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ABSTRACT

The stability of an infinite-length cylindrical shell subjected to
a broad class of axially symmetric moving loads with constant velocity
is studied by utilizing a large deflection Donnell theory. Special cases
of the general loading function include the moving ring, step and
decayed step loads.

Stability is defined on the basis of the boundedness or diver-
gence of an infinitesimal nonsymmetric disturbed motion about an
initial nonlinear steady-state symmetric response. Following the
determination of the symmetric response, under this concept of
stability, the analysis is reduced to a study of a system of linear
partial differential equations or so-called variational equations; these
are analyzed by use of a double Laplace transform technique and the
original stability problem is replaced by a simpler one of determining
the location of the poles of a certain function. A scheme for accom-
plishing this task is outlined. Extension of the method to include more
exact equations of motion and to a class of static problems involving
finite length shells is discussed.

A related problem concerning a moving concentrated load on a
nonlinear elastic cylindrical membrane (nonlinearity in both geometric
and constitutive relations) and a string on a nonlinear foundation is
discussed in an appendix to the text. Interesting analogies in both
analysis and physical behavior of the string and shell systems are

found.
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CHAPTER I

INTRODUCTION

Since the first basic contribution by Fairbairns in 1858, the
stability of thin elastic cylindrical shells has been the subject of
investigation by many outstanding authors. The majority of this work,
however, has been devoted to considerations of static loading.
Recently, because of their widespread use in aerospace vehicles, a
major emphasis has been placed on the dynamic stability of cylindrical
shells. This emphasis is reflected in the increasing number of papers
that have appeared on the subject since 1950. The earliest and larger
part of these contributions have originated from Russian investigators
such as Oniashvili (1), Agamirov (2), Vol'mir (3,4), Markov (5),
Bolotin (6, 7,8) and others. While Federhofer (12) appears to be the
major German source, recent American contributions have emerged
from Coppa and Nash (15), Yao (16,17,18), Roth and Klosner (14),
Goodier and Mclvor (19), Koval (20,21), Lindberg (22) and a few others.
These works are chiefly concerned with impulsive, step, ramp and
periodic load-time behavior under hydrostatic, external pressure and
axial type loads. A representative cross section of this work can be
found in references 1 through 22,

An examination of the literature on this subject indicates the
state-of-the-art is indeed in its infancy, for there are many important
problems yet to be considered. In particular, although the linear
response of cylindrical shells to axially symmetric moving loads has

been examined by several investigators (23-27), the associated
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stability problem has appeared in the literature through a sole source:
Prisekin (26). Prisekin considers the problem of a ring load moving
with constant velocity along an infinite cylindrical shell. The treat-
ment, however, does not constitute a solution to the problem, but
rather an engineering estimate of the ratio of dynamic to static critical
loads based on the results of a linear symmetric response analysis.

The primary objective of this dissertation is to establish a
method of solution to a class of stability problcms involving thin
elastic cylindrical shells subjected to axially symmetric moving loads
with constant velocity. As this is a first treatment of the subject, the
mathematical formulation will be simplified by assuming the shell
length is infinite and the initial symmetric response of the shell has
reached a steady-state value. Further, in the sequel we shall
consider only the case where the load velocity is less than the mini-
mum velocity for which axially symmetric sinusoidal waves can be
propagated in the unloaded shell. For steel shells this velocity lies
between 400-2000 f.p.s. for h/a = 1/1000 - 1/40 respectively.
Below this velocity {if no axial compression is present) the steady-
state mations are attenuated on hoth sides of the load and the results
of the analysis will have significance for shells whose length is long
compared to a characteristic attenuation length. Above this velocity
the steady-state motions are not attenuated (unless damping is
considered) and their physical significance (without damping) is
questionable.

Formulation of the problem is based on the classical stability

concept of Poincard; stability is defined on the basis of the boundedness
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or divergence of an infinitesimal disturbed motion about an initial
nonlinear state of motion. Under this concept of stability and once
the initial symmetric response is obtained, the analysis is reduced to
an investigation of a set of perturbation or so-called variational
equations (''equation aux variations' of Poincaré). Under the assump-
tion of small disturbances these equations are linearized. Neverthe-
less, considerable complexity is involved due to the existence of
variable coefficients. To facilitate a solution the Laplace transform
is used rather extensively and stability, with the introduction of a few
theorems, is visualized entirely from the transform plane. The
original stability problem is eventually replaced by a simpler problem
of determining information regarding the zeros of a function in a
Laplace transform plane. A method suitable for attaining this objective
is discussed. All portions of the analysis, following the selection of
the equations of motion, are exact.

In an appendix to the text a problem concerning the stability
and response of a string on a nonlinear foundation subjected to a
concentrated moving load is studied. Both the results and a major
part of the analysis are closely related to the shell discussion.
Investigation of the considerably simpler string formulation is
instructive in that it allows one to obtain a basic understanding of
problems of this type without excessive mathematical complication.
The nonlinear one-dimensional wave equation considered is shown to
also represent the radial displacements of a nonlinear (nonlinearity
in both geometric and constitutive equationé) elastic cylindrical

membrane in the light of certain approximations. Under these
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approximations, the above string problem is equivalent to the stability
and response of a nonlinear cylindrical membrane subjected to a ring

load moving with constant velocity.
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CHAPTER II

PRELIMINARY REMARKS

1. Formulation of the Problem

The Shell

In the ensuing analysis we shall consider an infinitely long,
elastic, isotropic and homogeneous cylindrical shell with a uniform
thickness h and whose middle surface has the radius a. The shell
will be assumed to be thin so that h/a << 1,

All motions of the middle surface of the shell will be referred
to a Lagrangian or fixed coordinate system as illustrated in Fig. 1.
The longitudinal, circumiferential and radial displacements of the

middle surface will be denoted as U, V, and W respectively.

The Equations of Motion

A Donnell type nonlinear theory (30) will be employed as a
mathematical model of the shell. Accordingly, the equilibrium

equations of the cylinder are:

2 X dy
f‘_/l/y 4 _)_/.Y.’.‘.Y:_-r- @)
Ay 2 X
(2.1)
2VW = p e g W o W
N 2 x% > x’)x))’
'JZW /\6, /7)2W
A VA T

the stress (resultant)-strain relations are:



N, = £4 [5* +‘7‘-‘)']

/-

= /Efa [+ vex] (2. 2)

£ A
N")’ o 2(1+7) X‘)’

and the nonlinear strain-displacement relations are given by:

e - 20U 7 dW )2
* T ox Z S X
sV ;7 TV 2 4
g, = 2L L L= W
~ Sy ' 2 (Jy) a (2. 3)
y, = 2¥ 9V dw dw
* 3% DX X 9

The first two equilibrium equations 2.1 can be satisfied by a

stress function F defined by:

/Vx — sz /g’ — 92/: N = I (2.4)
Y X 7 dx Dy

which when introduced into the last of equations 2.1 yields:

27w = 2w 2ZF PRy e
< e 2x* I x* XY IxIdy
L w1 2%, 2w (2. 5a)

dx* Dy* +d d x* / o7
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By substituting equations 2. 3 into equations 2.2 and eliminating the

variables U and V, one obtains an additional equation governing W

and F:
QZVV" 2 2 2
fro_ 2 QZW___/__)
vVF fﬁ[()x‘;) QXWZ X - 3 2)(2/ (2. 5b)

Equation 2. 5a represents the radial equilibrium of the shell;
equation 2. 5b is the condition of compatability. These two equations
will constitute the basic equations of motion of the shell. The domain

of the problem is infinite, i.e.:

- < X &£ oo, © £ y < 2ra, 7 > o

It should be noted that it has been implicitly assumed in the
derivation of these equations that strains and rotations are small
compared to 1. Since the ratios of deformed areas to undeformed
areas and deformed volumes to undeformed volumes differ from unity
by magnitudes of the same order as the elongations and shears, one
therefore (in the first approximation) need not differentiate between
stresses on deformed and undeformed areas. (The reader is referred
to Novozhilov (54) for amplification of these statements.) A further
assumption (usually associated with Donnell (55)) is that V << 9W/3e.
Donnell has indicated that this latter approximation is valid if, upon
deforming, the displacements of the middle surface are such that the
square of the number of circumferential waves, n, is large compared

to 1. For thin shells, n > 5 is considered as '"large'. (For the
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special case n = 0, i.e., axially symmetric motions, Donnell's
approximation is not involved since V and oW/86 are both
identically zero.)

It is evident, from the equilibrium equations 2.1, that only the
effects of radial inertia were included, i. e, we have neglected (1)
tangential inertia, (2) circumferential inertia, (3) rotary inertia and
(4) transverse shear deformation. (Since (3) and (4) were neglected,
equations 2. 5 have a diffusive character and one can expect energy
transfer to take place at infinite velocity.) The neglect of these
quantities will necessitate a restriction on the magnitude of the load
velocity. The effects of these approximations on the symmetric

motion of the shell will be discussed in the sequel.

The Loading Condition

The loading condition shall consist of a constant axial stress,
NS{, and an axially symmetric lateral pressure distribution P(X, T)

moving with a constant velocity, V, so that
PX,T) = PX=VvT)

The velocity of the load will be restricted to the following limits:

v = 3 - o
<(= ’/2'>1L3(/—-‘U'z)j}/+ LF Ny > o

Y,
v ' [ —_L\ l -+ /\/;go z °
— £
== = PN,
© J3a-v*)  En 1/; x<°
These restrictions are associated with the approximations mentioned

above and the assumed form of the initial motion of the shell; they

will be discussed later.
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Now, consider a coordinate system moving with the load as
defined by the transformation:
5 = X = V7
Within the semi~infinite intervals

—w<§1<0) AND © < 3, < oo

the load distribution will be assumed in the form:

A
Alz) = ~£ + = L e T

oy < < J < =
& =«
Az) = E +%&C * P wesco
-/
% *
Herec N and K arec finite, Po and Po are real constants, Pn’ Pk’

—Q—n, ﬂ:, are in general complex valued and Re Qn> 0, Re ﬂ: > 0.
At the point El = 0 we will allow a concentrated load P, J(gl),
where )’(E,l) denotes the Dirac delta function and P_ is a real
constant. By use of the Heaviside step function, H(gl), the assumed

lateral loading can be more compactly written as:

~ — 2,7
Pls,) = ~RdG) + H(s) [P +Z Fue ,]

e/

P " (2. 6)
- * ® 2
A2 [T = e, o %37
ey
Several special cases of equation 2. 6 are illustrated in Figs. 2a, b, c,
and d. They include the moving ring load, step load, decayed steps
and pulse respectively., Note that the effect of an internal pressuriza-
tion of the cylinder can be included by an appropriate choice of Po
and P*.
o
Although we shall not consider it as part of our discussion, by

a similar analysis one can generalize 2. 6 considerably. Such a
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generalization consists of the sum of a finite number of delta functions
and a function £ (§;). The function P(gl) is assumed piecewise
continuous on any finite interval, continuous on any semi-infinite
interval and representable in any continuous ith interval by
. . e . )
Py = £+ Z A ST
M~/
where P(_Ei) are real valued and PS),' and (2 S‘) are in general
complex valued. Such a generalization, however, would not lend any-
thing to the present analysis since (1) the method of handling the more
general loading should be clear from the ensuing analysis and {2) the

algebra becomes considerably more cumbersone.

The Axially Symmetric Response of the Shell

We shall seek bounded solutions to equations 2.5, under the
loading condition 2, 6, of the form
WK, y, T) = W (X=VT7)
(2.7)
FIX, Y T) = A(X=VT,¥)

This class of solutions represent axially symmetric motions (denoted
by the subscript ''s') that are time invariant in a coordinate system
moving with velocity, V. We shall denote these solutions as "'steady-
state'. With the infinite shell in mind, such motions can be
visualized as the limiting case (T-— o0) of a transient problem in
which the load is applied and brought up to speed from rest in some
manner. Our primary objective will be to determine the stability of

these steady-state motions.
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The System in Nondimensional Form

For future discussion it will be advantageous to recast the
equations of motion 2. 5 and the loading condition 2. 6 in a non-

dimensional form. For this purpose we define the quantities

W _ X Y
“ =3 f=Fm- =&, e-3
y (2. 8)
2z V7 . Eh2 E
/ 4/7
0%( )
Under 2.8, and writing partial derivatives as 562_ = | )99, etc. ,
equation 2. 5 becomes
/64[7*4«’ = i/(x-sz) +1ge Wy, _sz .
(2.9a)
# éx (1 + ag) — wr,
4 2 2.9b
V7( =(W;5) — Wiy (1 + wigg) (2. 9b)
+ J M 7 * b
V' = £ = = -
where oxt T RoxTer T 55T, e f /23%( /- o)

The loading function takes the following nondimensional form:

#(3) = 2 s(3) + H(3) [g. -/—‘4_:}/?”‘ 6—313]

m-=/

>

¢ X > +a/
7‘//(“2)[?, +j{' = J‘gj (2.10)
=/
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*
and =
N =Z=7
where
A V-] 2 >
. = < - an _ /A
? £Eh ?/”‘ Eh %M - 'E/i‘;?_——/ ):c=aﬂ/’t>
and
S =x — Mt

2. Definition of Stability. Physical Aspects of the Definition

» »
);c—dﬂm.

Let us perturb the steady-state axially symmetric motions

W and fs by, respectively, the quantities Y (x,8,t) and n(x, 0,t).

The following restrictions will be placed on y and «u:

(1)

Y and n will be considered as infinitesimal

- quantities so that their higher powers can be

(2)

(3)

If <« and

neglected in the analysis.

¥ and n = 0 for |x\» X (The initial
disturbance shall be confined to a finite interval
of the x axis.)
The perturbations shall salisfy the following

quiescent condition:

| Z;ﬂx,e,ﬂ} _ 5

] X| —> o0 ni(xet)
&t Fexép

7_[/, denote the perturbed solutions, then we have:

Wp(x,8,C) = g (x-Mt) + F(%8¢)

£x6.t) = £ ix -mt,8) +7(x 6E)

(2.11a)

(2. 11b)
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Now, stability shall be defined on the following basis. If we insert
Wp and fp into the nonlinear equations of motion 2. 9 and neglect
powers of V4 and 1 above the first, we obtain linear variational
equations for f and 7. Ifall N and m satisfying these equations
and conditions (1), (2), and (3) above are hounded, W and fs will
be said to be stable, otherwise unstable. Note that since the varia-
tional equations will be linear, and if 7 and m are bounded, then
this bound will be directly proportional to the initial values )a(x, Q,to)
and n(x, 8, to). Therefore an equivalent but probably more precise
definition of stability is: Wy and fs are stable if, given € > 0 and

to, there exists a 3= }(é,to) such that

(/7(x,0,t)] I7(x 6,t)]) < €, To)
implies (2.12)

(/7(x 6 €)Y, In(x, o6 t)]) < €

In other words, stability is defined on the basis of whether an
infinitesimal disturbed motion about an initial response state remains
bounded or diverges.

Liet us consider the physical consequences of the above
definition of stability. If a thin elastic shell is statically loaded, i.e.,
if V = 0, the transition from stability to instability represents an
upper bound on the buckling load. It is an upper bound in the sense
that finite disturbance might conceivably lead to a buckling phenomena
at a lower value of the load. (One might also argue, although it is
surely remote, that conditions (2) and (3) are restrictions which if
relaxed might lead to new unstable solutions. In such a case our

definition of stability would still lead to an upper bound of the buckling



14
load.)} In the dynamic problem, a divergence may lead to either a
buckling phenomena or simply to finite amplitude oscillations,
depending on the nature of the loading. One cannot be distinguished
from the other, however, directly from the linearized analysis. We
cannot, of course, in either thc static or dynamic case, obtain
information regarding the postbuckled or finite amplitude oscillation
state of the shell, The method, nevertheless, provides substantial
information regarding the initiation of motions other than the initial
symmetric motion and is particularly valuable in preliminary studies
of shell stability problems. In the final analysis, its appropriateness

depends on the question asked.

3. Basic Outline of the Solution

A preliminary sketch of the solution to the proposed stability
problem is as follows:

1. The initial symmetric quantities WS(X. - Mt) and fs(x - Mt, 6)
are determined from equations 2. 9 subject to the loading defined by
equation 2.10.

2. This symmetric solution is perturbed by the non-
symmetrical quantities <f (x,0,t) and n(x,6,t). Egquations 2.1lb,
representing such perturbations, are substituted into the equations
of motion 2. 6 and the resulting equations governing ¥ and n are

linearized on the assumption that ¥ and n are infinitesimal.
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3. These linearized or variational equations are treated as
follows:

a. ~f and n are represented in a Fourier series in
the 6 variable. The result is an infinite system (uncoupled in sets of
2) of partial differential equations in x and t, 6 being replaced by a
parameter, n.

b. A Galilean transformation of the form £ = x - Mt,

T =1t is effected, rendering the variable coefficients in the varia-
tional equations a function of one variable, §, only. Upon the nth set
of equations the Laplace transform is applied with respect to 7 ,
replacing it with the parameter p and reducing the system to total
differential equations with variable coefficients in §£.

c. A second Laplace transform (unilateral) is applied
with respect to the § variable in the nth set of subsidiary equations
replacing £ by the parameter s and yielding a system of functional
difference equations in terms of s, This system of difference
equations is solved under suitable restrictions and the second trans-
form (s) is inverted, thus supplying a solution to the subsidiary
equations. |

d. The properties of the solution in the p-plane are
ascertained. With the aid of a few theorems concerning stability and
the Laplace transform, which we introduce, the stability analysis is
reduced to locating the zeros of a certain function of p in the p-plane.

A scheme for accomplishing this task is discussecd.
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CHAPTER III

GENERAL ANALYSIS

1. Steady-State Symmetric Response

The governing equations for the axially symmetric motion of

the shell are obtained by setting:

we = Q, 7[ = QO

X

and requiring that fxx and fee be independent of the variable 6.

Under these restrictions, equations 2.9 take the form:

4
/5 “s wxxx - ZICI—MLL) +7€egaf‘xx * éxx— “sie (3.12)

X X

It is advantageous at this point to recall that equation 3. 1b can be

written as:

Neo N - -
Eh  EF °xx

XK

From the first of equations 2.1 one observes that

ON, _ o
o X

for the symmetric state of motion and therefore

No = N (£)
The quantity N; therefore represents an initial compression or
tension in the cylinder and is independent of the variable x. We shall

assume N(}){ = constant and define

¥ N,
/\4 . = (3. 2)
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Upon substituting equations 2. 3 into equations 2.2 (imposing axial
symmetry) and solving for the variable N_, one obtains:
N, *
X — & W /\4
£4

Therefore equation 3.1b can be replaced by

- *
7{ =«w;+«7Nx) 7{=/\/x (3. 4)
Xz e
Substitution of equations 3.4 into 3. la yields the following linear
partial differential equation for the radial displacement W

3

4
/gaf‘_xzzz "/Vx “s vz + Lo +af;tt ==

j(x——/l//zf) +A7A/x* (3. 5)

The fact that equation 3. 5 is linear is a consequence of the
approximations used in deriving equations 2, 6. If the effects of
longitudinal inertia had been included this would not be the case. Let
us attempt to estimate the validity of the approximations regarding the
neglect of longitudinal inertia, shear deformation and rotational

inertia. Consider the homogeneous portion of equation 3. 5:
/54w‘ _./\/x o + g 7 s = O (3. 6)

One recognizes immediately that equation 3. 6 represents a
Bernoulli-Euler beam~column on an elastic foundation. This equation

does not, of course, possess a correct hyperbolic character but
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rather, is diffusive in nature. Some light can be shed on the validity
of equation 3. 5 and indirectly on equation 2, 5 by considering the
phase velocity spectrum of equation 3. 6. This is obtained by

assuming steady-state wave train solutions of the form

CR{(H— )
w(xt) = A e .7
Here K represents the wave number and c¢ the phase velocity.

Substitution of the above relation into equation 3. 6 yields
e
/54K.4 ~ K/Z (/V;‘ . CZ) + / = O (3. 8)

A plot of K versus c constitutes the phase velocity spectrum. A

. comparison of the velocity spectrum of equation 3. 6, under the

condition N; = 0, with that of a more exact theory (linear) corres-

ponding to Timoshenko's theory of beam vibrations can be made by

referring to the work of Tang (23). This comparison is illustrated

in Figs. 3a and 3b for the case 2 = 0.06. When c < /E._'{S, the

velocity spectrum of both theories possess complex wave numbers

and the spectrums are found to be practically identical. When

c >¥/2 B, the velocity spectrum from the Bernoulli-Euler theory exists

with real wave numbers. The two spectrums agree, however, for

only rather small wave numbers. In short, for ¢ < A2 B, one observes

that, as far as steady-state solutions are concerned, the effects of

rotary inertia and shear deformation are apparently negligible.
Further enlightenment can be obtained from the analyses of

Nachbar (27) and Jones and Bhuta (24) where the linear, axially
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symmetric response to moving loads on infinite-length cylindrical
shells was studied, Extrapolating from their linear steady-state
calculations, the effects of longitudinal inertia on the steady-state
solutions are negligible for velocities (load or phase) that are

congiderably less than the plate spced which is given by

2 £
A
(=%
Now, the ratio of cutoff velocity (N: = 0), i.e. the minimal velocity

for which sinusoidal wave trains can be propagated in the shell, to

plate speed is

([{m z _ E/?//af/ﬁ(/—vz) b ( /e P\ 2
‘V_;') - E////_,‘;z) a -4

Thus, since we are assuming the shell is thin so that -§<< 1, the
effects of longitudinal inertia are apparently not important if V< VW
or in nondimensional form, if c < A/Z'ﬁ.

Our theory can therefore be expected to satisfactorily model
the steady-state motions if the shell (within the context of the usual
strain displacement approximations given by equations 2, 3) for
N: = 0 if the nondimensional load velocity, M, is restricted to
M<AZB. Further, below the cutoff velocity, the symmetric response
of the shell will be attenuated in space due to the existence of the
complex arm of the phase velocity spectrum. For load velocities
below the cutoff velocity, therefore, the steady-state response can
have significant meaning if the shell is long compared to a

characteristic attenuation length. However, for load velocities
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above the cutoff velocity, the displacements will not be attenuated and
the effects of the load will be propagated throughout the entire shell
(see Section 4 of Appendix 5). Thus the effects of boundaries, unless
damping is considered, become important independent of the length
of the shell and a transient problem should, in general, be examined,

If N: 7 0, the cutoff velocity for the Bernoulli-Euler theory
is given by

Cow = [252+ N} ]"
If axial compression is present we must require that
Zg*+ N > 0
so that a velocity region where the response will be attenuated exists.
Note that -~ N: = 2(32 = 2 T=‘==-=;_== =~ Ny /Eh represents the
a AN3(1-o%)

classical buckling load for a long cylinder in axial compression.
Thus we are requiring that the axial load be less than the static

buckling load. We shall therefore restrict the load velocity to

[ [h 1
M < [2-;5 OR vV < 7 /{—2:’ [3(/— .oz')] Je (3- 93)
/F A{t*ao

and if axial compression is present we will require that

2/2 +/\/f > o

and
27 /) N; //1 /
M < [28% £ N* ok V</———————+J £)% (3.9
7 g J 2 N3(1->% E4 (// ( )
*#
w NS <o
If N: = 0 and the shell material is steel, the cutoff velocity

h _ 1 1
ranges from 400 f.p.s. — 2000 {f. p.s. for = ~ 1000~ 40

respectively.
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In‘ the ensuing analysis, it will be convenient to consider the

equations of motion as referenced to a moving coordinate system
defined by the Galilean transformation:

3T =x -M t

O = & (3.10)

zr =t
Such a transformation simplifies the problem considerably since it
renders the variable coefficients of the variational equations a
function of one variable, £, only. Under the transformation 3. 10, the

equations of motion 2. 9 become

Frvtar = 205 ¥ fow — 2f

73 s 39
2 (3.11a)
G (1) — oy raMur - M
4
V{"‘(ugg)“——ag;(ﬂ%e) (3.11b)

where V* _ _%j 4+ PY. . 27
}54 .9;'1'9@2 207

The symmetric equation 3,5 takes the following form in the moving

coordinates:
# /V*
e - N, 5 7 g i
/ 53333 33 T

(3.12)
—RZMes £ M‘wsjg = 2(3) + "N
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The steady-state symmetric response of the shell is obtained
by sculution of equation 3. 12 under the condition that W v = 0. This
leads to the following total differential equatidn for the radial displace-

ment ws:

aﬁ d3
rex e e = g AN B)

d~§4‘ * (Mz—— Nx,‘)

Y-

As far as boundary conditions are concerned, we shall require only
that solutions to 3.13 be bounded as £— + . Because of equations
3.9 and 2.10, this is equivalent to stating that (1) ws(g)—" 0 as
£~ + o if ¢(f) contains no constant part or (2) w(§)-— constant
parts of q{€) as £+ o. Under these conditions, the symmetric
solution is unique. Since we are requiring 3.9 a, and b be satisfied
the roots of the characteristic equation will have non-zero real parts
and hence the bounded homogeneous solutions to equation 3.13 will be
attenuated with distance from the load.

The solution to equation 3.13, subject to the loading function
q(¢) as given by 2.10, and the boundness conditions at § = + oo can

be written as

(3.14)

wo(s) = /f'(j;} A) [+ an ]d3

where gx (g,)\) represents the Green's function of equation 3.13 and

has the form:



?(;J/\) _ é;/‘ c..o(,_’(j‘—r\)

( =/ 2

where

2,2 = 4{5_7/‘7’_; /'Vﬁ""+ﬁ1 + < A/ﬁ,—z_,;,lj

(3. 16)

o< . = /E/‘ [1//;‘44—/?4" z 61//52—/%*]

and B = 42 B, i\_AZ = MZ - Nja Note that the Green's function,
which is representative of the symmetric motion resulting from a unit
radial line load traveling with constant velocity, is symmetric in £.
This occurs only for M < A/_Zﬁ {see Appendix 5).

Upon evaluation of the integral 3. 14, one obtains the steady-

state solution, ws(g), as:

£
w (3) = S+ = ;T3 A=N+z
7=

3 >ro (3.17)
i *
w(3) = o +ch-*e 73 A= k42
7 = 2 <o

* *
where €y Cj’ o<j » and o<j are in general complex valued ( Ce and
Co™ are real valued), =<, = ~ a(.*and <y = ._,,{:a.re given in equations

3.17 and in general

Re (i) >0, Ke (o<7'*) > o
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An interesting observation can be made from the Green's

function 3.15: a bending resonancc cxists as the load vclocity, M,

=2 *11/2 .
approaches g~ + N ] . This value of M corresponds to the
cutoff velocity discussed previously. Since we have not considered
damping in our analysis, the amplitude of the motion at the resonance
speed is of course unbounded. Some information regarding the effect

of viscous damping on the magnitude of the amplitude at the resonance

speed can be found in (27).

Z. Variational Equations and Their Solutions

2.1 The Variational Equations

In the following paragraphs we shall consider the stability of
the stecady-state symmetric motion W and fs given by cquation 3.17.

Let us perturb the solutions W and fS by the nonsymmetrical
quantities Vi and m as given by equations 2.11, but referred now to
the £, ¥ coordinates:

(3 0.T) = wp(3) + (s, e %)

(3.18)
L(zsewn =£(s0 + 1(3 0

where WP and fp represent the perturbed solutions. Substitution of
3.18 into the equations of motion 3.11, cancellation of quantities
identically satisfied by the symmetric solution and subsequent neglect
of powers of the perturbation quantities higher than the first, yields

the following variational equations in the §, 2 coordinates:

** See (24) for a detailed discussion of this resonance condition for
= 0,
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¥ * 2 aer
/V4f=(/\&—-’v/)j ~ sCz)zge

73 d52
T 430 7 4 2M (3.19a)
(- L] 37 zz f?z
2
vh = - ¢ d e f5) _ (3. 19b)
4 P Tox j;_}

where-.ugz.a, L B 27 s T >0O.

In view of equation 2.1la we shall require as a quiescent

condition

f(z, 8, 2)
7(3, ©,7) = @ (3.21)

Y, 8 Frxer

The subject of what initial conditions shall accompany equations 3.19
shall be put aside momentarily.

2.2 Series Solution. First Laplace Transform

Let us represent the functions - and n by the following

%
3
Fourier series :

M

:f(?, 9,27_) == 7:1(3/ 27) cos.»m &

= o

N

_ (3.22)

7,, (?,7) cos NG
=o

7(3, 8% =

!

Upon substituting the series 3,22 into the variational equations 3,19, one

obtains the following set of coupled partial differential equations for

each integer, n:

It is sufficient to use either a cosine or sine geries.



+ * ¢ #
oA + [ME - N - 2ar5T] t [ - mtary)
S x i )‘L} / =(3)]y
+f — ZM - 2 d%az(3) (
I =hn — 3.23a
zZ sz 733 7 ds?® (= )
)Zm?sz; T A ng,s 7 ”‘+7,n = % 4/2“’36;)-,
4 2 ot
3
— £ (3.23b)

Next, Laplace transform equations3. 23 with respect to
The philosophy regarding the transform will be to assume all
properties necessary for its use. (In principle one can verify the
solutions obtained for 7, and n_, written as a Bromwich inversion
integral, by direct substitution into the original equations.) Denoting

the transforms of Jﬂ and n,. by respectively:

o5
— - z
7:('3,.7&/ = / = + ¥, (3, @ dz
e 7 o

s Fe f >5C (3.24)
Tal2, 4 = _/e"*mgm(;/f)df

and transforming equations 3. 23, we obtain the subsidiary equations



+ %7
o 4 A d -
# J= # LMT = 2T N ] ‘,f;’“ — 2pmp In
¥ 25 4
+ —_— 2 - _ ‘? 2 w_(3)-
[/m /n_wz@)f#]fm O/;&,L dfa"
_ (3. 25a)
= /%D;_ (2,0) —_2M JJDM(;) o) ~ )fm (EJ 'D)]
3 oz
4% e
L 2 —~ — z d/Z . _
g+ T E —LE: b s 7, = —;ff—cé)f,& (3. 25Db)
3 2 2= 93
-
ds*
From the quiescent conditions 3.21 we have in addition:
Vé/w'»; Lt ), B (2, k)] = © (3. 26)
3= Felb)>c
The terms
(3.27)

Az p) = [ﬁs‘z(a,ﬂ ~ XM fmg (3,00 # Fm_ (3, 2]

which occur in the bracket of equation 3.25a represgent the initial
conditions of the problem, or, the form of the initial disturbance. We
shall select a delta function in velocity, located at £ = 0, as the

initial disturbance, i.e.:

Inlpe)=d(3)
(3. 28)

\_’fm (3}0) = O
The solution of equations 3.25 subject to the quiescent condition
3.26 and equation 3.28 is the solution of the boundary valué problems

in the domains — «¢ <% <o and ©< 3 <os¢ consisting of the solution to
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equations 3.25 with the right hand side of 3.25 equal to zero, the

quiescent condition 3.26, the continuity conditions:

Jf ) 45 (o

—';;7"" B 72 y L= 012
%7, (oY) 447, (o) ©-29)
d5# - c/;é ) HF=o02s

and a jump condition:

L0 4 F (o)
/57 [ ds” _‘;7;'3"—] = (3.30)

Under conditions 3.26, 3.28, 3.29 and 3. 30, the solution to
equations 3, 25a and b is unique,

2.3 A System of Difference Equations for the Second

Laplace Transform

We must now construct the solution to the set of totai
differential equations 3.25. Because these equations possess variable
coefficients, some complexity is involved. We begin by noting the
form of the variable coefficients. Since the variable portion of W (€)
consists of a finite sum of exponentials (see equation 3.17) one
observes that the variable coefficients of equations 3.25 also consist
of a sum of exponentials. Inview of this fact, it is possible to
Laplace transform 3. 25 with respect to £. We shall consider, for
the present, only the interval £ € (0, o), and shall apply a uni-
lateral Laplace transform assuming the dependent variables are zero
for £ < 0. Inversion will yield a s olution valid for £ > 0 from which

the solution for £ < 0 can easily be deduced.
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Upon transforming equations 3,25a and b, denoting the trans -

forms of the dependent variables as

7 (s) = / cT2 g (3,4) d1

I

. 3>° (3. 31)
L) = [ T g iy P e

~3

and noting the shift property of the transform:

‘O/ C_SFZ'f—.‘V'zj:"Cg)v})]c/g = fn‘(f-ﬁ«')

7

(3. 33)
b
f C‘s;[ C—.

/ <3 7—W(3/J>)]a’3 7 (ste) (3.34)

i

one obtains:

—mre, w4 ] =525 () # H(s)

(3.35a)
A A
——/'125 C'9<'-2 5 (5+ z ! =
s 7 7 U ,7') ot = lef%(‘g_,.’(‘/.)
7 7'=—/
and Y
(52 - n*)*% (5) =

~ 523G (5) £ =P _2/'%-0(7'272(51‘%/)
Jﬁ
(3.35b)
+ %G

The functions }Zf (5) and % (S) contain the initial conditions at

£ = ©" and are given by:



30

W= /ﬁZ s7 L g, o)
£=0 d§4

SZMps (0F) o+

/
=) “ - .

fa ° [(MZ'N;‘Z’“Z/i4 VLG, 01) iy (0+)] (3. 36)

c/gc"

o(g‘—(:

3 (

(3-=) o - - =

=) s A0, 7 J *7[_ I 5. 0% 4,2 d*'r‘lmto")]
L=o T <lg~ g+

Equations 3. 35 arc linear functional difference equations with
variable coefficients., There is a considerable advantage in dealing
with the difference equations in place of the original differential

equations; for, while the process of inversion is rather elementary

1 fRiElllal Y

the difference equations are much easier to solve then equations 3, 25.
For a discussion of the relationship between the Laplace transform and
difference equations, and the solution of difference equations,
reference is made to some of the works on the subject such as
Van Der Pol and Bremmer (32), Milne-Thompson (33), and a recent
paper by Valeev (34).

Since the variable coefficients of equation 3. 25, ws(g) and

da“% (s) possess the property
Ay %

1im§_»°o W5 g )=

d§9-

it is not surprising that the solutions to equations 3,25 are of
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%
exponential order , i.e.,,

[F.Gpl, 1T, b)) = aects

where a and b are constants. However, this implies

Lol =] [ g6, < [ =15

o

— R s
k4
< < (a.euq}?)qlg —_ _VZ-
< Zes__ /

For Ke S > 4

and a similar statement applies to ‘—ﬁ"m_(s). This being the case the

following quiescent condition on the second transforin must be

satisfied:

= = a
[5.60], 1Tas)) < .. o Fes -4 o3

This condition is sufficient to render the second transform unique, or
more specifically, the solution of the difference equation unique.
To facilitate a solution of the difference equations 3. 35 it will

be advantageous to rewrite these equations in a more compact matrix

form. By denoting the two-dimensional vector Z,.(5)as

—

L,(5)

Z.(5) = ;Z:,,;\,(S) (3. 38)

equations 3. 35 can be written as:

13
w

See equations 3. 61, 3.62 and 3. 63,
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X
E3 z , 3.3
La Z (s) = 2 [.]« Z, (s+ —<]) + 59(5) ( 2
7=/
where Lo, £, Ly, -+ /D( are 2 x 2 matrices which are given by:

/454 > $’“[M"—-/Vx*—2m‘/1'*]

- s
~ 2M4s +[f€*m.* —mt Co + £7)
/. = (3.40a)
Z
S (S_Z_Mz)z‘
/ - -{7-2
/'7' = nicy . (3. 40b)
ol o
and ¥(¢s) is the two-dimensional vector:
% (=)
Yis) = (3. 40c)
%z. =)

-
Premultiplying 3. 39 by the inverse of LoJ L. , we obtain the

following system of difference equations:

_ A 3
2.0) = = A()Z (57=) + () (3.41)

7=/

where

b(s) = L, Y(s) (3. 42)



33

(Sz__ 2)1 + 0(_7'25 ——9{7'2(‘52‘/".1)2'

L s? 4 ,4-7? [ﬁ’fs"— 2mps (3. 43)

+s% (MZ—NX*_,;ZMA + .
o4 (/04”1’ _m.z(_._' +_’L’)] S ,(i

and 4 (4) , the determinant of L. , is given by:
&g
A(Lo) =ﬁ‘*s # LMW = 4nRs? ]5C — 2mps®
4_
# [0+ ente? - 2P (MP-ND) —mF G+ RS

X
r MRS L [(MEF =N 2 ‘/4+2m"co~2m‘/i-7j(§. 44)

—2MpnTs £ m*(/zfm¢fmzéo+,é2)
Now, let ZTM,(.S) and =Mz(5) be particular solutions of 3. 4l.
Then ?m' - ;Mz = E—Mg satisfies the homogeneous difference equation

=

A
Z,5(5) = 72_;//1’,'(5) Z 5 (57 =s) (3. 45)

Thus, the difference between any two particular solutions is a solution
of the homogeneous equation 3. 45, Thorefore, the most general
solution of 3.41 is a particular solution of equation 3. 41 plus the most
general solution to the homogeneous equation, 3.45., However, all
nontrivial solutions to the homogeneous difference equations 3.45 are
unbounded in the limit as Re S~ . A proof of this statement can be
found in Appendix 1. Thus only the trivial solution to the homogeneous
equation can be accepted on the basis of the quiescent conditions 3. 37.

There is, therefore, a unique particular solution to be found.
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The desired particular solution to 3. 41 can be constructed by
the method of ascending continued fractions (33). This method, by the
way, is equivalent to the method of successive approximations (34) if
¢(s) is selected as the first approximation. In either case, by
repeated use of equation 3. 41 and introduction of the indices ‘/['J];_)

P
7

one obtains the series:

A
Z,.(s) = ¢G5 + ?/AJ,(J) ¢ (s+ <51)
A
2£ A (5)/( (s#+oLy,) 5+ =, + <) (3. 46a)
Jr=1 a=r

+72/§ff4 (S)A (5"“0‘ ):4 (5*047,+°§ )qﬁ(s-f-.( + ot J—J)
¢ =/ 2%/ gz =/

R

The above series can also be written in a closed form as:

Z.(5) = P +2 7T 2’ Al é’d )<;f>(f+2o< ) (3. 46b)
N=y _fey 4=/

where o(j =

The component series for the vector E:u. (s) are absolutely and

<.

uniformily (with respect to s) convergent and represent analytic
functions of s when S ¢£, , where the region &, of the complex

s-plane is defined by (see equations 3. 47 for a definition of pi)

/Sﬁ(fl_ ‘M/’(«—MZKZ._¢-.-_MIQ,(1)/ z € >o
/ﬂ{v' = o’/)2) :1'=/,2,---l

The singularities of Z,(5) are isolated poles, located at
e AR
5=f" —/”’L;o(,—-/mz'(z"'"ﬂ”&,eo(;ea 4
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Since these poles lie a finite distance to the right of the imaginary
s~-axis, z_':’—;(s‘) is regular for Re § > < = const. Additional details
and a proof of these statements can be found in Appendix 2,

2.4 First Inversion

We shall now invert the series 3. 46 with respect to the
s~transform. Two methods of inversion will be utilized and two
forms of the series for ZT/,\(?,, #)will be obtained from the two methods.
While the two formes are equivalent, one form allowe easy observation
of the behavior of z—?_m('g,-/’) for large values of { while the other
indicates the series truncates for £ = 0. Recall that we must satisfy
the boundary and continuity conditions defined by equations 3.26 and
3.29, 3.30 respectively. Thus the point £ = 0 and the limit £ —o
are of particular importance.

Denote the roots of 44, (S)= 0 (see equation 3.44) as

Pps +cees Pgo so that

&
Al (5) = ;75/(5 - ) = 77(5-/%) (3. 47)

and set
B (s)
. - —J 7 3.48
Ay 3 AL, (5 (3. 482
¢(5) _ H(s) (3.48b)
AL (s)

where the meaning of 1% and @(s) should be clear from equations
3.42 and 3.43. To obtain the first form of the series, we carry out
a term by term inversion of equation 3.46 (to be justified later) by

residues, assuming the roots, /g » as defined by equation 3.47, are
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non-repeated and assuming all factors in the denominator of each

term of the series are non-repeated. This yields:

_ 8 ps 2
Py IR LS BBy |
L= E;ﬁfpﬂ di= ™ (ﬁj%y ”(f/;;“‘)

2
Z B (f’m BJ‘Z(/-’L-f-OCJ-l\ § (f“;{_qj‘ o ) }
- 0 e o

Iz 0 ( pe - TP -y
A:;/g’/fo’v)’(‘// Y )

33 g i
L= d=1 /_/"904;7;7—09/-) 7T (0<% )
4 -
P EPN) %Y PR ) .
Ji=1 //(4/7 7—(/04/0/) 77 { ,,_/j,l—a( )
“7f
2
Z &, (p -4 ) '3/_;‘90/.‘) 5}3 Petd), ) 590‘:"0.(1;1‘0‘&\ }
co Gewn
Ja,y3=t
T CPL -y 70 Ly - .
PeSr 3:;2(/0*/%)"/(4/;7%1)uﬁ.ﬁ%ﬂ%)
g ¢ (ﬂ'“J,“dJ )§ _
+Z Z ¢ 2 {B  (Pi-di-dyp VB ,(Pi- \9'5(/0‘) )
<=/ |, =1

| TGSy ) Ty )T Cpig)

4 47

2 PG B ) B ) o }
77“(/4'-// G -q; ) 7 TS =y )//fa—/})

R 7
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where the notationf (pi) indicates Py is the argument of f , etc.

The ahove series can be re-arranged in the following form:

_ g X Y o
memokz {e Lg[ I+ Z_ 8, (fo~aty ) eo‘(”g ¥
<=1

]’.: L (/)Afi ‘ij,' )

2 =~ (ol oy, )
) ot , .. Jo T2 )8
) 1y= 77 - —ts s Y T : ,
SISy ) T )
£ “(%%.’*qfa)g

oGP ) B By (P ) e s )

Tofay=t - | i
Jas=t IT Py ity TSy iy ) 77 P So;)

. .
) 5 G5 Epea) +
’('Z- {/foﬂ) //'::/ 77 ( Afj) 7/.(/447;1‘@2)
/ Ly
(3. 49)
£
4 Z Bi, (p) By ( putag ) Bl ooty oy, ) ...

SIS TGS TPy i) T A o )
7
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The last bracket, { } , in equation 3.49 is independent of £ and
represents a two-dimensional vector. Denoting this vector by F (f}
¢

and recalling the substitution 3. 48a, the series 3.49 can be written as
&

, : 4
5(3)¢) = 2 </ f/z +4{/47,’ml_03_‘)é"$}3

or in a closed form as

Z (3, 2 /‘g[z #
€=/ y (3. 50D)

= = AL -2 )€ B 5 5o

N=t “/ 14 =1
The solution to equations 3.25 for £< 0 can be deduced by

inspection from 3. 50. One need only replace £ -(7-*) /4\7“'A and p,
- n * *
by the quantities L e A. and p. which are obtained as
e’ i i

follows:
¥ ¥
1. X and °<\7;Z) are given by equation 3.17
EL]
2. fio are the roots of AL/, (s) (see 3.44) with ¢,

replaced by CL*; if ¢, and & are zmero or

N
equal, P; = P;e
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*
3. /?1 are the matrices 3. 43 with ., replaced by
3
c cJ. by c:;e (see 3.17 again), and with p‘.*
used as the roots of A(Z,) =0,
>
4, }i is replaced by FZ which is obtained from

by substituting pi*for pi,—d;'.for °<7.'é s
Lé-

and all initial values at 0% by 07 (see 3.36)

< W (3. 51)
MZ,ZT f_,/f (e +2’°< )50 soo

A discussion of the properties of the series 3. 50 and 3. 51 and
a justification of the term by term inversion of 3. 46 will be delayed
until the vectors ¥ (£ and 3{--7\#) have been determined. Until then,
all properties necessary for differentiation of the series and inter-
changing limits will be assumed.

The unknown quantities in the components of the vectors F (+)
and z‘a(rj)are the values of the dependent variables, ‘z’b ANP ?M , and
their derivatives (up to the 3rd) at £ = 0" and £ = 0 (see 3.36).
While one can evaluate 571' and ?;* by first determining the initial
values 3. 36, this results in a very cumbersome operation. A better
approach is to assume the vectors are arbitrary, then evaluate them
directly by use of the differential equations 3.25, the quiescent
condition 3.26 and the continuity, and jump requirements 3.29 and

3.30 respectively.
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Let us begin with the quiescent condition. To satisfy 3.26
it is necessary to determine the asymp’coﬁc (large I4#|) behavior of the
roots pi(p) and p;k(p). This can be accomplished by noting that

Al,(5.4)= 0 (see 3.44) is satisfied by the asymptotic series

S, s 5,

s=Ap [an 4 S E2 o4 2n ] Gs2)
Vb W) R

Equations governing the coefficients &, are obtained by substituting

3.52 into 4.,(5,#)= 0 and equating terms of the same p~order.

Solution of those equations for the leading terms of 3. 52 yield the

following asymptotic results for the roots:

/4,)///*~ ’/-;—(/4’1'); /zi/fz* L NE (=)

3 ﬂ*J/;xN 72

/2"/’ /2/5
x . _ o _AF+D)
//4) /f ” 3 /5)/.5' 7—-2-‘/3—'*“ (3. 53)

* _ /f;’ (/-¢) . * o * _
fo fo I T BT pr p s e
From equation 3, 53 it is evident that the conditions 3.26 can be

fulfilled only if

F(4) = ©, (=,2354

3. 54
) =0, (=678 220

Since the characteristic polynomial governing the roots pi(p)

*
and pi(P) is of eighth order, the explicit functional dependence of the

rootg in termse of the parameter p 1g not at our dispogal,

1 18 P m For

calculation purposes, however, these roots must be properly identified.
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This can be accomplished as follows: For all points in the p-plane
24/l (5, vy

such that >s # © , the roots of 44,(5,4) are non-repeated.
2A4L,
It can be seen, in Appendix 4, that the condition 5ol +) _ o

is satisfied only at branch points of the roots in the p-plane. By
introducing branch cuts the roots can be made analytic function of p.
On any contour in the p-plane not passing through a branch point or cut,
the roots are thus analytic functions of p and are non-repeated. A
root, therefore, can be identified at any point on the contour by
tracing it back to its asymptotic value while requiring that the root be
a smooth function of the path traced. There is, of course, a certain
degree of freedom in identifying the roots with the first term
asymptotic values + n. Here, although two roots have similar
asymptotic values, one need only make an initial choice (which is
arbitrary) of the branch and then be consistent.

The elements of each of the eight vectors that remain are not
independent, but are related through the differential equations 3. 25.

These equations can be written in matrix form as:

[ﬁ o } — t277 [Ml-—Nt —2/&’—/4’ —
Z + =7

-~ o~
< l | — 2
(3. 55)
L A B U
+ + j Z. = O
O O} - /VLZUJ‘SH /yk." ~

where the prime indicates differentiation with respect to €. If the
elements of each vector are to be related, this relation must be

invariant with £. Thus we may, for convenience select {—> +
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and § - - oo in equation 3.55 to determine the relationship between
2
the elements of each of the vectors ?i (+#) and F (#) respectively.

For large positive £ we have from equation 3. 50b, since Re °<J'j<> O,

&

 umz, o
L (gj-/?) = é A e/‘ %Z (,L) {3. 56a)

T >+t J?M ¢ = 5

e
and from equation 3. 51, since Re Xy, > O,

g I E (s, ) e AT
T >~ 20 G/;M B fé,_.l//a‘ < )Zﬂﬁ) (3.56b)

Now, in the differential equations 3, 55, the function ws(g) has the

property (see equation 3.17):

I

Cc /&;1'& W}(/(}) - 7

> o0 T 0
, % : (3.57)
e wi(s) = Co /gw% 4‘/5”(3) = O
?—7——04 F— — o9

By substituting 3. 56a into 3. 55, with consideration of 3. 57, one

obtains

r—/!‘)'—/4'4 + L MR- Mé———Z/m;é*]/;'z 2
-*ZM#/; +(/a"m.*~m,""c° +4°) G *74,

(3. 58)

L AT (it |
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However, from 3.47 and 3. 44 one notes that the determinant of the

coefficients is zero and thus }':_ and S{ are related according to
¢ 3

z

7 (/le‘_mz)z Z (3. 59a)
In a similar fashion one obtains a relationship between }':-'* and
37-";2* of the form:
A S
- 5/)"*2'—/1@1)1 < (3. 59%)

Liet

_ ._ﬁ_@ =4 _ ﬁ'*‘x * (3. 60
;/’Z—/ml)z ) m__jagﬁi -+ 60)

Then the vector Z, (3, 4)can be written:

Z,(3,+) = f /‘g[I"“

od
1e S
..én/jé;//] (fr == <) e ’é//z 7-(4) (3. 61)
* rFog T 7O
¥+ ¢
Z, (35, 4) -—Zeﬂ‘ g[I +
¢ =/ (3. 62)
= 7 2 =
7/

= Zf_/ 72;/4;#/% 7"12'/(0(];—} e ///z,.}j(f)

4 has been made,
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The remaining eight constants, qi(p), are determined by
application of the continuity and jump conditions 3,29 and 3. 30
respectively. To accomplish this, however, it is of great advantage
to recast the series 3. 61 and 3. 62 in a different form. For this
purpose we again invert the series 3. 46 term by term, but this time

the following quantities of the Nth term (see equation 3. 46b):

T (s

1 \

b)

WLS“S}_Z"‘C(J")] 3 ) —\_TLS_C\/DZ_d’J[._"O—dJ;\L-')} )

.Jl(s3 BJL(S+<LJ|\ . BJN(s MG TETRE d‘Jn—t\ &(S-&dﬁ\-\- SHERED +d"l‘N)

TMLS-CRp-dy—-mr = a)y)]
will be inverted individually and the inversion of the entire term will

be obtained by use of the convolution integral. This yields the

following series for -Zn(g,p):
8 S (p-a
- » g ® (ﬁc‘dJ‘\G‘/{n)*‘A; X
Lose)s 2 L eSSt e (e
£=5 di=t L= 77(}‘;4?)0
/J.aé;

2 B 5 Ay
*Z Z By (Pi-d; -4 ) BJ-L(/O,,;Ad,Jﬂ %%—ag-‘-d%\(s-)\l)+(f‘»1—¢d.‘§(/\.-&)%é,\z
. o JdAzdr
dipda =L Aol =l TP =P TP, -
: f'fﬁ /"U?f)oo (3. 63)

A ‘#Z

! s
B (P -d:-d: -4- . . .
FE B B 9, )

\/;,J.2,j3=, .(.a/J-L‘g',L‘s:l TT (jo /ﬂ )*77- (/ / ) 77 ( i
. <, = <, /7 .
iy L Ay
}A«Az
[f LG + Oty hh) - (P ) O2-M) * s [
" d/\3 dAa d Fies )-ZA, & ) S?o
Qoo
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In the above, we have included the quiescent condition and the relation
‘between the elements of the vector % , given by equation 3. 59a.

The solution for § < 0 is obtained from equation 3. 63 by
summing i from 1 to 4, replacing 0(-1‘-&_ by—%i and all remaining
quantities by the corrcsponding ''starred' values.

The advantage of the form of the series, 3.63, is now evident.
The series truncates at £ = 0! If one differentiates the series 3. 63
with respect to §, one finds that the series repre_senting the
derivatives also truncates after a certain number of terms. With the
continuity and jump conditions across the origin in mind, the function
Zn (5,p) and its first three derivatives on either side of the origin

can be written, by use of equation 3. 63, in the form

- . & lrm-1)
d Zon (O ;“P) = Z /4'( (%) 8,'&
dg™ - L=5 (3. 64a)

dm—lf G y 50 (m-1)
~(OP) - 5 M o) g< (3. 64b)
dglvn-l L=

where, for i = 5, ..., 8 we have:
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- {a

/A{Z)Cc') ———'{/I_ -f—fa., )}{/&

A
(3) , ; < ! ) .
(‘.):——/L'I 7"'2[,_——»(/)ﬂ,
2 / = &~ 5
Y
ra] By lpe - )+ = L0 B oo

g2
Fi,ga =t
/
& (/“—djé)}z//g}

v
o) = [/c.z_z - ‘jf:'/[/(/¢~~4].,)14, (3. 65a)

"'}/"" PR ""&3]%', (/L —- <)
ff [(/ —.zac— )a, +zmaz]5(/_.z ,,z/)

jl .72.‘/

B, (P —,) +f/ﬁ : '~a<J;w<',ozy.a)

/3
7, 7z, T3=1

E (pe =< = %5) & (o - “J'g)]]z{zi- Jl
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where
g g
d.,: Z ! )- aaz Z /g
k=t T (fo-F4) %=
% k/? ’ %/f
8 4
& 2
z S
A=) // (/%/?
and for i = 1, ... , 4:we obtain
() .
A () = {h{'/
14‘
(2) .
1 far el At g gl ] f
. J,‘=/ “
(2
A () = /”"_- +Z[ “ra)] B +d)
JA7 o paa] Sy
,Q*
+Z a, B (ﬂ +d +d )B (/0"+sz. }{r‘_z
'J‘JJL‘

Je=1

(+)(.) P
A :f/j;_.+2[(/’+o()a,+ﬂ+c{ a,“m]B(fﬂﬂ
24‘

+ Z [ (/ﬁ +Za.’ +0q, }a 12 a a; ]7?3:(/;«53«79;) q;(ff«*og:)
Juja=i '

al 3 :
P R e T T T I )
B. . i - . . * R . .
+ 2 Q, leo +z{/1+dz,+05 }%z(ﬂ'ﬂ‘[)l#@] 8{}3%4‘%)}{

J ;JJ'Z,J:S = {

&Y, —~
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n e b d *
where a., a,, and a
1’ 72 3

replacing the Ké and/z, by/j and /%ﬂ".

The remaining eight unknown constants, 7‘-(,9, can now be

are obtained from 215 85 and a3 by

determined from the continuity and jump conditions 3.29 and 3. 30

respectively. These can be written in vector form as

dTTZ (0T k) A E (ot
C‘§’”“"l dg’m—l =

{22 (o, p) 432m(0+g>={—;4}
ds 3 dg? 5

By application of 3. 66 one obtains eight equations for the eight

unknown functions 9, (p)of the form

Qe = <

(3. 67)

where Q 1is an 8 x 8 matrix, the elements of which are given by

(m-t) {m-1)
er\,j, ‘—/'(1 (/.) Q’W\:": = "/{l (")
T I, Mozl oo, 4
A= bLooi, 4 L =5,...,8 (3. 68)
{m-1) (rm=1)
Qemay, <= My (1) Poma), i =-Ay (1)
MMz e 4 Moo= heoo &
L= Yyeou 4 ,(:=5,.../E>
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where as usual the first subscript, m, indicates the row and the

second subscript, i, the column. In the above,/(l(”"'l)(tyand/azlm -')( &)

-/
denote the elements of the two-dimensional vector /(A tom )( L) .

é/)f—-/)c ')
Y 4
(M_I)(a.’) _ A (3. 69)
/ en-1)
M, () :

The quantities 5/ and e of equation 3. 67 represent the following

eight-dimensional vectors:

gl
_{a
79" -

t)
|

(3.70)

DOG\;)\ Q) 3 00

®

Premultiplying equation 3. 67 by Q'l, we ohtain the vector &

as

2 = & = PET & F O (3.71)

The solution for Em (;JJ) is now complete. We next discuss a few of
the basic properties of the series 3. 61 and 3. 63 (Because of their
similar form, the remarks apply also to the series representing
Z.(3 4) for £< 0.)

2.4 Properties of Z_M,(g,p) in the p-plane

Let us define the region R of the complex p-plane by:
(1) |P - Py{> ¢, » 0, where p,, 2are branch points
%
of the roots, pq(p) and pq(p) in the p-plane.

(2) {p -P % € 0, where pq are zeros of the

|

determinant of Q.
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Then if pe R, the series 3. 61 or 3. 63 are absolutely and uniformly
convergent with respect to both £ and p when £ €(0, ) or
£e(- o, 0).

The uniform convergence of the series with respectto £ is
sufficient to justify the term by term inversion of the series 3. 46
(see (32), page 147). Also since the series obtained from 3. 61 or
3. 63 by an nth term by term £-derivative possesses the same
property of uniform convergence with repect to § , our term by term
differentiation of these series was justified.

If appropriate branch cuts in the p-plane are made to render
the roots Pi(p) and pi*(p) analytic functions of p and if p €R, then
each term of the seriesis an analytic function of p. The uniform
convergence with repect to p thus indicates Z. (3,7 is an analytic
function of p in the subregion of R defined by the branch cuts. The
points for which AQ (the determinant of Q) = 0, p = ﬂ , represent
poles of 2,,‘, (z, #)in the p-plane.

Additional details and proofs of the above statements can be

found in Appendix 2.

E3

The form of the series 3. 61 becomes indeterminate at points in the

p-plane {p = 0 is one) where #; —/?’ = kot + A Ayt +“ée’(,é’
‘ 7' =1, ..., 8, £, =0,/ 2, ...Y At such points in the p-plane,

repeated factors occur in the denominator of the terms of the series
3. 64, which is contrary to our assumption regarding the first form of
the inversion. The form of the s eries 3. 63, however, requires only
that the roots A4  be non repeated, which is guaranteed by (1) above.
'This form of the series indicates each term is regular at such points
where repeated factors occur.
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3. The Determination of Stability

3.1 General

Consider the definition of stability as given on page 12 and the
x, ¢ plane. If the length of our shell were finite, it would be
sufficient to investigate stability by determining the boundedness of
Z.(x,%) along lines of constant x. Because we are considering an
infinite x interval, however, this is not sufficient since motions may
exist that are bounded in any finite £-interval but are unbounded in an
infinite §~-interval. (An example of this is a pulse, traveling with
constant velocity, with amplitude growing continuously with distance. )
One method of covering the entire upper half of the t-x plane is to
employ rays from the origin, i.e., examine the boundedness of Zn(x,t)
along an arbitrary ray in the x,t plane as t-— o. One of these rays
{(displaced from the origin if £ # 0) is defined by £ = constant. In
view of the nonlinear string analysis contained in Appendix 5, it is
reasonable to assume that if the perturbation quantities, Z,(5, Z)
are found to be bounded for £ = constant as 27 =t -, the same is
true of any ray in the x, t plane. This implies it is sufficient to
ascertain stability by determining the boundedness of Z,, (3, ) along
lines of constant £ in the 7 -§ plane. We shall consider this as part
of our definition of stability, i.e., that the stability of the system be
defined on the basis of the boundedness or divergence of Z, (3%, 2)

‘along lines of constant £ in the £-72° plane.
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Boundedness Along the Rays £ = constant

The quantity —Z-n(é,p) need not be inverted to obtain stability

information. Indeed, the boundedness of zn(g, T ) along a line of

constant £ 1is governed entirely by the location and type of singular-

ities of Zn(ij,p) in the p=plane. In general, one can state:

(1)

(3)

If Zn(g,p) is regular on the imaginary axis and

within the right half of the p-plane, then

lim Z (£,7) = 0 and the system is stable.
T—»doon

If Zn(g,p) possesses singularities in the right

half plane (Re p 7 0), zn(g, T ) is unbounded

and the system is unstable,

For the present transform, we have if -Zn(g,p)

is regular in the right half plane (Re py 0) and

all poles on the imaginary axis are:

a) of first order, the system is stable

b) of higher than first, unstable.

These statements are based on theorems and a discussion presented

in Appendix 3.

3.3

Location of the Singularities of _Z—n(g,p)

In view of the above statements, it is clear that one need only

consider the imaginary axis and the right half of the p-plane. The

singularities of ‘Z_n(g,p) in this region consist of branch points and

poles,

Consider first the branch points, While location of the branch

points of the roots pi(p) and P:«(p) does not pose a great problem,

location of the branch points of —Z—n(é,p) is very difficult and

represents an impassé from a purely mathematical point of view. To
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proceed it will be necessary to, in part, resort to the physics of the
problem. It will be assumed that the equations of motion we have
selected represent a reasonable approximation to the physical
problem and the philosophy taken will be one of what can be done with
the mathematical model under this assumption. With this in mind we
continue.

The vector function :—Z—m (-;fﬁ)will possess no more branch points
than those of the roots pi(p) and p;k(p). However, all root branch
points may not be branch points of Z,(%,4), due to cancellation,
squaring, etc. As far as stability is concerned, we are especially
interested in the possibility of branch points existing in the right half
of the p-plane. To begin, set M = N, = C = C, =0,
indicating the load is statically applied and decays as !&}—‘r 0.

Then equation 3. 44, which governs the roots pi(p) and ng (p) is
*

independent of quantities ¢; ¢ * and <y, o

5 (the latter for j> 2).

This implies the location of the branch points depends only on B and
n and is completely independent of the magnitude and distribution of
the load. If we are to assume that our equations of motion represent
a reasonable mathematical model of the shell, then clearly those
branch points of the roots appearing in the right half plane cannot be
branch points of 2,,«.(3/ #) ; if this were true, by theorem 1 of
Appendix 3, we would deduce that the system was unstable independent
of the loading condition, which is absurd physically. If N: s Ce

and ¢.” are non zero, then equation 3,44 depends only on the
constant portion of the initial deflection, ws(ﬁ). Since we shall

*
consider values of Ny , <o = Co* less than those required to buckle
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the shell alone, stability must depend on the magnitude and distribu-
tion of ws(g). Again we musat conclude that, for such cases, EM (=, )
can possess no branch points in the right half of the p-plane. If M is
non-zero, then the branch points are independent of the load magnitude
and distribution but do depend on M. Recall, however that we are
considering only those velocities below the cutoff velocity. This being
the case one must expect that stability will depend on all load para-
meters, not just velocity alone; once again this leads to the conclusion
that 2/1«. (=, #) possesses no branch points in the right-half plane. A
similar argument indicates branch points appearing on the imaginary
axis do not contribute to instability. Stability therefore depends
entirely on the location of the poles of 2, (5,4) in Re p 2 O.

On a purely mathematical basis, the above statements should
be placed in the form of the following hypothesis: Those singularities
determining the stability of the system must depend on the load
parameters describing the load magnitude and distribution. (The
poles of z::,‘, (gj,&) satisfy this requirement). In the event that for some
obscure reason the above statement should not be true, the analysis will
still provide an upper bound to the stability of the system.

Poles of EM, (*g.) ) in the p-plane occur only when the determin-
ant of the matrix Q, AQ, vanishes. The stability analysis therefore
reduces to the determination of the conditions for which zeros of
AQ(p) exist when Re p »0. Recall that the infinite series for
Z.(g, 4) andits derivatives truncated at & = 0 and therefore the
elements of the matrix Q do not involve infinite series, but on the

contrary, consist of a finite number of terms, Thus there is no
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question of the rate of convergence of the series for f—m( zZ, -}’)
involved in the stability analysis; the matrix Q 1is exact and is
written in a closed form. Because of the complexity of A Q, however,
and since one cannot in general obtain the eight roots /" (+#) or /‘*(,/’)
explicitly as a function of p, the investigation of AQ must in the
final analysis be primarily of a numerical nature (this is in contrast
to the analysis of Appendix 5 where exact results were directly
obtainable). We discuss the location of the zeros of AQ next.
First we indicate that the zeros of AQ must occur as complex

conjugates in the p-plane. To see this, consider the roots /‘[7“) and

‘-*(f). The latter possess branch points in the p-plane. Now, ﬂ/%)

and /L*(/a) are the roots of (with ¢, replaced by ¢.® in the case of

/i'ﬁf’) )

(3.72a)

0
Q

AL, (s, 4)

*
The necessary and sufficient condition that these roots possess

branch points in the p-plane is that
d
LE A o (3. 72Db)
ds

simultaneously be satisfied with equation 3. 72a, The relations 3. 72a
and 3. 72b can be combined to yield the following polynomials in s

(see equation 3. 44)

S{ 4 = am*(5%)° # emT (5% = 40F (T 4

, (3. 73)

&
4/7f)5“’+/ﬂ]=o Foe M = O

* See Appendix 4 for a discussion of the location of branch points.
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9
i
= ¢ (sH) =o o M Ao (374
L = o
where
M? 0 ¢ #
Co = = c, = ' (/njé’f — 2M*)
8 M=
Ca = M (2t 8T+ Tt ME +4?;)
+ + 4 2 . %
C3=m-(3m 7"25/’!.5}? +_;,{’____/4/” 4Mz_d M{:ﬂ)
£ # Z
¢4 =/n4(—5'6/5f/n‘—/zmz+i—//\4zm +5 M*)
4 M*
Ce .—:/rLZ(ZZM‘/‘F,p 5/;(,2'— /?L/ldz/y‘- ”7)
P - 2, Z pa _ Py A
S = T M~ —Zn -—.54,»1/; fé{/_“\_
M* # #
C7 = In’ (/‘7/4/,1,'2-/14’7 C:g = ——4_;‘ — 6’/)!.;5 Cg a—ﬁ

and the branch points can be calculated from
/ #_¢
4 = Ms i/gz_‘;z]{——/g¢537‘* 4/;1;«5 S

(3. 75)
%) 5% ¢ # 2 6, 4] %
-—(/+é/n/€)5 # %m/s —m/j
utilizing the roots of 3, 73 or 3. 74 (some of the roots of 3, 74 are
extraneous). By use of the last three equations, one can show that
the branch points of each root occur as complex conjugates and that
the collection of all root branch points form a pattern which is

symmetric about both the real and imaginary axes. A typical configu-

ration of the total collection is shown in Fig, 4a.
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If we provide branch cuts in the p-plane as illustrated in Fig.

4b, then the roots will he analytic functions of p in the region
defined by the cuts. This of course implies AQ(p) and Z,, (s, A0
are analytic in the same region, Now if p is real valued the
coefficients of 4L, (s)=o(see equations 3. 44 again) are real valued
and the roots p.l(p), P:?(P) therefore occur in complex conjugate pairs.
Little loss in generality occurs if we assume that the constants £, ,

/3.,*, 2, .(2”:" (see equation 2.2) occur in complex conjugate
pairs or are real valued, since the loading itself must be real valued.

This being the case, the constants CJ- y C .*, ' , =<_  will gccur in

7 7 7
complex conjugate pairs or be real valued. These properties
(complex conjugate roots and above complex conjugate constants) are
sufficient to guarantee that %(g‘_, #)and AQ(p) are real valued when
p is real valued, Therefore, since AQ(p) and Z—:.,(‘J,-ﬁ)are analytic
in a region which is symmetric with respect to the real p-axis (and

contains that axis) and both are real valued when p is real valued, the

reflection principle indicates

AQ(#H) = 4QWH) (3. 76a)
Z. (5,4) = £, (3, £ (3. 76b)
where the darker bar denotes ""complex conjugate'. The property
3, 76a implies the roots of AQ(p) = 0 occur as complex conjugates.

We next show that roots of AQ(p) = 0 can occur in the right-

half plane only on the real p-axis if M = 0,
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Let
_ / a(s,F)
Zm- J = T = o
(= _/4) [AQ(_/?)J’“ {j-(:%, 1@)‘{ , 2> (3.77)

Then in the interval £ > 0 the vector components a and b satisfy

the equations (see equation 3. 55):

i I S S P

et 2
5 % (3. 78a)
gLl _ PP A5 ) b
A5 52
(3. 78Db)
Il 2P S 4ty o m? UG o -
ds+ dg2 T 5 2
with the boundary conditions:
¥
_c‘__ acs,p) = 4™ (s 13) =0 HoR g-yoo , Re p?0 yM=0y 1
d5™ dg™ (3.79a)

5 —
”m (%, ™ 3
J &a -p)% -(ag) d 2 () = Aq){_“ E’m(OJfP\) (3. 79b)

=0
3 M= Oy}

Letn,fB, Co, Co*, and N;: be selected such that the system is
stable for appropriate values of ¢ , c}‘ >, and & ,a{,_, (s2)
( o, and 4, are determined by B). Hold all constants fixed except the
¢ ,i>0 . Let the stability of the system be controlled by these
latter constants. Now, the roots pl(p) do not depend on ¢;,¢", j>0
Therefore, if Re pl(p) <0(i=5,...,8) for 7,¢57) bounded, “the same
is true if the system is unstable. Assume < Then
[ [P R ar | }‘“‘P"'lzmtd'f' £ M/Ret [Zn 5T N’I‘hus if Re p3e€r0,
the definition 1ntegra.1 (by the Weierstrass M-test) is uniformly
convergent with respect to §. Assuming Z..¢57) a continuous function
of £ and 7 we therefore have Limgaew zZ P Lm §_)qo-zm¢g,ﬂ,u I
by equation 3.21. This implies Re £; (p) <o for i=5, if
Re p?0 and Rep70 in 3. 79a follows.
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where R, (0+, p) is regular when p is in the region of the complex
p-plane defined by the branch cuts (see Fig. 4b) and its meaning

" z +
C/a/ Z, (07, F) as given in equation
Vs
2

gshould be clear from the functions

3. 64a,

Let ay and bl correspond to a point Py and similarly let
a, and b2 correspond to another point, Py- Assume Py and P,
are roots of AQ(p) = 0. Next multiply equation 3, 78a for ay by a,

subtract the latter from the former and

+

and that for a, by a

2 1’

integrate the result from ¢ = 0 to § = . This yields:

28
d%a, ’,
[ {prtads e tz) o hrp) ae

alzb, 2 o J*
___(Q;L —_— A Q"‘) + dgi{g(&zé - a, éz)}(/g—:o

Following a few integrations by parts and application of 3. 79a and b,
noting that AQ(pl) = AQ(pZ) = 0, onc obtains
b o
2
e b [mads — [ Foudn
o

> d; ql?
(3.80)

2
o “d;“f (axd -, b) ] I
In a similar fashion, multiply equation 3, 78b for b; by b2 and that
for bZ by bl’ subtract one from the other and integrate the
remaining equation from § = ot to § = w, The result, following

.integration by parts and application of 3. 79a and b, is
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4
/ day dby _ d=s 44,
-+ 43 d3 43 I3

[y

2
z‘/“’é

d’g‘fg) (a2 4 — a, éz)]a/_—;;-_-g (3. 81)

—

Therefore equation 3. 80 becomes

of
(A - ff)[ 2, 2, d3 = O (3. 82)
o

However Py and p, were assumed to be roots of AQ(p) = 0 and
therefore p; = '152. Since a(p) = 3alp), aja, = )a‘1l2 =|a2‘2' and
oD
2 2
(A% — 45) f/a,/’*:/; = O (3. 83)
o7
Eguation 3. 83 represents a contradiction unless p% = pg, which can

occur for complex conjugate roots in Re p? 0 only if p; = p, are
real valued. Therefore the zeros of AQ(p) in the right-half plane
must lie on the real p-axis if M = 0.

While in the case of the string analysis of Appendix 5, the
same result applied for M # 0, the author was unable to prove this
to be true for the shell. On the basis of the string analysis, however,
one might suspect that the same should be true of the shell.

The fact that zeros of AQ(p) must lie on the real p-axis for
Re p>0 brings forth the following question: does the transition
between stability and instability, for M = 0, take placeat p = 07
The answer is yes, This can be seen as follows. For M = 0, the
variational equations represent a conservative system. Therefore the

energy method of analyzing stability and the present method
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are equivalent (53). If one calculates the potential energy of the
shell (under the same approximations associated with the derivation
of equations 2.1) assuming ¥ and m are virtual displacements
from the loaded state, then one finds that equations 3. 19 with j;;j‘ o
are obtained by setting the second variation of the potential energy
equal to zero ( a necessary condition for transition from stability to
instability). Now, the function 3. 63 and its counterpart for £ < 0
with p = 0 and ?c. considered as arbitrary constants represents a
solution to these equations (see 3.22) satisfying N (+ ©) = n{t o) =0.
The solution is completed by requiring continuity of ~ and n and
their derivatives with respect to £, up to and including the third, at
¢ = 0. This condition is represented by equations 3. 64 with the
right side of 3. 66 set equal to zero. Upon applying these conditions,
one obtains

Qg =2°
whence we must require that AQ = 0 which implies the transition
takes place at p = 0. in the p-plane. Any increase in the load
magnitude will force the zero of AQ into the right half plane on the
real p-axis, insuring an unstable system.

If M # 0, the situation is more complex since one must
search for zeros of AQ within the right-half plane and on the
imaginary axis., Recall first equation 3. 55. This equation possesses
the same form for M #¥ 0 as it does for M = 0 when p = 0. The
parameter M, if p = 0, occurs everywhere in the combination

2

*
M~ - N_ (see equation 3.16); it therefore has the same effect as an

axial compression of the cylinder. Thus the determinant, AQM ;4’0"’ o)



62
has the same properties as AQM:O(p = 0), the only difference

X
between the two determinants being an effective change in Nx s l.e.,

e

*
Nx is replaced by Nx —MZ when M # 0,

Let the load and shell parameters be fixed except for one
parameter, say A ; which characterizes the ""magnitude' of the load.
One concludes that a zero of AQM#C will appear at p = 0 for an
appropriate value of M. Inall probability p = 0 again represents
the transition from stability to instability. To verify this one must
demonstrate that this pole moves into the right-half plane when A is
increased, that no zeros of AQ existin Rep >0 when A < ’\caeM
where >‘<KM corresponds to AQM-JO(P = 0) = 0, and that all poles
of XI'Q— on the imaginary axis (if any exist) are of first order when

A< Acem-

Zeros in Re p 2 0 can be detected with the aid of a theorem
which is sometimes called the principle of the argument. This
theorem (37) states:

If f(p) is analytic in a region s, bounded by a contour
c, and does not vanish on ¢, then the number of zeros
minus the number of poles of f(p) within ¢ is 1/2w
times the increase in arg f(p) as p goes once around
¢ in the positive direction. (The positive direction is
defined such that the enclosed region s appears to the

left of an observer moving along c.)

Let us consider the function f(p) defined by

Fld) = ﬁf’féf (3. 84)

and a contour ¢, as shown in Fig. 5a, which covers the right-half
plane as R-» co. The dotted lines in this figure indicate no calculation

need be made on that portion of the contour due to the reflection
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property 3. 76a, i.e., f(p) can be obtained on the dotted part of the
contour by a reflection in the real axis of the £(p) plane. The zeros
of AQ are of course the poles of f(p) and f(p) possesses the same
number of poles in Re p3 0 as does —A—IQ— The function f(p),
howeve_r, is non zero (approaches a constant) on the circular portion
of the contour as R-» oo. This is known since AQ can be shown to
behave asymptotically as Kp3, where K = comstant. Since AQ is
finite for p < o, f(p) possesses no zeros in Re p%» 0 (assuming
branch points are circumvented). The function f(p) can be made
analytic in the region of interest by use of the branch cuts discussed
previously. Assuming the branch cuts have been made, the contour
shown in Fig. 5a can be deformed so that f(p) is an analytic function
on the new contour and within the enclosed region. (On this new

s
contour the roots pi(p) and P3 (p) will not be repeated since the
AL (s,p)
-2
ds

To determine if poles exist in Re p7 0 one therefore can map the

branch points have been circumvented and therefore #0)
function f(p) as p goes from point A to point B of Fig. 5b and
apply the theorem. This is illustrated in Fig. 6. If any poles on the
imaginary axis are encountered, their order can be detected by
observation of the growth of f(p) in the neighborhood of the poles. In

the neighborhood of a pole Pys of order n we can write

(o7 )" )
4L ©
where 3_(p) is regular in the neighborhood of Py - Let P-Pi=€E€

fpy= 1 gcp)

then

(pr= L & .
£ep) = e Lacpo+ocey ]
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Therefore, when p goes around a semicircular arc {from 6 = x/2
to 8 = - w/2) of radius € and as € - 0, the change in phase of
f(p) is nm.

The basic steps involved in the determination of the stability
of the system are summarized in the following paragraphs.

3.4 Summary of the Procedure

We have reduced the original rather complex stability
problem to a simpler problem of locating the poles of a certain
function, f{p), in Re p = 0. The occurrence of poles in Re p>0
indicate instability, as do poles of second order or greater on the
imaginary axis of the p-plane. If no poles arise in Re p> 0 and
those on the imaginary axis are of first order, the system is stable.
Because of the complexity involved, the poles of f(p) must be located
numerically by the use of a digital computer. It is appropriate at this
point to summarize the basic steps involved.

(1) Select the parameters n, M, and B8, as well as the load
distribution 2. 6. By virtue of equation 3. 14 one can obtain the
parameters Cj' , CJ:X‘, o(J s o\(]*, L , and /6* as illustrated in

equation 3.17. Let there exist a parameter A , which characterizes

the "magnitude' of the loading such that A is a function only of the

»*
CJ- , CJ- ; and the lateral loading is either zero or a constant value
(internal pressurization) when X = o0,

Casei, M =0

(2) If M 0, set p = 0 and calculate the roots pi(p) and

il

il

% ‘ *
p;(p) of A/. (s, £)= 0, where 4L (s. #)is given by equation 3. 44-(pi
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is obtained by replacing <, by Co# in 3. 44). Select the four roots
P with negative real parts and denote them as pi( i = 510 8), in any
order. Select the four roots pf with positive real parts and denote
them as pf (i =1 to4), in any order.

(3) Calculate the function f(p = 0), given by equation 3. 84
(see also the relation 3. 68) and plot the value of f(p = 0) against the
parameter by , beginning with a sufficiently small value so that the
system is initially stable. (Note that the Py and p;k do not depend
on A and thus they need not be recalculated for each A ). Increase

A until a pole of f(p = 0) is first obtained. This represents the

transition from stability to instability for the particular value of n
considered.

(4) Repeat the process with various values of n until a
minimum A has been found for a wide range of n values. This

value represents the critical value or buckling load.

Case ii, M £ 0

(5) Repeat the above procedure for each value of M. Denote
the critical value of A\ by &C,‘;M .

(6) Determine the branch point locations of the roots pi(p)
and p;k(p) by numerically solving the polynomials 3. 73 or 3. 74 and
evaluating 3. 75.

(7) Select a contour in the p-plane as illustrated in Fig. 5b,
circumventing the branch points on the imaginary axis and in the

right-half plane. A value of R should be selected by trial such that
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it renders f(p) approximately a constant on the circular portion of
the contour,.

(8) Select appropriate increments of p on the contour and
for each value of p calculate the roots of 42, (s, #)= 0. Order these
roots at each station by requiring that they be smooth functions of the
path and approach the asymptotic values 3. 53 along the path of radius
R.

(9) Verify that A > A\, is unstable by mapping the function
f(p) as p goes from point A to point B of Fig. 5b for a value of

A> Neem» Utilizing the principle of the argument to show that a pole
exists in Re p > 0. Verify that >‘<)‘mmi5 stable by again mapping
f{p) for a value of A < Acem and showing that no zeros exist in

Re p > 0 (and all those on the imaginary axis, if any, are of first order).
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CHAPTER IV

REFINEMENTS AND EXTENSIONS OF THE ANALYSIS

1. Remarks on More Exact Equations of Motion

If equations of motion of a more exact nature are desired, it
will probably be necessary to obtain an approximate solution of the
initial steady-state equations. If one obtains this approximation in the
form of a finite series of exponentials, as in equation 3,17, the
variable coefficients of the variational equations will again be of
exponential form. Therefore, assuming the asymptotic behavior of
the roots to the characteristic equation can be ascertained, the same
stability analysis can be applied with minor alterations. At worst, if
the equations are written in terms of the three displacements as
dependent variables, the matrices Aj will be 3 x 3 instead of the

present 2 x 2 matrices,

2. If Linear Damping is Included

Linear viscous damping can be included in the present analysis
with virtually no additional complications, other than introducing
another parameter. If damping is considered in conjunction with a
more exact set of equations of motion which include the effects of
rotational inertia and transverse shear deformation, etc., then the
restriction we have applied to the magnitude of the velocity can be
eliminated. Since, if damping is included, the steady-state motions
will be attenuated in space, again the same stability analysis can be
applied if the approximate symmetric solutions are sought in the form

of a series of exponentials.
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3. Remarks on Extending the Method to Static Problems Involving

F'inite Length Shells

In many static buckling problems of cylindrical shells, the
pre-loaded state is such as to cause initial symmetric displacements
with an axial variation of exponential form. For example, assuming
equations 2, 5 describe the shell adequately, if a cylindrical shell is
clamped at its ends, then loaded axially by a constant force which is
applied symmetrically, the axial variation of the initial displacement
field (caused by a Poisson's expansion) is the sum of exponentials.
The effects of such an initial displacement field on the buckling load
are surprisingly large as Stein and Fisher have shown. Again, in
such cases, the present analysis, with some variations, can be
utilized to solve the variational equations and ascertain stability. If
the system is conservative, the problem is especially simple since
one can neglect the effect of time in the variational equations and
reduce the analysis to an eigenvalue problem, i.e, the usual bifurca-
tion analysis. The point is, the difficulty encountered when variable
coefficients arise in the perturbation equations can be overcome if the
coefficients are of the form we have discussed. It should be noted,
however, that for the case of a finite-length shell the elements of the

characteristic determinant (our matrix Q) will involve infinite series.
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CHAPTER V

SUMMARY AND CONCLUDING REMARKS

In the main text of this dissertation, the problem of determining
the stability of a thin cylindrical shell subjected to a class of moving
loads was discussed. As a mathematical model of the shell, a non-
linear Donnell theory was employed.

The class of moving loads considered were those representable
by a finite series of exponential functions and a delta function, all
possessing arguments of X-VT where X and T are respectively the
axial coordinate and time, and V represents the load velocity. A
constant axial compression or tension of the shell was also included.
The shell was idealized as infinite in length and the initial symmetric
response was assumed to have reached a steady-state value. The load
velocity was restricted to less than the minimal velocity for which
sinusoidal wave trains can be propagated in the unloaded shell, For
such velocities, the steady-state solutions were found to be attenuated
with distance from the load indicating the analysis has meaning for
shells whose length is long compared to a characteristic attenuation
length.

As far as the. equations of motion were concerned, only the
effects of radial inertia were included. However, it was indicated that
in the load velocity range considered, longitudinal inertia, transverse
‘shear deformation and rotational inertia played a negligible role in the

steady-state response,
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Stability of the system was defined on the basis of boundedness
or divergence of an infinitesimal perturbation about an initial nonlinear
state of motion. Following the selection of the equations of motion,
all portions of the analysis were exact (all effects of prebuckled
displacements, usually neglected in shell stability discussions, were
included). By virtue of a double Laplace transform technique and the
introduction of some theorems regarding stability and the Laplace
transform, the original stability problem was reduced to one of
determining the location of the zeros of a determinant of a certain
matrix in the Laplace transform domain. The elements of the matrix
were presented in a closed and exact form, and hence may be
calculated with little difficulty with the aid of a digital computer. A
method of determining the necessary information regarding the zeros
of the said function and hence the stability information of the system
was outlined*.

In the case of static problems, the method outlined should
serve as a powerful tool for solving a wide variety of axially sym-
metric buckling problems. One notes that the effects of prebuckled
displacements and bending stresses, which are neglected in many
studies, are easily accounted for in the present analysis. In applying
the method to shells of finite length, it is probably conservative to
limit the shell length to not less than a value defined by a 90 per cent

attenuation of the initial displacements as measured from its peak

A numerical investigation of some special cases of the general
loading function is presently underway and the results of a parametric
study of these cases will be presented in a forthcoming paper.
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value (on either side of the peak value) and not less than twice the
shell radius. .

As far as the dynamic problem is concerned, and aside from
the intrinsic value of the analysis, the method should provide a point
from which one can extrapolate to obtain useful information regarding
the effects of moving loads on finite length shells which are (1) long
compared to a characteristic attenuation length of the symmetric
displacements, (2) long compared to the product of the local velocity
and a characteristic response time or characteristic period of
oscillation of the shell and {3) not less than twice the shell radius.
Unfortunately, for dynamic loads under the present method of
analysis (linearized perturbation equations), it is not possible to
diffcrentiatc between instabilities that lead to a buckling phenomena
and those that lead only to finite amplitude oscillations. A logical
extension of the present analysis would therefore be to include certain

nonlinear terms in the perturbation equations.
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APPENDIX 1

THE HOMOGENEOUS DIFFERENCE EQUATION

In this section we show that, to satisfy the quiescent conditions

3.37 of Chapter 3, only the trivial solution to 3. 41 can be accepted.

For this purpose we define the norm., ’.—Z;n(s) | . of the vector :'—Zn(s) by:

(ZnY = [ )] + | 1] (1)
Clearly to satisfy 3.37 we must require that
7 <
Rs-b
Now consider the following theorem and its proof.
Theorem: Given the difference equations
= £ _
Zn(5)= 2 Ai(S)Z, (5t ) (3)
J=A

where Aj(s) are given by 3.43 and Re o(j) 0 (see 3.17). We have,
for all non trivial solutions

/Z/‘nt /’t’eS—;c‘: l?m(53l=:oo

Proof: Let us define the norms, I.Aj(s)( , of the 2 x 2
matrices A, by
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2 (J)

'Af!=§_:[ Asn | (4)

e
where Ac(lJr) represents the element in the qth row and rth column

of the jth matrix, Then, from 3 we have

= £ =
[2, ) € 5 A 112, (5td))] (5)
7=t

Now, assume Zn(s) is bounded as Re§-—= o, i, e,

Ke 5% ¢ (6)

)

where M and C are positive constants. Since Re a(J-> 0, equation

6 also indicates

(2, (stdj)]€™M | Res»c (7)
Combining 5 and 7 we obtain

_ .
[2. ()€ M S 4] (8)
J=!

The matrices AJ.(S) have the following property:

. < : .
Isj™
where K, and d, are constants, Choose C > d, . Then 8 and 9
J J j max

yield
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IZ (5> < M 2 K
|51’m : (10)

This implies 3 s =s_ > Re s »(> dJ max yields

| Z..(Se) = €(S6)

where E(so) can be made arbitrarily small, Equation 10 alsc
implies
A} 4
| Z.. (Sotd )| % €(Se)

However from 5 we obtain

£
€ESa) 2 5 K £¢so)
J': /S/M
or
2
Z K (11)
JE /so/””‘

But since s, can be selected arbitrarily large, this represents a
contradiction unless Zn(s) is identically zero. Thus, all nontrivial
solutions to 3.43 are unbounded as Re s-»o00. Therefore only the

trivial solution to 3,41 can be accepted on the basis of equation 2.
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APPENDIX 2

PROPERTIES OF TIIE SERIES FOR En(s) AND En(g,p)

1. Properties of the —_En(s) Series (equation 3. 45)

The series 3.45 formally satisfies equation 3.41. In this

section we investigate a few of the properties of the series for Z.n(s).

Denoting
AJ‘K(S) = B"i(ﬂ AND  (s) = fcs) 0
> ¢s- 77 (s-
7‘:7/7 (sp;) 77.:_// /Y)

j&(S)

and § (s) is clear from equations 3,43, the series 3.46 can be

where pq are the 8 roots of ALO(s) = 0 and the meaning of B

written as

= £
7,(5) = B(s) L5 Bres) Pisray)

a _ +
TUSH) S (50,3 T8 (Sed, -
?f:/ /57 _77:/ -/;7;7:/ i Sy /}0)
, @
AR A B (54q, ba, ) .

Jofi =l 7.
Yt

Since the known elements of the matrices Bj(s) and the vector § (s)

z =
B gy

are entire functions of s, the singularities of ?M (s) in the s-plane
' N
v(the Nth terms of the series 2) consist of isolated poles at the locations
S:' %f—m"t'—mﬂdl“"'“mﬂdj.j )

(3)

l.l.l~-..—_ 0_)/_,?./..- ),(_..—. /,2)...},6
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Defining the region R of the complex s-plane by

} STy dimmadan e mmd ) 1 €5 0 (4)

we see that EmN (s) is regular if s € R. Also, since the poles lie
a finite distance to the right of the imaginary axis, =Zm (s) is

N
regular if Re s > C1 = const,

With the vector and matrix norms as defined in Appendix 1, we

have from equation 3. 46 or 2 above:

—

: J4
[Zn(s)] 2 1B+ 5 1A 1)) +

Jr=l
£
_Z. PO A (st L Ustdy ) 4 - e
J'l/Jz_:/

If seR, \|P(s)\« M =const. Further, if Res > b1 = comnst,

£
2 LAs)] € § <] (5)
J=/

Since Re ¢j7 0 there exists an N > r such that

Re (S+0(J;+0(J;L+... + J/-v-; ) > b,

(6)
for all combinations, jk = 1,2, ...,4%. For all terms less than
the Nth we have
. *
| AJ (‘S+0LJ"+ciJ‘L+-w\ l LM = ConsTANT

if se€e R. Therefore, from 3 we obtain
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/Zn(s)/é S+ MM*J}+MM*R<§2+MM*%§3+.., -
where @f denotes the sum of the first r terms. The series (lessej’ )
7 is a geometrical series whose common ratio is §«< | andis
therefore convergent. Thus, by the Welerstrass M-test the series
?n(s) is uniformly (with respect to s) and absolutely convergent
when seR. Since each term of the series is regular when s &R, the
uniform convergence indicates ——En(s) is unique and represents a
regular function in R,

Returning to the form of the series 1, it is clear that the poles
of each term of the series are of finite order., Further, any pole can
be removed from all terms by defining a new function which is the
product of ——Zzn(s) and (s - pg +hd, +--- +rgdy )rl where r, is a
finite integer and ~n; indicates the pole in question. Clearly the new
series will be absolutely and uniformly convergent in R and also in
the circle fs - {pg - mid -~ '_”"10‘,() [< € where ,m/ corresponds
to the above pole. One thus deduces the series 3.46 represents an
analytic function of s with isolated poles at the locations given by

the relation 3.

2. Properties of the -Z_n(g,p) Series

It will suffice to investigate only the series 3. 61 since 3. 62 is
similar in form,

Substituting
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(S) JQ(S)/;_T (5/?) o

one obtains 3. 61 as

-
RO I N R L)
<=5 d= 1 —s_——

/
i (9)
£ (
’ Z B ey 4 B, Poa)

J/,].i=/7”8 4/37 '-a’)// (/4/? +.”]{ }

Define the region Rb of the complex p-plane by
IPPol>€ >0 (10)
where p, denotes a branch point of any root /074 in the p-plane.
If pe Rb‘ ,b%o(s) ¥ 0 and the roots ’Pi of Lo(s) = 0 are non-
repeated. Therefore, if pe Ry, » the assumption of non-repeated
roots utilized in the inversion of Zn(s) was justified.

If in addition to 10, we provide appropriate branch cuts in the
p-plane, the roots /f(f'g) can be made analytic functions of p. For
definiteness assume the branch cuts to be parallel to the real p axis
and running leftward from each branch point to negative infinity, In

addition to the branch cuts let us require that
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2 S - -
f //4./; /ml¢/—m42d&—°°°—m’l€d,l./>/€Z>o)
< = S To B

*
p o |p ffﬂ”""df‘mzﬂf SRR 17 RN °,

g (11)
S <z /To4

and p 3 AQ 2 €4> 0. Define this new region, which is contained with-
in Ry, and sz' . If pe R'bz , the series 9 can be shown, by the
same procedure as in Section 1, to be absolutely and uniformly
convergent with respect to both § and p. Further Zn(g,p) is an
analytic function of p and a continuous function of §. Also, all
series derived from equation by term by term differentiation with
respect to £ possess the same property of uniform convergence with
£. Thus the term by term differentiation of the series in the analysis
was justified, assuming péRbZ.

With reference the equivalent form of the series given by
equation 3. 63, one observes that each term of the series for _Z-n(g,p)
is regular within the regions defined by 11. Since the series
converges uniformly on the boundary of the region, by the Weierstrass
limit theorem one concludes the series converges uniformly within
the region and thus En(g,p) is regular within the region.

The points for which AQ = 0 (see 3, 68) represent poles of

z (£,p) in the p-plane.
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APPENDIX 3
STABILITY AS VISUALIZED FROM THE

LAPLACE TRANSFORM PLANE

Necessary and sufficient conditions on the image function for
stable or unstable originals are well known for transforms that are
the ratio of polynomials. These conditions can easily be obtained by
a direct inversion of the transform. For transforms that are
transcendental, theorems exist that are applicable if the transform
satisfies certain conditions. An important inversion theorem for
large time by Erdelyi, for example, is discussed by Fung in reference
37. This theorem yields the asymptotic form of the original and thus
from it stability information can be deduced. The transform, however,
must be expressible in a certain asymptotic form, which is inconven-
ient here.

Since we are not interested in the actual form of the original,
it is possible to construct a few theorems, which can easily be proved,
regarding the houndednegs of the original. We discuss these below.
Note that the first theorem requires no use of an inversion theorem and

is completely general.

Theorem 1: Let f(p) denote the Laplace transform of a function
f{t). Consider the region s of the p-plane defined by Re-P>0
where € 1is an arbitrarily small constant. Then if J singularities

of f(p) in s, f(t) is unbounded as a function of % ,

Proof: By definition
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Lp) /_/ P Ler)

o)

assume f(t) is a bounded function of t. Call the u.b \f(t)l = M.
This assumption and the hypothesis that p € s indicates the

definition integral converges uniformly in s since:

\gé?TLcﬂdT ég\é“l\&ﬂldvsm et dr=m
£

o 0 o

and therefore, by the Weierstrass M-test, the integral converges
uniformly in s.
Next we show f(p) is regular if p € s. For this purpose we

perform a contour integration with respect to p over an arbitrary

simple closed curve C in s:
- <o° ~
fvf(ﬁ)cq.: =f{/e~7o/#ﬂoﬁ}“
C <
By virtue of the uniform convergence of the integral and the properties

of the integrand when p e s, the order of integration can be inverted

and we obtain

J?Z(f)aéc =o/a°/f1>[£c_f74ﬁ] AT =0

since by Cauchy's integral theorem, f e—,afa’ﬁ =0 .
Because the path ¢ is arbitrary in s,CMorera's theorem establishes
that f{p) is regular in s.

Therefore, boundedness of f(t) implies -f—(p) is regular in s.

This conclusion is logically equivalent to: if f(p) is not regular in s,
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f(t) is not bounded. (The proof of this last statement is simple:
assume ?(p) not regular in s but f(t) bounded; this however

contradicts the first conclusion, thus f(t) cannot be bounded., )

Theorem 2: Let £f(t) be defined by:

CHib
: F#t=
£ () -—'j;m z‘/;/e FlH)db, €50 (¢)
— oS C—Llﬁ .

Assume f(p) possesses the properties:
(1) f(p) regular in Re p= 0 (all singularities lie to
the left of the imaginary axis)

(2) £f(p) ~ O(Tij,)} 450 when |pl—> o in ——ZTigarg_}’s

Ll

(3) One or both of the following:
(a) I(p) ~ O(}f—,,), e >
b) ip) ~ O(fa), m >

Then lim t—-=— o0 f(t) = O.

Proof: Consider the contour shown
below. By hypothesis (1) and Cauchy's
integral formula we have:

I+ lc.*'(“—'sg) +I, =0

8e,

where I = is the integral (i) along the

2,

Bromwich contour Be, , IC‘ , and IC;.

the same integral along the circular arc
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paths C and C, if radius R, and Iﬁa (i) with C = 0. By

J

hypothesis (2), Jordon's lemma can be applied to yield:

Lo {20 -

Thus (i) is equivalent to:

&
; / Tt .
ﬂf)’*ﬂmwz;/ T f ey do )

Now, assume first that (3-a) holds, The real and imaginary
component integrals of (il) are therefore absolutely convergent and the

Riemann Lebesque lemma can be directly applied yielding

> od

=S
: L Tt ~
L. £ = i [ de = o
& =02 e
Next assume (3-b) holds but that (3-a) does not. Integrating
elc it
(t

27 (i) = vé% {f{é}»«b) A=ty (-4 /o« Jr}

(ii) by parts and setting o&& = we have

By hypothesis (2) and, setting ¢ > € » © so that o is bounded,

Fet) ~ (s)
L b o6 Fl-b) = (- b) y
By (3-b) [ 1e(]| Flr)f o~ exists and therefore j«x For)de

— o
is absolutely convergent. We can therefore apply the Riemann
Lebesque lemma again to obtain

4w w6 de
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We therefore conclude under the imposed conditions on £(p):
Ao b = s f(£) = O
and the theorem is proved.

If one now assumes £(t} is recoverable from its transform
by the integral (i)*, then it has been shown that f(w) = 0 if its
transform satisfies the conditions of the theorem.

We have not yet discussed the case of singularities appearing
on the imaginary axis, Assume f£(p) is regular in Re py 0, but
possesses isolated singularities on the imaginary axis. It is of little
loss in generality to assume f(t) is recoverable from its transform
by (i) of theorem 2 above and that f(p) satisfies properties (2) and
(3). Then, one can select the Bromwich 2 contour up the imaginary
axis,. circumventing any singularities by a half circle of radius € in
the usual procedure. By Riemann's lemma the only contribution to
f(t) for t —» o arises from the integrations around the singularities.
It is easy to show that contribution from poles of order 1 are bounded

and from poles of higher order than 1 are unbounded.

Sufficient conditions for £(t) to bc recoverable from its transform

by (i) are
1.  1i(t) be of bounded variation in any finite interval
2. there exists a positive number, a, such that the

fee
integral f(p) = ¢ f(t) d€ converges absolutely
for Rep > a, with <> a in (i)
3.  f(t) is equal to its mean value at a point of discontinuity.
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APPENDIX 4

LOCATION OF THE ROOT BRANCH POINTS

The roots pi(p) and p:- (p) are the roots ofALO(s,p) = 0., This
expression can be thought of as a second order polynomial in p and

one can solve for p in terms of s as

7
b= 115 i[-/a’%a,a 4/n2ﬁ456’—(l+ézn4/j‘4)f’4+4mé/%2-mgﬁ‘j ()

Sé. n"

Each branch of the inverse function s(p) in the p-plane represents
a root ofALo(s,p) = 0. The branch points of the roots in the p-plane
are those of s(p).

With appropriate branch cuts, one can render p an analytic
function of s (for each of the above signs). Having made such cuts,
p(s) will be regular except at the branch points (in the s-plane)
associated with the above radical and at the poles s = + n. Now,
let 5o be a regular point of one of the branches of p(s) at which it
takes the value p_. Assume first that p' (so):ﬁ 0. Then p(s) has a
unique inverse s(p}), regular in a neighborhood of P, (36). Thus
if p'(so)qto, P is not a branch point of s(p) in the p-plane. Next,
assume p'(so) = 0. Since s, is a regular point, p(s) can be repre-

sented in a neighborhood of s, by a Taylor series
PE) =T + 4y (5-56) (5-S0)> 4 on-
2 ~do + 43 ° +
When s is sufficiently near 5, one obtains the approximate equality
PCS) = £ + @ (5-50)"

or

§-S0 = (a1) 7 (-0 "%
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This last expression indicates that a branch point of the inverse
function s(p) exists at p(so)., We conclude, therefore, that for a
regular point, s s @ necessary and sufficient condition that P, be
a branch point of s(p) in the p-plane is that p' (so) = 0.

Now, consider the poles at s =+ n. Let s, denote a pole.
Since s =+ n are not branch points of the radical, p(s) can be ex-
panded in a Laurent series about S,° Noting the poles are of first

order we have

+1

-{
P(5) = b, (5-55) +bo + b (s-S0) +=o-

When s is near s _, this can be reduced to the approximate equality

Pesd = b, (5-So) |

or

=1
(s-So) = kzl *r
This last relation indicates a branch point does not occur in the
case of the simple poles s =t n.

Next, let N be a zero of g(s), where
2 4+
§(5)= 8758 gmB%st- crromip? )5t tmbgts -

It is easy to show that g'(s) = 0 and g''(s) = 0 cannot simultaneously
be satisfied for any real values of 8 or n. Thus the roots of g(s)=10
are at most double roots, if they are repeated at all. If a double
root occurs, the root is a regular point of p(s). Therefore there is
no loss in generality in the present discussion in assuming g(s) = 0
does not possess repeated roots, Under this assumption 5 is a
branch point of p(s) in the s-plane. Consider a neighborhood of N

defined by s-8_ = :ei(’D where ¢ = constant. Equation {1) can be
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rewritten as

p=rcee Séso Yre'e el% [(ee*'<b+so—s.) oo (ee“éso-sg\]

where 8 Sysees ,s% are the zeros of g(s). As ¢ is allowed to be-
come vanishingly small we obtain the approximate equality

£ = M3 + ez €‘¢/2 K, K= (oNsSTANT
Noting that s-s_ = zelqb, we obtain by squaring both sides

§-5, = K° (70~/‘75o)2
which indicates the inverse point p = ms is not a branch point of
s(p).
In view of the preceding discussion, p'(s) = 0 is a necessary

and a sufficient condition for the existence of branch points of s(p)

in the p-plane.
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APPENDIX 5
A NONLINEAR CYLINDRICAL MEMBRANE AND/OR

A NONLINEAR STRING SUBJECTED TO
A CONCENTRATED MOVING LOAD

1. Introduction

The text of this dissertation has been concerned with moving
loads on cylindrical shells. A closely related problem is that of a
moving load on a cylindrical membrane or a nonlinear string. We
shall present at this time a brief version of an analysis on the re-
sponse and stability of a nonlinear cylindrical membrane and/or a
string on a nonlinear foundation, subjected to a concentrated radial
line load or concentrated load, respectively, moving with constant
velocity.

We will again consider the domain of the problem to be infinite
and seek steady-state solutions. There is, of course, no question of
buckling involved here but rather the analysis of the stability of the
steady-state motions, in general, serves to indicate whether or not
such motions can be expected as the limiting case of a transient
problem.

The mathematical model we shall consider will be shown to
represent both a nonlinear string and a nonlinear cylindrical mem-
brane depending upon certain approximations. A brief summary of
past work dealing with nonlinear strings can be found in a review of
the subject by J. O. Eisley (38). Further papers can be found in
references 39 to 42. Previous analyses having the most iﬁ common
with the present discussion are those of B. Fleischman (39) and

P. Ungar (40). Fleischman discussed traveling waves with constant
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velocity in an infinite string on a nonlinear foundation. Ungar proved

such wave motions can be unstable under certain conditions.

2. Formulation of the Problem

Consider the nonlinear one-dimensional wave equation

TT

Yex — =i Yoo + F(T) - G(Y) = O (1)

Equation 1 is the governing equation for the small transverse dis-
placements of a string or flexible cable under constant initial tension
and with uniform mass per unit length, carrying a distributed trans-
verse load, F(X,T), and supported by a nonlinear foundation whose
restoring force is G(Y). Both F(X,T) and G(Y¥) are considered as
normalized on the initial tension in the string. The quantity ¢ is
the ''sound speed'' and is the ratio of the initial tension to the mass
per unit length. It will be shown that equation 1 also represents the
symmetric radial motions of an elastic cylindrical membrane where
nonlinearity of both the geometric and constitutive type is allowed.

As the objective* of this discussion we shall investigate the
stability of a class of solutions of 1 for which

(i) Y(X,T) = Y(X-VT), where V = constant

1]

(ii) F(X,T)

H

P1 6(X-VT), where §(X-VT) is the Dirac
delta function and P1 is constant.
(iii) G(Y) will, in general, be assumed a smooth function of Y

with G(0) = 0 and G'(0)> 0.

i
" See page 128 for a summary of the results.
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Qur choice of F(X,T) represents a concentrated load moving
in the positive x direction with a constant velocity. The solutions
we seek represent time invariant motions in a coordinate system
moving with the load; such motion will, as before, be denoted as
steady-state,

Stability will be based, as in the shell discussion, on the
boundedness of perturbations from the initial state of motion. The
liaplace transform will be used to determine the stability for V < c;
however, the abundant theory of Hill's equation indicates a separa-

tion of variables approach to be more appropriate if V > c.

3. Derivation of the Membrane Equation

We show next that under certain approximations, equation 1
can be assumed as a mathematical model for the symmetric motion
of an initially taut (axially) elastic cylindrical membrane.

In general, the equations of motion of an elastic body can be

determined by Hamilton's variational principle:

<2
J/ AT =0 (2)
Ly

where the variations in displacements vanish at ty and t, and L is

the Laagrangian function, the variation of which is
SL = S -ST +5 A (3)

where

sic- (] L) s (LY pg e,
To
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is the variation of the kinetic energy of the body,

is the variation of the elastic strain energy, and

SA = [[ (7745 (6)
So

is the virtual work. We shall consider, as reference coordinates,
the undeformed coordinates of the body and therefore all integra-
tions will be referenced to undeformed coordinates. The notation

is that of (43) where

6' = reference coordinates

gij = metric tensor of undeformed coordinates

Gij = metric tensor of deformed coordinates

Yi; = -%(G.lj—gij) = covariant components of the strain tensor
\_/: = displacement vector

Y = contravariant components of the stress tensor
P = surface traction, referred to undeformed area
p, = mass density of the undeformed body

g = determinant of 8

G = determinant of Gi'

Let us write 5 in terms of physical stresses o-ij and physical

strains, Eij’ assuming the 6t are taken as orthogonal undeformed

coordinates;
%2, G 14
3 /z{/% ! G C::j ?/ I ey g 8T Aot S )

(c', 7', NoT 30/»/»&0)



a7

where Ty5 = VG i (since the 8" are orthogonal) (i

ii JJ i,]
not
€, ij Yi_]/ g8;;8 i : summed)

If we define

Foo F
c / (J, g WNor (8)
S ED)

then 7 becomes

/’/fﬁ;j* Se‘.], A/;c/e’dez 487 (9)
.

The meaning of O'i;< becomes clear if one considers that the
element of area on the ©'-surface of the undeformed body is
L gic dJetfde® (¢ co
(JSL-)O = 1/;; L Ao7T SUmarEPR
¢ #7. ?‘-/é)

and in the deformed body becomes

<{S-6. = 1/66"(" c/é"a/é‘/"' (l‘ MNor SomsED,
L # :7- ?f‘.aé-)

Thus

I/Z Js,
/ - (¢ wor souma7éd)
}’ GtL (JSL)O

is the ratio of the deformed to undeformed areas. Further, since
the extension e, of a line element ds‘1 along a curvilinear coordinate

curve ot is defined by

- @s,),

€ = > (( wor SIA?arED)
(clé'" )p
and [~ : ’
4/5&. — é"l‘, c{@ &/ (45‘:)0 — 6:: 0/6 % ((.' NOT
S P ED)

we have

T {/z,
/e = (j“) (L wWor Sum»2&2)
o
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Therefore o_ij can be written

¥ %y s

(/7‘_ ) @5‘_‘)0 (¢ Nor swmmed ) (10)

*
and o33 1+ ei) is recognized as being obtained from the force vector
acting on a face of the deformed element by dividing by the face area

before deformation.

Consider now as coordinates for the problem: o - X, 62

-0,
3

6~ = Z as shown below
Q\f /,-.; w

X, U

The Lagrangian components of strain, Eij’ can be written as

£ =7 (e 2yy) TVl + v+ VL AS N

where V, = U, V, =V, V= W,

3=

Let us now assume h/a << 1 and approximate the displace-

1

ments by neglecting any variation through the thickness:

Vi(xe,2) = V. (x o) (12)
Further, considering only symmetric motions we obtain

Ve = Ki(x), 1 = o
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Under these assumptions, the strain components 11 can be written:

- 3 # (G2 (2]

°¢ T atz Z (a+2)* (13)

Exe = O, gz = O, €25 =0 Ezx =C

Consider P as the only component of the surface traction.

Then, after defining the quantities ~_4
4 = FU/+2Z Z) /
Z=- - -:z—'

-'K/,z ’4/2, (14)

»
Nex = f;x*a/z‘ AV{?G =fd;e (/7"%)‘{&
“&t — 2

and carrying out the variation 2 in the usual manner, one obtains

the following approximate nonlinear equations of motion:

2
%—-’-v[(/-r‘ %%)Nxx] = /%j %}% (15a)
.2
,_’_Vif ——a[M« Sx | t# /% -——ﬁ-‘f (15b)
) .

i1 s . 9"u
If we assume the tangential inertia term, poh —> is

negligible, then equation 15a can be integrated once yielding

/‘/1" g—g’//\&k = G, (f) {16)

-

If we assume further that 8u/8x << 1, and the membrane

tension is held constant, then



Nex = & (17)

For an elastic, homogeneous, and isotropic membrane, the

constitutive relations can be written formally as

Now = 5 (Exx, Sas) (182)

/Vee = /Z (gx)c, 2—96) (18b)

Utilizing the approximation 17, assuming one can solve explicitly for
€ xe in terms of €90 from 18a, and substitution of the result into 18b

yields

which, by 13, can be written as

Noo

= 19
Z G () (19)

Therefore, from equation 15b, we finally obtain

2 2

under the approximations;
(1) displacements = ~£Fac (X, 7)) owNLYy
(2) 8Y/Bx << 1
(3) tangential inertia can be neglected.

Now, if we define

- £ c- & et - %
ex 7 A/xx 7 /a
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then equation 20 takes the same form as equation 1:

W, "E%m/;'r # FIX,T7) — G(W) = O (21)

XX

4. Relationship to the Shell Problem

Let us consider again the case of a cylindrical shell subjected
to a ring load traveling with constant velocity along its generatrix.
We stated previously that if the velocity of such a load were to exceed
the minimal velocity for which axially symmetric sinusoidal wave
trains are propagated in the shell, the steady-state motions would
not be attenuated with distance behind the load. Extrapolating from
‘the linear steady-state analysis of Tang (23) and the ''Timoshenko
Beam on an Elastic Foundation’' work of Crandall (44), where the
effects of rotational inertia and the first thickness-shear mode were
included, one can expect the following results in four regions of
velocity; when 0 < V < Vo’ the head and tail waves (ahead of and
behind the concentrated load) will be damped sinusoids, symmetric
with respect to the load (the case we studied); when VO <V < Vl’
the head wave will be a sinusoid of short wave length and the tail
wave a long wave length sinusoid; when Vl < Vévz, the head wave
will decay exponentially and the tail wave will be a decaying expo-
nential superimposed o