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Abstract

Investigations of optical processes for laser cooled and trapped atoms are described.
Fluorescence from Cs atoms in a magneto-optical trap is detected under conditions of
very low atomic density. Discrete steps are observed in the fluorescent signal versus
time and are associated with the arrival and departure of individual trapped atoms.
Histograms of the frequency of occurrence of a given level of fluorescence exhibit a
series of uniformly spaced peaks that are attributed to the presence of N = 0,1,2
atoms in the trap.

In addition, numerical absorption and emission spectra for three-level A, =, and
V systems under intense radiations are calculated. Absorption spectra for a A system
is used to explain the probe-wave amplification and absorption spectra recorded for
Cs atoms cooled and confined in a magneto-optical trap, in which novel spectral
features of narrow frequency widths with single-pass gain exceeding 20% are observed.
The consequence of the optical gain is demonstrated to lead to negative radiation
pressure, which is investigated together with other mechanical forces in the trap.
Various alternative trapping schemes in three-level and two-level atoms are proposed
as possible means to compress an atomic sample and demonstrated for a two-level

magneto-optical trap.
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Chapter 1 General Introduction

The past several years have witnessed a phenomenal pace of achievement in the
field of laser cooling and trapping of atoms,[1] with the powerful techniques that
have been developed now finding a variety of scientific applications in high-resolution
spectroscopy, precision measurement, atomic frequency standards, lithography, as
well as in medical and biological sciences. Among the numerous opportunities this
technique created, two are of particular interest for the field of Quantum Optics,
which are the main constituents of this thesis.

The first of these concerns the capabilities for producing optically dense samples
of cold atoms with number densities greater than 10®/cm?® and temperatures below
100 xK.[1-5] Despite the substantial development in atomic beam technology, where
laser beams intersect well-collimated atomic beams in a perpendicular direction and
with Doppler broadening (in the longitudinal direction) thus reduced to a minimum,
the second-order Doppler broadening (or, time dilation, which is due to the relativis-
tic Doppler effect) and transit broadening (time-of-flight broadening) still hamper
spectroscopists in reaching ultra-high resolution. These effects can be eliminated or
greatly reduced in an atomic trap because of their small residual thermal velocity
(12 cm/s for Cs atoms at 120 xK) and virtually infinite confinement times compared
to the transit time of atomic beams.

The second topic concerns the possibility of isolating a single atom that is spa-
tially localized with small kinetic energy. Trapping of a single ion was first reported
in 1980.[6] A variety of fundamental phenomena have since then been observed in this
system, such as quantum jumps[7], photon anti-bunching[8], and cooling to zero point
energy.[9] Beyond this work with ions, single localized molecules have also been stud-
ied optically by matrix isolation[10] and by near-field microscopy.[11] But isolation of

a single neutral atom has not been, to the best of our knowledge, accomplished before
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this work! because the interaction of the electromagnetic field with neutral atoms is
usually much smaller than that with charged ions. Hence our effort in this thesis to
isolate a single atom[13] represents an important extension of the work on single ion
and molecule to neutral atom regime.

Although seemingly distant, these two topics are not unrelated. Our focus here
is to study quantum phenomena in a sample consisting of only a single atom. This
includes excitation of a single atom by non-classical light and producing non-classical
states and light sources from the single atom itself. The detailed characterization
of a multi-atom trap should prepare us well for this ultimate goal. For example, in
the spectroscopic experiment described in this thesis, which employs coherent light
to probe a trap containing more than 10° atoms,[14] we have found narrow disper-
sive resonances which are below the natural linewidth of the trapping transition. This
suggests that instead of a two-level system, the atoms should be treated as multi-level
systems under presence of complex Zeeman splittings and light shifts in the ground
and excited states. Of course, such a treatment is also required for a trap containing
only one atom. Our subsequent theoretical study of absorption and emission proper-
ties of a three-level atom represents an initial attempt to provide such a treatment,
albeit in a (maybe over)simplified manner. There has also been a serious attempt
in our progress toward a single-atom trap to adopt a multi-level excitation scheme
(6512 = 6P5 — 851/2 in Cs) in which the wavelength of fluorescence detection
[(8S1/2 =)7P3)2 — 651/5] is separated from that of excitation. This approach would
overcome the problem associated with the background scattering of the excitation
laser which is difficult to eliminate if the same transition is used for both detection
and excitation. More closely related to our exploration of non-classical light and
single-atom trap, later in this chapter we will see an example involving a three-level
atom in a high-finesse optical cavity. This system exhibits a variety of interesting
phenomena, (which are decidedly non-classical,) including the possibility to build a

“single-atom laser” with sub-Poissonian photon statistics.

LAt the writing of this thesis, single-atom trap is also reported in cryotraps, see Ref. [12].
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Our motivation to study the interaction of non-classical light with a single atom
comes from the tremendous progress on both theoretical and experimental fronts in
the understanding of the generation and application of non-classical light in recent
years. On the experimental front, recent progress in cavity quantum electrodynamics
and non-linear optics has made it possible to provide the non-classical light sources for
our exploration.[15] For example, in a related research project, a frequency tunable
squeezed light with continuous tunability over a range of 2 GHz has been developed
and employed for spectroscopic measurements of Cs atoms for sensitivity beyond the
vacuum-state limit.[16] In another related program, non-classical light which exhibits
both photon antibunching and sub-Poissonian photon statistics has been produced in
a beam transmitted through a collection of Cs atoms strongly coupled to a high-finesse
optical cavity.[17] Since this is a well collimated Gaussian beam, it is suitable for a
variety of spectroscopic experiments. On the theoretical front, research indicates that
the properties of fundamental radiative processes of an atom, such as photon statistics
and width of fluorescent spectrum, can be altered by coupling to a non-classical field.
It is well known that an optical cavity can change the characteristics of atomic radia-
tion by modifying the atoms’ external environment, and thus restricting the reservoir
modes the atoms emit into. Two examples observed are photon antibunching and
normal mode splitting.[17, 18] For an atom in free space, Gardiner has considered the
case in which the atom is embedded in a squeezed vacuum. In his landmark paper,[19]
Gardiner pointed out that the spontaneous emission from this atom is characterized
by two transverse decay rates instead of one for ordinary vacuum. They reflect the
enhanced and diminished fluctuations of a squeezed state relative to the vacuum field.
The resulting sub- and super- natural linewidths have subsequently made ubiquitous
appearances in diverse problems of optical physics. There also appear to be exciting
possibilities for spectroscopy with other kinds of non-classical fields, although the
theoretical literature is not as extensive in this case. For example, Vyas and cowork-
ers[20] have revisited the problem of resonance fluorescence from a single atom where
now the atomic excitation is provided by antibunched light (albeit generated from a

squeezed source). She showed that both the fluorescence spectrum and photon statis-
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tics of the atom are significantly modified in contrast to coherent excitation. The
spectrum of the scattered light can be narrower or broader as compared to that of
coherent light excitation depending on the bandwidth of the squeezing. Though the
fluorescent light still exhibits anti-bunching for short delays, for large delays, how-
ever, they can exhibit strong bunching. More generally, one might expect a variety
of multiple photon process to be sensitive to the (non-classical) photon statistics of
the excitation source.

Of course, all these experimental prospects rely heavily on the strong coupling
of the atom to the non-classical field. For example, to observe resonance fluores-
cence excited by squeezed light, it is essential that the coupling of an atom to the
squeezed field dominates that of the atom to the ordinary vacuum. Because the field
distribution ¥(r) for a radiating atomic dipole covers a large fraction of the total
4m steredians solid angle, there is a basic mismatch between ¥(r) and the well-
collimated Gaussian filed u(r) generated by a typical source of squeezed light. Yet it
is precisely the shape W(r) which must be filled with squeezed light converging into
the atom if there are to be significant modifications of radiative processes below the
vacuum-state limit.[15] One approach to overcome this experimental difficulty is to
illuminate the atom by squeezed light in a beam of large numerical aperture. But
since this scheme inevitably involves strong focusing of the beam, preferably to the
diffraction limit where the waist of the beam is comparable to the wavelength of the
laser, the atom needs also to be localized to better than the optical wavelength. Al-
though this “Lamb-Dicke” regime is not likely to be reached in the magneto-optical
single-atom trap described in this thesis, it is possible to combine this work with
the technique of far-off-resonance trap[21] to achieve a better localization (Section
3.6). Besides this “brute-force” approach, other ways to achieve strong coupling in
the atom-field system involve subjecting the atom to a restricted space by placing
either a finite (as in the case of optical cavity) or infinite (as in the case of a plane
boundary[15]) boundary near the atom.

Apart from the atom as an optical sample to be passively probed by non-classical

light, it can also serve as an active media to generate non-classical sources, as for
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example, in the construction of a “single-atom laser,” which consists of a single atom
interacting with a single mode of an optical cavity. While at first glance this may seem
to be a beautiful toy from the playground of a quantum optics theorist and just an-
other example of a gedanken experiment, such a system does exist in the microwave
regime for highly excited Rydberg atoms,[22] and sub-Poissonian photon statistics
have been observed in this “single-atom maser.” In the optical regime, a series of
advances in the area of cavity quantum electrodynamics have propelled us into a do-
main of strong coupling between a single atom and a single mode of electromagnetic
field,[23, 24, 17, 18] but these investigations are hampered by fluctuations in the num-
ber of intracavity atoms provided by a conventional atomic beam. To compensate for
this shortcoming, our single-atom trap can be modified to overcome the unfavorable
geometry associated with the small volume of the optical cavity, either by reducing
the number of trapping beams ([25], [26], and Section 2.5) or by “launching” the
atom into the cavity via an “atomic fountain” technique.[27]. One recent proposal for
realizing the single-atom laser in the optical domain involves a three-level A transition
in a Cs atom.[28] This laser operates similar in principle to the Raman laser in Rb
atoms reported in Ref. [29]. The laser is pumped by the two-photon transition of
wavelength 883 nm between the ground state 6.5/, and common excited state 6Dy .
Laser transmission occurs at 918 nm between 6D5,; and the other low lying state
6P3/,. Theoretical study has shown that the intensity fluctuation of this laser should
drop well below the shot noise level even for a pump light with Poisson statistics.[30]
Of course, this effect can also be observed in multi-atom Raman lasers, but the single-
atom laser offers the possibility to generate photon number eigenstates (Fock states)
which are the platform for many gedanken experiments concerning fundamental con-
cepts of quantum measurement theory. Another beauty of the single-atom laser is
that the gain from one atom is enough to build up the laser field, this provides the
opportunity to directly observe the switching on and off of the laser when the atom
enters and leaves the cavity. Of course, the coupling of the atom to the cavity is again
essential in all these discussions, which severely complicates the implementation of

the proposed experiment.
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In addition to the single-atom laser, there are also opportunities for the study of
the quantized motion of the trapped atom itself. From this perspective, the atom is
viewed as a mechanical oscillator whose center of mass motion can be approximately
described by a damped harmonic oscillator in the trapping potential. In the regime
of strong underdamping, the quantized motion in the trap could in principle be re-
solved, leading to exciting possibilities for manipulating of the atomic dynamics at
the level of the wave function for the center of mass motion. A variety of fundamen-
tal experiments would then be possible, including the generation of squeezed states
for the mechanical oscillator[31, 32] and quantum nondemolition measurements of its
motion.[33] For a squeezed state, the uncertainty in position (or momentum) drops
below the value set by the zero point fluctuations of the oscillator. While squeezed
states have been produced for the electromagnetic field,[34] no such state has been
achieved for any other quantized system, including a mechanical oscillator. Indeed,
only in the work of Diedrich et al.[9] has it been possible to cool a bound mass (in
this case, a single Hg ion) to the ground state of the trapping potential (excluding of
course molecular systems, where notions of squeezing also apply.) It is also possible
to make quantum nondemolition detection (QND) measurements of the oscillator’s
motion.[33] For example, one might attempt to extract the precise energy eigenstate
of the oscillator without disrupting the energy itself but with an unavoidable back-
action which perturbs the oscillator’s phase. In more general terms, our investigation
would be directed toward the synthesis and measurement of novel quantum states for
the oscillator’s motion. Potential applications of this work would be in measurement
science and metrology.

Compared to these attractive future experimental perspectives, what follows is a
relatively humble initial attempt which hopefully would serve as a useful preparatory
work for future research. As previously stated, this work is part of and closely related
to a broad research program aimed at the study of quantum optics in non-classical
systems.[15-18, 23, 24, 35, 36] Following the two topics discussed above, this thesis is
divided into two principal parts. After introduction to some background information

on laser cooling and trapping (Chapter 2), the first part of this thesis (Chapter 3)
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deals with the trapping of a single Cs atom. We will show that the discrete steps

observed in the fluorescence signal from the trap are associated with the arrival and
departure of individual trapped atoms. In the second part (Chapters 4 and 5), we will
describe our spectroscopic experiment performed on a sample of Cs atoms contained
in a magneto-optical trap. Independent of its connections with our aim to observe
non-classical phenomena in single-atom systems, our work on trap spectroscopy has
its own importance. For example, the narrow gain identified in the probe spectrum
is the basis to construct a “cold-atom laser.”[37] Moreover, detailed spectroscopic
characterizations of the cold atoms can provide important new information about
the dynamics of the trap itself and can suggest new avenues for improved trapping
and cooling. The surprising result in the probe absorption spectrum prompted us
to develop more complex models for our trap. The simplest such model, based on
three-level A, =, and V systems, is presented in Chapter 5. The calculation of the
three-level absorption and emission spectrum also enables us to study the collective
behavior of the trapped atoms, and propose a trapping scheme in which the role of
radiation pressure is reversed. And finally, Chapter 6 is a summary for the whole

thesis.



Chapter 2 Theoretical and Experimental
Background

Laser cooling was first proposed by Héansch and Schawlow [38] for free atoms and in-
dependently by Wineland and Dehmelt[39] for trapped ions. The physical mechanism
that underlies these proposals is the Doppler effect, and this kind of laser cooling is
often called Doppler cooling, whose theoretical limit for the lowest attainable tem-
perature Tpoppler 1s called the Doppler limit and given by kpTpoppler = A7y ,[40-42]
where 27, is the natural linewidth of the transition. Doppler cooling was first demon-
strated for trapped ions in 1978.[43, 44] Since then there has been a virtual explosion
in the field, beginning with the observation of optical molasses[45] and continuing
with magnetic[46] and optical[47] traps for neutral atoms. In 1987 a trap based
on the spontaneous light force resulting from the interaction of the atom and near
resonant optical field[2] emerged and quickly proved itself to be a powerful and conve-
nient means to cool and trap neutral atoms, especially since the demonstration that
such a trap can be realized in a vapor cell using inexpensive laser diodes.[3] Such a
magneto-optical trap (MOT)[4, 5] is the instrument for our exploration of nonlinear
spectroscopy and isolation of a single atom.

A variety of review articles are available for atomic cooling and trapping.[1] In this
chapter, we will first attempt to give a brief overview of the principle of magneto-
optical trap (Section 2.1), and then describe the general experimental setup that we
employed for our MOT. As mentioned in Chapter 1, the two parts of this thesis
describe two different experiments, thus different apparatuses and setups are used.
Nevertheless, these two different experiments share a wide range of common ingre-
dients, such as the Ti:sapphire laser (Section 2.2), the technique for laser frequency
stabilization (Section 2.3), the anti-Helmholtz coils to generate a quadrupole mag-

netic field (Section 2.4), and other experimental instruments (Section 2.5). Finally,
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at the end of this chapter (Section 2.6), we will give a brief description of the general
properties for the atom we used for our experiment, namely the Cs atom, and the

reason we choose this particular type of atom.

2.1 Introduction to the Magneto-Optical Trap

We begin by analyzing the force exerted on a two-level atom at rest by a laser beam
having intensity / and tuned to an amount A below the atomic transition frequency
[Fig. 2.1(a)]. It is well known that the absorption or emission of a photon by an
atom imparts momentum to the atom. Upon absorption, the atom receives a kick of
momentum equal to ik in the direction of the laser’s propagation. Upon emission,
there is an additional momentum kick of equal magnitude, but this occurs in a random
direction (for spontaneous emission), and so this contribution will average to zero
after many scattering events. (But the variance of this contribution, however, does
not average to zero and gives rise to the diffusion of the atom discussed below.) The

total force on the atom F will then be ik times the scattering rate I':

dp
F = -—— =hkI. 2.1

For a two-level atom having natural linewidth 2, , the scattering rate has a max-
imum of 7, for a laser with strong enough intensity such that the atom is highly
saturated. However, if the intensity is low (I < I;, where [ is the saturation inten-

sity) and the atom is at rest, the scattering rate has the form [Fig. 2.1(b)]

/1,

=~

Next if we consider that the atom is moving with velocity v against the direction
of propagation of the laser (which is tuned below the atomic resonance), the atom will
see the laser Doppler shifted into resonance, and hence will undergo more scattering

events and experience a larger force. Quantitatively, the detuning seen by the atom
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Figure 2.1: Doppler cooling. (a) An atom at rest illuminated by a laser beam having
intensity I and detuning A. (b) The scattering rate for an atom at rest and a moving
atom. (c) The (two-dimensional) random walk in momentum space caused by the
spontaneous emission. The text discussed the random walk in one dimension.
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is changed to A — kv from A, and hence [Fig. 2.1(b)]

/1,
+[(A = ko) /yu]”

Iy = 717 (2.3)

Similar arguments hold for an atom moving along the direction of the laser beam, in

that case, the detuning seen by the atom is A + kv, and

1/1,
+ (A + ko) [y.]*

.= YL 1 (2'4)

If we now consider an atom under the presence of two counter-propagating lasers,
each having intensity I and detuning A below the atomic resonance, the total force
F will then be the sum of the two individual forces along opposite directions, F' =

hk(I'_ —I'y). Under the limit of low velocity, i.e., kv < A, F' is a damping force

proportional to the velocity, F' = —av, with damping coefficient «,
I A
o = 4hk?~ [ —. (2.5)
1@/
The rate of cooling is then:
dE
<E—>Coo] =v-F=-a’ (2.6)

The heating comes from the fluctuations in the damping force whose origin can be
traced to the spontaneous emission. We can consider the problem as a random walk
in momentum space [Fig. 2.1(c)], with each step corresponding to a single absorption
or emission event. Assume our atom started with zero velocity, it is equally likely
to absorb a photon from the positive or negative traveling waves. As a result, each
absorption represents a step of size hk in a random walk of the momentum of the
atom. In the same way, each spontaneous emission represents another random-walk
step, so that each cycle of absorption followed by spontaneous emission represent two
random-walk steps. After a time ¢, the variance in momentum will then be given by

the product of the number of steps Nk (= 2-2I't, with the first factor of 2 coming from
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two random walks associated with a single scattering event; and the second factor of
2 coming from the summation of the two counter-propagating beams) and the square
of the step size (hk)%:
(p?) =2-2I't - (hk)® = 2Dt (2.7)

where D, is the momentum diffusion constant. Thus, the rate of heating is

4B\ _d[2\_ D, _ 2w (k) -
dt heat—dt om/  m m )

The minimum temperature is achieved when the cooling rate and heating rate is
balanced. From Eq. (2.6) and (2.8), we obtain an expression for the velocity and
hence the temperature:

mv®  kgT Dy hyil+(A/y0)
2 2 22 4 Alyy

(2.9)

This temperature will have a minimum value Tpoppler when A = 7, and this is called

the Doppler temperature:
kBTDoppler = h’)/_l_ (210)

For Na atom, Tpoppier = 240 K and for Cs atom, Tpeppler = 120 pK.

The above arguments can be extended into three dimensions where three sets of
counter-propagating laser beams are employed to provide a viscous damping force
in all directions. Atom clouds cooled by this technique are called the optical mo-
lasses.[45] But Doppler cooling only provides us a method of cooling the atoms, in
order to “trap” them, we need a restoring force to keep the atoms within a partic-
ular region. A simple yet powerful method for providing this restoring force is to
use the Zeeman shift. Such a trap is called a Zeeman-Shift Optical Trap (ZOT) and
sometimes also a MOT (Magneto-Optical Trap).

In this trap [Fig. 2.2(a)] a spatially varying magnetic field, usually a quadrupole
field with constant gradients along the axes is employed along with three pairs of

counter-propagating laser beams with ot and o~ polarization tuned below the atomic



(a)

(b)

Figure 2.2: The magneto-optical trap. (a) A MOT consists of three pairs of coun-
terpropagating laser beams with ¢ and o~ polarization tuned below the atomic
resonance frequency. (b) Zeeman shift of a hypothetical one-dimensional atom hav-
ing total angular momentum J = 0 ground state and J = 1 excited state, immersed

in a magnetic field B = bz.



14
resonance. The restoring force is provided by the spatially varying Zeeman shift, e.g.,
if we again consider the case of one dimension, in which the magnetic field has the
form B = bz, an hypothetical atom with total angular momentum J = 0 in the
ground state and J = 1 in the excited state will experience a Zeeman shift mjupggbz,
proportional to its distance z from the center, where m; = 0,+1 is the quantum
number for the z component of the excited state angular momentum, up is the Bohr
magneton, and g the Lande g-factor. This will nudge the Amj; = +1 transition closer
to resonance, and the Amj = —1 further away, resulting in a differential absorption of
the ot and o~ beams. Quantitatively, the trapping force is the sum of the forces for
the two transition, having different effective detunings A+ppgbz/h and A—uggbz /A,

which gives rise to a restoring force F' = —k,z with spring constant k,:

k, = 4kung~{— A/

Is (1 + (A/')’_L)Z)Z

(2.11)

Combining the cooling and trapping forces, the total force on the atom is then

F = —k,z— az + Langevin Force (2.12)

= —mwfrapz — M /Tdamp? + Langevin Force,

which is a damped harmonic oscillator with natural frequency wirap, driven by the
Langevin force caused by the diffusive effect of spontaneous emission. We have also
defined 7j,;,, = /m as the time constant for damping.

For typical experimental conditions, the atom is usually strongly saturated, e.g.,
I = 10 mW/cm? = 101, is typical value of the total trapping intensity. The low
intensity limit is thus not satisfied. Nevertheless, the above result can approximately
be adapted to take into account the saturation effect. For example, for a trapping
laser detuning of A/2n = 5 MHz and magnetic field gradient & = 7 Gs/cm, the
natural frequency of the trap wip has the value wiap/27 = 300 Hz, and the damping

time constant 74,mp has the value T(;:mp = 4.2 x 10° s7!, making the trap overdamped
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since

2irapTdamp = 0.9. (2.13)

Beyond the Doppler cooling and magneto-optical trapping we have discussed,
other cooling and trapping schemes are also employed to manipulate atoms. For
example, the theory of polarization gradient cooling[48] was invented to explain some
experimental results in which temperatures below the Doppler limit were reached.[49]
The new limit for the lowest achievable temperature of this technique approaches the
single photon recoil limit: kT, = h2k2/2m, which has a value of 0.1 uK for Cs
and 1.2 pK for Na atom. Even temperatures lower than the recoil limit have been
achieved in one dimension for Na atoms by using Raman cooling techniques,[50] as well
as in three dimensions for spin polarized Hydrogen atoms by employing evaporative
cooling and magnetic trapping techniques. In the latter experiment,[51] a density
of 8 x 10" cm™ and a temperature of 100 uK are reported, a factor of 3.5 above
the critical temperature of the Bose-Einstein condensation phase transition at this
density and well below the 1.3 mK recoil limit for H atom. Microwave traps and
acoustic frequency AC magnetic traps are proposed and demonstrated as promising
strategies to cross the boundary of the Bose-Einstein condensation limit in both H[52,
53] and Cs[54, 55] atoms.

Even the MOT itself is undergoing dramatic improvements. By using larger laser
intensities and 4-cm-diameter beams, it is demonstrated that 3.6 x 10'° Cs atoms
can be directly loaded into a MOT, a nearly 300-fold increase in the number of
trapped atoms compared to previous researches.[56] A group at MIT have constructed
a dark spontaneous-force optical trap (“dark SPOT” trap), in which the atoms are
mainly confined in a “dark” hyperfine ground state which does not interact with the
trapping light. In such a trap, limitations on the density of the trap due to the excited
state collisions[57] and radiation pressure[58] have been overcome and more than 10°
Na atoms have been confined to densities approaching 10'? atoms/cm?.[59] Another
variation to the usual MOT configuration are traps with less than six trapping beams.

For example, Ne atoms are demonstrated to have been trapped in a MOT using only
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four laser beams in a tetrahedral configuration, free of standing waves.[25] Even two-
beam traps are possible by employing focused Gaussian beams.[26] In our experiment,
we sometimes use a five-beam trap to overcome the striation effect[60] due to the

standing waves (Section 2.5).

2.2 The Ti:Sapphire Laser

We will now turn to the discussion of the experimental apparatus employed in our
laser cooling and trapping experiments.

The laser used in the majority of our experiments is shown in Fig. 2.3. It is based
on a Schwartz Electro-Optics Inc. Titan CWBB Ti:sapphire laser[61] pumped by an
Argon ion laser (Spectra Physics 2020-05S), and is modified to meet our requirement
for frequency stabilization. The heart of the laser is the Ti:sapphire (Ti:Al;03) crys-
tal, which has a broad gain curve over a wide range of wavelength regions from red
to near IR (700 nm - 1000 nm). This range is covered by three sets of mirrors coated
for their respective regions. Within each region, the wavelength can be tuned con-
tinuously by rotating the birefringent filter (BRF), e.g., the midband containing 852
nm is continuously tunable from 780 nm to 900 nm. The crystal is cut at Brewster’s
angle to avoid the reflection losses over a wide tuning range.

The laser can operate both in standing wave and ring configurations by changing
the direction of the optical coupler (OC) and the tweeter mirror (TM). When oper-
ating in ring configuration, (which is the case for our experiment,) an optical diode
(OD) selects the correct circulation direction and the resulting single-frequency beam
has a linewidth of > 1 MHz and a drift of ~ 40 MHz/min when free running.

In addition to the above equipment of a standard Titan CWBB, a pair of Brewster
plates (BP) and a thick etalon (THKE, free spectral range (FSR) 30 GHz) and a thin
etalon (THNE, FSR 100 GHz) are added into the cavity for frequency stabilization.
The Brewster plates are mounted on galvanometers and can be swept synchronously
to prevent beam-walking. A part of the sweeping signal is fed forward into the thick

etalon so that its peak transmission roughly tracks the scanning laser. All these are
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SEO Titan CWBB Ti: sapphire Laser
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Figure 2.3: Schematic of the Ti:sapphire laser: BP: Brewster plate; BRF: birefringent
filter; CST: Ti:Al,O3 crystal; OD: optical diode; PD: pump dumper; PZT: piezoelec-
tric transducer; THKE: thick etalon; TNKE: thin etalon; TM: tweeter mirror; Pump:
Spectra Physics 2020-05S Ar ion laser.



18
controlled by a home-made control box containing all the electronics necessary to
drive the galvanometers. With these arrangements, the laser is able to scan 3 GHz
without mode hopping. The tweeter mirror is mounted on a piezoelectric transducer
(PZT) and can be actively locked according to the error signal provided by saturation
spectroscopy described in the next section. The entire laser is enclosed within a
plexiglass box, which has been covered in lead foam to provide for isolation from
external vibration. Because of the large walk-off loss of the thick etalon and other
lossy optical components we introduced, the output power dropped from 500 mW to

~ 300 mW at a pump power of 5 W.

2.3 FM Saturation Spectroscopy

The frequency of our laser is locked at a fixed frequency relative to the 65, 2 =
4 — 6 P35, F' = 5 hyperfine transition in Cs by means of FM saturation spectroscopy.
Developed in early 1980’s, the application of these elegant and powerful spectroscopic
techniques to laser frequency stabilization has now become widespread in practice in
the field of atomic, molecular, and optical physics and beyond.[62-64]

The schematic of our frequency locking technique is shown in Fig. 2.4. At BS2, a
portion of the main laser is split into two beams, hereby referred to as the pump (the
transmitted beam) and the probe (the reflected beam) beam.

The probe beam passes through an electro-optic modulator (EOM), whose driving
signal at 15 MHz is derived from the output of a function generator (HP 8116A), which
is split (Mini Circuit ZDC-10-1 directional coupler) and amplified (ENI Model 403
LA, 37 dB) before finally reaching the desired power level for the EOM. The split
portion of the RF signal at the output port of the coupler is later used as a reference
for demodulating the detected FM signal. By adjusting the optical axis of a half-wave
plate (HW) before the EOM, the polarization of the probe beam can be aligned along
the optical axis of the EOM crystal to eliminate undesired amplitude modulation. The
output light, which is a phase-modulated beam having FM sidebands symmetrically

placed about the carrier, is subsequently passed through a Cs cell and focused onto
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Figure 2.4: FM saturation spectroscopy schematic. The upper box denotes opti-
cal components, while the lower box shows electronic configurations. See text for
description.
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a fast photodiode.

If there were no absorptive medium (like the Cs cell) in the path of the probe beam,
the output of the photodiode would be a DC level since the sidebands are exactly =
radians out of phase for pure phase modulation and the beat notes they produce with
the carrier exactly cancel. However, due to the absorption and dispersion of the Cs
atoms in the beam path, the two sidebands are attenuated differently near a resonant
transition, and such an exact cancellation disappears, producing a net signal at the
sideband frequency (15 MHz). If we demodulate this signal using suitably delayed
reference to look at the quadrature phase, we will obtain dispersive lineshape suitable
for use as an error signal. This is the principle behind FM spectroscopy.[62, 63]

Next consider the transmitted beam from BS2. It is double passed through an
acousto-optic modulator (AOM #1, Isomet 1206C-1) whose single pass frequency shift
waoMm1 is near the center frequency 110 MHz of the RF driver (Isomet 233A-1). The
doubly-shifted output beam emerges from the reflection of the polarizing beamsplitter
(PBS), and has a power of roughly 50% of the input beam and frequency 2wsom
below the probe beam for down-shifted beam. Note that the incident beam has “p”
polarization and passes through the PBS, while the output beam, whose polarization
is rotated by the quarter-wave plate (QW) after retroreflected by the spherical mirror
SM, has “s” polarization and is reflected by the PBS. This arrangement enhances
the overall efficiency by eliminating the loss of the beamsplitter. The pump beam
is further bounced off mirror M2 and enters the Cs cell, where it overlaps with the
probe beam, but propagates in the opposite direction.

The saturation spectroscopy is a technique for obtaining Doppler-free resolution
using the phenomenon of “spectral hole burning” caused by the strong pump beam.
Without the pump beam, as we scan the laser, the photodetector will simply record
a Doppler profile probed by the probe beam. The effect of the pump beam is to

saturate those atoms with velocity v towards the pump such that

Wpump + kv = WaF1y (214)
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where F' = 3,4,5, and wy,p+ is the resonant frequency for the hyperfine transition
F =4 — F' = 3,4,5 (Refer to Fig. 2.5(a) for the Cs D, line), so that there is a
minimum in absorption for these atoms. If the probe frequency seen by these atoms

(wprobe — kv) coincides with the same or a different hyperfine transition, i.e.,

Wprobe — kv = Wey Fr (215)

a dip (hole) will be superimposed on the broad Doppler profile.
Combining Egs. (2.14) and (2.15), and using the relationship wpyump = Wprobe —

2waomn for down-shifted pump beam, we get,

WasFr + Wy o

5 (2.16)

Wprobe — WAOM1 +

So there are a total of six resonances, three of which for F' = F” corresponding to
pump and probe resonant with the same hyperfine transition and three of which for
crossover resonances, where F’ # F” and pump and probe resonant with different
hyperfine transitions.

The fast output of the photodiode, containing information about the saturated
Doppler profile and FM sideband spectroscopy of the probe beam, is sent to the RF
input of a mixer (Mini Circuit ZAD-6), whose LO input comes from the split portion
of the RF signal for driving the EOM, passed through a variable delay (Tennelec
TC412A). The error signal shown in Fig. 2.5(b) is obtained by amplifying and filtering
the demodulated signal at the IF output of the mixer, where only narrow hyperfine
and crossover resonances are left over because of the demodulation. The error signal
is further sent through a conditioner to the piezoelectric transducer (PZT) driving
the tweeter mirror in the laser cavity, completing the servo loop. The result of this
stabilization scheme is a laser linewidth of less than 100 KHz.

Throughout the course of our experiment, to meet different requirements such
as to switch or sweep the frequency of the trapping laser, we have used different

configurations to lock our laser to different detunings from the F' = 4 — F' = 5
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Figure 2.5: The error signal for saturation spectroscopy. (a) The Cs D, line. (b)
The error signal of saturation spectroscopy on D, line. A total of six resonances,
three corresponding to the hyperfine transition F' = 4 — F' = 3,4,5, and three
corresponding to the crossover resonances, are evident.
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Description | AOM #1 AOM #2 Lock Freq Laser Frequency
No of waomi (MHz)|waome (MHz) Wock Waser(MH2)
Experiment | —2 order 41 order (MHz) (Whock + WAOMI — WAOM2)
single atom/ _996
1 spectrf)sco.py 110 110 43[4 5 —226
for switching
spectroscopy —226
2 prototype #1 not used not used 45345 —226
single atom 0
3 prototype #1 101 not used 45 +101
spectroscopy —226
4 prototype #2 110 not used 4-53/4 5 —116
5 | spectroscopy | 126 — ¢ not used |, _, 3/4 — 4 -4
prototype #3

Table 2.1: Locking schemes used in various experiments. The lasers are further
shifted by AOM #3 (not shown) to reach the desired frequency before finally used
for trapping.

transition, sometimes introducing additional AOMs to offset the laser frequency. For
example, in our single-atom experiment, two extra AOMs are used, one in the arm
for frequency stabilization (AOM #2 in Fig. 2.4) and another in the arm for trapping
(AOM #3 in Fig. 3.8). These configurations are documented in Table 2.1. Note that
the laser frequency wiaser is usually further shifted (or double-shifted) by AOM #3 in

the trapping beam path to meet the frequency requirements for various experiments.

2.4 The Magnetic Field Gradient

The magnetic field gradient is provided by the quadrupole field generated by a pair of
anti-Helmholtz coils carrying opposite electric currents. Calculating the magnetic field
distribution for a particular current configuration is the subject of magnetostatics,
an ancient topic which has found widespread application in magnetic confinement of

plasmas and neutron traps. Recently the field has received renewed interest primarily
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due to the possibility of magnetostatic trapping of neutral atoms. For example, more
exotic configurations, such as the spherical hexapole field and the “baseball” field,
are studied in Ref. [66].

To begin with, we derive the expression for the magnetic field B along the axis z
of two coils carrying a single turn of current / and having equal radius R, located at

z = £ A, respectively (Fig. 2.6). The integration of Biot-Savart’s law gives:

/JoIR2

1 1
B.(z,p=0) = s — 5 1, (217
22p=0) 2 {[(A—z)2+R2]/ [(A+z)2+R2]/} (217

B,(z,p=0) = 0. (2.18)

This is a field along the z axis which vanishes at the origin (B,(0) = 0). Near the

center (z < A), it can be expanded into polynomial series of z,

B, (2)=bz+cz*+ -, (2.19)
where
2
p = el 64 — (2.20)
2 (A2+ R2)Y

4 2 2
= 5(_A__._3_I.?:§2[,7 (2.21)

6 (A2 + R?)

and all z?" terms vanish because B,(z) is an odd function of z.

From Eq. (2.21) we see that the optimum geometry for the most homogeneous
gradient near the center is A = 0.87R, so that the cubic term cz® also vanishes. In
our experiments we have used two sets of coils, one for the glass cell (used for the
spectroscopic experiment), where A = R = 1.8 cm; and one for the stainless steel
chamber (used in the single-atom experiment), where A = 3.2 cm and R = 8.4 cm.
For both coils, the cubic term is negligible compared to the linear term, e.g., for our
spectroscopic coils, (¢z®)/(bz) = 2.5 x 1072 at z = 1 mm, approximately the size of

the trap.
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Figure 2.6: Anti-Helmholtz coils consisting of a pair of coils with radius R carrying
current [ in opposite directions located at z = +A.
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Because of symmetry, the field in the plane z = 0 only has transverse components

B, and B,. Furthermore, the gradient of these components near the origin should be

related to 9B,/0z = b by the Gauss’s law for magnetic field, V- B = 0, i.e.,

9B, 9B,  19B, 1

dz ~ dy 2 0z _Eb' (2.22)

Therefore, the magnetic field of the anti-Helmholtz coil is zero at the center and arises
linearly from that point, twice as fast in the z direction than in the z and y direction.

To obtain a numerical value for the field gradient, we must take into account that
any practical coil consists of many turns of currents, e.g., our coil for single-atom
experiment has six layers, each consisting of twenty turns of 20 AWG wires carrying
4 A of currents. After summing over the contribution of all 120 turns of currents,
we get the result b = 7 G/cm for our single-atom coil and & = 10 G/cm for our
spectroscopic coil having 13 turns of wires carrying a current of 4 A. This is not
significantly different than calculated from Eq. (2.20) replacing I with NI, where N
is the total number of turns.

The resistance of the coils, while readily calculated from the conductivity of the
particular wire chosen, is easier measured by digital multimeters. For example, for
our single-atom coil, the resistance is about 2.5  each. This implies a total power
dissipation of 80 W at 4 A current. The heat generated this way typically raises
the surface temperature of the vacuum chamber 30 - 40 °C above room temperature
and is sometimes used to bake our chamber. The inductance of the coil can also be
measured by a L-C-R meter, and the result is L = 0.8 mH for our single-atom coil.
The L-R time constant for a single coil is thus 0.3 ms.

We will now turn to a related problem of designing a pair of Helmholtz coils
carrying current in the same direction to balance the residual magnetic field. By
flipping a sign in Eq. (2.17), one can get the polynomial expansion for the field of

Helmbholtz coils at the origin,

B, =By +az’ .., (2.23)
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where
ol R?
(R? + A2)3/2’

3(4A% — R?)
Ly
2 (R2 + A?)

(2.24)

(2.25)

For optimum uniformity, the spacing of the coils must be equal to the radius,
R = 2A. But again for trap size of 1 mm the nonuniformity is usually negligible.
The Helmholtz coils are only used in the single-atom experiment, where the magnetic
field zero is crucial for a well-aligned trap. Two types of coils are used for the z (the
big coils) and z, y axis (the small coils). The big coils have R = 8 cm and A = 5 cm,
with 12 turns of wires, thus By = 1.1 G/A. For the small coils, R = 4 cm, A = 9.5
cm, with 20 turns of wires, we have By = 0.37 G/A.

The coils are mounted conveniently on the flanges for the vacuum windows and
driven by a home-made current source having three outputs able to sink a maximum
current of 2 A each. By adjusting the trimpots on the front panel of the current
source box, the currents can be varied individually until the earth’s magnetic field
and other stray fields at the center of the vacuum chamber, measured by a Hall-effect
gaussmeter (Bell 640), are canceled by the field generated by the Helmholtz coils.
The residual magnetic field, within 1 c¢cm of the center of the chamber, is less than

10 mG.

2.5 Other Experimental Instruments

Besides the magnetic field coils, the laser, and its locking schemes, another important
part of the experimental apparatus is the vacuum vessel, so important that we later
devote a whole section (Section 3.3.3) to this topic. Other instruments include the
beam expanding optics, the repumping laser and the beam splitting optics.

The beam expanding optics are relatively simple: Two convex lenses with focal

length f, and f, are arranged in a telescope configuration where the focus of one lens
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overlaps with the focus of another. The waist of the output beam is then a factor
f2/f1 larger than that of the input beam. For example, in our single-atom experiment
a 10x beam expansion is achieved by using lenses of f; = 3.8 cm (L2 in Fig. 3.8,
Newport KPX 079) and f; = 40.0 cm (L3 in Fig. 3.8, KPX 115). Sometimes a pinhole
is placed at the common focal point to spatially filter the beam.

The purpose of the repumping laser is to recirculate population lost to 65y, F' =
3 back to F' = 4. This is accomplished by an independent semiconductor laser
diode tuned to the transition 659, F' = 3 — 6P3/9, F' = 2,3,4 by regulating the
temperature of the laser head. Later it is replaced by an external-cavity diode laser[67]
capable of saturation locking to the 653, F' = 3 — 6 P53, F' = 4 hyperfine transition,
as described in Section 2.3.

The rest of the optics is for splitting the laser into five or six beams and con-
verting it into ¥ and o~ polarizations. As from our own experience and numerous
documented and undocumented anecdotes, the trap will sometimes develop patterns
of alternating bright and dark lines in its image. The detail of the pattern and its
periodicity depend on the alignment. Typically between one and ten such striations
are observable across the trap. Ref. [60] attributes this “channeling” effect to the
interference pattern of optical standing waves. The large length scale (hundreds of
wavelengths) is due to the slight angle « of the two counterpropagating lasers when
the two beams are not exactly antiparallel to each other. Such a misalignment will
give rise to a length scale of A/a which could be much larger than the wavelength
A itself. To avoid such effects, we have developed a five beam trap in which only
one standing wave is present in the z direction. In the z-y plane, three beams are
used, two along the z and y axis, the other (v-beam) intercepts the z and y axis with
45° (Refer to Fig. 3.8). Our experience confirms that this arrangement indeed helps
to reduce the striation effect. A complete solution would perhaps require eliminat-
ing the standing waves all together, like the 4-beam tetrahedron trap described in
Ref. [25]. But such a trap is difficult to realize in our vacuum chamber because of the
unfavorable geometry.

The complete setups for our different experiments are shown in Fig. 3.8 for the
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single-atom experiment and Fig. 4.1 for the spectroscopy experiment and are discussed

when this work is described in detail.

2.6 The Properties of Cs Atoms

Although we have used different setups for two different experiments, only one type
of interaction medium is used, i.e., the Cs atom. Before the invention of Ti:sapphire
laser, Na was widely used in atomic physics experiments because it is within the tuning
range of the dye laser. But with the introduction and commercialization of solid-state
lasers and semiconductor diode lasers, more and more laboratories have shifted to Cs
atoms because its D; line at 852 nm is conveniently accessible by Ti:sapphire lasers
or GaAlAs laser diodes. These sources are replacing the dye lasers because of their
stability and user-friendliness.

The Cs atom is the heaviest non-radioactive alkali element. Alkali atoms (mainly
Li, Na, and Cs) are used in atomic physics experiment because they have only one
single electron in their outermost shell. Such a simple electronic configuration is easy
to handle both theoretically and experimentally. The ground state hyperfine splitting
of 9.1 GHz of the Cs atom is the most precisely measured frequency and is used in

atomic clock for time standard. Some relevant properties of Cs atom are listed below:

e atomic weight A = 133, atomic number Z = 55.

e ground state configuration 625, /,, nuclear isospin I = 7/2.

o energy level diagram, see Fig. 2.7.

e melting point, 28 °C (at 1 atm); boiling point, 669 °C (at 1 atm).
e vapor pressure, see Fig. 3.6.

e natural linewidth for D, line, 2y, /27 = 5 MHz; excited state lifetime, 1/2y, =
32 ns.
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Figure 2.7: Cs energy level diagram relevant to this thesis, after Ref. [68]. The energy
levels (in parenthesis) are in cm™, and the wavelengths of the transitions are in nm,
unless otherwise indicated.
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Doppler limit Tpeppier = Av1 /kp = 120 pK; recoil limit Tree = h2k? /2mkp = 0.1
uK.

thermal velocity at 300 °K, vy, = (2kgT/m)/? = 194 m/s; thermal velocity at
Doppler limit vpoppler = (2R, /m)*/? = 12 cm/s; thermal velocity at recoil limit
Uree = Bk /m = 3.5 mm/s; thermal velocity to Doppler shift a natural linewidth
of D, line vy, =y, A/m =4.3 m/s.

photon scattering rate I' = v, (I/I)/(1 + I/I, + (A/vL)?).

saturation intensity for 65,5, F' = 4,mp =4 — 6P/, F' =5, mp =5, [, =1
mW /cm?.

Clebsch-Gordon coeflicients for D, transition, see Fig. 3.4.

ground state hyperfine transition frequency (6512, F = 3 ¢ 6519, F' = 4),
9, 192, 631, 770 Hz.
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Chapter 3 Trapping of a Single Atom

3.1 Introduction

In this chapter, we will turn to the topic of constructing and observing the fluores-
cence from a magneto-optical trap containing only a single atom. The fluctuations
of the number of atoms in the trap n,, obey Poisson statistics, 0y,,, = 1/4/ns. The
fluorescence count from the trapped atoms Ci,,, is the product of n,, and the flu-
orescence from an individual atom N;, which is also a Poisson variable. Then, the
square of the relative variance of Ci;,, should be the sum of the square of the relative

variance oy, /nss and oy, /Ny:

O Chrap ? _ <0nss>2 + (UN1>2 (3 l)
Ctrap B Tss Nl . '

In a normal trap, which typically contains more than 10® atoms, the relative variance

of n, is negligible compared to the relative variance in Ny (0,,, /nss < oy, /N1), and

the relative variance of Ci;ap is primarily due to the fluctuation in Nj:

o 1
Ctrap — UNI — for Ngs >> Nl’ <3'2)

Ctrap - ]vl V Nl ’

which is a constant independent of the number of atoms ng,. If, on the other hand,
we enter the regime ny, < Nj, then the relative variance in Ci,, will mainly come

from o,,,,
Uctrap — Unss . 1 N]-

= —_ pusney 3
Ctrap Ngs vV ss Ctrap

for ngs < Ny, (3.3)

which is proportional to 1/,/Cl;ap as we vary the number of atoms in the trap. Next
if the number of the atoms in the trap ng, is further decreased, the fluctuation in 7.,
becomes so large that discrete steps of equal magnitude, associated with the random

arrival and departure of individual trapped atom, are observable [Fig. 3.1(a)]. And
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Figure 3.1: The fluorescent light from a trap containing (a) only a few atoms (b) a
single atom. The jumps in fluorescent light are due to the atoms entering and leaving
the trap. In theses figures, the fluorescence from a single atom N; is assumed to be
constant without fluctuations.
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finally, when the single-atom trapping condition is reached, the fluorescence from the
trap will look much like those shown in Fig. 3.1(b), in which the signal jumps to the
level N, for a time period 7,, (the “on” state), and then falls back to zero (the “off”
state) and remains there for a time period 7.z before jumping up again. This kind
of behavior, similar to the “quantum jumps” described in Ref. [69], is a signature for
systems containing only one quantum and provides us a means to detect and confirm
the trapping of a single atom.

Compared to the detection, the construction of the single-atom trap itself is rel-
atively straightforward. Beginning with a MOT containing about 10® — 107 atoms,
our approach for reducing the number of atoms ng, is to directly adjust the experi-
mental parameters that would affect n,, until the condition for single-atom trapping
is reached. In practice, however, such an adjustment sometimes means a change in
experimental setup or an upgrade in experimental apparatus. And the final condition
for single-atom trapping is only reached after many trials and errors.

Following this strategy, the organization of this chapter is as follows. In Section
3.2 we will describe the simple theoretical model that guides us in the design of the
experiment. This includes simple rate equations for the number of atoms in the trap
ngs, the distribution and duration of the on- and off- times (7., and 7.g) for the
fluorescence jumps, and the actual magnitude of the jumps N;. All these parameters
are already introduced previously in this section. In Section 3.3 we will discuss, step
by step, the implication of this model to the design of the experiment. We will attempt
to justify our choice of the particular experimental apparatus based on a compromise
between the available technology and funding, and will also outline possible future
improvements based on the performance of such a design in the actual experiment.
Section 3.4 contains a brief description of the experiment, whose results are discussed
in Section 3.5. The applications of our single-atom trap to quantum optics research

and other future developments to this end are discussed in Section 3.6.
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3.2 Theoretical Model

The number of atoms contained in the trap is determined by the balance between
two competing rates: the capture rate into the trap and the loss rate from the trap.
The loss rate L is primarily due to the collisions of trapped Cs atoms with atoms in

the background Cs as well as other gas vapors and can be thus taken as:

L = (ngg + ncs)ou, (3.4)

where ngg is the density for the residual background gas and ncg is the density for
background Cs vapor; o is the average cross section for an atom in the trap to be
ejected by a collision, and u is the approximate thermal velocity appropriate to the
collision.

Likewise, the capture rate R can also be derived from simple statistical mechanics:
assuming that any atom entering the volume enclosed by the trapping laser beams
with velocity v below a certain capture velocity v, is slowed and eventually trapped

(Fig. 3.2), the capture rate can then be determined by the integral:

w/
_nCSA/—O./0 2/ (vecosB) f(v) dv@ (3.5)
where
f(v) =4nm < m )3/2 v? exp (—mv?/2kpT) (3.6)
2mkpT P 5 ‘

is the Maxwell-Boltzmann distribution for Cs atoms with atomic mass m at temper-
ature T, and A is the effective total area presented by the trapping laser beams to
the atomic flux, which we simply take as A = 6 x 7d?/4 for six laser beams with
uniform circular cross section of diameter d. In the limit where the capture velocity

3/2

v, is much less compared to the thermal velocity vry, = (2kgT/m)*?, (a fact we shall

prove later in Section 3.3.3), the integral takes a simple form:

1 1 ve \1/3
R == chsvTh—\—/—E (’UTh> <§7Td > 5 (37)
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Figure 3.2: The capture rate of the trap is determined by the number of atoms entering
the volume enclosed by the trapping laser beams with velocity below a certain capture
velocity v..
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where one can recognize (1/4)ncsvrn as the total number of atoms entering a unit
area in a unit time, and (v./vry)* arises from our requirement that the initial velocity
be less than v..
From the requirement that an atom having velocity v, be stopped within distance

d — the diameter of the trapping laser beams, one finds that:
V2 & 20ecTd, (3.8)

where vec = hk/m is the recoil velocity or the slowdown in velocity caused by each
scatter with a photon in the trapping laser. The total scattering rate I' is given in
Section 2.6 as ' = v, (I/I)/[1+ I/Is + (A/v1)?].

Given the loss and capture rates, the number of atoms in the trap, n, is then

obtained by solving the simple rate equation:

dn

Assuming the initial condition n(t = 0) = 0, we obtain:
n(t) = ne (1— e, (3.10)
where ng, is the number of atoms in the trap in steady state and is given by

(3.11)

L _R
ss = T
Eq. (3.10) implies that when the trap is turned on the number of atoms in the trap
increases exponentially with a time constant 7., = 1/L. Not surprisingly, this is also
the same decay time constant when the trap is turned off. Thus the loss rate is the
inverse of the time constant for the trap to turn on and off.
However, for Eq. (3.9) to be valid the steady-state number of atoms in the trap
nss needs to be much larger than one, i.e., nss > 1. In the case where ng, ~ 1, a

different approach can be employed where one tracks down the time each atom enters
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and leaves the trap. For simplicity, we consider the situation ns, < 1 [Fig. 3.1(b)],
which implies that there is at most one atom in the trap at any given time. After
the atom enters the trap, the duration it remains inside the trap, 7,5, is decided by
the time when the next collision occurs. Thus 7, should be exponentially distributed

whose average is the mean free time of the atom in the trap:
Ton = 1/L. (3.12)

Similarly, the duration of off-intervals in Fig. 3.1(b) is also exponentially distributed

with its mean being the filling rate:
TOH = 1/R7 (313)
thus the average number of atoms is again:

(3.14)

Ton R
Mos = — = T~

We shall conclude this section with a discussion of the actual magnitude N; of the
jumps in fluorescence associated with a single trapped atom (cf. Fig. 3.1). The total
number of photons an atom emits under resonant light of intensity I and detuning A

is given by the total scattering rate I,

. /1,
I IL T (A )E

(3.15)

Our detection system captures only a fraction f of the total 47 solid angle the atom
emits into, and has a transmission coefficient Ty and quantum efficiency «. Thus, the

number of counts one expects in a counting interval At is,
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3.3 Design Considerations

Having understood the physics behind single-atom trapping, one is confronted with
the task of designing and constructing the appropriate experimental apparatus, as
well as adopting a feasible measurement scheme to observe the relevant phenomenon,
i.e., the discrete steps in Fig. 3.1. Our analysis here focuses on three key quantities
discussed in the last section, namely, the duration of the steps (on-time) 7., the
expected counting rate N;, and the steady-state number of atoms in the trap n,,.
A logical approach, then, is to start from the simplest quantity and determine in
turn each experimental devices and parameters. Such an approach is adopted and
presented here. In practice, however, the factors controlling these quantities are often
entangled and sometimes even conflict with each other. One is forced to consider the
experiment as a whole and make compromises required by the various parts of the

experiment.

3.3.1 The Duration of the Steps 7,

The duration of the steps [the on-time in Fig. 3.1(b)] depends solely on the vacuum
and is the simplest observable quantity to start with. According to Eq. (3.4) and
Eq. (3.12), 7o, is inversely proportional to the sum of the residual background pressure
peg and the background Cs pressure pgs. For reasons that shall become clear later
in Section 3.3.3, ppg is usually much larger than pcs under conditions of single-atom
trapping, thus 7,, is determined only by the residual vapor pressure and thus on the
quality of the vacuum system.

A detailed discussion about the vacuum system is presented in Section 3.3.3. The
typical pressure in the main chamber is about ppg &~ 6 x 107° torr after reaching
a steady state. Using values in Ref. [3] for the collision cross section o, i.e., 0 ~
2 x 107 cm?, and thermal velocity of Ny at 300 K (~ 400 m/s) for the value of u,
we find that,

Ton = 1/L ~ 0.6s. (3.17)
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While this might not be considered to be long according to human perception, it
is long enough for a variety of experiments, such as cavity QED experiments, in which
the transit times of the atomic beam across a laser beam waist are often measured in

microseconds.|[24]

3.3.2 The Expected Count Rate NV;

Once the duration of the steps is determined, we are able to choose a reasonable time
interval [A¢ in Eq. (3.16)] during which to detect the fluorescence emitted from the
trap: At should be short enough to resolve the individual steps, yet as long as possible
so that we have enough integration time, i.e., At S 7. In most of our experiments,
At is chosen to be:

At=0.1 s. (3.18)

Another important factor in determining the expected number of counts is the
quantum efficiency (QE) of the detector. The detector we choose is a RCA model
SPCM-100-PQ photon counting module based on an avalanche photodiode (APD).
At dark counts of only about 6 counts/0.1 s, it provides a QE of about 25%, which is
relatively high at this wavelength (852 nm). Since the signal level we are detecting is
about 400 counts/0.1 s whereas the noise level itself is more than 4,000 counts/0.1 s,
it is a convenient alternative to the use of photomultiplier tubes, making the photon
counting module the detector of choice before low light-level CCD and intensified
CCD cameras became commercially feasible. However, a drawback of using the APD
system is that it is essentially a single pixel device, providing no imaging capability. To
tackle this problem, an intensified CCD camera system (Xybion Electronics System,
model ISG-350 low light-level video camera) was purchased recently and has the
capability of detecting light level as low as 10~ fc, which is equivalent to a sensitivity
of about 1 photon/sec/pixel. The intensified CCD camera would presumably also
solve another problem associated with the APD: the effective detection area of this
device is only about 150 ym x 150 pum, making it relatively difficult to design an

imaging system to match such a small imaging area.
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Unfortunately, the collection solid angle 47 f is also an important factor in deter-
mining N;. To achieve small f-number and low aberration at the same time presents
a major challenge to the design of the imaging system. Moreover, there is added
complexity that one cannot place the imaging optics too close to the trap without
incurring substantial scattering by the imaging lens itself. Such a restriction would
exclude some well-developed schemes such as microscope objectives. This, combined
with the fact that part of the imaging system needs to be placed inside the vac-
uum chamber to achieve maximum collection solid angle, makes it difficult to find a
commercial off-the-shelf product to meet all these requirements.

A modest approach we adopted is shown in Fig. 3.3(a). An assembly consisting of
a meniscus lens (L4) of focal length 100 mm (Melles Griot 01-LMP-001) and a plano-
convex lens (L5) of focal length 70 mm (Melles Griot 01-LPX-137) is positioned
about 3.3 cm from the trap in the vacuum chamber to collimate the light emitted
from the trap. Our ray-tracing program indicates that the combined system has
a focal length of about 4.2 cm and collimates light emitted from its focal point to
better than 0.2°. A refocusing lens, a TV lens of focal length 35 mm is placed
about 12 inches outside the chamber and refocuses the light to the APD. Since no
detailed data for the surface of the TV camera is available, we cannot simulate the
whole imaging system on the computer. However, we have simulated a similar, albeit
inferior system by replacing the refocusing TV lens with the collimating lens assembly
working backwards [Fig. 3.3(b)]. For this system, we find that for the light emitted
from a point source at its focal point to spread into a circle of less than 150 ym in
diameter at its imaging plane, the half angle 8 for the incident light cone must be:

6 S 11.5°. Thus, the collection efficiency is:

_AQ [ [P sin0dod

f 47 4

1%. (3.19)

The choice of the imaging system also determines the total transmission T} of the
collection optics. Since the TV lens used for refocusing the light is not optimized

for 852 nm, it has a transmission of only 80%. Together with the four glass surfaces
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Figure 3.3: The imaging system for the single-atom experiment. (a) imaging system
used to observe fluorescence from single-atom trap. (b) Imaging system used for
ray-tracing. L4: meniscus lens (Melles Griot 01-LMP-001), f = 100 mm; L5: plano-
convex lens (Melles Griot 01-LPX-137), f = 70 mm; TVL: TV lens, f = 35 mm.
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of the collimating lens assembly and two quartz surfaces of the vacuum window, we

estimated the total transmission of our optical system to be:
Ty ~ 70%. (3.20)

The last factor in Eq. (3.16) is I' — the scattering rate. Unlike other parameters in
this equation, the scattering rate is already fixed by the constraints imposed by other
parts of the experiment. According to Eq. (3.15), the scattering rate depends on the
total trapping intensity / and the detuning A. A is usually determined empirically
by optimizing the trap at a relatively high number of atoms and has a value of about
2mx6 MHz. The scattering rate I" saturates at an intensity I > I, with I, being the
saturation intensity. There is further complication about the saturation intensity I,
because there are different Zeeman sublevels in the presence of a magnetic field. The
widely quoted value of I, = 1 mW/cm? is for the transition F' =4, mp =4 — F' =
5,mp = 5. In the presence of a magnetic field, the atoms could be distributed over
all the Zeeman sublevels and we need to average over these sublevels much like the

process illustrated in Ref. [65]:

+4
o1

I=I5 X — me=—? = 2.5 mW /cm?, (3.21)
Z [(F=4,mFIF’:5,mF+l)|2
mp=—4

with (F, mp|F’, mp) being the Clebsch-Gordan coefficient shown in Fig. 3.4.
With these values for the saturation intensity, and the total intensity in the trap-

ping beams I = 10 mW/cm?, also dictated by the optimization of the trap, we have:
5x10°/s ST <9 x 10%/s. (3.22)

We are finally able to make a numerical estimate for the value N; — the expected

number of counts in time At: with counting interval At = 0.1 s, quantum efficiency
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+5

Figure 3.4: The Clebsch-Gordan coefficients (F,mp|F’',mp) for the transition
6S1/2, F' =4 — 6P55, F' = 5 in Cs atom.
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a = 25%, total transmission Ty = 70% and collection efficiency f = 1%, we have:
0.9x10° SN, S1.6 x 10% (3.23)

While this is considerably larger than the lowest detectable limit of the APD
module (the absolute dark count is about 6 counts/0.1 s), one still needs to take
special caution in order to distinguish the signal from any spurious noise counts. The
noise comes mainly from three sources: the stray room light, the fluorescence caused
by Cs background vapor not captured by the trap, and the scattered light from the
vacuum window and other components close to the trap. The noise from room light
can usually be reduced to less than 100 counts/0.1 s by carefully shielding the detector
with black paperboards and clothes. The background fluorescence depends on the
Cs background pressure and is of little concern under the condition of single-atom
trapping. An overwhelming portion of the background noise comes from the scatter
of the trapping laser and repumping laser by the vacuum windows and nearby optical
components. In fact, this kind of noise is one of the evil villains we are constantly
battling with. With the presence of the strong trapping beams with a flux totaling
2.6 x 10 photons/0.1 s (0.6 mW), even a scatter of one in a billion is going to cause
devastating consequence for our experiment. This is one of the major reasons why
we upgraded from the simple glass cell to the stainless steel chamber, which allows
us to put AR coated windows (Larson VQZ-400-F6 and VQZ-150-F2, coated by Thin
Film Devices, Inc., Anaheim, CA) far away from the trap, minimizing the chance
of scattering by the optical components close to the trap (cf. Section 3.3.3). But
even with these arrangements, the total noise level is still over 4,000 counts/0.1 s,
causing serious difficulty in measurement. Improvements to this end involve pushing
the vacuum window further away from the trap and placing light absorbing baffles

inside the chamber to reduce scattering.
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3.3.3 The Number of Atoms in the Trap ng,

We will now turn to the most important quantity in the single-atom trapping exper-
iment — the steady-state number of atoms in the trap ng,.

According to Eq. (3.14), Eq. (3.4), Eq. (3.7) and Eq. (3.8),

3 212
Neg = \/;T— Urec . < Pcs ) d4. (324)
2 ouvqy, \pBc + Pos

Most factors in this equation, like o, u, and I' are discussed in previous sections,
while others, like vy, and vy are fixed by the particular choice of the atom used (Cs
for this experiment). However, there are two important parameters worth noting here,
the first of which being d, the beam diameter. According to Eq. (3.24), the number
of atoms in the trap is proportional to the fourth power of d, making it an attractive
candidate to control the number of atoms in the trap. Ref. [56] demonstrates that
it is possible to achieve traps containing 3.6 x 10! atoms at a density of 3.6 x 10°
atoms/cm? using large beams of 4 cm in diameter. To the other extreme, it is tempting
to use the same method to reduce the number of atoms in the trap by using smaller
beams. However, a more careful investigation by Ref. [70] shows that under a certain
threshold value for d, the number of atoms in the trap decreases dramatically with the
decrease of beam size, thus making it very difficult to obtain a trap in the first place.
Our experience with the aligning of the trap confirms this result. Thus, to exploit
the maximum potential of this method, we have put an aperture (APT in Fig. 3.8)
in the path of the main beam before it is split into five trapping beams. This way
we can conveniently control the size of all five trapping beams without significantly
misaligning the trap. In the experiment (Section 3.4), before the measuring apparatus
is switched over from the video camera to the photon counting module, we close down
the aperture as much as we can, realigning the beams slightly if necessary to optimize
the trap. This way we can reduce the beam diameter to a minimum of about 2 mm,
ie.,

d = 2 mm. (3.25)
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This is measured by the FWHM of the beam at the position of the trap. It is of
reasonably smooth shape despite the clipping of the aperture to the original Gaussian
beam (of waist ~ 6 mm).

Before going on to discuss the next factor in Eq. (3.24), we will briefly note
here that we are now in a position to make a numerical estimate for the capture
velocity v.. Using Eq. (3.23) for I', we obtain from Eq. (3.8) that v, = 10 m/s.
this is much less compared to the thermal velocity of Cs atoms at room temperature
vry = (2kgT/m)Y? = 194 m/s, and thus our approximation (that v, < wvry) in
deriving Eq. (3.7) is justified.

The last but perhaps most important term in Eq. (3.24) is pcs/(pec + Pes), which
states that if the background Cs pressure is much larger compared to the background
pressure from other vapors, i.e., pcs > pra, then the number of atoms in the trap is
independent of the background Cs pressure and is inversely proportional to the back-
ground vapor pressure ppg. This is the case in most other conventional experiments
where changing the Cs pressure does not significantly influence the number of atoms
in the trap.[3] In the single-atom trapping experiment, however, our goal is to reduce
the Cs pressure so that it falls below the background vapor pressure ppg, at which
point the number of atoms ng, starts to decrease linearly with the decrease of the
background Cs pressure pcs.

To get into that regime, however, requires careful design of the vacuum system and
Cs source. Fig. 3.5 shows the final version of our vacuum apparatus when the data
is taken. The Cs source [Fig. 3.5(b)] is a glass ampule containing the Cs atoms. It is
connected to a metal flange by means of glass-to-metal seal. A copper sleeve, cooled
by two thermal-electric-coolers (Peltier coolers) in series, makes thermal contact to
the glass ampule and is surrounded by a foam cup, which is used to insulate the air
and thus prevents water from freezing on the cold finger. For the same purpose, dry
N; gas is introduced into the compartment surrounded by the cup to blow out the
water vapor. Such a humble system works surprisingly well and is capable of cooling
the ampule down to about —34 °C, measured by a thermistor attached to the copper

sleeve.
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Figure 3.5: The vacuum chamber and Cs source for the single-atom experiment. (a)
The vacuum chamber. (b) The details of the Cs source and cold finger.
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Standard textbook theory assumes that the background Cs pressure in the cham-
ber, the all important pcs, is determined by the vapor pressure of Cs at the cold finger
temperature. But this is true only when the system is clean and free of adsorption
by Cs atoms on the surface, a condition achieved only after a thorough baking or at
system startup. Shortly after that, the adsorbed Cs atoms on the surface becomes a
secondary source which is not negligible because such atoms are at room temperature
and the vapor pressure of Cs at room temperature is three orders of magnitude larger
than the vapor pressure at —34 °C (Fig. 3.6). This is also evidenced in Fig. 3.7, where
the fluorescence light emitted from Cs atoms from a fixed volume of the background
Cs vapor after a thorough baking of the glass cell is measured by the photon counting
module described in Section 3.3.2 and plotted on the y-axis versus time after baking.
In Fig. 3.7 the pressure on the right is calculated from an extrapolation of the fluores-
cence count data obtained after the system reaches equilibrium state and calibrated
against the vapor pressure of Cs atoms at room temperature. During the course of
the measurement, we have raised the temperature of the cold finger several times,
and the vapor pressures at the corresponding temperatures are plotted in dashed
line. This is also the expected counting rates if the Cs pressure in the cell closely
followed the vapor pressure. From Fig. 3.7 one can see that the measured Cs pressure
already departs from the vapor pressure only several hours after the baking. In the
glass cell there is nothing preventing such a trend, making it necessary to bake the
system every few days. It is also clear from Fig. 3.7 that the lowest Cs pressure one
can reach in the cell is not less than 5 x 10710 torr, not enough to achieve single-atom
condition according to Eq. (3.24). These and other reasons prompted us to upgrade
the vacuum system from the simple glass cell to an all metal stainless steel cham-
ber, as shown in Fig. 3.5(a). It is a custom-made feed-through collar manufactured
by Nor-Cal Products, Inc. Its six-inch diameter makes it possible to place imaging
optics inside the chamber to achieve higher collection solid angle; yet the chamber
is still small enough to fit comfortably on the tabletop. The larger size also pushed
back the nearest scattering component — the vacuum window — to more than three

inches away from the trap, compared to less than a centimeter in the case of the cell.
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Vapor Pressure (mmHg)
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Figure 3.6: Vapor pressure of Cs, Inp = —4120/T — 1.0InT + 10.46, (p in torr, T in
Kelvin), after Ref. [71]. The melting point of Cs is 28 °C at 1 atm, making it almost
a liquid at room temperature.
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Figure 3.7: The fluorescence counts from a fixed volume of the background Cs vapor
in the glass cell versus time after a thorough baking. The pressure and expected
counts are calculated from an extrapolation of the fluorescence count data obtained

after the system reaches equilibrium state and calibrated against the vapor pressure
of Cs at room temperature.
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The scattering is further reduced by the AR coated window, compared to relatively
low quality glass from which the cell is constructed. The vacuum is also improved
because of the low outgassing rate of stainless steel compared to glass. Our system
is pumped first by a turbo-molecular pumping station (Varian 4400-MSP-SPL) from
atmosphere to about 107° torr, then the valve to this roughing pump is closed, and
an ion pump is turned on. The Varian model 911-5005 pump provides a pumping
speed of 8 1/s which matches roughly the conductance of 12 1/s that we are able to
achieve through the elbow. This model is chosen because it has very little stray mag-
netic field, causing less than 20 mG of magnetic inductance at the trap only one foot
away. The pressure is deduced from the electric current read by the ion pump con-
troller (Varian 921-2001). Despite the fact that there are optical components held by
aluminum holders in the main chamber, we still managed to get a pressure of about
6 x 1079 torr at the center of the chamber, taking into account the finite conductance

and pumping speed of the pump, i.e.,
pRg =6 x 107°  torr. (3.26)

But the greatest advantage of the stainless steel chamber comes from the possi-
bility to add an isolation valve V to control the Cs flow into the chamber. At evening
or weekend when the experiment is not running, this valve is closed to prevent Cs
atoms from contaminating the main chamber. Even during the experiment, after the
initial diagnostics are done for the trap containing high number of atoms, this valve
is closed down to cut further the supply of Cs atoms into the chamber. Then, with
a time constant of typically several hours (the exact length depending on the history
of the chamber), the remaining Cs atoms in the main chamber are pumped away by
the ion pump. This way it is possible to achieve the low Cs background pressure
required by the conditions for single-atom trapping, estimated in Section 3.5 to be
about 2 x 10716 torr, i.e.,

pes ~ 2 x 10718 torr. (3.27)

Before we conclude this section, we note that our atomic source is differrent than
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the atomic beam usually seen in this type of experiment.[2] Rather, it is more like the
thermal beam described in Ref. [5]. To construct a real atomic beam would require
long arms with collimating slits to collimate the Cs atoms. Such an apparatus would
perhaps take a space more than able to fit on the tabletop.

Finally, we acknowledge that our system is far from ideal and perfect for our
purpose and is a product of comprise between quality and effort. Improvements to this
end would reduce both the background Cs and other gas pressure. For example, our Cs
ampule and cold finger could be eliminated by employing the alkali metal dispensers
(AMD)[72] developed by SAES Getters, SpA. An AMD consists of a mixture of
powders, usually an alkali metal chromate and a reducing agent rolled around by a
metallic strip to form a wire. The Cs is bound in the chemical compound under normal
temperature but is released when electric current passes through and its surrounding
temperature is elevated. The evaporation flow rate is controlled by the amount of
current and is thus reproducible and accurate. Unfortunately, at present time our
experiment could not yet benefit from this technique because it could only supply
atoms at a relatively large flux. If the future developments in this product enable it
to supply a lower flux of atoms, then our isolation valve would be obsolete and would
be replaced by a more capable “valve” — the electric current which could regulate the
Cs flow continuously. Besides this dramatic alteration to the atomic source, a modest
improvement can be achieved by placing proper Cs absorbing chemical compounds

in the chamber.

3.4 The Experiment

In this section we will turn to the actual operation of the experiment. The complete
setup for the single-atom trapping experiment is shown in Fig. 3.8. Most of the parts
are discussed in Chapter 2, e.g., the laser is described in Section 2.2, the frequency
stabilization scheme is described in Section 2.3, and the repumping diode laser in
Section 2.5. Others, like the detection optics, the vacuum chamber, and the Cs

source, are described in the previous section. A significant part of the table space
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Figure 3.8: The complete setup for the single-atom trapping experiment. HW: half-
wave plate; QW: quarter-wave plate; PBS: polarization beamsplitter; APT: aperture,
see previous section; AOM#3 and saturation locking: see Section 2.3; Ti:sapphire
laser (in solid line): see Section 2.2; laser diode (in dashed line) and laser diode
saturation locking: see Section 2.5; vacuum chamber, pump, imaging system and
detection system: see previous section; L2 and L3: telescope, see Section 2.5. L1:
Newport LBX 082, f = 50 cm; z beams (not shown) propagate into and out of the
page; mirrors and beamsplitters are not marked.
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is dedicated to the splitting and balance of the beams, using half-wave plates (HW)
and polarization beamsplitter (PBS) combinations. As mentioned in Section 2.5, we
use five beams for our trap instead of the usual six beams to avoid the striation effect
associated with the standing waves.

During the experiment, the trap is first observed on the TV screen by a Cohu TV
camera. This camera has a sensitivity of about 0.04 fc, about 4 x 10° times worse
than that of the Xybion intensified CCD camera. The purpose of using the TV screen
is to align and optimize the trap at a high number of atoms, usually containing about
10° atoms, similar to those shown in Fig. 4.5. The procedure for optimizing the trap
varies, the main criteria being the roundness of the trap and the distribution of atoms
in the trap. One can also alter the magnetic field gradient and observe the movement
of the trap: if the trap is located at the center of the field gradient and is well-aligned,
it changes little during the process. Another criteria is the trend of the trap when
the aperture (APT in Fig. 3.8) mentioned in Section 3.3.3 is closed down: as the
aperture is inevitably not in the center of the main beam, the five beams will be cut
off differently when the aperture is closed down, requiring realignment of the trap.
Nevertheless, a well aligned trap should require a minimum of such realignment and
usually converts fairly smoothly as one reduces the beam size to its minimum, i.e.,
d = 2 mm according to Eq. (3.25).

Once the limit of the TV camera is reached, the valve V (cf. Section 3.3.3 and
Fig. 3.5) which separates the main chamber from the Cs source is closed down to
reduce the background Cs pressure in the main chamber, the camera is replaced
by the APD system described in Sec 3.3.2. The output of the APD, in TTL pulse
format, is fed both into a digital counter (HP 5334B Universal Counter) and an analog
ratemeter. The HP 5334B displays on the front panel the number of TTL pulses it
detected in a preset gating time At, which, according to Eq. (3.18), is typically set to
At = 0.1 s. The HPIB interface of the counter allows us to transfer the data into the
computer, an HP 382 controller, for storage and further analysis. The data acquisition
software, written in HP Basic language, allows us to perform variance calculation,

sorting and histogram analysis, in addition to taking data and plotting them on the
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computer screen. The ratemeter is used as a means to independently confirm the
result reported by the counter. The TC 527 LOG/LIN ratemeter manufactured by
Tennelec integrates the signal it receives at its input for a time constant which we also
set to be 0.1 sec. The output, an analogue signal whose amplitude is proportional
to the integrated rate, is sent to a digital oscilloscope (Lecroy 9400, 125 MHz) for
continuous monitoring of the counting rate.

During the transition period, before the pressure falls low enough for the single-
atom trapping condition to be reached, it is already evident from Fig. 3.9 that the
number of atoms in the trap ns, is in the regime n,, < N;. Fig. 3.9 plots the
fluorescence counts from the trapped atoms Ci,p on the z axis versus its relative
variance 0¢,,,,/Ciap, Which is plotted on the y axis. According to Egs. (3.2) and
(3.3), the relative variance of Ci,p does not depend on ng, at ng > Nj, but varies
as 1/ \/nss when n;, < N;. In Fig. 3.9, the experimental data are roughly scattered
around the curve og,,,, /Cirap = 1/350/Cirap, which indicates that we are in the regime
nss < Ny and Ny ~ 350. The relationship Cirap = Ninss then implies that n,, for
the data shown in Fig. 3.9 is in the range n,, < 6.

When the background Cs pressure falls yet lower, we are finally able to record
traces suggesting single atom. These traces are shown in Figs. 3.10 and 3.11 and

discussed in the next section.

3.5 Experimental Results and Data Analysis

The experimental results are shown in Figs. 3.10 and 3.11, where the detected fluores-
cence counts from the trap are plotted versus time. Fig. 3.11 shows the data recorded
by ratemeter and taken by the digital oscilloscope, which offers a close-up view of the
short term fluctuations in the fluorescence counts; while Fig. 3.10 shows the long-term
variation of the data over a course of 100 sec. In addition, Fig. 3.10, whose data are
recorded by the digital counter and taken by the computer, provides the absolute
magnitude of the fluorescence counts for comparison with the theoretical predictions.

Although not recorded simultaneously, they are obtained under similar experimental
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Figure 3.10: Fluorescence signal C' (counts/0.1 s) versus time under conditions of very
low Cs background pressure. The discrete steps evident in the Figure are interpreted
as arising from the arrival and departure of individual Cs atoms in the trap. In
moving from (a) to (b), the background Cs pressure has been increased by injection
of a small amount of Cs through the V valve (cf. Section 3.3.3 and Fig. 3.5). The total
trapping intensity is [ = 10 mW/cm?, and the trapping laser detuning is A/27 = 6
MHz.
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conditions. From Figs. 3.10 and 3.11 we see that the counting rates exhibit distinct
steps above a background level Cy, where Cj is associated with (nonresonant) scat-
tering from various optical components. (A discussion on what contributes to this
background and how to reduce it is presented at the end of Section 3.3.2.) For ex-
ample, in Fig. 3.11(b) we can associate the well separated jumps C; and C, during
time period [to, t3] with the fluorescence from single atoms: at time to, a single atom
is trapped from the background, causing the counts to jump from the background
level Cy to Cy; at time ¢4, a second atom is added to the trap, causing another jump
in the fluorescence signal. The atoms stay in the trap for a time period [¢1, ;] and
both exit the trap at 3, presumably because of collision with the background atoms,
as discussed in Section 3.2.

As mentioned in Section 3.2, if there is only one step in the trace, indicating only
one atom in the trap when the trap is on (as in Figs. 3.10(a) and 3.11(a)), the duration
of these steps (7on) should be exponentially distributed with its mean equal to the
inverse of the collisional loss rate L, or 7o, & 0.6 s for our experimental condition,
according to Eq. (3.17)!. From a quick observation of Figs. 3.10(a) and 3.11(a), one
can conclude that this prediction agrees with our experimental data. For a more
careful analysis, the distribution of 7., is tabulated from data in a long record of
which Fig. 3.10(a) is but one segment, and the result is plotted in Fig. 3.12. From
Fig. 3.12 we see that the on-time distribution fits roughly to an exponential curve
with time constant 77 ~ 0.9 s.

Likewise, the distribution of dwell times 7.5 between two successive jumps of the
fluorescence should also be exponential with its mean being the inverse of the filling
rate R. However, a distribution curve similar to Fig. 3.12 is difficult to construct

because in the limit of fgs = Ton /7o € 1, we have 7. > 7on. For 7., close to one

If the trace contains more than one level of steps caused by trapping of more than one atom,
(e.g., Fig. 3.10(b) and Fig. 3.11(b) contain steps caused by a two-atom trap), one has to analyze the
distribution for the duration of steps at each level. Such an analysis is difficult both theoretically
and experimentally, because theoretically, the probability distribution for a particular level of step
depends on the history leading to such a level and one has to keep track of the time each atom enters
and leaves the trap and sum over such a history, and experimentally, it takes a long time to collect
statistically significant data.
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Figure 3.12: The distribution F(7,,) for the trap’s on-time 7,,. The time is divided
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7/ =0.9 s and npin, = 20 is the total number of bins.
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second according to Fig. 3.12, 7,4 has a mean of several seconds. Thus to accumulate
statistically significant data, one would have to wait for a time long enough that
the experimental conditions are changed somewhat, since we are in the transition
period and the pressure in the chamber decays with a time constant of several hours
(Section 3.3.3). Nevertheless, from Fig. 3.10(a), we can make an order-of-magnitude
estimate for 7.g to be 7o ~ 10 s, which is consistent with Eq. (3.14), since we later
calculated in Fig. 3.13(a) that 75, = 0.1. This implies that ncs & 20 ~ 50 /cm3 or
pos ~ 2 X 10716 torr, according to Eq. (3.24).

Next we turn to the actual magnitude N; of the jumps in fluorescence associated
with a single trapped atom, which is given by Eq. (3.23) as 0.9 x 10> < N; S 1.6 x 10®
counts for At = 0.1 s. From Fig. 3.10(a) (and confirmed by the histogram analysis
discussed below) we observe that the theoretical prediction is a factor 3 ~ 4 times
larger than the experimental data suggested in Fig. 3.10(a) (N; = C;1—Cs). A possible
source for this large discrepancy is a potential mismatch between the size of the trap
image and of the active area of the APD, which we estimate reduces the expectation
for N; by roughly a factor of 2. Another possible cause for this discrepancy is that the
trap may not have been well centered with respect to the intersection of the trapping
beams. Again, since we have no imaging capability in the photon-counting regime, it
may be that the actual intensity at the trap site is lower than that given by the peak
intensity of the five trapping beams. These and other possibilities are currently being
investigated, e.g., the purchase of the intensified CCD camera will permit us to take
image of a single atom. A more efficient collection system based on aspherical lens is
also under development.

Finally, to get a quantitative picture, we have constructed from traces as in
Fig. 3.10, but from much longer time series, histograms of the frequency of occurrence
of a given count rate versus count rate. On the graph we have also plotted Gaussian
fits for the data. As we first focus on the experimental data, we can see that, at low
pressure, as in Fig. 3.13(a), one sees predominantly two peaks, with the larger peak
associated with the absence of trapped atoms (n,s = 0), whereas the smaller peak

corresponds to a jump in fluorescence with one trapped atom (ns;; = 1). At higher
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background Cs density, as in Fig. 3.13(b), the relative weight of the n,, = 1 peak
increases, and a new peak corresponding to two trapped atoms emerges (n;, = 2).
By integrating the area under each peaks, we can also determine the average num-
ber of atoms in the trap for the particular graph. For example, for Fig. 3.13(a) we
calculate that s = 0.1 while for Fig. 3.13(b), fizs = 0.6. Next as we focus on the
smooth Gaussian curves, each individual curve is centered on C;, where (Ciy; — C;)
is the separation of the N = 0,1, 2 peaks and is approximately constant, for example,
in Fig. 3.13(b) we have C; — Co = 348 and C; — C; = 367, and for Fig. 3.13(a)
we have ) — Cp = 352. The relative height of the Gaussian peaks obey Poisson
distribution (i.e., 1 : figs : 7#2,/2 : -+ -) with mean fi,;. For example, in Fig. 3.13(a),
where the mean number of atoms ng, = 0.1, the relative ratio for the height of the
peaks corresponding to Cp and Cy is 10 : 1. For Fig. 3.13(b), the mean number of
atoms ns; = 0.6, and the ratio for the peak heights is 5 : 3 : 1, which deviates slightly
from Poisson distribution (1 : 0.6 : 0.18). Finally, the width of the peaks are close to
the Poisson noise level 4/Cy arising from the background counting rate, confirming
our observation that the background scattering is the main contribution to the noise
source. Efforts are in progress to reduce this background component and hence to

resolve more clearly the individual peaks.

3.6 Further Developments

A number of straightforward improvements have already been discussed at various
places throughout this chapter, e.g., the purchase of an intensified CCD camera will
provide image capability even at single-atom level; an upgrade in vacuum will increase
the dwell-times 7, of the atoms in the trap; improvements of the optical system should
lead to enhanced signal-to-noise ratio.

Besides these direct changes in the existing experiment, it is also interesting to
explore other trapping schemes. For example, at the time being, there is a report
that a single-atom trap has been observed in a cryogenic trap.[12] In a cryotrap the

low background pressure (both pcs and pgg) is accomplished by immersing the whole
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vacuum system in a 4 °K environment. As a result, long lifetimes exceeding several
hundred seconds are achieved.

Another variation is a Far-Off-Resonance-Trap (FORT).[21] A FORT is an optical
dipole force atom trap which operates at very large detunings from atomic resonance.
In order to produce appreciable trapping potential, given by[73, 74] U = hG?/4A for
A > G, the large detuning A is compensated by large intensities which is proportional
to the square of Rabi frequency G. The advantage of large detuning is obvious:
since the scatter rate I' = v, G?/2A? falls quadratically as A™%, (1/A faster than
the potential), the atoms will have a very low spontaneous scattering rate and thus
negligible photon recoil heating. The potential will closely approximate the ideal of a
truly conservative trapping potential. Currently, a FORT based on our MOT is under
development. Our initial result, shown in Fig. 3.14(b), is encouraging. A strong (5 W)
laser beam from the output of a YAG laser (Quantronix A116, 1064 nm) is focused on
the MOT with a 50 ym waist diameter, producing an intensity of 2.5 x 10> W/cm?.
Such an intense beam will induce a strong Stark effect and shift the MOT beams
at 852 nm out of resonance. In order to get the photograph shown in Fig. 3.14(b),
atoms are first loaded into the MOT using the usual trapping technique, then the
MOT beams are turned off, the YAG beam is turned on [Fig. 3.14(c)], the atoms
are loaded into the FORT. After a variable delay time, the FORT beam is turned
off and the 852 nm beams turned on again, this time to probe the atoms remaining,.
From Fig. 3.14 we see that after about 400 ms, there are still an appreciable number
of atoms left. That these atoms are not residual atoms from the MOT which have
not had enough time to decay away in the 400 ms dark time is confirmed by the
absence of such atoms when the YAG beam is not turned on during the 400 ms
delay time. Neither are they captured by the 852 nm beams on their way to form
another MOT, because the frequency of the 852 nm beams is switched from below
atomic resonance to on resonance, and no longer meets the requirements of a positive
detuning for a MOT. It would be interesting to ultimately combine this technique
with our one-atom trap to form a single-atom FORT. This atom would have very

limited movements both in real space (dictated by the waist of the FORT beam) and
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Figure 3.14: Image of a far-off-resonance trap (FORT). (a) Image of a MOT. (b)
Image of a FORT. (c) The sequence for switching of the lasers. The time when (a)
and (b) are taken is indicated by arrows. Note that the frequency of the 852 nm laser
is switched from 6 MHz below the resonance to on resonance.
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momentum space (dictated by the temperature of the atoms), thus approaching the
ideal of a sample consisting of a single atom cooled to ultra-cold temperature and
localized to within a wavelength of the optical field.

Another extension of our work on single-atom trap is to place this trap in a much
larger magnetic field gradient in order to increase the ratio of resonance frequency
of atomic oscillation wirap to the damping rate Td—;np for motion in the trap. In its
current configuration, this ratio is 2wWirapTdamp ~ 0.9 for our trap [Eq. (2.13)]. By
employing iron-boron magnets to increase the gradient dB/dz from its current value
of 7 G/cm (Section 2.4) to values approaching 10° G/cm, we should be able to reach a
regime of underdamped motion (2wirapTdamp > 1) and hence to resolve the quantized
energy spectrum for the dynamics. In preliminary work with rare earth permanent
magnets, we have obtained field changes of 10* G on a mm scale. In this quantum
domain a number of experiments are made possible by the external control of the
system’s parameters on a time scale much faster than the oscillation frequency wirap.
For example, if the trapped atom could be cooled to zero point of its motion, then the
sudden, nonadiabatic change of the trapping potential to shift the natural frequency
of oscillation werap to wi,,, could be used to produce a squeezed state.[31, 32] Because
this kind of experiment is conceptually simple, it may prove useful as a testing ground

for topics in quantum measurement theory.
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Chapter 4 Non-linear Spectroscopy of Trapped

Atoms

In this and the next chapter we turn to the second topic of this thesis, which will
deal with a different aspect of the physics with cold atoms, namely, the nonlinear
spectroscopy of trapped atoms. Spectroscopy is now a ubiquitous tool for physicists
and chemists. Great innovations based on spectroscopic techniques have changed our
knowledge of the universe as well as our ways of living. The nascent field of atomic
cooling and trapping have created new opportunity for spectroscopic measurements,
because a dense collection of atoms, cooled and confined to a restricted region, is the
ideal sample for spectroscopy that physicists dream of.

Among a wealth of opportunities for spectroscopic experiments made possible
by the atomic cooling and trapping technique, in this chapter we will describe a
somewhat modest attempt to characterize our trap by recording the transmission of
a weak probe beam focused through the trap. In Section 4.1 we will first briefly
describe our experimental setup, emphasizing the difference with the single-atom
trapping experiment discussed in the previous chapter; and then present the results
of our spectroscopic measurements. An explanation based on simple two-level theory
is given in Section 4.2. But such a simple theory does not account for all the features
of the spectrum. Section 4.3 discusses the implication of such a discrepancy to the
general characteristics of our trap and prepares for the next chapter, in which we will

theoretically explore a more complex regime — the three-level atom.

4.1 Experiment

The general principle and experimental setup for a magneto-optical trap is discussed

in Chapter 2 and Chapter 3, where our experiment for single-atom trapping is de-
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scribed. Our spectroscopy experiment precedes in time our single-atom experiment,
and the scheme we employed there is similar to the latter. In this section we will only
highlight the different arrangements between the two experiments.

The schematic for our spectroscopic experiment is shown in Fig. 4.1. The six trap-
ping beams are derived from the main beam via a set of sheet beamsplitters and have
a waist of wg =4 mm. The beams are balanced by inserting suitable neutral-density
filters in each beam’s path. Although this method can only balance the beams’ in-
tensity to within 20% compared to the 5% of the more precise method employing
polarization-beamsplitter-half-wave-plate assemblies, it gives satisfactory results for
the purpose of our experiment, because under high numbers of atoms the trap is not
very sensitive to the balance of the beams. The beams are further arranged into three
counterpropagating pairs of opposite circular polarization propagating along mutu-
ally orthogonal directions and locked (using FM-saturation spectroscopy described in
Section 2.3) to a common frequency several natural linewidths below the resonant
transition of the Cs D, line (652, F' = 4 — 6P5/5, F' = 5 at 852 nm) to provide
a dissipative cooling force. The spatially dependent trapping force is provided by
the atomic Zeeman shift in an inhomogeneous magnetic field of gradient of 10 G/cm
along z and 5 G/cm along (z,y) created by two current carrying coils, as described
in Section 2.4. No measure is taken to offset the earth’s magnetic field and other
stray fields, e.g., that caused by the vacuum pump (Perkin Elmer Model 202-0125 ion
pump, 2 1/s). This is improved in our later experiment for single-atom trapping by
employing Helmholtz coils and ion pumps with smaller stray magnetic field (Section
2.4). A semiconductor laser diode which is locked to the Doppler profile recirculates
population lost to the F' = 3 ground state.

An important difference with our single-atom experiment is that our trap is loaded
directly from Cs vapor in a quartz cell, as a result, the lowest achievable Cs pressure
is only about 2 x 107® torr, resulting in a typical filling time of the trap following
a sudden turn-on of the trapping laser to be about 1 sec, with the diameter of the
steady-state cloud of the trapped Cs atoms to be about 1 mm. The temperature of

the trapped atoms is near the Doppler cooling limit of 120 K for Cs atom, as inferred
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Figure 4.1: The experimental setup for the spectroscopic experiment. HW: half-
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by monitoring the decay in absorption of a weak probe beam when the trapping lasers
are chopped off.

In addition to these standard configurations for a magneto-optical trap, a probe
beam is derived from the same Ti:sapphire laser for the trapping beams and is focused
to a waist of about 100 ym and attenuated to a typical power of about 60 nW, resulting
in an intensity of about 0.4 mW/cm?, compared to the 1 mW /cm? saturation intensity
for the Cs 65y/2, F' = 4,mp = 4 — 6P3)5, F' = 5, mp: = 5 transition. The probe beam
is double passed through an acousto-optic-modulator AOM #4, which has a center
frequency of 80 MHz and can be independently tuned over a frequency range of at
least 70 MHz without significant beam steering. The resultant doubly upshifted beam
is again passed through another AOM (AOM #35) with a fixed frequency of 40 MHz.
The first-order beam downshifted by this AOM finally has the required frequency
near the Cs D, transition.

Under conditions of strong excitation by the trapping lasers, the transmitted power
of the weak probe beam as a function of the probe frequency w, is recorded and the
result is shown in Fig. 4.2, which is a succession of records of the transmitted probe
power normalized to the input probe power (p;/po) versus w,, with the positions of
the frequencies of the trapping laser wr and of the atomic transition wy indicated.
As might be expected, we observe in Figs. 4.2(a) and 4.2(b) probe spectra with broad
regions of absorption and amplification symmetrically placed about wr characteristic
of the dressed-state splitting. However, in addition to the broad features, a narrow
dispersive-shaped feature around wr is also clearly evident in Figs. 4.2(a) and 4.2(b).
This narrow feature has width below the natural linewidth of 2v, /27 = 5 MHz and
can exhibit appreciable single-pass gain of more than 20%. An expanded view of the
absorption spectrum is given in Figs. 4.2(c) — 4.2(e), where we see that for increasing
levels of trapping power Pr, the dispersive shape broadens and develops substructure.
The general trends shown in Fig. 4.2 are independent of the number of trapped atoms
as well as of the direction of propagation of the probe beam relative to the trapping
beams. However, the spectra do exhibit a dependence on the polarization state of

the incident probe beam [especially as regards the substructure shown in Figs. 4.2(c)
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Figure 4.2: Probe absorption spectra p;/py versus probe frequency w, for (wy —
wr)/2n = 13.5 MHz, after Ref. [14]. (a), (b) Scans showing large absorption near w4
and small gain symmetrically placed about wy. (c) - (e) Magnified frequency scale to
examine the narrow central feature near wr for various Pr. The finely drawn curves
in (a) and (b) are discussed in Section 4.2.
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- 4.2(e)] and on the magnetic-field gradient across the trap (AB ~ 1 G gives a range
Awgy /21 ~ 1 MHz).

4.2 Explanation in Two-Level Theory

To model the spectra shown in Fig. 4.2, we can make some headway by first of all
neglecting all the complexities in the energy level structure of the trapped Cs atoms
and approximate it with a standard two-level system. Such a system is shown in
Fig. 4.3(a).

The pump-probe spectroscopy of a standard two-level system was first studied
by Ref. [75] and has since then become a textbook example for applying the quan-
tum mechanical method to simple systems.[76] Its various extensions are extensively
studied both theoretically and experimentally under numerous different contexts by
a host of literatures.[77-82]. These are simply some limiting cases of the more gen-
eral three-level results discussed in the next chapter. A detailed derivation of the
two-level spectra is thus omitted since it is also out of the scope of this thesis. For
the purpose here, it suffices to remind the reader that the probe-absorption spectra
is different than the linear absorption spectra, or otherwise known as the lineshape,
in the sense that the probe-absorption spectra is the transmission spectra for a weak
probe in the presence of a possibly intense pumping beam. The role of the pump
beam is to maintain a nonzero population in the excited state and thus reduce the
difference of the population between the ground and excited state. In the limit of a
weak pump, all the atoms are in the ground state, and the probe spectra is identical
to the linear spectra which has a Lorentzian lineshape centered at atomic transition
frequency wg = wr + A having a width 2y, equal to the natural linewidth of the
transition. As the pump intensity is increased, the population difference between the
ground and excited states is diminished as the excited state gains more population
and the atoms become saturated. Such an atom has less ability to absorb any more
photons and the peak absorption, characterized by the depth of the Lorentzian line-

shape, is decreased, as shown in Fig. 4.3(c). Another trend with the increasing pump
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Figure 4.3: Two-level atoms and their absorption spectra. (a) A standard two-level
atom having Rabi frequency G, detuning A, spontaneous emission rates 2y, , probed
by laser beam of frequency w,. (b) A “leaky” open two-level atom with external
decay rates vy and v,. (c) Absorption spectra of a two-level atom with parameters
vL =1, A =6 and G = 0,4,8. The definition of these quantities are found in the
next chapter. Note that the negative values for 64 corresponds to gain. (d) Dressed
states for a two-level atom.
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intensity is that the center of the Lorentzian peak shifted from position wr + A to
wr + G', where G = G? + (A/~.)? is the generalized Rabi frequency. Interestingly,
the probe can exhibit gain when the probe frequency is tuned to w, = wr — G, i.e.,
opposite to the broad absorption peak. This can be explained by the dressed states
of a two-level atom interacting with an electromagnetic field,[76, 83] as shown in
Fig. 4.3(d). Under the presence of an external field, the eigenstates of the combined
laser-atom system forms an infinite series of manifolds, each consisting of a doublet
whose energy levels are separated by AG’. Each doublet is a mixture of the ground
and excited states, with the mixing angle determined by the laser field. From the
quasi-steady-state populations shown in Fig. 4.3(d), one immediately understands
that the transition | 1(N)) «| 2(N — 1)) (of frequency wr 4+ G’) is absorbing be-
cause the lower level is more populated than the upper level. On the other hand,
the transition | 2(N)) | 1(N — 1)) (with frequency wr — G') is amplifying because
the upper level is more populated than the lower level. This gain in the probe comes
from the process of transferring photons from the pump beam into the probe beam,
which is more commonly known as the stimulated emission process. Finally, the two
transitions | ¢(N)) <] ¢(N — 1)) with ¢ = 1,2 (with frequency wr) do not result in
any amplification or absorption because they connect equally populated levels.

The results in Fig. 4.3(c) show that the standard two-level theory already agrees
qualitatively with the experiment exclusive of the narrow feature. To carry this anal-
ysis one step further, we may try to account for the multiplicity of Zeeman transitions
with a crude adaptation of the standard two-state result. Our approach is to aver-
age absorption spectra for a weak probe over the distribution of dipole moments for
the F' = 4 — F’' = 5 transition in Cs. As indicated by the finely drawn curve in
Fig. 4.2(a), the agreement between this calculation and the experiment is qualita-
tively reasonable for the broad absorption and gain feature. But our naive average
over the Zeeman sublevels still does not account for the central narrow feature. For
the broad feature, we present in Fig. 4.4 a compilation of results such as in Fig. 4.2(a)
over a range of trapping power 0 < Pr < 3 mW. With regard to the splitting G be-

tween wr and the broad absorption feature, we find that the average over Zeeman
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26,

Figure 4.4: Frequency splitting G (o) and width w () of the broad absorption feature
versus Rabi frequency G of trapping beams for (wa — wr)/2m = 13.5 MHz, after
Ref. [14]. Theoretical curves for G and w are from an average for F =4 — F’ = 5.
The dashed curve gives w for the single two-state transition; a similar curve for

G would roughly overlay the multistate result. The normalization for G and w is
v1/2m = 2.5 MHz; and G is defined in Eq. (5.67).
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sublevels does not produce significant departures from the two-level result. By con-
trast, the large spread in Clebsch-Gordan coefficients within the F' =4 — F/' =5
manifold results in a broadening that substantially increases the width w above the
two-level result for both the experimental scans and the calculation. That this excess
width does not arise from heating of the trap with increasing Pr has been estab-
lished with measurements both of the transient decay of the trap and of the probe
spectrum with a chopping technique that leads to the points for (G’, w) at G = 0.
Note that in Fig. 4.4, the horizontal axis is normalized to the saturation intensity
of the mp = 4 — mf = 5 transition with v/2G/y, =1 for I = 1 mW/cm?, where
I = 6Ir and It = 2Pr/nw?. The set of theoretical Rabi frequencies has been scaled
by a = 0.85 (G — aG) to optimize the comparison.

If we next consider the narrow central feature near wr, we might attempt to
account for the rather complex optical pumping processes within the manifold of Zee-
man states with an extension of the usual two-level calculation to include relaxation
to and from neighboring Zeeman transitions. Such a system, shown in Fig. 4.3(b),
is characterized by the external decay rates 14 and 5. As opposed to our previous
summation, such an approach for an “open” two-state offers the possibility for de-
scribing certain dynamical aspects of the problem, as for example, the differential
rate of relaxation of ground and excited-state populations.[80-82] Unfortunately, the
spectrum for the open two-level system exhibits either very small central features
of the same symmetry as in Figs. 4.2(a)-(e) or larger features of size comparable
to our data but of opposite symmetry.[81] Fortunately, a generalization of the open
two-level model to multilevel systems that do not conserve alignment or orientation
finds the possibility for reversals in sign of narrow resonances.[82(a)] If we follow this
lead and make an otherwise ad hoc change of sign in the terms responsible for the
narrow feature (Eq. (4) of Ref. [81]), we obtain surprisingly good agreement between
the resulting analytic expression and our spectra as evidenced by the comparison in
Fig. 4.2(b), for which the external decay rates of the ground state and excited states
are v1/y. = 0.4 and v,/v; = 1.2. Although this circumstance might simply be a

curiosity, recent theoretical work[80, 82(b)] may provide an acceptable justification
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for what is otherwise simply a fitting function.

4.3 Conclusion

In this chapter, we have described an investigation of the nonlinear spectroscopy of
Cs atoms cooled and confined in a magneto-optical trap. While the broad absorption
and gain features agree reasonably well with the two-level theory, a narrow dispersive
central feature whose width is below the natural linewidth of the transition is also
observed with single pass gains exceeding 20%. Such a spectrum, together with
the narrow feature which is not accounted for in the simple two-level theory, is also
observed and reported in Ref. [84] and explained in the context of Raman transition.
To fully understand the absorption spectra will likely require a complex treatment
of all the relevant Cs levels together with the microscopic environment. This would
certainly be a formidable task, and such an approach[85] might make it difficult to
understand the underlying physical meaning. In the next chapter, we will instead
attempt to use a relatively simple three-level model to explain partly the spectrum
we have described in this chapter.

Not surprisingly then, our measurements of absorption spectra bring us full circle
back to the difficult question of the self-consistent relationship between the spectro-
scopic and mechanical characteristics of the trap. To begin to address this issue, we
present in Fig. 4.5 a series of images that illustrate a correlation between the narrow
spectral resonances and the morphology of the trap. Fig. 4.5(a) is a relatively sym-
metric picture of the trapped cloud of Cs atoms in the absence of the probe beam.
In Fig. 4.5(b) the probe beam is present and is tuned for absorption in the narrow
feature in Fig. 4.2. In this case the atoms in the trap recoil along the direction
of propagation of probe beam (stimulated absorption resulting in positive radiation
pressure). In Fig. 4.5(c) the probe frequency is tuned into the region of gain in the
subnatural profile, with the result that the atoms in the trap recoil opposite to the
direction of propagation of the probe beam (stimulated emission resulting in “nega-

tive” radiation pressure). Among the various applications that these images suggest,
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Figure 4.5: Images of trapped Cs atoms viewed from [110] direction [Fig. 2.2(a)],
after Ref. [14]. (a) Trap in the absence of the probe beam with radius R ~ 0.4 mm.
(b), (c) Trap with probe beam propagating from left to right and into the page by
about 25° (along [130] direction). (b) Probe detuning (w, — wr)/27 ~ +0.3 MHz,
with recoil along the direction of probe propagation (absorption). (c) Probe detuning
(wp —wr)/27 ~ —0.3 MHz, with recoil opposite to the direction of probe propagation
(gain). In (b) and (c), the images shown are the difference between (a) and the
corresponding image in the presence of the probe beam, with light (dark) indicating
an increase (decrease) in atomic fluorescence. The probe intensity I, for Fig. 4.5 is
about 4 mW /cm? while Fig. 4.2 is taken with I, below 0.4 mW/cm? so that the
spectra are independent of probe power and do not exhibit such large recoil.
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one is a technique for measuring the trap parameters based upon modulation of the
probe po at frequency v while an image of the trap is monitored in fluorescence S
with a split photodetector, resulting in the (spatially resolved) trap transfer function
S(v)/po(v). (This open-loop response could even be “closed” for active servo control
of the trap.)

Beyond the discussion for our particular trapping configuration, the images in
Fig. 4.5 together with more general calculations of absorption spectra also suggest
new mechanisms for dramatically altering the trap itself. For example, in an optically
dense sample conventional radiation pressure leads to a long-range repulsive force
between atoms [recoil away from the source as in Fig. 4.5(b)].[58] If however, the
absorption cross section for scattered photons could be made negative, then a long-
range attractive force between atoms would arise[recoil toward the radiation source
as in Fig. 4.5(c)]. While in Fig. 4.2 the absorption cross section o4(w,) is evidently
negative (gain) only over small frequency intervals, recent work has described the
possibility of probe gain over the entire frequency range of atomic response in a three-
level system.[86] In the next chapter we will identify such a system and explain how
the negative radiation pressure accompanying a negative absorption cross section will
lead to a long range attractive force which might be employed for optical implosion
of the sample.[87]

In addition to these possibilities, experimental advances along the avenues sug-
gested by these spectra include observations of quantized motions in both Rb atoms
(by high resolution spectroscopy of resonance fluorescence)[88] and Cs atoms (by
Raman spectroscopy of optical molasses)[89], and a “cold atom laser”([37], which op-
erates on the narrow gain feature of the trapped atoms and has achieved a modest
power of ~60 nW. Such a laser is important in the study of quantum properties of
Raman lasers,[29, 30, 90] which is a candidate for generating highly sub-Poissonian
light having spectral linewidth well below the Schawlow-Townes limit and intensity

fluctuations below the shot noise level.
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Chapter 5 Absorption and Emission Spectrum

of a Three-Level Atom

5.1 Introduction

In the previous chapter, we have used a two-level system to explain the pump-probe
spectroscopy of a dense sample of Cs atoms trapped in a magneto-optical trap. Such a
model could only account for the broad absorption and gain features of the spectrum.
To explain the central dispersive narrow feature, we need to go one step further. A
natural extension of the two-level system is the three-level system, which includes the
A, Z and V configurations. It is not surprising that a three-level system can exhibit
narrow resonances because the width of the narrow resonances with width below the
natural linewidth, because such a narrow width could come in through other avenues,
such as ground state splitting of a A system. Our interest in three-level atoms is also
driven by the recent discovery that the absorption spectrum of a three-level system
could exhibit gain over the entire frequency range.[86] This anomaly in the spectrum
would not occur in a two-level system because the steady-state population of a two-
level atom could never be inverted. This could have profound implication for the
radiation pressure force we introduced by the end of previous chapter, because the
radiation pressure force is closely related to the integral of the absorption spectrum
(weighed by emission spectrum).

Historically, ever since the experimental techniques have grown beyond the so-
phistication of a two-level system, thanks mainly to the invention and widespread
application of frequency stabilized lasers to atomic and molecular physics, the three-
level system has been the platform of many interesting experimental phenomena, such
as the optical double resonance[91], two-photon spectroscopy, and optical pumping.

Recently there has been a resurgence of interest in three-level systems mainly be-
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cause of the explosion in the field of atomic cooling and trapping. Three-level atoms
have been proposed to be the candidate in which to observe such exotic behaviors as
lasing without inversion[92], coherent population trapping[93], linewidth reduction in
the fluorescent spectrum[86], and most recently, generation of Fock states and coher-
ent superposition states (“Schrodinger’s cat” states)[94]. It has also been suggested
that three-level forces may explain some of the differences between observation of
real trapped atoms and predictions for two-level atoms or incoherent processes in
multilevel atoms[95].

Motivated by these rich and interesting features of a three-level system, in this
chapter we attempt to investigate the absorption and emission spectrum of a three-
level atom driven by two intense optical fields. Our notation for the atom-field system
is defined in Section 5.2, where an outline of our approach is also given. In Sections
5.3 - 5.6 we derive the master equation for the density matrix of a three-level A
system and apply the quantum regression theorem in Laplace space to obtain the
formulae for the spectrum. Section 5.7 extends our results to the = and V system
and key formulae and equations are listed. After explaining how to understand the
parameters used in our theoretical derivation in terms of experimental observables
(Section 5.8), we present the results of our calculation in Section 5.9, emphasizing
the narrow feature and negative radiation pressure that is not present in a two-level

system.

5.2 Overview

The framework of our discussion in this section is shown in Fig. 5.1, where the three
different configurations of the three-level system, i.e., A, V, and = systems, are illus-
trated. The atomic levels 2 and 3 are optically connected to level 1 via the spontaneous

decay rates' 2v; and 2v,. The transition between levels 1 <+ 3 and levels 1 ++ 2 are

1Here 4, and 7, are the “transverse” decay rates for the radiation, which is equivalent to v, we
introduced in two-level system. We have assumed pure “radiative decay” -y = 21 throughout the
thesis.



83

(@)

(b)

Pp—
o
[ S VZ V1
(Op2
rES68 o>

()

11>

Figure 5.1: The three-level A, V, and = configuration. €, €5: frequencies of the
driving fields; G';, G2: Rabi frequencies of the driving fields; A;, Ay: detunings of the
pump beams; 27;, 27,: spontaneous emission rates of transitions 1 <» 3 and 1  2;
11, vq: population transfer rates between levels 2 and 3. w,,, wy,: frequencies of the
probe beams.
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driven by two electro-magnetic fields of frequency Q; and Q,, whose amplitudes are
characterized by the two Rabi frequencies (G; and G, respectively. There is no field
driving the transition 2 <+ 3, but they can relax via the rates v, and v,, as shown in
Fig. 5.1. The atomic transition frequencies between levels 1 <> 3 and levels 1 < 2,
ie., |wis| = |e1 — €3] /A and |wi2| = |e; — €2] /A (where €;, €; and €3 are the individ-
ual energy levels for the unperturbed states) and the field frequencies 2; and Q, do
not enter our final equation? because our system is characterized by the detunings
Ay = |wiz| — Q1 and Ay = |wya|— Q2. Thus, our spectra can be completely determined
by the following 8 parameters: the Rabi frequencies G; and G, the detunings A; and
Ag, the spontaneous decay rates 29, and 27, and the relaxation rates between levels
2 and 3: vy and v,. With very few exceptions, the subscript “1” refers to transition
1 ¢ 3 and “2” refers to transition 1 < 2.

In the text that follows, we will take the A system as an example to illustrate our
procedure for calculating the three-level emission and absorption spectra. Similar
techniques apply to the V and = systems, and the results are summarized in Section
5.7.

To calculate the emission and absorption spectra, we will need the field correlation

function:

GOt +7,7) = (Bt + 1) - ED(r)), (5.1)

where the scattered field E = E() + E) takes the form in the far field:

A A (+) W(% n R A A T
B (r,1) = B (r, 1) — 21 x (3 x )P (t - —) . (5.2a)
cr C
BO(r, 1) = (ED(r,1))". (5.2b)

Here EM) and EG) are the positive and negative part of the total field operator E,

respectively, Egﬂ and E((;) are the corresponding solution of the homogeneous wave

equation, P and P are the positive and negative frequency part of the atomic

2Note that we have used w4 and wr for the frequencies of the atomic transition and the driving
field in the previous chapter for a two-level system.
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polarization operator P whose complete form is given in Eqgs. (5.27) and (5.28), and
f and d are unit vectors in the direction of observation and along the atomic dipole
moment, respectively. Away from the forward direction, the field and the atomic
polarization operators are directly proportional to each other for normally ordered
quantities. Hence, we only need to limit our considerations to the atomic correlation

function:

IO+ 7,7) = (POt 4 7) PD (7). (5.3)
The Fourier transform of Eq. (5.3) is proportional to the emission spectrum S(w):

400

S(w) = const x / (POt 4+ 7)PE(1)) |rmyoo €7, (5.4)

—OQ

whereas such a Fourier transform is also related to the absorption spectrum A(w)

according to linear response theory:[75]

+o0

A(w,) = const x / ([P(_)(t +7), 15('”(7')]) lr oo €7 9PUdL. (5.5)

— 00

For convenience, we will perform Laplace transform instead of Fourier transform. The

Laplace transform for a function f(t) is given by:

f(z) = /0  f(6)e " dt. (5.6)

Where the overbar denotes functions in Laplace space. It is clear from Eq. (5.6)
that for a function f(¢) = f*(—t), the Laplace transform is easily linked to Fourier
transform by taking the real part of f(z) and setting z = iw.

We will first write down the master equation in the interaction picture to solve
for the one-time expectation values for the elements of density matrix, then, we
will apply the quantum regression theorem to obtain the equations for the two-time
atomic correlation function I'*)(¢ 4 7, 7), whose Fourier transform gives the emission
and absorption spectrum. As mentioned earlier, we will solve the equations in the

Laplace space and obtain expressions for the emission and absorption spectrum.
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5.3 Master Equation

We will start our derivation with the Hamiltonian:

where

Hy = edlay + ea}a, + ezalas (5.8)

is the unperturbed Hamiltonian for the three-level atom and ¢; (¢ = 1,2,3) are the
energy eigenvalues of the isolated atom with atomic transition frequencies hw;z =
€1 — €3 and Awip = € — €. a; and &3 are the fermion operators that describe the
creation of an electron in level ¢ or its removal. A complete set of the eigenvectors for
the unperturbed Hamiltonian is taken as |1), |2) and |3) with the relations:

&T&J|k> = J'kli>> i, 5,k =1,2,3. (5.9)

2

The interactive part of the Hamiltonian, H; can be written as,
H;,=—p-Eg (5.10)

where fi = fi, + i, is the total atomic dipole operator and Ky is the total electric
field, which we have simply taken to be a classical field and can be written as the

sum of the two driving fields:
E, = E e %0t 4 B e 4 coc. (5.11)

Assume that the driving field E; only interacts with the transition 1 <+ 3 and the
field E; only interacts with the transition 1 ¢+ 2, and define Rabi frequencies G; and
Ggl

_BiE (i=1,2) (5.12)

then the interaction Hamiltonian can be expressed in the rotating wave approximation
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as:

A

H; = (hGre™alas + h.c.) + (AGae™®'alar + hoc.). (5.13)

The evolution of the system in the interaction picture is governed by the master

equation:
op 1

5 = T [ﬁz,ﬁ} + relaxation terms, (5.14)

with p being the density matrix:

p= |Z><.]]7 (27] = 17273)7 (515)

and the relaxation terms are included phenomenologically according to the following

rules:

1. The three-level system defined by |1), |2) and |3} is closed, in the sense that the
relaxation mechanisms only produce transitions within it. This implies that the
equality:

Tr(p) = pr1+pr2a+pss=1 (5.16)

holds for all time.

2. The excited state population p;; decays by spontaneous emission with the rates
271 and 27, to the lower states |3) and |2), respectively. This introduces a term
of —(2v1 + 272)p11 in the equation for p;; and a term 2y1p11 (272p22) in the

equation for ps3 (pa2) -

3. The ground states |2) and |3) exchange population with rates v; and 14, i.e.,
the state |2) transfers population to |3) with a rate of vy and vice versa with a
rate of v, this introduces a term —uvypg3 + 12p33 in the equation for pyy and the

same term with opposite sign in the equation for pas.

4. The relaxation rates for the coherences (p12, p13 and pq3) are half of the sum of
the population decay rates for the upper and lower levels. For example, for the

optical coherence p3, the upperlevel |1) loses population at a rate of 27y, + 27,
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and the lowerlevel |2) loses population at a rate of vy, thus the relaxation rate
for p12 is (71 + v2 + 12/2). For the ground state coherence py3, the upper and
lower levels loses population at a rate of 14 or 14, making the relaxation rate

for pa3 to be (11 + 112)/2.

With these assumptions and the convenient expression for the matrix elements of

the operators ald; derived from Eq. (5.9):
(lala;|k) = 6;xéu, (5.17)

it is straightforward to expand the master equation into component form:

op o~ o oy x x .
% = —iGapy1 +1G5p12 — 1G1p31 +1GTp13 — (21 + 27%2)pu (5.18a)
0pa22 o v~ . . .
5 - 1Giapor — 1Gyp12 + 272P11 + VapPas — ViPag (5.18b)
Opss ey T . . .
g1~ tGpa— il + 2v1p11 — V2p33 + V1P22 (5.18c)
aﬁlz . » - . . . o .
Tl —1Go(paz — p11) — iG1p32 — 1Ddaprz — (V1 + 72 +11/2) pr2 (5.18d)
8513 . . . . . . . "
BN = —1G1(ps3 — p11) — tGapas — tA1p13 — (71 + Y2 + 12/2) p13 (5.18e)
ap e oy a . . v+ v,
g;?) = —ZG2P13 + ’LG1P21 - 1 (AI - Az) P23 — ! 9 2,023 (518f)
P = Pz (5.18g)
P31 = Pis (5.18h)
Psz = P (5.181)
where we have defined
pi = pui =123 (5.19a)

prz = pre® (5.19b)
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fizs = prae’™t’ (5.19¢)

oz = pae ) (5.19d)

to remove the rapid oscillating terms in p;;.

As mentioned in Eq. (5.16), only eight out of the nine components of j are inde-
pendent, in order to use the quantum regression theorem, we must eliminate one of
the diagonal matrix element of j, e.g., ps3, and define the column vector ) with its

eight components as:

YT = (11, P12 P13, Par, P2z, Pazs P31, Paz) - (5.20)

The final result can be cast in the form of the compact vector equation:

d

S Y=Ly @)+1 (5.21)

The explicit forms of matrix L and vector I are listed in Table 5.1. The inhomogeneous
vector I originates from the elimination of ps3 from Eq. (5.18) and its replacement
with 1 — j1; — pa2 according to the trace condition Eq. (5.16).

Because, we have already mentioned in Section 5.2, our calculation of the quanti-
ties of interest involves the quantum regression theorem, we will need explicit expres-
sions for variables ¥;(1 = 1,2, ...,8) in terms of their initial values. This can be done
more conveniently in Laplace space. Thus, if 7 denotes an arbitrary initial time, the

Laplace transform of Eq. (5.21) yields
- 1
B(:) =M () $(r) + M ()T (5.22)

where

M(z) = (21 - L), (5.23)

and 1 denotes the identity matrix.

We do not need to worry about the explicit time-dependent solution of Eq. (5.21)
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Matrix Elements L;; for the A system e
1 2 3 4 5 6 7 8 1
“Z’“ iGs | iGr | —iGy | 0 0 | —iGy | 0 0
—2,

ZiA,—
’iGz Y1—72 0 0 —iGQ 0 0 *’iGl 0
—1/1/2

._iAl_
22G1 0 Y1—"72 0 ZGl —iGz 0 0 -—*Z'GI

—1/2/2

1Ag—
—iG; | 0 0 | m—ye | iG; | iG: 0 0 0
'—1/1/2
2’72—1/2 —ZG§ 0 1Gy —UV1—V2 0 0 0 Vg
JACE YA
'-1/2/2
iAI—
—2iGr| 0 0 0 | —icr| 0 |m-m| iG iGx
-—1/2/2
JANERIAY,
—1/2/2

Table 5.1: Matrix elements L and I for the A system
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(except of course in our implementation of the regression theorem), but we do need

the steady-state solution. This is given by

Y (o0) = -L7'L (5.24)

5.4 The Quantum Regression Theorem

Next we will apply the quantum regression theorem to the expectation values of the
atomic operators to get the two-time correlation function.

The quantum regression theorem[96] states that if M, @, N are members of a
complete set of system operators {5’ .} and if the one-time averages can be expressed

in the form

(M@E+7)=30,t+77)8. (7)), t>0, (5.25)

where O, (t + 7, 7) are c-number functions of time, then two-time expectation values

take the form

~

QMM t+7)N(r) =30, (t+7,7)(Q(7)Su(r) N (7)), ¢>0. (526)

@

Specifically, the operator M can be identified as the negative part of the total atomic

polarization operator P(t) which takes the form

P(t) = PH(t)+ PO(1) (5.27)

PH (@) = padlas + madlas (5.28a)

PO = (PW ), (5.28b)

where py; (1 = 2,3) are the moduli of the induced transition dipole moments and

where we have assumed py3 = 0. The complete set of system operators {SA‘#} in
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Eq. (5.25) can be chosen as ¢; (¢ = 1,2,...,8), which are the one-time expectation
values of the atomic operators (cf. Eq. (5.37)). The one-time average of PG s readily

expressed in term of ¢; (¢):
(P (84 7)) = 122 ehy (8 + 7) + p12e™ oy (¢ + 7) (5.29)

which can in turn be expressed in terms of ¢; (1) by means of Eq. (5.21). Thus if we
take the operator Q in Eq. (5.26) to be the identity operator, and the operator N
to be the positive part of the the atomic polarization operator, we can evaluate the
atomic correlation function I'® in Eq. (5.3) and make a Fourier transform to get the
emission and absorption spectra as outlined in Section 5.2.

For the reasons discussed in Section 5.2, we will not take such an approach and
will follow along a different path instead. In fact, we can reexpress the quantum

regression theorem in Laplace space, then, Eq. (5.25) becomes:
(M (2)) = L0 (2,7) S0 () (5.30)
And the expression for the correlation function Eq. (5.26) becomes:
(Q(r) M (2) N (7)) = ;O_u (2,7)(Q (1) Su (T) N (7). (5.31)

The advantage of operating in Laplace space is evident: not only is Eq. (5.21) more
easily solved with initial conditions in Laplace space, but the emission and absorp-
tion spectra S(w) and A(w) themselves are obtained through Fourier transformation

Eq. (5.4) and Eq. (5.5) and is now simpler in Laplace space:

INOLEIDY

z:iw} : (5.32)

and

z:iw,,} . (5.33)
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5.5 The Emission Spectrum

In this section, we will explicitly apply the quantum regression theorem (in Laplace
space) to derive the formula for the fluorescent spectrum.
Our starting point is the one-time average Eq. (5.29), which is now expressed in

Laplace space as:

=)

(P (2)) = paata (2 — i) + pastor (2 — i) . (5.34)

With the help of Eq. (5.22), Eq. (5.34) can be cast into the required form:

- ()

(P76 =g 5 (s (= )0y () + L E L)

z — ZQ2
v vEr zZ — ’lQl
ZEDY (Mn‘ (z = i) 5 (1) + %—;——llj) : (5.35)

Next we must express 9;(7) and I; in the form of expectation values of system
operators at 7. This can be done directly from the definition of ¢;(7) and the rela-

tionship Eq. (5.17), e.g.:
(alag), = Tr (P&J{&Z), = (2lp|1)-(1|ala2|2); = pare'™™ = by (1) %7 (5.36)
or
a (1) = e %7 (ala),. (5.37)

In addition, the inhomogeneous term I; can also be written as:

Ij = IjTI‘ (pl) = [j(l). (538)

According to the regression theorem, the correlation function (15(_) (z) PO (1))

. . -) .
can be obtained from the above expression for (P " (z)) by replacing every expecta-

tion value of the type (alds), with (ala, P(M),. Consider for example ¥4(7) which
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contains the expectation value (a!d,),, in this case we have:

Ya (1) = e (alay), — e (a]a,PY)),
= e (1l + pus(@laailin),)

-7 ~

= H12€ P11

= p1ge” 2Ty (7). (5.39)

The complete replacement table of type <&3&j]5(+)> is provided in Table 5.2(a).

In a similar way we have
(1) = (PM), = p1ge™274hy (1) + pase ™ 743 (7). (5.40)
Now we will take the limit 7 — oo and get to the following result:
57 ()P
(P (2)P™(00)) =
1
(s {Mw (21) %1 (00) + Mg (21) 12 (00) + Z ZMU (21) Lis (OO)} +
J
K1 {M44 (22) 91 (00) + Mas (22) 2 (00) +
1
Mg (23) 13 (00) + —Maj (22) I (00)} ; (5.41)
7 2
where z; = z —i€}; (i = 1,2). Eq.(5.41) shows that the spectrum of resonance
fluorescence is composed of two separate structures with center frequencies located at

2y and €, respectively, and magnitudes proportional to the dipole moments of the

two atomic transitions. Each contribution is the sum of the terms:

F(2) = M (5 — i)  (o0) + M ‘zif"l?Q{WOO), (5.42)

where M and % should be understood as the components of the corresponding ma-
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—~
&
~—

Replacement table of type <&I&jﬁ)(+)> for the A system

tel bl

&’{&1p(+)>T
o0 <&£&1p(+)>7
Rt <&;§d1ﬁ’(+)>T
e~ (ala PO)
(ada, PHY)
o= i@ Q)7 <(Alg;&2j3(+)>T
e=iuT <a};&1f>(+)>T
(@27 <&;&3 p(+)>T

< p(+)>

=0

=0

=0

= pi2e ™ BTy (7

= p1ge " BT ehy(T

= piae” BT ohy(7

= pryse™ M7y (1

= paze” M ehy(T
(

)
)
)
)
)
)

= p12e” B2 ehy(1) + #136"mﬂ¢3(7‘)

(

o
SN’

Replacement table of type <P(+)&2T&j> for the A system

Lol

(I

e-i@-20)7 ( PHats, )
e (PMala)

ei(@=07 ( PHalas)

< f:(+)>

= p2e” B Teho(T) + prze T M ey (7)
=0

=0

= pu2e” P T5(T) + p1ze T N Thg(7)
=0

=0

— f12e= (1) + prrge— T

(1= ¢u(7) — ¢s(7))
=0
= p12e TPy (7) + prae DTy (7)

Table 5.2: The complete replacement table for the A system
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trices. Eq. (5.42) can be further written in the form:

fz) = -? +9(2), (5.43)

where A is a constant whose value is determined by M(0)/;¢(c0) and g(z) has the
form M(z — i)y (00) + (M(z — 18%;) — M(0))1;4(c0)/(z — 18%;). Both terms are
analytic functions of z for Re(z — i§);) > 0 because the singularity at z = i{); of the
latter can be removed by taking the limit z — £);. Such a limit exists because M(z)
itself is differentiable at z = 1§};.

The singularity in Eq. (5.43) reflects the existence of a coherent Rayleigh peak
whose origin can be traced to the elastic scattering of the driving fields, while g(z)
describes the incoherent part of the spectrum of the emitted radiation. Indeed, the
coherent part of the scattered field would take the form %! in the real space, and
its Laplace transform would take the form 1/(z — ¢€;) in Laplace space.

We are interested primarily in the incoherent part of the scattered field, which

can be obtained by removing the singularity from Eq. (5.41). If we denote the full

correlation function in Laplace space with

2 (-)

PO (2) = (P (2) PP (00)) = T (2) + Thadon (2) (5.44)
then the incoherent part f‘i(izoh (z) can be calculated according to the simple algorithm

- _ 1 - 1 =
(1) = TM (= i —3 M () - i —3 1)
I (2) =TW (2) p—cy 21_1)1181 (z —12) TV (2) p—oN 21_1)%12 (z —i) ' (2),
(5.45)
where after removal of the singularity, the diverging term M(z — iQ;)/(z — ¢€;) in
Eq. (5.42) takes the form:

M (2 — i0;) — M (0)

—71-1 !
o) =L(1-L)7", (5.46)
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where we have used Eq. (5.23) and the identity

[L(21-L)] x [(:1 = L)™" + L™] = 21. (5.47)

Thus if we replace all the instances of M;;(z — i§%)/(z — i€;) in Eq. (5.41) by N;;
where

N(z) = (L7 (21 -L)7), (5.48)

and taking z = iw, we are finally able to obtain the incoherent fluorescence spectra

Sincoh()) for the transition 1 ¢ 3 and S(w) for the transition 1 > 2:

Silncoh w) = Re {M77 (1w — Q) Y1 (00) + Mg (iw — 1821) ¢g (00) +

Z Nz; (1w — 18y) Ljnps (oo)} , (5.49a)

S;HCOh (w) Re {M44 (Z(.d — ZQQ) ¢1 (OO) + M45 (Z(.d - ZQz) ¢2 (OO) +

The total emission spectra S¥°*!(w) consists of the sum of the coherent and incoherent

parts:

S;otal(w) — S}ncoh(w) + Sth(UJ)- (5.50)

The coherent part of the emission spectra S{°"(w) is only related to the steady-state

solution of the master equation and is discussed elsewhere [cf. Eq. (5.66)].

5.6 The Absorption Spectrum of a Weak Probe

We now turn our attention to a related problem: the three-level system is driven by
the external fields at frequencies 2; and 2, and is probed by a tunable weak beam

of frequency w, whose attenuation (or amplification) is measured in transmission.
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According to the linear response theory, the exponential attenuation coefficient at
a given frequency w, is given by Eq. (5.5), where the square brackets indicate the
unequal time commutator and the quantum ensemble average (...) must be carried
out under steady-state conditions 7 — oco.

The absorption spectrum is composed of two parts: the first, (PC) (¢t +7)PH) (1)),
is identical to the one calculated in the previous section; the second, (P () PO (¢ +
7)), can be derived following the same procedure with only minor modifications, i.e.,
we must replace the terms #;(7) and I; in the one-time average equation Eq. (5.35)

of the type (di&D and (1) with (]5(*”)(7')&,-&}) and (PM(r)), respectively. Such a

replacement table is given in Table 5.2(b) and the result for (P(+)(00)P( )(z)) is:
(P (00) PO () =
K13 {Mn (21) %3 (00) + Mra (21) b6 (00) +
M7 (z1) (1 = 91 (00) — 95 (00)) + ; %Mm (21) Ijths (00)} +
K {M41 (#2) ¥2 (00) + Mua (22) 15 (00) +
Mz (22) s (00) + ‘; iMq (22) 1% (00)} : (5.51)
The diverging part in Eq. (5.51) cancels with the diverging part of Eq. (5.41), and the

final result for the absorption spectrum A;(w,, ) for the transition 1 <> 3 and A, (wy,)

for the transition 1 < 2 are:

Al (wpl) = Re {M78 (iwpl - ’Lﬂl) ’ng (OO) - Mn (iwpl - ZQl) Z/)g (OO) -

My (itsy, — i621) e (00) — Moz (itop, — i) (1 = 261 (00) — s (c0)) } (5.522)
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A (wp,) = Re {M44 (twp, — 182) Py (00) + Mys (twp, — 1823) 12 (c0) +
Mg (iwp, — 1822) P53 (00) — Mgy (1w, — i€02) 13 (00) —

M44 (iwm — ZQz) ¢5 (OO) - M47 (iwm — ZQQ) '()bg (OO) } . (552b)

5.7 = and V system

The above result can easily be extended to = and V systems. Our notation in Fig. (5.1)
is that the level “1” is always the common level, thus in V system the level 1 is the
ground state and in = system it is the middle level, whereas in the A system discussed
above the level 1 is the excited state. Our definition for A; thus must be changed
slightly to always refer to a “positive” detuning, i.e., a positive A; always means that
the frequency of the driving field is lower than the frequency of the corresponding

atomic transition. Thus for = system:

A = wy —y (5.53a)

Ay = wig = (5.53b)
and for V system:

Al = W31 — Ql (554&)

Az = W9 — Qg. (554b)

Our definition for the atomic polarization operator P(#) must also be altered, e.g.,
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for = system,

PH () = padlas + psala (5.55a)

PO@ = (PO@), (5.55b)
and for V system,

PO (1) = paalan + maala (5.56a)

PO = (P9 (). (5.56b)

With these redefinitions and a reorganization for the relaxation terms according
to the similar rules outlined in Section 5.3, the key results for = and V systems are

summarized in Tables 5.3 through 5.10.

5.8 Implementation for Numerical Calculation

After the long and laborious derivations of the previous sections, with obscure ma-
trices such as M and N whose complicated structure makes them uninterpretable in
simple physical grounds, we are finally rewarded with the relatively straightforward
implementation on the computer for numerical calculation of the spectra by means of
standard matrix manipulation techniques. The program for calculating the spectra
is listed in Appendix A, again using A system as an example. Written in Fortran
programming language, the program (Ag.f) first reads the input parameters from
the input file A.in, and then assigns values to the matrices L (Ldc(8, 8)) and I
(Idc(8)) according to Table 5.1. After multiplying L~ (Li(8, 8)) and I to get the
steady-state density matrix elements (o0) (Fdc(8)), the program loops through
the start (-dp1) and stop (dp2) values of the probe frequency (w,, — ;) (or (w — €2;)
in the case of emission spectra) (dp), and applies Egs. (5.49) and (5.52) to get the
emission (S1 and S2) and absorption (A1 and A2) spectrum. Finally, the values of
S1, 82, A1 and A2 are multiplied by the proper scaling constant and written to the
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0p oy vk e oy~ . .
g;l = —iGap21 + 1G5p12 — 1Gpar + 1G1p13 + 271P33 — 27211
0paa o e . . N
‘5{‘ = 2G2p21 - ZG2P12 -+ 2’}’2/)11 + vapaz — V122
O0pss 5 e . N -
it = 1G1ps1 — 1G1p13 — 271P33 — V2 P33 + ViP22
012 it(ra— G pag — i0gp 2) p
ot = -1 2(/)22 - P11) — P32 — 1LA2pP12 — (71 + V1/ ),012
8[)13 _ G (5 o Ten A5 9 5
ot —iGY (P33 — p11) — 1Gapas +101p13 — (1 + 72 + 12/2) p13
ap v~ o~ . . v+ v .
gzs = —iG5p3+1Gipa +1 (A + A3) Pz — ( ! 5 2 + ’Yl) P23
P21 = Prz
P31 = Pia
P32 = Pa3

pii = Pii 1=1,2,3
P12 = P12€m2t

Pz = prae”

oz = poge (it

Table 5.3: The master equation for the = system

(5.57a)
(5.57b)
(5.57c)
(5.57d)
(5.57e)

(5.57f)

(5.57g)
(5.57h)
(5.571)
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0psas
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0p12
ot
0p13
ot
ot
P21

P31
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where
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LG + iGrs — iG s + G prs + 2P + 2yap (5.59a)
iG3p21 — 1Gap12 — 27222 + Vapas — V1pa2 (5.59b)
1Gpa1 — 1G1p13 — 271P33 — Vaps3 + V1P22 (5.59¢)
—iG5 (P22 — p11) — 1G1P3z + 1D2p12 — (12 + 11/2) pra (5.59d)
—iG1 (P33 — p11) — iG3p2s + 1A1p13 — (11 +12/2) f1s (5.59%)
iGaps + G + i (A — Ag) frs — <'n bt AT ”2> 5245.5f)
P12 (5.59g)
Pl (5.59h)
Bt (5.59%)

pi = pui  1=1,2,3 (5.60a)
Pz = pre” P (5.60D)
pra = prae” ! (5.60c)
oz = page ) (5.60d)

Table 5.4: The master equation for the V' system
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Matrix Elements L;; for the = system I;
1 2 3 4 5 6 7 8 1
-2 ) .
n 1G5 en -Gy | =27 0 —1GY 0 27
=272
) —1Ag— . e
1G4 a1 /2 0 0 —1(G 0 0 —1G 0
1A —
2GY 0 Y1—"2 0 1GY —1(G4 0 0 —iGh
-1/2/2
v 1Ag— v .
—1G 0 0 o112 1G 1Gy 0 0 0
2’)’2—1/2 —ZG; 0 ZGQ —UV—V2 0 0 0 1)
JANREIAY
0 0 —iG% | iGE 0 |=m—(n| 0 0 0
+11,)/2
A=
—QiGl 0 0 0 -—iGl 0 Y172 ZG; ZGl
—1/2/2
—1Aq
0 —1(# 0 0 0 0 Gy | —1Ag— 0
[ j:l/z _
2 N

Table 5.5: Matrix elements L and I for the = system
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Matrix Elements L;; for the V system I;
1 2 3 4 5 6 7 8 1
. 1Ag— o .
G a1 /2 0 0 —1G 0 0 —1GY 0
o 1A — . v v
21GY 0 1 — 122 0 1GY —1G; 0 0 —1GY
) —1Agy— | . .
—1G, 0 0 M 1Gly 1GY 0 0 0
. - —272—
—1y —ZG2 0 ZG2 (Vl + 1/2) 0 0 0 125
A1 —1A9
0 0 —iGz ZG’{ 0 —Y1 — Y2 0 0 0
it
2
) . 1A — ) .
2G| 0 0 0 | =G| 0 | _11/2 | G iG)
JACEIYAN
0 —1(74 0 0 0 0 Gy =7 0
_U] il/:z

2

Table 5.6: Matrix elements L and I for the V' system
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Replacement table of type <&3&j]5(+)> for the = system

(

o
N

() | — <&I&1]5(+)> = piae™ N7y (7)

Po(7) | — || €7 <&§A1f’(+)>7 = p1ze” N ehg(T)

Pa(r) | — | e7 7 <&§,&1f3(+)>7 = pise™* M7 (1 — 1 (1) — ¥s(7))
Pa(T) || — || €77 <6LJ{&215(+)>T = pi2€™ ey (1)

Ws(7) || — <&J§&2P(+)>T = pize”*27hy(7)

o(r) | — || e @47 (ala PO) | = page=®7apy(r)

Yolr) | — || €7 (el P) =0

Ps(r) || — || €@t <a;&3P(+)>T = prize” N Tehy(7)

W, | —[PY), = 12T Yo(r) + o™ Ty (7)

(b) Replacement table of type <IA3(+)€L:[&J->T for the = system

Wi (7) || — <P(Jr a a1> = p12€” 2 ehy(7)

dalr) | — || ¥ (PPaa) | =0

ha(T) | — || e”*7 <P(+)a3a1> = p13e™ N7ty (7)

va(r) | — | e (PWalaa) | = e 7n(r)

ws(r) || — <P(+)a2a2> =0

bl — | e (B0 | gt

o) | = e (o) | st

go(r) | — | €@ (PWalay) | =0

1, |— <15(+)>T = p12€™ 7 Py(7) + pr1ze” M Pr(7)

Table 5.7: The complete replacement table for the = system
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(a) Replacement table of type <&3&j1~5(+)> for the V system

(1) || — <&I&1}3(+)>T = 1267 ehy(7) + pase M s (1)

a7 | — e_mﬂ<m1p(+)>7 = P12 %275 (T) + pyze” N Tohg(T)

P3(T) || — “’QIT<a alP(+)>T = p2e™" " 7ee(T) + pize N7

(1 =41 (7) = 9s(7))

da(r) || — | e (alaaP®) =0

Ys(r) | — | (adaaP @) =0

Yo(r) || — || 4= (ala, PO | =0

dr(r) | — 1’“”<A“1P(+)> =0

)| — | Gt | o

., | — <p(+)>T = 12671 ha(T) + pase” N iho (1)
(b) Replacement table of type <15(+)&;r&j>7 for the V system

pa(r) | — || (PPafar), =0

Wa(7) || — “’92"<P(+)a2a1>T = p12€7 271y ()

] ) e M S

)| = | e (pote, |0

Ps(7) || — <P(+)a2a2> = p1ze R Tehy(7)

va(r) | — || €0 (PWadiy) | = e 74(r)

ve(r) | — 1‘2”<P“)aaal> =0

b | | ()| s

W, | —[PY), = ae™ (7). + e n(r)

Table 5.8: The complete replacement table for the V system
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Si*"(w) = Re {M31 (1w — 1601) 7 (00) + Mz (1w — iy ) s (00) +

M3z (1w — i€dy) (1 — b1 (00) — ¢5 (00)) +

Zj: Nsj (iw — i) Ijhr (00)} (5.61a)
Sy (w) = Re {M44 (1w — 1823) 91 (00) + Migs (1w — 1002) 2 (o0) +

Aj (wp,) = Re {Msl (fwp, — 181) b7 (00) + Mag (iwp, — i€ 95 (00) —

Mg (itwy, — Q1) b (00) + Mas (iwp, — i) (1 — 24y (00) — 15 (00)) } (5.62a)

Az (wp,) = Re {M44 (iwp, — 1Q02) Y1 (00) + Miys (1w, — 1€22) 2 (00) +
Mg (iwp, — 1Q3) 13 (00) — My (iwp, — 1€d2) 2 (00) —
M44 (iwm — ZQg) ’(X)5 (OO) — M47 (z'wm - ZQ2) '(Pg (OO) } (562b)

Table 5.9: The equations for absorption and emission spectrum for the = system
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Sie"(w) = Re {M:n (1w — Q1) Y7 (00) + Mz (1w — 1621) b5 (00) +

M3 (1w — 182) (1 = 1 (00) — 15 (00)) +

Ej: Naj (1w — i) Ly (00)} (5.632)
Sy (w) = Re {le (iw — i€2) ¥4 (00) + M2 (iw — i€2) b5 (00) +

Aj (wp,) = Re {Msl (iwp, — 1) 37 (00) + Mag (1wp, — 180 ) 9Ps (00) —

Mg (iwp, — i) 4 (00) + Mas (i, — i€1) (1 — 24y (00) — 95 (0)) } (5.64a)

Az (wp,) = Re {le (1wp, — 1€22) P4 (00) + Mo (iwp, — 1€22) 95 (00) +
M23 (iwm — ZQQ) ’(p(; (OO) - M22 (iw,,z — ’LQQ) ’g[)l (OO) —
M25 (iw,,z — ZQQ) ¢4 (OO) - Mgg (inQ — ZQQ) ¢7 (OO) } (564b)

Table 5.10: The equations for absorption and emission spectrum for the V' system
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output file (e.g., Ag.data/Al.* for absorption spectrum of level 1 ¢ 3).

The scaling constants are determined by the normalization. In our program, we
have multiplied the absorption spectra A;(w,,) by the relevant decay rates +; so that
i ) = 20 5 ) (5.65)

0o
where 0o = (3/27)A? is the maximum absorption cross section for a weak laser beam
exactly on resonance with the atomic transition. Thus the resultant dimensionless
Fa,(wp;) 1s the (frequency-resolved) absorption cross section for the probe beam at
frequency w,, (normalized to op). Such a cross section can be easily converted into

“real” absorption spectrum p;/po measured in the experiment (like those shown in

Fig. 4.2) by multiplying the optical thickness of the trap n{ and using the Beer’s law

—no 4l

pi/po=e

The normalization for Si"°°P(w) is not important in this thesis, thus no scaling
constant is applied to emission spectrum. It is perhaps worthwhile to point out that
there are some simple relationships between the integrated absorption and emission
spectrum ( f3° A;(wp,) dw,, and f;° Sto**(w) dw) and the density matrix elements, e.g.,

z

for the transition 1 <> 2 in the A system:

2/0 Az (wp,) dwp, = 27 (p11 — p22) (5.66a)
2 / TSl (o) do = 2mp (5.66b)

0
255 (W) = 27 |p1a) 8 (w — Q) (5.66¢)

which comes directly from Egs. (5.4) and (5.5). These are simply extensions of the
familiar two-level results which state that the total absorption cross section is propor-
tional to the population difference between the upper and lower level of the transition,
and the total emission rate is proportional only to the upper state population.
Before going on to discuss the general result of the spectra, we need to make

connections to experimental parameters. Qur convention is to reference all our pa-
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rameters to one of the decay rates, e.g., 72 (setting v, = 1). Thus if transition 1 <> 2
refers to the Cs transition of 65,5, F' = 4,mp = 4 ¢ 6P33, I = 5, mp/ = 5 having
natural linewidth of 5 MHz (= 2v,/27), then A, = 5.5 would mean a pump detuning
of 14 MHz. The Rabi frequency G, defined in Eq. (5.12) is related to the intensity of
the driving field by:
I  2G?

— = 5.67
=2 (5:67)

where I;, is the saturation intensity for the relevant transition. Thus, in the above
example where I, = 1 mW/cm?, G2 = 1.5 would mean a pump intensity of 4.5
mW /cm?.

We are now finally ready to reap the reward of our meticulous calculations in the

previous sections.

5.9 Results and Discussions

5.9.1 General Features

As a check of our results, we have used our program for three-level spectra to re-
produce the two-level results shown in Fig. 4.3(c). By setting 7, = 0 in a A system
[Fig. 5.2(a)], we have effectively turned off the 1 <> 2 transition and the transition
1 <> 3 is precisely a two-state transition. The emission spectra for the same system
is shown in Fig. 5.2(b), where we see a triplet structure separated by the general-
ized Rabi frequency G’. This socalled “Mollow triplet” is also easily explained in the
dressed state picture (cf. Fig. 4.3(d) and Section 4.2). It is also worthwhile to note
that by setting proper parameters, e.g., a nonzero v, and v,, our three-level system
can also reproduce the “open” two-level system shown in Fig. 4.3(b).

Next as we turn to three level, a remarkable feature is that the absorption spectra
develop double absorption peaks at high Rabi frequency, as evidenced in Fig. 5.3(b)
and Fig. 5.3(d). This is called the Autler-Townes doublet[97] and can again be un-
derstood in the dressed-atom picture. Another difference with the two-level system

is that the emission spectra show five peaks instead of three [cf. Fig. 5.3(c) and



111

13> lg>
W
I

0.06

Emission Spectra SP°°h(w)

0.03

-20

Frequency (w — wr)

Figure 5.2: The (incoherent part of the) emission spectra for a two-level atom. (a) A
A system with vy, = 0 is equivalent to a two-level system. (b) The (incoherent part of
the) emission spectra for a two-level atom with v, =1, A = 6 and G' = 4, 8, obtained
from the 1 <> 3 (incoherent) emission spectra of a A system with Gy = 4,8, G = 0,
A} = 60, Ag = 55, Y1 = 10, '72"—‘0, v = 1, and g = 0.



112

(a) 1>
A, A
B R W
©p 4 %‘."2
2 272 G2 Y1 ('l)pl
T >
A Q, Gy ~—€TTTT
Ql
12>

13>

0.1 T T T
(b)
0.08 - N o
3 =
£ 0.06 - . X
. 3
T 004 . E
< g
0.02 - @
0 | |
-20 -10 0 10 20
Probe Frequency (wp, — 1)
0.5 T T T
(d)
0.4 - . &
= 5
§ 0.3 F . X
&~ 3
T 02F - =
0.1 - - @
0 1 |
-20 -10 0 10 20 -20 -10 0 10 20
Probe Frequency (wp, — {22) Frequency (w — {)3)

Figure 5.3: Absorption and (incoherent part of the) emission spectra for a A system
with parameters G; = 6, G, = 6, A; = 6, Ay = 5.5, v; = 0.15, v = 1.0, and
v1 = v, = 0. The emission spectra [(c), (e)] show five peaks, while the absorption
spectra [(b), (d)] show double peaks characteristic of Autler-Townes effect.
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Fig. 5.3(e)]. This is because in three-level systems, the dressed state splitting of the
atomic levels can generally support up to five spectral components.[86]

One more unique feature of the three-level system is that the width of the flu-
orescence spectrum can become narrower than predicted by the standard theory of
resonance fluorescence.[75] As explained in Ref. [86], this is because the spontaneous
decay rate of each atomic transition in the presence of the two driving fields becomes
a linear superposition of all decay rates 7; connecting the levels of interest, with
weighting factors that depend on the relative magnitude of the Rabi frequency. As a
result, the spectral linewidth of the emission spectrum can become narrower than the
natural linewidth of the upper state of the transition. This is studied experimentally
by Mossberg and coworkers[98] and their result in a three-level Ba atom is in good
agreement with the prediction of Ref. [86].

As of our own calculation, we have discovered that under some conditions, the
probe-absorption spectrum of the upper transition 1 <+ 3 in a = system does not reflect
the linewidth of the lower level (level 1) of the transition. Fig. 5.4(a) illustrates an
ordinary case where the lower transition 1 <> 2 is turned off (G = 0), and population
lost to the lower transition is put back to the upper transition by setting 14 = 1. Thus
the upper transition 1 «> 3 is very close to the “open” two-level system illustrated
in Fig. 4.3(b). Under a weak driving field (G = 0.01 < 71,72), the absorption
spectrum has a FWHM equal to twice the sum of the decay rates for the upper and
lower levels, 2(v; + 72) = 3. If, on the other hand, we examine a “real” three-level
system by turning on the lower transition (G5 = 0.01) and eliminating the population
transfer rates 14 from the ground (level 2) to the excited state (level 3), we see that
the width of the absorption spectrum is now determined by the upper state decay
rate v; alone rather than the sum of v; and ~,. We speculate that this is also due to
some “coherent mixing” of the atomic levels involved because of the crucial role the

driving fields play here.



114

0.15 T T T T T
(a) 13>
“y
0.12 - T 2y / GpQ _
11> vy
E 2
0.09 |- ]
- ———— )
<t
=
.06 -
0.0 FWHM = 3
=2(m1 +72)
0.03 |- N
0 { ! | i {
-6 -4 -2 0 2 4 6

Probe Frequency (wp, — {}1)

")’1141()(103)

Probe Frequency (wp, — {}1)

Figure 5.4: Absorption spectra for = systems on resonance with weak driving field.
(a) Absorption spectrum for the 1 <> 3 transition of a = system with parameters
G1 = 001, G2 = 0, Al = AQ = O, Y1 = 1, Y2 = 05, v = 1, Vy = O, the FWHM of
the transition is 2(y1 + 742). (b) Absorption spectrum for the 1 ¢ 3 transition of a =
system with parameters Gy = G2 = 0.01, A; = A =0, 71 =1, % =05,y =1, =0,
the FWHM of the transition is 2v;.
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5.9.2 Narrow Resonances in Three-Level A Systems

As a principal motivation for deriving the three-level spectra, we will now attempt
to identify a three-level configuration which would exhibit narrow gains and absorp-
tions near the frequency of the driving field in addition to the usual broad absorption
peak. It is well known that narrow resonances will occur in a A system if the fre-
quency difference between the pump and probe beam coincides with the ground state
splitting.[99] In Figs. 5.5(b) and (c) we have sketched the absorption spectra for a A
system having detunings A; = 6 and A, = 5.5 [Fig. 5.5(a)]. If we assume the same
pump frequency for both transitions (Q; = 0, = wr), then the difference in detuning
(A; — Ay) represents the ground state splitting. The 1 «» 2 transition is the main
transition with v, = 1.0 and G, = 1.5. We already calculated in Section 5.8 that this
would mean a detuning of about 14 MHz and a total pump intensity of 4.5 mW /cm?
if 1 > 2 transition represents the Cs 655, F = 4,mp =4 < 6P3), F' =5,mp =5
transition. The transition 1 <> 3, with y; = 0.15 and G; = 0.1 is a perturbation for
the main transition between levels 1 and 2. There is no direct population transfer
between the ground states levels 2 and 3 (14 = v, = 0). The correspondence of
this model with the spectroscopy experiment in the previous chapter is presumably
that the ground state splitting arises from small Doppler shifts, from the spatially
dependent Zeeman splitting across the trap, and from local variations in light shifts.
Mixing of ground state coherence and population might be driven by atomic motion
through the polarization gradients of the trap. From Fig. 5.5 we see that narrow
resonances with the correct symmetry occurs in the 1 « 2 transition [Fig. 5.5(c)],
while only a narrow absorption peak is evident in the 1 +» 3 spectrum [Fig. 5.5(b)].
To compare with the experiment we have summed the spectra &4, (wp, ), 64,(w,,) and
used the Beer’s law p; /po = exp [—nlog (64, + G4,)] to convert it into real absorption
measured by the ratio of the incident and transmitted probe power (p;/po), and the
result is shown in Figs. 5.5(d) and (e). Although they agree qualitatively with the
experiment (cf. Fig. 4.2), there are several discrepancies, e.g., the narrow resonances

only occur for a limited range of Rabi frequency G2. This contradicts directly with
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center part of (d).
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the experimental fact that the narrow feature is robust for a wide range of pump
intensities [Figs. 4.2(c)-(e)]. This vulnerability is also responsible for the fact that
we were not able to obtain broad gain in Fig. 5.5(d), because in order to do so we
would need to increase the Rabi frequencies G; and G, to such an extent that the
Autler-Townes eflect associated with the high pump intensities would destroy the
narrow feature (cf. Fig. 5.3).

In addition to these apparent contradictions with the experiment, such a three-
level theory is necessarily unsatisfactory because it is a dramatic simplification of
the real situation in the trap. The ground state splitting, the parameters of the
“perturbative” transition 1 ++ 3 are all put in phenomenologically. But despite such
weakness the simplicity of the three-level theory offers us a way to understand the
narrow resonances which is not accounted for in the two-level theory. The fact that
the three-level theory still does not explain all the features in the spectra would only
enforce the notion that the trap lives in a complex microscopic environment and the
dynamics of the trap are driven collectively by the sum of all the different aspects of

such an environment.

5.9.3 Introduction to Negative Radiation Pressure

Instead of attempting to construct a more complex theory to take into account all the
energy levels involved, (Ref. [85] represents a serious attempt to obtain a quantitative
comparison between theory and experiment with no fitting parameters,) we will stay
in the three-level regime and try to explore new experimental configurations the three-
level spectra offer. One such possibility is the negative radiation pressure we suggested
by the end of Section 4.3. The “radiation pressure force” is the force arising from the
atoms reradiating absorbed photons which are subsequently scattered a second time
by other atoms. As demonstrated in a beautiful set of experiments by C. Wieman’s
group at JILA,[58] conventional radiation pressure leads to a long range repulsive
force in an optically dense sample. For example, in Fig. 5.6(a), atom 2 absorbs the

photon emitted from atom 1, and thus receives a momentum kick of £k in the same
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direction of the photon coming from atom 1. The resultant movement of atom 2
is away from atom 1, and thus the radiation pressure is positive. In traps such as
ours, this repulsive force is as large as the Zeeman-shift restoring force and must
be taken into account in any analysis of the trap dynamics. Indeed, as discussed in
detail in Ref. [58] and confirmed by Ref. [100] using a more rigorous approach, steady-
state configurations are determined by a balance among the following forces: (i) the
(attractive) Zeeman-shift restoring force, (ii) the (repulsive) force due to radiation
pressure, and (iii) the (attractive) force associated with attenuation of the trapping
beams in propagation through the trap.[87] The net result of these three forces is that
as more atoms are added to the trap, the trap size grows in such a way as to keep the
trap density approximately constant.[58] That is, if the density of atoms in the trap
goes up, then so does the magnitude of the radiation pressure force, and hence the
trap swells to a larger size to keep the sum of the three forces (i) - (iii) approximately
zero across the trap. Conventional radiation pressure thus leads to a limitation on
the density achievable in an optical trap®.[58, 56]

Given that radiation pressure seems to be the villain in this story, one might
ask whether in fact there must fundamentally be a repulsive force associated with
the scattered photons in an optical dense medium. In support of a view of the
contrary, our previous work suggests that in fact over some regions in frequency, the
absorption spectrum for an atom in the trap can be such as to give rise to gain for
scattered photons in the trap and hence to recoil toward the emitting atom (that
is, to a resulting attractive force). For example, if the atoms 1 and 2 in Fig. 5.6(b)
were in our trap and atom 1 emitted a photon at the frequency of narrow gain in
Fig. 4.2, then atom 2 would amplify this radiation and emit another photon with
the same momentum. Thus the recoil of atom 2 toward atom 1 would give rise
to an attractive force, i.e., the radiation pressure becomes negative. Of course the
difficulty is that the regions of gain evidenced in Fig. 4.2 are over limited ranges in

frequency and are presumably overwhelmed by the regions of large absorption. Note

30ne way to overcome this limitis the “dark SPOT” trap demonstrated in Ref. [59] and mentioned
by the end of Section 2.1
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that whereas we have previously viewed spectra as in Fig. 4.2 as the response to an
external field, we now shift perspective and identify such spectra as the response to
the internal scattered fields of the trap. Since these internal fluorescent fields are
not monochromatic (as was the probe field in Fig. 4.2), we must necessarily integrate
the atomic response function against the spectrum of incoming frequencies. In this
case, the response function is the frequency resolved absorption cross section o4(w)
for a weak probe of frequency w in the presence of the strong trapping fields, while
the distribution of incident frequencies w is specified by the fluorescent spectrum
Stotal(y) = Gincoh()) + Goh(w) which includes both elastic and inelastic scattering.

The total atomic cross section og for scattered radiation in the trap is thus

fOOO Stotal (w) o (w) dw

OR = 12 Stotal (i) dw (5.68)
for transi:tion 162 |p12l2 T Ay (92) + fooo SiDCOh (w) T4, (w) dw, (569)
P11 P11

where the second equation follows from Eq. (5.66)*. One can also define a “normal-

ized” version for op:

&R = UR/O'(). (570)

From Eq. (5.69) we see that a negative o4(w) (which is proportional to the ab-
sorption spectra) would guarantee a negative or. Although in a two-level system,
(like in Fig. 4.2), the absorption spectra is negative (gain-like) only in a small range
of frequency space, in a three-level system the spectra can exhibit gain over the en-
tire frequency range.[86] For example, we have plotted in Fig. 5.7 the absorption
and emission spectra for a V system. Note that in Fig. 5.7, the transition 1 < 2 is
clearly inverted and the spectra show gain for all frequencies. Although in Fig. 5.7(b),
transition 1 <> 3 is absorptive over some frequency range, detailed quantitative cal-
culation shows that the integrated absorption cross section op is negative for 1 < 3

(Gr, = —4.2 x 10™*). Of course, even if the integral does not produce a negative

“Ref. [58] used the scattering cross section for the driving field o, in place of 74,(f2) in the
first term of Eq. (5.69).



121

(a)

1>

0.04

-0.04 -

-0.08

Absorption Spectra

-0.12 -

0.25 T T T T T

Si2ncoh(w _ Q2)
0.15 -

0.1 -

Emission Spectra

0.05 Simeoh(y )

-30 -20 -10 0 10 20 30

Frequency (w — £);)

Figure 5.7: Absorption [(b)] and (incoherent part of the) emission [(c)] spectra for a
V system with parameters G; =8, G =1, A1 =2, Ag= -2, 71 =7 =035,11 =0
and v, = 3. The negative values for absorption spectra in (b) correspond to gain.
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G, = —3.1 x 1072,
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value, the fluorescence from transition 1 < 2 would dominate that of transition
1 + 3 both as regards to the rate of spontaneous emission (population of 2 greater
than population 3 and v > 27;) and as regards to the magnitude of the absorption
cross section (|&4,| > |64,]). Hence the accompanying negative radiation pressure
(6r, = —3.1 x107?) in a dense sample should lead to an attractive force which might
be employed for optical implosion.[87] Also note that the MOT associated with the
levels in Fig. 5.7(a) could operate predominantly by stimulated absorption on the
1 < 3 transition and stimulated emission on the 2 <> 1 transition, with a reduced
role for spontaneous emission on these transitions and consequently with the potential
for reduced temperature.

Such encouraging characteristics not withstanding, the V' system identified here
is hard to realize in the experiment because the selection rule of the dipole transition
would prevent the simultaneous dipole coupling between the ground state and the two
excited states while maintaining an appreciable transfer rate v, between the excited
states at the same time. But unfortunately, in the V' system shown in Fig. 5.7(a), the
population inversion between 1 «» 2 comes principally from such an artificial rate.
(Note, however, that population inversion is not a necessary condition for a negative
or since we will prove later that op can be less than zero even for a two-level atom
for appropriate detunings and Rabi frequencies [Fig. 5.11(b)].) Fortunately, the two-
photon transition between levels 651/, and 6D5/; in Cs atom offers an opportunity
to overcome the dipole selection rule. The population transfer rate v, between the
excited states then comes from the dipole transition between 6 D5/, and 6P5/2, which
has a wavelength of 917.5 nm. The generalization of our theory to incorporate two-
photon transition is currently underway.[101]

The 651/2 ¢+ 6P5/; <+ 6Ds/; transition scheme should not be unfamiliar to us
because we have already encountered this system in Chapter 1 when we introduced
the single-atom laser. There it was configured as a A system with 605/, being the
common level. To illustrate the versatility of this system, we will see it again in the
next subsection as a = system. For now, let us conclude this subsection by pointing

out that the negative absorption spectra in Fig. 5.7 are also present in the = system,
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(at least between one set of energy levels,) as shown in Fig. 5.8(b). Although the
transition 1 <+ 2 is absorptive, with its integrated cross section for rescattered light
or, = +2.26 x 102, as we will explain in the next subsection, the ratio ogr/oL
between the integrated cross section ogr and the linear absorption cross section for
the driving field o1 is a more relevant quantity in measuring the mechanical force.
Such a ratio is larger in amplitude for the 1 > 3 transition (og, /oL, = —2.22, with

or, = —1.25 x 107?) than in 1 < 2 transition (og,/or, = +1.47).

5.9.4 Radiation Pressure and Attenuation Force in Two-

and Three-Level Systems

The = system introduced by the end of the previous subsection is one step closer
to experimental reality, but the driving fields there were exactly on resonance with
the atomic transition (A; = Ay = 0). To provide the viscous damping force and the
spatial restoring force for cooling and trapping, one needs to tune the laser away from
the atomic resonance to produce an imbalance in atomic absorption. A more realistic
configuration is shown in Fig. 5.9(a), where a = system with A; = 0, Ay = -2,
and v, = 2y; = 1 is sketched. Such a system can be realized in Cs atom, with
transition 2 <> 1 being the D, transition 65/, ¢+ 6Ps/; and level 3 being 6 D5/,
having spontaneous emission rate (into 6Ps/; of wavelength 917.5 nm, cf. Fig. 2.7)
15.2 x 10° sec™?, roughly half that of 6P3/5 > 65;/5. Although we have set 14 = 0,
a nonzero population transfer from ground state to the excited state 65/, can be
realized via two-photon transition (wavelength 883.7 nm)[36] to enhance population
inversion. This level scheme is a reasonably faithful realization of the model shown in
Fig. 5.9(a) with one caveat being that it is possible for the 6D state to decay to the 7P
state, although this transition has a branching ratio of only 4 x 10~ due to the small
energy spacing (the wavelength for the 6D5/, — TPs/5 transition is about 15 pm.)
However, at the high densities that we envisage, superfluorescent processes may well
become important.[102] We will show that although the integrated absorption cross

section or becomes negative only for one set of transition, the interplay of radiation
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pressure and attenuation still provides a net compressive force for both transitions,
while maintaining favorite conditions for trapping.

To be more quantitative let us first analyze in detail the forces acting on a dense
sample under intense radiation. In the previous subsection we have already seen that
this can be divided into three parts, the trapping force, the attenuation force, and
the radiation pressure force. This simple and naive division is justified by the result
of a more detailed and rigorous investigation based on the Fokker-Planck equation of
an N-atom system including their center-of-mass motion.[100] Besides the trapping
force, which we described in Section 2.1, there are two more forces resulting from the
interaction between the atoms, the first of which being the radiation pressure force
we introduced earlier. Refer to the settings in Fig. 5.6(a), we assume that atom 1
is under illumination of laser beam with intensity I, and the scattering cross section
for this field is oy,. Note that o, is different than the frequency-resolved cross section
for a weak probe beam o 4(w,) that we previously introduced. The cross section o,
here only involves the steady-state solution of the density matrix and has the simple

form

g = Oyp Im(FYLpeg) (571&)

- = : 5.71b
I TeTy ey (5.71b)

for a two-level system. For a three-level system, Eq. (5.71a) still holds, but peg is
replaced by the appropriate density matrix elements for three-level systems. The
scattered light by atom 1 has intensity lraq = o1/ /4Amd? at the position of atom 2 a
distance d away. The radiation pressure force then has the form Fr = Iaqor/c. If
we extend this argument for two atoms to an arbitrary distribution of atoms in three
dimension, in analogy to Gauss’s law of electrostatics (assuming an incident photon is
unlikely to scatter more than twice), then the radiation pressure force can be written
as:[58]
ororIn (r)

V.Fp= 22200 (5.72)

C
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where n is the number density of the trap.
Another force present in a collection of atoms is the attenuation force[87] caused
by atomic absorption of the laser photons. This is easiest derived in one-dimension

—noLl after propagation

where the intensity of the laser is attenuated by an amount e
of a distance [. If the atom is illuminated by two counter propagating beams with
intensity I outside the sample, then inside the sample the intensity of the beams are
not balanced because they propagate through different lengths of the sample. For
example, at a distance z from the center of the sample having radius R, the beam
propagating from left to right is attenuated by e~"":(+%) and the beam from right
to left by e~"°¢(F=2) [Fig. 5.6(c)]. Then the attenuation force which is proportional

to the intensity imbalance has the form|[87]
V- -Fy=—ciln/c, (5.73)

for nop R < 1.

From Egs. (5.72) and (5.73) we see that the attenuation force is always compressive
(restoring force) while the radiation pressure force could be attractive or repulsive
depending on the sign of the cross section for scattered light or. In an atomic sample
these two forces act together, (in addition to the Zeeman-shift restoring force), it
is the sum of these two forces which governs the combined effect of the collective
behavior:

V. (Fr+Fa) = —0? (1 _ ifi) In. (5.74)
o,/ ¢

The key point here is then the term ¢%(1 — or/oyr). In particular, if og/or > 1,
then the combination of radiation pressure and optical attenuation is repulsive and
acts to counterbalance the basic Zeeman-shift trapping force. In this case, the trap
size grows as more atoms are added in such a way as to keep the density approx-
imately constant.[58] On the other hand, if og/o;, < 1, then the combination of
radiation pressure and optical attenuation gives rises to a force that tends to com-

press the trap and acts in concert with the Zeeman-shift force. Possible equilibrium

trap configurations have not been calculated for this case. However, note that this
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circumstance harbors the potential for instability (and “optical implosion”) since as
the trap size diminishes, the density goes up and the compressive force (Fg + F4)
rises, which acts to increase the density still further, and so on. In Ref. [87] Dalibard
presented an analysis based upon a Fokker-Planck equation for such a scenario, al-
beit in the absence of the contributions of Fg and the Zeeman-shift trapping force.
Even in the absence of such a runaway solution, the trap size should diminish dra-
matically for or/or < 1, since positive radiation pressure causes the diameter of our
MOT to be more than 10-fold larger than expected based upon the Zeeman-shift
(spring-constant) trapping potential and the measured temperature.

The essential question then becomes whether or not it is possible to have og/or <
1 while at the same time maintaining conditions suitable for trapping. To answer this
question we come back to the three-level = system illustrated in Fig. 5.9(a). We
assume that the two transitions are driven by independent fields of Rabi frequencies
(Gi, G2) and with detunings (Ay, Az). For each of the transitions 1 <+ 2 and 1 <> 3,
we have calculated the probe cross section o 4(w,) and fluorescent spectrum S**(w),
with examples from this theoretical work displayed in Fig. 5.9(b)-(e). Figs. 5.9(b)
and (d) is a result for (oa,(wp,)/or,, Si*°™w)) for the 1 <> 3 upper transition.
Note that unlike in previous cases we have normalized o4(w,) to o instead of oy,
since the quantity of interest here is the ratio or/or. Also note that o4, < 0 over
large intervals in Fig. 5.9(b). The integration of o4, (w)/or, against S{"°P(w) in
Fig. 5.9(d) (including the elastic component) yields og, /o, = —1.6. On the other
hand, Figs. 5.9(c) and (e) give corresponding results for (04, (wp,)/0L,, S5°?(w)) for
the 1 ¢ 2 lower transition. Although in Fig. 5.9(c) o4, > 0 over most of the frequency
range, nonetheless we find that the integration of the probe spectrum o ,(wp,)/0or,
against the emission spectrum for this transition Si°*#!(w) whose incoherent part is
displayed in Fig. 5.9(e) yields the result og,/or, = 0.77 < 1. Thus for the conditions
represented in Fig. 5.9, the stage is set for “negative” radiation pressure associated
with the 1 < 3 transition (or, < 0) to assert its influence and to compress the
sample, while at the same time op,/or, < 1 so that the lower transition has a net

compression in the interplay of radiation pressure and attenuation.
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Although our attention has centered on the quantities (c4/0r, S*!), one must of
course also consider the steady-state trapping forces associated with the distribution
of atomic population. To indicate that the scenario presented in Fig. 5.9 is consistent
with the basic notion of a MOT for the three-level = system at least a pedestrian
level, we present in Fig. 5.10 the results of our calculation for the variation of the
atomic absorption &; versus detuning A;. Here &; is proportional to the absorptive
component of the atomic polarization (fs; and p12) and is normalized so as to represent
a cross section (in units of o9 = (3/2m)A?). For Fig. 5.10, the detunings are varied
with Ay 4+ Ay = —2 with the operating point corresponding to Fig. 5.9 indicated by an
arrow in each case (i.e., A, = —2, A; = 0). For a single pair of counter-propagating
beams (e.g., 1 +» 2 beam with k; along —z and 3 ¢ 1 beam with k; along +z) an
atom of velocity v experiences a radiation pressure force from each beam that tends
to damp its motion, precisely as in optical molasses. Similar comments apply to the
Zeeman-shift trapping force. So it seems possible to find in the multidimensional
space of laser detunings and intensities suitably robust regions in which the various
trapping forces are globally compatible. As pointed out in Ref. [14] (and earlier
in Section 5.9.3 associated with the discussion of Fig. 5.7), one could identify level
schemes and excitation conditions so that a MOT operates predominantly in a cyclic
fashion with stimulated absorption on one transition and stimulated emission on
another, with the requisite decay (or “arrow of time”) provided by a mechanism of
low momentum transfer as compared to ik for the trapping lasers.

As might be guessed, the factor (or/or — 1) could become negative even for a
two-level atom. Moreover, a glance at Fig. 5.11(b), which plots or/or versus Rabi
frequency G for a two-level atom having different detunings A, shows that ogr/oy itself
can become negative (for A < 0.5) for sufficiently large intensity (G 2 1). Although
this surprising result is indeed counter-intuitive and lacks physical interpretation at
the present time (except for the ad hoc explanation that at low detuning and large
intensity, the emission spectrum has a distribution such that it favors the negative
part of the absorption spectrum), it violates no physical law that we have investigated.

It is more surprising then, that the effects we are predicting have not been previously
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Figure 5.11: The integrated absorption cross section for scattered light or/oy, versus
Rabi frequency G for a two-level system with different detunings A. The spontaneous
emission rate is set to be 2y, = 1. ogr/or < 0 corresponds to negative radiation
pressure, while 0 < or/or, < 1 corresponds to a compressive force for the combination
of the attenuation force and the (positive) radiation pressure force. For details see
text.
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observed. Two comments are relevant in this regard. The first is that our results for
or/or must be averaged over an appropriate distribution of fields within the trap.
For example, for 2y, = 1, A = 1 and G = 2 (corresponding to the point marked by
the arrow in Fig. 5.11(b), the same (over simplified) averaging as in Ref. [58] yields
or/or = 0.49 whereas this value is 0.27 for the unaveraged case. Note that for the
work in Ref. [58], 6r/or = 1.3, which is a ratio that led to dramatic changes of
trap morphology. Similarly the results in Ref. [56] for much larger trapping beams
and intensities lead to substantial increases in the number of trapped atoms without
corresponding increases in the density of the trapped sample. Hence it seems clear
that radiation pressure and optical attenuation do play important roles in previous
work (including our own) as specified by ogr/or, > 1. The second comment concerning
the prediction og/or > 1 for MOT is that we and others typically operate the trap
with much larger detunings than the naive expectation A = 1 (one half linewidth
of red detuning). Indeed, for small red detunings (A ~ 1 — 2) we observe that
the steady-state trap fluorescence drops precipitously, presumably due to a radical
decrease in filling efficiency.[58, 56] We speculate that the consequence of this reduced
trapping efficiency for small detuning is that the strongly density dependent effects
associated with radiation pressure and optical attenuation become inoperative due
to the low steady-state density. To circumvent this difficulty of small steady-state
density for small A, we have monitored the transient response of a trap which is first
filled with large detuning (A = 3.2 corresponding to 8 MHz red detuning in Cs) and
then stepped to a small detuning (A = 1.2 or 3 MHz for Cs). The choice of these
particular detunings is based on Fig. 5.12(a), which indicates that the combined effect
of the attenuation force and radiation pressure force should change from repulsive
(A =8 MHz, V- (F4 + Fr) > 0.) to attractive (A = 3 MHz, V. (F4 + Fg) <
0). Fig. 5.12(b) is the fluorescence distribution along a horizontal line across the
trap, measured by a CCD camera before and immediately after (less than the trap’s
escape time) switching. From Fig. 5.12(b) we see that the peak height of the trap’s
fluorescence increased to 1.7 times of that before switching while the width of the

distribution is reduced to 60%, consistent with the prediction [from Fig. 5.12(a)] that
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Figure 5.12: The fluorescence profile for a trap before and after switching of the
detuning. (a) The calculated divergence of the sum of the radiation pressure force
and the attenuation force. A negative value indicates compressive force. (b) The
fluorescence profile along the z direction (perpendicular to the line of sight). The
trace is obtained by expanding the output of a CCD camera on a digital oscilloscope.
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such a switch in detuning should compress the trap. Note that for the total trapping
intensity (I = 16 mW/cm?) we are operating at, the spring constant of the trapping
potential is actually slightly decreased after the switching of the detuning. So in
the absence of a compressive agent, the size of the trap should increase rather than
decrease. Although in our initial result no optical implosion like that predicted in
Ref. [87] is observed, it is at least worthwhile to make further investigations proceeding

along this line.



135

Chapter 6 Summary

In this thesis we have investigated some general properties of optical processes in a
sample consisting of laser cooled and trapped atoms. In the first part (Chapter 3),
we have presented a simple model for the number of atoms contained in a magneto-
optical trap and described an experiment based on such a model to trap a single
atom. In the experiment we have recorded the photon flux of the fluorescent light
emitted by such a trap containing only small number of atoms. In these traces we
have found discrete steps suggesting trapping of a single atom and have compared
the duration and size of the jumps to values predicted by simple models. While there
is a quantitative disagreement between theory and experiment as to the absolute
magnitude of the individual jumps, other evidence from the experiment strongly
supports the conclusion that we have observed the trapping of individual neutral
atoms. Straightforward improvements in the optical system (for enhanced signal-to-
noise ratio) and in background pressure (for increased trap lifetime) should lead to a
relatively stable sample consisting of a single trapped neutral atom for a variety of
future applications.

While the first part of this thesis focuses on the isolation of a single atom, in the
second part the collective behavior of the atoms in the trap plays an important role.
We began by the description of a non-linear spectroscopy experiment of trapped atoms
(Chapter 4), in which narrow resonances in the probe absorption spectra have been
found, in contradiction with the standard two-level theory and its various extensions
and modifications. To explain this contradiction, and also in hope to discover new
avenues leading to improved trapping schemes, in Chapter 5 we have derived the
formulae and performed numerical calculations for absorption and emission spectra
of three-level A, = and V systems by using quantum regression theorem in Laplace
space. In particular, absorption spectra of a three-level A system, which show narrow

gains and absorptions at the frequency of the driving field having width comparable to
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ground state splitting, agrees qualitatively with the experimental spectra measured
for our trap. In addition, a three-level system also shows new interesting features
which is rare or not present in a two-level system. One such feature concerns the
cross section for scattered radiation, whose sign could be inverted if the absorption
spectra exhibit gain over a significant range of frequency space. Such a reversal of
sign dramatically changes the effect of radiation pressure, which is usually positive
and repulsive for a two-level atom. Detailed investigation including the attenuation
force shows that the combined effect of radiation pressure force and attenuation force
could be compressive even for a two-level system. Initial results in the experiment
confirms this prediction and further study is worthwhile.

As stated at the outset, this work represents some initial effort to reach our goal
of investigating non-classical effects in single-atom systems. If, because of the work
presented in this thesis, we are one step closer to this goal, then this work is well

worth the effort.
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Appendix A Fortran Code for Calculating A

Spectra (Ag.f)

11

complex LRdc(8,8),LC(8,8),Ldc(8,8),Li(8,8),M(8,8)

complex Mi(8,8),N(8,8)

complex IRdc(8),IC(8),Idc(8),Fdc(8),NI(8)

complex 1,G2

complex S1,52,A1,A2

real gmi,gm2,G1,v1,v2,dp,dpl,dp2,dph

character*2 fn

character*25 f1,f2,f3,f4,f5

i=(0,1)

open(4,file="Ag.data/AgNumber")

read(4,*)nl1
ni=ni+1
rewind 4
write(4,*)n1

close(4)

encode(2,11,fn) nt
format (I2)
fi="Ag.data/S1."//fn
f2="Ag.data/S2."//fn
f£3="Ag.data/Par."//fn
f4="Ag.data/A1."//fn
f5="Ag.data/A2."//fn
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open(4,file=£f4)
open(5,file=£5)
open(2,file=f1)
open(3,file=£f2)

open(1l,file="A.in")

read(1,*)gm2,gnl,d2,d1,62,G1,v2,v1,dp1,dp2,dph

close(1)

open(7,file=£3)

write(7,*)"gm2=", gm2," gmi=", gmi
write(7,*)"d2=",42, " di=",d1
write(7,*)"G2=",G2, " Gi=", G1
write(7,*)"v2=",v2," vi=", vi
write(7,*)"dpi=",dp1,"  dp2=",dp2,"
close(7)

LRdc(1,1)=-2+gml-2%gm2
LRdc(1,2)=i*conjg(G2)
LRdc(1,3)=i*G1
LRdc(1,4)=-1*G2
LRdc(1,7)=-i*G1
LRdc(2,1)=1i*G2
LRdc(2,2)=-gml-gm2-i*d2
LRdc(2,5)=-1%G2
LRdc(2,8)=-i*G1
LRdc(3,1)=2%i*G1
LRdc(3,3)=-gml-gm2-i*d1
LRdc(3,5)=1i*G1

dph=",dph
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LRdc(3,6)=-1*G2
LRdc(4,1)=-i*conjg(G2)
LRdc(4,4)=-gml-gm2+i*d2
LRdc(4,5)=i*conjg(G2)
LRdc(4,6)=1*G1
LRdc(5,1)=2%gm2
LRdc(5,2)=-i*conjg(G2)
LRdc(5,4)=1*G2
LRdc(6,3)=-ixconjg(G2)
LRdc(6,4)=i*G1
LRdc(6,6)=-i*xd1+i*d2
LRdc(7,1)=-2%i%G1
LRdc(7,5)=-1*G1
LRdc(7,7)=-gml-gm2+i*d1
LRdc(7,8)=ixconjg(G2)
LRdc(8,2)=-i*G1
LRdc(8,7)=1i*G2
LRdc(8,8)=1i*(-d2+d1)
LC(2,2)=-v1/2
LC(4,4)=-v1/2
LC(3,3)=-v2/2
LC(7,7)=-v2/2
LC(6,6)=-(vi+v2)/2
LC(8,8)=-(vi+v2)/2
LC(5,1)=-v2
LC(5,5)=-v1-v2
IRdc(3)=-i*G1
IRdc(7)=1*G1
IC(5)=v2
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do 10 j=1,8
Idc(j)=(IRdc(j)+IC(j))
do 10 k=1,8
Ldc(j,k)=LRdc(j,k)+LC(j,k)
M(j,k)=Ldc(j,k)
call inverse(Ldc,Li)

call mul(Li,Idc,Fdc)

do 40,dp=-dpl,dp2,dph

(dp=w(probe)-w(pump))
do 20 j=1,8
M(j,j)=Ldc(j,j)-i*xdp
call inverse(M,Mi)
call MatrixMul(Li,Mi,N)
call mul(N,Idc,NI)
S1=Mi(7,7)*Fdc(1)+Mi(7,8)*Fdc(2)+NI(7)*Fdc(3)
S2=Mi(4,4)*Fdc(1)+Mi(4,5)*Fdc(2)+Mi(4,6)*Fdc(3)+NI(4)*Fdc(2)
A1=Mi(7,8)*Fdc(2)-Mi(7,1)*Fdc(3)-Mi(7,4)*Fdc(6)-Mi(7,7)*
(-1-2*Fdc(1)~Fdc(5))
A2=Mi(4,4)*Fdc(1)+Mi(4,5)*Fdc(2)+Mi(4,6)*Fdc(3)-Mi(4,1)*
Fdc(2)-Mi(4,4)*Fdc(5)-Mi(4,7)*Fdc(8)

Note:

M=Ldc-i* (w(probe)-w(pump))

Fdc="+"Inverse(Ldc)*Idc, notice Fdc is minus Phi(dc) defined
conventionally

write(4,*) dp,-real(Al)*gml

write(5,#*) dp,-real(A2)*gm2

write(3,#*) dp,real(S2)

write(2,*) dp,real(S1)
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close(2)
close(3)
close(4)
close(5)

write(*,*)"Data written in Ag.data/A,S*.",fn

stop

end

subroutine inverse(b,ainv)
complex a(8,8),ainv(8,8),c,b(8,8)
do 1 j=1,8

do 1 k=1,8

a(j,k)=b(j,k)

ainv(j,k)=0

do 5 j=1,8

ainv(j,j)=1

do 40 j=1,7

if (a(j,j).ne.0) goto 15
do 10 k=j+1,8

if (a(k,j).eq.0) goto 10
do 10 1=1,8

c=a(k,l)

a(k,1)=a(j,1)

a(j,l)=c

c=ainv(k,1)
ainv(k,1l)=ainv(j,1)
ainv(j,l)=c

continue

c=a(j,j)
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do 30 1=1,8
ainv(j,1l)=ainv(j,1l)/c
a(j,D=a(j,/c
do 40 k=j+1,8
c=a(k,j)
do 40 1=1,8
ainv(k,1)=ainv(k,1)-c*ainv(j,1)
a(k,l)=a(k,1l)-c*xa(j,1)
do 100 1=1,8
ainv(8,1)=ainv(8,1)/a(8,8)
a(8,1)=a(8,1)/a(8,8)
do 50 j=7,1,-1
do 50 k=j+1,8
c=a(j,k)
do 50 1=1,8
ainv(j,1l)=ainv(j,1l)-c*ainv(k,1)
a(j,l)=a(j,1)-c*a(k,l)
return

end

subroutine mul(a,b,c)
complex a(8,8),b(8),c(8)
do 10 j=1,8

c(j)=0

do 10 1=1,8
c(j)=c(j)+a(j,1)*b(1)
return

end

subroutine MatrixMul(a,b,c)
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complex a(8,8),b(8,8),c(8,8)
do 10 j=1,8
do 10 k=1,8
c(j,k)=0
do 10 1=1,8
c(j,k)=c(j,k)+a(j,1)*b(1,k)
return

end



144

Bibliography

[1] See, for example, Laser Cooling and Trapping of Atoms, S. Chu and C. Wieman,
eds. [J. Opt. Soc. Am. B 6, 2020-2278 (1989)]; See also W. D. Phillips, J. V.
Prodan, and H. J. Metcalf, J. Opt. Soc. Am. B 2, 1751 (1985), and references
therein. For a more recent review, see H. Metcalf, and P. van der Straten, Phys.

Rep. 244, 204 (1994).

[2] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev.
Lett. 59, 2631 (1987).

[3] C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65,
1571 (1990).

[4] A. M. Steane and C. J. Foot, Europhys. Lett. 14, 231 (1991).
[5] A. Cable, M. Prentiss and N. P. Bigelow, Opt. Lett. 15, 507 (1990).

[6] W. Neuhauser, M. Hohenstatt, P. E. Toschek, and H. Dehmelt, Phys. Rev. A
22, 1137 (1980); D. J. Wineland and W. M. Itano, Phys. Lett. 82A, 75 (1981);
W. Nagourney, G. Janik, and H. Dehmelt, Proc. Natl. Acad. Sci. (USA) 80,
643 (1983).

[7] W. Nagourney, J. Sandberg, H. Dehmelt, Phys. Rev. Lett. 56, 2797 (1986);
T. Sauter, W. Neuhauser, R. Blatt, P. E. Toschek, Phys. Rev. Lett. 57, 1696
(1986); J. C. Bergquist, R. G. Hulet, W. M. Itano, and D. J. Wineland, Phys.
Rev. Lett. 57, 1699 (1986).

[8] F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203 (1987).

[9] F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys. Rev.
Lett. 62, 403 (1989).



145

[10] W. E. Moerner and L. Kador, Phys. Rev. Lett. 62, 2535 (1989); M. Orrit and
J. Bernard, Phys. Rev. Lett. 65, 2716 (1990).

[11] E. Betzig and R. J. Chichester, Science 262, 1422 (1993).
[12] K. G. Libbrecht, private communication.
[13] Z. Hu and H. J. Kimble, Opt. Lett. 19, 1888 (1994).

[14] J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Phys. Rev.
Lett. 66, 3245 (1991).

[15] For an overview, see H. J. Kimble, in Proceedings of XI International Laser Spec-
troscopy Conference, L. Bloomfield, T. Gallagher, and D. Larson, eds. (Ameri-
can Institute of Physics, New York, 1993), p. 340.

[16] E. S. Polzik, J. Carri, and H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992); E.
S. Polzik, J. Carri, and H. J. Kimble, Appl. Phys. B 55, 279 (1992).

[17] G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, Phys.
Rev. Lett. 67, 1727 (1991).

[18] R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132
(1992); M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J.
Carmichael, Phys. Rev. Lett. 63, 240 (1989).

[19] C. W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986).

[20] R. Vyas and S. Singh, Phys. Rev. A 45, 8095 (1992).

[21] J. D. Miller, R. A. Cline, and D. J. Heinzen, Phys. Rev. A 47, R4567 (1993).
[22] D. Meschede, H. Walther, and G. Miiller, Phys. Rev. Lett. 54, 551 (1985).

[23] For an overview, see H. J. Kimble, in Cavity Q.E.D., Advances in Atomic,
Molecular, and Optical Physics, Supplement 2, P. Berman ed. (Academic, New
York, 1994), p. 203.



146
[24] Q. A. Turchette, R. J. Thompson, and H. J. Kimble, Appl. Phys. B 60 S1
(1995).

[25] F. Shimizu, K. Shimizu, and H. Takuma, Opt. Lett. 16, 339 (1991).

[26] C. Chesman, E. G. Lima, F. A. M. de Oliveira, S. S. Vianna, and J. W. R.
Tabosa, Opt. Lett. 19, 1237 (1994).

[27] M. A. Kasevich, E. Riis, S. Chu, and R. G. Devoe, Phys. Rev. Lett. 63, 612
(1989).

[28] T. Pellizzari and H. Ritsch, Phys. Rev. Lett. 72, 3973 (1994).
[29] G. Grynberg, E. Giacobino and F. Biraben, Opt. Commun. 36, 403 (1981).

[30] H. Ritsch, M. A. M. Marte, and P. Zoller, Europhys. Lett. 19 7 (1992); H. Ritsch
and M. A. M. Marte, Phys. Rev. A 47, 2354 (1993); K. J. Schernthanner and
H. Ritsch, Phys. Rev. A 49, 4126 (1994).

[31] D. J. Heinzen and D. J. Wineland, Phys. Rev. A 42, 2977 (1990).
[32] R. Graham, J. Mod. Opt. 34, 873 (1987).
[33] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Science 209, 547 (1980).

[34] Squeezed States of the Electromagnetic Field, eds. H. J. Kimble and D. F. Walls,
J. Opt. Soc. Am. B 4, 1450-1741 (1987).

[35] H. Mabuchi and H. J. Kimble, Opt. Lett. 19, 749 (1994).

[36] N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble, Opt. Lett. 19 1474 (1994).
[37] L. Hilico, C. Fabre, and E. Giacobino, Europhys. Lett. 18, 685 (1992).

[38] T. W. Hansch and A. L. Schawlow, Opt. Commun. 13, 68 (1975).

[39] D. J. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).

[40] D. J. Wineland and W. M. Itano, Phys. Rev. A 20, 1521 (1979).



147
[41] V. S. Letokhov and V. G. Minogin, Phys. Rep. 73, 1 (1981).

[42] Y. Castin, H. Wallis and J. Dalibard, J. Opt. Soc. Am. B 6, 2046 (1989).

[43] W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, Phys. Rev. Lett.
41, 233 (1978).

[44] D. J. Wineland, R. E. Drullinger, and F. L. Walls, Phys. Rev. Lett. 40, 1639
(1978).

[45] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev.
Lett. 55, 48 (1985).

[46] A.L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf,
Phys. Rev. Lett. 54, 2596 (1985); V. S. Bagnato, G. P. Lafyatis, A. G. Martin,
E. L. Raab, R. N. Ahmadbitar, and D. E. Pritchard, Phys. Rev. Lett. 58, 2194
(1987).

[47] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314
(1986).

[48] J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989).

[49] P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H.
J. Metcalf, Phys. Rev. Lett. 61, 169 (1988).

[50] M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).

[51] J. M. Doyle, J. C. Sandberg, I. A. Yu, C. L. Cesar, D. Kleppner, and T. J.
Greytak, Phys. Rev. Lett. 67, 603 (1991).

[52] C. C. Agosta, I. F. Silvera, H. T. C. Stoof, and B. J. Verhaar, Phys. Rev. Lett.
62, 2361 (1989).

[53] Z.Y. Zhao, I. F. Silvera, and M. Reynolds, J. Low. Temp. Phys. 89, 703 (1992).



148
[54] R. J. C. Spreeuw, C. Gerz, L. S. Goldner, W. D. Phillips, S. L. Rolsten, C.
I. Westbrook, M. W. Reynolds, and I. F. Silvera, Phys. Rev. Lett. 72, 3162
(1994).

[55] E. A. Cornell, C. Monroe, and C. E. Wieman, Phys. Rev. Lett. 67, 2439 (1991).
[56] K. E. Gibble, S. Kasapi, and S. Chu, Opt. Lett. 17, 526 (1992).

[57] M. Prentiss, A. Cable, J. E. Bjorkholm, S. Chu, E. L. Raab, and D. E. Pritchard,
Opt. Lett. 13, 452 (1988); L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J.
Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, Phys. Rev. A 47, R4563
(1993).

[58] T. Walker, D. Sesko, and C. Wieman, Phys. Rev. Lett. 64, 408 (1990); D. W.
Sesko, T. G. Walker, and C. E. Wieman, J. Opt. Soc. Am. B 8, 946 (1991).

[59] W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, Phys.
Rev. Lett. 70, 2253 (1993).

[60] N. P. Bigelow and M. G. Prentiss, Phys. Rev. Lett. 65, 29 (1990).
[61] P. L. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).

[62] J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett. 39, 680
(1981).

[63] G. C. Bjorklund, Opt. Lett. 5, 15 (1980).

[64] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley,
and H. Ward, Appl. Phys. B 31, 97 (1983).

[65] R. J. Thompson, Ph.D. thesis, Univ. of Texas (1994) (unpublished).
[66] T. Bergeman, G. Erez, and H. J. Metcalf, Phys. Rev. A 35, 1535 (1987).
[67] K. G. Libbrecht and J. L. Hall, Rev. Sci. Inst. 64, 2133 (1993).

[68] Circulation of National Bureau of Standard 467, Atomic Energy Levels, Vol. 3.



[69]

[70]
[71]
[72]
[73]
[74]

[75]

[76]

[77]

[30]

[81]

149
R. J. Cook and H. J. Kimble, Phys. Rev. Lett. 54, 1023 (1985); H. J. Kimble,
R. J. Cook and A. L. Wells, Phys. Rev. A 34, 3190 (1986).

K. Lindquist, M. Stephens, and C. Wieman, Phys. Rev. A 46, 4082 (1992).
Metals Handbook, Vol. 2, prepared by ASM International Handbook Committee.
M. Succi, R. Canino, and B. Ferrario, Vaccum 35, 579 (1985).

J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).

J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985).

B. R. Mollow, Phys. Rev. A 5, 2217 (1972); B. R. Mollow, Phys. Rev. 188,
1969 (1969).

See, for example, C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, in Atom-
Photon Interactions, John Wiley & Sons, Inc. 1992.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, Phys. Rev. A 24, 411
(1981); G. S. Agarwal, Phys. Rev. A 19, 923 (1979).

G. Khitrova, P. R. Berman and M. Sargent III, J. Opt. Soc. Am. B 5, 160
(1988); M. Sargent III, D. A. Holm, and M. S. Zubairy, Phys. Rev. A 31, 3112
(1985); S. Stenholm, D. A. Holm, and M. Sargent III, Phys. Rev. A 31, 3124
(1985); D. A. Holm, M. Sargent III, and L. M. Hoffer, Phys. Rev. A 32, 963
(1985); D. A. Holm, M. Sargent III, and S. Stenholm, J. Opt. Soc. Am. B 2,
1456 (1985).

M. L. Citron, H. R. Gray, C. W. Gabel, and C. R. Stroud Jr., Phys. Rev. A
16, 1507 (1977); F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, Phys.
Rev. Lett. 38, 1077 (1977); S. Haroche and F. Hartmann, Phys. Rev. A 6, 1280
(1972).

Y. Shevy, Phys. Rev. A 41, 5229 (1990).

A. D. Wilson-Gordon and H. Friedmann, Opt. Lett. 14, 390 (1989).



150
[82] (a) P. R. Berman, D. G. Steel, G. Khitrova, and J. Liu, Phys. Rev. A 38, 252
(1988); (b) P. R. Berman, Phys. Rev. A 43, 1470 (1991).

[83] C. Cohen-Tannoudji and S. Reynaud, J. Phys. B 10, 345 (1977); for its appli-
cation to three-level systems, see also ibid 365 (1977); ibid 2311 (1977).

[84] D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, and G. Grynberg, Europhys.
Lett. 15, 149 (1991).

[85] B. Gao, Phys. Rev. A 49, 3391 (1994).

[86] L. M. Narducci, M. O. Scully, G. -L. Oppo, P. Ru, and J. R. Tredicce, Phys.
Rev. A 42,1630 (1990); A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru, and
G. -L. Oppo, Phys. Rev. A 43, 3748 (1991).

[87] J. Dalibard, Opt. Commun. 68, 203 (1988).

[88] P.S. Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw,
and C. I. Westbrook, Phys. Rev. Lett. 69, 49 (1992).

[89] P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudji, J. Y. Courtois, and
G. Grynberg, Phys. Rev. Lett. 68, 3861 (1992); B. Lounis, P. Verkerk, J. Y.
Courtois, C. Salomon, and G. Grynberg, Europhys. Lett. 21, 13 (1993); G.
Grynberg, B. Lounis, P. Verkerk, J. Y. Courtois, and C. Salomon, Phys. Rev.
Lett. 70, 2249 (1993).

[90] S. Reynaud, C. Fabre, E. Giacobino, and A. Heidmann, Phys. Rev. A 40, 1440
(1989).

[91] R. M. Whitley and C. R. Stroud, Jr., Phys. Rev. A 14, 1498 (1976); C. Cohen-
Tannoudji and S. Reynaud, J. Phys. B 10, 2311 (1977).

[92] M. O. Scully, S. Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989).

[93] M. G. Prentiss, N. P. Bigelow, M. S. Shahriar, and P. R. Hemmer, Opt. Lett.
16, 1695 (1991).



151
[94] A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, Phys. Rev. A
51, 1578 (1995).

[95] J. Javanainen, Phys. Rev. Lett. 64, 519 (1990); N. P. Bigelow and M. Prentiss,
Opt. Lett. 15, 1479 (1990).

[96] M. Lax, Phys. Rev. 129, 2342 (1963).
[97] S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).
(98] D.J. Gauthier, Y. Zhu, and T. W. Mossberg, Phys. Rev. Lett. 66, 2460 (1991).
[99] G. Orriols, Nuovo Cimento 53B, 1 (1979).
[100] K. Ellinger, J. Cooper, and P. Zoller, Phys. Rev. A 49, 3909 (1994).
[101] N. Ph. Georgiades, private communication.

[102] Cooperative Effects in Matter and Radiation, eds. C. M. Bowden, D. W. How-
gate, and H. R. Robl (Plenum Press, NY, 1977), and references therein.



