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Abstract

Generalized Multipliers on Locally Compact Abelian Groups

Let G be a locally compact Abelian group with dual T,
1 <p,q < 2, and Cp ={f ¢ Lp(G)l supp() is compact}. Then for
l<srss<2,C cC.cC,c C, the containments are proper if
G is noncompact, and C, is a dense, translation invariant subspace
of Lt(G) for 1 <t <. LetX be acomplex valued function defined
—_——
on T, and 3279 = {f € LP@)|M € LUG)}. Suppose 3295 C,- Define
the operator, T,: J % 9 -~ LYG) by the equation ’f)} =f for each
fe J}z’ 9, Then J%q is a module over M(G), T, is a module homo-
morphism, and T, is (p,q) closed. We call T, a generalized (p,q)
multiplier.
The main results include:
(1) Suppose T is an operator satisfying:
(a) The domain D(T) is a translation invariant subspace of
LP(G), and the range R(T) c LYG);
() D(T) 2Cp;
(¢) T is (p,q) closed, linear, and commutes with all
translations; |

(d) C X T(C) is dense in Cp X T(C.).

p
Then T = T)\ for some A.
(2) The set of all generalized (p, q) multipliers, denoted Xp @
b
is a linear space, and the set of all generalized (p, p) multipliers, denoted

Xp, is an algebra containing X; and contained in X,.



_v—

3) TA € Xp @ then X is locally the transform of a bounded
b
(p, q) multiplier.
Further sections include a deeper study of X,, X,, and special

results obtainable for compact G.
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Introduction

Let G be a locally compact Abelian group with dual T, and A, B
be two Banach spaces of measurable functions on G for which the Fourier
transform is defined. Suppose ) is a measurable function on I such
that Af is the transform of a function in space B whenever f is a function
in A. Then A determines a bounded linear operator from A into B, and
if the spaces are translation invariant the operator commutes with all
translations. A is called the transform of the operator, and such
operators are called (A, B) multipliers. The problem of determining all
(A, B) multipliers is called the "multiplier problem".

The multiplier problem has drawn the interest of many mathe-
maticians since the turn of the century. The early investigators con-
sidered spaces of real 27-periodic functions, and looked for real
sequences which multiplied Fourier coefficients of these functions to
produce Fourier coefficients from a second space. Bochner was the first
to use the complex Fourier series of a function. This allows one to think
of the functions as being defined on the circle group T, and provides the
prototype for compact Abelian groups. Others, notably Hérmander,
studied the multiplier problem on Rn, which provides the prototype for
noncompact LCA groups.

Since World War II much of harmonic analysis has been done on
locally compact Abelian groups. This includes the study of (p, q) multi-
pliers for 1 < p,q <. A (p,q) multiplier is a bounded, linear operator
from LP(G) to Lq(G), which commutes with all the translation operators

on G. An equivalent description is an operator defined by a function X
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on I which multiplies fp\into I/.;q\ Brainerd and Edwards [2], Gaudry
[17], [18], and Larsen [24], provide excellent sources for the study
of (p, q) multipliers.

An interesting multiplier problem arises if one considers func-
tions A on I with the property that Af e ﬁ(\cr) for f in a dense subspace
of Lp(G). The operator determined rby A is closed, but not necessarily
bounded. LI(G) provides a guide for this development. A version of
this problem on L' appears in Ford [16], where it is shown that these
operators have a minimal domain, and they form a commutative algebra
containing the bounded L' multipliers. We call these the generalized L'
multipliers on G. One area of application is the study of multipliers on
Segal algebras, as in Burnham [3], since every multiplier on a Segal
algebra is a generalized L' multiplier.

Our goal is to characterize generalized (p, q) multipliers for
1 < p,q < 2, using the L' case as a guide. Chapter I contains the pre-
liminaries on density, convolution, and translation needed elsewhere
in the development; the most important results are Lemma 1.7, which
relates convolution of LP functions by L' functions to sums of translates
of the LP functions, and Lemma 1.8 which shows that closed, linear
operators which commute with all translations also commute with con-
volution by finite regular Borel measures on G.

Chapter II defines a generalized (p, q) multiplier as an operator
determined by a function X having certain properties. These operators
are shown to be closed, linear, and commute with convolution by

measures in M(G). It follows that they commute with all translations.
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We show that A is locally the transform of a bounded (p, q) multiplier,
and from this obtain inclusion results similar to those which hold for
bounded multipliers.

Chapter III extends the results on generalized L' multipliers
contained in [16]. Chapter IV is a deeper study of generalized L? multi-
pliers, and Chapter V gives the additional results obtainable when G is
compact.

Throughout the paper, G is an LCA group with Haar measure m.
The dual group I has Haar measure m normalized so that the Plancherel
transform is an isometry. M(G) denotes the set of finite regular Borel
measu‘re's on G. It f ¢ LP(G), f denotes the Fourier, Plancherel, or
Hausdorff-Young transform for p=1, 2, or 1 < p < 2, respectively. If
f ¢eLP anda ¢ G, then f, is the translate of f by a, i.e., fa(x) = f(x-a)
for x € G. T is the involution: f(x) = {(-x). Iff e LP andg € L', then
f*g is the convolution of { with g. If E is a measurable subset of G or
T, Xy is the characteristic function of E. If1 <p < «, p’ denotes the
dual index: 1/p +1/p’=1. Ifp=1, thenp’ =». Iff¢€ Lz(l"), then T is
the inverse image of f under the Plancherel transform, i.e., /fV\z f. For
1<ps<2 TP - If € Lp'(r)lf e LP(G)}. Ix€Gandy €T, (x,9) |
denotes the value y(x) ( or dually, x(y)). Finally, C 0(G) are the con-
tinuous functions on G which "vanish at infinity'", and C C(G) are the

continuous functions on G having compact support.
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I. Preliminary Lemmas on Translation, Convolution and Density.

Definition: C ={f € L*(G)|supp(®) is compact}.

Lemma 1.1: For each f € L'(G) and €>0 there is a function v € C such

that | |f - £*v|], < e.

For a proof, see Rudin [30], Theorem [2.6.6]. An immediate conse-

quence of this lemma is that C is a dense ideal of Ll(G).

Lemma 1.2: C = [\ {I|I is a dense ideal of L'(G)}.

Proof: Let Ibe a dense ideal of L', and £ €C. Let K = supp(f). For
eachy €T, let M, = {f ¢ L'(G) |Tty) = 0}. Then M, is a maximal
closed ideal of L', so1 i My. So choose fy €1 such that fy(y) = 0.
Let g, = f,y*fy. Then g, €l, gy(y) > 0. Since g, is continuous, there
is a neighborhood V,, of y such that éy > 0onV,. Now {Vy ly ek} is

an open cover of K, so there existy,, -+ »Yq € K such that

n
C .
Kc\/ Vyi
i=1
Let
Then g €1 and §>00nK. By the Wiener-Lévy theorem there is a

function h € L'(G) such that i = 1/¢ on K. This implies that f = fgh on

I, or f = f*g*h. Therefore f €I, so C C I, and the Lemma follows



from Lemma 1.1.

Lemma 1.3: Let K C T" be compact and € > 0. Then there is a function

g € C such that g(T') c [0,1], =1 onK, and ||g||,< 1 +e.
The Lemma follows from Rudin [30], Theorems [2.6.8] and [2.6.1].

Lemma 1.4: Let1 <p <o, f 6 LP(G), and pe M(G). Then f*u € LP(G),
ana | fesul [ = (el [l

This is Theorem [20.12] of Hewitt and Ross [22].

Lemma 1.5;: Letl sp< e, and f ¢ LP(G). Then there is a neighborhood
V of 0 with V compact such that if u is any measurable functiong,on G with

u= 0, supp(u) g_—\-'/'—, and f u(x)dx = 1, then Hf—f*u”p< €.
G

For a proof of this Lemma, see, for example, Loomis [25], Theorem 31E.

Call such functions u V - blips.

Lemma 1.6: Letl <p,q <«. Then C is a dense, translation invariant

subspace of LP(G), andiff ¢ LP(G) and ¢ ¢ L4G) we can find a sequence
0

{f,},.1 € C such that both Hf—f*anp <1/n and Hg-g*anq <1/n.

Proof: C is a subspace of LP(G) since L'N LP is a dense ideal of LI(G),

and C is contained in every dense ideal. C is translation invariant since
fa(y) = (-a,y) f(y). To show C is dense in LP(G) let f € LP(G) and € > 0.

We can find g € Llf\ LP such that Hf—ng <€/3. By Lemma 1.5 we can
find V a neighborhood of 0 such that if u is any V-blip then Hg - g*u”p < €/3.

Also for a fixed V-blip u, Lemma 1.1 tells us we can find v € C such that
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||u-v|‘|1 < €/3(Hng+1). Now note that g*v € C, and Hf-g*v”p <e.
So C is dense in LP(G).

To prove the second part of the Lemma, for each n let vV, be a
neighborhood of 0 small enough so that both ||f-f*u, ||, <1/2n and
llg - g*u_ | lq <1/2n for any V -blip u . Also for fixed choices of such

u, choose fn € C such that

Hun-fnll1 < zn(Hpr"Ll)(HquJrl)

Then Hf—f*anp <1/n, Hg—g*anq <1/n.

Lemma 1.7: Let 1< p< =, f€ LP(G), g € L'(G), and € > 0. Then

there are complex numbers o, *++, @ , and a;, *--, a, € G such

n’
that

n

Hf*g- Z a, f H < e.
k=1 kak P

Proof: Without loss of generality, g # 0. Assume for the moment that
g e CC(G) with support K. Let V be a symmetric, precompact neighbor-

hood of 0 in G small enough that y € V implies

f-1 <
=ty < ) g L e,

Now

Kc U (V+a),
ackK



so there exist a;, + -, a € K such that

n

K c U (V + ak).
k=1

Let A, = KN (V+a,), and

k-1
Ay = [K/\(V+ak)] - [U Ai] fork =2, «++,n.
i=1

Then

n
K=\/J A,
k=1

each Ak is measurable, and the union is pairwise disjoint.

o= | o) av.

Ay

Then

Let



n n

| 1/p
g - ¥ of, |1, = (f |tg(x) - ), akfak<x)lpdx)
G k=1

n 1/p
- ( [ [ tx=y)elp)dy - 2 Okfak(")lpdx)

G G k=1
n 1/p
- ( S [ i&yewdy - ), o f, (x)lpdx)
G K k=1 k
n ) 1/P
= (f | Y S [fx-y) - £x-a,)]g(y)dy [Pax

G k=1 Ak

n | p ,)1/p
<2 |\ (f lf(x-y)-f(x-ak)llg(y)ldy) dx
k=1 Ay

where the inequality is obtained by first using Minkowski's inequality
and then moving the absolute value signs inside the interior integrals.

For each of those interior integrals we can use Holder's inequality

and get:

(f |£(x-y) - f(x-a,) | Ig(y)ldy)p

Ay

< m@a PP [ |ix-y) - 1x-a) [P |e) [Py
A
k



which implies

n
g Yyt |1 <
k=1 K
2 , p 1/p
) m(Ak)l/ P (f / lf(x-y)-f(x-ak)lplg(y)l dde)
k=1 G Ay
n . 2 1/p
= m(Ak)l/p ( [ [ |tx-y) - f(x-ak)lplg(y)| dxdy)
k=1 A, G o

k

Now (X-ak) - x-y)=y -~ ., and if y € Ay, theny e V +a, or
y - a € V. Consequently the translation invariance of Haar measure

gives us

p
f lf(x-y) - f(x-ak) lpdx = f If(x-(y-ak))- f(x)l dx
G G

< lel )"

Therefore



n
[ltxg = 2 ety |1, <
k=1
n ’ 1/p
Y ma,) Y S |g) [Pay
k=1 : | g] |m() (A{{ )
n 1/p
<Y mayVe _ellelle [ 1ay
et el [ om) (Ak )
. 1/’ +1/
- Lm0 T )

k=1

The lemma now follows from the density of C,(G) in L'(G).

Remark: Note that if we have 1< p,q < «, f € LP(@G), h ¢ LYG),

and g € L'(G), and € > 0 we can find the complex numbers

Qp, vty Q) and group elements a,, -, a, such that both
n
l.lf*g - }_3 akfakl ]p< € and | |hxg - 1;1 akhakl lq < € hold.

To do this we need only choose the neighborhood V small enough that
translating either f or hby y € V leaves | |f - fyl lp and | |n - hyl lq

small. After that step the construction depends only on the function

g.
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The Lemma is actually stronger than we need. - For example, if
f € LP(G) and S(f) is the closed subspace generated by the translates of
f, then the Lemma implies that S(f) = £*L' (G). When p = 1 we get the
Proposition below and from it Wiener's Tauberian theorems, as done in

Loomis [25], Chapter VII.
Proposition: Let f ¢ L'(G) such that f is never 0. Then S(f) = L' (G).

- Proof: Let g € C, with supp(g) = K. f is bounded away from 0 on K, so

there exists an h ¢ LI(G) suc};that-fﬁ =1 on K. Then é: thg on T, or

g = f*h*g. Let € > 0. By the Lemma we can get

n

Hg' Z akf ||1<€ )
k=1 %K

so g ¢ S(f). The proposition follows from the denéity of C in Ll(G).

Lemma 1.8: Letl <p,q <, and T a linear operator with the following
properties:
(1) the domain D(T) c LP(G), the range R(T) c LY(G),
(2) T is closed,
3) T commutes with all the translations on G.
Then D(T) is a module over L'(G) and if f ¢ D(T) and g ¢ L'(G), we
have T(f*g) = Tf*g.

Proof: Letf e D(T) and g € L'(G), and € > 0. As we have already

observed we can find o, ---, o, complex and a;, ---, a, € G such that
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n
| |txg - oy f <
k§1 £ akl ’p )
and
n
||Tt+g - ) ak(Tf)aqu< €
k=1

hold simultaneously. Note that

n
), ot a € D(T)
k=1

since D(T) is a translation invariant subspace, and that

n n

T(Z af | = ), o (T
o1 kak) 1ol k ak

since T is linear and commutes with translations. Since T has a

closed graph we now have f*g € D(T) and Tfxg = T(f*g).
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II. Generalized Multipliers

The model for generalized multipliers is provided by the L'
case. If T is a densely defined closed linear operator on L'(G), such
that T commutes with all translations, then Lemma 1. 8 implies the
domain D(T) is a dense ideal of L'(G), and Lemma 1.2 implies that
D(T) D C. If f € C with supp(f) = K, Lemma 1.3 allows us to choose
g € C such that g =1onK. This givesﬁ‘}:T/ﬁ*\g):@:ﬁf:
allowing us to define a function X on I' such that /T\f =af for each
f € D(T). In this manner we can identify the class of all densely defined,
closed, linear operators which commute with all translations on LI(G)
with a function algebra of multiplication operators on 3 (I).

There are some minor complications in attempting to copy the
same development for operators mapping from LP(G) into LYG). First
of all, for noncompact LCA groups we restrict our attention to
1 < p,q < 2 in order to have the transform algebra available. Second,
there is not usually a minimal dense submodule of LP(G) over L*(G)
available for 1 < p < 2. As an example, let G be noncompact, p = 2,
andy € T. LetM = {te LY@) N1*G)|f§) = 0}. Then M, is 2
dense submodule of L? over L', but

[\ m,={o}.

veT

To avoid this difficulty we could restrict our attention to operators T
with domain D(T) D C. This however would not be sufficient to

guarantee that we could compose operators. For example, consider
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L%(R), and the operator defined by Tt = o, l]f' This T does not
map C into C, and if we could find an operator S with D(S) = C we
could not make the composition S-T. We avoid this difficulty by
requiring the domain of the (p, q) ~ operator to contain Cp =
{t ¢ LP@G)|supp®) is compact}. We will begin by making some
observations on the Plancherel and Hausdorff-Young transforms.
Let1 < p <2, and 1/p + 1/p’=1. Then for f ¢ LYG)N LP@G)
we have T ¢ Lp,(l") and | |'f| ]p,S l lfl Ip’ Equality holds when p = 2.
We can extend the transform uniquely to all of LP(G), and the trans-

form is well behaved in the sense that the following hold:

Lemma 2.1: Letl< p <2, f€ LP(@G), and g€ L*G). Then
i) T=0ifff=0
ii) fag = 18
iii) Iff € LdG)for1 < q <2, p = q, then the transform of
f as an LP function and the transform of f as an LY function agree a.e.

on I'.

For a proof, see [22], Theorems (31.32), (31.27), and (31.26).

Definition 2.1: Let 1 <p < 2,

Cp = Cp(G) ={t € LP@G)|supp®) is compact}.

Note: We agree to make the usual identification of functions that agree
a.e., and under this equivalence find a representative function with com-

pact support. ‘Note also that C, is just C. We will continue to write C for
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C,. Finally, if G is compact then C= C, = Cp =C, =
{trigonometric polynomials} =
n
={f € C(Q) If(x) = Z ak(x,-yk), oy complex, y, € T}.
k=1

Theorem 2.1: Let1 < p< q <2. Then C, = LP*c, c, cc,cC C C,,

a

and Cp # Cq if G is noncompact.

Proof: If f € C, withK = supp(®), choose g ¢ C with g =1 on K. Then
f=1zg-= f/*E, and f = fxg E LPxC. Clearly LPxC - Cp’ so LPxC = Cp'
Next note that f € C,(G). Ifp=1, thenfée C C L*G) by Lemma 1. 6;
alsog € L*G). Ifp> 1, theng€ CC Lp’(G) by Lemma 1.6. In
either case f = fxg € C,(G) by Rudin [30], Thec;rem (1.1.6)d. Since
C, @GN LP@G) ¢ LYG), we have f € LY(G), and Lemma 2.1 (iii) gives
fe Cq“

To show that the containment is proper for noncompact G, let
h € C with h positive real, h(0) > 1, and h(x) =h(-x) Vx€ G. LetVbea
symmetric, precompact neighborhood of 0 in G with lh(X)l >1 for x € V+V.
Since G is noncompact there is a sequence {an}:_’__ 1 of points in G such
that (V +a ) N W+ a ) =¢forn = m. Let

o0

t= Z l/nl/p Xvia
n=1 n

Then for 1 < r < o,
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Iflr = fr = Z, l/nr/p XV+a ’
n=1 n

and

f |f(x)|r dx = E 1/nr/p (V).
G n=1

Hence f € LYG) - LP(G), and

o0
1/p
hxf = > 1/n hxx
: Via,

Also

h*xy(®) = [ h-y)xy(y)dy
G

v v v

We claim h4f ¢ LP@Q), i.e.,

[ |hat(x) |Pdx = .
G
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To see this, note

o 1
Y 75 (xy)y ([Pax

[ |nxt) [Pax = [ |
G n=1

G

> [ Y L), @IPax
G n=1 n

\Y%

=
Loz Qe
1 =z

Lltexy), @IP dx
1 n

n

J 3 lmx)@IP ax
G

\Y%
o1z
=

f (h*xv(x))p dx
A"

i
[y

n

1l
o1z
=1

‘{ ( ‘{ hx(y)dy)pdx

11
[y

n

N N
-1 1 1
> )z [JlouWPdx= ) = uw)P
n=1 Vv n=1

This holds for any N = 1, so

f Ih*f(x) lp dx = eo,
G
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Definition 2.2: Let 1 < p,q < 2.
Xp q° {X measurable on T IAf € gq(r‘) for each f € Cp}' Ifp=q,
b .

we denote X by X

p,qd p°

Theorem 2.2: Letl<sr<sp<2, 1<q<s <2, Then)%)qcx 5

. % 2 a
Proof: Let) € X o, and£€ C.. Thenf € C, and ¢ FYT). But
K= supp(f) is compact, and supp(xf) C K. So Af e éq’ and by Lemma

2.1 (iii) and Theorem 2.1, xf ¢ €_ ’}S(I‘). Therefore A € X _.
s = r,s

Definition 2.3: Let 1 < p,q < 2, andX € Xp a
b
Jf’q ={fe LP(G) I)\f € 'J-’q(I‘)}. Again we will write J}f for J% P

p,q
Note that J57 = D Cp‘

Definition 2.4: Let1 <p,q <2, andx € X_ . T, = T % is the
P,a° A TRA
operator with domain JE’ q, range contained in Lq(G), defined by the

equatioh 'f\f = Af for each f € g2 4 = {T
A x o %p,q U e X, o

Theorem 2.3: Let 1l <p,q <2 and T, € Xp,q‘

closed, linear, and commutes with convolution by elements of M(G).

Then T, is (p, q) -

Proof: Iff, g ¢ J;i’ q, and o, B are complex numbers, then

/\ /\) - - /\ . .

Tx(af + Bg) = Maf + Bg) = et + BAg = oT,f + BT, g, so T, is linear.
=Y TN A p,q

If p € M(G), then Tyfxp=MMp =rMxpu, sofxp €J37 and T, fxu =

Tx(f*u).

Suppose {1 } ¢ 3> 9, t € LP(G), and g € LI(G) such that
f L5t and Txfn_q_)g. Let h € C with K = supp(f)). Then f_+h,
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teh € C < IR Y, and | A6 - @811, < | WRE - B 1+ [[Bod, - I,

SR AT TIN XA

L3 4 -~ -~ -~

Now f .E.; f, so there exists a subsequence £ such that fn -1 a.e.
A~ -~ ) k

onT. Alsoh € C C Cp’ so Ah € Lq'(l"), and Ah is finite a.e. on I\

Therefore Ahf
Dy

~ AAf a.e. on I'. But XBE 95 13, so there is a sub-
N " AA . k ~ A s
sequence fnk such that thnkm -~ hg a.e. on I'. Therefore hg = Ahi
m , ; v :

a.e. on I", Since h € C was arbitrary, g = Xf a.e. onTI, so

| g - af] lq’ = 0. Therefore f € J}f’ a4 T,f =g, and T, is closed.

Corollary 1: Jg’ 9 is a translation invariant subspace of LP(G) and

TX commutes with all translations.

Corollary 2: T, is bounded iff 7% = LP(G).

Proof: Closed graph theorem.

Corollary 3: T, maps Cp into Cq.

Theorem 2.4: Let X € }A(p’q and h € C. Then )\ﬁ € ﬁp,q and TAﬁ is

(p, q) bounded.

Proof: Letf e LP(G). Then h*f ¢ Cp. Since X € f(p L know
3
i S SN P, 4 _1b v ther -
ThAT = ABT € Cy Therefore J, »" = L (G) _D__Cp, soxh € X, . Further

more, by Theorem 2.3 Tyh is (p, q) closed, so the Closed Graph Theorem

implies T, p~ is (p, q) bounded.

Definition 2.5: Let A be a function on I"'. ) has property P locally on T

if A Khas\property P for each compact KC T
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Examples of local properties we shall consider are locally measurable,

locally L°°, and locally the transform of a bounded (p, q)-multiplier.

Theorem 2. 5: f(p q is the set of all functions on I'" which are locally
2

the transform of a (p, q)-multiplier.

Proof: Suppose that A is locally the transform of a (p, q)-multiplier on

I Letfe Cp with K = supp(f). Then there is a (p, q)-multiplier T such
- & N f\

that A = Ton K. Then Af = Tfon I, and Tf € L*(G). Therefore,

P 95c, andx € X

P’ p,q’
A€ X and K C I is compact, choose h € C suchthath=1
P, 4 /\“

on K. Then A = xh = Ty on K, soonK X is the transform of a ('p, q)

multiplier.
Corollary 1: Letl sq <p <2, and G noncompact. Then f(p q” {0}.
- My

Proof. From Gaudry [17], Sec. 5, we know that the only (p, q) multiplier

for ¢ < p is 0 when G is noncompact.
11 2: tl<p<qgq<2 ThenX CX.
Corollary Le pP<q Then Xp _Xq

Proof: This follows from the fact that an Lp—multiplier is also an L-
multiplier for 1 < p <q < 2. (See Larsen [24], Corollary 4.1.3, page
97).

Corollary 3: Let T be a (p, q)-multiplier. Then T € Xp a
b

Proof: T is locally the transform of T, which is a (p, q) multiplier.
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We call Xp q the set of generalized (p, q)-multipliers. Note
2

that every multiplier is also a generalized multiplier by Corollary 3

above.

Theorem 2.6: Letl <p,q <2, and T be an operator with the following

properties:

(1) the domain D(T) satisfies C,, < D(T) C LP

(2) the range R(T) c 1.4

(3) T is (p, q) closed, linear, and commutes with translations
by elements of G

(4) C X T(C) is dense in C_ X T(Cp).

Y

Then T € Xp, q

Proof: By Lemma 1.8 D(T) is a module over Ll(G) and T(f*g) = Ti*g
for each f € D(T) and g € LI(G). Let K C I be compact and h € C such
thath =1 on K. Let) = Th on K. Ifge€ Cwithéz 1 on K, then
Th = ﬁé =@ﬁ =/TE, a.e. on Kby Lemma 2.1. So A is well defined
as a function in Lp’(K), and we can extend X to a well defined, locally
Lp’ function on I'. X is measurable since it is locally measurable
(see Hewitt and Ross I [22], Theorem (11.42)). Iff € C, and h € C with
h=1o0n supp(f), then Tf = m) - Thf =2f. 1ffe Cp, th'en we can

p

a

fi h d Ti =2f > Tf But
ind f, ¢ C such that f,—> fand Tf,— T, so Tf, =af ,— Ti. Bu

-~

thei is a subsequence fnk so that %nk > f, a.e., SO Afnk - )Cf, a.e.,
or Tf = Af. Therefore JE’ 45 Cp and T =T, on C;. Now we can use
Theorem 2.4 to conclude T = TA’ since for each h € C i is (p, q)
bounded, and Tf*h = T,pf for each f € D(T) or Jg’ q,
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Theorem 2.7: Letl <p,q,r,s <2, andq <r. Letx, ¢ f(p qand
b
T € X .

A, € Xr, 5* Then M, € Xp, g SO TAQT A, D, S

A

Proof: Since Cq c C,., we have for each { ¢ Cp, Al'f € C., so

Azhlf € Cgor J)\;Al 2 Cp.

Theorem 2.8: Letl <p < 2. Then Xp is a commutative algebra.

then A\, = A0, € X, SO

Proof: By Theorem 2.7, if A, A, € X p

Y

T = T, =T .
ANy Thl A, A, € Xp
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III. Generalized L' Multipliers

This chapter contains a deeper study of X,, the generalized
multipliers on Ll(G) . This algebra is the prototype of generalized
multipliers, and because of the structure available in LI(G) we can
avoid many of the difficulties encountered in Xp for 1 <p =<2. Also
from Corollary 2 of Theorem 2.5 we have X, _C_Xp.

One of the areas of current research on multipliers is in Segal
algebras, which are subalgebras of Ll(G) which are Banach algebras
under their own norms and also Banach modules (i.e., f € A,

g € L'(G), then t*g € Aand ||f*g|l , < |I£|[5|]g|]). These algebras
are usually taken to be dense. The virtue of studying X, is that
multipliers on (dense) Segal algebras are all in X,;, and inherit all of

its structure. We proceed forthwith.

Theorem 3.1: Let T, € X;. Then X is continuous.

Proof: Lety € I'. Since T is locally compact, there is a neighborhood

V?’ of y such that Vy is compact. Choose g € C such that é =1 on V,y .
1 " 1,1 2N .

T,g€ L (@), T,f =Af for each f € J,”’", so T,g =A. So A is con-

tinuous on Vy and A is continuous at y. Sincey € I is arbitrary,

A is continuous.

Theorem 3.2: Let T, € X and f € C. Then Txf(x) = A(y)f(y)(x, y)dy.
T

Proof: By Corollary 3 to Theorem 2.3, T,f € C. Since A is continuous
and f has compact support, Af € Ll(I‘). The inversion theorem can be

applied to give the above formula.
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Theorem 3.3: Let T be an operator with domain D(T) a dense ideal of

L'(G), range R(T) [ Ll(G), such that f ¢ D(T) and g € L'(G) implies
f*g € D(T) and T(f*g) = Tf*g. Then T is a restriction of some element

of X,.

Proof: Since D(T) is dense, D(T) DC, and we can apply the con-
struction in the proof of Theorem 2.6 to get the function A on I" with
the property that Tf = 2 for eachf ¢ C. If g€ D(T) and K C I'is
compact, let h € C such that h=1onK. Then on K, {I‘\g = E‘\gﬂ =

P I -~
Thg =g = T,g. Therefore Tg = T,g and T is a restriction of T, .

Definition 3.1: (Generalized Strong Operator Topology). Let Tbe

the set of all operators T with domain D(T) a dense ideal of Ll(G),
range R(T) C L'(G), such that T is closed. A net {Ta [a € A} ET
converges to T ¢ i if | ITaf - Tfl ll -~ 0 for each f € C. The topology

determined by this convergence is the generalized strong operator

topology on L1 .

Remark: The generalized strong operator topology extends the strong

operator topology to unbounded operators.

Theorem 3.4: X, is closed inTunder the generalized strong operator

topology, and de(Ll(G)) N X, is closed in Bdd(L'(G)) under the

strong operator topology.

Proof: Let T GT {T a} € X, T, — T in the generalized strong operator
topology. Letfe¢ C, and g ¢ L'(G). Note that C C D(T) and that f and
f*g ¢ C € D(T). Lete > 0. Then there is an @, € A such that o > @,

implies that | [T t-Tf]], < /2 |]g||,. Also there is an a,
such that o = a, implies HTa(f*g) - T(t*g) | |, < /2.



-95-

Then

| IT(E*g) - T*g ||,
< ||T@*g) - T (E*e) ||, + ||T t*g - Ti*g ]|,
< |Irt*e) - To(*e) [+ [Tyt - TE] ] g ] s
< €2+€/2=€.

Therefore, T(f*g) = Ti*g.

By Theorem 3.3 T is the restriction of some T, € X,. Also
T =T, on C, and T is closed. Therefore by Theorem 2.6 T ¢ X, or
T = TA'

If the T, are all bounded, and T € Bdd(L'(G)) such that for each
fe Ll(G), T,f ——1—>Tf, then T commutes with convolution on all L'(G),

and T = T, on all LYG), so Bdd(L'(G)) N X, is closed under the strong

A
operator topology in Bdd(L").

Remark: It is not true that Bdd(L'(G)) N X, is closed under the gen-

eralized strong operator topology. An example follows the next theorem.

Theorem 3.5: Lety ¢ f(l, and A analytic on a neighborhood of A(T"). Then

-~

Aoxe X,.

Proof: We must show JZ 4 2C. So let f € C with K = supp(f). Let
ot 2N

g € Csuchthatg=1on K. Then A= Txg on K, and Ao = AGA\g) on K.

By the Wiener-Lévy theorem (see Reiter [28], Chapter 6) there exists

h € 1LY(G) such that h = A(?A\g) on K. So hi =T*f= A(T,g)f on I.

Therefore Ao X € 5(1.
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Corollary 1: T, € X is invertible iff A is never 0. In this case

?-\1\; 1/&'

Corollary 2: Let A be entire and T, bounded. Then T Ao 1S bounded.

Proof: Suppose
(o0}
AlZ) = Y @z  foral z
k=0

Let

k=0

Then T ¢ de(Ll), T is the norm limit (hence strong operator limit)
of elements of X,, and by Theorem 3.4 T¢€ X;. Also

0 o0

~ N

T=73 5% = 7 aaf-a0x
k=0 k=0

SO T:TAOA..

Remark: It might be conjectured that if T, is bounded and A analytic,
with A(T") bounded away from the singularities of A, that T Ao is
bounded. However, it is known (see Rudin [30], Theorem 6.4.1) that
for G nondiscrete, and z, any complex number, there is a p € M(G) with
n (1) c [-1,1] and z, in the spectrum of . Therefore p - z, can be

bounded arbitrarily far away from 0, but J, iz * LYG).
o]
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Definition 3.2: Let X be continuouson I'y andf €C. F £ is the

A

function defined on G by

Fy ¢® = Janin e, nay
r

Theorem 3.6: X ¢ 5(1 iff Fy ;€ L'(G) for eachfe C.
2

Proof: If A € X,, then F, , = T,f€ L'(G). I F, . € L'(G) for each

-~ /l\ A”f -~
feC, thenF, , =AfeL (G) for each f€ C. So Jy2C, and A€ X,.
3

To close this chapter we characterize the bounded multipliers

on Ll(G). To do this we first need Bochner's Theorem, as stated in

Rudin [30], Theorem 1.9.1:

Theorem 3.7: (Bochner's Theorem). The following are equivalent:

(1) X = where p € M(G) and ||u|| < M.

(2) A is continuous on TI', and

m m
12 e ror | s MY el |
k=1 k=1

for each choice of ¢,..., Cm complex and y,, ..., ymE I.

Theorem 3.8: Let X be continuous on I'. The following are equivalent:

(1) x= ﬁ, where u ¢ M(G) and Hu H < M.
(2) T, € X,, and ||T, || < M.
(3) Fy ; €LY(G) for each £ € C, and |[F, |[, <M]]t]],.
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Proof: (1) = (2): If A = ;1., define T : LYG) - L'(G) :f » fxu. Then
/\ /\ ~n -~ 1 ‘

Tf =fxpu = uf =Af for eachfe L'(G), so T =T, and ||TAH =
Tl < [le]] < M,

(2) = (3). If T, € X, then A € X, and by Theorem 3.6 F, . € L(G)

, ALt
for each f € C. Also HFA’le = [rg [l < [Ty || el < sl Je] ],
(3) => (1): Using the inversion formula

MDED) = J F g0 (-x,7)dx
G

for each f ¢ C.

Let cy,..., Cm be complex numbers and v, ... »Ym € I"'. Then for
eachf ¢ C, ‘
m m
| 5 ¢ M in) | = | Y ¢k J Fx,f(X) (-x, ‘}’k)dxl
k:]_ k:]. G
o m
<J | ¢ (=%, 7) | IFA’f(x) |ax
G k=1
m
< 1Y e txm) o HFy gl s
k=1

m
= 11D exbm) o [Fy ¢l
k=1

m

k=1
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Let € > 0. By Lemma 1.3 we can choose f ¢ C such that f(yk) =1,
k=1,...,m, and ||[f|];, < 1+€. So

m m
|2 e ) | < M| T epmd [ [ET L
k=1 k=1

m
< MH Z ck(x,yk)Hw 1+ ¢€)
k=1
Since € is arbitrary,

m m
|2 ey | < M|} e %) e 5
k=1 k=1

and by Bochner's theorem A = ;1, where u € M(G) with [ [u , ’ < M.

Corollary: X, is the set of all functions which are locally the transform

of a finite regular Borel measure on G.
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IV. Generalized L’ Multipliers

This chapter contains a complete characterization of X,, the
generalized multipliers on L?(G). The main result is that f(z is the set
of all locally L% functions on I'. A function X is locally L°°'on rif
AX, € L°°(‘1") for each compact subset K of T

The cornerstone of this chapter is the Plancherel Theorem,
which states that the Fourier transform is an 12 isometry when
restricted to L'/ L2, and since L'\ L? is dense in L?, it can be
extended uniquely to an isometry from L?(G) to L*(T). The extension
is called the Plancherel transform, and under this transform L*(G)

and L%(I) are isometrically isomorphic.

-~

Lemma 4.1: Letf,g € L3(G), and h € L}G). Then (f,g = ({, &, and

N aa
Txh =

Proof: The first equality holds because the inner product in a Hilbert
space is completely determined by the norm. The second equality holds

for all € LYG) N L*(G), so it holds on L*(G).

Definition 4.1: Let A be a complex valued function defined on I'. A is

locally L™ on T if AX, € L™(I) for each K ¢ T', K compact.

Lemma 4.2: Let 2 be locally L™ on I. Then X is measurable.

Proof: Since XX, € L%(T) for each compact K, 2 g is measurable for
each compact K. Then X is measurable by Hewitt and Ross I, Theorem

(11.42).
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Theorem 4.1: BAd(L*(G)) n X, = L™(T).

Proof: If x € L7(T) then A € 5(2 and J;

have HT)Lsz: Hﬁllz < Hk”oo“fllz: HAHwaHZ, S0 HTAH < H”'oo
Let T, € Bdd(L*) A X,. Suppose A £ L™(T). Then there is

= L’(G). Also for f € L*(G) we

A
K C I, K compact with #(K) > 0 such that x| = HT;\H on K. Let

1 A4
—r X
mKz E

“Then f ¢ LG), ||£||,=1, but

2 1
HTAszzz “AfHZZ =~ m(K) f lAXK|2d'}’> HT;\HZ s
r

a contradiction.

To show | |>\| Ioo < | ITAI |, let € > 0. Then there is a com-
pact K, € T' with 72 (K,) > 0 and [x| > |[x| lm- e on K,. Then

(I ]]o- e mE) < [ pedfdy = [ rox, &) [Fay
K, . T

v
= [ 17, % 0 Pax = |1, X [
G

%
< [Ty LB LHx g 2= Ty [P " = Ty [P ). so
| |x||°o~ e < | ITXI |, and since € is arbitrary, | 2] IOOS I IT)\{ .
Combining with the previous result gives l l)\l |°°= { ITAI {, SO

X, N Bdd(L?) and L™(T) are isometrically isomorphic as Banach spaces.
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Corollary: Let T, € X;, T, bounded. Then the spectrum of T, is the

closure of the essential range of A.

Theorem 4. 2: 5(2 is the set of all locally L” functions on T.

Proof: This follows from Theorems 4.1 and 2.5.

Theorem 4.3: X, is a commutative, self-adjoint algebra containing

X,, and the containment is proper if G is noncompact.

Proof: We have already shown that X, is a commutative algebra con-
taining X,. If G is noncompact then I' is nondiscrete and there are
noncontinuous functions in L°(T). Since L™(I) € X, and every
A€ 5(1 is continuous, the coptainment is proper.

%,. ThenX € X, andJ,? =J5. Alsoiff, g € J,7,
A A ~ -~ A~ -~ -~ /\
then <T7tf’ g) = (T)\f’ gy = (A, g) = {, xg) = {, Txg> = (, Txg>-
Therefore T, * = Ts-.

Let A €

Corollary 1: X, is a normal algebra, i.e., TATA* = TK*T)\ for each

T, € X.

" Corollary 2: T, € X, is unitary iff AX = 1.

Corollary 3: T, € X, is Hermitian iff A is real. T, is skew

Hermitian iff A is pure imaginary.

Corollary 4: T, € X is positive definite iff A = 0 and A = 0 only on a

set of measure 0.

Corollary 5: T, € X, is invertible iff A is locally bounded away from O.
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Proof: If 1/ is locally L™ on T then 1/x € 5(2 and TATI/-y =1. 1/x

is locally L”on T iff A is locally bounded away from 0 a.e.

Remark: Note that TA € X, is invertible iff A is never zero, while

T, € X, is invertible iff A is locally bounded away from zero (except

A
on sets of measure 0). Since X, C X,, this seems to conflict, but recall
that every function in X, is continuous, so A never zero implies A

locally bounded away from O.
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V. The Compact Abelian Case

Throughout this section we will take G to be a compact Abelian
group. Haar measure m on G will be normalized so that m(G) = 1.
Then the dual measure 9+ on I" is counting measure, i.e. ,ﬂm({O}) =1.
T is discrete, so C = Cp = Cq = C, = {trigonometric polynomials} for
l <psq<2. Alsoby Lemma 5.1 below we have the Fourier

transform available for all the spaces LP(G), 1 <p < =, and we can

study all generalized (p, q) multipliers for 1 < p,q < «.

Lemma 5.1: Let1 <p <q < o. Then LYG) € LP(G) and if f ¢ LYG),

el < 1l
Proof: This is a fact contained in any good real variables book.

Lemma 5.2: Letf € C. Then

f(x) = Y &)
y €T

Proof: T is discrete, so compact subsets are finite subsets. There-
fore the sum above has only a finite number of nonzero terms and
is absolutely = convergent. If ¥, is a character on G, then A ! |1 =1

since m(G) =1, so the sum above is in LY(G). Finally
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J %,7)(-x,)dx = J (x, 7, - Ydx
G G

';’1 (»

1if y=19,

0 otherwise

So both f and

Y T,
ver

have the same Fourier transforms, and equality holds.
Remark: Note that we have the Fourier transform available for Lp(G)

for 1 <p <w. Our definitions of X D, q
p Xp’ Q JA , and Xp, q now make

sense for 1 < p,q < o, and from now on we assume this extension.

Theorem 5.1: 5&) q" 1T - {all complex valued functions defined on T}.
b .

Denote X
b

o qbefor every p,q, 1 <p,q < .

Proof: Let A be a complex valued function defined on I', and f€ C.
Let

g® = Y AN,
veT

Then g € Candézkf, soJli’qQC and A € fip qQ

5.2: Letl <p,q <o, and T, €
Theorem e P,q and T, Xp,q

(p,q) closed, and commutes with convolution by elements of M(G).

Then T is linear,
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Proof: If f,g € Jg,q’ a,B are complex, and u € M(G), then

)\(o’zf+ Bé) = anf + Brg and Afﬁ = )\@, so Th(af+ Bg) =

aT,f + BT,g and (T}\f)*u :Th(f* w.
Suppose {f } ~y 39, £ € LP(@), g € LYG), and 1 Py g,
T,f, 3> g. Leth€ C. Then
l ITA(f*h) - g*h[ Iq
< ||T,(E* h) - T, (£, *h) | !q+ ||T\f, *h - g*h| lq
< [myhlly Ty -tll+ Tl Tmyg, gl
<l Iy -t 11+ 1Ll [1Ty-lly =0
asn — ©. S0 Th(f*h) =gxh or Afh = éﬁ for each h € C. Therefore Af:é,

sof € Jl)i’q, T\f =g, and T, is (p, q) closed.

Theorem 5.3: Let 1 < p,q < =, and T a (p,q) closed, linear operator

with domain D(T) a translation invariant subspace of LP(G), D(T) 2 C,

range R(T) C LYG), such that T commutes with all translations. Then

TEXp,q'

Proof: Lety € I'. Define A(y) = T(-,¥)(»). Then T, € X @ and on

CT-= TA' Let f € D(T), and{fn} C C such that fn —P——> f. Then for
he C, fxh > fxh, and Tf, xh 4> Ti«h, since ||Tf +h - Tixh ||,

< [|Tnlly g =21, So Tyfyh L5 Ttrg, and since T, is (p,q)

closed, fxh € Ji)’ % and Tx(f*h) = Tfxh. Taking Fourier transforms we
. N a A\

get AfTh = Tfh for eachh € C, or Mf=Tf. Sof¢€ JE’q and T,f = Tf.

Therefore D(T) EJ)F:’q and T =T, on D(T).
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Now suppose { ¢ Jg’q. Using Lemmas 1.1 and 1.6 we can find
p q
a sequence {h } C C such that fxh  —~> fand T,fxh, —> T,f. But
T(f*hn) = Tk(f*hn) = TAf*hn, sof € D(T) and Tf = T,f. Therefore

Jﬁ’q =D(T) and T = T,.

Theorem 5.4: Let1l <p,q < <, and T, € Xp,q‘ Then T, is (p,q)

bounded iff | |F sM||f for each f € C and some M = 0.
A,fllg p

Proof: Note that

Fp 1® = Y M0y = i)
vell

If T, ¢ Bdd(p,q), then HFA,qus Ty ]| IlqufOr each f € C.

pP;d
If T, is (p,q) bounded on the dense subspace C, then T, is (p,q)

bounded since it is (p,q) closed.

Theorem 5.5; Let A € 5(

(1) Ifx¢ L™(I) then T, £ Bdd(p, q) for any p,q, 1 <p,q < .
N

(2) If € M(G) then T, € Bdd(p,q) for 1 <q < p s<=.
(3) If x € LY(D) for some r, 1 <r <2, then T, € Bdd(p, q) for

r spswandl <q <=,
(4) (Larsen) If A € LY(T) for some r, 2 < r < « then TA*? Bdd(p, q)

2
for 1 <q < i'—-%' <p <,

(5) Ifxe L°(T) then T, € Bdd(p,q) for 1 <q <2 <p <=,
A

Proof: (1) If A ¢ L™(X), then for each n there is a vy € T such that

lx(—yn)] >n. Letf =(-,¥) (i.e., f(x) =(x,7)). Thenf €C, and
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| ITAnt lq = | Ik(yn)(- 'Yy | lq = !A(yn) | > n, but | lfn | ’p =1 for every
p,l<p<w. SoT,¥¢ Bdd(p, q).

— -
(2) I x e M(G), then A = p for some u € M(G) and T\t =fxp for each
f € LP(G). Then from Lemma 5.1 we get for q <p that | |T,f|| q"
el I, = VeI il < el 1l |, s0 Ty € Baato, g and

(3) Letfe C. Then for each x € G,

T | = [Fy (@] =Y AW |
: yel
- | /v .
©3 hoiols (z . rr) " I,
veTl yel

<|llp el

using Hélders inequality and the Hansdorff-Young theorem. 'fherefore
T,ie L@ and |[Tyf < [ el |, andif 1 <q < «, and
eep< o, |Imtllg < el I Ll < 1L Vel
Therefore by Theorem 5.4, T, € Bdd(p, q) for 1 <q < * and

r <p < . Nowfor any g € U(G), |lg||, =1lim Hg||p

So in particular HT)\qu < ||l llgll, for every q, 1 < q < =,

and we have IITAgfIm < H)LHr Hg”r for each g ¢ L"(G). There-
fore T, € Bdd(p, «) for r <p < oo,

Finally, if h € LP(G), forr <sp <, and1 <q < =,

b g < HTyb o < T [l < T TR so
T, € Bdd(p,q) and HTAHp,q < [[A]],-
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(4) (Proof due to Larsen). Lett=§_£2-. Then t > 2, and

t 2 t s 2 _ 2r
1YG) € 1%(0G). Letfe LYG). Theni e L¥(I). Lets =% and
a@=r/2+1. Thenl1l< s< 2, 1< a< =, and

. 1/ . N 1/a’
Y @i |® < (2 |x<y>ls") ¥ (2 () IS“) N
vel

y el yel

1/ . e \1/
= (Z ) lr) ’ (Z lf(r)l) Y
y el yell

Therefore Af € LS(I‘), and by the Hansdorff-Young theorem there is

’ - - -
g € L% (G) such that g = Af. But s’ = I—,Z:%— =t, and Af € Lt(G), or
T,f € LYG). Since T, is (t,1) closed and 3t =140, T, € Bdd(t,1)

= de(i,—zj%, r—z_%—). Then by arguments similar to those in part (3) of

. 2
this proof, T, € Bdd(p,q) for 1 <q SF-_rZ' <p < o,
(5) By Theorem 4.3 T, € Bdd(2,2). Soifl <q <2 <p =<,

TA € Bdd(p, q) by arguments similar to those above.
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