I, THE FINGERING PROBLEM IN FLOW
THROUGH POROUS MEDIA

II., THE KINETIC EQUATION FOR
HAMILTONIAN SYSTEMS

Thesis by

John Weidman McLean

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
) Pasadena, California
1980
{Submitted April 11, 1980)



ACKNOWLEDGEMENTS

I wish to thank my advisor, Professor P. G. Saffman, for
suggesting the topic of this thesis and for his invaluable help and
patience during its development. I am grateful to the faculty, staff,
and fellow graduate students of the Applied Math department for

many interesting discussions.

My research at Caltech was possible due to the financial
support of the Institute and the Department of Energy. The
numerical computations were possible thanks to a generous allowance

of computer time by the Control Data Corporation.

Finally, I wish to thank Suzanne for her continuing encourage-~

ment and support.

ii



ABSTRACT

Part 1

The interface between two fluids in a porous media is stable or
unstable depending on the densities and viscosities of the fluids. Un-
stable flows tend to develop into long "fingers" of fluids. Saffman
and Taylor (1958) analyzed the two-dimensional steady state shape of
a finger neglecting interfacial tension. They found that the solutions

to the equations of motion are not unique: the width of the finger is _

arbitrary.

In this paper, the problem is formulated including thg effects
of surface tension at the interface. The equations of motion are
reduced to a pair of nonlinear integro-differential equations for the
shape of the finger. The equations are solved numerically and

analyzed by perturbation methods.

The numerical results indicate that the system of equations has
a unique solution for nonzero surface tension. Solutions are computed
for a wide range of physical parameters. The computed profiles

agree well with experimental observations.

The perturbation analysis yields contradictory results. A
formal expansion in the surface tension parameter can be obtained
for arbitrary finger widths, suggesting that the equations do not have
a unique solution. The conflict between the numerics and the per-

turbations is discussed but not resolved.

iii



The stability of the steady fingers to small disturbances is
discussed. Linearized stability analysis indicates the two-dimensional
fingers are unstable, a result which is at variance with experiment,.
The stability analysis of the plane interface reveals some new steady

profiles. These profiles are computed for finite amplitude.

Part 11

The kinetic equation describing weak nonlinear interactions
between wave components in a Hamiltonian system is obtained by
perturbation methods., The analysis is facilitated by the use of Wyld
diagrams., The results include some new terms not included in
previous work. The inconsistency of some previous investigations is

pointed out, and the significance of the new terms is discussed.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

1. THE FINGERING PROBLEM IN FLOW THROUGH
POROUS MEDIA

1.

.

W ~N o~ AW

.

9.
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
REFERENCES

Introduction

Formulation of the Problem

Analysis of the Equations

Numerical Treatment

Perturbation Solution

The Conflict Between Numerics and Perturbations
Linearized Stability Analysis

Other Steady Solutions

Discussion

ii

iii

1

2

5
15
19
31
41
48
64
72
74
77
80
84
87

II. THE KINETIC EQUATION FOR HAMILTONIAN SYSTEMS 88

»

B W N e

5-
REFERENCES

Introduction

Formulation of the Problem
The Perturbation Expansion
Analysis of the Diagrams

Discussion

89
92
98
109
117
119



Part I
THE FINGERING PROBLEM IN FLOW THROUGH

POROUS MEDIA



1. INTRODUCTION

It is well-known that when two superposed fluids of different
densities are accelerated in a direction perpendicular to the surface,
the interface will be unstable if the acceleration is from the less
dense fluid to the more dense fluid (Taylor 1950). A similar in-
stability may occur in a porous medium where a less viscous fluid
drives a more viscous fluid (Saffman and Taylor 1958). This in-
stability is responsible for water flooding of oil wells, and is of
considerable importance to oil reservoir engineering (Wooding and

Morel-Seytoux 1976).

In order to study this instability, experiments have been per-
formed in a Hele-Shaw cell: a channel formed by two closely spaced,
parallel glass plates (Saffman and Taylor 1958, Pitts 1980). It was
observed that the unstable interface forms into a number of "fingers."
After a sufficient time, the flow reaches the steady state of a single
finger propagating without change of shape (Fig. 1-1{). Our interest

will be in the steady-state shape of these fingers.

Figure 1-1
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The shape of these fingers has been obtained mathematically by
neglecting surface tension effects at the interface (Saffman and Taylor
1958). Surprisingly, the solution was obtained in closed form. The
solution, however, was not determined uniquely. The width of the
finger, A, enters into the solution as an arbitrary parameter. In
experiments where the surface tension is small, \ is close to one-
half. Comparisons of the experimental shapes with the Saffman-

Taylor solution for X\ = 1/2 yields excellent agreement.

As the surface tension becomes important, the width of the
finger increases to fill the channel. The Saffman-Taylor solution

deviates from the experimental shapes for finite surface tension.

Several attempts have been made to remove the ambiguity in the
Saffman-Taylor result, In a recent article, Pitts (1980) uses some
heuristic arguments about the nature of the motion at the interface to
obtain an equation for the finger shapes. His results remove the
nonuniqgeness of the Saffman-Taylor solution. - His formula agrees

well with a wide range of experiments, but deviates for large surface

tension. « /

In this presentation, the effects of surface tension are included
at the interface. The equations of motion are derived. The equations
for the shape of the free surface are reduced to a pair of coupled,

nonlinear, integro-differential equations.

For finite surface tension, the equations for the free surface
are replaced by a finite difference form and solved numerically using

Newton's method. The numerical scheme converged quadratically in
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all cases. Due to the behavior of the numerics, it is proposed that
the equations for the free surface have a unique solution for nonzero
surface tension. The numerical profiles are compared with experi-

mental photographs, and in all cases show excellent agreement,.

The case of small surface tension is examined by perturbation
methods. A regular perturbation expansion is carried out to three
terms. Although the expansion is nonuniform at one endpoint, the
"outer" expansion can be matched to the local expansion. The per-
turbation solution can be formally constructed for arbitrary finger
widths, suggesting that the equations for the free surface do not have

a unique solution.

The apparent contradiction between the numerical solution and

the perturbation expansion is discussed but not resolved.

Stability of the plane interface is examined. For small surface
tension, the plane interface is unstable, a result first obtained by
Saffman and Taylor. 'i‘he stability of the steady fingers is investi-
gated. The mathematical result of Saffman and Taylor indicates that
the fingers are unstable when surface tension is neglected. We have
included surface tension in the analysis, but the results indicate the
finger is still unstable to disturbances. This result does not agree

with experimental observations.

The stability analysis of the plane interface indicates other
steady solutions are possible., These solutions are obtained by per-

turbation methods and computed numerically to finite amplitude.



2. FORMULATION OF THE PROBLEM

We consider two-dimensional, incompressible flow in a porous
medium. The flow of fluids in a porous media is governed by

Darcy's law (Darcy 1856):
u = - fv(p +pgx) = Vo (2-1)

where U is the velocity vector, i the viscosity, p the density of the
fluid, k is the permeability of the medium, and g is the acceleration
of gravity. The quantity ¢ is called the velocity potential. Since

the fluid is incompressible, continuity yields:
- 2
Veu =V =0 : (2-2)

Thus, we are interested in potential flow: Laplace's equation

appended by some appropriate boundary conditions.

Two-dimensional potential flow can be studied experimentally by
means of an analogue developed by Hele-Shaw (Hele-Shaw 1898). The
motion of an incompressible viscous fluid between two fixed, closely
spaced parallel plates is such that the components of the mean
velocity (averaged across the gap) satisfy:

2

@) -,

(2-3)
2

- 2 (8r) _
12 8y> ¢y

<
]



6
where b is the spacing between the plates (see Lamb 1932, §330).
Comparison with (2-1) shows that the motion in a Hele-Shaw cell is

equivalent to two-dimensional flow in a porous medium of perme-

ability b2/12.

The experiments reported in the literature (Saffman and Taylor
1958, Pitts 1980) have been performed with the Hele-Shaw cell in a

horizontal plane. In this configuration, we assume that gravity has

no effect on the mean flow.

Consider the motion of a single finger of fluid penetrating into
a more viscous fluid in a Hele-Shaw cell of width a2 and gap spacing
b. The finger moves with velocity U and has width \a,
Y

Q

L AQ

4
9 \q" & X
| %

r

Figure 2-1t

Let the suffix @ indicate the more viscous fluid ahead of the finger,

suffix @ will denote the fluid in the finger. The velocity satisfies:

L2

uyg = Véy = - T2p; VP1
(2-4)

up = Ve, = - T2, VP,
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At the interface between the fluids there is a kinematic and a
dynamic boundary condition. The pressure jump across the interface
is balanced by surface tension. The normal component of velocity

must be continuous. Thus, on the free surface I we have:

P, =Py = T(2/b + 1/R)
(2-5)

y = Uy

where R is the radius of curvature, i is the stream function, and T

is the surface tension.

Upstream, fluid @ moves with uniform wvelocity V = AU, Inside
the finger, the fluid simply translates. The walls of the Hele-Shaw
cell are streamlines. Thus, we look for an analytic function wi(x,y)

which satisfies:

Wy o= oy gy
qu = % Va ony =% a
H2
¢y = (1291 R (E{)"’z on I' (2-6)
4’1 =
¢1 ~ A\Ux as x = 4+ ®

For T =0, p, 0, the flow region in the potential plane is a semi-

infinite strip, with given boundary values on the edges. A solution

in closed form has been obtained (Saffman and Taylor 1958):

< {4=Na , 1 us's -
== £n2(1+c05>\a)+Ut (2-7)

X0
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The solution for nonzero B, can be obtained by scaling the velocities,

but the shape is still given by (2-7).

The parameter A is undetermined by the analysis for T = 0,
Experiments performed with fluids having small interfacial tension
give values of A\ close to one-half. Comparison of the experimental
profiles with (2-7) evaluated with N = 1/2 yields excellent agreement.
Experiments where the interfacial tension is significant have values
of N\ greater than one~half. In these experiments, (2-7) deviates

from the measured profiles.

Pitts (1980) examined the motion in the vicinity of the interface
in an attempt to determine the parameter A\. DBased on experimental
observations, he formulated a model of the flow. The subsequent
analysis determines \ as a function of pU/T, and the profiles are
given by:

.- S Ty -
X = = log2(1+cos Xa)+Ut (2-8)
The Saffman~Taylor solution (2-7) and the Pitts solution (2-8) are
plotted against experimental results in figures 4-2, 4-3, and 4-4.

Although Pitts' solution yields better comparison with experiment, the

derivation of (2-8) cannot be considered rigorous.

Our analysis will be based on the hydrodynamic equations (2-6).
For nonzero surface tension, the flow in the potential plane is no
longer a strip. In a frame of reference moving with the finger, how-

ever, the potential plane again is simple,



um0v:i.ng ® Yixed T U

o} - Ux

moving - ¢ﬁxed

The wvariables are scaled to make the problem dimensionless:

¥ =7vy/a % = (x - Ut)/a
~ o lpmov:‘mg ~ ¢movin
Y = -1 Ua ¢ = T1-n) Ua
A (2"9)
- a%x/dy? a%x/dy?

|
1
T
[y
+
cLTcL
<%
[\M]
I
w
~
™~
| E—— ]
[
+
[o 9
>l>c >
(18]
| I |
W
<
™

Since we expect the fingers to be symmetric, we consider half of the
finger. In a coordinate systermn moving with the finger, the interface
will be a streamline. Dropping (7), the flow is as follows:

’4’=-l "Y

Pe0

t11

$243,\, 9o

& X

Figure 2-2
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The equations (2-6) became (dropping 7 ):

w = ¢ + iy analytic (2-10a)
G o= -1 ony=1 (2-10b)
2
T b 1 4 X
¢ = (75)3F) TN’ - Tx (2-10c)
12pU0 " 'a’ 1=\ R 1= on T
b =0 (2-104)
¢ ~ -x as x — +® (2-10e)

Since the flow in this frame of reference is bounded by streamlines,

the flow in the potential plane will have a simple geometry.

In Cartesian coordinates, the radius of curvature which appears
in the boundary condition is a complicated function of derivatives of
x and y. To simplify this term, we work with the magnitude of the
velocity q, and the flow angle 6 (Crapper 1957).

ge " = u +iv

u = gcos?9 (2-11)

v = gsin@

If s measures arclength along the interface, the radius of curvature is:

i _ 48 _ 96,d¢ _ .86
K =5 - 695 = 96D =0 (2-12)



i1

Since:

(2-13)

log(GZ) = -log q +i0

Then -log q and 8 are conjugate harmonic functions. Integrating
(2-13) along the interface (Y = 0) gives a parametric representation

of the finger:

¢
®0) = [ 222 a4
0 (2-14)
b .
8
y(@) = [ B5=de
%
The flow picture is:
AY Aﬁw
\ O ?o >
E ©O=T o) c 8 A
A
8 esm S ) E
o -
Physical Plane Potential Plane
Figure 2-3

On the interface AB, the nonlinear boundary condition (2-10c) is

applied.
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A conformal mapping is used to map the strip -1 < < 0 onto

the upper half plane:

:(\V-tbo)'ﬂ'
= e = s +it (2-15)
At
8 =
D @=Tr £1A h e:=T is
o |
Figure 2-4

Using Cauchy's integral formula, we can relate -log q to 6 along the

boundary. We have:

=

i
log q = - -1- #6‘ --LL.—GS,S-:S.TT ds! (2_16)

The integral is interpreted as a Cauchy principal value. The

boundary condition (2-10c) becomes:

2 s
_/Te \/bpf 1 80\ _ _t cos @
logs = (12pU (35 1-xsq(as T-x f1 gs 95179 (2-17)

Equations (2-16) and (2-17) constitute two equations for the two un-

knowns q and 8 on 0 < s < 1. One further scaling simplifies the

equations:
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q = (1-\g
(2-18)
5 =0 -
The equations become (after differentiating):
~ ~ d/~ do ~ ‘
q = kgs -&-;(qs 'a—g) +cos® (2-19a)
Q §
logq = -Trsr- -s—’_((sé'——zs_ ds!' (2-19b)
8(0) =0 8(1) = -n/2
(2-19c¢)
a@) =1 q(1) =0
where , 2 2
T b i
k = 12pU(a) (%)
1~
1 8(s!
log(1-1) = ;% 8lel) 4 | (2-20)

The boundary conditions for a and @ are given by physical con-
siderations. At the nose of the finger (s = 1), there must be a
stagnation point and the tangent to the finger must be vertical, At

the tail (s=0), the flow is uniform. Note that the boundary conditions

on a are consistent with the equations.

These equations are to be solved on 0 < s < i. After solving (2-19)

for q and 8, the coordinates of the interface are given parametrically
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1=\ cosh
x(s) ds
2
(2-21)
1-1 5 sind
1 as

1
[V
(1]

y(s)

Note that since y(0) = A, the width of the finger may be computed

either from (2-20) or (2-21).

In these variables, the solution by Saffman and Taylor (2-7) is:

~ - 1"S ~ - -1“"
Q = JT+s0 8p = cos " q
(2-22)
2-1
¢ = >
(1=2)

This solution can be shown to satisfy (2-19) for k=0 (see Appendix A).

The solution of (2-19) is known for k=0. Our interest will be
to solve these equations for k > 0, and try to understand the nonunique
behavior for k=0, The results of our calculations will be compared
with experimental data. To simply notation, the (~) will henceforth

be dropped.
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3. ANALYSIS OF THE EQUATIONS

There are two goals in the examination of (2-19). First, we
wish to calculate the profile of the finger and compute its width for
finite values of k. Secondly, the nature of the limiting process
k — 0 is to be investigated. For small k, a perturbation approach

is attempted. For finite k, (2-19) is solved numerically.

The coefficients of the derivatives in (2~19a) vanish at s=0 and
s=1, so we expect gingular behavior at the endpoints of the interval.
The theory of a regular singular point in ODE's suggest the solution
about s=0 is:

(¢ o]
B8(s) = s’ E a_s (3-1)
0

Substitution of this series into (2-19b) leads to terms like sZT, s3T
etc., which cannot be matched by (3-1). We therefore look for a

solution which begins: '

e(s) aisT + aZSZT + O<s3.r, 8, si+T)
(3-2)

sT+b

q(s) ZSZT +O(s31: s,sl'”)‘

1+b1

The expansion (3-2) is substituted into (2-19a):

T 27T 2 T 2 2T
1+bis +bzs +-'-—k('r as +T(3a1b1+4a2)s +° )+1- 55 4
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Equating coefficients yields:

2
b1 = kT ay
(3-4)
b, = k15(3a,b, +4a.) - a2 /2
2~ 171 2 1
For equation (2-19b), we must evaluate the principal value
integral. Using the result:
PSP
1 y 8 2
= dx = $ =7 =~ cot O
h XY X ﬁ+ﬁ-1 Yy M + O(y")
(3-5)
O<p<1
the expansion of (2-19b) becomes:
T 2 2T .
bysT + (b, - b5 /2)s%T 4
= aicotn'rsT + 2, coth-'rSZT
a a
1 1 2
-F(T-l +21’-1 +"‘>S+"' (3_6)
Equating coefficients:
’b1 = a,cotmT
(3-7)

bz-bf/Z = a,cot2mT
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Comparing (3-4) and (3-7) we have:

< cotmT = k (3-8)
T
The coefficients bi’bZ’ and a, are determined recursively as
functions of a,. As k —+ 0, (3-8) shows that T — 1/2, which agrees

1
with the Saffman-Taylor solution (2-22).

Since cotangent is periodic, (3-8) has multiple solutions,
suggesting that extra powers of s can appear in the expansion (3-2).
In particular, for k=0: T,z (2n-1)/2 are solutions of (3-8) for any
integer n. In this case, T, = (Zn-i)-rl, and no new powers of s
appear in (3-2). For k+# 0, the exponents {'rn} are not simple
multiples of one another. The expansion (3-2) takes the form:

T 27T
8(s) = 4318 T+ 2,8 F
T 2T

a 2+ a . e
+ 2218 2228 +

2
+ @45 + D,57 4 - (3-9)
The significance of this change in the local expansion will be

explored in Chapter 5,

At the right endpoint (s=1), an expansion of q and 8 in powers
of N1-s can be shown to be consistent (Appendix B). In this case,
the coefficients in the expansion are not determined recursively, but

are determined by integrals of 8 over the entire interval.
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The analysis at the endpoints suggest that the solution is
singular like s near s =0, and N i-s near s=1. The coefficients in
(2-19a) vanish nowhere else, and we expect the solution to be

analytic in the interior of the interval.
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4, NUMERICAL TREATMENT

We explicitly change independent variables in (2-~19) so that g

and 0 will be differentiable at the endpoints. Let:

1/2

= (1-57) (4-1)

The equations (2-19) become (using (3-8)):

= (cot 7) (1221) = (a5 gg)+cose (4-2a)
1 1 t !
logg = = fo (—1-‘%2—'-2-) 8(z")dz! - == ¥ (12"; )2z )MT dz' (4-2b)

1(1-2

l=z!

2)

8(0) = -w/2 8(1) =0
(4-2c)

q(0) =0 q(l) =

Note that z=0 is the nose of the bubble, while z=1 is the tail.

In these variables, 6 and q have at least two derivatives at
z = 1. The numerics indicate that 8 and q are even smoother, and
closer examination of the local expansion about s = 0 suggests the
term linear in s is missing (see Chapter 5). With this term missing,

g and & have three bounded derivatives at z = 1,

The integrand in (4-2b) is rewritten to remove the pricipal
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value singularity. In this form, the integrand is smooth and may be

evaluated numerically.

VT
/ 1/t , "
q(z) = 1-(1-22) exp{- TrL 2z > 9:([7;-) 9(z) / (l-z’z) dz'}

2 (a2 --29
[t
. exp‘{-;_'r— .é (1 2\) G(Z')dz}
Z'
]/'r
. exp{ 8(z)log(1-2%) -—(9(z) 9(0) log(l (1-2%) )} (4=3)

By suitable manipulations, the integrand may be made smoother, but
comparison of the exact solution (2-22) with the results of numerical

integration showed this was not necessary.

A three-point centered difference scheme is used to approximate
the derivatives in (4-2a), and the trapezoidal rule is applied to the
integral (4-3). The interval [0,1] is broken into N equal segments

of length h= 1/N. We set:

0, = 8(0) = -n/2
9N+1 =9(1) =0
o, = 8((i-1):h) 1<i<N+1

We wish to solve for the N-1{ unknowns {9 }1 2,.++,N using the finite
difference equations at the N-1 interior mesh points., Newton's

method is used to obtain a solution. All computations were performed
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on the CDC-STAR 100A vector computer,

Although both the trapezoidal rule and the centered difference
quotient are formally accurate to O(h 2), the error term involves
fourth derivatives. Since 6 and q have only three bounded derivatives
at z=1, we must expect loss of accuracy at this endpoint. Comparison
of the numerical solution for various mesh spacings indicate that the
loss in accuracy is slight, and that the numerical scheme is O(hz)

accurate throughout the interval,

The Newton scheme is said to have converged when the maximum
residual at the mesh points is less than 10-10. The accuracy of the
CDC machine is close to 13 digits, but the accuracy of the calcula-

tions is limited to about 11 digits (for N=100) by roundoff error in

the summations for the integrations.

After the Newton scheme has converged, the Cartesian coordi-
nates of the interface are obtained by integration, Using z as an

i.ndependént variable, the x and y coordinates are given by:

<o () [ (2 G e
(4-4)
v = (8 (2) 852 e

The width of the finger is given by:

1
1
log(i-)) = — f

22
_Z?_)e(z) dz (4-5)
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The trapezoidal rule is used to evaluate (4-4) and (4-5). Since y(l) =
A, the width of the finger may be calculated two different ways. This

provides a useful check on the accuracy of the calculations,

Although the equations are known to be singular for k=0 (1= %),
it was hoped that the system (2-19) has a unique solution for k>0
(r<3). Using the Saffman-Taylor solution (2-22) evaluated at A=4%
as an initial guess, an attempt was made to compute a solution for
T=0,48 (k = 0,273). Somewhat unexpectedly, the Newton scheme

converged quadratically,

To gain confidence in the numerical results, numerous tests
have been performed. The number of mesh points N was varied,
Solutions have been calculated for 25, 50, 100, and 200 mesh points,
The results agree to four decimal places. The initial guess was
varied, in all cases converging to the same solution (or diverging if
the initial guess was too far away). Since \ is computed two ways,
it provides a check on the accuracy of the method, For N =100, the

value of A differed in the fourth decimal place,

We perform continuation in the parameter 7. Using the previous
solution as an initial guess, Newton's scheme computes the solution
for the next value of T, Solutions have been obtained for 0,002 < 7
< 0.49 corresponding to values of k from 0.131 to 4 X 10'. For
very small, large gradients appear in 6 and q, and the numerics be-
come unreliable, As T approaches one-half, the Jacobian becomes

singular (Fig. 4-1),
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Figure 4-1 Plot of the logarithm of the
Jacobian versus the surface tension para-
meter k (50 mesh points).




24
The numerical profiles are compared with experimental results
in Figures 4-2, 4-3, and 4-4, For a given experimental profile, we
plot the numerical solution with the same width, This width is used
in the Saffman-Taylor (2-7) and Pitts (2-8) solution for comparison,
It should be noted that the fingers photographed by Pitts show a
systematic asymmetry, suggesting that the plates in his Hele-Shaw

cell might not be exactly parallel,

The relation between the width N\ and the parameter k is given
in Table 1. The numerical results are plotted against the experi-
mental results of Saffman and Taylor in Figure 4-5. The two curves

are displaced.

One possible explansion for this discrepancy is that the analysis
leading to (2-19) assumes that the finger completely expels the other
fluid from the channel, If we assume that the finger does not fill the
channel, but only fills a fraction t of the gap, the flow will be equiv-
alent to a finger which completely expels a fluid of viscosity tp

(Saffman and Taylor 1958).

Althouth no data are available concerning t in the Hele-Shaw cell,
a related experiment has measured the amount of fluid left behind when
a viscous fluid is blown from a tube (Taylor 1961), For 0 < pU/T <

0.09, the parameter t in this experiment is given by:
t=1 - (Mu/'r)i/2 - (4-6)

For comparison, we have used (4-6) as an approximation for t

to correct for the finger not completely filling the gap. As can be
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seen in Figure 4-5, this correction cannot fully account for the

experimental and numerical discrepancy,

Since the computed profiles agree so well with experiments,
there seems to be little doubt of the form of the boundary condition
(2-5). Further experimental work is necessary to obtain the appro-

T

priate values of t and T, and to understand the discrepancy in Fig,

4-5,

1 In the Saffman-Taylor experiment, T is measured by measuring the
rise of fluid in a capillary tube, There is some question whether
this measurement is appropriate in a nonstatic situation,
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5., PERTURBATION SOLUTION

Both experimental results for small surface tension and numer-
ical results for small k suggest that the solution to (2-19) varies
smoothly with k (Fig. 5-1), The nonuniqueness of (2-19) for k=0
poses some questions, but from experimental and numerical experi-

ence we will assume the solution to (2-19) may be expanded in k.

The local analysis of the solution about s = 0 shows that the
.exponent of s depends upon k, so that the solution about s =0 is
nonuniform in k., We therefore construct an "inner-outer" matched
asymptotic expansion, The inner expansion is given by (3-9). We
assume the outer solution may be expanded in powers of k:

2

90 + k91 + k 62 +

<D
H]

(5-1)

2
= q, + kq1 + k q, +

sl
!

The expansion (5-1) is used in (2-19), and like powers of k are

equated:
(" qy = cos 90
] (s )
qq = exp{- = #‘ S (s =5 s'}
S (5-2)
6,(0) = 0 0,(1) = -m/2
. qo(o) =1 qo(i) =0
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) 4 de,
9y = qqs 'd_s<qos ds) -~ 94sind,

1 8,(s")
9 = qO(_— Bg s' (ss-s) '>

k! < (5-3)
61(0) = 91(1) =0

qi(o) = qi(i) =

The leading order term in the expansion is the Saffman-Taylor
solution (2-22), Eliminating q in (5-3) we obtain a singular linear

integral equation for 91:

1 61(5')
% e ds' = .f(s)ei(s) -g(s) (5-4)
where:
f(s) = ﬂtaneo

d 0
‘n'sds(qos ds) -4

1 8,(s")
A = f 1, ds'
0 s

g(s)

constant to be determined a posteriori

The solution of this integral equation may be written down explicitly

(Carrier, Krook, and Pearson 1966):
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w(s)

f(S)g(S) gLs e
e,(s) = yg ds'’
1 2 2 Sl=s
f~ +w ,f +17 f2+11-2
w(s)
+c < (5-5)
(1-s)N £l m
where:
¢ = arbitrary constant
.4 f(s!) +i
w(s) = 2ri s’-s ( ')-1r1>ds'

with the branch of the logarithm chosen so that:

1 f+7i
O<""——-2ﬂ_i In(“———f_wi)< i (5-6)

The integrals in (5-5) may be evaluated explicitly (Appendix C).
The constant ¢ is chosen so that 91 is finite at s=0. The solution

to (5-4) is

_N1+d Ns(I-s) 1), oN136 _ Ns .
0y(s) == 56 A(” r——1+¢)+ T (ae)52 (1-2s¢)
N 1 [1+2¢°s¢(¢+2)
2(1+48)2 o+l
- T @eeet) 5(416) ﬂ} (5-7)
ZN1+¢s 2N(1-5)(1+4s) + (d-1)s+2

Note that 91(5) satisfies the boundary conditions in (5-3).
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To determine the constant A, we divide (5-7) by s and integrate
from zero to one. All terms of the integration cancel out, leaving A

undetermined. This merely points out the fact that the homogeneous

problem:
! O(s! 1 B(s'
¥ Usdas - ssr0() + [ Ao, (5-8)
0 0

has a nontrivial solution.

It is remarkable that (5-3) has a solution with no restriction on
the inhomogeneous term. Since the homogeneous equation (5-8) has a
solution, one would expect a solvability condition (Fredholm alternative)
to apply to the inhomogeneous term. The only restriction on the in-
homogeneous term is that it vanish at s = 0. An examination of g(s)
(Appendix C) shows that this condition is automatically satisfied for

arbitrary ¢,

At each order of the perturbations, we obtain an equation of the
form (5-4), with a diffe;rent inhomogeneous term. As long as the in-
homogeneous term vanishes at s =0, it is possible to obtain a
solution which satisfies the boundary conditions (5-3). Each term in
the expansion will contain an additional undetermined parameter,

corresponding to the homogeneous solution (5-8).

A local expansion about s =0 of 8,(s) begins with Ns, while 8, (s)
begins with Nslogs. 1In general, the nth order term en(s) begins
with \s logns. The expansion (5-1) is thus nonuniform at s = 0 and
must be interpreted as an outer expansion which must be matched to

the local behavior about s = 0.
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We expand the outer solution (2-22) and (5-7) about s = 0:

6)(s) = - NT7o N5 (143 (1-2¢) * OSZ>

0,(s) = Vi o [A(i - )+-§—Lﬁ9 +—1—10g(%:9)

T m 149 4
+ i— log s] +1—ZQ s + 0(53/210g s) (5-9)

Similarly, we expand the inner solution (3-9) in powers of k. Using

(3-8):

k 2
Z;;#-O(k)

-‘
1l
Do

(5-10)
2
ka1 {

= (1+xG - + O<k2>)

o
™~
1

The inner solution is:

) ka? 1- -5 ;0%
i 2
+71 S + Ofs, s

1k 2
5 = aq 1Ok

.5 37)

8(s)

a

2, 2
_k k"log™s n
a.luls(i ——-4Trlogs+ 32172 +O<(klogs) )

ka2

+—Zi- s(l - ZL_“_-log s + O((kIOg S)n)

+ i’ls -j-O(kZ) (5-11)

We now match terms. The coefficient a, is determined by matching

the s terms of (5-9) and (5-11):
a, = - NT+p + O(k) (5-12)
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We compare the Ns logs term:

S ——9*“; + O(k?) (5-13)

Using (5-12), we see that this term is matched. The terms linear
in s yield:
2
ka _
1 _, 1+d 2
I+t ® =k 7"+ Ok") (5-14)
In the local expansion (3-9), we allowed for the possibility of
terms linear in s. From (5-14), we see that the coefficient <I’1 is at
most O(kz). A closer examination of this term in the local analysis
reveals that it will generate additional singularities of the form slogns
from (2-19b) (see (B7) in Appendix B). Since these terms cannot be

matched, we conclude that &,= 0. The inner expansion is therefore:

i

T 2T 371

_ i i
8(s) = 1248 + 2,8 + 4238 + oo
T 27
2 2
+ 538 + 3,8 4 oeee (5-15)
+ -

Where T, is the next solution to (3-8):
T

3.9 2
2 % " Ggk + Ok7)

We expand (5-15) as a power series in k:
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8(s) = ,a 1/2(1-;}—-logs+ )
+ ays(t - S logs + o)
+ g2y s/ %(1-FEiogsy.) .
b a8 %(1-F10gs )
e

The local analysis determines 123 as a function of 12 ¢

.3
133 = TL(% - O(k2)>

The constant 22 is undetermined.

The inner-outer matching may be continued. Comparing the

3/2

s term, matching can be accomplished with the proper choice of

2n+1/2

In 2 similar manner, the term s can be matched by

221"
"n
choosing the coefficient ni of the s term. There are enough extra

constants to allow matching of these terms to arbitrarily high order.

Once the sZn+1/2 terms are matched, all of the constants in
the local expansion are determined. We are left to compare the
logarithmic singularities. We have shown that the Ns logs term is
matched to O(kz) (5-13). To match the more singular terms (e.g.,

Ns logns), it is necessary to compute the O(k™) term in the outer
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expansion. Although possible to do so, the labor would be prohibitive.
Instead, we keep track only of the most singular terms in 92(5). We

find:

92(5) = - —144'2 Ns logzs
32«
(5-17)

+ O('\fs_ log s)

By comparison with (5-11), we see that this term is matched with the

inner expansion.

With enough fortitude, terms may be compared at any order.

To summarize, we have shown that the following terms match:

52n+1/2 matched at all orders
Ns log s - matched at O(k)
’s/‘glogzs - matched at O(kz)

s - matched at O(k)

The width of the finger is given by:

18,(s") 16,(s)
log(1-)) = ;i-{fo S—adst+k [ = 4 }
0

let:

A=A + kX, + Ok?)

0 1
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We have:
_ No+l
e G
(5~18)
1=\
- 0
>\1 =- = A

Note in particular that )\0 and )\1 are both undetermined. In fact, we
can expect to get an additional arbitrary constant at each order of

the perturbation expansion from the homogeneous solution to (5-8).

The width of the finger is also given by (2~21). It can be

shown that the perturbations satisfy (2-21) to O(k).

The width of the finger is not determined by the perturbation
expansion to the order considered. This presents a conflict with the
numerics, which suggest that (2-19) does have a unique solution for

k # 0.

The perturbation éxpansion is peculiar for two reasons. Since
the homogeneous problem (5-8) has a nontrivial solution, we would
expect a solvability condition (Fredholm alternative) to fix the param-
eter ¢ in 90(5). In this problem, the inhomogeneous term wvanishes
at s = 0, and the solvability condition is automatically satisfied. The
second unusual feature is in the inner-outer matching. We would
expect that constants in the outer solution would be fixed by the local
matching (Van Dyke 1975}, Although some constants are determined,

the crucial parameter ¢ apparently remains arbitrary.
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6. THE CONFLICT BETWEEN NUMERICS AND PERTURBATIONS

In an effort to resolve the discrepancy between the numerical
computations and the perturbation expansion, various numerical
"experiments" have been performed. The. results have agreed in all
cases with the previous numerical calculations, but have not shed any

light on this discrepancy.

The major assumption in the perturbation expansion (5-1) is
that the outer solution has a power series expansion in k., This
assumption implies that N also has a power series expansion in k.
To investigate this hypothesis, computations were performed for small
k., As k—0, the Jacobian becomes singular, and it is necessary to
use a large number of mesh points to obtain a reliable solution (in-
dependent of mesh spacing)., As a result, computations become very
costly for small k, and cost considerations introduce a practical

lower bound for the computations,

Computations were performed down to k = 0,038, Using 100,
200, and 250 mesh points, the computed value of the width varied by
1%. For larger values of k, the width varied no more than 0.1%,
The results are plotted in Figure 6-1, The \A-k plot neither confirms
nor denies the form of the expansion (5-1), In particular, it is not

clear whether the curve approaches k=0 with finite slope.

As a second test, the parameters ¢ and A are chosen to fit
Figure 6-1. With these values used in (2-22) and (5-7), the first two

terms of the outer expansion may be compared with the numerics for
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small k., With the proper choice of ¢ and A, the numerics and
perturbations indicate consistency for small k, but no conclusions

may be drawn,

The perturbation analysis and the local expansion about s =0
both suggest that the coefficient, ;a, of the s-r1 term is arbitrary.
To test this feature, we use the first two terms of the local expan-
sion (5-15) to approximate the value of 6 at s = Sy. Recall that s =0
corresponds to z = 1 in the "numerical® variables (4-1). The local
expansion gives a value for 6 at z = 2y depending on 124 where 2y
is one of the mesh points {1-h, 1-2h, 1-3h}. This is used as a
boundary value, and the numerical scheme computes a solution on
the reduced interval [0,z1]. ”Experiments have been performed with

various values of k, ,a,, Z4, and h, A typical result is plotted in

Figure 6-2,

As can be seen from the figure, the solution of the "reduced"
boundary value problem oscillates, then quickly approaches the
solution of the full problem. These oscillations (which are mesh
dependent) indicate that a solution to (2-19) does not exist for

arbitrary 124~

Equation (2-20) determines the width \ after 6 and q have been
determined from (2-19). The perturbations suggest that A is arbi-
trary. Using lLagrange multipliers, we include the extra equation

(2-20) into the numerical scheme. Consider the system:
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4 48\ _ -
q-cos@ - kgs as (qs s af(s) =0

1
3 ds'

)
(s'-s)

logq = = 'TS? #'Sl
(6-1)

Loret
log(t-3) = = [ &l gq
0

6(0) =0 o(l) = -w/2

where £f(s) is an arbitrary function which vanishes at the endpoints,
The coefficient a is an extra variable to be determined by the cal-
culations, A solution to the original system (2-19) will correspond

to a=0.

The numerical treatment of (6-1) is identical to the treatment

of (2-19), The function f is taken to be:
_ 2
f(z) = z(1-27) (6-2)

We choose A and k and compute the solution {e;a}. The width \ is
varied for given k until o = 0, which corresponds to a solution of
(2-19). A typical \ - a plot is given in Figure 6-3. For T=10,49,
the curve passes through « =0 when X =0,523, The numerical result

for the system (2-19) indicates that A\ = 0,524 for T=0.49,

No inconsistencies have been discovered in either the numerics
or the perturbations, In the numerics, the replacement of the con-

tinuous equations (2-19) by a system of finite difference approximations
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is open to question, In the perturbations, the form of the expansion
(5-1), the convergence of the expansion, the possible appearance of
transcendentally small terms, and the possibility that terms cannot be

matched at higher orders are all unanswered questions,

This author believes that the numerics are correct, and the
perturbations are somehow inadequate. The volume of numerical
computations and the excellent agreement of the numerics and experi-
ments lead to this belief, An independent investigation is necessary

to confirm or deny this proposition,
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7. LINEARIZED STABILITY ANALYSIS

We wish to investigate the stability of the interface between two
fluids, We consider small, time dependent perturbations of a steady
flow, For small perturbations, we use a linearized analysis. Two

cases are considered: the plane interface, and the steady finger.

The stability of a plane interface in a Hele-Shaw cell has been
studied by Taylor and Saffman (1958), We reproduce their results
here for the purpose of discussion. Consider two fluids propagating

in the cell with velocity U:

[ S
@ \
\
» \
|
- U ¢ > X - U
I
— ] i
/
!
/
y
-0
Figure 7-1

The interface is perturbed by a disturbance:

x=A e e (7-1)

At the interface, the normal component of velocity is continuous, the
free surface must satisfy a kinematic condition, and there is a con-

dition on the pressure. The linearized form of these boundary condi-

tions is:
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8%y 2%,
9x =~ 9x
84 _ 9x -
5x - B¢t (7-2)

2
12( d™x
12 (18, - nyey) = TS
2 \Ba®2 7 By ay?

to be satisfied on x=0, A solution to Laplace's equation satisfying
(7-2) may be obtained if o satisfies:

2 2
_omb? 120, _ ,_ @ _
“n ¥ 12 a.(p.i-i—p.z){bz (by=pa) = ) T} (7-3)

A case of interest is where the driving fluid is a gas, i.e., ;12:0:
(1) ()
12 a
o (1- lZuU) (b) )
nmT (1 - an)
k= (1ZMU) (b>

For no surface tension, (k=0), perturbations of all wavelengths

q
(=]
]

[
= P
]}

(7-4)

where:

grow exponentially, For finite surface tension, the short wavelengths
(large n) stabilize, At a finite value of the surface tension parameter,
k =1, disturbances of all wavelengths become stable. This is

illustrated in Figure 7-2,
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Y
o?

> K

Figure 7=-2

We expect that surface tension will have a similar effect when
we consider the stability of the fingers. In particular, we expect
that the long wavelength perturbations remain unstable longest as the

surface tension parameter is increased.

The stability analysis for the finger proceeds in a similar
manner. This formulation is identical to the stability investigation

of water waves (Longuet-Higgins, 1977),

In the physical plane (Fig. 2-2), the steady finger is bounded
by a strearmnline =0, In the unsteady problem, the interface is

described by:

»
|

= xo(d 4 + & (4 b t)

= Vold 4) + € n(ds Yy t) (7-5)

4
]

EF(¢, t)

on U]
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where: £ and n are the perturbations of the steady finger x The

0’ Yo
free surface is a material surface moving with the fluid, so we have

the kinematic condition:

D W-eF) =0 on y=¢cF (7-6)

where —DQE is the convective derivative. We write out (7-6):

2] 0 9 oF F
Frtug vy e gr-c3g (Fheuge vy

é"le

) =0 (1-7)

on = EF

We wish to work in the potential plane, that is, use ¢ and ¢ as
independent variables. Thus, we must rewrite (7-7) as an equation

for x and y (or q and @) as functions of ¢ and §. We have:

b '(“‘x"t + “’yyt) =vx, - uy,

(7-8)

¢y '(¢x"t + 4’th) T SUX VY

Using (7-8) in (7-7), and retaining only terms linear in the perturba-

tions £, 7, and F, we obtain:

2 . _
F.+q Fq, +qcosdn, - qsmegt =0 (7-9)

ony =

where q and 6 are the velocity and flow angle as defined by (2-11).
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The second condition at the interface is the pressure boundary

condition (2-10c). We must write an expression for the curvature

in the potential plane:

G G’-2G6GG +G_G?2
[Gz+02]
x

Y
% =

¥ (7-10)

G(x,y) = ¢ -&F

G = 0 is the equation of the interface. It is possible to perform the

straightforward (but tedious) change of variables to obtain the curva-

ture (7-10) with (¢, y) as the independent variables:

=90, + 5(aF yp - 94F,) + oE?) (7-11)

The pfessure boundary condition (2-10c) is

2

' Tb 1 X
¢ = 5 " T (7-12)
(12pUa2(1-k)) R IEDY
on y =€F

We use (7-11) in (7-12) and expand =x(¢, €y) in a Taylor series about

$y=0. Keeping the terms linear in &, we have:

Tb .
(12 UaZ){F(qg¢ Yo¢ +q¢/q)  QFpem 34T, ¢} E+F SI; +g(t) =0 (7-13)

ony =
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where g(t) is an arbitrary function of time. The independent wvariable
is scaled by (2-15) and the dependent variables are scaled by (2-18).

Equations (7-9) and (7-13) become:

~ 2 ~
Ft - ns(—igx) I:"s = (_1%{) (cosant - sinf §t)

(:sgis)2

~ ~ 2 d ~ ~ 4
(1-0kF(a(s8) - s S(sq,) + + s 5= (sF,) (7-14)

F
- s°3,F } ¢ - Esind () g -
q
We must find a complex function § +in which is an analytic function .
of s +it and satisfies (7-14) on t = 0. Let us reconsider the flow in

Figure 2-3, this time including the entire finger:

"Y 4' L 4
e d h 9
a \
o € o # £
> -+ -
: X c - >3
<
qQ h é e
- -t -)
Physical Plane _ Potential Plane
Figure 7-3

We perform a Schwartz-Christoffel transformation to map the potential

plane into the upper half plane:
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w(Z) = ¢ +1i¢ = - 21og (1-2%) + ¢, (7-15)
AImZ
d e o Y -91‘5 ;Rel
= o |
Figure 7-4

where the branches are chosen appropriately.

A second conformal transformation will map the upper half

plane onto a strip:

Z = sinQ , Q=u+iv (7-16)

d AY N
elo b fiq > U
) -T/2 Q 1‘/7_

Figure 7-5
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To complete the problem, we must describe the boundary conditions
to be satisfied by § and n along the walls de and hg, and the condi-

tions far upstream dch.

In the unsteady problem, the changing area A of the finger
must be balanced by an additional flux of fluid upstream. The

boundary condition in the physical plane (Fig. 7-3) becomes:

¢=-1+-2_—8-F+c(t) ony=1
(7-17)
g = 1--;-2-‘%-+c(t) ony -1
In the potential plane the boundary condition on § = 1 becomes:
19
1 -yo(cb, -1 +3 %% +c(t>+ sn(d), 1+2 at +c (t))
1 9A %0 2
= Vo4 -1) + (535 +c(B) 57" (6 -1) +En(d =1) + O%)
19
i =1) = -(32 4 ¢ (t)) 5y (4 - (7-18)

with a similar boundary condiﬁon to hold at ¢ = +1. -%‘-:‘- can be
related to F at the endpoints, and can be shown to be zero (Appendix

D). We choose c(t) to be zero. Thus we have:

n{¢,=- 1) = n{$, 1) = 0 (7-19)

We consider symmetric and antisymmetric disturbances separately.
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The most general analytic function of Q which satisfies (7-19) and

vanishes upstream is:

symmetric:

0
£ +in = ec't Z a_ eZmS'Z
0
a_ real
n
{7-20)
antisymmetric:

o0
£ +in = ecrt an e(21:l+1)132
0

bn pure imaginary

The coefficients a, and bn are chosen to satisfy (7-14) on v =0,

Taylor and Saffman (1958) solved the stability equations for no
surface tension. They worked in a frame of reference where the
finger is moving. In our frame of reference, we can reproduce

their results. We set k=0 in (7-14):

9
F = {Toems 180 - &}
(7-21)

2
Ft - ws(-fg—i) Fs = -f-x(cosent - sin9§t>

We eliminate F from (7-21) and use the Saffman-Taylor solution (2-22)
for g and 8. For simplicity, we take A= 1/2 (¢ = 0). The system

(7-21) becomes:
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(1=5) &, - Ns(I-s)n, - g +2m [§-g-2s(1-5)§ ] = O (7-22)
For no surface tension, cbo =0, so s can be written in terms of u:
s = cos’u (7-23)
Equation (7-22) becomes:
(sinzu) §t + (sinucos u)nt- gt+21r[§-g +cosusinu§u] =0 (7-24)
We consider the symmetric perturbations (7-20):

[+ o]
£ = et Z a cos2nu
0

9
n=e’t ; a_sinZnu (7-25)
g(t). = e‘rt

Using (7-25) in (7-24) and equating Fourier coefficients, we obtain a

recursion relation for the an:

a.i ao
n=0 zw[ao-g-—z—]+o'["§"g]=0
(7-26)
n>0  -m(atte,  +@refa + (v@-1)-F)a, =0
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The series (7-25) will be finite if

o = 2mm
(7=27)
m=20,12 --.

In particular, m = 0 represents uniform translation of the finger,

while m = 1 is the perturbation:

_ §y 2wt
£ = ao(i + 3cos Zu)e
(7-28)
a . 2rt
n = -——3 sin2u e

The eigenfunction associated with the eigenvalue o = 2rm will contain

the first (m + 1) Fourier components.

This result was first obtained by Taylor and Saffman (1958).
Since the eigenvalues o are all positive, the linearized stability
analysis suggests that the fingers are all unstable, a conclusion which

does not agree with experimental observations.

To examine the stability of the fingers for nonzero surface
tension, we look for numerical solutions of (7=-14). We rewrite (7-14)
using z as an independent variable, as defined by (4-1). Rather than

using F as the dependent variable, it is convenient to use:

W= F/q (7-29)
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which can be shown to be bounded (Appendix D). The equations are:

2 2

2
2 lagz 1 d l=z
(1=Nk~ {W[q 2z2>9z] + Wz[ia-z-<q 2z )J

2
+sz[q 12155)] }-g-wsine(i-x) +g(t) = 0

1- 1 .
W, + 117-T>\ Z:Z) 1(-1x (aW), = 'I-_i<°°59”t' sin9 gt) (7-30)

The solution q and @ are computed from (4-2) on the upper half
of the finger (0 <z < 1). Using symmetry, g and @ may be continued
for -1 <z < 0. The definition of q and @ (2-11) allows for some
freedom in choosing their parity. In particular, the only require-

ment for a symmetric finger is that:

gcos#® even

=]
]

(7-31)
qsin® = odd

<
n

We choose a smooth continuation of q and @ for -1 <z < 0 such that:

q(-z) = -q(z)
sin8(~-z) = sin0(z) (7=-32)
cosf(-z) = ~-cos0(z)

This corresponds to the following picture:
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aY

=1
=0
2=\
=01 bR2_ > X
e=- /7_
e ={
%:-1
’ei-'lf

Figure 7-6

Using this continuation for q and 9, it can be seen that the solutions
to (7-30) can be divided into symmetric and antisymmetric perturba-

tions. We consider the symmetric perturbations:

©
£ = et Z a cos 2nu

a, sin2nu (7-33)

b _cos(2n-1)u
n

The form of W is dictated by the requirement that W vanishes at the

endpoints.,

The relationship between u and z is:

5 1/2
cosu = (1-27) (7-34)
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We solve for the coefficients {an, bn} be collocation. The
series (7-33) is truncated at a finite number of Fourier modes, say
N, and the coefficients {an, bn} are chosen to satisfy (7-33) at N
equally-spaced mesh points in (0,1). This leads to an eigenvalue

problem for o of the form:

(a-omy) * () =

where A.N and BN are square matrices of order (2NX2N). Since we
know the solution to (7-35) when k=0 (e.g., (7-28)), Newton's method

is a good choice to follow the eigenvalues for k > 0.

The truncation N of the Fourier series is varied to obtain the
eigenvalues. Since we know that the smallest eigenvalues include
only a few modes for k=0, it should be possible to obtain a good
estimate of the eigenvalue using only a few modes for k>0. We have

computed the lowest eigenvalue using N = {5, 6,8, 10, 12, 15 }.

Since the stability equations (7~30) involve second derivatives of
W, the truncated system (7-35) is very sensitive to the truncation N,
and truncation errors in the coefficients in (7-30). To obtain -
accuracy in the eigenvalues o, it is necessary to know the coefficients
accurately. For this purpose, we have used a large number of mesh
points (240) to ‘compute q and 6. The centered difference quotients in
(4-3), although O(hz) accurate, produce errors in the high harmonics.

Richardsen extrapolation helps to suppress these harmonics.
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The lowest eigenvalue, following the Ty = 2w branch, has been
computed for 0 <k < 1, With Richardsen extrapolation performed on
the coefficients, the computed eigenvalue did not vary more than 1%
as the truncation value N was varied. The results are plotted in
Figure 7-7. This eigenvalue remains real and positive throughout
this range of k, indicating the finger is unstable. Experimental

results indicate that the finger is very stable in this range of k.

The two-dimensional, linearized stability analysis predicts that
the finger is unstable to small disturbances. This is in variance
with experimental observations. A proper treatment of stability
should include three-dimensional effects to recover the experimental

results.
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8. OTHER STEADY SOLUTIONS

We have examined two possible steady shapes for the interface
between two fluids in a porous media: the plane interface and the

finger. We are interested in other possible steady configurations.

The stability plot, Figure 7-2, shows the eigenvalues o passing
through zero for various values of k., Each of these zero-crossings
indicate a new steady state solution. The analysis in the previous
chapter was a linearized analysis. We will be interested in con-

tinuing these steady=-state solutions to finite amplitude.

Consider the following steady flow:

aY
o
) ®
\ ;
Ny .
- K — J
—>
-a
Figure 8-t
The interface is:
f(x,y,t) = Ut + ny) =x =0 (8=1)

The boundary conditions at the interface are: continuity of normal

velocity, the kinematic boundary condition, and the dynamic boundary

condition:



9¢ 9¢
1 __2
@on - on (8-2a)
.D_f_-_U-¢ +é.n_ =0 (8-2b)
Dt x yy
2 n
Tb
p2¢2 - ”14)1 =3 ¥y 372 + constant {8-2c)
[1+(n ]

For upstream and along the walls we require:

¢1~Ux agx >+
¢Z~Ux asx ~—> =% (8-3)

=0 aty==*a
¢Y y
A steady solution which satisfies (8-2) and (8=-3) is:

Ux + (constant)

by
(8-4)

¢2 Ux + (constant)

Equations (8-2a), (8-2b) and (8-3) are automatically satisfied. (8-2c)

becomes:

3/2
n_ +c2 [1 +(ny)2] n =0 (8-5)

where c” =
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The solution n is required to be periodic of period 2a. We fix the

origin by taking:

n(-a) =0 (8-6)

n(a)

The dependent and independent variables are scaled to make the

problem dimensionless:
n =n/a y =y/a (8-7)

Dropping the (~), the scaled equations become:

3/2
knYY+ [1+(ny)2] n=0

n(t) =n(-1) =0 (8-8)

2

k= 250 (3) -

Equations (8~8) are analyzed by perturbation methods. We take:

2
"8771 +8n2+"'

n_
k =ky + &k, +°°° (8=9)
0<eg <<t

The expansion (8~9) is used in (8-8). We equate like powers of E:
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£ koniyy +ny = 0
(8-10)
ny(1) =n(=1) =0
e . k +n, = ~k,n
’ OnZ}ry 2 1'1iyy
(8=11)
ny(1) = ny(=1) = 0
3 . . _ 3.2
& KoMayy t M3 = ~kpflyou = 301y M
(8-12)

n
o

n3(1) = n3(-1)

Equation (8-10) has sine and cosine solutions. For simplicity, we con-
sider only the sine solution. The analysis is identical for the cosine

solutions. Take:

ni(y) = asinnwy
(8-13)
k, = (1/nm’

This solution is substituted into (8-11) and (8-12). Since we
require 7n to be periodic, we must choose ki and kz to suppress
secular terms, that is, k1 and kz are chosen so that the inhomogeneous

terms do not contain multiples of the homogeneous solution. We obtain:
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(8-14)

3/8 a2

o
]

For the equation (8-8) to have a nontrivial solution, the parameter k

must satisfy:

2

k= () +2ea)? + 0’ (8-15)

The linear part of the solution (€ = 0) agrees with the results

previously obtained (Fig. 7-2).

For finite amplitude, equations (8-8) are solved numerically.

The amplitude of the solution is defined as:

2 1
Hnll = f1 n“(y) dy (8-16)

For the perturbation solution:

]

2
ol

e |ln, Il + oe®

(€2)® + o((aa)4) (8-17)

We fix the amplitude ||n||, and compute the unknowns {’72’ "',nN;k}
by satisfying (8-16) and (8-8) at the (N-1) interior points. We follow
the symmetric and antisymmetric solutions independently. Newton's

method is used to compute the solution.
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Euler continuation is used to follow the finite amplitude
branches. At a finite value of the amplitude, the determinant of the
Jacobian changes sign, and the Euler method comes to a halt. It
would be possible to follow these branches farther using a more

sophisticated continuation scheme, but we have made no effort to do

so.

Results have been obtained for a number of the antisymmetric
perturbations. The numerical results are plotted along with the
perturbation analysis. The lowest order symmetric branch has been
followed up to the secondary bifurcation point. The results are

plotted in Figures 8-2 and 8-3.
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9. DISCUSSION

We have derived the equations for the shape of the interface
between two liquids in a porous medium or a Hele-Shaw cell. A
numerical study of these equations suggests that including surface
tension in the description of the problem removes the nonuniqueness
of the Saffman-Taylor solution. The numerical profiles have been

shown to agree with experimental observations.

A perturbation expansion of the solution has been obtained as
an expansion in the surface tension parameter. At each order, the
terms in the expansion satisfy a singular integral equation, which
can be solved in closed form. The expansion is nonuniform and must
be matched to an "inner" solution at s = 0. To the order considered,
the expansion has been shown to be formally self-consistent, but the

width of the finger remains undetermined.

The numerical solution and the perturbation expansion yield con-
flicting results. The discrepancy between the two has not been
resolved. Since the numerics and the perturbations are both found to
be self-consistent, the resolution of this conflict will require a very
subtle analysis. The author favors the numerical results due to the

excellent agreement with experiments.

Taylor and Saffman (1958) showed that the fingers are unstable
to small disturbances. This instability has not been removed by
including surface tension in the analysis. Since this result is at

variance with experiments, it is believed that three-dimensional effects

must strongly influence the stability of the fingers.
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The plane interface and the extended finger are only two
possible steady flows. We have briefly considered additional steady
profiles, By perturbation methods, we have shown that steady
profiles bifurcate from the plane interface at particular values of the
surface tension parameter, These bifurcated branches are followed
numerically to finite amplitude. The numerical continuation comes
to a halt when a sign change is detected in the determinant of the
Jacobian, suggesting some sort of secondary bifurcation, The nature
of this secondary bifurcation, and the stability of the bifurcated

branch have not been investigated,
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APPENDIX A

For no surface tension, the solution given by Saffrmnan and

Taylor is:

zZ, =xf+iyf ;
w “ \U0a
_ f 2(1i=)\ 1
- ""'w*'i_')w alog2(1+e ) + U (A1)

where We = ¢f + ixbf is the potential in the fixed coordinate system. In

a frame of reference moving with the finger, we have:

N4 . =w, - Uz .
moving f moving
(A2)
Zmoving - %f = Ut
™m Tz
w_ +Uz - -5
. _m 2(1-2) i — AUa Aa
z = Xij + = alog2(1+e e ) . (A3)

The interface is given by q;m = 0. An examination of (2-17) for T =0

shows ¢0 = 0, thus:

- (A4)

]
1}
o

Performing the scaling (2-9) and (2-15), we have:

Loz R
'ZSZKe 2>\=1+s e (A5)
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Solving for z:

’z‘:-%}{log(ﬁ + Ns-1) +(%) log s} (A6)
using:
dz _ 1 _i0
dw ~ q
= (=7s) ‘g—:' (A7)

we solve for q and ©:

(1-Nq =73 = [{2%

8 =cos " q (A8)

2A-1

T ea——

(1-2)°

We now wish to verify the solution by direct substitution into

(2-19) that is, show (A8) satisfies:

1 ~
~ s 0 (s!'
logd=-2 ¥ St s
{ ~ s'=1 -
_5 e(s") __41 s'-s 4 s'-s1d@
- yg Si(srog) ds' = -5 log [2 g(s')s.=0+v log| =72 |2 ds'
1
1 NI la '
= 5 log(1-s) - Mt § 1o |8=s L ds (A9)
v s Nsi(l-s) ~*% ¢
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The principle-value integral on the right can be evaluated by con-

sidering the following contour integral:

sl=s 1 i
{log( S,) ey m ds'

Pt

2wi(Residue at a) + f =0 ‘ (A10)
‘ C
2

By defining the proper branches along SPY the real part of (A10) gives:

ysi log §-8 1 i ds' = wlog ass| |:5.(1--a.)l“1/2 All)
o | s le'2 ey s

log 4 =3 log (1-s) - 5 log(1 +s¢)

Thus, (A8) is shown to be a solution of (2-19) for T = 0.
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APPENDIX B

To examine the solution of (2-19) near s = 1, we make the

change of variables:

t = 1l-38 (B1)
The equations become:
_ d ., 48

q = kq(1-t) —dt(q(i t) ——dt) +cos @ (B2a)

1 o
logq=+ % Lt g 1 a (B2b)

" tt=t

g o1 o(t")

A== fo T dt! (B2c)

The solution of (B2) for k = 0 may be expanded in a series in NE, so

we try an expansion of the form (B3) for nonzero k.

a(t)

i e & @
2+a1~IT+a2t+

(B3)

0

q(t) bl'ﬂ' +byt 47

This expansion is substituted into (B2b). Expanding the logarithm, we

obtain:
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1 b,
log b1 +§-logt +E~/’E + O(t)
1o() +XZ
=41 —_ 2 gp o LAt
= = fo pop o dt' - S log) + A (B4)
Taking the limit t — 0 in (B4):
I +12'-
log b1 == —F——_dt' +A (B5)

0

The coefficient b1 is determined as a global integral of 8 over the

entire interwval.

The expansion (B3) is inserted into the differential equation

(B2a). Equating the constant term, we obtain:

1
a2b1 +5 bZal =0 (Bé6)

Consider the integrand in (B4). Since:

1

! 1-t
fo Top @' = 1 +tlog (<5 (B7)

the expansion of the integral will include terms of the form tnlog t.
Since these terms cannot be matched, their coefficients must be set

to zero. Thus:

a, = a, = ««» = 0 (B8)
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Using this result in (B2a) shows that the expansion of q does not

contain any integral powers of t:
b = b = s e = 0 (Bg)

Thus, (B6) is satisfied identically.

At each subsequent stage in the expansion, the differential
equation (B2a) specifies a relation between the coefficients {ai’bi}
(e.g., (B6)), while the integral equation (B2b) gives integral conditions
on the {bi} (e.g., (B5)). The expansion (B3) appears to be

consistent and terms can be matched to high order.
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APPENDIX C

The second term in the perturbation expansion of 8(s) is:

£(s)e(s) eW(s) 1 (s) e-w(s') ew(s)
0,(s) = H2EE) [ 5= ds' +¢c (C1)
£ 4 2.2 0 [Z, 2 (1-8) N2 12

where i(s), g(s) and w(s) are given by (5-4) and (5-5). We now

evaluate these terms:

o (HOewN L, (tango“)
Sl f(t)-mi/) " Zm 2B, - 1

i . . .
sy (m +2nmi - 2190)

e
0
T (€2)

N

where n has been chosen to satisfy (5-6).

1 o
i i 0
w(s) = _% oy {E-—_n_ }ds'

1 6.(s'") 10,(s')
_ L. i-s s 0 1t %
=3 log( - ) - _{) s (s'=8) ds! “‘é = ds!

i i-
= Elog(-—s-s-) + logqo - log(1=1})

w(s) _ 9 i1~-s
N T2 N | (C3)
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Evaluating g(s):

s
g(s) = - TN1+d (1-2s¢) - A (C4)
4 (1+s6)> 2
#1 gsn) V06D g xtasy & ds!
S'=g T ooq sl=s i=-3!
0 ]sz'z

i
=_-(—1—-—X)A# —-—1—_ s' ds'
K 0

S'=8 l-g7

1 f 1
UM g — (=28'6) _L 450 (cs)

0 (14s'¢)>/2 s'-s T=s’

The first integral in (C5) may be evaluated by considering the contour

integral:

By parameterizing the path c,, we obtain:

1
F -+ S ds' =1 (C6)

0 s'=5 lags!

The second integral in (C5) is more difficult. We write:
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1

g' ( s! ) 1-2s5'd ds!' - ?‘ l«-2s5'd ds'
0 575 (s141/4)° % NT=s7 (s+1/¢2 s~/<s'+1/¢><1 AL
! b s1a-2519) 1 fi 1289 _ 400 (cay

ds
(s+]/¢) 0 (s'+Vo) 3/7'\}1 s! s+l/é 0 (s’+]/¢)5/2~/1-s'

In the first integral of (C7) we change variables to: t = s'=s, In the
second and third integrals, we let t=s' +1/4. In both cases we are

left with integrals of the form:

fb (polynomial in t) dt

a taquadratic in t

(C8)

This integral can be evaluated (laboriously) by indefinite integration.

After considerable algebraic manipulation, we obtain:

1
L 1-25'd g 1
(== ) ds' = { 1-¢-254(2d+1)
go 8'=5" (o14 1/6) 7% NTTo (s +1/6)° (¢+1)2( )
pslaoset) g s(144) )} ©9)
N(s+1/6)(1-s) 2N(1=5)(1+ds) +(d-1)s+2

Combining all the terms into (Cl), we have:

~/1+ s
8,(s) = q,sin@ (1-28¢) - =
t 0 ( (14s4) 72 )

[i=s s{ (1-N) N1+ [
=(1=A)A -
"“ M) L (14s4) Ho1)?

(1 ¢-2s¢(2¢+1)

s(2ds-1) 1og( s(1 +¢) )]}
N(1+ds)(l-5s) 2N(1-5)(1+¢s) +(d=1)s+2

+ (1-cx)w (1+15¢) JT;; (C-10)
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The constant c is chosen to cancel the 1/As singularily at the origin.

Finally:

_Ni+d Ns(l-s) { 1 A 1+ Ns .
6, (s) = M2 MEoasl qa(y ) A el ARG
Lt [1+2¢-s<b(dz+2) I=a(24s-1) Log(——s(it0 >]}
2(1+s¢f ¢+1 2NT+9s 2N 8)(1408) +(d-1)s 42

(C-11)
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APPENDIX D

The change in area due to the perturbation is:
A=[ &ds (D1)

where & is the normal displacement due to the perturbation, and ds
is an element of arc length. There will be an extra flux of fluid

proportional to:
a
A, = il §, ds (D2)
f

We define y to be the angle of the normal with the horizontal.

The normal displacement 6 is:
6§ = (6x) cosy + (6y) sinvy (D3)

where (6x) and (6y) are the horizontal and vertical displacements due

to the perturbations. The interface is:

dx, 2
x(¢, EF) = x(9, 0) +EF Em (9, 0) + €E(d,0) + O(ET)

¢ 2
v(9, €F) = y,(, 0) +&F W(@ 0) +en(d, 0) + O(e°)

ox

= sx=5(F 52 (6,0 +£4,0) + O?)
§v = ?_Yﬂ 2
y = (F 552 (6,0) + (4, 0)) + Oe?) (D4)
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Using the transformation (2-13) we have:

%% cosy

g q

oy .

0 sin

-0 _ _ siny D
8y q (P3)

Thus, the normal displacement is:
6 = S(§c03y +nsiny - E.) + 0(82) (D6)
q
The kinematic condition (7-9) is written in terms of the angle vy:
2 : -
Ft+q F¢—qc05y§t-q51nynt-0 (D7)
Thus, we have:
. 6!: = 8qF¢ (D8)
a
=> At = Sff‘ qu)ds
a
d
= F —é
eff ¥4 q
= gF(a) - €F(f) (D9)
For an antisymmetric perturbation, F is even, so At vanishes imme-

diately. For a symmetric perturbation, equation (7-30) implies W= 20

at the endpoints. Thus:
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F(a) F(f) = 0

= A =0 (D10)

In both the symmetric and antisymmetric cases, there is no extra

flux from the perturbations.
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Part II

THE KINETIC EQUATION FOR HAMILTONIAN SYSTEMS
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1. INTRODUCTION

A statistical description of nonlinear wave fields is appropriate
for a variety of physical problems (ocean waves, plasma turbulence,
etc.). For linear waves, the component Fourier wave amplitudes
are uncoupled. We will be interested in the weak nonlinear inter-
actions of the wave amplitudes, which gives rise to a slow variation

of the wave amplitudes.

We assume the nonlinearities have an expansion in powers of

the amplitude. The equations of motion will have the form:

aaali B . w(k)alk, t) = Aa® + Bad 4+ cat +Da’ 4 .- (1-1)

The amplitudes a(k,t) are taken to be random variables.

The quantity of interest is the correlation of the wave amplitudes,
corresponding to the energy spectrum function. Since we assume the
amplitudes are small, &eta.ils about the wave field may be obtained
by perturbation methods (e.g., Benney and Saffman 1966, Hasselmann

1967).

Our interest will be in the equation for the time evolution of the
energy spectrum function. This equation, often called the kinetic
equation, has been obtained by a number of authors (Benney and

Saffman 1966 , Hasselmann 1967, Zakharov 1967), and takes the forms
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ikz) S(wxws iwz) dkidk

1 2

on(k, t) _
5= JJ Sy P, HEERY

2

+[f] Tnkinkznksﬁ(k:l:kiikz:kk3) 8w+, *w, 2w,)dk, dk,dk,

+ higher order terms (1-2)

where:

(ak ak,> = 6(k-k')nk

ui = m(ki)

a, = a(k, t) etc.

S = S(k’ki’kZ) etc.

n is the energy spectrum function. The coefficients S and T are

called the interaction coefficients.

If the dispersion relation allows resonance among three wave
numbers, the dominant contribution in the kinetic equation is of order
(ak)4. For many problems however, resonance cannot occur with
three wave numbers (e.g., gravity waves, see Phillips 1960). In this
case, the first term in the kinetic equation vanishes, and the dominant

contribution comes from the next term, of order (ak)é.

The interaction coefficients S and T depend upon the nonlinear
coefficients, A,B,C,D in the expansion (1-1). In particular, the

coefficient S must account for all interactions between four wave
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amplitudes. An inspection of the perturbation expansion shows that
the first two terms in (1-1), corresponding to coefficients A and B,
contribute at this order. Similarly, the coefficient T accounts for
interactions between 6 waves, and formally will depend upon A, B,C,

and D.

Most authors restrict their attention to quadratic nonlinearities,
that is, they take B = C =D =0 in the equations of motion (i-1).
Even in the first term of the kinetic equation, the neglect of the

cubic term is an inconsistency in the perturbation expansion.

A few authors have kept the higher order nonlinearities.
Although they begin with an expansion of the form (1-1), the kinetic
equation they present is missing contributions from the quartic and
quintic terms (e.g., Hasselmann 1966). It is not clear at what

point in the analysis these terms are dropped.

Our objective is to understand why the missing terms do not
appear in the kinetic eéuation, and to confirm the given equations.
The equations of motion are stated in a very general Hamiltonian
form. The analysis of the resulting perturbation expansion is
facilitated with the use of Wyld diagrams (Wyld 1961). The results
obtained here differ from those reported in the literature. It is
shown that the higher order nonlinearities do contribute to the kinetic

equation, but they do not contribute at leading order.
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2. FORMULATION OF THE PROBLEM

Although the equations of motion in "natural" variables (pressure,
velocity, etc.) are usually not Hamiltonian equations, it is often
possible to cast the equations in a Hamiltonian form (Zakharov 1967,
1968). We therefore use a general Hamiltonian system to describe

the motion. We will follow the notation of Zakharov (1974, 1975).

The motion is described by the generalized coordinate q(x,t),
and the generalized momentum p(x,t). For simplicity, we consider

the problem in one space dimension. The equations of motion are:

3g _ 1 op _ _ $H i)
5t - Bp ot = " 8q (

where the Hamiltonian H is expanded in powers of p and q.

.H = H0 t Hint:

The first term in the expansion HO will be quadratic in p and q. Hint

will contain all higher order terms.

For a spatially homogeneous medium, HO takes the form:

H, =% _f{U(x-x')p(x)p(x') + 2V (x~-x') p(x) q(x')

+ W(x-x") q(x) q(x')} dx dx’ (2-2)
U{x) = U(-x)
W(x) = W(-x)
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If we assume the medium is invariant to reflection of coordinates,
the coefficient V is symmetric:

V(-x) = V(x)

Performing a Fourier transform:

1 ® ikx *
P = — p(x) e dx P =P
k NZ2w !oo k k
©
1 ikx
p(x) = — p, € dk
N2 I00 k :
we have:
i L * P
Hy=3J {Ukpkpk 2V * ququ} dk (2-3)
where:
1 ® ikx %
U = — U(x)e~ dx U, =U =U,
k= oo [Qo k= "k~ “k
etc.
The equations of motion take the form:
9q
L -1 kb (2-4)
at -~ = . % t &p

We perform a change of variables that reduces the equations of

motion to a single equation., Define:
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2 = P + Py @y = o
*k b ko
3 TP+ B Pox =Py

The equations of motion become:

Bak

ot

+i2H (2-5)

%
bay

The coefficients @ and Bk are chosen to diagonalize the leading term
HO' We restrict our attention to the case where the equation of
motion admit travelling wave solutions. For travelling waves to

exist, it is necessary that:

2
Uka > Vk

For simplicity, we take Uk and Wk to both be positive. The

coefficients a . ﬁk are chosen to be:

a =J—---Uk B, = [5m— (V, +iw)

k= NZw, k = NZO o Vetiog
_ 2 —

“ = JUka - Vi R

The choice gives:

%
HO = f wkakak dk (2-6)
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Neglecting Hint’ the nonlinear term in the equations of motion, the
linear solution is:

s -iswkt
a, = (constant) * e

where:

This we will call a "free" wave. The effect of the nonlinear terms
is to cause a slow variation in the amplitudes of the "free'waves. We
now expand the nonlinear term Hint in a power series in the wave
amplitude:

_ 4 °1%2°3 51 %2 °®3

=3 f Z A a ak3 5(51k1 +szk + 5 k )dk dkzdk3

s kykoky %k %k,
85,5,

B1"84 B8y 84
+4fZ Bk1'k " B 6(s1k1+"'+s4k4)dk1-dk4

4
1™

+ifz co1™s %1 s 5(s K, 4+ £5.k )dk - dk
5 kg-kg 2k, " 2k, 251Ky 5kg ) dky-dkg

” 1755
51 85
1 ®17% ..
+5 /L Pic-k, 2k i“a 2 8(s gk 4o +agh) dky- dig
*1"%6

+ higher order terms (2-7)
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Since H is real:

k.k.k.) = Pk k etc.

*®
$,8,8 -57S5S
(A12.3 17273
17273 17273

The coefficients also have permutation symmetry:

$1%283 A 2%1%3 %3525
kikoks kokyks kakyky

A

The equations of motion (2-5) become:

9as -58,8 8 s
. k s 152 84 5
isgr -9l =/2 Akkikz *k, *k, 6('Sk +51k1+52k2)dk1dk2
8182
—581-53 Si 83
+fz Bkki-k_,)aki-ak.-,’ 6(-sk+sik1+°"+53k3\)dk1-dk3
5175
+[) ¢
51754
+f) D
585

+ higher order terms

(2-8)
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To simplify the notation, we make the following definitions:

S = oS el swkt
k= "k
W, = W
1 lzc1
- -ss,8, -i(-sw+siwi+szw2)t
£ @w=a (2-9)
K2 kkykp

We expect the nonlinear interactions to cause a slow variation in the

C;. Equation (2-8) becomes:
acs
-— =-isf ) A}t (t)ckick 6( sk+s1k1+s kz)dk dk,
51%
-4+
-is[ ), By (t)Ck c:k3 5( sk+sk 4000 45 k3)dk - dk
. kios Ky
8~

-isfz C

-is[ ) D

+ higher order terms (2-10)



98

3. THE PERTURBATION EXPANSION

The solution is developed as a perturbation expansion in the

amplitude:
s —-— . & » -
Ck = 1Ck 2Ck + 3Ck + (3-1)
where:
s _ n
an—O(E:) 0 <g <<t
€ = characteristic amplitude

We write out the equations for the perturbations:

S
%1% _
ot
azci -4+ s1
K - le [ A0 C k, 2k, 5( sk +5 K 45k, ) dk, dk,
8152
o Cs s s s s
3Cr ++ 1 .5 152
st = -isf ), Aklz(t)(icki ch2+ chiickz)b( Sk+51k1+szkz)dk1dkz
5152
+++ s s
g 3 . i
-isf ), Bk123(t1 k, 1ck35('5k+s1k1 +S3k3)dk1 dk,
8" 8;
etc. (3=-2)

Since 1C; is independent of time, the only time dependence for 2C§
comes in through the coefficient A(t). We integrate the equations to

obtain:
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0O
n
1

constant

,Ch = -is [ (f At )dt)1 Ky k 6( -skts k 45,k )dk dk,
51%2 :
JC2 = -2is [ (f Akiz(t')zck (t')dt')1 ) 6( sk+s k +s kz)dk dk,
5182
-is [ Y (f B;l;;(t dt)i o1 k 5( skts k oo 45 k3>dk ~dke,
51753
etc. (3-3)

Clearly, to carry out this perturbation expansion to higher order
would be difficult if not impossible as it stands. In order to proceed,
we introduce Wyld diagrams to manipulate the perturbation expansion
(Wyld 1961). The idea. is to make a one-to-one correspondence
between terms of the perturbation series and a set of diagrams. We

make the following correspondence:

< ——-
_-
-isA Y (1) —(\
~
-
SRy e

etc.
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Each "vertex" represents a coefficient A,B,C, etc., which is
distinguished by the number of "branches" leaving the vertex. At
each vertex, we multiply by the appropriate delta function, sum over
the indices 8,15, etc., and integrate over the appropriate dummy
variables ki,k2 etc. A solid line indicates time integration. Thus

(3=3) is represented by:

//

/) /,
~
_'.’\.:” + = -+ — —-
~ ~
~ ~
(a) ~o by

Diagrams (a) and (b) correspond to the same integral (compare (3-2)
and (3-3)) and may be combined. Thus, we have an additional factor

with each "combined" diagram corregponding to the number of

"simple" diagrams which are topologically equivalent. Finally:

8 — - —
1Cg =
cs = —c:/
2Ck = .

w
O
*
i
N
n(l‘
\
\
+
I*
|
(l



”~
” : APl P PR -
ol >+ f——F— + Lo ——
47k < S~ RN
~
Y
” P ///
+ 3—a—e_ + —4
SN \\\
I/ s -
Pid ” - PPt R,
8 >t B—e—0—e—e + 4 —06——@——
SCk 2 —'——<;> ~ ~Q
S

P e
: + 4 >\ + 2 ——4‘,\,‘
. ) . ’/ :-
\\
7’ -’ ” e -
+ 6 —e— o @ t+ 3 —e—es--
. \\ \\ < \\

-~

~
| : > /
+-3 -=> + 4 ~ + —&-
~ - \\\
~
s

The diagrams for nCE consist of all topologically different
"trees" which branch with n free wave components. In all cases, it
is possible (but tedious!) to write out the analytic expansion for the

ncz and compare with the diagrams.

We now obtain an expression for the energy spectrum. The

momentum p(x,t) is assumed to be a stationary random function of
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position. The two point correlation function is defined as:

R(r,t) = (p(x + 1, b plx, t))

where: {( *) denotes probability averaging.

Taking the Fourier transform, the energy spectrum function is

obtained:

r ikr
Wk, t) = — R(r,t) e dr
N2 f

2m —o0

(plk, t) p(k', t)) = &lk+k!) Wk, t)

Writing in terms of C; :

(CECE (D)) = ny (t) Blk-k') &

where:
w

m(6) = 55 Wk 0

6(k=k') is the Dirac delta function

1 if s = =s!
b =

s, -s! .
’ 0 otherwise

(3-4)

(3-5)

(3-6)

The usual way to obtain the kinetic equation is to multiply the

s

equation for C; (eq. (2-10)) by Ck1 and average. The resulting

1
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expression for n, contains correlations of three or more wave ampli-
tudes, and the system of equations is not closed., Although it is
unnecessary to do so, most authors make a statistical assumption at
this point to close the equations (Benney and Saffman 1966). For

simplicity, we follow this convention and assume that 16; is gaussian.

Taking ici to be gaussian with mean zero, products of an odd

number of lc; vanish, while even products may be factored pairwise:

s s S s
1 52 .53 84
c.lc?clc?
(1 k1%, 10k,1%,
8 S S s S s s S s S s s
1 .52 3 54 1 53 2 54 1 54 2 S3
=¢,C,. 1, c %% ,C. 2 c By, et e 0 c b e he e e 56 A C )
1%k, 1%k, {4 51 %k ) 1% 190 K00 1 G B 100 X0, 1
etc. (3-7)

The energy spectrum is expanded:

=S, _ 5 -s ‘<8 =5 § =8 § =8
(CiCr > =€1Ck 1% » #{1Ck 30k » +2Ck 2%k » +(3Ck \Ck )
S -S s -S 8 -S S -S S - S
+(1Ck Cx » 12k 4%k ) H{3CK 3% +{4Ck 2%k ) +(sCk 1Ck )
+ higher order terms (3-8)

Terms such as (1C§ 2C1:’> are correlations of an odd number of lci

and therefore wvanish.
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We now compute some of the terms in the expansion.

Iine will indicate the lowest order correlation:

81 8

2
C. ' .,C %= ,n &k,~k,)8 = A
(1 ky 1 k2> 1%, 2172 % -,
=n8 .,
where: n, = 1nki
6, o = b(k,~k,)8_ _
12 1727 %, -5,

(,C8 ,Can = 1sfz j AL (enatr 8(-sk+1+2)

. -w)fZ _[ Ak,34(t")dt" &6(=s'k' +3 +4)

®1 %2 .3 _°4
'<1Ck1 1%, 1%, 1€k, Hydipdiadly

= -ss ffZ L fAsz(t' A T3altm e der

+ §(-sk +1+2) 6(-s'k'+3 +4){n1n3(61_253_4+ 6,40

+ 00, 51-352-4} dik,-dk,

where: 6(-sk +1 +2) = §(~-sk +Sik1 kz)

A wavy

2-3)

(3-9)
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Diagrammatically:
st

<2cfc ,Coi) = { _—Z )

=z B + —— + I

The first term is:

%

R R R R

Note that:

S\ - ++
(,Cp) = -isf Zf ALT((eNdt oy dk, §(sk)
We choose the coordinate system such that:

(Co>

With this choice of coordinate system, we have:

The other two integrals combine to give:

2
(2Ck2Ci) =28, ku ' f Akiz(t')dt'l nyn, §(-sk+1+2)dk,dk,

2 ——.&C}—-

(3-10)

(3-11)
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Using the fact that (Cg) = 0, and combining topologically equivalent

diagrams, we compute more terms:

Gepacin =2 (s =)+ {—= =)

zig_ﬁw+_}fw} v 3 L

4—&\/\/\,-1-3—%\«\«

The term (1C§ 3C;,s> is merely the complex conjugate of (3C§ 1C;<s,>.

The complete expansion is thus:
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<Ck k! > = MWWy €

» -
+ 2 —m— +~ 4 _&WV\ <+ 3 %\/\ <Z|3;4)
6 - d— + 8 —%— + 16 -@_ (s, 6,7
+ 8 —-Iﬂ—(m._ —tﬁz&—— + 16—y (8,910

+ 8 -—Q}‘).: + |6 —m % (412,18
[ —%\w\ + 16 _&w + 16 —&M: (1415,16)
+ 16 _M,\ + 2 —Qw: + 16 ——&bv\:« (17,18,14)
+ 16 ﬁﬁ,\:‘,\ (20)
+ 24 —4&; —-&T?-%M _im (212,23
+ 24 _m/;\ + 12 -—%\M«* —&m (24,25,26)

12 S8 —-&M\ (27,28,29
-&«A —-EM\ _.&ww (35,31,32)

26 P 0 %* _.%ww (33,24,35)
+ 9 % + 18 _iw\ —gh—(::)— (36,37,38)
+12 —&_ + 12 —%— _m_ (39,40,4\)
12 EIR e ke 12 BN a4
12 _Spw 49 PR+ 6 % (45, 46,47)
-—%‘M ‘253”‘“" —ﬁm ag, 49, 50

ac::)_ _%MA (51,52

-+ comp\ex cown 3&.&3&\‘ e o'; (%) A:‘ﬁr‘u“ S

+ Waker orler termg
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Note that the order of the terms corresponds to the number of wavy

lines in the diagram.

Wyld (1961) considered only quadratic nonlinearities. His per~
turbation expansion contains only the vertices with two branches,
namely diagrams 1,2,3, and 5-20. Hasselmann (1966) considered the
general case of a power series expansion for the Hamiltonion. The
results he presents (without comment as to derivation) are missing
terms corresponding to the higher order nonlinearities in the expan-
sion, namely missing terms containing the coefficients C and D. 1In
the diagram picture, vertices with four or five branches are missing

in the Hasselmann solution.

Zakharov (1970) uses a different approach. For the case where
resonance does not occur with three wave numbers, Zakharov performs
a canonical transformation to eliminate the quadratic nonlinearities.
Although difficult to compare results, his kinetic equation does not

involve the coeffcients C and D.

We focus our attention on those terms not contained in the

Hasselmann or Zakharov analysis, namely diagrams 4 and 48-52,
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4, ANALYSIS OF THE DIAGRAMS

We are interested in those terms in the perturbation expansion
which give rise to a spectral energy flux. Diagram 1 is constant,

so we proceed to diagram 2. The time dependence in (3-11) is:

AT (t')dt'! = ,A' ’ , e dt!
} 0 ki2 ki2 o
2 t
-c% I f e—xwt'dt,l = tut f st gy o complex conjugate
0 0
= 2 sinwt
- w (4~1)

The nonlinear interactions produce slow variations in the wave
amplitudes, Thus, we will be interested in time scales long com-

pared to the period of the linear wave, Consider:

m -
lim f f(wv)_slﬁ.(_“-’_‘&"_'lf.dmy

-y !
t—00 %00 ww

w+a .
= Hm f f(w') i‘i&%“—)'—l& dw' (Rieman-Lebesque lemma)
t=—0 w-a

w+a . '
fo) Lim [ Sialemwlt 4,

wew!
t—=00 w-a

]

at .
f(w) Um f B0X 46 = wf(w)
t=> ~at

We therefore write:

2

£ .
. 9 =iwt!
lim {-— ‘ e dt'l }= 2 7 &6(w) (4-2)
oo Ot '()
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For diagram 2:

: 2
9 _ =-++
'B—E{ —mp—} = Z"ISZSZ n,n, IAkiz‘ &(=-sk +1+2) 6(-sw+siw1+szw2)dk1dk2
1

(4-3)

Diagram 3

. t t'
nns - -4+ —dt
i sfszs % Az [ A derdet myny o(-skri42)ak di
%2
k12 k12

t
‘58'5 {.—M }cc A+t (t)f At (t')* dt’
0

Combining this term with its complex conjugate:

lZ

9 = = ++ -
= {—&vw\m_c}- Zﬂsnkfszszsi ALlz| By 8-sk+142) 6(=swts, 0, +s 0, )dk, dk,
g

(4-4)

For diagram 4:

& = 'isnkf; CEYE S
1

-t - i("SOJ",’SQ)"BiCIJi +Slw1)t
Brkit(®) = Byyyy @

-4+
= Brrit

Furthermore:

shot K opmde  eged
Brr11) =Byr1s = Brryy = REAL
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So term 4 is purely imaginary. Thus:
—%W‘ +C.C. =0

If the dispersion relation allows resonance with three wave numbers,

that is, if:

1
o

-sk + Sikl + SZkZ =

(4-5)

{
[e]

-SWw <4 slwi + szwz =

has a simultaneous solution, then there is energy transfer at this
order. Since n, = 0(82), the interaction of three waves produces

slow wvariation in n, of order 84.

For many cases of interest (gravity waves in particular), (4-5)
does not have a solution, and there is no energy flux of order 84.
We therefore go to the.next order (terms of order 86), examining
those diagrams not appearing in Hasselmann's (1966) or Zakharov's

(1970) analysis.
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Diagram 48

—=

=-is [ ) f A )f ( is,)C s ane (t")at"dt! 6(-sk+1+2)
575 0

6(-sik +3+4+5+6)n & dk, -dk

{ 204R 8, 384 584 jr dky-dky

-sn 6,0 [ ) sif AT )f Ck1244(t")dt"dt n,n,6(skt1+2)dk dk,dk,
(4-6)

Diagram 49

-4+t

t t!
, . -++
= -lsfsfis {) Ck1234(t')_£ (-is )AL, (E")dt"dt' 6(-sk+1+2+3+4)

6(-sik +5+6)n,n 6 dk -dk

1 24625346k’

6

_; -ttt
= snkak_k.fzsifockm“(t )fAkiz(t")dt"dt n,n,6(-sk+1+2)dk, dk,dk,

(4-7)
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Evaluating the time dependence:

t
o=t
2 {48} Akiz(t)-{) Ci1244(t"at’
t .
=+ oot ci(-swti+2)t si(sw-1-2)t' .,
= Ar12Ck1244 © [ e at
e oo -i(-swtl+2)
=A-++ C + + 1 e
ki2 “ki244 -i(sw-1-2)
EL{49} g it (t.f€A+--(tUdﬂ
ot ki244 0 ki2
t .
—tbe  bes ci(-swbi+2)t ~i(sw=-1-2)t' _ ,
= Cri244 #x12 © -é ¢ o
o o j-g t(-swtit2)t
T Yki244 k12 -i(sw=-1-2)

-—{48+49+c c.}

At oFet

\s1n(sw 1 -2)t
B S {fz S1%k12 Cr124472Rg0 -8kt 142) dkidkz}

Using (4-2),

we have:

" lim 5;{48+49+cc }

t—w

=-47 sny klk,Re{fZ s1

Aot
k12Ck124472240(-skts ki ts,k))

6(-sw+siw1+szw2)dk1dk dk

274
(4-8)
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Diagram 50

R

t t!
: -ttt . -t
=718 ffoo Ck1234(t')£ (-is,)A, 5, (t")dt"dt'6 (-5, k,+5+6)

6(-sk+1+2+3+4)n ) dk . ~dk

130 04 503 (b4 jrdky-dk,
= -sn b [ ftC_HH(t')ft' A7 (t")dt at!
= snk k-k' 0 ki123k A S2 123

nyny 8(s k, +2+3)dk, dk,dk,

Note that:
e ctemm
) 5,Ckk123 4123 = ZS 5,Ckk123 #1423
515,53 515,53
E-4
—ttt -
= '(SZS ] 5,Ckki123 #4123
15,53
) * *
{50} =-{50}

(4-9)
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Diagram 51

_ﬁm_

= (- 1s)ff2f Cp 1y ealtat! (- 1s')f ATt

111
n,n, 451 253 5 4 66( sk+1+2+3+4) 6(-s k+5+6)dk1 dk6

t
= ak-k'foo CJSZ“ )dt'f Ajalt)ar

nynzn, 6(sk-3-4) dkidkzdk4

t .
3 =ttt ,te= [ ~i(~-swt3+4)t ' i(-sw+3+4)t
5t 1511 Cpiias Ak34{e J e dt'

. t .
+ e1(-sw+3+4)f e-l(-sw+3+4)t'dt,}

- ~+-++ ,+-=- [ sin(-sw+3+4)t
'ch1134Ak34{ ~swt3td }

. lim 535 {(51) + c.c.}

t=—o

“tett -
=41 8, Re [ ) C i1t Al innn, 5(sk=3-4) 8(sw-3-4)dk, dk,dk,

(4-10)
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Diagram 52
b etet-
- (o3 ! 1
—%\/\N\ = (-is)ny 8§, ij(; Dyt 122 (t)dt nyn,dk, di,
bt
DkkiiZZ is Real

=> Term 52 is pure imaginary

{52+c.c.} =0 (4-11)
Thus, diagrams 48, 49, and 51, which include effects of the quartic
nonlinearities produce a nonzero contribution to the kinetic equation
if resonance with three wave numbers ia allowed (4-5). The quintic

term, diagram 52, does not contribute at this order.
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5. DISCUSSION

Starting with a general Hamiltonian description of a wave field,
and including terms up to order (amplitude)5, a consistent perturba-
tion expansion has been obtained, By including quintic nonlinearities
in the equations of motion, the kinetic equation is accurate up to

terms of order (amplitude)é.

Most authors have restricted their attention to quadratic non-
linearities, although the leading term in the kinetic equation (order
84) will formally include a contribution from the cubic nonlinearity
(diagram 4), We have shown that this term cancels out, and the
order 84 term in the kinetic equation is accurately described by
quadratic interactions, If resonance among three wave numbers is
not possible, the dominant term in the kinetic equation is of order 86,

and the neglect of higher order nonlinearities is inconsistent,

At least one author (Hasselman 1966) has considered a general
expansion of the Hamilt.onian. The results given here include nonzero
terms not obtained by that analysis, It has been shown that diagrams
48, 49, and 51, corresponding to quartic nonlinearities produce non-
zero contributions to the kinetic equation at order 86. Since
Hasselmann has not presented the details of his analysis, it is unclear

where these terms are lost,

We have shown that the quintic terms (diagram 52), although

formally of order 86, do not contribute to the kinetic equation at this

order,.
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For practical applications, one only retains the first non-
vanishing terms in the kinetic equation. If resonance with three wave
numbers is possible, the leading order contribution comes from the
quadratic nonlinearity in the equations of motion. The cubic and

quartic terms do contribute, but they are of higher order,.

If resonance with three waves is excluded by the dispersion
relation, the spectral energy flux is of order 86. In this case, the
extra diagrams 48, 49, and 51 do not contribute to the energy flux

on a time scale long compared to the period of the basic oscillation,

Whether or not resonance occurs with three wave numbers, the
leading order terms in the kinetic equation are not affected by quartic
or higher order nonlinearities. For the case of resonance with three
waves, only the quadratic nonlinearity enters into the kinetic equation,
If this resonance is excluded, it is sufficient to include only the
quadratic and cubic terms to obtain the kinetic equation to leading
order (86). The quartic and quintic terms, although formally produc-

ing terms of order 86, do not contribute in this case,
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