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PREFACE

This dissertation is concerned with two independent subjects:
motion of a solid particle in the presence of a fluid interface and
modeling of non-isothermal turbulent flows. When a small particle moves
near an interface, the drag force on the particle is changed from Stokes
law owing to the presence of the interface. This type of wall effect
plays an important role in a wide range of interesting problems including
the Brownian motion of a colloidal particle, motion of micro-organisms,
and the collection of small particle via bubble or drop flotation type
process. In Part I, we have solved the simplest problem of this type,
the motion of a solid sphere in the presence of a flat. interface, by two
distinct methods; namely, solution via the reciprocal theorem of Lorentz
(1907) and solution via superposition using the eigensolutions of Laplace's
equation in bipolar coordinates.

In Part II, the modeling of non-isotﬁermal turbulent flows is studied.
The development of a realistic model to describe the turbulent transport
of momentum, heat, and mass is basic to the study of geophysical fluid
mechanics as well as many important techno]ogiqal flow problems. In the
first section, the second-order closure technique for mean Reynolds stress
is extended to the non-isothermal turbulent flows with negligible buoyancy
effects using the rational closure scheme of Lumley and Khajeh-Nouri (1974).
In the second section, we develop a model for triple correlations from
their exact transport equations. The model for triple correlations can be
easily applied to the study of meteorological flows and buoyant heat con-
vection, since the gravitational effects can be analyzed without addi-

tional assumptions or approximations.



ABSTRACT

Part I.

The motion of a sphere in the presence of a fluid/fluid interface is
studied. First, a solution is derivedvfor a point force near a plane
interface. Then the solution is extended to include the higher-crder
terms which are required to describe the motion of a solid sphere. Sin-
gularities of higher orders at the center of the sphere are obtained by
using the method of reflections. This method yields asymptotic solutions
for the general motion of a sphere in the presence of an interface.

A general solution for Stokes' equation in bipolar coordinates is
also derived, and then applied to the arbitrary motion of a sphere in the
~ presence of a plane fluid/fluid interface. The drag force and hydro-
dynamic torque on the sphere are then calculated for four specific motions
of the sphere; namely, translation perpendicular and parallel toc the
interface and rotation about an axis which is perpendicular and parallel,
respectively, to the interface. These numérica11y exact solutions are
compared with the previous approximate solutions. The latter can be gen-
eralized to a variety of particle shapes, and it is thus important to
assess their accuracy for this case of spherical particles where an exact

solution can be obtained.
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Part 1I.

The second-order, mean Reynolds stress turbulence closure approx-
imation is extended to non-isotherﬁal turbulent flows with negligible
buoyancy. We apply the method of invariant modeling [Lumley and thjeh-
Nouri (1974)] to systematically model the various higher order moments
in the governing equations. This approach yields a general form for each
unknown correlation in the transport equations of E;E}ggziand €g each
containing many terms with parameters that must be determined from exper-
imental data. For practical application, it is necessary to reduce the
number of terms. In the present Qork, the most important terms are
fi]tered from the general model for each unknown moment and their bar-
ameters are evaluated based on experimental data.

A semi-ah&]ytical method is used to derive models for the triple
correlations of f1u¢tuating velocity and temperature in a nonisothermal
turbulent flow based upon the éxact equations which govern their transport
and production processes.. In this study, these governing equations are
transformed to a set of coupled 1inear algebraic equations for ﬁ;ﬁ}ﬁ;,

—

”i”j . uie2 and g~ by assuming: (1) a quasi-Gaussian structure for the

fourth-order moments, (2) gfow variations of the mean flow in the stream-
wise direction, (3) negligible convection of the triple correlations, and
(4) certain simple models for the remaining higher-order éorrelations. A
mode]l for the triple correlations can thus be obtained by solving the set

of linear algebraic equations.
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PART I. MOTION OF A PARTICLE IN THE PRESENCE

OF A FLUID INTERFACE.
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ABSTRACT

The motion of a sphere in the presence of a fluid/fluid interface
is studied. First, a solution is derived for a point force‘near a plane
interface. Then the solution is extended to include the higher order
terms which are required to describe the motion of a solid sphere. Sin-
gularities of higher orders at the center of the sphere are obtained by
using the method of reflections. For a fluid/fluid interface with an
arbitrary viscosity ratio, the drag force and the hydrodynamic torque are
calculated for the special cases of motion of a sphere perpendicular and

parallel to the interface. In addition, the rotational motion of a sphere

is also investigated.



1. Introduction

When a small solid particle moves near an interface, the drag force
on the particle is changed from Stokes law due to the presence of the
interface. This type of "wall" effect plays an important role in a wide
range of interesting problems including the Brownian motion of a colloidal
particle, motion of micro-organisms, and the collection of small particles
via bubbles or drop "flotation" type processes.

In the present paper, we study the simplest problem of this type;
namely, the motion of a solid sphere in an arbitrary direction near a plane
fluid/fluid interface. The Reynolds number based on particle size is
assumed to be very small So that the creeping motion approximation is
valid. In addition, we assume that.the interface remains flat. The
resulting solutions are therefore valid, as a first approximation, in any
circumstances where the interface deformation remains small. Physically,
this may be the case when the distance between the center of sphere and
the interface is much bigger than the sphere diameter or when either the
surface tension or the density difference between the two fluids is
very large.

Three distinct methods have been commonly employed to study particle
motions in the presence of a f1af'(or nearly flat) interface; namely, (1)
a standard solution via superposition using the eigensolutions of Laplace's
equation in bipolar coordinates, (2) solution via the reciprocal theorem
of Lorentz (1907), and (3) solution via the fundamental solution of
Laplace equation expressed in integral form.

The most frequently used technique, via eigensolutions of Laplace's



equation in bipolar coordinates was initiated by Jeffery (1912, 1915)

who derived the general solution of Laplace's equation in bipolar coor-
dinates, and used it to solve for the fluid motion generated by two
spheres which are rotating about their line of centers. Subsequently,
Stimson and Jeffery (1926) used the same method to calculate the drag
force for two spheres translating along their line of centers with the
same constant velocity. Much later, Dean and 0'Neill (1963) utilized

the general solution of Laplace's equation in bipolar coordinates to study the
motion which is caused by the slow rotation of a sphere near an infinite
rigid plane when the axis of rotation is parallel to the plane. 0'Neill
(1964) also investigated the translational motion of a sphere parallel

to a plane solid wall. Finally, Bart (1968) extended the general solution
for axisymmetric f16w of Jeffery (1915) to the motion of a spherical drop
which is moving normal to a liquid/liquid interface.

The reciprocal theorem approach was pioneered by Lorentz (1907) who
derived a solution for the motion generated by a point force in the
presence of a plane solid wall. Aderogba (1976) utilized the Papkovitch-
Neuber solution for Stokes' equation to solve for the motion induced by a
Stokeslet near a fluid/fluid interface. He superposed linear solutions
with arbitrary coefficients to satisfy boundary conditions on the inter-
face, nahe]y the continuity of velocity and stress. However, the normal
velocity at z = 0 is not zero in his solution, which implies that the
interface is not steady. Because of this, his solution is only valid at
the initial instant that the Stokeslet is imposed.

Finally, Faxen (1921) treated the motion of a sphere parallel to

two external plane walls, using the fundamental solution of Laplace's



equation in an integral form. The extension of his theory to nonspherical
bodies, and to shear and parabolic flows has been carried out by many in-
vestigators [cf. Happel and Brenner (1973)1].

In this paper, we generalize the reciprocal theorem approach of
Lorentz (1907), to derive a general lemma for obtaining solutions of
Stokes' equations that satisfy continuity of velocity, continuity of shear
stress and zero normal velocity on a flat interface, given only an arbi-
trary solution of Stokes' equations for an unbounded domain with no inter-
face. This lemma is then used to determine the general solution of
Stokes' equations for a point force near the interface [i.e. the counter-
part in this two fluid system to the fundamental Stokeslet solution in a
single, unbounded fluid]. Since this solution does not satisfy the con-
tinuity of normal stress, it is only valid, as indicated earlier, as a
first approximation under conditions when the deformation of the inter-
face at steady state would remain very small.

The lemma is then used to determine the motion generated by a finite
size solid sphere which is translating,without rotation, either perpendicular or
parallel to the interface. Provided the interface is flat, as assumed, these
solutions can be superposed to obtain the solution for translation in an
arbitrary direction. These solutions were obtained in the following
manner. First, we put singularities at the center of the sphere which
satisfy boundary conditions in an infinite fluid [i.e. the point force and
the potential dipoie]. Next, the Temma was used to obtain solutions for
a point force and a potential dipole which satisfy boundary conditions at
the interface. In general, however, these solutions do not satisfy

boundary conditions at the sphere surface, and additional higher-order



singularities must then be included ét the center of thé Spﬁe}e. The
apprbpriate higher-of&ér‘terms are detérmihed}in the asymptotic 1imf£:\g
a/d << 1 (i.e. a = sphere radius and d = distance between sphere center and
interface.), and the resulting solutions are then valid in the same limit.
Similarly, we also studied the fluid motion generated by the rotation of a
stationary sphere whose axis is parallel or perpendicular to the interface.
Due to the linearity of the Stokes' equation and boundary conditions, the
solutions of these four problems (i.e. translation without rotation, and

rotation without translation) are sufficient to determine the particle and

fluid motions for any arbitrary applied force and/or torque on the particle.

The method of analysis used in this paper, and particularly the
solutions for a point-force, are easily extended to the motion of slender,
rod-1ike particles near a fluid/fluid interface. ‘All that is required is
that the distribution of singularities is known for motion of the particle
in an infinite fluid. | -

The present paper comprises Part I of a three-part study. In the
forthcoming Part II of this work, we will discuss the exact solution in
bipolar coordinates for the motion of a sphere near a.f1uid/f1uid interface.
This exact solution is derived in the form of an infinite series,. whose
coefficients can be determined numerically. A detailed comparison between
the approximate results of the present paper and the exact solution will
be presented in Part II. The third hart of this study, Part III, is con-
cerned with interface deformation. We consider two cases: (1) that in
which the final steady-state deformation is small and calculable using -

the velocity and pressure fields generated in Parts I and II, and (2)



where the interface deformation is not small. In the iattef“;ase, a
numerical so]ufion of the complete problem is required to determine the
velocity and pressure fields. In Part III, we consider a novel numerical
méthod for determining the shape of the interface in this situation. ‘In

the former case, we can use the known (i.e. ca]cp]ated) shape of the-

ihterface, and the velocity fields for a flat interface to determine the
first correction to the force acting on a particle due to interface
deformation. This is accomplished by using the reciprocal theorem in a

manner reminiscent of Ho and Leal (1974).

2. 'Basic¢ Equations

We begin by considering the governing differential equations and
boundary conditions for an arbitrarily shaped rigid particle which moves,
with translational velocity U and angular velocity Q , near an interface
which separates two immiscible fluids that will be denoted as I and II.
Apart from the disturbance flow induced by the particle, the two fluids
are both assumed to be stationary. Furthermore, the thistdfbéd inter-
face is assumed to be flat, and the particle to be wholly immersed in the
fluid II.

The theoretical analysis which follows will be valid in the limit of

small Reynolds number,

where v, represents the kinematic viscosity of fluid II



and d is the separation distance between the particle "center" and the
undisturbed interface. This condition guarantees that the particle
moves a very short distance on the time scale character%stic of vorticity
diffusion over the distance d, and in this case, the equations of motion
reduce to the steady Stokes' equations in both fluids,

0= - Vpi + szi

i=1,2 - (1)
0= V-g].

The variables in these equations may be considered to be non-dimensional-

ized with respect to the characteristic variables: u. = U (or Qa),

L. = @ (a particle length scale), and P. = piU/a (or ”iQ)' In view of

the linearity of these equations, and in anticipation of the fact that we

will eventually restrict our attention to small deformations of the flat

interface, we will consider the translational and rotational components

of the particle motion separately. The boundary conditions for gi and

in the translational problem are thus,

42
Up U, >0 as x| > =, (2a)
u, =e on the particle surface (2b)
plus the conditions
U= U, | (2c)
- - f
n-u; =N, =« | (2d)
[n-1] =201,-n1,

, 2
ga“(py, - p,)

_ o k. of 393°f 1 2

_ [(UZU)<—F—§F—K ;Z)Q+ s fa} e




-10-

at the interface, S, which is represented by

S: H=2z-2(t) - f(r,¢,t) =0 (3)
It may be noted that the dimensionless distance from the particle center to
the undeformed interface, i.e. d(t)/a, has been denoted as 2(t). The unit
normal, n, and the factor « are defined as
1

1 = T < T
The parameters appearing in (2e) are the viscosity ratio, A = W/ u,
the interfacial tension o and the density difference, Ap = Py = Pp>» in
addition to the quéﬁtities which were defined earlier. The equations (2c)
and (2e) are the conditions of continuity of velocity and stress, fespec—
tively, while (2d) is the kinematic condition which relates the time rate
of‘change of the shape function, f, to the normal velocities at the inter-
face. Although we will not explicitly consider the problem of particle
rotation in this initial discussion of governing equations and boundary
conditions, we note here that the problem is formally identical with U
replaced by Q and the condition (2b) appropriately nmdified‘h;gz = enr
on the particle surface.

The problem represented by (1) - (3) is, of course, both time-dependent
and highly nonlinear due to the fact that f is unknown. Thus, the solution
(for example, the shape function f); for any instantaneous U and particle
position (or Q and position plus orientation if it is non-spherical) will
not be a unique function of the conditions at that instant, but rather will
depend on the conditions and interface shape at earlier times. The first
two papers of the present series are, however, concerned with circumstances

in which the interface deformation is both small and dependent solely upon

the instantaneous conditions.



5
Y g

The assumption that the interface shape depends on the current flow
conditions only is, of course, precisely equivalent to the statement that
the interface shape is the equilibrium shane for a given U and a specified
particle position; in particular, the interface shape at any instant will

be the steady—staté shape corresponding to the stress and pressure fields

in the two fluids at that instant. Thus, the obvious physical requirement

for this condition to be satisfied is that the particle motion be sufficiently
“slow" that the (dimensionless) particle disp]acement; 2*, in the time rgqgjred
for the fnterféce to reach equilibrium for a given "applied" normal stress
difference, [U’Q‘Iﬂ’ is small compéred'to the separation distance, 2(t).

" In addition, the time required to achieve a steady stress distribution at‘

the interface after a change in the particle velocity (say, after an abrupt
start-up of the particle motion) must-be short compared to the time scale

for significant displacement of the particle. The latter condition is

exactly the condition Red << 1, which was already assumed in using the

steady Stokes' equations. The conditions necessary in order that ':

o) may be deduced byA examining the equation (2e). Two

“distinct cases exist, depending upon whethef the viscosity ratio

is fixed (though perhaps large) or whether it is asymptotically large. In

the latter case, the interface deformation will be §m§ll.for finite times,

but always unsteady and the pfob]em is not considered in the present

analysis.  We consider the case in which X is fixed. In order to

3 - * 3 ke .
insure that 2 << £ as assumed, we require either

Uu2
< <1 (4a)
or ,Uu2

.gazAp

<«< 1 | | (4b)
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depending on which quantity is larger, or
e
< <<
d 1. (4c¢)
When any of the conditions, (4), is satisfied, the interface deformation
will not only be in quasi-equilibrium, but the magnitude of the deformation

will also be asymptotically small; i.e. 0(8) in the cases (4a) or (4b) or

0(6™ in case (4c), where ¢ represents whichever of the three parameters
(4a - 4¢) is asymptotically small and m > 2. The two conditions, (4a) and
(4b) yield a §ﬁ§ll interfaée deformation by ba]anciﬁg the normal stfess |
jump on the left-hand side of (2e) with a large surface tension or a large
density differential. The condition’(4c)“y1e1ds §m§ll deformations because
the normal-stress diffefenée is small, O(%)m , when the particle is far
from the fluid interface.

In any of theée cases, the problem can be analyzed completely by
means of an asymptotic expansion for small & 1in which

m+1

f = 5mf1(r‘,¢) + 6 fz(r!d)) + "." (5)

énd

(6)

for fixed . Substituting (5) and (6) into (2a) - (2e) (for the transla-
tional case), we obtain

91(0)’ Eéo) >0 as  [x] > - (7a)

géo) = e on the particle surface (7b)
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0 (0 = 0 | (7c)
n-ui® = neuf® - g (74)
[[L-Q-I(O)]l =0 | (7e)

: u,U sl
n'n-I(O)H = f . §=—2_ L0, Yoo . 0(1), & = o(1)
- - = 1 2 fo1 d
ga Ap
. .-
of; 3 f, | 1, U LU
= . (%—-a—r—];+ 21) ; § = 5% 50, PS =0(1)saa"=0(1)
ar c ga” Ap
. af1 RN uU WU
1| R E PEE P
W2 | ar c ga Ap
oy
ga Ap
+ UZU fl (7F)

in the 1imit as & + 0. The power m which appears in (5) and (A) equals 1
when (4a) or (4b) is satisfied with a/d = 0(1), but is generally > 2 for
the case (4c).

The zero—ordervapproximation, which is defined by the conditions
(7a) - (7e), plus the governing equations (1), thus represents the motion
of a particle near a flé; fluid interface. When the velocity and pressure
fields have been determined from these equations and boundary conditions,
the normal stress condition (7f) can then be used to determine a first
approximation to the deviation of the interface shape from flat. Higher
order terms which account for the effects of interface deformation on the

velocity and pressure fields can then be obtained via a straightforward
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continuation of the expansion procedure, though one must
account for the interface deformation in calculating the unit normal and
tangent vectors, n and t, at higher-order in §. In this paper, and the

one (part II) which follows, we shall be concerned only with solutions for

the zero-order problem,

3. Méthod‘of Sofﬁtion

Let us then consider the solution of the equations (1), plus
boundary conditions (7a) - (7e), for the specific case of a rigid,
spherical particle of radius a which is immersed wholly in fluid II. As
indicated in the Introduction, we shall approach this problem using a
generalization of the metbod of Lorentz (1907), which can later be
adapted to solution of the same problem with more complicated particle

geometry.

Lorentz (1907) used the reciprocal theorem to determine the general
solution of (1) for fluid motion in the presence of a plane solid
wall. We extend his solution to the general case of a fluid/fluid inter-

face. For creeping motion of a fluid near a flat fluid/fluid interface,

we state the following lemma.

Lemma Consider two immiscible fluids, fluid I for z > 0 and fluid

IT for z < Q, which are contiguous to each other at z = 0. If u and p

are a solution of Equations (1) in an infinite fluid IT, then the functions
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~

u; = T—%—y (u-198), p = T—%—; (p-p) forz>0 (8)
u, = (u+ %) - gy (ur - %)
for z < 0 (9)
A A
P = (p+p) - 75 (p* - %)

satisfy Equations (1), plus the conditions (7c -7e) of continuity of
velocity, continuity of shear stress and zero normal velocity at z = 0.

Here, (U,P) is the associated solution [cf. Lorentz 1907 1 for (u,p)

defined as
U = - Ju- 220w + szp (10)
o= 9p _ 4 W
P £ p+ 22 57 4 57 (11)

and (u*,p*) is the reflected image solution for (u,p) defined as

u* J-u(x,y,-z) (12)

p*

Finally, (G*,p*) is the associated solution for (u*,p*). The operator J

3}

p(xa.Ys"Z)- (13)

and the constant X are defined as

[]{=8A
i

(0,0 = 854 - 28,58
W/

and w is the z-component of u.

P
il

This lemma can be easily proven by using the uniqueness of a
solution for Stokes' equation (Lee 1979). (gz,pz) becomes identical to
Lorentz' general solution for fluid motion near a soiid wall when X goes
to infinity. Moreover, for the points far away from the interface,

(gz,pz) reduces to the solution in an infinite fluid, (u,p).
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With the above 1emma,‘we can easily calculate the solution of (1)
for the motion of a particle in the presence of a plane interface, once the
solution for particle motion in an infinite fluid is known. In the
following sections, we will examine the case of a solid sphere which is
translating and rotating in an arbitrary direction near an interface. Due
to the linearity of Equations (1), this problem can be solved by
superposing solutions for translation perpendicular and parallel to the
interface and for rotation with the axis of rotation perpendicular and
parallel to the interface. Prior to considering this problem, however, we
briefly examine the solution for a point force located in one of the fluids

near a flat fluid/fluid interface.

In order to obtain this solution using our lemma, we first require
the corresponding solution for a point force in a single, unbounded fluid.

This is the familiar Stokeslet solution.

o (a-x)x
u(x,0) = 7+ 3 (14)
P (X,0) = 2% (15)

where the strength and orientation of the point force are represented by
o, and R = |x|. Let us consider a Stokeslet Jocated at x = (0,0,-2).

Substituting Equations (14) and (15) in Equations (8) and (9), we obtain

(@-x,)x

1 FERRCRAN
U s(%o0) =g I+ D |-t ——
+ R




(2o, etxy 3(arx)e
PLs(®oe) = 155 [ i (17)
Ry R, Ry
1 A ¢ (ox-)
U2 (x,2) us(x+,oz) * (1 PR d - 1+ A l—) (ﬁ:"" 3 X-
2\ z _ . 32
R E§'Q [;azg_ t at (o 5-)12 Y (a 5-)5{] (18)
(x,a) (o) + 2 2 y ez (ex)
p Xx,a) = P_(x,,a) +2 +4 - =
2,5~ s =+ Rf 1+ R‘j’ R‘j’
32(a-x.)z_ ,
L (19)
R-
where
R, = (x2 + yz + (z + 2)2)%, R = (XZ + y2 +.(-z + 2)2)%,
xp = (Gy,z+2), xo = (xyy, -z+12), z, = z+2,
z = -z+ 4%, and ] = identity matrix, §...

- = ' -l J

This solution will be used in the following sections in analyzing the
velocity and pressure fields generated by a finite solid sphere which is
centered at z = - 2. In addition, it may also be used in the context of
a slender-body approximation to determine the velocity and pressure
fields for a slender particle which is near a fluid interface.

To show the fundamental characteristics of the solution, Equations
(16.) - (19), we will evaluate the stream function for a = aoiz and the
normal stress imbalance at z = 0 for o = aojz and o = ayi,. The Tatter
are qualitatively indicative of the expected interface shape for translation
of a’partic]e normal and parallel to the undisturbed interface, z = 0.

For the axisymmetric flow with a = aoiz at z = - 2, the stream
function can be easily calculated from Equations (16) and (18).
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+
: 2 2\
Y4 4 .
+ - 22 Lz
4, = -aR, (1-—|+arf1-=|1-2_ 2
RN B R B ()

for z <0 (21)

In Fig. 1, the stream functions for o = %—jz and X = 0.01, 1, or 100 are

compared .with the stream function for an unbounded single fluid. It

is clearly evident that the fluid motion in both fluids is retarded as the

viscosity of the upper fluid increases.

The normal stress imbalance at z = 0 can also be evaluated from the general

solution, Equations (16) - (19). For o = aoiz’

3
aoz 29
- AT, = 12 5 (22)
o
and for o = aoix s
aoxz2 23
- AT, = 12 n (¢3)

(22 + x2 + yz)%. It is noted that, for a point force located in

Here, RO

one fluid, the normal stress imbalance on the interface is independent of
viscosity ratio. In Figs. 2 and 3, the right hand sides of (22) and (23) are
plotted for a, = 3/4. It may be seen that the normal stress imbalance becomes

larger as the point force approaches more closely to the interface.

4, Motion of a Sphere Normal to a Plane Fluid/Fluid Interface

In this section, we consider the motion of a solid sphere normal to an

infinite, plane interface. In an infinite fluid with no external



-19-

boundaries, an exact solution for translation of a solid sphere can be
obtained by superposition of the fundamental solutions for a pbint force
(i.e. the Stokeslet solution) and a potential dipole, both applied at
the center of the sphere. The Stokeslet solution for a point force in
an infinite fluid was presented earlier, as Equations (14) and (15),
together with the general solution for a point force near a fluid/fluid
interface which was obtained using the lemma [Equations (8) and (9)] of

the preceding section.

The velocity and pressure fields for a potential dipole in an
infinite fluid are

g 38X

+
3 R

[S1 b4

up(x,8) = - (24)

pee)

py(x.8) = 0 (25)

where B indicates the direction and intensity of the dipole. This

solution can be generalized so that it satisfies continuity of velocity

and shear stress, plus zero normal velocity, at z = 0, by simply sub-

stituting (24) and (25) ‘into (8) and (9). The result for a potential

dipole located at z = - £ is
: B 3(B-x )x
_ 1 _ = -~ 2+/204
u (68 = Ty L+ g>-(— 5 —--F;s——)
+ +
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PLOMB) = T3

,V— . N A .
up p(x:8) = uplx,.8) + (1 FX Y T T ;)

1+ R? R
| A 12 , 5 . \.2
P2,pX8) = TEx 5 [2822- tex-z ’-‘-)7--] (29)

The variab]es appearing in these solutions were all defined previously in
conjunction with either (16.) - (19) or (24) and (25). |
Now, let us consider a sphere located with its center at z = -2 which

is moving with a constant velocity toward (or away from) the interface,

which is located at z = 0. In this case,

i
-z

£ bt

= o4 = 3 -
(_x_eto_l-lzandg—?o_"

and the zero-th order (i.e. infinite fluid) solution can be written as

g§0) = 0 and p{o) = 0 (30)
gém - gs(?.(+’% lz) + l.‘D(’-(+" % j—z) and } (31)
p$0 = p(x,3 i)

Here, the subscripts 1 and 2 refer to. fluid I and fluid II, respectively
while the superscript (zero, in this case) indicates the level of approx-
imation in the context of a normal reflections-type calculation procedure.
Thé first correction for the presence of the interface can be
evaluated simply by substituting o = g-jz and B = - %'iz into Equations
(16.) - (19) and (26) - (29), and subtracting the zeroth-order solution (31).

We identify this first "wall correction” by the superscript (1). For
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convenience, the correction corresponding to: the Stokeslet solution is
still denoted by the subscript s, while that from the potential dipole is

denoted by the subscript D, i.e.

o) = ol ) el o 31y -
0 ol g+ oll e by
40+ ) e 1) oW e b1 .
it = o) 3 1) el Gm 11

Though géo) exact1y satisfies the no-slip boundary condition on the
surface of the sphere, additional singularities are needed at the center
of the sphere in order to cancel the velocity field correction gél) which
is non?zero on the sphere surface. Since gél) is highly complicated, it

is not possible to determine singularitiés at the sphere center which
precisely satisfy the no-slip and zero normal velocity boundary conditions.

Instead, we consider the asymptotic limit € = 1/2<<1, and then choose

singularities to cancel only the first few terms of gél) at the sphere

surface, with gél) expressed in powers of €. Examination of gél) shows
that géli = 0(e) at the sphere surface, while gélg is Only 0(53). Hence,

the dominant singularities at the next level of approximation will be those
which are required to cancel the interface "reflection" of the point force (or

Stokeslet) solution. The leading terms of gél) near the sphere, for small

€, dre

(1) . % 2+3 2% 2430, | 3
AN S A e M G4
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uél) = L agx f * 3; + 0(e3) (35)
o
Wl o e gy SR 0 (36)

with a, = Igol = 3/4.

At the first, 0(c), level of approximation the velocity components
uél) and vél) parallel to the interface are zero, while the normal
velocity component is simply a constant

2 + 3
1+ X7

]
?

Insofar as (34) - (36) are concerned, the presence of the interface is thus
equivalent to an induced steady-streaming motion in the direction
opposite to that of the sphere. Obviously, to counter wél) at 0(g), we

require a point force and a potential dipole at the sphere center, with

intensities
3o
- o2+ 3\ .
% T EgITE AL, (37)
o
— 02+ 3\ . oy
S (38)

It is important to note that the point force velocity field of strength
0(e), correspond1ng to al, will itself generate a vértical ve1oc1ty com-
ponent of 0(e ) at the sphere surface when it is "reflected" from the
interface. Thus, if we are to consider any correction terms of O(e )

from (34) - (36), we must simultaneously include this additional 0(52)
correction to the velocity field near the sphere. 1In order to cancel this
0(52) term at the sphere surface we require an additional point force and

potential dipole at the sphere center of strength
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2
- 3 2+ 3)x. 2,
2 T % (@T T+ A/ 1z (9)
S PR |
3 +'3 2 . .
By = "30‘(‘a“§+ ?)s I | (4o)

The terms of 0(82) in the Equations (32'), (33) and (34) represent an

axisymmetric uniaxialextensional flow with origin at the center of the

sphere, and the z-axis as the symmetry axis. Chwang and Wu (1975) have shown

that an extensional flow of this general type is generated in an un-
bounded fluid by a stresslet and a potential quadrupole.

The basic solution for a stresslet is

C[rs (e |

u.(x,7,8) = - S ~ 5 | X (a1)
Ty:s ()] |

pSS‘('?-("r’§) = -2 LRB - Ry ) (42)
s op8) = 5 (90 + (g < 3)

where w is the vorticity vector. The potential quadrupole is defined as

the derivative of a potential dipole.

390(5’5)

qu(§,§,j2) = T

(44)

To cancel the terms of 0(62) in Equations (34), (35) and (36.) at the
sphere surface, we thus require the superposition of a stresslet and a

potential quadrupole at the sphere center. The resulting velocity field

is

(2) _ 1 d . ' o .
Up"ax = 7 Cp |37 Up(Xyad,) * Bug(x,01,,1)) @5 )
where
2% 2 + 3\
C1 =& T IF A
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Substituting Equations (41) and (24") into (45), we obtain
2

c. 1+ (I =) z
2) _ 4 1{ 1-d } + 1 ]
u = |5 (-5+3 +15 = {1 - =) |x (46)
=2,ex 2 R3 RE R5 ( RZ) =+

+ + +

Although there is no pressure contribution from the potential

quadrupole term, the contribution from the stresslet term is

2
Pex = Gl-3t*33 (47)
Ry Ry

. . (2) (2) .
Finally, the corrections to Us ex and p2,ex which are necessary to
satisfy boundary conditions at the interface can be easily calculated
from the lemma by substituting (46) and (47) into (8) and (9), and then

subtracting (46) and (47) in fluid II. The results are

(3) G| os ) 22 ., 2
gl,ex-l+x'7(£+é)'a§l-3;§—2 ’-(+-;3-1-9R_2_ 1,
3 2
2, %, o (1 (I -0) 52
Re Ry Ry Ry
+ 0(64) 48
; 2 2 | 2
p(3) - )2 (+10)[ 143 Z; (4 57-+) 5 2z, (3 . z+)]
l,ex 1T+ x| 317 —|4-—%] -3—=[3-5=
Ry Ry RY R} RS
+ 0(84) _ (49)
in fluid I, and
2
C 5x z
(3) _ 1 1 Z 2
gZ,EX T 1+ A (Q = X;) EE? 1+3 R2 + C1 T+ X ZJ
(5 1) 3z_ s 2_2_ z? : ,
53] T 9 =5 = |x_+(-1+9 —}i %)
2R3l R? RS/~ 2 iTER e
2
15 ._52_ 4 ;
= [“(“) 2 J o 60)
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2 2

5C z C, X\ .Z2 z

(3 _ 1. - 17 10 7~ =
Pex - B\ 13| *1is3| 7 (-9t 15 2

R AR

(122? 5 Zf 1)] o 4 51)
—— - 156 -7 - + 51
Z CR -

i

in fluid II. Since the stresslet and potential quadrupole terms, (46) and
(47), are 0(52),the "reflected" velocity and pressure fields, (48) - (51),
are 0(63) at the sphere center,

Hitherto, we have evaluated the singularities at the sphere center
to 0(82). Higher order terms can be calculated in a similar manner, but
we will not consider such terms here. In summary; the sinagularities

required for a sphere moving perpendicularly to a plane interface are:

- Stokeslet: u (x .7 i,
+ L.

1+ A 8 1+ A

: N 1.4y, 3 243 3 2+3x)2 2 3
potential dipole: 90(5; 7 12)_1 tg T et (é- I X) e + 0(e”)
5o
. 2 770 2+ 3) .
stresslet: ¢ —p T gss(x ,12,12)

potential quadrupole: ¢ 1+ 2 55-(§¢’iz)

As there is no contribution to the drag force from a potential
dipole, stresslet or potential quadrupole, the drag ratio- [the drag

divided by Stokes' drag] is simply given as

. 3 2 +3) 3 2+3x)\2 3
Drag ratio = 1 + 8 €T A + (g‘e i‘:f‘?{)v + 0(e”) (52)

When A + =, Equation (52) reduces to the drag ratio for the case of solid

3iyf1ed 228, (g_ 2 + 3x) 2 2, o3
-

oud
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wall, and is identical with Wakiya's results to 0(82)(Cf. Happel and
Brenner 1973).

In Fig. 4, the drag ratio, Equation (52), is plotted vs. the distance
between the sphere center and the interface for A = 0, 1 and ». The drag
ratios numerically calculated by Bart (1968) are also shown in the figure.

As previously mentioned, we presume € << 1 in the derivation of Equation

(52). Thus, for € << 1, the Equation (52) agrees with Bart's result

which is the exact solution for a sphere motion near a flat interface. Even

for £ ~.2.5, the épproximate solution shows reasonably good agreement with
the exact solution. However, the two solutions deviate from each other as

the sphere approaches more closely to the interface. Since the convergence of
Equation (52) is poor for € =1, we need more higher order terms for Equation (52)

9. Motion of a Sphere Parallel to a Plane F]uid/Fiﬁi& Ihterface

Let us now turn to the problem of a non-rotating sphere which is translating
vparal]el.to a plane fluid/fluid interface. The zeroth order solution for this
problem can be obtained by substituting a = aoix and 8 = —%‘aoix into equations (30)
and (31), with ug and up evaluated from (14), (15), (24) and (25). Simi-
larly, the first correction by reflection from the interface can be ob-
tained from Equations (32) and (33), with (16) - (19) and (26) - (29).

The no-slip boundary condition on the sphere is not satisfied since
the "reflected" flow field is nonzero at the sphere surface. We may

examine the leading terms of this reflected field, expressed as a power

series in €,

1) . _%2-3n, 2%2-3 3

us = eFITF 3t BIT N (z +2) + 0(e”) (53)
= o) | (54)
(1) _ 2% 3 +2 3 .
U L T (55)
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In order to satisfy the no-s1ip and zero normal velocity conditions
at the sphere surface, we need additional singularities at the sphere
center which produce the velocity field of opposite sign. For the term
of 0(¢), a Stokeslet and a potential dipole are required, which have the

intensity and orientation.

= - e_02-3).
S| 16 T+ x (58)
e S .
- 02 - 3) .,
L T e (57)

By induction, we also know that the interface "reflection" of the
point force and potential dipole solutions corresponding to (56) and (57)
will yield a nonzero contribution of O(gz) to the x-component of velocity
at the sphere surfaces. In order to satisfy boundary conditions on the
sphere surface to 0(52), we thus require an additional point force and

potential dipole at the sphere center with magnitude and orientation

2
_ {3 2.3\
% € 0‘0(161 )\) Ix &)
. 2% [3 2. 3n\2,
8, € 3*(T§'1 Y| =X (59.)

Further, we require singularities tocancel the 0(c?) contributions in
Equations (53) and (55). Examination shows that these ferms represent a
Tinear shear flow with origin at the sphere center. Chwang and Wu (1975)
discovered that a stresslet, a rotlet and a potential quadrupole were
necessary to produce such a flow in an unbounded fluid. Thus, the

velocity field which cancels the terms of 0(52) in g(l) at the sphere is
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(2) _ 5 . 1 . 1 3 .
U s = G216 Yss(Xeodyol,) + 5 Uplxni ) + 5 o upxai))
(N | N .
t G {6 Uss (01201, - 2 Up(x01y)) + 5 5% l-‘D(’-‘+’lz)} (60)
Here, C, = %2-80 o CRNEL | L4y s the velocity field
] 2_"'8 1+ As 3‘8 1 +)\’ ER e elgc y ie

due to a rotlet defined as
' Y*X
up(x,y) = 3 (61)

Substituting Equations (24), (41) and (61) into Equation (60) yields

2) . o |Pf1, 1\, .1 1 1\..5 11y, ]
bsw = Gl lF* 3)1x+z" 5,‘"3’)1z+2"2+ RT‘R7)’.‘+
+ + + + + +

L R R R R

~ -
+ /1 1\ 1./1 1\, .5 1 1
G ‘z‘(‘;';ﬁ) kT2 X (R—s“;')lz*?'xh (;5”57)’-‘*5
- + + + + + +7 ]
(62)
The pressure becomes
(2) . T
+

(2)  (2)

The corrections (i.e. ref]ections) to (UZ’SH, pZ,SH) which are necessary

to satisfy boundary conditions at the interface can be calculated easily

from the Temma. The results are

(3) 1 1 ) ) Xz,
u = (I +3J) —5|C,(z,i, - xi_ ) + 5C X
“1,SH s =0 gpd | 2 Sge
2
z X2
[ §l. 2. 1
+ E§- - C4 + SCS'Tf] 1, - 52 5 “E'(‘ 5 5 X, * Z+lx + Xi )
+ L R+ R+ R+
[ 22 | (64.)
Xz + ) 4 .
+ X213, - 25C — X+ 10C5z,1 |+ 0(e”)
Ry L Ry
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5 . 552 3
_ X + +
p1 SH = T+¥%% IOCSZ 5 - 1] + 20C52+ + 6C4Z+ - 5OC5 —
Ry Ry Ry
+ 0(e) (65)
(3) . [_1 ). .
s T lTE T TR L) o3 Calaliy xi) 5 G 5 x
2R’ R
\Z J c ( 3xx 5C.z 5xz x
+ — i+ —2=) + z i, +2xi - —
T+ 23 [ ~x R?) R? ( X Czoop )
55 2
+ 10+ 5 274 CS[- —R‘r—’7- xz_ x. + —;5— (z.1, + xi ):I + 0(e”) (66)
(3) XZ_ oy - Xz_ oy Xz xz.
p = BC — - 22|52 + X+ 30, == - 25¢, —=
2,SH 5 R? 1+ A 5 RZ R? T4 R? 5 RZ
Xz
+ 10, Eg-} + 0(e”) (67)
‘ _ - 2 % 1
Here, C4— C2-C3—-e 7 T+
2 3%

and G5 = Gy +C3=e" 4= 777

Thus, for a sphere moving parallel to an interface, the singularities

required at the center of sphere through 0(62) are

>
fa S
N
+
o
pe—
m
wW
v,'

. 3. 3 2 -3 3 2 -3
Stokeslet: gs(§+’ T lx){l _5136_1 A +(€16 T+ 2

potential . 1
tent] 1 3 2-3n.[3 2-3)\2 3
dipole: (x+, 7 1x) 1- T Y (8—-—16 1 )\) +0 (e )}

. 3¢
stresslet: & Coug (x+,1 ,12)
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rotlet: ey (x,,1.)
: 2 “4-R ~_+’.-y

potential 1 5 ] g
quadrupole: 3-(c2 SE'ED(5+’1x) + Cq EY'ED(§+’12))

We can evaluate the drag ratio easily from the Stokeslet strength

Drag ratio = 1 - g'f%!fl' 3§ + gz(f%f%;i—g%) 2 + 0(g3) (68)

It can be seen that there exists a critical viscosity ratio equal to 2/3,
above which the drag force on the sphere in the presence of an interface
is larger than that in an infinite fluid. For ) < %-, the drag is less .
‘than it would be in an infinite fluid. Further,_EqQation (68) becomes
~identical to Faxen's (1921) results to 0(52) when A goes:to infinity.

" From the rotlet strength, the hydrodynamic torque on the particle

can be obtained and is equal to

R 3
T =-8r 1y 7 (C2 C3) + 0(e”)
F e g i, o) , (69)

This is the negative of the torque which is required to keep the particle

from rotating. It will be noted that, when A + =, there is no term of

0(52) in T. Indeed, Faxen's (1921) solution for. sphere motion near @ solid

wall yields T ~ 0(54). It is also noteworthy that for any finite A the sense

of the applied torque for a sphere which is far from the dnterface is opposite

in direction to that which might be expected intuitively, and opposite to that

“which is required for a sphere near a solid wall (see part II of this papef).
InAFig. 5, the drag raéio, Equation (68), is plotted vs. g, the distance

between the sphere center and the interface,for A = 0, 1, and « . 0'Neill

(1964) calculated the drag ratio for the motion of a sphere parallel to

a plane solid wall by using bipolar coordinates. His results
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are also shown 1in Fig. 5. There is a good agreement between the
two solutions in the region of € << 1. When a sphere approaches the
interface, we need more higher order terms in Equation (68) due to the
poor convergence of Equation (68) in e power series. As expected, the

difference between Equation (68) and 0'Neill's solution becomes larger

as € » 1.

6. Rotation of a Sphere in the Presence of an Interface

Finally, we turn to the case of a stationary sphere rotatingwith a constant

angular velocity Y in the presence of a plane interface. y is nondimensional-
ized w.r.t. uc/%c. The solution in an infinite fluid can be simply represented

by a rotlet at the center of sphere, and the velocity fie]d generated by a
rotlet is given by Equation (61). Thus the zero-th order solution for a
rotating sphere in the presence of a plane interface is

w0 < o (70)
EéO) = !R(§+’X) ’ (71)

The first correction by reflection from the interface can be easily

obtained from the lemma.

N (I+ g)‘ Y4\ 2a (YX1y - Vi) Ca (vy - YHX) (72)
5| T+X |3 T+% R3 24 N
+ + +
(1) _ 1 A (yxx.)
u (1572 -9 1)- 3
2 (v i, = v,i,) (vy - v x)
+ z Xy Y - 3Jex. XY (73)
1+ A R3 =< RS

Here, v, Yy and Y, are the components of ¥ in i, 1y and i directions,

respectively.
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Since the problem ts linear, the solution for rotation with an arbi-
trary axis of rotation can be obtained by superposition of the solutions

for rotation when this axis is para]]e]‘and normal, respectively, to the
interface. Therefore, without loss of generality, we will solve only
these two problems for rotation of a sphere. |

First, let us consider a rotating sphere when the axis of rotation
is perpendicular to the interface (i.e. Y, £ 0, Yy = Yy = 0). As discussed
in.the previous sections, the first correction (73) to the solution due to the
presence of the interface does not satisfy no-slip boundary conditions at the
sphere surface. Hence, we analyze the leading terms of (73) at the sphere
surface as a power series in g, ‘

f) = - 1hF Sy ot | %)
vib) H% e + o(e?) | 75)
(1) _

wl = o | 76)

To cancel this additional velocity field at the sphere surface, a rotlet is
needed at the éenter of sphere. The velocity field generated by this rotlet

is given by

(2) _ 1-2 3
Us =

T € BREeY,p) b7

21
8

Consequently, for the rotation of a sphere whose axis is normal to the
interface, only a rotlet is required at the center of sphere through

terms of 0(63) and its strength is as follows,

: 1-2 3 4
rotlet: ER(E-('*"YZIZ)(I - me + 0(6 ))

The torque reaquired to maintain anqular veTocity, Y = Yziz’ can be

easily calculated from the strength of rotlet,
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78 )

For A > 1, the required torque on the sphere in the presence of an interface is
larger than that in an infinite fluid while for X < 1, it is smaller.

It may be noted in this case that there is no contribution to the drag

force up to 0(53). As expected, rotation about the z axis induces no
translational motion of the particle.

Now, let us consider a rotating sphere whose rotation axis is
parallel to a plane interface. Substituting Yy # 0 and yy =Y, = 0 into
Equation (73) and expanding each term in the power series of e, we can

evaluate the leading terms of Equation (73) at the sphere surface.

4D = ot (79
R R R I
T T A ' o

In order to counter the term of 0(52) in vél), we need a Stokeslet and a

potential dipole at the center of sphere with strength and orientation

_ 2 3 Yy .

¢ T E TeTFaAly (82)
21 Yy o,

B = ~& TsTm Yy (83)

In addition, for the shear flows of 0(83) in Equations (80) and (81), a
stresslet, a rotlet and a potential quadrupole are required at the center

of sphere. They yield the following velocity field.
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i

3 375 . 19 .
g Yx° [E Ugs(Xpolyed,) + 5 oy 90(X+’lz)]

-5§ YXE3BR(§+’ix) (84)

Hence, the rotational motion of a sphere whose rotation axis is

parallel to an interface requires the following singularities at the

center of sphere.
let: ( i )1+ 148 + 0(eh
rotlet: UpiXpsY, 1y 1+ 16 €

af(3 _Yx 2, .3
Stokeslet: gs(§+,1y)Eﬁ§if;¥K-e + 0(e %

Y
.~ potential dipole: ED(§+’iy)[} f%'l +XA 82 + 0(63{]

. . 5
stresslet: gss(§+’ly’1z) 16 YxE
potential quadrupole: ‘lg——u (x,,i )V—L-y e

: 9y =D '=+’~-z’ 16 'x

The torque on the sphere required to achieve angular velocity,
, can be readily evaluated from the strength of rotlet.

.3
= -1+5\ ¢ 4.1 .
T = 8mx[1 t it o(e )]1y (85)

It can be seen that, for A >-é , the required torque on the sphere increases due

Y 7 vy

to the presence of an interface. For A < %-, the torque is Tess than it

would be in an infinite fluid. In addition, there will be a drag force on

the sphere which can be obtained from the strength of the Stokeslet as

v Y ;
_ .3 X 2. 3
Fo=-gryxei, +0e) (86)
In this case, rotation will Tead to translation of the sphere parallel to the
interface unless a body force of equal magnitude and opposite sign is app1ied
to the sphere. For a solid wall, A » =, there is no contribution to the drag

force up to 0(82) from the rotational motion of a sphere.
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7. Discussion

In the previous sections, we have studied the translational and
rotational motions of a sphere in the presence of a fluid/fluid interface.
Due to the Tinearity of Stokes' equation, we can analyze the arbitrary
motion of a sphere in the presence of an interface by superposing the
translation of a sphere parallel and perpendicular to the interface and the
rotation of a sphere with the axis of rotation parallel or perpendicular to

the interface. Hence, an arbitrary motion of a sphere can be expressed in
more general terms; namely, in terms of a translation tensor, a rotation

tensor and a coupling tensor.
At sufficiently small Reynolds numbers, the motion of a rigid particle

can be generally described by [cf. Happel and Brenner 1973 J:
(87)
(88)

+

[[7a
10

+.
C

M
1]

=

1

T

T = KU+

i7<
=
[
1D

C R

Here, F and T are the force and the torque'exerted on the particle,

Kr> Kg and K. are the translation tensor, the rotation tensor, and the
coupling tensor, respectively. U is the translational velocity of a par-
‘ticle and @ is the angular velocity.

Using the results in section 3, 4 and 5, the elements of the tensors,

5T’ 5R and §C’ can be determined for motion of a sphere near a plane fluid/
fluid interface, i.e.

- 7 - 7
Ko o
I I
T R
K = é6m Ky ’ kg = 8r Ky
R
T K
__0 KL_J 0 1]
0 Kc 0
K. = 67 |-K, 0 0
.0 0 0
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where
.3 .23, (3 2-3\2 3
Ky = - 17317 (16 €T 3 ) + 0(e”)
T _ 1.3 2+m,[3 2+3n\2, 03
KL = 1*'8 € T% x*‘(g'el_+» A) + 0(¢”)
& - 1ee sl ok
I 16 1 + ) €
® - 1.6 L1240
1 8 1+ €
2
= e _1 3
KC- 41+A+0(€)

Since we have completed the evaluation of the resistance tensors in
Equations (87) and (88), we can easily solve other interésting problems.
As. one example, the motion of a freely suspended sphere under the action
of an applied E’cdn be obtained by substituting T = 0 in Equation (88).
The translational and angular velocities fqr this case are

A R Il | (89)

(90)

10
1l
}
<
!
ey
<
o
[so=d

8. Conclusion

We have derived the creeping flow solution for a point force in the
presence of an interface with an arbitrary viscosity rafio. In addition,
we have generalized this solution to the case of a finite-size sphere
moving near a fluid/fluid interface. In the 1imit of an infinite viscosity
ratio, these results are in accord with known solutions for motion of a

sphere near a plane solid wall.
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When a sphere moves normal to a plane interface, we have shown that
it is necessary to modify the.strength of the Stokeslet and potential
dipole singularities at the sphere center, as well as add a stresslet

and a potential quadrupole through terms of O(ez). The drag ratio is

L3 2+ 3
(1+-8—€'——'—————1+ )\).

For the case of a sphere moving parallel to the interface, on the
other hand, it is necessary to include a rotlet, as well as the Stokeslet,
potential dipole, potential quadrupole and stresslet. In this case,‘the

drag ratio is (1 3 e2- 3X) ; In addition, we have shown that a

16 T+ 2
torque %;-52 T—%_X' is required to keep the particle from rotating. It

can be seen that the drag on a sphere moving normal to the interface is
increased relative to Stokes' dﬁag for all values of € and A. This is a -
reflection of the presence of a flat interface. Even when the upper fluid
becomes essentially inviscid relative to the lower fluid, (i.e. x > 0),
the drag on the particle is. increased. The additional dissipation in
fluid II which is associated with the interface is obviously greater than
the decrease in dissipation in fluid I as A ~ 0. For parallel motion and
€ << 1, on the other hand, there is a critical viscosity ratio A = 2/3
which separates the regions of increased and decreased drag.

We have also studied the rotation of a sphere with a constant angular
velocity ‘near an interface. When the rotation axis is normal to the
interface, only a rotlet is needed at the center of sphere through terms
of 0(83)andthehydrodynamic torque on the sphere surface is proportional

81 F 1) °©

to (1 e 3). There is no drag force for this case.
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When a sphere is rotating with axis of rotation parallel to the interface,
a rotlet as well as a Stokeslet, a potential dipole, a potential quadrupole
and a stress]é% is required at the center of sphere. The required hydrodynamic
torque is proportional to (1 - %—%—%l -—%g) . Further, a force, 2%-TI§~X 32,
is required to keep the sphere from translating from its original position.
The critical viscosity ratio which separates the regions of increased and
decreased torque due to the presence of an interface is 1 for the rotation
with a normal axis and 1/5 for the rotation with a parallel axis.

In conclusion, we can solve for arbitrary motions of a sphere in the
presence of a plane interface by linearly superposing the approximate
solutions for translational and rotational motions of a sphere.

The solution scheme'which we have developed can be applied, in prin-
ciple, for the motion of an arbitrary body near a flat interface, provided

only that we know the singularity distribution in an infinite fluid. How-

ever, it should be mentioned that the higher order terms are valid only

when € << 1.
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Figure Captions

Fig. 1.

Fig. 3.

Fig. 4.

Fig. 5.

. _ 3
The stream lines due to a Stokeslet, a = Z—IZ(UCQC),
located at z = -SEQél A=-25,B=-2.0,C=-1.5,
D= - 1.0, E=-0.5, F = - 0.25, 6 = 0.005, H = 0.1,

i

1=02,0=04andK=0.6 [ULi].

(a) unbounded, (b) X = 0.01, (c) A =1.0 (d) x = 100.
Normal stress imbalance on the interface, z = 0; a = %—jz,
r= (x4 + y?)%

Normal stress imbalance on the line, y = z = 0; a = %—jx.

The drag ratio vs. the distance between the sphere center

and the interface; U = i .,

The drag ratio vs. the distance between the sphere center

and the interface; U = i.-
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APPENDIX: Derivation of the lemma cn page 14.

If u is a solution of Stokes' equation giving the velocity
( u;, v, w; ) at the interface, the associated velocity field,
the reflected velocity field, and the associated reflected
velocity field yield the following velocity at the interface.

”~

E'z: 0 = ( “Ups TV, Wi )
Q’Z‘ZO = ( u:l VI_ ’ _WI)
A%

BZ:O - ( —uI 4 —VI 4 -WI )

In addition, the velocity gradient in z-direction at the interface

becomes
u . /22U AV AW
bz Aoz ! 3z 2z ) z=0
e
> 4 /s 3 W 2V >W W \
Tz U522 5% "I 5y Taz ) z=0
*
38 -, 20 AV W
Sz ST 3z 52" 5z ) 2=0
~ R
5 4 22 2 2V xW )
vz S\ T2t oxr T2t hyr Tiz ) z=o0

When the interface remains flat, the normal velocity should

be identically zero. We thus consider the combined velocity
fields which always give zero normal velocity of the interface:
(u-G), (utu*), (@+d*), (G+u*), (Q+a*), and (u*-0%).

It is noted that u and ﬁ have a sinygularity in the lower fluid
while u* and U* have a singularity in the upper fluid. In the
upper fluid, the velocity field should be analytical everywhere.
Thus the only combined velocity field for the upper fluid is

E(l)___ a ( u - ;; ) (AL)
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For the lower fluid, the velocity field can be expressed as

8 = b-B) + cluran) + dun) + e@rur) + £(E4E%)

+ 9(9*’§*) (A2)

First, 9(2) should become u when x is far from the interface.

b+c+d = 1 and ~-b+e+f = 0 (A3)
Then the equation (A2) can be written as

1_1(2) = u + (b+c-f+g)u* + (l-—b-c—g)g* (A4)
(2)

When we define h = b+c+g, u can be rewritten as

u'?) =y 4 (h-f)ur + (1-h)a* (A5)
The velocity u and v should be continuous at the interface.
From equations (Al) and (A5), we obtain

2a = 2h - £ (n6)

The shear stress is also continuous at the interface.

(2) (2) (1) (1)
29 7 42¥ o H (28 42V |
2z 2 X 22 3 X
(A7)
(2) (2) (1) (1)
_9._.‘.’. + w = 1(8‘7 +’5W )
22 2y 2z 2y
Obviously,
(2) (1) (2) (1)
AW T_B3W T_3W "_aWwW' ,
3 X 3 X 5y >y - 0 at the interface.

Therefore, from equations (Al), (A5), and (A7), the continuity
of sz requires

2u 3w au _eyq_2u - 2u 2w
2,\a(-2—-—z-+5—£)=—a—-£+ (h-£) { az)+(lh)(az+2‘ax)
(A8)

To satisfy equation (AS8),

2Aa =2 -2h + £ (A9)
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27a =2 - 2h (al0)

The continuity of Tyz requires the identical conditions with
(A9) and (Al0). From equations (A6), (A9), and (AlQ),

a=—2—, h=—2X__ ana £=o0. (A11)
1+ A 1+ X
Hence,
PR SO (a12)
1 +A
1_J‘(Z) =u + __l;__.g* + ___i__.g* (A13)
l + A 1+ A

Since the system is linear, the pressure field can be readily

obtained.
Py ~
P - (b -3 (A14)
1+ X
A
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ABSTRACT

A general solution for Stokes' equation in bipolar coordinates is
derived, and then applied to the arbitrary motion of a sphere in the
presence of a plane fluid/fluid interface. The drag force and hydro-
dynamic torque on the sphere are then calculated for four specific
motions of the sphere; namely, transiation perpendicular and parallel
to the interface and rotation about an axis which is perpendicular and
parallel, respectively, to the interface. The most significant result
of the present work is the comparison between these numerically exact
solutions and the approximate sclutions from Part 1. The latter can be
generalized to a variety of particle shapes, and it is thus important to
assess their accuracy for this case of spherical particles where an exact
solution can be obtained. In addition to comparisons with the approxi-
mate solutions, we also examine the predicted changes in the velocity,
pressure and vorticity fields due to the presence of the plane interface.
One particularly interesting feature of the solutions is the fact that
the direction of rotation of a freely suspended sphere moving parallel
to the interface can either be the same as for a sphere rolling along
the interface (as might be intuitively expected), or opposite depending
upon the location of the sphere center and the ratio of viscosities for

the two fluids.
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1.  INTRODUCTION

When a small particle is translating or rotating near a fluid/fluid
interface, the hydrodynamic force and torque on the particle are changed
relative to their values in an unbounded fluid. In this paper, which is
the second of a three-part series, we consider the simplest problem of
this type; namely, the creeping motion of a rigid spherical particle of
radius a whose center is instantaneously at a distance d(> a) from a
flat, horizontal fluid interface. This problem represents a first,
asymptotic approximation for the 1imit of either large interfacial tension,

gs Or large density difference between the two fluids, i.e.

%g << 1 or -%%L-<< 1 (translational motion)
v ga Ao
or (1)
e or ST (rotational motion)
o] gaisp

where a real fluid interface will remain only slightly deformed and in
quasi-static equilibrium with the flow-induced stress fields in the two
fluids. In part I of this series (Lee, Chadwick and Leal 1979), we
obtained approximate solutions for the same problem when the sphere is

far from the interface
d
Lzg>>1 (2)

using a generalization of the method of Lorentz (1907). Although the
condition (2) is independently sufficient for small interface deformation,
the solutions in part I still require the conditions (1) to be satisfied

since the interface was assumed to be flat at all orders of approximation

eS| . . .
in £ 7 In the present paper, we obtain exact solutions for the motion of
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a sphere near a flat fluid interface using a series expansion of eigen-
solutions in bipolar (spherical) coordinates. These exact solutions
extend the domain of allowable 2 relative to the condition (2) and thus
serve to clarify some physical features of the motion of spherical
particles near a fluid interface. More importantly, however, these exact
solutions provide a basis for evaluating the accuracy of the asymptotic
solutions as a function of . We have noted in part I that the approx-
imate solution technique can be applied in a straightforward fashion to
other particle shapes unlike the exact eigensolution expansion of the
present paper which is strictly limited to spherical particles. Such
generalizations could be of considerable significance in a number of
applications, but only if the approximate solutions exhibit reasonable
accuracy for most of the range of possible values of & — certainly a big
"if" in view of the condition (2). Comparison of the exact solutions
obtained here with the approximate solutions of part I is particularly
significant since the case of a spherical particle is the only one where
exact solutions are possible for arbitrary particle motions and arbitrary
values of the viscosity ratio, A.

The use of bipolar (spherical) coordinates in low Reynolds number
hydrodynamics was initiated by Jeffery (1912, 1915) who first derived
eigensolutions of Laplace's equation and then used these eigensolutions
to analyze the fluid motion generated by two spheres which rotate about
their 1ine of centers. Later, Stimson and Jeffery (1926) used a stream-
function expansion in bipolar coordinates to solve the problem of two
spheres translating along their line of centers with the same constant

velocity. This work was extended by Bart (1968) to calculate the drag
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force on a spherical drop which is translating normal to a flat fluid/
fluid interface. A more difficult extension to the non-axisymmetric
problem of a sphere rotating or translating parallel to a plane solid
wall was accomplished by Dean and 0'Neill (1963) and 0'Neill (1964),
respectively.

In this paper, we generalize the solutions of Jeffery (1912) and
Dean and O'Neill (1963) to consider arbitrary translational or rotational
motions of a rigid sphere in the presence of a plane fluid/fluid inter-
face. We begin, in section 2a by deriving a general, infinite series
solution for Stokes' equation in terms of eigensolutions for bipolar
(spherical) coordinates. When this solution is applied to the present
class of problems, it is shown in section 2b that a complete numerical
specification of the velocity and pressure fields requires the solution
of an infinite set of algebraic equations for the coefficients of this
series. Fortunately, in general, the magnitude of the various terms in
the infinite series decreases exponentially with increasing order, and
any desired degree of numerical accuracy can thus be achieved by retaining
only a finite number of terms. Since the rate of convergence does
decrease as % decreases, it is necessary to retain a larger number of
terms to yield the same numerical accuracy in the results as the sphere
moves closer to the interface. This is not a serious limitation, however,
since the numerical evaluation of coefficients in the truncated series
reduces to the solutions of a band matrix and there is relatively little
cost in computation time including a large number of terms. After gen-
erating the general solution, as described above, it is applied in section

4a to the four fundamental problems of particle translation and rotation



-55-

perpendicular and parallel to the fluid interface. As discussed in part
I, the linearity of the Stokes' equations and boundary conditions allows
any arbitrary motion to be described in terms of a set of three hydro-
dynamic resistance tensors, and these tensors can be specified completely
from the solutions for the four fundamental particle motions. The only
significant deviation from the solution scheme described above occurs for
rotation of the sphere with the axis of rotation normal to the fluid
interface. In this case, there is only one non-zero velocity component,
v , and the coefficients of the solution can be obtained analytically.

¢
The axisymmetric problem of translation normal to the interface can, of

course, also be solved using a stream function as in Bart (1968). This
alternative scheme for axisymmetric flows is discussed briefly in section
3, and is shown to give identical results for axisymmetric flows to the
general solution derived here. It may be noted that Bart's solution for
translation normal to the interface is incomplete since it is limited
to the drag force on the 'sphere, without explicit determination of the
velocity and pressure fields. Finally, the general formulae for the force
and torque on the sphere are evaluated numerically in section 4b, for
viscosity ratios A = 0, 0.1, 1, 10 and = and 1.1 < & < 10, and compared
with the approximate results of part 1. Certain general features of the
solutions, notably the rotation direction for a freely suspended sphere

in parallel translation, are also discussed in section 4b.

2. GOVERNING EQUATIONS - THE METHOD OF SOLUTION

a. A General Solution of Stokes' Equation in Bipolar Coordinates

We begin by deriving a general solution of Stokes' equation, plus the
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continuity equation
v°u = VUp (3)
v-u=20 (4)

in terms of the fundamental eigensolutions for bipolar coordinates. For
convenience, all variables are considered to be non-dimensionalized with
respect to arbitrary characteristic variables; Lc’ UC and pC(E pUC/LC).
A description of the bipolar coordinate system (£,n,¢) is given by Happel
and Brenner (1973). In the application of our general solution to the
motion of a spherical particle near a plane interface, we shall identify
the interface with the coordinate surface n = 0 and the sphere with the
coordinate surface n = Mg = - cosh'l(l). Although we could solve for
the velocity components in this bipolar system directly, it is more con-
venient for our purposes to use the bipolar eigensolutions to evaluate
the velocity components in the related cylindrical coordinates, (r,z,9),

which are sketched together with (§,n,¢) in figure 1. The bipolar and

cylindrical coordinates are related via the transformation laws

sinh n - sin &
cosh n - cos £ and T = C osh n - cos £ ()

in which ¢ is a constant which can be determined by the relative location
of the boundaries n = 0 and n = N4 (see section 4).

It is convenient to consider the velocity field u as the sum of a
homogeneous and particular solution of (3) and (4). In order to determine
U, we thus require a general expression for the pressure field p. Accord-
ing to (3) and (4), p is a harmonic function, i.e.

Vzp =0 (6)
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and can therefore be expressed in terms of Jeffery's (1912) general

solution of Laplace's equation in bipolar coordinates

[=+]

p = 2 py(nag) cos (ms +ap) (7)
in which
i % s 7 s Ly, gn 1
pm(n,g) = (coshn -z) ég% [An sinh(n + 2)” + B cosh{n + 2)n]

BD A o kel

Here, P?(;) and Qg(c) are associated Legendre functions of the first and

- » - » m » . . 3
second kind, with argqument z = cos&. Since Qn(g) increases to infinity
on the z-axis, we require

m _
bn =0

in p_(n,£), thus yielding

(e}

1 i m . 1
p_(n,g) = = (cosh n -z)* A" sinh(n + 3)n +
m c é;% [ n 7
m 1 m
+ Bn cosh{n.+ §Jﬁ]Ph(g)
Let us now consider the solution of (3) and (4) with p given by (7) and

(8). With the components of u in the (r,¢,z) directions denoted,

respectively, as u, v and w, the equations (3) and (4) can be written as

_8£=(v2_ 1) u__z_...?_v. (9)
or ;7 pl 39
15p _ {2 1 2 3du
FE%'(V';?)“;?@ (10)
3P _ o2
5% = Vw (11)

and



2

+ Y
ar *57°0 (12)

-5 s
Q)Q)
-

—}: (ru) +
with

2 82

322

2
N - - I 5
vElZ v 7"

3¢

1'\)'H

Now, a particular solution of (9) - (11) is simply

1
uP = 7P X (13)

s (i 4
where x (rwr zwz) .

Thus, it is necessary to solve only the homogeneous equations, (9) - (11)

h

o=<v2-—%)uh-—2§—-— (14)
r r

0= (v . L)WV s 2 ' (15)
:? 2 39

0 = 7oyl (16)

subject to (12).
The solution for wh, which is bounded on the z-axis, can be readily
obtained from the solution for p.

h
W

2 Wpn(n,g) cos (mg + o)
m

RRVEESEpa T Lo, ! 1
(coshn -z) ";Org[nswnh (n+2)”+Dn cosh (n+2)rﬂ

. Pm(g) cos (mo + o) (17)

To obtain corresponding solutions for uh and vh, Tet us introduce the

series expansion

W= Tug(n,g) cos (mo + o) (18)

v %vm(mi) sin (mg + o) (19)

Substituting (18) and (19) into the equations (14) and (15), we obtain
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2 2
3 19 .3 ) m- + 1 2
= ] - u -—=mv_=0 (20)
L(ar? r ar 322 r2 | m 2 m
(1.2 2 2 ]
a4 13 2—-) S rlly o Zhy =0 (21)
L(arZ r ar 2 r2 | m 2 m
When m = 0, these equations are easily solved using Jeffery's (1912)
solution,
_ !5 ~ o . 1 0 1 1
Uy = (cosh n-¢) 21 [ n sinh(n + 7)n + Fn cosh(n + ?)”]Pn (z) (22)
i BT [0 s 1 0 1,751 o,
Vo = (cosh n-17)° z; [ n sinh{n + §Jn + Hn cosh(n + 2)r;]Pn (z) (23)

For m > 1, the addition and subtraction of equations (20) and (21) yields

-

(cf. Dean and O'Neill 1963 , and Lin 1968).

.2 2
L) 139 d 1 2 -
= rtrw oz MUy, =0 (24)
| or P r
-
2 2
d 13 3 1 2
ot - (m-1)%x, =0 (25)
where Yo 5 Un * Vg and Xg = Y ™ Ve The solutions of equations

(24) and (25) can again be seen from Jeffery's (1912) results to be

1 )
Yo = (coshn -z)° [E: sinh(n + %)n + FS cosh{n + %)ﬁ}P:+l(c) (26)
n=m+1 ‘
T . -
X, = (cosh n -¢)” 67 sinh(n + )0 + HT cosh(n + )] PP"1(5)  (27)
n=m-1 ’

Hence, a general solution of Stokes' equation for the velocity components
(u,v,w) of the circular cylindrical coordinate system shown in figure 1

is simply
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@

u = %? + u cosay + %- E;L(Ym + %) cos (mo + o) (28)
m:
Vo= v, sina, + %- 3 (Ym - xm) sin (m¢ + am) (29)
m=1
W= Z L.+ ¥ W cos (mo + o) (30)
m:
in which p, Ugs Voo Yoo Y and X, are conveniently expressed for present

purposes in terms of the eigensolutions for bipolar coordinates which are
defined in terms of the cylindrical coordinates by the equation (5).
Furthermore, the velocity components (u,v,w) should satisfy the equation
of continuity. Thus, substituting the equations (28), (29) and (30) into

equation (12), this condition can be expressed in the form

3 3 i M,
3+r g— + 2 —-) Py + 2le= T Uy + 2 55 0, form=20 (31a)
and
) oW
2 9 9 m+ 1 9 m-1 m _
(“‘”w*%z)%*(w**r)%*(w* r )Xm*zé?'o
form > 1 (31b)

Hence, we have derived a general solution of Stokes' equation, (28), (29)
and (30), which is subject to the condition of mass continuity, (3la) and

(31b).

b. Application of the‘Genera1 Solution to the Motion of a Sphere
Rear a Plane Interface

In this section, we apply the general, bipolar coordinate solution
which was derived in the last section to determine the velocity and
pressure fields for an arbitrary translational or rotational motion of a

sphere near a plane fluid/fluid interface. The characteristic scales,
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which are inherent in (3), (4) and the subsequent solution, can be
defined in this case as L = a (sphere radius), o =V (translational
velocity of the sphere) or Qa (2 = angular velocity of the sphere) and
P. = “Uc/Lc or ﬁUC{LC (u is the viscosity of the lower fluid and 0 ois
that of the upper fluid). In order to complete the specification of the
problem, we consider that the sphere is located in the lower fluid and
denote the viscosity ratio between the upper and lower fluids as A.

The general solution of the preceding section, which applies

separately in the upper and lower fluids, contains eight unknown co-

m
nt® -

seen from equations (8), (17), (22), (23), (26) and (27). Thus, in-

efficients, namely AQ, B . H:, for each set of n and m, as may be
cluding the solution constants for both fluids, we have 16 sets of
unknowns to be determined in order to completely specify the velocity

and pressure fields. Hereafter, the constants in the lower fluid will be

denoted as A:, B:, cees H:, while those for the upper fluid are
ﬂ:, §:, RN ﬁ:. Two types of conditions remain to determine these

constants. First are the boundary conditions at the sphere surface and
the interface, and second, the general conditions of mass continuity,
equation (3la,b), and boundedness of the velocities and pressure, which
apply independent of the details of the boundary conditions. We may
begin by examining the last two conditions first.

Let us start with the conditions which are required of the unknown
constants to insure that the velocity and pressure fields are everywhere
bounded. The necessity for such a condition arises from the fact that
n—+=*o a5 Z > * ¢ on the z-axis. In the lower fluid, this causes no

difficulty since the point z = - ¢, r = 0 lies inside the particle. In
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the upper fluid, however, we must require

- Amoam _ am Amo_oam
=-D, E = - Fn and Gn = . Hn (32)

for all n, m in order to insure that the velocities remain bounded as
Z > c on the z-axis.

The second general condition on the solution constants arises from
the continuity equation (31a,b) which must be satisfied in both fluids.
Thus, substituting equations (8), (22), (23), (26) and (27) into (31a)
and (31b), we obtain two algebraic relationships among the constants
which must be satisfied for arbitrary n and £ (cf. Dean and 0'Neill 1963

and Lin 1968 ). For m = 0, we obtain for the Tower fluid

0 0 0
-n D+ (2n +1)D, - (n + 1D 41

0 5,0 1 0
n A 3 An 7 (n + 1)An+l

n-1

'
N} 4

#nln = DE) ;- 2n(n + 1)EQ + (n + 1)(n + 2)Ep,; =0 (33a)

0 5,0 .1 0 ) ’ 0 0
nB _,+58 + 5-(n.+ 1)8n+1 -nCqt(2n+ )¢, - (n+1)cC

' -
PO] =

#nln = 1FP ) - 2n(n + 1DFS + (n + 1)(n + 2)Fp,; =0 (34a)

while for m > 1, we find

1 m 5 m 1 m
-7 (n - m)An_1 + 5 An + E-(n +m+ l)An+1

m m
- (n - m)Dn_l + (2n + 1)D,
m

m
n-1 - (n-m)(n tm+1)E

m 1
-{n+m+ 1)Dn+1 + 5 (n -=m)(n-m —;)E
m 1 m m_ 1.m _
(n+m+ 1)(n+m+ 2)En+l -3 Gn-l + G - §-G 0

+ n n+l =
(33b)

[a%
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1 m Spm_ 1 m m m
-z n-mB +3B s (nrm+ 1B, - (n-mC 4+ (2n+ 1)C
- (n+m+ I)CS+1 + % (n-mn-m- I)F:_l - (n-m(n+m+ I)Fg

1 m 1 .m m 1. m _
+ 3 (n+m+ 1)(n+m+ 2)Fn+1 -5 Hn-l + Hn -5 Hn+l =0 (34b)

Similarly, in the upper fluid, we obtain

1 70 520 , 1 20 ~o o)
-?n An'l +—2-An +'2- (n + 1)An+1 - N Dn_1 + (Zn + l)Dn
= (n+ B2, +nln - DES_; - 2nln + DES + (n + )(n + 2)E0,, = 0,
form=10 (35a)
and
- % (n - m)&f_ + % AZ + % (n +m+ 1)ﬁ:+1 - (n - m)am |t (2n + 1)6:
-+ DO+ (- mn-m - DEN - (- m)(n +m o+ DE

+

O]

m 1 2m mo 1 am
(n+m+ D(n+m+ ?.‘)EM1 -5 G + G - > G =0,
form > 1 (35b)

It may be noted that the two equations, corresponding to (34a) and (34b)
for the lower fluid, are not listed since they are not independent of
(35a) and (35b) due to the conditions (32).

The conditions (32) and (33) - 35) apply for any regular motion of an
incompressible fluid. The remaining conditions, however, depend upon the
boundary conditions at the sphere surface and at the interface. Let us
first consider the boundary conditicns at the interface. For a plane
interface, these conditions are zerc normal velocity

w=w=0 on n=20 (36)
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plus continuity of the tangential components of velocity and stress.
Continuity of normal stress does not enter explicity due to the assumption
of a flat interface at this level of approximation, but would yield the
first correction to the assumed interface shape due to the motion of the
two contiguous f1uids.f The condition (36) is satisfied trivially if

D’r‘]‘ = 6’;‘ = 0, forall n,m (37)

The conditions for continuity of the tangential velocity components

u=20, and v=9VV on n=20 (38)

can be reduced by substituting (28) and (29) into (38). This yields

i

~ _ r ~ _
Ug = Uy =~ 3 (pO -p) and v_=7V form =0 (3%a)

0] 0 o]

<
]

<>
i

m-%ﬂ:-%(pm-ﬁm) form > 1, (39b)

To satisfy equations (39a) and (39b) for all n and &, we require

(n-m-~1) {.m am mooam n+m+2 [m am
T n - 1 (Fn«I - Fn—l) * (Fn - Fn) T 72n + 3 (Fn+1 B Fn+l)
-1 1 m _gm 1 m am
=3 [Zn — (Bh-1 -1 7 (Bt - Bn+1)} for all m
(40)
Hg = Qg form=20 (41a)

_n-m+1) (H:-l - 92-1) + (Hm . ﬁm) o n+m (Hm am 1)

1 -m)(n-m+1 -
-3 [' L T : (Bn-1 - By )

+

(n+m){n+m+ 1) (Bm am

513 n+] " ”+1ﬂ form>1 (41b)

+cf. section 2 of part I, where conditions are given which must be satisfied
in order that the flat interface problem be a valid first approximation to
the exact problem in which the interface is deformed.



-65-

Finally, the condition of continuity of shear stress at the inter-

face can be expressed in the form

>

du _ , 30 LI -
=5 A 57 and 57 A 5 on n=20 (42)

Hence, using the general expressions for u, U, v and ¥, equation (42)

becomes
3 - B PR,
3z (uo B Xuo) ST 7%z (po >‘po)
A form=20 (43a)
319-:- }\_a__o_
az 92
2oy )= (x - )=-52 (p -2p), formz1 (43b)
3z ''m m 9z ‘m Xm 2 32 m m’’ =

From equations (43a) and (43b), we can readily derive the following

additional relationships among coefficients.

m em m gm m ul
~n-m- 1)(En—l i} XEn-l) MG 1)(En ) >‘En) - ntme 2>(En+1 } AEn+1)
) m o LAM ) L aM _ 4aM 2
= - (Ang - ML)+ (AT, - AR ) . forallm, (44)

6o = A6y form= 0 (452)

ey 8] - G (] - 0 Ly - e

m ~m

= (n-mn-m+ 1)(A0 - AR ) - (n 4 m)(n e m+ (AT, - AT )

n+l =~ “'n+l

form> 1 | (45b)

The final step in obtaining a solution is to apply the "no-slip" and
kinematic boundary conditions at the sphere surface, i.e.

U= U at n=ng . (46)



The most convenient method for doing this is to express ug

the bipolar eigenfunctions.
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n,g)cos(mg + o)

v m

3+ 3™
w0

n,E)si +
s n.&)sin(me am)

m
% ws(n,g)cos(m¢ + am)

m = 0, we may further expand the functions u:

(cosh n, -C)l/2 ZXO(H)PI(C)

n n
- 1/2»"0 lr
(cosh o z) “Yn(n)Pn(“)

m L o_.m m+1
v (cosh ng - ¢) X (n)P ()

]

<
"

Looym m-1
(coshny - )= ZY (n)P " "(z)

In addition, for all m,

Wm=
S

i
(cosh ng = £) 227(n)PP(2)

and v
S

0

as

in terms of

Thus, we first expand the three components

(47a)
(47b)

(47¢)

(48a)

(49a)

(48b)

(49b)

(50)

Now, using the general solution for the velocity components, (28) - (30),

and the condition (46), we obtain, for m = 0,

v =
0

0

and form > 1,

o r
ug = 7 (wg = wg)
/0
s
m m r
+ - -
Ug + Vg - 7 (Wg - wp)

(51a)

(52a)

(51b)
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Xp = Ug = Vg - T (wg - W) (52b)
In addition, for all m,
Pn = % (WZ - wm) (53)

Combining (51) - (53) with the previously derived expansions of Ugs
(48) - (50), we thus obtain the following additional relationships among

the unknown coefficients,

m . 1 m 1 _ M
En sinh(n + 7)n0 + Fn cosh(n +'§)n0 = Xn(no)
1 m m . 3
T en + 3)sinh'no E'zn+l(no) * Cn+1 sinh(n + ?)no]
1 m m . 1
e E [- 0 y(ng) + ¢, sinh(n - 3n,] for all m (54)
o . 1 0 1 _ 0 -
Gn sinh(n + §Jno + Hn cosh(n + ?)no = Yn(no), form=20 (55a)
m . 1 m 1 _ym
Gn sinh(n + 7)n0 + Hn cosh(n + §Jﬂo = Yn(no)

L)X, KV % SR Y,

. 3
(2n + 3)sinh n, n+1 sinh(n + 7)n0]

" T(2n - Dsinh [- 7n_4(n) + Ch_y sinh(n - 3n ] for m21

(55b)

m _. 1 m 1, _ -2 (n-m [om
Ap sinh(n + 3)ng + By cosh(n + 2)ng = S7n HO[Zn o1 {Zn-l(no)

m . 1 - m m . 1
- Cn-l sinh(n - §)”a} cosh ”o{%n(”o) - Cn sinh(n + §)né}

n+m+1 [om m . 3
Y hr 3 {Znﬂ(ﬂo) = Chyp sinh(n + ?”o}]’ for all m (56)

We have thus derived sixteen independent algebraic relations, namely

(322 -d), (33)-(35), (37a,b), (40), (41), (44), (45), (54) - (56), which



may be used to evaluate all of the unknown coefficients of the general
solutions in the upper and lower fluids. It should be noted that these
algebraic equations are all linear. Moreover, equations (44), (45a,b)

and (35a,b) suggest that

m _ (&AM M _ .2m m_ .am
An = AAn, En = AEn and Gn = an (57)

The relationships (57) automatically satisfy equations (44) and (45a,b),
and also satisfy (35a,b) due to equations (33a,b). It will also be noted
that D:, ﬁ: and CE are all equal to zero according to (32) and (37).
Thus, it is only necessary to solve the equations (33a,b), (34a,b), (40),
(41a,b), (54), (55a,b) and (56) for the seven unknown coefficients: AZ,
BZ, C:, E:, F:, G: and H:. This system of algebraic equations yields a
band matrix and is readily solved using standard numerical methods for
specified values of o (i.e. of particle position relative to the inter-
face). Once the coefficients have been determined for the lower fluid,

the coefficients for the upper fluid can be obtained trivially from

equations (57) and (32).

3. AN ALTERNATIVE METHOD FOR AXISYMMETRIC FLOW

When the sphere is translating normal to the (plane) interface, the
flow field can also be obtained using a stream function representation
of the governing equations. Stimson and Jeffery (1926) derived a
solution for the stream function in bipolar coordinates in order to solve
for the motion generated by two spheres which are translating with equal
constant velocities parallel to their line of centers. Bart (1968) later

utilized the same stream function solution to evaluate the drag force for
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a spherical drop which is moving normal to a flat fluid/fluid interface.
However, Bart (1968) only reported the sum of the coefficients in the
stream function solutionwhich yield the drag. Therefore, for completeness,
we will briefly discuss the use of the stream function solution for
axisymmetric flow and present the values of all the coefficients in the
stream function solution for trans?atidn of a solid sphere perpendicular
to a plane fluid/fluid interface.

The stream function for any axisymmetric Stokes' flow is well known

to satisfy the general equation,
4 = 0 (58)

When expressed in terms of a cylindrical coordinate system, with the

z-axis being the axis of symmetry,

2
22y 2 (l_a_) 2

= 3rgr gr 822
and
-1y N 11
u= T and W - o (59)

Stimson and Jeffery's (1926) general solution of equation (58) may

be expressed in the form

w = (cosh n-2)"*% gy vy (60)
n n
where
U = K_ cosh(n - l) + L_ sinh(n - lJn + M_ cosh(n + é)n
n n 2 n 2 n Z
3

+ Nn sinh{n + §)n

vn = Pn_l(C> - Pn+1(C)

Now, let us suppose that ¥ represents the stream function for the

lower fluid. Then the stream function for the upper fluid, @, can be



-70 -

in the same functional form with coefficients, Rn’ En’ ﬁn and ﬁn.
Applying the boundary conditions that were discussed in the previous

section, we can evaluate the coefficients Kn’ ...y N K ey Nn for

n’ n’

translation of a sphere normal to a plane fluid/fluid interface. The

viscosity ratio between two fluids is again denoted by A and the sphere

is located at n = o The results are

Kn = - Mn = AKn (61)

Ky ==Ly =-M =N (62)
- ) 1 3\

=g (0= P+ (0 3] (63)

[-{a, + b))+ () +d )3+ (20 - 1)(2n + 1)sinn?n ]

L= (2n + 3)k ; - (64)
n n i bn - Adn J

(3, + b)) = (c. +d )x- (2n+1)(2n + 3)sinh2no
N = (2n - 1)k (65)
n n i bn - Adn

Here, 2
n(n + 1)sinh "o

" VZ (2n - 1)(2n + 1)(2n + 3)

a_ = (2n + l)zsinhzn0 + 4 coshz(n + %)no
b, = 2 sinh(2n + l)nO - (2n + 1)sinh 2n,
¢, = 2 sinh(2n + l)nO + (2n + 1)sinh Zno
d, = 4 sinh® (n+ 2)n_ - (2n + 1)sinhn,

The drag force on the sphere can be easily derived {cf. Stimson and

Jeffery 1926).
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-1
i

_ 2
;=7 cosech nog (Kn + Ln + Mn + Nn)

4/2 -, tAc,
—3—' cosech T)O% kn [W -1 (66)

Equation (66) is given by Bart (1968).

4.  TRANSLATION AND/OR ROTATION OF A RIGfD SPHERE IN A QUIESCENT FLUID
NEAR A PLANE FLUID INTERFACE

Let us now consider the specific problem of a rigid sphere which is
translating ér rotating in a quiescent fluid near a plane fluid/fluid
interface. This problem may be solved directly, for an arbitrary
direction of translation or rotation, using the methods outlined in
section 2. A1l that is required is a specification of the surface
velocity of the sphere in terms of bipolar eigensolutions; namely, the
coefficients x:, Y: and Z: in (48) - (50), and solution of the resulting
algebraic relationships. Due to the linearity of Stokes' equation and
boundary conditions in tﬁe case of a flat interface, however, the velocity
and pressure fields generated by any arbitrary motion of the sphere can
be obtained by superposing the fields associated with only four funda-
mental modes of sphere motion; namely, translation perpendicular and
parallel to the interface, and rotation (with the axis of rotation) per-
pendicular and parallel to the interface. Indeed, we have shown in
part I how the force and torque on the particie can be related to the
translational and angular velocities of the particle via three independent
second-order resistance tensors whose components can be determined com-

pletely by considering the same set of flows. In the present section,
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we therefore consider the application of general techniques and solution
of section 2 to obtain exact solutions for the four fundamental problems
mentioned above. We will consider both the detailed pressure and
velocity fields, and the hydrodynamic force and torgue on the sphere.

As indicated in the introduction to this paper, we shall be particularly
concerned with the comparison between the exact results obtained here,
and the asymptotic results of part I.

We assume, in the following, that the sphere is centered at z = - £
(note that £ = 1 corresponds to the sphere just touching the interface).
Thus, the sphere surface is represented by n = Ny = - cosh'1 £, and
the constant ¢ in the coordinate transformation, equation (5), is given
as ¢ = (2/2 - 1)%. The hydrodynamic force and torque on the particle can

be calculated directly from the stress at the particle surface

F=/fdst (67)

!

[ rxlds-g) (68)

Here, t is the stress tensor, and r is the position vector of a surface
element relative to the sphere center. The drag force and hydrodynamic
torque may be non-dimensionalized with respect to FC = 6muaV (or 6wua29)
and TC = 8ﬁua2V (or 8wua3Q), where V and Q represent the magnitudes of

the translational and rotational velocity, respectively. In the following
discussion, we shall refer to the force for translation and the torque

for rotation, non-dimensionalized in this fashion, as the drag ratio and

the torque ratio, respectively, since they are scaled with the force and

torque which would act on the sphere in an infinite fluid.
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a. Boundary Conditions for the Four Fundamental Problems

Let us now turn to the specific boundary conditions, as well as
formulae for the (non-dimensionalized) hydrodynamic force and/or torque
on the sphere for the four fundamental modes of particle motion.

case i) Translation of a non-rotating sohere perpendicular to

a plane interface.

First, we consider the translation of a non-rotating rigid sphere
perpendicular to the plane fluid interface. In view of the axisymmetric
nature of the problem, it is clear that the solution must be independent
of the azimuthal angle, ¢, so that the only non-zero coefficients in the
general solution of section 2 are those with m = 0. In addition, o = 0.

The remaining constants can be determined from the prescribed
velocity of the sphere

u =v_ =0, w =1 on n=n_ (69)

H

Expanding w 1 in the form (50), the constants Xg, Y° and Zg, which

S n

appear in (54) - (56), are easily seen to be

0 _ O _
Xn = Yn =0
, (70)
(n+5)n
20 =V2e °

~

The constants Ag, Bg, Cees Hs can thus be evaluated in the manner out-
lined in section 2b.
It can be shown, after a tedious algebraic manipulation (cf. Dean

and 0'Neill 1963) starting from equation (67), that
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F, = Fy =0
| (71)
- sinnn 362 - (v e 1083 - 621
while the torgue is identically zero
T=0 (72)

as expected.

case ii) Translation of a non-rotating sphere parallel
to a plane interface.

We now turn to the problem of a sphere translating in the i direction.
In this case, all terms in the general solution of section 2 vanish

except for those withm =1, and o, = 0. On the sphere surface,

1
ug = cos ¢, V. =-sing, and w, =0 | . (73)
In consequence Xl Y1 and Z1 are
*n? 'n n
1. 51 _
Xn = Zn =0
(n+3) 7
n+=in
Yg =2/ e 270

and the unknown coefficients can be determined as described above.

The drag force and hydrodynamic torque, in this case, are related
to these constant coefficients by means of the formulae (cf. 0'Neill
1964)

Fo=F, =0
(75)

“r
[}

2 11 14l
=% sining 26, -t + n(n + 1)(A] - B)]

and
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L )

T, =T,=0
sinhzno (2n+l)nO 1 1
T -—=23l2+e fn + 1)(- 2¢! - Al cothn,)
Y 12/Z n n n
(76)
(2n+1)n
- (2n + l-Pcoth.no)G§>-+ (2 - e ){p (n + 1)B COth Ny
)|
+ (2n + 1+ coth no)Hn>] . J

case iii) Rotation of a sphere normal to a plane interface.

The third problem which we consider is the rotation of a sphere with
the axis of rotation normal to a plane interface. In the general solution
of Stokes' equation, the non-zero terms in this case are for m = 0 and
o, = m/2. Moreover, p, u and w are identically zero, as is obvious from
the symmetry of the problem. We can thuscalculate the coefficients for v

analytically, rather than numerically. From equations (32), (4la) and (57),

~0 0 _ 4/0
Hp » Ho = H  , and G, = AGn (77)

CD)
O

s g
o
[

The boundary condition on the sphere surface is

vg = r on n = no (78)

Therefore, from equations (47b) and (49a), it can be shown that Yg takes
the value

(n+%)ﬂ

=22 ce ° (79)

The constants Gg and Hg can then be obtained from equations (55a), (77)

and (79)
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1

(n+3)
0o _ 2/Z C A e 2"
O = T i i (80)
A sinh(n + -2—)nO - cosh(n + 5)”0
o_ 1.0
Hy = - 56, . (81)

The remaining non-zero constants follow from (77). It may be seen from
(67) that the drag force is identically zero.
F=0 (82)

while the hydrodynamic torque (cf. Jeffery  1915) is

Tx=Ty= 0
5 (83)
sinh™n o o
T = ——DLnin+ 1)(- 6 + HY)
z T n n n

" case iv) Rotation of a sphere parallel to a plane interface.
Finally, let us consider a rotating sphere whose rotation axis is
parallel to the y-axis. The boundary conditions on the sphere surface
in this case are

u, = (z + 2)cos ¢, vs = - (z + 2)sin¢, and W, = - rocos ¢ (84)

Thus, the non-zero terms in the general solution are only those form = 1

and oy = 0. Xi, Y% and Z% can be evaluated from the equations (84), (48b),
(49b) and (50).
x! =0
n 1
1 (n"'z)ﬂo
voo= - 2/2 c(2n + 1 + coth no)e (85)
1
(n+3)n
Zi - 2Tce 20

The drag force and hydrodynamic torque are calculated from the equations

(67) and (68) (cf. Dean and O'Neill 1963).
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_ =2 1 1 1 1
F. = =5 sinh %%[Gn - H o+ n(n + 1)(A_ - Bn)] a5)
8
Fy = F, =0
_ - 7
Tx = Tz =0
.2
sinh“n (2n+1)n
T=-—1—————-——QZ(2+e °[{ntn + 1)~ 2¢] - Alcoth o)
(87)
1 (2n+1)n0
- (2n + 1+cothn )G )+ |2 - e
0'"n
. 1 1
{n(n + l)Bn cothn, + (2n + 1 +coth nO)Hn} J

b. Numerical Results and Discussion

In the preceding part of this section, we have derived formulae from
which the velocity fields, and the hydrodynamic force and torque on the
sphere, can be calculated for the four fundamental modes of motion of a
sphere near a flat fluid interface; namely, translation perpendicular and
parallel to the interface, and rotation with the axis of rotation parallel
and perpendicular to the interface. With the exception of the last problem,
which was solved analytically, the unknown coefficients in the general
solution for the two fluids must be obtained, in principle, via a numer-
ical solution of the infinite set of governing algebraic equations that
were outlined earlier. From equations (70), (74), (79) and (85), however,

it is evident that the coefficients for large n will decrease in magnitude

(n+%)n

as e °

, where n_ = - cosh'1 2. Thus, when 2 >> 1, the coefficients
decrease quickly (exponentially) in magnitude as the index n is increased.

In this case, a very good approximation can be obtained by truncating the
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solution series for "large"” n. The resulting set of equations is finite
and banded, and can be solved very efficiently using standard Gaussian eli-
mination schemes for band matrices. However, as & - 1, the rate of
decrease of the coefficients with increasing n becomes slower, and it is
necessary to include increasing numbers of terms (i.e. larger values of

n) in order to give the same numerical accuracy in the results. Since

the coefficients decrease monotonically with increase of n (for any fixed
value of 2) after the first few terms, it is relatively easy to estimate
the numerical magnitude of the error which is caused by truncation. The
numerical error in the calculation of coefficients due to the truncation

of terms with n > Nnax is analyzed in the appendix. Once we calculate

the coefficients, we can evaluate the contribution to the drag force and
hydrodynamic torque from the terms in the series for each n. The magnitude
of these terms becomes approximately a geomtrical series for large n.

Thus, we can easily estimate the numerical magnitude of error in the cal-
culated values of drag force and hydrodynamic torque due to truncation,

To 1imit the maximum relative error in the computed results for the

drag force and hydrodynamic torque to values less than 5 X 10'7. we used
Nmax = 10 for 2 > 3.0, Nrax = 15 for 3.0 > 2 > 1.8, Nmax = 25 for

1.8 > 2 > 1.2 and Nmax - 30 for 1.2 > 2 > 1.1.

In the remainder of this section, we will present and discuss the
results calculated for the velocity and pressure fields, as well as for
the drag and torque ratios for the four problems listed above. Particu-
larly significant is the resulting comparison of the present "exact"
solutions with the approximate solutions for £ >> 1 which were obtained

in part I of this work (Lee, Chadwick and Leal 1979). When the sphere



-79-

is very close to the interface, on the other hand, so that 2 - 1 << 1,
Jubrication theory can be applied, in principle, to obtain asymptotic
solutions. Indeed, Goldman, Cox and Brenner (1967) used this technique
to study the translation and rotation of a sphere near a plane solid
wall. However, they found that the lubrication-theory results for force
and/or torque were quite poor when compared with the numerically exact
results of Dean and 0'Neill (1963) and O'Neill (1964). An explanation
for this discrepancy was given by 0'Neill and Stewartson (1967), who
independently investigated the translation of a sphere parallel to a
plane solid wall, using lubrication theory. These authors showed that
Tubrication theory does provide an accurate description of local flow
properties, but that it cannot be used (without extension) for prediction
of properties of the overall flow, such as force or torque, with any
degree of reliability if the flow domain includes substantial regions of
weakly sheared flow away from the lubrication gap. Although O'Neill and
Stewartson were eventually able to obtain successful asymptotic resQits
for (&2 - 1) << 1, the analysis required an elaborate matching procedure
to generate a solution in the "outer" region away from the gap. No such
study has yet been completed for analyzing the motion of a particle which
is very close to a fluid/fluid interface. Therefore, at the present time,
the only results available for (2 - 1) << 1 which could be compared with
the exact solutions of this paper are for the case of solid wall, i.e.

A = o, Such a comparison has already been reported by 0'Neill and
Stewartson (1967) using the results of 0'Neill (1964), and will thus not

be repeated here.
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We begin, in table 1, with the drag ratio for translation perpen-
dicular to the plane interface calculated by means of our general solution
technique. This same quantity was previously calculated by Bart (1968)
using the stream function formulation which was discussed in section 3,
and was also recalculated by us using this latter approach. Our calcu-
lations using the stream function expansion agreed exactly with the
results of Bart (1968) when compared at the same value of 2 (it may be
noted here that Bart used incremental values of N, and thus obtained
different values of 2 from those listed in table 1). Further, the results
calculated via the general solution were found to agree exactly with the
values obtained by the stream function expansion. In figure 2, the
"exact" drag ratios obtained in the present work are compared, for 3 = 0,
1 and =, with these obtained using the approximate method of part I. Both
results show that the drag ratio increases rapidly as the sphere approaches
the interface, for all ), due to the assumption of a flat interface. How-
ever, the drag ratio obtained in part I does not increase as fast as the
exact result in the limit as 2 approaches unity; i.e. as the sphere
approaches the plane interface. The drag ratio from the "exact" solution
is, in fact, unbounded as & - 1. The approximate expansion, on the other

1 as the “small" parameter and is, therefore, strictly valid

hand, has 2~
only when the sphere is far from the interface. In fact, the approximate
solution including terms through 0&72) is seen, from figure 2, to repre-
sent the drag ratio to within 10% for 2as smallas 2. It cannot under
any circumstances exhibit the singular behavior of the exact solution

for 2 = 1. Nevertheless, the approximate solution does give a remarkably

accurate representation of the exact result, over almost the whole range
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of possible sphere positions. This is important, as suggested in the
Introduction, because it is the approximate solution scheme which can be
generalized to other particle shapes which may be important in appli-
cations. The eigensolution expansion is useful for general motions only
for the case of a sphere which is considered here.

For the case of a sphere translating, without rotation, parallel to
the interface, we have numerically evaluated the drag ratio, as well as
the hydrodynamic torque on the sphere. The latter is equal in magnitude
but opposite in sense to the torque which must be applied to the particle
by external means to keep it from rotating. The drag ratio is given as a
function of the position of the sphere in table 2. Examination shows
that the drag actually decreases relative to Stokes' drag for an un-
bounded fluid for X = 0 and 0.1. On the other hand, for the larger values
of A = 1, 10 and ~, the drag incréasés relative to that in unbounded fluid
as the sphere comes closer to the interface, at a rate which increases
with increasing A. These results are in gua1itative accord with the
asymptotic solution, as may be seen in figure 3. Indeed, in this case,
the asymptotic and "exact" predictions for the drag ratio agree within 5%
up to 2= l.1for A = 0and A =1, and to 2 v1.8for) = =, The somewhat
poorer performance of the asymptotic solution in the Tatter case is again
a reflection of the fact that the exact result for the drag ratio is
unbounded in the limit £-+1. The hydrodynamic torque which acts on the
translating particle was also calculated as a function of XA and £, and
the detailed numerical results are shown in table 3. In addition, the
numerical results for A = 0, 1 and « are compared with the approximate

solution in figure 4. There is reasonable qualitative agreement between
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2> l.1for =0 and » =1. For A = =, on the other hand, the asymp-
totic prediction, to 0(2-2),is that the torque is identically equal to
zero, while the exact numerical result shows a rapid increase in the
magnitude of the torque as the sphere approaches the interface. The
asymptotic result is consistent with the analysis of Faxen (1921) who
found that the leading contribution to the torgue for a plane solid wall
is 0(2‘4). The exact solution shows that the torque for X = « only
becomes significant for £ < ~ 2.5, whereas the torque for the
smaller values of X is noticeable for 2% ~ 6-7, and these observations
are again consistent withthe wall effect being a higher order contri-
bution in the asymptotic framework of part I. The fact that this wall
contribution becomes large as £ - 1 serves as a reminder that higher order
terms in the asymptotic expansion of part I do not necessarily remain
small when the expansion is pushed beyond its natural range of applica-
bility.

It will be noted, ejther from table 3 or figure 4, that the torque

has a different sign in the limit of a solid wall (A = =), than it does

for a free interface (X = 0). In the former case, the sphere would
rotate, in the absence of an applied torque, in a direction consistent
with "rolling" along the wall. For the free surface, on the other hand,
the sphere is predicted to rotate in the opposite direction. Moreover,
it may be seen from table 3 that the torque actually changes sign for
intermediate A as the sphere comes from a large distance inward toward
the interface. The sense of the induced (hydrodynamic) torque in the

"vol1ing" mode is established primarily as a consequence of the fact

that a much more viscous fluid above the interface yields a small slip
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velocity on the interface and thus higher velocity gradients above the
sphere than below it. The "reversal" in the induced torque when the
upper fluid is much 1933 viscous than the lower fluid results primarily
from the existence of a substantial slip velocity on the interface, and a
resultant velocity gradient above the sphere which is Sma]ler than below.
The fact that the interface remains flat in the present theory, does not
play a c¢ritical role in this aspect of the parallel translation problem.
A more detailed examination of the sense of the induced torgue, or,
equivalently, of the direction of the rotation which would occur in the
absence of an applied torque, is presented in figure 5. Here, we have
plotted the position of the sphere center where the induced hydrodynamic
torque is identically zero, as a function of the viscosity ratio, A. As
A increases, we see that the location of this point moves further from

the interface. The fact that ) - 6, as £ - 1 is somewhat sur-

erit
prising, and not easily explainable.
The problem of a rotating sphere whose rotation axis is normal to
the interface is, as previously mentioned, easy to analyze because there
is only one non-zero velocity component, v, which is parallel to the flat
interface. Since the condition of zero normal velocity at the interface
is satisfied identically in this case, the velocity field and the torgue
required to rotate the sphere will only differ from the case of rotation
in a single unbounded fluid if the viscosities of the two fluids are not
equal, i.e. if A # 1. Furthermore, it is evident that the torque ratio
must be larger than 1 if A > 1, and smaller than 1 if X < 1. 1In table 4,

the torque ratios are tabulated for various values of A and, in figure 6,

they are compared with the results which were obtained via the :approximate
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solution in part I. The approximate solution agrees extremely well with
the exact solution for the whole range of 2 down to 2 ~ 1.1. Apparently,
the higher-order terms in the approximate solution are insignificant
insofar as the torque on the sphere is concerned.

Finally, we consider the results for rotation when the axis of
rotation is parallel to the interface. The hydrodynamic torque ratio for
this case is given in table 5. According to the asymptotic theory from
part I, which was carried out to terms of 0(2'3), the torque ratio should
exceed one when * > 1/5 and fall below one for » < 1/5. This result is,
of course, based on only the first term of the asymptotic expansion and

the latter is only valid for large 2. Indeed, the torque ratio calculated

numerically was found to be 1.00000 when ¢ = 10 and = 1/5. As

the particle is placed closer to the interface, however, the torgue ratio is
found to eventually exceed unity even for A = 0, although the critical
vatue of 2 wheﬁe this occurs is seen to decrease as A is decreased (i.e.

to occur when the sphere is closer to the interface). In figure 7,

the numerically evaluated torque ratio from this study is plotted to-
gether with the approximate (asymptotic) solution of part I. For £ >> 1,
the two solutions are in excellent agreement. However, at £ v 2, the

two solutions diverge, especially for the case A = 0 where the asymptotic
result continues to decrease below unity while the exact solution first
decreases for large 2, but then increases sharply as 2 > 1. As before,
this latter behavior may correspond to higher-order terms in the asymptotic

solution, but there isno guarantee that it should necessarily appear at

all in an expansion which is only valid for 2 >> 1. There is also a

non-zero drag force generated in this problem, which is equal in magnitude



-85~

but opposite in direction to the force that would have to be épp1ied to
the sohere to keep it from translating parallel to the interface (cf.
Brenner 1964). However, the details of this force need‘not be reported
here as it can be calculated directly from the torque which acts on a
sphere that is translating parallel to the interface (table 3). Indeed,
we have noted in equations (82) and (83) of part I that the coupling
tensor which relates the force on a rotating sphere to its angu]ér
velocity should be anti-symmetric énd the transpose of the coupling
tensor relates the torque on a translating sphere to its translational
velocity. This reciprocal relationship between the translational and
rotational problems was satisfied by the numerical results for

the two problems in ‘our present study. It should be mentioned
here that the calculation of Dean and 0'Neill (1963) was numerically
erroneous (cf. Goldman, Cox and Brenner 1967) and, thus, does not agree
with our results for X = =,

The fact that giégg results are available for the force and/or torque
provides an opportunity to see whether the asymptotic results of part I
can be improved at all. Specifically, the force and torgue were found in
part I to be related solely to the Stokeslet and rotlet strengths, and
these appear to be geometric series to the level of approximation which
was analyzed in part I. Since these geometric series are easily summed,
it is possible that improved results for the force and torque could be
obtained for £ ~ 0(1). Obviously, there is no guarantee that additional
contributions may not occur at higher orders in 2'1 which would invalidate
the simple geometric form which is assumed for the series in this summing

process. However, we believe that it is of interest to investigate the
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comparison between the exact results obtained above, and the "summed"
approximate results from part I. For the four fundamental motions of

~ a sphere, we have compared this newly suggested approximate solution, as
well as the original solution of part I with the exact solutions in figures
2, 3, 6 and 7. There is no difference in the numerical accuracy of the two
approximate results in the region of 2 >> 1. However, for 2 ~ 1, the
“summed” series shows somewhat improved comparison with the exact solution
for most cases relative to the original solution of part I, though the
results are still not quantitatively accurate. When

the sphere is translating normal to the interface, for » = 1, 10 and =,
the “summed" series reveals a more rapid increase in the drag force than
occurs in the exact solution as 2 > 1. Since the summed series is of the
form (1 - &/@'1, there is a singularity indicated for £ = a rather than

2 =1, as expected. This is, of course, both a consequence and an indi-
cation of the existence of higher-order terms in the exact solution which
do not fit the geometric férm which is suggested by the first few terms

of the asymptotic series. The case A = 0 of parallel rotation, which is
poorly predicted by the original asymptotic series, is not significantly
improved for the same reason. The same limit, A = 0, for perpendicular
translation, on the other hand, shows excellent agreement with the exact
solution, suggesting the absence of higher-order terms of a fundamenta?]y‘
different nature for this particular 1imiting case.

Finally, in order to achieve a more complete understanding of the
motion of a sphere in the presence of a plane interface, we have plotted
pressure, velocity and vorticity fields for the translational motion of a
sphere with A = 0.1 and 2 = 5. When the sphere is moving normal to the

interface, the flow field is axisymmetric. Thus, we show the stream
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function in figure 8. The streamlines are obviously deflected due to
the presence of the "impermeable" plane interface. The pressure field
for this problem is illustrated in figure 9. Although the dynamic
pressure is positive above the sphere and negative below the sphere as
would also be true in an unbounded fluid, the plane interface clearly
disrupts the fore-aft anti-symmetry of the pressure field about z = - 2.
The dynamic pressure in the upper fluid is negative, and there is a
pressure jump across the interface due in part to the fact that it is
specified as flat. In figures 10 and 11, the velocity components, u and

w, are plotted, respectively. In addition, the vorticity, w,, is plotted

¢
in figure 12. In these figures, it can be clearly seen that the presence
of the impermeable interface suporesses the velocity component in the
z-direction while it enhances the velocity component in the r-direction
due to the small viscosity of the upper fluid. Thus, negative vorticity
We, is generated at the interface. However, as expected, strong positive
vorticity Wy is generated at the sphere surface. Hence, in the Tower
fluid, there exists only a small region of negative vorticity Wy near the
interface. Since the shear stress is continuous across the interface
with X # 1, there naturally occurs a vorticity jump across the interface.
We have also examined the flow field generated by a sphere which is
moving parallel to a plane interface. We consider that the sphere is
moving in x-direction. The pressure field is shown in figure 13. It is
noted that in the lower fluid, positive dynamic pressure builds up in

front of the sphere while negative dynamic pressure builds up behind the

sphere. However, in the upper fluid, the pressure is negative for x > 0
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and positive for x < 0. In figures 14 and 15, u, ony = 0 and u, on

x = 0 are respectively plotted. These figures ostensibly show that the
velocity gradient in the upper side of the sphere is smaller than that in the
lower side of the sphere for this case of = 0.1. The velocity component
wony =0 is depicted in figure 16. Although w is still anti-symmetric rela-
tive to x = 0, the anti-symmetry of w relative to z = - 2 is disrupted due

to the presence of the interface. Finally, w, is plotted in figure 17. For
this case, the vorticity generated by the interface has the same sign as

the vorticity generated by the upper side of the sphere. The anti-

symmetry of wy with respect to z = - 2 is distorted, and there is a jump

in wy across the interface as expected.
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APPENDIX: Estimation Qf Numerical Errors in the Calculated Coefficients
Due to the Truncationof Terms of Large n.

Let us express the linear equations for the system as

8, %no1 T B Xy F S X4 T 9 forn=1,2, ... (A1)

We define the ratio tensor for x., % (a diagonal tensor), as

Xne1 T % En (AZ)
Then the equation (Al) can be written as

T -1
X T [gn N

When we truncate x_ for n > N, the equation (A1) becomes

n I ]-l.gn (A3)

Ho

+
n

[[{e]

X1t Br%, f gk, = d for n=1,2...,N-1 (A4)

g =n -n

& %n-1
and

3y Xyg Oy Xy = dy  for n=N (A5)

Here, X, is the calculated x; after truncating x  for n > N. Subtracting

(A1) from (A4) and (A5) yields

gN'En-l + Qn'gn + gn'§n+l = 0 for n=1,2,...,N-1 (A6)
. . = . -1 . -1,
avEy FONEN T Sn[Bnein * Bwer T Swer@wel) et
for n=N (A7)

where E = X - X
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Let us define the ratio tensor for E, as

Ens1 = En°Ep (A8)
Then the error in %, can be simply written as
t 1 1 1 1
= X - = - {8;°8.7, + b e ay'Byiq * byl”
-n =N =n {1=IN]—1 [—1 =i-1 -1] —1} =N =N-1 —N]
en [ o * By * Cypr onar] L (A9)
SNOENRLEN T Bel t Sne 1] e
For simplicity, let us assume ¢; v a.l and 8; v 8,1 . Then, since
fa;ls ’91' Y %—}911 ~ 0(1) for large i, the maximum component of Ep is
n : IgN+1|
Il ™ [ 1 : 1Y\, 1 + (A10)
e i=N-1 t2 |2+ ( o toon )
Bi-1 ( BN-l) ay Nl

Equation (Al10) clearly shows that the truncation error in gn which is

proportional to IQN+1| becomes smaller as n decreases.
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Table 1. Drag Ratio for a Sphere Translating
Perpendicular to a Plane Interface.

0. 0.1 L 10. =
1.08096 1.08492 1.10311 .12193 1.12619
1.17560 1,18477 1.22788 .27429 1.28509
1.33015 1.34875 1.43954 .54387 1.56921
1.59668 1.63314 1.82163 . 06257 2.12554
1.71575 1.76053 1.99726 .31347 2.39877
1.90031 1.95812 2.27341 .72202 2.84891
2.23492 2.31625 2.78090 .51180 3.73562
3.10459 3.24343 4.,10294 .74513 6.34089
4.62554 4.85033 6.34941 .88127 11.45916
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Table 2.

o 0O O O O o O o o
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Parallel to a Plane Interface.

0.

.963802
. 929866
.887536
.838826
.823629
.805414
.783367
.756617
.741287

0o O O O O O O o o

0.1
971778 1.
.944792 1.
.910258 1.
.869082 1.
855875 1.
.839792 1.
.819922 1.
795140 1.
.780568 1.

00937
01843
02935
04038
04331
04641
04946
05172
05191

{—a

Drag Ratio for a Sohere Translating

10

.05000
.10466
.18558
. 30374
. 34899
.41140
.50476
.66838
.82067

18

.05948
.12586
22716
. 38275
.44521
.53438
.67553
.95271
.26430
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Table 4.

O O O O O

0

.999875
.999001
. 995394
. 984666
.979135
.970698
.957358
.935753
. 920464

Torque Ratio for a Rotating Sphere When the
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Axis of Rotation is Normal to a Plane Interface.

o O o O o

[ov BN G 2 = B s ]

0.1

P e

. 999898
.999183
. 996228
.987411
. 982846
. 975851
.964702
. 946358
.933118

.00000
.00000
. 00000
.00000
.00000
.00000
.00000
.000120
.00000

10.-

.00010
.00082
.00380
.01299
.01794
.02585
.03950
.06624
.09149

I8

.00013
.00100
. 00465
.01593
.02203
.03184
.04893
.08322
.11707




Table 5.

0,

——

. 995942
.999574
. 998289
. 995768
.995174
. 995321
.998923
.02046

. 06555
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Torque Ratio for a Rotating Sphere When the

Axis of Rotation is Parallel to a Plane Interface.

QO O O

0.1

.999975
.999835
.999466
.999598
.00036
.00256
.00942
.03643
.08590

.N0013
.00102
.00487
.01758
.02495
.03751
.06174
.12127
.20075

0.

.00028
.00224
.01051
.03714
.05230
.07781
.12603
.24091
.38898

|8

.00031
. 00251
.01180
.04178
.05882
.08785
.14285
.27664
.45485
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Figure Captions

Figure 1
Figure 2

Figure 3

Figure 4

Fiqure &

Figure 6

Figure 7

Figure 8

Bipolar Coordinates (n,£,¢).

Drag ratio for the translation of a sphere perpendicular to

a plane interface; —: exact solution, --- : approximate

solution, W B : summed series.

Drag ratio for the translation of a sphere parallel to a

pTéne interface; —— : exact solution, --- : approximate

solution, mE® : summed series.

Hydrodynamic torque [8?pV62] on a sphere translating parallel

to a plane interface; — : exact solution, --- : approximate
solution.

The location of sphere center where Ty = 0 for translation of a
sphere parallel to a plane interface.

Torque ratio for the rotation of a sphere when the axis of rotation
is perpendicy]ar to a plane interface; — : exact solution,

--- : approximate solution, BE M : summed series.

Torque ratio for the rotation of a sphere when the axis of rotation
is parallel to a plane interface; — : exact solution,

--- : approximate solution, mm® : summed series.

Stream function [UCLC] for the translation of a sphere per-
pendicular to a plane interface (A = 0.1, £ =5 and u_ = i_);

S 4

A=06,B=20.4,C6 =0.2,D0=20.0, E=-0.2, F=-0.4,

G=-0.6, H=-0.8,1=-1.0,J=-1.4,K=-1.8,L=-2.2
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Figure 9 Pressure [uUC/LC for z < 0, ﬁUC/LC for z > 0] for the
translation of a sphere perpendicular to a plane interface
(» = 0.1, 2 = 5 and u, = lz);

0.6, C=0.4,D=0.2, E=20.1, F=0.05,

A

1.0, 8B

G=0.0,H=-0.05,1=-0.1,Jd=-0.2, K=-0.4,L = -0.6

Figure 10 ur[UC] for the translation of a sphere perpendicular to a

plane interface (A = 0.1, 2 =5 and u_ = i,);

A=0.15, B=20.12, C=0.09, D=0.06, £E =0.03, F=0.0,

G=-0.03, H=-0.06, 1 = -0.09, J = -0.12

Figure 11 uz[UC] for the translation of a sphere perpendicular to a
plane interface (A = 0.1, 2 =5 and u, = i );
A=0.8,B=0.6,C=20.4,D=0.3,E=20.2,F=20.1,06

H=-0.03, 1=-0.06, J=-0.09
Figure 12 w¢[Uc/Lc] for the translation of a sphere perpendicular to

a plane interface (A = 0.1, 2 = 5 and u. = i,)3

A=0.8,B=20.4,°C=0.2,0=0.1, £E=0.05, F=0.025,

1)

G=0.0,H=-0.01,1~=-0.03,J=-0.05
Figure 13  Pressure [uUC/Lc for z < 0, ﬁUC/LC for z>0J ony =0 for
the translation of a sphere parallel to a plane interface

(A=0.1, 2 =5anduy =1i);

A=30,8=-3.0,C=20,0=-2.0, E=1.0, F=-1.0,
G=0.5 H=-0.5,1=0.25,J9=-0.25, K=0.1, L =-0.1,
M=20.05, N=-0.05 0=0.01, P=-0.01



Figure 14

Figure 15

Figure 16

Figure 17
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ux[UCJ on y = 0 for the translation of a sphere parallel to
a plane interface ( = 0.1, 2= 5and u. =i );

A

#"

0.8, 8=0.7,C=0.6,D=20.5 E=0.4, F=0.35,

G

0.25, I = 0.20.

0.3, H
uX[UC] on x = 0 for the translation of a sphere parallel to
a plane interface (x = 0.1, ¢ =5 and u, =1 );

A=08,B=0.7,C=0.6,D=0.5 E=0.4, F=0.35,

G=0.3, H=0.25,1=0.2

uZ[UC] on y = 0 for the translation of a sphere parallel to
a plane interface (X = 0.1, 2 = 5 and u_ = i );
0.08, b= -0.08, E = 0.05, F = -0.05,

A=0.11, B=-0.11, C

G=20.02, H=-0.02, T = 0,012, J = -0.012, K = 0.008,

-0.004, 0 = 0.0

L = -0.008, M= 0.004, N
wy[UC/LC] on y = 0 for the translation of a sphere parallel

to a plane interface (A = 0.1, 2
A=2.0,B8=1.0,C=0.3,D=0.1, £E=0.0, F=-0.025,

5and u, = 1);

-1.0, K= -2.0

G=-0.1, H=-0.15, T = -0.3, J
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Figure 10
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PART II. MODELING OF NON-ISOTHERMAL TURBULENT FLOWS.
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A. A Second-Order Model for Non-Isothermal
Turbulent Flows with Negligible Buoyancy Effects

by

S. H. Lee and L. G. Leal

Department of Chemical Engineering
California Institute of Technology
Pasadena, California 91125
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Abstract

The second-order, mean Reynolds stress turbulence closure approx-
imation is extended to non-isothermal turbulent flows with negligible
buoyancy. We apply the method of invariant modeling [Lumley and Khajeh-
Nouri (1974)] to systematically model the various higher order moments
in the governing equations; This aporoach yields a general form for each
unknown correlation in the transport equations of U;@} g?-and €g each
containing many terms with parameters that must be determined from exper-
imental data. For practical application, it is necessary to reduce the
number of terms. In the present Work, the most important terms are
filtered from the general model for each unknown moment and their par-
ameters are evaluated based on experimental data for the turbulent .
boundary layer, Johnson (1955), the plane jet, Bashir and Uberci (1975),
the wake behind a sphere, Freymuth and Uberoi (1973), the wake behind a
cylinder, Freymuth and Uberoi (1971), and the round jet, Antonia et al.

(1975).
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I. INTRODUCTION

The development of a realistic model to describe the turbulent
transport of momentum, heat and mass is basic to the study of geo-
physical fluid mechanics, as well as many important technological flow
problems. Recently, a great deal of research has been reported per-
taining to the development and application of mean Reynolds stress models
in an effort to analyze more general and complex f]ows.l’2

In many important problems, determination of the mean velocity
distribution is just a first step towards predicting heat and/or mass
transfer rates. However, much less effort has been given to closing the
turbulent energy or mass flux equations than to closing the'Reynoldé
stress equations. This paper is concerned with the development of a
general closure model for nonisothermal turbulent flows without chemical
reaction.

In spirit, the methods available for development of c]dsure models
for scalar fields in a turbulent flow are not much different from those
used to develop closure models for the velocity fie}d. In this paper,
the second ordér, mean Reynolds stress closure technique, is extended to
the case of nonisothermal flows. The method was first proposed by Chou3
and Rotta,4’5 who suggested a number of closure schemes. They modelled the
third-order terms and the dissipation term in the Reynolds stress equation
by various hypothesis. Current research along similar lines is being

carried out by numerous investigators (i.e. Lumley and Khajeh-Nouri '

Lum]ey,7 Launder et al.,8’9 Hanjalic and LaUnder,lO.Daly and Har1OW311

12 13 14,15,16

Shir,”" Donaldson,”” Wyngaard et al., etc.).
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Recently, Lumley and Khajeh-Nouri6 proposed a rational closure
scheme which can generate models for the various higher order moments in
a systematic manner. It allows the development of a general form for
each of these unknown moments with a minimum of the ad hoc approximations
which underlay most of the earlier models. Unfortunately, this general
approach also generates a model for each term which contains many un-
determined constants and these must be evaluated by comparison, on a term-
by-term basis, with experimental data from flows of various kinds.

8 have both used this procedure to develop models for

Cormack17 and WOod1
the various unknown correlations for isothermal turbulent flows. Cormack
evaluated the coefficients in his models by means of a systematic, term- |
by-term least squares fit to several sets of laboratory data.

In the present study, Cormack's general approach is extended to the
development of a model for the dispersion of a passive scalar field in
turbulent flow. The scalar may represent either temperature or concen-
tration of contaminants, provided only that the gradients in these
quantities are sufficiently small that neither buoyancy effects nor
inhomogeneities of physica] properties (viscosity, density and conduc~
tivity) are significant.

The present effort to develop functional forms for the various
cérre]ations that are required in a general model of turbulent dispersion
should be considered only as a first step, based as it is on a simple.
term-by-term curve fit to experimental data. The second and final step,

as always in this typé of approach, must be to carefully evaluate the

complete model (i.e. the full governing equations including gll_of the
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various models for the higher-order correlations) by comparison of
full dynamical computations with available experimental results. Such

computations and comparisons will be reported in a future communication.

IT1. DERIVATION OF THE MODEL EQUATIONS

A. Transport Equations

We consider a flow accompanied by changes of density and viscosity
of the fluid which are so small that the Boussinesq approximation19 is
valid. In addition, we neglect buoyancy effects and Coriolis forces.
Although the model equations and related discussion will focus on the
transport of heat, we can trivially change from temperature as the
dependent variable to concentration of a chemical contaminant.

Decomposing the instantaneous velocity and scalar fields into a mean

and a fluctuating part, and then ensemble averaging the Navier-Stokes

equation yields

azui 5 (550
axjaxj - axj (Uiuj (1)

itij_ﬁ-u _E.\_L:'i.: -lﬂ—{-\)
ot J 9% 5 o 93X,

in which U is the mean velocity and uj is the fluctuation relative to
this mean. The second moment uiuj is known as the Reynolds stress tensor.
When the same procedure is applied to the continuity equation and the

thermal energy equation, these become

EEi = 0 and Egi = 0 (2)
axi axi
and
©,, 0 _ 20 3
5t T Y5 ax; Y 9x.ax: _ ox (536) (3)
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In equation (3), ® is the mean temperature while 6 represents the
temperature fluctuation about this mean. The f]uid’density, kinematic

viscosity and thermal diffusivity are denoted, respectiveTy, as p, v and

Y.

The unknown terms ui“j and u;6 are the source of the well-known
closure problem of the statiétita] theory of turbulence. Transport
equations for these quantities can be derived from the Navier-Stokes and
thermal energy equations for the full velocity and temperature fields,
following Chou.3 After neglecting terms which are of O(Re™) (cf. Ref.

20), these transport equations are

y | U, 3U
P 3 B 3 i
3t Yiuy * Ui _§E'u1u3 T Wy oXy - Uy 5?;
;] 21—
B 5};-(u]u3uk T35 % 613)
du, p
1 E) ap_ 2 k 2
+3 ng%+u1. axj-361\] BXk ) 35613 (4)
tIT) U,
d e i . 38 e dgE .. Llgop
Wu16+UJ X = Ay, uiuJ Wuje -peax.
J J J 1
3
- 5x_.uiuj6 v (5)
J
aui aui 7 _
where € = v =——=—— . Although the temperature auto correlation, 6%,
. axz axz '

does not appear in these equations, we anticipate its importance in
equation (5) when buoyancy is included, and also as the measure of the
mean square deviation of temperature from © in any realization of the

flow system. Thus, we include the similar equation for its transport in
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our present study.

P B 2 o 3 2 5= 30

3te +UJ. T ax.euj Zeuj . 2e (6)

J J J
Here
_ 26 90
€ =Y R[o Ao
§) ax2 sz

The terms on the right hand side of equation (4) are denoted as
production, diffusion, pressure strain, and dissipation, respectively.
The terms in equation (5) and (6) have similar physical interpretations
to those in equation (4).

The equations (4) - (6) describe the transport of the second-order
quantities U;Gg} E;7§and g?-in a turbulent flow at high Reynolds number.
However, each contains higher order correlations which are themselves
unknown, and a closure at this second-order level thus requires additional
relationships between these higher-order correlations and either the
second-order correlations or the mean flow variables. The "model" which
we shall discuss in this paper is really an attempt to provide reasonable
approximations for these "missing" relationships. Explicit equations
must also be derived for the dissipation rates € and €g- The transport
equations for e and €y Can be obtained by algebraic manipulation of the

transport equations for uy and 9,

S, Y 2
du. ou.. du. 9 u.
g%'+ Uj gi. = - ax1 dX BXT - 2v2 (ax.;x )
J 2 2 J J L

fdu.\2 . OU. .
d 7% 2v 773 ap
- ax‘j [\)uj (ax ) * iy 9%, 3X2] (7)



~-126-
at J axj axj J ax2 ax2 axz axl axj
2 2
2 3 B8 90
+ 2y (8)
axjaxz axjaxz]

and these contain further unknown, higher order terms which must be
modelled.

Chou3 and Lum]ey7 proceeded still further to derive exact transport
equations for the triple velocity correlations, but these equations
contain even more unknown quantities. In the present work, only the
equations (5), (6) and (8) will be considered explicitly and the unknown
high order terms in those equations will be modelled. A number of models

for isothermal flow [i.e. equations (4) and (7)1 are already avaﬂable,l’2

-including a recent model due to WOod.18

B. Correlations which Involve the Flyctuating Pressure

An exact equation of the Poisson form can be derived for the
fluctuating pressure by simply taking the divergence of the Navier-Stokes
equation using (2). By solving this equation, it is possible to obtain a
physically-based estimate for the unknown correlation 1in equation (5)
which involves the fluctuating pressure, without need to resort to the
more cumbersome machinery of invariant modeliing. We examine this term
in the present section.

Using the method described above, Chou3 has obtained an explicit
solution for the pressure fluctuation, p, in terms of mean and |

fluctuating velocity components,
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' du! 2 v
1o o L om_nlg L[] 9 (o iyl
PP = hf” 5 amrd" Im m 3, 9% (upuy = ugutp) & dv
(1) (I1) _
11 13p' .3 ,1
* ﬁ‘p‘” {F‘a‘n“‘p 'éﬁ(F)} ds ()

The term (III) is negligible for flow which is far from any
boundary, and we réstrict our attention to this case. The character of
the remaining terms (I) and (II) is quite different from one another. In
particular, the former is linear in fluctuating velocity, wbj]e the latter

(1)
is bilinear. For convenience, we denote the term (I) as-E and the term

P
(2)
(II) as g— . Utilizing equation (9), an expression for the temperature-
pressure gradient correlation, - %-e 5§E-in equation (5), may be derived
i
as follows.
(1) (2)
_lgop o 1 (Q.EE___ +glR "~
o) X . o) X . X
i i i
- J—m I e W}ldv
2n 861 Bin agm n r
S
P L[ tntn® 1y, (10)
4t agmagnagi r :
)
Launder8 and Lum]ey7 derived a leading order approximation for - 1—@ §§§T“
by assuming that the mean velocity gradient is constant over the 1
domain of integration, i.e. '
(1) ol
5 0mc T Toa (il - i) (1)
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The same authors have also speculated on an appropriate form for

. p(2)

(2
0 %5——* , but the resultant model is on much less satisfactory ground
.i

than (11).

Because of the uncertainty of the "derived" forms for e>%£—- .
;

we have elected to develop a model for this term (next section) using

the apparatus of invariant modelling. 'Since this model must simultan-

)

L
eously include all of the terms which are possible for - 9%57“‘a there
i

is no advantage in distinguishing between p(l) and p(z) for purposes of

determining the model coefficients from the experimental data for

- e%gfﬁ , and we will thus consider the model which we derive as

representing the complete temperature/pressure gradient correlation. Of

course, one possibility is that the optimal coefficient for the term

BUQ

— (46
me

i£§U;'— 616555) in this model will be f%—as suggested by

equation (11). However, this presumes a negligible contribution of the
same form from p(z), as well as the validity of Launder8 and Lum'ley's7
assumptions in deriving (11), and thus needs to be éxamined by comparison

with experimental data.
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C. Models for Higher Order COrrelétions‘- Invariant Modelling

The theory of invariant modelling was first adopted to analyze
isotropic turbulence by Rober‘tson.z1 However, the theory has also been
extensively used in the derivation of constitutive relations for visco-
elastic ﬂuids.22 In applying the method of invariant modelling to the
unknown correlation functions in the Reynolds equations for turbulent
flow, Lum]ey23’24 assumed that turbulence ‘exhibits two of the properties
of Coleman and Noll's 'simple' fluid, namely: (1) a fading memory for
prior states and (2) a limited awareness of the turbulent structure at
nearby points. These assumptions allow the unknown third-order moments
at a space and tiﬁe point to be expressed as a function of the second-
order moments or their first few spatial derivatives at the same point.
The‘under1ying justification for this assumption is incomplete, but we

follow all previous modellers and adopt it here as a plausible assumption

which is necessary to make ggx_progress toward a "turbulence model. -

For nonisothermal flows with nég]igib]e buoyancy effects, we require

— 7 1, 3p 2 36 28
models for the terms uie\’ - u.u.8, - 5—6 T uj VR TIE

3u A —7 ‘ ) 2 P
_J 38 36 _986 ; ; :
and - 2 vy % 3% BX. + v (ax.ax ) which appear on the right hand sides
) 2 J J & - . )
of equations (5), (6) and (8). The higher-order terms which appear in
(4) and (7) have been modelled in the earlier studies of WOod.18 In order

to apply the method of invariant modelling, we must first hypothesize a
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functional form to specify the independent functional variables. In the
first three of the third-order terms listed above; we assume that the
unknown correlation may depend on all of the available second-order and
mean flow variables.

— 1 2 7 Ny 30
u1-6 = F'l {ams q ., uzes_e-s P 89, &""; s 'gx_ (12)

L
_ — ou
_ .2 2 — 2 [0
. 1 ) 9P - f:3 a 2 u.o 52 e il:'_& EICH (14)
p = OX; i am® 90 Ug® s > &> g0 BT 0 WX
1 m L
Here q2 = y,u, and a, T u,u_ - 1-8 q2 In the case of the unknown
’ 7L gm T f'm 3 "wmt
correlations in the equation for €gs however, we include all possible
. . Uy, 30 .
turbulence quantities but neither —— nor ——, i.e.
X X,
36 a0 4 2 — 2
- Y(“i sfg‘a—x;) = 5 G‘m’ T B 8 ey ee} (1)
au 2 2 e
2 296 99 0-0 _ 5 2 — .2
- vl ax x ax +Y(8x 3 ) - F {azm’q’“ze’e’e’ Eé}
m m L £7°m (16)

The terms in equations (15) and (16) represent the turbulent flux of

€, and the production and dissipation of €g by vortex stretching and

6
thermal conduction, respectively. Therefore, we presume that these terms
depend primarily on the small scale turbulence structure, rather than
mean velocity or temperature gradients.

In Lumley and Khajeh-Nouri's previous work,6 all of the necessary

functionals were assumed to be independent of mean flow gradients. More-

over, on the basis of a direct examination of equations (5) and (6), they
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did not include ¢ in equation (12), or gy in equations (13) and (14). In
non-isothermal turbulent flow, however, there may be two representative
turbulent length scales determined respectively by the velocity and tem-

perature fields. Thus, the functional forms proposed here include the possibility

of spatial derivatives of q2, ;45 €5 Eps g?-and E;@Z The proper length

1J
scale for the spatial derivatives of qz, a5 and € is qz/e, while that
for gﬁland € 1s gﬁg/ee,(ﬁgﬁ'may be intermediate as regards the length
scale appropriate to its spatial derivatives). Thus, even though the
transport equations (5) and (6) do not explicitly contain € or €gs it is
necessary to include € and €q as independent variables in the functionals
(12) - (16).

We formally expand these functionals in increasing orders of anisotropy
and inhomogeneity (See Ref. 17 for a discussion of the definition for
orders of anisotropy and inhomogeneity. It may be noted that Egé'is con-
sidered first-order in anisotropy for present purposes.). Due to the
generality of the forms (12) - (16), the functional expansions will
generate many more terms than are possible to simultaneously curve fit
with 1imited experimental data. Therefore, instead of attempting to
eliminate terms one-by-one from the complete model via a sensitivity test
as suggested by Cormack,17 we develop and apply a filtering process to
systematically add terms of increasing significance as measured by their
influence on the accuracy of least squares fit to experimental data.

For simplicity in the following presentation, we define the following

vectors. and tensors.
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1] Xk X X%y
2 2.2
stg%E’QZE{gxax}’ng'g?_%
i X U J X i
o8 a0y -
B = {u,e}, B, = 3 s, B, = s 17
i X axj EXZ axjaxk
] ;.asﬁg 5 33262 ; {2}
-X ax,i =x2 axiaxj =X axi
2
=x2 axl.axJ <X Bxi =X2 axiaxj

The trace operators for third-order tensors are defined as follows.

Trl(g) Cigo Trz(g) = Cps, and Tr3(g) = Cpps (18)

Let us now turn to the derivation of general forms for the models of uiez,

and the unknown correlations in the €g and u;8 equations.

a) General Form for the Model of u8

We begin with the general form for the model of uiez. Some restrictions
on this general form fo]iow from the fact that ;;g?.should remain invariant
when the gradient of the mean temperature field is reversed without changing
the velocity field. Specifically, all homogeneous terms which could be
generated from equation (12) must vanish, and, in addition, many inhomogeneous

terms must be excluded from the model.
U,
The mean velocity gradient tensor, 5;} » can be decomposed into its
J

symmetric and anti-symmetric parts, these representing mean strain rate,

S;:, and the mean vorticity Qi35 respectively. The principle of material

1J J
indifference cannot be imposed in turbulence modeling because rigid rotation
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has significant effects on Reynolds stress and other high-order terms.24

Thus, it cannot be supposed that the expressions (12) - (14) should be

independent of Q.. when expressed in a reference frame which translates

1]
and rotates with the local mean translational and angular velocities, as

is true of constitutive relations in non-Newtonian continuum mechanics.

If we retain all possible terms, it does not therefore make any

difference whether ;g? or the decomnosed form
(Sij + Qij) is used for a model. However, when we choose'on]y a few terms
as a simplified model, the performance of this reduced model may depend on
which form of the mean velocity gradient is adopted. In our opinion, the
decomposition into mean strain rate and mean vorticity is preferred as it
allows separate evaluation of the'depéndence of the model on Sij and Qij'
To minimize the total number of terms, we consider only those terms which
are linear in Sij or Qij'
The model terms for ;;g?‘can then be classified into four groups:'
{Vl}’ which have no depenﬁence on mean flow or temperature variables;

{VZ}? which involve S {V3}, which involve Q543 and {V4}, which are

ij? J
dependent on a€Vaxi.

From equation (12), model terms of these various types can be easily
generated up to order (2,2) [here, order (a,b) means ath order in anisotropy
and bth order in inhomogeneity].

The model terms without mean flow variables are

22 2,2
_ 8°q 6 (8°) 1 6y, 6
{V } = b + ‘E + B(B- —_ . -
1 2% Tt % 8-k, SV 8(B-2,) eg © %16 B(B-E,) s
2 2 2
) 8 q . 3]
¥ a20(§x ) e a23(§x'§) e * OL33(§x'£\) e " (27 terms) (19)

8
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The model terms involving Sij are

52,2 4 2 2
62 CLa 4o (80,):58 S?-+ agy(8:0,)(8-3) &

{V,} = aqq 2t =
2 38 X € eg e

4 2
. .5) 4 .sg 9 __£L.
+ agy(B-E )(B-§) 3 + 0go(Be,):SB - €e+'a7OBX 138 = ::
T 4
+ ayy B-S-B, §§-+ (28 terms), (20)
while the model terms with Qij are
o’ EAR o’
W3l = g0 —5 +ag) E@ T3+ agy 872 o+ (33 terms)

£ £ g (21)

Finally, the model terms which depend linearly on aevaxi can be expressed

in the form
g? 2
Wyd = 0139 99,8 E‘gg 0y3p B Try (8,00, * oy33(BQ )8, + (17 terms)

(22)

The model for uie2 is then the sum of all terms in (19) - (22).

b) General Forms for Modeled Terms in the €q Advection EQuation

Let us now consider the general forms of models for the unknown, higher-
order correlations in the advection/diffusion equation for eé, beginning with

38 36

i ax2 ax2
. 26 238
DR % 7
1 9X, 93X 2
Model terms for - Yu. 30 28 can b ted
; axg axz e generated with relative ease

from equation (15). As this term is differentiated in the €q advection

equation, its model generates results in the dynamical calculation which are

one order higher in inhomgeneity than the model itself. Furthermore, $ince
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the independent variables of functionals (15) and (16) are jdentical, the

differentiation of one model term for - YU, gg—-gg—-yields terms with the
same form * _Z
ou | 2 2
as the model terms for - 2y 126 28 , Y - . Thus, for
Bx2 axl axj axjaxl

simplicity, we only consider terms up to order (1,1), with the exception
of B where we include terms of order (2,1) [no model terms contain B at
the (1,1) level]. As there are multiple length scales in the equation

(15), we can generate many terms just by combining scalars such as e, gg,

2 and 6

g  and without increasing the order in inhomogeneity and anisotropy.

98 90

However, by inference from the form of - Yu, 5;;-;;; , we assume that the

appropriate Tength scale for scaling purpose is that characteristic of

2
. 5 .o 00 08 .
temperature field, E‘g . In addition, as - Yui 52;-5;5 is second-order

e
in ©, it can be primarily represented with model terms of first-order in
62 or €g. The resulting model is ’

€ q2
36 a8 -
YU sk, - % Te T e BB tvyg BE
+ Ty
Y20 §-§x + (16 terms). (23)

au. .
i) -y | Miae a0, 3%\
93X, 0X, 9X 9X.0X
£ 2 2 J 2
s 36 36 3% |
Direct examination of the form of - 2y —1 29 99 Y (_______)
9X, 9X X IX.9X
A A ) J°72
shows that it is second-order in 6. Thus the model terms of first-order

in g? or g4 might be expected to primarily represent the term.

. . L 2 [ 3% ‘
In addition, since the dissipation term, - 2y 3X 3% s
Jj e
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can be also considered to be of second-order in the thermal conductivity,
v, it may be approximately proportional to eg. However, to reduce the
total size of the model, terms involving eé are retained only in the
homogeneous model. The functional, equation (16), is expénded up to order
(2,2).

The homogeneous model, {DH}, is

LELE

2
11\ %o 11 %o
oy} = (51+32q‘4{)7+ (53+B4‘7f):—§‘
8

q q

-+

2 4 22 ' q

€€ = _€2
E'@ 85 + 66 — 87 ——6‘ . (24‘)
SEN| 8q

i

Here, II aijaij

The corresponding inhomogeneous model, {DI}, is

4 : 2
i, 2 6 g _ 0
by} = Trlg 2)(633q il e ) + BB (BE) =
X 62 €
2
€,9 €, 2
o O 69
+ B48‘5'%2 —§:+Tr(?x'éx)(é69 * B0 2 —E-)
€0 -
+ Byg BBl + (108 terms). (25)

c) General Forms for the Modeled Terms in the G;ﬁ'Advection Equation

We now turn to the allowable forms for the modeled terms in the 5;5

equation, beginning with the velocity/temperature correlation - U;u.0.

J
i) - uiuje
Due to the fact that - uiuje is differentiated in equation (5), a model
ou.
term which involves §§l-or ggi-wi11 produce higher order terms like
22 2 J !
i orva 9

axjaxk axisxj
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Thus, for simplicity of the model, the functional equation (13) is

ou.
expanded up to order (2,1), excluding terms which involve Bil-and gfl-,
J i
to yield
4
- T 9
- uuB = {z;(B, +B) + 1z, Tr(B,)I} 2
‘ 2.2
* {C3(§x * El) Ty Tr(gx)l} HEQ_
S]
T, ¢° o
+ o oyp(BB+ ABY) - * Ty TriA:B))I o)
2
a
+ Ly (B Try(8) + Try(A,)B) 3+ (29 terms). (26)

Note that - uiuje changes its sign when the gradient of mean temperature field is

reversed. Hence, there are obviously no homogeneous terms in the allowable

form for -~ uiu.e

o

. 1779p
i) - 0 o X

Q!

Finally, we turn to the allowable form for a mode] of the temperature-
pressure gradient correllation. Again, it is necessary to identify an
appropriate characteristic Tength scale for scaling purposes. It may be
anticipated that this scale is more likely to be associated with spatial
structure of the velocity field than the temperature field. Nevertheless,
~ the choice is not altogether obvious, and we thus choose to include
several terms which are scaled with the characteristic thermal scale in our
homogeneous model in order to examine this speculation. Terms with mean
velocity gradients are included only in the homogeneous model beéause the
model can represent experimental data well even without inhomogeneous .

au.
terms involving §§l~(cf. Section IV E). Moreover, there are already many

J
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terms to be considered. Terms w1th'g§i are excluded from the same reason.
i
1,9

Further, considering that "3 e ax is first-order in the fluctuating

temperature 6, we omit the terms of higher order in 6, for instance,

0 6 By : ' .
B(2,-2,), B(E.-E), B(o, E/) etc. Allowable homogeneous terms, {Py}, in
the modei for - 1 6 2L are then as follows

o 73X

{p,} = s, LV E B+ F o, 4 EeB

H M 7Ny} 72 N3 T Ty ‘YI —
qlq 5

+
T —
=
o
L0 im
i
+
=
()]

m
~l [
N

o remm
=
00

€
£ 8 V'pen. . . ‘ .S.
+ (n7 q6 t g ) A*A-B + ngB-3 + nyB-2 + {ny,A-3-B

+
ico
——
Il]>
IlU?
A
+
=3
[y
w
|14
I
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4=
3
ek
£
x>
n

1 .

Inhomogeneous terms, {PI}, subject to the restrictions listed above are

4 2 2
= . q_ .B 4 . 4
(Pph = myoBy (B'E) T3 maol 278 e ¥ Maad By
¢ d ¢ g
+gs0 Tr(B) o ¥ Magb B T2t MM B ot nasBi B o
2 4
gt - a
tongLB Tr (A ) * Mg Trz(%xz) - ¥ (42 terms). (28)
&)
A model derived for - %—6 %gj——- by Launder8 and Lum]ey7 was discussed
1

briefly in section IIB. Here, we model _-l-e %Eflrather than its "component”
parts since p(l) and p(z) cannot be distiéguishe; 1h the general expansion
of the functional (14). However, if p(z) is assumed to be independent of
the mean flow variables, the equation (11) suggests ng = f%-and Ny = %-and
these values may comprise a useful approximation. Their appropriateness

will be examined in section IVE using experimental data.
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II1I. PARAMETER EVALUATION FOR HOMOGENEQUS FLOWS

The best way to evaluate the coefficients in the models for each of
the higher-order moments is to apply the model first to simple flows, and
then proceed systematically to more complicated flows. The general forms
generated in the previous section by the invariant modelling approach con-
tain far too many terms to be effectively evaluated with only one type of
flow. Unfortunately, there are only a few well documented experimental
studies for nonisothermal flows, and our ability to apply this approach is
somewhat restricted. In the case of a homogeneous flow, however, there
are only two modelled correlations to be considered, namely those given in
equations (24) and (27), and the procedure can be applied more efficiently.
In the present section, we therefore restrict our attention to homogeneous
flows. Following this, in section IV, we shall consider non-homogeneous
flows.

Our starting point in evaluating a model for homogeneous flows [i.e.
for determining the constants in equations (24) and (27)] is to consider

the rate of decay of temperature fluctuations behind a heated grid in a

25

wind tunnel. The most extensive set of data is that of Lin and Lin,”  who

26 Gibson and

also compared their results with the earlier works of Yeh,
Schwarz,27 and Mills gg_gl.zs The previous studies had obtained decay
rates proportional to x"" with n ranging from 0.87 to 1.50 and x repre-
senting distance downstream from the grid. However, Lin and Lin's data

show clearly that the decay power is a function of the initial intensity

of the temperature fluctuations (i.e. the power supplied in heating the
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grid).+ Thus, it may be surmised that a high initial intensity in the
temperature fluctuations provides an initial inhomogeneity or anisotropy,
which would have to be considered in interpreting the ekperimenta1 results.
When the initial fluctuations are limited to lower intensities where the

homogeneous model may be expected to apply, Hinze's theoretical derivation29

and Gibson and Schwarz' experiment27

reveal coincidently that the intensity
of a scalar fluctuation will decay as the - %-power of distance from the
grid. If this value is taken as a standard decay power in homogeneous
isotropic flow, the relationship between 8, and By in equation (24) may be
calculated as explained below.

Let us assume that 62 and q2 decay in a homogeneous isotropic flow as

follows
o2 - alx"m : (29)
¢ = bx" (30)

One may then calculate the dissipation rates by using the relationship
between Eulerian spatial derivatives and Langrangian time derivatives
following a fluid element '

182 : 182 a
_o_lget o1 def el
€ = -~3gqr = -~sUge = 7 Umx (31)
2 2 b
- _Lldg” _ _1,dg” . 1 ,,,.-n-1
€ = -5G = ~3Ug = 7 U ) (32)
E4E €g
For a homogeneous isotropic flow, Bl — and 83 — are the only
q 92

terms that do not vanish in the equations (23), (24) and (25). Thus,

equation (8) can be written as

+It may also be anticipated that the decay power will be sensitive to the
"drag" characteristics of the grid, or the intensity of the turbulent
velocity fluctuations.
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U = B2+ B — (33)
q 62

Substituting equations (30), (31) and (32) into equation (33), we find
-2(m+1) = nB +mBy . (34)

Here, m = 3/2 as discussed earlier and n = 1 from the theoretical deriv-
ation for isotropic turbulence (cf. Ref. 29). From careful examination
of various experimental data, Cormack also suggested n = 1 at large
Reynolds number.17 From equation (34), we thus obtain

B =-5, if By =0 (35)

and 63

We may of course retain both of the terms involving Bl and 63, provided

- 10/3, if 8 = 0. (36)

the coefficients 81 and 83 satisfy equation (34). However, it is possible
that the two terms together will give no better results than either one of
them individually, with constants given either by (35) or (36). It is
prudent to withhold judgment on this matter in view of the need for
simplicity in the resulting model. This will be discussed again in
section IV.D.

One other term of the homogeneous model which may be evaluated
relatively easily is that associated with @G;'(qz/;§5%. Lumley gj;gl,ﬁ
suggested that in the 1imit of small anisotropy, i.e., late in the decay,
EU;'(qZ/;§5% should decay at the same rate as a;.. Now it is known that

J
the return-to-isotropy term,

u, p
= 10, P P _2 k
Ay = p{:uj % Uy ;3 83 M, :} ,

in a weakly anisotropic flow behaves asymptotically as
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£
A'ij n qu aij . v (37)

The constant ¢ was shown by Cormack17 to be approximately 0.162. Thus,

applying Lumley's hypothesis, the coefficient of the leading term 0] i% bi'
q

in equation (27) is calculated from equation (4) and (5) to be

I
nl = -oT - 6.67

In Fig. 1, the modeled equation (5) with Ny = - 6.67 is compared with

30 where the velocity field is

Yeh and Van Atta's experimental results,
nearly homogeneous and isotropic but ub is slightly anisotropic. The
model with ny o= - 6.67 shows good agreement with the experimental results.
Due to the Tack of well documented experimental data for homogeneous
flows, we cannot proceed to determine the other coefficients of the homo-

geneous model. Thus, these coefficients will be evaluated simultaneously

with coefficients of the inhomogeneous terms in section IV.

IV. PARAMETER EVALUATION FOR INHOMOGENEQOUS FLOWS

A. Available Experimental Data

Five flows with inhomogeneity have been found which may be used to

initialize the present model. These are the turbulent boundary layer of

Johnson?1’32’33 the plane jet of Bashir and Uberoi§4’35

36

the wake behind

the wake behind a cylinder of
38,39

a sphere due to Freymuth and Uberoi,

37

and the round jet of Antonia et al. Besides

40

Freymuth and Uberoi,

these, Aihara, Koyama and Morishita™~ studied a round jet of helium and

41

Davies, Keffer and Baines ~ studied a heated plane jet. Unfortunately,
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these latter two experimental studies cannot be used directly to determine
the coefficients in a model of the type considered here because they lack
some of the needed data, for example ;g?-or v8. Though ;g?-and v6 could
have been estimated fromequations (5) and (6), these flows were not used
for the initialization of the present model, in order to maximize the
uniformity and consistency of the applied experimental data.

Each of the five chosen flows asymptotically approaches a self-
preserving region where the governing equations reduce to ordinary differ-
ential equations. The similarity function§ and characteristic variables
are shown in Table 1.

We have fitted, by a Teast squares method, the ten similarity functions
for each of the four flows with polynomial equations which are smooth up
to the second derivative. Since the data are available in discrete form,
‘the most straightforward approach is to approximate derivatives by their
finite-difference representations. However, Cormack17 noted that although
this leads to adequate estimates of first derivatives, second derivatives
estimated in this manner display an unacceptable random error. Hence, we
have used the representation of data points with polynomial equations.

When a single polynomial equation cannot properly represent the whole range
of flow conditions, a composite form of two equations was used which gave
good representation of the function and continuous first and second deriv-
atives over the complete domain. Before describing the use of these poly-
nomial data fits to evaluate model parameters, some additional comments
about the various experimental results are necessary.

First, we may note that accurate experiments for wakes and jets with
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no appreciable buoyancy should show measured curves for second-order
moments which are symmetric or antisymmetric with respect ton =20
[where n is a similarity variable (cf. Table 1)]. However, most exper-
imental measurements forwakes and jets do not exactly satisfy this sym-
metry or antisymmetry. Thus, in these cases, only the half plane, n 2 0,
was explicitly considered in constructing models. Nevertheless, the
polynomial representation of data was fitted to the complete data base
after shifting the data for n < 0 to the plane n > 0.

Second, we note in the case of the turbulent boundary layer that
Johnson32 measured the dissipation rate € with an assumption of isotropy
which does not exist in the near wall region. A more sophisticated
method to determine e dis to measure some (up to five) of the
nine contributions to this sum and to assume that isotropy relations may
be used to derive the remainder.42’43’44 Another more recent method is

45,46

to use the inertial subrange in the spectra. Fitting the spectra

with a - g-power law provides a simple relation to calculate €. Unfor-
tunately, however, Johnson did not measure the spectra, so his experimental
data for the turbulent boundary layer in the near wall region cannot be

43

improved. Klebanoff ~ has found that the approximation of local isotropy

can be applied for y/S > 0.7. Thus, only the turbulent boundary layer
data in this region havebeen used in constructing our model.

In the case of the wake behind a circular cylinder, Freymuth and
Uberoi37 did not measure all of the kinematic Variables, but the missing

47,48 We thus use a composite of

47,48

data were obtained earlier by Townsend.

37

the data of Freymouth and Uberoi”’ and Townsend in the parameter

evaluation for our model. It is disappointing, however, that the measured
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values of u2 from Freymuth and Uberoi are not in good agreement with
those from Townsend. Because of this, it is possible that there will
exist a discrepancy between model predictions and experimental data for
the cylindrical wake.

It should also be noted that we did not use the turbulent boundary
31

for the modeling of uie2 or high-order terms in
2

layer data of Johnson

the €g advection equation. The measured values of uie are so small away

from the boundary that they are not credible on account of anticipated
large relative errors. In addition, since €g becomes very small and
changes 1ittle along the vertical axis in the region which is far from

the boundary, it is difficult to accurately compute the spatial derivative

of e, in equation (8).

e

Finally, we should mention that the correlation uiez is evaluated
directly from measured experimental data. However, since no direct
measurements of the higher-order terms in equations (5) and (8) are

0

available, we estimate (-'%-9 %&7 - 5;—-uiuj8 } in equation (5) and

S— ou . 2 2
) 28 96 o6 36 376 . .
-y u, Sy Ly S } in equation (8)
{ ij J sz sz ;liaxg Bxg ij (ijaxg) }

by evaluating the remaining terms in the equations.

B. Parameter Estimation Scheme

As shown in the section IIC, there are many terms in the present
general forms for each higher-order correlation. It is thus imperative
to systematically choose the most significant terms (hopefully few in
number) and evaluate their parameters. Given'a possible combination of

terms, we evaluate the optimal parameters of the model in a least squares
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sense by minimizing the standard deviation from experimental data. The
appropriateness of the model is then judged based on the magnitude of
the standard deviation. We focus our attention in the present work on
the self-similar domains in each of the five test flows.

To give equal weight to each flow measurement, the total range of
the similarity variable was discretized into 20 grid intervals, and all
variables were then evaluated at each node point by using interpolation
- or smooth curve representation of the original experimental data.

Optimal parameters for each modeled term are determined by a least-
squares analysis in which we minimize the sum of the deviations between
model predictions and experimental data. It is implicitly assumed that
every data point of a flow has equal standard deviation and that the
standard deviations of different flows are proportional to the root mean
square magnitude of the experimental data.

The most direct method of determining the best model for each
"unknown" correlation may be to calculate standard deviations for all
possible combinations of terms and then choose the model with minimum
standard deviation. However, a substantial amount of computation time
is required even to evaluate the standard deviations for all possible
combinations of three terms, and thus the "direct" scheme suggested
above would require a prohibitive amount of computation. For isothermal
flow, Cormack17 generated models for the various unknown correlations by
systematically eliminating terms (one by one) which did not significantly
increase the standard deviation between experimental data and the best-
fit model. For non-isothermal flows, there are too many terms in each

model to yield a distinct deviation difference by the elimination of
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single terms. Moreover, we are obviously interested in models with a
minimum number of terms. Thus we apply a direct filtering method which
is based on the assumption that any term which gives consistently good
representation of experiménta] results in an m-term model should be
retained in a model with n > m terms. In effect, we assume that the
model is gradually improved by adding terms, rather than replacing terms.
This assumption reduces the amount of computation required for model
initialization to a practical level. It should be noted that cylindrical
coordinates were used to derive the basic equations and models for axi-

symmetric flow.

C. Parameter Eva1uation for uieﬁ

49 2

Zeman and Lumley ~ modeled uie , for zero mean motion, starting

from the advection equation for triple correlations. However, a more
2 50,51

common model for u;6 is the model of eddy diffusivity. To date,

the eddy diffusivity model
2
2 _ ton 90
u;8” = - a'sq o (38)

is the only one which is sufficiently documented to be compared with our
new model. The length scale £ in this eddy diffusivity model can be

determined from the eddy viscosity model for Reynolds stress.

d. .
5 (39)
J

The well-known drawback of this eddy diffusivity model is that it

o= -2
i

O =

does not work well for flows with multiple velocity and length scales. If

aij does not become zero fast enough where Sij vanishes, the length scale
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2 increases to infinity. Thus the model is not applicable for a wide
range of flow fields. In the following, we describe the procedure to
construct a new model from equations (19) - (22) and its comparison with
the eddy diffusivity model, equation (38).

First, the standard deviations from experimental data were calculated
for- each term in equations (19) - (22) using the optimal, least-squares
value of the associated parameter. The terms 23, 20, 16 or 14 were found
to give the best representations of the data. We then evaluated the
standard deviations for all possible combinations of two terms from
equations (19) - (22). Not surprisingly, the models with one of terms 23,
20, 16 and 14 were found to give consistently the best results. Hence,
to reduce the amount of computation, it was assumed that any model with
three or more terms should include at least one of these four terms.
Among three-term models, the model with terms 16, 70 and 61 yielded the
smallest standard deviation relative to the data. Moreover, models with
term 16 show consistently better representation of experimental data than
those with terms 23, 20 or 14. Since the best two-term and three-term
models with term 16 were always found to include one of 70, 119, 54 or
57, we then examined all possible four-term models with term 16 and at
least one of these four terms. In this case, four-term models which
include terms 16 and 70 show much less deviation from experimental data
than the other combinations. Finally, to propose an optimal five-term
model, we investigated the performance of all five-term models with four
terms that constituted one of the best ten four-term models.

In consequence, we praopose a series of terms 16, 70, 61, 2 and 133

from which one- to five-term models can be constructed sequentially by
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adding terms. The optimal parameters and standard deviation for each
model are shown in Table 2. Even the three-term model represents exper-
imental data fairly well except for the plane jet. Since the improvement
between the four- and five-term models is small, we use the four-term
model for comparison with experimental data in Figs. 2.1-2.5. One

weakness of this model is that, compared with the experimental data, the

predicted value of ”192 develops slowly around the center line of wakes
and jets and vanishes quickly near the edges. Nevertheless, in general,
the model displays a quite good representation of experimental results
with relatively few terms.

To compare the eddy diffusivity model with our new model, the co-
efficient o' in equation (38) was optimized for each flow and for all
flows. The results are shown in Table 3. The optimal coefficient varies
widely from 0.24 to 1.72, depending on the flow type. In Figs. 2.1-2.5,
the comparison of our new four-term model and the eddy diffusivity model
is also depicted for each flow. Obviously, the four-term model displays
a much better representation of experimental data than the eddy diffusivity
model. When the gradient of mean velocity disappears more rapidly than

Reynolds stress, the eddy diffusivity model increases unreasonably as

2

shown in Fig. 2.3. In the prediction of uo“, where u is the fluctuating

_ 2
velocity in the downstream direction, gg—- is simply incapable of mirroring
1

the characteristics of uez. Therefore, the prediction of the eddy

diffusivity model is very poor as shown in Fig. 2.5.
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D. Parameter Evaluation for the Thermal Fluctuation
Dissipation Equation

Many researchers have directly modeled the dissipation rate of

fluctuating temperature, ¢ For example, by analogy with the eddy

.
diffusivity model for G;@} Monin and Yag1om51 proposed a model for eg.

(40)

1
€9 = Zam

SRS

where the length scale, £, can be determined from equation (39). However,
in the construction of a second-order model, we implicitly assume that all
second-order terms will be obtained by solution of the appropriate trans-
port equations, with third- or higher-order terms in these equations
modeled in terms of second- or lTower-order terms. Thus, to construct a
self-consistent second-order model, it is necessary to model the unknown
higher-order terms in the g transport equation, Lumley7 suggested a
model for the right-hand side of quation (8) in the form

€ 2

R.H.S. of eq. (8) = - 3.73 —+20.7 % Bu, du;
6% 9
P P U, e
1] 1) ' i 6

Here, we construct a second-order model for the right-hand side of
€y transport equation from equations (23) - {25) and compare both the new
model and Lumley's model with experimental data. As it is very difficult
to actually measure the terms on the right-hand side of equation (8), we
can only estimate their sum by evaluating the terms on the left-hand side

of equation (8). Hence, we model all terms on the right-hand side of

equation (8) together.
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To begin, we investigate the role of terms 1 and 3 in equation (24)
for the overall representation of experimental data, because the relation-
ship between the parameters of these two terms can be obtained from the
decay law of 57 as discussed in section III. The standard deviations
from experimental data were computed for all possible two-term models
which involved either term 1 with Bl = - 5 or term 3 with By = :%g-[see
equations (35) and (36)]. 1In addition, we calculated the standard
deviations of three-term models which included both term 1 and term 3
with parameters Bl and 83 satisfying equation (34). It was found that
the two-term models with term 3 were always better than those which
included term 1. Furthermore, three-term models with term 1 and term 3
together do not significantly improve the representation of experimental
data compared with two-term models involving term 3. Therefore, in the
interest of simplicity, we included only term 3 with a fixed parameter

:%?- in constructing a model for the right-hand side of equation (8).

We next examined all possible two- and three-term models from
equations (23) - (25) that include term 3. For two-term mdde1s, those
with term 3 and one of the terms 5, 6 or 7 in equationv(24) showed the
best results. Moreover, three-term models involving term 3 and one of
the above three terms yielded consistently better representation of
experimenta1 data than those with other terms. Apparently term 5, 6 and
7 in equation (24) have similar properties as regards model behavior.
However, the models with terms 3 and 5 always give slightly better results
than those with term 3 and one of terms 6 and 7 in three- and four-term

models. Therefore, it is suggested that term 3 and 5 in equation (24)

should be included in any model with two or more terms. Following the
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procedural outline of section IV.C, an optimal five-tefm model was chosen
~ from all possible combinations of five terms which had four terms that
were one of the best ten four-term models. From these calculations, we
obtain an optimal model with the sequence of terms 3, 5, 33, 48 and 69 in
equations (24) and (25). This model does not contain any term in equation
(23). However, a model with terms 3, 5, 34 and 48 in equations (24) and (25)
and term 8 in equation (23) has a comparable standard deviation. Nevertheless,
we chose the former model because a model term in equation (23) must be
differentiated in equation (8) and this makes a dynamic computation
slightly more complicated. It should be cautioned, however, that this
choice does not necessarily mean that - vy u; %%z'%gz is unimportant. As
we do not have experimental data which can distinguish each term in
equation (8), we choose a simple overall model for the right-hand side of
equation (8).

The optimal parameters and standard deviation of the new model are
sequentially tabulated for each level in Table 4. Even the four-term
model with terms 3, 5, 33 and 48 in equations {24) and (25) shows relatively
good agreement with experimental data except for the case of the plane jet.
Predictions for the five-term model are depicted for each flow in Figs.
3.1-3.4. For the plane jet, the model decreases more quickly near the
edge than the experimental data. One probable explanation is that
experimental errors are relatively large near the edge due to the small
values of dynamic variables. For the wake behind a cylinder, the model
displays a physica11y improbable deflection in Fig. 3.3. However, this

might occur because of the discrepancy between the two experiments by
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47,48 which were used by us to generate

Freymuth and Uberoi37and Townsend,
a "complete" data set. In spite of these deviations between data and
predictions, the model proposed seems to be generally satisfactory.

The five-term model was also compared with Lumley's model in Figs.
3.1-3.4 and Table 5. Lumley's model with his suggested parameters shows
reasonably good prediction for the wake behind a sphere, but is relatively
poor for the other flows. By optimizing the parameters using the present
collection of experimental data, Lumley's model is improved with regard
to the deviation from experiment. However, Lumley's model is still very
poor in predicting the right-hand side of €9 transport equation for the

round jet as shown in Fig. 3.4. This is perhaps not surprising in view

of the fact that Lumley's model is essentially a homogeneous one.

: lgdp 3
E. Parameter Evaluation for {E 5 8 axi 8xj uiujé}

Although the term, - l—e 55— » 1s very difficult to measure exper-

imentally and well documented data for uiuje are not available at present,

Ll —E—- CE YT can be estimated by difference in equation (5).
L5 30 ang h diff h ti
_.5 Bx and - ﬁif'u uJe ave, in appearance, different characteristics

J
in the sense that the former is a second-order correlation of fluctuating

temperature and fluctuating pressure, while the latter is a third-order
correlation of fluctuating velocity and fluctuating temperature. Of
course, the pressure field is associated with the velocity field. Indeed,

as shown in equation (9), p can be directly related not only to the
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fluctuating velocity component but also to the mean velocity gradient.
Using this result, several Tleading terms of a model for - —-e —EL- were

evaluated in section II.B.

The only model available in the literature is that of Launder8 who

suggested the following form for - —-e —11—

ax
oU. ou
1o _Ag_1_ 1o __& £ uE G
-3 6 5" = & OUy 5% £ 0 L B, 8.0 5 us6 +6.0a,,ub (42)
2 q q

In addition, by ad hoc assumption, he proposed a mode] for - uiuje.
9 aﬁ;@’ u,6 (43)
_ 0.11 g~ = U U, S 43

- uiuje = 5 o ujuR 3x2 4 axz

In the present sub-section, we develop a new model for

{} %- Er;jﬁqﬁz§i} from equations (26) - (28). As previously
ment1oned, several parameters of the model were determined in section II
and III, namely Ny = - 6.67, ng = f%—, and Ng = %— in equation (27).
Hereafter, reference to a term number with parenthesis is for equation
(26), while that without parenthesis is for equations (27) and (28). As
an initial step, we investigated the suitability of the homogeneous terms
and parameters for inhomogeneous flows. We found that term 1 is very
important and the parameter ny " -6.67 is very close to the optimal value
with regard to the data for inhomogeneous flows. On the other hand, terms
9 and 10 do not improve the model much in comparison with the experimental

data and the optimal values of parameters are different from the values

derived in section II.B. The best five-term mode]Withn1 = 6.67, ng = 3/10

and Mo = 1/2 is compared in Table 7 with the best three-term model with



36.

-155-~

ng o= - 6.67 and the other parameters freely chosen. The deviation of the
five-term model relative to experimental data is slightly higher than that
of the three-term model, and the two added terms are the same with nearly
equal optimal parameters in the two models. The obvious implication is
that 9 and 10 are not significant in the model especially for inhomogeneous
flow. Since experimental data for homogeneous flows are not available to
examine the significance of these terms in that case, the homogeneous terms
9 and 10 were not included in the construction of a new modeT.

To propose a model which can be improved sequentially by adding terms,
we first evaluated the standard deviation from data for all possible two-
term models which included term 1 with ng = - 6.67. The best two-term
model is a model with terms 1 and 13. Furthermore, we examined all three-
term models with Ny o= - 6.67. Three-term models which invoive terms 1 and
13 consistently yielded the best representations of experimental data. A
three-term model with terms 1, 13 and 62 is good enough to be applied to
dynamic computation (see Table 6). However, to investigate the performance
of four-term models, we evaluated the standard deviations for all possible
four-term models with terms 1 and 13. Additionally, we also calculated the
standard deviations for all five-term models which had four terms that con-
stituted one of the best ten four-term models. From these results, we
obtained two five-term models which can be improved starting from one-term
by sequentially adding terms. Those are the series of terms 1, 13, 62, 40
and 51 and that of terms 1, 13, (4), 45 and 57. Although the latter is
slightly better for four- or five-term models than the former, the former

is recommended for initial computational purposes because it can represent
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experimental data satisfactorily even with terms 1, 13 and 62.

The optimal parameters for the two-term to five-term models from
terms 1, 13, 62, 40 and 51 are shown in Table 6, and the three-term
model with terms 1, 13 and 62 is compared with experimental data in Figs.
4.1-4.7. The overall prediction is very good except for the plane jét.
Bashir and Uberoi>*calculated V& from the meén heat transfer equation (3)
and noticed a big disagreement between the calculated and measured values
of V6. Bashir35 suspected that it might be attributed to a departure of

the experiment from two-dimensionality. We calculated

- — 'u
axi Bxl il

two-dimensionality is not satisfied in the experiment, some discrepancy

{.%e p_ 3 u 5} from the ﬁ'_i'? transport equation. Therefore, if

would naturally occur between the model and experimental data. We thus
recalculated the model parameters, using V8 for the plane jet calculated
from equation (3) and the experimental data for the other variables.

The results are shown in Table 6 and Fig. 4.3. As hypothesized, the
model improves substantially for "prediction" of the plane jet. For the
other flows, there is no difference in the representation of the mode]
becauée the optimal parameters remain almost the same.

Finally, the three-term model with terms 1, 13 and 62 was compared
with Launder's model, equations (42) and (46) in Figs. 4.1 -4.7 and Table
7. We used his model with suggested parameters and with optimized
parameters to minimize the deviation from the present experimental data.
In general, even though his model consists of 5 terms, the present three-

term model provides a much better representation of the experimental data.

under! : - 1590 9% 5o
Launder's model is especially poor for (— 5 e BXZ - 3%, ”2”29 in the
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turbulent boundary layer, where the difference between data and the

model is almost one order of magnitude (see Fig. 4.1).

V. CONCLUSIONS

A second-order model for nonisothermal flow with negligible buoyancy
effects has been extensively studied using the invariant modelling
method. Unfortunately, this approach Qenerates so many model terms that
there are uncertainties in filtering a few significant terms. Neverthe-
less, the objective of constructing practical models with minima]rad hoc
assumptions was fulfilled by careful examination of model terms on the
basis of experimental data from flows of various kinds. For the esti-
mation of model parameters, we used the experimental data of the turbu-

31 the plane jet due to Bashir and

36

lent boundary layer due to Johnson,

Uberoi,34 the wake behind a sphere due to Freymuth and Uberoi,”" the

wake behind a cylinder due to Freymuth and Uber0137 and the round jet
due to Antonia et a1.38’39
The results are
de, 2 ab 2.2
2 _ g 0 L 67q
U_ie = ~1.73 b1bl§i£7' 0.109 b_, —E)}——Sm eeg
€ m
e < gt 6% 60g2
- 0.0230 bzbm SRE'Smi 3 - 0.0152 o E
£ i 9
-10 Eg £of
R.H.S. of ¢, transport eq. = —5— =+ 36.3 b,b
) 3 278 —=
0 K g
2.2 2 €,q
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1,90 3 — = - €
{} 5 §) axi sz uzuié} 6.67 bi ;2-+ 9.71 Smambm
2
d b 4
L9
+ 0.179 Xk, €

where bi = uie

As suggested earlier, these recommended models should now be tested and

further refined by application in a full dynamical calculation.
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Comparison of model with Yeh and Van Atta's experimental results.

Comparison of v62 models for a plane jet.

ju]

A= @
EL

-X=-

experimental data by Bashir and Uberoi.34

four term model.

eddy diffusivity model with coeff. optimized for all flows.
eddy diffusivity model with coeff. optimized only for a

plane jet.

Comparison of ;Eg‘models for a wake behind a sphere.

U

~A-

-t 2

-X- 2

experimental data by Freymuth and Uberoi.36

four term model.

eddy diffusivity model with coeff. optimized for all flows.
eddy diffusivity model with coeff. optimized only for a

wake behind a sphere.

Comparison of ;gi models for a wake behind a cylinder.

1]

AT
-t~ ¢

-X- 3

experimental data by Freymuth and Uberoi.37

four term model |

eddy diffusivity model with coeff. optimized for all flows.
eddy diffusivity model with coeff. optimized only for a

wake behind a cylinder.

Comparison of v62 models for a round jet.

(U]

-A-
-+-

-X- ¢

experimental data by Antonia et a1.38

four term model.
eddy diffusivity model with coeff. optimized for all flows.
eddy diffusivity model with coeff. optimized only for a

round jet.
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Comparison of u92 models for a round jet.

O : experimental data by Antonia 55L31,38
-A- ¢ four-term model.
-+- : eddy diffusivity model with coeff. optimized for all flows.
-x- : eddy diffusivity model with coeff. optimized only for a

round jet.

Comparison of models for R.H.S. of €5 transport equation for a
plane jet.

O : experimental data by Bashir and Uberoi.34

< : five-term model.

-+~ : Lumley's model with suggested parémeters.

-x- : Lumley's model with modified parameters.

Comparison of models for R.H.S. of €4 transport equation for a
wake behind a sphere.

@ : experimental data by Freymuth and Uberoi.36

- : five-term model.

-+- : Lumley's model with suggested parameters.

-x- : Lumley's model with modified parameters.

Comparison of models for R.H.S. of eg transport equation for a
wake behind a cylinder.

O : experimental data by Freymuth and Uberoi.37
<>- : five-term model.

-+- : Lumley's model with suggested parameters.

-X- : Lumley's model with modified parameters.
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Fig. 3.4 Comparison of models for R.H.S. of €y transport equation for
a round jet.
m : experimental data by Antonia g;_gl,38

<~ : five-term model.

-+- : Lumley's model with suggested parameters.

-x- : Lumely's model with modified parameters.

9 axi axz uiuze models for a

turbulent boundary layer (i = 2).

Fig. 4.1  Comparison of {}

o |

M : experimental data by Johnson.31
-A- :  three-term model.
-Xx- : Launder's model with suggested parameters.
-+- :  Launder's model with modified parameters.

axi 8x2 i72

turbulent boundary layer (i = 1).

Fig. 4.2 Comparison of {; %—e . 2——-u.u e:} models for a

. 3
m : experimental data by Johnson.
-A- :  three-term model.
-Xx- : Launder's model with suggested parameters.

-+- :  Launder's model with modified parameters.
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Fig. 4.3 Comparison of {} %’giggg - gz;'ﬁgfgé} models for a plane jet
(i =2).
O : experimental data by Bashir and Uberoi.34
-A- :  three-term model.
-X- : Launder's model with suggested parameters.
-+- : Launder's model with modified parameters.

--- : three-term model based on calculated values of

parameters for a plane jet.

)

[

9 1,2 2
; - 5;; U;ub - F'(ure - uee{} models
for a wake behind a sphere (i = r).

o

Fig. 4.4 Comparison of {} %—e x

O : experimental data by Freymuth and Uberoi.36
-A- ¢ three-term model. |

-x- : Launder's model with suggestéd'paraheters.
-+- : lLaunder's model with modified parameters.

: - 159 0 o
Fig. 4.5 Comparison of {; 5 0 axi - 3x2 uiule:} models for a wake
= 2).

O : experimental data by Freymuth and Uber‘oi.3

behind a cylinder (i

-A- : three-term model.
-Xx- : Launder's model with suggested parameters.

~+- : Launder's model with modified parameters.
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Fig. 4.6 Comparison of {} %—e gg;-- %;;-uzuie - %—(Ezg-- ;ggi} models for
a round jet (i = 2).
0 : experimental data by Antonia et al.
-A- : three-term model.
-X- : Launder's model with suggested parameters.
-+- : Launder's model with modified parameters.
' Fig. 4.7 Comparison of {} lod 3 gus- 1-3—3_52} models for a
0 axi Bxl iR r xr

round jet (i = 1).

m : experimental data by Antonia gEJ[LF
-A- : three-term model.
-X- : Launder's model with suggested parameters.

-+- : Launder's model with modified parameters.
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Abstract

A semi-analytical method is used to derive models for the triple-
correlations of fluctuating velocity and temperature in a nonisothermal
turbulent flow based upon the exact equations which govern their transport
and production processes. In this study, these governing equations are

transformed to a set of coupled linear algebraic equations for ui“j“k’

U;EE‘} uie2 and o3 by assuming: (1) a quasi-Gaussian structure for the
fourth-order moments, (2) Slow variations of the mean flow in the stream-
wise direction, (3) negligible convection of the triple correlations, and
(4) certain simple models for the remaining higher-order correlations. A
model for the triple correlations can thus be obtained by solving the set
of linear algebraic equations.

The model for E;GEEE' is compared with the following experimetal data
for isothermal flows: the asymmetric channel flow of Hanjalic and Launder
(1972), the pipe flow of Lawn (1971), the wall jet of Irwin (1973), the
two-dimensional mixing layer of Wygnanski and Fiedler (1970), and the round
jet of Wygnanski and Fiedler (1969).

We also examine the performance of the models for the velocity-
temperature correlations by comparison with experimental data for natural
convection heat transfer between two horizontal flat plates, Deardorff and

Willis (1967), and for turbulent convection in water over ice, Adrian

(1975).
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1. Introduction

Second-order methods for modeling of turbulent flows have been de-
v@léped recently, which show promise for application to various types of
flow (cf. Reynolds [11, [2]); In these methods, the transport equations

—

for the second-order moments, i.e. G;UE} 3;5: 82, étc. are integrated
numerically using various models for the unknown higher-order terms in

the equations. Considerable research has been done both to propose terms
for the necessary models and to develop efficiént numerical computatfona]j

methods for solution of the resulting differential equations (cf. Launder
[3], Lumley [4], Daly and Harlow [5], Shir [61, Wyngaard et al. [7], etc.).
Among the several unknown terms in the transport equations for second-

order moments in a non-isothermal flow, this paper is concerned only with

je, uie2 , and 63. Hanjalic

and Launder [8] derived a simple model for the triple velocity correlation

the triple correlations; namely, “iuj“k’ u;u
from its exact transport equation. Later, Lumley et al. [9] showed that
the governing partial differential equations for the triple correlations

in nonisothermal turbulence with zero mean motion, could be simplified

with various assumptions and approximations to a set of linear first-order
algebraic equations. These equations can then be solved directly for the -
triple correlations, and the result is a model for the triple correlations
in terms of second- and lower-order quantities. The proposals of Lumley

et al. [9] seem to represent a quite general and systematic approach for
model development. Gravitational effects can be analyzed without additional
assumptions, and this is very important for the application of turbulence

models to meteorological flows or buoyant heat convection.
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In the present paper, we adopt Lumley et al.'s [9] approach to
develop models for the velocity and temperature triple correlations which
can be used in flows with a mean velocity gradient. One consequence of
this added generality is that the resulting algebraic equations have a
very complicated solution, which cannot be obtained easily by analytical
means. We therefore adopt a successive approximation schemé based on a

decomposition of the equations into terms which involve the mean
strain rate, the mean temperature gradient, or buoyancy effects and
others which do not. Finally, the performance of the models which we
develop is then evaluated by comparison with experimental data. This
was not done by Lumley et al. [9]. The model for the triple velocity

correlation was therefore tested with experimental data f&r isothermal
flows, i.e., the asymmetric channel flow of Hanjalic and Launder [10], the
pipe flow of Lawn [111, the wall jet of Irwin [121, the two-dimensional
mixing layer of Wygnanski and Fiedler [13], and the round jet of Wygnanski
and Fiedler [14]. For non-isothermal flow with significant buoyancy,
well-documented experimental data are very scarce. Therefore, we compare
the model with two simple cases: heat convection between two horizontal
plates (Deardorff and Willis [151) and heat convection in water over ice
(Adrian [161 ). In these two flows, the diffusion term involving triple .
correlations contribute substantially to the budget of kinetic energy and
thermal variance.

2.  Derivation of Equations

2.1 Transport Equations for the Triple Correlations of Velocity
and Temperature

We begin with the Navier-Stokes and thermal energy equations, incor-

porating the usual Boussinesq approximation (cf. Schlichting [17] ). If
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the instantaneous velocity and temperature fields are decomposed into a
mean and a fluctuating part, a sequence of exact equations can be derived
for second- and higher-order moments. As is well known, the equationé at
each order contain higher-order moments and the system can only be closed
with a finite number of equations by approximating the highest-order
moments as functions of Tower-order moments and/or the mean velocity and
temperature fields. As indicated in the previous section, our interest is
in the so-called second-order approximations in which we retain the trans-
port equations for second-order moments, and attempt to model the unknown
higher—order terms which appear in these equations using functions of the
second-order correlations and/or the mean velocity and temperature fields.
Here, we pursue the approach initially proposed by Lum]ey*gg_gl, (91 for
the development of models for the third-order velocity/temperature corre-
lations for non-isothermal turbulent flows with buoyancy. In particular,
we attempt to derive the models for third-order moments by direct approx-
imation of the exact transport equations at third—order. These transport

equations can be expressed in the form

ou.u.u oU. N ou
e 9% T e, T e Tk e
5t Yil5Y Yy 9%, {:Bx.‘ Uty * 2%, ujuuy ax, “i“j””i:l
TR Bu.uy aﬁ;ﬁ;
Ty YT Y TG T Y T T Y T

 S——
9 u.u.U
%.[u %y B g EP_}M_.LJ_J&

U . <
Jk X, i axj 7] Bxk axlax}

Buj auk Buk 8”1 Bui auj
A T T Tl I sl Tl O e tra
1 1 i 1 177
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where Ui = mean velocity, @ = mean temperature
u, = fluctuating velocity, © = fluctuating temperature
v = specific viscosity, vy = thermal diffusivity
and 8. = buoyance vector (thermal expansion rate x gravity) .

The objective of what follows is to approximate the various terms in
these equations in such a manner that they are transformed into a set of
algebraic equations which can be §glgg§_exp1fcit1y” for the third-order
moments directly in terms of second-order moments and mean flow quantities.
In order to accomplish this, we consider only steady or very slowly changing
flows so that the time derivatives can be neglected in (1) - (4). Further-
more, the convection term (the first term in the right-hand side of equations
(1) - (4)) is small in most cases of available experimental results and is
also neglected in the present analysis. On the other hand, the terms which
involve gradients of the mean velocity and temperature fields are retained
(in contrast to the earlier analysis of Lumley et al. [9] which assumed that
there was no mean flow). Let us now consider the approximations which will
be applied to the higher-order terms of (1) - (4) in order to transform the

equations to algebraic equations for the triple correlations.

a. Approximation for the Fourth-Order Velocity-Temperature Moments

[ —

2 3
Fourth-order moments, such as “i“j“kul’ uiuju1e, uiuje and u;8

have often been modeled in terms of second-order moments by means of a

quasi-Gaussian approximation (cf. Monin and Yaglom [181 ) and we follow
this precedent here. The existence of non-zero third moments is evidence

of a non-Gaussian distribution. However, the relaxation time for fourth-
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order moments should be considerably smaller than that for third-order
moments, and the use of quasi-Gaussian approximation for fourth-order
moments in the equation for third-order moments still appears to us to be
justified. The same argument was previously made by Lumley et al. [9]
who also used the quasi-Gaussian approximation for the fourth-order

moments.

b. Approximations for Third-Order Moments Involving

Fluctuating Pressure

The correlations in equations (1) - (3) which involve the fluctuating
pressure can be modeled directly in terms of the exact solution for

fluctuating pressure which was derived originally by Chou [19].

au! du’ 2
1 - 1 m n _]; _ 1 3 IO L oy l
3 p(x) = 5 j“ BE BE, T V-7 f” DEMIE, (upty = uglp) = 4V

m
(1) - (11)
1 1 11 1 ' . 1 '
*ﬂmﬂ-l‘g‘%?d‘”m;U{F%'P g‘n“?)}ds (5)
(I1I) (1v)

The prime on the various variables indicates that they are variables at
x + & eV orS. The r is |g| and 3/3n denotes the normal derivative to
the surface at x + € €¢S. Here, the first three terms are volume integrals

over the whole fluid domafn, while the last term is a surface integral
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over the‘boundaries. This term (IV) can be neglected, in general, for
any point in a flow which s not too close to a boundary, since p' at
boundary becomes uncorrelated with p when r is large. Furthermore, the
characteristic of terms (I) and (ITI) is different from the term (II) in
the sense that the former are linear in fluctuating velocity or tempera-
ture, while the latter is quadratic. We denote the sum of (I} and (III)
as p(l)/p and the term (II) as p(z)/p. Let us now consider the use of
equation (5) for determining models for the pressure correlations in
equations (1) - (3).

We begin with the triple correlation of pressure and velocity in
equation (1). Utilizing the solution (5) for p and the subsequent decom-

position into p(l) and p(2), we can write

(1) U TATRE U8
l’“i“' ng - éi T JJ( ag1'ggn %’dv * 4; By J[J agTBé %‘dv (6)
P J k n JJ1 3%y 9% 1°%k
(2) 3
1 ap . _ 1 3 T _ ) 1
o Yily 3%, iy fff TR (upun U, uy “iuj“m“n) v (7)

In the derivation of equation (6), it is assumed that the mean velocity
field is slowly varying so that aUm/axn is constant over the correlation

length for THTATY (cf. Rotta [201, [21]1 ). Since the integrals in

equation (6) are spatial integrals of the gradients of uiuju; and ”iujel’ _
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they can be approximated with a linear combination of triple correlations

of velocity and temperature.

Y1 11 sV

1 BU,IUJUn 1
§;-Jff 3E0Ey v = Gdi Uplipty * C2(6im U5tk * S5m YitnYk
Sik Uslplp * 85, Uyupuy ) + Cal8;, usu up Tl + S5 WU iy
+ C4(6m U k + kn u‘iujum ) + C5 ‘Simk u.iUJ-Un (8)

L J 32 u; u o' ;-dV = D.8.. 0 + D,8,4 9
I 3E,3E, i p OV % U104 WUy T U0y Puyuy
+ D3(61.k Bujuy + ij CITATRRE S Busuy + 6j1 ou U, )

+ D4 6136“ eupup +D (61k 31 jkaﬂ) eupup (9)
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The parameters in equation (8) can be compléte1y~determined using the
isotropy approximation for two-point correlations (cf. De Karman and Howarth
[221), incompressibility of the fluid, and the tensor symmetries (cf.
Launder [3] and Lumley [41). The parameters in (9) can also be evaluated
using these same conditions, plus the additional assumption that

843 8u Uy is uncorrelated with the left-hand side of (9) since su,u; does
not contain u, and u,. In consequence, the model for the triple corre-

i J
(1)

lation of velocity and pressure p is as follows:

- %— ( Uy —jl———— +oousu, —ll———)

k X; ax\j 7] Xy

© T {i mk YiYiY Smi K F Smi YjYkYn )
- l—( THTRTY § . u.u.u_ + & . usu U )

5 *“nk m nj i°Jjm nit “jkm
--g—s (6.. 8u u; + 8. Ou.uy + & . BUU, )

11 "1Y7i "7k jk "Y1 ki "7
+—§—(B-euu + g, BU U, + B, BUU; )

11 LI e 3 j 7k k "5

2 S
o5 (Giifk t oSBT SkiBy) fhYy (10)
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[t should be reiterated that this model contains no adjustable parameters.
Before returning to discuss the expression, equation (7), involving p(z),
we may note that the additional correlations associated with p(l) in
equations (2) and (3), can be completely determined in a manner which is
analogous to that used to obtain (10). Thus, without belaboring the

details, we simply note the resulting expressions for the correlations:

(1 (1) 3U
J1 ap-7 ap . _m /4
>4 u;@ axj + uje 3% = % {; (6mi unuje + Smj U Us 8 )

‘%Gijﬁl 92”1 o (11)
1) 5U. sU —
1 2 a1 g3 g3y 7 1 T3
o ® 3%y (g 5% Y ) U0+ 3850 (12)

As was the case for the expression (1Q), these approximations involve no
adjustable parameters. Let us now return to the pressure correlations
which involve p(z).

The pressure correlations associated with p(Z) in equations (1) - (3)
are called "return-to-isotropy" terms. Since the triple correlations
only become significant when the turbulence is anisotropic, it is
plausible to assume that these return-to-isotropy terms will be primarily

proportional to the corresponding triple correlations. In contrast, how-

ever, equation (7) (or corresponding expressions for the correlations
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in equations (2) and (3) which involve p(2) shows that the return-to-
isotropy terms can be represented as a volume integral involving a fourth-
order moment and a product of two second-order moments. Thus, if a quasi-
Gaussian approximation is applied to the fourth-order moment, it is
equally plausible to suppose that the return-to-isotropy terms in (1) -
(3) can be approximated in terms of products of second-order moments. In
the analysis which follows, we combine the intuitive suggestion with that
derived from the expression for p(z) and expréss all of the "return-to-
1sotropy" pressure correlations as a sum of products of second-order
moments and the relevant triple correlation. In contrast to the corre-
Tations involving p(ll, both types of terms in these models for p(zi will
be multiplied by an arbitrary constant which can only be evaluated by
comparison with experimental data. Thus, there is no loss of generality
in including both types of term at this stage. In order to maintain a
maximum degree of simplicity, however, only those products of second-
order moments which already appear in the transport equations (1) - (3)
were included in the models for the return to isotropy terms. These

models are thus

(2) (2) (2) oy
s p__ p_ ) - 1
o (uJuk 3X; Ty 3X; Uy 3%, ?I' Uiy

Ty Uil 3 touYy 3 Uy 3 (13)
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(2) (2) o U0 U, 0
21 3p 3p = 2 - _J i
0 (u1e X . * uj P T u1uJe * 72 B B B S * uju] 9X
J 1 2 1 1
+ U8 = ULu (14)
1 X 1 j
(?) o UL 0
1 .2 9p _ 3 2 . 30 i
Y O ox T o Wttt o3 Uy 2 Ou; 5% (15)
i 3 1 1
_ e 1 e 2/3 €q 1/3 1 . 1/3 €y 2/3
where T = -5, - = (7) = . (‘2’) = -
1 q 2 q 92 3 g e2
2 _ _ .. . 1 2
9 = Uuy o, e T dissipation rate of >4q and
Ee = dissipation rate of e2

We have implicitly assumed in writing these expressions that there are
two representative time scales for the evolution of the turbulence micro-
structure, Ty = q2/e for the fluctuating velocity field and L ;2756

for the fluctuating temperature field. Obviously, T is the relevant

time scale for U U while T is the appropriate time scale for 03 . It

is then assumed that the mixed correlations uiuje and u;e will have time

scales which are intermediate to 3] and Tq- In the present analysis, the

intermediate time scales Ty and T3s corresponding to ”iuje and uie2 , are

modeled, on intuitive grounds, in terms of T4 and Ty
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C. Models for Molecular Transport Terms

Finally, we turn to models for the molecular transport terms in
equations (1) - (4). Using the scaling rule of Tennekes and Lumley [231],

the relative magnitudes of these terms can be examined. For instance,

azu u.u ou, au U, Su 3w, au
1k - ~ 37k Sk “i7
v ax]ax] is much smal]er than 2v u; ax] ax] + uj ax] ax] + Uy BX] ax1

in equation (1) since the length scale for the former term is much larger

than that for the latter terms. Thus, we can neglect v X gx . We now
1771

define eij as

ou. duU.

. = 1 __J
&3 =V X, X

id 1 1
We assume that U5y is well correlated with €3k (cf. Monin and Yaglom

[181),

Buj BUk
2v ui-gi;-qu— = 2 ujeg 2 €3k uiujuk/uj”k

€ 2
N 2 ;§—uiujuk N ;;—uiujuk

Thus we propose a simple mode for the molecular transport terms in
equation (1).

> .

u.u.u au. Jdu 3u, 2Ju. oU. Qu.

v i_i_'l__k__ 2\) u —‘J__—B_ + __l_(‘ 1 + 1 _._i
3X13X]

- u. — U, —
i ax] ax] J ax1 ax.l k ax] ax]

vy ?L-u.u.u : (16)
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Similarly, we can model the molecular transport terms in equations (2) -

(4).

a2e azu. azui 1
Y Uy e Tovojuye 3X13%] * uy8 3%, 5% ~ooa T, Uju;8 (17)
2 U, 3% L1 T |
v @ 3X-]3X1 + 2y eu]- m—.l— No- g '_E; U_ie (18)
R e Lol (19
1°™M 1 1 4

The objective of developing the models listed above is to obtain from the
general transport equations (1) - (4) a set of algebraic equations which
can be inverted directly in order to obtain models for the third-order
moments. Since the arbitrary assumptions and approximations are applied
to the fourth-order quantities, rather than directly to ad hoc models for
the third-order terms, it is to be hoped that the resulting models for
these third-order correlations will be an improvement compared either to
existing models, or to models which might be obtained by direct approxi-
mation at the third-order level in the case of terms (or physical effects
such as buoyancy) that have not been considered in previous modeling
studies. In order to obtain the simplified version of equations (1) - (4),
we simply introduce the models from the three preceding subsections into
these equations, and neglect the time derivative and convection terms (as

explained earlier). The result is
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(20)

o
1] —0n |, 2 — —_—
—T—i— uiujuk T (Sﬂ u]ujuk + Sj] Ujusu, + S u1u1.uj )
+—2——B(6 ou u, + &, Bu.U, + & . BU.U, )
11 7 ij k™1 jk i ki 3
-3 (B, 6u,u, + B, 6u.u, + B, 6U.U. )
11 Y5 737k j ik k "717j
-—?—(53+6B + & .B.) 6u_u
55 ik jk=i ki“j’ "“pp
Ju.u su.u UL U
- Jk , —— "7ik — 7Y
h ;1 {uiu-' Bx] * Uit ’ax] Touuy 3%y }
?—2—uu6+g(s usu.0 + S uue)+a®uuu v L
Tzij 5 il "173 1t 1 3x11j1 10
1 —— aUJ“"é’ du; 6
+ T 6”81 6 u] - CZ(uiu'l ax] uJu1 + u]e
Bl ls. uel+2® Guua2, o3
T U 5 %1 Y 3x, it T3

(22)
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0, —5 2
4 3 3® 3 _ —— 30
— 07+ 3 . W8 = - 3 Up6 o (23)
4 1 1
oU. U
S50 T B R |
Her‘e, u_'J =75 (axj BX\)

2.2 The Matrix Inversion Model

Equations (20) - (23) comprise a set of coupled, 1inear algebraic
equations for the triple correlations, which can be solved to obtain
expressions for these quantities in terms of the mean velocity and tem-
perature gradients and second-order moments of the turbulence quantities,
all of which appear as coefficients. In consequence, they can be ex-

pressed in a simple vector notation.

Ax = f (24)

where A: coefficient matrix for the triple correlations

x: vector of triple correlations

i i']
f: vector of the right-hand sides of equations (20) - (23)

—7 3
U,UsUp, U;U:6, UB , O

The matrix A is shown in detail for two-dimensional non-isothermal
flow in the Appendix A. The form of A indicates that the triple corre-
lations are related to other triple correlations of the same order in
temperature by mean strain rates, to the correlations of one lower order

in temperature by gravity, and to the correlations of one higher order in

temperature by mean temperature gradients.
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A formal solution of the system of equations (24), is simply

-1

x = A°-f . (25)

However, for the most general three-dimensional flow, the matrix A s
large enough to require a substantial amount of computation time to cal-
culate its inverse. Furthermore, the analytical form of Q“l is too com-
plicated in that case to be presented here. However, examining the matrix
A, we notice that it can be divided into two matrices; namely, Ql’ a
diagonal matrix of terms which do not involve the mean strain rate, and
B,, the remaining matrix.

+ (26)

A =

it
>

1 2

This separation implies that triple correlations may be attributed to
two separate mechanisms: one part, él’ represents the production of triple
correlations by the small scale turbulent motions, and the other, 52,
represents the production and transport by the mean velocity and temperature
gradients and by gravity. When the mean velocity and temperature gradi-
ents are not very large, the contribution from él is generally expected
to be larger than the contribution from A,. Moreover, it may be noted
that the determinant of 52 is identically zero for an arbitrary three-
dimensional isothermal flow. These two facts suggest that a reasonable

approach to the approximating the solution (25) may be to utilize the

method of successive approximations in which it is assumed that
1Al >> 11 Ayll s e

-1

1 R (27)

X =

>
Wr>

-1, A .
1 f- é A
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Let us denote the right-hand side of equations (20), (21), (22) and (23)
as 'Elfijk’ 2293 4> ~c3hi, and -e, respectively, Then equation (27) can

be written as

T e - Loef . v 2L (s g as f s f )
Y54 o, T1Niik T 5 7 Ttk oo Tk T kg
1 o]
t2 2
* aqoy 1172 {%7'81(51j9k1 *O5k941 * Ski951)

3 2 |
- 17 (8495 * B39 + B 955) - op (8548 + 6585 ¥ Skiﬁj)91i} (28)

C C z
. 2 2 °2 2 1 W@
Uig8 = - o %y T 5 7 T2 Sindny T Spdn) a2 axg fin
a2 1
P 3 Z (8.h. + B.h.) + L s..8, h (29)
0yt 273410 ‘*i" i 5 °ii®1 ™M
—%5 g [ 2c
.53 253 2 2 2®
07 TN T 5 Tz T3 Mt g T2t g O
ag 23 1
2 1
+ §a3a4 T3T4B.ie (30)
BG) c
93 = - ——1—148 + 3 TqT Q_@_ h (31)
ay Qg0, 4 X] 1



-211-

The parameters a; va, and z; vz which appear in these expressions
require evaluation by comparison with experimental data. Indeed, it is
this comparison with data and with other models which must serve to verify
the usefulness of the general forms (28) - (31) for the various triple

correlations.

3. Triple Velocity Correlations for Isothermal Flow

3.1 Review of Previous Models

A model for triple velocity correlations is needed to close the
Reynolds stress equation even for isothermal flows, and such models have
therefore been widely studied in the recent development of second-order
models for turbulent flow calculations. Among the models which have been
previously suggested, we note:

The model of Shir [6]

4 3u.u.
U u.u. - qQ _1J
uju; Uy 0.01 = e (32)
The model of Daly and Harlow [5]
2 3uUsU.
1 = - q_ 13
uiujuk 1.0 g (33)

and the model of Hanjalic and Launder [8]

2 du.u du, U, du. U,
— q {— ] ——— Tk e T
Ujlgte = = 0-088 S ugty e Uyt T T M T (34)

More recently, Cormack, Leal and Seinfeld [24] made an extensive study of

the triple-velocity correlations and Suggested a four-parameter-model:
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4 2
- 1073 4 39
ususuy 8.14°10 7 "= (8558, 1 * 854857 + 8y5847) %]
aa
-1721029_( k, 2%j, __E,L)
€ OX . aX X
3 k
-2 ¢ aq”
- 4.80°10 7 - (85539 * 8534y * §5347) a7
2 Ja da. aa. .
_ 10l g k1 il J1
1.02-107" (aij %, g %, t s ax]) (35)
_ 1. 2

The models by Shir [6] and Daly and Harlow [5] do not exhibit the same
tensorial symmetries as E;ﬁgﬁ;l Furthermore, the original parameter of
the Daly and Harlow model is larger by an order of magnitude than the
optimal one, -0.065, found for their model by Cormack [25]. For iso-
thermal flow, there are two parameters, oy and Zys to be determined in
the model which was derived in the precediné section. From the basic

model, equation (20), we obtain

G
1 yu + 2 TRTIT T ) = -

—Uil% TS (Sjq uptgty * Syp Wuu + Sy vquguy ) = - gy Fro o (36)
: |
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Alternatively, the linearized model, equation (28), can be simply written

as

1 201 2
oy ik T 52 71 S * Siifric * Skafiiy) (37)
1

[+

—

It may be noted that the first term in (37) is identical in form with the
model of Hanjalic and Launder [8].

Since two experimental data sets for axisymmetric flow are included
in our evaluation of the performance of the models, we also derived the
transport equation for U;E;UE in cylindrical coordinates. The coefficient
matrix A and the models for fourth-order correlations were applied in

terms of cylindrical coordinates for the case of axisymmetric flows.

3.2 Experimental Data

We have found five flows which may be used to examine the performance
of models for the triple ve]ocity correlations. These are the asymmetric
channel flow of Hanja]ié and Launder [1Q], the pipe flow of Lawn [11], the
wall jet of Irwin [12], the two-dimensional mixing layer of Wygnanski and
Fiedler [12] and the round jet of Wygnanski and Fiedler [14]. Although
there are no well-documented experimental data for three-dimensional flow,
the flows Tlisted above do provide a diverse basis for the examination of

models. Two flows are axisymmetric and the other flows are two-dimensional.

A . . 3 3
Hence, there occur only six non-zero triple correlations, namely, u™, v,

2 2 2 2 .
u“v, uv-, uw , and vw-, Here, u, v and w represent Uy uy‘and u, in
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Cartesian coordinates and u,, u, and u¢ in cylindrical coordinates,

respectively.

As uw2 in the asymmetric channel flow and vw2 in the pipe flow are
not vreported in the references, it is necessary to estimate their values

for comparison with the models. Since the small scale turbulence tends

to be isotropic, we assume ;;?-m uv2 in the asymmetric channel flow. This
-assumption is supported by examination of the measurements of the mixing

layer and wall jet in the region of strong mean strain rate. Laufer's

[26] early work on pipe flow showed that :\1;2‘/(wll)l/"-('vz)l/2 ~ %—VB/(V4)%(V2)%.

If the flattening factor for w is similar to that for v, vw™ can be eval-

uated from the measured variables.

w 3

szﬁl"'z—-v
2 =
\")

With the two exceptions which were just mentioned, all the other
nonzero correlations were directly measured in the experiments. It should
be noted, however, that the presentation of the triple velocity self-

correlation function is ambiguous in the original paper of Wygnanski and

Fiedler [14] for the round jet. The correlation o is not given in their

figure 27. However, ;3; which should be zero for the axisymmetric flow,
is shown to be identical with v3. It appears to us that the symbol 3

has been used inadvertently in place of u3 in figure 27, and we adopt the

assumption u3 "~ v3 for approximate comparison of Wygnanski and Fiedler's

data with the models.
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3.3 Parameter Estimation

The basic model (36) and the Tinear model (37) have two parameters
ay and ) to be evaluated with experimental data; We optimized these two
parameters to yield the minimal standard deviation of experimental data
from the models. The experimental data were fitted with smooth curves in
order to obtain consistent values of variables and their derivatives. The
total range of the appropriate independent variable was discretized into
40 grid intervals for each data set. A1l terms were evaluated at node
points by interpolation or smooth curve representation of experimental
data. Furthermore, the data were normalized with their root-mean-square
values to ensure that all the data sets of various experiments had com-
parable weight in the determination of the parameters of the models.

For the basic model (36), we employed a search method to obtain the
optimal values of aq and &y The parameters in the linear model (37)
were determined by a Teast-squares method. The results, in terms of aq
7 and the standard deviation of the model from experimental data, are
given in Table 1, together with the same (or similar) results from other
models. The numerical results show different optimal values of the par-
ameters in equations (36) and (37). The linear model gives less deviation
from the experimental data than the basic model. However, it should be
noted that the values of oy and Zq calculated by equation (36) are more
general since the linear model is only an approximate form of the basic
model.

As previously mentioned, the first term in equation (37) corresponds

to Hanjalic and Launder's [8] model. From the comparison of their model
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and our model, equation (37), it is apparent that the second term in
equation (37) (i.e. the term with mean strain rate) can be partly repre-
sented by adjusting the parameterﬁéi- for the flows examined in this
paper. The two-parameter linear model and the models of preyious authors,
with optimized parameters, are compared with a number of data sets for the
triple velocity correlation in figures 1.1-5.6. The models of Shir [6]
and Daly and Harlow [5] are not properly symmetric in the indices. Hence,
we arbitrarily chose the combination of indices for each flow to obtain
the best representation of experimental data; From its inherent character-
istics, the model of Shir predicts that ;3‘ and ;;2- are identically zero
for the flows with negligible change along stream lines (see figure 1.1,
1.5, 2.1, and 2.5).

The model of Cormack, Leal and Seinfeld [25] apparently has more flex-
ibility due to its four adjustable parameters than the other models. It
shows an especially good representation of ;§.f0r the asymmetric channel
flow, the pipe flow and the wall jet.

For the round jet, all the models do a relatively poor job of repre-
senting the experimental data. In particular, the triple correlations
calculated by the models decrease too rapidly in the radial direction.
Moreover, it is rather disappointing that most of the models, including our
two-term model, yield the negative values for “z“i and ;;;z around the
center Tine, whereas the experimental data always remain positive. It may

be speculated that significant terms for round jet may be neglected in the
process of the simplification of the models. As more extensive data are
not available for examination of the approximations involved in the modeling,

our efforts to construct more sophisticated models are 1imited at present.
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4, Nonisothermal Flow with Buoyancy Effects

One of the advantages of the generalized modeling approach which we
have adopted is that gravitational effects can be included without further
assumptions or approximations. Hence, this section is concerned with the
application of the model to flows with significant buoyancy. Unfortunately,
there are no well-documented experimental data for the flows with buoyancy
except for a few unidirectional flows with heat convection. Due to this
lack of diversified data, it is difficult to evaluate the optimal values
of Ops O3y Ogs Lp, and L3 in equations (21) - (23). The best we can do is
to estimate their values, recognizing that they should be carefully re-
examined after the accumulation of reliable triple correlation data.

First, we assume Z, and zg are unity. The optimal value of Zq for

Uiujuk is 1.19 as calculated from the basic model. Moreover, the parameter

3

associated with 6~ is unity. We thus presume the parameters, Zo and Z3

are close to unity since the transport equations for uiuje and uiez have
characteristics intermediate to those for uiujuk and 63. The triple cor-

relations with o4, % and aq in equations (16), (17) and (18) are contrib-

uted from the correlations with p(z) and the molecular transport. Given

this similar characteristic of the transport equations for uiuj”k’ uiuje
g z g )

and u.ez, we conjecture that 1.2, _§_. The optimal value of oy from
1 O(.l 012 0L3 ;

the basic model is 21.6. For the molecular transport term for 639 Lumley

23

et al. [9] neglected Yy Sg"gif' by the consideration of characteristic
1"

length scales. In addition, they assumed ;?-and €y are well correlated.

Consequently, they proposed
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If Lumley et al.'s model is adopted, oy in equation (31) becomes six.
Based upon these assumptions and approximations, the parameters which will

be used for the following calculations are

= 6

a, = 21.6,

1 18.3, ay = 18.3,

) %4

5 1.18, &, = 1., and L3 = 1.

We now compare the model with the coefficients as estimated above
with the experimental data for the heat convection between two plates due
to Deardorff and Willis [15], and for the turbulent convection in water
over ice due to Adrian [16]1. For these flows, there is no comprehensible

occurrence of mean velocity, and the equation (24) yields a very simple

form.
g w—y - - —
A1 Ja [ 3 ¢
T 55 *2 v 222
9 + %2 8 2
EY e T B v'e g
X2 T2 5 2 , 22
= (38)
OO N A
3X2 T3 372 2
3§£2- 4 ;? e
8X2 Tg
In the former experiment, only v62 was measured at three Rayleigh

numbers: 6.3 x 10% 2.5 x 106,and 1.0 x 107. The basic model, equation (25),
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and the linear model, equation (27), are compared with experimental data
in figure 6.3. The other triple correlations calculated by the models
are depicted in figures 641, 6;2 and 6;4; In the region apart from the
wall, the diagonal terms of A are important since the mean temperature
gradient is small. However, near the wall at the top, there is a thermal
boundary layer in which the gradient of mean temperature profile is very
large. Therefore, the matrix A is dominated by the off-diagonal components
rather than the diagonal components: Between these two different regions,
there exists a region where the determinant of A becomes extremely small,
thus yielding sudden increases in the calculated triple correlations from
the model. Obviously, we cannot expect that the model will be valid in
the boundary layer due to the various assumptions which are made in the
development of the model. However, as shown in figure 6.3, the model quite
reasonably repfesents the experimental data for the region far from the wall.
In the turbulent conVection in water over ice which was studied by
Adrian [16]1, the dissipation rates of kinetic energy and thermal variance
were not reported. In addition, the kinetic energy data were also left
out of Adrian's paper. In order to get a quantitative comparisdn with the
model, it was necessary to adopt plausible assumptions and estimate the

— €
S A N

missing data. In particular, we assumed w-  and :57- —%A.
9 q

The €4 Was calculated by difference from the 82 transport equation.
In this flow, the mean temperature increases rapidly near the ice,
is then almost constant across the body of the fluid, and finally exhibits

a steep temperature increase near the free surface. It is difficult to

precisely evaluate the gradient of mean temperature from experimental data
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in the region where it remains almost constant. Moreover, it is also
difficult to accurately calculate £q in the vicinity of the free surface
due to the steep gradient of ;;22 ‘Neverthe1gss, the model is compared
with the experimental data for ;gz-and ;g.in figures 7.1 and 7.2. The
calculated forms for ;g'and ;zgiare.not reported in the belief that the

£ ) - —_—
assumptions, :é%— =-5%- and ;?': ;2'£ w2 are likely to affect these two
2 q

)
terms most strongly so that they may not be reliable.

In spite of all of the difficulty in obtaining experimental data,
the matrix inversion model shows essentially correct profiles for ;;?-and
531 Near the free surface, there are abrupt variations of tripie cor-
relations in the region where the dominance of the matrix A transits from
diagonal terms to off-diagonal terms. This feature is well confirmed by
the experimental resu1ts, and provides strong support for the validity of
the matrix inversion model, even considering the uncertainties in esti-

mating the missing experimental data.

5.  Conclusions

A model for triple correlations in a general non-iscthermal flow was
derived from their transport equations. As triple correlations are Tin-
early related in the model, they can be easily calculated by matrix inver-
sion. For flows with dominant diagonal terms in the matrix of coefficients,
we proposed a first-order linearized model, which eliminates the matrix
inversion computation. The advantage of the model is that the whole family
of triple correlations of temperature and velocity can be simultaneously
modeled. In addition, the gravitational effects are automatically taken

into account.
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We extensively compared the model which we obtained by this matrix
inversion scheme with the experimental data for triple velocity correla-
tions in isothermal flows, including asymmetric channel flow, pipe flow,
wall jet, two-dimensional mixing layer, and round jet. It was found that
the model represents the experimental data for the round jet relatively
poorly. Although any model should be invariant to changes in the coord-
inate system, it is still probable that an important term for axisymmetric
flow may be neglected in the process of the construction of a simple
model. Overall, the model shows a reasonable representation for all
flows. The term with mean strain rate did not significantly improve the
model, although the magnitude of the generation term is comparable with
any other term in the transport equation when the mean velocity is
rapidly changing. This indicates that the term with mean strain rate can
be partly represented by adjusting the parameter of the first term of the
model, equation (32).

There are scarcely any well-documented experimental data for non-
isothermal flows with buoyancy effects. We caiculated triple correlations
for heat convection between two plates and for convection in water over
ice. The model shows abrupt changes in the triple correlations, namely
;;?' and ;3; near the thermal boundary layer at the free surface, and
these are well confirmed by the experiment of Adrian [16]. For the heat
convection between two plates, the model fails near the solid wall, as
expected, since the wall effects were not included in the derivation of '

the model. Nevertheless, the calculations for ;;?.exhibit at least the

correct qualitative dependence on Rayleigh number.
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In conclusion, the matrix inversion model has shown a promising
broad applicability to various flows. We believe that the model has the
potential of correct prediction for complicated nonisothermal turbulent

flows with buoyancy effects, as well as for simple isothermal flows.
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Table 1. Comparison of Models for Triple

Velocity Correlations

Parameter

Mode1l (Optimized Parameter)

Hanjalic and

Launder [8] -0.044

‘ (-0.0581)

Shir [6] -0.01
(-0.0162)

Daly and -0.65%

Harlow [5] (-0.157)

-0.00814, -0.0172, -0.0480, -0.102

Cormack, Leal
(-0.00702, -0.00534, -0.0480, -0.072)

and Seinfeld [24]

Equation (37) -0.03323, 0.00361"%

Equation (36) -0.03313, 0.00055%

E(R; - x;)°
1Defined as — -

21: from Model; X;1 from experimental results.

20ptimized value by Cormack [257.
3-g1/aq in equation (32).

Y22
g-cl/al in equation (32).

Standard!
Deviation

0.749
(0.731)

0.945
(0.935)

0.825
(0.716)

0.583
(0.514)
0.663
0.703
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Figure Captions

The model of equation (37).

1) Figures 1.1-5.6:
— — — The model of Hanjalic and Launder [8].
— - — The model of Daly and Harlow [5].
—--— The model of Shir [6].
—---— The model of Cormack, Leal and Seinfeld [24].
++++++ Smooth curve representation of experimental
data ( cf. section 3.2 for Fig. 1.5 and 2.6 ).
Figures 1.1-1.6: Asymmetric channel flow (Hanjalic and Launder [101).
Figures 2.1-2.6: Pipe flow (Lawn [111).
Figures 3.1-3.6: Wall jet (Irwin [127).
Figures 4.1-4.6: Two-dimensional mixing layer (Wygnanski and Fiedler
[131).
Figures 5.1-5.6: Round jet (Wygnanski and Fiedler [14]).

The parameters of the models were optimized for the

whole five flows. n : similarity variable.

2) Figures 6.1-7.2: The basic model, equation (25).
------ The Tinear model, equation (27).
o,A,+ Experimental data.

Figures 6.1-6.6: Heat convection between two plates (Deardorf and Willis
[157). |

Figures 7.1-7.2: Heat convection in water over ice (Adrian [16]).
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