C. Stability Condition for Two Round Trips (degenerate case)

In conventional resonators, all allowed eigenmodes are obtained

by demanding a single round trip self-consistent solution. However,
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for the case of a PCR, it is possible to have allowed modes which will
reproduce themselves after two round trips, Furthermore, by simple
ray tracing, it can be shown that, due to the time-reversing nature
of the PCM, these rays will reproduce themselves after two round
trips. Thus, for two round trips, and for the case of degenerate
fields, we can use the matrix from the preceding section, forming the

resultant matrix as

M )2

~2 (g

(7.2-14)

~
~

where 1 is the identity matrix, We note that, since for a two round-
trip situation, we have encountered the PCM twice, the g-parameters
have been conjugated two times and thus remain unchanged. Hence, in

contrast to the single round trip constraints, any complex radius of

curvature, (i.e., both p and w) at the initial plane (at the real

mirror) will yield a self-consistent solution. We therefore con-

clude (as was the case for the one-round-trip cohstraint) that the

PCR is stable for any real mirror, regardiess of its radius of cur-

vature or sign, and is stable regardless of the cavity length or

the intracavity optical components. In Figure 7.2b, we sketch an allowed

Gaussianmode that satisfies the two-round-trip degenerate frequency case.
We thus see that there exists a 1ar§e range of Gaussian beam

parameters that satisfy the self-consistency criterfon for both the

one- and two-round trip cases. This multitude of acceptable solutions

follows from the very nature of the PCM. Since we have specified

only one constraint within the resonator (in this case the radius

of curvature of the real mirror), and realizing that the action of
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the PCM is to replicate any field incident upon its surface, there
exists no unique set of p and w within the resonator. This is in
contrast to conventional resonators, where, in general, the curvature
is specified at two planes in space, which determines uniquely the
complex beam radius everywhere in space.

We have not taken into account any additional constraints within
the PCR, which can be due to several sources; one can, for example,
place an aperture within the resonator. In addition, the PCM itself
can possess an effective aperture due to, for example, the spatial
extent of the pump beams. This latter point will be considered in
Appendix 7B. Another possibility can be the "effective aperture" in-
troduced by the gain medium (i.e., the transverse gain profile).

We note that in this case, the action of the PCM is to form a mode
volume within the resonator that interacts with as much of the gain
medium as possible, while still being above threshold. Hence, in this
configuration, the PCR can be capable of most efficiently extracting

the stored laser energy within a given gain medium.

D. Ray Matrix for the PCM (nondegenerate case)

We now treat the self-consistency requirement for one and two

round trips within the PCR for the case of nondegenerate fields,

Knowledge of the stability condition for nondegenerate fields is
relevant to analyzing PCR "modes" that are not at the pump friequency

(to be considered later). We consider the case where the pump waves
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exciting the PCM are both at radian frequency, w, while the PCR field
incident upon the PCM is at radian frequency wts, where & can be
greater than or less than 0, Due to the frequency flipping nature of
the PCM as discussed in Section 6.2, the conjugate field is at fre-
quency w-8, The phase matching constraint requires that each plane
wave component of a given signal field incident upon the PCM give
rise to a "conjugate replica" whose E—vector is antiparallel to that
of the input plane wave component considered. This applies to both
the degenerate (see Section 3.3) and the nondegenerate (see Section
6.2) cases. Thus, the ray matrix given by (7.2-7) can also be used
to describe the effect of the PCM for each plane wave component (or
ray) for the nondegenerate case. However, for the nondegenerate case
of an arbitrary incident wavefront, the "reflected" field no longer
exactly retraces the path of the input wave, due to their difference
in frequency.

This problem can be treated formally by decomposing the input
field into its plane wave components, using (7.2-7) for the effect of
the PCM for each of these components, changing w+§ to w-8 , then finally
forming the resultant superposition,

In what follows, we show that for the special case of Gaussian
beams, one can form a frequency-dependent ABCD "ray" matrix that
properly describes the effects of the PCM. Consider an incident

Gaussian beam of the form [1,6]
E. = e(F) explif[(1 + Yot - (1 + Dz - (1 + ) K.éj} (7.2-15)
i S PuILL W : 3 w Zqi 2o

where k = wn/c.
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The "reflected" field from the PCM (located at z = 0) is given

by

* 5 2
E, =€ (Mexplil(l - Dut + (1- Dz - (1 + ) ‘;‘(’_q*)]} . (7.2-16)
i

This can be rewritten as
E we () explil(1 - Dot + (1 -Ykz - (1 -9 5;31} (7.2-17)
r P w w w 2qr ’ ’

This reflected field is thus recognized as being a Gaussian beam at
frequency w(1 - %), "~ having a complex radius of curvature, s which

can be related to a; by

* (1 - §/w)

A = -9 T+ 870) (7.2-18)

The "ray" matrix that relates 95 to q, which satisfies equations

(7.2-15 to 18) can be represented by

M = . (7.2-19)

¥ 8
0 -(1+2)

where the operation given in equation (7.2-8) is to be used. We note

that as 6 -~ 0, equation (7.2-19) reduces to the degenerate-case

matrix, given by equation (7.2-7). It can be shown that the effect

of the PCM is to change the radius of curvature (at the output

boundary of the PCM) while leaving the spot size unchanged (this
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follows from the frequency-flipping effect of the PCM). As discussed
above, we remark that equation (7.2-19) applies to Gaussian beams and
‘not to rays (since applying (7.2-19) to a ray changes the "reflected"
slope magnitude, which violates the phase matching constraint dis-

cussed at the beginning of this subsection).

E, Stability Condition for One Round Trip (nondegenerate case)

Following the discussion given for the degenerate case, we can now
solve for the self-consistency constraint for the nondegenerate situa-
tion, Demanding replicatijon after one round trip, we now consider an
explicit resonator configuration. For the ease of calculation, we
set the M' and M" matrices of Section 7.2B to represent cavity spacing

of length 2. That is [1,6]

1 2
"= < > (7.2-20)
0 1

For this choice of the cavity matrix, the total single round trip

W=

=

matrix evaluated at the real mirror plane is given by

1 N/1 DNA-% 0 )
W

=
1]

2 S
"R 1 0 1 0 —(1+5) o 1

1-8 22 8
w w

2 S $,44
&1 - 2) -1 -1 (7.2-21)

The self-consistency criterion, equation (7.2-11),yields the
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same conditions [equations (7.2-12a,b)] as for the degenerate case.
Using the resultant matrix [equation (7.2-21)] in first condition
[equation (7.2-12a)] gives the constraint & = R/2. Substitution of
this result into the second condition [equation (7.2-12b)] does
yield a range of (p,w) pairs which satisfy the equation. However,
due to the frequency-flipping nature of the PCM, any (p,w) pair at
frequency w+s will not replicate itself after a second round trip,
i.e., at frequency w-8. That is, there is no common (o,w) pair that
satisfies the self-consistency requirement for both +§ frequency com-
ponents.

We thus conclude that no stable mode exists for the one-round-

trip, nondegenerate case.

F. Stability Condition for Two Round Trips (nondégenerate case)

In considering the nondegenerate two-round-trip stability condi-
tion, we cannot simply take the square of the single-round-trip
matrix, equation (7.2-21) (as was done in the degenerate frequency
case). This is due to the frequency-flipping nature of the PCM. That
is, uponveach "reflection" off the PCM, the field changes frequency.
Hence, the total two-round-trip matrix, using equation (7.2-20) to

describe the intracavity propagation, becomes

: [} s s [}
n s\ [1+3 22 8 -8 -2 &
c2 D2f \ 2.8 &4z 2., 8 8,48
~ ,R(“bm) -og-1 - crg(1-3) Sw-1-
(7.2-22)

where the second matrix has é+~8, consistent with the above remark.
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We note that since we have encountered the PCM twice, the conju-
gation operation is effectively cancelled. Thus, the applicable self-
consistency criterion corresponds to that of conventional resonators

[1,6], and is given by

- B LA L
g° .t i R BZ (7.2-23)

Substituting the resultant matrix [equation (7.2-22)] into the self-
consistency condition, equation (7.2-23), yields p = -R; i.e., the
Gaussian beam curvature at the mirror is equal to that of the real
mirror radius of the curvature at each round trip, and is independent
of the frequency offset, §. However, the spot size (evaluated at the

real mirror) does depend on the frequency offset and can be shown

to be
-1/4
1-20-2
W= C J_(l_l) (é) 2 .
m(w+6) YR 'R°2 ]-"J““R& (7.2-24)

From equation (7.2-24) we get the following condition for stable

modes to exist

2 >R ; for R>0
(7.2-25)

all 2 ; for R <0
We thus conclude that for nondegenerate fields, the PCR is stable
for two round trips only over limited ranges of cavity length (for a

given mirror radius). Furthermore, the radius of curvature of the
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mode always matches that of the real mirror; however, the spot size
alternates between two values for each round trip [by using *§ in
equation (7.2-24)].

In Figure 7.3 we sketch a typical stable Gaussian mode for the
nondegenerate, two-round~trip, self-consistent condition,

We note that when & = 0, equation (7.2-24) is no longer valid
since the matrix element 82 = 0 [see equation (7,2-23)]. In this

Timit, the discussion presented in Section 7.2C applies.

G. Longitudinal and Transverse PCR Mode Spectra

In this section, we derive the PCR longitudinal and transverse
mode spectra for Gaussian beams, Due to the frequency-flipping nature
of the PCM, a given frequency component (e.g., at w+s) requires two
round tripé to return to its initial frequency. Alternatively, if
we assume two fields to co-exist (i.e,, at wtS) we can then superpose
these fields and thus require that this superposition repeat only after
one round trip. Referring to Figure 7.1, we assume that the PCR is of
length and linear index, 2 and Nes respectively; the PCM is of length
and Tinear index, L and n, respectively.

We represent the p,qth transverse mode of the total field at the
real mirror (located at the z = 2, plane) as the following super-
position (of the wtd frequency components) of the well-known Hermite-

Gaussian eigenmodes [1,6]

- - wo ) V2 X)) /Zﬁ‘
EpqXoyezy) = T E, (w(z) Wiz, Hq(‘”(z)_ (7.2-26)

. 2,2
x2+y2 ik, (x"+y%)

wf(z) i 2Ri(z)

z
X exp [1(ut6)t - -ik,z + i(p+q+])tan'] (?1) ]
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The summation is taken oyer the two frequencies, wtS§,

In (7.2-26) Hp 1s the Hermite polynomial of order p, and [1,6]

2 _ 2 'z
w (z) = w0(1 + —?—Q
z
0
2
R(z) = z(1 + ——) (7.2-27)
z
and
2
, - W, N,
© A

w(z) and R(z) are the z dependent beam spot size and radius of

curvature, respectively. Equation (7.2-26) can be rewritten as
E(z=z1) = I A, exp{i(wts)t + e, } (7.2-28)
Lt *

where we have dropped the p,q mode labels for convenience and the
summation implies that the upper (lower) signs correspond to the
+8(-8) components of the total field.

This total Gaussian field is now propagated to the right by a dis-
tance £, and is incident upon the PCM, Tocated at the plane z = Z,-

The effect of the PCM (in addition to the prevjous]y mentioned
properties) is to multiply the field by a complex frequency-dependent

i9
reflectivity, R.e igiven by [see equation (6.2-6)]

Ri=%(~w$6)IXISE)AlAZtan(eL)l g% + (%‘-5-)2 tan?(gL)} V2 (7.2-29a)
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and
0, = - F+n+ tan” 2 tan(el)] (7.2-29b)

where

and n is the phase of x&E)A]AZtan(BL), In equation (7.2-29) the ()
subscript implies that the field incident upon the PCM is of radian
frequency wt8, while the "reflected" field is of radian frequency
w+s, where w is the pump frequency (of fields A],Z)’ as derived in
Section 6.,2.

The resultant field after "reflection"” from the PCM (at z=22)

is given by

E(z=22) =3I R A exp (w+6 t + 1¢ - 16 + i(w¥sS)n m/c
+ ¥

-i(p+g+1) [}an'] (;g) +tan'] (;l) :}:} (7.2-31)
O_',-_ o/

+

This field is now propagated back to the left, reflected off

the real mirror, represented by a complex reflectivity re‘y, and then

evaluated again at the initial plane, z=z4. The resultant field is
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(7.2-32)

FWe now impose the self-consistency requirement, which states that
the total phase shift acquired by each given frequency component of the
field (relative to its respective initial phase) be equal to an interger
times 2m. From equations (7.2-28 and 7.2-32), this condition implies

that

D
1

I+

¢, * e; -y ~L(w8) - (ws)] ncz/c

z z z, i
(p+g+1) [tan'] (Eg' + tan"](zlj - tan (Eg) - tan”! ( ) ]
' olx ol3 olg YE:

2mm, (7.2-33)

+
NI__'N

where m_ and m_ are (in general) two different integers. Now, sub-
tracting the (-8) component (Tower sign) from the (+8) component
(upper sign) in (7.2-33), setting m_ - m_=m, and substituting the
expressions for by from (7.2-29) into the resultant expression yields

the following self-consistency condition upon the PCR mode spectra
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1 ZnnAvm 4mn ¢ Avm
tan | B ~tan(B8 L)} + =
m
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+ (p+q+])1:an'1 wé“ '- %. = mn
(- (Com? o2

- w R J (7.2-34)

where Avm = §/2 , (p,q) corresponds to the transverse mode indices

of the Gaussian beam [1,6], and m is an integer.
The resultant set of PCR modes [corresponding to a mode set

(m,p,q) ] of frequency w/2m + Av is thus given by the solutions to

m,p,q
equation (7.2-34). We first see that for m=0 (i.e., Ay = 0) all

the transverse modes (p,q) are at the same frequency (i.e., equal to
the pump frequency,w). Thus, in contrast to conventional resonators
(where for a given longitudinal mode each transverse mode has a dif-
ferent frequency) the PCR transverse modes (for m=0) are degenerate in
frequency. This gives rise to the possibility of a'spatial transverse
mode locking condition." If a number of transverse modes (i.e., modes
with different values of p,q) exist, all with m=0, then the resulting
spatial field distribution due to the superposition of these modes
will be stationary in time. The possibility of an oscillation

field made up of a superposition of degenerate transverse modes

with arbitrary waists and waist locations affords a great deal of
flexibility for the mode to assume spatial distributions which will

optimally milk a given gain medium or avoid an obstruction, even under

dynamic conditions.
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This result is consistent with the fact that the conjugate
mirror enables one to "time-reverse" a given field at w; we have
merely expressed a general field as a superposition of transverse
Gaussian modes., Alternatively, one can view the PCM as compensating
for the phase accumulated at frequency i after each half of a round
trip. The notion of this "supermode" fitting itself through any
intracavity aperture (as mentioned earlier) easily follows from the
above PCR arguments,

We next point out that this m = 0 longitudinal "mode" does not
have any analog to conventional Fabry-Perot modes. This follows since,
by equation (7.2-34), the m=0 mode always exists and is thus stable
regardless of any cavity parameters (e.g., mirror radius or cavity
length), corresponding to a frequency equal to that of the pump beam
frequency.  The "frequency-locking" feature of the PCR fields (for

m = 0) to the pump waves follows directly from this fact.

Another property resulting from equation (7.2-34) is that the
transverse modes (p,q pairs) belonging to higher order PCR Tongitudinal
modes (i.e., m#0) are no longer degenerate in frequency. Thus, the "mode-
Tocking" property of the PCR holds only for m=0. This follows from
the nonvanishing phases that are accumulated as a result of the fre-
quency shift property of the PCM for différent p and q (except, of
course, for the “accidenfa] degeneracy" of p,q pairs where p+q = constant).

We further note that due to the filter character of the PCM (i.e.,
the phase-matching requirement), higher order longitudinal modes will

experience a smaller nonlinear reflection coefficient, thus decreasing
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the cavity Q for these nondegenerate modes. Thus, even if 2 > R,
which would allow higher order modes to exist [see equation (7.2-25)],
the filter character will discriminate against their presence. The
result is that these higher order modes (m # 0) are far less likely

to oscillate. Hence, one expects essentially single frequency opera-

tion of the PCR (i.e., m = 0) given monochromatic pump waves.

In Figure 7.4, we plot the allowed longitudinal modes [i.e.,
the roots of equation (7.2-34)], along with the nonlinear reflection
coefficient of the PCM for typical PCR conditions (|k| ~ m/4L,

L =40 cm, £ = 25 cm, n. = 1.0, and n = 1.62). These quantities,
which correspond to our measured experimental parameters (to be dis-
cussed in the next section), yield a (degenerate frequency) nonlinear
reflection coefficient of ~ 100%. There exist two Tongitudinal modes
that satisfy equation (7.2-34) for each nonzero value of m. We also
note that the modes are not uniformly spaced, and that the higher
order longitudinal modes have reflectivities down by almost two orders
of magnitude relative to that of the m = 0 mode. These higher order
transverse modes (i.e., p,q pairs for m = 0), which are not
degenerate in frequency, cannot be resolved in the figure due to
their close spacing (of order 1074 Avm), while the higher order
transverse modes (p,q pairs) corresponding to m = 0 are all

degenerate.
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We now Wish.to investigate the relevance of the phase shifts intro-
duced by the PCM upon the PCR mode spectra, Note that had we neglected
any phase shifts due to the PCM, and neglected any transverse modal
structure, the first and third terms of (7.2-34) would vanish, with

the resultant free spectral range

M > g (7.2-35)
c

This makes physical sense by virtue of the fact that any ray
within a PCR will retrace itself after two round trips. One can view
this geometry as being equivalent to a conventional resonator having
twice the length of the PCR.  Thus, the mode spacing would be one-half
that of a conventional resonator of length % (recall that Av==c/2ncz
for conventional resonators); therefore, (7.2-35) follows. As we will
show below, however, the PCM phase shifts can have profound effects
upon the PCR mode spacing.

Updn substitution of the cavity parameters used in the plot shown
in Figure 7.4 into (7.2-35), a set of Tongitudinal modes having equal
spacing of 300 MHz results (of course with no constraint upon the center
frequency corresponding to the pump wave frequency). We see that these
values do not coincide with those obtained from the numerical solution
of (7.2-34).

For the next level of approximation for the mode spectra, we will
approximate the PCM phase shift in the linear regime and for the case
of small nonlinear gains. Recall that these approximations were also

used in estimating the phase shifts and delay times for pulses reflected
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from a PCM (see Section 6.3).

Applying these approximations to (7.2-34), we obtain the follow-
ing Tongitudinal mode spectra

A Tan—iT%—z (7.2-36)

where we have again neglected the transverse modal structure. Substi-
tution of the same parameters used above into (7.2-36) yields a set of
Tongitudinal modes having an equal spacing of 130.5 MHz. If we assume
that the m=0 mode coincides at the pump wave frequency, we obtain the
following mode set: (0, 130.5, 261, 391.5, 522, 652.5, ... MHz), as
compared with the mode set (0, 258, 389, 523, 653 ... MHz) as seen from
Figure 7.4. We see that except for the absence of the first "approxi-
mate" mode, the other modes from (7.2-36) are in close agreement with
those calculated numerically from (7.2-34). We therefore see that the
phase shifts introduced by the PCM have profound effects upon the PCR
Tongitudinal mode structure. We note that the expression (7.2-36)
applies to the mode spectrum of a resonator having a length of 2¢+L.
Thus, applying the concept of the PCR fo replicate a ray after two
round trips plus considering a round trip through the PCM at once leads
to (7.2-36). Wg remark that from (7.2-36) the propagation time through
the PCM, given by nL/c, is consistent with the pulse "reflection" PCM

delay time given in Section 6.3.
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7.3 Experimental Demonstration of a Phase Conjugate Resonator

‘A. Description

A sketch of the experiment designed to check some of the theore-
tical results is shown in Figure 7.5. It consists of a "resonator"
(of Tength & = 25 cm) containing a ruby gain medium (of length
2' = 5,08 cm), bounded on one end by a "real" mirror, MR, and on the
other end by a "phase conjugate mirror," PCM, (of length L = 40 cm)
employing C52 as the nonlinear medium, Three different real mirror
configurations were used in order to examine various aspects of the
PCR, whiéh will be discussed below, In order to obtain the largest
PCM nonlinear reflection coefficient, the PCM interaction length (L)
was maximized using a colinear pump signal scheme similar to that
considered in Section 4.2; polarization discrimination was used to
separate the PCR fields from the pump waves. The pump waves (A]’2
in Figure 7.5) were derived from a separate, Q-switched ruby laser
(v 18 mj in 15 ns) operating in both a single transverse (TEMOO) and
Tongitudinal mode. An optical delay path of ~10 m separated the pump
laser from the experimental apparatus, thus avoiding the retro-
reflected pump wave (AZ) from interfering with the pump laser during
the experimental measurements. The PCM was bounded by glan laser
prisms to confine the PCR fields (s-polarized) within the €Sy, while
passing the pump waves (n—bolarized), The rear g]an prism (P3) Eoup1ed
out s-polarized (PCR) fields which then passed through the ruby gain
medium and reflected off MR‘ The ruby gain medium within the PCR was
aligned such that its c-axis was orthogonal to the s-polarized fields

(thus maximizing the ruby gain coefficient for this polarization),
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Fig. 7.5
Schematic diagram of the experimental PCR set-up. The counterpropa-
gating pump beams,A] and A2, can in principle be along any arbitrary

direction relative to the PCR optic axis; in the experiment, a colinear
geometry was chosen to maximize the interaction length.
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The PCR output was monitored either from the PCM vyia the front glan
prism (P]) or from a partially transmitting mirror, Mae  This output
field then passed through a third glan prism, which was used to
eliminate any stray-reflected w-polarized fields. The total polariza-
tion rejection ratio for the PCR output calcite glan laser prisms
(which were AR coated and wedged), P] and P2, was measured to be

m]OP]Z

» thus ruling out detection of stray m-polarized fields (e.g., the
pump waves). When the flash-lamp pumping the gain medium within the

PCR was properly synchronized with the PCM pump fields, an intense
s-polarized pulse was detected, No output was observed when either

(i) the counterpropagating pump beam, A2, was blocked (or misaligned);
or (ii) the rear mirror, MR’ was blocked (or misaligned). The latter
test ruled out spurious effects such as self-oscillation within the

PCM and regenerative amplification of depolarized or fluorescent fields;

the former test ruled out ellipse rotation effects, and residual

birefringence of both the optics and the C52 cell windows.

B. Resonator Stability

In the first experiment} the real mirror, MR’ (having a 2m
radius of curvature and being totally reflecting) was inverted, thus
forming an unstable resonator in the conventional sense. In this con-
figuration we observed oscillation of the PCR (with the PCR output
coupled out from the PCM, as discussed above). The nonlinear reflection
coefficient of the PCM was measured (in a similar way as discussed in
Section 4.2) to be ~100% for this experiment. The PCR output energy

was measured to be ~0.72 mj. This value is quite reasonable, as will
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be discussed below. This lends support to the theoretical result that
due to the "time-reversing" nature of the PCM, the PCR should be stable
regardless of the parameters of the real mirror or of the cavity length

(at the degenerate frequency).

C. PCR Energy Output

In another experiment we compared the PCR output energy with that
of an "equivalent" conventional Fabry-Perot laser, For this measure-
ment the real mirror of the PCR was oriented to be concave with respect
to the PCR fields, with the PCR output coupled out from the PCM end
of the resonator. The nonlinear reflectivity of the PCM was again
measured to be ~100%. Under these conditions, the output energy
was measured to be 1.62 mJ. This value correlates well with a
measured value of 2 mJ obtained from the same gain medium when operated
in a conventional laser resonator configuration, with the same (2m
radius) real mirror as used above, output etalon (60% ref]ectivity),l
1.0 mm intracavity Mendenhall aperture, and passive Q-switch (crypto-
cyanine in methanol). The effective aperture of the PCM results from
the (transverse) spatial overlap of the (TEMOO) pump beams within the
PCM, which had an intensity spot size measured to be 2.2 mm in diameter,
In fact, when the pump laser oscillated in a higher order transverse
mode, the PCR output was observed to have a similar transverse charac-
ter. The greater output of the PCR using a concave,
as opposed to a convex real mirror (i.e., 1.62 mJ vs. 0.72 mJ) is
attributed to the fact that the former geometry sampled a greater

mode volume within the ruby gain medium (as a result of the ef-
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fective aperture of the PCM, due to the transverse Gaussian spatial

distribution of the pump beams).

D, PCR Frequency Spectra

We mentioned in Section 7,2F that, for £ < R {which corresponds to
our experimental parameters), higher order longitudinal modes do not
exist. Hence, the PCR output should be frequency locked to the pump
wave's frequency. (Recall that, even if ¢ > R, the filter character
of the PCM should also yield this frequency-locking property)., In
order to verify this conjecture, the frequency spectrum of the PCR
output was measured with a Fabry Perot and compared with the pump-
wave spectrum. Within the resolution of our Fabry-Perot (~ 150 MHz),
both signals were degenerate in frequency, thus experimentally con-
firming the above claim. The PCR Fabry-Perot spectrum also yielded no
additional spectral structure, Therefore, other nonlinear processes,

such as stimualted Brillouin or Raman scattering were not present.

E. PCR Temporal Structure

We now investigaté the temporal output of the PCR. Since the
pump laser is operated on a pulsed basis (i.e., Q-switched), the
conjugate mirror is only "on" during the témpora] overlap of the
pump waves, Hence, the PCM effectively Q-switches the PCR. The
temporal output of the PCR is given in Figure 7.6a. The left pulse
is that of the pump laser; the right pulse, delayed due to the
10 m delay path discussed earlier, is that of the PCR output (the

amplitude of each of these pulses has been attenuated differently
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for visual purposes). For this measurement, the PCM reflection co-
efficient was measured to be n25%, Increasing the PCM reflectivity to
~100% yields the results shown in Figure 7.6b, We note that the output
pulse is on for a time longer than that corresponding to the former

case. This follows from the fact that the temporal overlap of the

pump beams within the PCM, which yields a time dependent PCM reflectivity,
will satisfy the PCR oscillation condition for a longer time period

than that of a PCR with a smaller nonlinear gain. (For several of these
measurements, the PCR output was derived from the "real" mirror end of
the PCR.)

We see that the large PCM reflectivity case yields a
temporal structure upon the output (Figure 7.6b) which is not present
in the former case (Figure 7.6a). We thus speculate that the temporal
structure of the PCR output is attributable probably not to mode
beating, but to a form of relaxation oscillation. (We note that the
effect could also be due to a self-focusing phenomenon [7].) Recall
that theory does not predict higher order modes for our experimental
parameters (which may occur for larger PCM reflection coefficients).
Pump depletion within the PCM due to interaction with the PCR cir-
culating intensity, in conjunction with the temporal population
density variation within the PCR's ruby gain medium, apparently gives
rise to such oscillations. To verify this conjecture experimentally,
the temporal evolution of the pump beam (A]) was monitored after
passage through the CSZ’ and was seen to also exhibit temporal fluc-
tuations which were not present when the counterpropagating pump beam

of the PCM (A,) was misaligned, thus preventing the PCR from oscil-

5)
Tating.
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F. Conclusions

We note that several (independent) reports [2,3] in the litera-
ture have recently considered the properties of the PCR from a Fox and
Li [8] type approach, where a numerical solution to a scalar diffrac-
tion formulation of the problem is discussed. In the analysis presented
in Section 7.2, we recall that a paraxial (or ray) approximation
was utilized which implicitly assumed that diffraction losses (due to
finite apertures, optical elements, etc.) were negligible; this
implies essentially infinite resonator Fresnel [1] numbers (i.e.,

F = az/Az + o, where a and % correspond to the mirror radius and cavity
Tength, respectively). We also note that distributed feedback effects
in parametric interactions have been treated [5]. Finally, the consid-
eration of Gaussian apertures and quadratic gain media has been dis-

cussed recently [4]. In Appendix 7B, we describe briefly the modifica-
tions necessary for the ABCD matrices (as derived in Section 7.2) when

considering spatially-dependent, Gaussian distributed pump beams.

In conclusion, we have analyzed the stability criterion, longi-
tudinal and transverse mode structure, and have demonstrated stable
laser action in a novel resonator bounded by a nonlinear phase con-
jugating "reflective" element. The concept of frequency and spétia]
mode-locking of the transverse modes was discussed, which, among other
features, should enable one to fully extract the stored energy within
a gain medium or equivalently "fit" a mode volume through an arbitrary
intracavity aperture. Several interesting properties of this device,
such as the spatial, temporal, and spectral output, were shown to be

consistent with those expected from such an interaction. An unstable
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resonator configuration in the usual sense was seen to exhibit stabi]ify
and a substantial output energy, Also, time-dependent saturation

effects of the PCM have been observed, Finally, the PCR output

energy was measured and shown to be comparable with that of a conventional
resonator.

The use of a phase conjugate mirror, in addition to the above-
mentioned aspects, has the property of correcting for both static and
dynamic phase and polarization distortions or aberrations within the
resonator. Hence by coupling the PCR output from the real mirror end
of the cavity, or by using a two-PCM resonator, one can thus increase
the efficiency of and therefore decrease the stringent requirements

for the optical components comprising the cavity,
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APPENDIX 7A

~ o~ ~
~ A~ s

Derivation of the Matrix Relationship M"M = M(M‘)’]

In this appendix, we shall prove that equation (7.2-10c)
MM = M) (7.A-1)

is valid, and thus demonstrate that a sequence of lossless, passive
optical elements followed by a PCM is equivalent to just the PCM alone.
This fact makes sense on physical grounds due to the time-reversal nature’
of the PCM coupled with the reciprocity aspects of an arbitrary se-

quence of optical elements.

We start by forming the resultant ray vector Fé (a two-element
column vector containing the position ro and slope ré of a given ray)
as a result of the propagation of a ray ?] from the left to the right
through a sequence of optical e]ément(s) described by a ray matrix
product, M':

r?) = M r! (7.A-2)
Yo BANRE I
Now, due to the reciprocity nature of éypica] optical elements, we

expect that if we merely "reverse" the output ray (given by changing

r
2
optical elements, from right to left (given by the ray matrix product,

> —rz) and propagate this ray back through the éame sequence of

@“), we should obtain the same input ray vector (?}) except that its

~

slope is now opposite to its initial slope (due to its reversed direc-

tion of propagation).
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| We therefore demand that

oy ra
l) = M" ( 1 (7:A-3)
™S T\ Ty

Now, premultiplying each side of (7.A-3) by the matrix M given by
equation (7.2-7) , we get

v (1 o)
1 o\g( r1\= 10} " ry |
/ Eo /1' ) x t) (7.A-4)
\O —]/ \—l"-l/ 0 -1/ —Y‘Z
ry
The lefthand side is seen to be equal to ) ), - We premulti-
r

ply each side of (7.A-4) by @(ﬂ”)-]ﬂ and obtiin

~ o~ ~

r _ ro i
M(M“)—]M( ])= M) ™h m M‘( 2 ) (7.A-5)
'/ T
Since the matrix @ is self-inverse(i,e,, M = M']; or MM = I, where

I is the identity matrix) we get

M)~ M (r?)= MMy~ M“(r? ) - (r? ) (7.A-6)
Y‘-I "Y‘z Y‘Z
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red fr.
1 i
where we have used the fact that M } )

-r, “Ar,
i i

™~

for i = 1,2 and that (1")™' M" = I.  Substituting equation (7,A-2)

for the right side of equation (7.A-6), results in

rj- { ry
-1
M(nr)~ T >= M{K | > (7.A-7)
r

Since equation (7.A-7) holds for any arbitrary F1, we have

-1

() (7.A-8)

Q=

i
0
w=

=

or equivalently

=
L
=
=
=

(7.A-9)

Therefore, from equafion (7.A-9) we see that any arbitrary

sequence of optical elements described collectively by M (for pro-
pagation from left to right) followed by a PCM (described by @)
yields, upon subsequent propagation back throuch the same train of
optical elements described co]]éctive]y by @" (for propagation

from right to left), the matrix that describes the PCM itself (i.e.,

the matrix M),
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APPENDIX 7B
PCM RAY MATRIX ASSUMING SPATIALLY-DEPENDENT GAUSSIAN PUMP BEAMS

In this section, we discuss the necessary modifications for the

PCM ray matrix when we assume spatially-dependent Gaussian pump beams.
We expect any spatial dependence of the pump wave amplitudes to be
manifested in a corresponding PCM spatially-dependent reflectivity.
Recall that the previous discussions assumed that the pump beams were
infinite plane waves. This is a reasonable approximation when the
spatial extent of the pump beams is large compared to other transverse
dimensions present in a given PCR geometry. In the fo]]owing.analysis,
we extend the treatment by Yariv and Yeh [9] of Gaussian tapered real
mirrors for conventional resonators to that of a Gaussian tapered PCM
as applied to a PCR. For simplicity, we consider the degenerate case
(i.e., all interacting fields to be of the same radian frequency), and

a colinear pump/probe geometry.

We begin our discussion by assuming that the small nonlinear gain

approximation holds. That is, the reflection coefficient behaves as
tan (Jc|Ll) = |elL . ~ (7.8-1)

Therefore, the nonlinearly reflected field (at z=0) becomes,

(3) * ;
Ay e x LA Ay Ay (7.8-2)

We assume that the pump waves have a Gaussian dependent
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spatial distribution, given hy
Ay ,(r) = Ay ,(0) exp(-r’/b?) (7.8-3)
M,2t 1,240 SXPLT B
where b is the (field) spot size.

Assuming that the input signal wave is of the form given by

(7.2-1), we obtain using (7.B-3) the following conjugate wave

Ay = [A(0) exp(-r?/b%)] [A,(0) exp(-r*/b%)]

< A exp[i(wt + kz + Eﬁg) - XE—J (7.8~4)
4 ZQ_i WZ St

In what follows, we assume that the curvatures of the pump waves
are such that the fields are phase matched for all spatial modes.
We further neglect "cross coupling" of these spatial modes (as dis-
cussed in Section 3.7B).

Using the definition of the complex radius of curvature given
by (7.2-3) , the corresponding reflected (output) complex curvature

can be written as

S RtV R SN I P v
—Ei—'ﬂ—(;v’z"';z‘)' ¥ - , (7.8-5)

O =
<
g

where

a =b7/2.
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The "reflected" field thus has its radius of curvaturé reversed
(i.e., the phase fronts are conjugated), with the reflected spot size

decreased. The reflected gq-parameters are given from (7.B-5) as

Pp = =P; | (7.8-6)
and
aw.,
W, = —— < w, (positively-tapered PCM)
W'i + a _
(7.8-7a)

We define a positively~tapered PCM as being a conjugator formed
by pump waves having a Gaussian taper of the form (7.B-3); that is,
A]’2 are maximum for r=0.

From (7.B-7) we see that W < Wio implying that the conjugate
wave will diverge at a greater rate than that reflected off a non-
tapered PCM.

We note that for a negatively-tapered PCM (i.e., where the pump

beam's amplitude increases radially with a Gaussian dependence), the

“reflected" spot size can be greater than the incident beam waist as

follows
2 2 _
2 AW .
W, =575 - (negatively-tapered PCM) (7.B-7b)
a -w .

The reflected curvature is the same as that of the previous case (7.B-6).

This results in a reflected field of smaller divergence than that of a
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nontapered PCM for 0 < wi/a < 1. The output beam has a negative taper for

wi/a > 1, and is undefined for wi/a = 1.

From the transformation relating the input and output q-parameters
for conjugate mirrors in terms of the ray-matrix elements [given by

equation (7.2-8)], we can represent (7.B-5) by the ABCD matrix

A B ] 0
ll[‘ - ( = (7,8'8)
h C D -ix -1
2
ma

Equation (7.B-8) reduces correctly to the nontapered PCM
matrix (7.2-7) in the 1limit of a » « ,

This matrix can now be applied to evaluating the PCR stability
and mode spectra as was discussed in Section 7.2. Without actually
deriving these results, we wish to point out several basic differences
in the analysis. First, since the PCM matrix has a complex element,
the matrix identity given in (7.2-10c) no longer holds; that is,
a sequence of lossless optical elements followed by a Gaussian tapered
PCM and then followed by the same (reversed) sequence of elements no
longer can be replaced by the PCM matrix itself due to its tapered
function. Physically this is due to the fact that the tapered nature
of the PCM changes the spot size of the "reflected" field, thus not
strictly generating a time-reversed replica even for the degenerate
freﬁuency case considered here, This.results in a resonator mode
having a different spatial profile for left-to-right as compared to
right-to-left propagation. Yariv and Yeh obtained similar results

for Gaussian tapered, real-mirror resonators [9]. Next, by virtue of
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the complex element in the PCM matrix, care must be taken when
evaluating a resultant g-parameter after a given sequency of optical
elements [recall the discussion regarding equation (7,2-9)].

The effect of the Gaussian tapered PCM also results in a different
self-consistency constraint. For example, the generalization of the

condition given in (7.2-11) becomes, for compiex matrix elements

1 1 1 _

and
1 (A, -D.) + (A, +D.) + 1B -C, = O (7.B-9b)
RS B U M B U 7.

where qp and qq are the real and imaginary parts of the complex
radius of curvatures as defined in (7.2-3); the real and imaginary
parts of the ABCD one-round trip, resultant matrix elements are
denoted by the subscripts R and I, respectively. Equations (7.B-9)
reduce properly to the conditions of (7.2-12) in the limit of the
ABCD elements being purely real,

As an example of the above formalism, we consider the case of
a resonator of length %, bounded by a real mirrorof radius R on the
left and by a Gaussian tapered PCM on the right. The radius of
curvature at the immediate right of the real mirror, upon substitution

of the resultant matrix in the conditions (7.B-9), is given by
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-R vh [vh £ g(2-R)]

p -
1- Rgz(

(7.8-10)

R - 22)

where h = 1 +22g2 and g = :A§(1 - L/R). The curvature alternates between

ma
two values, which is consistent with the qualitative features dis-

cussed above. We note that for the nontapered PCM condition, g -~ O
and h - 1; hence p »-R, 1in accordance with the results of Section
7.2B.

From the conditions (7.B-9) the spot size (at the immediate

right of the real mirror) is given by

—
]
P
~
=
N

(7.B-11)

=

i

|
O |t~
0|

where the two values of p obtained from (7.B-8) are to be used in
evaluating w With the condition that w be real. We see that for the
nontapered case (p ~ -R), w becomes undefined, also in accordance with
the results of Section 7.2B.

We note that the small nonlinear gain approximation given by
(7.B-1) which led to the analytical expressions and results presented
in this appendix need not hold in general in order ‘to obtain physical
results. This follows from the fact that for high nonlinear gains
[and for the negatively-tapered pump waves given in (7.B-3)], the
the approximation (7.B-1) becomes valid for radial distances satisfying

r>a, due to the strong radial exponential dependence of
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the pump waves. This results(in the high nonlinear gain, on-axis limit)
in the formation of a tapered PCM having a more sharply peaked nonlinear
reflection coefficient for r < a than that given by (7.B-4), which
rapidly approaches the Gaussian dependence of (7.B-4) as r > a. Thus
the qualitative argument presented here should apply to this case.

In conclusion, we have discussed the case of a PCM possessing a
Gaussian tapered, radial dependent nonlinear reflectivity. The de-
generate frequency case was treated for simplicity. We found that as
a result of the taper, the conjugate reflected wave was seen to have
a different spot size, and hence a differing diffractive character.
The properties of this PCM were recast in the form of a complex ABCD
matrix, and applied to analyze a typical phase conjugate
resonator (PCR). Several profound features regarding the resultant
PCR stability criterion and modal constraints were obtained that
differed considerably from that of a PCR formed by a non-tapered PCM.
We found that the freedom from arbitrary beam waist parameters
was removed in the case of a PCR employing a tapered PCM.  This
result follows intuitively upon realization of the fact that the
present resonator now has two specified constraints or boundary con-
ditions .(viz., the curvature of the real mirror and the tapering
character of the PCM), thus uniquely defining the resultant mode
(in terms of both the radius of curvature and the spot size through-
out space). Further, the complex radius of curvature was seen to
alternate between two values, due to the fact that the PCM modifies

the spot size upon each nonlinear "reflection" (as a result of the



- 317 -

" pCM tapering function). A1l the above results were seen to reduce
properly to those of a PCR employing a nontapered PCM in the limit of
b~> 0. We finally note that the stability criteria for both one-
and two-round-trip conditions, as well as the longitudinal/transverse
mode spectra (which involves the treatment of the nondegenerate fre-

quency case) follows from the analysis described herein.
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