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ABSTRACT

Methods fon obtaining improved pernformance from swifching

negulatons with nespect fo thedrn nodise generation characteristics

and dynamic nesponse are developed througn topelogy selection, negine-

ment and generation, and by appllication of modern control techniques
to both continuous and discnete time convernten models,

Reduction in switching noise 45 attained by focusing analysis
and desdgn effornt on renderning the external convernten current wave-
fonms as nean to the {deal de quantities as possible. Three techniques,
not nelying on conventional Low-pass iltering, are promoted and
several new on refined converter topologles are generated with these

methods. In addition, a power-processing elliptic-funciion §ilfer

specifically designed to meet the nequinements of the switching con-
vernsion envinonment and applicable to many common converter Lypes L

presented. Pernformance of the new Low-nodlse conventen topologies 4is

substantiated by sevenal cincuit nealizations and Laboratory measurements.
Switching regulaton dynamic performance L4 optimized by use of
modenn control theory in confunction with the state-space-averaging
fechnigue. State-vectorn feedback coeffdicients which will minimize
transdient ernon excursions are detewmined through use of generally

applicable afgorithms for optimal Linean hegulator design.




iy

An altennative approach is developed that reldies on a discrete-

time formublation of conventen and regulaton dynamics that s the dual

to state-space-averaging. Among the dmpontant nesults are a simple

expression fon duty-ratio-controlled inductive cwwrent bandwidih of

wide applicabllfity, and a genenal sofution for obtaining the fastest

wossible transient response from a switching regulaton. The results

of the contrnol analysis arne convinedngly suppornted with Laboratony

measunements.
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INTRODUCTION

The proliferation of sophisticated electronics in commercial,
military, and aerospace applications is accompanied by numerous demands
for diverse forms of electric power. Electric energy obtained from a
public utility or derived from a primary power source is often in improper
form or fails to meet user regulation requirements. Thus it is freguently
the case that electric energy must be converted from one form to another
and/or regulated to obtain characteristics suitable for operation of modern
electronic and electric equipment.

Power processing technigues are in themselves widely varied in form,
complexity, and performance ranging, for example, from a simple resistive
divider network to highly-efficient feedback-controlled switched-mode
converters employing elaborate logic to adapt to varying source and load
conditions. The spectrum of power processing approaches can be divided
into two general classifications, Tlinear and switching converters or
regulators, even though many schemes may use a combination of both. The
distinction between the two types of conversion 1ies in the fundamental
circuit operation. Linear regulators are essentially dissipative in
nature, using resistors or active devices to effect regulation by di-
verting or restricting the flow of energy from the source to the load.

As the name implies the linear requlator may be analyzed by standard
Tinear circuit analysis techniques without difficulty. Potential advan-
tages of the linear in addition to ease of analysis include wide band-
width and excellent noise characteristics. In contrast, switching

regulators are ideally non-dissipative, relying principally on switching



elements and reactive components to effect the desired processing
function. "Switchers" typically offer smaller size and weight along
with higher efficiency, but are inferior to linears with respect to
bandwidth and noise characteristics. The very switching action
responsible for the converter's attributes also generates undesirable
noise and imposes fundamental limitations on system bandwidth, In
addition the switcher is more difficult to analyze since it is inher-
ently nonlinear.

In spite of the apparent difficulties with switching regulation,
the arguments in its favor are such that there is strong motivation to
gain the advantages of switching while one seeks to alleviate its draw-
backs. Commercial applications for power processing must consider the
benefits of increased efficiency. Low efficiency not only costs the user
for wasted power, but also penalizes him with respect to heat dissipation
requirements. With the increasing price of energy, long-term cost analysis
is moving steadily in favor of high-efficiency conversion schemes for more
applications even if the initial expense is greater. In military and
aerospace projects severe size and weight constraints are often added
to high efficiency requirements making switching regulation the only
effective alternative. Thus topics of considerable interest at present

and in the foreseeable future are those of improvemenft in the noise char-

acteristics of switching converters and éxtension of their bandwidth,

both of which are considered herein,
Part I of this work contains analysis of existing switching dc-to-
dec converter topologies with respect to their input and output current

characteristics. Some converters are found to possess pulsating external



Current waveforms at either input or output, or both. The step discon-
tinuities of current associated with pulsating waveforms interact with
circuit parasitics to generate spurious high frequency ringing and noise
which, in the absence of external filtering, is transmitted directly to
the source or Toad. One family of converters does not suffer as severely
from this additional mode of noise generation since its external current
waveforms are nonpulsating. The analysis effort focuses on this type of
converter with the intent of understanding the sources of its already
small current ripple so that refinements to the converter structure may
further improve its compatibility with other electronic equipment. Three
techniques of ripple reduction are developed which lead to the generation
of several configurations possessing superior current ripple performance
rivaling that of the linear regulator. Two of the approaches are found
to be applicable to many common converter types. It is shown that such
ripple attenuation can be attained with minimal impact on system size,
weight and bandwidth, fn_contrast with conventional Tow-pass filtering
techniques. The important analysis findings and resultant circuit topol-
ogies envisioned are verified by circuit realization and laboratory
measurement of performance.

Part Il of this work addresses the problem of extension of the
dynamic performance of switching regulators by application of generalized
multiple or total state-feedback control. Two approaches are examined.

The first approach makes use of an existing linearized small-signal
system dynamic model in conjunction with the optimal Tinear regulator

problem to derive feedback gains which minimize an integral quadratic



penalty function on state variahle error and exercise of control. This

technique has utility in that it is a general approach to requlation

loop desigd and yields state feedback gains which are the best with
respect to a chesen criterion. Since the most difficult step with this
method is often the definition of a suitable performance objective,
alternatives to penalty function parameter selection are developed in
conjunction with closed-form answers for the optimal return gains, In
certain circumstances it is shown that the engineer may achieve an optimal
design with trade-offs posed in terms of meaningful system characteristics
such as closed-loop bandwidth or feedback gain, instead of the possibly
unfamiliar concept of quadratic penalty coefficients. Thus the config-
uration may be determined by familiar classical control criteria and
practical engineering considerations with additional refinement provided
by optimal control theory.

The second approach establishes generally applicable algebraic
difference equations for the ac propagation of the state vector. The
solution for the system }esponse and for the desired feedback gains may
be effected in either the time domain with matrix algebra, or the z-domain
through use of transform theory. The principal advantage of this approach
is that is uses the switching period TS in the analysis and as such
acquires extended accuracy in circumstances where sampling effects,
inherent in switching conversion, are significant. This discrete model
is promoted as an adjunct to the established classical modelling methods.
As such, the relationships between the existing continuous-time model and

the discrete model are derived so that either may be employed as deemed



appropriate, and the engineer is afforded an easily adjustable point of
view. The advantages obtained are illustrated in an example where the
continuous model is used to design an optimal voltage regulator with
apparent unconditional stability irrespective of closed-loop bandwidth,
and subsequently the discrete model provides a revised stability
criterion which includes the previously neglected effects of sampling.
The example clearly illustrates how one may benefit by using in harmony
the modelling tools available. Since the merits of the discrete approach
center around its ahility to predict high frequency transient behavior, a
challenging regulator design task is undertaken and subjected to time-
domain measurements which clearly demonstrate the power of the modelling
method. A converter is constructed and its regulation determined 1in

accordance with a general solution for the linear feedback that will

produce the fastest possible transient recovery from error. The response

predicted and attained is termed a finite-settling-time response since
the error decay completely transpires in two switching cycles. The
solution for the finite-settling-time feedback gains and the accuracy
of the discrete modelling of converter dynamics are both convincingly
verified by laboratory measurements on the example converter,

The content of this work illustrates how the performance of switch-
ing regulators in terms of noise characteristics and system bandwidth may
be improved through topology selection and control technique, and how such
improved configurations may be implemented without undue sacrifice in
terms of size, weight or complekity. The results are not purely esoteric

in nature but have practical application as evidenced by several circuit



realizations with appropriate substantiating laboratory measurements.
Whenever possible the conclusions of analysis are reduced to simple
conceptual forms without undue mathematical complexity so that they

may be easily retained and understood at least on an approximate basis

suitabie for engineering guidance.



PART 1

ELIMINATION OF SWITCHING
CURRENT RIPPLE
through
TOPOLOGY SELECTION AND GENERATION
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CHAPTER 1
REVIEW OF BASIC DC-TC-DC
CONVERTER TOPOLOGIES

In this introductory chapter four basic converter topologies are
reviewed and discussed. Since three of the four converters have been in
use for some time their action will be discussed only briefly for sake
of completeness. The new converter is given a more complete exposition
including some of its extensions to aid the reader in negotiating the
remainder of this text, much of which is concerned with the unique
properties of this recently developed converter topology. Particular
attention is given to the external current waveforms typical for the
converters since the noise characteristics are in part determined by
the magnitude of the switching disturbance on these currents., The new
converter is found superior in this respect and some of its extensions
are found to exhibit rather curious, potentially very attractive
behavior which provides motivation for its more detailed analysis in
the succeeding chapters of Part I.

In the following four chapters the input and output current
characteristics of the new converter topologies will be analyzed and
exploited. Results include the generation and laboratory verification
of several new configurations with very desirable current ripple and
hence noise characteristics. Such performance is shown to be attain-

able without undue sacrifice of bandwidth or compromise in size and

weight.
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1.1 The four basic converter topologies

In this context a "basic" switching converter topology is defined
as one which is comprised only of a single switch and the reactive
elements necessary for the proper conversion action without provision
of transformer isolation. With these restrictions there are only four
nossible basic topologies known, the fourth of which was only recently
introduced. Figure 1.1 illustrates the basic topologies with their
ideal switch representation and the corresponding bipolar device real-
ization.

In all of the discussion in this text the converter switches will
be assumed to operate in the constant-frequency duty-ratio-controlled
mode. The switch is in position A for time DTS, the duty ratio D
corresponding to the fraction of the switching period TS that the
transistor conducts. For the remainder of the switching period
T, = 1 - D)TS the switch is in position B indicative of diode con-
duction. Implicit in this description is the assumption that the
converter inductor currents never fall to zero during D’Ts, which
would result in an open diode and transistor and hence a third switch

position. Equivalently stated, constant frequency, duty ratio

modulated, continuous conduction mode of operation is assumed for all

converters considered herein.

Perhaps the most fundamental of all the converters shown in Fig.
1.1 is the buck converter. The switching action in the buck merely
applies a square wave of voltage to the output averaging LC filter.
As such the dc voltage gain is simply V/\!g = [, the relative switch on

time. Note that iout is a nonpulsating quantity since the derivative
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Euck converter V/Vy=D
TR A VAN L
!:*—ur—fm“—» oV \ 7700 oV
I c== 3R %TF in c== 3R
Boost converter V/Vg=1/D

iout _.h__h_ L
o oV 000 4 oV

I c== 3w vg—.:mo-K c== 2=

Buck boost converter V/Vg=-D/D'
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IH oV \ A K3 oV
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éuk corwerter ( boos?-buck) V/Vg=-D/D'
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B0

-[ I 1 GIE SRV %JZ?K v Coﬁ:§ﬂ

The foun basic converterns with input and output current
wavegorms (LLustrated and de voltage convernsion function
indicated; a} ideal swifch representation,b) bipolan device
AmpLementation.
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of i is fixed by the inductor L and the voltages applied. 1In

out
contrast, the input current to the buck labeled i, 1is a pulsating

in
quantity, flowing while the switch is on and abruptly interrupted
when the switch turns off. This input current characteristic is one
undesirable feature of the buck converter since it often necessitates
the inclusion of an input low-pass filter to reduce interference
between the converter and other electronics operating from the same
source.

The boost converter, as its name implies, performs a step-up
voltage conversion given by V/Vg = 1/D'. The switching action first
stores energy in L during the Switch on-time DTS and then releases
energy into C during D'TS. In the case of the boost the input current
iin flows continuously while the output current into R and C pulsates.

The buck-boost converter is an inverting topology with its
conversion function a combination of the buck and boost such that
V/Vg = -D/D'. Since the switch acts to commute the continuous inductor
current alternately between input and output neither iin nor iaut is
smooth.

In sharp contrast to the buck-boost is the Cuk converter 711, a boost-
buck topology named after its inventor Siobodan fuk. This switcher
may also be referred to as the "new converter” since it is the most
recently discovered basic topology. The new converter has the same
inverting dc voltage transfer function as the buck-boost, V/Vg = -p/D*Y,
but at that point the similarity ends. The switching action in the

Cuk converter boosts the input voltage into the energy transfer

capacitor C such that VC = Vg/D'. In turn the capacitor voltage is
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bucked to the output so that V = -DVC. It may be seen that the
capacitor serves as the energy transfer medium in this circuit while
in the buck-boost and the other two the energy transfer element is an
inductor. Further, the input and output currents in the new converter
are nonpulsating, an important property unique to the new topology,
lessening problems associated with electronic interference. Figure 1.2
itlustrates the typical input and output current waveforms for the

Cuk converter. Both input and output currents are smooth with a
roughly triangular inductive ripple current superimposed on the dc
levels. The currents ramp upward during the switch on-time and
downward when the switch is off, but never fall abruptly to zero.

This current ripple behavior is common to the basic Cuk converter and

several of its extensions.

in lout

Fig. 1.2 Typical input and ouiput cunnent wavefowms fon the Cub conventer
showing the nonpulsating nature of the external curhents.
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1.2 Some extensions of the basic 5uk converter

Many extensions to and applications of the basic new converter
have been envisioned and constructed [2-10]. Just a few of these will
be described here to prepare the reader for the discussion of the next
several chapters.

Transformer isolation may be implemented in the basic converter
by use of a split energy transfer capacitor, with the isolation trans-
former placed in the dc blocked position between the two fractions of
the capacitor [2]. Figure 1.3 shows a transformer-isolated Cuk con-
verter. The transformer in Fig, 1.3 is shown 1:1 noninverting, but
the possibility exists for polarity inversion at the transformer making
the converter noninverting, or for different turns ratios affecting the

voltage transfer function. In addition the isolation transformer makes

Li . \Y Vcb=V L2

cu=:V%
— i AFr—or—
o Co

V= _f“l_ﬂo—K AV =—=CcC,

Fig. 1.3 Transfonmen-isolated Cuk converter with de values of voitages on
the split energy-transfen capacitons indicated. The simple case
of a 1:1 noninverting single-output trhansformern Lis Lflustrated.
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possible multiple-output versions of the converter. The converter shown
in Fig. 1.3 operates in a virtually identical manner to the basic con-
figuration with the same desirable current ripple characteristics. The
only significant difference is that now transformer isolation is provided.
One extension of the basic converter that will be the subject of
close scrutiny is the coupled-inductor version [3]. The observation was
made that the voltage waveforms exciting current in L1 and L2 in Fig. 1.1
were identical irrespective of operating condition, which revealed the
possibility of winding both inductances on a single core. When this is

done the coupled-inductor Cuk converter configuration of Fig. 1.4 results.

|1n ' : ; EOUT
L
V% 15:- (:2:::: EEF?
i
1]
ininl AV

Fig. 1.4 Coupled-inducton Cuk converter with input and output currents
indicated.
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The magnetic coupling of the inductors does not change the voltage con-
version or nonpulsating current properties of the converter. It does
however have major impact on the input and output current ripple charac-
teristics. Only under certain circumstances are the typical waveforms
of Fig. 1.2 observed. Some of the deviations observed from typical
behavior are illustrated in Fig. 1.5.

Figure 1.5a shows the two current ripples distorted from the normal
1inear slope appearance in a regular but seemingly arbitrary manner. In
1.5b the output current is ramping downward when the switch is on,
exactly the opposite of the normal inductive behavior. For descriptive

purposes this is called the negative inductance effect since the output

ripple behaves as though it were passing through the physically unreal-
izable but conceptually useful negative inductor. O0f greatest interest
is the condition illustrated in Fig. 1.5c. The output current has

essentially zero ripple. This means that the output current properties

are close to ideal. Similar behavior may be observed for the input

a) " b) c)
' A
. 1 1
| i i |
~ /\l/
N H ! !
lip |

lin i n J |

| ] ] i
0 DTy T4 O DTy Ty 0 DTy Tg

Fig. 1.5 Exteanal curnent waveforms ohserved fon the coupled-inducton Cuk
conventen; al nonlinean behavion, b} negative Anductance effect
on output curnent,c) zero ouiput adlpple.
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current under other conditions, Explanation and exploitation of these
phenomena will be the subject matter of the first part of this work.

The coupled-inductor new converter is amenable to transformer
isolation in a manner similar to the uncoupled-inductor version. Figure
1.6 shows a transformer-isolated coupled-inductor converter. Again the
special case of a 1:1 noninverting isolation transformer is used for
jllustration even though several options are available. The option of

importance to the ripple properties of the converter, as will be de-

scribed later, is that the coupled inductor and the transformer may both

be wound on the same core with the dot convention as shown [11]. Con-

figurations such as this will lead to the possibility of zero current

ripple at both the input and the output.

lin | = iout \V;
- I -~
_____J:_%%§ E%%_______
Vo o Ca Cp D EEF?

Fig. 1.6 Transformen-isolated coupled-inducton Cuk conventer. The
coupled-inducton L and the Lransformen T may be wound on the
same core with the dot convention as shown.
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1.3 Review

The four basic converter topologies have been presented with
emphasis on their input and cutput current characteristics. The new
converter was discussed in more detail, with inclusion of a few of the
extensions on the basic configuration. The only basic topology with
nonpulsating input and output currents was found to be the new converter.
In fact, the coupled-inductor extension of the new converter was shown
to have the potential for a zero-ripple property, in that the output or
input current ripple may essentially vanish under as yet unspecified

conditions., Determination and discussion of these conditions follows.
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CHAPTER 2
BASIC CURRENT RIPPLE CHARACTERISTICS
OF THE
COUPLED-INDUCTOR CUK CONVERTER

In this chapter the coupled-inductor Cuk converter is modelled in
an idealized form for simplicity and analyzed with respect to its current
ripple properties. Insight gained from this basic analysis leads to linear
circuit models for converter current ripple components, The inductive
contribution to the ripples is shown to be of particular importance since

very often it dominates. The associated impedance division model developed

for inductive ripple behavior suggests several easily implementable coupled-
inducter converter configurations with arbitrarily small current ripple at
the input and/or output. The fundamental understanding of the converter
process and the methods realized from this knowledge are applied to and

used in conjunction with more sophisticated technigques discussed in

following chapters.

2.1. Linear inductor and transformer

As a prelude to the examination of the coupled-inductor converter,
it 1s of some use to establish relationships between the winding currents
for linear inductors and transformers and the core flux. The simple case
of the linear inductor is treated first.

Consider an idealized Tinear inductor consisting of n turns of wire
carrying current 1 Tinking a well-defined magnetic path of length £, cross

section AC, and constant permeability p as illustrated in Fig. 2.1.
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£,A. .

Fig. 2.1 Linean inductor model with a well-degined path §on magnezic
sfux ¢ of Length £, cross-section AC and permeablfity v,
Linking n turns of current { passing through window area A=

Maxwell's equations in differential form as applied to the linear
inductor state that the curl of the magnetic field strength is equal to

the current density or, symbolically,

¢XH=4g=D (2.1)

Ay

By Stokes' theorem, the area integral of the curl may be evaluated as a

closed contour integral. Thus integration of (2.1} yields

vaﬁ_'gdA=fﬁ'd£=H£ (2.2)
A
W

where n is a unit vector normal to the window area. Use of (2.1} and

(2.2) results in

HE = fg_ " ndA = ni (2.3)
A
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Application of the constitutive relationship between flux density and

magnetic field strength, B = uH, to (2.3) yields

The total core flux ¢ is ACB, so from (2.4}

_ Acun )
$ = 7 1
or
Acun
ng = 7 i (2.5)

Since Acunzfﬂ is flux linkages per ampere it is inductance, and (2.5) may
be rewritten
ne = Li {(2.6)

which is a useful and possibly familiar relationship from linear inductor

theory.
Another of Maxwell's equations says for the electric field strength

E that

vxg="9% (2.7)
at

where d/dt indicates the derivative with respect to time. Again by Stokes

. - . an dB . ndA (2.8)
Acfvxg_ ndA jgdéﬂ"*cﬁﬁ’

By definition the electrostatic potential v is given by

theorem

v=-]E-dt (2.9)

Application of (2.9} to (2.8) yields

ve, [£ne- 2 (2.10)
¢ | dt dt
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which prescribes the voltage per turn of wire. The voltage of n turns in

series is then

.

vend (2.11)

which is a statement of Faraday's law. With (2.6) and (2.11) established
from basic relationships, we now have firm support for understanding the
transformer in terms of its core flux.

Consider the 1:1 linear transformer with its primary winding excited
by a voltage source as shown in Fig. 2.2. The transformer model shows all
the flux linking both windings which is equivalent to perfect coupling, 50
in this respect the transformer is assumed ideal. The resistances R] and
R2 are included to model effects of winding, source, and load resistance.
From the analysis of the linear inductor each winding is seen to possess

self-inductance L = pAan/ﬁ, and by extension of (2.6) the flux linkages

Fig. 2.7 Linear 1:1 transformer moded with magnetic #lux Linked by both
windings .
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are

e = L (i, + i) (2.12)

Use of Faraday's law (2.11) and Ohm's law to solve for i_ and is from

p
Fig. 2.2 yields

(2.13)

Substitution of (2.13) into (2.12) and manipulation of the result gives the

state equation for the transformer core flux ¢:

R
do . ng o, 2
nat T R R) T RTER, Y (2.14)

where R] // R2 indicates the parallel combination of R] and RZ' Equations

(2.14) and (2.13) combine to specify i_ and is in terms of the core flux.

P

R N4 v
'izmm_mg,_—-—___.i.

p R1 + R2 L R] + R2
‘ (2.15)

i #.___..._E.lwmw f‘f.._ w{g......_.._

s R-E + R2 L R] + R2

Fquations (2.15) represent the attainment of the objective of this section.
Extension of these equations to the case of the coupled-inductor new con-
verter will provide understanding of its most basic current ripple char-

acteristics.

2.2 Basic current ripple properties

A coupled-inductor new converter with arbitrary source and load

impedance is illustrated in Fig. 2.3. The coupling between the inductors
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in out

Fig. 2.3 Coupled-inducton conventern with arbitrary socurce and Load

Ampedance.
Vc"’Vg
i i
n out
R, R,

Fig. 2.4 Capaciton-voltage-induced or ouf-uvf-phase nipple model forn the
coupled-inducton convernten with nesisiive source and Load
impedances.
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is assumed perfect in accordance with the simple transformer model devel-
oped in the preceding section. Assume for the moment that Zq and Z2 are

resistive R1 and Rz. Then, to examine the currents fin and i , One may

out
use the principle of superposition and equations {2.15) to find
R n V - v
P L - T
in R1 + RZ L R1 + RZ
(2.16)

R% i(i VC“"'V

Tut TRFR, T VRER,
The surprising fact is that equations (2.16) are valid during both frac-
tional periods DT, and D'TS. Notice that (iin + iout)L = n¢ as anticipated,
and that current ripple attributable to core flux variation appears in
phase on iin and i . according to the dot convention shown in Fig. 2.3.
The contribution to the current ripples stemming from fluctuation in
capacitor voltage is out of phase. It is fruitful to examine the separate
current vipple contributions from the capacitor voltage and from the core
flux. Figure 2.4 is an equivalent circuit showing how the capacitor voltage
vartations show up as input and output current ripples. The out-of-phase
ripple on 1in and iout is directly proportional to voltage ripple present
on the energy transfer capacitance and inversely proportional to the series
resistance of RT and Rz. This ripple component appears equally on the input
and output currents irrespective of choice of R} and RZ. Some ripple con-
tribution to both input and output currents due to this source is thus
unavoidable. However, choice of a sufficiently large capacitor can easily
make this component of ripple much smaller than the inductive component.
The model of Fig. 2.4 may be conceptually extended to the case where R1

and Rz are again replaced by arbitrary impedances as shown in Fig. 2.5.
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]

cut

Fig. 2.5 Out-of-phase nipple model fon a coupled-inductor new converten
with anbitrany sounce and Load impedances.

tin lout

ng
R'é v )T Re

Fig. 2.6 Inductive-curnent-division on An-phase nippfe model §or coupled-
dinductor converter with nesistive sounce and Load impedances.
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Allowing the presence of complex impedances admits the possibility of
freguency dependence. If 23 or Z2 contains series inductance then the
impedance presented at the switching freguency, the fundamental fregquency
on the capacitor voltage, may be great, causing additional attenuation of
out-of-phase ripple on both input and output.

In many cases the inductive ripple dominates the current ripple
waveforms giving them their characteristic triangular appearance. Figure
2.6 models the in-phase inductive ripple contribution indicated in Egns.
(2.16). It is immediately evident that the core flux induced ripple
divides between input and output according to the resistive current divider
formed by R1 and RZ' Experimentally this may be verified by building a
converter with small capacitive ripple and with R1 = RZ' The observation
is then that the triangular ripple waveform is present in equal amounts

on i, and i

in out” Also if for instance R2 >> R], then the preponderance

of the current ripple will appear on iin'

As in the case of the out-of-phase ripple model let us extend the
model of Fig. 2.6 to include complex impedances. Figure 2.7 illustrates
the extended model. With complex impedances admitted to the model the
behavior of the current waveforms becomes much more difficult to predict.
For example, if Z} is a low source impedance and 22 is R // CZ’ as may be
the case for further voltage ripple attenuation, then the inductive ripple
may divide about equally between input and output but in a complex fre-
quency dependent fashion that leaves neither iin nor éout triangular in
form. These are typical circumstances under which waveforms like those

illustrated in Fig. 1.5a are observed. It should be evident that if one

wishes to reduce the inductive ripple at either input or output this can
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Fig. 2.7 Model of inductive cuwrent division fon coupled-inducton
converter with arbitrary sounce and Load impedances.

Fig. 2.8 Coupled-inductor new converten with inductance in the output

currnent path using impedance division fo renden output cunrent
nipple-free.
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be accomplished by an appropriate inequality in impedance magnitude be-
tween 21 and 22 effective at the switching frequency and higher. This
again suggests the inclusion of inductance in one of the current paths.

To shed more 1ight on the effectiveness of including inductive im-
pedance in one of the current paths, let us examine the circuit of Fig.
2.8 where inductor L2 is placed in the output current path. A simple but
useful state-variable model of the circuit of Fig. 2.8 may be obtained by
replacing the coupled inductor with an ideal transformer and modelling
source impedance as resistive. Then the order of the system is three and
the system states may be chosen as ij, 12 and V. as illustrated in Fig. 2.9.
If one uses the "zero state response" technique the state equations may be
written by inspection of Fig. 2.9. The procedure is to assume all states
and forcing functions are zero except for the state or forcing function
whose matrix entry is under consideration. The operation relies on the
principle of superposition for linear systems to obtain the complete correct
result when all states and controls are examined individually. In this

manner the state equations may be written for interval DTS as

per—b———.
—— i Spema— o s

=

-R R 1
i -9 9 0 i -
i i
1 L3 L} 1 L1
R R+ R 1 -1
d . g R
- i = -3 - o i + ] e v (2.17)
dt 2 L, L, L, 2 Ly g
v 0 -1 0 v 0
c C c
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Fig. 2.9 State variable model for a Low-output-nipple coupled-inducton
converter with {mpedance {mbakance arising grem external
inducton; a} ideal switch nepresentation, b switch in position
A durning DT, c] switch in position B during 0'T,.
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For interval D'T. the state equations are

R R -1 !
h T =T i -
1 1 Ly ! Ly
Eﬂ. R+ R 1 -1
d_ i = - e d - i + | Vv (2.18)
at 2 Ly Ly L, 2 Ly 9
1 -1
Ve C T 0 Ve 0
bire  sanoned L P . WO

Notice that in equations (2.17) and (2.18) the expression for diz/dt is
invariant. Since 12 corresponds to 1out’ and the output current ripple
is the one we desire to attenuate by insertion of LZ’ it may prove fruit-
ful to examine the differential equation for iz to see how the ripple
characteristics on iout agree with the anticipated behavior based on the
models of Figs. 2.5 and 2.7. Extraction of the appropriate equation from

either (2.17) or (2.18) yields

d R+ R R y
o = ..__.______9_ N “ﬂ . _.....E
at '2 L, 2 * L, * ) (2.19)

Equation (2.19) is a first-order linear differential eguation and hence
the steady-state response of iz to excitation from state variables i1 and

Ve is easily obtained in the frequency domain via Laplace transform. With

s denoting the transform variable, the behavior of iz(s) is

_ Rgia(s) + vc(s)

i,(s) = L, TRV R (2.20)

g

This is precisely the frequency response predicted by the inductive current
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division and out-of-phase ripple models developed earlier. The correlation

with the models becomes quite apparent when (2.20} is rewritten as

Z,(s) 1y(s) + v (s)

ls) = =7y e (2.21)

where Za(s) = Rg and 22 = st + R. The parallel impedance division of

i}(s) and the series impedance attenuation of v_(s) are shown guite clearly.

o
Equation (2.21) and the current ripple models developed earlier are
not useful for quantitative predictions because the excitation terms i1(s)
nqs(_s)/L1 and vc(s) are not known. In principle the equations (2.17)
and (2.18} could be solved subject to matching boundary conditions, and
analytic expressions for f3 and Ve developed. In practice the task is
formidable, unilluminating and lacks general application. However, some
additional observations of a qualitative nature may be made by noting
that d/dt 11 o ]/L3 and d/dt Ve © 1/C where the symbol = implies propor-
tionality. Larger values of LE and C would reduce current ripple in the
absence of L2 and rather bbvious?y will also aid in ripple reduction when
L2 or other impedance is present. Further, if the ripple present on the
system state variables is small compared to their dc components, then the
derivatives of the states are approximately constant. Design criteria
for switching converters often make this constant slope or straight line
approximation to the state variable behavior very accurate. (This point
will be further discussed in Chapter 7.) Using the straight line approx-

imation the magnitude of the peak-to-peak ripple on Ve and i? may be

estimated from the state equations, the steady state duty ratio D, and
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the switching period ?S. Then equations of the form of (2.20) may be

employed with s = jws, w. the radian switching frequency , j = /-1, to

s
obtain an estimate for the magnitude of the fundamental frequency com-
ponent of the ripple. Such an estimate is often sufficient for engineering
purposes since "second-order” effects such as capacitance esr and switch
nonidealities not included in a tractable model become dominant when very

small ripple is sought, and thus render mathematically precise analysis

ineffectual.

2.3 Extensions of the impedance division principle

As mentioned in Section 2.2, the inductive n¢/L contribution to the
converter current ripple often dominates the out-of-phase capacitive con-
tribution, or may be made to do so by choice of sufficiently large capaci-
tance. Under such circumstances control of inductive current ripple by
utilization of the impedance division principle illustrated in Fig. 2.7
can make very significant improvement of the converter input and/or output
current ripple characteristics. The model of Fig. 2.5 suggests that while
increasing Z] or 22 for inductive ripple control one simultaneously
diminishes the effects of voltage ripple on the energy transfer capacitor.
With these facts in mind one is motivated to develop further applications
of the impedance division principle.

Since input or output current ripple can easily be controllied by
design of an appropriate impedance division of the n¢/L current, one is
ted to consider the existence of techniques for reducing input and output
ripple. Equations (2.12) and the inductive ripple model insist that the

currents in the two windings must sum to ne/L. Since storage in and dis-
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charge of energy from the magnetic flux ¢ is part of the heartbeat of the
converter, there must be ripple on ¢ and hence on the sum winding current.
Therefere one cannot simultaneously prevent ripple from flowing in the
input and output windings of the coupled inductor unless a third winding
is present.

The gquestion that immediately arises is whether or not the impedance
division model is directly extendable to three or more windings on the
coupled-inductor core. The answer is yes, and the justification simple.
Faraday's Taw (2.11) tells us that the voltages around each winding must
be the same when n, the number of turns, is constant. The voltage and sum
current constraints on the windings lead immediately to the extension of
the inductive current ripple model (Fig. 2.7) to a similar one with an
arbitrary number of current loops all sourced from one current generator
whose current is ng/L. Each current loop represents one winding on the
core and the impedance associated with it. Such a model is illustrated
in Fig. 2.10.

From Fig. 2.10 one may see that by adding a winding to the core which
has a low impedance path to ground such that 23 is much less in magnitude
than Z1 or 22 for excitations at the switching freguency or higher, the
inductive ripple may be diverted from input and output. One practical
realization of a third winding technique is shown in Fig. 2.11. Such a
configuration as shown was constructed in the laboratory and observed to
give good performance. This configuration however, does not differ signif-
icantly from the application of LC filter sections to the input and output
leads, a conventional approach. Even though the third winding on the core

need only be large enough to handle the rms ripple current, it seems
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Fig. 2.10 TImpedance division inductive current nipple model fon the
coupled-inducton Cuk convenfer with an arbitrary numbern o4

windings on the Lnductor cone.
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Fig. 2.11 Convernter with small input and output current rnipple wtifizing

a thind winding with Low ac Aimpedance To sink <inductive current
rnipple.
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superfluous since C} could just as well be connected from the input or
output lead on the coupled inductor to ground.

A more fruitful application of the impedance division principle is
adding input and output inductances to the transformer-isolated coupled-
inductor single-core éuk converter. This configuration already has two
additional dc blocked low impedance windings to ground which provide the
transformer isolation. Figure 2.12 shows a possible bipolar implementation
of this topolegy. The preponderance of the ng¢/L ripple will exist in the
isolation transformer windings. The technigue of Fig. 2.12 has good com-
ponent utilization. The only added elements to the basic configuration
of Fig. 1.6 are L} and Lz, which typically need not be very high in induc-
tance to provide substantial reduction in ripple. It should also be
evident that ripple attenuation is not very sensitive to component
tolerance when this technique is used. Again we may note that this
technique is tantamount to application of input and output LC sections
to the converter, with the significant advantage that the isolation
windings and the energy transfer capacitors C} and 62 have dual roles
with 1ittle additional stress.

One drawback to the circuit of Fig. 2.12 is that even though L1
and L2 are present to control the ac current waveform they must be made
to stand a dc bias without saturating magnetically. The dc bias reguire-
ment makes L} and L2 larger than a bias-free inductor of the same value.
A size and weight advantage may be gained if one were to envision a way
of reducing ripple without using inductors in the path of dc current.
Considerations of improved topologies that circumvent the dc bias diffi-

culty is reserved for the next chapter.
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Fig. 2.17 1solating new converten with small snipple on external curnents
wtilizing L8olation windings and enengy-thansfen capacitons aa
Low impedance paths fon curnnent rnipple.
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2.4 Review

In this chapter fundamental results from basic electromagnetic
relationships were used with an idealized model for the new converter
to generate basic information concerning its current ripple character-
istics. It was found that the input or output currents on the coupled-
inductor converter could be made to have arbitrarily small ripple com-
ponents by design of an appropriate impedance inequality between the
two windings. The mode] of the division of inductive ripple current was
further extended to embrace multiple windings on the coupled inductor
core. Insight gained permitted one to envision converter topologies
with arbitrarily small input and output current ripple. These extensions
to the basic coupled-inductor converter are easily constructed and repro-
duced owing to their relative insensitivity to component tolerances.
Finally, some observations about the new circuits were made which suggest

possible goals for subsequent chapters,
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CHAPTER 3
THE NEGATIVE INDUCTANCE EFFECT

The basic modelling of the coupled inductor as a 1:1 transformer
developed in the preceding chapter is augmented to include arbitrary
winding ratio. In this manner the extended model gains the additional
degree of freedom needed to explain the zero ripple and negative induc-
tance effects not predicted by the elementary impedance division model,
In contrast with the methods of Chapter 2 the developments of this
chapter show how the ripple may be made to flow in a winding with high
impedance, if that impedance is inductive and of the appropriate size.
Since the inductance value must be chosen precisely as a function of

other circuit parameters, this method may be referred to as the impedance

matching technique. Once established, the impedance matching concept is

used to advantage to generate alternative coupled-inductor topologies
with very desirable ripple characteristics. Some are configured in ways
that result in reduced hardware size and weight by circumventing the need
for additional inductors which carry dc¢ current, as are used in the imped-
ance division technique. The results are substantiated by hardware
realization and laboratory verification demonstrating that the analysis
is correct as well as practically applicable.

In the next two chapters the impedance matching method is applied
to other converter topologies and analyzed in more detail. The detailed
analysis leads to greater understanding of the ripple attenuation process

and consequently to even further improvements in performance.
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3.1 Arbitrary inductor turns ratio

Consider a transformer with arbitrary turns ratio excited by a
voltage source. Figure 3.7 depicts a simple model of such a situation
where R] and R2 account for any resistance in the primary and secondary
circuits. The model is idealized in that all the magnetic flux ¢ 1%
assumed to link both primary and secondary windings. Application of

Ohm's and Faraday's laws to the circuit of Fig. 3.1 to solve for ip and

is yields
. . n 99
i, = R, (Vg " dt) and (3.1}
i d¢
Tg = R, "2 @t (3.2)

Extension of (2.12) to embrace unequal turns ratios produces

Ry

Fig. 3.1 Model of an Lidealized Lineanr trans formen with arbitrany winding
turns ratio.
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i L i L
p "1 s "2 _
— == where {3.3)
1 2
LR B § (3.4)
L2 ny

Substituting from (3.4) into (3.3) and utilizing (3.1) and (3.2), one

may generate the equation of state for the primary flux linkage nyé-

v (3.5)

n
1 R
d¢ )] npe <”2) ’
:_R]//

n pp— —
1 dt n,

Equations (3.1) and (3.2) may be recast to show the dependence of the

current upon the state n]¢, instead of upon the state derivative terms

to obtain expressions similar to (2.15):

2
( i )
n 2 nqd v
-2 ] g
P ni 2 Ll ny 2 (3-6)
R, + —-) R R, + (———) R
1 (nz 2 1 Ny 2
n n
R](“;) nyo (n ) v
= 5 - 2/.°g 5 (3.7)

L
n 1
1 n
R, +{—] R !
1 (“2) 2 ot (nz) "2

If in (3.7) the secondary current is reflected to its egquivalent primary

current value and labeled with a prime to denote the transformation,
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(3.7) becomes

R n,d v
. 1 1 g
tg T ? - 2 ; (3.8)

. (n}) . L¥ n1)
+ [ Ry +|-—] R
1 nz Z 1 (n2 s

The parallel between equations (2.15) and the pair (3.6) and (3.8) is

evident. The latter shows the non-unity turns ratio by reflecting
secondary impedance by the usual turns ratio squared, but preserves the
same functional form. Let us apply these results to the coupled-inductor
converter as before to see what differences arise owing to the intro-

duction of arbitrary turns ratio.

3.2 Zero ripple and the negative inductance effect

Figure 3.2 shows the coupled-inductor converter with an arbitrary
turns ratio, source and load impedance. Taking Z.E and Z2 real and egual
to Ry and R2 allows one to use {3.6) and (3.8) to write equations for
the input and reflected output currents for the two switch states by

inspection of Fig. 3.2.

Tin 5 0 5

during DT, (3.9)

"
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Fig. 3.7 Cuk conventer with arbitrary impedances placed in input and
output current paths.

and
2
%

— R
- ny 2 n1¢+ Vg v
in 2 L 2

n a 1 Ny

el ) e we(g) R
during D'T,  (3.10)
i R1 n1¢ . Ve T Vg

Introduction of the turns ratio other than unity makes the current

equations (3.9) and (3.10) different for different switch positions,
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whereas previously the parallel equations (2.16) were found to be invari-
ant with switch position. Notice that the impedance division of the
n3¢/L] ripple is still evident in (3.9) and (3.10) so that a model very
similar to the previous impedance division model may be generated as
shown in Fig. 3.3. As usual the prime indicates that the output current
has been reflected to the input via the turns ratio. The essential
difference lies in the fact that in (3.9) and (3.10) V. can be seen to
enter into the input and output current equations either directly or
modified by the turns ratio (n}/nz). In effect, even if V. can be con-
sidered constant as before, an ac excitation to the input and output
currents at the switching freguency in the form of a square wave is
present. Thus with non-unity turns ratio the capacitor voltage contri-

bution to the current ripples cannot be ignored. A simple model, again

in out

no & 2
5 "2l (7e) 22

Fig. 3.3 Impedance division modeld with unequal Zurns on the priimary and
secondany windings of the coupled dnductor.
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with use of the extension to complex impedances is shown in Fig. 3.4.
It seems as though the disturbance of the unity turns ratio has added
to the input and output current ripples with no advantage gained. This
would indeed be the case if ZT and 22 were purely resistive, but if one
exercises some imagination with the possibility of complex impedances,
a potential advantage to the additional "disturbance" depicted in Fig.
3.4 may arise, For sake of simplicity, consider for the moment that

11 in Fig. 3.4 is zero. Then, the square wave generator is impressed
directly across (n]/nz)2 22. If 22 is primarily inductive, the current
flowing in it will have a similar triangular waveform shape to n}¢/L3,
with the same phase and duty ratio effects. Realizing this, one may

seek to define an appropriate 22 and turns ratio such that the Ve induced

(%)
- =11V
N, ¢
out

/AT Ul
-

Fig. 3.4 Capaciton-voltage-induced nipple model with unequal turns cn
coupfed inducton.
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iéut is precisely what is needed to sink the ﬂ§¢/L] current source of
Fig. 3.3. If this current sinking effect can be made independent of
duty ratio then the input ripple could be made to vanish irrespective of
operating condition. Examination of the ac excitation on the coupled-
inductor primary shows Ve entering there also as the square wave exci-
tation magnitude. Since the time relationships and polarities of exci-
tation of V. on the inductor primary and (n¥/n2 - 1)vC on the reflected
output impedance are such that n1¢/L} could be made to flow through 22,
the desired equality of current derivatives is

v (ny/n,)= 1

c_ V1R 3

T {n,/n,)L

124 0

where Ly is the required secondary inductance. From (3.11) we may solve

for LQ normalized to L] as
LO/L] = F{(1 - F}; F = nz/nT (3.12)

Equation (3.12} specifies the secondary inductance and appropriate turns
fraction necessary to generate an output current waveform virtually
identical to the waveform produced if all the n3¢/L} ripple were to flow
in the output winding. Perhaps an example circuit would serve to clarify
the present development.

Figure 3.5 is a sketch of a coupled-inductor Cuk converter with un-
equal turns on the inductor and an inductive impedance in the secondary.
The inductor LO in the secondary is chosen in conjunction with R2 and 62
such that at the switching frequency the secondary impedance is essentially
jmsLQ. Then the apparent square wave produced by C switching between the
primary and secondary circuits induces a triangular ripple in the output

winding. If F and L, are chosen in accordance with (3.12), then the
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Fig. 3.5 Zeno input ndpple conglguration with matching Anducten L, 4n
output curnnent path whose value 14 nelated to the ftuans fraction
F by the matehing condition LO/L1 = FF',
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magnitude of the ripple is such that
T, = Mo (3.13)

where ~ indicates ac terms. Since we have

1

1 ? L
in 1 out*?2 _
m + n, = ¢ (3.14)

L

from (3.3) it may be seen that (3.13) implies ?in = 0 or the input current
is dc only. Reduction of LU from its value prescribed in (3.12) will make
the output ripple greater than n2$/L2, and thus will result in a ripple on
5

in of inverted form to satisfy (3.14). Conversely, if L0 is too large

the ripple on iin will be of normal form to preserve the equality in (3.14).
Thus by varying LO for a given F the ripple at the input may be made to

pass from a normal positive polarity, ramping upward during DTS and downward
during D'Tg,to a negative polarity with opposite sense. The fact that the
ripple may be made continuously adjustable from positive to negative polar-
ities gives rise to the notion that, to the extent that the waveform is

purely triangular, it must pass through a zero condition in between. Hence,

when a negative inductance effect can be demonstrated, the configuration

may be termed a "zero ripple" configuration subject to qualifying assump-

tions noted in the development.

It is appropriate at this point to pause and compare the developments
of this chapter with those of the previous one. The impedance division
technigue sought to inhibit the ripple in a prescribed winding by placing

a large switching-frequency impedance in that winding. This chapter’'s
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impedance matching technique seeks to enhance the ripple in a prescribed
winding by placing a calculated high impedance there corresponding to a
chosen turns ratio. The impedance matching technique may generate posi-
tive or negative ripple characteristics as the matching inductor is varied
about the value prescribed in (3.12). The impedance division technique
will not exhibit negative ripple and may be demonstrated with arbitrary
impedances not necessarily inductive,

One may comment on the preceding development before proceeding to
exploit the matching technique. Even though Z! was assumed zero in the
generation of the matching conditions, this is not required in general.
With %in = 0 there will be no ac voltage impressed across 21 and hence
its value is of no concern. Actually a large Z} may be desirable in
desensitizing the matching condition by simultaneously using the imped-
ance division principle with the matching technique. There is no
apparent conflict between the two methods and in fact the matching
condition may be viewed as making the high impedance in the matched
winding a very low impedénce to inductive current rippie. The compat-
ibility of the two methods increases the value of each.

The circuit of Fig. 3.5 still has the disadvantage previously
noted for the impedance division technique. That is, the inductor L0
must be designed as a dc biased component with attendant additional size.
Since the matching technique can cause the ripple to flow in a desired
winding, one is immediately led to consider application of a third winding,
with the appropriate ripple freguency impedance and turns ratio, to act as

an ac ripple sink for the converter. Figure 3.6 depicts such a
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Fig. 3.7 ApplLication of the impedance matching technique using an
electrnical tap at turns fraction F to absorb the inductive
ripple curnent.
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configuration. As before LO is determined in conjunction with F = nz/n}
by (3.12). Also C and C3 are large enough so that their voltages are
essentially constant. In the circuit of Fig. 3.6 all of the in phase
ng/t1 ripple will flow in the third winding with the sum current into
the other two dots showing "zero" ac component of ripple.

Looking at Fig. 3.6 one realizes that the third winding here is
superfiucus and that an equivalent condition can be obtained by tapping
the secondary (or primary) of the coupled inductor. Figure 3.7 shows
such an improved topology.

When one builds circuits of the types shown in Figs. 3.6 and 3.7
it can be observed experimentally that (?in + ?out) shows zero n%/L h
ripple, that is the in-phase current ripple may be removed entirely by
application of the tap inductance., However, out-of-phase oscillations
of iin and iout are not prevented by any circuit impedance and in
practice do occur as a result of component nonidealities. Since the
impedance matching and division technigues are compatible, the out-of-
phase ripple can be reduced by impedance in the input and/or output
windings. One is again faced with the possibility of having to apply
inductors which must stand dc bias. If the converter is being used
as a voltage source operating from a nominal input voltage, then 1in
and iout have a fixed relationship. Consideration of 100% efficiency
implies Vg 1in =¥ éout and shows that the currents are related precisely
in this special case. Since actual converter configurations can have

nearly 100% efficiency, or an estimatable lower efficiency, then an

out-of-phase filter may be designed for the circuit in such a manner that
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it stands a minimal dc bias. Figure 3.8 shows such a configuration.

If one reexamines Fig. 3.6 a possible circuit topology manipulation
may come to mind. The blocking capacitor C3 may be used to share the
duties of the energy transfer capacitor. Figure 3.9 shows this split-
capacitor zero-ripple topology. This configuration has the third (pos-
sibly small) magnetic tap winding in a similar position to the isolation
transformer windings as shown in Fig. 1.6. Note however, that this
winding is not an isolation winding, and could not be with the unequal
turns ratio. Further the inductor LO would be subjected to attempted
square wave current excitation which would disrupt the converter operation
and destroy components. Of course a tap could be placed on the isolation
transformer, and a configuration equivalent to Fig. 3.9 realized with

only the addition of the ac choke LO'

3.3 Demonstration ¢ircuit

A demonstration circuit was constructed in the configuration of
Fig. 3.9 with the split capacitor. Figure 3.10 is a circuit diagram of
this demonstrator with actual component values indicated. The circuit
exhibits 0.2% rms output ripple when LO is adjusted to L/4 in accordance
with F = 1/2. When LO is maladjusted, the ripple visible on the input
or output may be made to appear with positive or negative siope. As
mentioned earlier, an out-of-phase choke is included in the circuit to

prevent (1in - 1out) rippie spurred by circuit nonidealities.
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Fig. 3.10 Zeao nipple demonstration circult

L = 2.24 mH on Magnetics Ine. squane pomalfoy 80 core with
170 turns #23 AWG and 0.13" ain gap.
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3.4 Review

In this chapter the basic models developed in Chapter 2 were
extended to include an arbitrary turns ratio on the coupled inductor.
It was found that an appropriate inductive impedance in a winding with
a turns ratio less than unity could serve as a sink for the n¢/L ripple
that exists in the coupled-inductor windings. Novel features of this

technique are that the ripple is made to flow into a high impedance by

means of a matching condition between turns ratio and the winding
inductance. If the matching condition is perturbed, positive or negative
polarity ripple currents are observed on the converter input and/or
output. A principal advantage sported by some of the topologies using
the impedance matching technigue is that the ripple may be diverted from
the input and output ports of the converter without using dc biased
inductors as was necessary when using the impedance division principle.
Equally as important for practical considerations, the developments of
this chapter were found to be compatible with the technigues of the
preceding chapter and wefe used in conjunction for practical demonstration
purposes.

Thus far all the work has been concerned with the coupled-inductor
6uk converter. The results have been so encouraging with this topology
that one may be stimulated to try to extend the principles perceived to

alternative configurations.
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CHAPTER 4
UNCOUPLED ZERO-RIPPLE CONFIGURATIONS

The preceding chapter developed techniques for demonstrating the
zero-ripple phenomenon in the coupled-inductor éuk converter. That is,
topologies were realized which exhibit ripple characteristics continu-
ously adjustable from positive to negative slope with essentially a
“zero-ripple" condition in between. Thus far the analysis has been
solely concerned with the coupled-inductor converter's ripple behavior,
which now may be explained and exploited in a number of ways. One is
naturally led to extend the results of the previous chapters to include
other converter topologies if possible. In this chapter it is found that

the negative inductance effect, and hence the zero ripple condition, may

be demonstrated with any of the basic converters that have a nonpulsating

current waveform at the port of interest. The basic Cuk converter without

coupled inductors has nonpulsating currents at both input and output, and
as such may be made to exhibit zero ripple at both ports. Of the several
new ways suggested for making such a veritable dc-to-dc converter, one is
selected and used for demonstration purposes.

The results of this chapter not only lead to several new and useful
zero-ripple configurations but also identify a particular arrangement of
elements that exhibits the negative inductance effect without the com-
plication of a switched topology. The new filter first seen in this
chapter will he the subject of more precise analysis in the next chapter,

which will add even further refinements to the subject of ripple atten-

uation.



57

4.1 The uncoupled-inductor converter

The development of the coupled-inductor new converter was spawned
by the realization that the voltage excitation waveforms on both in-
ductors of the uncoupled version were identical [3]. Since the uncoupled
version has strong similarities to the coupled-inductor converter one may
naturally ingquire whether similar technigues of ripple suppression are
applicable to the basic new converter. In pursuit of the answer to this
question, one may examine the circuit of Fig. 4.1 to see what useful
parallels exist with the coupled-inductor version. A cursory examination
of Fig. 4.1 reveals that when the inductors are not coupled the ac prop-
erties of the input and output currents are independent. Thus it should
be manifest that the impedance division principle and the accompanying
models do not apply to the basic new converter. However, knowledge that
the voltage waveforms on the two inductors are identical to the waveform
present on the coupled inductor, and the fact that any inductor can be
viewed as an autotransformer leads one to consider the possibility of
applying the impedance hatching technique to the inductors of the basic
new converter.

Consider the new converter of Fig. 4.1 with the tap point on the
input inductor at tap fraction F as shown. The voltage Vi present at
the tap point is approximately a square wave fluctuating between FVg
and Fvg + (1 - F)vC as illustrated in Fig. 4.2. Again the assumption
of constant capacifor voitage is needed to justify the square wave
approximation to the tap voltage waveform, The constant value Ve will

assume is essentially Vg - ¥V so the tap waveform may be reformulated as
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in Fig. 4.3. The voltage viq exciting current in the inductor is also
well approximated by a square wave as shown in Fig. 4.4. Note that Y4
and Vi have 180° phase difference and that their ac magnitudes are Ve
and (1 - F) Ve respectively. If the ac component of the tap voltage in
Fig. 4.3 were impressed across an inductor L0 then the current flowing
out of that inductor (and into the tap point) would be in correct phase
to satisfy the current ripple input requirements of LI excited by URE
From Fig. 4.7 one may ascertain that the dc value present at the tap
must equal the source voltage since no dc blocking elements exist
between the tap and the source. Thus to obtain only ac excitation from
the tap point the dc source voltage must somehow be subtracted out. If
the dc shift is by any means accomplished, one may then proceed to cal-
culate the value of tap inductance that will effect a matching condition
in this case. In order to satisfy the ripple current reguirements of

L] at the tap point, a current "injected" there should be 1/F times the
current ripple normally flowing in iin' Equivalently from Figs. 4.3 and

4.4 we desire that the value of LO be such that

1 -
=P 1y @
0 1

so that the current flowing in L0 would be a source of ripple current
for LT of appropriate magnitude. The relation {4.1) is satisfied inde-
pendently of Vs OF equivalently of the operating condition, if

Lo

Ly

=F (1 - F) (4.2)
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Equation (4.2) is identical to the matching condition for the coupled
inductor given in (3.12}). This should not be surprising granted the
similarity between the convérters.

A1l that remains to be determined is how to locate LO such that it
may feed current into the tap point and experience a voltage of vy - Vg,
the tap voltage with dc bias removed. There are several ways of achieving
this end. One obvious way is shown in Fig. 4.5. The ripple normally
present on iin now will flow through LO magnified by 1/F. This config-
uration is useless since the ripple is still drawn from the source and
its magnitude is even increased, circumstances we hope to avoid. Instead
of returning LO to the source one may emplioy a blocking capacitor to
ground as shown in Fig. 4.6. The average voltage across CO is Vg 50 the
voltage across L0 is the desired Ve - Vg and the ripple current in L] will
flow into the tap point and not out of the source. Again the assumption
is that CD is large enough so that its voltage is essentially constant.
The derivation of the configuration that removes the output current ripple
is quite similar to that just preceding, and the result is the same. It
is then possible to envision a topology based on the uncoupled-inductor
new converter that will exhibit the zero ripple or negative inductance
properties on both the input and the output currents. Figure 4.7 illus-
trates one basic approach. The circuit of Fig. 4.7 has been constructed
and found to exhibit the zero ripple properties at input and output.
Maladjustment of L01 or L02 can cause positive or negative ripple to

appear at the corresponding port. Several extensions of this configura-

tion follow easily.
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T o

Fig. 4.7 Basic Cuk converter with zero input and output cunnent nipples.

It should be apparent that the boost-buck new converter in Fig. 4.7
can be "dissected” to yield a boost circuit and & buck circuit. Thus a
boost circuit with only dc input current or a buck circuit with only dc
output current can be envisioned. The problem remains with both of these
circuits that one of the‘currents is pulsating, a circumstance often
requiring external filtering.

The most fruitful extensions are those involyving the new converter.
The important step in conceiving some useful developments is to utilize
the split capacitor concept [2] in conjunction with the notion of a
“magnetic tap" on the input and output inductances. The basic idea is
shown applied in the circuit of Fig. 4.8. Here the energy transfer
capacitors C} and Cz serve to remove dc bias from LOT and LOZ' The

electric tap of Fig. 4.7 is replaced with an additional, possibly small
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Fig. 4.8 Split-capaciton zero-aipple fopology utilizes magnetic taps on
 the dnput and output inductons of the basic Cuk converten.

cross section, winding which may be viewed as a magnetic tap. Two
capacitors are eliminated at the expense of two small windings. The
¢ircuit of Fig. 4.8 has been constructed and found to perform well.
An alternative to the cifcuit of Fig. 4.8 involves coalescing L01 and
LGZ into a single LO at the split capacitor whose value is given by
LO = LO] f/ LOE‘ Experimentally this option is found to be less
effective since independent nulling of the input and output current is
sacrificed.

For the final example modification to the circuit of Fig. 4.7, a

demonstration circuit was constructed.
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4.2 Demonstration circuit

The demonstration circuit is a natural outgrowth of the split-
capacitor zero-ripple configuration. The transformer isolated versions
of the new converter all have a split capacitor to accommodate the jso-
lation transformer. With minimal penalty in terms of parts count and
compiexity the isolating uncoupled-inductor converter is rendered zero-
ripple through use of magnetic taps as shown in Fig. 4.9. The demon-
stration circuit was found to give excellent ripple performance having

less than 0.1% rms current ripple.

T

Fig. 4.9 Uncoupled-inducton zerc-aipple demonstraton circult.
Switching grequency = 20 KHz
L= 2,29 mH LO = 573 uH
F=0.% C =900 uF
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4.3 Review

The zero-ripple and negative-inductance phenomena are found to
exist in other topologies than the coupled-inductor éuk converter, The
basic Cuk converter, the boost, and the buck all can be made to show
negative inductance and hence zero ripple. Of these three only the
Cuk converter lends itself to the possibility of zero input and output
ripple. Three practical methods of arriving at this condition are pre-

sented concluding with a specific circuit example.
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CHAPTER 5
THE NEW FILTER

In the previous chapter several topologies with the zero-ripple
properties were introduced. A fundamental building block for these new
configurations is a tapped inductance with an LC network from the tap to
ground. Previous1y; for the sake of convenience and ease of understanding
the aperation of the zero-ripple topologies, constant capacitor voltage
assumptions have been made. In this chapter the analysis of the new filter
gains added accuracy by including the effect of fluctuating capacitor volt-
age. Since the tapped-inductor configuration has no switched elements it
is particularly amenable to linear analysis and may readily be described
in the frequency domain via its state-space model, including the capacitor
voltage as a state. The power of this precise description of the new
filter is conspicuous in its ability to explain the negative inductance
effect. Moreover, the designer's ability to synthesize in the Laplace
transform domain is supported by a great wealth of classical design
technique. Some of these methods are used to design a third-order

elliptic-function filter with its complex-Conjugate zero pair at the

switching frequency. Example circuits are built and tested in the

laboratory to show that the ripple attenuation can be extreme even for
relatively small filter elements. To illustrate the sharp cutoff of
the elliptic, a switching audio amplifier is constructed with the
switching frequency just two octaves above the audio band. The labora-

tory tests on this circuit clearly indicate the utmost selectivity of
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this electric power filter in rejecting switching noise while allowing
audio frequencies to pass.

The development of the elliptic filter in a form suitable for
power processing applications culminates the effort of Part 1 of this
work. The relative merits of the techniques developed for improving
converter noise characteristics will be discussed iﬁ the review section

for this chapter.

5.1 State-space analysis

The new filter is an outgrowth of the impedance matching technique
which has been discussed in various forms in Chapters 3 and 4. However in
Chapter 4 the zero ripple filtering effect was realized with constant
topology components. That s, the elements of the new filter were in a
fixed physical relationship to one another with none of the components
being switched in and out by the converter operation. Thus, rippie
analysis on such filters may be performed by classical techniques. The
output section of the circuit of Fig. 4.7 is a non-switched zero-ripple
filter that here will be subjected to analysis.

Consider the zero-ripple filter with an ac voltage generator on
its input as depicted in Fig. 5.1. In order to proceed with the analysis
of Fig. 5.1 it is convenient to choose a suitable equivalent circuit
model with state variables identified. The tapped inductor can be
modeled as an ideal transformer and parasitic resistances in the circuit
ignored without loss of accuracy to the extent that fundamental under-

standing of the circuit operation will be sacrificed. With these
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Fig. 5.1 The new powern processing 4ilien shown with ac voltage scurce
excitation.
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v

+
C

Fig. 5.2 A state-variable model {for the new {{ffen nepresents the power
inducton as an Anverting trhansformen.
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assumptions an appropriate state-variable model of the new filter is
shown in Fig. 5.2. Notice that the tapped inductor is replaced by an
inverting F:{1-F) transformer with magnetizing inductance F2L. The
choice of states is not unique but in this case a convenient selection
is the transformer magnetizing current 1}, the tap inductor current 12,
and the blocking capacitor voltage Ve With this choice the first order

vector differential equation describing the system dynamics may be written

by inspection of Fig. 5.2 as

.1 [ R R 7 1
1 T T 0 4 L
2 74
d . F4R FER 1 , 1-F
i i |- &R ER D i, + LBy (5.1)
dt 2 I_O 0 LO 2 LO g
v 0 1 0 v 0
. C. - C _ RS -

Equation (5.1) is of the standard form X = Ax + bvg and as such is readily
solved by Laplace transform. The general steady-state solution is given

in terms of the transform variable s as

x(s) = (sI - A} 'b vg(s) (5.2)

As it is sufficient to know the filter response for sinusoidal excitations
of all frequencies vg(s) may be taken to be unity, the transform of the
impulse function which has unity strength for all frequencies. Then x(s)
with s = ju will indicate the magnitude and phase of the state-vector
response to a sinusoidal input with radian frequency w. Knowledge of

the frequency response is tantamount to knowledge of the filter response

to any function that possesses an eigenfunction expansion in sines and
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cosines. Since we are ultimately interested in the response of the
system to square-wave switching excitation with its well-known Fourier
series expansion, a frequency response analysis is entirely adequate
for present purposes. However, in this case the transfer function of
interest is v/vg(s) and v is not a state variable but a linear combin-
ation of state variables chosen. Thus the answer sought is not given

directly by (5.1), but instead may be written as

Y (s) = h(sI-A)"Tb (5.3)
g
where hT = [FR, -FR, 0], and T indicates transpose. Equation (5.3) shows
that the steady-state solutions to system transfer functions are available
from the state equations {5.1) by straightforward matrix manipulations
provided h is known and [sI-A| # 0 (|A| indicates the determinant of A).
In accordance with standard technique, (5.3) may be expanded as

Tr e
_ h Cof (sI-A)b
v () = A (5:4)

where Cof(sI-A) is the matrix of cofactors of sI-A. The desired transfer
function is obtained from (5.4). The expansion and subsequent coalescing

of terms in (5.4) is a few pages of simple algebra resulting in

2
(L. - F[1-F]L)Cs? + 1
Y (s) = 0 - (5.5)
g LLyC 3 2.\ 2
TS “"(LO'*‘FL)CS ""'R“S"'T
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One may notice that the Teading coefficient in the numerator of (5.5}
may be positive, negative or zero depending on the values of LO’ F and
L. For sufficiently large s the transfer function approaches

(Lp-F(1-F)LR

v
Vg S + e LLOS

(5.6)

The high frequency response of the system may appear as an integrator
with or without an additional 180o phase shift depending upon the sign
of the numerator. This explains the observed negative inductance effect
in the new filter.

When the leading coefficient in the numerator of eguation (5.5) is
zero, the maximum high freguency attenuation is obtained. The criterion

is independent of R and C and is given by

L
0 (5.7)
1= F(1-F)

precisely the matching condition first expressed in (3.12). Figure 5.3
is a sketch of the norma}ized tap inductor versus the tap fraction.

Notice that for F = 0.5 the value of LO is maximized at 0.25 L. If one
rewrites equation (5.5) with Ly determined by (5.7) as sketched in Fig.

5.3, the result is

Y(s) = ! (5.8)

v - 2
g fii:glLMQ. s3 & FLCS? + %—s +1

Equation (5.8) shows that ideally, when the matching condition is in
effect, the high frequency ripple attenuation is third order and that the

term "zero vippie" is somewhat of a misnomer. The leading coefficient in
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Fig. 5.3 Sketeh of noamalized fap inductor versus fap graction showing
the matching condition and areas where mismatch produces pesditive

on negative ripple sense power inductorn curnent.



74

the denominator is maximized when F{1-F) is, and thus the tap fraction
of 0.5 leads to the greatest high frequency attenuation corresponding to
the largest matching Ly for a given choice of L.

Any hardware realization of the new filter of Fig. 5.1 will be
affected by component non-idealities. One parasitic worthy of consider-
ation is the resistance in the tap impedance comprised of the capacitor's
esr and the inductor's series resistance. For convenience these two
resistances may be added and attributed in name to the capacitor esr by
labelling the resistance R.. With R_ placed in series with Ly and C in
the state-variable model of Fig. 5.2, the expression equivalent to (5.5)

obtained in a Tike manner is

[Lg-F(1-F)L]cs® + R Cs + 1

-gw(_s)=L - (5.9)
g Lot 3 [ c. 2\ 1 2 L
~x s+ L g+ FYLies® #{RC + g s+
which becomes
v RCCs + 1
V'(S) = > - - (5.10)
g F(1-F)L°C _3 c 2. .
w-~?F——w»s + {F + X LCs™ + RCC + R s + 1

when the matching condition is in effect. The presence of the zero in
(5.10) indicates degraded high-frequency attenuation owing to the para-
sitics as one would expect. Equation {5.10) may be factored approximately

35
Z ]

v
7 {s) = (5.11)
v 2
9 S\° +s
(tps + H[( mo) fag Y *}
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1
= il:§l£3 w, = /FLC, and Q = vFLC/(FL/R + RCC). The

where T, = RCC, T o

p

approximate factoring is quite accurate when RC << R and RC »> T or,

equivalently, when the pole and zero break well after W

5.2 Experimental verification

Two configurations were subjected to laboratory freguency analysis.
In the first circuit fthe pole and the zero nearly cancelled, while in the
second the pole’s time constant was approximately twice that of the zero.
Figures 5.4 and 5.5 show the laboratory data indicated by dots alongside
the predicted asymptotes. The asymptotes, and Q of the double break, are
calculated by means of the equation (5.71) using the circuit element
values indicated on the figures. For sake of completeness, the phase of
the transfer functions was measured and included on the plots. It may
be seen that there is a high degree of corellation between predicted and
measured values, supporting the analysis and substantiating the accuracy

and usefulness of the approximate factoring in {5.11) for these cases.

5.3 Enter the elliptic

Again with neglect of Rc’ the filter transfer function zeroes may
be obtained from equation {5.5) and are given by the values of s that

satisfy

L, - F(1~F)E_]Csz +1=0 (5.12)

The zeros may be either real or imaginary depending on whether

L. - F{1-F)L is less than or greater than zerc respectively. In either

0
case the transmission zeroes are symmetric about the origin of the s-plane.
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It can be seen that for the zeroes near the point at infinity the two
situations differ in that the imaginary pair has no phase contribution,
while the real pair produces 180c of phase., This provides an alternative
view of the cause of the observed negative inductance effect in the new
filter. By adjustment of LO about the matching value, two zeroes may be
made to pass through the point at infinity from the imaginary axis to the
real axis, changing the filter response from minimum phase to non-minimum
phase with one zero in the right~half plane.

When the new filter is used in a switching dc~to-dc converter such
as a buck converter, shown in Fig. 5.6, or in a switching dc-to-ac con-
verter such as the switching audio amplifier shown in Fig. 5.7, it is
often desired that the filter attenuate the fundamental component of the
switching waveform as fully as possible. The previous derivation of the
matching condition was postulated on the assumption that the capacitor
voltages were constant, or equivalently, that the switching frequency
was high compared to the system’s natural break frequencies. In fact
we know the form of the aisturbance provided to the filter, and have more
precise knowledge of the fundamental freauency than that it is high.
Indeed, in absence of knowledge of the switching frequency the matching
condition which provides the greatest attenuation at high freguencies
gives the natural choice for the filter components. Knowledge of the
switching freguency and the precise nature of the filter response, given
in equation (5.5), allows the designer to make a more judicious choice

of component values than might otherwise be selected.
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Fig. 5.6 New {§iftern buck-type conventen may be made to exhibit negative-
Lnductance and hence zeno-adpple behavion.

Fag. 5.7 A new {iltern buck-derived switching audio ampfigien with an
8 9 fLoad nrepresenting the speaken.
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When LD/L = F(1-F) we know that we obtain some sort of second or
third order attenuation on the switching freguency depending on the
circuit's parasitics. Equation (5.12) and the discussion call attention
to the fact that if LO - F{1-FJL is greater than zero the transfer function
of {5.5) has complex conjugate zeroes on the imaginary axis. If there is
a particular frequency we wish the filter to reject, the zero pair could
be made to lie at + jw where w is the undesired frequency. To accomplish

this one sets

ALy = FO-FILIC = + (5.13)

with L, » F(1-F)L. Then, at least to the extent that Rc = (0, the radian

0
frequency at » is entirely attenuated. Choice of o to correspond to the
switching frequency will provide nearly complete attenuation of the
fundamental component of a switching square wave.

1t is also desirable that higher harmonics from the switching are
not passed to the load. In equation (5.5) it is plain that the transfer
characteristic has 3 poles and 2 complex zeroes. This is simiiar to the
s-plane locus for a third-order elliptic~function filter. Recall from
filter theory that an elliptic filter has an eguiripple pass and stop
band transfer function which leads to the sharpest possible cutoff for
a filter with a given order denominator. If the elliptic filter pole and
zero locations are known then (5.5) gives rise to four egquations in five
unknowns, L, LO‘ F, C and R. If the Joad R is known, then the ambiguity

is resolved and the element values that make (5.5} the elliptic filter

transfer function are uniquely specified. The new filter when properly
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configured may approximate the sharp cutoff of the elliptic, and in

addition may have complex conjugate zeroces at the fundamental excitation

frequency. The sharp cutoff has the advantage of allowing the filter
natural freguencies to be high, and hence the component vaiues relatively
small, and still maintain an acceptable stop band attenuation. The
zeroes on the fundamental eXcitation frequency cause the filter to spe-
cifically discriminate against the switching waveform, further enhancing
its performance.

A computer program was written to solve for the circuit element
values for the new filter in its elliptic function form with specified
passhand ripple and transition bandwidth (see the Appendix). With 2 dB
of passband frequency response fluctuation allowed from dc to 20 kHz,
and the transition bandwidth such that the transmission zeroes are at
80 kHz, the circuit element values are those given in Fig. 5.8 accom-
panying the experimentally measured frequency response. Insight 1is
gained into the relationship between the equiripple passband property
and the sharpness of the cutoff by examination of the theoretical
asymptotes sketched adjacent to the data points. There is a pole at
7560 Hz that causes the passband to drop a 1ittle more than 2 dB at
10 kHz. The transfer characteristic does not drop more because a
resonant pole pair exists at 18,900 Hz which causes upward deviation
from the asymptote plot in such a manner as to hold up the transfer
function until the desired bandwidth of 20 kHz is reached. After 20 kHz
the resonance drops off sharply, and simultaneously the attenuation from

the low freauency pole is evidenced. In addition, the deviation from
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Fig. 5.8 Frequency response of the new §ilter in its elliptic gunction
f<lter gonm showing an extreme attenuation of &6 dB at 80 kHz
just two octaves above the 20 kHz 