
New Approaches to the Analysis and Design of

Reed-Solomon Related Codes

Thesis by

Mostafa El-Khamy

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended September 6, 2006)

ii

c© 2007

Mostafa El-Khamy

All Rights Reserved

iii

To My Family:

My Mother, Sanaa, My Father, Said,

My Sisters, Rasha, Rehab and Donia,

&

To Peace.

iv

Peace cannot be kept by force.

It can only be achieved by understanding.

—Albert Einstein

v

Acknowledgements

It is a pleasure to take this opportunity to thank all the people who have touched my

life and helped the dream of this thesis come true. I consider myself very fortunate

to have Prof. Robert J. McEliece as my thesis advisor. It is his brilliant lectures on

information theory and the theory of error-correcting codes that made me love this

field. His sharp insight, consistent guidance, constant encouragement, contagious

enthusiasm, and friendly advice are all echoed throughout this thesis. His intelligent

questions led to many of the results in this thesis. For all the things I have learned

from him, I will always be indebted to him.

I am grateful to the members of my candidacy and defense committees, Prof.

Robert J. McEliece, Prof. P. P. Vaidyanathan, Prof. Babak Hassibi, Prof. Steven

Low at the California Institute of Technology, Prof. Dariush Divsalar at the Jet

Propulsion Laboratory and Prof. Marc Fossorier at the University of Hawaii. I would

also like to thank them for the unmatched help and generous support that they have

provided to me and for their invaluable advice and constructive feedback.

The intellectual and stimulating environment at the California Institute of Tech-

nology had a huge impact on the quality of research presented in this thesis. I would

like to thank Prof. Michelle Effros for hosting me in her research group during my

master’s year. I would like to thank many of those whom I had technical discussions

with and those whom I have collaborated with on numerous research problems. I

would like to thank Haris Vikalo for the engaging discussions we had, Roberto Garello

for his patient advice, Makiko Kan for her careful feedback, Yuval Cassuto for his en-

vi

thusiasm, Farzad Parvaresh for the fun and fruitful time we had while he was visiting

our research group and Alex Vardy for his insightful comments. Without a doubt,

the friendly environment created by the other students in my research group, over the

past four years, was a key factor in making this thesis. I am grateful to Cedric Flo-

rens, Ravi Palanki, Jeremy Thorpe, Jonathan Harel, Edwin Seodormadji and Sarah

Fogal for making my experience at Caltech such a wonderful one. My sincere thanks

also go to my office-mates, Masoud Sharif, Mihailo Stojnic, Amir Farajidana, Radhika

Gowaiker, Tareq Al-Naffouri, Chaitanya Rao, Weiyu Xu, Ali Vakili, Sormeh Shad-

bakht and Frederique Oggier for the enriching and pleasant atmosphere they have

created.

My thanks also go to our friendly administrative assistants Shirley Betty and

Linda Dozsa for their professional aid in all the administrative issues. Many thanks

to Greg Fletcher at the Caltech-Y and Jim Endrizzi at the International Student

Programs for all the social activities they have organized to make our stay at Caltech

beneficial in so many ways.

Many thanks also go to my friends in the Teaching Assistant room at Alexandria

University for the mutual encouragement we gave to each other. My thanks also go

to those professors at Alexandria University who gave their best to see this happen.

This thesis has been made possible by the generous support of the National Sci-

ence Foundation, Qualcomm Corp., Sony Corp. and the Lee Center for Advanced

Networking.

My heartfelt thanks go to my parents and sisters with great appreciation and

respect. Their generous love, extraordinary care and unconditional support has been

with me all the way. I owe them so much, more than I can ever pay back, for always

being there for me.

Thanks to God for making the dream of my Ph.D. thesis unfold into reality.

vii

Abstract

The research that led to this thesis was inspired by Sudan’s breakthrough that demon-

strated that Reed-Solomon codes can correct more errors than previously thought.

This breakthrough can render the current state-of-the-art Reed-Solomon decoders ob-

solete. Much of the importance of Reed-Solomon codes stems from their ubiquity and

utility. This thesis takes a few steps toward a deeper understanding of Reed-Solomon

codes as well as toward the design of efficient algorithms for decoding them.

After studying the binary images of Reed-Solomon codes, we proceeded to an-

alyze their performance under optimum decoding. Moreover, we investigated the

performance of Reed-Solomon codes in network scenarios when the code is shared by

many users or applications. We proved that Reed-Solomon codes have many more

desirable properties. Algebraic soft decoding of Reed-Solomon codes is a class of al-

gorithms that was stirred by Sudan’s breakthrough. We developed a mathematical

model for algebraic soft decoding. By designing Reed-Solomon decoding algorithms,

we showed that algebraic soft decoding can indeed approach the ultimate performance

limits of Reed-Solomon codes. We then shifted our attention to products of Reed-

Solomon codes. We analyzed the performance of linear product codes in general and

Reed-Solomon product codes in particular. Motivated by these results we designed

a number of algorithms, based on Sudan’s breakthrough, for decoding Reed-Solomon

product codes. Lastly, we tackled the problem of analyzing the performance of sphere

decoding of lattice codes and linear codes, e.g., Reed-Solomon codes, with an eye on

the tradeoff between performance and complexity.

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Outline . 4

2 Binary Images of Reed-Solomon Codes 10

2.1 Preliminaries . 12

2.2 Average Binary Image of Reed-Solomon Codes 13

2.3 The Binary Minimum Distance of the Ensemble of Binary Images of

Reed-Solomon Codes . 20

2.4 Performance of the Maximum-Likelihood Decoders 28

2.5 Conclusion . 34

3 The Multiuser Error Probability of Reed-Solomon Codes 35

3.1 Weight Enumerators . 37

3.2 Partition Weight Enumerator of Maximum-Distance-Separable Codes 40

3.3 A Relationship Between Coordinate Weight and Codeword Weight . 47

3.4 Binary Partition Weight Enumerator of MDS Codes 52

3.5 Symbol and Bit Error Probabilities 56

3.6 Multiuser Error Probability . 59

ix

3.7 Conclusion . 71

4 Algebraic Soft-Decision Decoding of Reed-Solomon Codes: Inter-

polation Multiplicity Assignments 72

4.1 Preliminaries . 73

4.2 The Guruswami-Sudan Algorithm 76

4.3 Upper Bounds on the Minimum Weighted Degree 77

4.4 A Mathematical Model for ASD Decoding of Reed-Solomon Codes. . 80

4.5 Algebraic Soft-Decision Decoding . 82

4.6 Optimum Multiplicity Matrices . 83

4.6.1 Optimization Problem . 84

4.6.2 Soft Multiplicity Matrices: A Relaxation 85

4.7 The Chernoff Bound Multiplicity Assignment Algorithm 87

4.7.1 The Chernoff Bound—Finite Cost 87

4.7.2 The Chernoff Bound—Infinite Cost 89

4.7.3 The Lagrangian . 91

4.7.4 Convexity . 94

4.7.4.1 Ls(s) is Convex in s 94

4.7.4.2 LX(X) is Convex in X 95

4.7.5 Iterative Algorithm . 97

4.7.6 Implementation Issues . 98

4.8 Numerical Results . 99

4.9 Discussion . 106

4.10 Conclusion . 107

5 Iterative Algebraic Soft-Decision Decoding of Reed-Solomon Codes108

5.1 Preliminaries . 110

5.1.1 A Binary Image of the Reed-Solomon Code 111

x

5.2 Adaptive Belief Propagation . 112

5.3 Modifications to the Jiang-Narayanan Algorithm 115

5.4 The Hybrid ABP-ASD List Decoding Algorithm 118

5.5 A Low Complexity ABP Algorithm 120

5.6 Numerical Results and Discussion 124

5.6.1 Fast Simulation Setup . 128

5.6.2 Bounds on the Maximum-Likelihood Error Probability 129

5.6.3 Numerical Results . 129

5.6.3.1 (15,11) RS Code over an AWGN Channel 133

5.6.3.2 (31,25) RS Code over AWGN Channel 135

5.6.3.3 (31,25) RS Code over a Rayleigh Fading Channel . 137

5.6.3.4 (255,239) RS Code over AWGN Channel 137

5.6.3.5 (31,15) RS Code over AWGN Channel 138

5.6.3.6 General Observations 138

5.7 Conclusion . 141

6 Performance Analysis of Linear Product Codes 143

6.1 Preliminaries . 145

6.2 Exact IOWE of Low-Weight Codewords 148

6.3 Average IOWE of Product Codes . 152

6.3.1 Representing a Product Code as a Concatenated Code 153

6.3.2 Uniform Interleavers over Fq 156

6.3.3 Computing the Average Enumerators 158

6.4 Merging Exact and Average Enumerators into Combined Enumerators 160

6.5 Split Weight Enumerators of Linear Codes 162

6.5.1 Hamming and Simplex Codes 163

6.5.2 Extended Hamming and Reed-Muller Codes 164

xi

6.5.3 Reed-Solomon Codes . 165

6.6 IRWE of Binary Images of Product Reed-Solomon Codes 165

6.7 Numerical Results . 167

6.7.1 Combined Input-Output Weight Enumerators 167

6.7.2 Maximum-Likelihood Performance 172

6.8 Conclusion . 179

7 Algebraic List Decoding of Reed-Solomon Product Codes 182

7.1 Reed-Solomon Product Codes . 184

7.1.1 Half-the-Minimum Distance Bound 188

7.2 Algebraic Decoding Algorithm . 191

7.2.1 Analysis of Algorithm 7.1 . 194

7.3 Decoding M-dimensional Reed-Solomon Product Codes 201

7.3.1 The Decoding Algorithm . 202

7.3.2 Analysis of the Algorithm . 204

7.4 Decoding a Reed-Solomon Product Code as a Subcode of a Reed-

Muller Code . 208

7.5 Discussion . 213

7.6 Conclusion . 214

8 Performance of Sphere Decoding of Linear Block Codes 216

8.1 Soft-Decision Sphere Decoding of BPSK and M-PSK Modulated Block

Codes . 218

8.1.1 Preliminaries . 218

8.1.2 Analysis of Soft-Decision Sphere Decoding 219

8.1.3 The Tangential Sphere Bound 223

8.1.4 A Tight Upper Bound . 224

8.1.5 A Note on Reed-Solomon Codes 231

xii

8.1.6 Numerical Results . 231

8.2 Sphere Decoding of Lattices . 234

8.3 Sphere Decoding on Binary Symmetric Channels 236

8.3.1 Numerical Examples . 242

8.4 Sphere Decoding on q-ary Symmetric Channels 242

8.4.1 Maximum Likelihood Decoding of Linear Block Codes on q-ary

Symmetric Channels . 243

8.4.2 Hard-Decision Sphere Decoding of Linear Block Codes on q-ary

Symmetric Channels . 247

8.4.3 Numerical Examples . 250

8.5 Complexity of Sphere Decoding . 251

8.6 Conclusion . 254

A Newton’s Algorithm 255

Bibliography 257

xiii

List of Figures

2.1 True BWE versus the averaged BWE for the (7, 5) RS code over F8. . 16

2.2 The ensemble weight enumerator of the (31, 15) RS code over F32. . . . 19

2.3 The ensemble binary minimum distance of Reed-Solomon codes. 23

2.4 The ensemble binary minimum distance of RS codes of length 15 over F16. 26

2.5 The ensemble binary minimum distance of RS codes of length 31 over F32. 27

2.6 Performance of a binary image of (15, 11) RS code over F16 when trans-

mitted over a binary input AWGN channel. 30

2.7 Performance of the binary image of the (31, 15) RS code over F32 trans-

mitted over a binary input AWGN channel. 33

3.1 A multiuser scenario where a code is shared among many users. 36

3.2 Partitioning of a code defined over F7
q. 39

3.3 Theorem 3.1. 41

3.4 Partitioning of a code and its binary image. 54

3.5 Conditional multiuser decoder error probability for Example 3.4. . . . 63

3.6 Conditional multiuser error probability for Example 3.5. 64

3.7 Conditional multiuser error probability of Example 3.6. 70

4.1 Bounds on the function Dv(Ω(M)) as a function of Ω(M) for v = 6. . . 79

4.2 Performance of ASD algorithms when decoding an (15, 11) RS code

BPSK modulated over an AWGN channel, for both finite and infinite

interpolation costs. 100

xiv

4.3 Performance curves for decoding an (15, 11) RS code, 16-PSK modulated

over an AWGN channel, using different ASD algorithms. 102

4.4 An (31, 25) RS code is BPSK modulated over an AWGN channel. . . . 103

4.5 Convergence of the Chernoff bound algorithm at an SNR of 6 dB. . . . 104

4.6 Convergence of the error probability of the Chernoff bound algorithm. 105

5.1 The performance of iterative ASD of (15, 11) RS code, BPSK modulated

over an AWGN channel, is compared to that of other ASD algorithms

and ABP-BM list decoding. 125

5.2 The performance of iterative ASD of the (15, 11) RS code, BPSK mod-

ulated over an AWGN channel, is shown for a finite interpolation cost

of 103 and different iteration numbers. 126

5.3 ABP-ASD list decoding of the (31, 25) RS code transmitted over an

AWGN with BPSK modulation. 127

5.4 The performance of iterative ASD of (15, 11) RS code, BPSK modulated

over an AWGN channel, is compared to that of other ASD algorithms

and ABP-BM list decoding. 130

5.5 The performance of iterative ASD of the (15, 11) RS code, BPSK mod-

ulated over an AWGN channel, is shown for a finite interpolation cost

of 103 and different iteration numbers. 131

5.6 ABP-ASD list decoding of the (31, 25) RS code transmitted over an

AWGN with BPSK modulation. 132

5.7 Convergence of the iterative ASD algorithm. 134

5.8 The performance of the ABP-ASD decoding of the (31, 25) RS code over

a Rayleigh fading channel with AWGN when the channel information is

unknown at the decoder. 136

5.9 The performance of the ABP-ASD decoding of the (255, 239) RS code

over an AWGN channel with BPSK modulation. 139

xv

5.10 ABP-ASD list decoding of the (31, 15) RS code, of rate 0.48, transmitted

over an AWGN with BPSK modulation. 140

6.1 Construction 1: Serial concatenation. 154

6.2 The four set partition of the coordinates of a product codeword used in

Construction 2. 155

6.3 Construction 2: Parallel concatenation. 157

6.4 The combined weight enumerator of the (16, 11)2 extended Hamming

product code is compared with that of a random binary code of the

same dimension. 168

6.5 The combined symbol weight enumerator of the (7, 5)2 Reed-Solomon

product code is compared with that of a random code over F8 with the

same dimension. 171

6.6 The combined binary weight enumerator of the binary image of the

(7, 5)2 Reed-Solomon product codes is compared with that of a random

binary code with the same dimension. 172

6.7 CER and BER performance of some Hamming product codes for soft-

decision decoding over AWGN channel. 174

6.8 CER and BER performance of the (32, 26)2 extended Hamming product

code for soft-decision and hard-decision decoding over AWGN channel. 175

6.9 BER performance of Hamming product codes over AWGN channel. . . 177

6.10 BER performance of extended Hamming product codes over AWGN

channel. 178

6.11 BER of some Reed-Solomon product codes over the AWGN channel. . 180

7.1 Error-correction capability for RS and RS product codes. 190

7.2 Decoding radii of different decoding algorithms for RS product codes. . 193

xvi

7.3 The number of monomials of maximum weighted degree ∆ is lower

bounded by the volume of this pyramid in R3. 196

7.4 The 1− 3
√

Rc + Rr decoding radius and the half-the-distance bound. . 199

7.5 The 1−√Rc + Rr decoding radius and half-the-distance bound 209

7.6 Error-correcting radii of list-decoding algorithms for two-dimensional

and three-dimensional RS product codes. 212

7.7 The optimistic 1−√Rc + Rr −RrRc decoding radius and the half-the-

distance bound. 213

8.1 Tangential sphere bound: The cone Vφ is centered around the transmit-

ted codeword. All codewords lie on a sphere of radius
√

nc. 222

8.2 Theorem 8.4, Case A: The sphere ΩD lies totally inside the cone Vφ

(D ≤ √
nc sin(φ)). 225

8.3 Theorem 8.4, Case B: The sphere ΩD intersects the cone Vφ; (a) the

apex of the cone Vφ lies outside the sphere ΩD (
√

nc sin(φ) < D <
√

nc).

In case D ≥ √
nc (b), the apex of the cone Vφ lies inside the sphere ΩD. 226

8.4 Bounds on the performance of soft-decision sphere decoding of the (24, 12)

Golay code when QPSK modulated over an AWGN channel. 232

8.5 Bounds on the performance of SSD of a binary image of the (15, 11)

Reed-Solomon code BPSK modulated on an AWGN channel. 233

8.6 Performance of soft-decision sphere decoding of the (15, 3) RS code, 16-

QAM modulated, and transmitted over an AWGN channel. 237

8.7 Two cases for the bound on the performance of hard-decision sphere

decoders (Theorem 8.11). 239

8.8 Bounds on the codeword error rate of soft-decision and hard-decision

sphere decoding of the (15, 7) BCH code BPSK modulated over an

AWGN channel. 241

8.9 Proof of Lemma 8.8. 244

xvii

8.10 Bounds on the performance of binary hard-decision sphere decoding of

the binary image of the (31, 15) RS code BPSK modulated on an AWGN

channel. 248

8.11 The (15, 3) RS code is BPSK modulated and transmitted over an AWGN

channel. For the 16-ary hard-decision decoder, the channel is an QSC. 249

8.12 Complexity exponent for SD sphere decoding of the (24, 12) Golay code. 252

8.13 Statistical (squared Euclidean) decoding radius versus fixed decoding

radius for the (24, 12) Golay code. 253

1

Chapter 1

Introduction

The road to success is always under construction.

—Lily Tomlin

The now ubiquitous Reed-Solomon codes were invented in 1960 [93]. It was not

until the late sixties when Berlekamp and Massey invented an efficient algorithm for

decoding them [12]. Today, billions of dollars are invested in products, which carry

error-correcting encoders and decoders, and millions of error-correcting codes are

being decoded each minute. It is no exaggeration to say that at least three-quarters

of the codes used today are Reed-Solomon codes. Reed-Solomon codes have many

properties, such as their random-error-correction capability, burst-error-correction

capability, and erasure-recovery capability, which make them very appealing for many

applications. Their success can be attributed to the efficient encoding and decoding

algorithms and their state-of-the-art integrated circuit implementations.

Everyone who has ever used a computer has in fact used a Reed-Solomon code.

For decades Reed-Solomon codes have been used in the magnetic storage devices such

as hard disks. With other breakthroughs in channel coding such as the invention of

Turbo codes [13] and the resurrection of LDPC codes [45, 78] one might wonder if this

is still the case. These codes, however, suffer from error-floor problems. If such codes

were to be implemented for their capacity-approaching capability, Reed-Solomon (RS)

codes will still be used as outer codes to cure their error-floor problems. Other

2

storage devices such as compact discs (CDs) and digital versatile discs (DVDs) also

standardize concatenated RS codes and RS product codes as their error-correcting

codes. It is worth noting that storage devices are now making their way in our

everyday devices such as cell phones, play stations, personal digital assistants (PDAs),

digital music players, digital cameras and high-definition televisions. As we are in the

trend of digitizing everything, we are in more need than ever for reliable storage

space. Moreover, we need to be able to access this digital information quickly which

translates to the need of having efficient decoding algorithms and high speed decoding

circuits.

Without Reed-Solomon codes, deep space exploration might have simply been

a dream. Reed-Solomon codes were used to encode the digital pictures sent to us

by the Voyager space probe. Reed-Solomon is currently deployed in all probes in

operation and will still be used in future missions. Reed-Solomon codes, concatenated

with convolutional codes, have been the state-of-the-art channel codes for deep space

communication. The 2004 Mars Exploration Rover mission that successfully sent

two rovers Spirit and Opportunity to explore the Martian surface and geology had

Reed-Solomon codes in operation. Similar standards of Reed-Solomon codes and

concatenated Reed-Solomon codes are also used in satellite communication for digital

video broadcasting.

Reed-Solomon codes have also been adopted as outer codes in the third generation

(3G) wireless standard, CDMA2000 high-rate broadcast packet data air interface [1],

and are expected to be used as outer codes in concatenated coding schemes for future

fourth generation wireless systems. Hybrid automatic repeat request (H-ARQ) error

control systems for asymmetric digital subscriber line (ADSL) access networks deploy

block interleaved Reed-Solomon codes to maintain a high throughput and reliability.

Interleaved Reed-Solomon codes are also the standard in high speed optical fiber

networks operating at 10 Gbps. Amusingly, mailing services, such as the United

3

States Postal Service (USPS), deploy a black-ink bar code, called PostBar, which is

printed on packages for automatic mail sorting. PostBar uses a Reed-Solomon coding

technique for error correction in case it is defected from mishandling the mail.

Almost forty years after the invention of the Berlekamp-Massey algorithm, we were

surprised to realize that polynomial-time decoding algorithms can correct more errors

in Reed-Solomon codes than previously thought. This breakthrough came with the

invention of the Sudan [102] and Guruswami-Sudan [49] list-decoding algorithms for

RS codes, for which Sudan was awarded the prestigious Nevannlina prize. Rather than

returning one codeword, list-decoding algorithms return a list of codewords. Although

the concept of list decoding dates back to 1957 [39], it was not until 1997 [102] that

we were able to efficiently list decode RS codes beyond their classical error-correction

capability.

1.1 Contributions

Most of the research in this thesis was motivated and inspired by the theoretical break-

through of the Guruswami-Sudan algorithm. Our first goal was to study the ultimate

performance limits of Reed-Solomon codes. With the new advances in networking

and the progress in ad hoc networking techniques, it was natural to think of RS codes

as the code of choice in multiuser environments. This motivated us to study the

performance of RS codes in multiuser settings. The Guruswami-Sudan algorithm did

not make full use of the soft information at the channel output. Koetter and Vardy

built on the Guruswami-Sudan algorithm and devised a soft-decision list-decoding

algorithm for RS codes. This motivated us to study the ultimate performance of such

soft-decision list-decoding algorithms. We designed soft-decision list-decoding algo-

rithms for Reed-Solomon that perform better than previously known algorithms. In

fact, the performance of our iterative list-decoding algorithm approaches the perfor-

4

mance limits of RS codes at a reasonable complexity. As we see from the discussion

above, RS product codes and concatenated RS are widely deployed in many applica-

tions. This motivated us to study the performance of linear product codes in general

and RS product codes in particular. The performance limits of RS product codes

showed that there is much room for improvement over the current decoding algo-

rithms. This motivated us to study list-decoding of RS product codes. We designed

and analyzed algebraic list-decoding algorithms for decoding RS product codes. We

believe that such decoding algorithms can dramatically improve the performance of

the widely deployed RS product codes. The Guruswami-Sudan algorithm can also be

viewed as sphere decoding algorithm. A sphere decoder is one which will return a list

of codewords within a certain sphere without actually searching all such codewords.

Sphere decoders are currently the state of the art decoders in multiple input-multiple

output (MIMO) wireless systems and have received a lot of attention. This connec-

tion to the Guruswami-Sudan algorithm motivated us to study the performance of

sphere decoding of linear block codes in general and Reed-Solomon related codes in

particular under various settings.

1.2 Thesis Outline

Next we give a more detailed outline of the contents and contributions of this thesis.

The thesis is designed such that each chapter can be read separately. However, we

do refer the reader to the results in other chapters whenever needed.

Chapter 2: Binary images of Reed-Solomon Codes [29, 28]:

Although there was a significant amount of research dedicated to developing bet-

ter decoding algorithms for Reed-Solomon codes, there was little known about their

fundamental operating limits and researchers relied on comparing the performance of

their algorithms with other algorithms. Reed-Solomon codes are often defined over

5

finite fields of characteristic two. In many applications, it is the binary image of

the RS code that is transmitted over the channel. Whereas knowledge of the weight

enumerator of a linear code is essential to analyze its performance, the binary weight

enumerators of binary images of RS codes depend on the basis used to represent the

symbols as bits. An averaged binary weight enumerator for RS codes is derived and is

shown to closely estimate an exact one for a specific basis representation. Moreover,

it has been shown that as the code length and the finite field size tend to infinity, the

weight enumerator of the ensemble of binary images of Reed-Solomon codes approach

that of a random code with the same dimensions.

By considering the performance of the ensemble of binary images of an RS code,

rather than a specific binary image, we are able to develop tight upper bounds on

the performance of the optimum maximum-likelihood decoder. We analyze both

cases of soft-decision and hard-decision maximum-likelihood decoding. Observing

that a code’s performance at high signal-to-noise ratios relies heavily on its minimum

distance, we analyzed the minimum distance of the binary image of a RS code. It is

then shown that the ensemble of binary images of RS codes is asymptotically good.

Chapter 3: The Multiuser Error Probability of Reed-Solomon Codes [28, 32]:

Maximum distance separable (MDS) codes have many attractive properties which

make them the code of choice in network scenarios and distributed coding schemes.

Reed-Solomon codes are the most popular MDS codes. Given an arbitrary partition

of the coordinates of a code, we introduce the partition weight enumerator which

enumerates the codewords with a certain weight profile in the partitions. A closed

form formula of the partition weight enumerator of maximum distance separable

codes is derived. Using this result, some properties of MDS codes are discussed. In

particular, we show that all coordinates have the same weight within the subcodes of

constant weight codewords. The results are extended to the ensemble of binary images

of MDS codes defined over finite fields of characteristic two. The error probability

6

of Reed-Solomon codes in multiuser networks is then studied. This analysis can be

extended to many network scenarios. For example, we analyze the case when a Reed-

Solomon code (or its binary image) is shared among different users or applications.

Such a system is likely to exist in wireless multiuser networks where the sensor nodes,

of limited power, can communicate with a local base station in an error free manner.

The local base station will then group their data symbols and encode them into a

single codeword for transmission over a noisy channel to another cluster of nodes.

After being decoded by the receiving base station, the multiuser data symbols are

then routed to their desired destination.

Chapter 4: Algebraic Soft-Decision Decoding of Reed-Solomon Codes: Interpola-

tion Multiplicity Assignments [31, 34]:

Decoding Reed-Solomon codes beyond half-the-minimum distance of the code is

a major breakthrough in modern coding theory that was introduced by Sudan and

Guruswami. After decades of bounded minimum distance decoding, the Guruswami-

Sudan algorithm shows us how major achievements can be obtained by tackling hard

problems in a different way. Moreover, this algorithm led to the pioneering work of

Koetter and Vardy on algebraic soft-decision decoding. Some questions were posed

to us.

What is the potential limit of algebraic soft decoding? Are there better algebraic

soft-decision decoding algorithms? In an attempt to answer these questions we devel-

oped a mathematical framework for algebraic soft-decision decoding. We devised a

new method, based on the Chernoff bound, for assigning interpolation multiplicities

for algebraic soft-decision list decoding. We formulated the problem as a constrained

optimization problem aiming at directly minimizing the decoder error probability. An

iterative algorithm was devised for assigning the interpolation multiplicities for any

desired interpolation cost. We were able to show that the potential performance of

algebraic soft-decision decoding is much better than previously thought.

7

Chapter 5: Iterative Algebraic Soft-Decision Decoding of Reed-Solomon Codes [30,

33]:

We present an iterative soft-decision list-decoding algorithm for Reed-Solomon

codes offering both complexity and performance advantages over previously known

decoding algorithms. Our algorithm is a list-decoding algorithm which combines two

powerful soft-decision decoding techniques which were previously regarded in the lit-

erature as competitive, namely, the Koetter-Vardy algebraic soft-decision decoding

algorithm and belief propagation based on adaptive parity check matrices, recently

proposed by Jiang and Narayanan. Building on the Jiang-Narayanan algorithm, we

present a belief-propagation based algorithm with a significant reduction in compu-

tational complexity. We introduce the concept of using a belief-propagation based

decoder to enhance the soft-input information prior to list decoding with an algebraic

soft-decision decoder. Instead of assuming that all the received symbols are inde-

pendent, we enhance the reliability of the received symbols based on the information

about the code. We show that in such a setting algebraic soft-decision decoding can

achieve near maximum-likelihood decoding with reasonable interpolation costs. Our

algorithm can also be viewed as an interpolation multiplicity assignment scheme for

algebraic soft-decision decoding of Reed-Solomon codes.

Chapter 6: Performance Analysis of Linear Product Codes [26, 27]:

Product RS codes are widely used, especially in data storage systems and digital

video broadcast systems. The recent breakthroughs in decoding RS codes motivated

us to investigate turbo decoding of RS product codes by iteratively decoding the com-

ponent codes using algebraic soft-decision decoding. This led us to the natural ques-

tion: What are the performance limits of linear product codes? It turned out that the

weight enumerator of most linear product codes, and thus their maximum-likelihood

performance, is very hard to determine. The analytical performance evaluation of

product codes relied on the truncated union bound, which provides a low error rate

8

approximation based on the minimum distance term only.

We approached the problem differently by introducing concatenated representa-

tions of product codes and applying them to compute the complete average enu-

merators of arbitrary product codes over an arbitrary finite field. The derivation

of the weight enumerator of the product codes required the knowledge of the split

weight enumerator of the component codes. We were able to derive simple closed

form formulas of the split weight enumerator of some popular linear codes. Together

with some of the results in the previous chapters, we were able to derive tight upper

bounds on the soft-decision and hard-decision maximum-likelihood performance of

linear product codes in general and Reed-Solomon product codes in particular. The

weight enumerator of the ensemble of binary images of product Reed-Solomon codes

were also derived. Our results show that Reed-Solomon product codes can have a per-

formance very close to the capacity of the channel and that, unlike LDPC and Turbo

codes, they do not seem to suffer from error floors. Our results predict the importance

of devising low complexity efficient algorithms for decoding product codes.

Chapter 7: Algebraic List Decoding of Reed-Solomon Product Codes [84]:

The product code of two Reed-Solomon codes can be regarded as an evalua-

tion code of bivariate polynomials, whose degrees in each variable are bounded.

We propose to decode these codes with a generalization of the Guruswami-Sudan

interpolation-based list-decoding algorithm. We devised a polynomial time list-decoding

algorithm for two-dimensional Reed-Solomon product codes based on trivariate poly-

nomial interpolation. It has a relative decoding radius of (1 − 6
√

4Rp), where Rp is

the rate of the product code. We also devise a generalized algorithm for decoding M -

dimensional product codes with a relative decoding radius of 1− M(M+1)
√

MMRp. We

also propose another algorithm based on the observation that Reed-Solomon product

codes are subcodes of Reed-Muller codes. We then deploy the Pellikaan-Wu interpre-

tation of decoding Reed-Muller codes as subcodes of generalized Reed-Solomon codes

9

to decode Reed-Solomon product codes. This algorithm is capable of correcting more

errors as its relative decoding radius is 1 − 4
√

4Rp for two-dimensional RS product

codes and 1− 2M
√

MMRp for M -dimensional product codes.

Chapter 8: Performance Analysis of Sphere Decoders [35, 36, 37]: Sphere decod-

ing algorithms are often used in wireless channels for decoding lattice codes and for

detection in multiple antenna wireless systems. A sphere decoder is a decoder that

will return the closest lattice point, if it exists within a specified search radius, without

actually searching all lattice points. This directly connected to the Guruswami-Sudan

algorithm which is a polynomial time algorithm with an asymptotic Hamming decod-

ing radius that can be larger than half-the-minimum distance of the code. A large

number of researchers focused on analyzing the complexity of soft-decision sphere

decoders and developing algorithms with lower complexities. However, little research

has been devoted to the performance analysis of sphere decoders. This motivated

us to study the performance of sphere decoders and derive tight upper bounds on

their performance under various settings. We considered both soft-decision and hard-

decision sphere decoders. We also analyzed the performance on different channels

and modulation schemes. To extend this analysis to sphere decoders that decode

Reed-Solomon codes on the symbol level, such as the Guruswami-Sudan algorithm,

we analyzed the performance of hard-decision sphere decoder on q-ary symmetric

channels. For the sake of this analysis, we derived a tight upper bound on the per-

formance of maximum-likelihood decoding of a linear code defined over a finite field

of size q when transmitted over a q-ary symmetric channel. Our analysis of the per-

formance of sphere decoders enable one to choose the decoding radius that best fits

the desired performance, throughput and complexity of the system.

10

Chapter 2

Binary Images of Reed-Solomon
Codes

Without the capacity to provide its own information, the mind drifts

into randomness.

—Mihaly Csikszentmihalyi

Reed-Solomon (RS) codes are the most popular maximum distance separable

(MDS) codes. For any linear (n, k, d) code (of length n, dimension k and mini-

mum distance d) over any field, maximum distance separable (MDS) codes have the

maximum possible minimum distance d = n − k + 1 [74]. MDS codes have many

other desirable properties which made them the code of choice in many communica-

tion systems. MDS codes have the property that any k codeword coordinates can

be considered as the information symbols in a systematic codeword and any k coor-

dinates can be used to recover the information symbols. Moreover, punctured MDS

codes are also MDS codes. Such properties made MDS codes a natural choice in

Automatic-Repeat-Request (ARQ) communication systems (c.f., [116]). MDS codes

are also used in the design of multicast network codes [122].

Maximum-likelihood (ML) decoding of linear codes, in general, and RS codes,

in particular, is NP-hard [10, 50]. It remains an open problem to find polynomial-

time decoding algorithms with near ML performance. The Guruswami-Sudan (GS)

11

algorithm was the first polynomial time hard-decision decoding algorithm for Reed-

Solomon codes capable of correcting beyond half-the-minimum distance of the code

at all rates [49]. Moreover, the invention of the GS algorithm has spurred a sig-

nificant amount of research aiming at better soft-decision decoding algorithms for

Reed-Solomon codes (c.f., [76, 72, 31, 33, 65]).

Suppose a Reed-Solomon (RS) code is defined over a finite field of characteristic

two, then it is a common practice to send its binary image over the channel. In

fact, the binary image has a large burst-error-correction capability which is one of

the main reasons behind the ubiquitous use of RS codes. The decoder can either be

a bit-level decoder, which decodes the RS code as a binary code, or a symbol level

decoder, which treats the received word as a vector in the finite field. It is often the

case that hard-decision decoders, which do not make use of the reliability information

from the channel, are symbol based decoders. Such hard-decision decoders, as the

Berlekamp-Massey algorithm and the Guruswami-Sudan algorithm, usually operate

on the symbol level to make use of the nice algebraic properties of RS codes. Soft-

decision decoders make use of the channel reliability information. In case the code is

sent over a binary input channel, then the decoder is often a bit-level decoder. With

the recent advances in soft-decision decoding of RS codes, it was vital to benchmark

the performance of such algorithms against the optimum soft-decision maximum-

likelihood decoder.

A significant amount of research has been recently devoted to finding tight bounds

on the performance of linear codes under maximum-likelihood decoding [97]. The

maximum-likelihood performance of linear codes requires the knowledge of the weight

enumerator. Unfortunately, knowing the weight enumerator of the binary images of

RS codes is very hard. Some attempts have been successful in giving the binary weight

enumerator for particular realizations of RS codes [67]. Other researchers considered

enumerating the codewords by the number of symbols of each kind in each codeword

12

[15]. The average binary weight enumerators of a class of generalized Reed-Solomon

codes, derived from an original RS code either by using a different basis to expand

each column in the RS generator matrix into a binary representation or by multiplying

each column in the RS generator matrix by some nonzero element in the field, were

studied by Retter [94].

One of the main motivations behind this chapter was the following question:

How can one analyze the maximum-likelihood performance of the binary images of

RS codes?

In Section 2.2, we attempt to answer this question by studying the weight enumer-

ator of the ensemble of binary images of Reed-Solomon codes. In fact we show that

the ensemble weight enumerator approaches that of a random code with the same

dimension. It is also well known that the minimum distance of a linear code provides

a lot of insight about its performance. This motivated us to study the minimum dis-

tance of the ensemble of binary images of RS codes (Section 2.3). We show that the

ensemble has an asymptotically good minimum distance. Given this result, one can

search for good codes within the ensemble of binary images of Reed-Solomon codes.

We then attempt to answer the above question in Section 2.4, where we analyze the

performance of soft and hard-decision maximum-likelihood decoding of the binary

images of the RS code. We show that the bounds developed using the techniques in

this chapter are indeed tight. In Section 2.5, we conclude this chapter and highlight

its main results.

2.1 Preliminaries

Given a code C of length n, the weight enumerator of C is 1

EC(w) = |{c ∈ C : W(c) = w}|, (2.1)

1Unless otherwise noted, |S| is the cardinality of the set S.

13

where W(c) is the Hamming weight of c. The weight generating function (WGF) of

C is the polynomial

EC(X) =
n∑

h=0

EC(h)X h, (2.2)

where the coefficient of X h is the number of codewords with weight h;

EC(h) = Coeff
(
EC(X),X h

)
. (2.3)

(The subscript C may be dropped when there is no ambiguity about the code.)

For an (n, k, d) MDS code over Fq, it is well known that the minimum distance is

d = n− k + 1 [75] and that the weight distribution is given by [109, Theorem 25.7]

E(i) =

(
n

i

) i∑

j=d

(
i

j

)
(−1)i−j(qj−d+1 − 1) (2.4)

=

(
n

i

)
(q − 1)

i−d∑
j=0

(−1)j

(
i− 1

j

)
qi−j−d, (2.5)

for weights i ≥ d.

2.2 Average Binary Image of Reed-Solomon Codes

The binary image Cb of an (n, k) code C over F2m is obtained by representing each

symbol by an m-dimensional binary vector in terms of a basis of the field [75]. The

weight enumerator of Cb will vary according to the basis used. In general, it is also

hard to know the weight enumerator of the binary image of a certain Reed-Solomon

code obtained by a specific basis representation (e.g., [67, 15]). For performance

analysis, one could average the performance over all possible binary representations

of C. By assuming that the all such representations are equally probable, it follows

that the distribution of the bits in a nonzero symbol follows a binomial distribution

14

and the probability of having i ones in a nonzero symbol is 1
2m−1

(
m
i

)
. The generating

function of the average weight enumerator of the binary image of a nonzero symbol

is

F (Z) =
m∑

i=1

1

2m − 1

(
m

i

)
Z i =

(1 + Z)m − 1

2m − 1
, (2.6)

where the power of x denotes the binary weight and the all zero vector is excluded

since the binary weight of a nonzero symbol is at least one. Suppose a codeword

has w nonzero symbols, and the distribution of the ones and zeros in each symbol is

independent from other symbols, then the possible binary weight, b, of this codeword

ranges from w to mw. Since there are E(w) codewords with symbol Hamming weight

w, then the average binary weight generating function can be derived by

ẼCb(X) =
nm∑

b=0

Ẽ(b)X b (2.7)

= EC(X)
∣∣X :=F (X) (2.8)

=
n∑

h=0

E(h)

(2m − 1)h
((1 + X)m − 1)h . (2.9)

A closed form formula for the average binary weight enumerator (BWE) is

Ẽ(b) = Coeff
(
ẼCb(X),X b

)
(2.10)

=
n∑

w=d

E(w)

(2m − 1)w

w∑
j=0

(−1)w−j

(
w

j

)(
jm

b

)
; b ≥ d. (2.11)

These results apply to any maximum distance separable code defined over Fq,

where q = 2m and not necessarily an RS code. Widely used RS (MDS) codes have

a code length n = 2m − 1. In such a case the BWE derived in (2.10) agrees with

the average BWE of a class of GRS codes [94]. In other words two ensembles have

the same weight enumerator; the first ensemble is the ensemble of all possible binary

15

images of a specific RS code, the second ensemble is the binary image (with a specific

basis representation) of the ensemble of generalized RS codes derived from the original

RS code by multiplying each column in the generator matrix by some nonzero element

in the field. It is easy to see that Go = 1 and that Ẽ(b) = 0 for 0 < b < d.

By substituting for E(w), for b ≥ d, the binary weight enumerator (BWE) is given

by

Ẽ(b) = (q − 1)
n∑

w=d

(
q

q − 1

)w (
n

w

)

w−d∑
v=0

(−1)v

(
w − 1

v

) 


w∑

j=db/me
(−1)w−j

(
w

j

)(
jm

b

)
q−(d+v)


 . (2.12)

Although it is easy to evaluate the above formula, the term
(

jm
b

)
may diverge

numerically for large j. Using the Stirling approximation for
(

jm
b

)
[74], Ẽ(b) could be

approximated as

Ẽ(b) ≈
n∑

w=d

(q − 1)

(
q

q − 1

)w (
n

w

) w−d∑
v=0

(−1)v

(
w − 1

v

) w∑

j=db/me
F(j), (2.13)

where

F(j) =





(−1)w−j
(

w
j

)
2λ(j), j > b/m

(−1)w−j
(

w
j

)
2−m(d+v), j = b/m

, (2.14)

and λ(j) = m(jH(ψb,j)− d− v)− 1
2
log2 (2πjmψb,j(1− ψb,j)) for ψb,j = b/jm and

q = 2m. These bounds could be further simplified (and thus loosened) by observ-

ing that for n ≤ q − 1,

1 ≤
(

q

q − 1

)w

≤
(

q

q − 1

)q−1

≤ lim
q→∞

(
q

q − 1

)q−1

= e, (2.15)

and substituting in (2.13).

16

0 5 10 15 20
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Binary Weight

W
e

ig
h

t
E

n
u

m
e

ra
to

r

Ensemble Average Binary Weight Enumerator for the (7,5) RS Code

True
Average
Approximate Average
Normalized Binomial

Figure 2.1: True BWE versus the averaged BWE for the (7, 5) RS code over F8.

17

In Figure 2.1, the averaged BWE and the true BWE for a specific basis representa-

tion found by computer search are plotted for the (7, 5) RS code over F8. The average

weight enumerator of (2.12) is labeled “Average” while the approximation of (2.13)

is labeled “Approximate Average.” It is observed that a good approximation of the

average binary weight enumerator for h ≥ d is the normalized binomial distribution

which corresponds to a random code with the same dimension over Fq

Ẽ(h) ≈ q−(n−k)

(
mn

h

)
. (2.16)

This observation can be somehow justified by the central limit theorem, where the

binary weight of a codeword is a random variable which is the sum of n independent

random variables corresponding to the binary weights of the symbols. For large n,

the distribution of the binary weight is expected to converge to that of random codes.

The following theorem shows that the average BWE can be upper bounded by a
(

q
q−1

)(n−k)

multiple of the above approximation.

Theorem 2.1. The average binary weight enumerator is upper bounded by

Ẽ(h) ≤ (q − 1)−(n−k)

(
mn

h

)
.

Proof. An upper bound on the symbol weight enumerator of an (n, k, d) MDS code

defined over Fq is [79, (12)]

E(w) ≤
(

n

w

)
(q − 1)w−d+1; w ≥ d. (2.17)

Substituting in (2.10) it follows that for b ≥ d

Ẽ(b) ≤ (q − 1)k−n

n∑

w=d

(
n

w

) 


w∑

j=db/me
(−1)w−j

(
w

j

)(
jm

b

)
 . (2.18)

18

By doing a change of variables α = mj and changing the order of summations

Ẽ(b) ≤ (q − 1)k−n

n∑

w=d

mw∑

α=b

(−1)w−j

(
n

w

)(
w

α/m

)(
α

b

)

= (q − 1)k−n

nm∑

α=b

(−1)−
α
m

(
α

b

) n∑

w=max(α
m

,d)

(−1)w

(
n

w

)(
w

α/m

)

≤ (q − 1)k−n

nm∑

α=b

(−1)−
α
m

(
α

b

) n∑

w= α
m

(−1)w

(
n

w

)(
w

α/m

)
.

From the identity
(

n
m

)(
m
p

)
=

(
n
p

)(
n−p
m−p

)
it follows that

∑n
k=m(−1)k

(
n
k

)(
k
m

)
= (−1)mδnm

where δn,m is the Kronecker delta function. It follows that

Ẽ(b) ≤ (q − 1)k−n

nm∑

α=b

(
α

b

)
δ α

m
,n

= (q − 1)k−n

(
mn

b

)
,

which completes the proof.

In Figure 2.2, we plot the ensemble average weight enumerator of (2.10) and

compare it with the weight enumerator of a random code with the same dimension

(2.16). We also compare it with the simple upper bound of Theorem 2.1. It is observed

that the upper bound of Theorem 2.1 is fairly tight and that a good approximation

for the ensemble weight enumerator is that of random codes. In fact, as length of the

code (and the size of the finite field) tend to infinity

Ẽ(h) ≤
(

q

q − 1

)(n−k)

q−(n−k)

(
mn

h

)
(2.19)

≤ e2−m(n−k)

(
mn

h

)
(2.20)

≤ e√
2πmnλ(1− λ)

2mn(H2(λ)−1+R), (2.21)

where b = λmn, R = k/n is the code rate and H2(λ) is the binary entropy function.

19

0 0.2 0.4 0.6 0.8 1
10

−30

10
−20

10
−10

10
0

10
10

10
20

10
30

Relative Binary Weight

W
e

ig
h

t
E

n
u

m
e

ra
to

r

Ensemble Average Binary Weight Enumerator of the (31,15) RS Code

Average
Normalized Binomial
Upper Bound

Figure 2.2: The ensemble weight enumerator of the (31, 15) RS code over F32.
The ensemble average weight enumerator of (2.10) is compared with the weight enu-
merator of the random code (2.16) and the upper bound of Theorem 2.1. They are
labeled “Average,” “Normalized Binomial” and “Upper Bound” respectively.

20

The last inequality follows from the Stirling’s inequality [74, p. 309]. Let the asymp-

totic weight enumerator exponent of a code C, of length N and weight enumerator

EC, be defined as

Ξ(λ)
∆
= lim

N→∞
log2 (EC(λN))

N
. (2.22)

It follows that the asymptotic weight enumerator exponent of the ensemble of

binary images of Reed-Solomon codes is

Ξ̃(λ) = lim
n→∞
m→∞

log2

(
Ẽ(λmn)

)

mn

≤ lim
n→∞
m→∞

log2(e)− 1
2
log2(mn)− 1

2
log2(2πλ(1− λ))

mn
+ H2(λ)− 1 + R

= H2(λ)− (1−R). (2.23)

In other words, as the code length and the finite field size tend to infinity, the weight

enumerator of the ensemble of binary images of an RS code approaches that of a

random code.

The error-correcting capability of a code relies a lot on the minimum distance of

the code, which will be analyzed in the next section.

2.3 The Binary Minimum Distance of the Ensem-

ble of Binary Images of Reed-Solomon Codes

The error-correcting capability of a code relies a lot on the minimum distance of the

code. We will now consider the minimum distance of the ensemble of binary images

of a certain Reed-Solomon code. The average minimum distance of the binary image

of the RS code could be defined to be the smallest weight b whose average BWE

Ẽ(b) is greater than or equal to one (note that Ẽ(b) is a real number). Let db be the

21

average BMD, then

db
∆
= inf

b≥d
{b : Ẽ(b) ≥ 1}. (2.24)

The number db could be found exactly by numerical search. However, it will also

be useful to find a lower bound on db. It is straightforward to note that the binary

minimum distance (BMD) is at least as large as the symbol minimum distance d;

db ≥ n− k + 1. (2.25)

In the following theorems, we will give some lower bounds on the average binary

minimum distance of the ensemble of binary images.

Theorem 2.2. The minimum distance of the ensemble of binary images of an (n, k, d)

RS code over F2m is lower bounded by

db ≥ inf
b≥d

{
b :

(
mn

b

)
≥ (2m − 1)n−k

}
.

Proof. From the upper bound on Ẽb of Theorem 2.1, and the definition of db, the

theorem follows.

Theorem 2.3. A lower bound on db is

db ≥ inf
b≥d

{
b :

n∑

w=d

(
n

w

)(
wm

b

)
≥ (2m − 1)n−k

}
.

Proof. By taking only the term corresponding to j = w in the alternating sign sum-

mation in (2.18), it follows that

Ẽ(b) ≤ (q − 1)k−n

n∑

w=d

(
n

w

)(
wm

b

)
.

The theorem follows from the definition of db.

22

Since the upper bound on the weight enumerator of (2.26) is not tighter than the

bound of Theorem 2.1, it is expected that the lower bound on the minimum distance

of Theorem 2.3 will not be tighter than that of Theorem 2.2.

Since the binary minimum distance of the ensemble is at least as large as the

symbol minimum distance (c.f., (2.25)), it is interesting to determine when the binary

minimum distance is equal to the symbol minimum distance which is linear in the

rate R of the code.

Lemma 2.4. The average binary minimum distance of an MDS code over F2m is equal

to its symbol minimum distance for all rates greater than or equal to Ro = 1 − do−1
n

where do is the largest integer d′ such that

1

d′
log2

(
(2m − 1)

(
n

d′

))
≥ log2(2

m − 1)− log2(m). (2.26)

Proof. The number of codewords in an MDS code with symbol weight d = n−k+1 is

E(d) = (q−1)
(

n
d

)
. The binary image could be of binary weight d only if the codeword

is of symbol weight d and the binary representation of each nonzero symbol has only

one nonzero bit. This happens with probability
(

m
2m−1

)d
, where m = log2(q). So the

average number of codewords with binary weight d is

Ẽ(d) = E(d)

(
m

2m − 1

)d

= (q − 1)

(
n

d

) (
log2(q)

q − 1

)d

. (2.27)

From the definition of the average binary minimum distance, the lemma follows.

Asymptotically, it could be shown that Ro is the smallest rate such that

H2(1−Ro)

(1−Ro)
≥ log2(n)− log2(log2(n)), (2.28)

where n ≈ q and

H2(x) = −x log2(x)− (1− x) log2(1− x) (2.29)

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rate

d
b
/m

n

Relative Minimum Distance Vs Rate for Binary Images of RS Codes

GV Bound
n=15
n=31
n=63

Figure 2.3: The ensemble binary minimum distance of Reed-Solomon codes.
The Relative binary minimum distance for the ensemble of binary images of Reed-
Solomon codes is plotted against the rate for lengths 15, 31 and 63 over finite fields
of sizes 16, 32 and 64 respectively and compared with the Gilbert-Varshamov bound.

24

is the binary entropy function. This implies that the rate Ro, at which the symbol

minimum distance is equal to the ensemble binary minimum distance, tends to one

as the length of the code tends to infinity.

The Gilbert-Varshamov (GV) bound is defined by [74],

lim
n→∞

{R(δ)− (1−H2(δ))} ≥ 0 for 0 < δ <
1

2
, (2.30)

where δ = db/(mn) is the ratio of the binary minimum distance to the total length

of the code and R(δ) is rate of the code with a relative minimum distance δ. Retter

showed that for sufficiently large code lengths, most of the codes in the binary image

of the ensemble of generalized RS codes lie close to the GV bound by showing that the

number of codewords with weights lying below the GV bound in all generalized RS

codes of the same length and rate are less than half the number of such generalized

RS codes [94]. Next, we show a related result for the ensemble of binary images of

an RS code, with a binary weight enumerator Ẽ(b).

We will now determine a bound on the asymptotic relative binary minimum dis-

tance (as the length tends to infinity) of the ensemble of binary images, δ∞

δ∞
∆
= inf

λ
{Ξ̃(λ) ≥ 0}. (2.31)

From the asymptotic analysis of (2.23), we showed that

Ξ̃(λ) ≤ H2(λ)− (1−R). (2.32)

It thus follows that

δ∞ ≥ inf
λ
{H2(λ) ≥ (1−R)} . (2.33)

25

One can then deduce that

H2(δ∞)− (1−R(δ∞)) ≥ 0. (2.34)

In other words, we have proved the following theorem,

Theorem 2.5. The ensemble of binary images of an Reed-Solomon code asymptoti-

cally satisfies the Gilbert-Varshamov bound.

This is not very surprising since we have shown that the ensemble average behaves

like a binary random code. Note that this is for the average binary image of the RS

code and not for a specific valid binary image. Since this theorem is for the ensemble

average, it might imply that some codes in the ensemble may have a minimum distance

asymptotically satisfying the GV bound. However, we do not know of a specific code

in the ensemble that satisfies the bound.

In Figure 2.3, we show the relative average binary minimum distance for binary

images of Reed-Solomon codes, calculated numerically by (2.24), for different code

lengths. It is observed that as the length and the size of the finite field increases,

the relative minimum distance decreases. From Theorem 2.5, the relative binary

minimum distance of the ensemble should approach the GV bound as the length

tends to infinity. In Figure 2.4 and Figure 2.5, we study the relative average binary

minimum distance for code lengths n = 15 and n = 31 respectively. We compare

it with the Gilbert-Varshamov bound and the lower bounds of Theorem 2.2 and the

linear bound of (2.25). We observe that the lower bound of Theorem 2.2 is pretty

tight and it provides a simple way to evaluate the minimum distance of the ensemble.

Moreover it is always lower bounded by the GV bound. By comparing with the linear

lower bound of (2.25), it is noticed that for n = 15 and k ≥ 8, the average BMD

is equal to the symbol minimum distance, d, as expected from Lemma 2.4. As the

rate decreases, this linear lower bound becomes very loose and the average binary

26

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rate

d
m

in
/m

n

Relative Minimum Distance of Binary Images of RS Codes, n=15

GV Bound
RABMD
Lower Bound
Linear LB

Figure 2.4: The ensemble binary minimum distance of RS codes of length 15 over
F16.
The relative binary minimum distance is plotted versus the code rate. The numerical
minimum distance (2.24) is labeled “RABMD” and compared with the lower bounds
of Theorem 2.2 and (2.25) which are labeled “Lower Bound” and “Linear LB” re-
spectively. The Gilbert-Varshamov bound is plotted and labeled “GV Bound.”

27

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rate

d
m

in
/m

n

Relative Minimum Distance of Binary Images of RS Codes, n=31

GV Bound
RABMD
Lower Bound
Linear LB

Figure 2.5: The ensemble binary minimum distance of RS codes of length 31 over
F32.
The relative binary minimum distance for the ensemble of binary images of the RS
codes are plotted versus the code rate. The numerical minimum distance (2.24)
is labeled “RABMD” and compared with the lower bounds of Theorem 2.2 and
(2.25) which are labeled “Lower Bound” and “Linear LB” respectively. The Gilbert-
Varshamov bound is plotted and labeled “GV Bound.”

28

minimum distance exceeds the symbol minimum distance.

2.4 Performance of the Maximum-Likelihood De-

coders

Let c be the binary image of a codeword in the (n, k, d) RS code C. The binary

phase shift keying (BPSK) modulated image of c is x = M(c) = 1 − 2c. This will

be transmitted over a standard binary input additive white Gaussian noise (AWGN)

channel. The received vector is y = x + z, where z is an AWGN vector. Since the

considered codes are linear, it is safe to assume that the all zero codeword (in fact its

binary image) is transmitted. Hard-decision decoding is done to the received bits to

obtain the vector ȳ where ȳi = (1− sign(yi))/2 and the HD-ML decoder’s output is

the codeword ĉ such that

ĉ = arg min
v∈Cb

d(ȳ, v), (2.35)

where d(u,v) is the (binary) Hamming distance between u and v. This is equivalent

to transmitting the codeword c through a binary symmetric channel (BSC) with

crossover probability p = Q(
√

2Rγ) where γ is the bit signal-to-noise ratio and R is

the code rate.

As discussed before, bounds on the error probability of linear codes require the

knowledge of the weight enumerator. For a specific binary image, it is very hard to

know the weight enumerator. It is also hard to agree on the use of a specific binary

image or to speculate which binary image has been used. So the question we really

need to answer is the expected performance if any binary image of a specific RS code

is used. Our approach is to consider the binary code of a weight enumerator equal to

the ensemble average weight enumerator.

The performance of the hard-decision maximum-likelihood (HD-ML) decoder can

29

be upper bounded with the well-known union bound by resorting to the average

weight enumerator of the ensemble

P (EHML) ≤
mn∑

b=db

Ẽ(b)
b∑

w=d b
2
e

(
b

w

)
pw(1− p)b−w, (2.36)

where P (EHML) denotes the codeword error probability of the HD-ML decoder. Alter-

natively, one could use the ensemble average weight enumerator with tighter bounds.

The best well-known upper bound on the performance of a HD-ML decoding of linear

codes on binary symmetric channels is the Poltyrev bound [87] (c.f., (8.32)).

The soft-decision maximum-likelihood decoder solves the following optimization

problem,

ĉ = arg min
v∈Cb

‖y −M(v)‖2 (2.37)

where ‖x‖ is the Euclidean norm of x. Assuming that the all-zero codeword is BPSK

modulated and transmitted over a memoryless AWGN channel, the probability that a

certain codeword of binary weight b is chosen at the decoder instead of the transmitted

all-zero codeword is [89, (8.1-49)] Pb = Q
(√

2γRb
)
, where γ is the signal-to-noise

ratio (SNR) per bit and R = k/n.

Then a heuristic union lower bound on the codeword error probability of the soft-

decision maximum-likelihood decoder (specifically true at high SNRs) is the proba-

bility that a codeword of minimum weight db is erroneously decoded,

P (ESML) & Ẽ(db)Q
(√

2γRdb

)
. (2.38)

A union upper bound on the codeword error probability is the sum of all possible

errors,

P (ESML) ≤
∑

b≥db

Ẽ(b)Q
(√

2γRb
)

. (2.39)

30

1 2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ML performance of the binary image of the (15,11) RS code over AWGN channel

E
b
/N

o
 (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

HD−BM, HD−GS
HD−ML
SD−ML Union UB
SD−ML Union LB
SD−ML Simulation
SD−ML TSB

Figure 2.6: Performance of a binary image of (15, 11) RS code over F16 when trans-
mitted over a binary input AWGN channel.
The analytic performance of the symbol-level hard-decision Berlekamp-Massey and
Guruswami-Sudan decoders are shown and are labeled by “HD-BM” and “HD-GS”
respectively. These are in turn compared to the bit-level HD ML decoder labeled “HD-
ML.” The union upper bound (2.39), lower bound (2.38) and the tangential sphere
bound on the soft-decision ML error probability are labeled “SD-ML Union UB,”
“SD-ML Union LB” and “SD-ML TSB” respectively. The simulated performance of
an SD ML decoder is labeled “SD-ML Simulation.”

31

The union bound is loose at low SNRs. Poltyrev described a tangential sphere

bound (TSB) on the error probability of binary block codes BPSK modulated in

AWGN channels [87]. This is a very tight upper bound on the ML error probability.

For a brief description of the Tangential Sphere Bound we refer the reader to Sec-

tion 8.1.3. We use the TSB in conjunction with the average binary weight enumerator

to find a tight upper bound on the error probability of ML decoding of RS codes. Di-

vsalar also introduced in [23] a simple tight bound (that involves no integrations) on

the error probability of binary block codes, as well as a comparison of other existing

bounds. Other bounds such as the variations on the Gallager bounds are also tight

for AWGN and fading channels [99].

The Berlekamp-Massey (BM) decoder is a symbol-based hard-decision decoder

which can correct a number of symbol errors up to half-the-minimum distance of the

code, τBM = bn−k
2
c. The error plus failure probability of the BM decoder has been

well studied [79, 115] and can be simply given by

P (EBM) = 1−
τBM∑
j=0




n

j


 (1− s)jsn−j,

where s is the probability that a symbol is correctly received s =
(
1−Q

(√
2γR

))m
.

The Guruswami-Sudan decoder is also a symbol-based HD decoder but can correct

more than half-the-minimum distance of the code τGS = dn −
√

nk − 1e. The per-

formance of a hard-decision “sphere” decoder that corrects any number of τ ≥ τBM

symbol errors as well that of the corresponding maximum-likelihood decoder over

q-ary symmetric channels have been recently analyzed [37, 36].

We evaluate the average performance of RS codes when its binary image is BPSK

modulated and transmitted over an AWGN channel. In Figure 2.6, we consider a spe-

cific binary image of the (15, 11) RS code over F16. Soft-decision maximum-likelihood

decoding was simulated using the BCJR algorithm [7] on the trellis associated with

32

the binary image of the RS code [66]. By comparing this with the average TSB,

we observe that our technique for bounding the performance of the soft-decision ML

decoder provides tight upper bounds on the actual performance of a specific binary

image. It is clear that at low SNRs the (averaged) TSB give a close approximation

of the ML error probability. By comparing this bound with the union upper and

lower bounds of (2.39) and (2.38), we observe that the TSB coincides with the union

bounds at high SNRs. As from (2.38), the union lower bound is characterized by the

minimum distance term. Indeed, the SNR at which the performance of the maximum-

likelihood decoder is dominated by the minimum distance term was recently studied

by Fossorier and was termed the critical point for ML decoding [44]. The decoding

radius of the GS decoder is the same as that of the BM decoder for the (15, 11) code,

which is of relatively high rate. However, their performance is very close to that of

the HD-ML decoder.

In Figure 2.7, we consider the performance of the binary image of the (31, 15) RS

code over F16 when BPSK modulated and transmitted over an AWGN channel. We

compare the performance of a bit-level HD-ML decoder with that of a symbol-level

HD-ML decoder by deploying the bounds of [87] and [36] respectively. The symbol-

level decoder operates by first grouping m bits to symbols in F2m after hard-decision

decoding. It seems that for this half-rate code, the performance of a bit-level HD

decoder is better than the corresponding symbol-level decoder (about 1.5 dB coding

gain). We also compare the performance with that of the symbol-level HD-BM and the

HD-GS algorithms. For the (31, 15) code, bit-level HD-ML decoding has more than

2 dB gain over the BM decoder, whereas SD-ML decoding offers another 2 dB gain

over bit-level HD-ML decoding. The SD-ML decoder has about 4 dB gain over the

BM decoder and 2 dB gain over the HD-ML decoder. Bounds on the performance of

the maximum-likelihood decoder provides a benchmark to compare the performance

of other suboptimum algorithms. To emphasize this, the performance of a bit-level

33

1 2 3 4 5 6 7 8 9 10 11 12
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

Maximum Likelihood Decoding of (31,15) RS Code

HD−BM
HD−GS
symbol HD−ML
binary HD−ML
 SD−EM
SD−ML

Figure 2.7: Performance of the binary image of the (31, 15) RS code over F32 trans-
mitted over a binary input AWGN channel.
The symbol-level HD-BM and the HD-GS algorithms are compared. Bit-level and
symbol-level hard-decision decoders are labeled “binary HD-ML” and “symbol HD-
ML” respectively. The TSB on the bit-level SD-ML error probability is labeled “SD-
ML” and is compared with the bit-level soft-decision algorithm of [33] labeled “SD-
EM.”

34

soft-decision decoder, developed in Chapter 5, acting on a specific binary image is

also plotted. Only by comparing it to the SD-ML bound can one conclude that this

soft-decision algorithm operates within 1 dB of the optimum soft-decision algorithm.

2.5 Conclusion

An averaged binary weight enumerator for RS codes is derived and shown to closely

estimate an exact binary weight enumerator for a specific basis representation. More-

over, it has been shown that as the code length and the field size tend to infinity, the

weight enumerator of the ensemble of binary images of Reed-Solomon codes approach

that of a random code with the same dimensions. Bounds on the average binary mini-

mum distance were derived. It was thus shown that on average, the ensemble of binary

images of RS codes asymptotically satisfy the GV bound. The question remains open,

if there exists a specific code in the ensemble that asymptotically satisfies the GV

bound. Aided with the ensemble weight enumerator, one can derive tight bounds

on the performance of bit-level maximum-likelihood decoders. By comparing with

simulations, it has been shown, that at least for the (15, 11) RS code, the tangential

sphere bound when combined with the ensemble weight enumerator is tight. When

proposing new algorithms for decoding RS codes, it is not only important to compare

their performance with other algorithms in the literature, but it is also more impor-

tant to compare their performance with that of other maximum-likelihood decoders

using the results in this chapter.

35

Chapter 3

The Multiuser Error Probability of
Reed-Solomon Codes

Not everything that can be counted counts, and not everything that

counts can be counted.

—Albert Einstein

Consider a network scenario, where users in a certain cluster can communicate in

an error free manner. These users would like to communicate with another set of users

in another cluster over a noisy channel. If the users in the first cluster are of limited

power they will not be able to reliably transmit their information to the users in the

other cluster. One solution is for the users to transmit their information to a local

base station, which will then group their data symbols, encode them with a channel

code and transmit the codeword to the other set of users (see Figure 3.1). In other

words, each codeword will be partitioned among more than one user or application.

After decoding at the receiving base station, the information will be routed to the

desired users. One other advantage of sharing a codeword among different users is the

expected improvement in the code performance as its length increases [25]. Moreover,

the recent results on the capacity of wireless networks suggest that networks with a

smaller number of users and clustered networks are more likely to find acceptance

[47]. Using the results in this chapter, we will be able to analyze the performance

36

Figure 3.1: A multiuser scenario where a code is shared among many users.
Users within the same cluster transmit their information to a local base station, which,
in turn, groups their symbols into one data word and transmits it, after channel
encoding, over a noisy channel to the users in another cluster.

of different users in such a scenario when the code is a maximum distance separable

(MDS) code. Reed-Solomon codes are the most widely used MDS codes. The results

here can also be useful in the analysis of MDS codes in distributed storage systems,

where MDS array were proposed [16].

In Section 3.1, we introduce a generalized weight enumerator, which we call the

partition weight enumerator (PWE). Given a partition of the coordinates of a code,

the PWE enumerates the codewords with a certain weight profile in the partitions.

Our main result is a simple closed-form expression for the PWE of an arbitrary MDS,

e.g., Reed-Solomon, code (Section 3.2, Theorem 3.6). This generalizes the results of

Kasami et al. [69] on the split weight enumerator of RS codes. The PWE is a very

useful tool in proving some of the nice algebraic properties of MDS codes. We then

proceed in Section 3.3 to derive a strong symmetry property for MDS codes (Theorem

3.8) which allows us to obtain improved bounds on the symbol error probability for

RS codes. We show that an approximation widely used to estimate the symbol error

probability of linear codes is exact for MDS codes. We take this opportunity to

discuss other codes which also have this property.

37

As we have mentioned in Chapter 2, the ensemble average weight enumerators of

the binary images of RS codes have been rendered useful in analyzing their perfor-

mance. We also study the case when the binary images of an Reed-Solomon code is

partitioned among different users or applications. In Section 3.4, we show that the

ensemble also has a similar symmetry property which becomes useful when analyzing

its bit error probability.

We study, in Section 3.5, the codeword, symbol and bit error probabilities of var-

ious Reed-Solomon code decoders in a generalized setting. In Section 3.6, we prove

that if systematic MDS (e.g., RS) codes are used in a multiuser setting, the uncon-

ditional symbol or bit error probabilities of all the users will be the same regardless

of the size of the partitions assigned to them. We also considered various network

scenarios where the Reed-Solomon code is the channel code of choice. We also pro-

ceed to show how one can analyze the error probability of a certain user given some

conditions on the performance of other users. In Section 3.7, we conclude the chapter

and give some insights about the results in this chapter.

3.1 Weight Enumerators

We begin by generalizing the notion of Hamming weight. Let Fn
q denote the vectors

of length n over the finite field of q elements Fq. A linear code C of length n defined

over Fq is a linear subspace of Fn
q . Let N = {1, 2, . . . , n} be the coordinate set of

C. Suppose N is partitioned into p disjoint subsets N1, . . . , Np, with |Ni| = ni, for

i = 1, . . . , p. 1 We stress that
∑p

i=1 ni = n. The elements of the set Ni ⊂ N are given

by Ni = {Ni(1), Ni(2), . . . , Ni(ni)}. Let v = (v1,v2, . . . , vn) be a vector in Fn
q , then

the ith partition of v is the vector v[Ni] =
(
vNi(1),vNi(2), . . . , vNi(ni)

)
.

Note that the number of ways a set of n coordinates could be partitioned into

1Throughout this chapter, the cardinality of a set T will be denoted by |T |.

38

m1 partitions of size of p1, m2 partitions of size p2 and mr of size pr, i.e., the total

number of partitions is
∑r

i=1 mr and n =
∑r

i=1 mrpr), is

n!∏r
i=1(pi!)mimi!

, (3.1)

where x! is the factorial of x and the multinomial coefficient is normalized by the

factor
∏r

i=1 mi! as we do not distinguish between partitions of the same size.

Denoting an (n1, . . . , np) partition by T , the T -weight profile of a vector v ∈ Fn
q is

defined as WT (v) = (w1, . . . , wp), where wi is the Hamming weight of v restricted to

Ni, i.e., the weight of the vector v(Ni). (For an example see Figure 3.2.) The weight

enumerator of a code C is as defined in (2.2).

Now we generalize the notion of code weight enumerator. For an (n1, n2, . . . , np)

partition T of the n coordinates of C, the T -weight enumerator of C enumerates the

codewords with a weight profile (w1, . . . , wp),

AT
C (w1, . . . , wp) = |{c ∈ C : WT (c) = (w1, . . . , wp)}|.

The partition weight generating function (PWGF) is given by the multivariate poly-

nomial

PT (X1, . . . ,Xp) =

n1∑
w1=0

...

np∑
wp=0

AT (w1, . . . , wp)Xw1
1 ...Xwp

p . (3.2)

For the special case of two partitions, (p = 2), AT (w1, w2) is termed the split weight

enumerator in the literature [74]. The input-redundancy weight enumerator (IRWE)

R(w1, w2) is the number of codewords with input weight (weight of the information

vector) w1 and redundancy weight w2. For a systematic code, if T is an (k, n − k)

partition such that the first partition constitutes of the coordinates of the information

symbols, then R(w1, w2) = AT (w1, w2). The input-output weight enumerator (IOWE)

39

Figure 3.2: Partitioning of a code defined over F7
q.

The figure shows two different vectors in F7
q and two different T : (2, 3, 2) partitions

are applied. The weight profile of the vectors is WT (v) = (1, 3, 0) where the zero and
nonzero symbols are represented by white and black circles respectively.

O(w, h) enumerates the codewords of total Hamming weight h and input weight

w. Assuming that the first partition constitutes of the information symbols, then

O(w, h) = R(w, h− w). For an (k, n− k) partition T , it is straightforward that

E(h) =
k∑

w=0

AT (w, h− w) =
k∑

w=0

O(w, h). (3.3)

It is useful to know the IOWE and IRWE of a code when studying its bit error

probability (e.g., [8]). The input-output weight generating function, O(X ,Y), and the

input-redundancy weight generating function, R(X ,Y), of an (n, k) code are defined

to be respectively,

O(X ,Y) =
k∑

w=0

n∑

h=0

O(w, h)XwYh, (3.4)

R(X ,Y) =
k∑

w1=0

n−k∑
w2=0

R(w1, w2)Xw1Yw2 . (3.5)

Since every nonzero symbol in the redundancy part of the code contributes to both its

output and redundancy weights, R(X ,Y) and O(X ,Y) are related by the following

40

transformations,

R(X ,Y) = O
(X
Y ,Y

)
, O(X ,Y) = R (XY ,Y) , E(X) = R(X ,X). (3.6)

For a systematic code, let the jth partition consist of information symbols, then

the jth IOWE enumerates the codewords with a Hamming weight w in the jth par-

tition and a total weight h,

Oj(w, h) = | {c ∈ C : (W (c[Nj]) = w) ∧ (W(c) = h)} |, (3.7)

and is derived from the PWGF by

Oj(X ,Y) = PT (Y ,Y , .,XY , .,Y) =

nj∑
w=0

n∑

h=0

Oj(w, h)XwYh, (3.8)

where the invariants Xis in PTC (X1,X2, . . . ,Xp) are substituted by




Xi := Y , ∀ i 6= j

Xi := XY , i = j
. (3.9)

3.2 Partition Weight Enumerator of Maximum-

Distance-Separable Codes

For an (n, k, d) MDS code over Fq, it is well known that the minimum distance is

d = n− k + 1 [75] and that the weight distribution is given by [109, Theorem 25.7]

E(i) =

(
n

i

) i∑

j=d

(
i

j

)
(−1)i−j(qj−d+1 − 1) (3.10)

=

(
n

i

)
(q − 1)

i−d∑
j=0

(−1)j

(
i− 1

j

)
qi−j−d, (3.11)

41

Figure 3.3: Theorem 3.1.
The code is always zero on the coordinates in the sets Ni \ Si for i = 1, 2, . . . , p.

for weights i ≥ d. In the next theorem, we show that for an arbitrary partition of the

coordinates of an MDS code, and for any number of partitions, the partition weight

enumerator of MDS codes admits a closed form formula.

Theorem 3.1. For an (n, k, d) MDS code C defined over Fq, let T define a p-partition

of the coordinates of C into p mutually exclusive subsets, N1, N2, . . ., Np, such that

N1 ∪ N2... ∪ Np = N where N = {1, 2, . . . , n} and |Ni| = ni. The p-partition weight

enumerator is given by

(
n1

w1

)
....

(
np

wp

) w1∑
j1=0

(
w1

j1

)
(−1)w1−j1

w2∑
j2=0

(
w2

j2

)
(−1)w2−j2

....

wp∑

jp=d−Pp−1
z=1 jz

(
wp

jp

)
(−1)wp−jp(q

Pp
z=1 jz−d+1 − 1).

Proof. For i = 1, 2, . . . , p, let Ri be a subset of Ni. Define S(c) to be the support set

of the codeword c, i.e., the set of indices of the nonzero elements. Define

f(R1, R2, . . . , Rp)
∆
= |c ∈ C : {S(c)∩Ni} = Ri ∀i| = |c ∈ C : {S(c) =

p⋃
i=1

Ri}| (3.12)

to be the number of codewords which are exactly nonzero on the sets Ri. From the

definition of the p-partition weight enumerator, it follows that

AT (w1, w2, . . . , wp) =
∑

R1⊆N1
|R1|=w1

∑
R2⊆N2
|R2|=w2

...
∑

Rp⊆Np

|Rp|=wp

f(R1, R2, . . . , Rp). (3.13)

42

Define the mutually exclusive subsets, Si ⊆ Ni, i = 1, 2, . . . , p and let

g(S1, S2, . . . , Sp) =
∑

R1⊆S1

∑
R2⊆S2

...
∑

Rp⊆Sp

f(R1, R2, . . . , Rp) (3.14)

to be the number of codewords which are always zero on the sets Ni \ Si (see Fig-

ure 3.3). It follows from the MDS property of the code that if only m symbols of an

(n, k) MDS code are allowed to be nonzero, the n −m zero symbols could be taken

as information symbols, then the dimension of the resulting subcode is k−n+m and

g(S1, S2, . . . , Sp) =





1,
∑p

i=1 |Si| < d

q1−d+
Pp

i=1 |Si|, n ≥ ∑p
i=1 |Si| ≥ d

, (3.15)

Successively applying Möbius Inversion [109, Theorem 25.1] to (3.14), we get

f(R1, R2, . . . , Rp) =
∑

S1⊆R1

µ(S1, R1)...
∑

Sp⊆Rp

µ(Sp, Rp)g(S1, S2, . . . , Sp)

∆
=

p∏
i=1

(∑
Si⊆Ri

µ(Si, Ri)

)
g(S1, S2, . . . , Sp), (3.16)

where

µ(S, R) =





(−1)|R|−|S|, S ⊆ R

0, otherwise
. (3.17)

Substituting (3.16) in (3.13),

AT (w1, w2, . . . , wp) =

p−1∏
i=1




∑
Ri⊆Ni
|Ri|=wi

∑
Si⊆Ri

(−1)|Ri|−|Si|


 Gp(β)

=

p−1∏
i=1

((
ni

wi

) wi∑
j=0

(
wi

j

)
(−1)wi−j

)
Gp(β), (3.18)

43

such that β =
∑p−1

i=1 |Si| and by invoking (3.15)

Gp(β) =
∑

Rp⊆Np

|Rp|=wp

∑
Sp⊆Rp

(−1)|Rp|−|Sp|g(S1, S2, . . . , Sp)

=

(
np

wp

) (
d−β−1∑

i=0

(
wp

i

)
(−1)wp−i +

wp∑

i=d−β

(
wp

i

)
(−1)wp−iqi+β−d+1

)

=

(
np

wp

) wp∑

i=d−β

(
wp

i

)
(−1)wp−i(qi+β−d+1 − 1). (3.19)

The last equality follows from the fact that
∑w

j=0

(
w
j

)
(−1)w−j = (1 − 1)w = 0. Sub-

stituting (3.16) in (3.13), the theorem follows.

For the special case of two partitions, the split weight enumerator Aw1,w2(n1, n2)

is given in the following corollary.

Corollary 3.2. Let T be an (n1, n2) partition of an (n, k, d) MDS code C, then the

split weight enumerator of C is

AT (w1, w2) =

(
n1

w1

)(
n2

w2

) w1∑
j=0

(
w1

j

)
(−1)w1−j

w2∑

i=d−j

(
w2

i

)
(−1)w2−i(qi+j−d+1 − 1).

From Theorem 3.1, it follows that the PWE of MDS codes does not depend on the

orientation of the coordinates with respect to the partitions but only on the partitions’

sizes and weights (see (3.14)). It thus intuitive that the ratio of AT (w1, w2, . . . , wp)

to E(w) where w =
∑p

i=1 wi is the probability that the w nonzero symbols are dis-

tributed among the partitions with a T -profile (w1, w2, . . . , wp). Next we calculate

this probability for the special case of p = 2 and we show that the partition weight

enumerator admits to a simpler closed form formula.

Theorem 3.3. Let T be an (n1, n2) partition for an (n, k, d) MDS code, n = n1 +n2,

44

then

AT (w1, w2) = E(w1 + w2)

(
n1

w1

)(
n2

w2

)
(

n
w1+w2

) .

Proof. From Corollary 3.2, the split weight enumerator is

AT (w1, w2) =(
n1

w1

)(
n2

w2

) w1∑
j=0

(
w1

j

)
(−1)w1−j

w2∑

i=d−j

(
w2

i

)
(−1)w2−i(qi+j−d+1 − 1). (3.20)

Doing a change of variables, α = i + j, we get

AT (w1, w2) =
(

n1

w1

)(
n2

w2

) w1∑
j=0

(
w1

j

)
(−1)w1−j

w2+j∑

α=max(d,j)

(
w2

α− j

)
(−1)w2−α+j(qα−d+1 − 1).

By changing the order of summation and summing over the same region:

AT (w1, w2) =
(

n1

w1

)(
n2

w2

) w1+w2∑

α=d

(qα−d+1 − 1)(−1)w1+w2−α

min(α,w1)∑
j=0

(
w1

j

)(
w2

α− j

)

−
(

n1

w1

)(
n2

w2

) w1+w2∑
α=w2+1

(qα−d+1 − 1)(−1)w1+w2−α

α−w2−1∑
j=0

(
w1

j

)(
w2

α− j

)
.

By doing the change of variables β = α− w2 in the second summation

AT (w1, w2) =
(

n1

w1

)(
n2

w2

) w1+w2∑

α=d

(qα−d+1 − 1)(−1)w1+w2−α

(
w1 + w2

α

)

−
(

n1

w1

)(
n2

w2

) w1∑

β=1

(qα−d+1 − 1)(−1)w1+w2−α

β−1∑
j=0

(
w1

j

)(
w2

w2 + β − j

)
.

Since β − j is always positive it follows that the second term in the right hand side

45

is always zero and by letting w = w1 + w2

AT (w1, w2) =

(
n1

w1

)(
n2

w2

) w∑

α=d

(
w

α

)
(−1)w−α(qα−d+1 − 1). (3.21)

By comparing with (3.10), the result follows.

Corollary 3.4. The IOWE of a systematic MDS code, O(w, h), for h ≥ d, is given

by

O(w, h) = R(w, h− w) = E(h)

(
k
w

)(
n−k
h−w

)
(

n
h

)

=

(
k

w

)(
n− k

h− w

) w∑
j=0

(
w

j

)
(−1)w−j

h−w∑

i=d−j

(
h− w

i

)
(−1)h−w−i(qi+j−d+1 − 1).

By observing (3.3) and defining Ψ(w) to be

Ψ(w) =
w∑

j=0

(
w

j

)
(−1)w−j

h−w∑

i=d−j

(
h− w

i

)
(−1)h−w−i(qi+j−d+1 − 1), (3.22)

we have an interesting identity:

k∑
w=0

Ψ(w)

(
k

w

)(
n− k

h− w

)
= Ψ(0)

k∑
w=0

(
k

w

)(
n− k

h− w

)
, (3.23)

where
(

n
h

)
=

∑k
w=0

(
k
w

)(
n−k
h−w

)
and Ψ(0) =

∑h
i=d

(
h
i

)
(−1)h−i(qi−d+1 − 1).

Corollary 3.5. For an (n, k, d) MDS code C, the number of codewords which are

exactly nonzero at a fixed subset of coordinates of cardinality h and are zero at the

remaining h coordinates is E(h)

(n
h)

.

Proof. Let T be the implied (h, n− h) partition, then the required number of code-

words is AT (h, 0). The result follows by applying Theorem 3.3.

This result illustrates how the partition weight enumerator of MDS codes is in-

46

dependent of the orientation of the partitions. Since there are E(h) codewords of

weight h and there are
(

n
h

)
distinct ways to choose the h zero coordinates, then in

such a case one expects that that there are E(h)

(n
h)

codewords for any choice of the h

coordinates.

By following the same lines of proof, the result of Theorem 3.3 can be generalized

to an arbitrary number of partitions as in the following theorem:

Theorem 3.6. For an (n, k, d) MDS code C with an (n1, n2, . . . , np) partition of its

coordinates the p-partition weight enumerator is given by

AT (w1, w2, . . . , wp) = E(w)

(
n1

w1

)(
n2

w2

)
....

(
np

wp

)
(

n
w

) ,

where w =
∑p

i=1 wi and E(w) = |{c ∈ C : W(c) = w}|.

We give numerical examples of PWEs using Theorem 3.1 and Theorem 3.6. For

these examples, the PWGFs were also verified numerically by generating the (7, 3, 5)

RS code.

Example 3.1. The PWGF for the (1, 1, 2, 3) partition of the coordinates of the

(7, 3, 5) RS code over F8 is

P(V ,X ,Y ,Z) =1 + 21VXY2Z + 42VXYZ2 + 21VY2Z2 + 21XY2Z2 + 63VXY2Z2

+ 7VXZ3 + 14VYZ3 + 14XYZ3 + 42VXYZ3 + 7Y2Z3 + 21VY2Z3

+ 21XY2Z3 + 217VXY2Z3.

It can be checked that the sum of the coefficients is the total number of codewords

83. For this example, one can also verify the PWGF numerically. ¦

47

Example 3.2. The (3, 2, 2) 3-partition enumerator of the (7, 5, 3) RS code over F8 is

P(X ,Y ,Z) =1 + 7X 3 + 42X 2Y + 70X 3Y + 21XY2 + 105X 2Y2 + 266X 3Y2

+ 42X 2Z + 70X 3Z + 84XYZ + 420X 2YZ + 1064X 3YZ + 14Y2Z

+ 210XY2Z + 1596X 2Y2Z + 3668X 3Y2Z + 21XZ2 + 105X 2Z2

+ 266X 3Z2 + 14YZ2 + 210XYZ2 + 1596X 2YZ2 + 3668X 3YZ2

+ 35Y2Z2 + 798XY2Z2 + 5502X 2Y2Z2 + 12873X 3Y2Z2.

It can also be verified that P(1, 1, 1) = 83. ¦

Theorem 3.6 implies that the distribution of the wE(w) nonzero symbols within

the codewords of the same Hamming weight w is uniform among the partitions. This

issue will be addressed in more detail in the following section.

3.3 A Relationship Between Coordinate Weight

and Codeword Weight

In this section, we will show that for MDS codes, one can derive the coordinate weight

from the codeword weight. We will discuss whether other linear codes also have this

property.

Define Ch to be the subcode of C with codewords of Hamming weight h;

Ch
∆
= {c ∈ C : W(c) = h}. (3.24)

The following lemma calculates the total weight of any coordinate in the set Ch.

Lemma 3.7. For an (n, k, d) MDS code C the total Hamming weight of any coordi-

nate, summed over the subcode Ch, is equal to h
n
E(h).

48

Proof. Let T be an (1, n − 1) partition of C, where the coordinate of choice forms

the partition of size one. By Theorem 3.3, it follows that for any such partition,

the number of codewords of C which are nonzero in this coordinate and have a total

weight h, i.e., a weight profile (1, h− 1), is

AT (1, h− 1) =

(
n−1
h−1

)
(

n
h

) E(h) =
h

n
E(h). (3.25)

By observing that AT (1, h − 1) is the total weight of the chosen coordinate over

codewords in Ch and that the choice of that coordinate was arbitrary, we are done.

This means that the codewords of the subcode Ch, when arranged as the rows of an

array, result in a design where the Hamming weight of each row is h and the Hamming

weight of each column is h
n
E(h). Furthermore, the Hamming distance between any

two rows is at least d = n− k + 1. We are now ready to prove an important property

of MDS codes:

Theorem 3.8. For an (n, k, d) MDS code C, the ratio of the total weight of any

s coordinates of Ch to the total weight of Ch is s
n
. If the s coordinates are “input”

coordinates, then ∑s
w=1 w O(w, h)

s
=

h E(h)

n

for any Hamming weight h.

Proof. By Lemma 3.7, the total weight of any coordinate of Ch is (h/n)E(h). The

total weight of any s coordinates of Ch is the sum of the weights of the individual

coordinates, s(h/n)E(h). By observing that the weight of the s coordinates can be

also expressed in terms of the IOWE by
∑s

w=1 wO(w, h) and hE(h) is the total weight

of Ch, the theorem follows.

As a side result, we have proven this identity (c.f., (3.23)):

49

Corollary 3.9. Let Ψ(w) be defined as in (3.22) then

∑
w

Ψ(w)

(
s− 1

w − 1

)(
n− s

h− w

)
= Ψ(0)

∑
w

(
s− 1

w − 1

)(
n− s

h− w

)
.

Proof. For an T : (s, n − s) partition of the coordinates, it follows from Theo-

rem 3.8 that
∑s

w=1
w
s
AT (w, h − w) = h

n
E(h) =

(
n−1
h−1

)
Ψ(0). Also by Corollary 3.2,

∑s
w=1

w
s
AT (w, h− w) =

∑s
w=1

(
s−1
w−1

)(
n−s
h−w

)
Ψ(w). The proof follows from the identity

(
n−1
h−1

)
=

∑
w

(
s−1
w−1

)(
n−s
h−w

)
.

Definition 3.1. An (n, k) code C (not necessary MDS) is said to have the multiplicity

property M, if for any T : (s, n− s) partition,
∑s

w=1
w
s
AT (w, h−w) = h

n
E(h) for all

Hamming weights h.

We will refer to the partition composed of the s coordinates as the input partition.

By Theorem 3.8, all MDS codes have property M. In general not all linear codes

have property M as seen in the following counterexample:

Example 3.3. The (5, 3) linear code defined by

G =




1 0 0 1 1

0 1 0 0 1

0 0 1 0 1




is composed of the 8 codewords 00000, 10011, 01001, 11010, 00101, 10110, 01100, 11111.

Let the input partition be composed of the first 3 coordinates. For s = k = 3, let

β(h) =
∑

w wO(w, h); and ξ(h) = 3
5
hE(h), then from the following table it is clear

that it is not true that this code has property M.

h : 0 1 2 3 4 5

β(h) : 0 0 4 5 0 3

ξ(h) : 0 0 3.6 5.4 0 3

.

50

¦

It is to be noted that all cyclic codes have property M. This is partially justified

by the fact that any cyclic shift of a codeword of weight h is also a codeword of weight

h with h/n of the coordinates holding nonzero elements [107]. However, this neither

implies Theorem 3.8 nor is it implied by Theorem 3.8. For example, an extended RS

code is an MDS code but not a cyclic code while an (7, 4) binary Hamming code is

cyclic but not MDS. Also, if a code satisfies property M, it is not necessary that the

code is either cyclic or MDS. For example, the first-order Reed-Muller codes as well

as their dual codes, the extended Hamming codes, have property M but are neither

cyclic nor MDS. Next, we discuss some codes with the multiplicity property.

Theorem 3.10. The first-order Reed-Muller codes have the multiplicity property M.

Proof. The weight enumerator of the first-order Reed-Muller codes of length 2m,

R(1,m), is E(W) = 1 + (2m+1 − 2)W2m−1
+ W2m

and their minimum distance is

2m−1. Let H2m be the Hadamard matrix of order 2m and let M be the binary matrix

that results from stacking H2m on top −H2m and replacing each +1 by 0 and each

−1 by 1. (A Hadamard matrix H of order n is an n × n matrix with entries +1

and −1 such that HHT = nI and I is the identity matrix. [109, Chapter 18].) The

codewords of R(1,m) are exactly the rows of M [109, Chapter 18]. It follows that

each codeword of weight 2m−1 has a unique codeword of the same weight which is its

binary complement. Thus each coordinate will be equally one and zero in half the

number of such codewords. Since the remaining codewords are the all-zero and the

all-one codewords, it follows that R(1,m) has the multiplicity property.

We now prove here that if a linear code has property M then its dual code also

has property M. By a straightforward manipulation of the McWilliams identities

[74, Chapter 5, (52)] one can show the following relationship between the PWEs of a

code and its dual code [26] (c.f., Theorem 6.5):

51

Theorem 3.11. Let C be an (n, k) linear code over Fq and C⊥ be its dual code. If T
is an (n1, n2) partition of their coordinates, A(α, β) and A⊥(α, β) are the PWEs of

C and C⊥ respectively, then A(α, β) and A⊥(α, β) are related by

A⊥(α, β) =
1

|C|
n2∑

v=0

n1∑
w=0

A(w, v)Kα(w, n1)Kβ(v, n2),

such that the Krawtchouk polynomial is Kβ(v, γ) =
∑β

j=0

(
γ−v
β−j

)(
v
j

)
(−1)j(q− 1)β−j for

β = 0, 1, . . . , γ.

Define Ai(α, β) and A⊥
i (α, β) to be the PWEs for C and C⊥ respectively when

an (1, n − 1) partition is applied to their coordinates such that the first partition of

cardinality one is composed of the ith coordinate.

Theorem 3.12. An (n, k) linear code over Fq has the multiplicity property iff its dual

code has the multiplicity property.

Proof. Let C be an (n, k) linear code over Fq with property M and an (1, n−1) PWE

Ai(α, β). From Theorem 3.11 the PWE of the dual code C⊥ is

A⊥
i (1, β) =

1

|C|
n−1∑
v=0

1∑
w=0

Ai(w, v)K1(w, 1)Kβ(v, n− 1). (3.26)

Since C has propertyM, then Ai(1, v) = v+1
n

EC(v+1) and Ai(0, v) = EC(v)−Ai(1, v−
1) = (1− v

n
)EC(v). By substituting in (3.26), it follows that A⊥

i (1, β) = A⊥
j (1, β) for

any i, j ∈ {1, 2, . . . , n} and
∑n

i=1 A⊥
i (1, β) = nA⊥

i (1, β) for any i. Counting the total

weight of the codewords in C⊥ with Hamming weight h by two different ways, we get
∑n

i=1 A⊥
i (1, β) = (β + 1)EC⊥(β + 1). It follows that A⊥

i (1, β) = β+1
n

EC⊥(β + 1) and

C⊥ has property M.

For the converse, assume that C does not satisfy property M but C⊥ does. From

the previous argument (C⊥)⊥ has property M. Since for linear codes (C⊥)⊥ = C, we

reach a contradiction.

52

Since the dual codes of MDS codes are also MDS codes, this result strengthens

Theorem 3.8. This theorem somehow strengthens the result of Theorem 3.8 since the

dual codes of MDS codes are again MDS codes. The dual codes of cyclic codes are

also cyclic codes. One can also use this theorem to show that certain codes have the

multiplicity property.

Corollary 3.13. The extended Hamming codes have property M.

Proof. An extended Hamming code of length 2m is the dual of the first-order RM

code R(1,m) [74], which by Theorem 3.10 has property M.

It is also the case that if the code has a transitive automorphism group then the

code has the multiplicity property [19]. Extended Hamming codes also have transitive

automorphism groups [19] which gives another proof to Corollary 3.13. Some product

codes also have the multiplicity property [19, 27].

3.4 Binary Partition Weight Enumerator of MDS

Codes

In this section, we study the partition weight enumerator of the binary image of an

RS (MDS) code. Let T be a partition of the coordinates of an MDS code C defined

over F2m . Let Tb be the partition of the coordinates of the code’s binary image Cb

implied by T when each symbol is represented with its binary image. The number of

the partitions in T and Tb is the same but the size of each partition is m times larger.

This is illustrated by example in Figure 3.4. The binary partition weight enumerator

(PWE) gives the number of codewords in the binary image with a specific combination

of binary Hamming weights in the specified partitions. As we saw in the Section 2.2,

the binary image is not unique, so we will resort again to an averaged binary PWE.

53

Theorem 3.14. Let PT (X1,X2, . . . ,Xp) be the partition weight generating function

(PWGF) of an (n, k) code over F2m, and Tb be the partitioning of the coordinates of

Cb induced by T when the symbols in each partition are represented by bits, then the

average binary PWGF is

P̃Tb

Cb(Z1,Z2, . . . ,Zp) = PTC (F (Z1), F (Z2), . . . , F (Zp)),

where F (Z) = 1
2m−1

(1 + Z)m − 1.

Proof. Assuming a binomial distribution of the bits in a nonzero symbol, the proba-

bility that the binary representation of a nonzero symbol has weight i is equal to the

coefficient of Z i in 1
2m−1

∑m
i=1

(
m
i

)Z i. If the weight of the jth partition is wj, then the

average binary weight generator function of its binary image is
(

1
2m−1

∑m
i=1

(
m
i

)Z i
j

)wj

under the assumption that all the nonzero symbols are independent and equally prob-

able. Consider a codeword with a weight profile (w1, w2, . . . , wp), then the probability

that the weight profile of its binary image is (b1, b2, . . . , bp) is given by the coefficient

of Zb1
1 Zb2

2 ...Zbp
p in

∏p
j=1

(
1

2m−1

∑m
i=1

(
m
i

)Z i
j

)wj . By multiplying with the number of

such codewords, AT (w1, w2, . . . , wp), the result follows.

For systematic codes, the binary IOWE could be derived from the binary PWE

as in (3.8) (Unless otherwise stated, when speaking of binary weight enumerators of

codes over F2m it is understood that we mean the ensemble average binary weight

enumerator.) For example, the coefficient of XwYh in P̃(XY ,Y , . . . ,Y) is the number

of codewords with input binary weight w in the first partition and a total average

binary weight h. In the following corollary, we give a closed form expression for the

binary IOWE, Õ(wb, hb).

Corollary 3.15. Let OC(w, h) be the input-output weight enumerator of an (n, k, d)

code C, defined over F2m corresponding to an (s, n − s) partition of its coordinates,

54

Figure 3.4: Partitioning of a code and its binary image.
A codeword in the (7, 3, 5) RS code over F8 is shown with a (1, 2, 4) partition of its
coordinates. For a specific binary representation, the binary image is shown with the
implied (3, 6, 12) partition of its coordinates. We emphasize that the weight profile
of the binary image is not easily derived from that on the symbol level.

then the average binary IOWE of Cb is given by

ÕCb(wb, hb) =
s∑

w=0

n∑

h=w

OC(w, h)

(2m − 1)h

(
h−w∑
j=0

(−1)h−w−j

(
h− w

j

)(
jm

hb − wb

))(
w∑

j=0

(−1)w−j

(
w

j

)(
jm

wb

))

for hb ≥ d.

Proof. For the given (s, n−s) partition, the split weight enumerator of C is PC(X ,Y) =
∑s

w=0

∑n
h=w OC(w, h)XwYh−w. From the Theorem 3.14 and (3.6), ÕCb(wb, hb) is the

coefficient of XwbYhb in

ÕCb(X ,Y) =
1

(2m − 1)h

s∑
w=0

n∑

h=w

OC(w, h)((1 +YX)m− 1)w((1 +Y)m− 1)h−w. (3.27)

Since ((1+YX)m−1)w =
∑w

j=0

(
w
j

)
(−1)w−j(

∑mj
i=0

(
mj
i

)X iY i) and ((1+Y)m−1)h−w =
∑h−w

j=0

(
h−w

j

)
(−1)h−w−j(

∑mj
i=0

(
mj
i

)Y i), the result follows by substituting in (3.27).

The IOWE of the binary image will be useful in the analysis of the bit error

55

probability of MDS codes when their binary image is transmitted. In Section 3.3 (c.f.,

Theorem 3.8), we showed that MDS codes have the multiplicity property. Now, we

will show that ensemble binary image of an MDS code will also have the multiplicity

property on average.

Theorem 3.16. Let C be an (n, k, d) MDS code over F2m with the multiplicity property

and Ẽ(hb) be the average binary weight enumerator of Cb. If Õ(wb, hb) is the average

binary IOWE of Cb, where the partition of the coordinates of Cb is induced by an

(s, n− s) partition of the coordinates of C, then for hb ≥ d

∑ms
wb=1 wb Õ(wb, hb)

ms
=

hb Ẽ(hb)

mn
.

Proof. We will begin by proving it for the special case of s = 1. Since C has property

M, then O(1, h) = h
n
E(h). It follows from Corollary 3.15 that

Õ(wb, hb) =

(
m

wb

) n∑

h=0

h

n

E(h)

(2m − 1)h

h−1∑
j=0

(−1)h−1−j

(
h− 1

j

)(
jm

hb − wb

)
. (3.28)

By changing the order of the summations we have

m∑
wb=1

wbÕ(wb, hb) =
n∑

h=0

h

n

E(h)

(2m − 1)h

h−1∑
j=0

(−1)h−1−j

(
h− 1

j

) m∑
wb=1

wb

(
m

wb

)(
jm

hb − wb

)
.

(3.29)

By observing that wb

(
m
wb

)
= m

(
m−1
wb−1

)
, it follows that the rightmost summation in

(3.30) is equal to m
∑

wb

(
m−1
wb−1

)(
mj

hb−1−(wb−1)

)
= m

(
m(j+1)−1

hb−1

)
. By doing a change of

variables α = j + 1 and observing that
(

mα−1
hb−1

)
= hb

mα

(
mα
hb

)
and rearranging, it follows

that the total weight of m coordinates in the binary image Cb, corresponding to a

56

single coordinate in C, is

m∑
wb=1

wbÕ(wb, hb) =
1

n
hb

n∑

h=1

E(h)

(2m − 1)h

h∑
α=1

(−1)h−α

(
h

α

)(
mα

hb

)

=
hb

n
Ẽ(hb). (3.30)

If the input partition has s coordinates of C, the result follows by summing the weights

of the individual coordinates.

This means that if the weight of a symbol coordinate is (h/n)E(h) in Ch, then

the average weight of its binary image is (hb/n)Ẽ(hb) in Cb
hb

. It will be interesting to

determine whether this will still be true for any binary representation. As we will see

in the next section, the result of Theorem 3.16 can simplify the analysis of the bit

error probability of MDS codes.

3.5 Symbol and Bit Error Probabilities

In Section 2.4, we showed how one can analyze the codeword error probability of

various RS code decoders. In this section, we study the symbol and bit error prob-

abilities of systematic MDS codes. In general, systematic coding is preferred over

nonsystematic coding. It has also been shown that maximum-likelihood (ML) decod-

ing of binary linear codes achieves the least bit error probability when the code is

systematic [43].

Given a symbol-level decoder (soft-decision or hard-decision decoder), the code-

word error error probability (CEP) at a certain signal-to-noise ratio (SNR) γ will be a

function of the SNR γ and the code weight enumerator E(h). In the remaining of this

chapter, we will denote the CEP at a signal-to-noise ratio (SNR) γ by Φc (E(h), γ).

For linear codes, union upper-bounds on the performance of symbol-based decoders

57

are of the form

Φc (E(h), γ) ≤
n∑

h=d

E(h)U(γ, h), (3.31)

for some function U of the SNR γ and weight h.

Tighter upper bounds can be of the form

Φc (E(h), γ) ≤ min
α

{
α∑

h=d

E(h)V(γ, h) + F(γ, α)

}
, (3.32)

for some functions V and F of γ and h. For example, tight upper bounds on the

performance of bit-level and symbol-level hard-decision maximum-likelihood decoders

admit to the above form and are given by (8.32) and Theorem 8.9 respectively. The

codeword error probability of the HD Berlekamp-Massey decoder is the probability

that the received word lies in the decoding sphere of a codeword other than the

transmitted word. It is also determined by the weight enumerator and has the form

of the union bound as in (3.31);

Φc (E(h), γ) ≤
n∑

h=d

E(h)
τ∑

t=0

P h
t (γ), (3.33)

where P h
t (γ) is the probability that a received word is exactly Hamming distance t

from a codeword of weight h and τ = b(d − 1)/2c is the Hamming decoding radius

[79] [115].

Given an upper bound on the CEP of a symbol-based decoder, it is well known

that the symbol error probability (SEP) Φs(γ) can be derived from the CEP Φc(γ)

by substituting E(h) with

Q(k, h) =
k∑

w=1

w

k
O(w, h), (3.34)

58

(e.g., [115, (10-14)]). From Theorem 3.8, the common approximation

Q(k, h) ≈ h

n
E(h) (3.35)

is exact for MDS codes and

Φs(γ) = Φc (E(h), γ)
∣∣
E(h):=Q(k,h) . (3.36)

In other words, if the CEP is given by (3.31) or (3.32), the SEP will be respectively

bounded by

Φs(γ) ≤
n∑

h=d

h

n
E(h)U(γ, h), (3.37)

Φs(γ) ≤ min
α

{
α∑

h=d

h

n
E(h)V(γ, h) + F(γ, α)

}
. (3.38)

In case the binary image of an RS code is transmitted and the decoder is a bit-level

decoder, performance analysis of the decoder will utilize the binary weight enumerator

of the code. As we discussed in Section 2.4, the ensemble average binary weight

enumerators become handy when analyzing the performance of the binary images of

RS codes. As is the case of symbol based decoders, upper bound on the CEP of

bit-level decoders admit the union bound forms

Φc

(
Ẽ(h), γ

)
≤

nm∑

h=d

Ẽ(h)Υ(γ, h) (3.39)

Φc

(
Ẽ(h), γ

)
≤ min

α

{
α∑

h=d

Ẽ(h)J (γ, h) + G(γ, α)

}
(3.40)

for some functions Υ, J and G of the SNR γ and the weight h. For example, the

union bounds of SD and HD decoding of (2.36) and (2.39) are of the form of (3.39),

whereas the Poltyrev tighter version of these bounds follow the form of (3.40).

59

From Theorem 3.16, we know that for any k (symbol) coordinates of the MDS

code

Q̃(mk, h) =
mk∑
w=1

w

mk
Õ(w, h) =

h

mn
Ẽ(h). (3.41)

It follows that the bit error probability (BEP) can be bounded by (e.g., [8, 98])

Φb(γ) = Φc

(
Ẽ(h), γ

) ∣∣∣Ẽ(h):=Q̃(mk,h) (3.42)

≤ min
α

{
α∑

h=d

h

mn
Ẽ(h)J (γ, h) + G(γ, α)

}
(3.43)

≤
nm∑

h=d

h

mn
Ẽ(h)Υ(γ, h). (3.44)

3.6 Multiuser Error Probability

We consider the case when a systematic RS code is shared among different users or

applications. The systematic symbols are shared among the different users where the

coordinates of the code are partitioned according to an T : (n1, n2, ..., np−1, n − k)

partition. The ith partition of size ni is assigned to the ith user and the last partition

constitutes of the redundancy symbols. Since the considered codes are linear, we

assume that the all zero codeword is transmitted. If a codeword of symbol weight

h and of weight wj in the jth partition is erroneously decoded, a fraction
wj

nj
of the

jth user’s symbols are received in error. It follows that the jth user’s symbol error

probability could be written as (c.f., (3.49))

Φj
s(γ) = Φc

(
Qj(nj, h), γ

)
, (3.45)

where

Qj(nj, h) =

nj∑
w=1

w

nj

Oj(w, h) (3.46)

60

and Oj(w, h) is the jth partition input-output weight enumerator derived from the

PWE as in (3.8). The following theorem gives an important result regarding the

multiuser error probability of MDS (RS) codes:

Theorem 3.17. If a systematic linear MDS code is shared among different users, all

users have the same unconditional symbol error probability regardless of the sizes of

the partitions assigned to them.

Proof. The SEP of a certain user j, whose partition’s size is nj, is given by (3.45).

Thus, it is sufficient to show that for two different users i and j with partitions of sizes

ni and nj respectively, such that ni 6= nj, Qj(nj, h) = Qi(ni, h). From Theorem 3.8, it

follows that for an arbitrary partition of size nj, Qj(nj, h) = h
n
E(h). Since this result

does not depend on the size of the partition nor on the orientation of the coordinates

with respect to it, we are done.

Now, consider the case when the binary image of an RS code is transmitted

and the decoder is a bit-level hard-decision or soft-decision decoder. The systematic

coordinates will be partitioned among different users where the partitions on the bit

level will follow from the partitions on the symbol level (e.g., Figure 3.4). In case of

a bit-level decoder, the bit error probability of the jth user can be given by

Φj
b(γ) = Φc

(
Q̃j(mnj, h), γ

)
, (3.47)

such that

Q̃j(mnj, h) =

mnj∑
w=1

w

mnj

Õj(w, h), (3.48)

where Õj(w, h) is the average binary input-output weight enumerator of the jth user

and w
mnj

Õj(w, h) is the fraction of the jth user’s bits received in error when a codeword

of total weight h and weight w in the jth partition is erroneously decoded given that

the all zero codeword was transmitted.

61

Theorem 3.18. For systematic MDS linear codes, the average unconditional bit error

probability of all users is the same regardless of the number of symbols in each partition

or the orientation of the partition assigned to them.

Proof. Let users i and j be assigned two different partitions of C with different sizes

ni and nj. Now consider the binary images of these partitions. Equations (3.41) and

(3.47) imply that both users have the same average bit error probability.

Now that we have shown that the unconditional symbol and bit error probability

are the same for all partitions (users) regardless of their size, we can ask questions

about the conditional error probability. Using the results in this chapter, one could

answer interesting questions about the conditional multiuser error probability. Since

the code is linear, we will assume that the all-zero codeword is transmitted. For

example, the conditional CEP given that for any codeword no more than a fraction

p of the jth user’s symbols are ever received in error is given by 2

Φc(γ) = Φc



bpnjc∑
wj=0

Oj(wj, h), γ


 (3.49)

where a hard-decision symbol level decoder with a decoding radius τ was assumed.

We only considered error events due to codewords whose weight in the jth partition

is not greater than pnj. Recall that in the unconditional case
∑bpnjc

wj=0 Oj(wj, h) is

replaced by E(h) =
∑nj

wj= 0 Oj(wj, h).

Define the following weight enumerator

Oi,j(wi, wj, h)
∆
= |{c ∈ C : (W (c[Ni]) = wi) ∧ (W (c[Nj]) = wj) ∧ (W(c) = h)}|.

(3.50)

The conditional CEP given that a codeword error results in all ith user’s symbols

2Conditional functions will have have the same notation as the unconditional ones except for an
underbar.

62

received correctly while all jth user’s symbols received erroneously is given by

Φc(γ) = Φc

(
n∑

h=d

Oi,j(0, nj, h), γ

)
(3.51)

where assuming that the all-zero codeword is transmitted we only considered code-

words with a zero weight in the ith partition and a full weight in the jth partition.

In general, for a p-partition of the coordinates, let P and Q be the set of users

(partitions) whose symbols are all received correctly and erroneously, respectively, in

case of a codeword error. Let O be the set of users with no condition on their error

probability. The conditional error probability is calculated by considering only the

codewords which have a full weight for the coordinates in Q and a zero weight for

the coordinates in P . By considering only such combinations in the sum of (3.2), the

conditional PWGF is derived as

P(X1,X2, . . . ,Xp) =
∑
i∈∆

ni∑
wi=0

A(w1, w2, . . . , wp)Xw1
1 Xw2

2 ...Xwp
p

∣∣∣∣∣∣∣
wi = 0, if i ∈ P
wi = ni, if i ∈ Q

.

(3.52)

The conditional symbol error probability of the jth user is

Φj
s(γ) = Φc

(
Qj(k, h), γ

)
, (3.53)

where Qj(k, h) =
∑nj

w=1
w
nj

Oj(w, h) and Oj(w, h) is the conditional IOWE of the jth

partition and is derived from P(X1,X2, . . . ,Xp) (see (3.7)). For example, if the first

partition contains header information, then the conditional symbol error probability

of the ith user given that the header is received correctly can be calculated by

Φj
s(γ) = Φc

(
nj∑

w=1

w

nj

O1,j(0, w, h), γ

)
. (3.54)

63

1 2 3 4 5 6 7 8 9 10
10

−20

10
−15

10
−10

10
−5

10
0

SNR (dB)

E
rr

or
 P

ro
ba

bi
lit

y

BM−Decoder Error Probability of (15,11) RS code over AWGN channel

CEP

SEP, SEP 3rd user

SEP|(0,0)

SEP|(0,1)

SEP|(1,1)

Figure 3.5: Conditional multiuser decoder error probability for Example 3.4.
For the Berlekamp-Massey decoder, the unconditional CEP and SEP are labeled
“CEP” and “SEP” respectively. The conditional SEP of the third user for cases 1, 2
and 3 are labeled “SEP|(0, 0),” “SEP|(0, 1),” and “SEP|(1, 1)” respectively.

64

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

SNR (dB)

E
rr

or
 P

ro
ba

bi
lit

y

Multiuser Performance for SD ML decoding of (15,11) RS code over AWGN

CEP TSB
CEP Sim
BEP TSB
BEP Sim
BEP |(0,0)
BEP |(0,1)
BEP |(1,1)

Figure 3.6: Conditional multiuser error probability for Example 3.5.
For the bit-level soft-decision maximum-likelihood decoder, the conditional bit er-
ror probability of cases 1, 2 and 3 are labeled “BEP|(0, 0),” “BEP|(0, 1),” and
“BEP|(1, 1).” The bounds on the unconditional CEP and BEP, labeled “CEP TSB”
and “BEP TSB,” are compared with the corresponding simulations, labeled “CEP
Sim” and “BEP Sim,” respectively.

65

Similarly, for bit-level decoding of the code’s binary image, Q̃j(mk, h) will be

derived from P̃(X1,X2, . . . ,Xp). If the users in P and Q have zero and one bit error

probability respectively, the conditional binary PWGF only takes into account such

codewords that have a zero binary weight for the partitions in P and a full binary

Hamming weight for the partitions in Q. The conditional BEP of the jth user follows

by the substitution Ẽ(h) := Q̃j(mk, h) in (3.42).

Example 3.4. Consider an systematic (15, 11, 5) RS code and a partition T =

(3, 3, 5, 4) of its coordinates where the last partition has the redundancy symbols and

each of the first three partitions is assigned to a different user. The first partition may

be assigned to be the header. Let the RS code be transmitted over an AWGN chan-

nel and decoded by a hard-decision bounded minimum distance (Berlekamp-Massey)

decoder. From (3.33), (3.49) and Theorem 3.17 it follows that the unconditional CEP

and SEP of any user is equal to the overall SEP and can be expressed as, respectively,

Φc(γ) =
15∑

h=5

E(h)
τ∑

t=0

P h
t (γ),

Φs(γ) =
15∑

h=5

h

15
E(h)

τ∑
t=0

P h
t ,

such that E(h) is the weight enumerator as given by (3.10). The partition weight

generating function is given by

P(W ,X ,Y ,Z) =
3∑

w1=0

3∑
w2=0

5∑
w3=0

4∑
w4=0

AT (w1, w2, w3, w4)Ww1Xw2Yw3Zw4 ,

and the IOWGF of the third user is O3(X ,Y) = P(X ,X ,XY ,X). We will now

calculate the conditional symbol error probability of the third user under different

scenarios.

Case 1: The first two users have a zero error probability. Thus the PWGF condi-

66

tioned on that the first two partitions have zero weight is

P(0,0)(Y ,Z) =
5∑

w3=0

4∑
w4=0

AT (0, 0, w3, w4)Yw3Zw4 .

The conditional IOWGF of the third user is

O3
(0,0)

(X ,Y) = P(0,0)(XY ,Y) =
∑

w

∑

h

O1,2,3(0, 0, w, h)XwYh,

It follows that the SEP of the third user conditioned on that the first two users have

a zero error probability is

Φ3
s(γ) =

n∑

h=d

5∑
w=1

w

5
O1,2,3(0, 0, w, j)

τ∑
t=0

P h
t .

Case 2: The first and second users have an SEP of zero and one respectively. The

corresponding conditional PWGF is

P(0,1)(X ,Y ,Z) =
5∑

w3=0

4∑
w4=0

AT (0, 3, w3, w4)X 3Yw3Zw4 .

The corresponding IOWGF of the third user is

O3
(0,1)

(X ,Y) = P(0,1)(Y ,XY ,Y) =
∑

w

∑

h

O1,2,3(0, 3, w, h)XwYh.

To calculate the conditional SEP, we proceed as in the previous case.

Case 3: Both the first and second users have an SEP of one. The conditional SEP

of the third user is

Φ3
s(γ) =

n∑

h=d

5∑
w=1

w

5
O1,2,3(3, 3, w, j)

τ∑
t=0

P h
t .

where O1,2,3(3, 3, w, h) is the coefficient of XwYh in O3
(1,1)

(X ,Y) = P(1,1)(Y ,Y ,XY ,Y)

67

and

P(1,1)(W ,X ,Y ,Z) =
5∑

w3=0

4∑
w4=0

AT (3, 3, w3, w4)W3X 3Yw3Zw4 .

For an AWGN channel and a Berlekamp-Massey decoder, the codeword error prob-

ability, symbol error probability and the conditional symbol error probabilities for

the third user for the three cases are plotted in Figure 3.5. It is observed that the

conditional error probability of the third user given that other users have an error

probability of one (Case 3) is the lowest compared to the other two cases. The reason

is that in Case 3, one only considers errors due to the received word falling closer to

codewords at a much larger Hamming distance from the transmitted one, and such

an event happens with relatively lower probability. ¦

The same technique can be used to bound the performance of other symbol based

decoders, such as the hard-decision maximum-likelihood decoder, under various sce-

narios. Next we consider analyzing the multiuser error probability when the decoder

is a bit level decoder.

Example 3.5. Consider the (15, 11, 5) code over F16 partitioned as in Example 3.4

and an SD bit-level ML decoder is employed at the output of an AWGN channel.

The unconditional CEP and BEP are given by, respectively,

Φc

(
Ẽ(h), γ

)
≤ min

α

{
α∑

h=5

Ẽ(h)J (γ, h) + G(γ, α)

}
,

Φb(γ) = min
α

{
α∑

h=5

h

60
Ẽ(h)J (γ, h) + G(γ, α)

}
,

where J (γ, h) and G(γ, α) will be determined by the Poltyrev tangential sphere bound

[87] (c.f., Section 8.1.3). We will now discuss the conditional bit error probability for

different cases (as in Example 3.4):

Case 1: The first two users have a zero error probability. The average binary IOWE

68

of the third user given the first two partitions have a zero weight is

Õ3

(0,0)
(X ,Y) = P̃(0,0)(XY ,Y) =

60∑

h=0

20∑
w=0

Õ
1,2,3

(0, 0, w, h)XwYh,

such that P̃(0,0)(X ,Y) = P(0,0)(F (X), F (Y)), and F (X) is as defined in Theorem 3.14.

The conditional BEP of the third user is given by

Φ3
b(γ) = min

α

{
α∑

h=5

20∑
w=1

w

20
Õ

1,2,3
(0, 0, w, h)J (γ, h) + G(γ, α)

}
.

Case 2: The first and second users have a zero and one bit error probability re-

spectively. Let P̃(W ,X ,Y ,Z) = P(F (W), F (X), F (Y), F (Z)) be the average binary

PWGF then

P̃(0,1)(X ,Y ,Z) = Coeff
(
P̃(W ,X ,Y ,Z),W0X 12

)
X 12,

and the conditional IOWE of the third user is

Õ
1,2,3

(0, 12, w, h) = Coeff
(
P̃(0,1)(Y ,XY ,Y),XwYh

)
.

The conditional BEP is then given by

Φ3
b(γ) = min

α

{
α∑

h=5

20∑
w=1

w

20
Õ

1,2,3
(0, 12, w, h)J (γ, h) + G(γ, α)

}
.

Case 3: The average BEP of the first two users is one. In this case, the conditional

PWGF can be calculated by

P̃(1,1)(W ,X ,Y ,Z) = Coeff
(
P̃(W ,X ,Y ,Z),W12X 12

)
W12X 12.

One can then proceed to calculate the conditional IOWE and BPE of the third user

69

by

Õ
1,2,3

(12, 12, w, h) = Coeff
(
P̃(1,1)(Y ,Y ,XY ,Y),XwYh

)

Φ3
b(γ) = min

α

{
α∑

h=5

20∑
w=1

w

20
Õ

1,2,3
(12, 12, w, h)J (γ, h) + G(γ, α)

}
.

In Figure 3.6, the TSB on the codeword and bit error probability are plotted and

compared to simulations of the ML decoder for a specific basis representation of the

RS code. The conditional BEP of the third user is plotted for cases 1, 2 and 3 . As in

the previous example, it is observed that the conditional error probability of specific

users given that some users have a high error probability decreases with the number

of such users. ¦

Example 3.6. Consider an systematic (31, 15, 17) RS code over F32 and a partition

T = (3, 6, 6, 16) of its coordinates where the last partition has the redundancy sym-

bols and each of the first three partitions is assigned to a different user. The first

partition may be assigned to be the header. Let the binary image of a RS code be

transmitted over an AWGN channel and decoded by a hard-decision symbol-based

maximum-likelihood decoder decoder. We used the upper bound of Theorem 8.9 to

bound the performance of the HD-ML decoder over F32. The CEP, SEP and condi-

tional SEP are of the form of (3.32), (3.40) and (3.53). We consider three cases:

Case 1: The unconditional error probability of the third user.

Case 2: The symbol error probability of the third user given that the first user

(header) is received correctly.

Case 3: The symbol error probability of the third user given that the first two users

have their symbols received correctly.

The numerical results are shown in Figure 3.7. We observe that the unconditional

CEP and SEP are very close. As more and more conditions are imposed, the condi-

70

0 2 4 6 8 10
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

E
rr

or
 R

at
e

Multiuser HD−ML performance of the (31,15) RS code

CEP

SEP, SEP 3rd user

SEP|(0,X)

SEP|(0,0)

Figure 3.7: Conditional multiuser error probability of Example 3.6.
For the symbol-level hard-decision maximum-likelihood decoder of the (31, 15) RS
over F32, the unconditional CEP and SEP are plotted (Case 1). The conditional SEP
of Case 2 and Case 3 are labeled “SEP|(0, X)” and “SEP|(0, 0)” respectively.

71

tional error probability of the third user decreases. Case 2, is of special interest, since

in some cases the header will contain the routing information and it will be essential

to estimate the error probability in case the information is routed correctly. ¦

3.7 Conclusion

A closed form formula for the partition weight enumerator of maximum distance

separable (MDS) codes is derived. The average partition weight enumerator (PWE)

is derived for the binary image of MDS codes defined over a field of characteristic two.

We show that for MDS codes, all the coordinates have the same weight in the subcode

composed of codewords with equal weight. We prove that a code has this property

iff its dual code has this property. Consequently, it is shown that the first-order

Reed-Muller codes and the extended Hamming codes have this property. A common

approximation used to evaluate the symbol and bit error probabilities is thus shown

to be exact for MDS codes. These results are employed to study the error probability

when a Reed-Solomon code is used in a network scenario and is shared among different

users. We show that MDS (e.g., RS) codes have many attractive features which makes

their use in networks attractive. It is proved that the unconditional error probability

of all the users will be the same regardless of the size of their partitions. As for

the conditional error probabilities, they can be a useful measure in determining the

performance of a user, if its performance depends on the correct transmission of a

certain packet or header.

72

Chapter 4

Algebraic Soft-Decision Decoding
of Reed-Solomon Codes:
Interpolation Multiplicity
Assignments

Simple things should be simple, complex things should be possible.

—Alan Kay

Reed-Solomon codes [93] are one of the most important types of error-correcting

codes, due to their wide applicability in data-storage and communication systems.

Through the seminal work of Sudan [102], Guruswami and Sudan [49], and Koet-

ter and Vardy [72], we now have a polynomial-time algebraic soft-decision decoding

(ASD) algorithm for Reed-Solomon codes. In an attempt to find asymptotic (in

decoder complexity) performance limits for ASD, we develop a new class of multi-

plicity assignment algorithms for ASD in this chapter. Roughly speaking, the idea is

to choose the multiplicity matrix so as to maximize the probability that the causal

codeword is on the decoder’s list, as suggested by [83], rather than to maximize the

expected score of the causal codeword, as is done in [72]. However, whereas in [83],

a Gaussian approximation is employed, we use a Chernoff bound instead. (It was

independently suggested in [92], in a somewhat different context, to use the Chernoff

bound in optimizing symbol based multiplicity matrices.)

73

Here is an overview of this chapter. Some preliminaries are given in Section 4.1.

In Section 4.2, we give a brief overview of the Guruswami-Sudan (GS) algorithm. We

also prove some interesting results that will become useful later in this chapter. In

Section 4.4, we describe a mathematical framework for alebraic soft-decision decod-

ing. A quick review of previously proposed multiplicity assignment algorithms for

algebriac soft-decision decoding is given in Section 4.5. In Section 4.6, we formulate

the multiplicity assignment problem as an optimization problem. Our algorithm is

developed and explained in Section 4.7. We propose a Chernoff bound approach for

the multiplicity assignment optimization problem. We study the cases of finite and

infinite interpolation cost. We show that the formulated problem is convex and devise

an iterative algorithm to solve it. In Section 4.8, we present some numerical results

and discussions. We conclude the chapter and hint at future research directions in

Section 4.10. Briefly, we conclude that our method is theoretically superior to previ-

ously proposed algebraic soft-decision algorithms, although whether it will prove to

be practical remains to be seen.

4.1 Preliminaries

Throughout this chapter Fq will denote a finite field with q elements, and a typical

element of Fq will be denoted by β. C will be an (n, k, d) Reed-Solomon code over

Fq.
1 Let the information data vector of k elements be d = (d0, d1, . . . dk−1). Then

the corresponding codeword c = (c1, . . . , cn) is generated by polynomial evaluation of

the information polynomial D(X) =
∑k−1

i=0 diX
i at n distinct nonzero elements of Fq

constituting the support set of the code, S = {si; si ∈ Fq for i = 1, 2, . . . , n}. That

is ci = D(si) for i = 1, 2, . . . , n.

We will often encounter q × n arrays (or matrices) of real numbers, typically

1More precisely, C may be a coset of the parent RS code. See Corollary 4.4.

74

denoted by W = (wi(β)), where i = 1, . . . , n and β ∈ Fq. The cost of such an array

is defined to be

Ω(W)
∆
=

1

2

n∑
i=1

∑

β∈Fq

wi(β) (wi(β) + 1) . (4.1)

If u = (u1, . . . , un) is a n-dimensional vector over Fq, the score of u with respect to

the array W is is defined to be

〈u,W 〉 ∆
=

n∑
i=1

wi(ui). (4.2)

The underlying (discrete input, memoryless) channel model has input alphabet

Fq, output alphabet R (which could be of infinite size for continuous channels), and

transition probabilities Pr {Y = r|X = β}, where X and Y denote the channel input

and output respectively. Given a received symbol r ∈ R, there is a unique a posteriori

density function on Fq corresponding to each β ∈ Fq;

pr(β) = Pr {X = β|Y = r} .

Observing a channel output r is therefore equivalent to being given pr(β) for all

β ∈ Fq. From this viewpoint, the output alphabet is not R but

R = {pr(β); r ∈ R, β ∈ Fq} .

Thus in this chapter we will assume that if c = (c1, . . . , cn) is transmitted, the received

word is an array of density functions Π = (πi(β)), where πi(β) ∈ R, for i = 1, . . . , n

and β ∈ Fq. We call Π the a posteriori probability, or APP, matrix. We denote by R
the set of all possible APP matrices. It should be noted that the density functions

πi(β) could be calculated from the soft channel output as is the case for additive

white Gaussian noise (AWGN) channels. However, the density functions could also be

75

delivered directly as the soft output of an inner decoder such as the BCJR algorithm

[7] or the soft output Viterbi algorithm (SOVA) [51, 112] in concatenated coding

systems.

The indicator function ∆ is defined to be

∆ [condition] =





1, if condition is true

0, if condition is false
. (4.3)

We will denote the ubiquitous quantity (k − 1) by v. We will finish this section by

giving some definitions that are crucial to understanding the GS algorithm [76].

Definition 4.1. The (r, s)th Hasse derivative of a bivariate polynomial B(X, Y) =
∑

i,j Bi,jX
iY j at (α, β) is given by

B′
r,s(α, β) = Coeff(B(X + α, Y + β), XrY s)

=
∑
i,j

(
i

r

)(
j

s

)
Bi,jα

i−rβj−s,

where the coefficient function is defined by Bi,j = Coeff(B(X,Y), X iY j).

Definition 4.2. The bivariate polynomial B(X, Y) passes through the point (α, β)

with multiplicity m (has a zero of multiplicity m at (α, β)) iff

B′
r,s(α, β) = 0 for all r and s such that 0 ≤ r + s < m,

equivalently, iff B(X + α, Y + β) does not contain any monomial of degree strictly

less than m.

Definition 4.3. The (wx, wy)-weighted degree of a bivariate polynomial B(X,Y) =
∑

i,j Bi,jX
iY j

degwx,wy
B(X, Y)

∆
= max{iwx + jwy : Bi,j 6= 0}.

76

It follows that X-degree degX B(X, Y) = deg1,0 B(X, Y), the Y -degree degY B(X, Y) =

deg0,1 B(X, Y) and the total degree degB(X, Y) = deg1,1 B(X, Y).

4.2 The Guruswami-Sudan Algorithm

Given a q×n array of nonnegative integers M = (mi(β)), called a multiplicity matrix,

associated with an (n, v + 1, d) Reed-Solomon code, the (modified) GS algorithm is a

list-decoding algorithm consisting of two main steps [49, 76]

1. Interpolation: Construct a bivariate polynomial, B(X,Y), of minimum (1, v)-

weighted degree that passes through each of the points (si, β) with multiplicity

mi(β), where β ∈ Fq and i = 1, 2, . . . , n.

2. Factorization: Find all linear factors of B(X, Y), (Y − G(X))|B(X, Y), where

G(X) is a polynomial of degree less than or equal to v. The codeword corre-

sponding to each such polynomial G(X) is placed on the list.

The GS algorithm produces as an output a list of at most
√

2 Ω(M)/v codewords

[76], which contains all codewords c such that

〈c,M〉 > Dv(Ω(M)), (4.4)

where Dv(γ) is the least positive integer D such that

|{(i, j) ∈ N2; i + vj ≤ D
} | ≥ γ + 1.

In other words, Dv(Ω(M)) is the minimal (1, v)-weighted degree of a bivariate poly-

nomial B(X, Y) in order for such a nontrivial polynomial, that could be interpolated

to pass through all the points (si, β) with multiplicity at least mi(β), exists. If the

sufficient condition of (4.4) is satisfied, then the bivariate polynomial B(X,Y) will

77

have a linear factor of the form Y − G(X) where G(X) has a degree at most v and

is the data polynomial associated with the codeword c [49, 72].

One can show that for an interpolation cost γ, the minimum (1, v)-weighted degree

admits to this closed form formula

Dv(γ) =

⌊
γ

m
+

v(m− 1)

2

⌋
, where m =

⌊√
2γ

v
+

1

4
+

1

2

⌋
. (4.5)

If complexity is not issue and the interpolation cost tends to infinity, then a sufficient

condition of (4.4) for a codeword c to be on the GS list reduces to [72, 31] (see

Theorem 4.7)

〈c,M〉
‖M‖2

>
√

v. (4.6)

In the rest of this chapter, we will denote the sufficient condition of (4.4) by

c ` M. (4.7)

4.3 Upper Bounds on the Minimum Weighted De-

gree

In this section, we give some technical results needed later. Whereas the discrete

function Dv(γ) can be calculated by the closed form formula of (4.5), it will be more

convenient if we can have continuous tight upper bounds on Dv(γ).

Lemma 4.1. An upper bound on the function Dv(γ) is

Dv(γ) ≤ −v

2
+

√
2vγ +

v3/2

8
√

2γ
. (4.8)

78

Proof. Let m be the unique integer satisfying [80]

(
m

2

)
≤ γ

v
<

(
m + 1

2

)
. (4.9)

Thus, γ ≥ vm(m−1)
2

. Let ψ(m) = γ
m

+ v(m−1)
2

, then ψ(m) ≥ v(m− 1). Thus,

∂ψ(m)

∂m
≥ v ≥ 0,

which implies that ψ(m) is a nondecreasing function of m if γ satisfies (4.9). Since

m ≤
(√

2γ
v

+ 1
4

+ 1
2

)
, it follows that

Dv(γ) = bψ(m)c ≤ ψ(m) ≤ ψ

(√
2γ

v
+

1

4
+

1

2

)
. (4.10)

With some algebra, we get

Dv(γ) ≤ −v

2
+

√
2vγ +

v2

4
≤ −v

2
+

√
2vγ

(
1 +

v

16γ

)
, (4.11)

which implies the assertion.

From the derivation of the above lemma it is clear that the upper bound of [72]

Dv(γ) ≤
√

2vγ (4.12)

is a looser upper bound than that of (4.8). In fact, the function Dv(γ) is well approx-

imated by

Dv(γ) ≈
⌊√

2vγ − v

2

⌋
. (4.13)

Indeed, if v is fixed, 0 ≤ Dv(γ) − ⌊√
2vγ − v

2

⌋ ≤ 1 for all sufficiently large γ. In

Figure 4.1, the discrete function Dv(Ω(M)) is plotted for v = 6 as a function of the

cost Ω(M). The upper bounds of (4.8) and (4.12) are also plotted. It is clear that

79

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

Cost

(1
,v

)
W

ei
gh

te
d

D
eg

re
e

Bounds on the Minimum Weighted Degree

D
1

D
2

D
3

D
4

Figure 4.1: Bounds on the function Dv(Ω(M)) as a function of Ω(M) for v = 6.
The bounds D1, D2, D3, D4 are given by equations (4.5), (4.8), (4.12), (4.13) respec-
tively.

80

the upper bound of (4.8) is a tight (continuous) upper bound. The approximation of

(4.13) is also compared to the function Dv(Ω(M)).

Lemma 4.2. If γ > 0,

lim
λ→∞

Dv(λ
2γ)

λ
=

√
2vγ.

Proof. Using (4.8), limλ→∞
Dv(λ2γ)

λ
= limλ→∞ −v

2λ
+ λ

√
2vγ
λ

=
√

2vγ.

4.4 A Mathematical Model for ASD Decoding of

Reed-Solomon Codes.

In this section we describe a model for algebraic soft–decision decoding of RS codes.

A codeword c = (c1, . . . , cn) which we call the causal codeword, is selected at random

from C, transmitted over a memoryless channel, and received as the APP matrix

Π = (πi(β)) where i = 1, . . . , n and β ∈ Fq. Given the APP matrix Π, the ASD

decoding algorithm converts Π into a q × n multiplicity matrix M . This multiplicity

matrix is forwarded to the GS algorithm, which in turn produces a list of codewords.

If c ` M , then the causal codeword c will be on the list in which case the decoder is

declared to have succeeded.

The situation is summarized by the following chain of random vectors and matri-

ces:2

c → Π
A−→ M. (4.14)

The only quantity in (4.14) under engineering control is the multiplicity algorithm A,

so the problem of optimizing the ASD algorithm is equivalent to choosing the right

multiplicity algorithm:

P (A) = min
A∈A

Pr {EA} , (4.15)

2In order to minimize our notational complexity, we do not distinguish notationally between a
random variable and an instance of the random variable.

81

where

EA = {c 0 M} , (4.16)

and A is some suitably restricted class of multiplicity algorithms. Note that

Pr {EA} =
∑

Π∈R
Pr {EA|Π}Pr {Π} , (4.17)

so that A minimizes Pr {EA} iff it minimizes Pr {EA|Π} for each APP matrix Π. The

following theorem shows that Pr {EA|Π} depends only on C, Π and M , and so we

introduce the notation

PC(Π, M)
∆
= Pr {EA|Π} .

Theorem 4.3. For x = (x1, . . . , xn) ∈ Fn
q define P (x) =

∏n
i=1 πi(xi) and P (C) =

∑
c∈C P (c). Then

PC(Π,M) =
1

P (C)

∑
c∈C

∆ [c 0M] P (c). (4.18)

Proof. First,

Pr {EA|Π} =
∑
c∈C

∆ [c 0M] Pr {c|Π} .

Second (c.f., [72], Appendix A)

Pr {c|Π} =
P (c)

P (C)
.

In Theorem 4.3, it was implicitly assumed that the channel is memoryless and

that the components of c are uniformly drawn from the field Fq. But because of the

maximal distance separable (MDS) property of RS codes, the elements of any subset

of k or fewer components of c are independent and could be treated as information

symbols. However, minimizing PC(Π,M) directly is not easy due to the difficulty of

82

calculating P (C) for an arbitrary code C and an arbitrary reliability matrix Π. But

the following trick, due essentially to Koetter and Vardy [72], allows us to replace the

Markov chain (4.14) with

x → Π
A−→ M, (4.19)

which is identical to (4.14) except that the random codeword drawn uniformly from

the code c ∼ U [C] in (4.14) has been replaced with a random vector x ∼ U [Fn
q] in

(4.19), whose components are independent, where x ∼ U [X] means that x is drawn

uniformly at random from the space X .

Corollary 4.4. If C1, . . . , CK are the cosets of C, with K = qn−k, then

K∑
i=1

P (Ci)PCi
(Π,M) =

∑

x∈Fn
q

∆ [x 0M] P (x) (4.20)

∆
= P(Π,M).

Since the left-hand side is an average of the error probability PCi
(Π,M), then PCi

(Π,M) ≤
P(Π,M) for at least one coset Ci.

4.5 Algebraic Soft-Decision Decoding

As mentioned in the previous sections, the Guruswami-Sudan algorithm will take as

an input a multiplicity matrix, M = (mi(β)) and will output a list of codewords.

Algorithms for assigning interpolation multiplicities for the GS algorithm were pro-

posed based on different criteria [49, 72, 83, 85]. Before proceeding to derive our

multiplicity assignment algorithm, we will briefly review two algorithms of particular

interest.

The Koetter-Vardy Algorithm: The Koetter-Vardy algorithm finds the multiplicity

matrix M that maximizes the expectation of the score, E {〈x,M〉}, where x ∼ U [Fn
q]

83

is an n-dimensional random vector of independent components [72]. A reduced com-

plexity KV algorithm is [46]

mi(β) = bλπi(β)c, (4.21)

where λ > 0 is a complexity parameter determined by Ω(M). For Ω(M) = γ, it can

be shown that λ = (−1 +
√

1 + 8γ/n)/2. In case of infinite interpolation cost, the

sufficient condition of (4.6) reduces to

〈c, Π〉
‖Π‖2

>
√

v. (4.22)

The Gaussian Approximation: By the definition of the score, (4.2), the score of a

random vector with respect to a multiplicity matrix M is a sum of n random variables.

Assuming that the n random variables are independent, the distribution of the score is

approximated by a Gaussian distribution. Based on this approximation, an iterative

algorithm is derived to find the multiplicity matrix of infinite interpolation cost that

will minimize the error probability [83]. Note however that this approximation is valid

if n is sufficiently large. The Gaussian approximation has been derived assuming

infinite interpolation costs and it is not clear how to extend it to practical finite

interpolation costs. The Gaussian approximation is also discussed in Section 4.9.

4.6 Optimum Multiplicity Matrices

In view of Corollary 4.4, in the rest of the chapter we will focus on choosing M so

as to minimize P(Π,M), with the understanding that upper bounds on P(Π,M)

technically apply only to the best cosets of the parent RS code.

84

4.6.1 Optimization Problem

Usually the ASD decoder will have a cost restriction, so we introduce the notation

P (Π, γ) = min
Ω(M)≤γ

P(Π,M) (4.23)

M(Π, γ) = argM min
Ω(M)≤γ

P(Π,M). (4.24)

Here P (Π, γ) is the minimum possible ASD decoder error probability, given Π and an

upper bound of γ on the cost of M . The matrix M(Π, γ) is the optimal multiplicity

matrix of cost less than or equal to γ corresponding to the APP matrix Π.

We also define

P (Π,∞)
∆
= lim

γ→∞
P (Π, γ), (4.25)

which is the minimum possible decoder error probability, given the APP matrix Π,

without regard to cost.

Finally, let us consider (c.f., (4.15)) the problem of computing

P (γ)
∆
= min

Ω(M)≤γ
Pr {EA} , (4.26)

the minimum possible ASD decoder error probability for decoder cost ≤ γ, and

P (∞)
∆
= lim

γ→∞
P (γ), (4.27)

the absolute minimum ASD decoder error probability, regardless of cost. By (4.17)

we have

P (γ) =
∑

Π∈R
P (Π, γ) Pr {Π} (4.28)

P (∞) =
∑

Π∈R
P (Π,∞) Pr {Π} . (4.29)

85

4.6.2 Soft Multiplicity Matrices: A Relaxation

It is difficult to deal with the requirement that the entries of M are integers, so we

now define a slightly different problem in which the integer constraint is relaxed and

the multiplicities can be arbitrary (nonnegative) real numbers.

Thus let Q = (qi(β)) be a “soft” multiplicity matrix, i.e., for each i = 1, . . . , n,

and each β ∈ Fq, qi(β) is a nonnegative real number. We define

P(Π, Q)
∆
=

∑

x∈Fn
q

∆ [x 0 Q] P (x) (4.30)

P ∗(Π, γ)
∆
= min

Ω(Q)≤γ
P(Π, Q) (4.31)

Q∗(Π, γ)
∆
= arg min

Ω(Q)≤γ
P(Π, Q) (4.32)

P ∗(Π,∞)
∆
= lim

γ→∞
P ∗(Π, γ). (4.33)

These quantities are the same as the corresponding unstarred ones, (4.23), (4.24),

and (4.25), except that the integral matrices (with integer elements) M are replaced

with real matrices Q, so that logically

P ∗(Π, γ) ≤ P (Π, γ) (4.34)

P ∗(Π,∞) ≤ P (Π,∞). (4.35)

Surprisingly, if cost is no object, we loose nothing by relaxing the constraint that

the multiplicities be integers. In the following lemma, we show that up-scaling a

multiplicity matrix Q with a scalar λ > 1, results in a lower error probability at the

expense of a larger interpolation cost.

86

Lemma 4.5. For any (Π, Q),

lim
λ→∞

P(Π, λQ) ≤ P(Π, Q). (4.36)

Proof. Suppose ∆ [x ` Q] = 1, then with high probability this implies that

〈x, Q〉 ≥
√

2v Ω(Q) (4.37)

for reasonably large costs Ω(Q). If λ ≥ 1, |λQ| ≤ λ2Ω(Q), and

〈x, λQ〉
Dv(|λQ|) ≥

λ〈x, Q〉
Dv(λ2Ω(Q))

. (4.38)

But by Lemma 4.2, the limit of the right-hand side of (4.38) is 〈x, Q〉/
√

2vΩ(Q) ≥ 1,

with high probability, where the last inequality follows from (4.37). Thus

lim
λ→∞

∆ [x ` λQ] = 1.

It follows that for any x,

lim
λ→∞





∑

x∈Fn
q

∆ [x 0 λQ] P (x)



 ≤

∑

x∈Fn
q

∆ [x 0 Q] P (x). (4.39)

Comparing this to (4.30), we are done.

Theorem 4.6. P ∗(Π,∞) = P (Π,∞)

Proof. Define P+ to denote rational matrices. Then

P ∗(Π,∞) = P+(Π,∞), (4.40)

87

by continuity, and

P+(Π,∞) = P (Π,∞), (4.41)

by the following argument. If Q is rational, then λQ is integral for arbitrarily large

values of λ. Then Lemma 4.5 and (4.35) imply (4.41).

4.7 The Chernoff Bound Multiplicity Assignment

Algorithm

In this section, we devise an interpolation assignment algorithm based on minimizing

a tight upper bound on the error probability, the Chernoff bound.

4.7.1 The Chernoff Bound—Finite Cost

We have seen that the number P ∗(Π, γ) (see (4.31), above), delimits the best possible

ASD decoding performance, if the APP matrix Π is given. Unfortunately, however,

it is very difficult to compute P ∗(Π, γ). In this section, we derive a Chernoff bound

on P ∗(Π, γ) (see (4.50), below), which is easy to compute.

Let (Fn
q , Π) be a discrete sample space, i.e., for x = (x1, . . . , xn) ∈ Fn

q and Π =

(πi(β)) define the probability measure P (x) =
∏n

i=1 πi(xi). Define (independent)

random variables S1, . . . ,Sn by

Si(x) = qi(xi) for i = 1, . . . , n. (4.42)

where Q = ((qi(β)) is the multiplicity matrix, and the score

SQ = 〈x, Q〉 = S1 + · · ·+ Sn. (4.43)

88

Now we have

Pr {SQ ≤ δ} =
∑

x∈Fn
q

∆ [〈x, Q〉 ≤ δ] P (x). (4.44)

Let φi(s, πi, qi) be the moment generating function for Si, i.e.,

φi(s, πi, qi) = ESi

{
esSi

}
=

∑

β∈Fq

πi(β)esqi(β). (4.45)

Then the moment generating function for SQ is

Φ(s, Π, Q) =
∑

t

Pr {SQ = t} est = ESQ

{
esSQ

}
(4.46)

= ESQ

{
es
Pn

i=1 Si

}
= ESQ

{
n∏

i=1

esSi

}
(4.47)

=
n∏

i=1

ESi

{
esSi

}
=

n∏
i=1

φi(s, πi, qi), (4.48)

where the expectation and the product are interchanged due to the assumption that

the random variables Si are independent. Then by the the Chernoff bound (c.f.,

[89, 118]),

Pr {SQ ≤ δ} =
∑

t≤δ

Pr {SQ = t} (4.49)

≤ min
s≥0

{∑
t

Pr {SQ = t} es(δ−t)

}
= min

s≥0

{
esδΦ(−s, Π, Q)

}
.

Finally, if we recall that P ∗(Π, γ)
∆
= minΩ(Q)≤γ P(Π, Q) we have

P ∗(Π, γ) ≤ P χ(Π, γ)
∆
= min

s≥0
Ω(Q)=γ

{
esDv(γ)Φ(−s, Π, Q)

}
. (4.50)

It is a bit awkward to deal with the constraint Ω(Q) = γ in (4.50). We could

replace this constraint with the more natural constraint ‖X‖2 =
∑

i,β Xi(β)2 = L2,

89

where X = (Xi(β)) is of the same size as Q, by the following transformation:

Xi(β) = qi(β) + 1/2; L2 = 2γ +
nq

4
; D′ = Dv(γ) +

n

2
. (4.51)

Thus (4.50) could be written as

P ∗(Π, γ) ≤ min
‖X‖2=L2

min
s≥0

{
esD′Φ(−s, Π,X)

}
, (4.52)

and the optimum matrix is given by

X∗ = argX min
‖X‖2=L2

min
s≥0

{
esD′Φ(−s, Π,X)

}
. (4.53)

4.7.2 The Chernoff Bound—Infinite Cost

In this section, we derive a methodology for performance analysis at asymptotically

large costs. We begin by defining an auxiliary function G∗(Π, ζ):

G∗(Π, ζ) = min
‖R‖2=1

∑

x∈Fn
q

∆ [〈x, R〉 ≤ ζ] P (x). (4.54)

In the following theorem, we shall see that the case of γ → ∞ is the special case of

L2 = 1 and D′ =
√

v.

Theorem 4.7. P ∗(Π,∞) = limγ→∞ P ∗(Π, γ) = G∗(Π,
√

v).

Proof. Define R = X/‖X‖, then ‖R‖2 = 1. By using (4.51) and Lemma 4.1,

lim
γ→∞

D′

L
= lim

γ→∞

√
v + v3/2

16γ
+ n−v

2
√

2γ√
1 + nq

8γ

. (4.55)

90

Specifically, for large γ the right-hand side of (4.55) is approximated by

√
v +

v3/2

16γ
+

n− v

2
√

2γ
+

(√
v +

v3/2

16γ
+

n− v

2
√

2γ

) (
−1

2

nq

8γ
+

1.3

2.4

(
nq

8γ

)2

+ . . .

)

→ √
v + o(1),

where o(1) → 0 as γ →∞. Thus,

lim
γ→∞

min
‖X‖2=L2

Pr {SX ≤ D′} = lim
γ→∞

min
‖R‖2=1

Pr {SR ≤ D′/L} = min
‖R‖2=1

Pr
{
SR ≤

√
v
}

which by comparing with (4.52) implies the assertion.

Corollary 4.8. P (Π,∞) = P ∗(Π,∞) = G∗(Π,
√

v).

Proof. By Theorem 4.6 and Theorem 4.7 we are done.

Thus G∗(Π,
√

k − 1) is the minimum possible decoder error probability for the

ASD decoder, given the APP matrix Π. Similarly,

P (∞) =
∑

Π∈R
G∗(Π,

√
k − 1) Pr {Π} , (4.56)

is the unconditional minimum possible decoder error probability. The quantity G∗(Π,
√

v),

like its finite-cost counterpart P ∗(Π, γ), is difficult to compute exactly, but easy to

approximate with the Chernoff bound. To summarize: suppose R = (ri(β)), with

‖R‖2 = 1 is given. On the
{
Fn

q , Π
}

sample space, define corresponding random

variables Ri = ri(xi), for i = 1, . . . , n. Then

G∗(Π, ζ) = min
‖R‖2=1

Pr {R1 + · · ·+Rn ≤ ζ} . (4.57)

Let

γi(s, πi, ri) =
∑

x∈Fq

πi(x)esri(x) (4.58)

91

be the moment generating function for Ri, i = 1, . . . , n. Then the moment generating

function for SR = R1 + · · ·+Rn is

Γ(s, Π, R) =
n∏

i=1

γi(s, πi, ri), (4.59)

and the Chernoff bound says that

Pr {Sn ≤ ζ} ≤ min
s≥0

{
Γ(−s, Π, R)esζ

}
. (4.60)

Thus if we define

Gχ(Π, ζ) = min
‖R‖2=1

min
s≥0

{
Γ(−s, Π, R)esζ

}
and (4.61)

Rχ(Π, ζ) = argR min
‖R‖2=1

min
s≥0

{
Γ(−s, Π, R)esζ

}
, (4.62)

we have the following theorem.

Theorem 4.9. P (Π,∞) = P ∗(Π,∞) = G∗(Π,
√

v) ≤ Gχ(Π,
√

v).

The function Gχ(Π,
√

v) = Gχ(Π,
√

k − 1) is our main tool, since it is (a) relatively

easy to calculate, and (b) a tight upper bound on P (Π,∞), at least when P (Π,∞)

is small. Furthermore, the matrix Rχ(Π,
√

k − 1), when appropriately scaled and

quantized, represents a near-optimal choice for the multiplicity matrix for large values

of the cost. In the next section, we derive key equations which form the heart of the

algorithm used to find the near-optimum multiplicity matrices.

4.7.3 The Lagrangian

In this section, we will focus on finding the optimum matrix X = (Xi(β)) with a finite

cost γ and with L2 and D′ defined as in (4.51). As seen in the previous section, the

case of an optimum infinite-cost multiplicity matrix is the special case with L2 = 1

92

and D′ =
√

v. The problem of finding the optimum matrix, X∗, in (4.53) could be

reformulated as the constrained optimization problem,

min

(
sD′ +

n∑
i=1

ln φi(−s, πi, Xi)

)
(4.63)

subject to

s ≥ 0

‖X‖2 = L2 = 2γ +
1

4
nq.

Define the Lagrangian,

L(s,X, λ) = sD′ +
n∑

i=1

ln φi(−s, πi, Xi) +
λ

2

(‖X‖2 − L2
)
.

It is required to solve for s∗,X∗, and λ∗ that satisfy

∂L
∂λ

∣∣∣∣
λ=λ∗

= 0,
∂L
∂s

∣∣∣∣
s=s∗

= 0 and
∂L

∂Xi(β)

∣∣∣∣
X=X∗

= 0.

If the optimization for s results in a negative value for s∗, then this value is

discarded and s∗ is taken to be at the boundary, i.e., s∗ = 0. (This may be the case

at low signal-to-noise ratios when the matrix Π has a random-like structure.) The

corresponding optimized multiplicity matrix X∗ is calculated by optimizing for X.

Since D′ = Dv(γ) + n/2 and γ = (‖X‖2− nq
4

)/2, then D′ is a function of X. Since

Dv(γ) is actually a discrete function, then it could not be differentiated, however it

is well approximated by the continuous upper bound in (4.8),

∂D′

∂Xi(β)
≈

(√
v√‖X‖2 − nq

4

− v3/2

8
(‖X‖2 − nq

4

)3/2

)
Xi(β) = ψ(‖X‖2)Xi(β).

In fact the term ψ(‖X‖2) will cancel while solving for X∗ below. Solving for X∗ and

93

s∗;
∂L
∂λ

∣∣∣∣
λ=λ∗

= 0 ⇒ ‖X‖2 = L2, (4.64)

∂L
∂s

∣∣∣∣
s=s∗

= D′ −
n∑

i=1

(∑
β∈Fq

Xi(β)πi(β)e−sXi(β)

φi(−s, πi, Xi)

)∣∣∣∣∣
s=s∗

= 0, (4.65)

∂L
∂Xi(β)

∣∣∣∣
X=X∗

= sψ(‖X‖2)Xi(β)− s
πi(β)e−sXi(β)

φi(−s, πi, Xi)
+ λXi(β)

∣∣∣∣
X=X∗

= 0. (4.66)

Multiplying (4.66) by Xi(β), summing over β ∈ Fq and then summing over i, we

get

sψ(‖X‖2)‖X‖2 − s

n∑
i=1

(∑
β∈Fq

Xi(β)πi(β)e−sXi(β)

φi(−s, πi, Xi)

)
+ λ‖X‖2

∣∣∣∣∣
X=X∗

= 0. (4.67)

Substituting (4.64) and rearranging;

λ = s

(
1

L2

n∑
i=1

(∑
β∈Fq

Xi(β)πi(β)e−sXi(β)

φi(−s, πi, Xi)

)
− ψ(L2)

)
. (4.68)

Substituting back in (4.66) we reach the following equation,

Xi(β)

L2

n∑
i=1

(∑
β∈Fq

Xi(β)πi(β)e−sXi(β)

φi(−s, πi, Xi)

)
− πi(β)e−sXi(β)

φi(−s, πi, Xi)

∣∣∣∣∣
X=X∗

= 0. (4.69)

If s = s∗, then this equation reduces to

D′

L2
Xi(β)− πi(β)e−s∗Xi(β)

∑
β∈Fq

πi(β)e−s∗Xi(β)

∣∣∣∣∣
X=X∗

= 0. (4.70)

In summary, the optimization problem is reduced to finding s∗ and X∗ which are

the solutions for equations (4.65) and (4.69) (or (4.70)), respectively.

94

4.7.4 Convexity

In this section, we show that the optimized Lagrangian, L∗(s,X) = L(s,X, λ∗), is

convex in both s and X. Thus an iterative algorithm that will minimize L∗(s,X)

could be developed. Specifically we show that for a given multiplicity matrix X ′, the

optimized Lagrangian is convex in the parameter s, and for a given s (at s = s∗), the

optimized Lagrangian is convex in the nq variables which are the components of the

multiplicity matrix X. Let

Ls(s)
∆
= L∗(s,X)|X=X′ (4.71)

LX(X)
∆
= L∗(s,X)|s=s∗ . (4.72)

4.7.4.1 Ls(s) is Convex in s

The gradient of Ls(s) is defined to be Gs(s) = ∂Ls(s)
∂s

and is given by (4.65).

The second derivative of Ls(s) with respect to s is

∂2Ls(s)

∂s2
=

n∑
i=1




∑
β∈Fq

X2
i (β)πi(β)e−sXi(β)

∑
β∈Fq

πi(β)e−sXi(β)
−

(∑
β∈Fq

Xi(β)πi(β)e−sXi(β)

∑
β∈Fq

πi(β)e−sXi(β)

)2

 .

Define the q × 1 -dimensional vectors Λi and Θi such that

Λi =
{

Xi(β)
√

πi(β)e−sXi(β)/2
}

and Θi =
{√

πi(β)e−sXi(β)/2
}

for β ∈ Fq,

then the second derivative of Ls(s) with respect to s is reformulated as

Hs =
∂2Ls(s)

∂s2
=

n∑
i=1

(‖Λi‖2‖Θi‖2 − (ΛT
i Θi)

2

‖Θi‖4

)
,

where for any vector x, ‖x‖ =
(
xT x

)1/2
is the Euclidean norm of x. By the Cauchy

95

Schwartz inequality

‖Λi‖‖Θi‖ ≥ (‖ΛT
i Θi)‖1,

where ‖.‖1 is absolute value and (.)T is the vector transposed, with equality iff there

exists an α ≥ 0 such that Λi = αΘi. Thus Hs ≥ 0, which implies that Ls(s) is convex.

In fact, Hs = 0 iff for each i = 1, . . . , n, Xi(β) = αi where αi ≥ 0 for all β ∈ Fq.

Since Xi(β) is a function of πi(β), then this implies that for each i, πi(β) = 1/q. This

would imply that all symbols β ∈ Fq are equally likely given the received symbol. At

reasonable operating conditions, such a condition does not occur for all i = 1, . . . , n,

as it is equivalent to receiving all n symbols of the codeword in error. So in general,

Hs > 0 and Ls(s) is strongly convex in s.

4.7.4.2 LX(X) is Convex in X

Define the qn-dimensional vector

X̄ = {X1(β1), . . . , X1(βq), . . . , Xn(β1), . . . , Xn(βq)} .

So the gradient of LX(X) is defined by the (qn× 1)-dimensional vector,

GX =
{
GX1(β1), . . . , GX1(βq), . . . , GXn(β1), . . . , GXn(βq)

}
,

where

GXi(β) =
∂LX(X)

∂Xi(β)
= s∗

(
D′

L2
Xi(β)− πi(β)e−s∗Xi(β)

∑
β∈Fq

πi(β)e−s∗Xi(β)

)
. (4.73)

The second derivatives are given by

1

s∗
∂2LX(X)

∂X2
i (β)

=
D′

L2
+ s∗πi(β)e−s∗Xi(β)

(∑
β∈Fq

πi(β)e−s∗Xi(β)
)
− πi(β)e−s∗Xi(β)

(∑
β∈Fq

πi(β)e−s∗Xi(β)
)2 ,

96

1

s∗
∂2LX(X)

∂Xi(β1)∂Xi(β2)

∣∣∣∣
β1 6=β2

= −s∗
πi(β1)πi(β2)e

−s∗(Xi(β1)+Xi(β2)

(∑
β∈Fq

πi(β)e−s∗Xi(β)
)2 , and

1

s∗
∂2LX(X)

∂Xi(β1)∂Xj(β2)

∣∣∣∣
β1 6=β2,i6=j

= 0.

Define the q × q matrix, HXi
, such that for a, b = 1, 2, . . . , q,

[HXi
]a,b =

∂2LX(X)

∂Xi(βa)∂Xi(βb)
,

then using the above second-order derivatives

HXi
= s∗

(
D′

L2
Iq +

s∗

(JT zi)2

(
(JT zi)Diag(zi)− ziz

T
i

))
,

where zi =
{
πi(βa)e

−s∗Xi(βa), a = 1, . . . , q
}

is a (q × 1) vector, J is the all-ones q

vector and Diag(z) is the diagonal matrix with the elements of z on the diagonal.

The Hessian of LX(X) defined by

[HX]a,b =
∂2LX(X)

∂X̄(a)∂X̄(b)

is thus given by the block diagonal matrix

HX = Diag(HX1 , HX2 , . . . , HXn). (4.74)

Let vi be any q vector,

Ψi =
{√

zi(1), . . . ,
√

zi(q)
}T

and Φi =
{

vi(1)
√

zi(1), . . . , vi(q)
√

zi(q)
}T

,

then

vT
i HXi

vi = s∗
(

D′

L2
vT

i vi +
s∗

(JT zi)2

(
(ΨT

i Ψi)(Φ
T
i Φi)− (ΨT

i Φi)
2
))

, (4.75)

97

By the Cauchy-Schwartz inequality,

(ΨT
i Ψi)(Φ

T
i Φi)− (ΨT

i Φi)
2 ≥ 0,

and by substituting in (4.75) it follows that

vT
i HXi

vi ≥ s∗D′

L2
vT

i vi ≥ 0, (4.76)

where the last inequality is due to the fact that s∗ ≥ 0 and vT
i vi = ‖vi‖2 ≥ 0 for any

vector vi. If s∗ > 0, then vT
i HXi

vi > 0 for any nonzero vector vi which implies that

HXi
is positive definite. Let v =

{
vT

1 , vT
2 , . . . , vT

n

}T
be an arbitrary qn vector, then

from (4.76) and (4.74), it follows that

vT HXv =
n∑

i=1

vT
i HXi

vi ≥ 0,

which proves that LX(X) is convex. Generally, s∗ > 0 which would imply that HX

is positive definite and thus LX(X) is strongly convex. In this analysis, we assumed

that s = s∗ since we will optimize for s and then for X. However, for another s ≥ 0,

the term D′ in (4.73) could be treated as another positive quantity and the analysis

holds.

4.7.5 Iterative Algorithm

The proposed iterative algorithm for finding X∗ = (Xi(β)), and thus the optimum

multiplicity matrix, could be summarized as follows:

Algorithm 4.1. Let sj and Xj = (Xj
i (β)) be the values of s and X at the jth iteration

respectively. ε ≈ 10−5 is a small number greater than zero.

Initialize Xo = L2

D′Π, so = 0.1 ∗ D′
L2 and j = 0.

Do

98

j := j + 1

I. Solve for sj, (4.65),

∇s

(L∗(s,Xj−1)
)

=
∂L∗(s,Xj−1)

∂s

∣∣∣∣
s=sj

= 0

If sj is negative then set sj to be zero.

II. Solve for Xj, (4.69),

∇X
(L∗(sj,X)

)
=

{
∂L∗(sj,X)

∂Xj
i (β)

, i = 1, . . . , n, β ∈ Fq

}∣∣∣∣
X=Xj

= 0

While ∥∥∥∥
sj − sj−1

sj−1

∥∥∥∥
1

≤ ε.

For the case of finite costs, the optimized integer multiplicity matrix, M = (mi(β)) is

found from the optimized matrix X∗ = (X∗
i (β)) by the inverse transformation,

mi(β) = Round {max {0, X∗
i (β)− 0.5}} , (4.77)

where Round {} is the rounding to the nearest integer.

4.7.6 Implementation Issues

In our implementation and for the simulation results in this chapter, we replace the

command Solve by a Newton-type algorithm. Other algorithms such as the gradient

descent algorithm, which is less computationally complex, were also tested. However,

the Newton algorithm described in Appendix A achieved the best results. Given

that the complexity of Newton’s algorithm can be cubic in the number of optimized

variables and we the Chernoff algorithm is an optimization in qn variables, the entries

of X, it is computationally expensive. However, the computational complexity could

99

be reduced dramatically by observing that the entries of each column in Π, πi, sum

to one, and that for reasonable operating signal-to-noise ratios (SNRs) only a small

fraction of them have a relevant value while the rest tend to be negligible or zero.

Thus, in optimizing for X only the elements Xi(β) corresponding to elements πi(β)

above a certain threshold are considered for optimization while the others are set to

zero. Practically, this threshold could be set to 10−6 or 10−7. This implies that the

complexity of our algorithm decreases with an increase in the operating SNR, which

is usually the case for operating conditions. Another approach, which might be less

reliable but whose complexity is independent of the SNR, is to optimize only for the

largest ε entries in each column rendering the number of optimized variables to be

nε.

4.8 Numerical Results

In this section we will refer to our method as the Chernoff method. The Gaussian

approximation of [83] is referred to as the Gauss method and the Koetter-Vardy

algorithm, (4.21), as KV. A hard decision bounded minimum distance decoder, as

the Berlekamp-Massey algorithm, is referred to as BM. It is to be noted that we used

the condition of (4.4) to test if the transmitted codeword is on the GS generated

list for all ASD algorithms compared. If the sufficient condition is satisfied then a

decoding success is signaled. This is somehow justified by the fact that, on average,

the list size is one [77]. If the GS generated list is empty, then it is most likely that

the sufficient condition will not be satisfied, and a decoder error is signaled. In a real

time implementation, if more than one codeword is on the generated list, then the

most reliable codeword (with respect to the soft output from the channel) is chosen

as the decoder output.

To test our theories, we simulated the performance of the (15, 11) RS code over

100

3 4 5 6 7 8 9 10
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

ASD of (15,11) RS code BPSK modulated over AWGN Channel

HD−BM
KV,γ=∞
Gauss,γ=∞
Chernoff,γ=∞
KV,γ=104

Chernoff,γ=104

ML Bound

Figure 4.2: Performance of ASD algorithms when decoding an (15, 11) RS code
BPSK modulated over an AWGN channel, for both finite and infinite interpolation
costs.
Their performance is also compared to an averaged upper bound on the performance
of the ML decoder.

101

the finite field Fq of 16 elements, F16, on an additive white Gaussian noise (AWGN)

channel. These results are shown in Figure 4.2 and Figure 4.3 for the cases of binary

phase shift keying (BPSK) and 16-ary phase shift keying (PSK) modulation schemes

respectively.

We see that the Chernoff technique shows a marked superiority when compared

to the KV technique, for both finite and infinite cost matrices. For BPSK modula-

tion, infinite cost γ, and an error rate of 4 × 10−8, our algorithm has about 0.9 dB,

1.8 dB and 2.5 dB coding gains over the Gauss, KV and BM algorithms respectively.

Simulation results for a finite cost of 104 also show the potential of our algorithm over

previously proposed ones. A tight averaged upper bound on the maximum-likelihood

error probability (Section 2.4) is also plotted. Since it is the binary image of the RS

code which is modulated and transmitted over the channel, and the binary image is

not unique but depends on the basis used to represent the symbols in F16 as bits, this

bound was derived by averaging over all possible binary images over an RS code. By

comparing with actual simulations for maximum-likelihood decoding of the (15, 11)

RS code over an AWGN channel this bound was shown to be tight (Chapter 2). Our

algorithm has a near-ML performance at high signal-to-noise ratios.

Similarly, for the case of 16-ary PSK, the Chernoff algorithm has about 2.6 dB

gain over the BM algorithm at a codeword error rate of 10−7. The performance gain

over KV is about 1.7 dB at an error rate of 10−6.

Numerical results for ASD decoding of the (31, 25) RS code over F32 BPSK mod-

ulated over AWGN channel are shown in Figure 4.4. As seen the Chernoff algorithm

has up to 2 dB gain over the hard-decision BM algorithm. The coding gain over the

KV algorithm and the Gaussian approximation increases at the tail of error proba-

bility. The averaged bound on the ML error probability is also plotted. It is observed

that that at high SNRs, our algorithm is near optimal.

To demonstrate the convergence of our proposed algorithm, we plot the value

102

6 8 10 12 14 16 18
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ASD of (15,11) RS Code 16−PSK modulated over AWGN

SNR (dB)

C
od

ew
or

d
E

rr
or

 R
at

e

HD−BM
KV, γ=∞
Gauss, γ=∞
Chernoff, γ=∞
KV, γ=1e4
Chernoff, γ=1e4

Figure 4.3: Performance curves for decoding an (15, 11) RS code, 16-PSK modulated
over an AWGN channel, using different ASD algorithms.

103

2 3 4 5 6 7 8 9
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

C
od

ew
or

d
E

rr
or

 R
at

e

ASD of (31,25) RS code BPSK modulated over AWGN Channel

HD−BM
KV
Gauss
Chernoff
MLBound

Figure 4.4: An (31, 25) RS code is BPSK modulated over an AWGN channel.
ASD algorithms are compared at infinite interpolation costs. The Chernoff algorithm
has a better performance than the Gauss and KV algorithms. The performance
curve of a bounded minimum distance decoder and an averaged upper bound on the
performance of the ML decoder are also plotted.

104

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

Iteration, j

E
xp

on
en

t p
ar

am
et

er
, s

j

Chernoff ASD Instance of (15,11) RS code BPSK modulated at SNR=6 dB

sj

Figure 4.5: Convergence of the Chernoff bound algorithm at an SNR of 6 dB.
A decoding instance of the (15, 11) RS code, BPSK modulated over an AWGN channel
at a fixed SNR of 6 dB, using Chernoff ASD. The convergence of the algorithm is
conveyed by the fast adaptation of the exponential parameter sj.

105

2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

(15,11) RS code, BPSK over AWGN, SNR=5.5 dB, Chernoff ASD

Iteration, j

C
od

ew
or

d
E

rr
or

 R
at

e

Figure 4.6: Convergence of the error probability of the Chernoff bound algorithm.
The convergence is demonstrated by plotting the average codeword error probability
versus the number of iterations at a fixed SNR of 5.5 dB.

of sj, (see Algorithm 4.1), versus the iteration number j for a fixed value of SNR.

This is shown in Figure 4.5 for a randomly transmitted (15, 11) RS codeword and

BPSK modulation with an SNR of 6 dB. The average codeword error rate is plotted

in Figure 4.6 versus the number of iterations at a SNR of 5.5 dB. These figures

demonstrate the fast convergence of the algorithm in terms of the number of (global)

iterations.

106

4.9 Discussion

The performance gains of our algorithm over that of the Gaussian approximation,

by Parvaresh and Vardy [83], could be reasoned by observing that the Gaussian

approximation finds the multiplicity matrix of infinite cost that minimizes the error

probability assuming that the score has a Gaussian distribution. It could be shown

that this is equivalent to minimizing the Chebychev bound [89, 118] on the error

probability assuming that the score is symmetrically distributed around its mean; By

the Chebyshev bound (c.f (4.49)),

Pr {SM ≤ δ} ≤ σ2
S

2(δ − µS)2
, (4.78)

where µS and σ2
S are the mean and variance of the score and it is assumed that

µS − δ ≥ 0. The expectation is given by

µS = E {SM} =
n∑

i=1

E {Si} =
n∑

i=1

∑

β∈Fq

πi(β) mi(β), (4.79)

where Π = (πi(β)) is the reliability matrix. With the assumption that all the random

variables Si are independent,

σS =
n∑

i=1

∑

β∈Fq

πi(β) m2
i (β)−

n∑
i=1


∑

β∈Fq

πi(β) mi(β)




2

. (4.80)

The minimizing multiplicities are found by differentiating the bound (4.78) with re-

spect to mi(β) and equating to zero.

It is well known that the Chernoff bound is a tighter upper bound than the Cheby-

chev bound (c.f., [89, 118]). Further more, no assumptions about the distribution of

the score is made in deriving our algorithm.

It is observed that the coding gains of the Chernoff algorithm, developed in this

107

chapter, over other ASD algorithms increases as the SNR increases and approaches

that of the ML bound. This somehow proves the conjecture that our algorithm is

optimal at the tail of error probability. The reasoning behind that is the fact that the

Chernoff bound, in general, is an exponentially tight upper bound at the tail of error

probability and closely approximates the true error probability. In another way, this

shows the potential of using the Chernoff algorithm in favorable operating conditions.

4.10 Conclusion

The goal of this chapter was to find the ultimate capabilities of algebraic soft de-

coding of Reed-Solomon codes. Since the performance of ASD depends mainly on

the interpolation multiplicities assigned, we explored a novel multiplicity assignment

algorithm that results in an improved performance. The multiplicity assignment

algorithm proposed aims at directly minimizing the decoding error probability. Rea-

sonable approximations and relaxations were made to simplify the problem. However,

since the actual error probability is relatively hard to compute, we aimed at finding

the multiplicity matrix that will minimize an upper bound (the Chernoff bound) on

the error probability. We explore the cases of both finite and infinite cost multiplicity

matrices. The problem is formulated as a constrained optimization problem and an

iterative algorithm is developed that will find the optimum multiplicity matrix. Nu-

merical results show that our algorithm is superior to other multiplicity assignment

algorithms found in the literature.

108

Chapter 5

Iterative Algebraic Soft-Decision
Decoding of Reed-Solomon Codes

When I have fully decided that a result is worth getting I go ahead of

it and make trial after trial until it comes.

—Thomas A. Edison

As we mentioned in Chapter 4, the performance of algebraic soft-decision decoding

of Reed-Solomon codes depends on the scheme used to assign multiplicities for the

Guruswami-Sudan algorithm. While searching for the optimum multiplicity matrix,

we have proposed a multiplicity assignment algorithm, based on the Chernoff bound,

that has best performance when compared to other previously proposed multiplic-

ity assignment algorithms. The gap to the maximum-likelihood performance hinted

at the possible existence of even better algebraic soft-decision decoding algorithms.

In this chapter, we develop an algebraic soft-decision list-decoding algorithm based

on the idea that belief propagation-based algorithms could be deployed to improve

the reliability of the symbols that is then utilized by an interpolation multiplicity

assignment algorithm.

Conventional message passing algorithms, when applied on RS codes, may not

result in a good performance due to the dense nature of the associated parity check

matrices. Jiang and Narayanan (JN) developed an iterative algorithm based on belief

109

propagation for soft decoding of RS codes [64, 63]. This algorithm compares favorably

with other soft-decision decoding algorithms for RS codes (c.f., [88]) and is a major

step towards message passing decoding algorithms for RS codes. In the JN algorithm,

belief propagation is run on an adapted parity check matrix where the columns in the

parity-check matrix corresponding to the least reliable independent bits are reduced

to an identity submatrix [64, 63]. The order statistics decoding algorithm by Fossorier

and Lin [42] also sorts the received bits with respect to their reliability information and

reduces the columns in the generator matrix corresponding to the most reliable bits

to an identity submatrix. This matrix is then used to generate (permuted) codewords

using the most reliable bits. Other soft-decoding algorithms for RS codes include the

generalized minimum distance (GMD) decoding algorithm introduced by Forney [41],

the Chase II algorithm [18], the combined Chase II-GMD algorithm [103], successive

erasure-error decoding [60] as well as code decomposition [53].

For a brief review of the GS algorithm and algebraic soft-decision decoding, in par-

ticular the Koetter-Vardy algorithm, we refer the reader to Section 4.2 and Section 4.5

in the previous chapter. An outline of this chapter is as follows. In Section 5.1, we in-

troduce some notation and describe the technique we used to derive the binary images

of Reed-Solomon codes. The JN algorithm is explained in the context of this chapter

in Section 5.2. Some modifications to the JN algorithm are introduced in Section 5.3.

One of the main contributions in this chapter, the iterative algebraic soft-decision list-

decoding algorithm, is presented in Section 5.4. Another main contribution, a low

complexity algorithm based on the JN algorithm, is presented in Section 5.5. Some

discussions as well as some numerical results are presented in section 5.6. Finally, we

conclude the chapter in Section 5.7.

110

5.1 Preliminaries

As in Chapter 4, d = [d0, d1, . . . , dk−1] will denote a k-dimensional vector over Fq

where Fq is the finite field of q elements. C will denote an (n, k, d) RS code. An

(n, k, d) RS codeword u = [u0, u1, . . . , un−1] could be generated by evaluating a data

polynomial D(X) =
∑k−1

i=0 diX
i, of degree k− 1, at n elements of the field composing

a set, called the support set of the code;

u = [D(1),D(α1), . . . ,D(αn−1], (5.1)

where α is the primitive element of the field and n = q − 1. The set S = {1, α,

α2, . . . , αn−1} is called the support set of the code and is vital for the operation of

the Guruswami-Sudan algorithm.

Lemma 5.1. The polynomial U(X) =
∑n−1

i=0 uiX
i associated with a codeword u gen-

erated as in (5.1) has α, α2, . . . , αn−k as zeros.

Proof. Let d′ be the vector d padded with (n− k) zeros such that

d′i =





di for i ≤ k − 1

0 for k ≤ i ≤ n− 1.
(5.2)

It follows from (5.1) that uj =
∑n−1

i=0 d′iα
ij. Thus u is the discrete Fourier transform

(DFT) of d′ [74]. The inverse DFT of u is given by

d′j =
n−1∑
i=0

uiα
−ij = U(α−j) = U(αn−j). (5.3)

Substituting (5.2) in (5.3), we conclude that U(αi) = 0 for i = 1, 2, . . . , n− k.

It follows that
n−1∑
i=0

uiα
ij = 0 for j = 1, 2, . . . , n− k, (5.4)

111

and a valid parity check matrix H, such that HuT = 0, is [75]

H =




1 α . . . αn−1

1 α2 . . . α2(n−1)

...
... . . .

...

1 αn−k . . . α(n−k)(n−1)




. (5.5)

5.1.1 A Binary Image of the Reed-Solomon Code

In many cases, it is the binary image of RS codes which is modulated and transmitted

over the channel. We show here a valid binary representation of a RS code and it

corresponding parity check matrix. Let P(X) = ao + a1X + am−1X
m−1 + Xm be a

primitive polynomial in F2[X]. Let α be a root of P(X), then α is a primitive element

in F2m . The companion matrix of P(X) is given by the m×m matrix

C =




0 . . . 0

Im−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

ao

a1

...

am−1




, (5.6)

where Im is the m × m identity matrix [59]. The characteristic polynomial of this

matrix satisfies

det(C − ImX) = P(X).

Representing the primitive element, α, by its binary companion matrix C, the map-

ping αi ↔ Ci, {i = 0, 1, 2, . . .} induces a field isomorphism. So every element in the

parity check matrix of (5.5) can be replaced with an m × m matrix resulting in a

binary parity check matrix H of size (n − k)m × nm. Also, any element, β ∈ F2m ,

has an m-tuple representation {β0, β1, . . . , βm−1} where

112

β = β0 + β1α + · · ·+ βm−1α
m−1, βi ∈ F2 (5.7)

and α is the primitive element of the field. Let β = αi then it follows that

Cj{β0, β1, ..., βm−1}T ↔ αij

where the matrix multiplication is done in F2. The binary image of a codeword u is

given by the nm tuple ub where

ub = [u0,0, u0,1, . . . , u0,m−1, . . . , un−1,0, un−1,1, . . . , un−1,m−1].

Such a mapping results in Hub
T = 0. The redundancy of the code’s binary image is

r̃ where r̃ = ñ− k̃, ñ = mn and k̃ = mk.

Throughout this chapter, the received vector will be denoted by y = x+η, where

x = 1 − 2ub is the BPSK modulation of a codeword u and η is the AWGN vector

with variance σ2. The channel log likelihood ratios (LLRs) are given by Λch = 2y/σ2.

In concatenated coding systems, where the RS code is implemented as an outer code,

the “channel” LLRs will be the soft output of an inner decoder such as the BCJR

algorithm [7], the soft output Viterbi algorithm (SOVA) [112] or another BP decoder.

5.2 Adaptive Belief Propagation

Gallager devised an iterative algorithm for decoding his low-density parity check

(LDPC) codes [45]. This algorithm was the first appearance in the literature of

what we now call belief propagation (BP). Recall that H is the parity check matrix

associated with the binary image of the RS code. It has r̃ rows corresponding to the

check nodes and ñ columns corresponding to the variable nodes (transmitted bits).

113

Hi,j will denote the element in the ith row and jth column of H. Define the sets,

J(i)
∆
= {j | Hi,j = 1} and I(j)

∆
= {i | Hi,j = 1}. Define Qi,j to be the log-likelihood

ratio (LLR) of the jth received symbol, uj, given the information about all parity

check nodes except node i and Ri,j to be the LLR that check node i is satisfied when

uj is fixed to 0 and 1 respectively. Given the vector Λin of initial LLRs, the BP

algorithm outputs the extrinsic LLRs Λx as described below [78][52].

Algorithm 5.1. Damped Log Belief Propagation (LBP)

For all (i, j) such that Hi,j = 1:

Initialization: Qi,j = Λin
j

DO

Horizontal Step:

Ri,j = log

(
1 +

∏
k∈J(i)\j tanh(Qi,k/2)

1−∏
k∈J(i)\j tanh(Qi,k/2)

)

= 2 tanh−1


 ∏

k∈J(i)\j
tanh(Qi,k/2)


 (5.8)

Vertical Step:

Qi,j = Λin
j + θ

∑

k∈I(j)\i
Rk,j

While stopping criterion is not met.

Extrinsic Information: Λx
j =

∑
k∈I(j) Rk,j.

The factor θ is termed the vertical step damping factor and 0 < θ ≤ 1. The mag-

nitude of θ is determined by our level of confidence about the extrinsic information.

In our implementations, θ is 0.5. Equation (5.8) is specifically useful for fast hardware

implementations where the tanh function will be quantized to a reasonable accuracy

and implemented as a lookup table. In our implementation, damped LBP is run for

a small number of iterations on a fixed parity check matrix, so the stopping criterion

114

is the number of iterations. In case that only one LBP iteration is run on the parity

check matrix, the vertical step is eliminated.

Following we describe the Jiang-Narayanan algorithm [63, 64], which builds on

the BP algorithm. In the JN algorithm, BP is run on the parity check matrix after

reducing its independent columns corresponding to the least reliable bits to an identity

submatrix. We will refer to such a class of algorithms, that adapt the parity check

matrix before running BP, by adaptive belief propagation (ABP).

Algorithm 5.2. The JN Algorithm

Initialization: Λp := Λch

DO

1. Sort Λp in ascending order of magnitude and store the sorting index. The

resulting vector of sorted LLRs is 1

Λin = [Λin
1 , Λin

2 , . . . , Λin
nm],

‖Λin
k ‖1 ≤ ‖Λin

k+1‖1 for k = 1, 2, . . . , nm − 1 and Λin = PΛp where P defines a

permutation matrix.

2. Rearrange the columns of the binary parity check matrix H to form a new matrix

HP where the rearrangement is defined by the permutation P .

3. Perform Gaussian elimination (GE) on the matrix HP from left to right. GE

will reduce the first independent (n − k)m columns in HP to an identity sub-

matrix. The columns which are dependent on previously reduced columns will

remain intact. Let this new matrix be ĤP .

4. Run log BP on the parity check matrix ĤP with initial LLRs Λin for a maximum

number of iterations ItH and a vertical step damping factor θ. The log BP

1To prevent notational ambiguity, ‖x‖1 will denote the magnitude of x.

115

algorithm outputs extrinsic LLRs Λx.

5. Update the LLRs, Λq = Λin + α1Λ
x and Λp := P−1Λq where 0 < α1 ≤ 1 is

called the ABP damping factor and P−1 is the inverse of P .

6. Decode using Λp as an input to the decoding algorithm D.

While Stopping criterion not satisfied.

The JN algorithm assumed that the decoder D is one of the following hard-decision

decoders:

• HD: Perform hard-decisions on the updated LLRs, û = (1 − sign(Λp))/2. If

HûT = 0, then a decoding success is signaled.

• BM: Run a bounded minimum distance decoder such as the Berlekamp-Massey

(BM) algorithm on the LLRs after hard-decisions. If the BM algorithm finds a

codeword, a decoding success is signaled.

The performance largely depends on the decoder D and the stopping criterion used.

This is discussed in the following section.

5.3 Modifications to the Jiang-Narayanan Algo-

rithm

The stopping criterion deployed in the JN algorithm is as follows [63]:

• Stop if a decoding success is signaled by the decoder D or if the number of

iterations is equal to the maximum number of iterations, N1.

We propose a list-decoding stopping criterion in which a list of codewords is iter-

atively generated. The list-decoding stopping criterion is as follows

116

• If a decoding success is signaled by the decoder D, add the decoded codeword

to a global list of codewords. Stop if the number of iterations is equal to the

maximum number of iterations, N1.

If more than one codeword is on the global list of codewords, then the list decoder’s

output is the codeword which is at the minimum Euclidean distance from the received

vector. Alternatively, one could only save the codeword with the largest conditional

probability, given the received vector. This codeword would be the candidate for the

list decoder’s output when the iteration loop terminates.

The advantage of our proposed list-decoding stopping criterion over the stopping

criterion in the JN algorithm is emphasized in the case of higher rate codes, where

the decoder error probability is relatively high. Given a decoding algorithm D, the

JN ABP algorithm may result in updating the received vector to lie in the decoding

region of an erroneous codeword. However, running more iterations of the JN ABP

algorithm may move the updated received vector into the decoding sphere of the

transmitted codeword. The decoding algorithm D should also be run on the channel

LLRs before any ABP iteration is carried out. If the decoder succeeds to find a

codeword, it is added to the list.

Jiang and Narayanan [64] proposed running N2 parallel decoders (outer iterations),

each with the JN stopping criterion and a maximum of N1 inner iterations. Each one

of these N2 iterations (decoders) starts with a different random permutation of the

sorted channel LLRs in the first inner iteration. The outputs of these N2 decoders

form a list of at most N2 codewords. If each of these N2 decoders succeeds to find

a codeword, the closest codeword to the received vector is chosen. We also run N2

parallel decoders (outer iterations), each with the list-decoding stopping criterion, to

form a global list of at most N1N2 codewords. We propose doing the initial sorting of

the channel LLRs in a systematic way to ensure that most bits will have a chance of

being in the identity sub-matrix of the adapted parity check matrix. The improved

117

performance achieved by these restarts could be explained by reasoning that if a

higher reliability bit is in error, then it has a higher chance of being corrected if its

corresponding column in the parity check matrix is in the sparse identity submatrix.

Let z = bñ/N2c, then at the (j +1)st outer iteration, j > 0, the initial LLR vector

at the first inner iteration is

[Λin
jz+1, . . . , Λ

in
(j+1)z, Λ

in
1 , . . . , Λin

jz, Λ
in
(j+1)z+1, . . . , Λ

in
ñ], (5.9)

where Λin is the vector of sorted channel LLRs. The columns of HP will also be

rearranged according to the same permuatation. If (j + 1)z ≤ r̃, then it is less likely

that this initial permutation will introduce new columns into the identity submatrix

other than those which existed in the first outer iteration. After the first outer

iteration, it is thus recommended to continue with the (j + 1)st outer iteration such

that (j + 1) > r̃/z.

Another modification that could improve the performance of the JN algorithm is

to run a small number of iterations of damped log belief propagation on the same

parity check matrix. Although belief propagation is not exact due to the cycles

in the associated Tanner graph [104], running a very small number of iterations of

belief propagation is very effective [121]. Observing that the complexity of belief

propagation is much lower than that of Gaussian elimination, one gets a performance

enhancement at a slightly increased complexity.

Throughout the remaining of this chapter, we will refer to the modified JN algo-

rithm with a list-decoding stopping criterion, as well as with the other modifications

introduced in this section, by ABP-BM if the decoding algorithm D is BM (see Al-

gorithm 5.2). Similarly, if the decoding algorithm was HD, the algorithm is referred

to by ABP-HD. One of the main contribution in this chapter, the utilization of the

a posteriori probabilities at the output of the ABP algorithm as the soft information

118

input to an ASD algorithm, is presented in the following section.

5.4 The Hybrid ABP-ASD List Decoding Algo-

rithm

Koetter and Vardy [72] point out that it is hard to maximize the mean of the score

with respect to the to the true channel a posteriori probabilities. Previous multiplic-

ity assignment algorithms [72, 83, 31] assumed approximate a posteriori probabilities.

The problem is simplified by assuming that the transmitted codeword is drawn uni-

formly from Fn
q . Also, the n received symbols are assumed to be independent and thus

be assumed to be uniformly distributed. In such a case, the a posteriori probabilities

are approximated to be a scaling of the channel transition probabilities,

Πch
i (β) =

Pr{yi|ui = β}∑
ω∈Fq

Pr{yi|ui = ω} . (5.10)

However, from the maximum distance separable (MDS) property of RS codes any k

symbols (only) are k-wise independent and could be treated as information symbols

and thus uniformly distributed. Thus these assumptions are more valid for higher

rate codes and for memoryless channels. It is well known that belief propagation

algorithms improve the reliability of the symbols by taking into account the geometry

of the code and the correlation between symbols (see for example [78].) Due to the

dense nature of the parity check matrix of the binary image of RS codes, running

belief propagation directly will not result in a good performance. Because the Tanner

graph associated with the parity check matrix of the binary image of RS codes has

cycles, the marginals passed by the (log) belief propagation algorithm are no longer

independent and the information starts to propagate in the loops.

Jiang and Narayanan [63] proposed a solution to this problem by adapting the

119

parity check matrix after each iteration. When updating the check node reliability

information Ri,j (see (5.8)) corresponding to a pivot in a single weight column, the

information Qi,j from any of the least reliable independent bits does not enter into

the summation. One reason for the success of ABP is that the reliability information

of the least reliable bits is updated by only passing the information from the more

reliable bits to them. An analytical model for belief propagation on adaptive parity

check matrices was recently proposed [3].

Our ABP-ASD algorithm is summarized by the following chain,

u → Πch ABP−→ Π̂
A−→ M →︸ ︷︷ ︸

ASD

û, (5.11)

where u is the transmitted codeword, A is a multiplicity assignment algorithm, M is

the multiplicity matrix and û is the decoder output. In particular, the ABP-ASD list

decoder is implemented by deploying the list decoder stopping criterion, proposed in

the previous section, with an ASD decoding algorithm D (see Algorithm 5.2):

• ASD: Using Λp generate an q × n reliability matrix Π̂ which is then used as

an input to an multiplicity assignment algorithm to generate multiplicities ac-

cording to the required interpolation cost. This multiplicity matrix is passed

to the (modified) GS list-decoding algorithm. If the generated codeword list is

not empty, the list of codewords is augmented to the global list of codewords.

If only one codeword is required, the codeword with the highest reliability with

respect to the channel LLR’s Λch is added to the global list.

In this chapter, the KV algorithm is used as the multiplicity assignment scheme.

More efficient but more complex MA schemes could also be used [31]. The joint

ABP-ASD algorithm corrects decoder failures (the received word does not lie in the

decoding region centered around any codeword) of the ASD decoder D, by itera-

tively enhancing the reliability information of the received word, and thus moving

120

the received word into the decoding region around a certain codeword. The decoding

region in turn depends on the algorithm D and the designed interpolation cost. Fur-

thermore, it attempts to eliminate decoder errors (the decoded codeword is not the

transmitted codeword) by iteratively adding codewords to the global list of codewords

and choosing the most probable one.

Since ASD is inherently a list-decoding algorithm with a larger decoding region, it

is expected that ABP-ASD outperforms ABP-HD and ABP-BM. Since our algorithm

transforms the channel LLRs into interpolation multiplicities for the GS algorithm,

then, by definition, it is an interpolation multiplicity assignment algorithm for ASD.

The ABP-ASD algorithm has a polynomial-time complexity. The ABP step in-

volves o(ñ2) floating point operations, for sorting and BP, and o(min(k̃2, r̃2) ñ) binary

operations for GE [64]. As for ASD, the KV MA algorithm (see (4.21)) has a time

complexity of O(n2). An efficient algorithm for solving the interpolation problem is

Koetter’s algorithm [76] with a time complexity of O(n2λ4). A reduced complexity

interpolation algorithm is given in [80]. Roth and Ruckenstein [95] proposed an effi-

cient factorization algorithm with a time complexity O((l log2 l)k(n + l log q)), where

l is an upper bound on the ASD’s list size and is determined by λ.

5.5 A Low Complexity ABP Algorithm

Most of the complexity of adaptive belief propagation lies in row reducing the binary

parity check matrix (after rearranging the columns according to the permutation P).

To reduce the complexity one could make use of the columns already reduced in the

previous iteration.

We will use the same notation as in Algorithm 5.2 with a subscript j to denote

the values at iteration j. For example, the vector of sorted LLRs at the jth iteration

is Λin
j . Define Pj(H) to be the matrix obtained when the columns of the parity check

121

matrix H are permuted according to the permutation Pj at the jth iteration. GE(H)

will be the reduced matrix (with an identity submatrix) after Gaussian elimination

is carried out on the matrix H.

Let Rj
∆
= {t : tth column of H was reduced to a column of unit weight in

GE(Pj(H))}. It is clear that the cardinality of Rj is r̃. Now assume that log BP

is run and that the LLRs are updated and inverse permuted to get Λp
j (step 5 in

Algorithm 5.2). The set of indices of the r̃ (independent) LLRs in Λp
j with the

smallest magnitude will be denoted by Sj+1. By definition, Pj+1 is the permutation

that sorts the LLRs in Λp
j in ascending order according to their magnitude to get

Λin
j+1. The set Uj+1

∆
= Rj

⋂
Sj+1 is thus the set of indices of bits which are among

the least reliable independent bits at the (j + 1)st iteration and whose corresponding

columns in the reduced parity check matrix at the previous iteration were in the

identity submatrix.

The algorithm is modified such that GE will be run on the matrix whose left most

columns are those corresponding to Uj+1. To construct the identity submatrix, these

columns may only require row permutations for arranging the pivots (ones) on the

diagonal. Note that these permutations may have also been required when running

GE on Pj+1(H). Only a small fraction of the columns will need to be reduced to unit

weight leading to a large reduction in the GE computational complexity. Also note

that what matters is that a column corresponding to a bit with low reliability lies

in the identity (sparse) submatrix and not its position within the submatrix. This is

justified by the fact that the update rules for all the LLRs corresponding to columns

in the identity submatrix are the same. Thus provided that the first r̃ columns in

Pj+1(H) are independent, changing their order does not alter the performance of the

ABP algorithm. To summarize the proposed reduced complexity ABP algorithm can

be stated as follows:

Algorithm 5.3. Low Complexity Adaptive Belief Propagation

122

Initialization: Λp := Λch, j = 1

DO

If j = 1

Proceed as in the first iteration of Algorithm 5.2; Λin
1 = Λin|Algorithm 5.2, P1 =

P |Algorithm 5.2, Ĥ1 = ĤP |Algorithm 5.2 and Λq
1 = Λq|Algorithm 5.2.

If j > 1

1. Sort the updated LLR vector Λq
j−1 in ascending order of the magnitude of its

elements. Let W ′
j be the associated sorting permutation matrix.

2. Rearrange the columns of the binary parity check matrix Ĥj−1 to form a new

matrix

Q′
j = W ′

j(Ĥj−1).

3. Rearrange the left-most r̃ columns of the binary parity check matrix Q′
j such

that the columns of unit weight are the most left columns. Let W ′′
j be the corre-

sponding permutation matrix. (This could be done by sorting the first r̃ columns

of Q′
j in ascending order according to their weight.) Let the resulting matrix be

Q′′
j = W ′′

j (Q′
j).

4. Permute the LLR vector;

Λin
j = P ′

jΛ
q
j−1,

where P ′
j = W ′

jW
′′
j .

5. Update the (global) permutation matrix;

Pj = P ′
jPj−1.

123

6. Run Gaussian elimination on the matrix Q′′
j from left to right;

Ĥj = GE(Q′′
j).

7. Run damped LBP on Ĥj with initial LLRs Λin
j for ItH iterations. The output

vector of extrinsic LLRs is Λx
j .

8. Update the LLRs;

Λq
j = Λin

j + α1Λ
x
j and Λp

j = P−1
j Λq

j .

9. Decode using Λp
j as an the input to the decoding algorithm D.

10. Increment j.

While Stopping criterion not satisfied.

The algorithm as described above iteratively updates a global permutation matrix

and avoids inverse permuting the row-reduced parity check matrix in each iteration.

The implementation of the algorithm also assumes for simplicity that the columns in

the parity check matrix corresponding to the r̃ least reliable bits are independent and

could therefore be reduced to unit weight columns. It is also noticed that in practice

the cardinality of Uj+1 is close to r̃ which means that the GE elimination complexity

will be significant only in the first iteration.

We will assume the favorable condition in which the most left r̃ columns of an

parity check matrix are independent. Taking into account that the parity check matrix

is a binary matrix, the maximum number of binary operations required to reduce the

first r̃ columns to an identity submatrix in the JN algorithm (Algorithm 5.2) can be

shown to be

ΘGE = 2
r̃∑

α=1

(r̃ − α)(ñ− α + 1) < r̃2ñ− r̃k̃. (5.12)

124

(It is assumed that the two GE steps, elimination and back substitution, are symmet-

ric.) Row permutation operations were neglected. Now assume that the cardinality

of Uj+1 is δr̃, where δ ≤ 1.

For the modified algorithm, only row permutations may be required for the first

δr̃ columns to arrange the pivots on the diagonal of the identity submatrix. These

permutations may also be required for the JN algorithm. Then the relative reduction

in complexity is

ΘGE in Algorithm 5.2−ΘGE in Algorithm 5.3

ΘGE in Algorithm 5.2
=

∑δr̃
α=1(r̃ − α)(ñ− α + 1)∑r̃
α=1(r̃ − α)(ñ− α + 1)

≈

(r̃2ñ)(2δ − δ2)− δr̃k̃

r̃2ñ− r̃k̃
≈ 2δ − δ2. (5.13)

For example, if we assume that on average δ = 0.5, a simple calculation for the

(255, 239) code over F256 shows that the relative reduction in the complexity of the

GE step is about 75%. In practice δ is close to one. Note that Algorithm 5.3 does

require sorting r̃ columns of Q′
j according to their weight (step 3) but the complexity

is relatively small.

5.6 Numerical Results and Discussion

In the next subsection, a fast simulation setup is described for ABP list decoding.

Bounds on the error probability of the ML decoder are then discussed. We then show

simulation results for our algorithm.

125

1 2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

Iterative ASD of (15,11) RS code BPSK modulated over an AWGN channel

HD−BM

KV,C=∞
Gauss,C=∞
Chernoff,C=∞
ABP−BM,SIM A
JN−BM, SIM B
ABP−BM, Sim B
ML TSB
ABP−ASD,SIM C
ML Simulation

SIM A: N1=5, N2=1, It
H
=1

SIM B: N1=20, N2=1, It
H
=1

SIM C: N1=5, N2=1, It
H
=3

Figure 5.1: The performance of iterative ASD of (15, 11) RS code, BPSK modulated
over an AWGN channel, is compared to that of other ASD algorithms and ABP-BM
list decoding.

126

1 2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterative Algebraic Soft Decoding of (15,11) RS code, It
H
=3, Cost=103

E
b
/N

o
 (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

HD−BM

KV, Cost=103

KV, Cost=∞
ABP−ASD, N1=1
ABP−ASD, N1=2
ABP−ASD, N1=5
ML Simulation
ML TSB

Figure 5.2: The performance of iterative ASD of the (15, 11) RS code, BPSK mod-
ulated over an AWGN channel, is shown for a finite interpolation cost of 103 and
different iteration numbers.

127

2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

Iterative ASD of (31,25) RS code BPSK modulated over AWGN Channel

HD−BM
KV
Gauss
Chernoff
ABP−BM,Sim A
ABP−ASD, Sim B
ABP−ASD, Sim C
ML TSB

 Sim A: N1=5, N2=1, It
H
=1

 Sim B: N1=20, N2=3, It
H
=3

 Sim C: N1=20, N2=10,It
H
=3

Figure 5.3: ABP-ASD list decoding of the (31, 25) RS code transmitted over an
AWGN with BPSK modulation.

128

5.6.1 Fast Simulation Setup

We describe a fast simulation setup for ABP with a list-decoding stopping criterion.

One could avoid running the actual decoder D at each iteration and instead check

whether the transmitted codeword is on the list generated by the decoder D. The

stopping criterion would be modified such that the iterative decoding stops if the

transmitted codeword is on the list or if the maximum number of iterations is reached.

A decoding success is signaled if the transmitted codeword is on the list.

It is easy to see that this simulation setup is equivalent to running the actual

ABP list decoder for the maximum number of iterations. Suppose that the received

sequence results in an maximum-likelihood (ML) error, then it is very unlikely that

the decoder D will correctly decode the received word at any iteration. In case of

an ML decoder success and the transmitted codeword is added to the global list

at a certain iteration, which presumably could be checked, then it would be the

closest codeword to the received word and thus the list decoder’s choice. Thus for

a fast implementation, a decoding success is signaled and iteration stops once the

transmitted codeword appears on the global list.

In case that D is a bounded minimum distance decoder such as the Berlekamp-

Massey (BM) algorithm, the transmitted codeword would be on the global list if it

is at a Hamming distance of bn−k
2
c or less from the hard-decisioned (modified) LLRs.

If D is an ASD algorithm that assigns the multiplicity matrix M , the transmitted

codeword is on the ASD’s list (and thus the global list) if it satisfies the sufficient

conditions of (4.4) and (4.6) for finite and infinite interpolation costs respectively.

It was shown in [72], that simulating the KV algorithm by checking the sufficient

condition of (4.4) results in accurate results. This is partially justified by the fact

that on average, the ASD’s list size is one [77]. This is also justified by observing that

if the ASD’s list is empty (a decoding failure), the condition (4.4) will not be satisfied.

However, if the list is nonempty but the transmitted codeword is not on the list (a

129

decoding error), the condition will still not be satisfied for the transmitted codeword

and a decoding error/failure is signaled. However if the condition is satisfied, then

this implies that the transmitted codeword is on the ASD’s list and thus a decoding

success.

5.6.2 Bounds on the Maximum-Likelihood Error Probability

As important as it is to compare our algorithms with other algorithms, it is even more

important to compare it with the ultimate performance limits, which is that of the

soft-decision ML decoder. When transmitting the binary image of RS codes over a

channel, the performance of the maximum-likelihood decoder depends on the weight

enumerator of the transmitted binary image. The binary image of RS codes is not

unique, but depends on the basis used to represent the symbols as bits. An average

binary weight enumerator of RS codes could be derived by assuming a binomial

distribution of the bits in a nonzero symbol [29]. Based on the Poltyrev tangential

sphere bound (TSB) [87] and the average binary weight enumerator, average bounds

on the ML error probability of RS codes over additive white Gaussian noise (AWGN)

channels were developed in [29] and were shown to be tight. We will refer to this bound

by ML-TSB. Alternatively the averaged binary weight enumerator could be used in

conjunction with other tight bounds such as the Divsalar simple bound [23] to bound

the ML error probability. We refer the reader to Chapter 2 for more information.

5.6.3 Numerical Results

In this subsection, we give some simulation results for our algorithm. As noted before,

the multiplicity assignment algorithm used for ABP-ASD in the these simulations is

the KV algorithm. N2 denotes the number of outer iterations (parallel decoders) and

N1 is the number of inner iterations in each of these outer iterations.

130

1 2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

Iterative ASD of (15,11) RS code BPSK modulated over an AWGN channel

HD−BM

KV,C=∞
Gauss,C=∞
Chernoff,C=∞
ABP−BM,SIM A
JN−BM, SIM B
ABP−BM, Sim B
ML TSB
ABP−ASD,SIM C
ML Simulation

SIM A: N1=5, N2=1, It
H
=1

SIM B: N1=20, N2=1, It
H
=1

SIM C: N1=5, N2=1, It
H
=3

Figure 5.4: The performance of iterative ASD of (15, 11) RS code, BPSK modulated
over an AWGN channel, is compared to that of other ASD algorithms and ABP-BM
list decoding.

131

1 2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterative Algebraic Soft Decoding of (15,11) RS code, It
H
=3, Cost=103

E
b
/N

o
 (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

HD−BM

KV, Cost=103

KV, Cost=∞
ABP−ASD, N1=1
ABP−ASD, N1=2
ABP−ASD, N1=5
ML Simulation
ML TSB

Figure 5.5: The performance of iterative ASD of the (15, 11) RS code, BPSK mod-
ulated over an AWGN channel, is shown for a finite interpolation cost of 103 and
different iteration numbers.

132

2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

Iterative ASD of (31,25) RS code BPSK modulated over AWGN Channel

HD−BM
KV
Gauss
Chernoff
ABP−BM,Sim A
ABP−ASD, Sim B
ABP−ASD, Sim C
ML TSB

 Sim A: N1=5, N2=1, It
H
=1

 Sim B: N1=20, N2=3, It
H
=3

 Sim C: N1=20, N2=10,It
H
=3

Figure 5.6: ABP-ASD list decoding of the (31, 25) RS code transmitted over an
AWGN with BPSK modulation.

133

5.6.3.1 (15,11) RS Code over an AWGN Channel

A standard binary input AWGN channel is assumed where the transmitted code-

words are BPSK modulated. In Figure 5.4, we compare the performance of different

decoding algorithms. HD-BM refers to the performance of a hard decision bounded

minimum distance decoder such as the BM algorithm. The ABP-BM list-decoding

algorithm with N1 = 5 iterations and one iteration of LBP on each parity check

matrix, ItH = 1 (see step 4 in Algorithm 5.2) has a coding gain of about 2.5 dB over

HD-BM at a codeword error rate (CER) of 10−6. Increasing the number of iterations

to N1 = 20 iterations, we get a slightly better performance. JN-BM refers to the JN

algorithm with the JN stopping criterion and a BM decoder. Due to the high decoder

error probability of the (15, 11) code, ABP-BM, with the list decoder stopping cri-

terion, yields a much better performance than JN-BM. The ABP-ASD list-decoding

algorithm outperforms all the previous algorithms with only 5 ABP iterations and

with ItH = 3. Comparing its performance with soft-decision ML decoding of the RS

code, we see that ABP-ASD has a near ML performance with a performance gain

of about 3 dB over HD-BM at a CER of 10−6. (ML decoding was carried out by

running the BCJR algorithm on the trellis associated with the binary parity check

matrix of the RS code [66].) Moreover, the averaged TSB on the ML codeword error

probability is shown to confirm that it is a tight upper bound and that the ABP-ASD

algorithm is near optimal for this code.

The performance of different ASD algorithms are compared for infinite interpo-

lation costs, the KV algorithm [72], the Gaussian approximation (Gauss) [83] and

the Chernoff bound algorithm (Chernoff) [31]. It is noted that the Chernoff bound

algorithm has the best performance, especially at the tail of error probability. It is

also interesting to compare the performance of ABP-ASD with other ASD MA algo-

rithms. It has about 2 dB coding gain over the KV algorithm at a CER of 10−6. As

expected, the Chernoff method has a comparable performance at the tail of the error

134

0 20 40 60 80 100 120 140 160 180 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Iterations

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

C
od

ew
or

ds

Required Iterations for Successful Decoding of (31,25) RS Code, SNR=3.5 dB

Figure 5.7: Convergence of the iterative ASD algorithm.
This histogram shows the percentage of transmitted codewords successfully decoded
versus the iteration number at which the transmitted codeword was first successfully
added to the ABP-ASD list with N1 = 20 and N2 = 10. The (31, 25) RS code is
transmitted over an AWGN channel at an SNR of 3.5 dB.

probability.

The ABP algorithm used in the simulations shown in Figure 5.4 is Algorithm 5.2.

The performance of Algorithm 5.3 was identical to that of Algorithm 5.2. However,

the complexity is much less. The average δ (see (5.13)) averaged over all iterations was

calculated versus the SNR. It was observed that the ratio of the number of columns to

be reduced in Algorithm 5.3 to that in Algorithm 5.2 is about 0.1 (δ = 0.9). This gives

about a 99% reduction in the Gaussian elimination complexity. Thus only the first

iteration or restart suffers from an Gaussian elimination complexity if Algorithm 5.3

is used.

Near ML decoding for the same code is also achieved by the ABP-ASD algorithm

135

with a finite cost of 103 as shown in Figure 5.5. Comparisons are made between the

possible coding gains if the number of iterations is limited to N1 = 1, 2, 5. With 5

iterations, the performance gain over the KV algorithm, with the same interpolation

cost, is nearly 1.8 dB at a CER of 10−5. Comparing the ABP-ASD performance

to that of Figure 5.4, with infinite interpolation costs, we observe that a small loss

in performance results with reasonable finite interpolation costs. Unless otherwise

stated, the remaining simulations in this chapter will assume infinite interpolation

costs to show the potential of our algorithm.

It is to be noted that in simulating the ABP-BM list decoder, the simulations

using a real BM decoder were identical to the simulations using the fast simulation

setup described in this section. To save simulation time, the curves shown here for

ABP-ASD are generated using the fast simulation setup. As is the case for ABP-BM,

running the real ABP-ASD decoder will yield the same results.

5.6.3.2 (31,25) RS Code over AWGN Channel

The arguments for the (15, 11) RS code also carry over for the (31, 25) RS code when

BPSK modulated and transmitted over an AWGN channel, as shown in Figure 5.6.

With only 5 iterations, the ABP-BM list-decoding algorithm outperforms previous

ASD algorithms. The performance of ABP-ASD with 20 inner iterations (N1) and

10 outer iterations (N2) is better than the ML upper bound and has more than 3 dB

coding gain over the BM algorithm at an CER of 10−4. A favorable performance is

also obtained by only 3 restarts (outer iterations). By comparing with Figure 5.5

of [103], our ABP-ASD algorithm has about 1.6 dB gain over the combined Chase

II-GMD algorithm at an CER of 10−4.

To show the effectiveness of the restarts or outer iterations, we kept track of the

iteration number at which the ABP-ASD list decoder was first capable to successfully

decode the received word. In other words, this is the iteration when the transmitted

136

6 8 10 12 14 16 18 20 22 24

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

C
o

d
e

W
o

rd
 E

rr
o

r
R

a
te

Iterative ASD of (31,25) RS over Rayleigh Fading Channel with AWGN, α
1
=0.1, It

H
=3

HD−BM
KV
ASD; N1=1
ASD; N1=20
ASD; N

1
=20, N

2
=25

Figure 5.8: The performance of the ABP-ASD decoding of the (31, 25) RS code over
a Rayleigh fading channel with AWGN when the channel information is unknown at
the decoder.

137

codeword was first added to the ABP-ASD list. The percentage of transmitted code-

words which were first successfully decoded at a certain iteration is plotted versus the

iteration number in the histogram of Figure 5.7. This is shown at a signal-to-noise

ratio (SNR) of 3.5 dB and for N1 = 20 N2 = 10 with a total of 200 iterations. At

the beginning of each restart (every 20 iterations) there is a boost in the number of

codewords successfully decoded and this number declines again with increasing itera-

tions. The zeroth iteration corresponds to the KV algorithm. This histogram is also

invaluable for decoder design and could aid one to determine the designed number of

iterations for a required CER.

5.6.3.3 (31,25) RS Code over a Rayleigh Fading Channel

As expected from the discussion in Section 5.4, the coding gain of ABP-ASD is much

more if the underlying channel model is not memoryless. This is demonstrated in

Figure 5.8, where an (31, 25) code is BPSK modulated over a relatively fast Rayleigh

fading channel with AWGN. The Doppler frequency is equal to 50 Hz and the code-

word duration is 0.02 seconds. The coding gain of ABP-ASD over the KV algorithm

at an CER of 10−4 is nearly 5 dB when the channel is unknown to both decoders.

5.6.3.4 (255,239) RS Code over AWGN Channel

The performance of the ABP-ASD algorithm is also investigated for relatively long

codes. The (255, 239) code and its shortened version, the (204, 188) code, are stan-

dards in many communication systems. The performance of the (255, 239) code over

an AWGN channel is shown in Figure 5.9. By 20 iterations of ABP-BM, one could

achieve a coding gain of about 0.5 dB over the KV algorithm. At an CER of 10−6,

after a total of 25 outer iterations (restarts), the coding gain of ABP-ASD over BM

is about 1.5 dB. An extra 0.1 dB of coding gain is obtained with 25 more outer it-

erations. Moreover, the performance of the ABP-ASD decoder is within 1 dB of the

138

averaged ML TSB.

5.6.3.5 (31,15) RS Code over AWGN Channel

The performance of our algorithm is studied for the (31, 15) RS code over an AWGN

channel. The rate of this code is 0.48. Because this code is of relatively low rate,

the HD-GS algorithm does improve over the HD-BM bounded minimum distance

decoding algorithm. As seen from Figure 5.10, ML soft-decision decoding offers about

4 dB coding gain over the hard decision GS algorithm and about 2.8 dB coding gain

over the soft-decision KV ASD algorithm at an CER of 10−5. With 20 iterations,

ABP-BM list decoding improves over the KV algorithm. As expected, ABP-ASD

has a better performance for the same number of iterations. With 10 restarts, ABP-

ASD has a reasonable performance with about a 3 dB coding gain over the BM

algorithm. Another 0.5 dB of coding gain could be achieved by increasing the number

of iterations.

5.6.3.6 General Observations

It is noticed that the coding gain between iterations decreases with the number of

iterations. It is also to be noted that the ABP-ASD list decoder requires running the

KV ASD algorithm in each iteration. Running a number of ‘plain-vanilla’ ABP itera-

tions without the ASD decoder and then decoding using the ASD decoder (to reduce

the complexity) will yield a worse performance for the same number of iterations.

The same arguments also hold for the ABP-BM list decoding. A reasonable perfor-

mance is achieved by ABP-BM list decoding. By deploying the KV ASD algorithm,

ABP-ASD list decoding has significant coding gains over the KV ASD algorithm and

other well-known soft-decision decoding algorithms.

139

4 4.5 5 5.5 6 6.5 7 7.5 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

C
od

ew
or

d
E

rr
or

 R
at

e

Iterative ASD of (255,239) RS Code over an AWGN channel, N1=20, N2=50

HD−BM
KV
ABP−ASD, #1
ABP−BM, #20
ABP−ASD, #20*25
ABP−ASD, #20*50
Averaged ML TSB

Figure 5.9: The performance of the ABP-ASD decoding of the (255, 239) RS code
over an AWGN channel with BPSK modulation.

140

2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

Iterative ASD of (31,15) RS code BPSK modulated over an AWGN channel

HD−BM
HD−GS
KV, C=∞
ABP−BM, Sim A
ABP−ASD, Sim A
ABP−ASD, Sim B
ABP−ASD, Sim C
ML−TSB

Sim A: N1=20, N2=1, It
H
=3

SIM B: N1=20, N2=10, It
H
=1

Sim C: N1=30, N2=155, It
H
=3

Figure 5.10: ABP-ASD list decoding of the (31, 15) RS code, of rate 0.48, transmitted
over an AWGN with BPSK modulation.

141

5.7 Conclusion

In this chapter, we proposed a list-decoding algorithm for soft-decision decoding of

Reed-Solomon codes. Our algorithm is based on enhancing the soft reliability channel

information before passing them to an algebraic soft-decision decoding algorithm.

This was achieved by deploying the Jiang and Narayanan algorithm, which runs belief

propagation on an adapted parity check matrix. Using the Koetter-Vardy algorithm

as the algebraic soft-decision decoding algorithm, our algorithm has impressive coding

gains over previously known soft-decision decoding algorithms for RS codes. By

comparing with averaged bounds on the performance of maximum-likelihood decoding

of RS codes, we observe that our algorithm achieves a near optimal performance

for relatively short, high-rate codes. We introduced some modifications over the

JN algorithm that resulted in better coding gains. We presented a low complexity

adaptive belief-propagation algorithm, which results in a significant reduction in the

computational complexity. The performance of our algorithm was studied for the

cases when the interpolation cost of the algebraic soft-decision decoding algorithm is

both finite and infinite. A small loss in coding gain results when using manageable

interpolation costs. The coding gain of the presented algorithm is larger for channels

with memory. Our proposed algorithm could also be viewed as an interpolation

multiplicity assignment algorithm for algebraic soft decoding.

The question remains whether the JN algorithm is the optimum way to process

the channel reliability information before algebraic soft-decision decoding. The KV

algorithm was our ASD decoder of choice due to its low complexity. It would be

interesting to determine the best ASD algorithm or, in general, soft-decision decoding

algorithm for joint belief propagation. From another point of view, suppose we have

the KV ASD algorithm, it is also interesting to determine the best low complexity

technique that will process the channel reliability information before passing it to the

142

ASD algorithm. The tradeoff between performance and computational complexity is

likely to play a big role in determining the state-of-art next generation Reed-Solomon

decoders.

143

Chapter 6

Performance Analysis of Linear
Product Codes

Big doors swing on little hinges.

—W. Clement Stone

Product codes were introduced by Elias [38] in 1954, who also proposed to decode

them by iteratively (hard) decoding the component codes. With the invention of

turbo codes [13], soft iterative decoding techniques received wide attention [52]: low

complexity algorithms for turbo decoding of product codes were first introduced by

Pyndiah in [90]. Other efficient algorithms were recently proposed in [57] and in [6].

For product codes, an interesting issue for both theory and applications regards the

analytical estimation of their maximum-likelihood performance. Among other, this

analytical approach allows one to (i) forecast the code performance without resorting

to simulation, (ii) provide a benchmark for testing suboptimal iterative decoding

algorithms, (iii) establish the goodness of the code, determined by the distance from

theoretical limits.

The analytical performance evaluation of a maximum-likelihood decoder requires

the knowledge of the code weight enumerator. Unfortunately, the complete enumer-

ator is unknown for most families of product codes. In these years, some progress

has been made in determining the first terms of product code weight enumerators.

144

The multiplicity of low weight codewords for an arbitrary linear product code were

computed by Tolhuizen [105]. (In this chapter, these results will be extended to find

the exact input-output weight enumerators of low weight codewords.)

Even if the first terms can be individuated, the exact determination of the com-

plete weight enumerator is very hard for arbitrary product codes [105], [26]. By ap-

proximating the number of the remaining codewords by that of a normalized random

code, upper bounds on the performance of binary product codes using the ubiquitous

union bound were shown in [106]. However, this approximation is not valid for all

product codes.

In this chapter, we will consider the representation of a product codes as a con-

catenated scheme with interleaver, and we will derive the average input-output weight

enumerator for linear product codes over a generic field Fq. When combined with the

extended Tolhuizen’s result, this will provide a complete approximated enumerator

for the product code. We will show how it closely approximates the exact weight

enumerator.

Previous work in the literature (see for example [19], and reference therein) focused

on estimating the product code performance at low error rates via the truncated

union bound, using the enumerator low-weight terms only. By using the complete

approximate enumerator, it is possible to compute the Poltyrev bound [87], which

establish tight bounds on the maximum-likelihood performance at both high and low

error rates.

The outline of the chapter is as follows. In Section 6.1, we introduce the basic

notation and definitions. In Section 6.2, we extend Tolhuizen results and derive the

exact input-output weight enumerator for product code low-weight codewords. Prod-

uct code representation as serial and parallel concatenated codes with interleavers

are introduced in Section 6.3.1. Uniform interleavers on finite fields with arbitrary

size are discussed in Section 6.3.2. The average weight enumerators of product codes

145

are then computed in Section 6.3.3. The merge with exact low-weight terms, and the

discussion of the combined enumerator properties are performed in Section 6.4.

The computation of product code average enumerators relies on the knowledge of

the input-redundancy weight enumerators of the component codes. For this reason,

we derive in Section 6.5 closed form formulas for the enumerator functions of some

linear codes commonly used in the construction of product codes: Hamming, extended

Hamming, and Reed-Solomon codes. We proceed in Section 6.6 to derive the average

binary weight enumerators of Reed-Solomon product codes defined on finite fields of

characteristic two.

To support our theory, we present some numerical results. Complete average

enumerators are depicted and discussed in Section 6.7.1. Analytical bounds on the

maximum-likelihood performance are shown at both high and low error rates, and

compared against simulation results in Section 6.7.2. Finally, we conclude the chapter

in Section 6.8.

6.1 Preliminaries

As in the previous chapters, Fq will be a finite field of q elements. C will denote an

(nc, kc, dc) linear code over Fq with codeword length nc, information vector length kc

and minimum Hamming distance dc. Let R and C be (nr, kr, dr) and (nc, kc, dc) linear

codes over Fq, respectively. The product code whose component codes are R and C,

P ∆
= R× C, consists of all matrices such that each row is a codeword in R and each

column is a codeword in C. P is an (np, kp, dp) linear code, with parameters

np = nrnc kp = krkc dp = drdc.

We will recall some definitions and results from Chapters 2 and Chapters 3. The

weight enumerator (WE) of C, EC(h), is the number of codewords with Hamming

146

weight h:

EC(h) = |{c ∈ C : W(c) = h}|,

where W(·) denotes the symbol Hamming weight. For a systematic code C, the input-

redundancy weight enumerator (IRWE), RC(w, p), is the number of codewords with

information vector weight w, whose redundancy has weight p:

RC(w, p) = |{c = (i|p) ∈ C : W(i) = w W(p) = p}|.

If T = (n1, n2) is a partition of the n coordinates of the code into two sets of size

n1 and n2, the split weight enumerator AT (w1, w2) is number of codewords with

Hamming weights w1 and w2 in the first and second partition, respectively. If T is an

(k, n − k) partition such the first set of cardinality k constitutes of the information

symbol coordinates, R(w1, w2) = AT (w1, w2). The input-output weight enumerator

(IOWE), OC(w, h), is the number of codewords whose Hamming weight is h, while

their information vector has Hamming weight w:

OC(w, h) = |{c ∈ C : W(i) = w W(c) = h}|.

For a systematic code,

OC(w, h) = RC(w, h− w). (6.1)

It is also straightforward that

EC(h) =
kc∑

w=0

OC(w, h). (6.2)

The WE generating function of C is defined by this polynomial in invariant Y :

EC(Y) =
nc∑

h=0

EC(h)Y h

147

while the IRWE function and the IOWE function of C are defined by these bivariate

polynomials in invariants X and Y :

RC(X,Y) =
kc∑

w=0

nc−kc∑
p=0

RC(w, p)XwY p, (6.3)

OC(X,Y) =
kc∑

w=0

nc∑

h=0

OC(w, h)XwY h. (6.4)

These functions are related by

OC(X, Y) = RC (XY, Y) , (6.5)

EC(Y) = RC(Y, Y) = OC(1, Y). (6.6)

As in (2.3), we will denote the coefficient of XwY h in a bivariate polynomial Q(X, Y)

by the coefficient function Coeff(Q(X, Y), XwY h). For example,

OC(w, h) = Coeff(OC(X,Y), XwY h).

Similarly, Coeff (O(X,Y), Y w) is the coefficient of Y w in the bivariate polynomial

O(X, Y) and is a univariate polynomial in X.

Let the code C be transmitted by a binary PSK constellation over an AWGN

channel with a signal-to-noise ratio (SNR) γ. As in Section 3.5, the the codeword

error probability (CEP) and bit error probability (BEP) of the decoder will be denoted

by Φc(EC(h), γ) and Φb(γ).

The truncated union bound, taking into account the minimum distance term

only, provides a heuristic lower bound on the performance of soft-decision maximum-

likelihood decoder:

Φc(γ) & 1

2
EC(dc) erfc

√
kc

nc

dcγ . (6.7)

148

This formula provides a simple way for predicting the code performance at very high

SNR/low CEP, where maximum-likelihood error events are mostly due to received

noisy vectors lying in the decoding regions of codewords nearest to the transmitted

one. Anyway, it is not useful in predicting the performance at low SNR.

Tight bounds on the maximum-likelihood codeword error probability of binary

linear codes for AWGN and binary symmetric channel (BSC), holding at both low and

high SNR, were derived by Poltyrev in [87]. These bounds usually require knowledge

of the complete weight enumerator EC(h) (c.f., Section 2.4). In this chapter, we will

apply the Poltyrev bounds by using a complete approximate weight enumerator of

the considered product codes.

Given the codeword error probability, the computation of the bit error probability

may pose a number of technical problems. Let Φc(EC(h), γ) denote the CEP over a

channel with an SNR γ computed by using the weight enumerator EC(h). The bit

error probability Φb(γ) is derived from the CEP by computing Φb(γ) = Φc(IC(h), γ),

where IC(h) =
∑kc

w=1
w
kc

O(w, h) (c.f., Section 3.5). A common approximation in the

literature is IC(h) ≈ h
nc

EC(h). This approximation is useful if the IOWE O(·, ·) is not

known but the weight enumerator WE E(·) is. Some codes satisfy this approximation

with equality: they are said to possess the multiplicity property. We refer the reader

to Section 3.3 for a discussion on such codes.

6.2 Exact IOWE of Low-Weight Codewords

Tolhuizen showed that in a linear product code P = R×C the number of codewords

with symbol Hamming weight 1 ≤ h < ho is [105]:

EP(h) =
1

q − 1

∑

i|h
EC(i)ER(h/i), (6.8)

149

where, given

w(dr, dc)
∆
= drdc + max(drddc

q
e, dcddr

q
e),

the weight ho is

ho =





w(dr, dc) + 1, if q = 2 and both dr and dc are odd

w(dr, dc), otherwise
. (6.9)

In particular, the minimum distance multiplicity of a product code is given by

EP(dp) =
ER(dr)EC(dc)

q − 1
. (6.10)

These results are based on the properties of obvious (or rank-one) codewords of

P , i.e., direct product of a row and a column codeword [105]. Let r ∈ R and c ∈ C,

then an obvious codeword, p ∈ P , is defined as

pi,j = ricj, (6.11)

where ri is the symbol in the ith coordinate of r and cj is the symbol in the jth

coordinate of c. It follows that the rank of the nc × nr matrix defined by p is one

and the Hamming weight of p is clearly the product of the Hamming weights of the

component codewords, i.e.,

W(p) = W(r)W(c). (6.12)

Tolhuizen showed that any codewod with weight smaller than w(dr, dc) is obvious

(Theorem 1, [105]) (smaller or equal if q = 2 and both dr and dc are odd (Theorem 2,

[105])). The term 1
q−1

in (6.8) and (6.10) is due to the fact (λri)(cj/λ) are equal for

all nonzero λ ∈ Fq.

A generalization of Tolhuizen’s result to input-output weight enumerators is given

in the following theorem.

150

Theorem 6.1. Let R and C be (nr, kr, dr) and (nc, kc, dc) linear codes over Fq, re-

spectively. Given the product code P = R × C, the exact IOWE for codewords with

output Hamming weight 1 < h < ho is given by

OP(w, h) =
1

q − 1

∑

i|w

∑

j|h
OR(i, j)OC(w/i, h/j), (6.13)

where the sum extends over all factors i and j of w and h respectively, and ho is given

by (6.9).

Proof. Let p ∈ P be a rank-one codeword; then there exists a codeword r ∈ R and

a codeword c ∈ C such that pi,j = ricj. The krkc submatrix of information symbols

in p could be constructed from the information symbols in c and r by (6.11) for

1 ≤ i ≤ kr and 1 ≤ j ≤ kc. It thus follows that the input weight of p is the product of

the input weights of c and r while its output (total) weight is given by (6.12). Since

all codewords with weights h < ho, are rank-one codewords, the theorem follows.

These results show that both the weight enumerators and the input-output weight

enumerators of product code low-weight codewords are determined by the constituent

code low-weight enumerators. This is not the case for larger weights, where the

enumerators of P are not completely determined by the enumerators of R and C
[105].

It is important to note the number of rank-one low-weight codewords is very small,

as shown by the following corollary regarding Reed-Solomon (RS) product codes.

Corollary 6.2. Let C be an (n, k, d) Reed-Solomon code over Fq. The weight enu-

merator of the product code P = C × C has the following properties,

EP(h) =





1, h = 0

(q − 1)
((

n
d

))2
, h = d2

0, d2 < h < d(d + 1)

. (6.14)

151

Proof. Let us apply (6.8). From the maximum distance separable (MDS) property

of RS codes, d = n − k + 1 and n < q. It follows that w(d, d) = d(d + 1). Also

EC(d) = (q−1)
(

n
d

)
. The first obvious codeword of nonzero weight has weight d2. The

next possible nonzero obvious weight is d(d + 1) which is w(d, d).

Example 6.1. Let us consider the C(7, 5, 3) RS code. The number of codewords of

minimum weight is EC(d) = 245. The complete IOWE function of C is equal to (see

Corollary 3.4):

OC(X, Y) = 1 + 35XY 3 + 140X2Y 3 + 70X3Y 3 + 350X2Y 4 + 700X3Y 4

+ 175X4Y 4 + 2660X3Y 5 + 2660X4Y 5 + 9170X4Y 6 + 266X5Y 5

+ 3668X5Y 6 + 12873X5Y 7.

Let P be the square product code P = C × C. The minimum distance of P is dp = 9.

By (6.8), its multiplicity is EP(dp) = 8575. By applying Theorem 6.1, the input-

output weight enumerator for codewords in P with output weight dp = 9 is given

by

Coeff(OP(X, Y), Y 9) = 175X+1400X2+700X3+2800X4+2800X6+700X9. (6.15)

By Corollary 6.2, there are no codewords in P with either weight 10 or 11. No

information is available for larger codeword weights 12 ≤ w ≤ 49. ¦

The following theorem shows that rank-one codewords of a product code maintain

the multiplicity property.

Theorem 6.3. If the codes C and R have the multiplicity property and P = R×C is

their product code, then the subcode constituting of the rank-one codewords in P has

this property.

152

Proof. It follows from Theorem 6.1 that, for h ≤ ho

IP(h) =
1

q − 1

krkc∑
w=1

w

krkc

∑

i|w

∑

j|h
OR(i, j)OC(w/i, h/j)

=
1

q − 1

∑

j|h

kr∑
i=1

i

kr

OR(i, j)
kc∑

t=1

t

kc

OC(t, h/j)

=
1

q − 1

h

nrnc

∑

j|h
ER(j)EC(h/j)

=
h

np

EP(h),

which proves the assertion.

6.3 Average IOWE of Product Codes

In the previous section, we have shown how to exactly compute the product code

IOWE, for low weight codewords. For higher codeword weights, it is very hard to

find the exact enumerators for an arbitrary product code over Fq.

In this section, we will relax the problem of finding the exact enumerators, and

we will focus on the computation of average weight enumerators over an ensemble of

proper concatenated schemes. To do this:

1. We will represent a product code as a concatenated scheme with a row-by-

column interleaver. Two representations will be introduced. The first one is

the typical serial interpretation of a product code, while the second one is a less

usual parallel construction.

2. We will replace the row-by-column interleavers of the schemes by uniform in-

terleavers [9], acting as the average of all possible interleavers. To do this, we

will introduce and discuss uniform interleavers for codes over Fq.

153

3. We will compute the average enumerator for these concatenated schemes, which

coincide with the scheme enumerators if random interleavers were used instead

of row-by-column ones.

A code constructed using a random interleaver is no longer a rectangular product

code. However, as we shall see, the average weight enumerator gives a very good

approximation of the exact weight enumerator of the product code. This will confirm

the experimental results by Hagenauer et al. that the error performance of linear

product codes did not differ much if the row-column interleaver is replaced with a

random interleaver [52, Sec. IV B]. We also confirm that numerically in Section 6.7.

6.3.1 Representing a Product Code as a Concatenated Code

Let us first study the representation of a product code as a concatenated scheme with

a row-by-column interleaver.

Construction 1

Given the (nr, kr, dr) code R , the augmented code Rkc is obtained by indepen-

dently appending kc codewords of R. The code Rkc has codeword length kcnr and

dimension krkc. Moreover, its IOWE function is given by

Okc
R (X, Y)

∆
= ORkc (X, Y) = (OR(X, Y))kc . (6.16)

See Figure 6.1. The encoding process may be viewed as if we are first generating

a codeword of Rkc , with length kcnr symbols. The symbols of this codeword are read

into an kc × nr matrix by rows and read out column by column. In other words, the

symbols of the augmented codeword are interleaved by a row-by-column interleaver.

Each column is then encoded into a codeword in C. The augmented columns form a

codeword in P of length nrnc.

154

ck
R

π
rn

C
c

r
N

k
n

=

Figure 6.1: Construction 1: Serial concatenation.

155

Figure 6.2: The four set partition of the coordinates of a product codeword used in
Construction 2.

Remark. An (nrnc, krkc, drdc) product code P = R× C is the serial concatenation of

an (kcnr, kckr) outer code Rkc with an (ncnr, kcnr) inner code Cnr through a row-by-

column interleaver π with length N = kcnr. (Equivalently P = R × C is the serial

concatenation of an (krnc, krkc) outer code Ckr with an (ncnr, krnc) inner code Rnc

through a row-by-column interleaver with length krnc respectively.)

Construction 2

As an alternative, let the coordinates of a systematic product code be partitioned

into four sets as shown in Figure 6.2. We can introduce the following parallel repre-

sentation.

Remark. An (nrnc, krkc, drdc) product code can be constructed as follows (see Fig-

ure 6.3):

1. Parallel concatenate the (nrkc, krkc) code Rkc , with the (nckr, kckr) code Ckr

through a row-by-column interleaver π1 of length N1 = krkc.

156

2. Interleave the parity symbols generated byRkc with a row-by-column interleaver

π2 of length N2 = kc(nr − kr).

3. Serially concatenate these interleaved parity symbols with the (nc(nr−kr), kc(nr−
kr)) code Cnr−kr .

6.3.2 Uniform Interleavers over Fq

Given the two product code representations just introduced, we would like to sub-

stitute the row-by-column interleavers with uniform interleavers. In this section, we

then investigate the uniform interleaver properties, when the interleaver is a symbol

based interleaver and the symbols are in Fq. The concept of uniform interleaver was

introduced in [9] and [8] for binary vectors in order to study turbo codes: it is a prob-

abilistic object acting as the average of all possible interleavers of the given length.

In the binary case, the number of possible permutations of a vector of length L and

Hamming weight w is
(

L
w

)
. Let us denote by V (L,w) the probability that a specific

vector is output by the interleaver when a vector of length L and input w is randomly

interleaved. In this binary case we have

V (L,w) =
1(
L
w

) . (6.17)

If v is a vector on Fq of length L and the frequency of occurrence of the q symbols

is given by l0, l1, ..., lq−1 respectively, then the number of possible permutations is

given by the multinomial coefficient [109]

L!

l0!l1!...lq−1!
.

However, this requires the knowledge of the occurrence multiplicity of each of the q

symbols in the permuted vector.

157

ck
R

2π

rk
C

1π
1

r
c

N
k

k
=

r
r

n
k

C
−

2
(

)
c

r
r

N
k

n
k

=
−

pa
ri

ty
bi

ts

pa
ri

ty
bi

tsco
de

D

Figure 6.3: Construction 2: Parallel concatenation.

158

We introduce here the notion of uniform codeword selector (UCS). Let us suppose

a specific vector of symbol weight w and length L is output from the interleaver

corresponding to a certain interleaver input with the same weight. This vector is

encoded by an (N, L) code C following the interleaver.

We assume that all the codewords of C with input weight w have equal probability

of being chosen at the encoder’s output. The UCS picks one of these codewords (with

input weight w) at random. Thus the probability that a specific codeword is chosen

by the UCS is

V (L,w) =
1∑

h OC(w, h)
=

1

(q − 1)w
(

L
w

) , (6.18)

where
∑

h OC(w, h) is the total number of codewords with input weight w. This

is equivalent to a uniform interleaver over Fq which identifies codewords by their

Hamming weights. It is noticed that for the binary case, the uniform interleaver

(6.17) is equivalent to the UCS (6.18). The UCS has the property of preserving the

cardinality of the resulting concatenated code.

6.3.3 Computing the Average Enumerators

Construction 1

Given the Construction 1 of Remark 6.3.1 and Figure 6.1, let us replace the row-

by-column interleaver π of length N = kcnr with a uniform interleaver over Fq of the

same length. It is easy to show that the average IOWE function of the product code

P is given by

ŌP(X, Y) =
kcnr∑
w=0

V (kcnr, w)Coeff
(
Okc
R (X, Y), Y w

)
Coeff (Onr

C (X, Y), Xw) . (6.19)

The average weight enumerator function ĒP(Y) can be computed from ŌP(X, Y)

by applying (6.6).

Construction 2

159

Given Construction 2 and Figure 6.3, let us replace the two row-by-column inter-

leavers π1 of length N1 = krkc and π2 of length N2 = kc(nr − kr), with two uniform

interleaver overs Fq of length N1 and N2, respectively.

We begin by finding the partition weight enumerator (PWE) of the code D re-

sulting from the parallel concatenation of Rkc with Ckr . We have:

P̄D(W,X, Y) =
kckr∑
w=0

V (krkc, w)

Coeff
(
Rkc
R (W,X),Ww

)
Coeff

(
Rkr
C (W,Y),Ww

)
Ww, (6.20)

where P̄D(w, x, y) is the number of codewords in the parallel concatenated code with

weights w, x and y in the partitions constituting of information symbols, checks on

rows and checks on columns respectively, and is given by

P̄D(W,X, Y) =
kckr∑
w=0

kc(nr−kr)∑
x=0

kr(nc−kc)∑
y=0

P̄D(w, x, y)WwXxY y. (6.21)

(Note that R̄D(W,X) = P̄D(W,X, X) gives the average IRWE function of a punc-

tured product code with the checks on checks deleted.)

The partition weight enumerator function of the product code P is then given by

P̄P(W,X, Y, Z) =

kc(nr−kr)∑
x=0

V (kc(nr − kr), x)

Coeff
(
Rnr−kr
C (X, Z), Xx

)
Coeff

(
P̄D(W,X, Y), Xx

)
Xx. (6.22)

The PWE, P̄P(w, x, y, z), enumerates the codewords with a weight profile shown in

Figure 6.2 and is given by expanding the PWE function P̄P(W,X, Y, Z) as follows,

P̄P(W,X, Y, Z) =
kckr∑
w=0

kc(nr−kr)∑
x=0

kr(nc−kc)∑
y=0

(nr−kr)(nc−kc)∑
z=0

P̄P(w, x, y, z)WwXxY yZz.(6.23)

160

It follows that the average IRWE function of P is R̄P(X, Y) = P̄P(X, Y, Y, Y). Con-

sequently, the IOWE function ŌP(X, Y) can be obtained via (6.5) and the weight

enumerator function ĒP(Y) via (6.6). By using (6.18), the cardinality of the code

given by ĒP(Y) is preserved to be qkrkc .

6.4 Merging Exact and Average Enumerators into

Combined Enumerators

The results in the previous section are now combined with those of Section 6.2 re-

flecting our knowledge of the exact IOWE of product codes for low weights. Let ho

be defined as in (6.8). We introduce a complete IOWE which is equal to:

• the exact IOWE for h < ho;

• the average IOWE for h ≥ ho:

ÕP(X, Y) =
krkc∑
w=0

nrnc∑

h=0

ÕP(w, h)XwY h, (6.24)

such that

ÕP(w, h) =





OP(w, h), h < ho

ŌP(w, h), h ≥ ho

, (6.25)

where OP(w, h) is given by Theorem 6.1, while ŌP(w, h) = Coeff(ŌP(X, Y), XwY h)

is derived as in Section 6.3.3. We will call ÕP(X, Y) the combined input-output weight

enumerator (CIOWE) of P . The corresponding combined weight enumerator function

ẼP(Y) can be computed by (6.6).

Let us now discuss some properties of the CIOWE. Let W (C)
∆
= {h : EC(h) 6= 0}

be the set of weights h, such that there exists at least one codeword c ∈ C with weight

h. Observe that the weight of a product codeword p ∈ P is simultaneously equal to

161

the sum of the row weights and to the sum of the column weights. We define an

integer h a plausible weight of p ∈ P , if h could be simultaneously partitioned into

nc integers restricted to W (R) and into nr integers restricted to W (C).

Note however, that not all plausible weights are necessarily in W (P).

Theorem 6.4. Suppose P = R×R, (the row code R is the same as the column code

C), then the set of weights with a nonzero coefficient in the average weight enumerator

of P derived by either (6.19) or (6.22) are plausible weights for the product code.

Proof. The set of plausible weights of a product code is the set of weights h such

the coefficients of Y h in both (EC(Y))nr and (ER(Y))nc is nonzero. When R = C, it

suffices to show that for any weight h if the coefficient of Y h in ĒP(Y) is nonzero,

then it is also nonzero in (EC(Y))nr .

For Construction 1, let ĒP(Y) be the average weight enumerator derived from

(6.19) by ĒP(Y) = ŌP(1, Y). Since all output weights that appear in ŌP(1, Y) are

obtained from Coeff (Onr
C (X,Y), Xw) then, by (6.16), they have nonzero coefficients

in (EC(Y))nr and we are done.

For Construction 2, let ĒP(Y) be the average weight enumerator derived from

(6.22) by ĒP(Y) = P̄P(Y, Y, Y, Y). Let Υ(W,Y) = Coeff
(
P̄D(W,X, Y), Xx

)
. From

(6.20), it follows that any exponent with a nonzero coefficients in Υ(Y, Y) also has

a nonzero coefficient in Rkr
C (Y, Y) or equivalently Ekr

C (Y). Similarly if Υ′(X, Z) =

Coeff
(
Rnr−kr
C (X, Z), Xx

)
Xx, then any exponent with a nonzero coefficient in Υ′(Y, Y)

also has a nonzero exponent in Enr−kr
C . It follows from (6.22) that any exponent with

a nonzero coefficient in ĒP(Y) also has a nonzero coefficient in Enr−kr
C Ekr

C and we are

done.

In [106], the authors approximated the weight enumerator of the product code

by a binomial distribution for all weights greater than ho. Our approach has the

advantage that only plausible weights appear in the combined enumerators of the

162

product code.

6.5 Split Weight Enumerators of Linear Codes

As seen in the previous section, deriving the CIOWE of the product code requires

the knowledge of the IRWE of the component codes. In this section we discuss the

weight enumerators of some codes which are typically used for product code schemes.

In particular, we show closed form formulas for the IRWE of Hamming, extended

Hamming, Reed-Solomon codes. To do this, it is sometimes easier to work with the

split weight enumerator (SWE, see definition in Section 6.1) of the dual code. The

connection between the IRWE of a code and its dual was established in [114]. The

following theorem gives a simplified McWilliams identity relating the SWE of a linear

code with that of its dual code in terms of Krawtchouk polynomials.

Theorem 6.5. Let C be an (n, k) linear code over Fq and C⊥ be its dual code. Let

A(α, β) and A⊥(α, β) be the SWEs of C and C⊥ respectively for an (n1, n2) partition

of their coordinates, then

A⊥(α, β) =
1

|C|
n1∑

w=0

n2∑
v=0

A(w, v)Kα(w, n1)Kβ(v, n2),

such that for β = 0, 1, . . . , γ, Kβ(v, γ) =
∑β

j=0

(
γ−v
β−j

)(
v
j

)
(−1)j(q−1)β−j is the Krawtchouk

polynomial.

Proof. By a straightforward manipulation of the Macwilliams identity for the split

weight enumerator [74, Chapter 5, (52)][62], it follows that for linear codes and r =

q − 1,

A⊥(X,Y) =
1

|C|(1 + rX)n1(1 + rY)n2A
(

1−X

1 + rX
,

1− Y

1 + rY

)

163

which is equivalent to

A⊥(X,Y) =
1

|C|
n1∑

w=0

n2∑
v=0

A(w, v)

(1− rX)n1−w(1−X)w(1− rY)n2−v(1− Y)v, (6.26)

where A(X, Y) and A⊥(X, Y) are the SWE functions of C and C⊥ respectively.

Observing that for a positive integer γ and 0 ≤ β ≤ γ, (1 − rY)γ−v(1 − Y)v =
∑γ

β=0Kβ(v, γ)Y β is the generating function for the Krawtchouk polynomial [74, Chap-

ter 5, (53)] and that A⊥(α, β) is the coefficient of XαY β in the right-hand side of (6.26)

the result follows.

By observing that the roles of the input and the redundancy are interchanged in

the code and its dual, we have:

Corollary 6.6. The IRWEs of C and C⊥ are related by

R⊥(α, β) =
1

|C|
n−k∑
v=0

k∑
w=0

R(w, v)Kβ(w, k)Kα(v, n− k).

6.5.1 Hamming and Simplex Codes

The IRWE function of systematic Hamming codes could be derived by observing that

they are the dual code of simplex codes [74, 73]. A recursive equation for evaluating

the IRWE of Hamming codes was given in [96]. The following theorem gives a closed

form formula for the IRWE function of Hamming codes in terms of Krawtchouk

polynomials.

Theorem 6.7. The IRWE of (2m− 1, 2m−m− 1, 3) (systematic) Hamming codes is

RH(α, β) =

1

2m

(
m∑

w=1

(
m

w

)
Kβ(w, m)Kα(2m−1 − w, 2m −m− 1) +

(
m

β

)(
2m −m− 1

α

))
.

164

Proof. By observing that the IRWEF of the (2m − 1,m, 2m−1) simplex code is

Rs(X, Y) = 1 +
m∑

w=1

(
m

w

)
XwY 2m−1−w.

Using Corollary 6.6 and observing that Kβ(0,m) =
(

m
β

)
, we obtain the result.

6.5.2 Extended Hamming and Reed-Muller Codes

Extended Hamming codes were studied in [19], where it was shown they possess the

multiplicity property, and closed-form formulas for their input-output multiplicity

were provided. The following theorem shows a closed expression for their IRWE

function in terms of Krawtchouk polynomials.

Theorem 6.8. A closed form formula for the IRWE of the (2m, 2m−m−1, 4) extended

Hamming codes is

REH(α, β) =
1

2m+1

(
m∑

w=1

(
m + 1

w

)
Kβ(w, m + 1) Kα(2m−1 − w, 2m −m− 1)

+

(
m + 1

β

)(
2m −m− 1

α

) (
1 + (−1)α+β

))
.

Proof. By observing that the extended Hamming codes are the duals of the (2m,m+

1, 2m−1) first-order Reed-Muller (RM) codes whose IRWE function could be shown

to be

R(X,Y) = 1 + Xm+1Y 2m−m−1 +
m∑

α=1

(
m + 1

α

)
XαY 2m−1−α.

By Corollary 6.6 and observing that Kβ(γ, γ) =
(

γ
β

)
(−1)β the result follows.

Note that the WE of extended Hamming (EH) codes could also be derived from

that of Hamming (H) codes by using the well-known relation [74], EEH(h) = EH(h)+

165

EH(h− 1) if h is even and is zero otherwise. It follows that

REH(α, β) =





RH(α, β) + RH(α, β − 1), α + β is even

0, otherwise
. (6.27)

6.5.3 Reed-Solomon Codes

Reed-Solomon codes are maximum distance separable (MDS) codes [74]. We have

proved the following theorem (c.f., Theorem 3.3).

Theorem 6.9. The SWE of MDS codes is given by

AT (w1, w2) = E(w1 + w2)

(
n1

w1

)(
n2

w2

)
(

n
w1+w2

) .

It follows that the IRWE of an (n, k) systematic RS code is given by:

RRS(α, β) = E(α + β)

(
k
α

)(
n−k

β

)
(

n
α+β

) .

6.6 IRWE of Binary Images of Product Reed-

Solomon Codes

Recently, new techniques for decoding Reed-Solomon codes beyond half-the-minimum

distance were derived in [49], and algebraic soft-decision algorithms were proposed

(c.f., Chapter 4 and Chapter 5). In this section we derive a number of results on RS

product codes and their binary image.

Given the product of Reed-Solomon codes defined over a field of characteristic two,

it is often the case that the binary image of the code is transmitted over a binary-

input channel. The performance would thus depend on the binary weight enumerator

of the component RS codes, which, as explained in Section 2.2, depends on the basis

166

used to represent the 2m-ary symbols as bits. The weight enumerator for the average

binary image of codes, defined over finite fields of characteristic two, can be derived

by assuming a binomial distribution of the bits in the nonzero symbols (c.f (2.9)). Let

Cb denote the binary image of an (n, k) code C which is defined over the finite field

F2m . Let EC(Y) be the weight enumerator function of C. Then the average weight

enumerator of the (nm, km) code Cb is given by

ĒCb
(Y) = EC(Ψ(Y)), (6.28)

where Ψ(Y) = 1
2m−1

((1+Y)m−1) is the generating function of the bit distribution in

a nonzero symbol. We assume that the distribution of the nonzero bits in a nonzero

symbol follows a binomial distribution and that the nonzero symbols are independent.

If the coordinates of the code C are split into p partitions, then there is a corresponding

p-partition of the coordinates of Cb, where each partition in Cb is the binary image of

a partition in C.

Let Pb denote the ensemble of binary images of the product code. By Theo-

rem 3.14, the average partition weight enumerator of Pb could be derived as in the

following lemma.

Lemma 6.10. Let PP(W,X, Y, Z) be the PWE function of a code P defined over

F2m. The average PWE of the binary image Pb is

P̄Pb
(W,X, Y, Z) = PP (Ψ(W), Ψ(X), Ψ(Y), Ψ(Z)) .

Corollary 6.11. If R̃P(X,Y) is the combined IRWE of the (np, kp) product code P
defined over F2m, then the combined IRWE of its binary image is

R̃Pb
(X, Y) = R̃P(Ψ(X), Ψ(Y)),

167

where

Ψ(X) =
1

2m − 1
((1 + X)m − 1)

and

R̃Pb
(X, Y) =

kpm∑
x=0

npm−kpm∑
y=0

RPb
(x, y)XxY y.

Note this same formula does not hold in the case of the IOWE. However, the

binary IOWE could be derived from the binary IRWE by using (6.5).

6.7 Numerical Results

In this section we show some numerical results supporting our theory. The combined

input output enumerators of some product codes are investigated in Section 6.7.1.

Analytical bounds to ML performance are computed and discussed in Section 6.7.2.

Hamming codes, extended Hamming codes and Reed-Solomon codes are considered

as constituent codes.

6.7.1 Combined Input-Output Weight Enumerators

Example 6.2. Let us consider the (8, 4) extended Hamming code. From Theorem 6.8,

its IOWE function is

OEH(X,Y) = 1 + 4XY 4 + 6X2Y 4 + 4X3Y 4 + X4Y 8.

Let us now study the (8, 4)2 square product code. By applying (6.19) we can de-

rive the average weight enumerator function obtained with the serial concatenated

168

0 50 100 150 200 250
10

0

10
10

10
20

10
30

Weight

E
um

er
at

or

Average weight enumerator of the (16,11)2 extended Hamming product code

AWE
Random Code

Figure 6.4: The combined weight enumerator of the (16, 11)2 extended Hamming
product code is compared with that of a random binary code of the same dimension.

169

representation. By rounding to the nearest integer, we obtain:

EP(Y) = 1 + 3Y 8 + 27Y 12 + 107Y 16 + 604Y 20 + 3153Y 24 + 13653Y 28 + 30442Y 32

+ 13653Y 36 + 3153Y 40 + 604Y 44 + 107Y 48 + 27Y 52 + 3Y 56 + Y 64.

By (6.22), we can derive the average weight enumerator function obtained with the

parallel concatenated representation. We obtain:

EP(Y) = 1 + 2Y 8 + 26Y 12 + 98Y 16 + 568Y 20 + 3116Y 24 + 13780Y 28 + 30353Y 32

+ 13780Y 36 + 3116Y 40 + 568Y 44 + 98Y 48 + 26Y 52 + 2Y 56 + Y 64.

(For space limitations we do not show the IOWE functions.) Note that all codewords

are of plausible weights as expected from Theorem 6.4. It could be checked that in

both cases, the cardinality of the code (without rounding) is preserved to be 216. In

general, the parallel representation gives more accurate results than the serial one,

and will be used for the remaining results in this chapter.

For low-weight codewords, we can compute the exact IOWE. By Theorem 6.1, the

exact IOWE of the product code for weights less than ho = 24 is equal to

OP(X, Y) = 1 + 16XY 16 + 48X2Y 16 + 32X3Y 16 + 36X4Y 16 + 48X6Y 16 + 16X9Y 16.

It follows that the combined weight enumerator function for this product code is

ẼP(Y) = 1 + 196Y 16 + 3116Y 24 + 13781Y 28 + 30353Y 32 + 13781Y 36

+ 3116Y 40 + 568Y 44 + 98Y 48 + 26Y 52 + 2Y 56 + Y 64.

A symmetric weight enumerator of the component codes implies a symmetric one

for the product code. Thus, by the knowledge of the exact coefficients of exponents

170

less than 24, ẼP(Y) could be improved by setting the coefficients of Y 54, Y 52 and

Y 56 to be zero and adjusting the coefficients of the middle exponents such that the

cardinality of the code is preserved. We obtain:

Ẽ′P(Y) = 1 + 196Y 16 + 3164Y 24 + 13995Y 28 + 30824Y 32

+ 13995Y 36 + 3164Y 40 + 196Y 48 + Y 64. (6.29)

In this case, the exact weight enumerator can be found by exhaustively generating

the 65536 codewords of the product code, and it is equal to:

EP(Y) = 1 + 196Y 16 + 4704Y 24 + 10752Y 28 + 34230Y 32

+ 10752Y 36 + 4704Y 40 + 196Y 48 + Y 64.

It can be verified that the combined weight enumerator (6.29) gives a very good

approximation of this exact weight enumerator. ¦

Example 6.3. The combined weight enumerator of the extended Hamming product

code (16, 11)2, computed by applying (6.20) and (6.22), is depicted in Figure 6.4. It is

observed that for medium weights, the distribution is close to that of random codes,

which is given by

E(w) = q−(np−kp)

(
np

w

)
(q − 1)w,

except that only plausible weights exist. ¦

Example 6.4. The combined symbol weight enumerator of the (7, 5)2 RS product

codes over F8, computed by applying (6.20) and (6.22), is shown in Figure 6.5. It

can be observed that the weight enumerator approaches that of a random code over

F8 for large weights. The average binary weight enumerator of the (147, 75) binary

image, obtained by applying Corollary 6.11, is shown in Figure 6.6. It is superior to

171

0 10 20 30 40 50
10

−20

10
−10

10
0

10
10

10
20

10
30

(Symbol) Weight

W
ei

gh
t E

nu
m

er
at

or

Average Weight Enumerator of the (7,5)2 RS Product Code

Symbol AWE
Random Code

Figure 6.5: The combined symbol weight enumerator of the (7, 5)2 Reed-Solomon
product code is compared with that of a random code over F8 with the same dimen-
sion.

172

0 50 100 150
10

−30

10
−20

10
−10

10
0

10
10

10
20

10
30

(Binary) Weight

W
ei

gh
t E

nu
m

er
at

or

Average Binary Weight Enumerator of the (7,5)2 RS Product Code

Binary AWE
Random Code

Figure 6.6: The combined binary weight enumerator of the binary image of the (7, 5)2

Reed-Solomon product codes is compared with that of a random binary code with
the same dimension.

a random code at low weights and then, as expected, approaches that of a binary

random code at larger weights. ¦

6.7.2 Maximum-Likelihood Performance

In this section, we investigate product code performance. The combined weight enu-

merators are used to compute the Poltyrev bound [87], which gives tight analytical

bounds to maximum-likelihood performance at both high and low error rates. For

173

proper comparison, truncated union bound approximation and simulation results are

also considered.

Example 6.5. The codeword error rate (CER) and the bit error rate (BER) perfor-

mance of two Hamming product codes ((7, 4)2 and (31, 26)2) are shown in Figure 6.7.

We have depicted:

• The Poltyrev bounds on ML performance (P on the plots), obtained by using

the combined weight enumerator computed via (6.22).

• The truncated union bound (L on the plots), approximating the ML perfor-

mance at low error rates, and computed from the minimum distance term via

(6.7).

• The simulated performance of iterative decoding (S on the plots), correspond-

ing to 15 iterations of the BCJR algorithm on the constituent codes trellises

([52],[19]).

By looking at the results, we can observe that:

• The combined weight enumerators derived in this chapter, in conjunction with

the Poltyrev bound, provide very tight analytical bounds on the performance

of maximum-likelihood decoding also at low SNRs (where the truncated union

bound does not provide useful information).

• For the (7, 4)2 code the exact enumerator can be exhaustively computed, and

the exact Poltyrev bound is shown in the figure. It is essentially identical to

the bound computed with the combined weight enumerator.

• The ML analytical bounds provide very useful information also for iterative de-

coding performance. In fact, the penalty paid by iterative decoding with respect

174

0 1 2 3 4 5 6 7
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

E
rr

o
r

R
a

te
Performance of Hamming product codes

CER (7,4)2

BER (7,4)2
CER (31,26)2

BER (31,26)2

P
P Exact

S

P

L
S

P

L

S

P

S

Figure 6.7: CER and BER performance of some Hamming product codes for soft-
decision decoding over AWGN channel.
The Poltyrev bound P, and the truncated union bound approximation L, are compared
to simulated performance of iterative decoding S. For the (7, 4)2 code, the Poltyrev
bound computed with the exact weight enumerator is also reported.

175

1 2 3 4 5 6 7
10

−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

E
rr

o
r

R
a

te

Performance of (32,26)2 Extended Hamming Product Code

BER Soft P
BER Soft L
BER Soft S
CER Soft P
CER Soft L
CER Soft S
CER Hard
BER Hard

Figure 6.8: CER and BER performance of the (32, 26)2 extended Hamming product
code for soft-decision and hard-decision decoding over AWGN channel.
The Poltyrev bound P and the truncated union bound approximation L are compared
to simulated performance of iterative decoding S.

176

to ideal ML decoding is very limited, as shown in the figure (feedback coeffi-

cients for weighting the extrinsic information and improve iterative decoding

has been employed, as explained in [19]).

¦

Example 6.6. The performance of the extended Hamming product code (32, 26)2 is

investigated in Figure 6.8. Also in this case, the tightness of the bounds is demon-

strated, for both the CER and the BER. With the aid of the Poltyrev bound for

the BSC channel, hard ML bounds have also been plotted. It is shown that soft ML

decoding on the AWGN channel offers more than 2 dB coding gain over hard ML

decoding. ¦

Example 6.7. In Figure 6.9 and Figure 6.10, the performance of soft and hard ML

decoding of various Hamming and extended Hamming codes are studied and com-

pared. As expected, the EH product codes show better performance than Hamming

product codes of the same length due to their larger minimum distance and lower

rate. (For the (7, 4)2 Hamming product code and the (8, 4)2 extended Hamming

product code, it is observed that the bounds using our combined weight enumerator

overlapped with ones using the exact weight enumerators, which can be calculated

exhaustively in these cases.) ¦

It is well known that the sphere packing bound provides a lower bound to the per-

formance achievable by a code with given code-rate and codeword length [108]. The

discrete-input further limitation occurring when using a given PSK modulation for-

mat was addressed in [14]. The distance of the code performance from this theoretical

limit can be used an indicator of the code goodness.

Example 6.8. The performance of the binary image of some Reed-Solomon product

codes, for both soft and hard decoding, are investigated in Figure 6.11, where the

177

0 1 2 3 4 5 6 7 8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Performance of Hamming product codes

(7,4)2, SD(UB)

(7,4)2(ex), SD(UB)

(7,4)2, SD(LB)

(15,11)2, (UB)

(15,11)2, (LB)

(31,26)2, (UB)

(31,26)2, (LB)

(7,4)2, HD

(15,11)2, HD

(31,26)2, HD

Figure 6.9: BER performance of Hamming product codes over AWGN channel.
Bounds for both soft-decision (SD) and (HD) hard-decision decoding are shown. The
Poltyrev upper bound (UB) and the truncated union bound approximation (LB) are
used for SD, while the Poltyrev bound for the BSC is used for HD.

178

0 1 2 3 4 5 6 7 8
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Performance of extended Hamming product codes

(8,4)2,SD(UB)

(8,4)2 (ex),SD(UB)

(8,4)2, SD(LB)

(16,11)2, SD(UB)

(16,11)2, SD(LB)

(32,26)2, SD(UB)

(32,26)2, SD(LB)

(8,4)2, HD

(16,11)2, HD

(32,26)2, HD

Figure 6.10: BER performance of extended Hamming product codes over AWGN
channel.
Bounds for both soft-decision (SD) and (HD) hard-decision decoding are shown. The
Poltyrev upper bound (UB) and the truncated union bound approximation (LB) are
used for SD, while the Poltyrev bound for the BSC is used for HD.

179

Poltyrev bound has been plotted. As expected, soft decoding has about 2 dB of gain

over hard decoding. It can be observed that these product codes have good perfor-

mance at very low error rates (BER lower than 10−9), where no error floor appears.

Let us consider, for example, the (15, 11)2 RS product code, corresponding to a

(900,484) binary code. By looking at the Poltyrev bound plotted in Figure 6.11,

this code achieves a BER=10−10 for a signal-to-noise ratio γ ' 2.2 dB. By computing

the PSK sphere packing bound for this binary code, we obtain a value of about 1.9 dB

for BER=10−10. This means that this RS product code is within 0.3 dB from the

theoretical limit, which is a very good result at these low error rates. ¦

6.8 Conclusion

The average weight enumerators of product codes were studied in this chapter. The

problem was relaxed by considering proper concatenated representations, and assum-

ing random interleavers over Fq instead of row-by-column interleavers. The exact

IOWE for low-weight codewords were also derived by extending Tolhuizen results.

By combining exact values and average values, a complete combined weight enumer-

ator was computed. This enables us to study the ML performance of product codes

at both low and high SNRs by applying the Poltyrev bound. The computation of

average enumerators requires knowledge of the constituent code enumerators. Closed

form formulas for the input redundancy enumerators of some popular codes were

shown. The binary weight enumerator of ensemble of RS product codes was also

derived.

The combined weight enumerators of Hamming and Reed-Solomon product codes

were numerically computed and discussed. Using the combined enumerators, tight

bounds on the ML performance of product codes over AWGN channels were derived

by using the Poltyrev bounds. The tightness of the bounds were demonstrated by

180

0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

SNR

B
E

R

Performance of Reed Solomon Product Codes

(7,5)2,SD

(15,11)2, SD

(15,7)2, SD

(7,5)2, HD

(15,11)2, HD

(15,7)2, HD

Figure 6.11: BER of some Reed-Solomon product codes over the AWGN channel.
The performance bounds are plotted for both soft-decision (SD) and hard-decision
(HD) decoding, using the combined weight enumerators.

181

comparing them to both truncated union bound approximations and simulation re-

sults.

In particular, Reed-Solomon product codes show excellent performance. Reed-

Solomon codes are widely used in wireless, data storage, and optical systems due to

their burst-error-correction capabilities. The presented techniques allow to analyt-

ically estimate Reed-Solomon product codes performance, and show they are very

promising as Shannon-approaching solutions down to very low error rates without

error floors. This suggests the search for low-complexity soft decoding algorithms for

Reed-Solomon codes as a very important research area in the near future.

182

Chapter 7

Algebraic List Decoding of
Reed-Solomon Product Codes

Progress lies not in enhancing what is, but in advancing toward what

will be.

—Khalil Gibran

In Chapter 6, we analyzed the performance of maximum-likelihood decoding of

linear product codes. Product codes were introduced by Elias [38], who also proposed

decoding them by iteratively decoding the component codes. They are widely used in

data storage and satellite broadcast systems. Reed-Solomon (RS) product codes are

product codes where the component codes are Reed-Solomon codes. A number of soft

iterative decoding techniques have been devised for them [91, 5]. Maximum-likelihood

performance analysis of Reed-Solomon product codes for both hard-decision and soft-

decision decoding show the potential of devising improved polynomial time algorithms

for decoding them [26].

We briefly refresh the definition of a product code. Assume that R and C are

linear codes with parameters (nr, vr + 1, dr) and (nc, vc + 1, dc). The product code

P = R×C is defined as the set of all two-dimensional arrays such that each row of any

array in P is a codeword of R and each column is a codeword of C. It is well known

that P is an (np, vp + 1, dp) = (nrnc, (vr + 1)(vc + 1), drdc) linear code. The rates of

183

R, C and P are Rr = (vr + 1)/nr, Rc = (vc + 1)/nc and Rp = RrRc respectively.

It is well known that the half-the-distance bound is not always attainable for

product codes by iteratively decoding the component codes. For example, if the

decoding algorithms for the row and column component codes are capable of cor-

recting (dr − 1)/2 and (dc − 1)/2 errors respectively, and an error rectangular block

of ((dr − 1)/2 + 1) × ((dc − 1)/2 + 1) occurs, iterative decoding fails although the

number of errors will be less than or equal to (drdc − 1)/2 if drdc ≥ dr + dc + 3.

If dr = dc = d, iterative decoding will fail for this pattern if d ≥ 3. For example,

the product of two (7, 3, 5) RS codes has a minimum distance of 25 and a half-the-

minimum distance decoder will be capable of correcting up to 12 errors. However,

iterative decoding fails to correct the pattern of 9 errors described above.

Conventional bounded distance decoding algorithms for the component Reed-

Solomon codes can correct up to half-the-minimum distance of the code. A list

decoder will return a list of codewords with the goal of having the transmitted code-

word on the list [39, 117]. List decoding of Reed-Solomon codes with the Guruswami-

Sudan algorithm can correct errors beyond half-the-minimum distance of RS codes.

The Guruswami-Sudan algorithm spurred a lot of progress in the area of list de-

coding of algebraic codes. Algorithms such as Sudan [102], Guruswami-Sudan [49],

Parvaresh-Vardy [82, 81], and Guruswami-Rudra [48], show that we can basically de-

code above the half-the-minimum distance of the code for some specific codes. In this

work, we investigate the generalization of Guruswami-Sudan algorithm for RS prod-

uct code. We will that see this generalization results in algorithms that can decode

more than half-the-minimum distance for certain rates of a RS product code.

This chapter is organized as follows. In Section 7.1, we introduce some notation

and show that a Reed-Solomon product can be represented as an evaluation of a bi-

variate polynomial. In Section 7.2, we propose and analyze an algebraic list-decoding

algorithm for two-dimensional Reed-Solomon product codes. The list-decoding algo-

184

rithm is based on the interpolation and factorization ideas of the Guruswami-Sudan

algorithm for decoding Reed-Solomon codes. In Section 7.3, we study M -dimensional

Reed-Solomon product codes and generalize our algorithm and its analysis for an

arbitrary dimension M . We then, in Section 7.4, investigate decoding product Reed-

Solomon codes as subfield subcodes of Reed-Muller codes by invoking the Pellikan-Wu

algorithm for decoding Reed-Muller codes. We conclude this chapter in Section 7.6.

7.1 Reed-Solomon Product Codes

We first briefly review the Reed-Solomon codes. Let D(X) =
∑v

i=0 DiX
i be a data

polynomial over Fq[X]. 1 Then an (n, v + 1, d) Reed-Solomon code is generated by

evaluating the data polynomial D(X) at n distinct elements of the field forming a

set called the support set of the code S = {α0, α1, . . . , αn−1} ⊂ Fq. The generated

codeword is D(S) = (D(α0),D(α1), . . . ,D(αn−1)). For a Reed-Solomon code, d =

n− v.

Recall the definition of a product of two codes P = R×C given in the introduction.

We show how a product of two RS codes can be generated by polynomial evaluation

of a bivariate polynomial.

Theorem 7.1. Let R and C be (nr, vr + 1, dr) and (nc, vc + 1, dc) RS codes, re-

spectively. Let R and C be defined as an evaluation codes over the support sets

Sr = {α0, α1, . . . , αnr−1} ⊂ Fq and Sc = {β0, β1, ..., βnc−1} ⊂ Fq respectively. De-

fine evaluation map:

ev2 : Fq[X, Y] → Fnrnc
q

D(X, Y) 7→ (D(αi, βj) : (αi, βj) ∈ Sr × Sc).

1We replace the ubiquitous k − 1 with v.

185

Then the Reed-Solomon product code P is an evaluation code defined by

P = R× C = ev2(L)

where L = {D ∈ Fq[X, Y] : degX D ≤ vr and degY D ≤ vc}

Proof. Let D(X, Y) =
∑vr

i=0

∑vc

j=0 Di,jX
iY j be a data polynomial. The cardinality

of the code generated by bivariate polynomial evaluation is equal to the number of

distinct data polynomials D(X, Y), q(vr+1)(vc+1), which is equal to the cardinality of

R× C.

It is thus sufficient to show that the generated code P is a subcode of the product

code R× C. Consider a codeword p ∈ P such that pi,j = D(αi, βj). The rth row is

equal to pr,∗ = {D(α0, βr),D(α1, βr), . . . ,D(αnr−1, βr)} where

D(αc, βr) =
vr∑

i=0

vc∑
j=0

Di,j(αc)
i(βr)

j (7.1)

=
vr∑

i=0

(
vc∑

j=0

Di,j(βr)
j

)
(αc)

i.

Define γr,s =
∑vc

j=0 Ds,j(βr)
j and the univariate polynomial D′r(X) =

∑vr

i=0 γr,iX
i.

It is then easy to see that pr,∗ can be generated by evaluating the modified data

polynomial D′r(X) at the support set Sr; pr,∗ = {D′r(α0),D′r(α1), . . . ,D′r(αnr−1)}.
This proves that pr,∗ ∈ R.

Similarly, any column c can be generated by evaluating the modified data polyno-

mial D′′c (Y) =
∑vc

j=0 δc,jY
j at the support set Sc; p∗,c = {D′′c (β0),D′′c (β1), . . . ,D′′c (βnc−1)},

where δc,j =
∑vr

i=0 Di,j(αc)
i. Thus each column p∗,c is a codeword in C.

Since each row is a codeword in R and each column is a codeword in C, then P is

a subcode of R× C and we are done.

We will denote an RS product code, defined in Theorem 7.1 by P(Sr, Sc, vr, vc, q).

186

It is easy to confirm that the minimum distance of P is indeed drdc. From the above

proof each row is generated by D′r(X) of degree at most vr. Since this univariate

polynomial has at most vr zeros, it will evaluate to at least nr − vr nonzero values if

it is nonzero. This means that at least nr − vr columns are nonzero. Each of these

columns is evaluated by the polynomial D′′c (Y). Thus each of these nonzero columns

has at least nc−vc nonzero positions. Thus if p is nonzero, the number of the nonzero

elements in p is at least (nr − vr)(nc − vc) which is drdc. This proves the following

corollary.

Corollary 7.2. The number of distinct zeros of the bivariate polynomial D(X, Y) =
∑vr

i=0

∑vc

j=0 Di,jX
iY j is at most nrvc + ncvr − vcvr if vr < nr and vc < nc.

For the sake of our analysis, we will need a bound on the total number of zeros,

counting with multiplicities, of a bivariate polynomial. We will start by generalizing

definitions 4.2 and 4.3 to M dimensions.

Definition 7.1. The (r1, r2, . . . , rM)th Hasse derivative of an M -variate polynomial

Q(X1, X2, . . . , XM) at (α1, α2, . . . , αM), is given by

Q′
r1,r2,...,rM

(α1, α2, . . . , αM)

= Coeff(Q(X1 + α1, X2 + α2, . . . , XM + αM), Xr1
1 Xr2

2 . . . XrM
M)

=
∑

i1,...,iM

(
i1
r1

)
. . .

(
iM
rM

)
Qi1,...,iM αi1−r1

1 . . . αiM−rM
M .

Definition 7.2. The M -variate polynomial Q(X1, X2, . . . , XM) passes through the

point (α1, α2, . . . , αM) with multiplicity m (has a zero of multiplicity m at (α1, α2, . . . , αM))

iffQ(X1+α1, X2+α2, . . . , XM+αM) does not contain any polynomial of degree strictly

less than m;

Q′
r1,...,rM

(α1, . . . , αM) = 0 for all r1, r2, . . . , rM such that 0 ≤ ∑M
i=1 ri < m.

187

Definition 7.3. The (w1, w2, . . . , wM)-weighted degree of the M -variate polynomial

Q(X1, X2, . . . , XM) =
∑

i1,i2,...,iM
Qi1,i2,...,iM X i1

1 X i2
2 . . . X iM

M is

degw1,w2,...,wM
Q(X1, X2, . . . , XM)

∆
= max{i1w1+i2w2+· · ·+iMwM : Qi1,i2,...,iM 6= 0}.

Theorem 7.3. The number of zeros (counting with multiplicities) of the nonzero

bivariate polynomial D(X, Y) evaluated over Sr × Sc, where |Sr| = nr and |Sc| = nc,

is at most degnc,nr
D(X,Y).

Proof. Let vc = degYD(X, Y) and vr = degXD(X, Y). For any α ∈ Fq, D(α, Y) is

either the all zero polynomial or a polynomial in Y with maximum degree vc. Define

G ∆
= {γ : (X−γ)|D(X, Y)}. 2 Assuming that for each γi ∈ G, mi is the largest integer

that (X − γi)
mi divides D(X,Y) then we can rewrite D(X,Y) as follows

D(X, Y) =




|G|∏
i=1

(X − γi)
mi


 B(X, Y)

where B(α, Y) is a nonzero polynomial for any α ∈ Sr and degY B(X,Y) = vc.

For any γi ∈ G, let assume that B(γi, Y) is zero at {β1, β2, . . . , βu} with multiplicity

{r1, r2, . . . , ru}, respectively. Then the number of zeros of D(γi, Y) counting with

multiplicity over Sr × Sc is

u∑
j=1

(mi + rj) + (nc − u)mi ≤ umi + vc + (nc − u)mi.

The term (nc − u)mi is the contribution of the points that B(γi, β) is not zero. Also

notice that
∑

j rj ≤ vc. By observing that
∑

i mi ≤ vr, the total number of zeros for

all γi ∈ G is
|G|∑
i=1

(vc + ncmi) ≤ |G|vc + ncvr.

2 (X − γ)|D means that (X − γ) is a factor of D; (X − γ) divides D.

188

For any α /∈ G, D(α, Y) is nonzero so it has at most vc many zeros. Thus, the

total number of the zeros is upper bounded by

(nr − |G|)vc + |G|vc + ncvr = nrvc + ncvr,

which is degnc,nr
D(X,Y).

By comparing Corollary 7.2 and Theorem 7.3, we note that the number of distinct

zeros of D(X, Y) is less than the total number of zeros by at most vrvc zeros.

7.1.1 Half-the-Minimum Distance Bound

As we mentioned in the introduction, conventional methods for decoding product

codes are not guaranteed to correct any pattern of errors with a cardinality of at

most half-the-minimum distance of the code. However, it is important to compare

the decoding radius of any decoding algorithm to half-the-minimum distance of the

code. For a RS product code with minimum distance dp,

dp/2

np

≈ (1−Rc)(1−Rr)

2

= 1− 1 + (Rc + Rr)−RcRr

2

≤ 1−
√

Rc + Rr −RcRr, . (7.2)

The last inequality follows from the arithmetic-geometric mean inequality. In case

Rc = Rr =
√

Rp, then

dp/2

np

≈ 1−
√

Rp − 1−Rp

2
(7.3)

= 1− 1 + 2
√

Rp −Rp

2
.

189

Thus

dp/2

np

≤ 1−
√

2
√

Rp −Rp

= 1− 4
√

4Rp

√
1−

√
Rp

2
. (7.4)

This means that any decoder for product Reed-Solomon codes with an asymptotic

relative decoding radius of 1− 4
√

4Rp

√
1−

√
Rp

2
will always decode beyond half-the-

minimum distance of the code.

For comparison purposes, one can observe that the correction capability of Reed-

Solomon codes is much larger, mainly due to their larger minimum distance. The

half-the-minimum distance bound for RS codes is

dRS/2

nRS

≈ 1−RRS

2
(7.5)

≤ 1−
√

RRS, (7.6)

where the latter upper bound is the Guruswami-Sudan radius for correcting Reed-

Solomon codes. Thus when comparing the correction capability of different decoding

algorithms for different codes one has to take into account the minimum distance

of these codes. Since RS codes are maximum distance separable codes, they have

the largest distance when compared to other codes with the same parameters. In

Figure 7.1, we show the bounds on the decoding radius for RS product codes given

by (7.3) and (7.4). We compare them with the bounds on the decoding radius for RS

codes given by (7.5) and (7.6).

190

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate

C
o

rr
e

c
ti
o

n
 R

a
d

iu
s

Error Correction Bounds for RS and Product RS Codes

PRS:d
p
/2 n

p

PRS:d
p
/2 n

p
 UB

RS: d/2n
RS: GS radius

Figure 7.1: Error-correction capability for RS and RS product codes.
The half-the-distance bound for RS product codes dp/2

np
(7.3) is compared with the

upper bound of (7.4). They are also compared to the classical decoding radius d/2
n

of
the component RS codes (7.5) and the Guruswami-Sudan decoding radius (7.6).

191

7.2 Algebraic Decoding Algorithm

In this section, we propose an algebraic algorithm for decoding RS product codes

and analyze its performance. The Guruswami-Sudan (GS) algorithm is an algebraic

decoding algorithm for RS codes which are defined as univariate evaluation polynomi-

als. For (n, v + 1, d) RS codes, the GS algorithm interpolates a bivariate polynomial

through n interpolation points, defined by the support set of the code and the received

word, in a two-dimensional space where n is the length of the RS code. Bivariate

polynomial interpolation is followed by polynomial factorization where all linear fac-

tors of the bivariate polynomial with degree at most v are candidates for evaluation

polynomials. We refer the reader to Section 4.2 for more details on the GS algo-

rithm. The GS decoding algorithm can also be generalized for soft-decision decoding

as explained in Section 4.4. The questions we will attempt to answer in this section

are,

• Can one find a good interpolation-factorization algorithm for decoding (two-

dimensional) product codes?

• What is the expected decoding radius of this decoding algorithm?

• What is the expected list size?

Theorem 7.1, hints at a generalization of the GS algorithm to trivariate poly-

nomials. Assume that the Reed-Solomon product code P = R × C is defined as in

Theorem 7.1. The received word is y = [yi,j], for (i, j) ∈ {1, 2, . . . , nr}×{1, 2, . . . , nc},
given that the codeword p ∈ P is transmitted. The Hamming distance between y

and p will be denoted by d(y,p). Our algorithm can be formulated as follows:

Algorithm 7.1. Decoding of Product Reed-Solomon Codes. Let y ∈ Fnp
q be the

received word when the codeword p ∈ P(Sr, Sc, vr, vc, q) is transmitted.

1. Interpolate a trivariate polynomial Q(X, Y, Z) such that:

192

(a) Q 6= 0

(b) Q(X,Y, Z) passes through the points (αi, βj, yi,j) with multiplicity m.

(c) The (nc, nr, ncvr + nrvc)-weighted degree of Q(X,Y, Z) is less than ∆m,

where ∆m is to be determined (Theorem 7.4).

2. Factorize Q(X,Y, Z) into irreducible factors. If (Z−D(X, Y))|Q(X, Y, Z), then

p̂ = ev2(D) = [D(αi, βj)](αi,βj)∈(Sr×Sc), is added to the list of candidates if

(a) degX D(X,Y) ≤ vr and degY D(X, Y) ≤ vc

(b) d(p̂,y) ≤ τm where τm is the error-correction capability (determined by

Theorem 7.7).

This algorithm can be run in polynomial time in the length of the code np and

the interpolation multiplicity m. As we will see, interpolating a polynomial amounts

to solving a number of linear equations in a number of unknowns which are the

coefficients of the polynomial. Thus it can be solved using Gaussian elimination or by

a generalization of Koetter’s interpolation algorithm or the Feng-Tzeng algorithm [71,

76]. The worst case complexity of the interpolation step is thus cubic in the number of

unknowns (given by (7.9)). Finding the linear factors of this interpolated trivariate (or

M -variate) polynomial can be done by a straightforward generalization of the Roth-

Ruckenstein algorithm [95, 76] or other efficient factorization algorithms [119, 120].

The complexity of the algorithm is dominated by that of the factorization step.

The performance of the above algorithm depends on the choice of the interpolation

multiplicity m. The larger the interpolation multiplicity m, the larger the decoding

radius τm and the higher the computational complexity of the decoding algorithm. As

m goes to infinity, the algorithm can correct any pattern of errors with a cardinality

equal to its asymptotic decoding radius

τ

np

= 1− 6
√

4Rp, (7.7)

193

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rate

R
e
la

ti
v
e
 C

o
rr

e
c
ti
n
g
 R

a
d
iu

s

Error Correcting Radius for Product RS Codes

d
p
/2n

p

τ/n
p

τ+/n
p

Figure 7.2: Decoding radii of different decoding algorithms for RS product codes.
The half-the-distance bound for RS product codes dp/2

np
(7.3) is compared with the

decoding radius τ/np of Algorithm 7.1 given by (7.7) and the decoding radius τ+/np

of Algorithm 7.2 given by (7.8).

194

where it is assumed that Rc = Rr =
√

Rp, the length of the product code is np and

its rate is Rp.

We stress that Algorithm 7.1 is not the only possible interpolation-factorization

for decoding RS product codes. For example, suppose step 1c of Algorithm 7.1 is

replaced by step 1c in the following

Algorithm 7.2. Alternative Algorithm for Decoding Product Reed-Solomon Codes.

1. (a) Q 6= 0

(b) Q(X,Y, Z) passes through the points (αi, βj, yi,j) with multiplicity m.

(c) The (1, 0, vr)-weighted degree of Q(X, Y, Z) is less than ∆′
m and the (0, 1, vc)-

weighted degree of Q(X,Y, Z) is less than ∆′′
m where ∆′

m and ∆′′
m are to be

determined.

Then the error-correcting radius of the algorithm becomes

τ+

np

= 1− 6
√

16Rp, (7.8)

which is inferior to our proposed Algorithm 7.1, as seen from Figure 7.2. In the

remaining of this section, we will analyze Algorithm 7.1 and prove that its asymptotic

decoding radius is indeed given by (7.7).

7.2.1 Analysis of Algorithm 7.1

In step 1 of Algorithm 7.1, a trivariate polynomial Q(X,Y, Z) ∈ Fq[X,Y, Z] is inter-

polated to pass through all the (αi, βj, yi,j) with multiplicity m.

Theorem 7.4. There exist a nonzero trivariate polynomial Q(X, Y, Z) ∈ Fq[X, Y, Z]

such that Q(X,Y, Z) passes through all the (αi, βj, yi,j), for (i, j) ∈ {1, 2, . . . , nr} ×

195

{1, 2, . . . , nc}, with multiplicity m and degnc,nr,ncvr+nrvc
Q(X,Y, Z) ≤ ∆m where

∆m =

⌈
m(nrnc)

3

√
(Rr + Rc)

(
1 +

1

m

)(
1 +

2

m

) ⌉
.

Proof. The polynomial can be interpolated as long as the number of linear constraints

imposed by step 1b of Algorithm 7.1 is strictly less than the number of unknowns.

The unknowns are the coefficients of the monomials of Q(X, Y, Z) such that their

weighted degree satisfy condition 1c of Algorithm 7.1. Let N(∆) be the number of

trivariate monomials whose (nc, nr, ncvr + nrvc)-weighted degree is at most ∆. N(∆)

can be lower bounded by the volume of a pyramid in R3 [20]. Considering the pyramid

in Figure 7.3,

N(∆) >
1

6

∆3

nrnc(ncvr + nrvc)
.

From Definition 7.2, the number of constraints imposed by each point (αi, βj, yi,j) is

equal to the number of solutions in nonnegative integers (r1, r2, r3) to 0 ≤ r1+r2+r3 <

m which is m(m+1)(m+2)
6

. It follows that there exists a nonzero polynomial of weighted

degree at most ∆ that passes through all the points (αi, βj, yi,j) with multiplicity m

if

N(∆) > nrnc
m(m + 1)(m + 2)

6
. (7.9)

This implies the following condition

degnc,nr,ncvr+nrvc
Q(X, Y, Z) ≤

⌈
m(nrnc)

3

√(
vr

nr

+
vc

nc

)(
1 +

1

m

)(
1 +

2

m

) ⌉
, (7.10)

and the theorem follows.

We know turn our attention to the factorization step of the algorithm. We will

find a sufficient condition for a data polynomial D(X,Y) to be on the list output by

196

Figure 7.3: The number of monomials of maximum weighted degree ∆ is lower
bounded by the volume of this pyramid in R3.

the algorithm.

Theorem 7.5. Let p = (D(αi, βj) : (αi, βj) ∈ Sr × Sc) and y the received word.

Define H(X,Y)
∆
= Q(X,Y,D(X,Y)). If

degnc,nr
H(X, Y) < m(nrnc − d(y,p)),

then (Z − D(X, Y)) is a factor of Q(X,Y, Z).

Proof. From condition 1b of Algorithm 7.1 and Theorem 7.1, H(αi, βj) is zero with

multiplicity m for any (i, j) such that yi,j = pi,j. It follows that H(X, Y) has at

least m(nrnc − d(y, p)) many zeros on Sr × Sc. From Theorem 7.3, if the number

of zeros of H(X, Y) becomes larger than degnc,nr
H(X, Y), then H(X, Y) is the zero

polynomial.

197

Lemma 7.6. The (nc, nr)-weighted degree of H(X, Y) is less than or equal to the

(nc, nr, ncvr + nrvc)-weighted degree of Q(X,Y, Z).

Proof. Assume that X iY jZ` is a monomial of Q(X,Y, Z). When Z is substituted by

D(X, Y), for this monomial we have

degnc,nr
X iY j(D(X, Y))` ≤ degnc,nr

X iY j(XvrY vc)`

≤ nci + nrj + (ncvr + nrvc)`

= degnc,nr,ncvr+nrvc
X iY jZ`.

Therefore, the lemma is true for a general polynomial.

The following theorem gives a bound on the decoding radius of our list-decoding

algorithm.

Theorem 7.7. Assume we transmit a codeword p ∈ P (Sr, Sc, vr, vc, q) with row and

column component code rates Rr and Rc respectively. Let y = [yi,j] be the received

word. If m is the interpolation multiplicity, then p can be efficiently list decoded from

y if the Hamming distance between y and p, τm = d(y, c), is bounded by

τm ≤
⌊
ncnr

(
1− 3

√
(Rc + Rr)

(
1 +

1

m

)(
1 +

2

m

))
− 1

m

⌋
.

Proof. On one hand, by Theorem 7.5 and Lemma 7.6, (Z − D(X, Y)) is a factor of

the interpolated polynomial Q(X,Y, Z) if

d(y,p) < nrnc −
degnc,nr,ncvr+nrvc

Q
m

.

On the other hand, to ensure that Q(X, Y, Z) exists and is nonzero, then by

198

Theorem 7.4

degnc,nr,ncvr+nrvc
Q(X,Y, Z) ≤

⌈
m(nrnc)

3

√(
vr

nr

+
vc

nc

)(
1 +

1

m

)(
1 +

2

m

) ⌉
.

By combining these two results the theorem follows.

Corollary 7.8. For an interpolation multiplicity m, the error-correction radius τm is

upper bounded by

τm ≤
⌊
np

(
1− 6

√
4Rp

3

√(
1 +

1

m

)(
1 +

2

m

))
− 1

m

⌋
, (7.11)

where Rp and np are the rate and length of the product code, respectively. The upper

bound on the decoding radius is maximized when Rr is equal to Rc.

Proof. From the arithmetic-geometric mean inequality, Rr + Rc ≥ 2
√

RrRc with

equality if Rr = Rc =
√

Rp. The result then follows directly from Theorem 7.7.

It thus follows that as the multiplicity m tends to infinity, the relative asymptotic

decoding radius of the proposed algorithm is

τ

np

= lim
m→∞

τm

np

< 1− 3
√

Rc + Rr

≤ 1− 6
√

4Rp. (7.12)

Remark. The list-decoding algorithm can correct any pattern of errors of cardinality

greater than that of half-the-minimum distance decoder when Rc + Rr ≤ 0.22 for

sufficiently large m (Figure 7.4). In terms of Rp, it will be better than half-the-

minimum distance if Rp ≤ 0.0121. As we mentioned in the introduction, we do not

know of a decoder that can correct any pattern of errors with a cardinality equal to

that of half-the-minimum distance for RS product codes.

Although the product code has a rectangular (X, Y) support, the bound on the

199

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

R
rR

c

τ/
n p

Half−the−Distance

List−Decoding

Figure 7.4: The 1− 3
√

Rc + Rr decoding radius and the half-the-distance bound.

number of zeros of Theorem 7.3 depends on the total degree of the polynomial rather

than on the separate X and Y degrees. It follows that interpolating the polynomial

Q(X, Y, Z) to have a triangular (X, Y) support as in Algorithm 7.1, rather than a

rectangular (X, Y) support as in Algorithm 7.2, gives more monomials to work with.

This is the main reason that the decoding radius of (7.7) is larger than that of (7.8).

The following theorem shows that the number of candidates on the decoding list

of our proposed algorithm does not increase with the code length, np, or the alphabet

size, q but rather on the rate of the code. For an interpolation multiplicity m we

200

show that the list size Lm behaves like

Lm ∝ R−1/3
p . (7.13)

Theorem 7.9. For interpolating with a fixed multiplicity m, and for any received

word y ∈ Fnp
q , the candidate list size is upper bounded by

Lm <

⌈
m 3

√
1

4Rp

(
1 +

1

m

) (
1 +

2

m

) ⌉
+ 1. (7.14)

Proof. The total number of candidate words on the list, counting plausible and im-

plausible words, is upper bounded by the number of factors of Q(X, Y, Z) which are

of the form Z − D(X,Y). This is upper bounded by the Z-degree of the polynomial

Q(X, Y, Z). From Figure 7.3 and (7.10), we can see this can be upper bounded by

Lm <
∆

ncvr + nrvc

≤ m
3

√(
nrnc

ncvr + nrvc

)2 (
1 +

1

m

)(
1 +

2

m

)

≈ m
3

√(
1

Rc + Rr

)2 (
1 +

1

m

)(
1 +

2

m

)

≤ m 3

√
1

4Rp

(
1 +

1

m

)(
1 +

2

m

)
,

where the last inequality follows from 1/2(Rc +Rr) ≥
√

Rp with equality if Rc is equal

to Rp.

It is worth noting that the list size of the Guruswami-Sudan algorithm for decoding

Reed-Solomon codes is bounded by [76].

LGS
m ≈

(
m +

1

2

) √
1

R
. (7.15)

201

The decoding algorithm with a smaller list size and a larger decoding radius is pre-

ferred.

7.3 Decoding M-dimensional Reed-Solomon Prod-

uct Codes

A Reed-Solomon product code in M dimensions is an evaluation code defined by

P = C1 × C2 × · · · × CM

= evM(L),

where L = {D ∈ Fq[X1, X2, . . . , XM] : degXi
D ≤ vi for i ∈ {1, 2, . . . , M}},

evM : Fq[X1, X2, . . . , XM] → F
QM

i=1 ni
q , (7.16)

and letting S1, S2, . . . , SM to be the support sets along the M dimensions respectively,

D(X1, X2, . . . , XM) 7→

(D(α1, α2, . . . , αM) : (α1, α2, . . . , αM) ∈ (S1 × S2 × · · · × SM)) .

By a generalization of Theorem 7.1, one can show that a word along the ith dimension

is a codeword in Ci. If ni, Ri and di denote the length, rate and minimum distance

of the RS code Ci, then for the product code P , np =
∏M

i=1 ni, Rp =
∏M

i=1 Ri and

dp =
∏M

i=1 di. The half-the-distance bound will be given by

dp/2

np

=

∏M
i=1(ni − vi)

2 np

≈
∏M

i=1(1−Ri)

2
(7.17)

202

which is equal to

dp/2

np

=

(
1− M

√
Rp

)M

2
(7.18)

if R1 = · · · = RM = M
√

Rp.

7.3.1 The Decoding Algorithm

We start by giving a bound on the number of zeros, counting with multiplicities, of the

multivariate polynomial D(X1, X2, . . . , XM), denoted by Zeros [D(X1, X2, . . . , XM)].

Theorem 7.10. The number of zeros (counting with multiplicities) of the nonzero

M-variate polynomial D(X1, X2, . . . , XM) evaluated over S1 × S2 × · · · × SM , where

|Si| = ni, i ∈ {1, 2, . . . , M}, and degXi
D = vi is at most the

(∏
j 6=1

j∈{1,...,M}
nj,

. . . ,
∏

j 6=M
j∈{1,...,M}

nj

)
-weighted degree of D(X1, X2, . . . , XM) which is

M∑
i=1

vi

∏

j 6=i
j∈{1,...,M}

nj.

Proof. The proof follows by induction on M . By Theorem 7.3, it holds for M = 2.

Now suppose it holds for M , then the number of zeros with multiplicities is at most

Zeros [D(X1, X2, . . . , XM)] =
M∑
i=1

vi

∏

j 6=i
j∈{1,...,M}

nj. (7.19)

Now consider D(X1, . . . , XM , XM+1). Let G = {γi ∈ SM+1 : (XM+1 − γi)
mi|D}. We

note that
∑

γi∈G mi ≤ vM+1. Let G ′ = SM+1 \ G. The number of zeros contributed by

all γ ∈ G ′ is

(nM+1 − |G|)Zeros[D(X1, . . . , XM)]. (7.20)

203

Let

D(X1, . . . , XM+1) =




|G|∏
i=1

(XM+1 − γi)
mi


 B(X1, . . . , XM+1),

and for any γi ∈ G, let B(X1, . . . , XM , γi) be zero on u tubles of (X1,j, . . . , XM,j) each

with multiplicity rj, then the number of such zeros is
∑

γi∈G
∑u

j=1(mi + rj). The

number of remaining zeros when B(X1, . . . , XM , γi) is not zero is
∑

γi∈G(
∏M

k=1 nk −
u)mi. It follows the total number of zeros due to G is upper bounded by

|G|Zeros[D(X1, . . . , XM)] + vM+1

M∏
j=1

nj. (7.21)

By (7.19) and adding (7.20) to (7.21), one gets that

Zeros[D(X1, . . . , XM+1)] ≤




M∑
i=1

vi

∏

j 6=i
j∈{1,...,M+1}

nj


 +


vM+1

∏

j 6=M+1
j∈{1,...,M+1}

nj


 .

Thus, Zeros[D(X1, . . . , XM+1)] is equal to the

(∏
j 6=1

j∈{1,...,M+1}
nj, . . . ,

∏
j 6=M+1

j∈{1,...,M+1}
nj

)
-

weighted degree of D(X1, X2, . . . , XM+1).

We now generalize our decoding algorithm for M -dimensional Reed-Solomon prod-

uct codes. For simplicity we will assume that an (n, v +1, d) RS code C with support

set Sc = {α1, . . . , αnc} is used as the component code along all M dimensions.

Algorithm 7.3. Decoding of M-dimensional Product Reed-Solomon Codes. Let y ∈
Fnp

q be the received word when the codeword p ∈ P is transmitted.

1. Interpolate an (M + 1)-variate polynomial Q(X1, X2, . . . , XM , Z) such that:

(a) Q 6= 0

(b) Q(X1, X2, . . . , XM , Z) passes through all the points (αi1 , αi2 , . . . , αiM ,

yi1,i2,...,iM) with multiplicity m.

204

(c) The
(
nM−1, . . . , nM−1,MnM−1v

)
-weighted degree of Q(X1, X2, . . . , XM , Z)

is less than ∆m, where ∆m is to be determined (Theorem 7.12).

2. Factorize Q(X1, X2, . . . , XM , Z) into irreducible factors.

If (Z − D(X1, X2, . . . , XM)) is a factor of Q(X1, X2, . . . , XM , Z), then p̂ =

evMD(X1, X2, . . . , XM) is added to the list of candidates if

(a) degXi
D(X1, X2, . . . , XM) ≤ v for all i = 1, . . . , M .

(b) d(p̂,y) ≤ τm where τm is the error-correction capability (determined by

Theorem 7.13).

Similar to the two-dimensional case, Algorithm 7.3 can be run in polynomial time.

Its complexity is dominated by that of the interpolation step. The complexity of the

interpolation step is at most cubic in the number of the coefficients of the interpolated

polynomial. The number of the coefficients can be shown to be bounded by nM
(

m+M
M+1

)

(see the proof of Theorem 7.12).

7.3.2 Analysis of the Algorithm

Define

H(X1, . . . , XM)
∆
= Q(X1, . . . , XM ,D(X1, . . . , XM)).

By Theorem 7.10, we can now give a bound on the number of zeros of H(X1, . . . , XM).

Theorem 7.11. Let D(X1, . . . , XM) be defined as in Theorem 7.10, then the number

of zeros of H(X1, . . . , XM), counting with multiplicities is at most the




∏

j 6=1
j∈{1,...,M}

nj, . . . ,
∏

j 6=M
j∈{1,...M}

nj,

M∑
i=1

vi

∏

j 6=i
j∈{1,...M}

nj




205

-weighted degree of Q. If ni = n and vi = v for i ∈ {1, . . . , M}, then the number of

zeros of H is at most the (nM−1, . . . , nM−1,MnM−1v)-weighted degree of Q.

Proof. By Theorem 7.10, the number of zeros of H(X1, . . . , XM) is upper bound by

its

(∏
j 6=1

j∈{1,...,M}
nj, . . . ,

∏
j 6=M

j∈{1,...,M}
nj

)
-weighted degree, which in turn can be upper

bounded by an upper bound on the weighted degree of the monomial

(X i1
1 . . . X iM

M (Xv1
1 . . . XvM

M)`) where ` is degZ Q and the proof follows.

Theorem 7.12. There exist a nonzero (M+1)-variate polynomial Q(X1, X2, . . . , XM , Z)

∈ Fq[X1, X2, . . . , XM , Z] such that Q(X1, X2, . . . , XM , Z) passes through all the points

(αi1 , αi2 , . . . , αiM , yi1,i2,...,iM), for (i1, i2, . . . , iM) ∈ {1, 2, . . . , n}M , with multiplicity m

and the
(
nM−1, . . . , nM−1,MnM−1v

)
-weighted degree of Q ≤ ∆m where

∆m =

⌈
m np

M+1

√
M

v

n

(
1 +

1

m

)(
1 +

2

m

)
+ · · ·+

(
1 +

M

m

) ⌉
.

Proof. Let N(∆) be the number of (M + 1)-variate monomials whose
(
nM−1, . . . , nM−1,MnM−1v

)
-weighted degree is at most ∆. N(∆) can be lower bounded

by the volume of a pyramid in RM+1 [20] defined by the half planes

{Xi ≥ 0}M
i=1 , Z ≥ 0 and

M∑
i=1

nM−1Xi + MnM−1vZ ≤ ∆.

It follows that

N(∆) >
1

(M + 1)!

(
∆

nM−1

)M
∆

MnM−1v

=
1

(M + 1)!

∆M+1

MnM2 v
n

.

The number of linear constraints imposed by each interpolation point is the number of

solutions in nonnegative integers ai to
∑M+1

i=1 ai < m or equivalently
∑M+2

i=1 ai = m−1

which is
(

m+M
M+1

)
. As in the trivariate case, a solution to the interpolation problem

206

exists if

np

(
m + M

M + 1

)
< N(∆).

This implies that

∆M+1 < nM(M+1)mM+1M
v

n

(
1 +

1

m

)(
1 +

2

m

)
+ · · ·+

(
1 +

M

m

)
,

and the result follows by noticing that np = nM .

Theorem 7.13. For an M-dimensional Reed-Solomon product code, Algorithm 7.3,

with an interpolation multiplicity m, can correct any pattern of errors of cardinality

at most

τm ≤⌊
np

(
1 − M(M+1)

√
MMRp

M+1

√(
1 +

1

m

)(
1 +

2

m

)
+ · · ·+

(
1 +

M

m

))
− 1

m

⌋
,

where Rp and np are the rate and length of the product code, respectively.

Proof. The proof is along the same lines of two-dimensional product codes. Let

p = evMD and y be the received word. Then H(X1, . . . , XM)
∆
= Q(X1, . . . , XM ,D)

has at least m(np − d(p, y)) zeros. By Theorem 7.10, it follows that H is the all

zero polynomial and (Z − D)|Q if this number is greater than its (nM−1, . . . , nM−1)-

weighted degree. By Theorem 7.11, it follows that (Z − D) is a factor of the interpo-

lated polynomial Q if

d(y, p) < np −
degnM−1,...,nM−1,MnM−1vQ

m
.

By Theorem 7.12 and letting R ≈ v
n
,

d(y,p) ≤
⌊
np

(
1− M+1

√
MR

(
1 +

1

m

)(
1 +

2

m

)
+ · · ·+

(
1 +

M

m

))
− 1

m

⌋
,

207

and the result follows.

Corollary 7.14. If the R1, . . . , RM are the rates of the component RS codes for an

M-dimensional RS product code of rate Rp =
∏M

i=1 Ri, then, in the limit as the mul-

tiplicity m tends to infinity, the asymptotic relative decoding radius of the algorithm

is

τ

np

= lim
m→∞

τm

np

≤ 1 − M+1
√

R1 + R2 + ... + RM

≤ 1 − M(M+1)

√
MMRp,

and the decoding radius is maximized when R1 = R2 = · · · = RM .

We finalize this section by generalizing the bound on the list size to the M -

dimensional case.

Theorem 7.15. The list returned by Algorithm 7.3 will have at most

⌈
m M+1

√
1

MMRp

(
1 +

1

m

)(
1 +

2

m

)
. . .

(
1 +

M

m

) ⌉
+ 1

codewords.

Proof. By the same arguments in Theorem 7.9, the size of the list can be upper

bounded by degZ Q. Thus, by Theorem 7.12,

Lm <
∆m

MnM−1v

< m
(
M

v

n

) −M
M+1 M+1

√(
1 +

1

m

)(
1 +

2

m

)
. . .

(
1 +

M

m

)
,

which reduces to the desired result with Rp = RM and R ≈ v
n
.

208

For large m, the bound on the list size behaves like

Lm ∝ mM
−M
M+1 R

−1
M+1
p .

That means that it is decreasing with the number of dimensions, M , for a fixed

product code rate Rp. For large M , the list size is almost proportional to 1
M

. The

list size is also decreasing with the rate Rp for a fixed dimension M .

7.4 Decoding a Reed-Solomon Product Code as a

Subcode of a Reed-Muller Code

A Reed-Muller code with M variables, of order r, denoted by RMq(r,M) is an eval-

uation code defined by

RMq(r,M) = evM(L′)

where

L′ = {D ∈ Fq[X1, X2, . . . , XM] : degD ≤ r}

and degD is the total degree of D. The evaluation map is similar to that of M -

dimensional RS product codes (7.16)

evM : Fq[X1, X2, . . . , XM] → F qM

q (7.22)

D(X1, X2, . . . , XM) 7→

(D(α1, α2, . . . , αM) : (α1, α2, . . . , αM) ∈ (Fq × Fq × · · · × Fq)) .

If an M -dimensional RS product code is evaluated on (Fq × Fq × · · · × Fq) then

209

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

R
r

R
c

τ/
n p

List−Decoding

Half−the−Distance

Figure 7.5: The 1−√Rc + Rr decoding radius and half-the-distance bound

210

its length is np = qM . If the space of evaluated polynomials is

L = {D ∈ Fq[X1, X2, . . . , XM] : degXi
D ≤ vi for i ∈ {1, 2, . . . , M}},

then we will denote this code by PRSq(v1, . . . , vM). Then it is easy to see that it is a

subcode of a Reed-Muller code

PRSq(v1, . . . , vM) ⊆ RMq (v1 + v2 + · · ·+ vM , M) . (7.23)

Therefore, any algorithm used for decoding the RM code can be used for decoding the

RS product code. From [86, 68] we know that the RMq(vc+vr, 2) is a subfield subcode

of a generalized Reed-Solomon code over Fq2 . With this observation, Pellikaan and Wu

present a polynomial list-decoding algorithm for q-ary RM codes by invoking the list-

decoding algorithm for Reed-Solomon codes. Thus, by decoding the generalized Reed-

Solomon code using the Guruswami-Sudan algorithm [49] basically we can decode the

RS product code.

Theorem 7.16 (Pellikaan and Wu [86]). The Reed-Muller code RMq(r,M) can be

efficiently list decoded with an error-correcting radius

τ < n

(
1−

√
1− d

n

)
, (7.24)

where d is the minimum distance of the q-ary Reed-Muller code of length n. When

the rate is small, r < q, the minimum distance of RMq(r,M) is d = (q− r)qM−1 and

the decoding radius is

τ < n

(
1−

√
r

q

)
. (7.25)

Theorem 7.17. PRSq(v1, . . . , vM), an M-dimensional RS product code evaluated

over FM
q , can be list-decoded in polynomial time using the Pellikaan-Wu interpretation

211

with a relative error-correcting radius of

τ

np

< 1−
√

R1 + R2 + · · ·+ RM

provided that
∑M

i=1 Ri < 1. In terms of Rp, the relative decoding radius is

τ

np

< 1− 2M

√
MMRp ,

provided that Rp < M−M .

Proof. The proof follows by (7.23) and Theorem 7.16. The condition r < q implies

that
∑M

i=1 Ri < 1. Since

1 >

M∑
i=1

Ri ≥ M
M
√

Rp,

this implies the condition Rp < M−M and that

τ

np

< 1−
√

M
M
√

Rp

and we are done.

Corollary 7.18. For a two-dimensional product code, the relative decoding radius

with the Pellikaan and Wu interpretation is

τ

np

< 1−
√

R1 + R2

≤ 1− 4
√

4Rp.

In Figure 7.5, we show the decoding region of Corollary 7.18 in terms of the rates

of the component codes. It is worth comparing the result of Theorem 7.17 with that

of Corollary 7.14. Both results are only valid for Rp ≤ M−M . This hints that the

effective operating region of the algorithms go down exponentially in M . Also the

212

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate

R
e

la
ti
v
e

 C
o

rr
e

c
ti
n

g
 R

a
d

iu
s

Error Correcting Radius for Product RS Codes

d
p
/2n

p
, M=2

τ
1
, M=2

τ
2
, M=2

d
p
/2n

p
, M=3

τ
1
, M=3

τ
2
, M=3

M=3

M=2

Figure 7.6: Error-correcting radii of list-decoding algorithms for two-dimensional and
three-dimensional RS product codes.
The half-the-distance bound is denoted by dp

2np
. The decoding radii τ1 is given by

Corollary 7.14 and τ2 is given by Theorem 7.17.

213

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

R
rR

c

τ/
n p

List−Decoding?

Half−the−Distance

Figure 7.7: The optimistic 1−√Rc + Rr −RrRc decoding radius and the half-the-
distance bound.

gap between the decoding radii of Theorem 7.17 and Corollary 7.14 in the effective

decoding region decreases as the M increases. In Figure 7.6, we compare the error-

correcting capability using the Pellikaan-Wu interpretation with that of Algorithm 7.1

and the half-the-minimum distance bound. We observe that decoding product codes

as subcodes of RM codes results in a larger error-correcting radius.

7.5 Discussion

We recall the argument that we had in Section 7.1.1, that we hope for an algorithm

that can correct any pattern of errors beyond half-the-minimum distance. We showed

214

that a decoding algorithm with a relative decoding radius of 1 − √Rc + Rr −RrRc

can successfully do so. In Figure 7.7, we also show that by comparing this bound

to that of dp/2np. Such an algorithm will exist if it is true that the RS product

code P(Sr, Sc, vr, vc, q) is a subfield subcode of a generalized RS code over Fq2 with

the same minimum distance of the product code, (nr − vr)(nc − vc), length nrnc and

consequently dimension of nrvc+ncvr−vrvc+1. By decoding the generalized RS code

with the Guruswami-Sudan algorithm, the desired decoding radius can be achieved.

To our knowledge it remains open whether this conjecture is true.

7.6 Conclusion

Product Reed-Solomon codes are widely used in data storage, optical and satellite

communication systems. M -dimensional Reed-Solomon product codes can be re-

garded as an evaluation of an M -variate polynomial with constraints on its degrees.

In this work, we proposed polynomial time algorithms for efficient list decoding of

Reed-Solomon product codes.

The first algorithm is based on a generalization of the Guruswami-Sudan type

decoders. For M -dimensional, or two-dimensional, Reed-Solomon product codes, we

are able to show that if the fraction of the number of errors is smaller than 1 −
M(M+1)

√
MMRp, or 1− 6

√
4Rp for M = 2, where Rp is the rate of the product code, then

the algorithm can efficiently recover the transmitted codeword. The other algorithm

is based on the fact that Reed-Solomon product codes can be viewed as subfield-

subcodes of Reed-Muller codes. So, the decoding algorithms for Reed-Solomon codes

are inherited to decoding of RS product codes. Using the Pellikaan-Wu interpretation

for decoding Reed-Muller codes as subcodes of generalized Reed-Solomon codes we

prove that if the fraction of the number of errors is smaller than 1 − 2M
√

MMRp, or

1− 4
√

4Rp for M = 2, then the algorithm is able to recover the transmitted codeword.

215

For further research directions, it was worth investigating whether product Reed-

Solomon codes are subfield subcodes of generalized Reed-Solomon codes with the

same length and the same minimum distance. If true one can have a list-decoding

algorithm with a radius exceeding half-the-minimum distance of the product code for

all rates.

216

Chapter 8

Performance of Sphere Decoding of
Linear Block Codes

When you aim for perfection, you discover it’s a moving target.

—George Fisher

Maximum-likelihood (ML) decoding of linear block codes is known to be NP

hard [10]. A decoder that utilizes the soft output from the channel directly is called

a soft-decision (SD) decoder. On the other hand, if hard decisions are made on the

received bits before decoding, then such a decoder is called a hard-decision (HD)

decoder. The optimum decoder is the corresponding HD or SD maximum-likelihood

(ML) decoder. Berlekamp’s tangential bound is a tighter than the union bound for

additive white Gaussian noise (AWGN) channels [11]. Poltyrev derived tight upper

bounds on the performance of maximum-likelihood decoding of linear block codes over

AWGN channels and binary symmetric (BSC) channels. Bounds based on typical

pairs decoding were derived by Aji et al. [4]. Other bounds such as the Divsalar

simple bound and the variations on the Gallager bounds are tight for AWGN and

fading channels [24, 99]. For a broad survey on bounds on the maximum-likelihood

decoding of linear codes, see [97].

Fincke and Pohst (FP) [40] described a sphere decoder algorithm which finds the

closest lattice point without actually searching all the lattice points. A fast variation

217

of it was given by Schnorr and Euchner [100]. Other efficient closest point search

algorithms exist (for a survey see [2]). The sphere decoder algorithm was proposed

for decoding lattice codes [113] and for detection in multiple antenna wireless systems

[21, 22]. Vikalo and Hassibi proposed HD and SD sphere decoders for joint detection

and decoding of linear block codes [110] [111]. On the other hand, one can think of

a sphere decoder in a broader sense as any algorithm that returns the closest lattice

point to the received word if it exists within a predetermined search radius. By this

definition of a sphere decoder, the Berlekamp-Massey algorithm can be considered as

a sphere decoder for Reed-Solomon (RS) codes with a search radius equal to half-

the-minimum distance of the code. Similarly, the algorithm recently proposed by

Guruswami and Sudan for decoding RS codes is an algebraic sphere decoder whose

search radius can be larger than half-the-minimum distance of the code [49].

There has a been significant amount of research dedicated to the design of sphere

decoders with smaller complexities, complexity analysis of sphere decoders and the

application of sphere decoders to various settings and communication systems. How-

ever, little research focused on the performance analysis of sphere decoders. This

chapter sets down a framework for the analysis of the performance of sphere decod-

ing of block codes over a variety of channels with various modulation schemes.

In this chapter, we study the performance of soft-decision sphere decoding of linear

block codes on channels with additive white Gaussian noise and various modulation

schemes as BPSK, M-PSK and QAM [89]. This is done in Section 8.1 and Section 8.2

respectively. Bounds on the performance of hard decision sphere decoding on bi-

nary symmetric channels (BSC) are derived in Section 8.3. The application of these

bounds to the binary image of Reed-Solomon codes is also investigated. We then,

in Section 8.4 derive bounds on the maximum-likelihood performance of q-ary linear

codes, such as Reed-Solomon codes, over q-ary symmetric channels. This bound be-

comes handy when analyzing the performance of sphere decoding of Reed-Solomon

218

codes on q-ary symmetric channels. Furthermore, we show, in Section 8.2, how one

can analyze the performance of a soft-decision sphere decoder of a general block code

with a general modulation scheme. In many settings, we support our analytic bounds

by comparing them to numerical simulations. The tradeoff between performance and

complexity is discussed in Section 8.5. Finally, we conclude our work in Section 8.6.

8.1 Soft-Decision Sphere Decoding of BPSK and

M-PSK Modulated Block Codes

In this section, we consider a sphere decoder when the modulation is binary or M-ary

phase shift keying (PSK) [89]. Each transmitted codeword in the code has the same

energy when mapped to the PSK constellation. For the case of MPSK modulation,

complex sphere decoding algorithms which solve the closest point search problem

were developed in [58].

8.1.1 Preliminaries

We will introduce some notation, so the bounds derived here are readily applicable

for both M-ary and binary phase shift keying (PSK) modulation. We assume that

C is an (n, k) linear code. Each codeword of length n will be mapped to a word of

M -PSK symbols. The number of channel symbols will be denoted by nc. If the code C
is binary and of length n, then nc = dn/ log2(M)e. For BPSK, nc = n. Note that the

original code need not be binary. For example, an Reed-Solomon (RS) code defined

over F2m could be mapped directly to an 2m-ary PSK constellation by a one-to-one

mapping from the symbols in F2m to the 2m points in the PSK constellation.

For PSK signaling, the code will have the property that all codewords are of equal

energy and lie on a sphere of radius
√

nc from the origin of space. Let nd denote the

219

dimension of the considered space (noise). For the case of BPSK modulation, the

dimension of the Hamming space is the same as the number of channel symbols (bits)

nd = nc. On the other hand, for MPSK signaling, M > 2, each complex channel

symbol has a real and an imaginary component. Thus the noise has 2 nc independent

components and the dimension of the space is nd = 2 nc.

Assuming that a codeword c ∈ C is transmitted over a binary input AWGN

channel, the received word is y = x + z, where x = M(c) and M(c) is the mapping

of the codeword c under PSK modulation, i.e., for BPSK modulation M(c)
∆
= 1−2c.

The additive white Gaussian noise (AWGN) is denoted by z = [zi]
nd
i=1 with variance

σ2. Let E(w) be the number of codewords which (after mapping) are at an Euclidian

distance δw from each other. Note that for the case of BPSK modulation and a binary

code C, the space is a Hamming space and the Euclidean distance is directly related

to the Hamming distance, δw = 2
√

w, where w is the Hamming distance. QPSK

modulation and Gray encoding also result in a Hamming space [89] by δw =
√

2w,

where w is the (binary) Hamming distance between the codewords. For simplicity

in the following analysis, we will assume that the modulated code is linear and the

space is a Hamming space.

8.1.2 Analysis of Soft-Decision Sphere Decoding

A soft-decision sphere decoder with an Euclidean radius D, denoted by SSD(D),

solves the following optimization problem,

ĉ = arg min
v∈C

‖y −M(v)‖2 (8.1)

subject to ‖y −M(v)‖2 ≤ D2,

where ‖x‖ is the Euclidean norm of x. Such decoders include list decoders that list

all codewords whose modulated image is within an Euclidean distance D from the

220

received vector y and choose the closest one. If no such codeword exists, a decoding

failure is signaled. A decoding error is signaled if the decoded codeword is not the

transmitted codeword.

Let ED denote the event of error or failure of SSD(D), then the error plus failure

probability, P (ED) is 1

P (ED) = P (ED|EML)P (EML) + P (ED|SML)P (SML), (8.2)

where EML and SML denote the events of an ML error and an ML success respectively.

Let ε = ‖y−M(c)‖, then an ML error results if there exists another codeword ĉ ∈ C
such that ‖y−M(ĉ)‖ ≤ ε. Since limiting the decoding radius to D will not do better

than ML decoding, then P (ED|EML) = 1. By observing that P (SML) ≤ 1, it follows

that an upper bound on the decoding performance is

P (ED) ≤ P (EML) + P (ED|SML). (8.3)

Let ΩD be the Euclidean sphere of radius D centered around the transmitted codeword

in the nd-dimensional space. The probability that the added white Gaussian noise

will not lie in the sphere ΩD is

P (z /∈ ΩD) = P
(
χnd

> D2
)

= 1− Γr(nd/2, D
2/2σ2), (8.4)

where χn =
∑n

i=1 z2
i is a Chi-squared distributed random variable with n degrees

of freedom. Let Γ(x) denote the Gamma function, then the cumulative distribution

1Through out this chapter, P (X) will denote the probability that the event X occurs.

221

function (CDF) of χv is given by the regularized Gamma function Γr [114],

Γr(v/2, w/2) =





∫ w

0
tv/2−1e−t/2

2v/2Γ(v/2)
dt, w ≥ 0

0, w < 0
. (8.5)

Lemma 8.1. A lower bound on P (ED) is P (ED) ≥ P (z /∈ ΩD).

Proof. The sphere decoder error plus failure probability could be written as

P (ED) = P (ED|z ∈ ΩD)P (z ∈ ΩD) + P (ED|z /∈ ΩD)P (z /∈ ΩD)

≥ P (ED|z /∈ ΩD)P (z /∈ ΩD)

= P (z /∈ ΩD),

where the last inequality is because P (ED|z /∈ ΩD) = 1 which follows from the

definition of the sphere decoder (8.1).

Define P̄ (EML) to be an upper bound on the SD-ML decoder error probability,

then we have the following lemma,

Lemma 8.2. P (ED) ≤ P̄ (EML) + P (z /∈ ΩD).

Proof. Following the proof in the previous lemma,

P (ED) = P (ED|z ∈ ΩD)P (z ∈ ΩD) + P (ED|z /∈ ΩD)P (z /∈ ΩD)

= P (EML,z ∈ ΩD) + P (ED|z /∈ ΩD)P (z /∈ ΩD)

≤ P (EML) + P (z /∈ ΩD)

≤ P̄ (EML) + P (z /∈ ΩD).

where by definition, P (EML) ≤ P̄ (EML).

Lemma 8.2 provides a way to bound the performance of sphere decoding of linear

block codes on a variety of channels where additive white Gaussian noise is added

222

Figure 8.1: Tangential sphere bound: The cone Vφ is centered around the transmitted
codeword. All codewords lie on a sphere of radius

√
nc.

and for a variety of modulation schemes. For example, it can be used in conjunction

with the Divsalar bound [24] to give an upper bound on the performance of sphere

decoding of linear block codes over independent Rayleigh fading channels. If P̄ (EML)

is the union upper bound on the codeword error probability [89, Chapter 8] for BPSK

modulation on an AWGN channel, then

P (ED) ≤
∑
w≥1

E(w)Q(
√

2γRw) + P (z /∈ ΩD), (8.6)

where E(w) is the number of codewords with (binary) Hamming weight w, γ is the

bit signal-to-noise ratio (SNR) and R is the rate of the code.

Lemma 1 implies that one could obtain a tighter upper bound on P (ED) by tight-

ening the bound on the ML error probability, P̄ (EML).

223

8.1.3 The Tangential Sphere Bound

Next, we describe one of the tightest bounds on the soft-decision maximum-likelihood

error probability of binary linear codes on binary input AWGN channels, the Poltyrev

tangential sphere bound. It is somehow related to Shannon’s sphere packing bound

[101] which is a lower bound on the error probability where Shannon showed that the

Voronoi region of a codeword can be bounded by a right circular nd-dimensional cone

with the codeword on its axis. Poltyrev’s tangential sphere bound (TSB) is one of

the tightest bounds on the ML performance of soft-decision decoding of linear codes

on AWGN channels with BPSK or MPSK modulation [87, 56] and is calculated by,

P (EML) ≤ min
θ
{P (EML, z ∈ Vθ) + P (z /∈ Vθ)} , (8.7)

where Vθ is an nd-dimensional right circular cone with a half angle θ whose central

line passes through the transmitted codeword and whose apex is at an Euclidean

distance
√

nc from the transmitted codeword (see Figure 8.1). Let the minimum of

the optimization problem in (8.7) be achieved at θ = φ. For the TSB, the optimum

angle φ is related to the radius
√

rφ (see Figure 8.2 or Figure 8.3) by tan(φ) =
√

rφ/nc,

such that rφ is the root of this equation [56]

∑

δb>0

E ′
b(ro)

∫ θb(ro)

0

sinnd−3(ϑ)dϑ =

√
πΓ(nd−2

2
)

Γ(nd−1
2

)
(8.8)

when solved for ro, where θb(ro)
∆
= cos−1

(
δb/2√

ro(1−δ2
b /4nc)

)
and

E ′
b(ro) =





E(b), δ2
b/4 < ro(1− δ2

b/4nc)

0, otherwise
. (8.9)

Let z1 be the component of the noise along the central axis of the cone with a

224

probability distribution function (PDF) N (z1) = 1√
2πσ2

e−z1
2/2σ2

and z2 be the noise

component orthogonal to z1. Define βz1(w)
∆
=

√
nc−z1q
4nc
δ2w

−1
and rz1(φ)

∆
=
√

rφ

(
1− z1√

nc

)
,

then the ML error probability given that the noise z is in the cone Vφ is [87]

P (EML,z ∈ Vφ) =

∫ ∞

−∞
N (z1)

[∑

δb>0

E ′
b(rφ)

∫ rz1 (φ)

βz1 (b)

N (z2)Γr

(
nd − 2

2
,
r2
z1

(φ)− z2
2

2σ2

)
dz2

]
dz1. (8.10)

8.1.4 A Tight Upper Bound

By Lemma 8.2 and (8.7), we have the following upper bound (which is tighter than

(8.6) in case of BPSK)

P (ED) ≤ P (EML, z ∈ Vφ) + P (z /∈ Vφ) + P (z /∈ ΩD). (8.11)

We observe that instead of directly substituting the TSB of (8.7) for P̄ (EML) in

Lemma 8.2 as we did in (8.11), one can find an upper bound which is tighter than

(8.11) by noticing that the events {z /∈ Vθ} and {z /∈ ΩD} are not, in general,

mutually exclusive.

Lemma 8.3. P (ED) is upper bounded by

P (ED) ≤ P (EML,z ∈ Vφ) + P (z /∈ ΩD) + P ({z /∈ Vφ} ∩ {z ∈ ΩD}) .

Proof. Using Bayes’ rule and defining the region Λ(θ, D)
∆
= {Vθ ∩ ΩD} we get

P (ED) ≤ min
θ
{P (ED|z ∈ Λ(θ, D))P (z ∈ Λ(θ,D))

+P (ED|z /∈ Λ(θ,D))P (z /∈ Λ(θ, D))}. (8.12)

225

Figure 8.2: Theorem 8.4, Case A: The sphere ΩD lies totally inside the cone Vφ

(D ≤ √
nc sin(φ)).

From the definition of Λ(θ, D), it follows that

P (ED,z ∈ Λ(θ,D)) = P (EML,z ∈ Λ(θ,D)) ≤ P (EML, z ∈ Vθ),

where the last inequality follows from Λ(θ,D) ⊆ Vθ. Using P (ED|z /∈ Λ(θ, D)) ≤ 1,

it follows that

P (ED) ≤ min
θ
{P (EML,z ∈ Vθ) + P (z /∈ Λ(θ, D))}

≤ P (EML,z ∈ Vφ) + P (z /∈ {Vφ ∩ ΩD}). (8.13)

The last inequality is due to the observation that φ does not necessarily minimize

(8.13). By de Morgan’s law, {Vφ ∩ ΩD}c = {ΩD}c ∪ {{Vφ}c ∩ ΩD}, {.}c is the com-

plement of {.}.

We consider two cases;

Case A: The sphere ΩD lies totally inside the cone Vφ. (Figure 8.2). This case is

226

Figure 8.3: Theorem 8.4, Case B: The sphere ΩD intersects the cone Vφ; (a) the
apex of the cone Vφ lies outside the sphere ΩD (

√
nc sin(φ) < D <

√
nc). In case

D ≥ √
nc (b), the apex of the cone Vφ lies inside the sphere ΩD.

227

equivalent to the event A ∆
= {D ≤ Dφ}, where

Dφ =
√

nc sin(φ), (8.14)

and will be called the critical decoding radius. It follows that

P ({z /∈ Vφ} ∩ {z ∈ ΩD}|A) = 0,

which could be substituted in Lemma 8.3. Furthermore, since Λ(θ,D) = ΩD, it

follows from (8.12) that a tighter upper bound is

P (ED|A) ≤ P (EML, z ∈ ΩD) + P (z /∈ ΩD). (8.15)

The joint probability of the added noise falling inside a sphere of Euclidean radius D

and an ML error could be expressed as

P (EML, z ∈ ΩD) =
∑

0<
δb
2

<D

E(b)

∫ D

δb
2

N (zo)Γr

(
nd − 1

2
,
D2 − z2

o

2σ2

)
dzo. (8.16)

Let ϕ be the half angle at which the cone Vϕ is tangential to the sphere ΩD,

ϕ = sin−1(D/
√

n) (see Figure 8.2), then another tight upper bound is

P (ED|A) ≤ P (EML,z ∈ Vϕ) + P (z /∈ ΩD). (8.17)

Theoretically, it is clear that the bound of (8.15) is tighter than that of (8.17), but nu-

merically they are almost equivalent, since the integration over the region {Ωc
D

⋂
Vϕ}

is negligible. Note that P (EML, z ∈ Vϕ) is easily calculated using equation (8.10)

where tan(ϕ) =
√

rϕ/nc and rz1(ϕ) =
√

rϕ

(
1− z1√

nc

)
. ¦

Case B: The sphere ΩD intersects the cone Vφ. (see Figure 8.3). We have two

228

cases depending on the position of the apex of the cone. The first is when the apex of

the cone does not lie in the sphere,
√

nc sin(φ) < D <
√

nc (see Figure 8.3a) and the

second is when the apex lies in the sphere, D ≥ √
nc (see Figure 8.3b). In both cases

the following analysis holds. Let the origin, O, of the nd-dimensional space be at the

transmitted codeword which is also the center of ΩD. Since the cone and the sphere

are symmetrical around the central axis, we project on a two-dimensional plane as in

Figure 8.3. The radial component of the noise (along the axis of the cone) is z1. The

altitudes ya(φ) and yb(φ) at which the (double) cone intersects the sphere are found by

substituting the line equation P = P1 + U(P2−P1), where P = (x, y), P1 = (0,
√

nc)

and P2 = (2
√

nc tan(φ),−√nc) into the quadratic equation of the sphere. It follows

that ya,b(φ) =
√

nc(1− 2Ua,b(φ,D)), where

Ua,b(θ, D) =
4nc ±

√
16nc

2 − 16nc sec2(θ)(nc −D2)

8nc sec2(θ)
.

It is easy to check that at D =
√

nc, ub = 0 and yb is at the apex of Vφ. If D >
√

nc

then the intersection at yb is in the lower nappe of the cone. It is also observed that

Vφ and ΩD do not intersect (ΩD ⊂ Vφ) if 16n2
c < 16nc sec2(φ)(nc−D2) or equivalently

D <
√

nc sin(φ) which is Case A.

Define B to be the event B ∆
=

{
D >

√
nc sin(φ)

}
, fn−1(t) to be the PDF of χn−1 =

∑n
i=2 z2

i , and ω2
z1

= D2 − z2
1 (see Figure 8.3). From Lemma 8.3, the error probability

is upper bounded by

P (ED|B) ≤ P (EML,z ∈ Vφ) + P (z /∈ ΩD) + P ({z /∈ Vφ} ∩ {z ∈ ΩD}|B) , (8.18)

and

P ({z /∈ Vφ} ∩ {z ∈ ΩD}|B) =

∫ yb(φ)

ya(φ)

N (z1)

∫ ω2
z1

r2
z1

(φ)

fnd−1(t)dtdz1 (8.19)

229

by Figure 8.3. ¦
The tight upper bound is summarized in this theorem,

Theorem 8.4. The performance of soft-decision sphere decoding with an Euclidean

decoding radius D of a linear code with (Euclidean) weight spectrum E(b) on an

AWGN channel with noise variance σ2 and (binary or M-ary) PSK modulation is

upper bounded by:

P (ED) ≤





∑
0<

δb
2

<D
E(b)

∫ D
δb
2

e−z2
o/2σ2

√
2πσ2

Γr

(
nd−1

2
, D2−z2

o

2σ2

)
dzo

+1− Γr(nd/2, D
2/2σ2), D ≤ √

nc sin(φ)

∫∞
−∞N (z1)

∑
δb>0 E ′

b(rφ)
∫ rz1 (φ)

βz1 (b) N (z2)Γr

(
nd−2

2
,

r2
z1

(φ)−z2
2

2σ2

)
dz2dz1

+1− Γr(nd/2, D
2/2σ2)

+
∫ yb(φ)

ya(φ)

(
Γr

(
nd−1

2
,

ω2
z1

2σ2

)
− Γr

(
nd−1

2
,

r2
z1

(φ)

2σ2

))
N (z1)dz1, D >

√
nc sin(φ)

,

where φ is the half angle of the cone Vφ and is given by (8.8).

Following the proof of Lemma 8.3, the error plus failure probability of SSD(D) is

upper bounded by

P (ED) ≤ P (ED, z ∈ Λ(φ,D)) + P (z /∈ Λ(φ,D)). (8.20)

From the previous arguments in Case A and Case B, the following theorem provides

a slightly tighter upper bound than that of the previous theorem.

Theorem 8.5. The performance of SSD(D) for BPSK or MPSK modulation is upper

230

bounded by

P (ED) ≤





P (EML, z ∈ ΩD) + P (z /∈ ΩD), D ≤ √
nc sin(φ)

P (EML, z ∈ Λ(φ,D)) + P (z /∈ ΩD)

+P ({z /∈ Vφ} ∩ {z ∈ ΩD}) , D >
√

nc sin(φ)

.

Observe that the difference from Theorem 8.4 is that the term P (EML,z ∈ Λ(φ,D))

was upper bounded by P (EML,z ∈ V (φ)) in Theorem 8.4. Consider a codeword

at a distance δw, then the half angle of the cone bisecting this distance is θw =

sin−1(δw/2
√

nc) (Figure 8.3). This cone will intersect the sphere ΩD at altitudes

xa(w) and xb(w) given by xa,b(w) =
√

nc(1− 2 Ua,b(θw, D)). Now define the integral

I2(w) =

∫ ya(φ)

xa(w)

I(ωz1 , w, z1)dz1+

∫ yb(φ)

ya(φ)

I(rz1(φ), w, z1)dz1 +

∫ xb(w)

yb(φ)

I(ωz1 , w, z1)dz1, (8.21)

where

I(γ, w, z1)
∆
= N (z1)

∫ γ

βz1 (w)

N (z2)Γr

(
nd − 2

2
,
γ2 − z2

2

2σ2

)
dz2. (8.22)

Taking the union over all codewords with nonzero Euclidean weights such that

θw < φ , it follows that for D >
√

nc sin(φ),

P (EML,z ∈ Λ(φ,D)) =
∑

δb>0

E ′
b(rφ)I2(w), (8.23)

and E ′
b(rφ) is given by (8.9). It is to be noted that the same equations hold whether

(D ≥ √
nc) or (

√
nc sin(φ) < D <

√
nc).

231

8.1.5 A Note on Reed-Solomon Codes

Consider the case when the binary image of an Reed-Solomon (RS) code, defined over

F2m , is transmitted over an AWGN channel and the decoder is either a HD or SD

sphere decoder. Tight upper bounds on the performance of hard-decision and soft-

decision maximum likelihood decoding of the binary images of Reed-Solomon codes

were developed in Section 2.4 by averaging over all possible binary representations

of the RS code. We will use the same technique in this chapter to analyze the

performance of the sphere decoders when the code of interest is the binary image of

an RS code. In this case the average binary weight enumerator of the ensemble of

binary images of an RS code will be used as the weight enumerator in this analysis.

8.1.6 Numerical Results

In Figure 8.4, we show how the bounds derived for M-ary modulated spherical codes

are tight. The simulation curves and the analytical bounds will be labeled by “sim”

and “bnd” respectively. A codeword in the (24, 12) Golay code is mapped into 12

QPSK symbols and transmitted over an AWGN channel. As observed, the simulated

performance of the ML decoder and the SD sphere decoder [110] are tightly bounded

by the bounds given in this section. The critical decoding radius in the 2 × 12 -

dimensional space is Dφ = 2.667.

In Figure 8.5, the performance of SD sphere decoding of the binary image of the

(15, 11) RS code, BPSK modulated over an AWGN channel, is investigated. The

ML performance is simulated by means of the MAP decoder, and it is observed that

the averaged ML bound is tight [29]. We simulated the performance of SD sphere

decoding when the decoding radii were 3 and 3.5 respectively. Our analytical bounds

almost overlapped with the simulations. The critical decoding radius is Dφ = 4.588.

A decoder with an Euclidean decoding radius of 5 has a near ML performance at an

232

2 4 6 8 10 12
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Sphere Decoding of (24,12) Golay Code, QPSK modulation over AWGN

SNR (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

SSD(2), sim

SSD(Dφ), sim

SSD(3), sim

ML, sim

SSD(2), bnd

SSD(Dφ), bnd

SSD(3), bnd

ML, bnd

Figure 8.4: Bounds on the performance of soft-decision sphere decoding of the (24, 12)
Golay code when QPSK modulated over an AWGN channel.

233

1 2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

C
od

ew
or

d
E

rr
or

 R
at

e

Soft Decision Sphere Decoding of (15,11) RS Code

SSD(3), bnd
SSD(3), sim
SSD(3.5), bnd
SSD(3.5)sim
SSD(D

φ
)

SSD(5)
SD−ML, bnd
SD−ML, sim
HD−BM
SD−KV

Figure 8.5: Bounds on the performance of SSD of a binary image of the (15, 11)
Reed-Solomon code BPSK modulated on an AWGN channel.

234

SNR of 5 dB. For reference purposes, we plot the performance of the hard-decision

Berlekamp-Massey (BM) decoder and the algebraic soft-decision decoder by Koetter

and Vardy [72]. It is worth noting that algebraic soft decoding can also achieve near

ML performance [31, 33].

8.2 Sphere Decoding of Lattices

In this section, we consider the case of soft-decision sphere decoding of a general

lattice or code C. In contrast to the case of Section 8.1 the code is not constrained to

be a linear code and the transmitted codewords are not constrained to have a fixed

energy. The channel symbols of a transmitted codeword are also not required to have

the same energy.

Define E(i, w) to be the number of mapped codewords with an Euclidean distance

δw from the ith codeword. Given that ci is transmitted, let the error probability of

SSD(D) be upper bounded by Pi(ED). By taking the expectation over all codewords,

P (ED) ≤ 1

|C|
∑
ci∈C

Pi(ED). (8.24)

Now, if we assume that Pi(ED) is of the union bound form;

Pi(ED) =
∑

w

E(i, w)P
(w)
i (ED),

where P
(w)
i (ED) is the probability of a sphere decoder error due to incorrectly decoding

a codeword at a distance δw when ci is transmitted. The error probability of SSD(D)

can thus be upper bounded by

P (ED) ≤
∑

δw>0

Ē(w)P (w)(ED),

235

where P (w)(ED) is the probability that the sphere decoder erroneously decodes a

codeword at a distance δw from the transmitted codeword and

Ē(w) =
1

|C|
∑
ci∈C

E(i, w), (8.25)

is the average number of codewords which are at an Euclidean distance δw from

another codeword. For an arbitrary finite code or lattice C, using arguments from the

previous sections, the error probability SSD(D) can be upper bounded by

P (ED) ≤ min
D′≤D

{P (EML,z ∈ ΩD′) + P (z /∈ ΩD′)} , (8.26)

where P (z /∈ ΩD) is given by (8.4) and

P (EML,z ∈ ΩD) =
∑

0< δw
2

<D

Ē(w)

∫ D

δw
2

1√
2πσ2

e−z2/2σ2

Γr(
nd − 1

2
,
D2 − z2

2σ2
)dz. (8.27)

The Hughes upper bound on the ML error probability is P (EML) ≤ minD P (Ψ(D))

[61], where

Ψ(D)
∆
= P (EML, z ∈ ΩD) + P (z /∈ ΩD). (8.28)

The radius Do that minimizes this error probability is the root of the equation [55]

∑

0< δw
2

<D

Ē(w)

∫ θw,D

0

sin(θ)nd−2dθ =

√
πΓ

(
nd−1

2

)

Γ
(

nd

2

) , (8.29)

where θw,d = cos−1(δw/2D). From (8.26), the upper bound on the sphere decoding

error probability is given by

P (ED) ≤





Ψ(D), D < Do

Ψ(Do), D ≥ Do

.

236

Furthermore, the optimum radius Do does not depend on the channel and can be

the radius of choice for near maximum-likelihood decoding. The bound developed

here is universal in the sense that also applies for the case of a linear code with equal

energy codewords. However, it is to be noted that the Hughes bound on ML decoding

is not tighter than the Poltyrev tangential sphere bound [23].

For the case of M -PSK modulation of a linear code, the constellation may not

result in a Hamming space if M > 4. In such a case the ensemble average weight enu-

merator Ē(w) can be used with the bounds of Section 8.1 to analyze the performance.

(The same technique can also be used with the results in next sections.)

Example 8.1. Assume an (15, 3) RS code over F16 and assume a one-to-one mapping

from the symbols of F16 to the points of an 16-QAM modulation [89], whose average

energy per symbol is 10. The ensemble weight enumerator Ē(w) was numerically

computed to evaluate the bounds. The radius that minimizes the bound on the ML

error probability is Do = 12.9. In Figure 8.6, we confirm that the bounds on the

sphere decoder error probability agree with the simulations for the case of D = 10.

We also compare the simulated performance of ML error probability P (EML,z ∈ ΩD)

to that of the analytic performance in both cases. At low SNRs this probability is low

as the probability of the received word falling inside the sphere is relatively low. As

more received words fall inside the sphere, the ML error probability increases as the

SNR increases. At a certain SNR, the probability of the ML error starts decreasing

due to the improved reliability of the received word. ¦

8.3 Sphere Decoding on Binary Symmetric Chan-

nels

In this section, an upper bound on the performance of the hard-decision sphere de-

coder, when the code is transmitted over the BSC, is derived. Transmitting a binary

237

0 2 4 6 8
10

−4

10
−3

10
−2

10
−1

10
0

SNR

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

P(E
ML

, z ∈ Ω
D
), sim

P(E
D
), sim

P(E
ML

, z ∈ Ω
D
), bnd

P(E
D
), bnd

1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

SNR

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

SSD Bounds for 16−QAM modulated (15,3) RS codes

P(E
ML

, z ∈ Ω
D
), sim

P(E
D
), sim

P(E
ML

, z ∈ Ω
D
), bnd

P(E
D
), bnd

Figure 8.6: Performance of soft-decision sphere decoding of the (15, 3) RS code,
16-QAM modulated, and transmitted over an AWGN channel.
The soft-decision sphere decoders have an Euclidean radius 10 (left) and Do = 12.9
(right). The bounds are compared to simulations for a sphere decoding ML error
P (EML, z ∈ ΩD) and the error plus failure probability P (ED).

238

codeword over a binary input AWGN channel followed by hard decisions is equivalent

to transmitting it on a BSC with a crossover probability p = Q(
√

2Rγ) where γ is the

bit signal-to-noise ratio. In case of M-PSK signaling with gray encoding, p ≈ pc

log2(M)

where pc = 2Q
(√

2kγ sin π
M

)
[89].

Let y be the received word when the codeword c is transmitted over an BSC

channel. The HD sphere decoder with radius m, HSD(m), finds the codeword ĉ, if it

exists, such that

ĉ = arg min
v∈C

d (y,v) (8.30)

subject to d(y,v) < m + 1,

where d (y,v) is the Hamming distance between y and v. Let ζ = d(y, c) then, from

the linearity of the code, the probability that the received word is outside a Hamming

sphere (ball) of radius m− 1 centered around the transmitted codeword is

P (ζ ≥ m) =
n∑

t=m

(
n

t

)
pt(1− p)n−t. (8.31)

Poltyrev [87] derived a tight bound on the performance of the HD-ML decoder

based on,

P (EML) ≤ min
m
{P (EML, ζ < m) + P (ζ ≥ m)} . (8.32)

The minimum of the above equation is at mo where mo is the smallest integer m such

that [87]
2m∑

b=1

E(b)
m∑

r=d b
2
e

(
b

r

)(
n− b

m− r

)
≥

(
n

m

)
. (8.33)

We now turn our attention to the hard-decision sphere decoder with an arbitrary

decoding radius. Let P (Σm), be the error plus failure probability of the hard decision

239

Figure 8.7: Two cases for the bound on the performance of hard-decision sphere
decoders (Theorem 8.11).

sphere decoder, HSD(m− 1), then P (Σm) could be written as

P (Σm) = P (Σm, ζ < m) + P (Σm|ζ ≥ m)P (ζ ≥ m)

= P (EML, ζ < m) + P (ζ ≥ m), (8.34)

where we used the fact that P (Σm|ζ ≥ m) = 1 and the observation that given that

ζ < m, the conditional error probability of the HSD(m−1) and the HD-ML decoders

are the same. The last term in the above equation is a lower bound on the failure

probability of the HSD(m−1) decoder. The joint probability of an HD-ML error and

d(y, c) < m is upper bounded by the union bound [87],

P (EML, ζ < m) ≤
2(m−1)∑

b=1

E(b)
m−1∑

r=d b
2
e

[(
b

r

)
pr(1− p)b−r

m−r−1∑
s=0

(
n− b

s

)
ps(1− p)n−b−s

]
.

(8.35)

Similar to the soft-decision decoding case, we have the following lemma:

Lemma 8.6. A lower bound on the performance of a hard decision sphere decoder,

240

HSD(m− 1), over a BSC with parameter p is P (Σm) ≥ ∑n
t=m

(
n
t

)
pt(1− p)n−t.

To develop a tight upper bound on P (Σm), we consider two cases (see Figure 8.7):

Case I: The decoding radius m ≥ mo. Equation (8.34) can be written as

P (Σm|m ≥ mo) = P (EML, ζ < mo) + P (EML,mo ≤ ζ < m) + P (ζ ≥ m).

It follows that

P (Σm|m ≥ mo) ≤ P (EML, ζ < mo) + P (ζ ≥ mo). (8.36)

We observe that the upper bound reduces to that of the HD-ML case (8.32). By

recalling that the minimum of (8.32) is achieved at mo, the bound of (8.34) is looser

than (8.36) when m > mo. The intuition behind this is that the performance of a

sphere decoder with a decoding radius mo − 1 or greater approaches that of the ML

decoder.

Case II: The decoding radius m < mo. Noticing that the sphere

{ζ < m} ⊂ {ζ < mo}, P (Σm|m < mo)

is indeed given by (8.34).

Thus, we have proved the following theorem,

Theorem 8.7. The performance of a hard-decision sphere decoder with a decoding

radius m− 1 when used for decoding a linear code with a weight spectrum E(b) over

an BSC channel with a crossover probability p is upper bounded by

P (Σm) ≤





P (EML, ζ < mo) + P (ζ ≥ mo), m ≥ mo

P (EML, ζ < m) + P (ζ ≥ m), m < mo

, (8.37)

241

1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Soft and Hard Decision Sphere Decoding of (15,7) BCH code

SNR

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

HSD, d=1, sim
HSD, d= 2, sim
HSD, d = 3, sim
Hard ML, sim
HSD, d=1, bnd
HSD, d ≥ 2 & ML bnd
SSD, d= 3, sim
Soft ML sim
SSD, d= 3, bnd
Soft ML bnd

Figure 8.8: Bounds on the codeword error rate of soft-decision and hard-decision
sphere decoding of the (15, 7) BCH code BPSK modulated over an AWGN channel.
The simulations (labeled by “sim”) are tightly upper bounded by the analytic bounds
(labeled by “bnd”).

242

where mo is radius that minimizes (8.32) and is the solution of (8.33). P (ζ ≥ m) is

given by (8.31) and P (EML, ζ < m) is given by (8.35).

8.3.1 Numerical Examples

In this subsection, the bounds developed for SD and HD sphere decoding are evaluated

and compared with the performance of the corresponding sphere decoders, [110] and

[111] respectively.

In Figure 8.8, we compare the analytical bounds to simulations of sphere decoding

of an (15, 7) BCH code BPSK modulated and transmitted over an AWGN channel.

The minimum distance of the BCH code is 5. The critical decoding Euclidian radius

of the soft-decision decoder is Dφ = 3.17 while the critical Hamming decoding radius

of the hard decision decoder is mo = 3. We observe that the simulated performance is

tightly upper bounded by the analytical bounds of Theorem 8.4 and Theorem 8.11 for

soft and hard decision sphere decoding respectively. The larger the decoding radius

the nearer the performance is to maximum-likelihood decoding.

8.4 Sphere Decoding on q-ary Symmetric Chan-

nels

Now consider an (n, k, d) RS code and a hard-decision sphere decoder which can cor-

rect τ symbol errors, where the symbols are in Fq. The Berlekamp-Massey algorithm

is a well-known polynomial time algorithm that can correctly decode words which are

at a (symbol) Hamming distance of τBM = bn−k
2
c from the transmitted codeword.

The error probability of bounded distance decoding of RS codes is well studied (c.f.,

[79]). Recently, Guruswami and Sudan [49] developed a list-decoding algorithm that

can correct up to τGS = dn−
√

nk − 1e symbol errors. To analyze this case, we first

243

derive a bound on the performance of the corresponding ML decoder.

8.4.1 Maximum Likelihood Decoding of Linear Block Codes

on q-ary Symmetric Channels

We will assume an (n, k, d) linear code over Fq transmitted over a q-ary symmetric

channel. The probability that a symbol is correctly received will be denoted by s,

while the probability that it is received as another symbol will be p = (1− s)/(q− 1).

Transmitting a q-ary code over an AWGN channel followed by hard-decision can be

modeled as transmitting it over a q-ary symmetric channel. Assume that q = 2m, the

channel alphabet size is 2b, b ≤ m, and each q-ary symbol is mapped to m/b channel

symbols. Let pc be the probability that a channel symbol is incorrectly decoded, then

s = (1 − pc)
m/b. For example, if the channel is a BPSK channel with a bit signal-

to-noise ratio γ, q = 2m and the binary image of the RS code is transmitted, then a

q-ary symbol is correctly received if all the m bits in its binary image are correctly

received, i.e., s =
(
1−Q

(√
2 k

n
γ
))m

.

Let ζ be the Hamming distance between the transmitted codeword and the re-

ceived q-ary word. Then, similar to the binary case, the ML error probability can be

upper bounded as follows,

P (EML) ≤ min
m
{P (EML, ζ < m) + P (ζ ≥ m)} . (8.38)

Assuming that the code is linear, the probability that the received q-ary word lies

outside a Hamming sphere (ball) of radius m − 1 centered around the transmitted

word is

P (ζ ≥ m) =
n∑

α=m

(
n

α

)
(1− s)αsn−α. (8.39)

The above equation will also provide a lower bound on the performance of the sphere

244

Figure 8.9: Proof of Lemma 8.8.

decoder.

The first term in (8.38) is upper bounded in the following lemma.

Lemma 8.8. For an (n, k, d) linear code over Fq, with a weight enumerator E(w),

transmitted over a q-ary symmetric channel with parameters s and p,

P (EML, ζ < m) ≤
min{n,2(m−1)}∑

w=d

E(w)

min{w,m−1}∑
α=0

w−α∑

η=dw−α
2
e

(8.40)

(
w!

η!α!(w − η − α)!
pη(1− p− s)αsw−η−α

m−1−η−α∑

β=0

(
n− w

β

)
(1− s)βsn−w−β

)
.

Proof. We will assume that the all-zero codeword is transmitted. Now consider a

codeword c with Hamming weight w and assume the received word r has a Ham-

ming weight m′ − 1 (see Figure 8.9). Consider the w nonzero symbols in c and the

corresponding coordinates in r. Let r and c have the same symbols in η of these

coordinates. Let α of these w coordinates in r be neither zero nor match those in c,

and w − η − α of the remaining coordinates be zero. Since the Hamming weight of

r is m′ − 1, there must be m′ − 1 − η − α nonzero symbols in the remaining n − w

245

coordinates and the remaining symbols will be zero. The probability of receiving such

a word is w!
η!α!(w−η−α)!

pη(1− p− s)αsw−η−α
(

n−w
m′−1−η−α

)
(1− s)m′−1−η−αsn−w−(m′−1−η−α).

In such a case, the Hamming distance between r and c is w+m′−1−2η−α. An ML

error result if this is less than the weight of r, i.e., if η ≥ dw−α
2
e. By summing over

all possible combinations of η and α and applying the union bound for all codewords

that can be within a Hamming distance m′ from r, the error probability is upper

bounded by

min{n,2(m′−1)}∑

w=d

E(w)

min{w,m′−1}∑
α=0

w−α∑

η=dw−α
2
e

(
w!

η!α!(w − η − α)!
pη(1− p− s)αsw−η−α

(
n− w

m′ − 1− η − α

) (
(1− s)m′−1−η−αsn−w−(m′−1−η−α)

))
.

Applying the union bound for all received words with Hamming weights less than m,

m′ ≤ m, the result follows.

We are now ready to prove the following theorem,

Theorem 8.9. The maximum-likelihood error probability of an (n, k, d) q-ary linear

code on a q-ary symmetric channel is upper bounded by

P (EML) ≤
min{n,2(mo−1)}∑

w=d

E(w)

min{w,mo−1}∑
α=0

w−α∑

η=dw−α
2
e

(
w!

η!α!(w − η − α)!
pη(1− p− s)α

sw−η−α

mo−1−η−α∑

β=0

(
n− w

β

)
(1− s)βsn−w−β

)
+

n∑
α=mo

(
n

α

)
(1− s)αsn−α,

where mo is the smallest integer m such that

min{n,2m}∑

w=d

E(w)

min{w,m}∑
α=0

(
q − 2

q − 1

)α

w−α∑

η=dw−α
2
e

(
1

q − 1

)η
w!

η!α!(w − η − α)!

(
n− w

m− η − α

)
≥

(
n

m

)
. (8.41)

246

Proof. The upper bound follows by substituting (8.40) and (8.39) in (8.38). Observe

that P (EML) ≤ P (EML, ζ < m) + P (ζ ≥ m) and P (EML, ζ < m) is increasing in

m while P (ζ ≥ m) is decreasing in m. By discrete differentiation, the minimum is

achieved at m such that

(P (EML, ζ < m + 1)− P (EML, ζ < m)) ≥ (P (ζ ≥ m)− P (ζ ≥ m + 1)) .

Optimizing over the radius m, the minimum is thus achieved at the first integer m

such that

2m∑

w=d

E(w)
m∑

α=0

w−α∑

η=dw−α
2
e

(
w!

η!α!(w − η − α)!
pη(1− p− s)αsw−η−α

((
n− w

m− η − α

)
(1− s)m−η−αsn−w−m+η+α

)
≥

(
n

m

)
(1− s)msn−m,

which reduces to the condition of (8.41).

It is worth noting that the optimum radius mo which minimizes the bound on

the ML error probability only depends on the weight enumerator of the code and the

size of its finite field. Since the optimum radius does not depend on the SNR, it is

valid for q-ary symmetric channels at any SNR. Similar to the binary case [87], we

establish below a connection between mo and the covering radius of the code.

Lemma 8.10. The covering radius of a linear code on Fq is lower bounded by mo−1,

where mo is given by Theorem 8.9.

Proof. Define L(m) to be the left hand side term in (8.41) and co to be the all zero

codeword. Similar to the proof of Lemma 8.8, one can show that

(q − 1)mL(m) = |{r ∈ Fn
q : d(r, co) = m and d(r, ci) ≤ m for some ci ∈ C \ co}|.

247

Also,

(q − 1)m

(
n

m

)
= |{r ∈ Fn

q : d(r, co) = m}|.

Since (q − 1)mo−1L(mo − 1) < (q − 1)mo−1
(

n
mo−1

)
, it follows that there exits words

r ∈ Fn
q such that minc∈C d(r, c) = mo − 1 and this minimum is achieved when c is

the all zero codeword co. By recalling that the covering radius is [74]

Rc = max
r∈Fn

q

min
c∈C

d(r, c),

it follows that Rc ≥ mo − 1.

8.4.2 Hard-Decision Sphere Decoding of Linear Block Codes

on q-ary Symmetric Channels

Here, we consider the case when the decoder is a q-ary hard decision sphere decoder.

As for the binary case, the HSD(m−1) can correctly decode a codeword if the number

of q-ary symbol errors is m− 1 or less. Thus the error plus failure probability of the

q-ary hard decision sphere decoder will be bounded by this theorem.

Theorem 8.11. The performance of a hard-decision sphere decoder with a decoding

radius m− 1 when used for decoding a linear code with a weight spectrum E(b) over

an BSC channel with a crossover probability p is upper bounded by

P (Σm) ≤





P (EML, ζ < mo) + P (ζ ≥ mo), m ≥ mo

P (EML, ζ < m) + P (ζ ≥ m), m < mo

,

where the minimizing radius mo is given by (8.41). P (ζ ≥ m), P (EML, ζ < m) are

given by (8.39) and (8.40) respectively.

248

1 2 3 4 5 6 7 8 9 10 11 12
10

−15

10
−10

10
−5

10
0

SNR (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

Hard Decision Sphere Decoding of (31,15) RS code

HSD(5)
HSD(8)
HD−BM
HD−GS
HSD(10)
HSD(15)
HSD(18), ML
SD−ML
KV

Figure 8.10: Bounds on the performance of binary hard-decision sphere decoding of
the binary image of the (31, 15) RS code BPSK modulated on an AWGN channel.
The performance of hard-decision sphere decoders with (binary) Hamming radii of
5, 8, 10, 15, 18 are compared. The bound on the HD-ML decoder is the same for an
HD sphere decoder with radius 18. The HD BM and GS symbol based decoders are
also compared. The performance of the SD Koetter-Vardy algorithm and the binary
SD-ML decoder are plotted for reference.

249

1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

Performance of 16−ary HSD of (15,3) RS codes, BPSK on AWGN

H−ML, bnd
E(9), bnd
F(9), bnd
H−ML, sim
E(9), sim
F(9), sim
GS ,bnd
GS, sim
S−ML, bnd

Figure 8.11: The (15, 3) RS code is BPSK modulated and transmitted over an AWGN
channel. For the 16-ary hard-decision decoder, the channel is an QSC.
The optimum radius mo for the ML bound is 9. For the HD-ML decoder, or equiv-
alently a HD sphere decoder with radius 9, the bounds are compared to simulations
for a sphere decoding ML error E(9), sphere decoding failure F(9), and their sum
H-ML (error plus failure probability) The Guruswami-Sudan (GS) radius is 8 and the
corresponding error plus failure probability is plotted. The binary soft-decision ML
decoder performance (S-ML) is also plotted.

250

8.4.3 Numerical Examples

In Figure 8.10, we show bounds on the performance of HD decoding of the near half

rate (31, 15) RS code over F32 when its binary image is transmitted over an AWGN

channel followed by hard decisions. The optimum binary decoding radius is 18. Thus

the closer the decoding radius is to 18, the better the performance of the sphere

decoder. The HD-ML decoder has more than 2 dB coding gain over the Berlekamp

Massey (BM) decoder, which can correct 8 symbol errors. It is observed that the

average performance of an HD sphere decoder, with a (binary Hamming) radius 8,

closely upper bounds that of the HD-BM decoder that can correct 8 symbol errors.

The HD-GS decoder can correct one more symbol error than the BM decoder. The

performance of the GS algorithm is analyzed by modeling it as 16-ary HD sphere de-

coder of radius 9. Consequently, one can observe that a hard-decision sphere decoder

with a binary decoding radius of 10 outperforms the symbol based GS decoder. Sur-

prisingly, the performance of the soft-decision Koetter-Vardy algorithm with infinite

interpolation cost almost overlaps with that of a binary hard-decision sphere decoder

with radius 15. This might speculate that the performance of the Koetter-Vardy al-

gorithm can be bounded by that of a binary hard-decision sphere decoder with some

decoding radius.

In Figure 8.11,the binary image of the (15, 3) RS code is BPSK modulated over

an AWGN channel. For 16-ary hard decisions, the channel is modeled as an QSC.

The performance bound of the hard ML (H-ML) decoder is shown (Theorem 8.9) and

is the same as an HSD of radius 9. The bounds of (8.39) and (8.40) are also shown

and labeled as “F (9)” and “E(9)” respectively. As seen, the three bounds (“bnd”)

are in close agreement with the simulation (“sim”), for such a hypothetical sphere

decoder. The error probability of the GS decoder with radius 8 is simulated and

agrees with the bound of Theorem 8.11. For reference proposes, we show the average

error probability of the soft-decision bit level ML (S-ML) decoder (c.f., [29]) which

251

has about 4 dB gain over the symbol H-ML decoder.

8.5 Complexity of Sphere Decoding

The expected complexity of sphere decoding was thoroughly analyzed in [54]. In

Figure 8.12, the empirical complexity exponents of SSD of the (24, 12) Golay code

BPSK modulated over an AWGN channel are shown. It is clear that for a larger

decoding radius there is a price paid in terms of the complexity. We also show the

complexity of the SSD whose radius changes such that with a probability of 0.9 the

transmitted word is inside the sphere centered around the received one. In other

words, the radius of this sphere is calculated by (see (8.4))

r = argD Γr(nd/2, D
2/2σ2) = 0.9. (8.42)

The corresponding complexity is labeled “r2: 90% confidence.” As the signal-to-

noise ratio increases (σ2 decreases), this radius decreases. Thus, using this technique,

the sphere decoder complexity decreases with the SNR. However, the error plus failure

probability will be lower bounded with the failure probability of the sphere decoder

(in this case 0.1). At a slighter increase in average complexity one can achieve ML

decoding, by starting with the previous radius and gradually increasing the decoding

radius until a codeword is found. The corresponding complexity is shown as “r2:

0.90 + cumulative.” For the 90% confidence case, the variation of the radius versus

the SNR is shown in Figure 8.13. The radius decreases as the SNR increases as

expected from (8.42).

252

1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3

3.5

4

4.5

5

5.5

SNR(dB)

C
o

m
p

le
x
it
y
 E

x
p

o
n

e
n

t
Complexity Exponents −− Various Scenarious

r2=4

r2=9

r2=16

r2: 90% confidence

r2: 90%+cumulative
Exhaustive Search

Figure 8.12: Complexity exponent for SD sphere decoding of the (24, 12) Golay code.
The complexity exponent (of the number of flops) is plotted versus the SNR for
decoders with squared Euclidean radii of 4, 9 and 16 respectively and compared
to that of the ML exhaustive-search decoder. The sphere decoder with a failure
probability 10 percent is labeled “90% confidence.” If the radius of this sphere decoder
keeps incremented till a codeword is found, this sphere decoder is labeled “90%+
cumulative.”

253

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

SNR(dB)

r
2

Statistical Sphere Decoding Radius

r2=4

r2=9

r2=16

r2: 90% confidence

Figure 8.13: Statistical (squared Euclidean) decoding radius versus fixed decoding
radius for the (24, 12) Golay code.

254

8.6 Conclusion

Bounds on the error plus failure probability of hard-decision and soft-decision sphere

decoding of block codes were derived. By comparing with the simulations of the corre-

sponding decoders, we demonstrate that our bounds are tight. The ML performance

of codes on q-ary symmetric channels is analyzed. The performance of sphere de-

coding of Reed-Solomon codes and their binary images was analyzed. Moreover, the

bounds are extremely useful in predicting the performance of the sphere decoders at

the tail of error probability when simulations are prohibitive. The bounds allows one

to pick the radius of the sphere decoder that best fits the performance, throughput

and complexity requirements of the system.

255

Appendix A

Newton’s Algorithm

We briefly sketch the Newton algorithm used to minimize an arbitrary function f(x)

in m variables. For more details, we refer the reader to [17] and [70]. The gradient

of f(x) is the (m× 1)-dimensional vector ∇f(x), and its (m×m) Hessian is Hf (x).

We assume that f(x) is twice continuously differentiable, there exists at least one

solution xopt such that ∇f(xopt) = 0 and the Hessian Hf (x) is positive definite for

x = xopt.

Let xo be the initial iterate, then for iteration n:

1. Test for termination:

Stop if ‖∇f(xn)‖ ≤ τr‖∇f(xo)‖ + τa, τr and τa are small positive numbers and

are called the relative tolerance and absolute tolerance respectively.

2. Find the Newton Direction, d:

Calculate the Hessian, Hf (xn) if an analytical expression is found, otherwise

approximate Hf (xn) with a finite difference Hessian. The later case involves m

new evaluations, ∇f(xn + δej), j = 1, . . . , m where ej is the unit vector in the

jth coordinate direction. The Newton direction satisfies

Hf (xn)d = −∇f(xn).

This requires the LU factorization of the Hessian using Gaussian elemination, Hf (xn) =

256

PLU = L′U , and solving for L′z = −∇f(x) and Ud = z. The LU decomposition

require m3 + O(m2) flops and solving for the triangular systems requires m2 + O(m)

flops. The complexity of the algorithm lies here.

3. Line Search:

The Armijo rule for calculating the length of the Newton step, λ, iteratively finds

λo, λ1, ...λk till

‖∇f(xn + λkd)‖ < (1− αλk)‖∇f(xn)‖

for the smallest k ≥ 0 and α ∈ (0, 1) is typically 10−4 to easily satisfy the equation.

One method is to let λo = 1 and λk = λk−1/2 for k ≥ 1. In this implementation, λk+1

is the minimizer of the parabola fitted to the points φ(0), φ(λk) and φ(λk−1) on the

interval [λk/10, λk/2] where φ(λ) = ‖∇f(x + λd)‖2.

4. Update x:

xn+1 = xn + λd.

Since the Hessian is computationally excessive to compute and factor, a hybrid Chord-

Newton strategy is used; the Hessian is updated only after a certain number of

nonlinear iterations or if the ratio of successive norms of the nonlinear residuals

‖∇f(xn)‖/‖∇f(xn−1)‖ is larger than a certain threshold, i.e., the rate of decrease in

the residual is not sufficiently rapid.

257

Bibliography

[1] P. Agashe, R. Rezaiifar, and P. Bender, “CDMA2000 high rate broadcast packet

data air interface design,” IEEE Commun. Magazine, pp. 83–89, Feb. 2004.

[2] E. Agrell, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE

Trans. Inform. Theory, vol. 48, no. 8, pp. 2201–2214, Aug. 2002.

[3] A. Ahmed, R. Koetter, and N. R. Shanbhag, “Performance analysis of the adap-

tive parity check matrix based soft-decision decoding algorithm,” in Asilomar

Conference, 2004.

[4] S. Aji, H. Jin, A. Khandekar, D. J. Mackay, and R. J. McEliece, “BSC thresholds

for code ensembles based on “typical pairs” decoding,” in IMA Workshop on

Codes and Graphs, Aug. 1999, pp. 195–210.

[5] C. Argon, S. McLaughlin, and T. Souvignier, “Iterative application of the Chase

algorithm on Reed-Solomon product codes,” in IEEE International Conference

on Communications, ICC 2001, Jun. 2001.

[6] C. Argon and S. W. McLaughlin, “An efficient Chase decoder for turbo product

codes,” IEEE Trans. Commun., vol. 52, no. 6, pp. 896–898, Jun. 2004.

[7] L. Bahl, J. Cocke, F. Jeinek, and J. Raviv, “Optimal decoding of linear codes

for minimizing symbol error rate.” IEEE Trans. Inform. Theory, vol. 20, pp.

284–287, Mar. 1974.

258

[8] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of

interleaved codes: Performance analysis, design and iterative decoding.” IEEE

Trans. Inform. Theory, vol. 44, no. 3, pp. 909–926, May 1998.

[9] S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results on parallel

concatenated coding schemes,” IEEE Trans. Inform. Theory, vol. 42, no. 3, pp.

409–428, Mar. 1996.

[10] Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent intractability of

certain coding problems,” IEEE Trans. Inform. Theory, vol. 24, pp. 384–386,

May 1978.

[11] E. Berlekamp, “The technology of error-correcting codes,” Proc. IEEE, vol. 68,

no. 8, pp. 564–593, May 1980.

[12] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[13] C. Berrou and A. Glavieux, “Near-optimum correcting coding and decoding:

Turbo codes,” IEEE Trans. Commun., vol. 44, pp. 1261–1271, Oct.

[14] G. Beyer, K. Engdahl, and K. Zigangirov, “Asymptotic analysis and comparison

of two coded modulation schemes using PSK signaling-Part I,” IEEE Trans.

Inform. Theory, vol. 47, no. 7, pp. 2782–2792, Nov. 2001.

[15] I. Blake and K. Kith, “On the complete weight enumerator of Reed-Solomon

codes.” SIAM J. Disc. Math., vol. 4, no. 2, pp. 164–171, May 1991.

[16] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent parity

symbols,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 529–542, 1996.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cambridge

University Press, 2004.

259

[18] D. Chase, “A class of algorithms for decoding block codes with channel mea-

surement information,” IEEE Trans. Commun., vol. 18, pp. 170–182, May 1972.

[19] F. Chiaraluce and R. Garello, “Extended Hamming product codes analytical

performance evaluation for low error rate applications,” IEEE Trans. Wireless

Commun., vol. 3, pp. 2353–2361, Nov. 2004.

[20] D. Coppersmith and M. Sudan, “Reconstructing curves in three (and higher)

dimensional space from noisy data,” in STOC’03, San Diego, California, USA.,

Jun. 2003.

[21] M. O. Damen, A. Chkeif, and J. Belfiore, “Lattice code decoder for space-time

codes,” IEEE Commun. Lett., pp. 161–163, May 2000.

[22] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum-likelihood detec-

tion and the search for the closest lattice point,” IEEE Trans. Inform. Theory,

vol. 49, no. 10, pp. 2389–2402, 2003.

[23] D. Divsalar, “A simple tight bound on error probability of block codes with

application to turbo codes,” TMO Progress Report, NASA, JPL, Tech. Rep.

42–139, 1999.

[24] D. Divsalar and E. Biglieri, “Upper bounds to error probabilities of coded sys-

tems over AWGN and fading channels,” in Proc. 2000 IEEE Global Telecom-

munications Conf. (GLOBECOM00), San Francisco, CA, Nov. 2000, pp. 1605–

1610.

[25] S. Dolinar, D. Divsalar, and F. Pollara, “Code performance as a function of

block size,” TMO Progress Report, Tech. Rep. 42-133, 1998.

[26] M. El-Khamy, “The average weight enumerator and the maximum-likelihood

performance of product codes,” in International Conference on Wireless Net-

260

works, Communications and Mobile Computing, WirelessCom Information

Theory Symposium, Hawaii, vol. 2, Jun. 2005, pp. 1587–1592.

[27] M. El-Khamy and R. Garello, “On the weight enumerator and the maximum-

likelihood performance of linear product codes,” submitted to IEEE Trans. on

Inform. Theory, Dec. 2005.

[28] M. El-Khamy and R. J. McEliece, “On the multiuser error probability and the

maximum-likelihood performance of MDS codes.” submitted to IEEE Trans.

on Inform. Theory, Aug. 2006.

[29] M. El-Khamy and R. J. McEliece, “Bounds on the average binary minimum

distance and the maximum-likelihood performance of Reed Solomon codes,” in

42nd Allerton Conf. on Communication, Control and Computing, 2004.

[30] M. El-Khamy and R. J. McEliece, “Iterative algebraic soft-decision decoding

of Reed-Solomon codes,” in IEEE International Symposium on Information

Theory and its Applications, Parma, Italy, 2004, pp. 1456–1461.

[31] M. El-Khamy and R. J. McEliece, Interpolation Multiplicity Assignment Algo-

rithms for Algebraic Soft-Decision Decoding of Reed-Solomon Codes. DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, Algebraic

Coding Theory and Information Theory, American Mathematical Society, 2005,

vol. 68.

[32] M. El-Khamy and R. J. McEliece, “The partition weight enumerator of MDS

codes and its applications.” in IEEE International Symposium on Information

Theory, Adelaide, Australia, Sep. 2005, pp. 926–930.

[33] M. El-Khamy and R. J. McEliece, “Iterative algebraic soft-decision list decoding

of Reed-Solomon codes,” IEEE J. Select. Areas Commun., vol. 24, no. 3, pp.

481–490, Mar. 2006.

261

[34] M. El-Khamy, R. J. McEliece, and J. Harel, “Performance enhancements for

algebraic soft-decision decoding of Reed-Solomon codes,” in IEEE International

Symposium on Information Theory, Chicago, Illinois, 2004, p. 421.

[35] M. El-Khamy, H. Vikalo, and B. Hassibi, “Bounds on the performance of sphere

decoding of linear block codes,” in Proc. of IEEE Information Theory Workshop

on Coding and Complexity, ITW2005, Rotorua, New Zealand, 2005.

[36] M. El-Khamy, H. Vikalo, B. Hassibi, and R. J. McEliece, “Performance of sphere

decoding of block codes,” submitted to IEEE Trans. on Commun., Feb. 2006.

[37] M. El-Khamy, H. Vikalo, B. Hassibi, and R. J. McEliece, “On the performance

of sphere decoding of block codes,” in 2006 IEEE International Symposium on

Information Theory, Seattle, Washington, Jun. 2006.

[38] P. Elias, “Error-free coding,” IRE Trans. Inform. Theory, vol. IT-4, pp. 29–37,

Sep. 1954.

[39] P. Elias, “List decoding for noisy channels,” MIT Electronics Research Lab,

MIT, Tech. Rep. 335, 1957.

[40] U. Fincke and M. Pohst, “Improved methods for calculating vectors of short

length in a lattice, including a complexity analysis,” Mathematics of Computa-

tion, vol. 44, pp. 463–471, 1985.

[41] G. D. Forney, “Generalized minimum distance decoding,” IEEE Trans. Inform.

Theory, vol. 12, pp. 125–131, 1966.

[42] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on

ordered statistics,” IEEE Trans. Inform. Theory, vol. 41, pp. 1379–1396, Sep.

1995.

262

[43] M. Fossorier, S. Lin, and D. Rhee, “Bit-error probability for maximum-

likelihood decoding of linear block codes and related soft-decision decoding

methods,” IEEE Trans. Inform. Theory, vol. 44, no. 7, pp. 3083–3090, Nov.

1998.

[44] M. Fossorier, “Critical point for maximum-likelihood decoding of linear block

codes,” IEEE Commun. Lett., vol. 9, no. 9, 2005.

[45] R. Gallager, Low Density Parity Check Codes. MIT: MIT Press, 1963.

[46] W. J. Gross, F. R. Kschischang, R. Kötter, and P. G. GulakR, “Towards a VLSI

architecture for interpolation-based soft-decision Reed-Solomon decoders,” sub-

mitted to the Journal of VLSI Signal Processing Special Issue on SIPS, preprint

dated July 1, 2003.

[47] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans.

Inform. Theory, vol. 46, no. 2, pp. 388–404, 2000.

[48] V. Guruswami and A. Rudra, “Explicit capacity-achieving list-decodable

codes,” in Electronic Colloquium on Computational Complexity (ECCC) Tech

Report TR05-133. Nov. 2005.

[49] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon codes and

algebraic geometry codes,” IEEE Trans. Inform. Theory, vol. 45, no. 6, pp.

1757–1767, Sep. 1999.

[50] V. Guruswami and A. Vardy, “Maximum-likelihood decoding of Reed Solomon

codes is NP-hard,” 2006, submitted to IEEE Trans. Inform. Theory.

[51] J. Hagenauer and P. Hoher, “A Viterbi algorithm with soft-decision outputs and

its applications,” in GLOBECOM’89, Dallas, Texas, 1989, pp. 47.1.1–47.1.7.

263

[52] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and

convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429–449, Mar.

1996.

[53] T. Halford, V. Ponnampalam, A. Grant, and K. Chugg, “Soft-in soft-out de-

coding of Reed-Solomon codes based on Vardy and Be’ery’s decomposition,”

IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4363–4368, Dec. 2005.

[54] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm: I. Expected

complexity,” IEEE Trans. Signal Processing, vol. 53, pp. 2806–2818, Aug. 2005.

[55] H. Herzberg and G. Poltyrev, “Techniques of bounding the probability of decod-

ing error for block coded modulation structures,” IEEE Trans. Inform. Theory,

pp. 903–911, May 1994.

[56] H. Herzberg and G. Poltyrev, “The error probability of M-ary PSK block coded

modulation schemes,” IEEE Trans. Commun., vol. 44, no. 4, pp. 427–433, Apr.

1996.

[57] S. A. Hirst, B. Honary, and G. Markarian, “Fast chase algorithm with an appli-

cation in turbo decoding,” IEEE Trans. Commun., pp. 1693–1699, Oct. 2001.

[58] Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna

channel,” IEEE Trans. Commun., vol. 53, pp. 389–399, Mar. 2003.

[59] R. Horn and C. Johnson, Matrix Analysis. Cambridge: Cambridge University

Press, 1985.

[60] T.-H. Hu and S. Lin, “An efficient hybrid decoding algorithm for Reed-Solomon

codes based on bit reliability,” IEEE Trans. Commun., vol. 51, no. 7, pp. 1073–

1081, July 2003.

264

[61] B. Hughes, “On the error probability of signals in additive white Gaussian

noise,” IEEE Trans. Inform. Theory, pp. 151–155, Jan. 1991.

[62] T.-Y. Hwang, “A relation between the row weight and column weight distri-

butions of a matrix,” IEEE Trans. Inform. Theory, vol. 27, pp. 256–257, Mar.

1981.

[63] J. Jiang and K. Narayanan, “Iterative soft-decision decoding of Reed-Solomon

codes,” IEEE Commun. Lett., vol. 8, pp. 244–246, Apr. 2004.

[64] J. Jiang and K. Narayanan, “Iterative soft-decision decoding of Reed Solomon

codes based on adaptive parity check matrices,” in Proc. ISIT, 2004.

[65] J. Jiang and K. R. Narayanan, “Iterative soft-input soft-output decoding of

Reed-Solomon codes by adapting the parity-check matrix,” IEEE Trans. In-

form. Theory, vol. 52, no. 8, pp. 3746–3756, Aug. 2006.

[66] M. Kan, Sony Corp., private communication.

[67] T. Kasami and S. Lin, “The binary weight distribution of the extended (2m, 2m−
4) code of the Reed-Solomon code over GF(2m) with generator polynomial

(x− α)(x− α2)(x− α3),” Linear Algebra Appl., pp. 291–307, 1988.

[68] T. Kasami, S. Lin, and W. Peterson, “New generalizations of the Reed-Muller

codes–I: Primitive codes,” IEEE Trans. Inform. Theory, pp. 189–199, Mar.

1968.

[69] T. Kasami, T. Takata, K. Yamachita, T. Fujiwara, and S. Lin, “On bit error

probability of a concatenated coding scheme,” IEEE Trans. Commun., vol. 45,

no. 5, pp. 536–543, May 1997.

[70] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method. Society for

Industrial and Applied Mathematics, Philadelphia, 2003.

265

[71] R. Koetter, “On algebraic decoding of algebraic geometric and cyclic codes,”

Ph.D. thesis, University of Linköping, Sweden, 1996.

[72] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon

codes,” IEEE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809–2825, Nov. 2003.

[73] H. Lu, P. V. Kumar, and E. Yang, “On the input-output weight enumerators

of product accumulate codes,” IEEE Commun. Lett., vol. 8, no. 8, Aug. 2004.

[74] F. J. MacWilliams and N. J. Sloane, The Theory of Error Correcting Codes.

Amsterdam: North Holland, 1977.

[75] R. J. McEliece, The Theory of Information and Coding, 2nd ed. Cambridge:

Cambridge University Press, 2002.

[76] R. J. McEliece, “The Guruswami-Sudan decoding algorithm for Reed-Solomon

codes,” IPN Progress Report, Tech. Rep. 42–153, May 15 2003.

[77] R. J. McEliece, “On the average list size for the Guruswami-Sudan decoder,”

in ISCTA03, 2003.

[78] R. J. McEliece, D. MacKay, and J. Cheng, “Turbo decoding as an instance of

Pearl’s belief-propagation algorithm,” IEEE J. Select. Areas Commun., vol. 16,

pp. 140–152, Feb. 1998.

[79] R. J. McEliece and L. Swanson, “On the decoder error probability of Reed-

Solomon codes,” IEEE Trans. Inform. Theory, vol. 32, no. 5, pp. 701–703, Sep.

1986.

[80] R. Nielsen and T. Hoeholdt, “Decoding Reed-Solomon codes beyond half the

minimum distance,” in Cryptography and Related Areas, J. Buchmann, T. Hoe-

holdt, H. Stichenoth, and H. Tapia-Recillas, Eds. Springer-Verlag, 2000, pp.

221–236.

266

[81] F. Parvaresh and A. Vardy, “Correcting errors beyond the Guruswami-Sudan

radius in polynomial time,” in FOCS, 2005.

[82] F. Parvaresh and A. Vardy, “Multivariate interpolation decoding beyond the

Guruswami-Sudan radius,” in Proc. 42 nd Annual Allerton Conference on Com-

munication, Control and Computing, Urbana, IL., Oct. 2004.

[83] F. Parvaresh and A. Vardy, “Multiplicity assignments for algebraic soft-

decoding of Reed-Solomon codes,” in IEEE International Symposium on In-

formation Theory, 2003.

[84] F. Parvaresh, M. El-Khamy, M. Stepanov, D. Augot, R. J. McEliece, and

A. Vardy, “Algebraic list decoding of Reed-Solomon product codes,” in

Tenth International Workshop on Algebraic and Combinatorial Coding Theory

(ACCT-10) Zvenigorod, Russia, Sep. 2006.

[85] L. Pecquet, “List decoding of algebraic-geometric codes,” PhD thesis, Univer-

sity of Paris, 2001.

[86] R. Pellikaan and X.-W. Wu, “List decoding of q-ary Reed-Muller codes,” IEEE

Trans. Inform. Theory, pp. 679 – 682, Apr. 2004.

[87] G. Poltyrev, “Bounds on the decoding error probability of binary linear codes

via their spectra,” IEEE Trans. Inform. Theory, vol. 40, no. 4, pp. 1284–1292,

July 1994.

[88] V. Ponnampalam and B. Vucetic, “Soft-decision decoding of Reed-Solomon

codes,” IEEE Trans. Commun., vol. 50, pp. 1758–1768, Nov. 2002.

[89] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2001.

[90] R. Pyndiah, “Near optimum decoding of product codes: Block turbo codes,”

IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug. 1998.

267

[91] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum decoding of

product codes,” in Proc. of IEEE GLOBECOM Conf., 1994.

[92] N. Ratnakar and R. Koetter, “Exponential error bounds for algebraic soft-

decision decoding of Reed-Solomon codes,” IEEE Trans. Inform. Theory,

vol. 15, no. 11, pp. 3899–3917, Nov. 2005.

[93] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc.

Industrial Appl. Math, vol. 8, pp. 300–304, 1960.

[94] C. Retter, “The average binary weight enumerator for a class of generalized

Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 37, no. 2, pp. 346–

349, Mar. 1991.

[95] R. Roth and G. Ruckenstein, “Efficient decoding of reed-solomon codes beyond

half the minimum distance,” IEEE Trans. Inform. Theory, vol. 46, no. 1, pp.

246–257, 2000.

[96] I. Sason and S. Shamai, “Bounds on the error probability for block and turbo-

block codes,” Annals of Telecommunications, vol. 54, no. 3.

[97] I. Sason and S. Shamai, “Performance analysis of linear codes under maximum-

likelihood decoding: A tutorial,” Foundations and Trends in Communications

and Information Theory, vol. 3, July 2006.

[98] I. Sason and S. Shamai, “Improved upper bounds on the ML decoding error

probability of parallel and serial concatenated turbo codes via their ensemble

distance spectrum.” IEEE Trans. Inform. Theory, vol. 46, no. 1, pp. 24–47,

Jan. 2000.

268

[99] I. Sason, S. Shamai, and D. Divsalar, “Tight exponential upper bounds on

the ML decoding error probability of block codes over fully interleaved fading

channels,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1296–1305, Aug. 2003.

[100] C. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical al-

gorithms and solving subset sum problems,” Math. Programming, vol. 66, pp.

181–191, 1994.

[101] C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,”

Bell Syst. Tech. J., vol. 38, pp. 611–656, 1959.

[102] M. Sudan, “Decoding of Reed-Solomon codes beyond the error-corrrection

bound,” J. Complexity, vol. 13, pp. 180–193, 1997.

[103] H. Tang, Y. Liu, M. Fossorier, and S. Lin, “On combining Chase-2 and GMD

decoding algorithms for nonbinary block codes,” IEEE Commun. Lett., vol. 5,

no. 5, pp. 209–211, May 2001.

[104] M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. In-

form. Theory, vol. 27, no. 5, pp. 533–547, 1981.

[105] L. Tolhuizen, “More results on the weight enumerator of product codes,” IEEE

Trans. Inform. Theory, vol. 48, no. 9, pp. 2573–2577, Sep. 2002.

[106] L. Toluizen, S. Baggen, and E. Hekstra-Nowacka, “Union bounds on the per-

formance of product codes,” in Proc. of ISIT 1998., Cambridge, MA, USA,

1998.

[107] D. Torrieri, “Information-bit, information-symbol, and decoded-symbol error

rates for linear block codes,” IEEE Trans. Commun., pp. 613–617, May 1988.

269

[108] A. Valembois and M. Fossorier, “Sphere-packing bounds revisited for moderate

block lengths,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 2998–3014,

Dec. 2004.

[109] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed. Cam-

bridge: Cambridge University Press, 2001.

[110] H. Vikalo and B. Hassibi, “On joint detection and decoding of linear block codes

on Gaussian vector channels,” to appear in IEEE Trans. on Signal Processing .

[111] H. Vikalo and B. Hassibi, “Statistical approach to ML decoding of linear block

codes on symmetric channels,” in Proceedings of IEEE International Symposium

on Information Theory (ISIT), 2004.

[112] A. Viterbi, “Error bounds on convolutional codes and an assymptotically opti-

mum decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, pp. 260–269,

Apr. 1967.

[113] E. Viterbo and J. Boutros, “A universal lattice decoder for fading channels,”

IEEE Trans. Inform. Theory, vol. 45, p. 1639.

[114] E. W. Weisstein, Mathworld–A Wolfram Web Resource.

http://mathworld.wolfram.com.

[115] S. B. Wicker, Error Control Systems for Digital Communication and Storage.

Prentice Hall, 1995.

[116] S. B. Wicker and M. J. Bartz, “Type-II hybrid- ARQ protocols using punctured

MDS codes,” IEEE Trans. Commun., vol. 42, pp. 1431–1440, Feb./Mar./Apr.

1994.

[117] J. M. Wozencraft, “List decoding,” Quart. Progress Report, Research Lab.

Electronics, MIT, Tech. Rep. 48, 1958.

270

[118] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering.

John Wiley & Sons, Inc., 1965.

[119] X.-W. Wu, “An algorithm for finding the roots of the polynomials over order

domains,” in Proc. of IEEE International Symposium on Information Theory,

Lausane, Switezerland, Jun. 2002, p. 202.

[120] X.-W. Wu and P. H. Siegel, “Efficient root-finding algorithm with application

to list decoding of algebraic-geometric codes,” IEEE Trans. Inform. Theory,

vol. 47, no. 6, pp. 2579–2587, Sep. 2001.

[121] J. Yedidia, W. Freeman, and Y. Weiss, “Understanding belief-propagation and

its generalizations,” Exploring Artificial Intelligence in the New Millennium,

ISBN 1558608117, pp. 239–236, Jan. 2003.

[122] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang, “Network coding theory:

Single sources,” Foundations and Trends in Communications and Information

Theory, vol. 2, Jun. 2005.

