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Abstract

For linearized isotropic elastodynamics and elastostatics,
Noether's theorem on invariant variational principles is used to
obtain all conservation laws arising from a reasonably general group
of infinitesimal transformations, A theorem regarding the complete-
ness of the derived laws is proved, and the conservation laws are then
used to derive the wave speed equation for the Rayleigh problem on
the surface of an anisotropic half space, An example of additional
laws following from the same group but from a more general version
of Noether's theorem is given in an appendix devoted to a discussion

of limitations on the completeness theorem,
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Introduction

In a paper devoted to the analysis of stress concentrations near
the tips of cracks and notches, Rice [1] introduced a ''‘path-independent
integral' implied by the field equations of elastostatics and demon-
 strated its utility in connection with the asymptotic analysis of singular
stress fields, Although the path-independent integral used by Rice can
be traced to the earlier work of Eshelby [2] on the theory of disloca-
tions, much of the current interest in these integrals and their applica-
tions was stimulated by the results reported in [1]1,

Let (XI’XZ) be rectangular cartesian coordinates, and suppose

. 2 L
that Uy 0yp 2FC components of displacement and stress , respectively,

af
associated with a two-dimensional infinitesimal deformation of a
homogencous elastic solid in the absence of body forces., Let W(x) be
the strain-energy density at the point with position vector x. If C is
any closed curve on and within which the equilibrium equations and

stress-displacement relations of infinitesimal elasticity hold, the path-

independent integral used in [1] can be stated as follows:

%(Wna-cﬁynvuﬁ,a>d,¢:0 . (1. 1)

Here n is the unit outward normal vector on C and 4 denotes arc-length

on C. The fact that (1. 1) follows from the equilibrium equations, the

1For applications to crack problems in elastostatics, see r3], [41J,

(5] and [61].

ZGreek subscripts, here, have the range 1,2; subscripts preceded by
a comma indicate partial differentiation with respect to the corre-
sponding Cartesian coordinate, and summation over repeated subscripts
is implied.



stress-displacement relations, and the definition of W is easily demon-
strated by means of the divergence theorem, Such a proof of (1.1) was
given by Rice in [17]; it amounts to a verification and, as such, gives
no indication of why (1,1) holds or whether other path-independent
'integrals exist,

In a recent paper by Knowles and Sternberg [7] it was shown
that the path~independent integral — or conservation law — (1,1) and its
three-dimensional counterpart follow from an application of Noether's
theorem on invariant variational principles [8] to the principle of
minimum potential energy in elastostatics, Roughly speaking, Noether's
theorem states that if a given set of differential equations are the
Euler-Lagrange equations corresponding to a variational principle
which remains invariant under an n-parameter group of infinitesimal
transformations, then there is an associated set of n conservation laws
satisfied by all solutions of the original differential equations,

When derived in this way, (l.1) appears as a consequence of

the invariance under a coordinate translation of the potential energy

associated with an elastically homogeneous material. If the ma_terial
is elastically isotropic as well as homogeneous, the potential energy
is also invariant under a rotation of coordinates, This fac—t, together
with Noether's theorem, is used in [7] to establish a second conserva-
tion law,

The conservation laws corresponding to invariance under
translation and rotation are also shown in /[7] to be valid in finite

elasticity provided they are suitably interpreted.



A third conservation law for strictly linear elastostatics,
corresponding to infinitesimal invariance of the potential energy under
a family of coordinate scale changes, is also established in [7].

Finally it is shown in [7] that, within the context of linear
isotropic, homogeneous elastostatics, the three conservation laws
mentioned above .are complete in the sense that they are the only ones
furnished by Noether's theorem when applied to the restricted group of
transformations considered in [7].

An earlier treatment of conservation laws in linear elastostatics
— unknown to the authors of [ 7] until after the publication of that ref-
erence — is to be found in [9].

In this paper we extend the results of Knowles and Sternberg (7]
to linear elastodynamics, and we establish the completeness of the
corresponding conservation laws under a somewhat more general group
of transformations than that employed in [7]. Our completeness result,

when specialized to linear elastostatics, shows that the three conser-

vation laws derived in [7] are the only ones furnished by Noether's
theorem, even when the group of transformations under consideration
is significantly larger than that admitted in [7].

In the next section we give a brief review of linear elastodynamics
in order to establish the notation to be used in the remainder of the
paper, and we state the version of Noether's theorem which we shall
employ.

In Section 3 we state our principal results, Theorem 1 provides
three conservation laws for elastodynamics, while Theorem 2 establishes

the completeness of these results under certain conditions,
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The proof of Theorem 2 is given in Section 4 by means of an
argument similar to that used by S, Lie [10] and by Bateman [11],

In Section 5 we show how the conservation laws can be used to
discuss two-dimensional linear Rayleigh waves on the surface of an
anisotropic, homogeneous elastic half-space.

Finally we present in the Appendix a brief informal discussion
of the application to linear elastodynamics of a more general version
of Noether's theorem in which the notion of infinitesimal invariance is

replaced by that of '"weak invariance'',
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2. Preliminaries, Linear elastodynamics, Noether's theorem,

Let D be the closed, bounded, regular region in three-
dimensional space occupicd by a homogencous clastic solid in its
undeformed state, We consider a motion of the solid in which a par-
ticle, located at x in the undeformed configuration, is found at time t
at the point with position vector X(f’i’t)' The displacement vector
field u as sociated with the motion is then defined by

’l\lJ(X,t):Y(')S,t)—i{J s Z‘SED , =0, (2- 1)

~

The components of the infinitesimal strain tensor field y are

1 1
Yij: 5 (ui,j+uj,i) on Dx[0,00) . (2.2)

If Cijkﬁ are the components of the elasticity tensor of the material

under consideration, the components O‘ij of the stress tensor J are

given by
= X
Oij Cijkﬂykl on DX[0,00) , (2.3)
where the constants cijk£ satisfy the symmetry requirements
Cijke ~ Cjike ~ Ckeij (2. 4)
In the absence of body forces, the momentum equations are
Gij,j:pui on DX[0,00) , (2.5)
where p is the mass density — assumed constant — and
Bzui
(5t = ——(xt) . (2. 6)
i at2

From (2.2), (2.3), (2.4) and (2, 5) follow the displacement equations

1Latin subscripts have the range 1,2,3, unless otherwise stated,



of motion

= pu X
Cijk}luk,ﬂj pi, on D [0,00) . (2.7)
Throughout this paper we shall be concerned with solutions u of (2. 7)

which are twice continuously differentiable on D X [0,00).

The elastic potential associated with the material at hand is

defined by

1
L= 7 %4100 Y15 Vi | (2. 8)

for all symmetric two-tensors Y, If g and Y are related by (2.3), it

follows that

1
0 =T, (0 .+ T=70.Y;. 2.9)

Furthermore, the symmetries (2, 4) and the strain-displacement rela-

tions (2.2) can be used to write (2. 8) in the form

1
T(y) = ?Cijkﬂui,juk,ﬂ . (2.10)

For an isotropic material, the constants Cijk£ are given by

N8, By, (6 6.t B, B ) 2.11)

“ijke T i3 ik 0" "ie°jk

where the constants A and 4 are the Lamé moduli, In this case, (2. 8)
becomes
For any twice continuously differentiable vector field v defined

on D X[0,0), let

T
£[X]:J fL(Zx,i)dgdt, T>0, (2.13)
0 D

Where, in the indicated differentiation, it is understood that we treat
the elements Yi; and Yj; as mutually independent.



where the Lagrangian density L is given by

L(y, ¥) =1‘(Sym17,x)--2l—pi-i, (2. 14)

and sym Vv stands for the symmetric part of Vv, Thus

—

. 1 ..
LYY= 7 4ka¥1,5 v, 2P Vi Vi -

(2. 15)
The Lagrangian £ of (2. 13) occurs in the statement of Hamilton's
principle for elastic solidsl, As is easily verified, the formal Euler-
Lagrange differential equations associated with the functional §£ of

(2. 13) are preciéely the displacement equations of motion (2. 7).

Our main tool in the present paper is a version of Noether's
theorem which may be found in the textbook by Gelfand and Fomin [13],
In order to state this theorem in a form suitable for our purposes, we
first introduce some additional notation., Let %1, @2, e §n be rectan-
gular cartesian coordinates in n-dimensional Euclidean space En,‘ and
let R be a bounded, closed, regular region in E". For any three-

dimensional vector field w= (wl, Wo, w3) defined and twice continuously

differentiable on R, set
shwl=] F(gw(z), vw(g)) 4z (2.16)
R

where F is a given real valued function, defined and infinitely differen-
tiable for all values of its arguments, We shall be interested in the
behavior of the functional & under transformations which carry the

point £ and the vector field w into a new point S* and a new vector

lFor a discussion of Hamilton's principle, as well as other variational
principles in linear elastodynamics, see [12].



field :‘5,’*- More precisely, given the point £ &R and the vector field

w ECZ(R), define a family of transformations (§, w)~ ( *,yg*) by

e 3( 5 w(g), Tw(Die) xz”‘(S,*):‘i’(s.w@,m(-ﬁ):e)- (2.17)

The given functions ¢ and ¥ are, respectively, n- and 3-dimensional
vector valued functions of their arguments which depend on a param-
eter €, They are assumed to be defined and twice continuously differen-
tiable for sufficiently small values lel, for all € €D, and for all values
of their remaining arguments, It is required that the transAformation

b3 b

(2.17) shall reduce to the identity 5”‘=§,,V§: (E%) =w(g) when €=0,
In general, (2.17) may be viewed as follows, Given a vector

field w ECZ(R), the first of (2.17) provides a mapping of R onto a region

R* which depends on w, while the second of (2,17) defines a new vector

field y* whose domain is R¥, Thus, in general, both the new domain
R* and the new vector field g* depend on the original vector field w.
The functional & in (2.16) is said to be invariant at w under the

transformation (2,17) if

I *F<5*»E*(gk)’i’kﬂ*(é*))dS,*= fR F(E,Mg), Vy(ﬁ))dg (2.18)}

R
for all sufficiently small values of le [ If, for a given w,
d ES Sk E3 e sk B3 sk
= | FLES wHEN, Tw*(gh )ag*; =0, (2.19)
R e=0

then F is said to be infinitesimally invariant at w. Note that if J is

invariant at w, then & is infinitesimally invariant at w.

1
V¥ w* is the nx3 matrix whose elements are 8W2</8 gji (i=1,2,3, j=l,..., n).
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Noether's theorem is concerned with the consequences of
infinitesimal invariance of & at w under the special circumstances in
which w satisfies the Euler-Lagrange differential equations associated
with & The following version of the theorem is a slight variation of
that to be found in [13], We shall omit the proof, since it is virtually

identical with the one given in that reference,

Theorem, Let R be a domain in E"™, and suppose the vector

field w satisfies the Euler-Lagrange equations

o 1
r x)-2—[F_ x)]=0, (2. 20)
"Wy aga[ "Via ]

where X stands for

x=(2,w(2), 7w(5)) , GER . @.21)

Then ¥ in (2. 16) is infinitesimally invariant at w under the family of
transformations (2. 17) for every bounded, regular subregion R of R

if and only if w also satisfies

9 —
5‘;;;{5" w, OL(X) b (X)+ F(X)cpa(X)}-_- 0, 2. 22)
where
m(X):a—@(X,e)| , )
64 de @ e -0
\!I (X):—g_e.wl(xse)l O ] > (2- 23)
€ = .

(%) = 4;(X) - w; (E)py(X) )

If R is a bounded regular subregion of ﬁ, (2.22) and the

divergence theorem immediately yield

L. Latin subscripts have range 1,2,3, while Greek indices run from 1
to n. Repeated subscripts are to be summed over the appropriate
range,
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§[F,, (COT,00+FX)@ (X)]|n,(g)ds =0, (2. 24)
OR 1,d

where 9R is the boundary of R, and nQL is the §a~component of the unit
outward normal on OR. Thus the flux out of R of the n-dimensional
vector field whose Ea—component appears within the braces in (2. 24)
vanishes. In the special case n:Z; (2. 24) represents a path-independent
line integral. In general we shall speak of (2. 24) — or its equivalent

differential form (2. 22) — as a conservation law.

The statement of the theorem given above is more general
than that used in [7] in that the transformation Sf"fi* represented by
the first of (2. 17') is here allowed to depend on w and Vw. Moreover
the transformation w~w™ in (2. 17) is here permitted to depend on £
and Vw. In the version of Noether's theorem given in (7], (2.17) would

be replaced by

i*:@(g,e) , W”<(§:‘<)=Y(g(g),e>.

On the other hand, Noether's original theorem [8] is substan-

tially more general than that stated here.
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3. The conservation laws,

In this section we shall obtain the conservation laws which
follow from an application of Noether's theorem to the Lagrangian

functional £ of (2, 13},

Theorem 1. Let D be a domain in three-dimensional space,

and suppose that on DX [0, T] the displacement field u satisfies the

displacement equations of motion (2, 7) for a linear, homogeneous

(but not necessarily isotropic) elastic material, Then each of the

following five conservation laws for u also holds on DX[0, T]:

1 .« 0 1
@ Fe [Fze)+ 7oty |+ g0 =0, (3.1)
90,
. 8 . 1k
(11) —B-—t-(—pul)—'h Sx =0 5 (3-2)
k .
(iii) 2 (pe,.. x84 )+ 2—(ce.. %0 _.)=0 (3. 3)
€851 T B Pijm ™) Omi 7 '
. . 0
(iv) gy (od.u, )+ 8Xk(-u 1%Ly ) =0, (3. 4)
(v) 5T [pu (u +Xmuj,m+ ‘qu.)+tL:l
+-E-)-——[-O (u,+x_u v+t13.)+x L:I—O (3. 5)
8Xk ik m j,m 3 k T :

If the elastic material is also isotropic, then, in addition to (i)-(v), the

following conservation law holds on D X [0, T]:

L. Latin subscripts continue to have the range 1,2,3,
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(')—6-)-—( u, . +pe a u )
VI Bt P ek kY T P ek m Y m, k

”&;(eimj“mc’jk‘eimjxj“z,m"zk*eimkxm” =0 (3.6)

n (3.1)-(3.6), Gij are the components of stress and are to be
regarded as defined in terms ofg by (2.3); eijk are the components of
the three-dimensional alternating tensor, éik the Kronecker delta, and
L is the Lagrangian density defined by (2. 15).

Before proceeding to the proof of the theorem, we give the
integral forms of the conservation laws corresponding to (3. 1) - (3. 6),
and add a few additional remarks. If DO is any bounded, regular

subregion of D, the divergence theorem applied to (3. 1) - (3. 6) imme-

diately yields, for 0st<T,

(i')g—z‘f[f‘(‘zg)+ puu]dx Eﬁc nudS 0, (3.7)
Do Dy

(ii’) dtjpﬁ dx - SSG n, dsS=0, (3. 8)
DO BDO

iy & : be

(iii") I peijkxjukdi— 1_]m ; mknde 0, (3.9)
DO aDO

i 1

(v) g ) P, (L, 0, m)dS=0, (3. 10)
D

8DO
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(v’) %t_ j [pﬁj(uj +xmuj’m+‘c1'1j) +tL] dx

Do

E}g[ u tx u +t&j)-nkxk]d8:0 , (3.11)

¥4 _d-___J‘ ’n
Vi) Fo J (PE eyt P8y e 4 ) dx
D
0
* «({)(eimjumcjknk ®imj% %, m %k kT Cimk k¥ ) =0 . (3.12)
9D

0
In (3.7)-(3.12), BDO is the boundary of DO and n is the unit outward
normal on 8DO.

The first three conservation laws (3, 7) - (3. 9) correspond
respectively to conservation of energy, conservation of linear momen-
tum, and conservation of angular momentum, They are easily verified
in the usual way from the basic equations (2, 7),(2. 3) and are included
here only for reasons which will become clearer in the proof of
Theorem 1,

Equations (3. 10) - (3, 12) represent conservation laws for
linear elastodynamics which are believed to be new. They reduce to
the three conservation laws obtained in [7] for linear elastostatics
when the displacement field uin (3. 10)-(3.12) and (2. 7) is independent

of the timel. In particular (3. 10) is the dynamical counterpart of the

static conservation law which, in two dimensions, reduces to Rice's

lThe reduction to the time-independent case is somewhat more involved
for (3.11) than for the others.
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path-independent integral (1.1). In the elastostatic case a physical inter-
pretation of the surface integrals occurring in the time-independent
versions of (3.10) - (3. 12) has been given by Rice and Budiansky [14].
We remark that (3. 1) - (3. 4) remain valid in finite elasticity if
x, are material coordinates, I'(Vu(x)) is the strain energy density per
unit undeformed volume, p the mass per unit undeformed volume, Oij
the components of the Piola-Kirchhoff stress tensor, and L is defined
as in (2. 14). The conservation law (3. 5) depends critically on the
linearity of the field equations (2. 7) and is not generally valid in finite
elasticityl. Finally, (3.6) remains valid in finite elasticity for isotropic
materials, provided X F(XE(,{S))’ 0, Oij ?.nd L are interpreted as above. |
In order to write certain of the differential forms (3.1) - (3. 6) of
the conservation laws in such a way that they formally resemble analo-
gous results in other fields, and also to facilitate the application of
Noether's theorerﬁ, it is convenient to introduce some further notation.
We set

=t . gr( =), (3. 13)

We further adopt the convention that Greek subscripts have the range
0,1,2,3, while Latin subscripts continue to take the values 1, 2,3, and
we continue to sum repeated subscripts over the appropriate range.
The position vector with components X, is denoted by §. We denote by
R the four-dimensional region

R=[0,T]XD, (3. 14)

and we define

1I‘c would seem that (3.5) is reminiscent of certain results in classical
mechanics which are related to the virial theorem.
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C. if a=j,p=4

ijk4
iakp ~ PPk
0 if a=0,P#0 or 0£0,B=0.

if a=p=0, | (3. 15)

Reference to (2.15),(3.15) then shows that the Lagrangian density can now

be written in the more compact four-dimensional notation as follows:

L=1( (3. 16)

1 —
um,on) =2 Siakp Yi,0%k,p -
We note that (2. 4),(3.15) imply that
Cionkﬁ = Ckﬁia . (3. 17)
As a final remark prior to proving Theorem 1, we introduce

a formal four-dimensional energy-momentum tensor T, an angular

momentum tensor A and a spin tensor S as follows. Let

T _=u_ L -Ls (3. 18)
aﬁ k’a ’uk,ﬁ aﬁ
Akon = ekmﬁxﬂTma ’ (3.19)
Sii = €kmlumL:ui , = Crmt®mCig ’
’ (3. 20)

Sk0 ™ P Cem®m%s -
It may be verified that the conservation laws (3. 1) and (3. 4) together
are equivalent to

T =0, (3. 21)

while (3. 12) reduces to

SptArplp=0 - (3. 22)

- Equation (3. 6) suggests that the conservation law (3.4) is associated with
the balance of "wave momentum!''. In general (3.21),(3.22) resemble cer-

tain results in the quantum theory of fields [15]. See also [2],[9].
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We turn now to the

Proof of Theorem 1. All of the results (3.1)-(3.6) can be verified

‘directly from the field equations of Section 2, Such a verification,
however, fails to suggest the source of (3.4)-(3.6), and a proof'based
on Noether's theorem is more instructive,

Since the elastodynamic equations of motion (2, 7) are the Euler-
Lagrange equations associated with the Lagrangian functional (2, 13),

(2. 15), we apply Noether's theorem of Section 2 to the functional
Slwl= JL(wi’a(5)> dg , (3.23)
R

where, according to (3. 16)

L<Wi,a‘5)) = %Eiakswi,a(i)wk,g(g) , (3.24)
We shall explicitly exhibit six transformations of the form (2, 17) under
which the functional § is infinitesimally invariant. The conservation
laws (i) - (vi) of Theorem 1 then emerge from Noether's theorem as
specializations of the general result (2. 22) appropriate to the func-
tional £ and the particular transformations considered.
(i) To obtain (3, 1), we c‘onsider a family of transformations

(2. 17) of the form

E-Etes , wr=w (3.25)

~ ~

=1 8. =0,

)

£% is merely a translation of amount € in

~s

Thus the transformation g..
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time, while the transformation w =»w* is the identity, It is readily
confirmed that the functional § at (3.23) is invariant at every w under
the time-translation (3.25), When (2. 23) is specialized to the trans-

formation (3, 25), it is found that
Cpozl 5 Cp.:o ’ 1!}.:—1.1., (3.26)

If these values of Py and —\]}.i are substituted into (2, 22) with L of (3, 24)
in place of F, the general conservation law (2, 22) is easily shown to
reduce to (3.1). Thus (3, 1) —which in the integral form (3, 7) corre-
sponds to conservation of energy — follows from the invariance of the
Lagrangian under time translation,

(ii} To obtain (3.2) we introduce the family of transformations

ot , wi-wtea (3.27)

~

where the three-dimensional vector a is given by

a, =96, . i fixed .

k ki

The transformations (3, 27) represent rigid body translations of D, and

the invariance of £ 1s again easily established, The general conser-
vation law (2, 22) specializes immediately to (3,2). Thus conservation
of linear momentum is associated with the invariance of the Lagrangian
under rigid body translations,

(iii) The angular momentum conservation law (3, 3) is obtained

from the invariance of £ under rigid body rotations. Thus the appro-

priate transformations of the form (2. 17) are

g ES

~o

£ @ =Qeaw, (3.28)
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where the 3X3 matrix Q is proper orthogonal and satisfies Q(0)=1, and
1 is the identity matrix, It is easily shown that £ of (3.23),(3. 24) is
invariant under the transformations (3. 28), and that the corresponding
conservation law is (3, 3),

The relationship between the conservation of energy, linear and
angular momentum on the one hand and invariance of the Lagrangian
under time translations, rigid body translations and rigid body rota-
tions on the other hand, is well known in mechanics (161,

(iv) To establish (3.4), which is the dynamical counterpart of
Rice's path independent integral in elastostatics, we introduce a

family of coordinate translations by writing

Ei=greb , wiew. (3.29)

The invariance of £ under (3, 29) follows easily, and, (2,22), when
appropriately specialized, furnishes (3.4). It should be noted that
(3.1) and (3. 4) have in common the fact that both are associated with
coordinate translations in four dimensions,

(v) The conservation law (3. 5) is obtained upon consideration

of the family of scale changes

,§j:<:(l+€)§“ ’ w>.'<:(l—€)\'_;z. (3.30)

The functional £ is in this case infinitesimally invariant (although not

invariant) under (3.30), as is easily confirmed, When (2,22) is

specialized with the aid of (3. 30),’ the conservation law (3, 5) follows,
(vi) To obtain (3.6), we first assﬁme that the elastic material

is isotropic, so that the Cie

are given by (2, 11), the elastic potential
ikt g
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by (2.12). It can then be shown that £ of (3.23) is invariant at any w
under the transformations

gh=g, . E=0.05
(3.31)

where Q(¢) is a 3X3 proper orthogonal matrix with elements Qij(e),
Qij(o) = 6ij' For an isotropic material, it is readily shown that I', L
and hence £ are invariant under (3.31). The corresponding conserva-
tion law is (3, 6).

This completes the proof of Theorem 1,



-20-

4, Completeness of the set of conservation laws.

In this section we show that, for isotropic materials, the only
transformations under which the Lagrangian functional £ is infinitesi-
mally invariant are those which produce the conservation laws obtained

in the preceding section.

Theorem 2. Suppose the elastic material under consideration

is isotropic, and let £ be the Lagrangian

T
Slwl=] [LEw, waxat, (4.1)
0 D

where D is a bounded regular region, L is given by (2, 15), and (2. 11)

holds. Then £[w] is infinitesimally invariant at w under transforma-

tions of the form

(4. 2)

for every w satisfying the displacement equations of motion (2.7) on D

and for every D, if and only if the four-dimensional transformations

satisfy
(%, w(g)ie) = E+en(E) +o(e)
(4. 3)
¥(E, w(E)ie) =w+el (x, w) +ole) ,
where the components ¢, and ¥; of ¢ and } are given by
Qo w)=vxytc =vttey,
p;(x,w) =vx, + eijkbjxk+ci g (4. 4)

VG, w) = -vw; tegn bow t e T

while v, CO.’ bi’ a; and di are arbitrary real constants.



21~

We remark that the "infinitesimal part' of the transformations
5..5*, Yi’:"‘ﬁ* is all that is determined by (4. 3), (4.4). As (2,22) shows,
however, this is all that is required for the corresponding conservation

law.

In (4. 4) the terms associated with v represent a change of scale,

those associated with <y represent a coordinate translation, those

involving bi correspond to a rotation of coordinates, and those involving

a;, di comprise a rigid body rotation and translation, respectively.
These are precisely the types of transformations which produced the

various conservation laws in the preceding section.

Proof of Theorem 2. In the following, we use the notation presented in

Equations (3. 15) and (3. 16) for the elastodynamic Lagrangian. As in
those equations we also write x for iand u for w. We first establish
the necessity of Theorem 2.

Under a transformation of the form given by (4. 2), the region
R goes into a region R* and the Lagrangian £ goes into a Lagrangian
,SJ*, where

£¥u*] = | Lv¥e*) ax* (4. 5)
R

- Let J(5>1<,§) be the Jacobian determinant defined as

By
J(x 935) =det <8Xﬁ) k (4.6)
then we can write
£ [u*] = f L(v*a™) J(x*, x) dx (4.7)

R
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where it is understood that the integrand is evaluated at x,u(x); and

where x,u(x) are the antecedents of ,}S>:<’E,*(,’5*) under the mapping given

n (4. 2).
For § to be infinitesimally invariant at u, under the transfor-

Equation (2. 19) requires

_(_1___ J ks B .
{de \"L(z X )df)\(, } =0

R" e=0

mation (4. 2),

And using (4. 7) we are able to write (2. 19) as

_(_i__ j Sk sk E _
R e=0

Now since the region of integration, R, is independent of the parameter

¢ we may take the derivative under the integral sign, obtaining

f{a—g[L 1) J(x ,X) ]} ég:

Furthermore, since the region R is arbitrary we obtain the following

necessary condition
(4. 8)

{ L n e x>J} -

) to be the left-hand side of Equation (4. 8) and par-

Defining M(E’E’ZE
tially carrying out the indicated differentiation, we have

Mg w tw =L, @{ Sl 4+ LEn{lixt o)
i,a =0 ¢ e=0

b4

using the fact that J(x,x)=1.
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At this point we must obtain an explicit representation for the
quantities enclosed in the braces of (4. 9). Considering the first of the
two braces we see that we must compute u;ka* . To do so we must

b4

. . , 0
obtain an expression for the operator —

9 9 ax& 8cpa‘ 5
aX'.B B aX* axﬁ = 50(5 te Bx sk
o7 x(l

e
a bid = gx - € BXﬁ gX (4, 10)
ox_ a (o} B
Therefore we may write
oy 8%
u?a :u1a+€[8x1 - Y p:l
? s a a 14
It follows that
oy, oo
d % } i g
v PR = "5"‘"‘ i) u, . (4. ll)
de 1,0 c=0 XG. XG, 135

Now considering the second brace of Equation (4. 9), we can
write, by (4.6),

1 sk 1

JQS’5):'ZTeaﬁYéepvopxauuxﬁ,vxy,oxé,p'

And using (4. 10) we obtain

1
Where by QOLBYG we mean the 4-dimensional alternator.
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; B
J(x %) = 1+e&l +o(e) .
' Y
Therefore
Oep
g_ ES B Y
{de ks »:‘é)} T %, (4. 12)
e=0 Y
And it follows that (4. 9) becomes
oy, O o
B —Y
M(x }\1}2}\1}) L’ui OL(VE)[BX BXa LB + L(%u) 8XY . (4. 13)

Fully expanding the derivatives of (4. 13) and using (3. 15),(3. 16) we

obtain finally
ZM(E’N’ B) = chakﬁ i C(,\!Ik B

. . 2 _2
+¢50%,al Py, vk, 87 2V n%n, 87 2%, 5%, o

[ (u u —Zuk,Yun’ﬁ)] . (4. 14)

+kaﬁ i,a y n' 'k, n,y

The expression (4. 14) must vanish without restriction on ZEE (ui,q)
for the Lagrangian to be infinitesimally invariant under the mapping
(4. 2). Since g, are independent of Vu, it follows that the linear,
quadratic, and cubic parts in zg of expression (4. 14) must vanish

separately. We will treat each of these parts in the remainder of this

chapter. It is therefore expedient to make the following definitions.

2M) = 2c; yqu Uy o (4. 15)
aMy= Ciakﬁui,a[va,Yuk,B+ Z‘l’k,nun,ﬁ'zmp ,ﬁuk,p] : (4.16)
M3 = Cokp®s,0l Py, s e, 8%,y T2y s, )] (.47
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) 1
Linear Terms

It is required that (4. 15) vanish without any restriction on ZR

My =c; k%, ali,p= 0

Using (3. 15) we have

My =¢5010%,0Yk,0 ¥ Cijke®i,jlk, .

=P9; o¥3,0 T Cijke®, VK,
Therefore we must reéluire

V. =0 all i  (4.18)

i,x
0

S55ke%,5 0%, 0 7 0 (4. 19)

Using (2. 11) in Equation (4. 19) we require

). u; (M Al ) Z W W ket ) =0
i,k i,k
itk
By the independence of the displacement gradients, we are led to

M}k’k+2p\hi,i:0 all i,k (no sum),
byt =0 all ik

Choosing i=k in the first of these two equations, we see that we have

wkk:O all k (no sum).

Therefore, using the second relation, we have

¥, tih . =0 all ik. (4. 20)

i,%, Xy

We note explicitly that in our treatment of the linear terms |y j
invariably means wk,x, (j=1,2,3) whereas ‘pk,oc means q}k’xon @ =0,1,2,3).
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We see therefore that infinitesimal invariance under the
transformation (4. 2) imposes the requirements expressed by (4. 18)
and (4. 20) on the linear terms of (4. 14).

We now consider the cubic terms.

Cubic Terms 1

It is required that (4. 17) vanish without restricting the

displacement gradients Vu.

2u 1=0.

2M3 = ¢5018%,al Py, s (U, 6%,y "2k, s, B)

Relabeling the indices,. we may write
2M3 = [my,sciakﬁ—zmﬁ,sciak\(] ui,auk,ﬁus,y =0
The term of this sum for which a=p =y =0 is independent of the others

and must therefore vanish separately

_ _ 2
0=-05 550k0%,0%,0%,0 = *P%,s(% o) Ug 0 -
Therefore we obtain

=0 s=1,2,3. (4. 21)

Considering the remaining seven choices of zero or nonzero values to
a, B,y and using (4. 21) we obtain
0=y 55 0k0™2%,110507%,0%, 0% ¢

¥ [an,scijkz'Z%,scijkn] Yi,i%%, 0% ,n (4. 22)

These two sums must vanish separately. Considering the first and

using (2. 11) we obtain

lIn our treatment of the cubic terms o

for example, means @
(s=1,2,3), Y

s
Y,s ,U.s'
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0=- Z‘Pz,s“s,/z“s,o“s,o ¥ Z (g g% 072%p 1% 000 0%, 0+ (4 23)
L,s k,I,s
k#s

The two sums in (4. 23) are independent in Zg and we must therefore
enforce

) me,sus,lus,ous,o =0.

1,s
But for this sum to vanish we need

Py =0 all 4, s . (4. 24)

Now we note that (4. 24) is sufficient to ensure the vanishing of the
remaining terms in (4. 23) and (4. 22). It follows therefore that (4. 24)
and (4. 21) together ensure the vanishing of (4. 17).

We now write (4. 24) and (4. 21) together as

= .2
O, =0 2 k. (4. 25)

This completes the treatment of the cubic terms for the
elastodynamic case. It is important to note however that this proof
requires a nontrivial modification for the elastostatic case. Namely,
the expression (4. 17) reduces to just the second sum of (4. 22). Thus

for the elastostatic case, we must show directly that

(0,510 290,64 kn 19,5 %, 0% ,n = © (4. 26)

leads to (4. 24).
The proof of this fact is given below:
The contribution due to the first term within the bracket of (4. 26) may

be written (with a change of indices), using (2. 11), as
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N 2

P, sCii1a%, i Ve, 1% 0 - (M) ) (U 1) %, n®n,k
’ k,n
k#n

) W e Oy (M) (0 10" O x

k,n k
k#n
2
+(M2u) z(uk,k) un,mem,n+ A Z uk,kui,iun,rnq)rn,n
k,m,n i,k,m,n
m#n itk

2
+HZ uk,k(un,k) CPk,k+u z um,rnun,k(uk,1?1—‘~un,k)q)rn,m
k,n k,m,n
n#k n#k,m#k

T Z un,kui,m(U'k,numn,k)q)m,i :
i,k,m,n
ki#n,ifm

The contribution due to the second term within the bracket may be

written (with a change of indices), using (2. 11), as

“20) 5%i5kn, %, (%s,n = T2(AFAL) Z Y k%, k%%, mPm,n
k,m,n

-2 Z Y, k%0, 0N, m®m,n
k,{,m,n
I#k

- oM Z un,ku-k,llul,mmm,n
k,f,m,n
£k

-2
H Z uﬂ,kun,kul,mmm,n
k,f,m,n
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Resolving the first three terms on the right-hand side of this expres-

sion into three parts each where m#n, m=n#k, m=n=k we obtain

Mau) Zuk,kun,k“k,m“pm,n

k,m,n
m#n

- 20p <Ciikn®,i%, (% 0 = "2

20 20) ) w0 - 20920) (a0 R
k,n k
n#k

-2A 2. uk,kun,ﬂul,mq)m,nnzx 2 uk,kun,ﬂul,ncon,n
k,l,m,n k,f,n
Ik, m#n Ik, n#k

-2A zuk,kuk,nun,kq)k,k—zu Z un,kuk,ﬂuﬂ,mmm,n ‘
k,n k,JZ,m,n

-2u Z un,kuk,lui,nc’on,n-zu z ul,kun,kul,mwm,n :
k,[,n k,l,m,n
£k, n#k

Resolve the first term above into three parts m=n=z=k, m=n#¢k, m#n. In
the eighth term, interchange k and n, and resolve term eight into two
parts k={, k#{. Combine the k={ part with terms 2,6,9. Finally add
the entire result to the contribution due to the first bracket to obtain

the expression given below for the total elastostatic cubic terms.
Lop. C.oy =20, Ciop Ju. .U, ,u =
n,s ijkd £, ijkn" "1, 'k,L s,n

2
Sv2) ) oy 0% e 2002 ) e e \ 4. 26)
k#n k,m,n '
k#m,m#n
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3
-2 2 uk,kun,kuk,n[( >dhzkl)c"n,n * ()H- "2‘H> cPk,k:l

k,n
k#n
- 02 Y (o eyt ) Yy %
W) e @ K K,k *n,m®m,n
k k,m,n
m#n
+ A z u, ,u. .u ® +u2u (u )2
k,k7i,i n,mTm,n k,k' n,k cpk,k
i’k’m’n I‘l,k
itk n#k Y (4. 26)

cont.

TH Z Ulnm,mun,k(u’k,nJr un,k)mm,n
k,m,n
ntk,m#k

Tu 2 un,kui,m(uk,n+ un,,k)q)rn,i

i,k,m,n

- 2A Z uk,kun,ﬂuﬂ,mq)m,n—Z}\ Z uk,kun,lul,nq)n,n
k,ﬁ,m,n k,ﬂ,n
£k, m#n . Itk,ntk

- 2 Z W nn, 0%, kP k2 2 Un, kM, kM, mPm,n
k,4,n k,l,m,n
k#i#ntk £k

- 24 z un,kuk,luﬁ,mcpm,n
k,f,m,n /
£k, m#n

Only the first and third terms of (4. 26) matter. Conditions necessary
to ensure that they vanish are sufficient to ensure the vanishing of the
remainder. The first and third terms are independent of each other in

Vu and are moreover independent of everything else.
TN
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The condition necessary to ensure the vanishing of the first

term above is

Cpn,k =0 all n,k » n#k o (4~ 27)

The condition necessary to ensure the vanishing of the third
term above is

ap, + bq)k,k =0 all n,k, ntk, no sum (4. 28)

where a=A2u, b= 7\+-?2’-u. Consider this second condition., Let m#n,
m#k, then
Py PP =0=ap, L TEe

Thus we deduce P n all m,n. And the necessary condition

:me,m
(4. 28) for the vanishing of the third term of expression (4.26) becomes
(a+b)cpn 1,1:0, all n. Hence P, n:O all n. And it follows from the first

term necessary condition (4. 27) that

=0 all nk. (4. 29)

This condition is manifestly sufficient to ensure the vanishing
of the remaining cubic terms, and is therefore a necessary (and
sufficient) condition for the vanishing of the cubic elastostatic terms.
Note, moreover, that it is precisely condition (4. 25) restricted to the
elastostatic case.

This completes the treatment of the cubic terms in Vu.

Quadratic Terms

It is required that (4. 16) vanish without restricting Vu.

1We note explicitly that in our treatment of the quadratic terms o
means cpY,xn(nzl,Z,?)) whereas wk,n means ‘pk,un n=1,2,3).

Y,n
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2M, = ciakﬁ %0 [Cp\(,yuk,ﬁ+ Zwk,nun,ﬂ—zq)p,ﬁ uk,p] =0.
Relabeling the indices, we may write this expression as
Ly, vCiakp™ 2%,y ity * 2,1 ianp T 0%, p = O

Expanding this expression somewhat, we have
[CPy,yCiOko'zq’o,yCiOky+2‘I’n,k°iono]“i,o“k,o

Loy v 1010 %0,y S0y T2 15000 Y 0%k 0

+ [wy,yciﬂkO_ZCpO,YciEky +zwn,kci.;(lnojU‘i,luk,o
+ ECPY,YCijkf-Zcpﬂ,Ycijky +2¢n,kcijn£]ui,juk,£ =0.
Using (3. 15) this expression becomes

Loy, %10K07%%0,0%010 " 2¥ 1 k%5 0n0 54, 0%k, 0
- 2[%,ociOko“Po,mckﬁm]“i,ouk,z
Loy i1 2,m ikt 2V 1% jmed %50 = O - (4.30)
Each of these bracketed coefficients must vanish separately. Consid-
ering the first, and using (3. 15) we obtain
pLlwy =200 o)u; qu; ot2¥; pu; qu (1=0.
Rearranging, we have
Z [Z cf’y,y'z%,o”‘”i,i] %,0%,0 +Z [¥5 Ve 5] % 0%, 0 = 0
iy i,k
itk
Again each sum must vanish separately, and we therefore obtain
Z@Y 20 o 20y ;=0 all i (4.31)
Y
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] 0 all ik itk. (4.32)

. + =
1,u k,ui
Considering the second sum in (4. 30) we have

[®5,0%1010*©0,m 1eaim %, 0%, = 0 -

Again by the independence of u g and u , we obtain

Loy 0%50k0 00, m keim B,g =0 2l 1.
Using (3. 15) and (2. 11) we have

_pq)m,oui,m_”\@O,ium,m +LMpO,nrlfu'i,1'1'1+um,i:l =0.

Rearranging this expression we have, for all i, (no sum on i)

[=2)gq 5 tew; olu, 5+ Z(-pwm,0+uw0,m)ui,m

m
m#1
tu) 0. 100m.; * )\cpo’iz U =0 (4.33)
m m
m#i m#i

Again, each of these terms must vanish separately. In particular we

therefore have

}\cpo’i Zum,m =0 all i,
m

m#i
This leads immediately to

P . =0 all i. (4.34)

1

Using (4. 34) in the first term of (4. 33) and equating that term to zero,
we obtain

-pcpi,oui’i=0 all i
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which yields

Equations (4.31), (4.32), (4.34), (4.35) are necessary (and
jointly sufficient) for the vanishing of the first and second terms of
(4.30). It remains only to consider the third term of (4. 30).

As a final necessary condition for the vanishing of (4.30) and

thus the cubic terms in Vu, we must require that

[0y 3510720, 0% cn 2, ke 1% %0 = © - (4.36)

The term i=j=k={ must vanish independently of the others, therefore

we obtain, by means of (2, 11),

‘ZCPY,Y_ZCPi,i-{—Zwi,i:O all i (no sum)». (4.37)
Y

Now, (4.37) together with (4. 31) yields

¥, =P(x,u) all a (nosum) (4.38)
a, o
wi’u =-B(x,u) all i (nosum) (4.39)

where ﬁ(zg,g) is a function to be determined later. Using (4.38), (2.11)
in (4, 36) and rearranging the sums, we obtain

0=4Px, e g% 5o oF2A Z (e ke, 1%, 1%,k
| ik

2 Z (5,570,109 1 (W 1794 50 2T +2T,
ik

where
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T =A Z Wi Pk,m % m 1%, i (4. 40)
i,k,m
m#k
Ty=u Z (W 1oy o) Z Vie,m%m,2 " Z“’m,;zuk,m ' (4. 41)
Lk m m
mtk m#i

Again using (4. 38), (4.39), (2. 11) we obtain
0 = 4p(x, g)cijkﬂui’juk,l +2 (-Zﬁ(x,u))cijkﬂui,juk,f +2T,+2T, .
Therefore it remains only to examine the requirement

T +T2:0 (4. 42)

1
In the expression (4. 40) for T1 we replace the dummy index i
by £, and resolve the sum into the two parts m={ and m#{ to obtain
Ty= )‘Z (3,0~ Pr, 00,1 0p,0 T Z Wy m P, mOm, k%, 2 *
2,k £,k,m
1#k m#k,m#L
Resolve the second term above into two parts k={, k#£{ and collect to

obtain

Ty=» z ag L0y 1 e gm0, ) Ty g () 1m0 3

Lk
1tk
A Z W m ™ P, m Om k%, - (4. 43)
£,k,m
m#Ek, m#d
I#k

A straightforward manipulation of the expression (4. 41) for T2 yields

TZ_“Z(ujl,k+uk,12>u£,£(wk,ll-Cpl,k) +“E (g ety ) Z (e o %, 0™ Pm, %%, m) -
Lk 2,k : 2,k,m
2k mitk,m#4
(4. 44)
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Resolve the second term in expression (4. 44) into sums over k={ and

k#{. Then, in the k= part of this resolution, replace the index k by m.

In the k#{ part, interchange k and £ and collect to obtain

Ty b ). By gDy 1 i gm0y 2 ) o gl gm0y 2]

4,k
1k
T Z @ 1, 0 Ve m %m0~ P %, m) (4. 45)
L,k,m
m#k,m#4
k#4
Adding (4. 43) and (4. 45) we obtain
Ty+T,= E“z,z{“f,k[ Aty 1o, 3 -(A2u)y )]
4,k
e T -Oeudey g +Hb208, T}
Tu Z (@ %, 0 P, 0P, % m!
£,k,m
k#l,m#tk
m#s
A z um,kuﬁ,ﬂ(‘bk,m-cpk,m) (4. 46)
£,k,m
k#i,m#k
m#L

The three summation terms in (4. 46) are independent in the displace-

ment gradients, Furthermore, within the first summation, the terms

within the braces are independent. It is necessary therefore that the

brackets within the first summation vanish separately,

()\+u)dfk 4HO, k-()»+2u)cpk £=0 all k,f k#2 (4. 47)

wk’ﬁ-()\+u)cp1’k+(>\+2u)¢£’k:0 all k,2 k#{ (4. 48)
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Adding (4. 47) and (4. 48) and using (4. 32) we obtain

P o T, =0 all kg kil . (4. 49)
F 1 ’Xk
Using (4. 49) in (4.47) we obtain
‘vk,uﬂ —cpk’xzz 0 all k,2 k#e . (4. 50)

Using (4. 50) in the third term of (4. 46) we see that the third term
vanishes and (4, 42) becomes
TytTy=u >_, @1t ! e %m0 P, k%, m) = ©
£,k,m
k#4,m#k
m#l
as the remaining condition necessary for the vanishing of (4.36) ‘and
thus (4.30), But itis easy to see that (4.50), (4.49), and (4.32) ensure
the vanishing of the expression above. Namely (4.49) and (4. 50) give
T, +T,=p Z (5 1Py My o by ) (4. 51)
L,k,m
k#l,m#k
m#L

Now define a pair of matrices A and S with elements

lpk m km

el

0 k=m

0 k=1
Then by (4. 32) the matrix é is antisymmetric, and the matrix§ is
clearly symmetric. So the expression (4. 51) may be written as

T,+T

;T T, =u- Trace {sAS} .
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But ;‘iéﬁ is antisymmetric, and its trace is therefore equal to zero.
It follows that (4. 30) is satisfied through the necessary restrictions
(4.32), (4.34), (4.35), (4.38), (4.39), (4.49), (4. 50).

This completes the treatment of the quadratic terms for the
elastodynamic case. Again it is important to note that the proof
requires a slight modification for the elastostatic case. Namely,
expressions (4.32), (4.49), (4. 51) though still necessary must be shown
to follow by some other means. To do so, we note that (4. 36) becomes

(g, 5% 4ka™ 2%, n% ke T 20 kit B, 0,0 = 0

for the elastostatic case. Thus we obtain

chs’s—chi’i+2\bi’i=0 all i (no sum)
s

which leads to

ﬁﬁ(é,g) all i (nosum)

CF>i,x.
. i
and therefore
] =——1-ﬁ(x u) all i (nosum)
i,u, 27 :

i
Thus we are still led to (4.47), (4. 48). But these form a system of

12 linear homogeneous equations in 12 unknowns. Moreover the coef-
ficient determinant vanishes. Any solution of this system must be of

the form

wk,z :fk,e(f%’g) k>1

e 0= "I n) k<t
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Pr,0” ~fp (%, u) k<

where the three functions fkl (k>1) are arbitrary. These, however,

lead immediately to (4. 32), (4. 49), (4. 51).

Deductions from the Necessary Conditions

1

number of restrictions on the transformation (4. 2) characterized

In the preceding portion of this chapter, we have deduced a

infinitesimally by the functions ¢, § of expression (4.3). We summarize

those restrictions here for convenience

lbi,xo =0
‘bi,xk+ q’k,x. =0 (ifk)
1
Pqa, =0
a,u,
g TV, =0 (i#k)
k i
qJO,X. =0
1
cpi,xo =0
o = B(x,u)
X,
b, =-Blxw)
7
Pz, P, =0 (k#e)

(4.

(4.

18)

20)

. 25)

.32)

. 34)

. 35)

. 38)

.39)

. 49)

1

In the remainder of this chapter, we suspend the summation conven-
tion, and to avoid ambiguity we explicitly write out the variables of
differentiation, viz we write P o rather than ¢, i

| b L
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wk,u[c"k,xﬂ =0 (k#2) (4. 50)

Now @,y are Cz functions on their domains (cf. pg. 8) and the
above conditions taken jointly impose severe restrictions upon their form.
Define two sets of three functions fik(r%’ E:) and gik(’;\g, g) for i>k

by the expressions

Viw =fpxw) >k
g 3
(4. 52)
Vi T8l 3k
"k
Then (4. 20), (4. 32) together imply
Vieu, = ~fnc W) 1>k
’Ti
(4. 53)
Ve, = "Bl ) 17k
Using (4. 50) we have
i, =ik 1>k
(4. 54)
e, "l R
Using (4. 25) we have, for i>j
O=<cp. > = <cp. =f..(x,u) .
i,u , L,x; ) ij'~ ~"mu
Xj ] u k
Therefore, since k is arbitrary
568 = £ (x) (4. 55)

Again, using (4. 25) we have

0= - -B(x,u) .
<cpa’uk),xa (Cpa’xa>: uy Tk
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Therefore, since k is arbitrary
Blx, u) = Blx) .

Using (4. 20) and (4. 56) we have

0= <‘l‘k,xk>, uy = (‘Ijk,uk) . = 'p(ff,),xk .

And, again, since k is arbitrary we obtain
B(x,u) = v=constant ,

~ o~

Taking k>{£ and using (4. 57), (4, 38) we have

0= sz - (Cpk’xk>,xg - <c‘ok,x£>,xk - (fkl(?éo,

K

Similarly we can obtain

and by (4. 35)

We may thus write
f310) =13, (x;)
f30(%) =f5,0x))
fo1(x) =f5,0x5)

Using these relations we can write

f = = =f
3l,x2 3,x1,x2 3,x2,x1 32,x1

f = =0 = -f
21,x3 2,x1,x3 2,x3,x1 32,x1

(4. 56)

(4. 57)
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f

:cp :Cp :'.f .
32,x1 3,XZ,X1 3,x1,x2 3l,x2
Therefore f3l,x :f32,x :_f?.l,x
2 1 3
that
f21 = -ax3+b3
f32::axl+b1
f31 :ax2+b2 .

By exactly similar reasoning, we obtain

8y = -0(w)x, 45 (uw)
831 = alu)x, +B,(u)

835 = alwx, +B;(u)

=constant=a. We conclude therefore

(4. 58)

where a,B are at this point unknown functions of u. To obtain the func-

tional form of a(u), B(u) we carry the analysis of gij further through the

use of restrictions (4. 39) and (4. 57). We have

0= <¢’1,u1>’x ) <¢’1,x2>u :-gZI,u1:<a,u1>x3+ﬁ3,u
2 !

1

We thus deduce o =f>3 u =0. By similar reasoning we can deduce
'l

1

a’ul:a’uzza’u?):() and also ‘31,\12:51,113:0; ﬁz,ul:ﬁZ,u

Therefore

3

g1 = -0x3tbs(us)
g3 = ax, b, (uy)
g3 =0x; Tb,(u;)

where o is a constant.

=0; p3,u :pB,u

1 2

=0.
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Proceeding still further, we have

/ - g fund = e _ -
37821, <‘)’2,xl> : <‘1’z,u3> =iy x. T2
,u3 ,Xl 1

Thus, bs(u;) =-aus+a,. Similar reasoning applied to bf?‘ and b’1 yields

8p1 T -0Xg-auzta,
g31=0cx2-au2+a2 (4. 59)
g3p = 0xjtau; ta,

The equations (4. 52), (4. 53), (4. 54) with the right-hand sides
given by (4. 58), (4. 59) form an overdetermined system of equations for
cpi,lhi. Direct integration yields a=a=0 as a necessary condition for the
existence of a solution. When a=0=0 is enforced, the result is exactly
the set of equations (4. 4) for cpi,dli where ci’di are the constants of
integration. It remains only to consider Po- But it is easy to see from
(4. 34), (4. 38), (4. 57) that ?, must have the form given in (4. 4).

This completes the proof of the necessity.

To prove sufficiency we may, if we wish, directly verify the
infinitesimal invariance of (4. 1) under (4. 3), (4. 4). Alternatively, we
may observe that the preceding proof of necessity obtained conditions
that taken jointly are manifestly sufficient to ensure the vanishing of
the linear, quadratic, and cubic terms in Vu of (4. 8), and therefore to
ensure infinitesimal invariance of (4. 1).

This completes the proof of Theorem 2.
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5. An illustration: surface waves on a half-space.

All of the applications of the conservation laws of elasticity have
been concerned with problems in elastostatics [3] -[6], [17]. In the
present section we consider the problem of periodic free surface waves
on an elastic half-space, and we show how one of the conservation laws
can be used to provide a simple derivation of the secular equation
governing the speed of propagation of such waves.

We consider an elastic half-space composed of an anisotropic
material with one plane of elastic symmetry. Rectangular cartesian
coordinates are chosen so that the half-space occupies the region
%520, and planes perpendicular to the x3-axis are planes of elastic
symmetry. We seek solutions of the displacement equations of motion
(2.7) corresponding to a '"plane deformation', so that u3EO and ug,u,

are independent of x The equations (2. 7) can thus be written in the

3
form

€apys ty,68 Py (5. 1)
where here and throughout the remainder of this section Greek
subscripts have the range 1,2. The stresses CIOLB are found from (2, 3),
(2. 2) as
1

u = apys ty,s * (5.2)

It is assumed that COLBYG is positive definite.
We now investigate solutions Uy of (5. 1) which correspond to a

wave propagating in the positive x,-direction with speed ¢, so that
P p 1 P

1Plane deformations are possible in materials with one plane of elastic
symmetry. There are six independent constants among the COﬁY5 .
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ua(xl,xz,t) :ua(xl-ct,xz) . (5.3)
We furthermore require that U, and all of its derivatives tend to zero
as X, too. Finally the surface XZ:O is required to remain traction

free, so that

021=022=023=0 at XZ:O' | (5. 4)

The third of these conditions is automatically satisfied for plane defor-
mations of the anisotropic materials under consideration here, so that

the free surface conditions reduce, by (5. 2),(5.4), to

CZlyéuy,{):CZZYéuy,é:o at x2=0, (5.5)

We wish to determine the possible values of the propagation speed ¢
corresponding to nontrivial solutions Uy which are periodic in X and t,

Referring to (5. 3) we thus require that

ua(z+-—2%,x2>=ua(z,x2) (5. 6)

for all real z, and for xZZO, The wavelength of the motion is £/2w,
while the period is 2m{/c,
We seek a solution of the form

ua(xl-ct,xz):Ua(xz)exp [i(xl-ct)/ﬁ] o (5.7)

Substitution of (5. 7) into the differential equations (5. 1) provides two
ordinary differential equations for UOL' These may be written as

follows:

2, = . 2

1"A +i4B U +( + )U =0 , 20 , 5.
ayYy T HPayy TA\Cay TPC Bay/ Uy 2 58

where the superposed dot indicates differentiation with respect to X5

and
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Aocﬁ:CO,ZYZ s Baﬁ:COLlY2+COL2Y1 R COL’Y:-CCIIYl’ (5.9)

N that tri A= B=(B =
ote that the matrices A <AOLY)’ B ( OLY) and g <COLY) are real and
symmetric,
If (5.7) is substituted into (5. 5) there follow the boundary

conditions at x,=0 for the system of ordinary differential equations (5. 8)

U, +1i = =
JZAOtﬁs s lDaﬁUﬁ 0 at X, 0, (5.10)
where
Daﬁzcazﬁl . {(5.11)
Finally, we require
Ua—'O . Ua*-'O as x,~0 . (5. 12)

Equations (5. 8), (5. 10) and (5. 12) comprise an eigenvalue
problem on the interval [0,0), with c2 as the eigenvalue parameter.
We now show that the conservation law (3. 4) can be used to by-pass the
process of solving this eigenvalue problem in detail, insofar as the
determination of c is concerned. When specialized to the plane defor-

mation under consideration at present, (3.4) with i=2 becomes

%t-(puﬁ,z—g-‘tip>+ g-}-{—ﬁ-<-uy,onﬁ+L52ﬁ) =0, (5. 13)

where L is the Lagrangian density. If we now introduce into (5. 13) the

assumption (5. 7), we find that (5. 13) reduces to

8Ql 8Q2
—t=—"=0  ~0<x,<00,X%X,20, (5. 14)
Bxl 8x2 1 2

where
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Qp=-Peug U5 279 19,2 »
(5.15)

ou Ou
1 o _ o

Qp=-0g oug 5t %Caﬁyauq,p“y,y‘ip T T
and u is given by (5.7).

We note that, in virtue of (5.7) and (5. 15), Ql and Q‘Z in (5. 14)
are functions of x;-ct and x,. We now integrate (5. 14) with respect to
x, over one period and use the assumed periodicity of ug,u, - and thus

Ql — to get

£
g;{——.f Q,(z,x,)dz=0. (5. 16)
> 99 ,

It follows from (5. 16) that
Y/
J‘O Qz(z,xz)dz = constant , 05x2<oo .
But (5. 12), (5.7) and (5. 15) show that Qz(z,xz)—»o as x,» 1o, so

2
jo Qz(z,xz)dz =0 , Osx2<oo . (5.17)

From (5. 7), (5. 15) it is possible to compute the integral in (5, 17) in

terms of the Ua's, and hence to obtain (5. 17) in the form

e
3%

2 . ° sk < 2 )
a0, 6008, + (G, toc?e U (x0T

oy "o (xz):O , 0sx <oo (5,18)

2

where the asterisk indicates complex conjugate. It should be observed
that (5. 18) — which plays the role of a first integral for (5, 8) — depends
only on the field equations, the periodicity assumption (5. 7), and the
decay conditions (5. 12), but not on the free surface conditions (5. 10).

Since the differential equations (5. 1) have constant coefficients, the
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derivatives u 2 of solutions uy of (5. 1) also satisfy (5.1). Moreover

’

if the uy have the general form (5.7), so do Uy 20 ua’z also decay at

x,=00. It follows that (5. 18) also holds with Uon replaced by [joc’ ﬁoc

by o viz

2 . o 3K
A U (XZ)UY(X2)+<C

ay o

2 » o i _
tpe 60w> 0,0, () =0, 0=x,<c0 . (5.19)

ay

We now consider the differential equations (5, 8) evaluated at XZ:O, the

results (5. 18), (5. 19) of the conservation laws evaluated at xZ:O, and
the free surface conditions (5. 10) as a system of six equations for the
for the six unknowns Ua(O), I.J'OL(O), ﬁa(O)}. This system can be written

as follows

from (5.8): £°AU(0) +iBU(0) +( C+pc 1) U(0)=0, (5. 20)
from (5. 18): £°0 7 (0)AU¥(0)+U (0)<c+pc21>ﬂ"‘<(0):o , (5. 21)
from (5.19): ££GT(0)aT*(0)+ 5T (0)(C+pc?1) TH0) =0, (5. 22)

from (5.20): LAU(0)+iDU(0) =0, (5. 23)

where é, E, g, ]3 are the real, symmetric 2X2 matrices whose elements
are defined by (5. 9), (5. 11), H is the two-dimensional column vector
with components Ua, and a superposed T indicates matrix transpose.
The matrices é, B, g and D in the system (5. 20) - (5. 28) depend only on
the elastic constants CaﬁY_é; we wish to characterize the values of the
propagation speed ¢ for which the above system has a nontrivial solution
Q(O), Q(O), Q(O). We note that any such value of ¢ will clearly be inde-
pendent of £,

We now discuss the analysis of (5.21) - (5,23)., From (5. 20),

(5.23)
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2U(0) = —ié-

~

'pylo)
(5. 24)

1§Q-1D_A-1c_pczé-1>g(o).

~ e~

2500y = (-4"
(The inverse {}:1 of é can be shown to exist as a consequence of the

assumed positive definiteness of CaﬁYé' ) Substitution of (5. 24) into

(5.21), (5. 22) then shows that the column vector U(0) must satisfy the

pair of quadratic equations.

ut 0 DTa D+ g oc®L Ut =0 (5. 25)
vt R A ' Ba BA 'p+nTA BA o+ oA BA IDrca gD AT A
+oc?(RTa ' pa v 4 B Tpen A A D A g e
+p2c451]g*(0):0 . (5. 26)

A general discussion of the pair of quadratic equations (5.25),
(5. 26) appears to be very difficult. In general, the matrices A, B, C,
D are given by (5.9),(5. 11). For a material with a plane of elastic
symmetry, there are six independent elastic constantsl, which may
be conveniently chosen as ©1111° €22227 ©1122° €1112* ©1222 and 1212

In terms of these,

€1212 Fi1222 2¢y112 c1122%C1212
A= » B= _ ,
€1222 2222 ©1122%¢1212 2c1a02
(5.27)
(o4 C C C
c- - i Sz 5 (12 €121z
€1112 1212 1122 ©1222 )

lSee [1sj.
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For the special case of a transversely isotropic material for

which the xz—axis is an axis of symmetry, we have [18]

€11125%1222°0> (5. 28)

and the condition that (5. 25) and (5. 26) shall possess a nontrivial
solution can be shown to

2 6
. <
C1212°2222<°2222 °1212> ( cs>

2

+( c -c2 ><2 + c 2 )(—C—>2
©1111%22227°1122/\°1212%22227°1111%2222" 1122 c,

2
2
‘<C1111°2222‘°1122> =0, (5. 29)

where

(5.30)

is a '"'shear wave' speed. Equation (5.29) is a bicubic for the surface
wave speed c.

If we further specialize to an isotropic material, the Cocﬁyé
satisfy (5. 28) and also

€1111° S22 A 2H (5.31)

-2c =A,

€11227 111171212
where A,u are Lamé's moduli. When (5. 29) is specialized in accordance

with (5.31), there follows the usual bicubic for the Rayleigh surface

wave speed [19],
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6

(=)

Finally we remark that whenever c is such that (5. 25), (5. 26)

c 2 2

-8(i)4+[24- 16<C—S-) ](f-) " 16[(—2?)2— 1] 0. (5.32)

d 3

have a nontrivial solution, ¢ must indeed represent the speed of propa-
gation of any surface wave which is an arbitrary periodic function of
xy-ct (not merely the special periodic function assumed in (5. 7)). This
follows from the fact that any such wave can be represented as a Fourier
superposition of waves of the form (5. 7) with different wavelengths £,

and the property that c is independent of L.
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AEEendix

A Note on Weak Invariance

It is our purpose in this appendix to emphasize, by example,
that the completeness theorem of Section 4 is restricted to that ver-
sion of Noether's theorem requiring infinitesimal invariance under
the group (4. 2).

In a verbal communication, noted in [20], E.Noether extended her
theorem to include those cases wherein the variational principle is
merely "weakly invariant' under a given group of infinitesimal trans-
formations. In the following, we present a short, informal, discussion
of the altered requirement of merely weak invariance on the Lagrangian
(2. 13) under the group (4.2). We establish a set of equations whose
solutions will yield transformations leaving the Lagrangian weakly
invariant, and we observe that the class of solutions to the displace-
ment equations of motion (2. 7) will satisfy these equations as well.

It follows then that there exists a large number of conservation laws
derivable in a consistent manner from the transformation group (4. 2)
and yet independent of those laws presented in Theorem 1 and discussed
in Theorem 2,

We indicate here, in an abbreviated manner, the generalization,
mentioned above, of Noether's theorem regarding "weak invariance' of
the variational principle (see also [20]).

The functional & (2. 16) is said to be infinitesimally weakly

invariant under the transformation (2. 17) if there is a vector valued
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function E(%, w,Vw) such that

~ o~ o~

e (58, w*(e), T'w(®) - 3(5%, 5]

~T N N

where F is the density (2. 16).
If this is the case, and w(§) is a solution of the Euler-Lagrange
equations (2, 20), then Noether's theorem asserts that the following

conservation law holds

‘g’g'; {F’Wi,ji +Fo_- Ea} =0 (AL 2)
where all functions are evaluated at E, Y(E)’ Zy(g) and where Q’E are
defined as in (2. 23).

Tovbe consistent with Section 4 we use the notation X, u, Vu for
E, w, Vw for our elastodynamic application of this theorem, and in this
notation we note that (A, 1) corresponds to (4. 8).

In our analysis of expression (4. 8) we found that a transforma-
tion of the form (4. 2) led to terms which were linear, quadratic, and
cubic expressions in the displacement gradients Vu, viz, (4. 15), (4. 16),
(4. 17). These expressions were required to vanish to maintain infini-
tesimal invariance. For weak invariance, they need only be divergence
expressions.

Defining M as in (4. 9) we may write (4. 14) as
(A, 3)

= A, . +B, , u)u. + D. , u)u.
2M Am(gg,g)ul’a Blakﬁ(f% R)ul,auk,ﬁ +D10LkE3SY(5 B)ul,auk,ﬁus,\(

where A, E, B are defined as follows: Let

A4 7 #CiqKp¥x,p
" ) (A. 4)
Biokp = Py, yCiakp 26, v iaky T #¥n,kCionp
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~

= - (A. 4)
DiakBsY c‘oy,sci(j,kﬁ Zcpﬁ,sciakY cont.
then we define A, B, Q as
A, =A, W
i i
B -1 [1% +B ]
igkB ™ 2 iakp kPBia
] (A, 5)
Diockﬁsy % [Dior,kﬁsy * Dkﬁsyi(x+ Dsyionkﬁ
*Di0sykp T Peykpio T Dkﬁiasy] .
In this notation, (A.3) may be written as
oM =2 [(A +B +D u ) ]
" Bx io TiokpUk,B T “iokpsy k,B%s,y/ Vi
o 9 0
-y 5}_;;(Aia,) o P8 E(Diakﬁsv)uk,ﬁus,y
. . . A,
—i-uk,(‘lt.,i3 [Blakﬁ+2D1akﬁsY us,y]} (A.6)

And it follows that a sufficient condition for (2. 13) to be weakly invariant
under (4. 2) is that
9 ) 0
0= ui{és‘;; (B o (B; kg e, gt % (Djoxpsy %, 8%,y
+uk,a,ﬁ[Bi0£k!3+2Diock{3sy]} :
But A, B, D are functions of x,u only, therefore the coefficient of the

second derivatives must vanish separately.

0B, Pipka T 2 Piaipsy T Piprasys,y] =0 -
And within this expression the coefficient of the first order derivatives

must separately vanish. Therefore we obtain the following conditions for
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weak invariance of (2. 13).

0 0 a )
ui[s‘;g(Aia) . BigrpVk,pt ( iakBsy Uk, B s,Y] =0 (A.7)
u; LD J=0. (A. 9)

i- TiakPsy * Diﬁkasy
Rather than examine these equations more closely in this
generality, we will consider the special case B= D=0, Note that we
are implicitly enforcing the restrictions of Section 4 on the quadratic
and cubic terms.

We therefore obtain from (A. 7) the restriction

(A, Ju. =0 (A, 10)

where Ai (x,u) = o(,kﬁlpk Xﬁo Expandling the derivatives we obtain

“iciakﬁ‘l’k,quﬁ+ iCiakplK, xﬁ,

And again, since lllk :“bk(ﬁ’ .-13:) the derivative coefficient must vanish

separately, therefore

=0 (A.11)

u.c, ¥
k, .
iigkB xﬁ’uj

=0, (A. 12)
B

Any solution J(x,u) of these 13 equations which is consistent

“iciakﬁ“'k,xa,x

with Equations (4. 32), (4.39), (4. 49), (4. 50) will leave the Lagrangian
(2. 13) weakly invariant, In particular, note that if ,M,}S’E) :’\}{‘(35) (a
function of x alone), such that 4, 49 is satisfied, and Q= 0 then

Equations (A. 11), (A. 12) and all remaining necessary equations of
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Section 4, (namely: 4. 25, 4. 34, 4.35, 4.38, 4.39, 4. 50) are satisfied,

Thus, in particular, if the functions gg,’\k of (4. 2) are chosen so that

(A, 13)

where | () satisfies the displacement equations of motion (2. 7) then the
Lagrangian (2. 13) is weakly invariant under (4. 2) and the conservation
law is given by

0
3%, o ic '~ Sjaxptic il =0 (A 14)

We explicitly note that the §(x) need only satisfy the field
equations and (A. 12), and that it may violate the boundary conditions
of any problem to which the resulting conservation law is applied.

As an elastostatic example we note that since the field equations are

second order, ui(?f.) =X, is a solution. Thus taking 1Lri(r>5) =X, we see that
N . ‘s )

£ (2.13) is invariant to within E = 50 (cijkkui), and therefore

Q—EC W, X, ~C..iq U.]=0

axj ijke "k, 71 Tijkki

is a conservation law, which is independent of those covered. by

Theorems 1, 2,

As a further remark we note that our result of Section 5 required
the use of a conservation law not directly derived from Noether's
original theorem. We see that in the applications of the conservation

laws we must frequently consider generalizations of Noether's theorem.



[2]

(3]

(4]

5]

(6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

57~

References

J. R. Rice, A Path Independent Integral and the Approximate
Analysis of Strain Concentrations by Notches and Cracks, Journal
of Applied Mechanics, 35 (1968), 2, p. 379.

J. D. Eshelby, The Continuum Theory of Lattice Defects, Solid
State Physics, edited by F. Seitz and D. Turnbull, Volume 3,
Academic Press, New York, 1956.

J. R. Rice and G. F, Rosengren, Plane Strain Deformation Near
a Crack Tip in a Power-Law Hardening Material, Journal of the
Mechanics and Physics of Solids, 16 (1968), p. 1.

J. W. Hutchinson, Singular Behavior at the End of a Tensile
Crack in a Hardening Material, Journal of the Mechanics and
Physics of Solids, 16 (1968), 3, p. 504.

J. W. Hutchinson, Plastic Stress and Strain Fields at a Crack Tip,
Journal of the Mechanics and Physics of Solids, 16 (1968), p. 13.

J. K. Knowles and E. Sternberg, a paper to appear in Journal of
Elasticity.

J. K. Knowles and E. Sternberg, On a Class of Conservation Laws
in Linearized and Finite Elasticity, Archive for Rational Mechanics

and Analysis, 44 (1972), p. 187.

E. Noether, Invariante Variationsprobleme, Gottinger Nachrichten
Mathematisch-Physicalishe Klasse, 2 (1918), p. 235,

W. Glunther, Uber einige Randintegrale der Elastomechanik,
Abhandlungen, Braunschweiger Wissenschaftliche Gesellschaft,
14 (1962), p. 53. ’

S. Lie, Transformation-gruppen, Gottinger Nachrichten, 3
(1871), p. 351.

H. Bateman, The Transformation of the Electrodynamical
Equations, Proc. of the London Mathematical Society, (2), 8§,
p. 228.

M. E. Gurtin, The Linear Theory of Elasticity, Handbuch der
Physik, Band VIa/2, p. 1-295,

I. M. Gelfand and S. V. Fomin, Calculus of Variations, English
translation by R. A, Silverman, Prentice-Hall, 1963,




[14]

[15]

[16]

[17]

(18]

(19]

[20]

-58-

B. Budiansky and J. R. Rice, Conservation Laws and Energy
Release Rates, Journal of Applied Mechanics, 40 (1973), p. 201.

N. N. Bogliubov and D, V., Shirkov, Introduction to the Theory of
Quantized Fields, Interscience, New York, 1959,

L. D. Landau,and E, M, Lifshitz, Mechanics, 2nd edition,
Addison-Wesley, 1969.

A, E. Green, On Some General Formulae in Finite Elastostatics,
Archive for Rational Mechanics and Analysis, 50 (1972), p. 73.

S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic
Body, Holden-Day, Inc., San Francisco, 1963,

A. E. H. Love, The Mathematical Theory of Elasticity, 4th ed.,
Dover Publications, New York, 1944.

E., Bessel-Hagen, ﬁber die Erhaltungsitze der Electrodynamik,
Mathematisch Annalen, 84 (1921), p. 259.




