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Abstract 

Conditions are described for the synthesis of long cDN A transcripts of Sin db is 

virus 268 and 498 RNA in high yield. This single-stranded cDNA could be cut with 

Type II restriction endonucleases including Hae III, Hha I, Rsa I, or Taq I to give 

reproducible patterns of discrete, virus-specific fragments which were suitable for 

subsequent eQd-labeling and direct sequence analysis. Using these methods, the 

strategy used for obtaining nearly the entire 268 RNA sequence from cDNA synthe­

sized in vitro is presented. The 268 RN A is approximately 4.2 kb in length, and from 

the AUG codon initiating synthesis of the capsid protein, contains an open reading 

frame for 3735 nucleotides. From this sequence, the amino acid sequences of the 

encoded virus structural proteins, which include a basic capsid protein and two 

integral membrane glycoproteins (El and E2), as well as the sequences of two 

nonstructural polypeptides have been dedu,ced. Features of the primary structure of 

these proteins and the proteolytic cleavage sites involved in their processing are 

discussed. 

The orientation of the virion glycoproteins with respect to the lipid bilayer was 

studied by digesting intact .Sindbis virus with cx-chymotrypsin. A single membrane-

associated peptide is produced from each of the two virion glycoproteins. These 

peptides contain covalently attached palmitic acid, are rich in hydrophobic amino 

acids and are located a:t the extreme COOH-terminal end of each glycoprotein. Both 

peptides contain uninterrupted sequences of uncharged amino acids of sufficient 

length to span the lipid bilayer, and it is suggested that they serve to anchor the viral 

glycoproteins in the membrane. The properties of these and other well-characterized 

transmembrane segments are discussed. 

Specific antisera to each of the virus structural proteins was produced and used 

to study the association of the virion glycoproteins and their precursors. El and E2 

could be· cross;..linked into heterodimers using bifunctional amino-reactive imidates. 
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This association is present both in intact virions and infected cells and is stable after 

solubilization ~f the virion envelope by Triton X-100. Cross-linking data of pulse­

labeled monolayers and cells infected with ts mutants are summarized. These data 

suggest that PE2 (the precursor to E2) and E2 are in different conformations with 

respect to El, and that the glycoprotein precursors synthesized at elevated 

temperatures have an increased tendency to undergo intracellular aggregation. 
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CHAPTER 1 

structure and maturation of Sindbis virus 
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. The purpose of this chapter is to provide an introduction to the infection cycle 

of alphaviruses in vertebrate cells with particular emphasis on the translation and 

processing of the virion structural proteins. Several recent reviews have been published 

(Strauss and Strauss, 1977; Kaiiriiiinen and SOderlund, 1978; Simons et al., 1978; 

see also, The Togaviruses, Schlesinger, R. W., ed., Academic Press, New York) which 

summarize in detail what is known about the molecular biology of alphaviruses. 

Sindbis virus, and the closely related Semliki Forest virus, are the most extensively 

studied members in the alphavirus genus of the togavirus family. These simple enveloped 

viruses are transmitted in nature by blood-sucking arthropods, and infect a wide variety 

of vertebrate hosts including birds and mammals. The mature virion contains a 

single 49S genomic RN A complexed with approximately 240 capsid protein (C) (MW 

J'30,000 daltons) subunits to form an icosahedral nucleocapsid. This structure is 

surrounded by a lipid bilayer of host cell origin containing two virus-specific integral 

membrane glycoproteins (El and E2) (each of MW J'50,000 daltons) organized in 

spikelike projections on the external surface of the virus particle. These projections, 

which include the majority of the glycoprotein mass, can be removed by proteolysis 

of the virion (Compans, 1971; see Chapter 4). The virion envelope is acquired as 

t_he nucleocapsid buds through the host cell plasma membrane during the final stages 

of virus maturation (reviewed by Murphy, 1980). 

The infection cycle begins with the adsorption of the virus to specific receptors 

in the host cell plasma membrane (Birdwell and Strauss, 197 4). In the case of Semliki 

Forest virus, these receptors have recently been identified as the HLA-A and HLA-B 

antigens on human cells and the H2-K and H2-D antigens on mouse cells (Helenius et al., 

1978). Following adsorption to the cell surface, the virus could enter the cell either 

by fusion with the plasma membrane or endocytosis. Fusion of the virion envelope 
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with the plasma membrane would presumably lead to the incorporation of viral glyco­

proteins into the host cell surf ace. This possibility has been tested by using virus­

specific antisera.in a complement mediated cytotoxicity assay (Fan and Sefton, 

1978). Cells infected with Sindbis virus were not sensitive to lysis during the early 

stages after absorption, suggesting that penetration may not be mediated by fusion 

with the plasma membrane, in contrast to paramyxoviruses such as Sendai virus 

(Fan and Sefton, 1978). Support for the second pathway, receptor-mediated endocytosis, 

has been obtained for Semliki Forest virus by Helenius and coworkers (Helenius et al., 

1980). Electron microscopic investigations showed that virus is internalized by endocytosis 

in coated vesicles, and becomes sequestered in intracellular vacuoles and lysosomes. 

Considerable biochemical evidence indicates that the low lysosomal pH triggers 

the fusion of the viral membrane with the intracellular vacuolar membrane leading 

to the release of the nucleocapsid into the cytoplasm. A similar pathway for the 

entry of macromolecules into lysosomes utilizing receptor-mediated endocytosis 

has been found for low density lipoprotein and several other polypeptides (reviewed 

by Goldstein et al., 1979). 

Once inside the cytoplasm the genomic 49S RN A is somehow uncoated (presumably 

involving the dissociation of capsid protein) and serves as the mRNA for the viral 

RNA replicase. Naked 498 RNA is also infectious, but the efficiency is greatly 

reduced when compared with intact virions. The (+)-stranded 498 RNA then serves 

as a template for the production of complementary (-)-stranded 498 RNA (Strauss 

and Strauss, 1972b). This RNA is transcribed to produce additional genomic 49S 

RN A as well as a subgenomic 26S RN A consisting of the 3' terminal one""'.third of 

the 49S RNA (Simmons and Strauss, 1972a,b; Ou et al., 1981). The 268 RNA serves 

as the mRNA for the virion structural polypeptides (Simmons and Strauss, 1974). 

The 268 RNA is translated from a single initiation site (Cancedda et al., 1975) 

on membrane-bound polyribosomes (Wirth et al., 1977), and the nascent polyprotein 
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is processed by proteolytic cleavage (Strauss and Strauss, 1977; see Chapter 3). 

The genes are translated in the order 5'-C-PE2-El-3' (PE2 is the precursor to E2) 

(Garoff fil al., 1980a,b; Schlesinger and Kaariainen, 1980; see Chapter 3). The capsid 

protein is cleaved while nascent and rapidly associates with genomic 49S RNA to 

form cytoplasmic nucleocapsids (Soderlund, 1973). Several lines of evidence suggest 

that the proteolytic activity responsible for this cleavage may reside in the capsid 

protein itself (Simmons and Strauss, 1974; Scupham et al., 1977; Aliperti and Schlesinger, 

1978). 

Both of the virion glycoprotein precursors, PE2 and El, are cotranslationally 

translocated across the membrane of the rough endoplasmic reticulum (Garoff et al., 

1978; Bonatti et al., 1979) by a mechanism which has been the subject of many recent 

investigations. Secreted and bitopic integral membrane proteins often contain a 

short (15-20 amino acids) NH2-terminal hydrophobic peptide, or "signal sequence", 

which interacts with protein components in the membrane of the rough endoplasmic 

reticulum and initiates their cotranslational translocation across the membrane 

(reviewed by Blobel et al., 1979; see also Davis and Tai, 1980; Wickner, 1980; Inouye 

and Halegoua, 1980; Emr et al., 1980). In most cases, the signal sequence is cleaved 

by an enzyme(s) called signalase located on the cisternal side of the rough endoplasmic 

reticulum (Blobel et al., 1979) before synthesis of the polypeptide is complete, and 

i:apidly degraded (Habener et al., 1979). The cleavage of the capsid protein enables 

the nascent NH2 terminus of PE2 to function as a signal sequence. Mutants defective 

in this cleavage fail to insert PE2 into the lumen of the rough endoplasmic reticulum 

and accumulate a polyprotein precursor which cari therefore be degraded by protease 

treatment of infected cell microsomes (Wirth et al., 1979). The NH2-terminal hydro­

phobic segment of PE2 differs from most other known signal sequences, in that it 

is not cleaved (Bonatti and Blobel, 1979; Bell et al., 1981). PE2 is cleaved 10-20 

minutes after its synthesis has been completed but this cleavage occurs during the 
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final stages of viral maturation and apparently involves a protease with a different 

specificity th8:n that of signalase (see below). In addition, there is an asparagine­

linked glycosyla~ion site in the middle of the putative hydrophobic signal sequence 

(Bell et al., 1981; J. Mayne, personal communication; see Chapter 3). 

Immediately 3' to the coding sequence for PE2, the 268 RNA encodes a hydrophobic 

peptide, 55 amino acids in length (see Chapter 3), which has been recently isolated 

and characterized called the 6K protein (Welch and Sefton, 1979, 1980; Welch et 

al., 1981). This hydrophobic peptide presumably functions as the signal sequence 

for the insertion of El. The presence of a separate signal sequence for El, distinct 

from that for PE2, is supported by the identification of a ts mutant of Semliki Forest 

virus which fails to cleave the capsid protein from PE2 at the restrictive temperature 

but allows the normal insertion of El into the lumen of the rough endoplasmic reticulum 

(Hashimoto et al., 1981). 

The timing of the proteolytic cleavages and location of the protease(s) responsible 

for them are of particular importance since they should give important insights 

into the topography of the glycoprotein precursors during and after their synthesis. 

PE2 has been shown to span the bilayer, and contains approximately 30 amino acids 

COOH-terminal to its transmembrane segment (Wirth et al., 1977; Garoff et al., 

1978; Bonatti~ al., 1979; Chapter 4). Based on this structure, models for the insertion 

and cleavage of the glycoprotein precursors can be proposed. While the identity 

of the protease(s) responsible for the two cleavages separating PE2 and El is unknown, 

both cleavages occur after alanine (see Chapter 3) and signalase appears to cleave 

after amino acids with short side chains (Blobel et al., 1979). If signalase is responsible 

for both cleavages, and is localized exclusively on the cisternal side of the rough 

endoplasmic reticulum (Blobel et al., 1979), then PE2 must at least transiently span 

the bilayer twice in order for the PE2-6K cleavage to occur in the lumen of the 

rough endoplasmic reticulum (see Chapter 3). Alternatively, if a proteolytic enzyme 
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localized on the cytoplasmic side of the bilayer is responsible for the PE2-6K cleavage, 

then PE2 woul,d be required to cross the membrane only once. If the PE2-6K cleavage 

does. occur on th~ cytoplasmic side, then the newly exposed NH2-terminus of the 

6K protein cotlld serve as a signal sequence for the insertion of El. However,, kinetic 

data on the appearance of the glycoproteins suggest that the cleavage separating 

PE2 and the 6K protein is delayed and occurs after a significant portion of El has 

been synthesized and transferred into the lumen of the rough endoplasmic reticulum 

(Welch et al., 1981). These data imply that the 6K protein may function as a signal 

sequence for the insertion of El before it is cleaved from PE2. This would be functionally 

analogoils to the secreted chick oviduct protein, ovalbumin, which contains an internal 

signal peptide (Lingappa et al., 1979), but in contrast to the 6K protein, this peptide 

is not cleaved from the mature protein. Future experiments will be required to 

distinguish between these various alternative pathways for the cotranslational membrane 

insertion and cleavage of the glycoprotein precursors in the rough endoplasmic reticulum. 

During or shortly after protein synthesis, mannose-rich oligosaccharide units 

are added to the glycoprotein precursors (Sefton, 1977). These oligosaccharide units 

are linked to the polypeptide chain by an N-glycosidic band between asparagine 

and N-acetyl glucosamine (Burke and Keegstra, 1979; see Chapter 3). The glycoproteins 

then appear to follow the vectorial route of other secreted and plasma membrane 

proteins to the Golgi and eventually to the plasma membrane (Palade, 1975; Erwin 

and Brown, 1980). Recently, clathrin-coated vesicles have been implicated in the 

transport of the vesicular stomatitis virus glycoprotein from the rough endoplasmic 

reticulum to the Golgi and from the Golgi to the plasma membrane (Rothman and 

Fine, 1980). This pathway may be involved in the transport of other membrane glyco­

proteins, including Sindbis virus glycoprotein precursors. During this time, oligosaccharide 

chains are trimmed and complex chains are modified by the addition of galactose, 

fucose and sialic acid. In addition, both Sindbis virus glycoproteins contain covalently 
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attached fatty acids (Schmidt et al., 1979), which are added post-translationally 

about 10-20 a,inutes after the completion of protein synthesis, presumably in the 

. Golgi (Schmidt ~d Schlesinger, 1980). A similar type of fatty acid binding has also 

been found for the vesicular stoma ti tis virus glycoprotein as well as some host cell 

polypeptides (Schmidt and Schelsinger, 1979), and may be a general characteristic 

of membrane glycoproteins. 

The Sindbis glycoproteins aririve at the plasma membrane and can be incorporated 

into mature virions about 20 minutes after their synthesis. The cleavage of PE2 

to E3 and E2, which also occurs at this time is necessary for the final steps in virus 

maturation (Strauss and Strauss, 1977). In the case of Sindbis virus, E3 is not found 

in the mature virion and can be recovered in the culture fluid (Welch and Sefton, 

1979; J. Mayne, unpublished). This cleavage appears to be analogous to the processing 

of such proteins as pro-albumin and pro-parathyroid hormone which are cleaved 

after double basic amino acids in the Golgi shortly before secretion of the mature 

protein (reviewed by Dean and Judah, 1980; see Chapter 3). The final events during 

maturation involve the specific interaction of the nucleocapsid with the cytoplasmic 

portion of the transmembrane glycoprotein(s) leading to virus budding through the 

host cell plasma membrane. This interaction is highly specific since host cell glyco­

proteins are rigorously excluded from mature virions (Strauss, 1978). Furthermore, 

the budded virion contains equimolar quantities of each structural protein (Schlesinger 

et al., 1972; Garoff et al., 1974; see Chapter 4). 

The subsequent chapters of this thesis deal with the determination of the primary 

structure and topography of the structural proteins of Sindbis virus. In Chapter 2, 

a technique is presented which was developed for sequence analysis of purified single­

stranded RN As, and used to obtain nearly the entire sequence of Sindbis 26S RN A. 

Together with protein sequence data, this has led to the precise localization of the 

structural protein genes, the determination of the complete polyprotein primary 



8 

sequence, and the ,definition of the cleavage sites involved during translation and 

maturation of the structural proteins (Chapter 3). Chapter 4 presents a study of 

. the orientation of the virion glycoproteins with respect to the lipid bilayer. These 

results showed that both glycoproteins are anchored in the bilayer by COOH-terminal 

sequences of hydrophobic amino acids, but that if El spans the bilayer, at most a 

few amino acids are exposed on the cytoplasmic face of the membrane. In contrast, 

E2 contains an additional 33 amino acids COOH-terminal to its transmembrane anchor 

some of which may be capable of forming a specific interaction with the nucleocapsid 

during budding. Since the structure of El suggests that it may not directly interact 

with the nucleocapsid, a stable El-E2 complex in the plasma membrane would assure 

a mature virion with equimolar quantities of each glycoprotein. Chapter 5 describes 

the production of antisera specific for each structural protein which was then used 

to study the quaternary structure of the virion glycoproteins and their precursors. 

It was found that El and E2 are associated in the infected cell as well as in the mature 

virion, and that this complex is stable even in the absence of the nucleocapsid. 
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Synthesis, cleavage, and sequence analysis of eDNA complementary to the 

268 mRNA of Sindbis virus 
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ABSTRACT 

Conditions for synthesis of long cDNA transcripts of 8indbis virus 268 and 

498 RN A in high yield have been developed. This single-stranded cDN A could be 

cut with Hae Ill, Hha I, Rsa I, or Taq I to give reproducible patterns of discrete, 

virus-specific fragments which were suitable for subsequent end-labeling and direct 

sequence analysis. Using these methods we present the strategy used for obtaining 

nearly the entire 268 RNA sequence from cDNA synthesized in vitro. This approach 

should prove useful for sequence analysis of any purified RN A available in microgram 

quantities. 
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INTRODUCTION 

Sindbis virus, and the closely related Semliki Forest virus (SFV) have been extensively 

studied in several laboratories as model systems for alphavirus maturation and glyco­

protein biosynthesis. These simple viruses contain a lipid envelope with two or three 

spike glycoproteins (El, E2, and in the case of SFV, E3), which surrounds an icosahedral 

nucleocapsid consisting of the capsid protein (C) and the 49S genomic RNA. They 

mature by budding through the host cell plasma membrane (Strauss and Strauss, 

1977), and contain exclusively viral encoded glycoproteins (Strauss, 1978). Thus, 

the interaction between the transmembrane viral glycoproteins and the cytoplasmic 

nucleocapsid is highly specific in these viruses. At the onset of virus infection in 

vertebrate cells, host cell macromolecular synthesis is shut off (Wengler, 1980), 

and large quantities of two virus-specific mRNAs are produced. The genomic 49S 

RNA serves as the mRNA for the nonstructural polypeptides. A 3' terminal sub­

genomic 26S RNA is translated from a single initiation site (Cancedda et al., 1975) 

to produce the virion structural polypeptides in the order 5'-C-E3-E2-El-3' (Schlesinger 

and Kaariainen, 1980). Primary amino acid sequence data for the NH2-terminal 

regions of the Sindbis structural proteins and of some precursors have recently been 

obtained (Bell et al., 1978; Bell et al., in preparation; Rice et al., in preparation). 

However, NH2-terminal blockage of the capsid protein (Boege et al., 1980; Bell 

and Strauss, in preparation) and the scarcity of intermediate cleavage products have 

made the complete polyprotein sequence difficult to determine. For these reasons 

and others, it was of interest to determine the 26S RNA sequence. In conjunction 

with available protein sequence data, the RNA sequence would allow the precise 

localization of the structural protein genes, the determination of the complete poly­

protein primary sequence, and the definition of the cleavage sites involved during 

translation and maturation of the structural proteins. In addition, examination and 
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comparison of related alphavirus genomes for common sequences or secondary structures 

should give useful insights into their possible role in RN A replication, translational 

regulation, and encapsidation. As an alternative method for rapid sequence determination, 

we have sequenced single-stranded cDNA restriction fragments complementary 

to 8indbis 268 RNA (268 cDNA). This approach is similar to the one used for the 

sequence determination of the 5'-untranslated regions of human ex- and 8-globin 

mRNAs (Chang et al., 1977). 

This method requires only a few micrograms of purified RNA, and because 

molecular cloning is not involved, there is no chance of selecting a minor variant 

in the population. In addition, this approach should be extremely valuable for the 

rapid determination of sequence changes in 8indbis ts mutants of which a large, 

well characterized catalogue exists (Strauss and Strauss, 1980) or for sequence 

comparisons of closely related virus strains. In this paper we present the methods 

used for cleavage of single-stranded cDNA into discrete fragments which were then 

end-labeled, isolated, and sequenced using the basic-specific chemical cleavage 

method of Maxam and Gilbert (1980). From the overlapped sequence we have verified 

that Hae III, Hha I, Rsa I, and Taq I have the same specificity on single-stranded 

DNA as doublestranded DNA, but that additional sites appear to be cleaved. 

MATERIALS AND METHODS 

Virus growth and RNA pm"ification. The HR (large plaque) strain of Sindbis 

virus (Burge and Pfefferkorn, 1966) was grown in monolayers of primary chicken 

embryo fibroblasts as previously described (Pierce et al., 1974). Intracellular 268 

RNA was prepared by the method of Ou et al. (1981). Briefly, poly(A) containing 

RNA was selected from whole cytoplasmic RNA by two passages over oligo(dT) 

cellulose, and the 268 fraction was pooled after velocity sedimentation on sucrose 

gradients. The final yield of 268 RNA was between 5-20 µg per 800 cm2 roller bottle. 
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Virion 498 RNA was extracted from purified virus {Bell et al., 1979) after denaturation 

with 0.5% SDS using the phenol/chloroform method of Hsu et al. (1973). After 

two successive ethanol precipitations RNA was resuspended in distilled water at 

a concentration of 0.5-1 mg/ml and stored at -70°C. 

Molecular weight markers were prepared by digestion of M13 {strain mp 73, 

from J. Messing) virion DNA {kindly provided by H. V. Huang) with Hae Ill and 5' 

end-labeled using T4 polynucleotide kinase {P.L. Biochemicals) and [y-32P]-ATP 

(ICN), as described below. 

eDNA synthesis. cDNA was synthesized essentially under the conditions of 

Myers and Spiegelman (1978) with several modifications. Typical reactions contained 

50 mM Tris-Cl, pH 8.3, 8 mM MgC12, 1 mM dithiothreitol, 50 mM KCl, 1 mM of 

all four deoxynucleotide triphosphates (dNTP), 10 µg/ml oligo{dT)12_18 (P.L. Biochemi­

cals) or 300 µg/ml short calf thymus DNA (6-8 nucleotides, from J. Casey), 15-50 µg/ml 

Sindbis 268 RN A, 4 mM sodium pyrophosphate, and 12 units of avian myeloblastosis 

virus (AMV) reverse transcriptase (kindly provided by the Office of Program Resources 

and Logistics, Viral Cancer Program, Viral Oncology, Division of Cancer Cause and 

Prevention, National Cancer Institute) per microgram of template RNA. cDNA 

for subsequent sequence analysis was labeled with trace amounts of 3H-TTP (Amersham 

Searle). For preparation of uniformly labeled cDN A for restriction analysis 50 µCi 

of each [cx-32P]-dNTP (400 Ci/mmole) (Amersham Searle) was included and the 

unlabeled dNTP concentration lowered to 0.2 mM. Occasionally, 4 mM ribonucleoside­

vanadyl complexes (from Kai Zinn) and additional 4 mM MgC12 were included in 

the reaction mixture (see Results). The template RN A was heated to 56°C for 2 

minutes and quick chilled in ice water before addition to the mixture. Synthesis 

was allowed to proceed for 20-60 minutes at 42.5°C and stopped by the addition 

of Na2 EDTA to 25 mM. Incorporation was measured by spotting duplicate samples 

of the reaction mixture onto Whatman 3MM discs followed by precipitation with 
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trichloracetic acid and liquid scintillation counting. Products were sized on vertical 

alkaline agarose gels as described by McDonell et al. (1977). 

The reverse transcription mixture was extracted once with phenol and twice 

with chloroform:isoamyl alcohol (100:1). 25 µg carrier tRNA (P.L. Biochemicals) 

and sodium acetate, pH 5.8, to 0.2 M were added and the mixture was precipitated 

with 2.5 volumes of cold 100% ethanol. After pelleting and resuspension in distilled 

water, the cDNA-RNA hybrids were used directly for restriction enzyme analysis 

or alternatively the RNA strand was hydrolyzed in 0.1 M NaOH for 60 minutes at 

60°C. After hydrolysis samples for subsequent end-labeling and sequence analysis 

were chilled and diluted with 3 volumes of distilled water, neutralized with HCl, 

and passed over a Biogel A5M (BioRad) column equilibrated in 25 mM Tris-Cl, pH 7.4, 

1 mM Na2 EDTA, 0.02% sodium dodecyl sulfate (SDS) to remove small oligonucleotides. 

The excluded peak fractions were pooled, lyophilized, and resuspended in 100 µl 

distilled water. After addition of sodium acetate to 0.2 M, and magnesium acetate 

to 20 mM, the cDNA was precipitated with 2.5 volumes of cold 100% ethanol. This 

precipitation was repeated to assure complete removal of the SDS. cDN A samples 

were resuspended in distilled water and stored at -20°C. 

Restriction enzyme digestion and end labeling. Restriction endonucleases 

Hae III, Hha I, Rsa I, and Taq I were all purchased from New England Biolabs. Reaction 

conditions were essentially as recommended by the manufacturer. An excess 10 

to 50 fold of the restriction enzymes was required for nearly complete digestion 

of single-stranded cDNA or cDNA-RNA hybrids. The amount of enzyme used was 

empirically determined for each batch because of the large variability in the levels 

of nonspecific nuclease activity in different batches of these and other restriction 

endonucleases from various commercial sources (see Results). Taq I was preincubated 

for 15 minutes at 70°C to inactivate nonspecific nucleases (Sato et al., 1977) before 
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addition of the substrate. Taq I digestions were done at 56°C or 65°C, all others 

were incubated at 37°C. After 1 hour the reaction was stopped by the addition of 

Na2 EDTA to 25 mM. 

Samples for 5' or 3' end-labeling were extracted with phenol, then with chloroform, 

and ethanol precipitated as described above (omitting the carrier tRNA). Alternatively, 

restriction digests in low-salt buffers were sometimes used directly after dilution 

and adjustment to pH 8.3 with Tris-Cl. In either case, 37 units of bacterial alkaline 

phosphatase (Bethesda Research Labs) were added to 0.5-1 µg of cDNA in a final 

volume of 40-60 µl, and the mixture was incubated at 65°C for 30 minutes. After 

the addition of Na2 EDTA to 25 mM the mixture was extracted with phenol and 

chloroform followed by ethanol precipitation as described above. 5' end-labeling 

was done essentially as described by Maxam and Gilbert (1980) with 7.5 units of 

T4 polynucleotide kinase (P.L. Biochemicals) per microgram of cDNA and 1 mCi 

of [y-32P]-ATP (ICN, >7000 Ci/mmole) in a final reaction volume of 20 µl. 3' end­

labeling with terminal deoxynucleotidyl transferase (ribosubstitution grade, Bethesda 

Research Labs) and [a-32PJ-ATP was done as previously described (Maxam and Gilbert, 

1980). Base treatment after· 3' end-labeling was either omitted or done as described 

above for removal of the RNA from cDNA-RNA hybrids. 

Oligo(dA) cellulose chromatography. To obtain the sequence of cDN A comple­

mentary to the 3' end of the 268 RNA adjacent to the poly(A) tail oligo(dA) cellulose 

(Collaborative Research) chromatography was used for an additional purification 

step. Oligo(dT)12_18 primed cDNA digested with Rsa I or Hha I and 3' end-labeled 

with terminal deoxynucleotidyl transferase was passed over oligo(dA) cellulose (see 

the procedure for oligo(dT) cellulose chromatography in Ou et al., 1981). The bound 

fraction was ethanol precipitated and purified on a preparative gel as described below. 

The column retained a population of fragments with a unique 3' end (if restriction 
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enzyme cleavage was complete) and a heterogeneous 5' end (due to random oligo(dT) 

priming along the poly(A) tail during cDN A synthesis). 

Separation of cDNA restriction fragments. Analytical and preparative gels 

were 6% acrylamide (acrylamide:bisacrylamide, 20:1), 8.3 M urea, 2 mM Na2EDTA, 

and 100 mM Tris-borate, pH 8.3, prepared and run essentially as described by Maxam 

and Gilbert (1980). Samples in 80% deionized formamide, 50 mM Tris-borate, pH 

8.3, and 1 mM Na2EDTA, were denatured at 90°C for 2 minutes and quick chilled 

prior to electrophoresis. Gel dimensions were 30 cm x 40 cm x 0.5 mm or 30 cm 

x 80 cm x 0.5 mm. Only the notched plate was siliconized. After electrophoresis 

analytical gels were transferred to Whatman 3MM filter paper, covered with a thin 

plastic film (910, Reynolds) and exposed at -70°C using prefogged Kodak X-Omat 

R film and a Cronex Lightning Plus (DuPont) intensifying screen (Laskey and Mills, 

1977), or at -20°C with unfogged film and no intensifying screen. Preparative gels 

were covered and exposed at room temperature. Fragments for sequencing were 

excised and eluted for 24-72 hours into 1 ml of 0.6 M sodium acetate, 0.1 M Tris-

Cl, pH 8.0, 2 mM Na2EDTA, 25 µg/ml yeast tRNA, or by electroelution overnight. 

The DNA was separated from the gel slice by centrifugation through a siliconized 

glass wool plug, and precipitated with three volumes of cold 100% ethanol. The 

pellets were collected by centrifugation, redissolved in 200 µl 0.1 M ammonium 

acetate and the DNA precipitated a second time with 2.5 volumes of 100% ethanol. 

After resuspension in distilled water, each sample was dispensed into four Eppendorf 

tubes, frozen, and lyophilized before sequencing. Using these preparative methods 

we could prepare up to 20 or 30 end-labeled fragments for sequencing from a single 

preparation of restriction endonuclease cleaved cDNA (about 0.5 µg cDNA derived 

from 1-2 µg 268 RNA). 

Nucleotide sequence determination. Base-specific chemical cleavage of the 
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end-labeled fragments was done essentially as described by Maxam and Gilbert (1980) 

or as modified by Smith and Calvo (1980). Four reactions were used: either C, C 

+ T, A > C, and G > A or C, C + T, G +A, and G. For reading 300 nucleotides or 

less, the G + A reaction (final volume 23 µl) contained 3 µl of 1 M pyridinium for mate, 

pH 2.0, and was incubated at 37°C for 10 minutes. For longer sequences 2 µl pyridinium 

formate and a 5 minute incubation at 37°C was used. Sequencing gels (Maxam and 

Gilbert, 1980) were either 5%, 8%, 20%, or 25% acrylamide and run at high temperatures 

(~50°C). Samples in 80% deionized formamide were denatured at 90°C for 2 minutes 

and quick chilled prior to electrophoresis. After electrophoresis, the gels were transferred 

to either Whatmann 3MM filter paper or blotting paper and exposed to X-ray film 

as described above. 

RESULTS 

Synthesis of cDNA. Optimal conditions for the synthesis of long cDNA to 

Sindbis virus 268 and 49S RNAs were found to be similar to those used for poliovirus 

(Kacian and Myers, 1976; Myers and Spiegelman, 1978), and several other mRNAs 

(Zain et al., 1979; Devos et Eil., 1979; Buell et al., 1978). Increasing the reaction 

temperature from 37°C to 42.5°C resulted in a larger proportion of full length oligo(dT) 

primed cDNA to 26S RNA (data not shown). Preliminary experiments (data not 

shown) showed that the AMV reverse transcriptase was contaminated with ribonuclease, 

and that increasing the amount of enzyme in the reaction eventually lead to a decrease 

in the average length of the cDNA synthesized using an oligo(dT) primer. 12 units 

of AMV reverse transcriptase per µg of 26S RN A was found to be optimal for production 

of full length cDNA. In addition, the inclusion of 4 mM ribonucleoside-vanadyl com­

plexes (Berger and Birkenmeier, 1979) and an additional 4 mM Mg++ increased the 

yield of full length cDNA approximately two-fold (Fig. 1). Using these conditions 

from 30 to 60% of the input RNA was converted to cDNA. 
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Figure 1. Alkaline agarose gel patterns of oligo(dT) primed cDNA made to Sindbis 

virus 26S (lanes 1-3) or 49S (lane 4) RNA. Conditions for the cDNA reactions were as 

described in Materials and Methods except that lane 2 contained 4 mM ribo­

nucleoside-vanadyl complexes, and lane 3 contained only 4 units of AMV reverse 

transcriptase per microgram of 26S RNA. The marker at 4.4 kilobases was the 

position of end-labeled linearized pBR322. 
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Since cleavage of a cDN A into discrete fragments for sequencing depends 

on the presence of at least two cleavage sites, it was important to produce long 

cDN A transcripts. For short poly(A) containing RN As this can usually be accomplished 

using an oligo(dT) primer. However, for longer RNAs inefficiently copied from the 

3' end or lacking a poly(A) tail other priming sites must be used. In order to obtain 

a uniform distribution of 26S sequences, cDNA for sequencing was usually randomly 

primed using short calf thymus DNA. Thus, it was important to adjust the primer 

to template ratio such that long cDNA was produced. We found that ""'6µg calf 

thymus primer/µg template RNA gave predominantly long cDNA (>500 nucleotides, 

data not shown) suitable for subsequent digestion by frequently cutting restriction 

endonucleases with four base recognition sequences (see below). 

Figure 1 shows a comparison of oligo(dT) primed cDN A made from intracellular 

268 RNA and virion 49S RNA. In either case the cDNA formed a discrete banding 

pattern terminating abruptly at about 4.2 kb (approximately the size of 26S RN A). 

The cDN A made from 49S virion RN A had a small proportion of longer transcripts. 

These discrete cDNA species could have resulted from premature termination of 

cDNA synthesis due to RNA secondary structure (Kacian and Myers, 1976; Owens 

and Cress, 1980) or sites in the template RNA particularly susceptible to ribonuclease. 

Since the 26S RNA is a 31 terminal subgenomic fraction of the virion 49S RNA (Simmons 

and Strauss, 1972; Kennedy, 1976; Ou et al., 1981), the pattern of oligo(dT) primed 

cDNA products smaller than 4.2 kb from either the 26S or 49S RNA was virtually 

identical (Fig. 1). The absence of extra bands in the 49S cDN A (smaller than 4. 2 kb) 

indicated that most of the oligo(dT) primed cDNA synthesis began at the 31 poly(A) 

tail, as expected, rather than at other potential priming sites elsewhere in the genome. 

We have been unable to obtain a high yield of oligo(dT) primed cDNA transcripts 

from 49S RNA longer than 4.2 kb. The molecular basis and significance, if any, 

of this apparent "strong stop" for reverse transcriptase in 49S RN A is at present unknown. 
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Restriction enzyme cleavage eDNA. In order to use the vitro synthesized 

cDN A for direct sequence analysis, it was necessary to find Type II restriction enzymes 

which would produce discrete fragments with unique 51 and 31 termini. Hae III, Hha I, 

Hinf I, Hpa II, and Mbo I have been reported to cleave single-stranded DNA (Horiuchi 

and Zinder, 1975; Blakesley and Wells, 1975; Godson and Roberts, 1976). Additional 

enzymes, including Taq I, have been found which cleave at least the DNA strand 

of cDNA-RNA hybrids (Molloy and Symons, 1980). We have found that Rsa I and 

Taq I also cleave single-stranded DNA into discrete fragments. 

In Fig. 2 the restriction patterns obtained by digestion of cDNA from 26S RNA 

by Hae Ill, Hha I, Rsa I, and Taq I are shown. All four of these enzymes also cut 

the DNA strand of cDNA-RNA hybrids with virtually the same efficiency and specificity 

found for singles tr anded DNA (data not shown). In addition, the fragments produced 

by these enzymes were suitable for subsequent end-labeling and sequence analysis 

(see below). 

Extensive overdigestion of the cDNA, especially with Hha I, resulted in a 

low yield of discrete fragments due to nonspecific endonuclease and exonuclease 

activity. Hae III, Hha I, Rsa I, and Taq I were used in 40, 20, 50, and 10 fold excess, 

respectively, over the amount of enzyme required to cut an equivalent amount of 

duplex lambda DNA to completion. It should be emphasized, however, that these 

digestion conditions were empirically optimized for each batch of enzyme (data 

not shown) and are not generally applicable. 

Since the 26S RNA template is about 4.2-4.5 kb (Strauss and Strauss, 1977; 

C. M. Rice, unpublished data), we expected a complete restriction digest to yield 

a set of fragments whose sizes summed to about 4.2 kb, as well as an approximate 

linear relationship between fragment size and incorporated label (using uniformly 

labeled cDNA as a substrate). Inspection of the Hae III digest of uniformly labeled 

cDNA to 268 RNA in Fig. 2 revealed that the fragments were not present in equimolar 
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Figure 2e Restriction endonuclease digestion of randomly primed cDN A synthesized 

from Sindbis 268 RNA. Hae III (lane 1), Taq I (lane 2), Hha I (lane 3), and Rsa I (lane 

4) fragments were prepared and separated on 40 cm long 6% acrylamide gels as 

described in Materials and Methods. The xylene cyanol tracking dye was run to 60 cm 

(panel A), 40 cm (panel B), or 20 cm (panel C). The sizes of sequenced Hae III 

fragments (see Fig. 5, Table 1) are given in nucleotides. 
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amounts, and that their lengths summed to more than 9 kb. Based on sequence analysis 

of more than 40 of the Hae Ill fragments (see below), it has become clear that 26S 

RN A sequence heterogeneity (largely 49S-specific contaminants), differential transcription 

of 26S sequences by AMV reverse transcriptase, and partial Hae Ill digestion were 

responsible for the complex pattern seen in Fig. 2. 

Determination of specificity of restriction fragments. In Fig. 3 we have compared 

the Hae III restriction pattern of cDNA from intracellular 26S RNA and virion 49S 

RNA primed with either oligo(dT)12_18 or small oligonucleotides from calf thymus 

DNA. Virtually all (>90%) of the Hae III cleaved cDNA fragments from 26S RNA 

appeared to be virus-specific, regardless of the primer used. There were additional 

fragments present in the Hae III digest of calf thymus primed cDNA from virion 

49S RN A, since the 26S RN A accounts for only about one third of the 49S sequences 

(Simmons and Strauss, 1972). As we began sequencing these Hae III fragments (see 

below) it became clear that virtually all were virus-specific, as the above experiment 

had suggested, and that such a comparison for the other restriction enzymes (Hha I, 

Rsa I, and Taq I) was unnecessary. This comparison should prove useful, however, 

for identifying virus-specific cDNA restriction fragments when only impure preparations 

of intracellular RNA are available. 

Separation end sequence analysis of eDNA restriction fragments. After restriction 

enzyme cleavage and 31 or 5' end-labeling the single-stranded cDNA restriction frag­

ments were separated on 6% acrylamide sequencing gels (Maxam and Gilbert, 1980). 

Even large fragments (>300 nucleotides), differing by only a few nucleotides, were 

usually resolved and could be cleanly excised from the gel for sequence analysis. 

Figure 4 shows such a preparative gel. As little as 300 ng of cDNA was sufficient 

to produce a number of end-labeled fragments suitable for sequencing. The selection 

on oligo(dA) cellulose of oligo(dT) primed cDN A digested with Hha I and 31 end-labeled 
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Figure 3m Comparison of Hae III fragments from cDNA to 8indbis 268 RNA (lanes 2 

and 4) and virion 498 RNA (lanes 3 and 5). The cDNA was synthesized using either 

oligo(dT) (lanes 2 and 3) or short fragments of calf thymus DNA (lanes 4 and 5) as 

primers. The fragments were separated on 40 cm long 6% acrylamide gels in which 

the xylene cyanol was run for 60 cm (panel A), 40 cm (panel B), or 20 cm (panel C). 

Lane 1 is a 5' end-labeled Hae III digest of M13 (strain mp73). The lengths of 

sequenced Hae III fragments of the 268 cDNA (see Fig. 5, Table 1) are given as 

molecular weight markers. 
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Figure 4. Preparative 40 cm long 6% acrylamide gel of 5' end-labeled (lanes 1 and 2) 

or 3' end-labeled (lanes 3 and 4) restriction fragments. Randomly primed (lanes 1 and 

2) or oligo(dT) primed (lanes 3 and 4) cDN A to Sindbis 268 RN A was digested with 

Hae III (lane 1), Rsa I (lanes 2 and 3), or Hha I (lane 4) and end-labeled as described in 

the Materials and Methods. The sizes of Hae III fragments (see Fig. 5, Table 1) are 

indicated. 
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was useful for obtaining the sequence adjacent to the poly(A) tail. Further purification 

on sequencing gels of the oligo(dA) bound fragments was necessary since it was difficult 

to achieve complete digestion of the cDNA with these enzyme preparations without 

extensive degradation. 5' end-labeling with high specific activity y-ATP and poly­

nucleotide kinase is very efficient on single-stranded DNA substrates and was especially 

useful for labeling restriction fragments produced in low yield. More than 80% of 

the Hae III fragments excised from the preparative gels gave useful sequence data, 

although several minor bands contained considerable sequence heterogeneity. We 

are presently developing a two-dimensional separation to improve resolution and 

therefore increase the proportion of homogeneous fragments for sequencing. 

Figure 5 shows a sequencing schematic of the cDNA fragments used in determining 

the 268 RN A sequence. More than 17 ,000 nucleotides of sequence data from about 

100 different restriction fragments were used to verify and overlap nearly the entire 

sequence. cDNA sequences were stored and overlapped using a computer program, 

and the complementary RN A sequence and encoded protein sequences have been 

presented elsewhere (Rice and Strauss, 1981). The restriction sites for Hae III, Hha I, 

Rsa I, and Taq I, as well as two areas of secondary structure are shown in Fig. 6 

in which the cDNA sequence is numbered from the 5' end (the cDNA sequence begins 

with the complement of the first residue adjacent to the poly(A) tail). Table 1 summarizes 

the exact location and size of the restriction fragments which were useful in obtaining 

the 268 cDNA sequence. Although sequencing gels were run at high temperatures 

(> 50°C) to avoid compression artifacts due to DNA secondary structure (Maxam 

and Gilbert, 1980), two areas of secondary structure still caused difficulties (see 

Fig. 6). For example, in the first region of secondary structure which includes 

the sequence GCGCATACTG (from position 1292 to position 1301 of the cDNA sequence), 

we are uncertain of the sequence CATA, which could also be read as CAAT. In 

the latter case, the valine deduced at position 113 of El would instead be an aspartic 
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Figure 5. Sequencing schematic of restriction fragments used to determine the 268 

cDNA sequence. The direction and extent of sequence analysis are indicated by 

arrows and solid lines, respectively. Unsequenced portions are shown by dashed lines. 

Legitimate and illegitimate restriction endonuclease cleavage sites are indicated by 

solid and open circles, respectively, at the ends of the fragments. The arrows show 

the restriction sites for Hae III, Hha I, Rsa I, and Taq I, on duplex DNA. The lengths 

of complete, partial (denoted by "p"), or illegitimate (denoted by "i") fragments are 

given in nucleotides. The lengths of illegitimate fragments are approximate and were 

estimated on gels using sequenced restriction fragments as molecular weight 

standards. 
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Figure 6. Sequence of the cDNA complementary to Sindbis 268 RNA. The cDNA 

sequence is numbered from the 5' to the 3' end as described in the text. Single­

stranded cDNA cleavage sites for Hae III ( • ), Hha I (8 ), Rsa I ( • ), and Taq I (e) 

which are the same as those found for duplex DNA are indicated by solid symbols, 

illegitimate sites (see text) are shown by open symbols. Areas of secondary structure 

causing difficulties during sequence analysis are underlined. 
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CAAA TGTT AAAAACAAAA TTTTGTTGA TT AATAAAAGAAAT AAT AAAAGTT ATCCAGAccCrccGTGGCATT A TGCACCACGCTTCCTCAGAAAT ACA TTGAGTTTTTGGCGTCCGCT AG 

AT AAA rccrr AAT AT Acrccrr A rcrccc11AcAcNcclANA rr ATGCAcrcct!'!rrccrCccAAGT ACA TCGAGTTTTT Acrcrrccr AT A rrccccccccr AAGCGA rcr AA re ice 

AGCCTCATGCA TT A TCCACA TCAGTTCCTCCGAAG~CA TCGAGTTTTGCTGCTCGGATCA rrccccccrYa&rcA TCTTCGTGTGCT AcrcAGCATCATGCTGCAAGCAAAAATCA T 

AAGTCCT AT AATT AA T AGCGACGAGGc!!cCcccAAAAGGGCAAACAGCCAACTCCA TGATGTTTTTGAGATGGCGGCTTGAAA TTC~TCA TT rRcrccccccrcc TC AC GATA TC 

G TC A CC TGG T g TT T ACA T TC TGCA TT GCA T G TTG TC TTC T TCCCACACAGCGA T ACGA TA AA G TTCGCC T G TCGAC TCCCGG TGCT AAAG T G ~ c T GTCACCGC rec TT TC TC c AGGA c 

"' . . . . . .. 
ATGT ACTGTCGACTCT TGGAGAGTTGC TGTGCTCGAA TGCCAA TGT ACGGGGCATTGACCTTCGCGGTCGGAT ACA T ACTGCAGGGTGGCCA TCCCGCCGAAGTCTGCTGAA T AAGTGCA 

c TCAC TGACTTCACATTTGACTGTTGAGACCAGTGGTGCATCTGA TGTCCTGA T AAAGccAcccTTCGGGATGTCAA T AGAA A TGGGAA rGrrccccr A TGAACAGTCCACCGC T CG GAG 

. . . .. "' 
CGGATTT ACTGCAATCTT ACACCCGAAAGGTGCGGTTTCCTGCAGTGGGCCGCC TGAGTTGTTT TTCCACA TCTCAAA TCCTGATGAGGCCTGCGTGT ACGGGACA TGCACGTTCTTGGC 

GGAAGGCTTGAGT AGCCT AA TGTCTGTGC rCccCATGAGA TCCTTGCT AGTCAAGGAGCT AccTTGAATGTCTCCAAACGCTCCTGGTTTCA TCGCTCCAT ATTCCGGGAAGTCA T AGTT 

• • • • • • GT ACACCAGGCCGCGA TGGAT AACGACCTT A TGA TCGAA TGGCGT AAACGA TGCTGAAA TTGGTCCAGCT A TGAC TTTCAAGTCTTT AGACGTTCCTGG TGTGACTCCG TTCACGT ACAC 

A TCT AGGAAACTGCT AGTCTTCCccicAcAAT ACGCAGTCCT ACTTTCA TCGCCGCAGTGTGCACCTT AA TCGCCTcc!:cTGGTCACACcc~AT ACTGCTGACAA T TCGACGT ACGC 

. . . . . 
CTCACTCATCTCGCTGTTCTCACTGTCGCAAAAACA TTGCGCTCCTCCCCACA T AAAGGGGT AGACCCCTCCGAAGACCTTGCAGGT AT AGTCTGCA TGAGCGGCCGGC TGACA T TC CAA 

. "'· . GGAGCCGCAGCA TTTGA TTTTTGGGGAGGGGACCACAGTCGTGAA TTTGCAGGT AA TGT ACTCTTGGTTGCTGGAAGGCAAAACCTCCGAGGACA TGACAGTGA TCTCCAAA TTGAGCGG 

GGCA T ACCCTGCCCTTTCAACAAGTGCCTT;. T ACGGT A TCTGTGGCACATTTGGAACAGTGGTCGCATGTTCGT AGcc8cT ACCTTCccCAGGT AGcc1':ccccAACCACT AAAAAAGG 

• • • • • CAGGCAGC A GGAGCA GCAGCG CATT AGAACGA T GAAAGCGGCCAA A CG TA TGC ACAA CT GGA CCC A GAAGAA C CG CT GAC T GT TC GA C CACAA GT A ACT CAT GG TC TC G GT G AA CG TT TC 

AGCA TTGtccGACCTGACGCAGCACAAGAGTcccAGCGAAGTTGGGATT ACGGCGTTTGGG~cAGGGCGT ATGGCGTCAGGCACTC/ICGGc!~ T TT ACAGGCACA T AACACTGCGAC 

. "' . "' . . ACTT ACCCCAA TCA TCA TCGCCACGCT ACCTGATGCGACCCCT AACATCCTGT AeACACCATCCCGATCGT ACT AATGCTGT ACT A TTTCGTGTGCCCA TCCGTGAGGGTCTCCTGG TGC 

. . . . 
TGACTCTTGCGCA T AGAeCCTCACTGGCTCA TGA TTTCeCCAT ATGT ATTCCACCCCATCTCGGTCGACCGTGAAGTTTCTGACCGTCTTTCCGACGA TCCA TTCAGTGGTTGG T TCCGG 

cnrccccc TAGTCTccTGGTGGTGAGCAA foTcA&RcTcTcT A TCT fl. R8:AcccTCA TCTCTTT AAACCCA TCT A TT ACA ncccc~c TGGGCAACAGGGACCA TGCAGGT ACT 

. . . . 
CCGGA TCAACTTCAAACCCAAA TCeAA TTTCCCTTCCGCCCTC TCCTCCTCA TCTCTCA TCAACTCCCCTCACTTGAACACCCAC TTCCT T TCCTCCC TCTT AT ACGCGACGCAC TGC TT 

. . . . 
GA TGGCGC TCCAACC ACTCA TTTCGCTGCGGG TCCAAACCC T TCCGCTCTTCT AG TCCeCCCACTTGCAC TC AT ACCT AA T CTTCTTCCCAGA T GGCGCC TT TGCCT AAAC T TTCCC T GA 

. . . "' . 
TCA TTC TTCCACGT ACCA TGT AT AA CCC TGCCGTeTCCCCCTG TCCA TA GT GA TCT ACCCTGCAG TTCTTTC TTTCACACGCTCC T ACACTGTCCAAGGA A TTTTT TT ACCC TGA A CGCG 

. . "' . . 
ACCT ACA TCA TAT TTTTeCCGT CCeAeCAA TT T TGGTTTT A TCTTGCGCCCCAG TCT ACA T CACCTTGC TCAGTTGC TAC TCACT A TCCT AACCGT T ACCCTG TCCCeTGGAGGGCA T TT 

. . . . 
TCCGAGGAGAAACT A TCCTTTG T AGC T AAGeCTTCT ACACGCTCCTCACGTGCT AA TCTTCA TGTCA TCCA TCCTGCCTTCTTT AACGGTCTGA rec TCCT T AAGCGACA TC T ACCGG TA 

c TTG T TT cc~ TTGCTGC TCCGCT TTGG TCC TAT CCAAAC TCGCCCGAAGTeTCT A TGCG t?'rcCTG TT A TCGTCCCC T TCG TCCCAGACC rec T.!tA TCT T AACAGGGC TGAAGCAC cc 

TTCACT A TGG TGGCAG T ACGAGCA Tc rcecCAAGT AGCGCCTGCTCACGC T AAAGCccrcA.11. TGACGCTTe TT TT cc TTCTGCCAGACGA TccGCACCGCAA TAT CGCA TTCAGCAGGG T 

A TCG T Acfc:c TCA TGG TTC ACGTTCTC T TCAACCA TC r!Acccc TCTCCAAGC T TCCccGcT AT ACCA TCTCCCCGGGCGC TCGCA rccCAACC Tc ACA T TTCeCAGCAAACA CAT TGC 

CG TGACCAG TGCTCC T CCCGACCAC TCTTC TcTCCC TTCCGGGCT CGTCTT AA TTG T CTTCcc TT TACT A TTCCAGGTGACGACCGAAAGCccA CT TCGTC T rec TTCA TC A ccccc ACC 

CACGAC TA TCCCCACAACCCGAeCCCAC TT A rec A TGA TCGCACGACCGCTC TC TCC rcrCccrcc TAC TCeCCCAGGCA TCG T AAA TCT Ace TCCAC TAT ACTGCACCGCTCCG T cc TC 

CCAC TT AT AGAA TCCT TCGGGGTG T Te AC rCcrcr AGGTGAA TGCC TC ACTTCTCA TGTTCACTGCCAAC TC TCCGAACTCCA TC TCCT A TccTGACGACT T GCT AAA TTTCAGC T TTCA 

• • •• • • • T ACCACACCCT cc TCCA T GGTTCCTTTCACGTCCACACCTT TCA TT ACC TT TCCTTCCA TCGCCAC TGCGTCCCCGA TGACA TC T CCCTCC rec TT CTT GACC TCGAACAA TC TGTCGGC 

crceAACTT AAGT cecA r cc!Tc TCTCTT TcccccTTTGGCTTTTGC ACCTTCC T re r rC rrc TTe rec Tc cc TT Tr TGGTT TCTTcccC R RcTccT rec TT cccc~e rec T rc TT 

CTGGC~CCTCCCGGCCG TCCACCT cc£cTTc~c TCT ACT TCCCTGTCeAA TGAC T 11cCccAC TGACCGCTCTGGTCAGTTGC TGGA rT TCAGAAGC CACeccc T TCCCCGCA GGCA T 

CGGG~ CGCC TGCC TCC T TC TCCGCG~crCcACA TGGC AG TGGGGGCCGGGAAGGGGCGGcc~ccAGC AT GT T AAAGAA TCCTC TA TTCA TG~GGT GGTG T TG TAG T 



Enzyme 

Haem 

Hha I 

39 

Table 1 

Single-stranded cDNA restriction fragments of Sindbis 268 cDNA a 

Fragment Length 

p810 
p591 
i579 
p569 . 

534 
p495 . 
p464 . 
i442 
438 
i403 • 

p384 
p372 
i347 
334 

p305 
p302 

297 
p268 

246 
241 . 
223 . 

i205 
203 

i187 • 
il 75 
161 
154 . 

il52 
i106 • 
ilOl 

87 
79 
57 
54 
37 

i31 

892 
638 

p407 

. 

. . 

. 

. 

. . . . . 

. 

. 

. 

. 

. . 

. 

. 
. 

. . 
. 

357 • • • 

. . . . 

. . . . 

. . . . . . . . . . . . . . . . 
. . . 

. . . . 

. . . . 

. . . . 

. . . . . . . 

. . . . 
. . . 

. . . . 

. . . 

. . . 
. . . . . . . 

Position in 268 cDNA 

. . . 2319-3128 
3129-3719 
(314)-892 
2560-3128 . . . . . 3129-3662 . . . . 930-1424 . . . . 2096-2559 . . (451)-892 . . 2691-3128 . . . . (490)-892 . . 1425-1808 

·2319-2690 . . . . • ( 2213 )-2559 . ·1091-1424 . . 3720-4024 
2017-2318 . . . . 1425-1721 
3720-3987 . . . . 3720-3965 . . 2319-2559 . . . . 2096-2318 . 4025-(4229) . . . 690-892 

• ( 2942 )-3128 . • (3814)-3987 . • 930-1090 . . 1863-2016 . • (3814)-3965 . . • ( 2213 )-2318 . . . . • ( 3865 )-3965 . ·1722-1808 . . . . 2017-2095 . . . . 3663-3719 . 1809-1862 . . . . . . 893-929 . . . . 4025-(4055) 

• • • • • 389-1280 
•••• ·2253-2890 

•••••••• ·1295-1701 
1896-2252 

•••••• 1295-(1639) 
1362-1701 
1362-1660 

• • 1362-(1639) 

i345 • • • • 
p340 • • 

299 
i280 



Table 1 (continued) 

Enzyme 

Hha I 

Rsa I 

Taq I 

40 

Fragment Length Position in 268 eDNA 

i259 
p233 

214 
192 

89 
67 
41 

p772 
p747 
p701 
p662 
i628 

p604 
p56l 
p417 
i409 
i393 

p364 
p334 
p328 

292 
p288 
p273 
p258 

182 
144 

91 
42 

p725 
542 

i321 
i297 
i293 
i238 
i235 
i221 
i184 
183 

i175 
i161 

90 

••••••••••••.•••••• 3847-(4105) 
.................... 1661-1893 
. . . . . . . . . . . . . . . . . . . . . 175-388 

.................... 

.................... 

1702-1893 
3742-3830 
1295-1361 
1661-1701 

1227-2002 
1227-1973 

. . . . . . . . . . . . . . . . . . . . . 238-938 

. . . . . . . . . . . . . . . . . . . . . 277-938 

.................... (311)-938 

. . . . . . . . . . . . . . . . . . . . 2003-2606 

..................... 939-1499 

. . . . . . . . . . . . . . . . . . . . 1083-1499 
•••••.••••••••..•.. (2197)-2606 
••••.•••••.•.••.••. (2214)-2606 
..................... 575-938 
..................... 605-938 
. . . . . . . . . . . . . . . . . . . . . 277-604 
. . . . . . . . . . . . . . . . . . . . . 647-938 
..................... 939-1226 
.................... 1227-1499 
..................... 939-1196 
.................... 2698-2879 
..................... 939-1082 
.................... 2607-2697 
. . . . . . . . . . . . . . . . . . . . . 605-646 

.................... 2434-3158 

.................... 2434-2975 

.................... ( 313 )-633 

.................... (313)-609 
••••.••••.•••••••• (3814)-(4106) 
••••.•.••••••••••• (3869)-(4106) 
•••••.••••••••••••• (2199)-2433 
••••••..•••..•••••• (2213)-2433 
.................... (450)-633 
.................... 2976-3158 
.................... (459)-633 
••••.•••..••••.••.••. ( 449 )-609 
.................... 3615-3704 

aSingle-stranded cDNA restriction fragments of the 268 cDNA (Fig. 6) localized 
by nucleotide sequence analysis. Partial digestion products or fragments produced 
by illegitimate cleavage (see text) are denoted by "p" or "i", respectively, and 
the fragment lengths are given in nucleotides. The position of each fragment 
in the 26S cDNA is indicated by the 5' and. 3' nucleotides. The approximate ends 
(_:5 nucleotides) of fragments produced by illegitimate cleavage are enclosed by 
parentheses. 
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acid residue. The nucleotide sequence of the second region, in which a stable hairpin 

structure can be constructed, was unambiguously determined using a sequenced 

tryptic peptide of the capsid protein (Boege et al., 1980). In other regions causing 

difficulty the sequence was confirmed by reading the sequence from the 3' direction 

as well as the 5' direction (in which case secondary structure artifacts are found 

in different regions of the sequence). Occasionally we found ambiguities at certain 

positions in an otherwise clean sequence ladder, which did not result from the compression 

effects mentioned above (these ambiguous positions were present in less than 1 % 

of the 268 cDN A sequence). This heterogeneity in the cDN A sequence may have 

arisen from non-random mistakes during reverse transcription, or could be due to 

heterogeneity in the template 268 RNA. At such positions, the predominant nucleotide 

is reported. 

One area of the sequence near the 5' end of the cDNA (from residue 151 to 

170) and located in the 3' untranslated region of the 268 RNA (J. Ou, personal com­

munication; Rice and Strauss, 1981) was not directly determined using this sequencing 

method. This region has been sequenced using the dideoxy chain-termination method 

(Ou et al., 1981), and the unidentified nucleotides are probably due to "strong stops" 

for reverse transcription. A second region of the sequence near the 3' end of the 

cDNA corresponding to the 268 RNA sequence encoding the capsid protein could 

not be directly overlapped because the appropriate fragments were not isolated. 

The two Hae III fragments which join at nucleotide 3719 were sequenced to the end 

and were unambiguously aligned using the sequence of a unique tryptic peptide derived 

from the Sindbis capsid protein (Boege et al., 1980). It is interesting to note that 

although nearly all of the Hae III fragments were sequenced, several fragments from 

the 3' end of the cDNA were present in low yields (see Figs. 3 and 5). This implies 

that the RN A was not uniformly copied by reverse transcriptase. Whether this was 

due to the template RNA, non-random priming by the calf thymus DNA primer, 
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or a combination of both, is not yet known. A discussion of the validity of the overlapped 

26$ cDN A sequence obtained is presented in the Discussion. 

As previously mentioned, the restriction pattern of 26$ cDNA, digested with 

any of the four restriction enzymes used in this study, was more complex than expected. 

The direct sequence analysis of these restriction fragments has revealed several 

interesting properties of the cleavage of single-stranded DNA by these enzymes. 

Using the entire overlapped sequence (Fig. 6) we have compared the computer generated 

restriction patterns for duplex DNA (Fig. 7) to the actual single-stranded cDNA 

restriction patterns shown in Figs. 2 and 4. On the basis of size, most of the predicted 

fragments from a complete digestion were present in the restriction digests, which 

suggested that these enzymes cleave single-stranded DNA with the same specificity 

as double-stranded DNA (a ''legitimate" cleavage site). Direct sequence analysis 

of all of the Hae III fragments longer than 30 nucleotides, as well as several fragments 

from each of the other enzymes (Fig. 5, Table 1) verified this observation. Additional 

fragments in Figs. 2 and 4 have been shown to be either partial digestion products 

or fragments probably resulting from a specific but "illegitimate" cleavage (different 

from the double-stranded D~A restriction site) by the restriction enzyme preparation. 

Although this study was by no means quantitative, it has become clear that cleavage 

at legitimate sites was not equivalent. Certain sites were cleaved much less efficiently 

than others giving rise to partial digestion products. The inability of these enzymes 

to cleave these partials was not due to a population of cDN A molecules which had 

an altered cleavage site, since sequence analysis of many of these partials revealed 

a normal recognition sequence at the correct position. Thus, the nonuniform restriction 

cleavage of single-stranded DNA by these enzymes was probably due to other aspects 

of the DNA structure which affected enzyme activity. 

In the course of overlapping sequence data from different restriction fragments, 

it became apparent that some of the fragments did not originate by cleavage of 
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Figure 7. Co111puter-generated restriction map for duplex DNA complementary to 

-Sindbis 268 RNA (see Fig. 6). The first four enzymes listed (Hae Ill, Hha I, Rsa I, and . . 

Taq I) cut single-stranded cDNA and were used to determine the cDNA sequence, the 

remaining restriction enzymes are listed in alphabetical order. The recognition 

sequences for the following enzymes were not found in the 268 cDN A sequence shown 

in Fig. 6: Aos I, BamH I, Cla I, Eca I, Eco RI, Hind Ill, Hpa I, Kpn I, Rsh I, Sma I, 

Sst I, Xba I, and Xho I. 
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~ 400bp 
5' 

Hae III , II I I 11 
3' 

I I I I 11 1111 

Hha I I II I I II I I I .J 
· Rsa I !H 111 I II I ll I I 
Taq I I I II I I I I 

Acy I 
Alu I 
Asu ·I 
Asu II 
Ava I 
Ava II 
Bal I 
Bel I 
Ode I 
EcoR II 
Fnu4H I 11 I !I I II I I II 111 

Hae I 
Hae II 
Hga I 
Hgia I 
Hind II 
Hinf I 
Hpa II 
Hph I 
Mbo II 
Pst I 
Pvu II 
Sal I 
Sau3A I 
Sst II 
Tho I I I I II 11 I I 

Xho I I 
Xma III 
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the cDNA at the expected recognition sequence. The approximate locations of these 

sequences are shown in Fig. 6. Most of these fragments were minor bands (see Fig. 4), 

implying that if they were produced by cleavage these sites were cut less efficiently 

than legitimate recognition sites. Contaminating specific endonucleases in these 

preparations could have been responsible for these cleavages, although inspection 

of nucleotide sequences in the vicinity of these cleavage sites failed to reveal any 

obvious pattern of additional specific recognition sequences. It is of interest to 

note that several of the illegitimate sites are shared by two or more enzyme preparations 

(Fig. 6). Even though additional experiments are needed to clarify the origin of 

these fragments, they have proven extremely useful for 268 cDN A sequence analysis. 

Base composition, nearest-neighbor analysis, and codon usage. From the sequence 

presented in Fig. 6, the base composition for this portion of the 268 RNA is 24%G, 

28%C, 27%A, and 21 %U. Table 2 presents the computer generated nearest-neighbor 

analysis for this sequence. Although some of the doublet frequencies appear to 

be non-random, we do not find a scarcity of the CpG doublet as has been found for 

several vertebrate DNAs (Russell~ al., 1976; Bird, 1980) and several RNA(Porter 

et al., 1979; Jou et al., 1980) and DNA (Fiers~ al., 1978; Soeda et al., 1980) viruses 

with vertebrate hosts. In addition, the frequency with which duplex DNA comple­

mentary to the 268 RNA would be cleaved by various restriction enzymes (Fig. 7) 

is approximately that expected based on the length of their recognition sequences. 

Table 3 shows the codon usage in the coding resions of Sindbis virus 268 RN A. 

The distribution among. the possible codons for most of the amino acids is clearly 

non-random (see for example, leucine and arginine), and would not be predicted 

using the base composition (see above) or nearest-neighbor frequencies (Table 2) 

found for the 268 RNA. In addition, in spite of the extensive nucleotide sequence 

divergence between Sindbis virus and SFV (see Fig. 8 and Discussion) the preference 

for certain codons is remarkably similar (Table 3). 
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Table 2 

Sindbis 268 RNA Nearest Neighbor Frequenciesa 

u 

197 

234 

203 

207 

A 

175 

299 

279 

356 

G 

260 

270 

217 

247 

c 

209 

307 

296 

309 

aDoublet frequencies (5' bases are in the left margin) are for the 

complement of the 268 cDNA sequence shown in Fig. 6. The first figure 

is the number of times the doublet is found in the sequence (4065 

doublets were examined). 
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Table 3 

Use of Codons in Sindbis and Semliki Forest Virus 26S RN As. a 

PHE· uuu 19 10 SER ucu 6 9 TYR UAU 15 16 CYS UGU 12 14 
uuc 24 29 ucc 13 10 UAC 31 35 UGC 31 34 

LEU UUA 5 4 UCA 21 14 OCH UAA 0 1 OPL UGA 1 0 
UUG 22 14 UCG 17 21 AMB UAG 0 0 TRP UGG 15 17 

LEU cuu 8 8 PRO CCU 20 20 HIS CAU 18 17 ARG CGU 5 2 
CUC 16 13 CCC 14 15 CAC 21 27 CGC 19 13 
CUA 8 to CCA 30 19 GLN CAA 17 18 CGA 4 2 
CUG 25 26 CCG 28 35 CAG 25 31 CGG 4 7 

ILE AUU 19 12 THR ACU 20 17 ASN AAU 12 12 SER AGU 15 7 
AUC 27 28 ACC 41 28 AAC 28 37 AGC 23 15 
AUA 13 15 ACA 23 28 LYS AAA 35 32 ARG AGA 17 17 

MET AUG 29 28 ACG 14 24 AAG 42 48 AGG 11 14 

VAL GUU 14 13 ALA GCU 12 23 ASP GAU 14 11 GLY GGU 7 8 
GUC 36 34 GCC 41 40 GAC 37 43 GGC 19 23 
GUA 16 16 GCA 33 25 GLU GAA 31 26 GGA 38 24 
GUG 24 41 GCG 22 23 GAG 23 25 OGG 16 26 

aThe first figure after each codon is the number of times that codon is used in the translated 

regions of Sindbis 26S RNA (deduced from the cDNA sequence in Fig. 6; Rice and Strauss, 

1981). The second number is the corresponding figure for SFV (from Garoff et al., 1980a,b). 
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Figure 8. Nuc~eotide sequence homology between the 268 RNAs of Sindbis virus and 

.SFV .. The SFV ~NA sequence data is taken from Garoff et al. (1980a,b). A dot in the 

matrix represents a 5 out of 6 nucleotide identity between the two sequences. The 

diagonal line shows that the two sequences are homologous, but contain numerous 

regions with little nucleotide sequence homology. The dense cluster in the upper left 

hand corner is caused by a region of the sequence rich in A, G, and C but lacking U. 
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Sindbis 
P=™C'''''''''''''''''''''''''~ E3 !::::,:,:::: ,,,,,,,,,,,,,,,,,,,,,,,,.,.,E 2,,,,,,,,,,,,,,,,,,,,,,,,., ,,.,::;::~6KI''''''' ,.,.,.,.,.,.,.,,,,,,,.,,,.,. ,,,,, E 1'''''' "'''''''''''' ,_,,,.,,,,,,,,,,,,,,,,>/ 

0.8 1.6 2.4 3.2 4.0kb 
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DISCUSSION 

Techniq~es for rapid sequence analysis have been developed to determine the 

primary structure of both RNA (Donis-Keller et al., 1977; Simoncsitis et al., 1977) 
' . -- --

and DNA (Sanger et al., 1977; Maxam and Gilbert, 1980). Molecular cloning has enabled 

the amplification of rare cellular mRNA sequences such that primary sequence data 

can be obtained (for example, see Taniguchi et al., 1980; Steinmetz et al., 1981). 

However, many RNA viruses produce large quantities of virus-specific RNA in infected 

cells, and package single-stranded genomic RN A into mature virions which can be 

readily purified. In such cases, molecular cloning is not necessary for nucleotide 

sequence determination. While this work was in progress, Kitmura and Wimmer 

(1980) published extensive sequence data on poliovirus without the use of molecular 

cloning. Their ingenious approach involved the chain-termination sequencing method 

(Sanger et al., 1977) using RNase resistant oligonucleotides to prime DNA synthesis 

on a cDNA template made from poliovirus RNA. This method uses relatively large 

amounts of viral RNA (>100 µg), however, and for this reason would not be suitable 

for analysis of viruses which grow poorly, such as many ts mutants of 8indbis virus. 

Other methods include direct sequence analysis of restriction fragment primed cDN A 

(Ghosh et al., 1980), or isolation and sequence analysis of 5' end-labeled ribonuclease 

Ti-resistant oligonucleotides (Pederson and Haseltine, 1980). Alternatively, the 

method we have used for determining the Sindbis 268 RN A sequence requires only 

a few micrograms of cDNA, and we estimate that most of the genomic 498 RNA 

could be sequenced with less than 5-10 µg of cDNA. This sequencing strategy, without 

utilizing prior restriction mapping, is similar to the "shotgun" approach in M13 used 

by Sanger et al. (1980) for the human mitochondrial genome, and also for influenza 

virus (Winter and Fields, 1980). Randomly primed cDN A synthesis gives a complete 

representation of the RN A sequences which can then be digested by a growing number 
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of. Type U restriction endonucleases which cleave single-stranded DNA into discrete 

fragments (Blakesley and Wells, 1975; Horiuchi and Zinder, 1975; Godson and Roberts, 

1976; Molloy and Symons, 1980). Unlike other procedures, this mixture of single­

stranded DNA fragments can then be end-labeled, separated on sequencing gels 

and sequenced using the base-specific chemical cleavage method of Maxam and 

Gilbert (1980) without the secondary restriction enzyme digestion or strand separation 

required for sequence analysis of end-labeled duplex DNA restriction fragments. 

3' terminal RN A sequences of poly(A) containing RN A can be determined if an oligo(dT) 

primer is used for cDNA synthesis, and the restriction enzyme cleaved cDNA purified 

by passage over an oligo(dA) cellulose column after 3' end-labeling. This is also 

applicable to RNAs which lack poly(A) if polyadenylation can be performed in vitro 

(Emtage et al., 1979). Recent improvements in the base-specific chemical cleavage 

method (Smith and Calvo, 1980), have allowed sequences in excess of 600 bases from 

one labeled end to be determined. Since either end of a fragment can be labeled, 

this extends the fragment length for which complete preliminary sequence data 

can be obtained to 1.2 kb. Thus, using restriction enzymes which cleave less frequently 

(those with 5 and 6 base recpgnition sequences), it should be possible to rapidly sequence 

even very large { > 10 kb) viral RN As. 

eDNA synthesis. The optimal conditions for production of approximately full 

length {4.2 kb) cDNA to intracellular Sindbis 26S RNA are similar to those reported 

for other RNAs (Kacian and Myers, 1976; Buell et al., 1978; Zain et al., 1979; Devos 

et al., 1979). However, the pattern of oligo{dT) primed cDNA products on alkaline 

agarose gels reveals numerous smaller discrete barids. Such products have been 

found in other systems (Owens and Cress, 1980) and may be due to RNA secondary 

structure or internal priming, although several other explanations are possible {Kacian 

and Meyers, 1976). The similarity in the pattern of oligo{dT) primed cDNA products 

synthesized from 26S and 49S Sindbis RNAs, strongly suggests that internal priming 



52 

~· 

is not responsible for the production of most of these smaller species. There is an 

apparent "strong stop" for reverse transcriptase approximately 4.2 kb from the 498 

.RNA poly(A) tail, which could reflect an RNA structural feature important in the 

regulation of 268 and 498 transcription. Prior denaturation of template RNA with 

methylmercury hydroxide has been found to improve both the yield and length of 

cDNA for certain mRNAs (Payvar and Schimke, 1979). This method may prove useful 
. 

for the generation of longer cDNA transcripts of the 49$ RNA. 

eDNA cleavage. The ability to specifically cleave this single-stranded cDN A 

with Hae III and Hha I (Blakesley and Wells, 1975; Godson and Roberts, 1976), in 

addition· to Rsa I and Taq I, has facilitated its complete sequence determination 

as well as enabling us to compare virion and intracellular RNAs. In the case of the 

268 cDN A, more than 90% of the Hae Ill fragments were virus-specific as determined 

by comparison to the 498 cDNA Hae III restriction pattern, which was later verified 

by direct sequence analysis. The extra minor fragments are probably due to contami-

nation of the Sindbis 268 RNA by poly(A) containing cellular RNA or residual rRNA 

not completely removed by oligo(dT) cellulose chromatography. The molar yield 

of these nonviral Hae III fragments was usually less than 10% of the yield for virus-

specific fragments. After determining the cDN A sequence, it was possible, with 

the aid of a computer program, to generate a complete restriction map for double­

stranded DNA. The comparison of this map with the actual restriction digests, in 

addition to sequence analysis of many of the fragments, strongly suggests that Hae III 

(see also: Horiuchi and Zinder, 1975; Blakesley and Wells, 1975), Hha I, Rsa I and 

Taq I recognize and cleave the same sequences in single-stranded DNA as double­

stranded DNA. Many of the other fragments were partial digestion products, but 

some were apparently produced by cleavage at illegitimate sites. These fragments 

produced by illegitimate cleavage were usually minor species. Other investigators 
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have observed quantitative differences in the sensitivity of Hae Ill sites in single-

stranded DNA bacteriophage fl (Horiuchi and Zinder, 1975), and additional fragments 

in Haem digestion of <f>xl74 virion single-stranded DNA (Blakesley and Wells, 1975). 

It is of note that several of the enzyme preparations used in this study cleave at 

similar illegitimate sites in the 268 cDNA. However, it is not known whether con-:­

taminating endonucleases or additional specificities of these restriction endonucleases 
. 

are responsible for these cleavages. In either case, these fragments are useful for 

sequence analysis, but one should exercise caution in inferring double-stranded DNA 

restriction sites from single-stranded DNA restriction patterns. The rigorous purification 

and characterization of these and other endonucleases which specifically cleave 

single-stranded DNA could contribute greatly to the rapid sequence analysis and 

comparative study of viral and other readily purified RN As. 

Validity of the eDNA sequence. The accuracy of the 268 cDNA sequence is 

supported by several lines of evidence. Translation of the complement to the 26S 

cDNA sequence has revealed one open reading frame of 3735 nucleotides beginning 

with an AUG codon. Sindbis 26S RNA is known to have a single initiation site for 

protein synthesis (Cancedda· et al., 1975), and the precursors of the structural proteins 

are translated in the order C, PE2 (precursor to E3 and E2), and El (Schlesinger 

and Kaariainen, 1980). Our deduced polypeptide sequence is in complete agreement 

with this gene order and with the NH2-terminal sequences found by automated sequence 

analysis of El and E2 (Bell et al., 1978), of E3 and PE2 (Bonatti and Blobel, 1979; 

Bell!! al., manuscript in preparation; Mayne et al., manuscript in preparation), 

of the 6K protein (Welch and Sefton, 1979; B. Sefton, personal communication), 

and of the hydrophobic transmembrane "roots" of El and E2 derived by treatment 

of intact virions with a-chymotrypsin (Rice et al., manuscript in preparation). In 

addition, Boege et al. (1980) have recently published an extensive study on tryptic 
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peptides from the Sindbis (strain Sa-AR-86) capsid protein. Most of this sequence 

and composition data are consistent with our deduced sequence for the capsid protein. 

The amino acid compositions of the structural proteins determined by amino acid 

analysis (Bell et al., 1979) are in excellent agreement with the compositions determined 

from the nucleotide sequence data (Table 4). In addition, our sequence data adjacent 

to the poly(A) tail is in complete agreement with the sequence obtained for the 

same region u8ing a chain termination method (Ou et al., 1981). 

We have recently compared the deduced protein sequences encoded by Sindbis 

268 RNA (Rice and Strauss, 1981) and those of a closely related alphavirus, Semliki 

Forest virus (Garoff et al., 1980a,b). There is striking protein sequence homology 

(47% of the residues are identical, and another 12% are conservative substitutions) 

and very similar codon utilization (Table 3). The common preference for certain 

codons is surprising in view of the extensive nucleotide sequence divergence between 

Sindbis and SFV (see below and Fig. 8). In addition, it is of interest to note that 

although vertebrates are among the natural hosts for these viruses, they do not have 

the low frequency of the CpG doublet found in vertebrate DNAs (Russell et al., 

1976; Bird, 1980) and both DNA (Fiers et al., 1978; Soeda et al., 1980) and RNA 

viruses (Porter et al., 1979; Jou et al., 1980) with vertebrate hosts. The similar 

codon utilization of Sindbis and SFV may reflect a common adaptive constraint for 

optimal translational efficiency in their wide host range which includes insects (whose 
- . 

DNAs do not contain low CpG frequencies; see Bird, 1980) as well as birds and mammals. 

The 268 RN A nucleotide sequences of Sindbis virus and SFV are compared 

in Fig. 8. The strong diagonal in Fig. 8 demonstrates that both Sindbis virus and 

SFV have evolved from a common ancestor largely by base substitution with relatively 

few deletions or insertions in the nucleic acid sequence encoding their structural 

proteins. This homology breaks down in most of the 3' untranslated region and presumably 

reflects less stringent evolutionary constraints on these sequences. In addition, 
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~· 

. Amino Acid Compositions of the Three 

Structural Proteins of Sindbis Virusa 

CAPSID E2 El 

from from from from from from 
sequence analyzer sequence analyzer sequence analyzer 

ASP 9 21 17 
} 17 } 33 } - 34 

ASN 8 11 16 

THR 17 17 40 40 34 34 

SER 12 12 30 30 43 43 

GLU 12 17 19 
} 26 } 30 } 35 

GLN 14 11 15 

PRO 28 28 29 30 27 28 

GLY 24 24 25 27 27 28 

ALA 22 22 32 33 42 42 

CYS 0 0 17 14 17 15 

VAL 15 15 31 31 36 35 

MET 10 10 6 6 10 10 

ILE 8 8 23 22 24 23 

LEU 14 14 28 29 27 28 

TYR 4 4 22 18 16 13 

PHE 9 9 9 10 19 19 

HIS 6 6 19 17 13 13 

LYS 25 25 27 . 27 23 23 

ARG 23 22 20 19 10 10 

TRP 4 4 5 6 4 4 

TOTAL 264 423 439 

MOL. WT. 29,322 46,835 47,301 
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aSequence composition is deduced from the complement of the cDNA sequence 

in Fig. 6 (Rice and Strauss, 1981). Analyzer composition is from Bell 

et al., 1979; data have been rounded to the nearest integer assuming 264, 423, 

and 439 residues in C, E2, El, respectively. Molecular weights are for the peptide 

part only. 
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there are nucleotide sequences which encode protein which are much less conserved 

than others~ ~or example, the NH2-terminal region of the Sindbis and SFV capsid 

protein shows very little protein or nucleic acid sequence homology, but in both 

viruses contains a clustering of lysine, arginine, and proline forming a highly basic 

domain (Garoff et al., 1980b; Rice and Strauss, 1981). In addition, the nucleotide 

sequences encoding the E2 glycoproteins show very little homology except near 

the COOH termini of the glycoproteins. The protein and nucleic acid sequence 

homology between these two closely related alphaviruses provides additional support 

for the validity of the sequence data obtained by this method. 
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ABSTRACT The nucleotide sequence of intracellular 268 mRN A of Sindbis virus 

has been determined by direct sequence analysis of the cDNA made to this RNA with 

reverse transcriptase. From this study, the amino acid sequences of the encoded 

virus structural proteins, which include a basic capsid protein and two integral 

membrane glycoproteins, have been deduced. The features of these proteins as 

related to their functions are discussed. We suggest that 3 proteases are required to 

produce these proteins from their polyprotein precursor: a viral protease functions in 

the cytosol to release the capsid protein; signalase makes two cleavages which 

separate the glycoproteins; and a protease of the Golgi complex which cleaves after 

double basic residues processes the precursor form of one of the glycoproteins. 
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INTRODUCTION 

Alphaviruses such as Sindbis virus and the closely related Semliki Forest virus 

are simple enveloped viruses. The icosahedral nucleocapsid is assembled in the 

cytoplasm, diffuses to the cell surface and buds through the host cell plasmalemma, 

acquiring a lipoprotein envelope containing only virus encoded glycoproteins. These 

glycoproteins are synthesized on the rough endoplasmic reticulum, glycosylated, and 

migrate to the plasma membrane by way of the Golgi apparatus, where the 

carbohydrates are modified and lipids are covalently attached. The interaction 

between the alphavirus nucleocapsid and its glycoproteins is much more specific than 

in other. enveloped viruses; mature virions contain exclusively alphavirus proteins (1). 

All three of the virus structural proteins are translated as a continuous 

polypeptide from a single messenger RNA molecule, called 268 RNA (2). We have 

determined the nucleotide sequence of Sindbis HR 268 RNA in order to investigate in 

detail the structure and processing of the viral proteins and to make possible further 

study of the temperature sensitive mutants previously characterized genetically and 

physiologically (3). 

· MATERIALS AND METHODS 

Details of the methods and strategy used for preparation and sequencing of 

single-stranded cDNA to Sindbis 268 RNA will be published elsewhere. Briefly, 268 

RNA was used as a template for synthesis of complementary DNA (cDNA) at 42.5°C 

using avian myeloblastosis virus reverse transcriptase (kindly provided by J. Beard) 

and primed with either oligo(dT)12_18 (Collaborative Research) or a mixture of short 

~6-8 nucleotides) random oligonucleotides derived from calf thymus DNA (a gift 

from J. Casey). The reaction mixture contained 4 mM sodium pyrophosphate to 

inhibit second strand synthesis. After 30-60 minutes an excess of Na2 EDT A was 

added to stop the reaction followed by phenol/chloroform extraction, and ethanol 
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precipitation of the cDNA-RNA hybrid. The RNA strand was hydrolyzed by 

incubation in 0.1 M NaOH at 60°C for 30 minutes. The cDNA was chromatographed 

over Biogei A,5M (BioRad Labs); the excluded peak fractions were pooled and ethanol 

precipitated. The cDNA after digestion with either Hae III, Taq 1, Hha 1, or Rsa 1 

(New .England Biolabs) was labeled at the 5' ends with T4 polynucleotide kinase or at 

the 3' ends with terminal deoxynucleotidyl transferase (Bethesda Research Labs, 

ribosubstitution grade) essentially as described by Maxam and Gilbert (4). Single­

stranded, end-labeled restriction fragments were separated on 6% polyacrylamide 

sequencing gels, excised, eluted, and sequenced using the base specific chemical 

cleavage procedure (4). The modifications of Smith and Calvo (5) were employed for 

long (> 300 nucleotides) fragments. By using four different restriction enzymes, 

sequencing numerous partial digestion products, and sequencing some fragments from 

both the 5' and the 3' direction, virtually all of the sequence was determined more 

than once and sufficient overlap was obtained to align all of the fragments. 

RF.SULTS AND DISCUSSION 

Sequenee of 268 RNA. Figure 1 presents the entire nucleotide sequence of 

Sindbis virus (HR strain) 268 RNA, excluding a sequence of about 150 nucleotides at 

the 5' end which has not been unambiguously determined, and the deduced amino acid 

sequences of the encoded proteins. From the AUG codon initiating synthesis of the 

capsid protein, there is an open reading frame for 3735 nucleotides encoding, in order, 

capsid protein, E3, E2, El, followed by a termination codon. The identification of the 

NH2 terminus and the COOH terminus of each protein is discussed below. The 

deduced amino acid sequence is in precise agreement with the NH2-terminal 

sequences found by automated sequence analysis of El and E2 (6), of PE2 (the 

precursor to E3 and E2) (J.R. Bell and M.W. Hunkapiller, personal communication), 

and of the hydrophobic "roots" of El and E2 derived by treatment of intact virions 
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Fig. 1. Nucleotide sequence of Sindbis 268 RNA and amino acid sequence of the 

encoded proteins. Nucleotides are numbered from the 3' end. Amino acids are 

. numbered from the NH2 terminus of each protein (C, E3, E2, 6K, El). The beginning 

of each protein is labeled and the NH2 terminus of the polypeptide segments from E2 

and El isolated from spikeless particles after chymotrypsin treatment are marked 

with a triangle. Carbohydrate attachment sites are denoted by an asterisk. The 

single letter amino acid code is used: A = ala, C = cys, D = asp, E = glu, F = phe, G = 

gly, H =his, I = ile, K = lys, L = leu, M = met, N = asn, P =pro, Q =gin, R = arg, S = 

ser, T = thy, V = val, W = trp, Y = tyr. 



CCU 
•1 
CCl5l 
1151 

Cl7S> 
m1 
C<llS> 
Wll 

CCISS> 
1!111 

C<lll5l 
1'71 

CG!35> 
11351 

D<ll> 
3231 

ncsu 
3111 

70 

c--
, 11NRGFFN11 LG RR PF PAP TA II V RP RR RR QA AP MP A 
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DEGTRTALSVVTVNSKGKT!KTTPEGTEEVSAAPLVTAMC 
GAUGAAGGAACACGAACUGCCC:UUUCGGUCGUCACCUGCAAUAGUAAAGGG~AGACAAUUAAGACGACCCCGGAAGGGACAr:AAGAGUGGUCCGCAGCACCACUGGUCACGr:cAAUGUCU 

L L G N V s• F P C D R P P T C Y T R E P S R A L D I L E E N V H H E A Y D T L L 
UUGCUCGGAAAUGUGAGCUUCCCAUGCGACCGCCCGCCCACAUGCUAUACCCGCGAACCUUCCAGAGCCCUCGACAUCCUUGAAGAGAACGUGAACCAUGAGGCCUACGAUACCCUGCUC 

• £2- • • • 

N A I L R C ·c S S G R S K R S V I D G F T L T S P Y L G T C S Y C H H T E P C F 
AAUGCCAUAUUGCCGUGCGGA!!CGUCUGGCAGAAGCAAAAGAAGCGUCAUUr:AccccuuuAcccucAccAGCCCCUACUUGr:ccACAUCCUCGUACUGCCACCAUACUGAAt;cGUGCUUC 

acm S P V K I E Q V V D E A D D N T I R I Q T S A Q F G Y D Q S G A A S A N K Y R Y 
2111 ACCCCUGUUAAGAUCCAGCACqucucccACGAACCGCACCAUAACACCAUA£CCAUACACACUUCCCCCCAGUUUCCAUACgAcCAAAGCCCA'GCAGCAACCCCAAACAAG1:1ACCGCUAC 

£2(97) M S L K Q D H T V K E G T M D D I K I S T S G P C R R L S Y K G Y F L L A K C P 
21171 AUGUCGCUUAAGCAGGAUCAC~CCGUUAAAGAAGCCACCAUGGAUCACAUC~AGAUUAGCACCUCAGGACCGUGUAGAAGGt;UUAGCUACAAAGGAUACUUUCUCCUCGCA~AAUGCCCU 

£2<187l P G 0 S V T V S I V S S N S A T S C T L A R K I K P K F V G R E K Y 0 L P P Y H 
2751 CCAGGGGACAGCCUAACCCUU~GCAUACUCAGUAGCAACUCAGCAACGUCAJ!GUACACUCGCCCCCAAGAUAAAACCAAAA1!UCCUGCCACCCGAAAAAUAUGAUCUACCUt;CCGUUCAC 

£2<1ID G K K I P C T V Y 0 R L K E T T A G Y I T M H R P R P H A Y T S Y L E E S S G K 
2931 GCUAAAAAAAUUCCUUGCAcAgucUACGACCGUCUGAAAGAAACAACUGCAgccuACAUCACUAUGCACAGCCCCAGACCGC:ACGCUUAUACAUCCUACCUGGAAGAAUCA'!CAGGGAAA . 
E2<117l V Y A K P P S G K N I T Y E C K C G D Y K T G T Y S T R T E I T G C T A I K Q C 
2511 CUULIACCCAAAGCCCCCAUCUqccAACAACAUUACCUAUCACUCCAACUGCgcccACUACAACACCCGAACCCUUUCCACC£GCACCGAAAUCACUGGUUCCACCGCCAUC~AGCAGUGC 

E2C227> Y A Y K S D Q T K V Y F N S P 0 L I R H 0 0 H T A Q G K L H L P F K L I P S T C 
23&1 GUCGCCUAUAACACCCACCAA~CGAAGUGGGµcuucAACUCACCGGACUUG~UCACACAUGACGACCACACCGCCCAAGCG~AAUUGCAUUUCCCUUUCAACUUCAUCCCC~CUACCUGC 

£2<21!7l M V P Y A H A P N Y I H G F K H I S L Q L D T 0 H L T L L T T R R L G A N P E P 
2271 AUCGUCCCUGUUCCCCACCCC~CCAAUCUAAUACAUGCCUUUAAACACAUC~GCCUCCAAUUAGAUACACACCACUUGACA';JUGCUCACCACCAGGAGACUACCCCCAAAC~CGGA.ACCA . 
E2<317> T T E V I V G K T V R N F T V 0 R 0 G L E Y I V G N H E P V R V Y A Q E S A P G 
2151 ACCACUGAAUCCAUCCUCGGA~ACACGGUCACAAACUUCACCCUCCACCGA~AUCGCCUCGAAUACAUAUCGGGAAAUCAU~ACCCAGUCACGCUCUAUGCCCAAGAGUCAgtACCAGGA 

£2<347> D p H G v p H E I y g H y •v H R H p v y T I L A y A s A T y A M M I G y r v A v 
2131 CACCCUCACCGAUCGCCACACCAAAUACUACACCAUUACUACCAUCGCCAUCCUGUGUACACCAUCUUACCCGUCCCAUCACCUACCCUGGCGAUCAUGAUUGGCGUAACUCUCCCACUG . . . .,:... 
£21317> L C A C K A R R E C L T P Y A L A P H A V I P T S L A L L C C V R S A N A E T F 
1111 UUAUGUCCCUGUAAACCGCcci;GUGAGUGCCUGACGCCAUACGCCCUGGCCi;cuACGCCGUAAUCCCAACUUCGCUGGCAt;UcUUGUGCUGCGUCAGGUCGGCCAAUGCUGAAACGUUC 

•«> T E T M S Y L V S N S Q P F F V V Q L C I P L A A F I V L M R C C S C C L P F L 
17111 ACCGAGACCAUGAGUUACIJUGUGGUCGAACAGUCAGCCGUUCUUCUGGGUCCAGUUGUGCAUACCUUUGGCCGCUIJUCAUCGUUCUAAUGCGCUGCUGCUCCUGCUGCCUGCCUUUUUUA . ,,_ . . 
• ....,y VA GAYLA KV DAYE HATT VP H VP QI PY KA LYE RAG YAP L N 
1171 GUCGUUGCCCGCGCCUACCUG~CGAAGGUACACGCCUACGAACAUGCCACC~CllGUUCCAAAUGUGCCACAGAUACCGUAU~AGGCACUUGUUGAAAGGGCAGGGUAUGCCCCGCUCAAU 

EIC2111 L E I T V 11 S S E V L P S T H Q E Y I T C K F T T V V P S P K I K C C G S L E C 
1951 UUGGACAUCACUGUCAUCUcCyccGAGGUUUUGCCUUCCACCAACCAAGAGYACAUUACCUGCAAAUUCACCACUGUGGUCi;ccuccccAAAAAUCAAAUGCUGCGCCUCCUUCGAAUGU 

Elftllll Q P A A H A D Y T C K Y F G G V Y P F 11 V G G A Q C F C D S E N S Q M S E A Y V 
""' CACCCGCCCCCUCAUGCAGACYAUACCUCCAAGGUCUUCGGAGGGGUCUACi;ccuuUAUGUCGGCAGGACCGCAAUGUUUUYGCGACAGUGAGAACAGCCAGAUGAGUCAGGCGUACGUC 

El<l.,E LS AV CA S 0 HAQ A I KV HT A AM KV G LR IVY G NT TS FL D VY Y 
1911 GAAUUGUCAGCAGUAUGCGCcycuGACCACGCGCAGGCGAUUAAGCUCCAC~CUGCCGCGAUGAAAGUAGGACUGCGUAUU~UGUACCGGAACACIJACCAGUUUCCUAGAUGUGUACGUC 

£1<1<111 N G V T P G T S K 0 L K V I A G P I S A S F T P F D H K V V I H R G L V Y N Y D 
1111 AACGGACUCACACCAGGAACGYCUAAAGACUUGAAAGUCAUAGCUGCACCA~UUUCAGCAUCGUUUACGCCAUUCGAUCAU~ACGUCGUUAUCCAUCGCGGCCUGGUGUACAACUAUGAC 

£!<1_,F PE Y CAM KP GAF GD IQ ATS LT SK 0 LI AST DIR LL KP SAK 11 
1171 Ul!CCCGGAAUAUGGAGCGAUG~AACCAGGAGCGUUUGGAGACAUUCAAGCU~CCUCCUUGACUAGCAAGGAUCUCAUCGCC~GCACAGACAUUAGGCUACUCAAGCCUUCCGCCAACAAC 

£112211> V H V P Y T Q A S S G F E M V K N N S G R P L Q E T A P F G C K I A V N r L ~ A 
m1 GUGCAUCUCCCGUACACGCAG~CCUCAUCAGGAUUUGACAUGUGGAAAAAC~ACUCAGGCCGCCCACUGCAGGAAACCGCA!;CUUUCGGGUGUAACAUUCCAGUAA ~UCCGCUCCGACCC 

Elam> V D C S Y G N I P I S I 0 I P N A A F I R T S D A P L V S T V I( C E V S E C T V 
•1 GUGGACUGUl!CAUACGCGAAC~UUCCCAUUUCUAUUGACAUCCCGAACCCU~CCUUUAUCAGG.ACAUCAGAUGCACCACUG9ucucAACACUCAAAUGUGAACUCACUGAGUCCACUUAU 

El_, S A D F G G M A T L g· Y V S D R E G Q C P V H S H S S T A T L Q E S T V H V L E 
111 UCAGCAGACUU_CGGCGGGAUG~CCACCCUGCAGUAUCUAUCCGACCGCGAA9GUCAAUCCCCCCUACAUUCGCAUUCGAGC~CAGCAACUCUCCAACAGUCGACAGUACAUGUCCUGGAC 

EICM8> K G A V T V H F S T A S P Q A N F I V S L C G K K T T C N A E C K P P A D H I Y 
•1 AAAGGAGCGGUGACAGUACAC\IUUAGCACCGCGAGUCCACAGGCGAACUUU~UCGUAUCGCUGUGUGGGAAGAAGACAACA\IGCAAUGCAGAAUGUAAACCACCAGCUCACCAUAUCGUG 

Elam> S T P H K N 0 Q E F •a A A I S K T S V S V l F A L F C G A S S L L I I G L M I F 
01 AGCACCCCGCACAAAAAUGAC.,AAGAAUUUCAAGCCGCCAUCUCAAAAACAYCAUGGAGUUGGCUGUUUGCCCUUUUCGGC~GCGCCUCCUCGCUAUUAAUUAUAGGACUUAUGAUUUUU 

El<GID A C S M II L T S T R R 
ml GCUUGCAGCAUGAUGCUGACU~GCACACGAAGAUGACCGCUACGCCCCAAUi:AUCCGACCAGCAA/\ACUCCAUGUACUUCC~AGGAACUGAUGUGCAUAAUGCAUCAGGCUGGUACAUUA 

DI GAUCGCUUACCGCGGGCAAUA\IAGCAACACUAAAAACUCGAUGUACUUCCG~GGAAGCGCAGUGCAUAAUNUGCGCNGllGU\IGCCACAUAACCACUAUAUUAACCAUUUAUCUAGCGGAC 

Ill GCCAAAAACUCAAUGUAUUUC\IGAGGAAGCGUGGUGCAUAAUGCCACCCAG~GUCUGCAUAACUUUUAUUAUUUCUUUUAUYAAUCAACAAAAUUUUGUUUUUAACAUUUC Pely<A> 
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it 

with a-chymotrypsin (C.M. Rice and M.W. Hunkapiller, unpublished). In addition, 

sequences of many of the tryptic peptides from the 8indbis (strain Sa-AR-86) capsid 

protein have been recently published (7); most of this sequence data are consistent 

with our deduced sequence for the capsid protein. 

The experimental amino acid compositions for El, E2, and C (8), are in 

excellent agreement with the compositions deduced from the nucleotide sequence and 

furnish additional support for the deduced protein sequences. In addition, our 

sequence data adjacent to the poly(A) tail is in complete agreement with the 

sequence obtained for the same region using a chain termination method (9). 

The method we have used requires only a few micrograms of purified RN A, and 

because molecular cloning is not involved, there is no chance of selecting a minor 

variant in the population. We are currently using this method to locate sequence 

changes in 8indbis ts mutants. 

The coding regions of 268 RNA of Semliki Forest virus (8FV) have been 

sequenced recently (10, 11). The amino acid sequences of Sindbis structural proteins 

are compared to those of 8FV in Fig. 2. Sequences have been aligned to maximize 

homology. The overall ho~ology between the viruses is striking: 47% of the residues 

are identical, and another 12% of the residues represent conservative substitutions. 

It is also obvious that some areas of the proteins are more highly conserved than 

others (Fig. 2), as will be discussed below. The cysteine residues are in general 

conserved except in certain hydrophobic areas (Fig. 2). 

Overall Structure of Sindbis 268 RNA. We have identified a Hae Ill fragment of 

the 268 cDNA which includes the NH2 terminus of the capsid protein and extends 

from the AUG codon 175 nucleotides towards the 5' end of the RNA. Assuming that 

this fragment is derived from the 268 RNA, this brings the overall length of the 

8indbis 268 RNA to at leastl\/4230 nucleotides, not including the poly(A) tail, which is 

in good agreement with previous estimates of its size (2). A 5' untranslated region of 
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Fig. 2. iComparison of the amino acid sequence of the Sindbis structural 

proteins from Fig. 1 (upper sequence) and that of the structural proteins of SFV (from 

refs. 10, 11) '(lower sequence). A dot in the SFV sequence means the amino acid is 

identical to tha't above in the Sindbis sequence. A dot between the amino acids of the 

two sequences denotes a conservative substitution (R=K, S=T, D=E, Q=N, V=L=I=M, 

A=G, A=V, Y=F). Possible carbohydrate attachment sites are marked with an 

asterisk. An·attempt was made to keep the number of gaps introduced to a minimum. 

Nucleotide sequence homology was used to position gaps in some areas where amino 

acid sequence homology is low. The single letter amino acid code is used as in Figure 

1. 
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cm MNRGFFNML GRRPFPAPT f.MVRPRRRRQAAPMPA RNGLASQ I QQL TT AVSALV I GQf.TRPQPPRPRPPPR QKKQf.PKQPPKPKKPKTDEKKKKDPA KPKPGKRDRMALKLEA 
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CCl13> DRLFDVKNEDGDVIGHALAMEGKVMKPLHVKGTIDHPVLSKLKFTKSSAYDMEFAOLPVNMRSEAFTYTSEHPEGFYNVHHGAVQYSGGAFTIPRGVGGRGDSGAPIMDNSGRVVAIYl.C . . . . . . . 
cc11m •Cl•E••H• •K•T•Y•CLVGD•••••A••••Y••NAD•A••A•K•••K••L•C••l••H•••D•SK••H·K···H··················T•A•KP·······F··K········· 

I I I I E3 I • I I I I I I E2 . 
C<233) CADEGTRTALSVVTVNSKCKTIKTTPEGTEEV SAAPLVTAMCLLGNVSFPCDRPP TCYTAEPSRALDILEENVNHEAYDTLLNAILRCGSSGRSKR SVIDGFTL TS 
C<237> ••N••S••········ •DMVTRV••••S••• •• •• j .••. y.A•AT•••FO••CVPC••ENNAEAT•RM••D••DAPG•YD••Q•A•T•RNGT•HR• ••SDH•NVYKA•R 

t .I * I I 6 
I I I I I I 

E2<11) PYLGTCSYCHHTEPCFSPVKIEDVVDEADDNTIRIOTSADFGYDQSGAASANKYRYMSLKQDHTVKEGTMDDIKISTSGPCRRLSYKCYFLLAKCPPGDSVTVSIVSS NSATSCTLARK 
~u~ ··iAY•AD•GAGHS•H•••A••A•RS••T•GMLK··F··~I·I•K•DNHDYT•I••A DG·AiENAVRSSL•VA•••D•FVHGTM•H·i·······EFLO•••DDTR•AVRA•AiovH 
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~<1311> IKPKFVGREKYDLPPVHGKKIPCTVYDRLKETTAGYITMHRPRPHAYTSYLEESSGKVYAKPPSGKNITYECKCGDYKTGTVSTRTEITGCTAIKDCVAYKSDDTKVVFNSPDLIRHDDH 
~<131> HD•OP•••••FTiR•HY••E••••T•DQTTAE•VEE•D••M•PDTPDRTL•SQD••N• KITVG••KVK•N•T••TGNV••TNSDMT•NT• L•E••HVSVT•HK••D••••FVP•A•EP 

I I I • I I 
I I I • I I I 

~<251> TAQCKLHLPFKLIPSTCMVPVAHAPNVIHGFKHISLQLDTDHLTLLTTRRLGANPEPTTEVIVGKTVRNFTVDRDGLEYIVGNHEPVRVYAOESAPGDPHGVPHEIVOHYYHRHPVYTIL 
~<249> ARK••V•i··P·DNI••R••M•RE·T····KREVT•H•HP••P••FSY•T••ED•OYHE··VTAAVE·TIP·PV••M••H•••ND•••LVS•LTTE•K••••••O•••Y••GLY•AA•VS 

,'. ,• •• SK I I I I I -;i 

~<371> AVASATVAMMIGVTVAVLCACKARRECLTPYALAPNAVIPTSLALLCCVRSANA ETFTETMSYLVSNSQPFFVVOL CIPLAAFIVLMRCCSCCLPFLVVAGAYLAKVDA ~ 
~<389> ••VGMSLLAL•SiFASCYMLVA••SK·······T•G•AV•VT•Gi···APR•H• ASVA•••A•••DQN•AL••LEFAAPVA••LiITYCLANVL•C·KSLSFL•LLSLC•TAA• 

El I I I I I I I I I I I I 

El<l> YEHATTVPNVPOIPYKALVERAGYAPLNLEITVMSSEVLPSTNQEYITCKFTTVVPSPKJKCCGSLECQPAAHADYTCKVFGGVYPFMVGGAOCFCDSENSOMSEAYVELSAVCASDHAO 
El (1) ••• s. VM ••• VGF •••• Hi •• p •• s .. T. QMO. VET SLE. f L. L ••••• EYK •••••• YV •••• AS •• STKEKP •• Q ••• Yr •••••••••• y ....•.• f. L ••••• OR• D• • RH• •• s 

· I I I I I I 
el I t t I t 

E1<121> AIKVHTAAMKVGLRIVYGNTTSFLDVYVNGYTPGTSKDLKVIAGPISASFTPFDHKVVIHAGLVYNYDFPEYGAMKPGAFGDIQATSLTSKDLIASTDIALLKPSAKNVHVPYTDASSGF 
E1<121> •Y•A•••SL•AKV•VM•••VNOTV••••••DHAV·IGGTOF•F••L•SAW•••·N·i·VYKDE•F•D•••P•·SGO••R•••••SRTVE•N••Y•N•ALK•AR••PGM•••••••TP••• 

1 e I I I I I 
• I I I I I I 

E1<241> EMVKNNSGRPLOETAPFGCKIAVNPLRAVDCSYGNIPISIDIPNAAFIRTSDAPLVSTVKCEVSECTYSADFCGMATLOYVSDREGOCPVHSHSSTATLDESTVHVLEKGAVTVHFSTAS 
El<241) KY•LKEK•TA•NTK•••••O•KT··V••MN•AV••••V•MNL•DS··T•IVE··TiIDLT·T•AT••H•S••••VL••T•KTNKN•D•S•••••NV·····A•AK•KTA•K••L•••••• 

I I I I I I 
I I I 

E1<361> PQANFIVSLCGKKTTCHAECKPPADHIVSTPHKNDQEFQAAISKTSVSVLFALFGGASSLLIIGLMIFACSMMLTSTRR 
El<361> ASPS•V••••SARA••S•S•E••K••••PYAASHSNVVFPDM•G•AL••VOKiS••LGA FA··AiLVLVVVTCIGL•• 

I I I 



74 

175 nucleotides" is fairly long in comparison with most known mRNAs; however, the 

mRNA for VPl of SV40 has 240 nucleotides 5' to the initiation codon (12). The 3' 

untranslated 'sequence is 318 nucleotides in length in Sindbis compared to 264 

nucleotides in SFV (11). It is of note that despite numerous deletions in the coding 

regions relative to one another (Fig. 2), the lengths of the two virus 268 RNAs are 

remarkably similar. From the AUG codon to the beginning of the poly(A) tail is 4023 

nucleotides in SFV, and 4053 nucleotides in Sindbis. 

We have· examined the codon usage in Sindbis 268 RN A, and for most of the 

amino acids the distribution among the possible codons is clearly non-random (data 

not shown). The base composition or nearest neighbor frequency cannot account for 

the codon frequency found. In addition, in spite of the extensive nucleotide sequence 

divergence between Sindbis and SFV, the two viruses show similar codon usage (data 

not shown). (As an example of this divergence, regions in which the amino acid 

sequence is totally conserved between the two viruses show an average of about 0.8 

base changes per codon.) We do not find a low frequency of the CG doublet as has 

been found for some DNA viruses such as SV40 (13), or RNA viruses such as fowl 

plague virus (14) which have mammalian or avian hosts. Sindbis and SFV have a wide 

host range which includes insects as well as birds and mammals. The codon 

preferences found in these two viruses may be due in part to an adaptation for 

optimal translational efficiency in this wide range of hosts. 

The Capsid Protein. The capsid protein of Sindbis is 264 amino acids in length. 

Inspection of the sequence reveals a striking clustering of lysine, arginine, and praline 

in the NH2-terminal half. Seventy percent of these three amino acids, as well as 85% 

of the glutamine and 60% of the alanine, are found within the first 120 residues. This 

basic region of the capsid protein is probably important in interacting with the virion 

RNA. Although SFV capsid protein has a similar basic region near the NH2 terminus, 

there is relatively little sequence homology between the two proteins in this region 
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" (Fig. 2). The COOR-terminal end {residues 166-264), however, shows remarkable 

sequence homology between Sindbis and SFV (Fig. 2) with 76% of the residues 

. identical and another 6% conservative substitutions. This conservation suggests that 

this region could be important in protein-protein interactions such as those between 

capsid protein subunits to form the nucleocapsid, and those between the nucleocapsid 

and the COOR-terminal end(s) of the transmembrane viral glycoproteins. 

Glyeoprotein E3. Sindbis E3 is 64 amino acids in length. The first 19 residues 

are uncharged, highly conserved between Sindbis and SFV (Fig. 2), and may serve as 

the signal sequence for the insertion of PE2 into the endoplasmic reticulum during 

protein· synthesis (15). This putative signal sequence is not cleaved from PE2 during 

protein synthesis; rather PE2 is cleaved to E2 and E3 during virus maturation (2, 15). 

Sindbis E3 is known to be glycosylated (26) and the sequence contains a single 

glycosylation site of the type Asn-x-Ser/Thr (Asn14). In addition, during amino 

acid sequence analysis of PE2 and E3, Asn14 is not recovered, as is characteristic of 

glycosylated asparagine residues, whereas other amino acids around this site are 

recovered (M. W. Runkapiller, J.R. Bell and J. Mayne, personal communication). Thus 

it is virtually certain that ·Asn14 is glycosylated. The polysaccharide chain is known 

to be of the complex type (E.G. Strauss, personal communication). It is interesting to 

note that this glycosylated site occurs within the putative signal sequence for PE2, 

E!nd is conserved between Sindbis and SFV (Fig. 2). The E3 polypeptide of SFV has in 

addition a second potential glycosylation site at Asn60 (11). 

Glyeoprotein E2. The E2 polypeptide of Sindbis is 423 amino acid residues long. 

There are two potential glycosylation sites. Burke and Keegstra (16) have shown that 

Sindbis E2 has two carbohydrate units, one of which is a simple oligosaccharide chain 

containing only mannose and N-acetylglucosamine and the other a complex type 

carbohydrate chain which contains in addition galactose, fucose, and sialic acid. They 

isolated glycopeptides following pronase digestion of E2 and found that the 
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glycopeptide of ~the complex type had the amino acid composition (Asn1, ne0•8, 

. Thro. 7), while the 'simple type had the composition (Asn1, Phe0•6, Thr0.1). From 

Figure 1 it is apparent that Asn196 carries a complex chain, and Asn318 has a simple 

chain~ It is of interest that SFV E2 also carries two carbohydrate chains (11), one at 

Asn200, the second at Asn262. 

Sindbis E2 has two long stretches of uncharged amino acids near its COOH 

terminus. The. first of these is 28 amino acids long (residues 363 to 390) and begins 

near the NH2 terminus of the hydrophobic "root" derived from E2 by treatment of the 

intact virion with chymotrypsin (unpublished) (Fig. 1). Since it is known that about 30 

residues can be removed from the COOR-terminal end of PE2 by chymotrypsin 

treatment of intact microsomes (17), it is clear that this hydrophobic domain 

traverses the bilayer. E2 is known to have 5-6 residues of fatty acid covalently 

attached (18), all of which is found in the root (our unpublished data). There are three 

threonines and one serine in this first hydrophobic domain which could serve as 

attachment sites. 

The second hydrophobic domain is 23 amino acids long (residues 396 to 418), and 

also appears to contain attached fatty acid (J.R. Bell, personal communication). Its 

orientation in the virion is unknown. The homology (87%) between the Sindbis and 

SFV proteins in this region is striking and contrasts with the low homology found in 

the first hydrophobic region. This homology together with the many conserved 

cysteine residues suggests that this segment may provide the specificity for the 

interaction between the viral nucleocapsid and the glycoproteins during budding. 

55 Amino Aeid Peptide (4.2 K or 6 K Protein). This peptide is made up of 

predominantly uncharged amino acids (91%) and probably serves in whole or in part as 

the signal sequence for El. It is unknown if it has other functions as well. The 

corresponding Sindbis and SFV peptides have diverged widely (Fig. 2), implying that 

hydrophobicity is important for the function of this peptide, but the exact sequence is 

not. 
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Glyeoprotein El. El, the viral hemagglutinin (19), is the largest of the Sindbis 

. glycoproteins (439 amino acids). Two potential glycosylation sites (Asn139, Asn245 ) 

are present~ and both appear to be glycosylated. Firstly, El of Sindbis grown in 

primary chicken' cells contains both simple and complex polysaccharide chains, 

although El from Sindbis grown in a continuous hamster cell line contains only 

complex chains (20, 21). Secondly, the carbohydrate composition of El suggests two 

chains are present (21). Thirdly, the fact that Sindbis El migrates more slowly than 

E2 in SDS containing gels, whereas SFV El (which contains a single glycosylation site 

[11]) and E2 comigrate, suggests that Sindbis El has two chains as does E2. We 

hypothesize that Asn139 has a complex chain and Asn245 has a simple chain in chick 

grown virus, and both have complex chains in hamster grown virus. The single 

glycosylation site of SFV El, Asn141 (11) is shifted by two residues from the first 

Sindbis site, a shift that required mutations in two separate codons (Fig. 2). 

Sindbis El has two long sequences of uncharged amino acids. The first is 1 7 in 

length and begins at vai80• In the region of El from Asp75 to Glu109, which includes 

this uncharged segment, there are only 7 differences between Sindbis and SFV, and 4 

of these are highly conservative changes (see Fig. 2). This uncharged region is not 

present in Sindbis spikeless particles (unpublished), suggesting that it is not imbedded 

in the viral membrane. It may play a role in mediating virus fusion with intracellular 

membranes during penetration (11). 

The second region is located at the COOH terminus of El and begins seven 

residues from the NH2 terminus of the root of El (unpublished) (Fig. 1). A sequence 

of 33 uncharged amino acids is followed by two arginine residues suggesting that El 

spans the bilayer with only two (or at most a few) residues exposed on the 

cytoplasmic side. This uncharged domain contains six serine and three threonine 

residues which are potential attachment sites for the 1-2 palmitic acid molecules 

located in this region of El (18; unpublished data). Sindbis and SFV show little 
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homology in this \.egion, but both sequences are highly hydrophobic (Fig. 2). 

Sites of Cleavage. The NH2 terminus of the Sindbis capsid protein is Met-Asn­

Arg- (7, 15; J.R. Bell, personal communication), thus identifying the start of this 

protein. The COOH terminus is established by the (capsid) tryptic peptide Thr-Thr­

Pro-Glu-Gly-Thr-Glu-Glu-Trp sequenced by Boege, et al. (7), found at residues 256 to 

264 (Fig.1). The NH2-terminal sequence of PE2 (and E3), beginning Ser-Ala-Ala-Pro­

(J.R. Bell, personal communication), follows directly (Fig. 1). Thus, tryptophan is the 

COOH-terminai amino acid of the capsid protein, and the protease responsible for the 

capsid-PE2 cleavage has a specificity similar to chymotrypsin. It has been suggested 

that this proteolytic activity resides in the capsid protein itself (22, 23, 24). The 

highly conserved region around the cleavage site (Fig. 2) may be important for a 

site-specific, viral encoded cleavage. This cleavage occurs during translation and 

apparently must take place if the signal sequence for PE2 is to function (25). 

The cleavage site between E3 and E2 has yet to be precisely determined. The 

amino terminus of E2 is Ser-Val-Ile- (6) (Fig. 1). Since E3 is radiolabeled with lysine 

(J. Mayne, personal communication), the COOH terminus is either Lys or Lys-Arg. In 

SFV the COOH-terminal Arg is apparently removed (11). The cleavage of PE2 to 

form E3 and E2, in either case, involves a trypsin-like specificity. The origin and 

localization of the protease responsible for this is at present unknown. It occurs 

relatively late, approximately 20 minutes after synthesis of PE2 and is required for 

virus maturation (2). After cleavage Sindbis E3 is found in the culture medium (26), 

while that of SFV remains associated with the mature virion (27). Thus the cleavage 

may occur in the plasma membrane, outside the cell, or it may occur internally, 

perhaps in the lumen of Golgi vesicles shortly before or concomitant with their fusion 

with the plasma membrane. The latter alternative is suggested by analogy to the 

processing of such proteins as pro-albumin and pro-parathyroid hormone (11), which 

are cleaved after double basic amino acids in the Golgi shortly before secretion of the 
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· mature · proteirl (28). The. f allure of several groups to detect PE2 in the plasma 

membrane lends further support to this idea. 

The COOH terminus of E2 is (Ala, Asn)-Ala, as determined with 

· carboxypeptidase Y (T. Crowley, personal communication). The beginning of El is 

Tyr-Glu-His- (6) (Fig. 1). There is a sequence of 55 residues between the end of E2 

and the beginning of El (Fig. 1). This is probably the peptide isolated by Welch and 

Sefton (26) from Sindbis virus infected cells, which they called a 4.2 K polypeptide. 

They have located the leucine and methionine residues in the first 20 residues of the 

4.2 K polypeptide by microsequence analysis, and found methionine at position 7 and 

leucine at position 10 (B. Sefton, personal communication), in agreement with the 

sequence shown in Fig. 1. 

The cleavages at the end of PE2 and the beginning of El both occur after 

alanine residues (for SFV as well as Sindbis, Fig. 2). It is thus tempting to propose 

that signalase is responsible for both cleavages (the properties of signalase have been 

recently reviewed in Ref. 29). If so, and if the signalase activity is restricted to the 

lumen of the rough endoplasmic reticulum, it would predict that the COOH-terminal 

regions of PE2 span the membrane twice, at least transiently. This could occur if the 

COOH terminus of PE2 and the 55 amino acid polypeptide form a set of stop transfer 

sequences and internal signal sequences that lead to multiple crossings of the 

membrane of the endoplasmic reticulum. After cleavage, the 55 amino acid peptide 

could be membrane-associated or could be released into the lumen of the endoplasmic 

reticulum. The COOH terminus of PE2, after cleavage, could remain trans­

membranous, or it could fold in such a way as to become partly or completely 

cytoplasmic. This domain contains proline and asparagine which would be unusual in 

an intramembranous region, but it also appears to contain covalently attached lipid 

(J.R. Bell, personal communication), suggesting membrane association. Further work 

will be required to resolve these questions. It is noteworthy, however, that the two 
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host proteases thought to be involved in processing of the Sindbis structural 

polypeptides are located in the lumen of the endoplasmic reticulum and in the Golgi 

apparatus,· wnereas a virus encoded protease appears to function in the cytosol. Virus 

specific proteases which cleave capsid precursors located in the cytosol have also 

been reported for other viruses (30), including picornaviruses (31), RNA tumor viruses 

(32), and probably adenovirus (33). We suggest that it is a general rule that virus 

encoded proteases are utilized for the processing in the cytosol of virus polypeptides. 
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ABSTRACT 

Digestion of intact Sindbis virions with a-chymotrypsin produced a single 

membrane-associated peptide derived from each of the two virion glycoproteins 

(referred to as REl and RE2, or roots derived from El and E2, respectively). Amino 

acid composition data and NH2-terminal sequence analysis established their location 

at the extreme COOH-terminal end of each glycoprotein. REl and RE2 are rich 
. 

in hydrophobic amino acids and insoluble in aqueous solutions in the absence of detergents, 

and show differential solubility in organic solvent systems designed for the extraction 

of lipids. Essentially all of the covalently attached palmitic acid associated with 

El and E2 was found to be clustered in their hydrophobic, membrane-associated 

roots. Beginning 6-7 residues from their NH2 termini REl and RE2 contain uninterrupted 

sequences of hydrophobic amino acids (33 and 26 amino acids, respectively), similar 

in terms of amino acid composition and length to the transmembrane anchors found 

in other bitopic integral membrane proteins. Following these uncharged, intramembrane 

segments there are clusters of predominantly basic amino acids. By structural analogy 

to known transmembrane proteins, El probably spans the bilayer but contains only 

a few residues exposed on the inner face of the virion envelope. In contrast, E2 

and PE2 (the precursor to E2) have been shown to span the bilayer completely, and 

these proteins contain an additional 33 COOH-terminal residues which could be 

either exposed on the cytoplasmic face of the lipid bilayer or which could loop back 

into the membrane. This region at the extreme COOH-terminal end of E2 contains 

a second uncharged domain (23 amino acids in length), is highly conserved between 

Sindbis virus and closely related Semliki Forest virus, and contains several uncharged 

residues not typically found in transmembrane polypeptide segments. Although 

its orientation is unknown, this region may be involved in the highly specific interaction 

of the transmembrane glycoproteins in the plasma membrane with the cytoplasmic 

nucleocapsid during budding. 
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INTRODUCTION 

Alphaviruses such as Sindbis virus and the closely related Semliki Forest virus 

(_SFV) are simple enveloped viruses useful for the study of glycoprotein biosynthesis. 

In the case of Sindbis virus, the mature virion contains two glycoproteins (El and 

E2) anchored in a lipid bilayer derived from the host cell, surrounding an icosahedral 

nucleocapsid assembled in the cytoplasm (Strauss and Strauss, 1977). The majority 

of the glycoprotein mass is external to the bilayer and can be removed by protease 

treatment (Compans, 1971; Garoff and Soderlund, 1978). All three structural proteins 

(El, E2, and the capsid protein) are encoded by a single 26S subgenomic mRNA with 

a single initiation site for protein synthesis (Cancedda et al., 1975; Rice and Strauss, 

1981). The genes are translated on membrane-bound polyribosomes (Wirth et al., 

1977) in the order 5'-C-E3-E2-6K-El-3' (Garoff et al., 1980a,b; Schlesinger and 

Kaariainen, 1980; Rice and Strauss, 1981), as a continuous polypeptide which is pro­

cessed by proteolytic cleavage (E3 and the 6K protein are not found in mature Sindbis 

virions). The nascent glycoprotein precursors are cotranslationally inserted into 

the lumen of the rough endoplasmic reticulum (Bonatti et al., 1979; Garoff et al., 

1978), and core glycosylatio1;1 with mannose-rich oligosaccharides takes place during 

or shortly after protein synthesis (Sefton, 1977). The glycoproteins then appear 

to follow the vectorial route of other secreted and plasma membrane proteins to 

the smooth endoplasmic reticulum and eventually to the plasma membrane (Palade, 

1975; Erwin and Brown, 1980). During this time oligosaccharide chains are trimmed, 

and complex chains are produced by the addition of galactose, fucose, and sialic 

acid. In addition, both glycoproteins contain covalently attached fatty acids (Schmidt 

et al., 1979), which are added 10-20 minutes after the completion of protein synthesis 

(Schmidt and Schlesinger, 1980). PE2 (the precursor to E3 and E2) and E2 have been 

shown to be a transmembrane proteins since they can be shortened by about 30 amino 

acids by proteolysis of microsomes from infected cells (Wirth et al., 1977; Ziemiecki 
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et al., 1980) or h~terologous cell-free systems (Garoff et al., 1978; Bonatti et al., 

1979). The final events during maturation involve the specific interaction of the 

nucleocapsid with the cytoplasmiC portion of the transmembrane glycoprotein(s) 

leading to virus budding through the host cell plasma membrane. The glycoproteins 

can be incorporated into mature virions about 20 minutes after their synthesis, and 

the cleavage of PE2 to E3 and E2, which also occurs at this time, is necessary for 

the final steps.in virus maturation (Strauss and Strauss, 1977). This interaction between 

the virion glycoproteins and the nucleocapsid appears to be highly specific since 

host cell glycoproteins are rigorously excluded from mature virions (Strauss,' 1978). 

Sindbis virus, SFV (Garoff and Soderlund, 1978) and other simple enveloped 

viruses such as vesicular stomatitis virus (Katz ~al., 1977; Rose et al., 1980), are 

easily tractable systems in which to study the topology of membrane glycoproteins. 

Protease treatment of intact virions yields the membrane-associated domains of 

the glycoproteins which can then be readily purified for further biochemical analysis. 

The transmembrane nature of these proteins, in some cases, can be verified directly 

by protease treatment of infected cell microsomes (Wirth et al., 1977; Katz et al., -- --
1977). Primary sequence analysis of these membrane-associated peptides can then 

be used to establish boundaries for both the cytoplasmic and extracytoplasmic sides 

of the transmembrane domain. This approach would be difficult for most cellular 

transmembrane glycoproteins because of the difficulties involved in isolating small, 

protease-resistant transmembrane domains from such complex mixtures for subsequent 

sequence analysis. Thus, by studying viral glycoprotein transmembrane domains, 

it may be possible to establish general criteria which could be used for predicting 

transmembrane regions on the basis of primary structure for proteins more difficult 

to analyze directly. 

In this study, we have produced spikeless particles (Uterman and Simons, 197 4) 

by a-chymotrypsin digestion of intact Sindbis virions, and extensively characterized 
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the protease-resistant, membrane-associated glycoprotein fragments, called "roots." 

In previous studies, the entire glycoprotein sequences have been deduced by direct 

protein and cDNA sequence analysis (Bell et al., 1978; Rice and Strauss, 1981), thus 

allowing the precise localization of these hydrophobic segments in the glycoprotein 

sequence. These data show that each virion glycoprotein is anchored in the viral 

membrane by a transmembrane hydrophobic domain at or near the COOH terminus. 

E2 contains arr additional sequence of 33 amino acids COOH-terminal to its transmembrane 

domain which is highly conserved between Sindbis virus and SFV and may play a 

role in the specific interaction of the spike glycoproteins with the nucleocapsid 

during budding. 

MATERIALS AND METHODS 

Virus growth and purification. Sindbis virus (HR strain) was grown in monolayers 

of primary chicken embryo fibroblasts as previously described (Pierce et al., 197 4). 

All radiochemicals were purchased from Amersham Searle. Radiolabeled virus was 

prepared by the salt-reversal method and purified by sequential sedimentation velocity 

and isopycnic centrifugation (Pierce et al., 1974). Isopycnic gradients contained 
. --

200 µg/ml bovine serum albumin (BSA) as carrier. Labeling of virus with [9,10-3H(n)] 

palmitic acid (500 µ Ci/mmole) was done essentially as described by Schmidt et al. 

(1979). Milligram quantities of virus were grown and purified by the method of Bell 

et al. (1979). 

Preparation of spikeless particles. Radiolabeled virus (in 33% sucrose, 90% 

D20, 0.05 M Tris-Cl, pH 7.4, 0.2 M NaCl, 0.001 M EDTA, and 200 µg/ml BSA) was 

diluted with 2 volumes of 0.05 M Tris-Cl, pH 7.4, 0.2 M NaCl, 0.001 M EDTA (TNE 

buffer) containing 200 µg/ml BSA. a-Chymotrypsin (Worthington), from a fresh 

20 mg/ml stock in TNE buffer, was added to a final concentration of 3 mg/ml. After 

incubation at 37°C for 90 minutes, the reaction was stopped by the addition of 1 mg 
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phenylmethyl sutfonyl fluoride (PMSF) (20 mg/ml in absolute ethanol) for each 10 mg 

of a-chymotrypsin. · Samples were diluted with TNE buff er prior to the addition 

of PMSF such that the final ethanol concentration did not exceed 1 %. After incubation 

for 10 minutes at room temperature, the samples were chilled on ice. 

For amino acid composition and NH2-terminal sequence analysis, larger quantities 

of spikeless particles were prepared from virus purified by the method of Bell et 

al. (1979). A small amount of 35s-methionine labeled virus was included as a tracer. 

Pooled virus from the isopycnic gradient (1 mg/ml virus protein) was digested as 

described above except that the BSA carrier was omitted and digestion was for 70 

minutes at 37°C. 

Two methods were used for separation of the spikeless particles from the released 

proteolysis products. Samples for subsequent gel electrophoresis were pelleted through 
' 

3 ml of 15% sucrose in TNE buffer containing 200 µg/ml BSA and 100 µg/ml PMSF by 

centrifugation in a Spinco SW 50.1 rotor at SOK rpm for 3 hours at 4°C. Alternatively, 

spikeless particles were banded by isopycnic centrifugation on linear gradients containing 

18-40% sucrose, 50% n2o, 200 µg/ml BSA, and 20 µg/ml PMSF, in TNE buffer. 

After centrifugation in a Spinco SW 40 rotor at 32K rpm for 12 hours, the band was 

collected by puncturing the bottom of the tube. 

Polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis was 

performed using the discontinuous buffer system of Laemmli (1970) except that 

the buffer concentrations were halved. Slab gels contained either 10% acrylamide 

or an exponential gradient from 12-20% acrylamide (acrylamide:bisacrylamide, 

30:0.8). After electrophoresis, analytical gels were treated for fluorography (Bonner 

and Laskey, 1974), and exposed at -70°C using pre-fogged Kodak X-Omat R film 

(Laskey and Mills, 1975). Preparative slab gels (for samples labeled with either 

35s- or 14c- amino acids) were exposed at 4°C and the bands were excised and eluted 

into 0.02% sodium dodecyl sulfate (SDS), 2 mM dithiothreitol (DTT) and 20 µg/ml 
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PMSF. Cylindri<!al gels, 0.6 x 12 cm, contained either 10% acrylamide, as described 

above, or 20% acrylamide (Welch and Sefton, 1979). After electrophoresis, the gels 

were frozen arid cut into 1 mm slices using a Mickle gel slicer. Preparative gel 

slices were shaken in 0.02% SDS, 2 mM DTT, 20 µg/ml PMSF, and aliquots were 

analyzed by liquid scintillation counting to localize the radioactive peaks. Gel slices 

for liquid scintillation counting were shaken for at least 48 hours in 10 ml of a toluene­

based scintillation cocktail containing 5% NCS (Amersham) and 0.33% H2o. Double­

labeled samples· were counted with appropriate standards and the channel overlap 

was corrected by a computer program. 

Solubility in organic solvents. Organic solubility of gel purified samples was 

examined using two different systems. The first system involved extraction of the 

aqueous sample (containing 25 mg/ml carrier BSA) in 0.1 M NaCl, 0.05 M Tris-Cl, 

pH 7 .4, and 1 mM EDTA (NTE) with 20 volumes of chlorof orm:methanol (2:1) according 

to the method of Folch et al. (1957). The second system used 10 volumes of acetone: 

ethanol (1:1) to one volume of the sample as described above, except that the NTE 

was omitted. After shaking for 1 hour, the pellet was removed by centrifugation 

at 3500 x g and washed with acetone:ethanol:H2o (5:5:1). After flash evaporation 

or air drying, the samples were resuspended in 1% SDS and quantitated by liquid 

scintillation counting. 

Peptide mapping. Protein samples, purified by polyacrylamide gel electro­

phoresis as.described above, were desalted by centrifugation (Neal and Fiorini, 1973) 

using Sephadex G-25 (medium) equilibrated in 0.02% SDS. 100 µg of BSA was added 

and the samples were lyophilized. After performic acid oxidation (Hirs, 1967), the 

samples were lyophilized twice and resuspended in 100 µl of water with 400 µg 

BSA, and adjusted to 20% trichloroacetic acid. Following a 30-minute incubation 

on ice, three volumes of cold water were added and the trichloroacetic acid insoluble 

material was pelleted by centrifugation at 3500 x g for 6 minutes at 0°C. The pellets 
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were washed inf% trichloroacetic acid and resuspended in 0.2 M NH4Hco3• Tryptic 

fragments were prepared by digestion at 37°C for 24 hours using two successive 

additions of 10'% w/w trypsin [L(tosylamide-2-phenyl)-ethyl-chloromethyl-ketone 

treated, Worthington]. After removal of a portion of the sample, chymotrypsin 

and trypsin were added (10% w/w of each) and the digestion allowed to proceed 

for an additional 12 hours at 37°C. The samples were frozen, lyophilized, resuspended 

in 0.5 ml H20; and lyophilized a second time. 

The peptides were resuspended in 100 µl 0.5 M NaP04:acetone (2:1), pH 1.8, 

centrifuged briefly, and separated on a DuPont 830 high pressure liquid chromatograph 

(HPLC) (McMillan et al., 1979). The column was equilibrated in 0.1 M NaPO 4, pH 2.1, 

and the peptides were eluted with an exponential gradient of acetone to 90% (approxi­

mated by the curve y = x3) usually at 49°C. A 25 cm Zorbax-CN column was used 

for tryptic digests, whereas a 25 cm Zorbax-C18 column was used for separation 

of peptides after double digestion with both trypsin and chymotrypsin. Samples 

to be compared were mixed and co-chromatographed. 

Amino aeid composition. Nanomolar amounts of REl and RE2 were prepared 

by preparative polyacrylamide gel electrophoresis as described above. Samples 

were desalted twice by centrifugation (Neal and Florini, 1973) over Sephadex G-25 

equilibrated in 0.02% SDS and dialyzed extensively against 0.02% SDS. After lyophil­

ization, the samples were hydrolyzed for 24 hours with 6 N HCl at 110°C. Automated 

amino acid analyses of protein hydrolysates were performed on a Durrum D-500 

amino acid analyzer. Cysteine and tryptophan were not determined. 

An alternative method for determining the composition of REl and RE2 was 

based on incorporation of radiolabeled amino acids. Separate preparations of spikeless 

particles each labeled with a different amino acid were pelleted and analyzed on 

20% polyacrylamide gels. The peaks corresponding to C, REl, and RE2 were quantitated 

as described above. Assuming that these components were in equimolar amounts 
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(Schlesinger et al., 1972; Garoff et al., 1974), the number of amino acid residues 

in REl and RE2 were calculated using the amino acid composition and molecular 

weight data for the capsid protein (Bell et al., 1979; Rice and Strauss, 1981). This 

assumption has been verified for intact virions using several different amino acid 

labels (E. G. Strauss, unpublished data). 

NH2-terminal automated sequence analysis. Samples were prepared as described 

above for amino acid analysis. Approximately 2 nmoles of purified protein in 25% 

acetic acid was 'loaded onto an extensively modified Beckman Instruments spinning 

cup sequenator (Hunkapiller and Hood, 1978, 1980). Polybrene was used as a carrier 

and the instrument was run under a Quadrol protein program with double cleavage. 

Amino acid phenylthiohydantoins were separated and quantitated by reverse-phase 

HPLC on DuPont Zorbax ODS (Johnson et al., 1979). 

RESULTS 

Proteolysis of Sindbis virions. In preliminary experiments a variety of proteases 

were tested (including bromelain, a-chymotrypsin, papain, pronase, thermolysin, 

and trypsin) for their ability to digest the virion glycoproteins, and produce spikeless 

particles of lighter buoyant density. The results showed that Sindbis virion glyco­

proteins were highly resistant to proteolysis (data not shown). A ten-fold excess 

of a-chymotrypsin by weight was required to efficiently digest the virion glycoproteins 
-

(see below). a-Chymotrypsin was chosen for several reasons. The enzyme preferentially 

cleaves COOR-terminal to hydrophobic amino acid residues and would be expected 

to extensively degrade hydrophobic peptides released from virions thus preventing 

their nonspecific association with spikeless particles during further purification. 

Although not as specific as trypsin, the limit digestion of intact virions with a-chymo-

trypsin would probably produce membrane-protected peptides with unique or at 

least preferential NH2 termini. In addition, the enzyme was easily inactivated by 
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the addition of P'MSF. Figure lA compares the isopycnic gradient profiles of 35s­

methionine and 3H~lucosamine labeled Sindbis virus digested with a-chymotrypsin. 

4396 of the methionine label, but less than 196 of the glucosamine label remained 

associated with the spikeless particles. Further analysis by acrylamide gel electro­

phoresis (Fig. lb) showed that the residual glycosamine label probably resulted from 

metabolic recycling into amino acids (see the capsid protein peak, Fig. lB), from 

glycolipids, and from an unidentified component barely entering the gel. These 

results demonstrated that the glycoproteins had been efficiently and uniformly digested 

and the spikeless particles cleanly separated from the released proteolysis products. 

Methionine labeled spikeless particles contained the capsid protein as well 

as three proteolysis products, C-1, REl, and RE2 (see Figs. lB and 2). The largest 

of these, C-1, was produced in significant amounts only after prolonged proteolysis 

which resulted in the loss of the capsid protein (data not shown), and has been shown 

to be a capsid protein degradation product (see below). Optimal digestion conditions 

for the production of REl and RE2 were determined empirically such that degradation 

of the capsid protein (appearance of C-1) was minimized. Short incubations with 

high a-chymotrypsin concentrations were preferable to longer incubations with reduced 

enzyme. In addition, virus isolated by the salt-reversal method (Pierce et al., 1974) 

was significantly less susceptible to leakage resulting in capsid protein degradation 

than was the virus isolated by the large scale preparative method of Bell et al. (1979). 

The basis for this difference is at present unknown, but may result from the exposure 

of the virus to fluorocarbon during the large scale purification (Bell et al., 1979). 

The origin of these protease-resistant fragments in spikeless particles was 

determined by comparing their tryptic and a.-chymotryptic peptides to those of the 

virion structural proteins. HPLC separation of the peptides was chosen because 

it allows the simultaneous comparison of two appropriately labeled samples. The 

elution profiles are extremely reproducible (usually to within 1 fraction out of 180) 
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Fig. 1. Prepar~tion of Sindbis virus spikeless particles. Spikeless particles were 

prepared by a-c;hymotrypsin digestion of Sindbis virus labeled with 35s-methionine 

(- - - - -) or 3H-glucosamine (--) as described in the Materials and Methods. Panel 

A shows the isopycnic gradient profile of the proteolytic digestion products (the 

gradient was collected from the bottom). Portions of the spikeless particle peaks 

from parallel gradients were pooled and run on a 20% acrylamide gel as described in 

the Materials and Methods (panel B). Electrophoresis was from left to right. 
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Fig. 2. Gel p~rified proteins of. Sindbis virus spikeless particles. 35s-methionine 

(lanes 1-5) and 14C-leucine (lanes 6-10) spikeless particles were prepared as described 

in the Materials and Methods. The polypeptide components were isolated by pre­

parative electrophoresis on 12-20% acrylamide gradient gels. After elution from the 

gel slices, samples of the capsid protein (lanes 2 and 7), C-1 (lanes 3 and 8), RE2 

(lanes 4 and 9), and REI (lanes 5 and 10) were rerun on a 12-20% acrylamide gradient 

gel. The original spikeless particle preparations are shown in lanes 1 and 6. 
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and can be analyzed for both qualitative and quantitative data. A preliminary experi-

. ment showed that REl and RE2 were tenaciously bound to the HPLC column and 

were not eluted with 90% acetone (data not shown). This result was not unexpected 

since the column 'separation is based upon hydrophobic interactions, and these membrane-

associated peptides were extremely hydrophobic (see below). Analysis of tryptic 

fragments of REl and RE2 by gel electrophoresis and two-dimensional thin layer 

separation showed that only a small number of large, presumably hydrophobic, leucine­

and methionine...:containing peptides were produced (data not shown). Thus, to insure 

the cleavage of long hydrophobic peptides into smaller fragments which could be 

eluted from the HPLC column, the proteins were usually digested with a combination 

of trypsin and a-chymotrypsin. Figure 3 shows several representative peptide maps 

for leucine- and methionine-containing peptides. These results show that C-1 is 

derived from the capsid protein whereas REl and RE2 are derived from El and E2, 

respectively. 

Amino acid compositions. The amino acid compositions of REl and RE2 were 

determined by two independent methods and are presented in Table 1. For comparison, 

the compositions based on the complete sequences of REl and RE2 are included 

(see below; Rice and Strauss, 1981). The compositions determined by automated 

amino acid analysis of REI and RE2 isolated from large-scale virus preparations 

(Bell et al., 1979) contained significant contamination. The difficulties in obtaining 

clean preparations of spikeless particles from these virus preparations without extensive 

degradation of the capsid protein have been mentioned. Capsid degradation products 

or autocatalytic degradation products from the a-chymotrypsin copurifying with 

spikeless particles and comigrating with REI and RE2 during gel electrophoresis 

could explain these results. The capsid protein prepared in parallel with REI and 

RE2 gave a composition in good agreement with previously published data (Bell et al., 

1979). The second method was based on the known molecular weight and composition 
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· Fig. 3. HPLC peptide maps of polypeptides from spikeless particles and intact 

virions. Gel purified spikeless particle polypeptides ( C-1, REl, and RE2) were 

prepared as described in Fig. 2. Tritium-labeled virion structural proteins (C, El, and 

E2) were separated on cylindrical 10% acrylamide gels and eluted. After desalting, 

and performic acid oxidation, the samples were digested with either trypsin (T) 

(panel C) or a combination of both trypsin and a-chymotrypsin (CT+T) (panels 

A,B,D,E, and F). The peptides were resolved by high pressure liquid chromatography 

on either a Zorbax- Cl8 column (panels A,B,D,E, and F) or a Zorbax-CN column 

(panel C} as described in the Materials and Methods. Chromatography was at 49°C, 

except in the case of panel A which was run at 23°C. Since they were digested and 

chromatographed under identical conditions, the samples in panels B,D,E, and F are 

comparable. ( ) Labeled peptides derived from intact structural proteins. 

(-----)Labeled peptides derived from C-1, REl or RE2. 
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Table 1 

Amino Acid Analysis of REl and RE2 

REl RE2 

Amino Acid "d a res1 ues "d b res1 ues "d c res1 ues "d a res1 ues "d b res1 ues residues c 

Asp 0 }2.1 0 }3.9 
Asn 0 2 

Thr 3 3.4 6.2 5 5.4 5.5 

Ser 7 5.9 n.d. e 3 2.6 3.8 

Glu 0 }-5 1 }4.1 
Gln 1 0 

Pro· 0 oa 1.2 4 3.8 5.9 

Gly 3 n.d. f 1 0 n.d. f 

Ala 5 9.2 13 15.0 

Cys 1 n.d. 5 n.d. 

Val 0 od 1.3 8 7.7 9.2 

Met 3 3.0 3.0 2 2.1 2.0 

Ile 4 3.9 2.7 3 2.9 3.1 

Leu 6 6.2 7.5 7 6.9 8.5 

Tyr 0 od 0.3 3 2.8 2.8 

Phe 3 2.7 3.4 0 od 0.7 

His 0 od 0.2 2 1. 7 2.5 

Lys 1 1.0 2.1 1 1.1 2.6 

Arg 2 2.1 3.4 4 4.4 5.6 

Trp 2 1.9 n.d. 0 od n.d. 

Total 41 64 

aAmino acid composition deduced from the 26S RNA sequence (Rice and Strauss, 1981). 

b Amino acid composition determined by incorporation of radiolabeled amino acids as 

described in the Material and Methods and the text. 

cResults from automated amino acid analysis. n.d. =not determined. 

dNo discrete peak of radioactivity was found in the proper position for these amino 

acids. 
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· Table 1 (continued) 

eNot determined because of serine containing phospholipid contamination. 

fNot determined because of residual glycine in the sample from preparative electro­

phoresis. 
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of the capsid protein, and a comparison of ratios of amino acid label in REl, RE2, 

and C found in spikeless particles. Assuming an equimolar ratio of these components 

in the spikeies~ particle (and therefore equimolar amounts of El, E2 and C), the 

number of residues of a given amino acid in REl or RE2 is simply the fraction of 

that labeled amino acid in the root compared to the capsid protein multiplied by 

the number of residues of the amino acid in the capsid protien. These compositions 

are in excellent agreement with the compositions proposed on the basis of protein 

and nucleic acid sequence data (see below; Rice and Strauss, 1981). This also verifies 

that El, E2, and the capsid protein are present in very close to equimolar amounts 

in mature virions. This method was insensitive to unlabeled contaminants, and allowed 

the use of small quantities of virus prepared by the salt-reversal method (Pierce 

et al., 1974) from which clean preparations of spikeless particles could be produced. 

As expected, both REl and RE2 contain predominantly uncharged, hydrophobic amino 

acids. RE2 has more charged amino acids (5 basic and 1 acidic) which may explain 

its more limited solubility in organic solvents when compared to REl (see below). 

Both roots contain sufficient serine, threonine, or tyrosine to serve as attachment 

sites for fatty acid molecules (see below). 

NB2 terminal sequence analysis of REl and RE2. In order to determine the 

location of REl and RE2 in the parent glycoprotein molecules, two nanomoles of 

each root were subjected to sequential Edman degradation using an automated sequenator. 

These results are shown in Fig. 4. For purposes of comparison, the NH2-terminal 

sequence data are aligned with portions of E2, the 6K protein, and El deduced from 

the sequence analysis of complementary DNA to the 26S RNA of Sindbis virus (Rice 

and Strauss, 1981). REl and RE2 begin 41 and 64 amino acids from the COOH-terminal 

ends of El and E2, respectively. The localization of the COOH termini of the glyco-

proteins and their roots is discussed below. The o.-chymotryptic cleavages generating 

REl and RE2 both occur after bulky hydrophobic amino acids (phenylalanine and 
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Fig. 4. NH2-t~rminal sequence analysis of REl and RE2. The NH2-terminal amino 

acid sequences of REl and RE2 obtained by automated Edman degradation are 

compared to the polypeptide sequences deduced from the 26S RN A sequence (Rice 

and Strauss, 1981). The numbers indicate the position from the amino terminus of the 

protein. Tentative amino acid assignments are enclosed by parentheses, and 

unidentified residues are indicated by question marks. The single letter amino acid 

code is used: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, 

Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W; Trp; X, 

termination codon; Y, Tyr. 
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REl 

REl<l) Q A A I S K T S W 
RNA •.• GUGAGCACCCCGCACAAAAAUGACCAAGAAUUUCAAGCCGCCAUCUCAAAAACAUCAUGG 
E1<388) ••. V S T P H K N 0 Q E F Q A A I S K T S W 

REl <10) 
RNA 
El <408) 

REl <30) 
RNA 
El <428) 

S W L F A L F G G A CS) 7 CL) 7 I 7 (G) CL) (M) I 
AGUUGGCUGUUUGCCCUUUUCGGCGGCGCCUCGUCGCUAUUAAUUAUAGGACUUAUGAUU 
S W L F A L F G G A S S L L I I G L M I 

F A 
UUUGCUUGCAGCAUGAUGCUGACUAGCACACGAAGAUGA ..• 
F A C S M M L T S T R R X 

RE2 

RE2 < 1) Y H R H P V Y 
RNA •.• GACCCUCACGGAUGGCCACACGAAAUAGUACAGCAUUACUACCAUCGCCAUCCUGUGUAC 
E2<347) •.. D P H G W P H E I V Q H Y Y H R H P V Y 

RE2 (8) 
RNA 
E2 <367) 

RE2 <28) 
RNA 
E2 <387) 

RNA 
E2 <407) 

RNA 
6K C4) 

7 I L A V A 7 A 7 V A <M) <M) I (G) V 7 V A V 
ACCAUCUUAGCCGUCGCAUCAGCUACCGUGGCGAUGAUGAUUGGCGUAACUGUCGCAGUG 
T I L A V A S A T V A M M I G V T V A V 

7 7 A 
UUAUGUGCCUGUAAAGCGCGCCGUGAGUGCCUGACGCCAUACGCCCUGGCCCCAAACGCC 
L C A C K A R R E C L T P Y A L A P N A 

GUAAUCCCAACUUCGCUGGCACUCUUGUGCUGCGUCAGGUCGGCCAAUGCUGAAACGUUC 
V I P T . S L A L L C C V R S A N A 1E T F 

ACCGAGACCAUGAGUUACUUGUGG .•. 
T E T M S Y L W 

46K 
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t~rosine, respectively). REI contains a charged residue (lysine) at sixth position 

f'rom the amino terminus followed by an uninterrupted stretch of 33 uncharged amino 

acids. RE2·contains a proline at position 5 followed by a sequence of 26 uncharged 

amino acids typical of transmembrane polypeptide segments (see Discussion). After 

this first hydrophobic segment, there is a cluster of charged residues (4 out of 5) 

followed by another stretch of 23 uncharged amino acids containing several prolines. 

Determination of the COOH termini of REI, RE2, El, and E2. Given the COOH­

terminal location of REI and RE2, it was of interest to determine and compare 

the COOH-termini of the glycoproteins and their roots. In the case of REI, the 

presence of two arginines at the COOR terminus (see Fig. 4) can be inf erred from 

the composition data presented in Table 1. Since a termination codon in the RNA 

sequence immediately follows these two arginines (Fig. 4), REI and El must have 

the same COOH terminus, -Leu-Arg-Arg-COOH. The localization of the COOR 

termini of RE2 and E2 was more difficult and follows from lines of evidence using 

several different approaches. The first approach utilized limited acid-catalyzed 

cleavage of E2. Other investigators have shown that aspartyl-proline bonds are 

particularly susceptible to acid-catalyzed cleavage (Piszkiewicz et al., 1970). The 

only such bond in E2 (Rice and Strauss, 1981; see Fig. 4), Asp347-Pro348, was efficiently 

cleaved by 70% formic acid (at 37°C for 24 hours) yielding a discrete COOR-terminal 

fragment (about 10,000 daltons) which was not labeled with phenylalanine (data 

not shown)._ Thus, the COOH terminus of E2 could not extend beyond the threonine 

shown in position 2 of the 6K protein (see below, Fig. 4). Microsequence analysis 

of the 6K protein (W. Welch and B. Sefton, personal communication), the gene translated 

immediately following E2, has revealed a methionine residue at position 7 and a 

leucine residue at position 10 (see Fig. 4). These data are consistent with a proteolytic 

cleavage after Ala423 generating the COOH terminus of E2 and the NR2 terminus 

of the 6K protein. The COOH terminus of E2 when directly examined by digestion 
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with carbt>xypepfidase Y appears to be (Ala,Asn)-Ala-COOH (T. Crowley, personal 

communication). The COOH terminus of RE2 has been less clearly defined. The 

composition data shown in Table 1 show that RE2 contains 3 serine and 4 arginine 

residues. The third serine and fourth arginine in the RE2 sequence are the fourth 

and fifth residues, respectively, from the COOH terminus of E2 (Fig. 4). In addition, 

the kinetics of alanine release by carboxypeptidase Y from radiolabeled E2 and 

RE2 suggest th.at they have the same COOH terminus (T. Crowley, personal communi­

cation). Taken together, these results establish the COOH terminus of E2 as -Ala­

Asn-Ala-COOH, and suggest that RE2 extends to the end of E2. 

Properties of REl and RE2. The solubility of the glycoprotein roots was examined 

using two different organic solvent systems (Table 2). Initially we used the two-

phase method of Folch et al. (1957) for the extraction of lipids from an aqueous 

sample using a mixture of chloroform and methanol. REl was 4-5 fold more soluble 

in the organic layer than was RE2. The remainder of both roots was recovered as 

a precipitate at the aqueous-organic interface. This technique was laborious, and 

although care was taken to minimize losses, overall recovery was only about 85%. 

Since both REl and RE2 were insoluble in aqueous solutions without detergents, 

their solubility in a single-phase mixture of acetone, ethanol, and water (5:5:1) was 

examined. This method was rapid, and recoveries exceeded 9596. REl was 3-f old 

more soluble in this mixture than was RE2. Under the same conditions, the structural 

proteins were completely insoluble, and the majority of the 3H-palmitate labeled 

lipids were solubilized from virions (approximately 496 of the palmitate label is covalently 

associated with El and E2, see Fig. 6; Schmidt et al .. , 1979). This differential solubility 

of REl and RE2 in organic solvents, in addition to being potentially useful as a separation 

method, suggested that REl was more hydrophobic in nature than was RE2. The 

amino acid compositions of the roots are in agreement with this finding (see Table 1). 

Two other potentially useful methods for separating these hydrophobic molecules 
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Table 2 

Organic Solubility of RBI and RB28 

REl 

RE2 

Capsid protein 

3H-palmitate Sindbis 

96 soluble in organic phase 

System A System B 

77 

16 

70 

23 

<0.5 

94 

aSolvent system A was that of Folch et al. (1957). 

Solvent system B was acetone:ethanol:water (5:5:1). 

Extractions were done as described in the Materials and 

Methods. 
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~al'~ shown in Fig~ 5.· llEl and RE2 could be separated using SDS hydroxylapatite 

chromatography (Moss and Rosenblum, 1972) by elution with a shallow linear gradient 

from 0.15 Mt~ 0.25 M NaP04, pH 6.4 (Fig. 5A). RE2 eluted first at 0.207 M NaP04, 

followed by REl .at 0.234 M NaPO 4 (these values correspond to the concentration 

of NaP04 in the peak fractions). The more hydrophobic root (REl) although smaller 

than RE2 binds more tightly to hydroxylapatite. Recovery was nearly quantitative. 

The two roots could also be separated on the basis of size using gel filtration on 

Ultrogel AcA 44 in the presence of SDS (Fig. 5B). RE2 eluted first as a sharp peak 

(recovery 82%), whereas REl (recovery 67%) eluted as a broad peak trailing into 

the included column volume. The broad peak and low recovery of REl may have 

resulted from reversible interactions with the column resin. 

Association of palmitate with REl and RE2. It has been shown recently that 

Sindbis glycoproteins have covalently attached fatty acid (Schmidt et al., 1979). 

E2 appears to have 5-6 molecules, and El only about 1-2 molecules. We have inves­

tigated the possible association of 3H-palmitate with the glycoprotein roots. Figure 6A 

compares intact virions or spikeless particles labeled with either 35s-methionine 

or 3H-palmitate. It is apparent that RE2 contains associated palmitate. REl also 

appeal's to contain palmitate label although it is poorly resolved from the 3H-palmitate 

labeled phospholipids migrating at the front. In order to quantitate the fraction 

of palmitate label found in the roots, preparations of virus labeled with methionine 

and palmitate were mixed, digested with a-chymotrypsin, and the components of 

the purified spikeless particles were separated on cylindrical gels (Fig. SB). The 

same fraction of the palmitate label was found in RE2 and E2. REl also contained 

palmitate label, and although quantitation was difficult due to the large phospholipid 

peak at the front, El and REl had approximately the same proportion of the palmitate 

label. This demonstrates that the covalently attached lipid is localized in the protease-

resistant, membrane-associated region of each glycoprotein. 
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Fig. 5. Separation of REI and RE2 by hydroxylapatite chromatography and gel 

filtra,tion. Samp~es of gel purified REI and RE2 were adjusted to I% SDS, O.I 96 a -
mercaptoethanol and heated to 56°C for 10 minutes. For hydroxylapatite chroma­

tography (panel A), the solution was adjusted to O.I96 SDS and 10 mM sodium 

phosphate (Na:o 4), pH 6.4, and applied to a 0.8 x 0.5 cm column of hydroxylapatite 

(Moss and Rosenblum, 1972) equilibrated in 10 mM NaP0
4

, pH 6.4, 0.1% SDS, and 

2 mM DTT at 37°C. The column was washed with 5 ml of this buffer, followed by 

10 ml of 0.15 M NaP04, pH 6.4, 0.196 SDS, and 2 mM DTT. The proteins were eluted 

with a linear gradient from O.I5 M NaP04 to 0.25 M NaP04, pH 6.4, in 0.196 SDS, and 

2 mM DTT. For separation by gel filtration (panel B), chromatography was performed 

on a 0.5 x 100 cm column of Ultrogel AcA44 (LKB) equilibrated in O.I 96 SDS, 2 mM 

DTT, and 2 mM Tris-Cl, pH 7.4. The excluded and included column volumes 

(measured by including blue dextran and phenol red in the sample) are indicated by VE 

and VI' respectively. 
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· Pig. 6. Associ~tion of palmitate with REl and RE2. Purified samples of 35s­

methionine or ~H-palmitate labeled Sindl:;>is virus and spikeless particles were 

prepared as described in the Materials and Methods. In panel A, portions were run on 

a 12-20% acrylamide exponential gradient gel: lane 1, 35s-methionine labeled Sindbis 

virus; lane 2, 35s-methionine labeled spikeless particles; lane 3, 3H-palmitate labeled 

Sindbis virus; la~e 4, 3H-palmitate labeled spikeless particles. In panel B, portions of 

the 35s-methionine and 3H-palmitate labeled samples were mixed, run on 20% 

acrylamide cylindrical gels, and the peaks of radioactivity quantitated (given at the 

percent of the total cpm recovered) as described in the Materials and Methods. 

Electrophoresis was from left to right. 
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DISCUSSION 

SeverlU lines of evidence indicate that the El and E2 glycoproteins of Sindbis 

virus are transm~mbrane proteins. a-Chymotrypsin digestion of intact virions yields 

a single membrane-protected peptide derived from each glycoprotein. Both of these 

roots contain long stretches of hydrophobic amino acids near their NH2 termini 

of sufficient length to span the bilayer in an a-helix. E2 and its precursor PE2 have 

been shown directly to span the membrane by protease treatment of microsomes 

from both infected cell lysates (Wirth et al., 1977; Ziemiecki et al., 1980) and hetero­

logous cell free systems (Garoff et al., 1978; Bonatti et al., 1979). Assuming that 

E2 in mature virions has a similar conformation with respect to the lipid bilayer, 

then the observation that protease treatment of E2 decreases its size by about 30 

amino acids implies that at least one protease sensitive site exists shortly after the 

first hydrophobic domain found in the RE2 sequence (see Fig. 4). Whether the entire 

33 amino acid sequence COOR-terminal to this transmembrane region is accessible 

to protease or is partially protected by the lipid bilayer is currently under investigation. 

In contrast to E2, the apparent molecular weight of El is not changed by protease 

treatment of infected cell rriicrosomes. This result is expected since the presumptive 

cytoplasmic COOH terminus of El would contain only a few resides, none of which 

are good candidates for a-chymotrypsin digestion. Although no direct evidence 

for the transmembrane conformation of El exists, the similarity of its structure 

and mode of synthesis to other simple transmembrane proteins suggest that it probably 

spans the bilayer. The glycoprotein precursors, PE2 and El, are cotranslationally 

inserted into the lumen of the rough endoplasmic reticulum (Garoff et al., 1978; 

Bonatti ~t al., 1979). This process is initiated by a hydrophobic amino-terminal 

extension of the nascent polypeptide, or signal sequence (probably the 6K protein 

in the case of El) (for reviews, see Blobel et al., 1979; Davis and Tai, 1980; Wickner, 
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i980), leading to the vectorial transport of polypeptide across the membrane. For 

the limited number of proteins where data exists, integral membrane proteins synthesized 

in this fashion are usually anchored in the bilayer by means of a short COOH-terminal 

hydrophobic peptide (see below, and Table 3). In such cases, the majority of the 

polypeptide mass, including the NH2 terminus, can be removed by protease treatment 

from the extracytoplasmic side. The COOH-terminal anchors of these proteins 

typically have ~ cluster of basic residues immediately following the trans membrane 

segment on the cytoplasmic side of the bilayer. The El glycoprotein of Sindbis virus 

contains a membrane-protected COOH-terminal sequence of 33 uncharged residues 

followed by two arginines, and by analogy to other well characterized transmembrane 

proteins, probably spans the bilayer (see below and Table 3). Since many membrane 

proteins may have only short cytoplasmic extensions, the use of lipid insoluble protein 

labeling reagents on isolated microsomes may prove more universally applicable 

than protease treatment for demonstrating their transmembrane character. 

As mentioned above, several other transmembrane glycoproteins have COOH-

terminal hydrophobic segments and are summarized in Table 3. The hydrophobic 

tails serve to anchor such glycoproteins in the bilayer and limited proteolysis often 

solubilizes a large and sometimes functional portion of the protein without the use 

of detergents (Skehel and Waterfield, 1975; Melcher et al., 1975; Ozols et al., 1976). 

The importance of this hydrophobic segment is illustrated by the heavy chain of 

IgM which occurs in two for ms; one of which is membrane bound and another which 

is secreted (Rogers et al., 1980; Kehry et al., 1980). The major structural difference 

between these two polypeptides is the presence of a COOH-terminal hydrophobic 

segment in the membrane form which is absent in the secreted form. In general, 

the transmembrane domains of these proteins are short (from 20-33 amino acids), 

contain predominantly hydrophobic amino acid residues (including Ser and Thr), and 

can be roughly predicted based on the exclusion of Asp, Glu, Asn, Gin, His, Lys, 



Table 3 

Structure of Transmembrane Sequences 

Number of residues Nearby charged residues c 

Number of residues inb COOR-terminal to 
N 

Protein a hydrophobic sequence hydrophobic sequence NH2-terminal COOR-terminal Referenced 

Sindbis El 33 2 K(l) R( 1-2) 1 

Sindbis E2 26 33 H(l) ,R(2) ,R(3) K(l) ,R(3-4) ,E(5) 1 

SFV El 24 2 K(l) R( 1-2) 2 ...... 
...... 
a.i 

SFV E2 28 31 None R(l-2) ,K(3) 2 

WEE El ? 2 ? R(l-2) 3 

VSVG 20 29 K(l) R(l),H(5) 4 

Influenza HA 26 11 D(l) ,K(2) K(l or 2)e 5,6 

Adenovirus E3/16 23 15 E(2) ,K(5) K(l) ,K(3) ,R(5) 7 

Glycophorin A 23 36 E(l) ,E(3) R(l-2) ,K(5) 8 

HLA-A, RLA-B ? 30 ? R(102) ,K(3) 9 

H-2Kb 24 39 None K(l) ,R(3-5) 10 

IgM, µM 25 3 E(2) ,E(5) K(l) ,K(3) 11 
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Table 3 (eontinued) 

aAbbreviation~: WEE = Western equine encephalitis virus, VSV =vesicular stomatitis 

virus. 

bNumber of consecutive, unchanged amino acids excluding Arg, Asn, Asp, Gln, Glu, 

His, Lys, and Pro. 

cCharged residues {or His) within five residues of the hydrophobic sequence. The 

numbers are the positions from the end of the uncharged sequence. D = Asp, E= Glu, 

H= His, K = Lys, R = Arg. 

dReferences: (1) Rice and Strauss (1981); (2) Garoff et al. (1980a); (3) J. Ou, personal 

communication; (4) Rose et al. (1980); (5) Jou et al. (1980); (6) Porter~ al. (1980); (7) 

Persson et al. (1980); (8) Tomita et al. (1978); (9) Robb et al. (1978); (10) Uehara et al. 

(1981); (11) Rogers et al. (1980). 

0 Two strains. 
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Arg, and Pro. The precise definition of the residues which are actually in contact 

with hydrophobic interior of the lipid bilayer cannot be deduced from the sequences 

of these protease-resistant fragments and awaits further investigation perhaps using 

lipid soluble probes (Goldman et. al., 1979). This difficulty is illustrated by comparison 

of the Sindbis and SFV El glycoproteins. The structural polypeptide sequences of 

these two closely related alphaviruses can be easily aligned and are 47% homologous 

with another ~2% conservative substitutions (Rice and Strauss, 1981). However, 

by the above criteria, the putative transmembrane segment in Sindbis El is 8 residues 

longer than that of SFV (Fig. 7). While this additional length may reflect an actual 

structural difference between these two viruses in the transmembrane region, it 

could also be due to the inaccuracy of this method for predicting the exact location 

of transmembrane segments. 

Another interesting feature of these transmembrane segments is the presence 

of clusters of charged residues at one or both ends of the hydrophobic sequence. 

Basic residues are always found on the cytoplasmic side whereas either acidic or 

basic residues are usually found near the extracytoplasmic, NH2-terminal boundary. 

It has been proposed that the cluster of basic amino acids COOR-terminal to the 

hydrophobic segment functions as a "stop transfer" signal during the cotranslational 

insertion and translocation of this class of membrane proteins across the membrane 

of the rough endoplasmic reticulum (Blobel et al., 1979). The requirement for charged 

amino acids on the extracytoplasmic side appears to be less stringent than on the 

cytoplasmic side (see Table 3). It is also of interest to note the COOR-terminal 

cytoplasmic segments of these proteins are short, containing less than 30-40 amino 

acids (Table 3). 

Other membrane proteins such as bacteriorhodopsin (Ovchinnikov et al., 1979; 

Engelman et al., 1980) and the Band 3 polypeptide in the human erythrocyte membrane 

(Rao, 1979) span the lipid bilayer several times. Bacteriorhodopsin appears to contain 
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Fig. 'l. Comparison of the COOH termini of alphavirus glycoproteins. The COOH­

terminal glycoprotein sequences of Sindbis virus (SV) (RiCe and Strauss, 1981; see also 

Fig. 4), SFV (Garoff et al., 1980a), and Western equine encephalitis virus (WEE) (J. 

Ou, personal communication) are aligned to maximize homology using protein and 

nucleic acid sequence data. Homologous residues are enclosed in boxes. Inclusion of 
. 

the data for WEE suggests a different alignment of the Sin db is virus and SFV 

sequences in the region of El shown than previously presented (Rice and Strauss, 

1981). The single letter amino acid code is used: A, Ala; C, Cys; D, Asp; E, Glu; F, 

Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gin; R, Arg; S, 

Ser; T, Thr; V, Val; W, Trp; Y, Tyr. The numbers indicate the position from the amino 

terminus of the glycoprotein. The amino termini of the roots of Sindbis virus El and 

E2 (see Fig. 4) are marked by arrows. Putative transmembrane segments as defined 

in the text (see Discussion) and Table 3 are shaded. 
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several cha~ged~residues .in the lipid bilayer, and a stable intramembrane structure 

can be constructed in which seven transmembrane helices are arranged such that 

these charged' residues can form ion pairs shielded from the lipid environment (Engleman 

et al., 1980). Similarly, the major outer membrane protein I of Escherichia coli 

B/r, which serves as a transmembrane pore (probably consisting of three polypeptides) 

allowing the passage of charged solutes through the outer bacterial membrane, does 

not contain any sequences of nonpolar amino acids longer than 11 residues (Chen 

et al., 1979). Iil contrast to the transmembrane segments described in Table 3 which 

are simple, uninterrupted sequences of nonpolar amino acids serving as lipophilic 

membrane anchors, these more complicated transmembrane structures are undoubtedly 

related to their additional function in the passage of charged solutes across membranes. 

It would be expected that such specialized transmembrane segments would be highly 

conserved between functionally similar molecules derived from a common evolutionary 

origin. On the other hand, transmembrane segments anchoring proteins in the lipid 

bilayer would only be constrained to retain their hydrophobic character and structural 

properties (such as the formation of an a-helix). This is illustrated by a comparison 

of the presumptive transmembrane segments of Sindbis virus and SFV El and E2 

(Fig. 7). The putative transmembrane domains are only 15-16% homologous in contrast 

to the overall homology of 47% between the structural proteins. All of the substitutions 

involve nonpolar amino acids, and cysteine residues which are highly conserved in 
-

other regions of El and E2 (note the extreme COOH-terminal region of E2 shown 

in Fig. ·7) are not conserved in their transmembrane segments. Although only limited 

data are currently available for Western equine encephalitis virus, it is of interest 

to note that at the COOH-terminal end of El only the two arginines are common 

to all three of these closely related alphaviruses (Fig. 7). 

In addition to stretches of COOH-terminal hydrophobic amino acids, Sindbis 

virus El and E2 (Schmidt et al., 1979) and vesicular stomatitis virus glycoprotein G 
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(Schmidt and Schlesinger, 1979) contain covalently attached fatty acids. In the 

case of Sindbis virus, we have shown that the palmitate attached to the glycoproteins 
. ' 

is localized in their membrane-associated hydrophobic roots. Although the function 

of these fatty acids remains unknown, the attachment of such hydrophobic groups 

to transmembrane polypeptide segments might enhance their solubility in the lipophilic 

environment of the bilayer. However, it should be mentioned that the covalent 

attachment of palmitate is a post-translational event probably occuring in the Golgi 

10-20 minutes after the polypeptides have been asymmetrically inserted into the 

membrane of the rough endoplasmic reticulum (Schmidt and Schlesinger, 1980) and 

may be important in other aspects of virus structure and maturation. 

The cytoplasmic portions of the Sindbis glycoproteins are of great interest 

since they interact specifically with the nucleocapsid localized in the cytoplasm 

leading to the budding of mature virions containing exclusively viral glycoproteins 

(Strauss, 1978). As mentioned above, the transmembrane segments of Sindbis virus 

and SFV El and E2 are conserved only with respect to their hydrophobic character, 

and the cytoplasmic COOR-terminal end of El (assuming that it completely spans 

the bilayer) would consist of only a few residues. In contrast to its COOH-terminal 

transmembrane segment, E2 contains a second stretch of 23 nonpolar amino acids 

which are 61 % homologous between Sindbis virus and SFV, with another 26% of the 

residues being conservative substitutions (Fig. 7). This region contains three conserved 

prolines as well as three conserved cysteines which are not typical of the simple 

transmembrane segments shown in Table 3, and suggest that this segment does not 

function as a simple lipophilic membrane anchor. Whether this region of E2 loops 

back into the bilayer or is exposed on the cytoplasmic side of the plasma membrane 

is at present unknown. However, its highly conserved nature and COOR-terminal 

location in E2 make it a likely candidate for specific interaction with the nucleocapsid, 

and we are presently investigating this possibility using Sindbis ts mutants (Strauss 
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"and Strauss, 1980) •. If this premise is true, it implies that this interaction may be 

at least partially hydrophobic in nature. This is supported by the observation that 

treatment of virions with non-ionic detergents such as Triton X-100 disrupts this 

interaction (Helenius and Soderlund, 1973). 

The amino acid compositions and molecular weights for the Sindbis virus structural 

proteins are now accurately known (Bell et al., 1979; Rice and Strauss, 1981), and 

it has been po~sible to directly determine the stoichiometry of El, E2, and C using 

the incorporation of different radiolabeled amino acids into virions. The data presented 

here clearly show that REl, RE2, and the capsid protein (and therefore El, E2, and 

C) are present in roughly equimolar amounts. This finding has been previously reported 

for Sindbis virus and SFV (Schlesinger et al., 1972; Garoff et al., 1974). In addition, 

cross-linking experiments have shown that spike glycoproteins El and E2 are associated 

as heterodimers in the viral membrane and after disruption with Triton X-100 (Ziemiecki 

and Garoff, 1978; Rice and Strauss, in preparation). This assures that the interaction 

of either glycoprotein (presumably E2) in a spike with each capsid protein subunit 

of the nucleocapsid will produce budded virions containing equimolar amounts of 

the structural proteins. 
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ABsTRACT We have studied the association of the Sindbis virus glycoproteins 

in mature virions.and·infected cells. The glycoproteins were cross-linked with bifunctional 

amino-reactive imidates (11 !cross-linking distance) which could be subsequently 

cleaved by reduction. Using monospecific rabbit antisera against each viral envelope 

glycoprotein it was found that >90% of the cross-linked glycoprotein dimers from 

intact virions or virions solubilized with Triton X-100 prior to cross-linking were 

heterodimers of ~1 and E2. The pattern of cross-linked glycoproteins from intact 

virions as well as infected cells suggested that three El-E2 dimers may be associated 

to form a hexameric subunit. Cross-linking of pulse-labeled infected monolayers 

showed that PE2 was cross-linked to El less efficiently than was E2, suggesting that 

if PE2 and El are associated as a complex in infected cells then their conformation 

with respect to reactive amino groups is distinct from that of the mature virion glyco­

proteins. ts mutants of Sindbis virus in the complementation groups corresponding 

to El and PE2 fail to cleave PE2 at the nonpermissive temperature (40°C). In monolayers 

infected with these mutants or a heat resistant variant of Sin db is virus, the glyco­

protein precursors synthesized at the elevated temperature were readily cross-linked 

into large aggregates, indicating a temperature-sensitive tendency for the proteins 

to aggregate. 
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INTRODUCTION 

Alphaviruses are simple enveloped animal viruses useful in the study of glycoprotein 

biosynthesis. Sindbis virus and the closely related Semliki Forest virus (SFV) contain 

two or three membrane glycoproteins (El, E2 and in the case of SFV, E3) anchored 

in a lipid bilayer of host cell origin which surrounds an iscosahedral nucleocapsid 

consisting of approximately 240 capsid protein (C) subunits and a genomic 498 RNA 

(Strauss and Straitss, 1977). The virion structural proteins are encoded by a 3' terminal 

subgenomic 26S RN A (Simmons and Strauss, 197 4; Ou et al., 1981) with a single 

initiation site for protein synthesis (Cancedda et al., 1975). The genes are translated 

on membrane-bound polyribosomes (Wirth et al., 1977) in the order 5'-C-E3-E2-6K­

El-3' (Schlesinger and Kaariainen, 1980; Garoff et al., 1980a, b; Rice and Strauss, 

1981), as a continuous polypeptide which is processed by proteolytic cleavage. The 

capsid protein is cleaved while nascent and associates with the 49S RN A in the 

cytoplasm to form the nucleocapsid. The glycoproteins are cotranslationally inserted 

into the lumen of the rough endoplasmic reticulum (Garoff et al., 1978; Bonatti et al., 

1979) and core glycosylated (Sefton, 1977). These mannose-rich oligosaccharide units 

are subsequently modified (~resumably in the smooth endoplasmic reticulum) and 

about 20 min after their synthesis the glycoproteins can be found in the host cell 

plasma membrane. Both El and E2 can be found in mature virions beginning at about 20-

30 min following their synthesis, and the cleavage of PE2 (the precursor to E2) which 

also occurs at this time, is necessary for the final steps in virus maturation (Strauss 

and Strauss, 1977). About 30 COOH-terminal amino acids can be removed from E2 

(Ziemiecki et al., 1980) and PE2 (Wirth~ al., 1977; Garoff and Soderlund, 1978; Bonatti 

et al., 1979) by proteolysis of microsomes from infected cells or heterologous cell 

free systems. Glycoprotein El, although unaffected by protease treatment, is probably 

also a transmembrane protein containing at most a few amino acids exposed on the 

cytoplasmic side of the bilayer (Rice and Strauss, 1981; Rice et al., in preparation). 
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·The interaction of the nucleocapsid with the cytoplasmic portion of the glycoprotein(s) 

·(probably only PE2 or E2) results in virus budding through the host cell plasma membrane, 

producing a mature' virion containing equimolar amounts of each structural protein 

(Schlesinger_!:! al., 1972; Garoff et al., 1974; Rice et al., in preparation). This inter­

action is highly specific and host cell glycoproteins are rigorously excluded from 

released virus particles (Strauss, 1978). 

The equimolal' stoichiometry of the structural proteins and coincident appearance 

of the glycoproteins·in mature virions (Schlesinger and Schlesinger, 1972) led to the 

early suggestion that PE2 and El might exist in a stable complex in infected cells. 

It was later found that ts mutants in complementation groups corresponding to either 

El or PE2 are defective in the PE2 cleavage at the restrictive temperature (Bracha 

and Schlesinger, 1976; Jones et al., 1977; Smith and Brown, 1977), and that this cleavage 

was inhibited by antiserum to either El or E2 (Bracha and Schlesinger, 1976; Jones 

et al., 1977). In the case of SFV, it has been shown that El and E2 can be chemically 

cross-linked into a heterodimer both in intact virions and after solubilization with 

Triton X-100 (Ziemiecki and Garoff, 1978). Using antisera specific for each of the 

virion structural proteins and bifunctional cross-linking reagents, we have investigated 

the possiblities that an association exists between the El and E2 glycoproteins of 

mature Sin db is virions, and that El and PE2 form a similar complex in infected cells. 

MATERIALS AND METHODS 

Cells and Virus Strains. Virus was grown in confluent monolayers of either primary 

chicken embryo fibroblasts (Pierce et al., 1974) or hamster cells (BHK-21). The heat­

resistant (large plaque) strain of Sindbis virus (HR) and temperature-sensitive mutants 

ts20 and ts23 of Burge and Pfefferkorn (1966) were generously furnished by Dr. B.W. 

Burge. All strains have recently been plaque purified in this laboratory. Semliki 
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Foresfvirus (SFV) was obtained from Dr. Judith Levin and passaged in primary chicken 

·embryo fibroblasts. 

Virus Growth and Pmifieation. Radiolabeled Sindbis virus (HR strain) grown 

in roller bottles (750 cm2) of confluent primary chicken embryo fibroblasts (CEF) 

was prepared by the salt-reversal method (Pierce et al., 1974). The high-salt released 

virus was purified by rate zonal contrifugation and isopycnic banding as previously 

described (BeUet !!!·' 1979) except that bovine serum albumin (BSA) (Sigma, fraction V) 

at a concentration of 200 µg/ml was included in all gradients, and 0.05 M triethanolamine, 

pH 8.5, was substituted for 0.05 M Tris-Cl, pH 7.4, during isopycnic banding. 

Radiolabeled HR and SFV were also grown in BHK-21 cells in the presence 

of normal concentrations of NaCl (0.116 M). This virus was purified from the culture 

medium harvested at 12 hr after infection (37°C) by a single isopycnic centrifugation . 

. For preliminary studies, milligram quantities of CEF grown HR and SFV were 

purified after polyethylene glycol precipitation by the method of Bell et al. (1979) 

or Kaiiriainen et al. (1969). 

Cross-linking of Isolated Virions. Stock solutions of dithiobis (succinimidyl proprio­

nate) (DTSP) (Pierce Chemicals) dissolved in 100% dimethyl sulfoxide (DMSO) or 

dimethyl suberimidate (DMS) (Pierce Chemicals) dissolved in 0.2 M triethanolamine, 

pH 8.5, were made immediately before use. For cross-linking with DTSP, samples 

of intact or solubilized virus (dissociated with 0.25% Triton X-100 for 15 min at 23°C), 

were diluted 1:1 with 0.2 M triethanolamine, pH 8.5, and cross-linked at 23°C for 

15 min following the addition of 0.02 volumes of the DTSP stock solution. DMS cross-

linked samples were prepared by the addition of an equal volume of the DMS stock 

solution and incubated at 23°C for 1 hr. Noncross-linked control samples were treated 

identically except for the omission of the cross-linking reagent from the stock solutions. 

If samples were used only for analytical electrophoresis, cross-linking was terminated 

by the addition of sodium dodecylsulf ate (Pierce). Alternatively, samples to be immuno-
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. +. 
precipitated were incubated for 15 min at 23°C with at least a ten-fold molar excess 

of lysine (pH 8.5) over the amount of the cross-linking reagent. Cross-linker concentrations 

are given as the final concentration in the reaction mi'xture. 

Infection and LBbeling of Monolayers. Confluent CEF monolayers in 60 mm 

petri plates were infected at high multiplicity (20-50 plaque forming units/cell) with 

Sin db is virus or mock infected at 37°C in the presence of actinomycin D (0.5 µg/ml) 

as previously described (Pierce et al., 1974). For long periods of radiolabeling (>10 min), 

the inoculum was replaced with new medium containing 1/40 the normal concentration 

of leucine which during labeling contained 50 µCi/ml L-3H-leucine (Amersham, specific 

activity 52 Ci/mmole). In pulSe-chase experiments the inoculum was replaced with 

regular medium at 1 hr post infection. Immediately before the pulSe, the monolayers 

were washed twice with prewarmed medium lacking methionine, and pulse-labeled 

at 37°C for 10 min using medium lacking methionine containing 20 µCi/ml L-35s­

methionine (Amersham, specific activity 1075 Ci/mmole). Following the pulse, the 

plates were washed twice with prewarmed medium containing twice the normal concen-

tration of methionine and incubated with 5 ml of this medium for the chase periods 

indicated. 

Prelabeled monolayers were prepared by labeling .rl/3 confluent CEF monolayers 

with regular medium containing 1/4 the normal concentration of leucine and 50 µCi/ml 

3H leucine. At confluency, the monolayers were washed 3 times with regular medium 

containing 5 times the normal leucine concentration over a period of 1.5 hr. Monolayers 

were infected or mock infected and incubated in the presence of this medium. 

All monolayers were prepared for subsequent cross-linking or solubilization 

by chilling on ice followed by at least 3 washes of ice cold phosphate buffered saline 

(PBS) (Dulbecco and Vogt, 1954, lacking Ca++ and Mg++). Triton X-100 solubilized 

monolayers were lysed on ice in 1 ml of 0.5% Triton X-100, 0.05 M triethanolamine, 

pH 8.5, 0.2 M NaCl and nuclei were removed by centrifugation at 900 x g for 5 min 
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·at 4°C. Control and DTSP cross-linked samples of these supernatants were prepared 

. as described above for cross-linking of virions. 

Cros&-J.inkiilgof Intact CEF Monolayers. Stock solutions of OTSP dissolved in 

OMSO were diluted 1150 into ice cold PBS immediately before use. Monolayers were 

cross-linked with 2 ml of the PBS-OTSP solution (per 60 mm petri plate) by incubation 

on ice for 10 min. Noncross-linked controls were incubated in the presence of 2% 

OMSO in PBS. Following three washes of 25 mM Tris-Cl, 50 mM lysine, 0.1 M NaCl, 

pH 7 .4, over the course of 10 min on ice, the monolayers we collected by solubilization 

in 1 ml of 0.5% SOS, containing 20 µg/ml phenylmethylsulfonylfluoride at 23°C. DNA 

was sheared by repeated pipetting of the lysate and the samples stored at -70°C. 

Preparation of Antisera. Sindbis virus was purified and structural proteins were 

prepared as previously described (Bell et al., 1979). The purified proteins were precipitated 

overnight with 2.5 volumes of 100% EtOH at -20°C, warmed to 4°C, and centrifuged 

at 15,000 r.p.m. for 15 min at 4°C in a Sorvall SS34 rotor. The supernatants were 

discarded and the pellets air-dried and resuspended in 10 mM Tris pH 7.4, 0.15 M 

NaCl, 0.1 % SOS to a final protein concentration between 100 and 200 µg/ml. The 

antigens were emulsified with an equal volume of complete Freund's adjuvant (Calbiochem) 

immediately before injection. Female New Zealand White rabbits were given multiple 

subcutaneous and intradermal injections along the lower back, as well as in intra-

muscular injection in each hind leg near the lymph node. 100-200 µg of each protein 

were used for the primary immunization and 25-100 µg for subsequent challenges. 

Immune and non-immune animals were bled from the ear vein and clot formation 

allowed to proceed for at least 1 hr at 23°C. After incubation for at least 24 hr at 

4°C the clots were removed by centrifugation at 5000 x g for 15 min at 4°C. Serum 

was stored frozen at -70°C. Crude gamma globulin fractions were prepared by two 

sequential ammonium sulfate fractionations as described by Garvey et al. (1977). 

For preparation of IgG, the crude gamma globulin fraction was dialyzed exhaustively 
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against 10 mM :Po4, f,H 7.2, 1.5 mM NaCl. After centrifugation at 100,000 x g for 

· 20 min at 4°C, the supernatant was passed ov~r a column of CM52 (Whatman), then 

a column of DE52 (Whatman) both equilibrated in 10 mM P04, pH 7.2, 15 mM NaCl 

(Palacios et al., 1972'). The excluded IgG containing fractions were collected, pooled, 

and stored frozen at -70°C. 

Hybrid clones of BALB/c MOPC21 NSl/1 (courtesy of C. Milstein) and spleen 

cells from BALB/c. mice immunized with Triton X-100 solubilized Sindbis virus (1 mg 

Triton X-100/mg virus protein) were produced essentially as described by Nowinski 

et al. (1979). The production and characterization of these clones will be described 

in detail elsewhere. One of these clones, 6-SG, was found to secrete IgG specific 

for El. IgG was purified from the culture medium by passage over a column of Protein 

A-Sepharose CL-4B (Pharmacia Fine Chem. Co.) and eluted with 0.1 M glycine, pH 3.0. 

After dialysis against PBS, the IgG was stored frozen at -70°C in small aliquots. 

Immunoprecipitation. Samples were adjusted to 50 mM Tris pH 7.4, 0.2 M NaCl, 

1 mM EDTA, 0.596 Triton X-100 and 1 mg/ml BSA (TNA buffer) by dilution. In some 

cases the concentrations of Triton X-100 and BSA were lowered to 0.196 and 200 µg/ml, 

respectively, in order to facilitate electrophoretic analysis of the unprecipitated 

supernatant. SDS-containing samples were heated to 56°C for 10 min to dissociate 

aggregates prior to dilution into this buffer. After dilution, there was at least a five­

fold excess of Triton X-100 over SDS by weight. Immunoprecipitation of Triton X-100 

solubiiized monolayers was done immediately after solubilization without freezing. 

Rabbit IgG or monoclonal 6-SG anti-El IgG were diluted into TNA. Incubation with 

the antibody was for 30 min at 23°C, followed by removal of the immune complexes 

by a 10 min incubation with an excess of TNA washed protein A-bearing Cowan I 

strain of Staphylococcus aureus (Kessler, 1975) and centrifugation at 3500 x g for 

6 min. Immunoprecipitates were washed with 50 mM Tris pH 7.4, 0.2 M NaCl, 1 mM 

EDTA, 0.196 Triton X-100, 200 µg/ml BSA. 
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Gel mect:rOpboresis. For the resolution of cross-linked species a continuous 

gel system similar to that of Davies and Stark (1970) was used. Gels contained 4% 

acrylamide (Bio Ra"d), 0.11 % bisacrylainide (Bio Rad), 0.05 M sodium acetate, 0.05 M 

borate, 0.1 % SDS, pH 8.5. Samples were dissociated with an excess of SDS, with 

or without 20 mM dithiothreitol (DTT) (Sigma), and heated to 56°C for 30 min prior 

to electrophoresis. 

Analytical c~indrical gels to be quantitated were frozen in dry ice, sliced 

in 1 mm fractions using a Mickle gel slicer, and counted after shaking for at least 

24 hr in 10 ml of a scintillation fluid composed of toluene, Liquifluor (NEN), and 

NCS (Amersham). Preparative cylindrical gels were sliced and eluted into siliconized 

glass vials containing 0.02% SDS, 2 mM DTT, 20 µg/ml phenylmethyl sulfonylfluoride 

10 µl samples of each fraction were counted to determine the positions of cross­

linked species and the peak fractions were pooled and stored frozen at -70°C. 

Discontinuous electrophoresis was performed essentially as described by Laemmli 

(1970) except that the Tris buffer concentration in both the stacking and separating 

gels was halved. Bromophenol blue was used as the tracking dye in both gel systems. 

Details of the sample preparation will be presented in each experiment. 

Two-dimensional mectropboresis. Continuous gels in 4 mm id. tubes were used 

for the first dimension. After electrophoresis, the gel was removed from the tube 

and equilibrated for 30 min in 50 mM Tris pH 6.8, 1 % e-mercaptoethanol, 40 mM 

DTT, and 1 % SDS with continuous shaking. The gel was anchored to the second dimension 

using a hot solution of 1 % agarose (Seakem), 50 mM Tris pH 6.8, 1 % S-mercaptoethanol, 

10 mM DTT, and 0.1% SDS. The second dimension was the discontinuous system described 

above using a 1.5 mm thick, 10% acrylamide separating gel, and a 4% acrylamide, 

3 cm long, stacking gel. Electrophoresis was performed with 0.025% 3-mercapto­

proprionic acid present in the top electrode buffer reservoir to prevent possible reoxidation 

of reduced disulfides during electrophoresis. 

All slab gels were fixed in 10% acetic acid, 25% methanol. After treatment 
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for"fluorography acoording to the method of Bonner and Laskey (1974), they were dried 

and exposed at -70°C using pre-fogged (Laskey and Mills, 1976) Kodak X-Omat R film. 

RESULTS 

Cross-linking of Sindbis Virus and SFV. We will briefly summarize our data 

from preliminary cross-linking studies of Sindbis virus and SFV with respect to several 

variables: type o{ cross-linker and concentration dependence, temperature of cross­

linking, method of virus isolation, and cell type of virus growth. 

Both DMS and DTSP (see below), as well as dimethyl 3,3' dithiobis proprionimidate 

(data not shown), gave similar patterns with each virus as would be expected since 

they react primarily with lysine and are capable of establishing cross-links within 

a distance of about 11 !. Prior treatment of samples with SDS abolished cross-linking. 

The concentration of virus protein (ranging from 20 µg/ml to 1 mg/ml) or the inclusion 

of carrier BSA (100 µg/ml) did not effect the cross-linking patterns. Identical results 

were obtained with Sindbis virus isolated by several different methods: the large 

scale preparative method of Bell et al. (1979), the salt-reversal method (Pierce et al., 

1974) or direct isolation of the virus from the culture medium by a single isopycnic 

centrifugation. In addition, isolation of Sindbis virus or SFV by successive cycles 

of potassium tartarate isopycnic centrifugation and pelleting (Kiiariiinen et al., 1969) 

did not alter their cross-linking patterns. Cross-linking of Sindbis virus at 0°C, 23°C, 

or 33°C gave similar patterns of cross-linked species, and although at lower temperatures 

the rate of cross-linking by DMS was much slower, DTSP cross-linking was rapid even 

at 0°C (Lomant and Fairbanks, 1976). In addition, cross-linking patterns of either 

Sindbis virus of SFV grown in CEF or BHK-21 cells were the same. 

As can be seen in Figs. 1 and 2, cross-linking of Sindbis virus or SFV with DMS 

or DTSP produced relatively complex patterns of cross-linked species. Identification 

of the cross-linked glycoprotein oligomers was simplified by removal of the capsid 
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Pig. 1. DMS cross-linking of CEF- and BHK-grown Sindbis virus. CEF-grown . ' 

(lanes 1, 2, 4, 5 an~ 6) or BHK-grown (lanes 3 and 7) Sindbis virus was cross-linked 

with 0.5 mg/ml DMS. Samples in lanes 2, 3, 6 and 7 were solubilized with Triton 

X-100 prior to cross-linking. After quenching with lysine, and dilution into TNA, the 

cross-linked capsid protein species were removed by immunoprecipitation with rabbit 

aC IgG as described in the Materials and Methods. The supernatants, containing the 

cross-linked glycoprotein species, were precipitated with 2.5 volumes of absolute 

ethanol. Greater than 99% of the counts were precipitated. Samples were 

resuspended in 1 % SDS, 10% glycerol, 40 mM DTT, heated to 56°C for 30 min, and a 

portion of each run on a 4% acrylamide continuous slab gel. Lanes 1-3 are the rabbit 

aC immunoprecipitates, and lanes 5-7 the immunoprecipitation supernatants. Lane 4 

is cross-linked intact virus without immunoprecipitation. In this figure as well as in 

subsequent figures, the cross-linked glycoprotein and capsid protein multimers are 

labeled Gl, G2, ••• , and Cl, C2, .•• , respectively. 
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Pig. 2. Cross-linking of Sindbis virus and SFV with DMS and DTSP. Samples of 

BHK-grown Sindbis virus (HR strain} (lanes 1-8) or SFV (lanes 9-16) were cross-linked 

with DMS or DTSP as described in the Materials and Methods. Samples in lanes 4, 8, 

12 and 16 were solubilized with 0.25% Triton X-100 prior to cross-linking (indicated 

by arrows}. DTSP concentrations were 0.02 mg/ml (lanes 2 and 4), 0.06 mg/ml 

(lane 3), 0.1 mg/ml (lanes 10 and 12), and 0.2 mg/ml (lane 11). DMS concentrations 

were 0.5 mg/ml (lanes 6 and 8), 1.0 mg/ml (lanes 14 and 16), 1.5 mg/ml (lane 7), and 

3 mg/ml (lane 15). Samples in lanes 1, 5, 9 and 13 were noncross-linked controls. 

After cross-linking, each sample was quenched with lysine and solubilized with Triton 

X-100. The nucleocapsids were removed by immunoprecipitation with rabbit cxC IgG. 

The unprecipitated supernatants, containing the cross-linked glycoprotein species, 

were diluted with an equal volume of 4% SDS, 20% glycerol, heated to 56°C for 

30 min and run on a 4% acrylamide slab gel. 
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protein and its oligomers using a rabbit antiserum to the Sindbis virus capsid protein. 

This antiserum also reacted with the SFV capsid protein (Fig. 2) (Dalrymple et al., 

1976). Prior to immunoprecipitation, the cross-linking reactions were quenched by 

the addition of excess lysine and dissociated with Triton X-100. In addition to the 

complete removal of the cross-linked capsid protein species (Figs. 1 and 2), no detectable 

glycoprotein aggregates were visible in the immunoprecipitates from either intact 

or Triton x-190 solubilized virions cross-linked with DMS (Fig. 1, lanes 1-3). Cross­

linking of intact virions resulted in the formation of both glycoprotein multimers 

and capsid protein multimers. Raising the cross-linker concentration favored the 

formation of higher-order multimers, and in the case of the envelope glycoproteins 

these high concentrations produced a pattern in which even multimers were more 

predominant than the next lowest odd multimer (i.e., tetramer more predominant 

than trimer) (Fig. 2, lanes 3, 7, 11and15) as has been reported for SFV (Garoff, 1974). 

At lower cross-linker concentrations, however, even glycoprotein multimers were 

not preferentially formed over the next lowest odd multimer (Fig. 2, lanes 2, 6, 10 

and 14). The pattern of discrete cross-linked glycoprotein oligomers terminates abruptly 

with the hexamer, although at high cross-linker concentrations larger aggregates 

barely entering the gel were produced. When the virions were disrupted with an excess 

of Triton X-100 followed by cross-linking, the glycoproteins were cross-linked primarily 

into dimers with minor amounts (less than 5%) of trimers and tetramers (Fig. 1; Fig. 2, 

lanes 4, 8, 12 and 16). Apparently, a stable association between the Sindbis virion 

glycoproteins persists after Triton X-100 solubilization as has been found for SFV 

(Garoff, 1974). 

Immunoprecipitation of DMS Cross-linked Glyeoprotein Dimers. We wished 

to determine whether the glycoprotein dimer band from either intact or Triton X-100 

solubilized cross-linked virions was a pure population of glycoprotein homodimers, 

heterodimers, or a mixture of both. In order to answer this question SOS-denatured 
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El and E2 were,1used to produce rabbit antisera specific for each virion glycoprotein. 

These antisera were specific as shown by the immunoprecipitates obtained with SDS­

denatured Sindbis virus (Fig. 3). 

The proportion of the cross-linked glycoprotein dimer band precipitable by an 

excess of each glycoprotein specific IgG or a combination of both antisera was used 

to determine the proportion of heterodimers. Nonimmune rabbit IgG was used as 

a control for nonspecific precipitation (always less than 2%). In all cases, greater 

than 95% of the input was precipitated by a combination of both glycoprotein antisera. 

Two different procedures were used. In the first method (shown in Table 1), the cross­

linked dimer band was isolated from preparative gels and immunoprecipitated with 

glycoprotein specific IgG. The results show that the cross-linked dimer band is more 

than 90% heterodimers. To rule QUt the possibility that homodimers were selectively 

lost during the preparation of the cross-linked dimer band, we directly immunoprecipitated 

equal proportions of DMS cross-linked samples with each glycoprotein specific IgG 

or a combination of both. The immunoprecipitates were run on analytical gels, and 

the various cross-linked species quantitated (Fig. 4). For cross-linked intact or Triton 

X-100 solubilized Sindbis virus, both methods showed that more than 90% of the glyco­

protein dimers were heterodimers of El and E2, whether the virus was grown in CEF 

or BHK-21 monolayers. The inability to precipitate all of the dimers with each antisera 

may reflect either the presence of a small proportion of homodimers, or the loss 

of reactivi_ty of some of the heterodimers with one of the glycoprotein specific IgGs. 

Since the majority (>65%) of the Triton X-100 solubilized glycoproteins can be cross­

linked into dimers using higher cross-linker concentrations (data not shown), the above 

results suggest that the El-E2 heterodimer is the predominant form of the glycoproteins 

following Triton X-100 solubilization. 

The specificities of the anti-glycoprotein IgGs were not directly demonstrable 

on the glycoprotein monomers in OMS-treated samples since these monomers of El 
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Fig. 3. Spec~ficity of antisera to Sindbis structural proteins. Rabbit aEl IgG, 

aE2 .lgG or aC IgG as well as mouse monoclonal aEl IgG (cIOne 6-8G) were prepared 

as described in the Materials and Methods. SDS-denatured Sindbis virus (35s­

methionine labeled) (lanes 1, 6, 7) in TNA was precipitated with rabbit aC (lane 5), 

monoclonal aEl (lane 8}, or nonimmune rabbit IgG (lane 9). The unprecipitated 

supernatant from the aC immunoprecipitation was then precipitated with rabbit aEl 

(lane 2), aE2 (lane 3), or nonimmune (lane 4) IgG. The washed immunoprecipitates 

were resuspended in sample buffer containing 20 mM DTT, and heated to 56°C for 

30 min. After centrifugation at 3500 x g, for 6 min, the supernatants were run on a 

10% Laemmli slab gel. A trace amount of PE2 can be seen in lanes 1, 3 and 6. 
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Table 1 

Immunoprecipitation of DMS Cross-linked Sindbis Virus Glycoprotein Dimersa 

IgG % precipitatedb % of precipitable cprn c 

CEF-grown aEl 94.4 95.0 
Intact aE2 94.4 95.4 

aEl + aE2 99.4 100.0 
nonimmune 1.6 0.0 

CEF-grown aEl 90.7 94.9 
Triton X-100 solubilized aE2 92.1 96.1 

a.El + a.E2 95.9 100.0 
nonimmune 1.2 0.0 

BHK-grown aEl 94.3 94.8 
Triton X-100 solubilized a.E2 95.9 96.4 

aEl + aE2 99.4 100.0 
nonimrnune 1.3 0.0 

a Samples prepared as described in Fig. 1 (lanes 5, 6 and 7) were run on preparative 

4% acrylamide cylindrical gels. The gels were sliced and the cross-linked glyco-

protein dimer band was isolated as described in the Materials and Methods. 

b % Precipit~ted of the total cpm recovered. Recovery was >96% of the input in all 

cases. 

c 'l'he cpm specifically precipitated by each antisera was normalized to the total cprn 

specifically precipitable by a combination of both antisera. 
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Pig. 4. Immunoprecipitation of DMS cross-linked Sindbis virus. Samples of 

intact (panels A, B and C) or Triton X-100 dissociated (panels D, E and F) Sindbis 

virus grown in BHK-21 cells were cross-linked with DMS as described in Fig. 1. After 

removal of the capsid protein (see Fig. 1), and denaturation with SDS, each sample 

was divided into three equal portions and immunoprecipitated with a.El (panels A and 

D), a.E2. (panels·B and E), or a combination of both glycoprotein-specific antisera 

{panels C and F). A combination of both antisera precipitated greater than 98% of 

the input cpm. The immunoprecipitates were solubilized in 1 % SDS and 20 mM DTT 

and analyzed on 4% acrylamide cylindrical gels as described in the Materials and 

Methods. Electrophoresis was from left to right. The number under each peak 

represents the proportion of that glycoprotein oligomer which is precipitable by each 

antisera as defined in Table 1, footnote c. 
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and E2 were no longer separable on 10% Laemmli gels (data not shown), probably 

due to intra-molecular cross-linking. However, one would expect that if aggregation 

of cross-linked species or cross-reaction of the antisera occurred with DMS cross­

linked samples, then the sum of the glycoprotein monomer counts precipitable by 

each antisera should exceed the total number of monomer counts precipitable by 

both antisera (as it does for the dimers). However, in both methods, immunoprecipitation 

of the monomei: band gave additive results (see Fig. 4). 

We also examined the immunoprecipitates obtained with the glycoprotein-specific 

antisera using Triton X-100 solubilized virus which had not been cross-linked (data 

not shown). Antiserum to E2 precipitated a small (less than 10%) but certainly not 

equimolar amount of El. Since the Triton X-100 solubilized glycoproteins were pre­

dominantly in the form of El-E2 heterodimers, this result indicates that the interaction 

between El and E2 is relatively unstable and can be disrupted by incubation with 

glycoprotein-specific antisera. 

Cross-linking of Infected Monolayers. In order to analyze the association of 

El and E2 in infected cells, the mercaptan cleavable cross-linking reagent DTSP 

was used to cross-link CEF monolayers infected with Sindbis virus (HR strain). Cross­

linking of monolayers was carried out at 0°C to minimize artifacts due to diffusion 

limited collisions between proteins in the lipid bilayer (Birdwell and Strauss, 1974). 

The cross-linking reaction was quenched at 0°C by incubation with an excess of lysine 

before solubilization with SDS at 23°C. Samples were analyzed by two-dimensional 

diagonal electrophoresis. The first dimension separated cross-linked aggregates by 

size on a low percentage acrylamide gel under non-reducing conditions (Davies and 

Stark, 1979). After reduction, the polypeptide subunits of the disulfide-linked aggregates 

were resolved by electrophoresis on SDS polyacrylamide slab gels (Laemmli, 1970). 

Cross-linked species appear below the diagonal (see Fig. 5). 
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Fig. 5. Cross-linking of Sindbis virus (HR strain) infected monolayers early and 

late in infection. CEF monolayers were infected and labeled with 3H-leucine as 

described in the Materials and Methods. After cross-linking with DTSP (0.2 mg/ml), 

and incubation with excess lysine, the monolayers were lysed in SDS and analyzed by 

two-dimensional electrophoresis. Labeling in panel A was from 2-3 hr postinfection, 
. 

and in panel B from 2-6 hr postinfection. The first dimension was run from left to 

right, under nonreducing conditions, and the second dimension run from top to 

bottom, under reducing conditions. Cross-linked oligomers are indicated on the 

horizontal axes (as defined in Fig. 1) and the positions of the virion structural proteins 

and PE2 are shown on the vertical axis. All subsequent two-dimensional gels are 

presented in this format. 
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Figure 5 shows the two-dimensional patterns of Sindbis virus (HR strain) infected 

monolayers labeled from 2-3 hr postinfection (Fig. 5, panel A) and 2-6 hr postinfection 

(Fig. 5, panel B) and cross-linked with DTSP (0.2 mg/ml). By 3 hr postinf ection, the 

glycoproteins have appeared in the plasma membrane, but substantial budding does 

not occur until,3.5-4 hr after infection (Birdwell and Strauss, 1974). The two-dimensional 

patterns of these cross-linked monolayers were qualitatively similar. A large number 

of noncross-linked and cross-linked polypeptides were found in the 2-3 hr labeling 

period (Fig. 5, panel A). These were mainly host cell proteins whose synthesis had 

not yet been shut off (data not shown). The predominant cross-linked host cell protein 

in mock infected as well as infected cells was a protein migrating slightly faster 

than El (see Fig. 5, panel A). In addition some higher molecular weight (>150,000 

daltons) cross-linked polypeptides can be seen. El and E2 were cross-linked into 

regular multimers resolved clearly up to hexamers, while the capsid protein was less 

readily cross-linked. Monolayers incubated in the presence of 2% DMSO in PBS as 

a control did not contain any of these aggregates (data not shown; see Fig. 7). At 

this cross-linker concentration, there is clearly a predominance of cross-linked tetramers 

and hexamers of El and E2 over trimers and pentamers, respectively. It is of interest 

to note that although little budding was taking place at 3 hr after infection as compared 

with 6 hr after infection, the El and E2 cross-linking patterns were qualitatively 

similar, except for the presence of proportionately larger amounts of higher glycoprotein 

aggregates_ and a large amount of material hardly entering the first dimension at 

6 hr after infection. Although PE2 was less readily cross-linked than either El or 

E2, cross-linked aggregates of PE2 were found in the dimer region and throughout 

the first dimension. In addition, at 6 hr after infection larger unresolved PE2 aggregates 

were found at the top of the first dimension. 

These patterns of cross-linked El and E2 in infected cells suggested that they 

might be cross-linked preferentially to each other. However, since monomeric El 
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and E2 were not ~eparated in the first dimension, El-E2 heterodimers could not be 

distinguished from viral glycoprotein homodimers or heterodimers of viral glycoproteins 

with unlabeled host cell proteins. In the case of PE2, the situation was even less 

clear since cross-linked PE2 aggregates were smeared throughout the first dimension, 

and even in the dimer region did not align with any other virus-specific proteins. 

We attempted to clarify the association by immunoprecipitation of the lysates with 

glycoprotein specific IgG followed by two-dimensional analysis. Fig. 6 shows the 

results of such an experiment, using a similar lysate to the one shown in Fig. 5, panel B. 

Precipitation with an antiserum to either El or E2 (Fig. 6) indicated that El and E2 

were associated as heterodimers in the infected cell. The higher cross-linked aggregates 

were probably due to cross-linking of El and E2 to each other, rather than to ul11abeled 

host cell protein since the two-dimensional patterns of cross-linked prelabeled host 

cell proteins (prelabeled during 2-3 cell divisions) were identical regardless of whether 

or not the cells had been infected (for 6 hr) with Sindbis virus (data not shown). The 

majority of cross-linked PE2 which could immunoprecitated with antiserum to El 

was present in large aggregates with very little material in the dimer region (Fig. 6, 

panel A). Additional data on cross-linked PE2 will be presented in subsequent sections. 

Association of PE2 and El in Infected Cells. Our findings that the Sindbis virion 

envelope glycoproteins were associated as heterodimers, as well as similar results 

in the case .of SFV (Ziemiecki and Garoff, 1978; C. M. Rice, unpublished), and that 

El and E2 were associated in infected cells suggested that a precursor PE2-El complex 

might also be present. The ability to detect such an association by cross-linking depends 

not ortly on the lability of the complex to cross-linking but also its steady-state levels 

in the infected cell. Previous experiments using infected monolayers labeled for 

relatively long periods of time failed to convincingly demonstrate the existence of 

PE2-El heterodimers (see Figs. 5 and 6). Therefore, we approached these problems 

by using pulse-chase experiments as well as by examining monolayers infected with 

temperature-sensitive mutants defective in the cleavage of PE2. 
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Pig. 6. Im~unoprecipitation of cross-linked monolayers. A lysate prepared as 

in Fig. 5, panel B, was heated, then diluted into TNA. After preclearing with a.C IgG, 

the supernatant was divided into three equal proportions and immunoprecipitated with 

antisera (IgG fraction) to either El, E2, or a combination of both glycoprotein­

specific antisera. The washed immunoprecipitates were resuspended in 4% SOS, 20% 

glycerol and heated to 56°C for 30 min. After centrifugation at 3500 x g for 6 min, 

the supernatants were analyzed on two-dimensional gels. Only the region of the 

second dimension containing the virion glycoproteins and PE2 is shown (analogous to 

the region in Fig. 5, panel B, enclosed by the dotted line). 
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Figure 7 shows the two-dimensional patterns of pulse-chased monolayers infected 
' 

with Sindbis virus (HR strain). After the 10 min pulse El and PE2 were inefficiently 

cross-linked into a smear of aggregates with the majority of the label in the dimer 

region (Fig. 7, panel E). Cross-linked PE2 and El in the dimer region do not align 

exactly in the first dimension as would be expected for a pure population of heterodimers. 

In addition, even in the noncross-linked monolayers some aggregates of PE2 and El 

can be observed •. During the chase, as PE2 was cleaved to E2, increasing amounts 

of El and E2 were present in discrete cross-linked species (see Fig. 7, panels G and 

H). With longer chase periods the amount of cross-linked PE2 decreased and the 

predominant cross-linked species shifted from the dimer region to an aggregate barely 

entering the first dimension. Immunoprecipitation of these lysates with rabbit antiserum 

specific for El and analysis under reducing conditions (Fig. 8) revealed that a small 

but significant amount of PE2 was cross-linked to El throughout the chase while 

the amount of cross-linked E2 increased up to 50 min after the pulse (Fig. 8, panel A). 

In noncross-linked monolayers (Fig. 8, panel B) a small and constant amount of PE2 

also precipitated (see below). From these experiements, it was clear that a small 

amount of PE2 could be cross-linked to El, but that El and E2 were much more readily 

cross-linked. 

If a large amount of the PEl-El complex was present in infected cells, our 

inability to detect it could be explained by either a lack of readily cross-linkable 

groups between El and PE2, or if the complex could be cross-linked it might be inaccessible 

to the DTSP. Since El-E2 heterodimers were stable to Triton X-100 solubilization, 

we tested the latter possibility by cross-linking pulse-labeled monolayers which had 

first been solubilized with this detergent. The cross-linked lysates were then immuno­

precipitated with high-titer monoclonal antiserum against El (see Fig. 2 for specificity). 

The results of this experiment (shown in Fig. 9) demonstrated that heterodimers of 

PE2 and El could be detected after a 10 min pulse (Fig. 9, panel E), but after a 50 min 
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Pig. 7. Cross-linking of pulse-labeled monolayers. CEF monolayers were 

infected with Sindbis virus (HR strain), pulse-labeled for 10 min at 37°C with 35s 

methionine, and chased as described in the Materials and Methods. After washing 

with ice-cold PBS, monolayers were cross-linked with 0.2 mg/ml DTSP (panels E-H) 

or incubated with 2% DMSO (panels A-D), treated with lysine, and lysed in SDS. 

Samples were adjusted to 2% SDS, 10% glycerol and analysed on two-dimensional 

gels. The low molecular weight products aligning with the virus glycoproteins in 

cross-linked and noncross-linked monolayers were artifacts due to proteolysis (data 

not shown). 
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Pig. 8. Immunoprecipitation of cross-linked monolayers following a 10 min 

pulse and different times of chase with antiserum to El. Samples were prepared as 

described in Fig. 7. A sample of each lysate was immunoprecipitated with rabbit aEl 

IgG without prior preclearing with aC IgG. The washed immunoprecipitates and 

samples of each lysate were denatured with sample buffer containing 20 mM DTT, 

heated to 56°C for 30 min and run on 10% acrylamide slab gels (Laemmli, 1970). 

Cross-linked lysates are in panel A and noncross-Iinked lysates in panel B. Odd 

numbered lanes represent the lysate samples [indicated by(-)], and the corresponding 

aEl immunoprecipitates [indicated by (+)] are in the next even lanes. Virus markers 

were run in the outside lanes. 
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Pig. 9. lmmunoprecipitation and two-dimensional analysis of infected mono­

layers cross-link,ed after Triton X-100 solubilization. Monolayers were infected and 

pulse-labeled only (panels A, C, E, and G), or pulse-labeled and chased for 50 min 

(panels B, D, F, and H), as described in Fig. 7. Monolayers in panels A and B were 

solubilized in Triton X-100 only; monolayers in panels C and D were solubilized with 

Triton X-100 then cross-linked with DTSP (0.04 mg/ml, room temperature, 15 min), 

panels E and F show the immunoprecipitates obtained with mouse monoclonal aEl lgG 

of the material shown in panels C and D, respectively. The samples in panels G and H 

were intact monolayers, cross-linked with DTSP (as described in Fig. 7), lysed in SDS, 

and immunoprecipitated with monoclonal aEl lgG. Before electrophoresis, all 

samples were denatured at 56°C for 30 min in 4% SDS, 10% glycerol, and analyzed on 

two-dimensional gels. The high-titer monoclonal aEl IgG was used since it efficiently 

precipitated Triton X-100 or SDS solubilized El from lysates without overloading the 

gel systems used for further analysis. The faint spot running slightly faster than El, 

precipitable by the monoclonal aEl IgG, is probably an El degradation product rather 

than E2 contamination. 
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chaSe the PE2 cross-linked to El was present as larger aggregates. While solubilization 

of pulse-labeled monolayers prior to cross-linking did increase the recovery of PE2-El 

heterodimers (Fig. 9, compare panels E and G), the immunoprecipitation results (Fig. 9, 

compare panels C and E) suggested that the remainder of the cross-linked oligomers 

of El and PE2 did not involve PE2-El cross-linking. This conclusion is consistent 

with the observation that many of the cross-linked oligomers involving newly synthesized 

El and PE2 did Qot form discrete spots which aligned in the first dimension (Fig. 9, 

panels C, E and G; see also Fig. 7, panels A and E), as was found for El-E2 oligomers 

following a 50 min chase (Fig. 9, panels D, F and H). 

Since mutants from complementation groups D and E do not cleave PE2 at the 

nonpermissive temperature, we investigated the cross-linking patterns in cells infected 

with ts20 (group E) and ts23 (group D). Evidence has been presented that ts20 has - - -
a lesion in the gene coding for PE2 (Bracha and Schlesinger, 1976), contains viral 

glycoproteins in the plasma membrane (Bell and Waite, 1977; Smith and Brown, 1977; 

Saraste et al., 1980a) and allows nucleocapsid binding to the plasma membrane (Brown 

and Smith, 1975). ts23 contains a temperature-sensitive hemagglutinin (Yin, 1969), 

and the viral hemagglutinin has been identified as El (Dalrymple et al., 1976). Further-

more, nucleocapsids do not bind to the plasma membrane in cells infected with this 

mutant at the nonpermissive temperature (Brown and Smith, 1975). In addition, 

cells infected with this mutant contain little or no detectable viral glycoprotein (either 

El or E2) in the plasma membrane at the restrictive temperature (Bell and Waite, 

1977; Smith and Brown, 1977; Saraste et al., 1980a). Figure 10 shows the two-dimensional 

patterns of Sindbis HR strain, ts20, and ts23 infected monolayers labeled at 40°C 

and cross-linked with 0.1 mg/ml DTSP or 0.02 mg/ml DTSP. The lower concentrations 

of DTSP were necessary in order to obtain significant quantities of PE2 and El oligomers 

entering the first dimension (see below). When compared to HR infected cells grown 

at 37°C (see Fig. 5, panel B), it is apparent that PE2 and El synthesized at 40°C were 
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Fig. 10. Cross-linking of monolayers infected with ts mutants. Confluent CEF 

monolayers were infected with Sindbis virus HR strain (panels A and D), ts20 

(panels B and E), or ts23 (panels C, F and G) at 37°C. At 1.5 hr after infection 

monolayers were shifted to 40°C, and labeled with 50 µCi/ml 3H leucine from 

3.5-6 hr after infection. After washing with ice-cold PBS, the monolayers were 

cross-linked as described in the Materials and Methods with either 0.1 mg/ml DTSP 

(panels A-C), or 0.02 mg/ml DTSP (panels D-F), or incubated with 2% DMSO in PBS 

as a control (panel G). Following lysis with SDS, the samples were adjusted to 2% 

SDS, 10% glycerol, heated to 56°C for 30 min and analyzed on two-dimensional gels. 
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much more readily cross-linked in monolayers infected with HR as well as ts20 and 

ts23. The capsid protein cross-linking pattern, however, remained unchanged, and 

in the HR infect'ed cells the pattern of lower molecular weight multimers (~hexamers) 

of El and E2 was uneffected when the glycoproteins were synthesized at 40°C. These 

results suggest that incubation of the cells at 40°C has not changed their permeability 

to the cross-linker, and that El and PE2 made at 40°C were more easily cross-linked 

due to increased aggregation. In the absence of any cross-linking, ts23 infected mono-

layers still had large amounts of SDS-stable El and PE2 aggregates (Fig. 10, panel G). 

Since monomeric El and PE2 were separated in the first dimension, heterodimers 

should be clearly distinguishable from homodimers. A comparison of El and PE2 

aggregates in the dimer region from both cross-linked and noncross-linked monolayers, 

showed that the spots did not comigrate in the first dimension as would be expected 

for a pure population of heterodimers. In contrast to the pattern found for El and 

E2, this cross-linking pattern suggests preferential cross-linking of El and PE2 to 

themselves or possibly to unlabeled host cell proteins. Immunoprecipitation of 

noncross-linked monolayers infected with HR or ts23 with rabbit antisera against 

El or E2 (Fig. 11) showed that some of this aggregated PE2 was associated with El. 

We also compared the amount of this PE2-El association in Sindbis HR infected cells 

grown at 37°C or 40°C with or without cross-linking (Fig. 12). Whether or not the 

monolayers were cross-linked, more PE2 could be precipitated with antiserum to 

El -when the .proteins were synthesized at 40°C than at 37°C (Fig. 12, lanes 2, 3, 5 

and 6). The same result was found for monolayers solubilized in Triton X-100 (Fig. 12, 

lanes 7-12). Since these PE2-El aggregates could not be disrupted by Triton X-100 

or SDS without reduction, some of them may be stabilized by disulfide bonds formed 

in vivo. 
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Fig. 11. Immunoprecipitation of noncross-linked HR and ts23 lysates. Non­

cross-linked lysates of HR infected (lanes 1-4) or ts23 infected (lanes 5-8) monolayers 

were prepared as described in Fig. 10 and precipitated with rabbit aEl (lanes 2 and 6), 

aE2 (lanes 3 and 8), or nonimmune IgG (lanes 4 and 8) after preclearing with aC IgG. 

Samples of the lysates (lanes 1 and 5) and the immunoprecipitates were solubilized 

with SDS, reduced with 20 mM DTT and analyzed on a 10% slab gel (Laemmli, 1970). 
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Fig. 12. Association of PE2 and El synthesized at 37°C and 40°C. Confluent 

C.EF monolayers were infected with Sindbis virus (HR strain) at 37°C, and labeled 

from 3""'.5 hr postinfection at either 37°C (lanes 1-3 and 7-9) or 40°C (lanes 4-6 and 

10-12). Monolayers were washed with PBS and cross-linked with 0.2 mg/ml DTSP 

(lanes 2 and 5) or incubated in the presence of 2% DMSO as a control (lanes 3 and 6). 

Other monolayers were lysed in Triton X-100 (lanes 7-12) and cross-linked with 

0.04 mg/ml DTSP (lanes 8 and 11), or incubated with 2% DMSO as a control (lanes 9 

and 12). After quenching with lysine, samples were immunoprecipitated [indicated by 

(+)] with· monoclonal aEl IgG (lanes 2, 3, 5, 6, 8, 9, 11 and 12). Samples of the 

unprecipitated monolayers [indicated by(-)] are shown in lanes 1, 4, 7 and 10. Washed 

immunoprecipitates were resuspended in sample buff er containing 20 mM DTT, 

heated to 56°C for 30 min, and run on a 10% acrylamide slab gel (Laemmli, 1970). 

The far left lane is a purified virus marker. 
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DISCUSSION 

Bifunctional cross-linking reagents, whether cleavable or uncleavable, have 

been useful for the study of topological relationships between protein subunits in 

several virus systems (Garoff, 1974; Wiley et al., 1977; Dubovi and Wagner, 1977; 

Markwell and Fox, 1980). Our results with Sindbis virus show that in infected cells 

as well as matui:e virions, the El and E2 glycoproteins are closely associated (within 

a distance of 11 A). Solubilization of the virion membrane with an excess of Triton 

X-100 produces glycoprotein-detergent 4.5 S complexes free of lipid (Helenius and 

Soderlund, 1973; Simons et al., 1973), which after stabilization by cross-linking could 

be shown to consist predominantly of El-E2 heterodimers. The SFV membrane glyco­

proteins are also associated as heterodimers (Ziemiecki and Garoff, 1978), and in 

contrast to Sindbis virus, the interaction between SFV El and E2 cannot be disrupted 

by isoelectric focusing of the Triton X-100 solubilized glycoprotein complexes (Garoff 

et al., 1974; Dalrymple et al., 1976) In both viruses, the complex is largely disrupted 

by immunoprecipitation with rabbit antisera against the glycoproteins (Ziemiecki 

and Garoff, 1978; Bell et al., in preparation). In this regard, it is of interest that 

we have recently obtained a. monoclonal antibody against Sindbis virus El which 

precipitates significant quantities of E2 and PE2 (J. Mayne and C. Rice, unpublished). 

The interaction between El and E2 could play an important role during virus 

maturation, El contains at most a few amino acids on the cytoplasmic face of the 

host cell plasma membrane (Rice and Strauss, 1981; Rice et al., in preparation), and 

the cytoplasmic COOR-terminal portion of E2 (or PE2) is probably responsible for 

interacting with the nucleocapsid during budding. Thus, a stable El-E2 complex in 

the plasma membrane would lead to the equimolar ratio of each structural protein 

found in mature virions (Garoff et al., 1974; Schlesinger et al., 1972), regardless of 

the ability of El to interact directly with the nucleocapsid. 
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When intact virions or infected cells were cross-linked we observed a lack of 

discrete glycop~otein aggregates larger than hexamers. These glycoprotein hexamers, 

which. contain apl?roximately equimolar amounts of El and E2, could represent higher­

order vfral·subunits consisting of three El-E2 heterodimers. Election microscopic 

examination of intact Sindbis virions has revealed a pattern of highly ordered hexagonal 

glycoprotein arrays which persists in viral membranes in which the nucleocapsid has 

been removed b~ treatment of the virions with low concentrations of Triton X-100 

(von Bonsdorf and Harrison, 1978). If such an interaction between glycoprotein hetero­

dimers occurs in the host cell plasma membrane leading to dense-packed higher-order 

glycoprotein aggregates, this "patching" would promote the exclusion of host cell 

glycoproteins (Strauss, 1978) as well as stable nucleocapsid binding. 

Cross-linking of pulse-labeled monolayers (either intact or solubilized with 

Triton X-100) followed by immunoprecipitation with El antiserum demonstrated 

that some PE2 and El were associated as heterodimers. However, the finding that 

the majority of cross-linked, newly synthesized PE2 and El were not associated, suggested 

that these proteins were more readily cross-linked to themselves or other unlabeled 

host polypeptides (see below). Since only low levels of newly synthesized PE2 and 

El were cross-linked, such aggregates could represent aberrant forms of the glycoproteins 

not destined for incorporation into virions. The accumulation of high molecular weight 

PE2-El aggregates with longer chase periods lends support to this idea. It is therefore 

not possible to interpret these results as being clear-cut evidence for or against the 

existence of functional PE2-El complexes in infected cells. However, the different 

cross-linking behavior of PE2 and E2 suggests that they may have different orientations 

with respect to El. In the case of SFV infected cells, newly synthesized El and PE2 

can be solubilized into dimeric complexes with Triton X-100 which are capable of 

being cross-linked (Ziemiecki et al., 1980). While it has not been demonstrated directly 

that these dimers are PE2-El heterodimers, it seems likely (by analogy to the El-E2 
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interaction) that functional PE2-El complexes may exist in infected cells. However, 

in the case of Sindbis virus the locations of the imidate reactive groups in PE2 and 

El do not favor their cross-linking with the reagents used in this study. 

PE2 and El were extensively cross-linked into large aggregates when they were 

synthesized at 40°C instead of 37°C. This observation was true for the heat-resistant 

variant of Sindbis virus (HR) as well as two ts mutants defective in the PE2 cleavage, 
. 

ts20 (complementation group E) and ts23 (complementation group D) (Strauss and - -
Strauss, 1980). Lower concentrations of the cross-linking reagent produced discrete 

oligomers of El and PE2 which were primarily aggregates of these proteins cross­

linked to themselves rather than to each other (although cross-linking to unlabeled 

host polypeptides could not be rigorously excluded). Even in the absence of chemical 

cross-linking, SDS-stable disulfide-linked aggregates of PEl and El were found in 

HR and ts23 infected cells. Immunoprecipitation of these aggregates showed that 

more PE2 was associated with El at 40°C than at 37°C. Since only minor amounts 

of the aggregates were observed in pulse-chase experiments at 37°C, it is tempting 

to speculate that they represent aberrant glycoprotein precursors formed as a consequence 

of their synthesis of 40°C. Relevant to this discussion are several studies on the properties 

of viral glycoproteins synthesized in the presence of tunicamycin, an inhibitor of 

glycosylation. In the presence of tunicamycin, the multiplication of Sindbis virus 

aJ!d vesicular stomatitis virus is inhibited (Leavitt et al., 1977a). The nonglycosylated 

glycoproteins synthesized under these conditions do not migrate to the cell surf ace 

(PE2 is not cleaved to E2) and are found in large insoluble aggregates after solubilization 

with nonionic detergents such as Triton X-100 (Leavitt et al., 1977b). A study involving 

three strains of vesicular stomatitis virus and a ts mutant containing a lesion in the 

G glycoprotein demonstrated that differences in the sensitivity of these variants 

to tunicamycin was temperature-dependent and positively correlated with the intra-

cellular aggregation of the G glycoprotein. Synthesis of the nonglycosylated G protein 
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at elevated temperatures led to an increased tendency towards aggregation (Gibson 

et!!·' 1979). 

In Sindbis virus infected cells, our cross-linking results indicate that the glycoprotein 

precursors have this same tendency to aggregate at elevated temperatures even in 

the absence of tunicamycin. Mutations in El or PE2 increasing their tendency to 

aggregate at elevated temperatures and leading to the inhibition of virus multiplication 

may be the molecular basis for some of the ts lesions in complementation groups D 

and E (corresponding to the genes for El and PE2, respectively; for a review see Strauss 

and Strauss, 1980). At the restrictive temperature, the glycoproteins of mutants 

in complementation group D (tslO and ts23) cannot be detected at the cell surface 

(Bell and Waite, 1977; Smith and Brown, 1977), and by immunofluorescence appear 

to be associated with rough endoplasmic reticulum (Saraste et al., 1980a). The glyco­

proteins of the tsl mutant of SFV have a similar immunofluorescence pattern (Saraste 

et al., 1980b) and contain exclusively high-mannose type oligosaccharide chains at 

the restrictive temperature (Pesonen et al., 1981) which supports their localization 

in the rough endoplasmic reticulum. Upon shift to the permissive temperature (28-30°C) 

some of these glycoproteins can be transported to the plasma membrane (Saraste 

et al., 1980a,b) but are inefficiently incorporated into mature virions (Smith and Brown, 

1977; Jones et al., 1977; Saraste et al., 1980b). Alternatively, the glycoproteins of 

ts20 (the only representative of group E) show some tendency to accumulate intracellularly, 

but are distributed in the rough endoplasmic reticulum, golgi, and the plasma membrane 

at the restrictive temperature (Bell and Waite, 1977; Smith and Brown, 1977; Saraste 

et al., 1980a). The cross-linking patterns of both ts20 and ts23 infected cells at the 

nonpermissive temperature indicate that PE2 and El are present as large aggregates, 

some of which may contain intermolecular disulfide bonds formed in vivo. The formation 

and stability of such aggregates at the restrictive temperature could affect the intra-

cellular transport and glycosylation of the glycoprotein precursors as well as their 
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ability to be incorporated into mature virions after a shift to the permissive temperature. 

In future experiments, it will be of interest to determine whether a temperature-

induced aggregation of the glycoproteins causes the temperature-sensitivity of these 

mutants or occurs merely as a byproduct of some other lesion affecting glycoprotein 

maturation. 
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