New Approaches to the Analysis and Design of
Reed-Solomon Related Codes

Thesis by

Mostafa El-Khamy

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007
(Defended September 6, 2006)



1

© 2007
Mostafa El-Khamy
All Rights Reserved



111

To My Family:
My Mother, Sanaa, My Father, Said,

My Sisters, Rasha, Rehab and Donia,

To Peace.



v

Peace cannot be kept by force.
It can only be achieved by understanding.

—Albert Einstein



Acknowledgements

It is a pleasure to take this opportunity to thank all the people who have touched my
life and helped the dream of this thesis come true. I consider myself very fortunate
to have Prof. Robert J. McEliece as my thesis advisor. It is his brilliant lectures on
information theory and the theory of error-correcting codes that made me love this
field. His sharp insight, consistent guidance, constant encouragement, contagious
enthusiasm, and friendly advice are all echoed throughout this thesis. His intelligent
questions led to many of the results in this thesis. For all the things I have learned
from him, I will always be indebted to him.

I am grateful to the members of my candidacy and defense committees, Prof.
Robert J. McEliece, Prof. P. P. Vaidyanathan, Prof. Babak Hassibi, Prof. Steven
Low at the California Institute of Technology, Prof. Dariush Divsalar at the Jet
Propulsion Laboratory and Prof. Marc Fossorier at the University of Hawaii. I would
also like to thank them for the unmatched help and generous support that they have
provided to me and for their invaluable advice and constructive feedback.

The intellectual and stimulating environment at the California Institute of Tech-
nology had a huge impact on the quality of research presented in this thesis. I would
like to thank Prof. Michelle Effros for hosting me in her research group during my
master’s year. I would like to thank many of those whom I had technical discussions
with and those whom I have collaborated with on numerous research problems. 1
would like to thank Haris Vikalo for the engaging discussions we had, Roberto Garello

for his patient advice, Makiko Kan for her careful feedback, Yuval Cassuto for his en-



vi

thusiasm, Farzad Parvaresh for the fun and fruitful time we had while he was visiting
our research group and Alex Vardy for his insightful comments. Without a doubt,
the friendly environment created by the other students in my research group, over the
past four years, was a key factor in making this thesis. I am grateful to Cedric Flo-
rens, Ravi Palanki, Jeremy Thorpe, Jonathan Harel, Edwin Seodormadji and Sarah
Fogal for making my experience at Caltech such a wonderful one. My sincere thanks
also go to my office-mates, Masoud Sharif, Mihailo Stojnic, Amir Farajidana, Radhika
Gowaiker, Tareq Al-Naffouri, Chaitanya Rao, Weiyu Xu, Ali Vakili, Sormeh Shad-
bakht and Frederique Oggier for the enriching and pleasant atmosphere they have
created.

My thanks also go to our friendly administrative assistants Shirley Betty and
Linda Dozsa for their professional aid in all the administrative issues. Many thanks
to Greg Fletcher at the Caltech-Y and Jim Endrizzi at the International Student
Programs for all the social activities they have organized to make our stay at Caltech
beneficial in so many ways.

Many thanks also go to my friends in the Teaching Assistant room at Alexandria
University for the mutual encouragement we gave to each other. My thanks also go
to those professors at Alexandria University who gave their best to see this happen.

This thesis has been made possible by the generous support of the National Sci-
ence Foundation, Qualcomm Corp., Sony Corp. and the Lee Center for Advanced
Networking.

My heartfelt thanks go to my parents and sisters with great appreciation and
respect. Their generous love, extraordinary care and unconditional support has been
with me all the way. I owe them so much, more than I can ever pay back, for always
being there for me.

Thanks to God for making the dream of my Ph.D. thesis unfold into reality.



vil

Abstract

The research that led to this thesis was inspired by Sudan’s breakthrough that demon-
strated that Reed-Solomon codes can correct more errors than previously thought.
This breakthrough can render the current state-of-the-art Reed-Solomon decoders ob-
solete. Much of the importance of Reed-Solomon codes stems from their ubiquity and
utility. This thesis takes a few steps toward a deeper understanding of Reed-Solomon
codes as well as toward the design of efficient algorithms for decoding them.

After studying the binary images of Reed-Solomon codes, we proceeded to an-
alyze their performance under optimum decoding. Moreover, we investigated the
performance of Reed-Solomon codes in network scenarios when the code is shared by
many users or applications. We proved that Reed-Solomon codes have many more
desirable properties. Algebraic soft decoding of Reed-Solomon codes is a class of al-
gorithms that was stirred by Sudan’s breakthrough. We developed a mathematical
model for algebraic soft decoding. By designing Reed-Solomon decoding algorithms,
we showed that algebraic soft decoding can indeed approach the ultimate performance
limits of Reed-Solomon codes. We then shifted our attention to products of Reed-
Solomon codes. We analyzed the performance of linear product codes in general and
Reed-Solomon product codes in particular. Motivated by these results we designed
a number of algorithms, based on Sudan’s breakthrough, for decoding Reed-Solomon
product codes. Lastly, we tackled the problem of analyzing the performance of sphere
decoding of lattice codes and linear codes, e.g., Reed-Solomon codes, with an eye on

the tradeoff between performance and complexity.
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Chapter 1

Introduction

The road to success is always under construction.

—Lily Tomlin

The now ubiquitous Reed-Solomon codes were invented in 1960 [93]. It was not
until the late sixties when Berlekamp and Massey invented an efficient algorithm for
decoding them [12]. Today, billions of dollars are invested in products, which carry
error-correcting encoders and decoders, and millions of error-correcting codes are
being decoded each minute. It is no exaggeration to say that at least three-quarters
of the codes used today are Reed-Solomon codes. Reed-Solomon codes have many
properties, such as their random-error-correction capability, burst-error-correction
capability, and erasure-recovery capability, which make them very appealing for many
applications. Their success can be attributed to the efficient encoding and decoding
algorithms and their state-of-the-art integrated circuit implementations.

Everyone who has ever used a computer has in fact used a Reed-Solomon code.
For decades Reed-Solomon codes have been used in the magnetic storage devices such
as hard disks. With other breakthroughs in channel coding such as the invention of
Turbo codes [13] and the resurrection of LDPC codes [45, 78] one might wonder if this
is still the case. These codes, however, suffer from error-floor problems. If such codes
were to be implemented for their capacity-approaching capability, Reed-Solomon (RS)

codes will still be used as outer codes to cure their error-floor problems. Other
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storage devices such as compact discs (CDs) and digital versatile discs (DVDs) also
standardize concatenated RS codes and RS product codes as their error-correcting
codes. It is worth noting that storage devices are now making their way in our
everyday devices such as cell phones, play stations, personal digital assistants (PDAs),
digital music players, digital cameras and high-definition televisions. As we are in the
trend of digitizing everything, we are in more need than ever for reliable storage
space. Moreover, we need to be able to access this digital information quickly which
translates to the need of having efficient decoding algorithms and high speed decoding
circuits.

Without Reed-Solomon codes, deep space exploration might have simply been
a dream. Reed-Solomon codes were used to encode the digital pictures sent to us
by the Voyager space probe. Reed-Solomon is currently deployed in all probes in
operation and will still be used in future missions. Reed-Solomon codes, concatenated
with convolutional codes, have been the state-of-the-art channel codes for deep space
communication. The 2004 Mars Exploration Rover mission that successfully sent
two rovers Spirit and Opportunity to explore the Martian surface and geology had
Reed-Solomon codes in operation. Similar standards of Reed-Solomon codes and
concatenated Reed-Solomon codes are also used in satellite communication for digital
video broadcasting.

Reed-Solomon codes have also been adopted as outer codes in the third generation
(3G) wireless standard, CDMA2000 high-rate broadcast packet data air interface [1],
and are expected to be used as outer codes in concatenated coding schemes for future
fourth generation wireless systems. Hybrid automatic repeat request (H-ARQ) error
control systems for asymmetric digital subscriber line (ADSL) access networks deploy
block interleaved Reed-Solomon codes to maintain a high throughput and reliability.
Interleaved Reed-Solomon codes are also the standard in high speed optical fiber

networks operating at 10 Gbps. Amusingly, mailing services, such as the United
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States Postal Service (USPS), deploy a black-ink bar code, called PostBar, which is
printed on packages for automatic mail sorting. PostBar uses a Reed-Solomon coding
technique for error correction in case it is defected from mishandling the mail.

Almost forty years after the invention of the Berlekamp-Massey algorithm, we were
surprised to realize that polynomial-time decoding algorithms can correct more errors
in Reed-Solomon codes than previously thought. This breakthrough came with the
invention of the Sudan [102] and Guruswami-Sudan [49] list-decoding algorithms for
RS codes, for which Sudan was awarded the prestigious Nevannlina prize. Rather than
returning one codeword, list-decoding algorithms return a list of codewords. Although
the concept of list decoding dates back to 1957 [39], it was not until 1997 [102] that
we were able to efficiently list decode RS codes beyond their classical error-correction

capability.

1.1 Contributions

Most of the research in this thesis was motivated and inspired by the theoretical break-
through of the Guruswami-Sudan algorithm. Our first goal was to study the ultimate
performance limits of Reed-Solomon codes. With the new advances in networking
and the progress in ad hoc networking techniques, it was natural to think of RS codes
as the code of choice in multiuser environments. This motivated us to study the
performance of RS codes in multiuser settings. The Guruswami-Sudan algorithm did
not make full use of the soft information at the channel output. Koetter and Vardy
built on the Guruswami-Sudan algorithm and devised a soft-decision list-decoding
algorithm for RS codes. This motivated us to study the ultimate performance of such
soft-decision list-decoding algorithms. We designed soft-decision list-decoding algo-
rithms for Reed-Solomon that perform better than previously known algorithms. In

fact, the performance of our iterative list-decoding algorithm approaches the perfor-
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mance limits of RS codes at a reasonable complexity. As we see from the discussion
above, RS product codes and concatenated RS are widely deployed in many applica-
tions. This motivated us to study the performance of linear product codes in general
and RS product codes in particular. The performance limits of RS product codes
showed that there is much room for improvement over the current decoding algo-
rithms. This motivated us to study list-decoding of RS product codes. We designed
and analyzed algebraic list-decoding algorithms for decoding RS product codes. We
believe that such decoding algorithms can dramatically improve the performance of
the widely deployed RS product codes. The Guruswami-Sudan algorithm can also be
viewed as sphere decoding algorithm. A sphere decoder is one which will return a list
of codewords within a certain sphere without actually searching all such codewords.
Sphere decoders are currently the state of the art decoders in multiple input-multiple
output (MIMO) wireless systems and have received a lot of attention. This connec-
tion to the Guruswami-Sudan algorithm motivated us to study the performance of
sphere decoding of linear block codes in general and Reed-Solomon related codes in

particular under various settings.

1.2 Thesis Outline

Next we give a more detailed outline of the contents and contributions of this thesis.
The thesis is designed such that each chapter can be read separately. However, we
do refer the reader to the results in other chapters whenever needed.

Chapter|2: Binary images of Reed-Solomon Codes [29, 28]

Although there was a significant amount of research dedicated to developing bet-
ter decoding algorithms for Reed-Solomon codes, there was little known about their
fundamental operating limits and researchers relied on comparing the performance of

their algorithms with other algorithms. Reed-Solomon codes are often defined over
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finite fields of characteristic two. In many applications, it is the binary image of
the RS code that is transmitted over the channel. Whereas knowledge of the weight
enumerator of a linear code is essential to analyze its performance, the binary weight
enumerators of binary images of RS codes depend on the basis used to represent the
symbols as bits. An averaged binary weight enumerator for RS codes is derived and is
shown to closely estimate an exact one for a specific basis representation. Moreover,
it has been shown that as the code length and the finite field size tend to infinity, the
weight enumerator of the ensemble of binary images of Reed-Solomon codes approach
that of a random code with the same dimensions.

By considering the performance of the ensemble of binary images of an RS code,
rather than a specific binary image, we are able to develop tight upper bounds on
the performance of the optimum maximume-likelihood decoder. We analyze both
cases of soft-decision and hard-decision maximum-likelihood decoding. Observing
that a code’s performance at high signal-to-noise ratios relies heavily on its minimum
distance, we analyzed the minimum distance of the binary image of a RS code. It is
then shown that the ensemble of binary images of RS codes is asymptotically good.

Chapter'3: The Multiuser Error Probability of Reed-Solomon Codes [28, [32)]:

Maximum distance separable (MDS) codes have many attractive properties which
make them the code of choice in network scenarios and distributed coding schemes.
Reed-Solomon codes are the most popular MDS codes. Given an arbitrary partition
of the coordinates of a code, we introduce the partition weight enumerator which
enumerates the codewords with a certain weight profile in the partitions. A closed
form formula of the partition weight enumerator of maximum distance separable
codes is derived. Using this result, some properties of MDS codes are discussed. In
particular, we show that all coordinates have the same weight within the subcodes of
constant weight codewords. The results are extended to the ensemble of binary images

of MDS codes defined over finite fields of characteristic two. The error probability
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of Reed-Solomon codes in multiuser networks is then studied. This analysis can be
extended to many network scenarios. For example, we analyze the case when a Reed-
Solomon code (or its binary image) is shared among different users or applications.
Such a system is likely to exist in wireless multiuser networks where the sensor nodes,
of limited power, can communicate with a local base station in an error free manner.
The local base station will then group their data symbols and encode them into a
single codeword for transmission over a noisy channel to another cluster of nodes.
After being decoded by the receiving base station, the multiuser data symbols are
then routed to their desired destination.

Chapter |4: Algebraic Soft-Decision Decoding of Reed-Solomon Codes: Interpola-
tion Multiplicity Assignments [31, 54]:

Decoding Reed-Solomon codes beyond half-the-minimum distance of the code is
a major breakthrough in modern coding theory that was introduced by Sudan and
Guruswami. After decades of bounded minimum distance decoding, the Guruswami-
Sudan algorithm shows us how major achievements can be obtained by tackling hard
problems in a different way. Moreover, this algorithm led to the pioneering work of
Koetter and Vardy on algebraic soft-decision decoding. Some questions were posed
to us.

What is the potential limit of algebraic soft decoding? Are there better algebraic
soft-decision decoding algorithms? In an attempt to answer these questions we devel-
oped a mathematical framework for algebraic soft-decision decoding. We devised a
new method, based on the Chernoff bound, for assigning interpolation multiplicities
for algebraic soft-decision list decoding. We formulated the problem as a constrained
optimization problem aiming at directly minimizing the decoder error probability. An
iterative algorithm was devised for assigning the interpolation multiplicities for any
desired interpolation cost. We were able to show that the potential performance of

algebraic soft-decision decoding is much better than previously thought.
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Chapter!5: Iterative Algebraic Soft-Decision Decoding of Reed-Solomon Codes [30,

We present an iterative soft-decision list-decoding algorithm for Reed-Solomon
codes offering both complexity and performance advantages over previously known
decoding algorithms. Our algorithm is a list-decoding algorithm which combines two
powerful soft-decision decoding techniques which were previously regarded in the lit-
erature as competitive, namely, the Koetter-Vardy algebraic soft-decision decoding
algorithm and belief propagation based on adaptive parity check matrices, recently
proposed by Jiang and Narayanan. Building on the Jiang-Narayanan algorithm, we
present a belief-propagation based algorithm with a significant reduction in compu-
tational complexity. We introduce the concept of using a belief-propagation based
decoder to enhance the soft-input information prior to list decoding with an algebraic
soft-decision decoder. Instead of assuming that all the received symbols are inde-
pendent, we enhance the reliability of the received symbols based on the information
about the code. We show that in such a setting algebraic soft-decision decoding can
achieve near maximum-likelihood decoding with reasonable interpolation costs. Our
algorithm can also be viewed as an interpolation multiplicity assignment scheme for
algebraic soft-decision decoding of Reed-Solomon codes.

Chapter|6: Performance Analysis of Linear Product Codes [20, |27]:

Product RS codes are widely used, especially in data storage systems and digital
video broadcast systems. The recent breakthroughs in decoding RS codes motivated
us to investigate turbo decoding of RS product codes by iteratively decoding the com-
ponent codes using algebraic soft-decision decoding. This led us to the natural ques-
tion: What are the performance limits of linear product codes? It turned out that the
weight enumerator of most linear product codes, and thus their maximum-likelihood
performance, is very hard to determine. The analytical performance evaluation of

product codes relied on the truncated union bound, which provides a low error rate
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approximation based on the minimum distance term only.

We approached the problem differently by introducing concatenated representa-
tions of product codes and applying them to compute the complete average enu-
merators of arbitrary product codes over an arbitrary finite field. The derivation
of the weight enumerator of the product codes required the knowledge of the split
weight enumerator of the component codes. We were able to derive simple closed
form formulas of the split weight enumerator of some popular linear codes. Together
with some of the results in the previous chapters, we were able to derive tight upper
bounds on the soft-decision and hard-decision maximum-likelihood performance of
linear product codes in general and Reed-Solomon product codes in particular. The
weight enumerator of the ensemble of binary images of product Reed-Solomon codes
were also derived. Our results show that Reed-Solomon product codes can have a per-
formance very close to the capacity of the channel and that, unlike LDPC and Turbo
codes, they do not seem to suffer from error floors. Our results predict the importance
of devising low complexity efficient algorithms for decoding product codes.

Chapter|7: Algebraic List Decoding of Reed-Solomon Product Codes [8]):

The product code of two Reed-Solomon codes can be regarded as an evalua-
tion code of bivariate polynomials, whose degrees in each variable are bounded.
We propose to decode these codes with a generalization of the Guruswami-Sudan
interpolation-based list-decoding algorithm. We devised a polynomial time list-decoding
algorithm for two-dimensional Reed-Solomon product codes based on trivariate poly-
nomial interpolation. It has a relative decoding radius of (1 — {/4R,), where R, is
the rate of the product code. We also devise a generalized algorithm for decoding M-
dimensional product codes with a relative decoding radius of 1 — M/ +1Q/]WTRI,. We
also propose another algorithm based on the observation that Reed-Solomon product
codes are subcodes of Reed-Muller codes. We then deploy the Pellikaan-Wu interpre-

tation of decoding Reed-Muller codes as subcodes of generalized Reed-Solomon codes
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to decode Reed-Solomon product codes. This algorithm is capable of correcting more
errors as its relative decoding radius is 1 — {‘/m for two-dimensional RS product
codes and 1 — 21‘{/]\4TRP for M-dimensional product codes.

Chapter|8: Performance Analysis of Sphere Decoders [35, 136, 37]: Sphere decod-
ing algorithms are often used in wireless channels for decoding lattice codes and for
detection in multiple antenna wireless systems. A sphere decoder is a decoder that
will return the closest lattice point, if it exists within a specified search radius, without
actually searching all lattice points. This directly connected to the Guruswami-Sudan
algorithm which is a polynomial time algorithm with an asymptotic Hamming decod-
ing radius that can be larger than half-the-minimum distance of the code. A large
number of researchers focused on analyzing the complexity of soft-decision sphere
decoders and developing algorithms with lower complexities. However, little research
has been devoted to the performance analysis of sphere decoders. This motivated
us to study the performance of sphere decoders and derive tight upper bounds on
their performance under various settings. We considered both soft-decision and hard-
decision sphere decoders. We also analyzed the performance on different channels
and modulation schemes. To extend this analysis to sphere decoders that decode
Reed-Solomon codes on the symbol level, such as the Guruswami-Sudan algorithm,
we analyzed the performance of hard-decision sphere decoder on g-ary symmetric
channels. For the sake of this analysis, we derived a tight upper bound on the per-
formance of maximum-likelihood decoding of a linear code defined over a finite field
of size ¢ when transmitted over a g-ary symmetric channel. Our analysis of the per-
formance of sphere decoders enable one to choose the decoding radius that best fits

the desired performance, throughput and complexity of the system.
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Chapter 2

Binary Images of Reed-Solomon
Codes

Without the capacity to provide its own information, the mind drifts
into randomness.

—Mihaly Csikszentmihalyi

Reed-Solomon (RS) codes are the most popular maximum distance separable
(MDS) codes. For any linear (n,k,d) code (of length n, dimension k£ and mini-
mum distance d) over any field, maximum distance separable (MDS) codes have the
maximum possible minimum distance d = n — k + 1 [74]. MDS codes have many
other desirable properties which made them the code of choice in many communica-
tion systems. MDS codes have the property that any k codeword coordinates can
be considered as the information symbols in a systematic codeword and any k coor-
dinates can be used to recover the information symbols. Moreover, punctured MDS
codes are also MDS codes. Such properties made MDS codes a natural choice in
Automatic-Repeat-Request (ARQ) communication systems (c.f., [I16]). MDS codes
are also used in the design of multicast network codes [122].

Maximum-likelihood (ML) decoding of linear codes, in general, and RS codes,
in particular, is NP-hard [10, 50]. It remains an open problem to find polynomial-

time decoding algorithms with near ML performance. The Guruswami-Sudan (GS)
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algorithm was the first polynomial time hard-decision decoding algorithm for Reed-
Solomon codes capable of correcting beyond half-the-minimum distance of the code
at all rates [49]. Moreover, the invention of the GS algorithm has spurred a sig-
nificant amount of research aiming at better soft-decision decoding algorithms for
Reed-Solomon codes (c.f., [76] 72} 31 133, 65]).

Suppose a Reed-Solomon (RS) code is defined over a finite field of characteristic
two, then it is a common practice to send its binary image over the channel. In
fact, the binary image has a large burst-error-correction capability which is one of
the main reasons behind the ubiquitous use of RS codes. The decoder can either be
a bit-level decoder, which decodes the RS code as a binary code, or a symbol level
decoder, which treats the received word as a vector in the finite field. It is often the
case that hard-decision decoders, which do not make use of the reliability information
from the channel, are symbol based decoders. Such hard-decision decoders, as the
Berlekamp-Massey algorithm and the Guruswami-Sudan algorithm, usually operate
on the symbol level to make use of the nice algebraic properties of RS codes. Soft-
decision decoders make use of the channel reliability information. In case the code is
sent over a binary input channel, then the decoder is often a bit-level decoder. With
the recent advances in soft-decision decoding of RS codes, it was vital to benchmark
the performance of such algorithms against the optimum soft-decision maximum-
likelihood decoder.

A significant amount of research has been recently devoted to finding tight bounds
on the performance of linear codes under maximum-likelihood decoding [97]. The
maximum-likelihood performance of linear codes requires the knowledge of the weight
enumerator. Unfortunately, knowing the weight enumerator of the binary images of
RS codes is very hard. Some attempts have been successful in giving the binary weight
enumerator for particular realizations of RS codes [67]. Other researchers considered

enumerating the codewords by the number of symbols of each kind in each codeword
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[15]. The average binary weight enumerators of a class of generalized Reed-Solomon
codes, derived from an original RS code either by using a different basis to expand
each column in the RS generator matrix into a binary representation or by multiplying
each column in the RS generator matrix by some nonzero element in the field, were
studied by Retter [94].

One of the main motivations behind this chapter was the following question:
How can one analyze the maximum-likelihood performance of the binary images of
RS codes?

In Section 2.2, we attempt to answer this question by studying the weight enumer-
ator of the ensemble of binary images of Reed-Solomon codes. In fact we show that
the ensemble weight enumerator approaches that of a random code with the same
dimension. It is also well known that the minimum distance of a linear code provides
a lot of insight about its performance. This motivated us to study the minimum dis-
tance of the ensemble of binary images of RS codes (Section 2.3). We show that the
ensemble has an asymptotically good minimum distance. Given this result, one can
search for good codes within the ensemble of binary images of Reed-Solomon codes.
We then attempt to answer the above question in Section 2.4, where we analyze the
performance of soft and hard-decision maximum-likelihood decoding of the binary
images of the RS code. We show that the bounds developed using the techniques in
this chapter are indeed tight. In Section 2.5, we conclude this chapter and highlight

its main results.

2.1 Preliminaries

Given a code C of length n, the weight enumerator of C is*

Ee(w) = |{c € C: W(c) = w}, (2.1)

1Unless otherwise noted, |S| is the cardinality of the set S.
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where W(c) is the Hamming weight of ¢. The weight generating function (WGF) of

C is the polynomial

Ee(X) = 3 Ee(h)X", (2.2)

where the coefficient of X" is the number of codewords with weight A;
Ec(h) = Coeff (Ec(X), X"). (2.3)

(The subscript C may be dropped when there is no ambiguity about the code.)
For an (n, k,d) MDS code over F,, it is well known that the minimum distance is

d=n—k+ 1 [75] and that the weight distribution is given by [109, Theorem 25.7]

Bl = (?)2(2)(—1)%‘-%@-“1—1) 2.4)
= (DS (e (25)

Jj=0

for weights ¢ > d.

2.2 Average Binary Image of Reed-Solomon Codes

The binary image C° of an (n, k) code C over Fym is obtained by representing each
symbol by an m-dimensional binary vector in terms of a basis of the field [75]. The
weight enumerator of C® will vary according to the basis used. In general, it is also
hard to know the weight enumerator of the binary image of a certain Reed-Solomon
code obtained by a specific basis representation (e.g., [67, [15]). For performance
analysis, one could average the performance over all possible binary representations
of C. By assuming that the all such representations are equally probable, it follows

that the distribution of the bits in a nonzero symbol follows a binomial distribution
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1
2m—1

and the probability of having 7 ones in a nonzero symbol is (”;) The generating
function of the average weight enumerator of the binary image of a nonzero symbol

18

F(2) = Z; le_ : (T) zi= % (2.6)

where the power of x denotes the binary weight and the all zero vector is excluded
since the binary weight of a nonzero symbol is at least one. Suppose a codeword
has w nonzero symbols, and the distribution of the ones and zeros in each symbol is
independent from other symbols, then the possible binary weight, b, of this codeword
ranges from w to mw. Since there are E(w) codewords with symbol Hamming weight

w, then the average binary weight generating function can be derived by

Eeo (X) = %E(b)xb (2.7)
= ]E_C(X) | xmrx) (2.8)
= ;%((H?{)m—l)h- (2.9)

A closed form formula for the average binary weight enumerator (BWE) is

BE(b) = Coeft (Ecb(x),xb) (2.10)

These results apply to any maximum distance separable code defined over [,
where ¢ = 2™ and not necessarily an RS code. Widely used RS (MDS) codes have
a code length n = 2™ — 1. In such a case the BWE derived in (2.10) agrees with
the average BWE of a class of GRS codes [94]. In other words two ensembles have

the same weight enumerator; the first ensemble is the ensemble of all possible binary
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images of a specific RS code, the second ensemble is the binary image (with a specific
basis representation) of the ensemble of generalized RS codes derived from the original
RS code by multiplying each column in the generator matrix by some nonzero element
in the field. It is easy to see that G, = 1 and that E(b) =0 for 0 < b < d.

By substituting for E(w), for b > d, the binary weight enumerator (BWE) is given

w—d w .

w—1 _ifw\ [am\ _

—1) —1)w (o)) 2.12

(") ]2 )0 o)
v=0 j=[b/m]

Although it is easy to evaluate the above formula, the term (32”) may diverge

numerically for large j. Using the Stirling approximation for (j 7 [74], E(b) could be

b

approximated as

By ~> (- 1) (L)(Z) M(—l)”(w;l) S FG). (@13)

v=0 j=[b/m]
where
(C1P ()20, > bjm
F(j) = : (2.14)

(1) (5)27 ), = b/m

and A(j) = m(jH (¢u;) — d — v) — 5 logy 2mjmay (1 — 4y;)) for ;= b/jm and
g = 2™. These bounds could be further simplified (and thus loosened) by observ-

ing that forn < ¢ —1,

a \" ¢ ! g "'
1< (L) <L) <i1m(—L) = (2.15)
qg—1 qg—1 g—oo \ ¢ — 1

and substituting in (2.13)).
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Ensemble Average Binary Weight Enumerator for the (7,5) RS Code
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Figure 2.1: True BWE versus the averaged BWE for the (7,5) RS code over Fg.
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In Figure 2.1, the averaged BWE and the true BWE for a specific basis representa-
tion found by computer search are plotted for the (7,5) RS code over Fg. The average
weight enumerator of (2.12) is labeled “Average” while the approximation of (2.13)
is labeled “Approximate Average.” It is observed that a good approximation of the
average binary weight enumerator for h > d is the normalized binomial distribution

which corresponds to a random code with the same dimension over F,

E(h) ~ g~ h) (72”) . (2.16)

This observation can be somehow justified by the central limit theorem, where the
binary weight of a codeword is a random variable which is the sum of n independent
random variables corresponding to the binary weights of the symbols. For large n,
the distribution of the binary weight is expected to converge to that of random codes.
The following theorem shows that the average BWE can be upper bounded by a

(n—k)
<q%1> multiple of the above approximation.

Theorem 2.1. The average binary weight enumerator is upper bounded by

B0 < (-1 (")),

Proof. An upper bound on the symbol weight enumerator of an (n, k,d) MDS code
defined over F, is [79, (12)]

Blw) < (Z) (- 1" w>d (2.17)

Substituting in (2.10) it follows that for b > d

p<a-0-X (0| S co ()] e

w
w=d j=[b/m]
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By doing a change of variables & = mj and changing the order of summations

BB < (- 1>k—“§§<—1>w-j () () ()
= et () e () ()
< (g1 g(_w () ienw ()0

From the identity (") (") = (;) (17P) it follows that ) (=1)*(}) (k) = (=1)0pm

n
m/ \p m—p

where 9,, ., is the Kronecker delta function. It follows that

B0 < -3 (5)os

= (¢—1)*" szn> :

which completes the proof. O

In Figure 2.2, we plot the ensemble average weight enumerator of (2.10) and
compare it with the weight enumerator of a random code with the same dimension
(2.16). We also compare it with the simple upper bound of Theorem 2.1l Tt is observed
that the upper bound of Theorem 2.1 is fairly tight and that a good approximation
for the ensemble weight enumerator is that of random codes. In fact, as length of the

code (and the size of the finite field) tend to infinity

E(h) < <q%1)(n_k)q<nk>(”;”) (2.19)
< e2—m<"—k)(m") (2.20)

N

h

e 2mn(H2()\)fl+R)’ (221>
V2rmnA(1 — N)

where b = Amn, R = k/n is the code rate and Hy(\) is the binary entropy function.
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Ensemble Average Binary Weight Enumerator of the (31,15) RS Code
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Figure 2.2: The ensemble weight enumerator of the (31,15) RS code over Fs,.
The ensemble average weight enumerator of (2.10) is compared with the weight enu-
merator of the random code (2.16)) and the upper bound of Theorem 2.1. They are
labeled “Average,” “Normalized Binomial” and “Upper Bound” respectively.
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The last inequality follows from the Stirling’s inequality [74, p. 309]. Let the asymp-
totic weight enumerator exponent of a code C, of length N and weight enumerator

E¢, be defined as

=Z(\) 2 lim log, (Ec(AN))

lim_ v (2.22)

It follows that the asymptotic weight enumerator exponent of the ensemble of

binary images of Reed-Solomon codes is

log, (E(Amn))
(A) = lim
oo mn
. log,(e) — 3 logy(mn) — 3 log,(2mA(1 — X))
im

n—oo mn
m—0o0

= H,(\)—(1-R). (2.23)

[1]:

IN

+ Hy(\)—1+R

In other words, as the code length and the finite field size tend to infinity, the weight
enumerator of the ensemble of binary images of an RS code approaches that of a
random code.

The error-correcting capability of a code relies a lot on the minimum distance of

the code, which will be analyzed in the next section.

2.3 The Binary Minimum Distance of the Ensem-
ble of Binary Images of Reed-Solomon Codes

The error-correcting capability of a code relies a lot on the minimum distance of the
code. We will now consider the minimum distance of the ensemble of binary images
of a certain Reed-Solomon code. The average minimum distance of the binary image
of the RS code could be defined to be the smallest weight b whose average BWE

E(b) is greater than or equal to one (note that £(b) is a real number). Let dj, be the
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average BMD), then

dy £ inf{b: E(b) > 1}. (2.24)

The number d, could be found exactly by numerical search. However, it will also
be useful to find a lower bound on d,. It is straightforward to note that the binary

minimum distance (BMD) is at least as large as the symbol minimum distance d;
dy>n—k+1. (2.25)
In the following theorems, we will give some lower bounds on the average binary

minimum distance of the ensemble of binary images.

Theorem 2.2. The minimum distance of the ensemble of binary images of an (n, k, d)

RS code over Fom is lower bounded by

: . mn m n—=k
dbzgg{b.(b)z(Z 1) }

Proof. From the upper bound on Ej, of Theorem 2.1, and the definition of dp, the

theorem follows. Il

Theorem 2.3. A lower bound on dy is

dy > inf {b : wzn::d (Z) (“’;") > (2m — 1)n-k} .

Proof. By taking only the term corresponding to 7 = w in the alternating sign sum-

mation in (2.18), it follows that

Bp) < (g1 (Z) ("))

The theorem follows from the definition of d,. O
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Since the upper bound on the weight enumerator of (2.26) is not tighter than the
bound of Theorem 2.1} it is expected that the lower bound on the minimum distance
of Theorem 2.3/ will not be tighter than that of Theorem 2.2l

Since the binary minimum distance of the ensemble is at least as large as the
symbol minimum distance (c.f., (2.25))), it is interesting to determine when the binary
minimum distance is equal to the symbol minimum distance which is linear in the
rate R of the code.

Lemma 2.4. The average binary minimum distance of an MDS code over Fom is equal

to its symbol minimum distance for all rates greater than or equal to R, = 1 — %

where d, is the largest integer d' such that

o (27 = 1)(})) 2 o2 - 1)~ tows(m) (2.26)

Proof. The number of codewords in an MDS code with symbol weight d = n—k-+1 is
E(d) = (¢—1)(7}). The binary image could be of binary weight d only if the codeword
is of symbol weight d and the binary representation of each nonzero symbol has only
one nonzero bit. This happens with probability (T;’l—_l)d, where m = log,(q). So the

average number of codewords with binary weight d is

E(d) = B(d) (2mm_ 1)d =(q—1) (Z) (loqg%g))d. (2.27)

From the definition of the average binary minimum distance, the lemma follows. [

Asymptotically, it could be shown that R, is the smallest rate such that

Hy(1—-R,)

TR 2 1oma(n) — loga(logs (), (2.28)

where n =~ ¢ and

Hy(x) = —xlogy(z) — (1 — 2)logy(1 — 2) (2.29)
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Relative Minimum Distance Vs Rate for Binary Images of RS Codes
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Figure 2.3: The ensemble binary minimum distance of Reed-Solomon codes.
The Relative binary minimum distance for the ensemble of binary images of Reed-
Solomon codes is plotted against the rate for lengths 15, 31 and 63 over finite fields
of sizes 16, 32 and 64 respectively and compared with the Gilbert-Varshamov bound.
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is the binary entropy function. This implies that the rate R,, at which the symbol
minimum distance is equal to the ensemble binary minimum distance, tends to one
as the length of the code tends to infinity.
The Gilbert-Varshamov (GV) bound is defined by [74],

lim {R(5) — (1 — Hy(8))} > 0 for 0< 4 < % (2.30)

n—o0o

where § = d,/(mn) is the ratio of the binary minimum distance to the total length
of the code and R(9) is rate of the code with a relative minimum distance §. Retter
showed that for sufficiently large code lengths, most of the codes in the binary image
of the ensemble of generalized RS codes lie close to the GV bound by showing that the
number of codewords with weights lying below the GV bound in all generalized RS
codes of the same length and rate are less than half the number of such generalized
RS codes [94]. Next, we show a related result for the ensemble of binary images of
an RS code, with a binary weight enumerator E(b).

We will now determine a bound on the asymptotic relative binary minimum dis-

tance (as the length tends to infinity) of the ensemble of binary images, 0
ir;f{:()\) > 0}. (2.31)

From the asymptotic analysis of (2.23), we showed that

[1]:

(\) < Hy(\) — (1 — R). (2.32)

It thus follows that

6o = inf {H2(\) = (1 - R)}. (2.33)
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One can then deduce that

Hy(5.0) — (1 — R(3.0)) > 0. (2.34)

In other words, we have proved the following theorem,

Theorem 2.5. The ensemble of binary images of an Reed-Solomon code asymptoti-

cally satisfies the Gilbert-Varshamov bound.

This is not very surprising since we have shown that the ensemble average behaves
like a binary random code. Note that this is for the average binary image of the RS
code and not for a specific valid binary image. Since this theorem is for the ensemble
average, it might imply that some codes in the ensemble may have a minimum distance
asymptotically satisfying the GV bound. However, we do not know of a specific code
in the ensemble that satisfies the bound.

In Figure 2.3, we show the relative average binary minimum distance for binary
images of Reed-Solomon codes, calculated numerically by (2.24), for different code
lengths. It is observed that as the length and the size of the finite field increases,
the relative minimum distance decreases. From Theorem 2.5 the relative binary
minimum distance of the ensemble should approach the GV bound as the length
tends to infinity. In Figure 2.4 and Figure 2.5, we study the relative average binary
minimum distance for code lengths n = 15 and n = 31 respectively. We compare
it with the Gilbert-Varshamov bound and the lower bounds of Theorem 2.2 and the
linear bound of (2.25). We observe that the lower bound of Theorem 2.2/ is pretty
tight and it provides a simple way to evaluate the minimum distance of the ensemble.
Moreover it is always lower bounded by the GV bound. By comparing with the linear
lower bound of (2.25), it is noticed that for n = 15 and k& > 8, the average BMD
is equal to the symbol minimum distance, d, as expected from Lemma 2.4, As the

rate decreases, this linear lower bound becomes very loose and the average binary



26

Relative Minimum Distance of Binary Images of RS Codes, n=15
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Figure 2.4: The ensemble binary minimum distance of RS codes of length 15 over
Fie.

The relative binary minimum distance is plotted versus the code rate. The numerical
minimum distance (2.24) is labeled “RABMD” and compared with the lower bounds
of Theorem 2.2/ and (2.25) which are labeled “Lower Bound” and “Linear LB” re-
spectively. The Gilbert-Varshamov bound is plotted and labeled “GV Bound.”
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Relative Minimum Distance of Binary Images of RS Codes, n=31
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Figure 2.5: The ensemble binary minimum distance of RS codes of length 31 over
F32.

The relative binary minimum distance for the ensemble of binary images of the RS
codes are plotted versus the code rate. The numerical minimum distance (2.24)
is labeled “RABMD” and compared with the lower bounds of Theorem 2.2 and
(2.25) which are labeled “Lower Bound” and “Linear LB” respectively. The Gilbert-
Varshamov bound is plotted and labeled “GV Bound.”
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minimum distance exceeds the symbol minimum distance.

2.4 Performance of the Maximum-Likelihood De-
coders

Let ¢ be the binary image of a codeword in the (n,k,d) RS code C. The binary
phase shift keying (BPSK) modulated image of ¢ is € = M(¢) = 1 — 2¢. This will
be transmitted over a standard binary input additive white Gaussian noise (AWGN)
channel. The received vector is y = « + z, where z is an AWGN vector. Since the
considered codes are linear, it is safe to assume that the all zero codeword (in fact its
binary image) is transmitted. Hard-decision decoding is done to the received bits to
obtain the vector g where g; = (1 — sign(y;))/2 and the HD-ML decoder’s output is
the codeword é such that

é = arg 'glelé}) d(g,v), (2.35)

where d(u,v) is the (binary) Hamming distance between w and v. This is equivalent
to transmitting the codeword ¢ through a binary symmetric channel (BSC) with
crossover probability p = Q(v/2Rv) where v is the bit signal-to-noise ratio and R is
the code rate.

As discussed before, bounds on the error probability of linear codes require the
knowledge of the weight enumerator. For a specific binary image, it is very hard to
know the weight enumerator. It is also hard to agree on the use of a specific binary
image or to speculate which binary image has been used. So the question we really
need to answer is the expected performance if any binary image of a specific RS code
is used. Our approach is to consider the binary code of a weight enumerator equal to
the ensemble average weight enumerator.

The performance of the hard-decision maximum-likelihood (HD-ML) decoder can
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be upper bounded with the well-known union bound by resorting to the average

weight enumerator of the ensemble

P(Emnr) <Y E®) > (Z)pw(l — ), (2.36)
b=dy  w=[l]

where P(Eppr1) denotes the codeword error probability of the HD-ML decoder. Alter-
natively, one could use the ensemble average weight enumerator with tighter bounds.
The best well-known upper bound on the performance of a HD-ML decoding of linear
codes on binary symmetric channels is the Poltyrev bound [87] (c.f., (8.32)).

The soft-decision maximum-likelihood decoder solves the following optimization
problem,

& = arg in [ly — M(v)| (2.37)

where ||| is the Euclidean norm of . Assuming that the all-zero codeword is BPSK
modulated and transmitted over a memoryless AWGN channel, the probability that a
certain codeword of binary weight b is chosen at the decoder instead of the transmitted
all-zero codeword is [89, (8.1-49)] P, = Q (v/2vRb) , where 7 is the signal-to-noise
ratio (SNR) per bit and R = k/n.

Then a heuristic union lower bound on the codeword error probability of the soft-
decision maximum-likelihood decoder (specifically true at high SNRs) is the proba-

bility that a codeword of minimum weight dj, is erroneously decoded,

P(Esn) 2 B(d)Q (V27Rd) . (2.38)

A union upper bound on the codeword error probability is the sum of all possible

errors,

P(Esun) < > E(0)Q (v2yRY) . (2:39)

b>dy,
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ML performance of the binary image of the (15,11) RS code over AWGN channel

1
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—6— SD-ML TSB
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Figure 2.6: Performance of a binary image of (15,11) RS code over Fis when trans-
mitted over a binary input AWGN channel.

The analytic performance of the symbol-level hard-decision Berlekamp-Massey and
Guruswami-Sudan decoders are shown and are labeled by “HD-BM” and “HD-GS”
respectively. These are in turn compared to the bit-level HD ML decoder labeled “HD-
ML.” The union upper bound (2.39), lower bound (2.38)) and the tangential sphere
bound on the soft-decision ML error probability are labeled “SD-ML Union UB,”
“SD-ML Union LB” and “SD-ML TSB” respectively. The simulated performance of
an SD ML decoder is labeled “SD-ML Simulation.”
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The union bound is loose at low SNRs. Poltyrev described a tangential sphere
bound (TSB) on the error probability of binary block codes BPSK modulated in
AWGN channels [87]. This is a very tight upper bound on the ML error probability.
For a brief description of the Tangential Sphere Bound we refer the reader to Sec-
tion 8.1.3. We use the T'SB in conjunction with the average binary weight enumerator
to find a tight upper bound on the error probability of ML decoding of RS codes. Di-
vsalar also introduced in [23] a simple tight bound (that involves no integrations) on
the error probability of binary block codes, as well as a comparison of other existing
bounds. Other bounds such as the variations on the Gallager bounds are also tight
for AWGN and fading channels [99].

The Berlekamp-Massey (BM) decoder is a symbol-based hard-decision decoder
which can correct a number of symbol errors up to half-the-minimum distance of the
code, Ty = L”T_kj The error plus failure probability of the BM decoder has been

well studied [79, 115] and can be simply given by

TBM n ] )
P(Epy)=1-)_ (1—s)s",
Jj=0 J

where s is the probability that a symbol is correctly received s = (1 - Q (\/QV_R))m
The Guruswami-Sudan decoder is also a symbol-based HD decoder but can correct
more than half-the-minimum distance of the code 7gg = [n — v/nk — 1]. The per-
formance of a hard-decision “sphere” decoder that corrects any number of 7 > 75/
symbol errors as well that of the corresponding maximum-likelihood decoder over
g-ary symmetric channels have been recently analyzed [37, 36].

We evaluate the average performance of RS codes when its binary image is BPSK
modulated and transmitted over an AWGN channel. In Figure 2.6, we consider a spe-
cific binary image of the (15,11) RS code over F4. Soft-decision maximum-likelihood

decoding was simulated using the BCJR algorithm [7] on the trellis associated with
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the binary image of the RS code [66]. By comparing this with the average TSB,
we observe that our technique for bounding the performance of the soft-decision ML
decoder provides tight upper bounds on the actual performance of a specific binary
image. It is clear that at low SNRs the (averaged) TSB give a close approximation
of the ML error probability. By comparing this bound with the union upper and
lower bounds of (2.39) and (2.38]), we observe that the TSB coincides with the union
bounds at high SNRs. As from (2.38), the union lower bound is characterized by the
minimum distance term. Indeed, the SNR at which the performance of the maximum-
likelihood decoder is dominated by the minimum distance term was recently studied
by Fossorier and was termed the critical point for ML decoding [44]. The decoding
radius of the GS decoder is the same as that of the BM decoder for the (15, 11) code,
which is of relatively high rate. However, their performance is very close to that of
the HD-ML decoder.

In Figure 2.7, we consider the performance of the binary image of the (31,15) RS
code over 1 when BPSK modulated and transmitted over an AWGN channel. We
compare the performance of a bit-level HD-ML decoder with that of a symbol-level
HD-ML decoder by deploying the bounds of [87] and [36] respectively. The symbol-
level decoder operates by first grouping m bits to symbols in Fom after hard-decision
decoding. It seems that for this half-rate code, the performance of a bit-level HD
decoder is better than the corresponding symbol-level decoder (about 1.5 dB coding
gain). We also compare the performance with that of the symbol-level HD-BM and the
HD-GS algorithms. For the (31,15) code, bit-level HD-ML decoding has more than
2 dB gain over the BM decoder, whereas SD-ML decoding offers another 2 dB gain
over bit-level HD-ML decoding. The SD-ML decoder has about 4 dB gain over the
BM decoder and 2 dB gain over the HD-ML decoder. Bounds on the performance of
the maximum-likelihood decoder provides a benchmark to compare the performance

of other suboptimum algorithms. To emphasize this, the performance of a bit-level
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Maximum Likelihood Decoding of (31,15) RS Code
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-0 symbol HD-ML

—b>— binary HD-ML
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Figure 2.7: Performance of the binary image of the (31,15) RS code over 3 trans-
mitted over a binary input AWGN channel.

The symbol-level HD-BM and the HD-GS algorithms are compared. Bit-level and
symbol-level hard-decision decoders are labeled “binary HD-ML” and “symbol HD-
ML” respectively. The TSB on the bit-level SD-ML error probability is labeled “SD-
ML” and is compared with the bit-level soft-decision algorithm of [33] labeled “SD-
EM.”
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soft-decision decoder, developed in Chapter |5, acting on a specific binary image is
also plotted. Only by comparing it to the SD-ML bound can one conclude that this

soft-decision algorithm operates within 1 dB of the optimum soft-decision algorithm.

2.5 Conclusion

An averaged binary weight enumerator for RS codes is derived and shown to closely
estimate an exact binary weight enumerator for a specific basis representation. More-
over, it has been shown that as the code length and the field size tend to infinity, the
weight enumerator of the ensemble of binary images of Reed-Solomon codes approach
that of a random code with the same dimensions. Bounds on the average binary mini-
mum distance were derived. It was thus shown that on average, the ensemble of binary
images of RS codes asymptotically satisfy the GV bound. The question remains open,
if there exists a specific code in the ensemble that asymptotically satisfies the GV
bound. Aided with the ensemble weight enumerator, one can derive tight bounds
on the performance of bit-level maximum-likelihood decoders. By comparing with
simulations, it has been shown, that at least for the (15,11) RS code, the tangential
sphere bound when combined with the ensemble weight enumerator is tight. When
proposing new algorithms for decoding RS codes, it is not only important to compare
their performance with other algorithms in the literature, but it is also more impor-
tant to compare their performance with that of other maximume-likelihood decoders

using the results in this chapter.
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Chapter 3

The Multiuser Error Probability of
Reed-Solomon Codes

Not everything that can be counted counts, and not everything that

counts can be counted.

—Albert Einstein

Consider a network scenario, where users in a certain cluster can communicate in
an error free manner. These users would like to communicate with another set of users
in another cluster over a noisy channel. If the users in the first cluster are of limited
power they will not be able to reliably transmit their information to the users in the
other cluster. One solution is for the users to transmit their information to a local
base station, which will then group their data symbols, encode them with a channel
code and transmit the codeword to the other set of users (see Figure 3.1). In other
words, each codeword will be partitioned among more than one user or application.
After decoding at the receiving base station, the information will be routed to the
desired users. One other advantage of sharing a codeword among different users is the
expected improvement in the code performance as its length increases [25]. Moreover,
the recent results on the capacity of wireless networks suggest that networks with a
smaller number of users and clustered networks are more likely to find acceptance

[47]. Using the results in this chapter, we will be able to analyze the performance
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Information Redundancy
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Figure 3.1: A multiuser scenario where a code is shared among many users.
Users within the same cluster transmit their information to a local base station, which,
in turn, groups their symbols into one data word and transmits it, after channel
encoding, over a noisy channel to the users in another cluster.

of different users in such a scenario when the code is a maximum distance separable
(MDS) code. Reed-Solomon codes are the most widely used MDS codes. The results
here can also be useful in the analysis of MDS codes in distributed storage systems,
where MDS array were proposed [16].

In Section [3.1, we introduce a generalized weight enumerator, which we call the
partition weight enumerator (PWE). Given a partition of the coordinates of a code,
the PWE enumerates the codewords with a certain weight profile in the partitions.
Our main result is a simple closed-form expression for the PWE of an arbitrary MDS,
e.g., Reed-Solomon, code (Section 3.2, Theorem 3.6). This generalizes the results of
Kasami et al. [69] on the split weight enumerator of RS codes. The PWE is a very
useful tool in proving some of the nice algebraic properties of MDS codes. We then
proceed in Section 3.3 to derive a strong symmetry property for MDS codes (Theorem
3.8) which allows us to obtain improved bounds on the symbol error probability for
RS codes. We show that an approximation widely used to estimate the symbol error
probability of linear codes is exact for MDS codes. We take this opportunity to

discuss other codes which also have this property.
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As we have mentioned in Chapter 2, the ensemble average weight enumerators of
the binary images of RS codes have been rendered useful in analyzing their perfor-
mance. We also study the case when the binary images of an Reed-Solomon code is
partitioned among different users or applications. In Section 3.4, we show that the
ensemble also has a similar symmetry property which becomes useful when analyzing
its bit error probability.

We study, in Section 3.5, the codeword, symbol and bit error probabilities of var-
ious Reed-Solomon code decoders in a generalized setting. In Section 3.6, we prove
that if systematic MDS (e.g., RS) codes are used in a multiuser setting, the uncon-
ditional symbol or bit error probabilities of all the users will be the same regardless
of the size of the partitions assigned to them. We also considered various network
scenarios where the Reed-Solomon code is the channel code of choice. We also pro-
ceed to show how one can analyze the error probability of a certain user given some
conditions on the performance of other users. In Section 3.7, we conclude the chapter

and give some insights about the results in this chapter.

3.1 Weight Enumerators

We begin by generalizing the notion of Hamming weight. Let F} denote the vectors
of length n over the finite field of ¢ elements F,. A linear code C of length n defined
over [, is a linear subspace of Fy. Let N = {1,2,...,n} be the coordinate set of
C. Suppose N is partitioned into p disjoint subsets Ny, ..., N,, with |N;| = n;, for
i=1,...,p. ¥ We stress that 7  n; = n. The elements of the set N; C N are given
by Ni = {Ni(1), Ni(2),..., Ni(ns)}. Let v = (v1,vs,...,v,) be a vector in F}, then
the ith partition of v is the vector v[V;] = (vNi(l), VN, (2), - - - ,le.(m)).

Note that the number of ways a set of n coordinates could be partitioned into

!Throughout this chapter, the cardinality of a set T' will be denoted by |T|.
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my partitions of size of p;, my partitions of size p and m, of size p,, i.e., the total

number of partitions is Y ;_, m, and n =Y., m,p,), is

n!
szl(pi!)mimi! ’

(3.1)

where z! is the factorial of x and the multinomial coefficient is normalized by the
factor []'_, m;! as we do not distinguish between partitions of the same size.

Denoting an (ny, . .., n,) partition by 7', the 7-weight profile of a vector v € F} is
defined as Wr(v) = (wy, ..., w,), where w; is the Hamming weight of v restricted to
Nj, i.e., the weight of the vector v(1V;). (For an example see Figure [3.2.) The weight
enumerator of a code C is as defined in (2.2).

Now we generalize the notion of code weight enumerator. For an (nq,ns,...,n,)
partition 7 of the n coordinates of C, the 7-weight enumerator of C enumerates the

codewords with a weight profile (wy, ..., w,),
AZ(wy, ..., wy) = {c €C: Wr(c) = (wy,...,wp,)}.

The partition weight generating function (PWGF) is given by the multivariate poly-

nomial

PT(Xy,..., &) = Z Z AT (wy, . w,) XX (3.2)

wi=0  wp=0
For the special case of two partitions, (p = 2), A7 (wy, ws) is termed the split weight
enumerator in the literature [74]. The input-redundancy weight enumerator (IRWE)
R(wy,ws) is the number of codewords with input weight (weight of the information
vector) w; and redundancy weight ws. For a systematic code, if 7 is an (k,n — k)
partition such that the first partition constitutes of the coordinates of the information

symbols, then R(wy,ws) = AT (wy,ws). The input-output weight enumerator (IOWE)
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Figure 3.2: Partitioning of a code defined over IFZ.
The figure shows two different vectors in IFZ and two different 7 : (2, 3,2) partitions
are applied. The weight profile of the vectors is Wr(v) = (1, 3,0) where the zero and
nonzero symbols are represented by white and black circles respectively.
O(w, h) enumerates the codewords of total Hamming weight h and input weight

w. Assuming that the first partition constitutes of the information symbols, then

O(w,h) = R(w,h —w). For an (k,n — k) partition 7, it is straightforward that

E(h) =Y AT(w,h—w)=>_ O(w,h). (3.3)

It is useful to know the IOWE and IRWE of a code when studying its bit error
probability (e.g., [8]). The input-output weight generating function, O(X,)), and the
input-redundancy weight generating function, R(X,)), of an (n, k) code are defined

to be respectively,

k n

0(X,Y) = > ) O(w h)xY", (3.4)
w=0 h=0
k  n—k

R(X,Y) = > > Rlwy,wy)X" Y™, (3.5)
w1=0 wo=0

Since every nonzero symbol in the redundancy part of the code contributes to both its

output and redundancy weights, R(X',)) and O(X,)) are related by the following
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transformations,

R(X,Y) =0 (%y) . OX,Y)=R(XY,Y), EX)=R(X,X). (3.6)

For a systematic code, let the jth partition consist of information symbols, then
the jth IOWE enumerates the codewords with a Hamming weight w in the jth par-

tition and a total weight A,
O’ (w, h) =|{e € C: W (c[N}]) = w) A(W(e) = h)}], (3.7)
and is derived from the PWGF by
QX)) =PT(Y,Y,. XY, .Y = O (w, h) X Y", (3.8)

where the invariants X;s in PZ (X}, Xy, ..., X,) are substituted by

(3.9)

3.2  Partition Weight Enumerator of Maximum-
Distance-Separable Codes

For an (n,k,d) MDS code over F,, it is well known that the minimum distance is

d=mn—k+1[75] and that the weight distribution is given by [109, Theorem 25.7]

w0 = (1) (v (3.10)

j=d

(S e

J=0



Figure 3.3: Theorem 3.1l
The code is always zero on the coordinates in the sets N; \ S; for i =1,2,...,p.

for weights ¢ > d. In the next theorem, we show that for an arbitrary partition of the
coordinates of an MDS code, and for any number of partitions, the partition weight

enumerator of MDS codes admits a closed form formula.

Theorem 3.1. For an (n, k,d) MDS code C defined over Fy, let T define a p-partition
of the coordinates of C into p mutually exclusive subsets, N1, Na, ..., N,, such that
N1 UNy...UN, = N where N ={1,2,...,n} and |N;| = n;. The p-partition weight
enumerator is given by

<le><22) i (7;111) (—1)w—d i (;uj) 1y

Jj1=0 j2=0

> (1) vt ),

Jp
. —1 .
]p=d—21§:1 Jz

Proof. Fori=1,2,...,p, let R; be a subset of N;. Define S(¢) to be the support set

of the codeword c, i.e., the set of indices of the nonzero elements. Define
A p
f(Ri, Ry, Ry) S |c€C:{S(c)NN;} = R; Vi| = |e€C: {S(c) = JRi}| (3.12)
i=1

to be the number of codewords which are exactly nonzero on the sets R;. From the

definition of the p-partition weight enumerator, it follows that

AT(wi,wy, o wy) = > Y 0 Y f(Ri,Re,.. Ry). (313)

ngNl Rng2 Rpng
|R1|=w1 |R2|=w2 |Rp|=wp
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Define the mutually exclusive subsets, S; C N;, ¢ =1,2,...,p and let

9(S1, %, 8) = > Y . > f(Ri,R,... Ry (3.14)

R1CS1 R2CS2 RpCSp

to be the number of codewords which are always zero on the sets N; \ S; (see Fig-

ure [3.3). It follows from the MDS property of the code that if only m symbols of an

(n, k) MDS code are allowed to be nonzero, the n — m zero symbols could be taken

as information symbols, then the dimension of the resulting subcode is £ —n+m and
1, i 1S < d

9(517527...,Sp): D ) ’ (315)
grHE ISy >3 (S| > d

Successively applying Mobius Inversion [109, Theorem 25.1] to (3.14), we get

F(Ri, Ro, o Ry = > p(S1, Ra)e Y p(Sp, Ry)g(S1,Sa, ., 5y)

S1CRy SpCRy
éH (Z /“L<S7J7Rl)> g(‘Sl?SQJuSp); (316)
i=1 \S;CR;
where
(_1)|R\—|S|, SCR
niS, R) = - - (3.17)
0, otherwise

Substituting (3.16) in (3.13),

p—1
A (w17w27 >wp) = Z (_1)|Rl|7|Sl‘ G (6)
i=1 IRilgNi SiCR;
R;|=w;

<Z> "“”O @) (_Uwi_j) Gy(0), (3.18)
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such that 8 = 327~ |S;| and by invoking (3.15)

Go(B) = > D (~n)Slg(8, 8, 8,

RpCNp SpCRp
| Rp|=wp

_ <ZZ) (dgl (U;p)(_l)wpmrig; (“;p)(_l)wpiqiwcm)
- () 3 (e, 3.19)

w .
P/ i=d—p

The last equality follows from the fact that 37 (Z“) (=1)*7 = (1-1)* = 0. Sub-

stituting (3.16) in (3.13)), the theorem follows. O

For the special case of two partitions, the split weight enumerator A, ., (n1,12)

is given in the following corollary.

Corollary 3.2. Let T be an (ny,ns) partition of an (n,k,d) MDS code C, then the

split weight enumerator of C is

= () Z () 2 ()

From Theorem 3.1} it follows that the PWE of MDS codes does not depend on the
orientation of the coordinates with respect to the partitions but only on the partitions’
sizes and weights (see (3.14)). It thus intuitive that the ratio of A7 (wy,w,, ..., w,)
to E(w) where w = "7 | w; is the probability that the w nonzero symbols are dis-
tributed among the partitions with a 7-profile (wq, ws,...,w,). Next we calculate
this probability for the special case of p = 2 and we show that the partition weight

enumerator admits to a simpler closed form formula.

Theorem 3.3. Let T be an (ny1,ny) partition for an (n,k,d) MDS code, n = ny +ns,
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then

() (i)

(o bus)

Proof. From Corollary 3.2, the split weight enumerator is

AT(wl, 'LUQ) = E(U}l + wg)

AT (wy, ws) =
(@)@ E () 3 (e o

Doing a change of variables, a = i + j, we get

AT(wl, wy) =

IS X, (2o

j=0 a=max(d,j)

By changing the order of summation and summing over the same region:

AT (wy, wy) =
w1 +ws min(o,w1)
(i) () o 5 (5)(2)
_<n1> (m) wim (¢ — 1)(—1)mtee ail (un) ( Wy )
wi) \wy) A= = \J/\a—J

By doing the change of variables = o — w5 in the second summation

AT (wr, wy) =
o
() S (9)(,5)

Since § — j is always positive it follows that the second term in the right hand side
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is always zero and by letting w = wy + wo

w

AT = (M) () (D)ot o0 e

a=d

By comparing with (3.10), the result follows. O

Corollary 3.4. The IOWE of a systematic MDS code, O(w,h), for h > d, is given

by

O(w,h) = R(w,h—w)=E(h) (Z) (}ZL:Z)

§
(ATEAD SR S e TR S e

j=0

By observing (3.3) and defining ¥(w) to be

7=0 )

(h —Z w) (—1)Pwi(g i _ 1), (3.22)

J

we have an interesting identity:

() -0 () e

w=0

where (}}) = S (EY(7~F) and ¥(0) = S (") (—=1)h=i(gi=d+1 — 1),

Corollary 3.5. For an (n,k,d) MDS code C, the number of codewords which are

exactly nonzero at a fixed subset of coordinates of cardinality h and are zero at the

remaining h coordinates is EE%)
h

Proof. Let T be the implied (h,n — h) partition, then the required number of code-

words is A7 (h,0). The result follows by applying Theorem 3.3. O

This result illustrates how the partition weight enumerator of MDS codes is in-
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dependent of the orientation of the partitions. Since there are E(h) codewords of
weight h and there are (Z) distinct ways to choose the h zero coordinates, then in

such a case one expects that that there are % codewords for any choice of the h

h
coordinates.
By following the same lines of proof, the result of Theorem 3.3 can be generalized

to an arbitrary number of partitions as in the following theorem:

Theorem 3.6. For an (n,k,d) MDS code C with an (ny,ns,...,n,) partition of its

coordinates the p-partition weight enumerator is given by

(o) () ar)
G

where w =" w; and E(w) = |{c € C: W(c) = w}|.

AT (wy, ws, . .., w,) = E(w)

We give numerical examples of PWEs using Theorem 3.1 and Theorem [3.6. For
these examples, the PWGFs were also verified numerically by generating the (7,3, 5)
RS code.

Example 3.1. The PWGF for the (1,1,2,3) partition of the coordinates of the

(7,3,5) RS code over Fy is

PV, X,),Z) =14+ 21VXV?Z + 42VXYZ* + 21VY? 2% + 21X )* 22 + 63V X )* 22
+FTVXZ? + 14VYZ3 + 14X Y Z3 + 42V XY Z3 + 7)2 23 + 2192 23

+ 21XV 73 + 21TV XY 23,

It can be checked that the sum of the coeflicients is the total number of codewords

83. For this example, one can also verify the PWGF numerically. o
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Example 3.2. The (3,2, 2) 3-partition enumerator of the (7,5,3) RS code over Fy is

P(X, Y, Z) =1 + TX° + 42X%Y + T0X%Y + 21X Y* + 105X%Y? + 2661 °)?
+42X%Z 4 T0XPZ 4+ 84XV Z + 420X%Y Z + 1064X° Y Z + 14)° Z
+ 210X V27 + 1596 X2 Y* Z + 3668X°Y*Z + 21X 2% + 105X 22
+ 266322 + 14Y 2% 4+ 210X Y 2% + 1596 X*Y Z* + 3668X°) Z2

+ 35222 + 798X )2 2% 4+ 55022 V2 22 + 128733 Y% 22,
It can also be verified that P(1,1,1) = 83, o

Theorem 3.6/ implies that the distribution of the wF(w) nonzero symbols within
the codewords of the same Hamming weight w is uniform among the partitions. This

issue will be addressed in more detail in the following section.

3.3 A Relationship Between Coordinate Weight

and Codeword Weight

In this section, we will show that for MDS codes, one can derive the coordinate weight

from the codeword weight. We will discuss whether other linear codes also have this

property.

Define C), to be the subcode of C with codewords of Hamming weight h;
Ch 2 {ceC:W(c) = h}. (3.24)

The following lemma calculates the total weight of any coordinate in the set Cy,.

Lemma 3.7. For an (n,k,d) MDS code C the total Hamming weight of any coordi-

nate, summed over the subcode Cj,, is equal to 2E(h).



48
Proof. Let T be an (1,n — 1) partition of C, where the coordinate of choice forms
the partition of size one. By Theorem 3.3, it follows that for any such partition,
the number of codewords of C which are nonzero in this coordinate and have a total
weight h, i.e., a weight profile (1,h — 1), is
(20

AT(1,h—1) = E(h) = EE(h). (3.25)

By observing that A7(1,h — 1) is the total weight of the chosen coordinate over

codewords in C;, and that the choice of that coordinate was arbitrary, we are done. []

This means that the codewords of the subcode Cj, when arranged as the rows of an
array, result in a design where the Hamming weight of each row is h and the Hamming
weight of each column is 2E(h). Furthermore, the Hamming distance between any
two rows is at least d = n — k+ 1. We are now ready to prove an important property

of MDS codes:

Theorem 3.8. For an (n,k,d) MDS code C, the ratio of the total weight of any

s coordinates of Cp, to the total weight of Cy is *. If the s coordinales are “input”

coordinates, then

Yooy w O(w, h) _ h E(h)

S n

for any Hamming weight h.

Proof. By Lemma [3.7, the total weight of any coordinate of Cj, is (h/n)E(h). The
total weight of any s coordinates of Cj, is the sum of the weights of the individual
coordinates, s(h/n)E(h). By observing that the weight of the s coordinates can be
also expressed in terms of the IOWE by > _ wO(w, h) and hE(h) is the total weight

of Cp,, the theorem follows. O

As a side result, we have proven this identity (c.f., (3.23)):
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Corollary 3.9. Let ¥(w) be defined as in (3.22) then

o)) o0 ()6

Proof. For an T : (s,n — s) partition of the coordinates, it follows from Theo-

rem [3.8 that >0 | “AT (w,h —w) = 2E(h) = (}7])¥(0). Also by Corollary 3.2,

h—1

S L BAT (w o h—w) =30 (57 (772) ¥(w). The proof follows from the identity

w=1s w=1 \w-1) \h—w
(o) = 2. G2 G20 -
Definition 3.1. An (n, k) code C (not necessary MDS) is said to have the multiplicity
property M, if for any 7 : (s,n — s) partition, >° | 2A7 (w, h — w) = LE(h) for all

Hamming weights h.

We will refer to the partition composed of the s coordinates as the input partition.
By Theorem 3.8, all MDS codes have property M. In general not all linear codes

have property M as seen in the following counterexample:

Example 3.3. The (5, 3) linear code defined by

10011
G=|01001
00101

is composed of the 8 codewords 00000, 10011, 01001, 11010, 00101, 10110,01100, 11111.
Let the input partition be composed of the first 3 coordinates. For s = k = 3, let
B(h) = 3, wO(w, h); and £(h) = 2hE(h), then from the following table it is clear

that it is not true that this code has property M.

h: 01 2 3 45
BR): 00 4 5 0 3.
¢h): 0 0 36 54 0 3
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It is to be noted that all cyclic codes have property M. This is partially justified
by the fact that any cyclic shift of a codeword of weight h is also a codeword of weight
h with h/n of the coordinates holding nonzero elements [107]. However, this neither
implies Theorem 3.8 nor is it implied by Theorem 3.8. For example, an extended RS
code is an MDS code but not a cyclic code while an (7,4) binary Hamming code is
cyclic but not MDS. Also, if a code satisfies property M, it is not necessary that the
code is either cyclic or MDS. For example, the first-order Reed-Muller codes as well
as their dual codes, the extended Hamming codes, have property M but are neither

cyclic nor MDS. Next, we discuss some codes with the multiplicity property.
Theorem 3.10. The first-order Reed-Muller codes have the multiplicity property M.

Proof. The weight enumerator of the first-order Reed-Muller codes of length 2™,
R(1,m), is EW) = 1+ (271 — 2)W?" " + W?™ and their minimum distance is
2m=1 Let Hym be the Hadamard matrix of order 2™ and let M be the binary matrix
that results from stacking Hom on top —Haom and replacing each +1 by 0 and each
—1 by 1. (A Hadamard matrix H of order n is an n x n matrix with entries +1
and —1 such that HH? = nl and I is the identity matrix. [109, Chapter 18].) The
codewords of R(1,m) are exactly the rows of M [109, Chapter 18]. It follows that
each codeword of weight 277! has a unique codeword of the same weight which is its
binary complement. Thus each coordinate will be equally one and zero in half the
number of such codewords. Since the remaining codewords are the all-zero and the

all-one codewords, it follows that R(1,m) has the multiplicity property. O

We now prove here that if a linear code has property M then its dual code also
has property M. By a straightforward manipulation of the McWilliams identities
[74, Chapter 5, (52)] one can show the following relationship between the PWEs of a

code and its dual code [26] (c.f., Theorem [6.5):
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Theorem 3.11. Let C be an (n, k) linear code over F, and C* be its dual code. If T
is an (nl,n2) partition of their coordinates, A, 3) and A*(a,3) are the PWEs of

C and C* respectively, then A(a, 3) and At(«a, 3) are related by

ny  ni

a, 3 \C\ ZZA w, 0)Co(w,n1)Ka(v, n2),

v=0 w=0

such that the Krawtchouk polynomial is Kg(v,7) = Z (7 ”) (”)(—1)j(q —1)P7 for

6=0,1,...,7.

Define A;(a, 8) and A;-(a, 3) to be the PWEs for C and Ct respectively when
an (1,n — 1) partition is applied to their coordinates such that the first partition of

cardinality one is composed of the ith coordinate.

Theorem 3.12. An (n, k) linear code over F, has the multiplicity property iff its dual

code has the multiplicity property.

Proof. Let C be an (n, k) linear code over F, with property M and an (1,n—1) PWE
Ai(a, 8). From Theorem 3.11 the PWE of the dual code C* is

AF(1,8) = ] ZZA w, v)ICq (w, 1)Kg(v,n — 1). (3.26)

v=0 w=0

Since C has property M, then A;(1,v) = “tL E¢(v+1) and 4;(0,v) = Ec(v)—A;(1,v—
1) = (1 — £)E¢(v). By substituting in (3.26), it follows that A;(1,3) = A; (1, ) for
any i,j € {1,2,...,n} and > | AF(1,8) = nAF(1,8) for any i. Counting the total
weight of the codewords in C*+ with Hamming weight A by two different ways, we get
S LA B) = (B4 1) Eex(B+1). 1t follows that Af(1, ) = ZHLE.. (8 + 1) and
C* has property M.

For the converse, assume that C does not satisfy property M but C* does. From
the previous argument (C1)* has property M. Since for linear codes (C+)* = C, we

reach a contradiction. [
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Since the dual codes of MDS codes are also MDS codes, this result strengthens
Theorem [3.8. This theorem somehow strengthens the result of Theorem 3.8/ since the
dual codes of MDS codes are again MDS codes. The dual codes of cyclic codes are
also cyclic codes. One can also use this theorem to show that certain codes have the

multiplicity property.
Corollary 3.13. The extended Hamming codes have property M.

Proof. An extended Hamming code of length 2™ is the dual of the first-order RM
code R(1,m) [74], which by Theorem 3.10/ has property M. |

It is also the case that if the code has a transitive automorphism group then the
code has the multiplicity property [19]. Extended Hamming codes also have transitive
automorphism groups [19] which gives another proof to Corollary [3.13. Some product

codes also have the multiplicity property [19, 27].

3.4 Binary Partition Weight Enumerator of M DS

Codes

In this section, we study the partition weight enumerator of the binary image of an
RS (MDS) code. Let 7 be a partition of the coordinates of an MDS code C defined
over Fom. Let 7, be the partition of the coordinates of the code’s binary image C°
implied by 7 when each symbol is represented with its binary image. The number of
the partitions in 7 and 7, is the same but the size of each partition is m times larger.
This is illustrated by example in Figure 3.4. The binary partition weight enumerator
(PWE) gives the number of codewords in the binary image with a specific combination
of binary Hamming weights in the specified partitions. As we saw in the Section 2.2,

the binary image is not unique, so we will resort again to an averaged binary PWE.
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Theorem 3.14. Let PT (X, Xy, ..., X,) be the partition weight generating function
(PWGF) of an (n,k) code over Fom, and T, be the partitioning of the coordinates of
C’ induced by T when the symbols in each partition are represented by bits, then the

average binary PWGF is
Pg(zh Z27 S 7ZP) = IP%-(F(ZI)J F(ZQ)7 ey F(Zp))a

where F(Z) = 72— (1 + Z)™ — 1.

2m_1

Proof. Assuming a binomial distribution of the bits in a nonzero symbol, the proba-
bility that the binary representation of a nonzero symbol has weight 7 is equal to the
coefficient of Z* in ﬁ > (TZ”) Z'. If the weight of the jth partition is w;, then the
average binary weight generator function of its binary image is (2m_171 o (T) Z})wj
under the assumption that all the nonzero symbols are independent and equally prob-
able. Consider a codeword with a weight profile (wq, wy, . .., w,), then the probability
that the weight profile of its binary image is (by, ba, . .., b,) is given by the coefficient
of Zhzl  Zlr in | (5o >y () Z})wj. By multiplying with the number of

such codewords, A7 (wy,wy, ..., w,), the result follows. O

For systematic codes, the binary IOWE could be derived from the binary PWE
as in (3.8) (Unless otherwise stated, when speaking of binary weight enumerators of
codes over Fom it is understood that we mean the ensemble average binary weight
enumerator.) For example, the coefficient of X*Y" in IP’(XJ), Y,...,Y) is the number
of codewords with input binary weight w in the first partition and a total average

binary weight hA. In the following corollary, we give a closed form expression for the

binary IOWE, O(wy, hy).

Corollary 3.15. Let Oc(w, h) be the input-output weight enumerator of an (n,k,d)

code C, defined over Fom corresponding to an (s,n — s) partition of its coordinates,
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(1,2,4) partition of the (7,3,5) RS code over GF(2%)
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Weight Profile (1.13) (Y0 GYO O © @
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A Binary Image: (3,6,12) partition
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Weight Profile (2,2,8) O .
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Figure 3.4: Partitioning of a code and its binary image.
A codeword in the (7,3,5) RS code over Fg is shown with a (1,2,4) partition of its
coordinates. For a specific binary representation, the binary image is shown with the
implied (3,6,12) partition of its coordinates. We emphasize that the weight profile
of the binary image is not easily derived from that on the symbol level.

then the average binary IOWE of C° is given by

ch Wy, hb Z Z

thw

(Fer- 5 @:‘z») (S ()

J=0

for hy > d.

Proof. For the given (s, n—s) partition, the split weight enumerator of C is Pe(X,)) =
> o>y Oc(w, h)X*Y"=*. From the Theorem 3.14 and (3.6), Ocs (wy, hy) is the

coefficient of XY in

O (X,Y) = o hZZoC w, ) ((1+YX)" —1)"((1+ )™ — 1), (3.27)

w=0 h=w

Since ((1+YX)"—1)* =37, (1]’?)(—1)w*j(2f170 ("N XYY and ((14+Y)m—1)v =
Z;:S” (h;w)(—l)h_w_j(zgo ("7)Y"), the result follows by substituting in (3.27). [

The IOWE of the binary image will be useful in the analysis of the bit error
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probability of MDS codes when their binary image is transmitted. In Section 3.3 (c.f.,
Theorem 3.8), we showed that MDS codes have the multiplicity property. Now, we
will show that ensemble binary image of an MDS code will also have the multiplicity

property on average.

Theorem 3.16. Let C be an (n, k,d) MDS code over Fom with the multiplicity property
and E(hy) be the average binary weight enumerator of C*. If O(wy, hy) is the average
binary IOWE of C°, where the partition of the coordinates of C® is induced by an
(s,n — s) partition of the coordinates of C, then for hy > d

> ot Wh O(wy, hy)  hy E(hy)

ms mn

Proof. We will begin by proving it for the special case of s = 1. Since C has property
M, then O(1,h) = 2E(h). It follows from Corollary 3.15 that

h=0 §=0

By changing the order of the summations we have

(3.29)

By observing that wb(m) = m(;;z__ll), it follows that the rightmost summation in

3.30) is equal to m M) = (™UTD By doing a change of
(3.30) DI G PRI R

ma— 1) :ﬂ(ma

variables & = 7 + 1 and observing that ( 1 o hb) and rearranging, it follows

that the total weight of m coordinates in the binary image C,, corresponding to a
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single coordinate in C, is

S momn = g o))
- %E(hb)' (3.30)

If the input partition has s coordinates of C, the result follows by summing the weights

of the individual coordinates. [

This means that if the weight of a symbol coordinate is (h/n)E(h) in Cp, then
the average weight of its binary image is (hy/n)E(hy) in Cp,- It will be interesting to
determine whether this will still be true for any binary representation. As we will see
in the next section, the result of Theorem 13.16 can simplify the analysis of the bit

error probability of MDS codes.

3.5 Symbol and Bit Error Probabilities

In Section 2.4, we showed how one can analyze the codeword error probability of
various RS code decoders. In this section, we study the symbol and bit error prob-
abilities of systematic MDS codes. In general, systematic coding is preferred over
nonsystematic coding. It has also been shown that maximum-likelihood (ML) decod-
ing of binary linear codes achieves the least bit error probability when the code is
systematic [43].

Given a symbol-level decoder (soft-decision or hard-decision decoder), the code-
word error error probability (CEP) at a certain signal-to-noise ratio (SNR) v will be a
function of the SNR ~ and the code weight enumerator E(h). In the remaining of this
chapter, we will denote the CEP at a signal-to-noise ratio (SNR) v by ®.(E(h),~).

For linear codes, union upper-bounds on the performance of symbol-based decoders



are of the form

@ (1)) < 32 BU, D), (331)

for some function U of the SNR v and weight h.

Tighter upper bounds can be of the form

@JEM%wfﬂgn{E:EWﬁ%%m-%fW¢U}, (3.32)

for some functions V and F of v and h. For example, tight upper bounds on the
performance of bit-level and symbol-level hard-decision maximum-likelihood decoders
admit to the above form and are given by (8.32) and Theorem B.9 respectively. The
codeword error probability of the HD Berlekamp-Massey decoder is the probability
that the received word lies in the decoding sphere of a codeword other than the
transmitted word. It is also determined by the weight enumerator and has the form

of the union bound as in (3.31);
e (E(h),7) <D E(h) Y P, (3.33)

where P!'(v) is the probability that a received word is exactly Hamming distance t
from a codeword of weight h and 7 = [(d — 1)/2] is the Hamming decoding radius
[79] [L15].

Given an upper bound on the CEP of a symbol-based decoder, it is well known
that the symbol error probability (SEP) ®,(v) can be derived from the CEP ®.(7v)

by substituting E(h) with

(Q(k,h)::jzjeg()@u,h), (3.34)

w=1
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(e.g., [115, (10-14)]). From Theorem 3.8, the common approximation

S|

Q(k, h) ~ —E(h) (3.35)

is exact for MDS codes and
O.(y) = O (E(h),7) |em)=qumn - (3.36)

In other words, if the CEP is given by (3.31) or (3.32), the SEP will be respectively
bounded by

i
2
A

E(h)U(v, h), (3.37)
D, (y) < min{ %E(h)V(%h) + .7:(7,@)} . (3.38)

In case the binary image of an RS code is transmitted and the decoder is a bit-level
decoder, performance analysis of the decoder will utilize the binary weight enumerator
of the code. As we discussed in Section 2.4, the ensemble average binary weight
enumerators become handy when analyzing the performance of the binary images of
RS codes. As is the case of symbol based decoders, upper bound on the CEP of

bit-level decoders admit the union bound forms

©
—
t:
=
5
~——
IA

E(h)Y(v,h) (3.39)
o, (E(h),7> < min{ E(h)j(%h)+g(%a)} (3.40)

for some functions Y, J and G of the SNR ~ and the weight h. For example, the
union bounds of SD and HD decoding of (2.36) and (2.39) are of the form of (3.39),

whereas the Poltyrev tighter version of these bounds follow the form of (3.40).



29
From Theorem [3.16, we know that for any & (symbol) coordinates of the MDS

code .
. n - h -
O(mk,h) =S -2 O(w, h) = —E(h). (3.41)
102—:1 mk mn

Pp(y) = @ (E(h),7> ‘E(h)::@(mk,h) (3.42)
< min {Z %E(h)j(% h) + G(v, a)} (3.43)
< %%E(hm%h). (3.44)

3.6  Multiuser Error Probability

We consider the case when a systematic RS code is shared among different users or
applications. The systematic symbols are shared among the different users where the
coordinates of the code are partitioned according to an 7 : (ny,ng,...,np_1,n — k)
partition. The ith partition of size n; is assigned to the ith user and the last partition
constitutes of the redundancy symbols. Since the considered codes are linear, we
assume that the all zero codeword is transmitted. If a codeword of symbol weight
h and of weight w; in the jth partition is erroneously decoded, a fraction 1:—; of the
jth user’s symbols are received in error. It follows that the jth user’s symbol error

probability could be written as (c.f., (3.49))

Dl(7) = c (@ (ny, h),7) (3.45)

where

Q’(nj, h) = O’ (w, h) (3.46)
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and O7(w, h) is the jth partition input-output weight enumerator derived from the
PWE as in (3.8). The following theorem gives an important result regarding the

multiuser error probability of MDS (RS) codes:

Theorem 3.17. If a systematic linear MDS code is shared among different users, all
users have the same unconditional symbol error probability regardless of the sizes of

the partitions assigned to them.

Proof. The SEP of a certain user j, whose partition’s size is n;, is given by (3.45).
Thus, it is sufficient to show that for two different users ¢ and j with partitions of sizes
n; and n; respectively, such that n; # n;, @’ (n;, h) = Q'(n;, h). From Theorem 3.8, it
follows that for an arbitrary partition of size n;, Q’(n;, h) = 2E(h). Since this result
does not depend on the size of the partition nor on the orientation of the coordinates

with respect to it, we are done. O

Now, consider the case when the binary image of an RS code is transmitted
and the decoder is a bit-level hard-decision or soft-decision decoder. The systematic
coordinates will be partitioned among different users where the partitions on the bit
level will follow from the partitions on the symbol level (e.g., Figure [3.4). In case of

a bit-level decoder, the bit error probability of the jth user can be given by

&) (y) = De (Qj (mny, h), v) , (3.47)
such that
~ . ] w o~
Q' (mn;, h) = ; -~ O’ (w, h), (3.48)

where O7 (w, h) is the average binary input-output weight enumerator of the jth user
and #ONJ (w, h) is the fraction of the jth user’s bits received in error when a codeword
J

of total weight h and weight w in the jth partition is erroneously decoded given that

the all zero codeword was transmitted.
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Theorem 3.18. For systematic MDS linear codes, the average unconditional bit error
probability of all users is the same regardless of the number of symbols in each partition

or the orientation of the partition assigned to them.

Proof. Let users ¢ and j be assigned two different partitions of C with different sizes
n; and n;. Now consider the binary images of these partitions. Equations (3.41) and

(3.47) imply that both users have the same average bit error probability. O

Now that we have shown that the unconditional symbol and bit error probability
are the same for all partitions (users) regardless of their size, we can ask questions
about the conditional error probability. Using the results in this chapter, one could
answer interesting questions about the conditional multiuser error probability. Since
the code is linear, we will assume that the all-zero codeword is transmitted. For
example, the conditional CEP given that for any codeword no more than a fraction
p of the jth user’s symbols are ever received in error is given by 2

Lpm;]

() = @D Ouyh)y (3.49)

w;=0

where a hard-decision symbol level decoder with a decoding radius 7 was assumed.
We only considered error events due to codewords whose weight in the jth partition
is not greater than pn;. Recall that in the unconditional case Z,EZ n:]é O (w;, h) is
replaced by E(h) =370 _ o O/ (wj, h).

Define the following weight enumerator

O™ (w;, wj, h) = HeelC: (W (c[N]) = w;) AW (c[N;])

w;) A (W(e) = h)}|.
(3.50)

The conditional CEP given that a codeword error results in all ith user’s symbols

2Conditional functions will have have the same notation as the unconditional ones except for an
underbar.
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received correctly while all jth user’s symbols received erroneously is given by

CDC(’}/) = o, <Z Oi’j(ovnj’h%')/) (351)

h=d

where assuming that the all-zero codeword is transmitted we only considered code-
words with a zero weight in the ith partition and a full weight in the jth partition.

In general, for a p-partition of the coordinates, let P and Q be the set of users
(partitions) whose symbols are all received correctly and erroneously, respectively, in
case of a codeword error. Let O be the set of users with no condition on their error
probability. The conditional error probability is calculated by considering only the
codewords which have a full weight for the coordinates in @ and a zero weight for
the coordinates in P. By considering only such combinations in the sum of (3.2), the
conditional PWGEF is derived as

= w; =0, ifieP
P(Xy, Xy, X)) =D Awy,wa, . wy) XXX

i€A w;=0 w; =n;, ifieQ

(3.52)

The conditional symbol error probability of the jth user is

(1) = 0. (Q1(k,1),7) . (3.53)

where Q7(k,h) =0, %O_j(w, h) and O?(w, h) is the conditional IOWE of the jth

partition and is derived from P(&X}, X, ..., &,) (see (3.7)). For example, if the first
partition contains header information, then the conditional symbol error probability

of the 7th user given that the header is received correctly can be calculated by

n
w=1 "7

Di(7) = D, (Z L0 (0, w, h)ﬁ) . (3.54)
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BM-Decoder Error Probability of (15,11) RS code over AWGN channel
T
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Figure 3.5: Conditional multiuser decoder error probability for Example 3.4l
For the Berlekamp-Massey decoder, the unconditional CEP and SEP are labeled
“CEP” and “SEP” respectively. The conditional SEP of the third user for cases 1, 2
and 3 are labeled “SEP|(0,0),” “SEP|(0,1),” and “SEP|(1,1)” respectively.
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Multiuser Performance for SD ML decoding of (15,11)

RS code over AWGN

Error Probability

CEP TSB
-—x—-CEP Sim
—e—BEP TSB
10 %k -—%—BEP Sim
—a— BEP |(0,0)
—<—BEP |(0,1)
10 —A— BEP |(1,1)

|
1 15 2 2.5 3 3.5 4 45 5 5.5 6
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Figure 3.6: Conditional multiuser error probability for Example 3.5
For the bit-level soft-decision maximum-likelihood decoder, the conditional bit er-
ror probability of cases 1, 2 and 3 are labeled “BEP|(0,0),” “BEP|(0,1),” and
“BEP|(1,1).” The bounds on the unconditional CEP and BEP, labeled “CEP TSB”
and “BEP TSB,” are compared with the corresponding simulations, labeled “CEP
Sim” and “BEP Sim,” respectively.
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Similarly, for bit-level decoding of the code’s binary image, Q7(mk,h) will be
derived from P(X;, Xs, ..., X,). If the users in P and Q have zero and one bit error
probability respectively, the conditional binary PWGEF only takes into account such
codewords that have a zero binary weight for the partitions in P and a full binary
Hamming weight for the partitions in Q. The conditional BEP of the jth user follows
by the substitution E(h) := Q7(mk,h) in (3.42).

Example 3.4. Consider an systematic (15,11,5) RS code and a partition 7 =
(3,3,5,4) of its coordinates where the last partition has the redundancy symbols and
each of the first three partitions is assigned to a different user. The first partition may
be assigned to be the header. Let the RS code be transmitted over an AWGN chan-
nel and decoded by a hard-decision bounded minimum distance (Berlekamp-Massey)
decoder. From (3.33)), (3.49) and Theorem 3.17it follows that the unconditional CEP

and SEP of any user is equal to the overall SEP and can be expressed as, respectively,

15

Oo(y) = > E(h)Y_ PMy)

2.00) = B A

=5

>

such that E(h) is the weight enumerator as given by (3.10). The partition weight

generating function is given by
3 3 5 4
]P)(W7 X’ y) Z) = Z Z Z Z AT(wla Wz, W3, w4)Ww1Xw2yw32w47
w1 =0 wa=0 w3z=0 wgs=0

and the IOWGF of the third user is Q3(X,Y) = P(X, X, XY, X). We will now
calculate the conditional symbol error probability of the third user under different
scenarios.

Case 1: The first two users have a zero error probability. Thus the PWGF condi-



66

tioned on that the first two partitions have zero weight is
5 4
Pog.2)=>_ > AT(0,0,ws, wy)Y"* 2"

w3=0 wg=0

The conditional IOWGF of the third user is

Q) (X, V) =P (XY, D) = ZZO”?’ (0,0, w, B)X V",

It follows that the SEP of the third user conditioned on that the first two users have

a zero error probability is
n 5 w T
1,2,3 h
Z £0"2%0,0,w,5) Y P

d w=1 t=0

Case 2: The first and second users have an SEP of zero and one respectively. The

corresponding conditional PWGF is

5 4
Poy(X, Y, 2)=> " > AT(0,3,ws, w) XY 2",

w3=0 wg=0

The corresponding IOWGF of the third user is
0F) (X, Y) =P, (Y, XY, Y) = ZZO”?’ (0,3, w, h) XU Y".

To calculate the conditional SEP, we proceed as in the previous case.
Case 3: Both the first and second users have an SEP of one. The conditional SEP

of the third user is

where O"*3(3,3,w, h) is the coefficient of X*Y" in @?1 N (X, D) =P (I, V, XV, Y)



67

and

5 4
PoyW, XD, 2) =" > AT(3,3,ws, wy) WAPY"s 204,

w3=0 w4=0

For an AWGN channel and a Berlekamp-Massey decoder, the codeword error prob-
ability, symbol error probability and the conditional symbol error probabilities for
the third user for the three cases are plotted in Figure [3.5. It is observed that the
conditional error probability of the third user given that other users have an error
probability of one (Case 3) is the lowest compared to the other two cases. The reason
is that in Case 3, one only considers errors due to the received word falling closer to
codewords at a much larger Hamming distance from the transmitted one, and such

an event happens with relatively lower probability. o

The same technique can be used to bound the performance of other symbol based
decoders, such as the hard-decision maximume-likelihood decoder, under various sce-
narios. Next we consider analyzing the multiuser error probability when the decoder

is a bit level decoder.

Example 3.5. Consider the (15,11,5) code over 4 partitioned as in Example 3.4
and an SD bit-level ML decoder is employed at the output of an AWGN channel.

The unconditional CEP and BEP are given by, respectively,

@ (Eh),7) < ngn{imhv(w)w(w)},

®y(y) = min {Z%E(h)ﬂ% h) + Q(%Oé)},

where J (7, h) and G(+, ) will be determined by the Poltyrev tangential sphere bound
[87] (c.f., Section 8.1.3). We will now discuss the conditional bit error probability for
different cases (as in Example 13.4):

Case 1: The first two users have a zero error probability. The average binary IOWE
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of the third user given the first two partitions have a zero weight is

B o (%.9) = By (19.9) = 3 50 (0.0,u. ",

h=0 w=0

such that E(O,O)(‘X’ V) =Py o(F(X), F(Y)), and F(X) is as defined in Theorem [3.14.

The conditional BEP of the third user is given by

mm{zz 2ot OOwh)j( )—l—g(v,a)}.

h=5 w=1

Case 2: The first and second users have a zero and one bit error probability re-
spectively. Let POV, X, Y, Z) = P(F(W), F(X), F()), F(Z)) be the average binary
PWGEF then

E(o,n(?{,y,z) = Coeff (P(W,X,y,Z),Wo)(l?) X2
and the conditional IOWE of the third user is
Q1,2,3(0,12,w,h) Coeff( oV, &Y. Y), wah)

The conditional BEP is then given by

mm{zz O Oleh)j( )+Q(fy,0¢)}.

h=5 w=1

Case 3: The average BEP of the first two users is one. In this case, the conditional

PWGTF can be calculated by
E(l,l)(W7 X, ), Z) = Coeff <]fD(W’ X, ), 2)7 W12X12> W12X12.

One can then proceed to calculate the conditional IOWE and BPE of the third user
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Q1’2’3(12712,w,h) = Coeft (I@’(Ln(y,yaxyy)’xwyh)

a 20
() = min {Z S 550" 12,120, )T (3, h) + Gl a)} .

h=5 w=1

In Figure 3.6, the TSB on the codeword and bit error probability are plotted and
compared to simulations of the ML decoder for a specific basis representation of the
RS code. The conditional BEP of the third user is plotted for cases 1,2 and 3 . As in
the previous example, it is observed that the conditional error probability of specific
users given that some users have a high error probability decreases with the number

of such users. o

Example 3.6. Consider an systematic (31, 15,17) RS code over F35 and a partition
T = (3,6,6,16) of its coordinates where the last partition has the redundancy sym-
bols and each of the first three partitions is assigned to a different user. The first
partition may be assigned to be the header. Let the binary image of a RS code be
transmitted over an AWGN channel and decoded by a hard-decision symbol-based
maximum-likelihood decoder decoder. We used the upper bound of Theorem 8.9 to
bound the performance of the HD-ML decoder over F3,. The CEP, SEP and condi-
tional SEP are of the form of (3.32), (3.40) and (3.53). We consider three cases:
Case 1: The unconditional error probability of the third user.

Case 2: The symbol error probability of the third user given that the first user
(header) is received correctly.

Case 3: The symbol error probability of the third user given that the first two users
have their symbols received correctly.

The numerical results are shown in Figure 3.7. We observe that the unconditional

CEP and SEP are very close. As more and more conditions are imposed, the condi-
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Multiuser HD—ML performance of the (31,15) RS code
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Figure 3.7: Conditional multiuser error probability of Example 3.6
For the symbol-level hard-decision maximum-likelihood decoder of the (31,15) RS
over Fsy, the unconditional CEP and SEP are plotted (Case 1). The conditional SEP
of Case 2 and Case 3 are labeled “SEP|(0, X)” and “SEP|(0,0)” respectively.
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tional error probability of the third user decreases. Case 2, is of special interest, since
in some cases the header will contain the routing information and it will be essential

to estimate the error probability in case the information is routed correctly. o

3.7 Conclusion

A closed form formula for the partition weight enumerator of maximum distance
separable (MDS) codes is derived. The average partition weight enumerator (PWE)
is derived for the binary image of MDS codes defined over a field of characteristic two.
We show that for MDS codes, all the coordinates have the same weight in the subcode
composed of codewords with equal weight. We prove that a code has this property
iff its dual code has this property. Consequently, it is shown that the first-order
Reed-Muller codes and the extended Hamming codes have this property. A common
approximation used to evaluate the symbol and bit error probabilities is thus shown
to be exact for MDS codes. These results are employed to study the error probability
when a Reed-Solomon code is used in a network scenario and is shared among different
users. We show that MDS (e.g., RS) codes have many attractive features which makes
their use in networks attractive. It is proved that the unconditional error probability
of all the users will be the same regardless of the size of their partitions. As for
the conditional error probabilities, they can be a useful measure in determining the
performance of a user, if its performance depends on the correct transmission of a

certain packet or header.
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Chapter 4

Algebraic Soft-Decision Decoding
of Reed-Solomon Codes:
Interpolation Multiplicity
Assignments

Simple things should be simple, complex things should be possible.
—Alan Kay

Reed-Solomon codes [93] are one of the most important types of error-correcting
codes, due to their wide applicability in data-storage and communication systems.
Through the seminal work of Sudan [102], Guruswami and Sudan [49], and Koet-
ter and Vardy [72], we now have a polynomial-time algebraic soft-decision decoding
(ASD) algorithm for Reed-Solomon codes. In an attempt to find asymptotic (in
decoder complexity) performance limits for ASD, we develop a new class of multi-
plicity assignment algorithms for ASD in this chapter. Roughly speaking, the idea is
to choose the multiplicity matrix so as to maximize the probability that the causal
codeword is on the decoder’s list, as suggested by [83], rather than to maximize the
expected score of the causal codeword, as is done in [72]. However, whereas in [83],
a Gaussian approximation is employed, we use a Chernoff bound instead. (It was
independently suggested in [92], in a somewhat different context, to use the Chernoff

bound in optimizing symbol based multiplicity matrices.)
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Here is an overview of this chapter. Some preliminaries are given in Section 4.1\
In Section 4.2 we give a brief overview of the Guruswami-Sudan (GS) algorithm. We
also prove some interesting results that will become useful later in this chapter. In
Section 4.4, we describe a mathematical framework for alebraic soft-decision decod-
ing. A quick review of previously proposed multiplicity assignment algorithms for
algebriac soft-decision decoding is given in Section 4.5. In Section 4.6, we formulate
the multiplicity assignment problem as an optimization problem. Our algorithm is
developed and explained in Section 4.7. We propose a Chernoff bound approach for
the multiplicity assignment optimization problem. We study the cases of finite and
infinite interpolation cost. We show that the formulated problem is convex and devise
an iterative algorithm to solve it. In Section 4.8, we present some numerical results
and discussions. We conclude the chapter and hint at future research directions in
Section 4.10. Briefly, we conclude that our method is theoretically superior to previ-
ously proposed algebraic soft-decision algorithms, although whether it will prove to

be practical remains to be seen.

4.1 Preliminaries

Throughout this chapter F, will denote a finite field with ¢ elements, and a typical
element of F, will be denoted by 8. C will be an (n, k,d) Reed-Solomon code over
F,* Let the information data vector of k elements be d = (dy,dy,...dx—1). Then
the corresponding codeword ¢ = (¢4, ..., ¢,) is generated by polynomial evaluation of
the information polynomial D(X) = Zi:ol d; X" at n distinct nonzero elements of F,
constituting the support set of the code, S = {s;;s; € F, for i =1,2,...,n}. That
is ¢; =D(s;) fori =1,2,...,n.

We will often encounter ¢ X n arrays (or matrices) of real numbers, typically

!'More precisely, C may be a coset of the parent RS code. See Corollary [4.4.
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denoted by W = (w;($)), where i = 1,...,n and § € F,. The cost of such an array

is defined to be

W) 2 23S wilB) (wi(9) + 1). (4.1)

1=1 BeF,;
If w=(uy,...,u,) is a n-dimensional vector over F,, the score of u with respect to

the array W is is defined to be

(u, W) 2 Z w;(u;). (4.2)

The underlying (discrete input, memoryless) channel model has input alphabet
[F,, output alphabet R (which could be of infinite size for continuous channels), and
transition probabilities Pr{Y = r|X = (}, where X and Y denote the channel input
and output respectively. Given a received symbol r € R, there is a unique a posterior:

density function on F, corresponding to each 3 € Fy;

po(8) = Pr{X = BlY =r}.

Observing a channel output r is therefore equivalent to being given p,.(/) for all

B € F,. From this viewpoint, the output alphabet is not R but

R=A{p.(B);re R, €F,}.

Thus in this chapter we will assume that if ¢ = (cq, ..., ¢,) is transmitted, the received
word is an array of density functions II = (m;(()), where m;(8) € R, fori=1,....,n
and 8 € F,. We call II the a posterior: probability, or APP, matrix. We denote by R
the set of all possible APP matrices. It should be noted that the density functions
m; () could be calculated from the soft channel output as is the case for additive

white Gaussian noise (AWGN) channels. However, the density functions could also be
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delivered directly as the soft output of an inner decoder such as the BCJR algorithm
[7] or the soft output Viterbi algorithm (SOVA) [51, 112] in concatenated coding
systems.

The indicator function A is defined to be

1, if condition is true
A[condition| = . (4.3)
0, if condition is false

We will denote the ubiquitous quantity (k — 1) by v. We will finish this section by

giving some definitions that are crucial to understanding the GS algorithm [76].

Definition 4.1. The (r, s)th Hasse derivative of a bivariate polynomial B(X,Y) =
> i BijX'Y7 at (, () is given by

B, (a,f) = Coeff(B(X + .Y + ), X"Y?)

S ()ma

i.j
where the coefficient function is defined by B;; = Coeff(B(X,Y), X'Y7).

Definition 4.2. The bivariate polynomial B(X,Y") passes through the point («, 3)

with multiplicity m (has a zero of multiplicity m at («, 3)) iff
B, (a, ) = 0 for all r and s such that 0 <7+ s < m,

equivalently, iff B(X + a,Y + ) does not contain any monomial of degree strictly

less than m.
Definition 4.3. The (w,,w,)-weighted degree of a bivariate polynomial B(X,Y) =
Zz}j B@inYj

A

deg,, ., B(X,Y) max{iw, + jw, : B;; # 0}.
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It follows that X-degree degyx B(X,Y) = deg, , B(X,Y’), the Y-degree deg, B(X,Y) =
degy; B(X,Y’) and the total degree deg B(X,Y) = deg, ; B(X,Y).

4.2 The Guruswami-Sudan Algorithm

Given a g x n array of nonnegative integers M = (m;(3)), called a multiplicity matriz,
associated with an (n,v + 1, d) Reed-Solomon code, the (modified) GS algorithm is a

list-decoding algorithm consisting