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ABSTRACT

The problem of shock wave bouncary layer interaction is
reviewed and attention focused upon the role of vorticity in the
process. In order to simplify the physical considerations the
two phenomena exhibited by vorticity in.the interaction process-
reflection and refraction of the disturbance, and transport of the
vorticity from its original distribution - are divorced from one
another. Thzs reflection and refracticn process is then considered
apart from the other, and it is found thaet a boundary value problem
cen be formulated for it and formally solved for small perturbations
from the undisturbed flow.

The perturbation component, which is associated with the
pressure variation over the bounding surface, is set up and
carried through to a point inveolving evaluation of a contbur integral.
This integral is so complex that its analytical evaluation would
require many months of effort, and at this point it is thoughtthat
a re-examination of the original problem would be in orcer.

Although numerical results would be desirable, the effort
expended would have to be weighed zgainst their relative contribution

to an understending of the overall problem.
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INTRODUCTION

The problem of an external shock wave, incident upon &
boundary layer of both subsonic and supersonic character, has
attracted much sttention in recent years. Several treatments of
the suﬁject are noteworthy in that they demonstrate essentisl
features of the physical problem through simple mathematical models
and, by means of these models, the researcher gains an insight
into the contributions of specific physical parameters to the actusl
flow. One such parameter, vorticity, has been included as a
discontinuity phenomenon which, however, may mask its true role
in the problem. The role of vorticity in the overall interaction
process consists of two parts: one, the reflection and refraction
of the traversing wave, and two, the transport of the original
vorticity induced by the traversing wave. The present investigstion
is undertaken to shed some light upon the former process.

An early contribution to an understanding of the problem was
made by Howarth, (Ref.l) who considered two semi-infinite fluids of
different, but constant, subsonic and supersonic Mach numbers,
separated by & discontinuity surface. He introduced a shock wave
into the supersonic flow field and then studied its reflection and
pressure effects at the discontinuity surface. Through this he was
able to demonstrate quantitatively that there is up-stream propsgation
of pressure through the subsonic half piane and therefore change in
the flow conditions ahead of shock.

A later extension of the problem in the direction of the real
flow was given by Tsien and Finston (Ref.2) where in addition to

the assumptions of Howarth, they intrcduce a flat bounding surface into



the gubsonic field. Two cases are discussed with these conditions,
that of an incoming compression wave, and flow in a corner; both
investigations confirming the upstream propagation of pressure
through the subsonic layer. The order of magnitude of the results
so obtained, however, is at variance with experiment. (see Ref. 3).

Another approach, based upon the Pohlhausen method and simple
supersonic flow theory, was adopted by Lees (Ref. 4); while Marble,
(Ref. 5) restricts himself to first order reflections in a purely
supersonic flow. Reference 3, referred to above, summsrized the work
of these authors and in addition presents the experimental findings
tc date.

The problem treated in this paper is limited to the reflections
and refrections of & weak wave traversiung & shear layer. The medium
is so chosen that the propagation velocity becomes imaginary for a
part of the flow - i.e. the eguation changes type, and there is no
change during the interaction process from the original vorticity
distribution.

Wave motion in such & medium is represented by the usual

egquation

4 _ 1 9% -0
QX2 €% Jp¢?

where in this cese & is identified with the streem function and
the propagation velocity <€ with ;’5;:i:7’ . The boundary value
problem may then be related to that of Tsien and Finston with the
following adcditions:

&) The no-slip condition is applied at the bounding ﬁall.

b) The supersonic or positive propagation velocity shear layer



is boun&ed by a uniform semi-infinite flow.

¢) The shear is distributed linearly in each of the two

parallel layers.

It is hoped that this formuletion of one aspect of the vorticity
guestion will shed some light upon the role.of a distributed shear in
the oversll problem of shock wave boundary layer interaction. An
snswer to this question could lead to & better understanding of the
interaction process as & whole, the difference between laminar and
turbulent intersction, instability, and perheps advances in the

knowledge of the contributicn of ¥iscosity to the complete probleme



INTERACTION OF A WEAK WAVE AND A SHEAR LAYER IN THE ABSEACE

OF VORTICITY TRANSPORT

Mach Number Distribution
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Differential equation: -
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where ;Z is the perturbation stream function and /M is the local
Mach number.

In region % the solutions of eguation 1 are simple:

/&m= f(x+;¢g—‘-73) * g (.r-r/,:"—-/g)

Re

Following Tsien snd Finston, the incldent wave will be expressed.



ag & contlnuous disturbance-which becomes a sharp wave only uncer
a limiting process.

This wave will be teken as:
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The computation of velocity components from the perturbation stream
function requires some consideration. Let ¢ be the stream function

corresponding to the meln flow in the X direction so that:

€ _ L 7
33 A

4.
where & is the main flow depending upon g and /3 is the density of

the main flow also depending upona « Then ifgis the perturbation

stream function, the resultant derivative in the 2 direction is:

G) 7 = ./f -1‘-
53(54 rr) = 4 (f/ «)

where ,0 is the density of the perturbed stream and & is the

L

perturbation veldcity. Writing this in the form:

Q-Qa(;&_-f-{é) = L;?(ifu,) + .g:/i-f«.)



it is clear that within the lineavized approximation

Thus from equation 4 it follows that:

;&:ﬁ:—f&—-ﬁia
g~ 7

The perturbation is isentropic along the streamlines so that:
P = - pldr+a)

and

2 ~ 4

s

where & is the velocity of sound corresponding to the original
flow. Hence:
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Then, finally the velocity perturbation in the direction of the

6o

e

10.



main stream may be computed from the perturbation stream function as:

Z ¥
2/ 93,
12.

w=-L
7 7

The perturbatiocn normal to the direction of main flow may also be

calculated:
(C+8)Z228=_ L v x-L2 v
> 2
conseguently:
V 2 e Pﬂ J“
P X
- 13.

With the aid of formulas 12 ané 13 the velocity perturbations
i 2 may be calculated-

corresponding to the stream function of equation

, x+%{“-/g’°

G)
-(55)e
(Xt rgr g <0
14.

_ﬁ(x:ﬁ //?{73)

= 0
and
<
- lxrrAg )
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}
1s.

¥hen /3-’0 these velocities change discontinuocusly across the



characteristic X+ 74‘7_.,7':7 g = © . This will be taken as the
disfurbance entering the shear flow from outside and conseguently
the only further disturbence in region % will be that csused by the
deformations of the shear flow itself.* These disturbances are then

propagated in an outward direction and consequently msy be re-

presented as:

(3) S
¥ = g (X-7073ry)
2
16.
. R (3) 3)
It is convenient to express the stream functicns }4, g’ 2

(equations 3 and 16) as Fourier integrels. As shown by Tsien and

Finston,

%(31 _ //a ///a‘ Ti CosA (X +prh~r /5,)

DA Sin A (X P, a_)fc/zl
ﬁ/,e‘-hl‘)
17.

However since:

COSA(X+pogi~ '3) = CoSAX cosA PP~/ }' -Sondx Sond ;4!:77;

and

Sral (X +y M3 -ra)— SinAx cosA VAL, /3 A~ COSAX Svr ] //‘/‘v g_

the integrsl may be written:

=~ ._-—/é (’o.f/\fff-v: # 644 S A A/}T#Cosz)xa’d

P

* This is neglected in the present analysis.
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(
The stream function {lzs)may also be written as a Fourier integral:

3)

[~
% =4 /4 ) S0 P y) B G eosata -y 9 o/

o
19.
. 3) :
The complete stream function in region % is then f(, -+ }‘; .
Representation of the stream function in region 2 requires
solution of equation 1 for the particular Mach number distribution
3
2 A=/ )
—/ —
7 d ¢ 20,
the equation is then
2) ’2)
/47;"'/' o ¢ ¥ — Eg_f_ff = O
s ¢ o=x* Jg 4
21.
) ‘ )
If the function ¢ 1is assumed to be separable, & = A (20 ;(g)
it follows thats
%”(x) -+ A‘-—;‘(“)"o 22.

;(J) < A 7.5.(3) = o 28.
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The solutions of equation 22 are simply the trigonometric

functions

ﬁ(x} = SinAdx, coasAx

24.
while the solutions of 2% are Begsel functions.
These ares —eemp
£ /\/ a‘ ~/ %
/3—' JT/; (3 5 g
} (a) - /— J’ 2 _/:f,T-T' 34
§ <7 ( g ’\/ 5 4
25,

r2)
The stream function &  may then be represented in the

Fourier integral form:

o0
73] t2) =i, 3 ‘2) MA) 3
= FRV7 ALV < 3 o Ax
ﬁ(x,))- "3- ’%(A)J;JAJ/T J 3)*3(A)|2;:’(A3’ o g‘)ISJf\oﬂ

°

oD

A 30y y5) # DT (M B 3”2){ cos Axel)

26.
The stream function in regicn 1 mey now be written down with little
trouble, for it satifies the diiferential equaticn:
g 2LY L e o
ox?t 94 27.
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The solutions of this equation are then formally:

*.S””\“" ’/E—J;J(f’\a%)

cos Ax ,/‘J’, (3,\.3/3)

tr)

(74 (-(,3) ~

28,

where, however, the Bessel functions are to be employed only for

negative values of (a_ « The results will appear in a more usigble

form if the substitution & = /3 /

Ty (243%) = crF Ty (a2 %)

is made. Then

((-0) '/37/?-77,_, (2)¢ 2 %)

4'("’)”" s /3—'.2.1/3 [j‘/\ z 3/‘)

- yF L, (2a2%)

Similarly:

75 Ty (Fa4™) = AT T (20 02 )
= =) B Ty, (2002 %)

i/ - ! — ‘ 3/
(=) /34 9#1-’4(3‘)2‘ .2)

/F-Z;J (351\}3/")

|
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Hence, the solution is of the form:

Sin A X rz '-.;/.i[jg/\fgé)

fr)
¥ (x4) ~
& osax v& Ly (f42%)

29,

and all of the functions are real for o< Z2£/ .
The actual solutions cen now be written as a Fourier integral in

the forms

oo
o __ 3/ )
g ", 2) = U 7S, fﬂ Az, ($427) + OYNEIES %)fd'/a/)aro//l

]

a
- 3 Y - 3
2)2% 2, 2%
- 4/,;4"/0 ¢ 7, (312%) » DAL, ($12%)0cosAxld
o
The boundary condition to be satisfied on the wall at a 2~/ -Z
is simply that the vertical perturbation velocity vanish which is

equivalent to the stream function being a constent (ssy zero)

along the line &=, . Then there results:

o

7]
“ )= ] ()7 (%) 2,07, (#12%)]

©
17 ()
‘(4(/\}5/0/\4’ + & (A) CosAx | /4

which satisfies this condition identicsally.
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There are eight unknown functions to be determined by matching
the:solutions at the interfaces. Physically it is necessary that the
flow angle and the pressure perturbations be matched along the lines
3 s $ and gso - However, some care must be exercised

in applying the metching procedure at Y=o . for this is the

sonic line of the unperturbed flow and the soluticns may be
unsatisfactery at this point. Therefore, a strip of width <2 f’
will be omitted from the flow so that the sonic portion is initislly

omnitted. The matching conditions are then:

3
- (,x,;) = v'm(x,f)

u(”(x, $) «®¢ x, &)

vUn £) = vPx, -g) L)
()
PlEYUE) % €)= pl-€) ul-5) «(a,- )

3l.

In terms of the streazm function these are:

%1 5) = #£%x, 8)

[ /.
¥ w(x,&) = ¥ 2()1, S)
Ep” 3

(e)

tz, ) (e, - 5)

/ = /
PlEILU(F) P-S)H(-5)

w/s) o™ wl-5) gu7
r73(5)-r DY M7-£) 24 32.
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These four relations will give eight relations among the unknown
functions and hence sufficient informetion to determine them.

The first of eguations 32 gives

£ 3) i . A /3 I S
<7?'/3‘+,\?- + B (/\))COJ‘/\//% / (’_ﬁ_m*ﬁ(’\))jjq,‘ /Z/(S-

= CwE T (ka8 # YNV )

and

(2 -_z:—" € (2) 2
(;‘5/31.«,\: + 3 z,\)sm\;@ 7§ +( £ +,4(a9¢05'\ Mes

f, /2 —7 (2) 2 T
2”2/)4),&‘—1"’{’?(3‘)’47‘-/;)+8(A)}/J_,J;3(3Ar”‘ /J)

34,

The thiré condition gives, assuming /o(_ £)= /:ff)) Y(-5) = H/%)
7] 2 -7 (2 =7 &
| ()7 4, (346) -0 Tz, (140)f

[/ —_ 7 P
- AT (5 £+ B0 (A /A %)

SWILBNITE, (a5) - (8077 L, (0 of

(2)

- COMF Loy T §%) + Beors Iy 5 Y)

36
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In order to complete the substitution into the matching conditions 322,

it is necegsary to calculate the following three partial derivatives:

33_ 33 /7—% 1"8(1\) 4/7'7} {ﬁ[/?‘ A +ﬂ(t\)5‘m)/ -rg]&oadxd,\

* z////;m— -.43(»\)5/4/‘/ 4 (_—ﬁ!%;j ,7('2\) as/l//‘?;:;,];,,,,[,“/,{

— 7 v -t St “l - &/n-A - - -
= //ﬁ-:{i\: .y.1¢) E:n/l//:f a W-ﬁﬂ(djj//j 1 cosds7y g cosAee/)

///;/” . 3(,\) ,\/1-7 EosAM "3‘(;;;” A . /;(:\) W12 SeaAv2rts J/ Sradrd)

37

)
To differentiate ¥  we must compute the guantity

_Q (/‘3‘ (w}/a)) Z&J'/(“%) Y3 3-, (a?s )23.1 .ak

a"/
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and

(f.s (8’3/‘)) .z,}-zq;,(kg%) 3— 33/:.)-32&3'/&3"1

a-;’a -4
T Ya), Yay 'y
- J%(q ) .férv-é 4
- 3 )
= - .236'3 I;/s(ré /2
29,
The derivative of f‘, requires similar differventiation of the _2:)

functions and these must be computed separately since they satisfy

different recursiocn relations.

_%(ﬁ%(&g%)) = aif(ﬁj}s(rz”‘))

= “+ 3/ ,/ '/g ? Ph
2—’:Za¢,/,(a-£d) H,,I, 2rzhzt [253 % 2%
- 3/.
= 32 a—zj.‘% (&2")
C D (VAT (s) =~ 2 wRD, (r274)
ay 4] F) /s 40.

S 7 eat)) = 9 %
‘ag(ﬁévs’”"’) 3 (5 2y (v%)

=4 & ‘_//(a—a’/l) _’fa.._] (r2%) . 3\':1"45&

"%

2 p)
+ 7, (¢2%).3r2%2 "

3e (ff’/s(*’ *)) - 4 nzz:/j(xz’/*)

41,
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(2)
The derivative of K& is now

//M)A/’?Tx L (3% %)

) I, (T ”)[/:mzlxo/)

'/'l///C(l\)/\/ ZJ%(SA/”V 3/)
_ ot ?.:/a J;f, 3-’\’/:!’::3 %) /m’h JAéZ.

¥inally the derivative of ¢ i is just:

7] @
PE = L/ )- 2 - 72\ 2% 7 2 2, %
Ep //—(Té(a«\)z\ff_%mz Y +Z, (fahZ, (Fr2 )(
(-]

. /4"(),\) SinAx + EoéA)asAx) )

43,
Using these relations, the remaining matching relations may be

completed. The second of equetions 32 becomes:

(3)

$3) A /n -‘-7— : ) -/
(ﬂfe%:-acay/fz" M./ g %ﬁ‘TM(/W ey s

-7 ( PTIR i, 3
= ot '/_";’_f"'é‘.];;(f,\/fgl' ;’/a)-.»ffw/ft_?_'a./% (r‘)k/—f—r,r 4)

(%zz «BW)Ark A/ emsh S *(,,, g ,qa),\/«??;m,l/? s

- Ao B s, (/B )BT (3 (3 )

45,
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The final relation, the last of equations 32, is assuming &/F)=&7-5)

4/?:\»\ 5'.T (.u\/ 3/) 3(,9,\ ”"; (é,\,fi;_‘?;’/.)

- #D- /m)/.j,m» 5.2, (5%)

/7°¢5)-
+Z,(AM5 7, (#45%)

Eoon % £, (‘A/ f -D(A),\/”?}J’(,\/” lf 4 )

/f -7 — 5

R A ALY
y

AN AN

47«

Now equations %3,34,35,%6 and equations 44,45,46,47 are
the eight linear relations among the eight functions and may be

solved.
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Define 7= A, = A,
8= 4, 2= 4
7= Ay A= 4.
& a %4

Then rewrite the matching equations

A4 Aty Rty =©

A oy =My by # Byty =0©

#etor = Fls s ~Hetyy

42’92 ~Astlye * A hy O
o3 * ey ~Ap %y "’7&73—& = 4
¢3
s

f *”éy""@ %7 - A 7[ “%
A%, ’5 Gy toy ~Aphy = <>

Where the f‘* are defined as follows
=Z, (#0075 2, (#45) - 7, (3005 7, Z,(347)
fy= L3075 T%)
- /z -/ %
,g,m,é (3475 %)

“‘Q—’-/ L (IASL (34 5%) 2L (A5 T, (,,w)/

Y-5)-

fa= Ay L (L %)

Zha
46a
36a

47e

3da

45a

22a

44a
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£, =% J;,s(f‘/\/f?—%%)

fa = 4, (PWEL(105) -4 (NIFL, (345)
o= 173, (105 %)

£ =rEd (Fay % 5 %)

270E) -/
fas L] (30NCL, (935%) 40, (39 02,2 st

/"’"‘r-,(;’/\ %)
fuc 2 AY 2 ” (3'\}/‘/!‘" f%)
Ly V83, (Ravmts s)

£y ® )/J'-J:%(;/\/FJ)

fon cos Ay &

é_&_-_- Stw A ’/ch‘"r

TG REAE S
é,,:)‘ %_-./:J;’(;.A//!}:/ 6»3/3)

f‘-7_._)\;//2—":.5‘104\/"?c;;

ll
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A ,\;//7:-/ cos Ay
7§
£= 78 4
75 (A 770 5)
]
7 J‘I'/_,(E‘}’\/’z"' s)
;‘77: Son A I//‘/‘ d
°"/
f}}z CoS)’“"’J
RV rE
85"\ "5 J,
$
s "I"/.a/-%t A ?‘v;%)
AL F
¢ 7 ;_/’;/3{;/\/’2"' &
fy7™ Y% ‘ | ‘z)
&l COSA;//Y‘ Y
O‘.,

.
-f

£ = &/ a
8 %)l st74 7 d-
g, . EL
i {73‘ co
6 ” * SA
- ﬁl.:,‘.g WAL /”
YA, cos Ay
o g
| e
7 - ELF N |
K cosd RS- S /—’/ o
-y
F= &
y S
f /3:"4,\'2 AT, s ,,/)@ +,\4) rmArts
L 4 /M
0"~/ J
e
A Vi cos A i

zr
ﬁ(ﬂaﬁ\z)
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From 3ba and 46a

E ’7'/7{,75,«*7,{,7,[4)"%/753751,"'23 w) =0 48

”’7{:/4/ - 43/:3791 = Ry 71y hs <°
AL, 1 —Ashe by * Aty oy = °

4 7617.;3 _7{:3/4/) ~Ry b Foy? £, ) =0 49
Similarly from equations 36a and 47a

% 732 n - ﬂf?f?:“’fvc ~Hihty °°

"szy,;_{‘ ~Aetustie *Rhefye = ©

o 'z (7(3_3 73« "‘fn 7[3;) '”r/ﬁf/n: "7(“/;7[3‘) =0 50
and

“ by Fra Ar Fostvs “Fc FacFva = o
#2bysFra= Rptusfoz + 40 Ao F32 =0

”f(ﬁrﬁz '7‘2:9@:)'44 (/Jc 79/4'7[#762)=° 51

Now ﬂe can be eliminated between the equations Z4a and 45&

Ay hestie? Putontos “Arhsr Tew ~Petoi Ter = ArFer
A testee - Pyt *Ryhpthoe ~Hedee For = A fre

 Blhestin Tostor)* o (hontoa* ey ot = Ay Chorhs i) = i~ 5

P sk
52
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And likewise between equations 32a and 44a
Ao togths* B o fow # Ry oy o A Frrtow = 55 Tt
@'éé’f?‘& - ,4‘ 7 7‘7:— ""47 3(-7 F” A os Fre " A% ot
B (o s he) 4 (Bcoe o Fou) * Pollsr oun oy o) = B toa o

53
Now eliminate #, between equations 52 and 53

A (s fos = Fus Fra(Frr brstFor Bos) # A (b hat oo bral(Frn i +n Fod)
# Aty fop # fo Fos) (ForFou 5oy 68) 7 % (P oo = Fc b8 (F7 s+
fartu) =(Ftee=Etoa)frr o +hr os)

* (P foe + 5 fre s v + fon s

Another equation of this set can be obtained by working with

54

equations %4a, 45a, 3Ba, and 44a.

Between 33a and 34sa

A2lostos * PutouTon = Potfop b R Frstre = Fo For
’;"7(7-"’5“' *# o 75‘?* R ooty =Rt st fre = <7 Fsé

: AG’é%?jgr"A%'#%rf%r"’Zvi}y7€q-"4%¢;¢7etf'Ae42}7f%t'

T hrrtse) T ety Ak
55

Between 44a and 45a
B fesFor Ry lanow * Brbsshor - e artre = 42 Fav
Atisty e =P bes # B2 hss o #Ry Foe 1oy = A Fin

Bt Fv = Avd, o ok # A s tes = #hec fos
* Qo (% rtse+ Fer foa) “"fﬁa-"/f/:gs



24

Now eliminate A» between 55 and 56

B hesborlFunbos s Fortes) +Festue(Fer Frutfradine )}
8y bty Fir v+ b Fit) = FayForFor oot Frp o))
“Bifhrstin(for fre # Frofse) ~Frchrelfer Fon v For ]
A Frslir fow +hsr £s) # Fru Fes rr doms # Frodoe)}

=[€’ Fre = 7> ffﬁr)/fc 7 For # Fo7 k) +(F fou v Fee s rlos *Hrp Fri)
57

Now use equations 49 and 51 to express equations 54 and 57

in terms of ﬁs and 44_1. alonee.

Equation 54 becomes

% (’ffs Fes L sfes) s 55t forhoe) + For fay = P Ty
7] f2y+1‘lvﬁ/

% (o fos *Hov Kt ) rs fos f/&;/”)}

”%—[ (15 Fis thistre)[farfeu t farfas) + Ly F22-F35fv2
Foc Fog = Fuc Foz

'["k %s * Fac i‘u-)/":; Fes *7‘677‘4‘5#
2 (Frdip~Fetss ) Forfon* Fortn) * (Fo Fos */i-f;:—)//:?/a-"‘fn/?g

and Fquation 57 becomes

A /fq bow (%7 fowt Firtie] * i3 ol for Foi # FrpFoe)

Futaz =43 fa
” 7‘”176: +z‘/1r’a/ (;ﬂ Pt Fer bt Ferkie) ~Foy oo fortor 'ffvf:i»

A e fulberbos o) sl b+

Frets = Fast
..f:; 2 ;‘:‘ 7 ( Fotse (Fer for# Farber) * Fioc ;‘,(,57/”4»:94))]
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(% hre -G lss )(fertost FerFoe) (4 toe # 42 Rl Fsrbret Frrtsa)

59
Now we can solve for A& and Ag.independently.

lizke the substitution

§0 =(tes s - FeaFse)ller b+ Fards) + fy Fag = fostas
w Loy * oy Lo

¥ (fryFer +Fiw Kot )(For Fou +Fer¥2s)

j). =(for fov*Fastr ) Fsr Frs + £ v Fss) 7 Lvsoa Tortva
Fac Fra ~Fve 22

% (Frafoe - Fac Fre ) FsrFes * For Frs)
G, = (F5 Fos = £ 4o M Frr e+ oo Fre) # (65 Fs # 55 o) horki# B )

33 = 7[:3 /}‘_ [,(‘77(” ,c-,[”,t“_) * %3 ;‘:-4-/{3-7 #7 *7‘77/:6)

o tas ~ a2y
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Then finslly the required coefficients are
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With these we can write down the value of the stream functicn /‘Wf"'/f)
explicitly. However, we actually wish the pressure distribution
along the surface -3:5 =/ .« The stream velocity vanishes

at this point and therefore the pressure variations can not be
calculated by the linearized formula. However, the velocity varistion

parallel to the plate is
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As indiceted in the discussion preceding eguation 65, the pressure
verietion at the plate cannot be calculated by the linearized formula
4P=-pU« beceuse of the vanishing of Y . One can ermploy the
linearized formule at a finite distance off the plate, however, by
using eguation 43 for QIJW/J 4 ; this should yield a pressure
perturbation in the subsonic region not too much different from
the value at the plate.

In connection with the evaluaticn of equation €5, it is apparent
that although an analytic expression has been obtained for the
velocity veriation sought, still its calculation will be a tedious
task. If numerical results are desired, & contour integration
seems the most logical method of attack, however,the questién then
arises as to whether & straight numerical integraticn would not be
more feasible. |

In conclusion, it follows that any positive results ensuing from
this analysis will depend upon evaluation of the above integrai,

which, however, is outside the present scope of the investigation.
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