Synchronizing Processes

Thesis by
H. Peter Hofstee

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1995
(Submitted 30 September 1994)

ii

©1995
H. Peter Hofstee
All rights reserved

iii

A cknowledgements

Without Jan van de Snepscheut this thesis could have never been written.
He took me on as a graduate student in Groningen late 1988 and encouraged
me to come to Caltech with him in 1989. For more than five years, he was a
superb advisor and a dear friend.

I thank Mani Chandy for graciously accepting me as his student after Jan
died. He gave me the support and encouragement I needed to complete the
work, and he proofread the material, often on the same day he received it.

I thank the other members of my committee, Rajive Bagrodia, Alain
Martin, Yaser Abu-Mostafa, and Chuck Seitz, for their careful review of this
dissertation.

Through their classes, Alain, Chuck, Mani, and Ralph Back have deep-
ened my interest in concurrency, communication, and VLSI, and have had a
significant influence on the direction taken in this thesis.

I have benefited from discussions with (in more or less chronological order)
Hans Marks, Ico van den Born, Bert Hof, Peter Hilbers, Johan Lukkien, Klaas
Esselink, Jan-Eppo Jonker, Steve Burns, José Tierno, Marcel van der Goot,
Drazen Borkovic, Tony Lee, Rustan Leino, Ulla Binau, Christian Nielsen,
Rob Harley, Berna Massingill, John Thornley, Paul Sivilotti, Adam Rifkin,
Rajit Manohar, Svetlana Kryukova, and Andrew Lines. Within this group
José, Rustan, Marcel, Rajit, Johan, and Berna deserve special mention. I
thank all others with whom I interacted for their friendship, and for making
life at Caltech enjoyable.

I thank the current staff of the Caltech Computer Science Department,
Cindy Ferrini, Diane Goodfellow,Chris Lee, Gail Stowers, and Nancy Zachari-
asen and those who kept the place running in the past, in particular Arlene
DesJardins, Dian DeSha, Tanya Erdmann, and Patty Renstrom, for provid-
ing me with an environment in which I could work efficiently. Alice Nelson

v

cleaned my office for most of these years, and kept my plants from dying.

Thanks to Andy Fyie and Jeffrey Prisbrey for preparing the IATpXthesis
style files.

I thank Bill and Deiores Bing for the Caltech music program, and Wen-
King Su for Friday night movies. Together they ensured that I relaxed at
regular intervals.

I thank Frieda for her love and support, for taking care of me when I
didn’t, and for giving me a place to come home to.

I thank my parents and family for their love, for their never fading support
and encouragement, and for fostering my interest in academia.

The research described in this thesis was funded in part by two I.B.M.
graduate fellowships, the Advanced Research Projects Agency, and the Air
Force under grant AFOSR 91-0070. I thank them all for their support.

Abstract

In this monograph we develop a mathematical theory for a concurrent lan-
guage based on angelic and demonic nondeterminism. An underlying model
is defined with sets of sets of sequences of synchronization actions. A re-
finement relation is defined for the model, and equivalence classes under this
relation are identified with processes. Processes, together with the refinement
relation, form a complete distributive lattice.

We define a language with parallel composition, sequential composition,
angelic and demonic nondeterminism, and an operator that connects pairs
of synchronization actions into synchronization statements and hides these
actions from observation. Also, angelic and demonic iteration are defined.
All operators are monotonic with respect to the refinement ordering. Many
algebraic properties are proven from these definitions. We study duals of pro-
cesses and prove that they can be related to the most demonic environment
in which a process will not deadlock. We give a simple example to illustrate
the use of duals.

We study classes of programs for which angelic choice can be implemented
by probing the environment for its next action. To this end specifications of
processes are extended with simple conditions on the environment. We give
a more elaborate example to illustrate the use of these conditions and the
compositionality of the method.

Finally we briefly introduce an operational model that describes imple-
mentable processes only. This model mentions probes explicitly. Such a
mode] may form a basis for a language that is less restrictive than ours, but
that will also have less attractive algebraic properties.

vi

Contents

1 Introduction

1.1 Semantics v i i i e e e e e e e e e e e e
1.2 Goal e e e e e e e
1.3 Refinementrelation
1.4 Model e
1.5 Organization of this monograph

2 Sequential programs

2.1 Introduction L.
2.2 Demonicrelations L0000
2.3 Angelicrelations 0oL
2.4 Angelic and demonic nondeterminism
2.5 Refinement
2.6 SUMMATY .« « « o v vt e e e e e e e e
3 A variant of trace theory
3.1 Imtroduction L o Lo
3.2 Symbolsand traces
3.3 Operators and processes
3.4 Example: N-way synchronization
3.5 Twosubclasses
3.6 Summary e e e e e e
4 Sets of sets of traces
4.1 Angelic and demonic nondeterminism
4.2 A refinement orderingo

4.3 Operators and processes

0 O a W »

vii

4.4 Tteratiom.. o i
4.5 Dualsof processes.
46 Asimpleexample L Lo oL
4.7 Operational considerations
4.8 Example: Fulladder
481 Specification Lo o0
4.8.2 First decomposition
4.8.3 QCarry subcircuitso
4.8.4 Parity subcircuit. o oL oL
4.8.5 Iteration 0.,
4.9 Example: Memory
4.9.1 Onebitmemorycc.....
4.9.2 Selector, control, and merge
4.9.3 Four-bit memory
4.9.4 Pipelined memory.
4.10 Example: Mutual exclusion
4.11 Summary ot e e e e e e
An operational model for a language with probes
5.1 Operational model
52 Someexamples oo
5.3 Refinemento Lo o
5.4 SUMIMATY .« -+« v« v v vt e e e e e e e e e e e
Conclusions and future work
6.1 Conclusions
6.2 Futurework

Proofs for Section 3.2

Proofs for Section 3.3

Proofs for Section 3.4

Proofs for Section 4.2

Proofs for Section 4.3

77

98

107

122

135

viii

F Proofs for Section 4.4 148
G Proofs for Section 4.5 151

Bibliography 160

X

List of Figures

2.1 Demonicrelations. 0L 9
2.2 Angelicrelations. oL 11
4.1 Four-bitmemory. 57
4.2 Pipelined four-bit memory.o 58
4.3 Mutual exclusiononaring. 60
5.1 skipanddeadlock. 64
52 a@and a.b. L L 64
5.3 Sequential composition.. 0oL 65
5.4 Choice composition.. L. 65
5.5 Demonic composition. 000 66
5.6 Example of parallel composition. 67
5.7 Example of connect composition. 68
5.8 First example. C e e e e et e e e e 69
5.9 Fullgraph.. 70
5.10 Reduced graph. oL g

5.11 Partial connect. 73

Glossary of symbols

Symbol Meaning

a,b,c,a,... synchronization statements
a.b,... synchronization pairs

a a probe

z,Y, 2 variables over synchronizations
X, Y Z sets of synchronizations or pairs
r,s,t traces of synchronization statements and pairs
R, S, T sets of traces

R,S,7 sets of sets of traces

a(S) set of statements in S

a(S) set of statements and pairs &
l projection

T ejection

[} projection (with pairs)

1 ejection (with pairs)

< prefix

< strict prefix

o remainder after

| refines, implements

3 strictly refines

o is equivalent to

m demonic nondeterminism

u angelic nondeterminism

I ALT composition from CSP

parallel composition
sequential composition

-

S*

St

OP(vars : range : expr)
7

v

xi

angelic iteration
demonic iteration
quantified expression
least fixed point
largest fixed point

Chapter 1

Introduction

1.1 Semantics

This monograph is concerned with giving a precise meaning, or semantics,
for a class of concurrent programs. Without a semantics, one cannot reason
that a program meets a specification, hence a programming language without
a semantics is useless. Of course all programming languages assign meaning
to programs written in them, but the degree of formality differs vastly from
one notation to another. In the worst case, the definition is: “the meaning
of a program written in this language is the result you get by running the
(compiled) program on this machine.” Such a specification, although precise,
is next to useless, and a programmer who has to rely on it cannot but produce
“soft”-ware. .

In the best case the semantics is made mathematically precise. One way
to do this is to identify a program with mathematical formulas, and to relate
the formulas in a convincing way to the operation of a machine. Similarly,
in the best case, a specification is given with mathematical precision, or as
a mathematical formula, and a set of rules is given for verifying whether
a program meets a specification or not. Modulo the relation between the
operation of the machine and the formula, which should be simple enough
to convince, one can then prove that a program meets its specification.

Once such a semantics, and a set of rules, is given for a language, a no-
tion of refinement follows immediately. One program refines another if it
meets every specification the other program meets. The programming lan-

guage can be chosen to be large enough so that specifications are programs
as well. To be useful as a specification language, the language has to be a
real extension of the language used to describe executable programs, i.e., the
language has to contain statements that do not admit (direct) implementa-
tion. Given such a language, we can state the job of the programmer thus:
“transform the specification statement through a series of refinements into a
program that admits an implementation.” We can supply the programmer
with example transformations that are meant to capture frequently occur-
ring programming problems together with a parameterized proof. If we have
a set of transformations that is complete, we can use programs (tools) that
assist the programmer in constructing programs by automatically carrying
out the (correct) transformations the programmer selects. If the term were
not already in use “hard”-ware (i.e., “solid”-ware) would have been a good
word to describe programs constructed in this fashion. We believe that pa-
rameterized proofs are the basic concept that underlies almost all teaching
in computer science. It forms the formal basis of the notion of “archetypes”
(templates) [10] and was our goal in [24].

If our programs are formulas, and if the rules for correctness are needed
only to define the refinement relation, a good way of going about it is to
define the refinement relation directly. This is what we do in this monograph.
We define concurrent communicating processes through their communication
behaviors, and we define a refinement relation. Everything else follows.

1.2 Goal

This monograph contains an attempt to do for a class of concurrent programs
what the predicate-transformer semantics [5, 48] has done for sequential pro-
grams. Originally [12] sequential programs were identified with functions
from predicates (postconditions) to predicates (weakest preconditions) that
that these functions, called “predicate transformers,” correspond to imple-
mentable programs. Since then, it has been observed [5, 36, 34] that there
are good reasons for replacing the healthiness conditions with a single con-
dition: monotonicity. Not all monotonic predicate transformers correspond
to executable programs, but including them all makes it possible to unify
partial programs [4], specifications {34], and executable programs [14] in one

framework. Furthermore, the fixed-point theorem used to define iteration
turns out to rely on monotonicity alone [15].

Monotonic predicate transformers, with the ordering relation defined
pointwise from the implication ordering on predicates, form a partial order.
This ordering relation is the basis of the refinement calculus [4, 35} , that al-
lows programmers to transform specifications into programs. Because of the
firm mathematical foundation of the refinement calculus, program-refinement
calculations can be mechanically verified, and hence it is possible to cbtain
programs that not only provably meet their specification, but for which the
possibility of error in the proof has been all but eliminated. In recent years
remarkable progress in the area of proof verification systems [48, 1, 45] sug-
gests that this is likely to affect programming not only in principle, but also
in practice.

The second area of progress is more technical, and stems from the fact
that monotonic predicate transformers with the refinement ordering form a
complete lattice [7]. The fixed points of a monotonic function on a com-
plete lattice form a complete lattice themselves, which implies that there is
a unique least (and largest) fixed point. This makes it particularly easy to
define iteration or recursion for semantics where the underlying model is a
lattice; a definition as a least fixed point of a recursive equation is guaranteed
to define the construct properly and uniquely. Since all interesting program-
ming languages contain iteration, recursion, or both, it is important to be
able to extend models to include such constructs.

Having seen the successes of the lattice-theoretical approach to sequen-
tial programming, we try to identify a lattice structure that car capture the
meaning of concurrent programs. An important class of concurrent programs
consists of programs whose semantics is determined by their communication
behaviors [33]. In this monograph we construct a semantics starting with
a model and a refinement relation. The refinement relation is inspired by
reformulating and extending the partial order for sequential programs. We
choose a model that describes processes with undirected point-to-point com-
munication. The model with the refinement relation forms a complete lattice.
By examining operators on the model we define the language synchronizing
processes. The algebraic properties of synchronizing processes bear a strong
resemblance to those of theoretical CSP (TCSP) [8, 23], but, because we
start with refinement, the model is very different.

We motivate our interest in processes with synchronizing communication

as follows. Even though communication channels with bounded slack [29]
Joes not seem to be the abstraction used in most high-level programming
languages, it remains the abstraction of choice for the specification of con-
current programs that are to be implemented in hardware. The reason is
that slack in channels requires buffers and consumes chip area. Since chip
area is a resource that needs to be managed, the language needs to address it.
Methods exist [43, 9, 32, 39, 41] for translating CSP-like specifications into
self-timed [38] (asynchronous, data-driven) VLSI circuits, based on either
CSP [23] or UNITY [11]. We are concerned with transformations between
CSP-like programs, and between specifications and CSP-like programs.

1.3 Refinement relation

To establish the link between sequential and concurrent programs, we first
study a model for sequential programs that concentrates on input-output
behavior. In the predicate transformer model, interaction with the environ-
ment is limited to initial and final states, and hence we characterize sequential
programs by sequences of length two. Identifying a program with a set of
such sequences amounts to identifying programs with relations on the state
space [16, 13]. As explained in Chapter 2, such a model suffices to describe
programs with either angelic or demonic nondeterminism, but not both. We
extend the model to sets of sets of pairs, and we show how this model corre-
sponds to monotonic predicate transformers. We reformulate the refinement
relation for this model.

In later chapters this refinement relation is extended to sequences of
length greater than two. This, however, is not the only difference between
sequential and concurrent programs. We also need to reexamine angelic and
demonic nondeterminism. Demonic nondeterminism indicates that the ex-
ecution mechanism is free to choose any of the alternatives. No fairness is
assumed. Demonic nondeterminism remains unchanged in the context of
concurrent programs. Angelic nondeterminism is the dual of demonic nonde-
terminism; it specifies that the choice will be made to accommodate demonic
nondeterminism in the environment. We maintain this interpretation for con-
current programs, but there is an important new aspect. In the case of se-
quential programs, nontrivial angelic choice cannot be implemented. Because
there is no interaction with the environment during execution of a sequen-

tial program, the execution mechanism has no way of telling what choice
the environment expects. In the case of synchronizing processes, however,
some programs involving angelic choice can be implemented. The reason is
that synchronization actions involve the environment, and hence the choice
can sometimes be made by probing [31, 46] the environment for its next ac-
tion. We give a mathematical characterization of a class of implementable
programs and study their composition. In Section 4.7 the mathematical
characterization is related to operational considerations.

1.4 Model

As explained in the previous section, the model for synchronizing processes
is sets of sets of sequences of undirected actions. Because we want to be able
to treat parallel composition and synchronization separately, and because we
want to combine synchronization and hiding, we choose a step-trace seman-
tics [47, 42] rather than a purely interleaving semantics. A semantics that
allows synchronization within a process [25] differs from the more standard
models in that parallel composition is no longer equivalent to a choice among
interleavings. This then is another point where the work in this monograph
differs from work with similar goals in the context of CCS [33], CSP [23],
or process algebras such as ACP [6]. Because we choose to concentrate on
processes with point-to-point communication only, a step is either a single
communication action (one half of a synchronization, or “port action”) or a
pair of such actions (a synchronization action). We show that even though
this approach complicates the model in comparison to an interleaving seman-
tics, the algebra remains simple.

We define a simple programming language based on this model. The
basic process is a port action. Processes may be composed into bigger ones
by angelic or demonic composition, by sequential composition, and by parallel
composition for processes with disjoint alphabets of port actions. We also
define angelic and demonic iteration. The final ingredient of the language is
a “connect” operator, that synchronizes pairs of ports, and then hides the
ports from observation.

The choice of model and language is motivated by very operational con-
siderations stemming from experience with designing circuits. Parallel com-
position corresponds to putting two circuits into one box and should there-

fore be an algebraically trivial operation (nothing really happens). If two
channels (corresponding to a pair of wires) are connected, and if only point-
to-point connections are used, connection synchronizes the circuits and hides
the connected channels from the environment.

The language is simple enough to allow rigorous mathematical treatment,
yet large enough so that interesting programming and system-design prob-
lems can be formulated in it. After we have introduced the complete language
in Chapter 4, we discuss some examples: a data-driven adder and a pipelined
memory.

Languages such as CSP [23] contain a choice construct that is neither
angelic nor demonic. We show that this construct is essential to describe a
nondeterministic merge process, or, in circuit design terminology, an arbiter.
The last example in Chapter 4, which discusses mutual exclusion, contains
such a merge, and therefore we cannot reason about it in our model. In
Chapter 5 we therefore introduce a different operational model; one that can
also be used to describe the arbiter.

1.5 Organization of this monograph

Chapter 2 discusses a model for generalized sequential programs and the
corresponding refinement ordering. Chapter 3 introduces the step-trace se-
mantics that forms the basis of our model for concurrent programs. We also
discuss a class of implementable processes. Chapter 4 introduces demonic
nondeterminism and a refinement ordering that is an extension of the or-
dering in Chapter 2. We discuss operational considerations and give some
programming examples. In Chapter 5 we briefly introduce an operational
model that describes a larger class of processes.

Chapter 6 contains conclusions and a discussion of possible extensions of
this work.

We haven chosen to give proofs of all theorems in this thesis, but to do
so in appendices. We fee]l that even though the proofs are important, and
reading them, or even better redoing them, will lead to greater understanding,
the sheer number of them would render the thesis nearly unreadable. When
we give a programming example, the calculations are included in the main
text.

Chapter 2

Sequential programs

2.1 Introduction

In this chapter we give an operational semantics for sequential programs
based on their input-output behaviors. Because we want to relate our se-
mantics to the weakest-precondition semantics of statements, which does not
mention intermediate states, we define our semantics in terms of initial and
final states only. A second reason for not trying to extend the semantics to
intermediate states, as is done in [28, 44], is that, as a long term goal, we are
interested in semantics of CSP-like languages. State in such languages is not
shared between processes; hence, intermediate states are not observable.

The inspiration for our semantics is the operational interpretation of a
sequential program as a game of angel versus demon described in [2]. The
work may be seen as an extension of relational program semantics [13, 16]
to programs with angelic as well as demonic nondeterminism. We do not
attempt to develop a calculus; the goal of this chapter is merely to introduce
a model and refinement relation similar to the model and refinement relation
used in later chapters for concurrent programs.

We show the correspondence between the semantics defined here and
the predicate-transformer semantics [48]. We also show how the refinement
relation defined in this chapter corresponds to refinement in the predicate-
transformer calculus.

2.2 Demonic relations

Before we attempt to define a model in terms of pairs of states for arbitrary
sequential programs, we examine two semantics that define programs as a
set of states, i.e., a relation. If, for a given initial state, the relation contains
only one state pair with that state as its first component, the operational
interpretation seems clear. Executing the program from such an initial state
terminates in the state that is the second component of the pair. If, however,
there is more than one pair with the same initial state, we face a choice in
our interpretation. If we want to model programs we can implement, it
makes sense to define the execution mechanism as terminating in any one of
the states that appear as the second components of the pairs with the same
initial states.

This then leads to the following formula for the weakest precondition for
relation R and postcondition ¢q. The predicate is defined in terms of its
characteristic set.

wp.Rg={z:2€X ANVY(y:(z,y) € R:q.y):z} (2.1)

Unless indicated otherwise, we use lower case letters z,y,2 to denote
variables of type X, that is, states. We use lower case letters p, ¢ to denote
variables of type P(L), that is, predicates. We use lower case letters r, s, ¢, u
to denote variables of type ¥ x X, that is, pairs. We use upper case letters
R, S, T, U to denote variables of type P(X x X), that is, sets of pairs of
states.

The problem with this definition of wp is that nonterminating programs
cannot be represented. The empty relation does not correspond to abort,
but to magic as the following calculation shows.

wp.0.q
= { Definition wp }

{z:2€ X AY(y:{(z,y) €0:q.y):z}
= { Empty range }

{z:2€X:2}
= { Predicates range over ¥ }

true

In {16] the problem is solved by adding a special state, “infinity”, that
indicates nontermination. If we require that postcondition ¢ never contains
the infinity state, and if we also require that if the first component of a pair is
infinity, the second is infinity as well, we do not have to modify our formula
for the weakest precondition. Here we have made a different choice than [16]
where wp is defined for postconditions that may include the infinity state.

In Figure 2.1 we have represented some familiar statements assuming a
- state space of size two (labeled 0 and 1). An edge between initial and final
state indicates the pair is in the relation.

lg—90 0 el 0Og o0 O 0 0 0

lg-—l1 1 ol le ol IXI 1 1

X og—@ OO0 O g9 XXV g— @ X o0
skip abort magic chaos havoc

Figure 2.1: Demonic relations.

The operational interpretation of these statements is as follows. Execu-
tion of skip corresponds to “do nothing.” It terminates in the state in which
it 1s started. Execution of abort never terminates, independent of the state
in which it is started. Execution of magic terminates magically; any desired
property holds upon termination. Executing chaos terminates, but the final
state is arbitrary. Executing havoc may or may not terminate, and if it
terminates the final state is arbitrary. :

We now define the constant statements hinted at in Figure 2.1 and the
assignment statement. ¥ is the set of states. ¥+ = X U {co}.

o skip={z:2 € 5*: (z,12)}
o abort = {z:z € 5+ : (z,00)}

¢ magic = {(c0,00)}

o chaos = {z,y:2,y € X : (z,9)} U{(cc,00)}

e havoc={z,y:z,y e Z: (z,y)} U{z:z2 € 1 : (z,00)}

10

sev:=e={z:2€X:(z,z[v:=¢])} U {{o0,00)}

We may think of the state as a vector of the values of the variables.
z[v := e] denotes the vector = with the values of components v replaced by
e.

We leave the proofs that these definitions correspond to the usual defini-
tions as predicate transformers to the reader. Very similar proofs are carried
out in dctail in Section 4 of this chapter. The model and the relational
calculus are studied in detail in [16].

2.3 Angelic relations

An alternative interpretation of a relation is to consider pairs with the same
initial state to model angelic choice. This leads to the following definition of
the wp.

wp.Rg={z:2€X AN Jy:(z,y) € R:qy):z} (2.2)

The problem with this definition is that we cannot model miraculous
termination. The statement magic “terminates” satisfying the postcondi-
tion from any initial state, even if there is no final state that satisfies the
postcondition, i.e., wp.magic.false = true, whereas in the formula above
wp.R.false = false. We solve the problem by extending the state space with
a special “happy” state, that indicates miraculous termination. We could
maintain our definition of the wp and require that any postcondition include
the happy state, but we prefer to let predicates range over the “normal” state
space and rewrite wp as follows.

wp.Rg={z:z2€X AN 3y:(z,y) ER:y=1V qy):z} (2.3)

With this definition we obtain a model for a language with angelic choice
only, much like one of the languages studied in [3]. As healthyness conditions
we require that all relations contain the pair (}, 1) and that if the initial state
of a pair is the happy state, the final state is also the happy state. Predicates
range over ¥. Lt now indicates ¥ U {{}. In Figure 2.2 we represent some
constant statements for a state space with two states only. The operational

11

lo— 0 0g 0 O el O 0 0 0

leo_—el 1g o1 1 ol 1 X 1 1 1

jo—ef ie—eif 1 I Te—ef 1 i
skip abort magic pick tmagic

Figure 2.2: Angelic relations.

interpretation of the two new statements is as follows. Executing pick ter-
minates in any desired state. Executing tmagic terminates miraculously, or
in any desired state. We define the constant statements from Figure 2.2, and
the assignment statement as follows.

e skip={z:z€Xt:(zz)}
abort = {{1,1))

magic= {z :z € % : (z,1)}

pick={z,y:z,y € X : (z,9)} U{({,)}

tmagic= {z,y: 2,y € 5 : (z,y)} U{z : 2 € +(z, 1)}
vi=e={s:7€X:(z,z[v:=e)}U{({,1)}

We defer further study of this model until the next section, where an
extension of the model is defined.

2.4 Angelic and demonic nondeterminism

We have seen how a relational model can describe statements with either
demonic or angelic nondeterminism, but not both. In this section we present
a model that can describe statements with both kinds of nondéterminism.
Though we do not attempt to give a full calculus or include iteration here,
we do study this model in some detail.

We define a program to be a set of sets of pairs of states. A set of pairs of
states can be thought of to represent a program, possibly angelic, as in the
previous section. The set of such sets models demonic nondeterminism.

12

This leads us to define a function wp as follows.
wp.S.q = (2.4)
{z:2€XAVY(S:5€8:3(s:5€S As.ini=2:qs.finV s.fin=1)):z}

r.ini is the first component of the pair r, and r.fin the second. We use
calligraphic letters R, S, 7, U to denote variables of type P(P(Z* x 1)),
Or programs.

Of course we could have chosen to extend the model from Section 2 in-
stead, and obtained equivalent results. The choice was made by looking
ahead to upcoming chapters. In standard trace theory a component with a
larger traceset is considered to implement one with a smaller. This model
corresponds to the approach taken in Section 3.

We require the following “healthiness conditions” of all programs §.

e S#D

o V(S:5€S5:(1,1)€S)

e V(S:S€S:V(s:s€S sini=1=sfin=1))

We define some constants.

o magic={{z:z € Tt : (z,1)}}

o tmagic={{z,y:z,y€X:{(z,y)}U{z:z2 € 2" : (z,])}}
abort = {{(1,1)}}

havoc={y:y€Z:{s:zeX: (z,y} U{L DI U{L1}
o pick= {{z,y:z,y € 2 : (z,y)} U{(1, D}}

o chaos={y:yeX:{z:2€X:(z,y)} U{(}.D}}

e skip={{z:2e€X%:(z,2)}}

The assignment statement is defined as follows.

evi=e={{z:z€X:(z,z[v:=e))}U{({,1)}}

13

We show that these constructs have the wp’s that we expect.

wp.magic.q
= { Definition magic,wp } ‘
{z:2z€ S AV(S:Se{{z:z €t (z,1)}}:
J(s:s€S Asuni=z:¢sfin V sfin=1)):z}
= { Calculus }
{z:2€ XA
As:se{z:z €t :(g,})} Asiini=2z:¢s.fin Vsfin=1):z}
= { Calculus }

true

wp.tmagic.q
= { Definition tmagic,wp }
{z:2€ XA
V(§:Se{{z,y:z,yeZ:(z,y)}U{z:z €% (z,])}}:
A(s:s€S Asani=z:gs.fin V sfin=1)):z}
= { Calculus }
{z:z€ XA
As:se{r,y:a,yeT: (g, ytU{z:z et (z,1)} ANsini=2z:
g.s.fin V s.fin=1):z}
= { Calculus }

true

We see that magic and tmagic specify the same predicate transformer.
This can be understood as follows. The predicate-transformer semantics is
concerned only with guaranteed behavior, not with possible behavior. The
“best” choice for the program with regard to its predicate-transformer prop-
erties is to always terminate magically if possible.

The following calculation shows that also abort and havoc specify the
same predicate transformer.

wp.abort.q
= { Definition abort,wp }

14

{z:zeD AV(S:Se{{thD}}:
As:s€8 A sani=z:qsfin Vsfin=1)):z}

= { Calculus }

{z:z€X AN3A(s:se{{{,)} ANsini=2z:¢s.finV sfin=1):z}
= { Calculus }

{z:z€XL ANz=1:z}
—{tgx)

false

wp-havoc.q
= { Definition havoc,wp }
{z:z€ZA
V(§:Se{y:yeX:{z:z2€X:(z,y)} U{({,1}}
u{{t.1}}:
A(s:s€ 85 A siini =z:q¢.s.fin V s.fin=1)):z}
= { Calculus }
{z:2€Z AN3Is:se{(1,})} Nsini=z:qsfin V sfin=1%):2z}
= { Calculus }
{z:2€ X AN z=1:2}
={1¢X}
false

v

Once again the difference may be understood in terms of guaranteed
behavior. In the case of havoc the program may or may not terminate from
any initial state. But since the demon may always make the “worst” choice,
termination cannot be guaranteed.

wp.pick.q
= { Definition pick,wp }
{z:2€eZAV(S:Se{{z,y:z,ye T:(z,y)} U{({{,1)}}:
Is:s€S A sani=z:q.5.fin V sfin=1)):z}
= { Calculus }
{z:2€eX AN3J(s:sefz,y:z,ye: (z,y)) U{L, D}

15

As.ani=z:q¢s.fin V s.fin=1%):z}
= { Calculus }
{z:2€X A (2=1V q# false) : z}
={}
q # false

wp.chaos.q
= { Definition chaos,wp }
{z:zeZAVY(S:Sef{z={y:(y,2)} U{{{D}}:
Hs:s€S A sini=2z:qs.fin Vs.fin=1)):z}
= { Calculus }
{z:zeZ AVY(z=3(s:se{y:(y,2)}U{({L D} A sini =z
gs.fin V sfin=1)) : 2}
= { Calculus }
{z:2€ X A (2=1V q=true): z}
={}

q = true

wp.skip.q
= { Definition skip,wp }
{z:2z€e 2 AVY(S:Se{{z:z€Z:(z,2)}}:
As:s€S5 A sini=z:4q.5fin Vsfin=1%):2}
= { Calculus }
{z:z€e XA
As:se{z:z2e€lt:{(z,2)} ANsini=z:qs.finV s.fin=1):z}
= { Calculus }
{z:2z€eX N(z€qV z=1%):2}
={}
q

16

wp.(v:=¢€).q
= { Definition v:=e,wp }
{z:2€ X AV(S:Se{{z = (z,z[v:=¢€))JU{(},1)}}:
Hs:s€S A sni=z:¢.sfin Vs.fin=1)):z}
= { Calculus }
{z:z€X A I(s:s€{z(z,z[v:=eJU{{I, 1)} A sini==z:
g-s.fin V s.fin =1):z}
= { Calculus }
{z:z€Z A zlv:=€l€qV z=1:2}
={}

glv = €]
We define the program constructors A, V, and ; as follows.

e SAT=SUT
e SVT ={5,T:5SeSANTeT:5UT}
e S;T=ANS:5€65:V(s:s€S§:
ANT:TeT:V(i:teT A s.fin=tini:{{(s.ini,t.fin)}}))))

where V over an empty set of statements is defined to be abort.

The following properties justify the choice of names.

wp.S AT .q.z
= { Definition A,wp }
V(S:S€eSUT :3(s:s€85 A s.ini =z:¢s.fin V s.fin =1))
= { Calculus }
V(S§:5€8:3(s:s€8 A saimi=z:q¢s.fin V s.fin=1))A
V(T:TeT:3(t:teT A tiani =z :q.t.fin V t.fin =1))
= { Definition wp }
wp.S.q.z N wp.T.q.z

17

wp.SV7T.q.z
= { Definition V,wp }
V(§:5e¢{S,T:Se¢SANTeT:5UT}:
ds:s€S5 A sini=z:qs.fin V s.fin=1))
= { Calculus }
VS, T:5€eSANTeT:
Is:s€SUT A sini=z:qsfin V sfin=1))
= { Calculus }
VS, T:5€SANTeT:
Is:s€S A siini=z:qgs.fin Vsfin=1)V
At:teT A tini=z:q.t.fin V t.fin =1))
= { Calculus }
V(§:5€85:3(s:s€S Asini=z:¢s.fin V s.fin=1))V
V(T:TeT:3(t:teT A tiani==z:qtfin V s.fin=1))
= { Definition wp }
wp.S.q.z V wp.T.q.z

wp.S ;7T .q.z
= { Definition ; }
wp. N(S:5€85:V(s:s€8:
NT:TeT:N(it:teT A s.fin=tani: {{(s.ind tﬁn)}}))))
= { Previous two properties, calculus }
V(S§:85€S:3(s:s€8:
V(T:TeT:3(t:teT A s.fin=tani:wp{{(s.ini,t.fin)}}.q.2))))
= { Definition wp }
V(§:5€8:3(s:5€S5:Y(T:TeT:
A(t:teT A s.fin=tini:s.ini =z A (q.t.fin V t.fin = 1)))))
= { Calculus }
V(§:5€8:3(s:s€8 A sini =z
V(T:TeT:3:teT A s.fin=tini:qtfin V t.fin=1))))
= { Definition wp,twice }
wp.S.(wp.T.q).z

18

2.5 Refinement

We define a refinement relation J between sets of sets of traces corresponding
to the following informal notion: & J 7 (pronounced “S refines 77) if for
every demonic choice for §, 7 could have made a demonic choice that is
no better. The following calculation shows that this definition of refinement
corresponds to the usual definition in terms of wp’s. For a set of pairs S we
define:

S.ni = {z:3(y:(z,y) €5):2} and

Soz={y:3Is:s€S5:s=(z,y)) : y}.

o is pronounced “after.”

S3T
= { Definition J }
Viz:zeX:V(S:5€8:3(T:TeT:50z2z2 Toxz)))
= { Healthyness: S # 0,V(S:S€S:({,1) € S),siini=1=sfin=1% }
V(iz:z2€X:V(S5:5€8:HT:Te7:50z2 Toxzx)))
= { Negate }
eI (S:Se€S:V(T:Te€T:(Toz)Z(Soxz))))
= { Calculus }
~3z=3S:85€S:VT:TeT:(Toz)N(Soz)#0)))
= { Calculus }
-3z ::3(g: g€ P(ET):
3(5:5€8:80x=q) AV(T:Te€T:ToxzNgqg#0)))
= { By mutual implication }
-z ::3(g:q € P(ET):
HS:85€8: 850z 2¢) AV(T:TeT:ToxNg#0)))
= { Negate }
V(z::V(q:qgePE):
V(S§:85€8:5022q)V-VT:TeT:Tozng#)))
= { Calculus }
V(z =V(g:qeP(E):
V(§:5€8:S0znNg#0) <=V (T:TeT:TozNqg#0)))
= { Calculus }

19

Vig:qeP(EY):V(z=V(S:S€S:3y:teq:(z,y) €9))
=V(T:TeT:Iy:y€q:{(z,y) € T))))
= { Calculus }
Vig:{z:V(S:5€S:3(s:s€S:s.ini=z A ¢.s.fin)):z}
2{z:Y(T:TeT:3(t:teT:tini=z A q.t.fin)):z})
= { Cases: ¢.1 V—q.1}
V(g: g€ P(ZT) A g%
{z:¥V(S:5€S5:3(s:s€S:sini=z A gs.fin)): z}
2{e:V(T:TeT:3(t:teT:tini=z A qt.fin)):z})A
V(g: g€ P(EF) A —g.f:
{z:V(S:5€S:3(s:s€S:s.ini =z A ¢s.fin)):z}
D2 {z:Y(T:TeT:3(t:teT:tiani=z A q.t.fin)):z})
= { Calculus }
V(g: g € P(X):

{z:V(§:5€8:3(s:s€S:s.ini=z A (¢.5.fin V s.fin=1))): z}
D2{z:(T:TeT7T:3(t:teT:tini=z A (qt.fin V t.fin =1))) : z})
AV(qg:qeP(E):

{z:V(§:85€S:3(s:s€S:s.ini=z A ¢g.s.fin)):z}
D{e:Y(T:TeT:3(t:teT:tini=z A ¢t.fin)):z})

= { Omit second conjunct, definition wp }
V(g :: wp.S.q < wp.T.q)

= { This is the usual definition of refinement with wp’s. }
S, T

We see that the refinement ordering we have introduced is consistent with
wp refinement (S 2 7) = (S 2w 7)), but we do not have equivalence.
The reason is the same as the reason why abort and havoc and also magic
and tmagic cannot be distinguished by their wp’s.

2.6 Summary

In this chapter we have studied a model for sequential programs based on
angelic and demonic choice. We have defined a refinement relation and shown
that it is consistent with the refinement relation on programs defined by their

20

weakest preconditions. Because the purpose of this chapter was merely to
introduce a model of “sets of sets of things” and familiarize the reader with
the interpretation in terms of angelic and demonic choice, we stop here.
There are a number of issues, however, that we have not dealt with. Perhaps
the most important one is that the refinement relation defined here is not
antisymmetric. The same problem arises in Chapter 4. There we define an
equivalence class, and we show that equivalence is preserved by all operators
we have introduced.

21

Chapter 3

A variant of trace theory

3.1 Introduction

In this chapter we develop a version of trace theory [43] that allows both
atomic symbols and pair symbols to occur in a trace. Taking sets of such
traces as a denotation for processes makes it possible to distinguish between
parallel composition and arbitrary interleaving. As an example, consider,
in some CSP-like notation, process (al|b); ¢, to which we give denotation
{abc,bac,(a.b)c} and process (a; b{]b; a); ¢ with denotation {abc, bac}.
(Precise definitions are given in Section 3.) The two processes can be distin-
guished by synchronizing the ¢ and b actions within the processes. Because
we are interested in the synchronization aspect of point-to-point communica-
tion, we will assume synchronization is only allowed between pairs of actions.

We shall combine such synchronization with hiding the actions involved
in the definition of a connect operator. Sometimes we will refer to actions
as ports and to pairs of actions as channels.

With the restriction to pairwise synchronization one would expect, the
first process to correspond to the process c after a and b are synchronized,
whereas the second process would deadlock. Trace theory [43] and CSP [23]
,CCS [33], and ACP [6] deal with hiding rather than connection, and com-
bine parallel composition and synchronization. This simplifies their mod-
els, but disallows the introduction of our connect operator or other self-
synchronization operators [25]. We feel that connecting two ports of one
process, in particular when one thinks of processes as circuits, is a reason-

22

able thing to do, and hence we believe the model is worth studying. While
this model captures some of the true concurrency aspects of models such as
Petri nets [37], it retains the calculational advantages of trace theory. As
an added benefit, it turns out that in the model with pairs, processes can
be identified with a trace set rather than a trace structure (trace set plus
alphabet).

This chapter is organized as follows. After studying some of the properties
of projection operators in Section 2, we construct a calculus of processes in
Section 3 by defining a number of operators and studying their properties.
Because the theory is entirely definitional, the resulting calculus for processes
is guaranteed to be consistent. Even though the introduction of pairs in the
traces makes the proofs of the algebraic properties more cumbersome, the
calculus itself is simple. Proofs of all theorems can be found in Appendix
A for section 2 and Appendix B for Section 3. Several of the results and
proofs follow those in [43] , but significant differences arise as a result of the
inclusion of pairs in the alphabets.

Properties of the operators suggest an interpretation as a concurrent pro-
gramming language with the synchronization statement as its basic element.
In Section 4 we give an example proof for a simple synchronization algorithm
in this language. In Section 5 and Appendix C we, identify two subclasses
of programs with interesting properties.

3.2 Symbols and traces

A set Atoms of uninterpreted symbols is postulated. The set Pairs is defined
as {a,b: a,b € Atoms : {a,b}} and is assumed to be disjoint from the set
of atoms. The set Symbols is defined as Atoms U Pairs. Elements of
Atoms will usually be denoted by lower case letters from the beginning of
the alphabet. Element of Pairs will usually be denoted as a dotted pair of
atoms, e.g. a.b . Elements of Symbols will usually be denoted by lower
case letters near the end of the alphabet. Sets of symbols, other than the set
Symbols, will usually be denoted by upper case letters near the end of the
alphabet.

A trace is a finite sequence of symbols. Traces will usually be denoted by
the letters r, s, or t. The empty trace is denoted by e. Traces is the set of
all traces. Other sets of traces will usually be denoted by the letters R, .S,

23

or T. Concatenation of traces, and of symbols into traces, is denoted by
juxtaposition. The pair constructor . has the highest precedence, so ab.c =
a(b.c). It is a symmetric operator; hence, b.c and c¢.b are the same symbol.

The symbols of trace ¢, written o(t), is the set of symbols that occur in
the trace. Formally,

ole) = 0 (3.1)
o(et) = {z}Uo(t) for all ¢t € Traces,z € Symbols

Example: o(aa.b) = {a,a.b}

The alphabet of trace ¢, written «(?), is the set of atoms that occur in
the trace. Formally,

ale) = 0 (3:2)
a(at) = {a} Ua(t) for all t € Traces, a € Atoms
afa.bt) = {a,b} Uca(t) for all t € Traces, a.b € Pairs

Example: a(ea.b) = {aq,b}

The definitions of « and o are extended to sets of strings and sets of
symbols in the usual way.

We define projection of a trace ¢ onto a set of symbols Z, denoted ¢ |} Z,
and ejection of Z from ¢, denoted ¢ 1} Z, as follows.

(3-3)
e Z = ¢ ‘
(at)y Z = a(t{ Z) for all £,a € Z N Atoms
(at)dZ =ty Z forallt,ac Atoms A a & Z
(2) Y Z = z(t) Z)forallt,z =a.byz€Z V (e €Z N be2)
()l Z = a(t Z)forallt,z=0ab,z2€dZ Na€Z ANbgZ
(2)yZ =ty Z forallt,e=absdZ NagdZ NbgZ

24

et Z = ¢
(at) 1 Z = a(tft Z)forallt,a € Atoms A a g Z
(at)fZ =ty Z forallt,a € AtomsNZ
(et)h Z = z(tt Z)forallt,zc=absgZ NagZ ANbgZ
()N Z = a(tft Z)forallt,z =absgZ NadgdZ NbcZ
(et) Z =ty Z forallt,z=abz€ZV (a€Z AN bELZ)

Example: a.b || {a} = «a a.bft{a} = b

Just as the projection of a trace is defined as the concatenation of the
projections of the elements, the projection of a set is defined as the set of the
projections of the elements in that set.

Calculating with these projection and ejection operators is more cumber-
some than calculating with the projection operators of trace theory without
pairs. In the remainder of this section we give a list of properties that have
been used in proofs of the properties in the following section. Most proofs,
given in Appendix A, are straightforward (though often lengthy) and require
induction on the length of the traces.

The following three non-theorems, that are theorems for trace theory
without pairs [43], show that the calculus indeed differs from standard trace
theory.

@UXHYyY=ty(XnY) .

Counterexample: ¢ := a.b, X := {a.b}, Y := {b}
(ERX)NY =t (XUY)

Counterexample: ¢ := a.b, X := {a}, Y := {a.b}
XCY= (X))t Y=¢t1tY)

Counterexample: ¢ := a.b, X := {b}, Y := {a.b, b}

Fortunately, we can carry out the proofs in the following using these
weaker versions of the theorems.

X2V)= (U4 X)4 Y=tV (3.5)

(XCY)=>(lX)4Y=tyX (3.6)
X2V)=> (X)) Y=t04X (3.7)

25

One more rather specialized theorem is needed to make up for the loss of
stronger theorems from t.ace theory.

(c(s) CSYArd(XUY)=s)=(r§ Y =3 (3.8)

The following three theorems correspond directly to theorems in standard
trace theory. Note, however, that theorem 3.11 mentions o rather than a.

tUX=t)=(thX =0 (3.9
(FUX) X =e= (¢4 X) 4 X (3.10)
(tho(s)=entdo(s)=s)=(s=1) (3.11)

Because synchronization will not be part of a parallel composition oper-
ator, we shall require that alphabets of processes composed in parallel are
disjoint. Hence we are also interested in properties that involve disjoint al-
phabets.

aX)Na(Y)=0= (X))t Y=t (XUY) (3.12)
aX)Na(Y)=0=t X=(0Y)4 X (3.13)

One might expect a counterpart to theorem 3.12 for projections. The
following calculation shows that theorem holds as well. Assuming a(X) N

a(Y) = 0 we have

(U X) 4 Y
— {313}

()4 X)4Y
= {3.12}

M (XUY)LY
={312}

X))t Y)Y
= {3.10 }
= { Ie)eﬁnitionU}

ty0
={aX)Na(Y)=0=>XNnY=0}

t)(XNY)

26

Because the connect operator, defined in the next section, takes a set of
pairs as its first argument, properties that restrict one set of symbols to a set
of pairs are of interest as well.

XCPairs=> (X)) Y=0¢HX)J(XUY) (3.14)
Y CPairs= (tf1 X =¢) = (tH V) (X =Y)=¢) (3.15)
X C Pairs = (3.16)

(Y1 X)Jo(X)=0)= (V)X = 0 X) 0 (Y 1 X)
X C Pairs = (3.17)

ERX)Y ((e(s) M X)U(Y 1 X)) =5
I rirfX=tX:r{(c(s)UY)) =s

Finally, we have some properties that hold for disjoint sets of pairs.

X,Y CPairs A a(X)Na(Y)=0 = (3.18)
(N (XUY)yaXUY)=c¢
=@M XUY)§aX)=cA (R (XUY)I(Y)=¢))
X,Y CPairs A a(X)Na(Y) =0 = (3.19)
(X)) a(X)=e)=(EN(XUY))§a(X)=¢)

3.3 Operators and processes

In this section we construct a calculus for processes by defining operators
and listing some of their properties. Even though adding pairs to the traces
adds complexity to the proofs of the properties, given in Appendix B, the
calculus itself remains quite simple.

We give names to two special tracesets.

demon =0 skip = {¢} (3.20)

Informally, skip corresponds to the process that always terminates, and
demon corresponds to a process that is deadlocked (in one of its compo-
nents). Operators L, ||,; , and connect are defined as follows.

27

SuT = SurT (3.21)
SIT ={r,s,t:s€SANteT Arf(o(s)Uo(t)) = ¢ (3.22)
Ardo(s)=s Ardo(t)=t : 7}

Example: {ab, c}||{d} = {abd, ab.d, adb, a.db, dab, cd, c.d, dc}
S;T = {s,t:5€8,teT:st} (3.23)

Example: {ab, c}; {d} = {abd, cd}

S connect X ={s:s€SHX As{aX)=c:s} (3.24)

Example: {a.b ¢} connect {a.b} = {c} and {a.b a} connect {a.b} = {}

The operators satisfy the following properties.

SuUdemon =S (3.25)
Sus=S5 (3.26)
SUT=TuS (3.27)
(RUS)UT =RU(SUT) (3.28)
S||skip =S (3.29)
S||[demon = demon (3.30)
S|IT=T|S (3.31)
(RISIT = E|I(SIT) (3.32)
S;skip =skip;S5=3S5 (3.33)
S; demon = demon ; S = demon (3.34)
(R; S); T=R; (5 T) (3.35)

R, (SUT)=(R; S)U(R; T) (3.36)

28
In the following four properties X and Y are subsets of Pairs.

(SUT) connect X = (S connect X)Ll (.T connect X) (3.37)
a(X)Na(Y)=0= (3.38)
(S connect X) connect Y =S connect (X U Y)
(S; T) connect X = (S connect X); (T connect X) (3.39)
a(X)Na(S)=0=(S||T) connect X = S||(T connect X) (3.40)
{a,8} N ((S) U a(S)Ua(To)Ua(Th)) =0 = (3.41)
((S0; @; S1)||(To; b; T1)) connect {a.b} = (5o To); (51| T1))

3.4 Example: N-way synchronization

In this section we use the properties from the previous section to give a proof
of a simple deterministic synchronization algorithm.
problem specification

Given a constant n : n > 1 and processes {7 : 0 < i < n : A4;} and
{¢ : 0 <4< n: B}, give a set of connections X and a set of processes
{1:0< 1< n:5} such that

[(i:0<i<n:A;S;; B;) connect X

Ni:0<i<n:4;); [(::0<i<n:B).

a solution (synchronization over a line)
X={i:0<i<n:(ei-2%1)}U{i:0<i<n:(yi-2%i1)}
Sn—1 = Tyn-3; Yan—3,
Si = 9i5 Tai-1; Yoi1; Yoi for 0 < i < m — 1,
So = %o} Yo,
where V(i,j: 0 < 4,5 <n:a(S)Na(d;)=0 A oS;) Na(B;) =0).
Processes 1 and 0 communicate twice in sequence; hence, one of these
communications may be omitted.

proof, by induction on n
Base case (n = 2)

29

((A1; 15 1; Br)|[(Ao; 2o; vo; Bo)) connect {zo.21, yo.11 }
= { Property of connect }
(((Ax; 215 115 B1)||(Ao; %05 yo; Bo)) connect {zo.71})
connect {yo.y1}
= { (3.41) So, To, S1, T, a, b := Ai, Ao, (v1; B1), {%0; Bo), 71, 20 }
((A1]l4o); (15 B1)ll(%0; Bo))) connect {yo.11}
= { (a(Ao) Ua(41)) N {yo, 1} = 0, skip unit of ; }
(Ai]lAo); (((skip; 315 B1)||(skip; o; Bo)) connect {yo.11})
= { (3.41) So, To, S], Tl, a, b = Skip,Skip, B], Bo, Y15 Yo }
(A1]|Ao); ((skipl|skip); (B Bo))
= { (skip||skip) = skip, skip unit of ; }
(A1“A0)§ (BluBo)

Induction step

((An—l; L2n~3; Y20-3; Bn-—l)

| I(i:0<i<n—1:A4; 225 T2ic1; Yoios; Yoi; Bi)

| (Ao; 705 vo; Bo) |

) connect {i:0 < i< n:(Ti—222o1)}U{i:0<1<n: (Yoica-yoic1)}
= { n > 1,properties of connect }

(((An—1§ Z2n-3; Y2n-3; Bn—l)” (An—2; Lon—4; P2n—5: Y2n—5; Y2n—4; Bn—2)

connect {.1:2”_4.x2n_3})

| (7:0<¢<n—2:A4; 55 2im1; Y2ic1; Yois Bi)

I (Ao; 05 yo; Bo)

)connect {7:0<i<n—1:(22-2.22i-1)}U{i:0<i<n:(1ico12i_1)}
= { 341)} '

(((An—l”An—2); ((y2n—3; Bn—l)“(l'zn—s; Yan—-5; Y2n—4, Bn-—2)))

IIII(Z:0<i<n—2:A; 25 Zaic1; Yoio; Yoi; Bi)

| (Ao; zo; yo; Bo)

) connect {i:0 <7< n—1:(2-0.22i-1)}U{i:0<i<n:(%izaVsi_1)}
= { Properties of connect, alphabets }

((AnrAums);

(((skip ; Y2n-3; Buo1)ll(%2n—5; Y2n—s; Yzn—s; Bn—2)) connect {y2,_4.y20-3})

| J(7:0<i<n—2:A; 2245 213 Yoio1; Yoi; Bi)

I (Ao; o; yo; Bo)

)connect {i:0<i<n—1:(zy_02-1)}U{i:0<i<n—1:(yaicz-Voiz1)}

={ (341) }

30

(((An—IHA'n-—2); (Skip ”(xZ'n—S; y2n—5)); (Bn—IHBn—Z))

“ ”(Z 10 <1< n—2: Aj; 14 Toic1; Yoie1s Vi Bi) ‘

Il (Ao; 705 %0; Bo)

) connect {1:0<i<n—1:(z_2.22-1)}U{i:0< i< n—1"(tic2-Y2i-1)}
= { skip]|lA =4}

(((An—lllAn—z); Ton—5; Y2n-5; (Bn—1||Bn—2))

I (Z:0<i<mn—2:A; 265 2im1; Yoio1; Yoi5 Bi)

|| (Ao; %o; yo; Bo)

) connect {::0<i<n—1:(2ig.22i-1)}U{i:0<i<n—1:(1i—2.%2i-1)}
= { Induction hypothesis, associativity of || }

i:0<i<n:A4;); ||(::0L5i<n:B)

end of proof

3.5 Two subclasses

In this section we study two classes of programs. We show that each class
is closed under all but two of the composition operators we have introduced.
The intersection of both classes is closed under all composition operations
except Ll composition. The motivation for this section is that not all programs
we have defined in the previous section can be implemented, or implemented
efficiently. Informally, an angelic choice is not (efficiently) implementable if
the process cannot decide which alternative to execute by probing [31] the
environment. We return to this issue in Section 4.7.

An example of a choice that cannot always be implemented is
{a,€e}. Because the process may be composed sequentially with a pro-
cess {a}, we cannot decide safely to implement {a,c} as if probe(a) —
a | probe(anything but a) — skip fi. This implementation would cause
the process (((a U skip); a)||a’)connect {a.a’} to deadlock on the second
a action, whereas a truly angelic choice would have chosen skip to avoid
deadlock.

A similar problem arises for the process {ba,a}. Parallel composition
with a process {a'}, followed by connecting a.a’, leads to our first problem.

This section discusses a class of processes that can be implemented with-
out restrictions on compositionality or the environment. The second example
above leads us to studying the class of “connect compositional” (cc) pro-
cesses. This class is closed for all composition operators except sequential

31

composition and U composition. The first example leads to studying the class
of “prefix reduced” (pr) processes. This class is closed for all comnosition
operators except connect and U composition. The class of processes that
are both prefix reduced and connect compositional is closed under ali opera-
tions except LI composition. The proofs in this chapter bear some similarity
to [40], where classes of delay-insensitive circuits are studied.

Proofs of the theorems were much more difficult than we had expected.
Unlike the proofs in the previous section, this does not seem to be solely a
consequence of the introduction of pairs in the traces. A small consolation
is that similar proofs in [40] are of similar complexity. All proofs are given
in detail in Appendix C.

An important practical extension to the classes mentioned here is the use
of signaling sets [43]. Signaling sets are sets of port operations. Their use
corresponds to a restriction on the use of the connect operator. If we know
that a connect operator always takes all or none of the elements from the
signaling sets as its argument we can extend the class cc. The new class then
corresponds to requiring that the processes with all elements of a signaling
set replaced by a representative are in cc.

Definition 3.42 For any traceset S we define connect compositional, or
cc.S, as
Y(r,z,y: r € Traces; z, y € Symbols:
az)Nal(y)=0 A Sorz#0 AN Sory#0 =
Sorzy# 0 AN Soryz#0 AN Sorzy=Soryz)

Example: cc.{abc, bac} = true, cc.{abc, bad} = false

Informally, the class cc contains processes for which, if several actions
are simultaneously possible, they can be performed in either order, and the
future behavior of the process is independent of the order chosen.

The class of connect compositional processes is closed under parallel com-
position and connection.

Theorem 3.43 cc.S = V(z: z € Pairs : cc.(connect {z} S))

32

Theorem 3.44 cc.5 A cc.T = cc.(S||T)
The class of prefix reduced processes is defined as follows.
Definition 3.45 For any traceset S we define prefir reduced, or pr.S, as
V(s,t:s,t€8:=(s<t)

where < is the prefix ordering on strings.

Example: pr.{a, ba, bb} = true, cc.{a, ab} = false

The class of prefix reduced processes is closed under parallel and sequen-
tial composition.

Theorem 3.46 (pr.S A pr.T)= pr.(S; T)
Theorem 3.47 (pr.5 A pr.T) = pr.(S||T)

The following two theorems show that the class of processes that are both
connect compositional and prefix reduced is closed under parallel composi-
tion, sequential composition, and connection.

Theorem 3.48 (cc.S5 A pr.S A cc.T) = cc.(S; T)
Theorem 3.49 (pr.S A cc.S) = V(z :: pr.(connect {z} §))

In Section 4.7 we discuss how these algebraic properties relate to opera-
tional considerations.

3.6 Summary

In this chapter we have shown how traces with pair symbols can be used to
model concurrent processes with point-to-point synchronization. We defined
several familiar composition operators and a new one in terms of this model.
The familiar composition operators have the properties we expect, and the
new connect operator has satisfying algebraic properties as well. While we
feel that the list of properties in Section 3 is what we had hoped for, the road
toward them proved to be a lot more tortuous than intended. Undoubtedly
related to this, the list of properties in Section 2 seems somewhat haphazard
and ripe for improvement.

33

Chapter 4

Sets of sets of traces

4.1 Angelic and demonic nondeterminism

In the previous chapter a process was specified as a set of traces. Tracesets
alone, however, are insufficient to describe both angelic and demonic non-
determinism. In this chapter we extend the model to describe both. The
observation that tracesets alone do not suffice is not new, but our extension
1S new.

Consider two processes. Process A and process B both execute a followed
by b or b followed by a, but the choice is angelic in the case of process A
and demonic in the case of process B. According to the previous chapter,
process A should be specified as {ab, ba}, and we have no representation for
process B; our model has too few degrees of freedom. We add a dimension
by going from sets of traces to sets of sets of traces, with the new dimension
representing demonic nondeterminism, as was done in Chapter 2. In this
model processes A and B are now represented as follows.

o A abUba = {{ab,ba}}
e B abMba = {{ab},{ba}}

In this chapter we study sets of sets of traces as a model for a language
with synchronization statements as its primitive operation. We specify a re-
finement ordering for this model in Section 2. The refinement ordering leads
us to define classes of equivalent programs. We show that the refinement

34

ordering with these equivalence classes is a partial order. We show that de-
monic and angelic choice correspond to highest (greatest) lower bound and
lowest (least) upper bound with respect to the refinement ordering. The
equivalence classes, which we call processes, with demonic and angelic non-
determinism as meet and join, form a complete distributive lattice. Proofs
for the theorems in Section 2 are given in Appendix D.

In Section 3 we define sequential, parallel, and connect composition. We
give a list of algebraic properties that can be proven from these definitions
and the properties of the lattice of processes. Proofs for this Section are
given in Appendix E. In Section 4 we introduce two kinds of iteration: angelic
iteration and demonic iteration. Proofs for this section are given in Appendix
F. In Section 5 we study duals of processes. We prove the properties of duals
in Appendix G.

We end with a summary of the main results of this chapter in Section 6 .

4.2 A refinement ordering

Following the suggestions in the introduction we define:
Definition 4.1 A process is a set of sets of traces.

We will use calligraphic letters such as R, S, and 7 to denote processes.

Refinement corresponds to decreasing the amount of demonic nondeter-
minism, or increasing angelic nondeterminism. This leads us to the following
definition of process refinement: .

Definition 4.2
For §,7 C Tracesets we define
S3T

V(§:85€eS:3(T:TeT:527T1))

We give a few examples:

{{e,0}} 2 {{a}}

{{a}} 2 {{a}, {b}}

{{c,d}} 2 {{a},{8}}

{{aa}} 2 {{aa, ba}, {aa, ca}}

35

We have,
Theorem 4.3 T 37T
Theorem 4.4 RIS ASIT=RIT

therefore the relation J defines a preorder on Tracesets. However, J is not
a partial order, as the following theorem shows.

Theorem 4.5
ST ANTIS=

V(S:SeESAVYS0:S506SAS0CS5:50=85):Se€T)A
V(T:TeT AV(TO:TOeT ATOCT:T0=T):TeS)

We may read the previous theorem as follows. Two processes are equiv-
alent if their minimal elements are equal. This notion of equivalence makes
sense if we realize that a demonic choice between two sets, one of which is a
subset of the other, always yields the smaller, less angelic, one. We therefore
define equivalence between processes as follows.

Definition 4.6 S~7 = S3J7 AT 1S
We have,

Theorem 4.7 S ~ S

Theorem 4.8 (S ~7)= (7T ~S§)

Theorem 4.9 R~S AN ST =>R~T

therefore equivalence between processes is indeed an equivalence relation. We
also have the following theorem.

Theorem 4.10 S~ {S:5€S AV(50:S0€S A S0CS5:50=29):85)}

Hence a process is equivalent to the set of its minimal elements. The
following theorem states that the set of minimal elements uniquely represents
an equivalence class.

36

Theorem 4.11 (S~T)

({S:S€eSAVS0:S0eS ASOCS:S0=25):5}

{T:TeT AV(TO:TOE€T A TOCT:T0=T): T})

On the equivalence classes, _J defines a partial order. The proof is imme-
diate from the definition of ~.
We define demonic and angelic composition as follows.

Definition 4.12 SNT=S uU7T

Example: {{q,0}} N {{c}{d}} = {{q, b}{c}{d}}
Definition 4.13 SUuT={5T:5€8,TeT:SUT}
Example: {{e,b8}} U {{c}{d}} = {{a,b,c}{a,b,d}}

The following theorem relates the structure of S to demonic and angelic
nondeterminism.

Theorem 4.14 S=N(S:5€S:U(s:s€8:{{s}})

The following four theorems show that S T17 is a greatest lower bound
of § and 7 and SU T is a least upper bound of S and 7.

Theorem 4.15 V(5,7 :: S 1 SNT)
Theorem 4.16 V(R,S,7 : SR AT JIR=8NT JR)
Theorem 4.17 V(5,7 ::SUT 3 S)
Theorem 4.18 V(R,S,7: RIS ARIT=>RISUT)

Angelic and demonic composition satisfy the following five laws, com-
monly referred to as idempotence, symmetry, associativity, absorption, and
consistency.

37

Theorem 4.19 SNS~S AN SUS~S

Theorem 4.20 SNT ~T NS A SUT ~TUS

Theorem 4.21 (RUS)UT7 ~RU(SUT)

Theorem 4.22 SU(SNT)~8 A SN(SUT)~S

Theorem 4.23 (S~SNT)=(T 38) A(T28)=(SUT ~T)

From lattice theory {7, 44] we know that any structure with two binary
operators that satisfies Theorems 4.19 - 4.22 is a lattice.

Next we show that {} is a greatest element and {{}} is a least element
in our lattice.

Theorem 4.24 V(S :: {} O S)
Theorem 4.25 V(S :: S O {{}})

Hence lowest upper bounds and highest lower bounds can also be defined
for empty, and infinite sets, and our lattice is a complete lattice.
The next theorem shows that the lattice is distributive.

Theorem 4.26
RUSOT)=(RUS)N(RUT)
RO(SUT)=(RNOS)U(RNT)

Intermezzo on failure-set semantics and refinement

In [23], C.A.R. Hoare defines a refinement relation for TCSP (theoretical
CSP) based on the model for TCSP introduced in [8]. TCSP is a language
similar to and an inspiration for ours. In this intermezzo we point out some
of the differences between TCSP and synchronizing processes.

Hoare defines an ordering relation as follows,

Pod P = ((Ao=A1)N(Fo CFi)A(Dy C Dy))

where A is the alphabet of P,, F, its failure set, and D, the set of its diver-
gences. The failure set of a component is a set of pairs, the first component

38

of which is a prefix of a trace of the component, and the second of which
is an action the component is not capable of participating in next. Such
a definition makes sense only if the set of possible actions in the complete
system is known beforehand; hence, the alphabet of possible actions is part
of the specification of a process. In order to compose or compare processes,
their alphabets need to be identical. Because we consider only finite traces,
we do not consider divergences here.

Self-synchronization operators such as connect cannot be introduced in
TCSP, because the model does not include pair symbols. TCSP therefore
introduces two kinds of parallel composition. One, |||, is non-synchronizing
parallel composition and corresponds to our ||. The other ,||4, specifies an
alphabet of symbols on which the traces in the components are to be synchro-
nized. Rather than being a single operator, || 4 is really a class of operators.
Concealment of actions in TCSP is accomplished with a hide operator. In
synchronizing processes we have only one (non-synchronizing) parallel compo-
sition operator, and synchronization and hiding are combined in the connect
operator.

TCSP does not have sequential composition, but introduces prefixing;
hence, the synchronizing processes process a would correspond to the TCSP
process a — STOP, where A is the appropriate alphabet. TCSP introduces
M, to which our 11 corresponds, and [], which is similar to, but not the same
as, L.

While P 3 P Q for the ordering defined in the model for TCSP, P[|Q 3
P does not hold in general, as the following calculation shows.

We first quote some definitions from [23] Chapter 3. (Some notation has
been modified so as not to confuse the reader.)

traces(STOP) = {¢}

traces(c — P) = {e} U {t: t € traces(P) : ct}

traces(P M Q) = traces(P[|Q) = traces(P) U traces(Q)
refusals(STOP4) = {e x P(A)}

refusals(c — P) ={X : X C (a(P) —{c})}

refusals(P M Q) = refusals(P) U refusals(Q)

refusals(P[|Q) = refusals(P) N refusals(Q)

failures(P) = {(s, X) :: s € traces(P) A X € refusals(P/s)}
where P/s corresponds to P after executing trace s.

39

Hence if we consider the alphabet {a,b} and P = a — STOP and
Q = b — STOP we have:

failures(a — STOP)
={ex{X =X C({a,b} —{a})},a xP({a,b})}
= {ex {0,{b}},a x P({a, b})}
and similarly
failures(b — STOP) = {e x {0,{a}},b x P({a,b})}
failures(P N Q)
= e x ({0, {a}) U {0, {B1}), 0 x P({a, 5}, b x P({a,)}
= {e x {0,{a},{b}},a x P({a,b}),b x P({a,b})}
failures(P[|Q)
= {ex ({0, {a}} N {0, {8}}), @ x P({a,8}), b x P({a, b})}
— {ex {0),a x P({a,8}),b x P({a, b}))

Hence we see P[|Q 2 P.

The main reason for introducing J in [23] seems to be that it allows the
definition of recursion as a least fixed point. The notion of refinement as
being able to replace a specification (or process) by a process that refines it
in all contexts is given by a relation sat, defined by a set of laws.

In this monograph we have attempted to choose a refinement order that
combines TCSP’s sat and . This requires U to be subtly different from
TCSP’s [l. Our U corresponds to angelic choice, whereas TCSP’s || corre-
sponds to a choice that is made by probing [31] the environment. TCSP,
therefore, has the law (¢ — P)[[(¢ — @) = ¢ —» (P Q). Unless P and @
are the same, this is another example where P'[|Q’ 2 P'. -

Choosing Ll to represent angelic choice, rather than letting it correspond
to some operational notion, has a downside. The choice forces us to study
when angelic choice can be (efficiently) implemented, and what restrictions
on the environment, if any, are needed. This study is conducted in Section
4.7 and Chapter 5.

End of intermezzo

4.3 Operators and processes

In this section we define operators on the lattice of processes and study their
algebraic properties. We give names to five nullary operators.

40

e magic = {}
demon = {{}}
pick = {{t:t¢ Traces:1}}

chaos = {t:¢ € Traces: {t}}
skip = {{e}}

We extend the definitions of o and « to processes.

Definition 4.27 o(T) = US:S€T:a(9))

Example: o({{aa.b}}) = {a,a.b}

Definition 4.28 o(T) = US:SeT:alS))

Example: a({{ea.b}}) = {a,b}

We extend the definitions of sequential composition, alt composition, con-
nect composition, and parallel composition to sets of sets of traces, and we
introduce demonic composition. We overload the symbols from Section 3.
This is justified by the list of algebraic properties in this section, which
closely resembles the list from Chapter 2.

S|IT={S,T:8€T,TeS:S|T) (4.29)

S;T =N(S:5€S:U(s:5€S:M(T:TeT:uUt:teT:{{st}}))
(4.30)
S connect X ={5:5¢S8:5 connect X} (4.31)

The operators we have introduced are monotonic with respect to J.
Theorem 4.32 SI7=8SNRITNR

Theorem 4.33 ST7 =>SURITUR

41

Theorem 4.34 S 7 = S|RIT|R
Theorem 4.35 RIS AT IU=R;TIS; U
Theorem 4.36 S J7 = S connect X J T connect X

The composition operators respect the equivalence relation we have in-
troduced.

Theorem 4.37 S~T7T = VY(R:SMTR~TMNR)

Theorem 4.38 S~7T =V(R:SUR~TUR)

Theorem 4.39 S~ 7 = V(R :S||R ~T|R)

Theorem 4.40 S~7 = V(R:S;R~T;R)

Theorem 4.41 S~T =>V(R:R;S~R;T)

Theorem 4.42 S ~ 7 = V(X : S connect X ~ 7 connect X)

Proof This follows from monotonicity. For example:

SxT=VY(R:SAR~TNR)
< { Definition ~, calculus }

SIT=VY(R:SNRITNR)A

T3IS=VYR:TNRISMNR).
= { Monotonicity }

true

end of proof

We have the following algebraic properties. Some of these theorems are
direct consequences of the lattice algebra, but we repeat those to create an
overview of the process algebra. Even though equality holds for many of these
theorems, equivalence is the relation we are interested in. Because process
equivalence is an equivalence relation, equivalence follows from equality.

magic N7 =7 (4.43)

42

demon M7 ~ demon (4.44)
Tns =8sn7T (4.45)
(ROS)NT = RO(SNT) (4.46)
demon US = § (4.47)
magic US = magic (4.48)
TUusS =sSu7T (4.49)
(RUS)UT = RU(SUT) (4.50)
skip ||§ = § (4.51)
magic ||S§ = magic (4.52)
TS = S||IT (4.53)
(RISHIT = RISIT) (4.54)
skip; S ~S§ = §;skip (4.55)
demon ;S = demon (4.56)
magic ; § = magic (4.57)
(RUS;HT = (RyTHU(S; T) (4.58)

(ROS);,T = (R;T)N(S;7T) (4.59)

The following two examples show that ; does not left-distribute over 1
and LI
Example

({{a}} U {{o}}); ({{a}} M {{b}})
= { Definition U, M }
{{a,6}}; ({{a},{b}})
= { Definition ; }
({{a}}; {a}, {03} U ({{0}}; {{a}, {B}})
= { Definition ; }
{{ae}, {ab}} U {{ba}, {b0}}
= { Definition U }
{{aa, ba},{aa, bb},{ab, ba}, {ab, bb}}

43

(({{a}}u{{6}}); {{e}) M (({{a}}u{{b}}); {{8}})
= { Definition U }

({{a, 0} }; {{a}}) N ({{a, 8}}; {{b}})
= { Definition ; }

{{aa,ba}} 1 {{ab,bb}}
= { Definition M }

{{aa, ba}, {ab, bb}}

Example

({{e}} M {{6}}); ({{a}}u{{}})
= { Definition U, }
{{a},{b}}; {{a,0}}
= { Definition ; }
({{a}}; {{a,8}}) M ({{t}}; {{a, b}})
= { Definition ; }
{{aa, ab}} 1 {{ba, bd}}
= { Definition U }
{{aa, ab}, {ba, bb}}

(({{ed}rr{{o}}); {{a}) U (({{a}} 1 {{8}}); {{b}})
= { Definition 1M }

({{a}, {8}}; {{a}}) U ({{a}, {8}}; {{b}})
= { Definition ; }

{{aa,ba}} U {{ab,bb}}
= { Definition M }

{{aa, ab}, {aa, bb}, {ba, ab}, {ba, bb}}

We may understand this informally as follows. Right distribution of semi-
colon over M and U does not change the moment at which the demonic or
angelic choices are made, whereas left distribution does. In the first example
above we see that parallel composition with the process {{a’a’,4'd'}} and
connecting channels a.a’ and 5.5’ can lead to deadlock for the first, but not
for the second process.

(7;8); R = T;(5;R) (4.60)

44

a(X)Na(Y) =0 = (S connect X) connect ¥ = S connect (X U Y)
(4.61)
(8;T) connect X = (S connect X); (7 connect X) (4.62)

(SUT) connect X = (S connect X)U (7 connect X) (4.63)
(SN T) connect X = (S connect X) (7 connect X) (4.64)

a(X)No(S)=0 AN a(X)No(T) =0 = (4.65)
(SIIT) connect X = (S connect X)||(7 connect X)
{a,0} N (So) Ua(S1) V(o) U e(Ty)) =0 = (4.66)

((So; a5 S1)|I(7o; b; Tn)) connect {a.b} = (So||Zo); (S1]|77))

4.4 TIteration.

We define two kinds of iteration: angelic (x), and demonic (1). Angelic and
demonic iteration for sequential programs have been studied in [17].

Definition 4.67 For any process S, S* is defined as the least solution of
§” =skip U(S;S¥)

Definition 4.68 For any process S, St is defined as the greatest solution of
St =skip M (s; s

Theorem 4.69 S* and ST are well defined.

Proof From the Knaster-Tarski theorem [7], using monotonicity of U, T,

and ;.

end of proof

Examples

{{a}}"={{n:n € Nat. U {0} : a™}}

45

{{e}}u({{e}}; {{n: n € Nat. U {0} : a"}})
= { Definition ; }
{{e}}u{{n:n € Nat.U {0} : aa™}}
= { Definition ! }
{ {}{6} U{n:n € Nat. U {0} : aa™}}
{{n:n € Nat.U {0} : a"}}

{{a}}' = {n:n € Nat.U {0} : {a"}}
{{e}}n({{a}}; {n:n € Nat.U{0} : {a"}})
= { Definition ; }
{{e}}u{n:n € Nat.U {0} : {aa"}}
= { Definition Ul }
{ {}{e}} U{n:n € Nat.U{0}: {aa"}}
{n:n € Nat.U {0} : {a"}}
We have the following monotonicity properties.
Theorem 4.70 ST =837
Theorem 4.71 SOT =837

The following theorem is very useful.

Theorem 4.72 ST 3 (S|I|T)

4.5 Duals of processes
Definition 4.73 We define Dual as follows.

Dual(§)=u(S:S5e€S:M(s:se€S8:{{s}})

46

Dual(magic) ~ demon (4.74)
Dual(demon) ~ magic (4.75)
Dual(pick) ~ chaos (4.76)
Dual(chaos) ~ pick (4.77)
Dual(skip) ~ skip (4.78)
Dual({{s}}) ~ {{s}} (4.79)

The following theorems confirm our choice of name for Dual.
Theorem 4.80 Dual(S 1M 7) ~ Dual(S) U Dual(7)
Theorem 4.81 Dual(S U 7) ~ Dual(S) M Dual(7)
Theorem 4.82 Dual(Dual(S)) ~ S

An equivalent definition of Dual is

Definition 4.83
Dual(§) = {T:V(S:5€8:3(s:s€8:5€T)): T}

In order to prove the equivalence of the two definitions, the following two

theorems are useful.
Dual is a Galois connection.

Theorem 4.84 § I Dual(T) = 7 1 Dual(S)
Theorem 4.85 Dual(S) 37 = Dual(T)3S

The following theorem states that both definitions of dual are in fact
equivalent.

Theorem 4.86 Dual(S) ~ Dual(S)
The following properties can now easily be proven.

Theorem 4.87 § 37 = Dual(7) 3 Dual(S)

47

Theorem 4.88 § ~ 7 = Dual(S) ~ Dual(7T)
The following theorems are useful in computing duals of processes.
Theorem 4.89 Dual(S; 7) ~ Dual(S); Dual(7)
Theorem 4.90 Dual(§*) ~ St
Theorem 4.91 Dual(St) ~ &*

Duals of processes are useful in that they specify the most demonic en-
vironment with which a process can be composed without introducing dead-
lock. This environment is similar to the unique mazimal environment of Dill
[18]. This fact is stated in the following theorem.

Theorem 4.92 Provided a(S) = o(S),
(S||Dual(S")) connect {z : z € a(S) : z.z'} ~ skip

where &' is § with all actions replaced by their primed counterparts.
Furthermore, the dual is the least environment with this property, as
expressed by the following theorem.

Theorem 4.93 Provided oS) = o(S),
7 C Dual(S’) = (S}|T) connect {z :z € a(S) : z.2'} ~ demon

4.6 A simple example

In this section we give a simple example to illustrate the use of the machinery
introduced in this chapter.
problem specification
Required is
(and
|
((aollbo); co
M(aol|b1); <o
M a1l bo); o
M(ax]|b1); 1
)T
) connect {ao.a{, a1.ay, bo, bo, b1.b7, co.¢h, 1.¢}}
C
skip

48

Give an implementation for and
end of problem specification

solution

Dual(((aol|b0); o
M(aol|b1); eo
M(a1]bo); o
M(a|b1); e1)?)
= { Using the fact that we don’t connect a’s and b’s }
Dual(((ao; bo U bo; a0); ¢
M(ag; by U b; ag); co
M(a1; bo U bo; @1); co
M(a1; b U b1; a1); 1))
= { Theorems 4.91,4.81,4.80,4.89 }
((ao; bo M bo; ao); <o
U(ao; b1 M by; ao); co
U(ay; bo M bo; a1); co
U(ay; by M b a1); ¢r)*
C { M is meet in lattice }
(ao; bo; co
Uao; b1; co
Uay; bo; co
Uas; bi; ¢1)”
= { left distribution of U over ; }
((a0; (bo U b1); o) U (ar; (bo; co U by; c1)))

The fact that this is a solution now follows from monotonicity and The-
orem 4.92.
end of solution

4.7 Operational considerations

In this section we give an informal operational appreciation of the theory
developed in this chapter. The main issue we address is angelic choice versus
the [] construct of CSP and the ALT construct in programming languages like

49

occam™ [27]. We propose sufficient conditions under which angelic choice
can be implemented efficiently. In the next section we follow the discussion
up with an example of a process built from several component processes and
show that the constructions meet the requirements listed in this section.

Our refinement ordering, and hence our notion of equivalence between
processes, is based on the notion of deadlock. One process refines an-
other if it is guaranteed not to deadlock in any environment in which the
other process does not deadlock. demon , the bottom element of our lat-
tice, corresponds to a process that is deadlocked in one of its components.
Demonic nondeterminism allows the process to choose the alternative that
causes deadlock. Implementing demonic nondeterminism is not difficult, be-
cause either alternative is a refinement, and hence an implementation, of
the construct. Angelic nondeterminism requires the process to choose the
alternative that avoids deadlock. In general, angelic nondeterminism can-
not be implemented, as the event that may cause deadlock can be arbi-
trarily far in the future. However, if the first actions of the alternatives
in an angelic choice are mutually exclusive, then angelic choice can be im-
plemented by probing [31] the environment for its next action. Fully sym-
metric protocols for communication that allow probing on either side exist
[46], but, in order to avoid deadlock, only one of the processes involved in
the communication must probe. This leads us to a second restriction on
processes that can be adequately described by our algebra: only one side
of a synchronization action can be a first action in an alternative of an L
construct. We share this restriction with CSP, because in the failure set
model ((a — stop [[b — stop)||(a — stop [[b — stop))/{a,b} = stop,
whereas the ALT construct in occam™ deadlocks when composed with itself.

In our model, parallel composition is defined in terms of angelic non-
determinism, and hence we should expect difficulties when attempting to
implement it. Fortunately, the only way in which deadlock can result from
replacing sequential with parallel composition (operationally speaking) is if
there is a choice that is made on the basis of which sequential component is
attempted first. This, after all, is the demonic aspect of parallel composition.
Such a choice requires an alternative statement with non-mutually-exclusive
guards. Thus, if we guarantee by some external reasoning that alternative
statements with non-mutually-exclusive guards do not occur in our programs,
then we may indeed regard parallel composition as angelic.

We can weaken the condition of mutually exclusive first actions using the

50

theorems from Chapter 3, Section 5. There a class of programs was identified
that includes angelic nondeterminism with first actions that are not mutually
exclusive. However, the angelic choice required of processes in this class is
implementable, because the processes are capable of doing non-mutually-
exclusive actions in any order, and its future behavior may not depend on
that order. These restrictions are captured formally in the definition of the
class cc in Section 3.5.

A useful notion when reasoning about mutually exclusive first actions are
signaling sets [43]. A signaling set is a set of mutually exclusive actions.
Their typical use is as follows: we prove that a process is implementable
under the restriction that certain sets of actions in the environment form a
signaling set, and we show that certain sets of outputs form signaling sets
as well. The and process of the previous section is implementable under the
restriction that a0, al and b0, b1 form signaling sets, and it guarantees that
0, ¢l is a signaling set.

Alternatives with non-mutually-exclusive first communications do occur
in practice. They are essential for implementing a (fair) merge between
two channels that may be active at the same time. In hardware, they are
implemented using arbiters. We conclude that the framework as presented
here cannot be used to design concurrent systems that require such a merge
or hardware that requires arbiters. Nevertheless, the examples in the next
two sections indicate that many interesting programs can be built without
them.

In the next chapter we briefly introduce an operational model that uses
probes explicitly, and that does not suffer from these restrictions. We in-
dicate there why we believe that models and algebras that conform to that
operational model are inherently more complex. Thus, for the design of syn-
chronizing systems with mutually exclusive guards, we believe it is likely that
one will resort to a model and process algebra similar to the one presented
in this chapter.

51

4.8 Example: Full adder

4.8.1 Specification

We take the foliowing component as the specification of a (restricted) full
adder cell. The example should not be taken too literally; because our lan-
guage does not allow for probes or expressions in guards, the construction is
overly complicated. The reason we give this example anyway is because it
illustrates nicely the compositionality of the method and the use of signaling
sets.

problem specification

fa(ao, a1, bo, b1, co, €1, do, i, €0, &) =
(a0; (Bo; (co; (dolleo) U €15 (da][€0))
Liby; (co; (di]l€o) U c15 (do]ler))

Uaz; (bo; (co; (dalleo) U e1; (dol| 1))
Uby; (co; (dolfer) U ar; (diflen))
))
Relies on: (0) Signaling sets: {ao, a1}, {bo, b1}, {co, c1}-
(1) These signals are not probed in the environment.
Guarantees: (0) Signaling sets: {dy, d1 }, { €0, €1}-
(1) The process does not probe these signals.
end of problem specification

The environment signaling sets are signaling sets that the process may rely
on. The process signaling sets are signaling sets that the process must guar-
antee. We observe that the process is implementable, since angelic choices
are made with mutually exclusive first communications that are not probed
in the environment.

4.8.2 First decomposition

We define components split, pgen, and cgen.

92

split2(a, a1, a4, a], af, a}') =
(a0; (a0l ag) U a5 (afl|ay’))
Relies on: (0) Signaling set: {ao, a;}.
(1) These signals are not probed in the environment.
Guarantees: (0) Signaling sets: {a{, a1}, {a], af'}.
(1) The process does not probe these signals.

pgen(aOa a, bO7 b17 C, (1, dOa dl) =
(a0 (bo; (o5 do Ll c1; i)
Uby; (co; dy U e do)
)
Uas; (bo; (o3 di U 15 do)
Ubi; (co; do U c1; di)
))
Relies on: (0) Signaling sets: {ao, a1}, {bo, b1}, {co, ¢1}.
(1) These signals are not probed in the environment.
Guarantees: (0) Signaling set: {dy, d; }.
(1) The process does not probe these signals.

cgen(a()a a, bO’ bla €p, €1, €0, 61) =
(ao; (bo; (co; €0 U ¢1; €)
Uby; (co; €0 Ll €1 €1)
)
Uay; (bo; (co; €0 U c1; €1)
Lby; (co; €1 U cr; 1)
))
Relies on: (0) Signaling sets: {ao, a1}, {bo, b1}, {co, 1}
(1) These signals are not probed in the environment.
Guarantees: (0) Signaling set: {eo, €; }.
(1) The process does not probe these signals.

We observe:

33

(split2(ao, a1, a5, a1, a5, &)
|| split2(bo, b1, b5, b1, by, bY)
il split2(co, c1, ¢, €15 €55 €1)
| pgen(ay’, af’, i, b, cit, ", do, dr)

AN AR N AR AR AN |
” cgen(q,, a; ’bo ’bl »Co 2 €1 5 €0y 6‘1)

! "t " nm 1 mn "o opnun ! 1 1 1m
connect {aj.al’, af, af”, b).bf", by.b{", ch.<y’s 55 €
! !/ 4 !
Po-Po> P1-P1> Ck-Cpy Cp-Cp, ¢g-Cq}
-
fa(a(h ay , b07 b17 Co, C1, dﬂa dl, €0, 61)

We do not give the details of the calculation. Informally, the refinement
is valid because parallelism is increased without violating the requirements
on the signaling sets. For calculations such as these, where the informal
argument is clear, the detailed calculations are best left to a computer.

4.8.3 Carry subcircuits

The following program specifies a component that generates the carry-
propagate, carry-generate, and carry-kill signals from the first two bits.
ng(ao’ ap, b07 bla Cky Cpy cg) =

(a0; (bo; ek U b1; ¢p)

U ap; (bo; ¢, U b1 ¢g)

U bo; (ao; ¢x U as; ¢p)

U b1; (ao; ¢, U as; ¢y)

)
Relies on: (0) Signaling sets: {aq, a1}, {bo, b1 }-

(1) These signals are not probed in the environment.
Guarantees: (0) Signaling set: {c,, ¢,, ¢t }-
(1) The process does not probe these signals.

The component is implementable because, projected onto the signaling
sets, it is in the class ce.

The next component we examine is a circuit that generates the carry from
the carry-in and the three intermediate signals.

o4

Cth(C()a €1, Ck, Cp, Cy, €p, el) =

(co; (ks €0 U &5 €0 Ll g5 €1)
U e (Ck§ e Ll ¢p; € U cy; Cl)
) .

Relies on: (0) Signaling sets: {co, 1}, {¢,, 4, €}
(1) These signals are not probed in the environment.
Guarantees: (0) Signaling set: {e, €; }.
(1) The process does not probe these signals.

We observe:
(pgk(a07 a, bO; b17 Ck, Cp, cg)
|| eckt(co, a1, ¢}, Cps Cqs €05 €1)
) connect {c;.ci, ¢;.¢;,¢,.¢0}
_

cgen(aﬂa a, bOa bla Co, cl)

Note This subcircuit is more general than needed to meet the original
specification, since there it is specified that the bits will arrive in a given
order.

Note Another possible implementation of this subcircuit is a circuit that
generates the carry as soon as possible, i.e., generating it before the ¢’ com-
munication in the case of ¢; or ¢,.

4.8.4 Parity subcircuit.

The following program gives an implementation of an exclusive or gate.
xor(ao, a1, bo, b1, po, p1) =

(a0; (bo; po U by; p1)

U a5 (bo; p1 U b5 po)

L bo; (ao; pr U a1; po)

L by (a0; p1 U a1 po)

)
Relies on: (0) Signaling sets: {ao, a1}, {bo, b1 }.

(1) These signals are not probed in the environment.

Guarantees: (0) Signaling set: {po, p1 }.

35

(1) The process does not probe these signals.

The component is implementable because, projected onto the signaling
sets, it is in the class cc.

We observe:
(xor(aqg, a1, bo, b1, po, p1)

” »XOI'(CO, €1, P(,), p{a dO: dl)

) connect {po.p{, p1-p1}
-

pgen(ag, ai, bOa b17 Co, (1, dﬂ, dl)

4.8.5 Iteration

Using Theorem (4.72) we conclude
(split2(ao, a1, a5, a;, af, af)
” Splitz(boa b17 b{)v b{’ b(l),v b{I)
| split2(co, ¢1, ¢, €1, 55 €f)
“ pgen(aéll’ a/]l-ll, b[l)//, b{/l, c(/)//’ c]/-//, %’ dl)*
“ cgen(aél", a{///, bé/ll’ b{///’ C(/)///’ c{///, 60’ 61)*
)
connect {aj.qa", af, ay”, by.by', b5.88", cy-¢b’, f, <&,
pO-p(l)a pl-pia Ck-cllm C:D'c;n c.ll'cg}

[

fa™

4.9 Example: Memory

In this section we study some memories. We do not give calculations, the
purpose of this section is to show that even though our language is very
limited, there are interesting programming (circuit-design) examples that
fall within 1ts scope.

4.9.1 One-bit memory

We define a one-bit memory thus:

56

mem(r, do, di, wo, w) = (M(zg, 7)) || Mi(r, do, v, wo, wr, %9, 2())
connect {zo.zg, z1.7{}

M, (25, 71) = xg; (205 7o U 715 #)"

Mi(T, d{), dl, Wo, Wy, Zo, xl) =
(2o; (73 do; zo U wo; 7o Ul wy; 7p)
U ay; {r; di; 21 U wo; 2o U wy; 73)

)*

4.9.2 Selector, control, and merge

We define a selector process S for a fixed integer n, n > 0:

S(at, aty, avg, au1, ady, ady, n) =
(ato; (ato; auo Ll air; aup)™!
U aiy; (aip; ado U agy; ady)™™?
)*
The selector takes an n-bit sequence of bits as input and, depending on
the value of the first bit, sends the remaining n—1 bits on aug, au; or ady, ad;.
We decide to encode the memory action in the last two bits. Control
process C translates those last two bits into the appropriate signals for the
one-bit memory.

Cl(ao, az, 7, wp, wp) =
(ao; (a1 Uag); v
U as; (ao; wo L ay; w)
)*

The merge process is defined as follows.

D(aup, au1, ady, ady, a0, a01) =
(aup; aoo U awg; a0y U adp; aop U ady; aoy)*

{Lwow] (o1}

{d0,d1}

Figure 4.1: Four-bit memory.

4.9.3 Four-bit memory

And example four-bit memory is shown in Figure 4.1.

When we try to argue that this collection of processes is implementable,
a problem arises. For all processes except the merge it is easy to argue that
they are implementable as a consequence of the signaling-set conventions.
However, we cannot guarantee that the guards of the merge processes are
mutually exclusive if the environment attempts a sequence of read actions.
A possible solution is to synchronize between the last D process and the first
S process after every write. This, however, means that the memory can only
process one write action at a time. We discuss a less restrictive solution in
the next subsection.

4.9.4 Pipelined memory

The solution presented here is inspired by [26]. We modify the processes S
and D to S’ and D’ and introduce a new process B.
We move the r/w bit to the front of the packet. A packet now consists of

{au0,aul}

{d0.d1}

{au0,aul}

{d0,d1}

{ad0.adl}

{2d0,ad1}

Figure 4.2: Pipelined four-bit memory.

the r/w bit, followed by n—2 address bits, followed by the w0/w1 bit, which
carries no meaning in the case of a read.

S,(G,io, ailv aug, AUy, adﬂa a'dla S0, 515 n) =
(ado; (aio; (auollso); (ato; auo U air; auy
U ati; (adolls1); (ato; ado U aiy; ady)™ 2
)
L ady; (ado; aur; (ato; ayg U aiy; ayy
U aiy; ady; (aio; ado U ady; ady)™ 2

)

)n—?

)n—2

)*

Process S’ first receives the r/w bit. In the case of a read the next bit is
read to determine whether to route the packet up or down. Next the r/w bit
is sent up or down, and the first bit of the address is sent to the last merging
process through a series of buffers. Finally the remaining bits are copied up
or down.

In the case of a write, the only difference is that no merging information

39

1s sent.

DI(SO'} 81, AUg, AU, (ldo, adl7 aooy, (101) =
(so; (aug; aop U auy; aoy)
Lt s1; (ado; aog U ady; ao)
)*
Process D' differs from process D in that it first receives a bit indicating
whether a bit from the up or the down incoming channel is next. It is easy to
reason that the order between different read operations is maintained with

this construction.
Process B is a buffer.

B(ai, aty, a0, a0y) =
(ato; aoo U aty; aoy)*

All processes used in this example are implementable: mutual exclusion
of the first communications in alternatives of an angelic choice can easily be
shown to be mutually exclusive, as we have done in the previous section.
Hence we could use the calculus we have introduced in this chapter to verify
whether this memory is a refinement of another, or whether it meets a given
specification.

4.10 Example: Mutual exclusion

In this section we study mutual exclusion. The solution requires the use of
arbiters, and hence we cannot treat this problem fully within our calculus.
We formulate the problem thus:
Give processes Ag, By, A1, B, M and a set of pairs X, such that

((Ao; a; Bo)t||(Ay; b5 Br)Y||(Ag; ¢; Bo)t||M)
connect X

(ambre)t

60

Figure 4.3: Mutual exclusion on a ring.

Ao = 23/; x’ Bo =z
A=y;y Bi=Y
Ay =252 By =2

M = (S,]|5]|S:)connect {u.v,v.v", w.w'}
S. = (A||M,)connect {ao.a}, a1, a;}
Sy = (B||Ms)connect {by.b], b1.0;}
S. = (C||M.)connect {cy.c}, ¢1.c1}
M. = ag; (ag; ag U a3; a7)"
M, = 85 (b B U B3)"
M, = c; (chs i el o]
A = (a0; (w; u; @ U 75 25 25 ap)
Uay; (u; w's w's u; g Uz w's w's 25 25 a0))*
B = (bo; (v; v; by U y; y; y; bo)
Ubs; (v; w5 u's v; by Uy; u's s 5 95 bo))
C = (¢o; (w; w; ¢y Uz; z; 75 o)
Uer; (w; v'; 0’5 w; e1 U 25 05 0’5 25 25))*
X ={z.2",yy, 22"}

The solution is adapted from [30], where it is coined “reflecting privilege.”
We give an informal discussion only. Each slave process S; has a one-bit
memory M; associated with it. The one bit memory encodes whether the
process holds the token (state 0) or not (state 1). Initially process S, holds

61

the token. There are four possible actions:

If subprocess A holds the token (ao) and receives a request from S; (u),
the request is granted immediately (u) and the process loses the token (a;).

If subprocess A does not hold the token (a;) and receives a request S;
(u), the token is obtained from S. (w'; w') and granted (u). The process
finally does not hold the token (a;).

If subprocess A holds the token (ag) and receives a request from its master
(z), the request is granted (z) and the token returned when the master is
done (z). The process finally holds the token (ao).

If subprocess A does not hold the token a; and receives a request for the
token from its master () and it does not hold the token (a;), the token is
obtained (w’; ') and the request is granted (z). The token is returned when
the master is done (z), and the process continues to hold the token (a).

Observe that even though signaling set {ao, a,} is probed both in process
A and in process M,, the probes are on every other communication and out
of phase. Hence these angelic choices are implementable.

However, the other angelic choices in process 4 do not have mutually
exclusive first communications. Hence an arbiter is required to implement
them, and we cannot rely on our calculus to prove the correctness of the
solution. Examples such as this one are the reason for studying a different
operational model in Chapter 5.

4.11 Summary

In this chapter we have introduced a model for describing processes with
angelic and demonic nondeterminism, sequential composition, parallel com-
position, and connect composition. We have introduced a refinement re-
lation, which led to the introduction of equivalence classes. All operators
are monotonic with respect to the refinement ordering and preserve process
equivalence.

The equivalence classes form a complete lattice, with demonic and an-
gelic nondeterminism as its meet and join. This fact allows us to introduce
iteration through a fixed point equation. We have introduced two kinds of
iteration: angelic and demonic.

We have studied duals in this lattice and their algebraic properties. Duals
of processes have been related to the most demonic environment in which a

62

process will not deadlock.

We have studied conditions under which the constructs we have defined,
in particular angelic choice, can be implemented. We have shown that we can
specify such conditions in a way that retains compositionality of our theory.

63

Chapter 5

An operational model for a
language with probes

In this chapter we present an operational model that can be used as a basis
for an extension of the language discussed in the previous chapters. We
clarify the restrictions mentioned in the previous chapter, and we indicate
why a language that deals successfully with all the semantic aspects of the
model presented in this chapter will have much more complicated algebraic
properties.

Operational models abound in the literature. The one we present here
distinguishes itself from all others by treating probes explicitly.

5.1 Operational model

Our operational model for processes consists of a set of nodes, a set of labeled
directed edges, and two special nodes: the initial node and the final node.
Edges are labeled with symbols from a set of actions extended with a special
empty (€) action, with a pair of actions, or with a probed action. The main
distinction between this model and a transition graph, that it resembles,
is that choice is understood to be demonic. If more than one transition is
possible from a given node (state), the process makes a demonic choice. An
€ transition is always possible; other actions are possible if the environment
can participate in them.

We represent a process as a four-tuple: set of nodes, edges, initial node,

64

(O—) ONO

skip deadlock

Figure 5.1: skip and deadlock.

Figure 5.2: @,a,and a.b.

and final node. A process is represented by an upper case letter such as S or
T. We define S = (S.nodes, S.edges, S.ini, S.fin). Nodes is the set of all
nodes, Edges is the set of all edges, Atoms is the set of all actions, Probes
1s the set of all probed actions, and Pairs is the set of all pairs of actions.
An edge is represented by a triple: initial node, target node, and label.

In Figure 5.1 we have depicted two basic processes, skip and deadlock .

They correspond to the four-tuples
deadlock = ({I,F},{},I,F) skip = ({I,F},{(I,F,¢)},I,F)

In Figure 5.2 we have depicted three kinds of processes with one labeled
transition.

a= a)}, I, F) a={I,F},{{I,F,@)},I,F)
a.b a

Sequential composition between processes is depicted in Figure 5.3 and
is defined as follows.

S; T

(S.nodes U T.nodes, S.edges U T.edges U (S.fin, T.ini,), S.ini, T.fin)

Choice composition between processes is depicted in Figure 5.4 and is
defined as follows.

65

O-OH-@

S;T

Figure 5.3: Sequential composition.

oEe
oRo

\
/@

a—> S [0 b —=T

Figure 5.4: Choice composition.

66

-G
oRo

Figure 5.5: Demonic composition.

\
/@

%= 5[[@ — S,

({I,F}U U(i:0<1<n:S.nodes)

yU(E:0 < i <m: (1, 5104, G5), (Si.fin, Fle)})
U U(i:0<17< n: Siedges)

,d

, F

)

Demonic composition between processes is depicted in Figure 5.5 and is
defined as follows. '

SeM....MS,

({I,F}U U(1: 0 <1 < n: S;.nodes)

yU(E:0< i < n s {(1, Sinind, €), (Si.fin, Fe)})
UU((i:0<17< n: S edges)

i

, F

)

An example of parallel composition between processes is depicted in Fig-

67

Figure 5.6: Example of parallel composition.

ure 5.6. The figure depicts (a; b)||(¢; d). Parallel composition is defined as
follows. We assume that the nodes in S and T are numbered, and that they
are disjoint. ‘

S||T

({,7 : n; € S.nodes A n; € T.nodes : n;;}

A4, d, ki (ni,nj,z) € S.edges A mg € T.nodes : (nip,n; 4, 2)}
U{é, 5, k, 2 : np € S.nodes A (ni,n;,z) € T.edges : (ng;,np;,)}
Ui, 7,k Lz, y : (ni,n,z) € S.edges A (ng,mu, y) € T.edges

Az € Atoms A y € Atoms : (n;;,nj;,2.y)}

Ai,7:ni=Sant A nj = Tuani @ n;;}

Ahjini=S8.fin A nj=T.fin:n;;}

)

The explanation for this definition is that it is a direct product (because
two processes composed in parallel can progress independently) extended
with possible actions in which they can both participate.

An example of connect composition between processes is depicted in Fig-
ure 5.7. The figure depicts ((a; d)||(¢; d))connect{a.b}. Connect composi-
tion is defined as follows.

68

Figure 5.7: Example of connect composition.

S connect {a.b}

(S.nodes

An,m,z: (n,m,z) € S.edges A o(z) N {a, b,@,0} ={}:(n,m,z)}
U{n,m: (n, m,a.b) € S.edges : (n,m,¢)}

U{n,m: (n,m,a) € S.edges A 3(o :: (n,0,b) € S.edges) : (n, m,e)}
U{n,m : (n,m,b) € S.edges A 3(o :: (n,0,a) € S.edges) : (n, m,¢)}
,S.ni ,S.fin

)

The explanation for this definition is that when connecting a and b, only
pair actions a.b can occur. They are hidden from the environment and
therefore replaced by ¢ transitions. Probed transitions can occur if S is in a
state in which the corresponding action, i.e., a for b and b for @, is possible.

There are three rules for simplifying graphs.

o Unreachable parts of graphs may be removed.

e A node that has only one outgoing € edge may be removed; its incoming
edges are then redirected to the target node of the old outgoing ¢ edge.
If the graph is a direct product of two other graphs, these simplifica-
tions may be done in the components, and a simplified graph may be

69

©
O

O

Figure 5.8: First example.

obtained by taking the direct product of the simplified components.

o A graph that has a path along ¢ edges from the initial node to a node
with no outgoing edges that is not the final node may be simplified to
deadlock .

5.2 Some examples

In this section we show some examples in which the operational model pre-
sented in the previous section deals successfully with some processes for which
our process algebra was insufficient.

Our first example is

((@ = a)||(@ — a')) connect {a.a’,b.b'} = deadlock.

The calculation is represented in Figure 5.8. The first graph represents
the process before the connect operation; the second graph represents the
connected process. Because of our third simplification rule it may be simpli-

fied to deadlock .
A similar calculation shows

(@—=ab—b)|(@ — a [T — b)) connect {a.a’,b.b'}

deadlock.

70

| Qi

e
]

Figure 5.9: Full graph.

71

Figure 5.10: Reduced graph.

72

Our second example is
(a'|b'[(@ — a; b; ¢] b — b; a; d)) connect {a.a’,b.b'} =cTid

The graph for the unconnected process is given in Figure 5.9. A few edges
labeled with pairs have been omitted for clarity; they would be removed in
the next step anyway. The connect operation and the simplifying rules are

applied in Figure 5.10.
A third example is depicted in Figure 5.11. It shows the graph for

(@'l(@ — a; b5 ¢ | b — b; a; d)) connect {a.a'}

The resulting graph corresponds to
(e—=b;c]b— b;d)

This 1s not equivalent to process b; ¢. Composed with the environment
b’, as in the previous example, the result is ¢ I d, as expected.

5.3 Refinement

A process S refines T if in every environment where T does not deadlock, .S
also does not deadlock. According to this definition and the examples i n the
previous section, we see that a||b does not refine a; b because we have

((@—a;b;¢ [b6 —b;a;d)a']|d]c)
connect {a.a’,b.0',¢c.c/,d.d'}

((c 1 d)||c") connect {c.c',d.d'}
deadlock

whereas

73

N

Figure 5.11: Partial connect.

74

((@— a;5; ¢ | b — b; ¢; d)||(a'; B)]|¢)
connect {a.a’,b.b',c.c’,d.d'}

(cll¢’) connect {c.c',d.d"}
skip .
Also, (@ — a; b [] b — b; a) does not refine a; b because

((@— a; b b — b; a)||(a’; b')) connect {a.a’,b.b'}

skip
whereas

(@—a; 05— b;a)

(@— a;b[] & — b; a)) connect {a.a’,b.0'}
) deadlock .

These and other examples indicate that it is not easy to express parallel
composition and ALT composition in terms of angelic and demonic composi-
tion. Hence, if we want an algebra that can handle the full operational model
with probes, we should expect it to be significantly more complex than the
algebra we have discussed in Chapter 4. :

5.4 Summary

We have presented a simple operational model in which we can reason about
languages with probes. The complications that arise give us confidence that
significant gain over the semantics in Chapter 4 cannot be obtained without
significant pain. Still, the extension is interesting enough to make it seem
worthwhile to try to create a process algebra for it.

75

Chapter 6

Conclusions and future work

6.1 Conclusions

We have defined a simple language for programming and specifications with
synchronization as the basic construct. The language has very pleasing al-
gebraic properties and a model that is easy to understand. A refinement
relation forms the core of our approach. - All programming constructs we
have defined are monotonic with respect to this refinement relation. We be-
lieve that concentrating on the refinement relation was a good choice. It has
guided us in finding the equivalence classes we identify with processes, it has
guided us in choosing the right definitions for the operators in our language,
it has ensured compositionality, and it has yielded a refinement calculus.

Including pairsymbols in the traces allows the introduction of a self- syn-
chronizing connect operator. This operator corresponds more directly to
declarations and rules of scope in a variety of concurrent languages than the
more traditional hiding operators.

A big advantage of our approach over that of many others is the degree
of compositionality; when constructing a large system we can do so in terms
of the specification of the parts, not their implementation.

6.2 Future work

One way of looking at the calculations in Sections 4.7 and 4.8 is to regard
them as refinements in a context. We restrict the class of possible environ-

76

ments, and state that one process refines another just when it does so for all
environments in the class. Refinement in context seems to be a powerful way
to bridle complexity, and deserves further study.

This monograph has dealt only with finite structures. Although one might
argue that these should suffice for describing programs that are to execute
in finite space and finite time, from a theoretical point of view the extension
to infinite constructs is interesting.

Even though the language we have defined in Chapter 4 allows us to
compute anything, the language is not very practical. An obvious extension
is to allow for expressions in guards, which in turn seems to require the
introduction of probes into the language. The operational model of Chapter
5 should help in identifying a subset of programs with probes, that still has
elegant algebraic properties.

The next step would be to include state and/or types in the model. A
fairly straightforward way of including types is to identify typed variables
with signaling sets. This is essentially what has been done in the examples in
Chapter 4. Introducing infinite constructs should also allow infinite signaling
sets, and thus types with an infinite range. Signaling sets might also form
the basis for the treatment of local variables. Still, the problem is by no
means solved; it is not yet clear, for instance, how to relate more efficient
implementations that require log(n) wires for a variable with n different
values in its range to the signaling sets mentioned above. It seems likely that
work in data refinement [22, 19] will prove relevant here.

Finally, even though we have written some simple programs to aid in
the calculations, an effort should be made to produce software to aid the
programmer in the construction of correct concurrent programs. Part of
such an effort might be a formalization of the model presented here in a
mechanized proof system such as Larch [21] or HOL [20].

7

Appendix A

Proofs for Section 3.2

(35) (X2Y)=(t4X)bY = t4Y)

Proof, by induction on the length of ¢
Base case, t = ¢,

(4 X)4Y
= { Definition | }
€
= { Definition | }
el Y

Induction step, cases

(@) 4 X) 4 Y =a((t 4 X) 4 V)
= { Definition | }

eceX Na€eY
={X2VY}

a€Y
= { Definition { }

(at)y Y=a(tdY)

()4 X) Y Y =(tUX) Y
= { Definition | }

a€X VagyY
={X2Y}

78

agY
= { Definition | }
(@)Y =14V

((ad) 4 X) P Y =ab((t4 X) 4 V)
= { Definition { }
(abeX V(aeXANbeEX) A(abeY V(aeY ANbeY))
(abeY V(eeY NbeY))
= { Definition | }
(abt)y Y =ab(tyY)

((ab) 4 XYY =a((t4 X) 4 Y)
= { Definition | }
((abeX V(eeXANDeX) N (abdY NaeY ANDEY))V
((abd X Nace X ANbg€X)ANacy)
X2V}
(abgdY ANaeY NbgY)
Definition |} }
(a.bt) Y =0a(tlY)

(@b) LX) Y =(tUX) Y
= { Definition { }
(ab€g X NadX ANbE€X)V
(¢b g X Na€X ANDEX NagY)V
(ang/\ang/\bEX/\ bg Y)v
((a.b
X

= {
= {

V@eEXANbeEX)AN(a.bgY NagVY AbEY))
=1 »
EXNagdXANbE€X ANabdY ANadY ANb ¥
X ANaceXANbEgX ANabdY NadY ANb ¢
X ANagX ANbeX)NabdY ANagY AbgY)V
((abEXV(aEX/\bEX)) (ab€Y NadY ANbEY))
= { Calculus }

(abg€Y NagY ANbEY)
= { Definition { }

(abt)yY=tY

79

which, as can be seen by taking the disjunction of the five conditions in
the definition of projection, are the only cases we need to consider.
end of proof

Corollary X)X =0 X)

36) (XCY)=(4X)IY =1§X)

Proof, by induction on the length of ¢
Base case, t = ¢,

(VX)L Y
= { Definition | }
€
= { Definition { }
el X

Induction step, cases

(@) 4 X) 4 Y = a((t 4 X) U V)
= { Definition |} }

aceX Na€eY
—{(Xcv)

a€ X
= { Definition |} }

(at) 4 X = a(t 4 X)

()4 X)BY =4 X) b Y
= { Definition |} }

ag X VagyY
—{XCV)

ag X
= { Definition { }

(a)J X =t X

80

((ab) LX) Y = ab((t) X) 4 V)
= { Definition | }

(abeX V(ieeX ANbeX)AN(abeY V(aeY AbeY))
—{XCV)

(a.beX V (e € X N bE X))
= { Definition {} }

(a.bt) I X = a.b(t § X)

(ab) B X) 4 Y =a((t4 X)L V)
= { Definition {} }
((abeX V(ee X ANbeX))NabgY ANaceY AbgY)V
(b€ X ANaceX ANbEgX Na€Y)
(XCv)
(abgdX NaeX NbEX)
= { Definition | }
(abt)§ X =a(t § X)

(@b)4 X) VY =(t4X)4 Y
= { Definition |} }

((abeX V(ee X ANbEX)ANabd€Y Nad Y ANbEgY)V

(

(

(

abd X NaeX ANbEX NagY)V
abd X Nad X ANbeX ANDEY)V
abg X NadX ANbgX)

Il

{ X C Y, hence first three disjuncts are false }
(e.b€ X NagX N bEX)

{ Definition { }
(abt)y X =t X

which, as can be seen by taking the disjunction of the five conditions in
the definition of projection, are the only cases we need to consider.
end of proof

(37 (X2V)= (XY = t1X)

Proof, by induction on the length of ¢
Base case, t = ¢,

81

(et X)0Y
= { Definition 1} }

€
= { Definition { }
et X

Induction step, cases

(@)1 X) 4 Y = a((th X) 4 V)
= { Definition f} }

ag X NadgyY
—{X2Y)

ag X
= { Definition {} }

(at) § X = a(t 1 X)

(a) T X) Y =0 X))t Y
= { Definition f} }
acX VaeYY

={X2Y}
a e X

= { Definition 1} }
(a)t X =t X

(6.6) 1 X) 4 Y = ab((t 4 X) 4 ¥)
= { Definition 1} }

(abgX AN agX ADBEX)AN(abdY ANagY ANbgY))
={X2Y}

(abg X Nag X NbEgX)
= { Definition 1} }

(a.b)t X = a.b(tt X)

((ab)R X) A Y =a((th X) V)
= { Definition 1} }
(abgX NagX ANDEX Nabd Y NadY NbeY)V
(ab€d X NadX ANbeX Aagl)
—{X2YV)
(abg X NagX ANbeX)

82

= { Definition 1} }
(a.bt) X =a(tt X)

(ab)R X)NY = (0 X) 1Y
= { Definition f} }
(eeX ANbeX)VabeXV
(abg X NagX ANbeX NacY)V
(ab€gX NaeX ANbEX ANbeY)V
(abE€X NagXANbEX A(abeY V(eeY ANbeY)))
= { X 2 Y, hence last three disjuncts are false }
(abeX V (aeX A be X))
= { Definition f} }
(adbt) X =t X

which, as can be seen by taking the disjunction of the five conditions in
the definition of projection, are the only cases we need to consider.
end of proof '

Corollary X))t X=0NX)

(3.8) o) CYA(rl(XUY)=s)=(r{ Y =s)

Proof, by induction on the length of r.
Base case r = ¢, trivial.
Induction step, two cases.

arJ (XUY)=s
= { Definition |} }
(ed (XUY)(ry(XUY)) =s
= { Cases }
(a€(XUY)A a(ry(XUY))=s)V
(e g (XUY)Ar)(XUY)=5)
= { Decomposition }
t:at=s:a€ Y A(rl(XUY)) =8V
(ag(XUY)Ar(XUY)=ys)
= { Induction hypothesis, o(s) C Y = o(¢) C Y }
At:at=s:ac Y A(r{Y)=20t)V

83

(g Y ATLY=s)
= { Properties {I,{ }
At:at=s:a€Y A(ad Y)(rl Y)—s)
(@@ Y A(ad Y)(r{Y)=s)
= { Calculus }
ar | Y =s

abrf (XUY)=s
= { Definition {} }

(ab 4 (XU V)(r b (XUY)) =s
= { Cases }

((a.be(XUY)V (@ae(XUY)ADBe(XUY)) Aab(rJ(XUY))=s)V
(b @(XUY)ANae(XUY)ABZ(XUY)Aa(r(XUY)=s)V

(b @ (XUY)ANad(XUY)ABE(XUY)ABr(XUY))=3s)V
(abg(XUY)ANad(XUY)ANbDE(XUY)ATY(XUY)=05s)

= { o(s) C Y,Calculus }
dt:abt=s:abeY Ar{(XUY)=¢t)V
Ht:at=s:abg Y ANac€YAIEY Ar(XUY)
Jt:bt=s:abgY ANadY AbeY Ar{(XUY)=
(ab@ Y ANag@Y ANbEgY ArJ(XUY)=y3s)

= { Ind.hyp. o(s) C Y = 0(t) C Y }
At:abt=s:abeY Ar]Y
It:at=5:ab€Y AN ac
t:bt=5:abgY ANag
(ac.b€Y NadY ANbGEY

= { Calculus }
J(t:abt=s:abecY A abr] Y =abt)V
H(t:atzs:a.ng/‘\aEY/\ng/\aerY—at)V
t:bt=s:abgY ANadY AbeY Aabr Y =0)V
(abg€@Y NagY AbEY ANabr Y =s)

= { Calculus }
a.br Y =s

i
=
<

I
Nt
<

end of proof

(3.9) (t4X=t) = (tNX=¢

84

Proof, by induction on the length of ¢,
Base case, t = ¢,

et X =¢

= { Definition {} }
true

= { Definition {} }
e X =¢€

Induction step, two cases:

(at) 1 X =€ (abt)t X =€
= { Definition {} } = { Definition 1} }

ceEX Nt X =¢ (abeX V({eeX ANbeX)H) ANt X =c¢
= { Induction step } = { Induction step }

cce X ANt X=t (abeX V@eXANbeX)ANtYX =t
= { Definition { } = { Definition {} }

(at) § X = at (a.bt) X =abt

end of proof

(3.10) (s X)X =¢
Proof

(s X)X =¢
= { Theorem 3.9 }

(4X) X =syX
= { Corollary of thm. 3.5 }

true

end of proof

(3.11) (tfho(s) = eAtlols) =3s) = (s=1)

Proof
By induction on the length of trace ¢.
Base case:

85

efto(s) = enelo(s) = s
= { Definitions {},{} }
€ = €eNe =35
={}
s =

€

Induction step, a € Atoms :

(at) b o(ys) = g5 A (at) f o(ys) =
= { Definitions {},f} }
(a €a(ys) A a(tdo(ys)) = ys At o(ys)
(ago(ys) ANtda(ys) = ys A a(t 1 o(ys))
— {a(tfo(y) £ ¢}
(a€a(ys) A a(tdo(ys)) = ys A tfho(ys) = e
= { Case analysis,a = y = a € o(ys) }
(aco(t)Ny=a Atlo(ys) = s At o(ys)
(ago(t)y Ny=a Atlo(ys) = s A tfo(ys)
={aco(t)=aco(tlolas))
hence a € o(t) A t§ o(as) = s= a € o(s)
ada(t) Ntlo(as)=s=(tlo(as) = t{o(s) Atfholas) = tfho(s))}
y=aAtlo(s) = sAtho(s) = ¢
= { Induction hypothesis. }
t = sNa =y
={1

at = ys

€)V
)

€)V
5

o

Induction step, z € Pairs:

(zt) Y o(ys) = ys A (at) f o(ys) = € A « € Pairs
= { Definitions {, {} }
z=abA
(z&o(ys) N ado(ys) Nb&o(ys) ANt o(ys)=ys A z(t ho(ys)) =€)V
(z€o(ys) Na€o(ys) N b&o(ys) A a(tdo(ys))=ys A b(t fto(ys)) =€)V
((z €o(ys) vV (e €a(ys) A bea(ys))) Aa(tdo(ys)) =ys A tfto(ys)=e¢)
={=z(tf Oé)(yS)) # €}
z=a.0A
((z€o(ys) V(a€o(ys) Nbeo(ys)) AN z(tJo(ys)=ys A tfho(ys)=c¢)

86

= { Case analysis,z = y = = € o(ys) }
r=abA
(zeo(t) ANz=y ANtlo(ys)=s A tfho(ys) =e¢)
(zdo(t)ANz=y ANt{o(ys)=s A tho(ys)=¢)
={yea(t)=>yeoa(tya(ys))
hence y € a(t) At o(ys) = s =y € o(s)
ygo(t)=(tda(ys) = to(s) Atho(ys) = ifrols)}
z=abAy=zAtl{o(s)=s Atfo(s)=c¢
= { Induction hypothesis. }
t=sANzT =y
={}

= ys

\

end of proof

(3.12) a(X)Na(Y)=0 = (X)) Y =t (XUY)
Proof, by induction on the length of ¢.

(@)D X) 1Y = a((t4X) 1Y)
= { Definition 1} }

agd X NagY
= { Calculus }

ag(XUY)
= { Definition 1} }

(a) M (XUY) = ot (XUY))

(@)X 1Y = (A X)DY
= { Definition 1} }

aeEX VacY
= { Calculus }

a€(XUY)
= { Definition 1} }

(a) P (XUY) =t (XUY)

87

c=ab A (=) X)MY = (N X))+ Y)

= { “monotonici

ty” of 1 }

g=ab A ()X =zt X)AN N XNNY = (M X)) Y)

= { Definition 1}

}

r=abANzg€XANagXNbEgX N2dY ANadY NbEY

= { Calculus }

r=ab ANz g(XUY)ANag(XUY)AbBL(XUY)

= { Definition
r=ab A (

r=abA(
= { “monotonici

}

)P (XUY) = 2t (X UY))

()XY = ot X) 1Y)

ty” of 1 }

g=ab A ()X =21 X) A (z(tﬂX))TTTT);—‘— o{(tfr X)ft Y))

V()X = a(tftX) A (a(tf X))

= { Definition 1

}

o((t X) 1+ Y))

t=abAN((2¢gXNagXANEXANzg€Y NagY ANbeY)
VizgX Nag X AbeX ANadgVY))

= { Calculus }

t=abAz¢gX ANad€X ANadgy
ANbObEX NzdgY ANbeY)V beX)
={a(X)Na(Y)=10}
t=abAsdgd(XUY)ANag(XUY)Abe(XUY)

= { Definition 1}

r=ab A (
T=ab A (
= { “monotonici
T=ab A (
= { Definition {}
r=ab A (

}

) (XUY) = a(t 1 (XUY))

@ENX)TY =t X)nY

ty” of 1 }

() NX) = tpXAERX)NY = (0 X)DY)
V() X) = st X) A R XNNY = G XY
V(((t) 1 X) = et X) A (at f XNTY = (¢ X) 1Y
V}(((zt)ﬂX) = BN X) A BUENX)NY = ¢ X)F Y
(zeX V(eeX Nbe X))

V(izd X NagX ANbgX AN(zeY V(eeY AbeY))
VizgX NadX ANbeX ANa€eY)

88

V(izgX ANaceX ANbEgX ANbeY))
= { Calculus, using «(X)Nea(Y) =0}
r=abA (z€XV (eeX ANbeX)
VzeY V(eeY ANbeY)
V(beX Na€eY)
V(eeX ANbeY))
= { Calculus, using a(X)Na(Y) =0}
t=abA(z€(XUY)V(ee(XUY)Abe(XUY))
= { Definition {} }
g=ab A (@)t (XUY) =t (XUY)

The theorem then follows by induction (the base case is trivial).
end of proof

Note ({a.b} U {a,b}) § {a.b} = {a.b} # {} = {a.b} | {}; hence, there

is no equivalent theorem for projection.

(313) (a(X)Na(Y)=0)=>(s{ X =(sft Y) | X)

Proof
By induction on the length of trace s.
Base case:

s=¢
= { Definition |}, 1} }

sy X=eANstY=c¢
= { Calculus }

s X=(GY)IX

Induction step:

Ia,b,t:a,b € Atoms,t € Traces: s = at V s = a.bt)
= { Cases }

Ia,b,t(s=at AaeX)V (s=at ANagX)V

(s=abt A(abeX V(iee X NbeX)))V

(s=abt NabdX NaeX ANbgX)V

(s=abtNabgX NadX ANbeX)V

= {

89

(s=abt NabdX ANadX Ab¢g X))

a(X)Na(Y)=10}

I(a,b,t :

(s=atANa€eX ANagY)V

(s=at ANagX)V

(s=abt AN(abe€XV(eeXANbeX)NadbgY ANag Y ANbgY)V

(s =a.bt A
(s=a.bt A

ag V)V
bg YY)V

abgX ANacXAbgX ANabdV A
(l.b¢X/\a¢X /\\bEX A a.ng/\

(s=abt ANabgX ANadX Ab¢g X))
= { Cases }
A(a,b,t =
(s=atANa€X NagY)V
(s=at NagX ANacY)V
(s=at ANagX NagY)V
(s=abt AN(abeX V(aecXANbeEX)ANabdY ANad Y AbgY)V
(s=abtNabgd X NaceX ANbEgX NabgY ANadY AbeY)V
(s=abt ANabd X Nae€XANbE€gX Nabg&Y ANadY AbEY)V
(s=abtNaebdX NadX ADbeEXNabgY ANa€eY AbEY)V
(s=abtNabgdX ANagdX ANbEX NabgY ANadY AbEY)V
(s=abtNabgd X ANadX ADE€X AN(abeY V(aeY ANbeY)))V
(s=abt Nabg X Nagd X ANbgX AabgY VacY AbEY)V
(s=abt NadbgX NagX ANbgX ANabg@Y VagY AbeY)V
(s=abtANabgdX ANagX ANb€dX ANabedY VagY AbgY))
= { Definition {}, 1} }
d(a,b,t::
(s=atAhaeXANagYAsyX=aX)Ast Y =a(tt Y))V
(s=athNagX NaceYAsyX=ty{X AstY=t(tY)V
(s=atANagX ANad Y AsiX=ty{X AstY=a(ttY)V
(s=abt A(abeX V(eeXANbeEX) Nabd Y ANag VY ANbEY

AsUX=ab(tyX)AsfY =abtf¥)V

(s =a.bt A

AslUX=a(tyX)AstY=alt

(s = a.bt A

AsUX=a(tyX)AsfY=abt

(s = a.bt A

AsUX=btyX)Ast Y=

ebg X Na€eX ANbgX NabdY NadY AbeY
\

:>
=

b€ X NaeXANbE€X Nabed&Y ANadY ANbEZY
Y)v
b X Nad X ANbeEXANabdY ANacY AbEY

90

(s=abtNabgX Nagd X ANbeEX ANabdY ANag VY ANDEY
AsdX=byX)AstY=ab(ttY)V
(s=abt NabgX Nad X AbgX AN(abeY V(aeY AbeY))
AsUX =ty X AshY=abttY))V
(s=abt NabgX NagXANbgX NabgY VacY ANbgY
AsyX=tyX AshY=0tNY))V
(s=abtNabgX ANagX ANbg€X NabgdY VagY ANbeY
AsyX=tyXAstY=a(ttY)V
(s=abt NabgX ANagXANbGgX NabdY VagY ANDEY
AsyX=tyX Asf Y=t YY)

= { Definition |}, 1} }
A(a,b,t
(s=atANa€e€X Nagy

AsiX=a(JX)AN(GTYIX=a(tY)IX)V

(s=at ANagX ANaceYAsIX=tJXAGIIX=0¢NY)}X)V
(s=at ANagX ANagYAslX=tJXAGTYIX=0¢rY)IX)V
(s=abtAN(abeEX V(eeX ANbDEX)NabgY ANad Y ANbEY

AsUX=ab(tUX)A (st Y)UX=ab((tfY)IX)V
(s=abt AabdX Aa€XAbdX AabgdY AadY AbeY
AsUX =a(t b X) A (s Y) X = a((t4 ¥) 4 X)) v
(s=abt NabgdX ANa€eXANbEgX ANabgdY ANadY AbEY
AsX=a(@JX)ANGSTYIX=a(@TtY)IX)V

(s=abt ANabgX ANagXANbEX NabdY NaeY AbEY
AsUX=btdX)AGHY)X=b((th YY) X))V
(s=abtAhabg@X ANadXAbeX ANabgdY ANagY AbgY
AsUX=b(tdX)A(HY)EX=0((RY)IX)V |
(s=abtANabgX NadXANbgX AN(abeY V(aeY AbeY))
AsUX=tlXAGIVIX=0trY)IX)V
(s=abt NabgX ANadX ANbgX AabgY VacY AbEY
AsUX=tyXAGETY)UX=00Y)}X)V
(s=abt ANabgX ANad X ANb@X Nabgd¥Y VadY AbeY
AsUX=t§XAGIVIX=0tY)IX)V
(s=abt ANabg X ANadX ANbg€X ANabg¥Y VadY ANbEY
AsUX=tlXAGIVIX=0trY)IX)

= {Ind. hyp. : tJ X =(t V) X }

s X=X

91
end of proof

(3.14) X CPairs= (r4 X)4Y = (r 4 X)§ (XU Y))

Proof
By induction on the length of r.
Base case r = ¢, trivial.
Induction step

(ert X)Y Y

= { Definition f}, X C Pairs }
(e Y)(r1t X) 4 7)

= { Definition f}, X C Pairs, ind. hyp. }
(et X) P X UYN(r 1 X)$(XUY))

= { properties 1}, { }
(art X)J(XUY)

(abrt X)y Y =5
= { Definition f}, X C Pairs }
(abeX A(rt X))y Y =5V
(abd X A (ab YH(r X)) Y)=05s)
= { Definition f},{}, X C Pairs, ind. hyp. }
(abeX A (et X)UXUYN(r X)) (XUY
(ab & X A ((ad X) 4 (XU Y)((rr X) $(XUY
= { properties {I,{ }
(a.brt X) U (X U Y)

)

end of proof

(3.15) Y CPairs= ((tf1 X =¢) = (M Y)HM (X =Y)=¢))

Proof
By induction on the length of ¢.
Base case t = ¢, trivial.
Induction step

92

att X =¢
= { Definition f} }
et X=eAtt X =¢
= { Definition {}, induction hypothesis }
cEXAQRNTY)N(X=-Y)=¢
= { Y C Pairs }
(ath V) (X~ Y)=e

a.btft X =€
= { Definition 1} }
abf X=eNtt X =c¢
= { Definition {I, induction hypothesis }
(a.beX V@eXADeX)ANETYIN(X-Y)=¢
= { Y C Pairs, definition 1} }
(et)N (X =Y)=c¢

end of proof

(3.16) X CPairs A (Y X){
(rd V) X =(nX)4(Y 1 X)

Proof, by induction on |r|.
Base case, r = ¢, trivial.
Induction step, two cases.

(arJ YY) X =1t
= { Cases, X C Pairs }
(eeY ANa((r§ V)1
(ag Y A(LY)HX
= { Ind.hyp. }
(e Y Aa({(rt X) 4 (Y 1
(ag ¥ A(rf X)L (Y X)=1)
= { Calculus, X C Pairs }
(ae Y A(ar XD (Y 1Y
(agY A (ar X) 4 (Y 4
= { Cases }
(ar X) 4 (Y 4 X) =1

93

(abrl V) X =1t
= { Cases, X C Pairs }

((abeYV(@eYANDeEY) AabeX AN Y)MX=0)V
((ebeYV(eaeYADEY))ANabgX ANab((rJ YY) X)=10)V
(abg€Y ANacYANBEY Aa((rd YY) X)=¢)V
(ab@Y ANad Y ANDeY AW YY) X)=t)V
(abdY Nad Y ANEY AN(r V)T X =1)

={Ind. hyp,, (Y 1 X))y a(X)=0 A X CPairs Na€ Y)=>ab¢
((abeY V(e YADeEY) AabeX A(rt X)J(Y 1+ X)
((abeY V(eeYADEY)ANabgX Aad({(rt X)U(Y 1
(abg@ Y NaeYANDEY Aa((r P X)U(Y M X)) =0t)V
(abdY Aad Y AbEY Ab((rt X) (Y X)) =t)V
(ab€ Y ANag Y ANbgY A(rt X)JI(Y 1 X)=1)

= { Calculus, X C Pairs, (Y} X)] «(X) =0}

(abrt X)Y (Y X)=1t
end of proof

Corollary
V(r,s,X: X CPairs Arlo(s)=s A (st X)Ja(X)=c¢:
(rfX)do(sh X)=s1X)

Note
The following is not a theorem.
rdo(s)=s=2VX(rt X)Jost X)=s0 X)
Counterexample: 7 := a.b,s := b, X := {a.b}.

end of note

(3.17) X C Pairs =
(rfr X) 4 ((e(s) # X)U(Y ©1 X)) = s ft X)

| Attt X=rt X:t§(c(s)UY)=35s)

Proof, by induction on the length of s.
Two base cases, |s| =0 and |s| =1, first |s]| =0,

(
=

94

(rt X)4 ({(a(e) X)UY P X) =€t X
= { o(€) = @, definition 1} }
(rt X)L (Y X)=e

- = { Theorem 3.14 }

(r 1 X) (Y X)UX) =
={XCPairs= (Yt X)UX =Y UX)}
(rr X)4(XUY)=e
= { Theorem 3.14 }
(P X)L Y =e
= {o(e)=0)
(11 X) b (o) U Y) =
=> { Choose ¢t = r {} X, Theorem 3.7 }
Attt X=rtX:td(c(e)UY)=¢)

Next, [s| = 1, two cases.

(rt X) 4 ((e(a)f XJUY p X)=aD X
= { X C Pairs, definition {} }
(-1 X) 4 (o(a) U Y 4 X) = a
= { Theorem 3.14 }
(r 4 X) ¥ (e(a) U(Y § X)UX) =
={XCPairs= (Y1 X)UX=YUX)}
(rt X)d (c(a)UXUY)=ua
= { Theorem 3.14 }
(rt X) 4 (o(e)uY) =
= { Choose ¢t = 7 {} X, Theorem 3.7 }
At X=rftX:t{(c(a)UY)=n0a)

(r 4 X) 4 (o(ab) h X)UY - X) = bt X
= { X C Pairs, definition {} }

(abe X AN (r X)) (c(e)UY 1 X)=¢)V

(abg X A (r 1 X){ (0(a.b)UY ft X) = a.b)
= { Theorem 3.14 }

(abeX A (r N X)Y(c(6)UY 1 XUX)=¢)V

(ab¢X/\(rﬂX)l}(a(a.b)UYﬂXUX)za.b)
={XCPairs= (Y1 X)UX=YUX)}

(abeX A (rf X)) (c(e)UYUX)=¢)V

95

(abg X A (rr X) Y (0(a.d)UY UX) = a.b)
== { Theorem 3.14,a.0 € X = X = X Uo(a.b) }
(abeX A(rt X)4(o(e)UY)=¢€)V
(abg X A (rft X)) (0(a.d)UY) = a.b)
= { Choose t = a.b(r {} X) for first disjunct,
t = r {t X for second,Theorem 3.7 }
t:t X =rf X:t{(c(a.d)UY)=a.d)

Induction step. |s| > 2 = (s, 51 : |%0] < 5 A |s1] < s: 5081 = 5)

(r 1 X) 4 (o(s05) T X U Y 1 X) = (so80) 1 X
= { Homomorphic properties of {} and { }
3(7‘0,7’1 : (7"07‘1) ﬂ X = T‘ﬁ X
(et X))V (o(s0) P XU(s1) 1 XUY N X)=51X)A
(m XYY (a(so) N XUo(st) T XUY N X) =351t X))
= { Ind. hyp., twice }
A(ro, r, 5, g P X = M X At X=nt X A(nr)t X=rfX:
(rg 4 (c(so)Uo(s1)UY)=st X)A
(1 4 (o(50) Ua(s2) U V) = & 1 X))
= { Choose ¢t = r{r{ }
ittt X=rt X:t](o(s0s1)UY) = 5s)

end of proof

(3.18) VY(s,X,Y:X,Y CPairs A a(X)Nea(Y)=0:
(sT(XUY)|a(XUY)=¢)

CREUNB = A (KUY a¥) =9

Proof, by induction on the length of s.
Base case, trivial.
Case |s] = 1, two cases.

et (XUY)Ja(XUY)=c¢
= { Definition 1, |, X, ¥ C Pairs }
aga(XUY)

96

= { Definition « }
ada(X)ANada(Y)
= { Definition f},{, X, Y C Pairs }
(a1 (XUY)ba(X) =€) A (e (XUY)la(Y) =)

a b (XUY)Ja(XUY)=¢
= { Definition f},{}, X, Y C Pairs }
ebe(XUY)V (ag€a(XUY)ANbZ€a(XUY))
= { Calculus }
{g.blel(X}U Y)V(e€da(X) Abga(X) Aada(Y) ANbéga(Y))
(abe(XUY)V (aga(X) Nb&a(X))A
(abe(XUY)V (ag€a(Y) ANbga(Y)))
= { Definition f},{}, X, Y C Pairs }
(abt(XUY)laX)=e) A (abt(XUY)a(Y)=¢)

Induction step.
Immediate from homomorphic properties of | and {}.
end of proof

(3.19) Vi, X,Y: X,Y CPairs A e X)Ne(Y)=10:
) (s X) Ja(X) =) = (s # (XU ¥)) ¥ a(X) = ¢

Proof, by induction on the length of s.
Base case, trivial.
Case |s| = 1, two cases.

(et X)Ja(X)=c¢
= { X, Y C Pairs, definition {} }

(aft (XU Y)) bal(X)=e

(ab X))y a(X)=¢
= { Cases }

abeX V (aga(X) A
={(a.beY A a(X)Na(Y)=

abeX VabeY V (egaX) b¢ a(X))

97

= { Calculus }

abe(XUY)V (ag€a(X) A bgalX))
= { Definitioa f},{, X, Y C Pairs }

(ab (X UY)) 4 a(X) = ¢

Induction step.
Immediate from homomorphic properties of {§ and {}.
end of proof

98

Appendix B

Proofs for Section 3.3

Proofs of the following four theorems are immediate from the definition of L.
(3.25) Sudemon =S

(3.26) SusS==S5

(3.27) SuT=TusS

(3.28) (RUSYUT=RU(SUT)

(3.29) skip || T= T | skip = T
Proof (left unit element)

(T
= { Definition }
{rys,t:se{e ANteT Ar{lo(s)=s Arlo(t)=t
Arft(o(e)Uo(t)) = e:r}
—{rlho(e) =e,o(e) = 0}
{rit:teT Ardot)y=t Arf(o(t) = e: 7}
= { Theorem 3.11 }
{r,t:teT Ar=t:r}
= { Calculus }
T

end of proof

(3.30) demon ||T = T||demon =T

99

Proof
Immediate from the definition.
end of proof

(331) S|T = T|S

Proof
Immediate from the symmetry of the definition.
end of proof

(3.32)

a(S)Na(T)=0 AN o(T)Na(R)=0 A a(R)Na(S) =0
=

(RISHIT = R|(SIT)

Since this proof, though obvious in retrospect, took me quite a while to
find I give it in full detail.

Proof

R|I(SIIT)
= { Definition || }
R||
{r0,s,t:s€ S AteTA
rOJo(s)=s Ar0yo(t)y=t A r0f(o(s)Uc(t)) = e:r0}
= { Definition || }
{rl,r,t0:reR A rl{o(r)=rA
t0 € {r0,s,t:s€eSAteTA
r0lo(s)=s Ar0lo(t)=t ArOf(c(s)Uoc(t)) = e: r0} A
rl § o(t0) =10 A r1{ (o(r)Ua(t0)) = €A
:rl}
= { Calculus }
{rl,r,s,t,t0:r€ RAs€S AteTA
t0yo(s)=s ANtOYo(t)=t Arllo(r)=r A rl{a(t0)=t0A
01 (o(s)Uoa(t) =€e A rlf (a(r)Uo(t0)) = ¢
:rl}

100

= { Theorem 3.12 }
{rl,r,s,t,t0:r€ RAscS AteTA
t0Jo(s)=s ANt0Ja(t)=t ArLio(r)=r A rl | o(20)=10A
t(l)}ﬂ (a(s)uo(t))=e A (rlfto(r)) f o(t0) = ¢
= { a(r) N a(t0) = @, Theorem 3.13 }
{rl,r,s,t,t0:T€ RANseS ANtecTA
0Yo(s)=s ANtOJo(t)=t Arldo(r)=r A (rlfo(r)) | o(20) = t0 A
t(l)}ﬁ (o(s)Ua(t)) =€ A (rlfto(r)) ft o(20) = ¢
= { Theorem 3.11:(s fro(t) =ec A s{o(t)=t)=(s=1t) }
{rl,r,s,t,t0: 7€ RAseSAteT Arllo(r)=rA
t0)o(s)=s ANt0OJa(t)=t A rlfo(r)=1t0 A r1{ o(¢0) = t0 A
t(l)}ﬂ (o(s)Ua(t)) =¢
= { Theorem 3.9:(¢0 {} (o(s) Uo(t)) =€) = (0 § (o(s) U a(t)) = t0) }
{rl,r,s,t,t0:r€ RANs€ESALteT Arllo(r)y=rA
t0Jo(s)=s At0lo(t)=t A rlfto(r)=1t0 A r1l o(t0)=t0A
(7‘11@ a(r)) 4 (a(s)Ua(t))=1t0 A L0 (a(s)Ua(t)) =e¢
= { a(r) Na(o(s) Uo(t)) = 0, Theorem 3.13 }
{rl,r,s,t,t0: 7€ RAs€SAteT Arlio(r)=rA
0 o(s)=s ANt0da(t)=t Arlfto(r)=1t0 A rl | o(t0)=t0A
rl U}(a(s) Uo(t))=1t0 A L0t (o(s)Uo(t)) =¢
:rl
= { Use both equalities to eliminate ¢0 }
{rl,r,s,t:r€RANseSAteT Arllo(r)=rA
(18 (o(s) Ua(t) b o(s) = s A (r1 4 (o(s) Ua(t))) b o(t) = £ A
(L (ol D) 0 (o) U = A (11 () (o9 U) =
= { Theorems 3.5,3.10,3.12 }
{ri,r;s,t:r€eRANseSAteTA
rio(s)=s Arllo(t)=t Arldo(r)=rA
rlft (o(r)Uo(s)Uo(t)) =€
2 orl}
= { Symmetry }

101

(RISHIT

end of proof

(3.33) S;skip = S;skip = S
Proof
Immediate from the definition.
end of proof
(3.34) demon;S = S;demon

Proof
Immediate from the definition.
end of proof

(335) (B;S) T = R;(S;7T)
Proof

(R; S); T

= { Definition ; , twice. }

= demon

{e;t:qge{r,s:r€R,s€S:rs},t € T:qt}

={}

{r,s,t:r€R,se€S,t € T:(rs)t}
= { Catenation is associative }

{r,s,t:reR,se€S,te T:(rs)t}
= { Symmetry }

R; (5; T)

end of proof

(3.36) R, (SUT)=(R; S)U(R; T)

Proof

102

R;(SUT)
= { Definition ; , U. }

{r,s:reR,sc(SUT):rs}
={}

{r,s:r€eR,s€S:rs}U{r,t:re Rt T:rt}
= { Definition ; , U. }

(B; S)U(R; T)

end of proof

(3.37) (SUT) connect X = (S connect X)U (T connect X)

Proof Immediate from definitions of connect and L.
end of proof

(3.38) X,Y CPairs A a(X)Na(Y) =0 =
(S connect X) connectY = S connect (X UY)

Proof

(S connect X) connectY
= { Definition connect }
{s:s€SHX A sloafz)=c:s} connect Y
= { Definition connect } '
{t:te{s:seSt X Asla(z)=€e:s} Y A
tla(Y)=c¢€:t}
= { Calculus }
{s:5€SHX ANsda(X)=¢eA
st (V)Ja(Y)=c:st YV}
= { Calculus }
{s:seSA(sHX)a(X)=¢A
(sHX) 1 (Y)ba(Y)=c: (s X))
= { Theorems 3.19, 3.18 3.12 }
{s:iseSAsH(XUY)aXUY)=€e:s(XUY)}
= { Calculus }
{s:5€eSNH(XUY)Asa(XUY)=¢:s}
= { Definition connect }
S connect (XUY)

103
end of proof

(3.39) (S; T) connect X = (S connect X); (T connect X)
Proof

(S; T) connect X
- = { Definition connect }
{rere(STHYNX Arda(X)=€:r1}
= { Definition ;, Calculus }
{s,t:seSANteT A (st X)Ja(X)=c:st} X}
= { Definitions f},{ }
{s;itiseSAteT A(stX)da(X)=eA (X)) a(X)=¢
C (s X)) X))
= { Calculus }
{s,t:seSNXANteTHX AslaX)=€eA t)alX)=c:st}
= { Definitions connect , ;, calculus }
(S connect X); (T connect X)

end of proof

The following theorem expresses the fact that connection distributes over
parallel composition if there is no interaction between the processes.
(3.40) X CPairs A a(X)Na(S) =0 =
(S||T) connect X = S||(T connect X)

Proof

(S||T) connect X
= { Definitions connect and || }
((SI{t:teT At X)) (X)=¢€:t}) connect X)U
((SI{t:teT At X)Ja(X)+#¢€:1t}) connect X)
= { See below }
(SI{t:te T A (tt X)J a(X) =€:t}) connect X
= { Definition connect }
{rereS{t:teT AN X)a(X)=€et)N X ArlaX)=c¢c:r}

= { Definition ||, calculus }

104

{ris,t:seSALteT AN X)Ja(X)=eA(r T X)Ja(X)=€A
ro(s)=s Ardo)=t Arf(o(s)Uo(t))=c¢
:rft X}
= { Theorems 3.13, 3.15
(rf(o(s)Ua(t))=e AN N X)da(X)=€¢ A a(X)Na(s)=0)

= (rft X)do(X) =0}
{ris,t:s€SALteET AN X)a(X)=€eA(rf X){ a(X) =€
ﬂ(;(?X)UJ(S')=S Ardo(@)=t A(rft X) 1 ((o(s)Uo(t) —X) =

= { Corollary of thm. 3.16 }
{ris,t:seSALteET AN X)) a(X)=€eA(rt X)Jo(s)=sA
rUa(}t):t ANrtX)JortX)=tfh X A X)N(o(s)Ua(tft X)) =¢
rh X
= { Theorem 3.17, Calculus }
{r,s,t:seSANteTHX Ata(X)=¢A
rllo(s)=s Ardo(t)=t Arf(c(s)Uc(t)) =c¢
i1}
= { Definitions connect and || }
SI(T connect X)

The following calculation was postponed in the second step of the proof.

(SI{t:te T A (¢t X)J a(X) #€:t}) connect X
= { Definitions connect, || }
{ris,t:s€SAteETAURNX)IXF#eA T (o(s)Ua(t)) =€A
rldo(s)=s Arlot)=t A (rt X)) a(X) =¢ '
X}
= {rbo =t A (X EX Fem (1K) bo(X) £0)

end of proof

(3.41)
V(So,Sl, TQ, Tl, a, b: {d, b} N (Ol(So) U O_’(Sl) U Oé(To) U Ol(Tl)) = 0 :
((So; a5 S)l|(To; &5 T1)) = (Soll To); (S1]| 1)) connect {a.b}

Proof

105

((So; a; S1)|I(To; b; T1)) connect {a.b}
= { Definition ; }
({5,50,51: % €8 A 81 €85 A s= spas : 58}
”{t,to,tl : to (S To A t] € T1 At= toatl . t})
connect {a.b}
= { Defintion || }
{T,S,t,so,sl,to,tl 15 € 85 A 5 € Si ANth€e Ty A LheTi A
s =spas; N t=tybt; A
rlo(s)=sArda(t)=t Arf(o(s)Uo(t)) =¢
: r} connect {a.b}
= { Decomposition }
17,8, 1,80, 81, t0, b1, Ts0, Tay Ts1, Te0, T4, a1 ¢
SQESQ A 51651 Nthe Ty A tleTl/\
s =s50as1 N t=1tybt; A
r=rr.Ts1 A ol 0(s) =59 A r,o(s)=a A ry o(s) = s A
r=rontu A rolo(t)= Anlla(t)=bArpl o(t)=4 A
rf(o(s)Uc(t)) =c¢
: 7} connect {a.b}
= { Definition connect }
{T‘, 8,1, %0, 81, to, 1, T's0, Tay Ts1, Tt0, Th, T41 -
S0 € .5 N $1ES A the To A he Ty A
s = §pas; N t = t()btl A
r=rsreTsi AN ol o(s)=s9g A r,do(s)=a A ry) o(s) =85 A
r=reritn A rodo(t) =t Anllo(t)=b A rglo(t)=1tA
rft(e(s)Ua(t)=€e A (rf {a.b}) | {a, b} =¢
:r {a.b}}
= { Reshuflle, homomorphic properties 1}, { }
{r,5,¢, 50,51, 0, b1, Ts0, Tay Ts1, Ta0, T, Toy -
80650 A 31651 A toE To A t]E T]/\
s =5as8; N 1= t()btl A
r=71sraTs1 A Tso b 0(s) =50 A 13 o(s) =5 A
r=ronr A ol o(t)=t A rpdo(t)=4H A
P (o(s) Ua(t) = A (r 4 {a.b)) 4 {a,b} = ¢ A
redbo(s)=a A (ro ft {a.0}) d {a,b} = ¢ A r, 1 (c(s) Uo(t)) =eA
o) =6 A (rft{ab}) I {a,b}=c A rf(a(s)Uc(t))=e¢
crf {a.b}}

106

={}
{r,s,t, 50,51, %0, t1, Ts0, Ts1, T10, 71 :
SQESO A 81651 A toE To A tleTl/\
8 = spas; A t’—‘?-tobtl/\
T =T0a.br51 A ol 0(s) =50 A T3 o(s) =5 A
r=rpa.bry Arpdot)=t A rglalt)=t6A
P (o(s) Uo() = € A (r ft {a.b}) b {a, b} = e
:r 1 {a.b}}
={ (e(So)Ua(S)Ua(To)Ua(T1))N{a,b} =0}
{r,s,t,%,51,t,t,70, 11 :
SoESo A 51651 A toe To A t1€T1/\
s =spasy N t =1tbly AN r=rga.bry A
redo(s)=s A rlo(s)=sA
T()UO'(t): to A rllio(t)=t1/\
rft(a(s)Uo(t)) =€ A (rft{a.b}) ¥ {a,0} = €A
cr ft {a.b}}
= { By mutual implication }
{T‘, s, t, So, 1, t07 tl) To, 71 ¢
So € S A S1ESI A Re To A he T A
s = spas; A t= tobtl AN r= 7‘0(1.[)7'1 A
rol a(s) =50 A ol o(to) =t A 1ot (6(s0) Ua(t0)) = € A
nlo(s)=ss Arlolt)=t A rnf(o(sl)Uo(tl)) =€eA
(ro {a-b}) & (a0} = € A (o {a.b}) b {a, 8]} = ¢
:r ft {a.b}}
= { Definition ||,; ,connect }
((Soll To); (al[b); ($11|T1)) connect {a.b}
= { Theorem 3.39 }
((So}| To) connect {a.b});
((a||b) connect {a.b});
((S1]| T1) connect {a.b})
= { {ab, a.b, ba} connect {a.b} = {e},{e}; S =S5}
(Soll To); (S| T1)

end of proof

107

Appendix C

Proofs for Section 3.4

Lemma C.1
cc.S = V(s:s € Traces : cc.(S 0 s))

Proof

cc.S
= { Definition cc }
Vir,z,yza(z)Na(y) =0 A Sorz#0 AN Sory#0 =
Sorzy#£ O AN Soryzr#0 AN Sorzy =S5 oryz)
= { Calculus }
Y(r,s,t,z,y:r=st:
afz)Na(y)=0 A Sostz £Q A Sosty# 0=
Sostzy#0 A Sostyz #0 A Sostay = 5 o styr)
- = { Calculus, property o }
Vs, t,z,y
a(z)Na(y) =0 A (Sos)otz#0 A (Sos)oty#0 =
(Sos)otzy#0 A (Sos)otyz 0 A
(Sos)otzy = (S o0s)otyz)
= { Definition cc }
V(s ::cc.(S 0s))

end of proof

108

Lemma C.2
ce.S ANa(s)Na(t)=0 A Sos#0 A Sot#0 As#e=
Sohd.sot#0
Proof, by induction on |¢|, base case |t| = 0 trivial

s#eNSos#D AN Sot#0
= { Property o, |[t| # 0=t # ¢}
hd.s#e AN Sohd.sotls# 0 AN Sohd.totlt #0
={ccS}
hd.s # € A Sohd.tohd.s+#eA
Sohd.sohdt#e AN Sohd.totlt+#e

= { Induction hypothesis }

hd.s #e¢ AN Sohd.tohd.sotlt #e A Sohd.sohd.t #¢
={ccS}

Sohd.sohd.totlt+#e
= { Property o }

Sohdsot#10

end of proof

Definition C.3 For any traces s and t we define the traceset perm(s,t) as
follows:
perm(s,t)=s if t=c¢
perm(s,t) =t if s=c¢
perm(s,t) = {r:r € perm(tl.s,t): hd.s v}
U{r:r € perm(s,tl.t): hd.t r} otherwise

Lemma C.4
cc.S ANa(s)Na(t)=0 A Sos#0 A Sot#0=
V(u,v: u,v € perm(s,t): Sou=Sov #0)

Proof, by induction on |s| + ||, base case |s| + [¢| = 0 trivial. Also trivial if
s=cort=c¢so assume s # € and ¢ # e.

109

Sos#Q A Sot#D
= { Lemma C.2, twice }
Sohd.sotls#0 N Sohd.totlt#£DA
Sohdsot#0 A Sohdtohds#0
= { Induction hypothesis, twice }
V(u,v:u,v € perm(tl.s,t): Sohd.sou=Sohdsov #0)A
V(u,v:u,v € perm(s,tl.t): Sohd.tou=Sohd.tov#0)
= { cc.S, definition perm }
V(u,v:u,v € perm(s,t): Sou=Sov #{)

end of proof

Lemma C.5
cc.SANa(s)Na(t)=0 A Sors#0 A Sort#£0=
V(u,v:u,v € perm(s,t): Soru=S5o0rv#0)
Proof

cc.S ANa(s)Na(t)y=0 AN Sors£0 A Sort#{
= { Theorem C.1, property o }

ce.(Sor) ANa(s)Neaf(t)=0 A (Sor)os#D A (Sor)ot#0
= { Lemma C.4 }

V(u,v:u,v € perm(s,t): (Sor)ou=(Sor)ov #0)
={o}

Y(u,v:u,v € perm(s,t): Soru=5orv#0)

end of proof

Lemma C.6 For z € Pairs,

cc.S = (ro connect z=r connect z A Sorny#0 A Son #0 =

Sory#0)

110

Proof
By induction on |r| + |ry]-
Base case: rp = r; = ¢, trivial.
Induction step:

ro connect z =r; connect z A Songy# QP A Sor #0
= { Properties of connect }

7o connect z =1 connect z A Sory#0 A Sonrm #0A
(hd.f‘() = hd.Tl
V (hd.ro# 2 AN I(r{,n i = 2" hd.rory))
V (hd.ri5# 2 AN 3(rg,nmg=2z" hd.mi7f)))
= { Properties of connect ,o }
ro connect z =r; connect z A Sorngy# 0 A Sorp Z0A
((hd.ro = hd.ry A tl.ro connect z = ti.r; connect z A
(Sohd.rg)otlroy# 0 A (Sohd.r)otlr #0)
V (hd.rg # z A J(r{,n 21y = 2" hd.ror}))
V (hd.ry # 2z A F(rg,niimg = 2" hd.mirf)))
= { Ind.hyp. }
ro connect z =r; connect z A Songy# 0 A Som #0A
((hd.ro=hd.ry A (Sohd.rg)otl.rmy# ()
V (hd.ro# z A 3(r{,n 1 = z" hd.ror]))
V (hd.ry # 2z A 3(rg,n o= 2z" hd.mi7f)))
= { Calculus }

ro connect z=r; connect z A Sorgy# 0 A Sor Z0A
(Somy#0
V (hd.ro # z A
A(r{,n i ry = 2" hd.ror{ A Soz" hd.ror] # 0
A S o hd.rotl.roy #£ 1))
V (hd.ry # 2z A 3(rg,n o= z" hd.mrl)))
= { Lemma C.2 }

ro connect z=r; connect z A Songy# 0 A Sorp #0A
(Sony#0
V (hd.ro # 2 A
I(ri,n = 2" hd.rory A Sohd.rg z" 1{ # 0 A S o hd.rotl.roy # 0))
V (hd.ry # 2z A I(rg,n i mg = 2™ hd.my7f)))
= { Property o }

ro connect z =1 connect z A Sory#0 A Sor #0A

111

(Sormy#0
V (hd.?"o =,£-' z A
A(ri,n oy = 2™ hd.rgry A (2"r') connect z = tl.rp connect z
A(Sohd.rg)oz" r{ £ 0 A (Sohd.rp)otl.roy # 0))
V (hd.ry # 2z A I(rf,n 10 = 2" hd.m1})))
= { Ind. hyp. }
7o connect z =r, connect z A Sorngy#ZBD A Sor #DA
(Sonmy+#0
vV (hd.Tg 75 A
A(rf,n = 2" hd.rory
A(Sohd.rg)oz® rjy#0 A Soz"#0))
V (kd.ry # 2z A I(rf,n 10 = 2z" hd.m1})))
= { Lemma C4 }
ro connect z=r connect z A Sorny# 0 A Sor, £0A
(Sormy#0
V (hd.ro# z A I(r{,nr = 2" hd.ror] A S o 2"hd.rorjy # 0))
V (hd.ri # 2z A J(rg,n 1o =2z" hd.mi1})))
= { Absorb 2nd alternative, Calculus }
ro connect z =7 connect z A Sony#0 A Sor £ A
(Sormy#0
V (hd.ry # 2z A
I(rg,n :rg = z" hd.ryry A
Soz" hd.mrgy#0 AN Sohd.rtl.ry #0)))
= { Lemma C4 }
ro connect z = connect z A Sorny# D A Sorm #0A
(Somy#0
V (hd.ry # z A
A(rg,m 2 g = z™ hd.ryry A
Sohd.rz"rly #Z0 A Sohd. rltl rn #0)))
= { Properties o, connect }
ro connect z =7 connect z A Sorny#0 A Sorn #0A
(Somy#0
V (hd.ry # z A
I(ry,n im0 = 2™ hd.mir) A z"7) connect z = tl.r; connect z
(Sohd.m)oz"rgy #0 A (Sohd.r)otlr #0)))
= { Ind. hyp. }

112

ro connect z =17 connect z A Sorgy# P A Sor DA
(So mny # 0
V (hd.ry # z A
A(rg,n :: (S o hd.ry) o tl.ry # 0)))
= { Property o }
Sormy#0

end of proof

Lemma C.7 For fully compositional S,z € Pairs,
a(z)Na(y)=0 A (S connect z)orz#§ A (S connect z)ory#{

=
(S connect z)orzy#0 A (S connect z)o ryzr #)

Proof

a(z)Nea(y) =0 A (S connect z)orr #0 A (S connect z)ory # §
= { Properties connect }

a(z)Nal(y) =0A

J(ro, 71 : o connect z =rl connect z=r:Sonzr#0 A Sonry#0)
= { Lemma C.6 }

a(z)Ne(y)=0 A 3(ro: 1 connect z=r:Sonz#0 A Sory#0)
= {c.S}

a(z)Neal(y) =0 A I(ro:r connect z=r:Sonzy#0 A Soruys #0)
= { Properties connect }

(S connect z)orzy#0 A (S connect z)o ryz # ()

end of proof

Lemma C.8 For fully compositional S,z € Pairs,
a(z)Nefy) =0 A (S connect z)orz # 0 A (S connect z)ory #
0 A ro € (S connect z)o rzy
=
1o € (S connect z)oryz

113

Proof

a(z)Na(y) =0 A (S connect z)orz #0 A (S connect z)ory# 0 A
1o € (S connect z)o rzy
= { Properties connect }
a(z)Na(y) =0A
A(r', ", v§,n : 1§ connect z =1y A r’ connect z=r" connect z=r:
rzzyrb € S A Sor'y #0)
= { Theorem C.6 }
a(z)Na(y)=0A
A(r',r{,n : v connect z=r A r' connect z=r:
r'zzyrf € S A Sor'y #£0)
={ccS}
a(z)Na(y) =0A
I(r',r{,n : i connect z =1y A r connect z=r:
r'ez"yry € S A Sor'zy# 0 A Sor'yz #0)
= { Theorem C.5,r'z for r }
a(z)Na(y) =0A
A(r', g, n : 7y connect z =1 A r’ connect z=r:
rzztyrg € S A r'zyzri € S A Sor'yr £ Q)
= { cc.S }
o(z) N a(y) = 0 A
(r', rg,n : 1y connect z =1y A 1’ connect z=r:r'yzz"rj € §)
= { Properties connect , o }
ro € (S connect z)o ryz

end of proof
With these lemmata the proof of the first theorem is now trivial.
(3.43) cc.S = V(z: z € Pairs : cc.(S connect z))

Proof
Immediate from previous two lemmata.
end of proof

114

Lemma C.9

cc.5 N ce.T =
(ez)Na(y) =0 A (S[[T)ors#0 A (S|T)ory#0=
(SIIT)orzy #0 A (S| T) o ryz # 0)

Proof

o(z)Naly) =0 A (S|T)ore £0 A (S|T)ory+0

= { Nonoverlapping alphabets }

alz)Na(y) =10
ANSo(rz Y a(S)#0 AN So(ryf a(S))#0
ANTo(reJa(T)£0 AN To(ryl o(T))#0

= { Properties of o }

a(z) Na(y) =

0
(SO(TUG(S))) (24 aS))#0 A (So(rlals))) oyl afS)) #0
o(z4a(T)#0 A (To(rdo(l)))o(yaT)) #

AT o(r oT))

)o
= { Define ' = So (r | a(S)) ,zs = z | «(S) idem T, z7, ys, yr }

a(z)Na(y) =0 A S'ozs#0 A S oys #0
AT oz £0 AN T'oyr #0

Of(zs =z Azr=€e¢Ays=y A yr=¢)V
M(zs=z ANzr=€e AN ys=e AN yr=y)V
Rizs=eNzr=z ANys=y A yr=¢)V
Bzs=eANzr=z Ays=e A yr=y)V
z=abANzs=aNzr=bAys=y Ayr=e)V
Blr=abANzs=aANzr=bAys=eAyr=y)V
Blzs=z ANzr=eNy=cdANys=c ANyr=4d)V
[Mzs=eANzr=2 ANy=cd ANys=c Ayr=d)V
[

Slc=abANzs=aANzsr=bAy=cdANys=cAyr=4d)}
alz)Na(y)=0A

0](S"ox#D A S'oy#£0 AT #£0)V

S0z #ONS#DANT £0ANToy£0)V

28" #O NS oy#£O AT ozc#D AT #0)V

(S0 A Toz £0 A T oy #0)V
dfr=abNSoca#DANSoy#0 AT ob£D AT #£0)V
5z=abASoa#EDANS #0ANTob£DAToy#0)V
6(y=cd ASoz#DASToc B AT £0A T'od#0)V

0

115

[MNy=cd NS #O NS 0oc#D AT oz#0 AT od#0)V
Blz=abANy=cd ASoa#0 ASoc#
AT'ob#B AN T'od#10)

We prove the theorem for cases 0,1,4,5, and 8. The other cases follow
by symmetry.
Proof [0]

a(z)Na(y) =0 A S'ox#DASoy#£0 AT #£0
= { Theorem C.1 }

a(z)Na(y) =0 A S'ozy#0 AS'oyz#D AT #0
= { BIG step }

(S|IT)orzy #0 A (S| T)oryz # 0

Proof [1]

afz)Na(y) =0 AN S'oz£Q AT oy#0
= { BIG step }
(SUT)oray £0 A (S| T)orye #0

Proof [4]

a(z)No(y) =0 ANz=abA S0ca#0ASoy#0 A Tob#
= { Theorem C.1,y # a

a(z)Na(y)=0 A z
= { BIG step }

(SliTyorzy#0 A (S||T)oryz # 0

Proof [5]

a(z)Na(y) =0 ANz=abA So0a#0 ATob£D AT oy#0
= { Theorem C.1 }

a(z)Na(y) =0 Az=abA S0ca#0 A Toby#0 A T oyb#0
= { BIG step }

(SIIT)orzy #0 A (SIT) o ryz # 0

Proof [§]

=14

ab AN Soay#0 AN Soya#0 AT ob#0

116

a(z)No(y) =0 ANz=abAy=cd ANSoa#l A Soc#0
AT ob#0 A T'od 0

= { Theorem C.1,twice }
a(z)Na(y)=0ANz=abAy=cd AN Socac#0 A S oca#
ANT'obd#0 AN T'odb#0

= { BIG step }
(SIT)orzy#0 A (S||T) o ryz # 0

end of proof

Lemma C.10
(cc.S A cc.T)=

(a(z)Na(y) =0 Arg e (S[T)orzy A (S||T)oryz # 0 = ro € (S| T)oryz)
Proof
ro € (S|T)orzy A (S||T)oryz # 0
=> { Disjunct alphabets, define rs = r | a(S) etc.. }
Sorszsys #0 N Sorsyszs #0 A Torraryr #0 A Torryrzr # 0
Ao € ((Sorszsys)||(T o rrzryr))
=> { Theorem C.1, twice }
SOT‘sxgys#@ A Sorgyszs 75@ A TOTTxTyT#@ A TOT‘TyT:ET#@
Ao € ((Sorsyszs)|(T o reyrer))

=> { Properties || }
10 € (S||T) o ryx

end of proof

These lemmata enable us to prove the second theorem.

(3.44) cc.5 N ce.T = ce.(S|T)

Proof
Immediate from previous two lemmata.
end of proof

(3.46) (pr.S A pr.T)= pr(S; T)

Proof by contraposition.

117

—pr.(S5; T)
= { Definition pr }

3(80,31, to, tl : 80, 51 € S A to, tl € T: Soto < Sltl)
= { Cases }

H(SQ,Sl,to,tl $ 80,8 € S A t(),tl eT:

(So <s51Vs=8V s> 51) N sty < S]_tl)

= { Definition pr }

3(80, s1,%,% 80,51 € S A lo,t1 € T: ﬁpT.S V (So =35 N st < Sltl))
= { Definition pr,calculus }

—pr.S V —pr.T

end of proof

(3.47) (pr.S A pr.T)= pr.(S|T)
Proof by contraposition.

~pr(SIIT)
= { Definition pr }

3(30,81, to,tl, To,T1 - S0, 51 € S A to,tl € T: o € So”t() A e S].”t]. A 0 < 7"1)
= { Cases }

3('5'07 51, tO) tl7 To,T1 180,81 € S A tO) tl eT:

To € .S'o”to A n € Sllltl AN rg<nrA

(o< Vsp>s VsoggFs Vso=s))
= { Disjoint alphabets, hence ss €% s1 = no €% n }

(0,51, o, t1, 70, 71 S0, 51 €S A b, € T

70 & So”to AN r € S].“tl N 1< A

(mpr.S V s = s1))
= { Disjoint alphabets, hidden inductive argument }

—pr.S V —pr. T

end of proof

Lemma C.11
cc.5 N pr.S A ecc.T =

(z#y Arero€(S;T) Aryri € (S;T) = (S; T)orzy#0 A (S; T)o
ryz £)

118

Proof

zFEy ANrero €(S; T) A ryr € (S; T)
= { Definition ; }
z#y A Iros,ror i 105 €S A 1or € T 2 rarg = rogroT)
AI(rs,mr:ms €S A rp € T:ryrn = nisnir)
= { Calculus,cases }
z#yA
3(7‘05, 0T, TS, 1T : Tos € S A ToT € T A s € S N T € T :
(ros<rz Vrzr<ms) A(ns<ry Vry<mns)A
TITo = TosTor N TYry = risTiT)
= { Calculus }
TE YA
(ros, 707, 115,17 T0s €ES Amor €T Ams€S Armr €T
((ros<re Ams<ry) V (ros<re A rg> ry) V
(re<rms ANmg<ry)V (rz <ms A ry <ms)) A
TTro = TosToT A TYrL = Ti57IT)
= {pr.S}
TH# yA
Iros, rors M5, T :T0s €ES AT €T A s €S A mpe T
((ros<rz A ms<ry A mg=rms) V (re <ms A ry < r18)) A
TIT) = TosTor A TYrL = r1gTIT)
= { Calculus }
"'t =r Ar'eS:Tor"s£0 A Tor'y#Q) v
(Sorc#0 A Sory #0)
= {cc.S A cc.T}
" =r Ar'eS:Tor'"sy#0 A Tor'ye #Q) vV
(Sorzy #0 A Soryz #0)
={;}
(S; T)oray #0 A (S; T)oryz #10

end of proof

Lemma C.12

cc.S AN pr.S A cc.T =

(z #y A rzyrg € (S; T) A ryary € (S; T) = ryzry € (S; T) A rayry €
(S; T))

119

Proof

tFy ANreyro €(S; T) A ryzm € (S; T)
= { Cases }
zFyA
A(ros, ror, 115, TiT:T0s ES Aror € T A s €S A mre T
(ros <tz V ros=rz V ros > rz) A
(ms<ry V nmg=ry V ros >ry) A
TZYTo = TogToT N TYIry = T1gT17T)
= { Calculus }
TE£ YA
Iros, ror, s, T :T0s ES ANor € T Ams€S AnreT:
((ros <rz A mg<ry)V

(ros <tz A mg=ry)V
(ros <rz A mg>ry)V
(res =712 A ms < ry)V
(s =1z A ms=ry)V
(ros =12 A mg>ry)V
(ros > 1z A g <ry)V
(ros >rz A mg=ry)V
(ros > rz A g > ry)) A
TTYTo = TosToT N TYTTL = T1gT17T)
={pr.S}
TFyA

3(7‘05, Tor, "5, M7 :T0s €ES Aot €T A mseS ANnreT:
((ros<rz A mg<ry A ros =nm5) V
(ros =12 N rg=ry)
(rog = rz A 15 > 1Y)
(rog > rz A mg = ry)
(ros > 1T A rg > 1Y) A
TTYTo = To§ToT A TYITy = Ti5TIT)

={pr.S A cc.S}

T#yA

IHros, Tor, M5, T :T0s €ES A7 €T A ns€S A nmreT:
((os <tz A ms<ry A ros =115) V
(ros > rz A s > ry)) A
TTYTo = TosToT N TYLTL = Ti8TIT)

\%
Vv
\

120

={}
z# yA
(3"’ =rir" €S A gy € T A ryzr € T)
A(rg, vl i, gy =10 A i =1y :
reyrg €S A1 € T A ryzrj € S A rl' e T))
={cS Ac.T}
3"’ =r:r" €S A r"yzro € T A r"zyr € T)
(g, rg, ry,ry gy =10 A T =1y :
{ }ry:z:r(’,ES ANrdeT ANreyrfe S A e T))
rzyry € (S5 T) A ryzro € (S5 T)

end of proof

(3.48) (ce.S A pr.S A ce.T)= ce.(S; T)

Proof
Immediate from previous two lemmata.
end of proof

(3.49) (pr.S A cc.§5) = V(z :: pr.(S connect z))

Proof by contraposition.
By induction on [s|.
Base case |s| = 0, hence s = ¢

rs€ES Arte€S A rs#rt A (rs connect z) < (rt connect z) A s=¢
= { Substitute ¢ for s }

reESATteES Ar#£rt
= { Calculus }

rESATTESAr<rt
= { Definition pr }

-pr.S

Induction step

121

rs€S Arte€S A rs#rt A (rs connect z) < (rt connect z)
= { cases }
rsES ArteES A rs#rt A (rs connect z) < (rt connect z)
AN((hd.s=2z AN hdit=2)V (hds=2z N hdt#z) V (hd.s # z N hd.t = z))
= { cases } -
rs€S ANTtE€S A rs#rt A (rs connect z)< (rt connect z)A
(3, "t/ is=z8 ANt=z2t' AN v =rz:
r's'e S A r't'e S A r's' #r't" A (r's’ connect z) < (r't’ connect z))V
A(n,s',t' s =2"hd.t s AN t=hd.tt')V
I(n,s',t' s =hd.s s’ Nt =2"hd.s t"))
= { Ind. hyp. first case, lemma C.4 other two }
rs€S ANrteS A rs#rt A(rsconnect z) < (rt connect z)A
(mpr.Sv
Hn,s,t'ms=2"hdt s Nt=hdtt' AN rhdtz's€S)V
A(n,s', t' :s=hd.s s’ Nt=z"hd.st' A r hd.sz"t' €5))
={}
=pr.SV
A(n, ', s", '
s=hdts" ANt=hdtt' ANr'=rhdt ANr's"cSATESA
s"#t" A (r's" connect z) < (r't’ connect z))V
A(n, v, s "
s=hdss ANt=hdtt'" ANr'=rhdt AN r's" €S Art"eSA
s'#t" A (r's' connect z) < (r't" connect z))
= { Ind.hyp. }
—pr.S

end of proof

122

Appendix D

Proofs for Section 4.2

(4.3) S8
Proof

S§3S8
= { Definition }
V(§:85€8:3(T:TeS:527T))
= { Choose T equal to S }

true

end of proof

(44) RISASIT=RIT

Proof

RISASOT
= { Definition J }
VIR:RER:3(S:5€S:R29))A
V(§:5€8:3(T:TeT:527T))
= { Calculus }
VIR:RER:3(S,T:Se€SATET:RO2S5AS2T))
= { Calculus, transitivity set inclusion }
VIR:RER:IH(T:T€T:R2T))
= { Definition J }
RIAT

123
end of proof

(45) SITATIAS=
V(S:S€S AV(S0:50€S A S0CS:850=5):5€T)A
V(T:TeT ANVTO:TOET ATOCT:T0O=T):TES)

Proof

ST AT3S
= { Definition }
V(§:8e€S:IH(T:TeT:SDT))A
V(T:TeT:3(5:5€8:T208))
= { Duplicate, add conjunct equivalent to true, then split. }
V(S:5€S AVS0:50eSAS0CS:50=5):3(T:TeT:S2>2T)A
V(S:Se€SAYS0:50eSAS0CS5:50=85):H(T:TeT:SO2T)A
V(T:TeT AV(TO:TOeT ANTOCT:T0=T):3(S:5€S:T28))A
V(T:TeT AN-VT0:TOeT ATOCT:T0=T):3(S:5€S:T2S))A
VS§:5€S8:3(T:TeT:SDOT)HA
V(T:TeT:3(5:5€8:T219))
= { Calculus }
V(S:S5e€S AV(S0:50€eS AS0CS5:50=015)
:H(T,50: TeT ANS0eS:S2T AT 2DS0)A
VS§:5€S ANF(S0:50€SAS0CS:S0#£8):H(T:TeT:SDOT)A
V(T:TeT AV(TO:TOeT ANTOCT:T0=1T)
23S, T0:SeSANTeT :TO2HA
WT:TeT AJ(T0:TOeT A TOCT:TO#T):3(S:5€S:T2S))
= { Assume if there exists one, there exists a smallest. }
VS:5e€SAV(S0:50€SAS0CS5:50=85):5¢T)A
V(§:5€S8S ANFS0:50eS AS0CSA
V(§1:51€S ANS51CS0:51=50):50#£8):H(T:TeT:SO2T)A
WT:TeT AV(T0:TOET A TOCT:T0=T): T €S)A
V(T:TeT AN3I(T0:T0eT ATOCTA
Y(T1: T1eT ATICTO:T1=T0):T0O#£T):3(S:5€85:T29))
= { Calculus }
V(§:5€¢S AV(S0:50€SAS0CS:50=8):5€¢T)A
V(5:5€S A3S0:50€S AS0CSAS0€T:51=280):50+#£S9)
:A(T:TeT:S2T))A

124

VW(T:TeT AY(T0:TOeT ATOCT:T0=T):TES)A
WT:TeT AIT0:TOET A TOCT A TOES: T1=T0): TO+ T)
:3(§:5€8:T28S))
= { Calculus }
V(S:5€SAV(S0:50€eSAS0CS5:850=8):5ScT)A
W(T:TeT AY(TO:TOeT ATOCT:T0=T):TeS)

end of proof

47 S=~8
Proof

S~S§8
= { Definition ~ }
SIS AN S3S
= { Reflexivity of J }
true

end of proof

(4.8) (S=T)=(T=S8)
Proof

S~T

= { Definition ~ }
S3IT NT3S

= { Symmetry of A, definition ~ }
T~S8

end of proof

(49) RS AN S~T=>R~T

Proof

125

RS N S~T
= { Definition ~ }

RIS AN SOIT NTIS AN SOR
= { Transitivity J }

RIT NTIR
= { Definition ~ }

R~T

end of proof

(4.10) S

~

{S:5€SAVY(S0:50€6SAS0CS5:50=09):5}
Proof

S(ST{S§:5€SAVYS0:50€S5ANS0CS5:50=0S5):5})
= { Definition J }
—(V(S1: S1€S:
3(S2:52€{S:5€SAV(S0:50e6SAS0CS5:50=25):5}:
512 52)))
= { Calculus }
—(V(S1:S1€S:
3(52:52€ S AV(S0:50€S A SOC S2:50=52):S51D852)))
= { Shunting }
~(V(S1: 51 €S :
3(52:52€S85:51252 AV(50:50€8 A S0C S52:50=S52))))
= { Calculus }
3(S1:51€S:
V(52:52€8:-(S1252) v 3(S50: 50 S A S0C S2:50+# S52)))
= { Second term independent of S1 }
3(S51:51€S85:V(52:52e€85:=(51252))Vv
3(S1:51€85:V(52:52€85:3(50:50€8 A S0C S2:50+# 52)))
= { Calculus, first disjunct is false; shunting }
S={} vV(52:52€85:3(50:50€S5:50C 52 A S50+#52))
= { Calculus }
S={} VV(S52:52e€85:3(50:50€eS5:50C S52))

126

={}
false

Also,

{S:5€6SAV(S50:50€S5A50CS5:50=5):5}3S

= { Definition 0 }
V(S0:50€{S:5€S AV(S0:50€S5 AS0CS5:50=015):5}:

3(S1:S51€S8:50C S1))

« { Calculus }
V(S0:50€{S5:5€8:5}:3(51:51€8:50CS1))

= { Calculus, definition J }
$§3S

= { Theorem (4.3) }

true

end of proof

(4.11) (S=~T)

{S:S€S AV(S0:50€S A SOCS:S0=S5):8}

{(T:TeT AV(TO:TOET A TOCT:T0=T):T})

Proof
We first prove =:

S1e{S:5€¢SAV(S0:50€SAS0CS5:50=8):5}AS~T
= { Calculus, definition J }
S51€eS AV(S50:50€S AS0CS1:50=51)A
V(52:52e€8:3(T2: T2€T:522T2)A
V(T3:T3€T:3(53:53€8:T3253))
= { Choose S1 for 52 } ‘
S1€S AVY(S50:50€8 ASOCSL:S0=S1)A
HT2:T2€T:512T2)A
V(T3:T3€T:3(53:53e€S8:T3283))

= { If there exists one, there exists a smallest }

127

S1eS AVY(S0:50€S5 AS0CS1L:50=51)A
HT2:T2€T AV(T0:T0eT :TOCT2:T0=T2):512 T2)A
V(T3: T3€T:3(53:53€5: T32 53))
= { Use last conjunct, choose T2 for T3 }
S1€S AV(50:50€S5 ASO0CS1:50=S51)A
HT2:T2€T AV(T0:TOe€T :TOCT2: T0=T2):
S12T2 A 3(53:53€S8:7T22853))
= { Calculus }
S1€S AV(S50:50€eS5 AS0CS1:50=51)A
I(T72,53:T2€T AY(T0:T0eT :TOCT2: TO=T2):
S1D T2 A T2 D §3)
= { Use second conjunct }
S1eSA
3(T2,83:T2€¢T AY(T0:T0Oe€T :T0C T2: TO=T2):
S12 T2 A T2 S1)
= { Set inclusion is antisymmetric }
S1e€SA
HT2:T2€T AV(TO: TOET: TOC T2: TO= T2): S1 = T?2)
= { Calculus }
S1€{T2:T2€T AV(T0:T0€T:T0C T2: T0O=T2): T2}

The other half of the proof for = follows by symmetry.
Proof of «:

S3T
= { Definition J }
VS§:5€8:I(T:TeT:S2T))
< { Calculus }
V(§:5€S8:
HT:TeT AV(TO:TOET ANTOCT:T0=T):52T))
< { Calculus }
V(S§:Se€SAVYS0:50€6SAS0CS:50=09):
HT:-TeT AV(TO:TOeT ATOCT:T0=T):521T))
<« { Calculus }
{S:5€SAVYS0:50€SAS50CS5:50=29):5}
={T:TeT AV(TO:T0OeT ATOCT:T0=T):T}

T 1 S follows by symmetry.

128
end of proof

(414) S=n(S:SeS:U(s:seS:{{s}})
Proof

NS:5e€8:U(s:s€8: {{s}}))

= { Definition U }
M(S:5e€S:{U(s:s€S5:{s}})

= { Calculus }

nS:S5esS:{S}
= { Definition M }

U(S:Ses:{S}H
= { Calculus }

S

end of proof

(4.15) V(§,7T:8§238NT)
Proof

SaI8SNT
= { Definition 1,1 }
V(§:5€¢8:H(T:TeSUT:S2T))
< { Calculus }
V(S§:5€S8:3(T:TeSUT: SDT))
< { Choose S for T }

true

end of proof

(4.16) VY(R,S,T:SIRATIR=SNTIR)

Proof

129

SORANTIR
= { Definition J }
V(§:S€S:3(R:Re€R:SDR))A
VY(T:TeT:3I(R:Re€R:T2R))
= { Calculus }
V(§:5€SUT:3(R:ReR:S2R))
= { Definition M }
V(§:5€¢SNT:3(R: ReR:S2OR))
= { Definition 3J }
(SNT)3IR

end of proof

(4.17) Y(§,T:SUuT 1S)
Proof

Su7T3S
= { Definition 3,1 }
V(S§:Se{S,T:5eSANTeT:50T'}:
3(5":5"€S5:525")
= { Calculus }
VS, T:SeSANTeT:3(8:8"e(SUT:5UT2S85")
< { Choose S for §" }

true

end of proof

(4.18) VIR, T - RIS ARIT=>RISUT)
Proof

RISARIT
= { Definition J,Calculus }
VIR:ReR:3(S:S€S:RDSA
VIR:ReER:3I(T:Te€T:R2T))
= { Calculus }

130

VIR:RER:3(S, T:SeSANTe€T:RD25ARDT))
= { Calculus }
V(R:ReR:3(S,T:S€SANT€T:R2S5UT))
= { Calculus }
V(R:ReR:3(5:5€{S,T:5¢SANTe€T:SUT}:RDS))
= { Definition 3J,U }
RI(SUT)

end of proof

(4.19) SNS~SASUS~S

Proof

sns

= { Definition M }
SUS

= { Calculus }
S

Sus
= { Definition U }
{8, T:SeSANTeS:5UT}
~{S#T=SUTD2S, theorem (4.10) }
{§:5€8:5}
= { Calculus }
S

end of proof

(4.20) SNT TS ANSUT~TUS

Proof

131

sSNT SuT
= { Definition M } = { Definition U }
SuUT {§,T:SeSANTeT:5UT}
= { Symmetry set union } = { Symmetry set union, quantification }
TUS {T,S:TeT ANSeS:TUS}
= { Definition N } = { Definition U }
T7ns TUS

end of proof

(421) (SUT)UR~SU(TUR)

Proof

(SUT)UR
= { Definition U, twice }
{S,R:Se{S,T:Se€¢SANTe€T:SUT} NReER:SUR}
= { Calculus, renaming dummy S’ to S }
{S;T,R:Se¢SANTe€T ANReR:SUTUR}
= { Symmetry, associativity of set union }

SU(TUR)

end of proof

(4.22) SUEOT)~SASN(SuUT)~S

Proof
SuU(SNT)3S follows from theorem (4.17).
S 3SN(SuT) follows from theorem (4.15).

We prove the two other directions.

S3ISUENT)
= { Definition J,U, T }

V(§:5€¢S:

HT:Te{S0,70:S0€S ANT0e(SUT):50UT0}:5>T))
= { Calculus }

132

V(§:5€S:

3(50,T0:50€S A (T0eS VvV T0eT):52(S0U T0)))
< { Choose S0, T0 equal to S }

V(S§:5€8:52(5U89))
= { Calculus }

true

snsu7r)as
= { Definition J,U,M }
V(§:5eS5U{S0,T0:50€S A T0eT:S50UT0}:
3(51:51€85:52851))
= { Calculus }
V(§:5€8:3(51:851e€8:5281)A
V(S:5€{50,T0:50€S A T0eT:50UT0}:
3(S51:51€85:52851))
<« { Choose S1 equal to S in first conjunct }
V(S§:5€85:528)A
V(50,T0:50€ S AN T0Oe T:3(S1:51€S:(S0U T0) D S1))
<« { Choose S§1 equal to S0 }

true

end of proof

(4.23) (SxSNT)=(T 38 =SUT=T)
Proof

S~8§nT
= { Definition ~ }
(SASNT)A(SNTIS)
= { Theorem (4.15), definition 3,1 }
true AV(§5:5e€SUT:3(50:50€S8:85 D S0))
= { Calculus }
V(§:5€85:3(50:50€8:5250)A
V(T:TeT:3(50:50€S8: T2 S0))
= { First conjunct true, definition J }
73S

133

Su7~T
= { Definition =~ }
(SUTIT)AN(TISUT)
= { Theorem (4.17), definition J,U }
true AV(T: T €7 :3(50,T0:S0€S AT0eT:TD2S0UT0)
= { Choose T for T0, calculus }
V(T:TeT:3(S0:50€S: T2 S50))
= { Definition J }
T3S

end of proof

(4.24) V(S {}39)
Proof

{}y3s
= { Definition 1 }
WWT:Te{}:3(S:5€85:T289))
= { Empty range }
true

end of proof

(425) Y(S=ST{{}})
Proof
S 3 {{}}

= { Definition 1 }
V(S§:SeS:HT:Te{{}}:521T))
= { Calculus }
V(S§:5€S5:52{})
= { Calculus }

true

134

end of proof

(4.26) Proof of distributivity :

Proof

SN(TUR)
= { Definition M }
SU(TUR)
~{SUS~S,SNSuT)~S}
(SUS)U(SUT)U(SUR)U(TUR)
= { Definition LI }
{T,R: TeSANReS:TUR}U{T,R:TeT ANReS:TUR}U
{T,R:TeSANReR:TUR}U{T,R:T€eT ANReR:TUR}
= { Calculus } _
{T,R: TeSUT ANReSUR:TUR}
= { Definition L,17 }
(SNT)U(STR)

SU(TNR)
= { Definition M }
SU(TUR)
= { Definition U }
{$,T:S€SANTeSUR:SUT}
= { Calculus }
{$,T:S€eSANTe€T:SUTIU{S,R:S€S ANReR:SUR}
= { Definition U, }
(SUT)n(SuUR)

end of proof

135

Appendix E

Proofs for Section 4.3

(432) SIT=SNRITNR

Proof

(SNR)IJ(TNR)
= { Definition 3 }
V(§:5€(SNR):H(T:Te(TNR):S3T))
= { Definition M }
V(§:S€¢(SUR):AT:Te(TUR):S3T))
< { Calculus }
V(§:5€S5:3(T:TeT:5217))
= { Definition J }
S37T

end of proof

(433) SIT=SURITUR

Proof

SURJTUR
= { Definitions J,U }
V(§:5€{S"R:5€SANReR:SUR}:
HT:Te{T' "R:T"¢eT ANRER:T'"UR}:S2T))
= { Calculus }

136

V(S,R:S€S ANReR:
AT,R:TeT AReR :SURDTUR)
< { Calculus }
VS§:5€8:3(T:TeT:527))
= { Definition J }
S3T

end of proof

(4.34) SIT=S|RIT|R
Proof

SIR 3 T|R
= { Definitions 3,]| }

V(§:5€¢{SR:S€S ANReR:S|R}:

HT:Te{T',R:T"eT ARe€R:T'|R}:521T))

= { Calculus }

V(S R:SESANReR:IT,R:TeT AR R :S|RDT|R"))
< { Monotonicity || on tracesets }

V(§:5e€S8:3(T:TeT:527))
= { Definition 1 }

S3T

end of proof

(4.35) RISANTIU=SR,TIS; U
Proof

R; T3S U
= { Definition 3 }

V(R:ReR;7T:3(S:5€8;U:RDS))
= { Definition ; }

V(R:REN(R:ReR:U(r:reR (T eT:U(teT:{{rt}})):

{ A(S:Sen(S:8eS:U(s:seS:MUel:U(we U:{{su})))))
<=1{1}

137

V(R:RER:3(S:S€S:RD8))A

M(T:TeT:3AT:TeT:T2VU))
= { Definition J }

RISANTIU

end of proof

(4.36) § 37 = S connect X J7 connect X

Proof

S connect X J 7 connect X
= { Definition J }
V(S:S€S connect X : 3(T:T €7 connect X : 5D T))
< { Monotonicity connect on tracesets }
Y(§:5€8:3H(T:TeT:527T))
= { Definition 1 }
ST

end of proof

(4.43) magic N7 =T
Proof
magic M7
= { Definitions magic ,M }
{JuT

= { Calculus }
T

end of proof

(4.44) demon M7 ~ demon

Proof

138

demon 07T
= { Definition M }

{BuT

~ { Process equiv. to set of minimal elements, thm. (4.10) }

{{}}
end of proof

(445) 7TnNS = SNT

Proof Set union is commutative. end of proof

(446) (RMNS)NT = RA(SNT)

Proof Set union is associative. end of proof

(4.47) demon US =S

Proof

demon US
= { Definitions U,demon }
{T,S:Te{{}} ASeS:5uUT}
= { Calculus }
{§:5€8:5U{}}
= { Calculus }
{§:5€8:5}
= { Calculus }
S

end of proof

(4.48) magic US = magic

Proof

139

magic US
= { Definition U, magic }
{T,S:Te{} NhSeS:TuUS}
= { Calculus }
{}

= { Definition magic }
magic

end of proof

(4.49) TUS = SUT

Proof
Immediate from the symmetry of the definition and commutativity of set

union.
end of proof

(4.50) (RUS)UT = RU(SUT)

Proof

(RUS)UT
= { Definition U, twice. }
{§,T:S€¢{R,S:ReRANS€S:RUS}ANTeT:5UT}
= { Calculus, renaming dummy 5’ to S }
{R,S,T:RERNSeESANTeT :RUSUT}
= { Symmetry, associativity of set union. }
RUSUT)

end of proof

(4.51) skip ||S§ ~ S ~ S||skip

Proof (left unit element)

140

{3 T
= { Definition }
{8, T:Se{{e}},TeT:S|T}
= { Calculus }
{T:TeT:{e|T}
= { Theorem 3.29 }
(T:-TeT:T)
= { Calculus }
T

end of proof

(4.52) magic [|§ = magic
Proof (left zero element)

magic ||7
= { Definitions magic , || }
{$;T:Se{} ATeT:S||T}
= { Calculus }
{}

= { Definition magic }
magic

end of proof

453) T|S = S|T

Proof
Immediate from Definition 4.29 and theorem 3.31.
end of proof

(4.34) (RISWT = RI(SIT)

Proof

141

(RISIT
= { Definition }
{R,S:R€R,S€S:R|SHT
= { Definition }
{P,T:Pc{R,S:R€R,S€S:R|S},Te€T:P|T}
= { Calculus }
{R,S,T:ReR,Se€S,TeT:(R|S|T}
= { Symmetry, Theorem 3.22 }
RI(SIT)

end of proof

(4.55) skip; S~ S = §;skip
Proof (left unit element)

skip ; 7
= { Definitions skip ,; }
NS:Se{{e}}:U(s:s€§:
MT:TeT:ut:te T:{{st}}))
= { Calculus }
MWT:TeT:uUit:teT:{{e}}))
={et=1t}
MT:TeT:U(t:teT:{{})))
= { Theorem (4.14) }
T

end of proof

(4.56) demon ; S = demon

Proof (left zero element)

demon ;7
= { Definitions demon ,; }
nS:Se{{}}:Us:s€8:
AT :TeT:U(t:teT:{{st}})))

142

= { Calculus }
U(s:se{}:N(T:TeT:ut:teT:{{st}}))
= { U over empty range is demon }
demon

end of proof

(4.57) magic ; S = magic
Proof (left zero element)

magic ; 7
= { Definitions magic ,; }
MS:Se{}:Us:s€8§:
T :TeT:ut:teT:{{st}})))
= { I over empty range is magic }
magic

end of proof

Lemma E.1 Us}h T =n(T:TeT:Ut:teT:{{st}}))

Proof

{{s}h; T
= { Definition ; }
NS:Se{{s}}:U(r:reS:N(T:TeT:ult:tecT:{{r}}))
= { Calculus }
MT:TeT:ut:teT:{{st}})

end of proof

(458) (RUS)T = (R;T)U(S; T)

Proof

143

(RUS); 7
= { Definition U,; }
M(RO:ROE{R,S:RERANSE€S:RUS}:U(r:r € RO: {{r}}; T))
= { Calculus }
MR,S:RERASeS:Ur:r€ RUS: {{r}}; 7))
= { Definition ; }
MR,S:ReERASES:U(r:reR:{{r}T) U U(r:reS:{{r}};T))
= { Definition ; }
M(R,S:ReRASe€S:{R};T U {S}T)
= { Distributivity }
MR:ReR:{RELT)UNS:5€S:{S};T)
= { Definition ; }
(R; TYu(S;T)

end of proof

(4.59) (ROS),T) = (R, T)N(S;T)
Proof

(RAS); T
= { Definition ; ,M, lemma (E.1) }
MR:ReRUS:U(r:reR:{{r}};T))
= { Calculus }
MR:RER:U(r:reR:{{r}} T))
NN(S:SeS:U(s:se8:{{s}};T)
= { Definition ; ,M }
(R, TYN(S;T)

end of proof

(460) (758 R = T;(5R)

Proof

144

R (S;T)
= { Definition ; , lemma (E.1) }
MR:ReR:U(r:reR:{{r}}; (5;7)))
= { Definition ; }
MR:ReR:U(r:re R:{{r}); NS:5€S:U(s:seS:{{s}};)
= { Definition ; , lemma (E.1) }
H(R:RE'R:U(T:rER:H(S:SES:U(S:SES:{{T}};({{S}};T)))))
= { Definition ; , associativity of concatenation }
MR:ReR:U(r: re R:N(S:5€8:U(s:se8:({{r}}; {{s}});)
= { Left distribution of ; over LI }
MR:ReR:U(r:reR:T(S:5€S:U(s:5€8:({{r}}; {{s11)); 1))
= { Definition ; }
MR:ReR:U(r:reR:N(S:SeS: ({{r}}; {S1); 7))
= { Left distribution of ; over M }
MR:ReR:U(r:reR:N(S:5€S:({{r}}; {SH): T))
= { Definition ; }
MR:ReER:U(r:reR:({{r}};8); 7))
= { Left distribution of ; over U }
MR:ReER:U(r:reR:({{r}};5)); T)
= { Definition ; } .
M(R:ReR:({R};8);7T)
= { Left distribution of ; over M }
NMR:ReR:({R};S)); T
= { Definition ; }
(R;) T

end of proof
(4.61) aX)Na(Y)=0=
(S connect X) connect ¥ = S connect (X UY)
Proof

(S connect X) connect Y
= { Definition connect }

{§:5€S8:85 connect X} connect Y
= { Definition connect }

145

{5':58'€{S:5€S:S5 connect X}:S5' connect Y}
= { Calculus }

{§:5€S5:(S connect X) connect Y}
= { Theorem 3.38 }

{§:5€8:85 connect (XU Y)}
= { Definition connect }

S connect (X U Y)

end of proof

(4.62) (5;T) connect X = (S connect X); (7 connect X)

Proof

(S; T) connect X
= { Definition connect }
{R:R€(S5;7): R connect X}
= { Definition ; }
{R:Re{S,T:Se€SANTe€T:S5;T}:R connect X}
= { Calculus }
{$,T:S€SANTeT:(S;T) connect X}
= { Theorem 3.39 }
{$,T:5e€¢8 AN TeT:(S connect X); (T connect X)}
= { Definition connect , twice }
(S connect X); (7 connect X)

end of proof

(4.63) (SUT) connect X = (S connect X); (7 connect X)

Proof

(SUT) connect X

= { Definition connect }
{R:Re(SUT): R connect X}

= { Definition LI }
{R:Re{S,T:S€SANT€e€T:5UT}:R connect X}

146

= { Calculus }

{$,T:5€¢SANT€eT:(SUT) connect X}
= { Theorem 3.37 }

{8, T:5€S8S NTeT:(S connect X)U (T connect X)}
= { Two steps }

(S connect X)U (7 connect X)

end of proof

(4.64) (5§M7T) connect X = (S connect X)M (7 connect X)

Proof

(§NT) connect X
= { Definition connect }

{R:Re(SUT): R connect X}
= { Definition M }

{R:R€S:Rconnect X}U{R:R€T:Rconnect X}
= { Definition N }

(S connect X) M (7 connect X)

end of proof

(4.65) a(X)No(S)=0 AN a(X)No(T)=0=
(S||T) connect X = (S connect X)||(T connect X)

Proof

(S]|T) connect X
= { Definition connect }
{R:R € (S||7T): R connect X}
= { Definition || }
{R:Re{S,T:S€SANTeT:S||T}:R connect X}
= { Calculus }
{$,T:S€S ANTeT:(S|T) connect X}
= { Theorem 3.40 }
{8, T:5€¢8 AN TeT:(S connect X)||(T connect X)}
= { Two steps }
(S connect X)||(7 connect X)

147
end of proof

(4.66) {a,0} N (a(So) Ua(S1)Ua(To)Ua(Th)) =0 =
((50; a; 51)”(76; b; Tl)) connect {a.b} = (50”70)§ (51”71))

Proof
We assume {a, b} N (a(So) Ua(S1) U a(To)Ua(Zy)) =0

((So; a; 81)||(To; b; T1)) connect {a.b}

= { Definitions || and ; }
H(So,Sl,To,TIZS()GSO A S] 681 A Toe% A T1€’J]:
((So; a; S1)||(To; b; T1))) connect {a.b}

= { Theorem 4.64 }
H(So,Sl,To, Ti: 5% €S8Sg N S €81 A To € 7o A T1 €71
((So; a; S1)||(To; b; T1)) connect {a.b})

= { Theorem 3.39 }
ﬂ(Sg,Sl,To,Tlis()ESo A 51651 N T()E,]E) A T1 6711
((Soll To); (511 T1)))

= { Definitions || and ; }
(Sol|Z0); (S111Th)

end of proof

148

Appendix F

Proofs for Section 4.4

(4.70) SAT =817
Proof

S*

= { Definition * }
{{e}} alt(s; §7)

3 { Monotonicity of Ll and ; ,§ 37 }
{{e}} alt(T; 7)

hence,

true
= { Previous proof }

S* J {{e}} alt(T; 57)
= { Calculus }

§* € {R =R I {{e}} alt(T; R)}
= { Lattice properties }

§* IN(R:R I {{e}} alt(T; R) : R)
= { Knaster-Tarski }

S* A u(R:R = {{e}} alt(T; R): R)
= { Definition * }

S* g T*

end of proof

149

(4.71) S2T=8'2Tt

Proof Similar to previous proof. end of proof

(4.72) ST (S|IT)
Proof

S*”T*
= { Property of *}
(e} US; SN U T; T7)
= { Definition U }
{50,581 :50 € {{e}} A S1€(S5;8*): 50U SL}|
{T0,T1:To € {{e}} AN T1€(T;T*): TOU T1}
= { Calculus }
{51:851 €(S;8*):{e USL}
{T1:T1e(T;7T*):{eUT1}
= { Definition ; }
{52,53:52€8 A 53e€S*:{e}US2 S3}
{T2,T3:T2€T N T3e€T*:{e}UT2 T3}
= { Definition || }
{82,583, T2, T3:52cS NS3e€S*NT2€¢T ANT3eT*:
({e} U §2; S3)lI({e} L T2; T3)}
3 { Lemma }
{52,83, T2, T3:52€S NS3e€S*ANT2¢T ANT3ecT*:
{e} U (S2[T2); (S3]|T3)}
= { Definitions U and ; }
{3 U (SIIT); (S™IT)

hence

true
= { Previous proof }

(5*177) € {R =R I {{e}}u ((SIT); R)}
= { Lattice properties }

(S*177) 3 NR:R I {e}} L ((SIT); R): R)
= { Knaster-Tarski }

150

(57177) 3 N(R:R={e}}u((SIT) R): R)
= { Definition * }
(SN T7) 2 (SIIT)

end of proof

151

Appendix G

Proofs for Section 4.5

(4.74) Dual(magic) ~ demon
Proof

Dual(magic)
= { Definition Dual, magic }
US:Se{}:N(s:se€S:{{s}})
= { U over empty set is demon }
demon

end of proof

(4.75) Dual(demon) ~ magic
Proof

Dual(demon)
= { Definition Dual,demon }

US:Se{{}}:N(s:s€S:{{s}})
= { Calculus, I over empty set is magic }
magic

end of proof

(4.76) Dual(pick) ~ chaos
Proof

152

Dual(pick)
= { Definition Dual, pick }

L(S:Se{{t:teTraces: t}}:MN(s:s5€S5:{{s}}))
= { Calculus }

M(s: s € Traces : {{s}})
= { Definition chaos }

chaos

end of proof

(4.77) Dual(chaos) ~ pick
Proof

Dual(chaos)
= { Definition Dual, chaos }

(S:Se{{t:tecTraces: {t}}:MN(s:s5€ 5 :{{s}}))
= { Calculus }

L(z : t € Traces : {{t}})
= { Definition pick }

pick

end of proof

(4.78) Dual(skip) ~ skip

Proof See next proof. end of proof

(4.79) Dual({{s}}) = {{s}}
Proof

Dual({{s}})
= { Definition Dual }

U(S:S € {{s}}:N(s':s€85:{{s'}})
= { Calculus }
{{s}}

153

end of proof

(4.80) Dual(§ N 7T) ~ Dual(S) U Dual(7)
Proof

Dual(§ 1 7)
= { Definition Dual, 1 }
US:Se(SuT):M(s:s€S5:{{s}})
= { Calculus }
U(S:5eS:N(s:seS:{{s}Hu
US:SeT:N(s:s€85:{{s}})
= { Definition Dual }
(Dual(S)) U (Dual(7))

end of proof

(4.81) Dual(§ U7) >~ Dual(S) N Dual(7)

Proof

Dual(SUT)
= { Definition Dual, LI }

WS:Se{ST:Se€SANTeT:SUT}:N(s:s€5:{{s}})

= { Calculus }

us, 7:5e€8 A TGT:H(S:SE(SUT):{{S}}))

= { Calculus }

S, T:5eSATeT:NMs:seS:{{s}})ynnt:te T:{{t}})

= { Calculus (Generalized De Morgan) }

U(S:SeS:Ms:seS:{{s}})) T WT:TeT :Nt:teT:{{t}})

= { Definition Dual }
(Dual(5)) 1 (Dual(7))

end of proof

(4.82) Dual(Dual(S)) ~ §

Proof

154

Dual(Dual(S))
= { Theorem (4.14) }
Dual(Dual(N(S: S €S :U(s:s€S5: {{s}}))
~ { Theorem (4.80) }
Dual((S : S € S : Dual(U(s: s € S: {{s}}))))
~ { Theorem (4.81) }
Dual(U(S:5 €8 :M(s:s €S :Dual({{s}}))))
= { Theoren (4.79) }
Dual(U(S:5Se€S:M(s:s€ S5 :{{s}}))
~ { Theorem (4.81) }
N(S:Se€S:Dual(N(s:s€S5:{{s}}))
~ { Theorem (4.80) }
NS:5e€S:U(s:s €S :Dual({{s}})))
~ { Theorem (4.79) }
NS:SeS:U(s:seS:{{s}})
~ { Theorem (4.14) }
S

end of proof

(4.84) S 3 Dual(T) =T 3 Dual(S)
Proof

S O Dual(T)
= { Definition J }
V(S:5€S8:3(T:T€Dud(T):S2T))
= { Definition Dual }
V(S§:5eS:I(T:V(T':T'eT:3(t:teT':teT):52T))
= { Calculus }
V(S:8e€8S:3T:V(T':T'eT:3(t:teT' :t€T)) ANSDT: true))
= { Ping pong argument }
V(§:85eS:3(T:-YT':T'eT:3t:t€T':teb)):true))
= { Calculus }
V(S5:5e¢S:Y(T':T'eT:3(t:te T :tef)))
= { Calculus }
VS, T":SeSANT e€T:3(tzteT Ntebl))

135

= { Symmetry }
7 1 Dual(S)

end of proof

(4.85) Dual(§) 37T = Dual(7T)3 S

Proof

Dudl(S) 3T
= { Definition 1 }
V(§:5€Dual(S):H(T:TeT:527T))
= { Big step }
V(§:5 € Dual(S):Y(T':Y(T:TeT:3(t:teT:teT))
:3(t:teT:tel)))
= { Definition Dual }
V(S,T': S € Dual(S) N T' € Dual(T) : It =t € T' A t € 5))
= { Symmetry }
Duadl(T)J S

end of proof

(4.86) DualS ~ DualS

Proof
The following two properties are direct consequences of the fact that Dual
is a Galois connection.
Dual(S N T) ~ Dual(S) U Dual(T)
Dual(S UT) ~ Dual(S) N Dual(T)
We also have

Dual({{s}})
= { Definition Dual }

{T:V(§5:S€{{s}}:3(t:teS:teT)):T}
= { Calculus }

{T:3(t:teT:te{{s}}): T}
~ { Theorem (4.10) }

{{s}}

156

These three properties define Dual up to process equivalence, as the fol-
lowing calculation shows.

Dual(S)
= { Theorem (4.14) }
Dual(M(S: S € S:U(s:s €85 :{{s}}))
~ { Use the three properties }
U(S:Se€S:N(s:s€85:{{s}})
= { Definition Dual }
Dual(S)

end of proof

(4.87) & 37T = Dual(7) J Dual(S)

Proof
Take Dual(S) for S in Theorem 4.84 and use Theorem 4.82.
end of proof

(4.88) S ~ 7T = Dual(S) ~ Dual(7)

Proof Immediate from above. end of proof

(4.89) Dual(S; 7) ~ Dual(S); Dual(7)
Proof

Dual(S; 7)
= { Definition ; }
Dual(M($:5€S:U(s:s€S:T(T:TeT:Ut:te T:{{st}})))))
= { Dual over N, U }
US:5€S:Ns:s€S:U(T:TeT:N(t:¢te T:Dual({{st}})))))
= { Dual{{s}} = {{s}} }
US:SeS:Ns:seS:U(T:TeT:N(t:te T:{{st}})))
= { Left distribution of M, L over ; }
U(S:SeS:N(s:seS:{{s}}; U(T:TeT:N(t:tc T:{{t}}))

157

= { Definition Dual }
U(S:Se€S:N(s:s€S5:{{s}}; Dual(7)))

= { Left distribution of M, over ; }
US:5€eS8:N(s:s€85:{{s}})); Dual(7)

= { Definition Dual } :
Dual(S); Dual(7)

end of proof

(4.90) Dual(5*) ~ St
Proof

Dual(S*)
= { Definition S* }
Dual(p(7 : 7 ~skip US;7 : 7))
= { U and ; are monotonic hence fixed points form complete lattice }
Dual(l(7 : 7T ~skip US; T : 7))
= { Dual over M }
W(7 : T ~skip US; 7 : Dual(T))
= { Calculus }
U(7 : T ~skip US; 7 : Dual(skip US; 7))
= { Dual over Li,; . Dual(skip) = skip }
U(T : 7 ~skip US; 7 :skip NMDual(S); Dual(7))
= { Theorem (4.88) }
U(7 : Dual7 ~ skip M Dual(S); Dual(7) : skip M Dual(S); Dual(7))
= { Calculus }
W(T : T ~ skip NDual(S); 7 : 7T)
= { DEM and ; are monotonic hence fixed points form complete lattice }
v(T : T ~skip MDual(§);7 : 7)
= { Definition ST }
St

end of proof

(4.91) Dual(S) = 8"

158
Proof Immediate from previous theorem and Theorem 4.82. end of proof

(4.92) a(S) =o(S) =
(S||Dual(S’)) connect {z: z € a(S) : z.2'} ~ skip
where 8’ is S with all actions replaced by their primed counterparts.

Proof

S||Dual(S’)connect {z:z € o(S) : z.2'}
= { Definition Dual }
SI{S":V(§":5'€S:3(s:5€5":5€5)):8}
connect {z:z € a(S) : z.2'}
= { Definition || }
{$;T:5€SANTe{S:V85:5€S5:3(s:5€8":5€8)):8}:8]|T}
connect {z :z € a(S5) : z.2'}
= { Calculus }
{5,5:85€eSAV(S":5€S:3(s: SES”'SES)):SHS'}
connect {z:z € oS) : z.2'}
= { Property of connect }
{8,5:5€eSAV(S":5€S:3(s:5€85":5€8"):
(S||S’) connect {z: z € a(S) : z.2'}}
= { Definition M, || }
H(S,S' SeSA V(S" S'eS:3s:5€85":5€8)):
U(s,s":s €S A s'e€S : {{s}}I{{s'}}) connect {z:z € a(SF) : 2.2 })
= { Property connect }
n(s,5:5eSAV(S§":5€S:3(s:5€85":5€8)): '
U(s,s":s€8 A s €8 :({{s}}{{s'}}) connect {z:z € a(F) : z.2'}))
= { Properties of connect , a(S) = (S) }
n(s,5:SeSAV(S":5€S5:3(s:s€85":5€8")):
U(s,s":s €S AN s’ €S A s =primed(s) : skip))
= { Calculus }
skip

end of proof

(4.93) aS)=0(S) =
7 C Dual(S') = (S||7) connect {z :z € a(S) : z.2'} ~ demon

159

Proof

We have

TCDual(S)= AT, S:TeT ASeS:VYU:UeT:UES))

The theorem then follows from a calculation similar to the one for the
previous theorem, using the fact that demon is the unit of U and the zero
of M.
end of proof

160

Bibliography

[

2]

[3]

[6]

[7]

(8]

[9]

S. Agerholm. Mechanizing program verification in HOL. Master’s thesis,
Aarhus University, 1992.

R.-J.R. Back and J. von Wright. A lattice-theoretical basis for a specifi-
cation language. In J.L.A. van de Snepscheut, editor, Proceedings of the
first Mathematics of Program Construction Conference, pages 139-156,
1989. LNCS 375.

R.-J.R. Back and J. von Wright. Duality in specification languages: A
lattice-theoretical approach. Acta Informatica, 27:583-625, 1990.

R.-J.R. Back and J. von Wright. Combining, angels, demons, and mir-
acles in program specifications. Theoretical Computer Science, 100(2),
1992.

R.J.R. Back. On the Correciness of Refinement Steps in Program De-
velopment. Ph.D. thesis, University of Helsinki, 1978. Report A-1978-4.

J.A. Bergstra and J.W. Klop. Process algebra for synchronous commu-
nication. Information and Control, 60(1-3):109-137, 1984.

G. Birkhoff. Lattice Theory. Colloquium Publications, Volume 25. Amer-
ican Mathematical Society, 1967.

S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communi-
cating sequential processes. J. ACM, 31(3):560-599, 1984.

S.M. Burns and A.J. Martin. Syntax-directed translation of concurrent
programs into self-timed circuits. In Proceedings of the Fifth MIT Con-
ference on Advanced Research in VLSI, pages 35-40. MIT press, 1988.

161

[10] K.M. Chandy. Concurrent program archetypes. 1994. Keynote address,
Scalable Parallel Libraries Conference.

[11] K.M Chandy and J. Misra. Parallel Program Design, a foundation.
Addison-Wesley, 1988.

[12] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[13] E.W. Dijkstra. On the unification of three calculi. In Marktoberdorf
Proceedings, 1992.

[14] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Se-
mantics. Springer-Verlag, 1990.

[15] E.W. Dijkstra and A.J.M. van Gasteren. A simple fixpoint argument
without the restriction to continuity. Acta Informatica, 23:1-7, 1986.

16] R.M. Dl]kstl'a Relational calculus and relational pProgram semantics,
g
1992. master’s thesis, Univ. of Aachen.

[17) R.M. Dijkstra. DUALITY: a simple formalism for the analysis of
UNITY. Technical report, Department of Mathematics and Comput-
ing Science, University of Groningen, 1994. CS-R9404.

[18] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. Ph.D. thesis, Computer Science Department,
Carnegie Mellon University, 1988. CMU-CS-88-119.

[19] P. Gardiner and C. Morgan. Data Refinement of Predicate Transformers.
Theoretical Computer Science, 87(1), 1991.

[20] M. Gordon. HOL: A Machine Oriented Formulation of Higher-Order
Logic. Technical Report 68, Computer Laboratory, University of Cam-
bridge, England, 1985. revised version.

[21] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal
Specification. Springer-Verlag, New York, New York. 1993.

[22] C.A.R. Hoare. Proof of correctness and data representations. Acta
Informatica, 1:271-281, 1972.

162

[23] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer
Science (C.A.R. Hoare, ed.). Prentice-Hall International, 1985.

[24] H.P. Hofstee. Distributing a class of sequential programs. Science of
Computer Programming, 22:45-65, 1994.

[25] L. Jategaonkar and A.R. Meyer. Self-synchronization of concurrent pro-
cesses (preliminary report). 1993. Proceedings 1993 LICS conference.

[26] A. Lines. CS185a project specification. 1993. private communication.

[27] INMOS Ltd. occam™ Programming Manual. Prentice Hall Interna-
tional, 1984.

[28] J.J. Lukkien. An operational semantics for the guarded command lan-
guage. In R.5.Bird, C.C. Morgan, and J.C.P.Woodcock, editors, Mathe-
matics of Program Construction, number 669 in Lecture Notes in Com-
puter Science, pages 233-249. Springer-Verlag, 1993.

[29] A.J. Martin. An axiomatic definition of synchronization primitives. Acta
Informatica, 16:219-235, 1981.

[30] A.J.Martin. Distributed mutual exclusion on a ring of processes. Science
of Computer Programming, 5:265-276, 1985.

[31] A.J. Martin. The probe: an addition to communication primitives. In-
formation Processing Letters, 20:125-130, 1985. and (21)107.

[32] A.J. Martin. Compiling communicating processes into delay-insensitive
VLSI circuits. Distributed Computing, 1(4), 1986.

[33] R. Milner. Communication and Concurrency. Series in Computer Sci-
ence (C.A.R. Hoare, ed.). Prentice-Hall International, 1989.

[34] C. Morgan. The specification statement. ACM TOPLAS, 10(3):403-419,
1988. o

(35] C. Morgan. Programming from Specifications. Series in Computer Sci-
ence (C.A.R. Hoare, ed.). Prentice-Hall International, 1990.

163

[36] G. Nelson. A Generalization of Dijkstra’s Calculus. ACM Transactions
on Prograrming Languages and Systems, 11(4):517-561, 1989.

[37] C.A. Petri. Communikation mit Automaten. Schriften des Institutes fiir
Instrumentelle Mathematik, Bonn, 1962. In German.

[38] C.L. Seitz. System timing. In C.A. Mead and L.A. Conway, editors,
Introduction to VLSI Systems, chapter 7. Addison Wesley, 1980.

[39] J. Staunstrup and M.R. Greenstreet. Synchronized transitions. In
J. Staunstrup, editor, Formal Methods for VLSI Design, pages 71-128.
North-Holland/Elsevier, 1990.

[40] J.T. Udding. Classification and Composition of Delay-Insensitive Cir-
cuits. Ph.D. thesis, Technische Hogeschool Eindhoven, 1984.

[41] C.H. van Berkel, J. Kessels, M. Rocken, R.W.J.J. Saeijs, and F. Schalj.
The VLSI-programming language tangram and its translation into hand-
shake circuits. In Proceedings of the 1991 FEuropean Design Automation
Conference, pages 384-389. IEEE Computer Society, Los Alamitos, Cal-
ifornia, 1991.

[42] A. van de Mortel-Fronczak. Models of Trace Theory Systems. Ph.D.
thesis, Technische Universiteit Eindhoven, 1993.

[43] J.L.A. van de Snepscheut. Trace Theory and VLSI Design, volume 200
of Lecture Notes in Computer Science. Springer-Verlag, 1985.

[44] J.L.A. van de Snepscheut. JAN 180. On Lattice Theory and Program
Semantics. Technical Report CS 93-19, California Institute of Technol-
ogy, 1993.

[45] J.L.A. van de Snepscheut. JAN 187. Mechanized Support for Step-
wise Refinement. Technical Report CS-TR-94-01, California Institute of
Technology, 1994.

[46] J.L.A. van de Snepscheut and J.T. Udding. An alternative implemen-
tation of communication primitives. Information Processing Letters,

23:231-238, 1986.

164

[47] R. van Glabbeek and U. Goltz. Equivalence notions for concurrent sys-
tems and refinement of actions. LNCS, 379:237-248, 1989. Proceedings
of MFCS ’89.

[48] J. von Wright. A Lattice-theoretical Basis for Program Refinement.
Ph.D. thesis, Abo Akademi, 1990.

