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ABSTRACT

Part 1

The general problem of the inversion of seismograms usually involves
the solution of a nonlinear least squares system. The major component of
any such system is the solution of the direct problem. That is, the
tracing of a ray between two given end points, where all velocities and
interface shapes are specified.

This problem is studied for piecewise constant velocities and
fairly arbitrary interface shapes. An efficient computer code is
developed for the solution of this problem yielding travel times,
amplitudes, ray paths, phase shifts, and caustic locations.

The results are then extended to a wider class of velocity distribu-
tions. Conditions are given for the class of velocity distributions for
which the problem may be studied completely algebraically.

A standard nonlinear least squares technique is then applied to

invert for hypocenters, interface shapes, and elastic constants.

Part II

A brief historical survey of continuation methods is given, with
particular emphasis on contributions after 1950.

The problem of selecting an '"optimal" step is studied. Optimality
here refers to work and storage required for the computation of the
solution. The problem is first cast in its most general setting and a
couple of trivial theorems are presented.

The problem is then dissected into its component parts, each of

which is studied separately. Several combinations of components are



also examined. For several specific iterative methods, theorems are
presented which optimize an upper bound on the work.
Several computational procedures naturally arising from this theory

are suggested.
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SEISMIC RAY-TRACING IN PIECEWISE HOMOGENOUS MEDIA



I. INTRODUCTION

There is presently an intense interest in the inversion of
seismograms. Two major groups are working fairly independently on this
problem: seismologists and oil exploration companies. The former deal
primarily with large scale problems (in the sense that distances are on
the order of tens to hundreds of kilometers) and are interested in source
location, velocity distributions, and fault line location. The latter
group works on smaller scale problems (the size of an oil field) and
focus their attention on velocity distributions and detailed interface
shapes (sources are known explosive charges).

Currently, most (though by no means all) inversion programs use only
the travel time from source to receiver. In a large percentage of cases
only the first travel time is used. Since it is frequently possible to
identify what type of ray causes subsequent peaks, it would seem worthwhile
to investigate the possibility of using this information. Presently,
there are two major methods of attacking the problem: (1) directly via
the partial differential equations of propagation; (2) the reduction of
the equations in (1) to a set of nonlinear ordinary differential
equations. The former has been employed extensively by Bamberger,
Chavent, Hemon, and Lailly [1] among others. The latter is used by
Eérven§, Molotkov, and PZen&ik [4], Pereyra, Keller, and Lee [13],
Pereyra and Lee [15] and numerous others. All succeeding sections of
this work shall deal with this latter case.

Approach (1) has been limited to fairly specific interfaces,
primarily parallel planes or concentric circles. 1In [1], Bamberger

et al. attempt to recover the acoustical impedance via the use of normal



incidence seismograms. Parallel planes are used, where the travel time

. . Ii 7 Yi41
between planes is kept constant (i.e., - = constant).
i

Eerven§ et al. present an excellent overview of the ray method.
They limit their comnsideration to the solution of the direct problem
with planar interfaces, but allow fairly arbitrary velocity distributions.
They use a standard '"shooting'" technique which seems to be very popular
among seismologists. This consists of solving an initial value problem
for a wide range of initial conditions (take-off angles). Presumably,
if enough rays are traced, some will terminate in the wvicinity of the
known receiver locations. The relevant‘data are then interpolated for
use at these points. There is a very brief section acknowledging the
existence of programs for the solution of the problem via a boundary
value problem, but this technique is not seriously discussed.

Pereyra et al. reduce the problem to a nonlinear two-point boundary
value problem, for which they have powerful programs available.
Arbitrary velocity distributions are permitted, as are arbitrarily
shaped interfaces. Parallel shooting is used between each pair of
of interface crossings, and then matching takes place to determine the
intersections of the rays with the interfaces. This process is then
iterated until a continuous ray satisfying the boundary conditiomns is
obtained. In the inversion process, only first travel times are used,
and amplitudes are not included.

The work which is, perhaps, closest to that which follows was done
by Chander [5]. This is actually a three-dimensional program (although
all examples presented are two-dimensional). The media are taken as

piecewise constant. All interfaces are planar and non-intersecting



in the region of intereét.

The following material may be viewed as both an extension and a
generalization of Chander's work, allowing for more general interface
shapes and more complicated velocity distributions. We shall confine
ourselves to the two-dimensional case, although the modifications
required for three dimensions are fairly minor. For velocity distribu-
tions which do not fall within the class exhibited in section II.6,
one may be able to employ an approximate velocity distribution to obtain
a good initial guess for the code of Pereyra et al. in a more efficient
manner,

For further references on the ray method, one is referred to
Eerven§ et al. [4], which in itself contains an excellent exposition of
the subject. More detailed references on the wave front method and
normal incidence inversion may be found in the bibliography contained

in Bamberger et al. [1].



II. DIRECT PROBLEM

IT.1. Introduction to the Direct Problem

The major goal of this work is to develop fast, efficient, and
accurate methods for determining large classes of seismic rays joining
two arbitrary points, X1 and Eps for very general geometric
configurations. Only two-dimensional situations are considered. The
geological interfaces and free surfaces separating various regions of
different homogeneous isotropic elastic material (i.e., differing constant
wave speeds cp and cs) are allowed to be fairly arbitrary. For each
ray which makes contact with N interfaces, there can be 2N+1 (or more)
distinct seismic rays connecting %I to %F' This occurs because, on
contact with an interface, a seismic wave (compressive or shear) splits
into a compressive and a shear wave. The procedures presented allow the
easy determination of all such rays (when they exist). Travel time and
amplitude variation are determined along each ray. Phase shifts may also
be determined since the occurrence of every caustic on any given ray
segment may be detected. From these data, compiled for some set of ray
classes, we can construct peak seismograms.

O0f course the motivating factor is the solution of geophysical
inverse problems. Chapter III incorporates the methods of Chapter II
to determine source location, media speeds, and interface shapes.

In section II.2, the ray problem is formulated for general
piecewise constant configurations. It reduces to systems of coupled
nonlinear equations. Also, the notion of a ray "signature'" is

introduced. This is a useful tool for devising simple computer codes

to solve the nonlinear system.



Section II.3 describes the solution procedures employed (Newton's
method and a continuation in the speeds). A special continuation (or
homotopy) procedure is developed to obtain the initial ray of any given
class,

In section II.4, the computation of travel time, amplitude
variation, and phase is discussed. Section II.5 is a discussion of
nonphysical, nonunique and diffracted rays.

Section II.6 covers the extensions to linearly varying elastic
materials. The materials are allowed to be plane stratified with an
arbitrary variation of speeds in the principle direction.

Section II.7 contains worked-out examples.



II.2. Formulation of the Problem and Classification of Rays

11.2.1. Problem Formulation

The structure of the earth is modelled by piecewise constant
regions of arbitrary shape. All interfaces (and the free surface of the
earth) are assumed to be smooth curves (piecewise ¢® and continuous

is sufficient). These curves are represented by the formulae:

y = fi(x) , 1i=1,2, ... , M (2.1

We shall adopt the convention that i 1 represents the free surface

of the earth. The region of physical interest is thus confined to

y £ £f1(x). For purposes of simplification, we shall not consider
intersecting interfaces at present. The inclusion of intersecting
interfaces poses no great difficulties, but it does complicate the
notation somewhat (and the coding as well). So the configuration consists
of layers, but the interfaces need not be planar nor simple geometric
shapes (see Figure 1).

The medium between each successive pair of interfaces is assumed
homogeneous, isotropic, and perfectly elastic. The elastic constants in
each medium are assumed known: A (Lamé constant), M (shear modulus),
p (density). In such media, at most two kinds of signals can propagate:
compressive (P) waves with speed CP = ‘/A—E—EE and shear (SV) waves

with speed C =‘/%-. These speeds are, of course, different in each

S
medium. Since the speeds are constant, the rays are merely straight
lines. Hence, no differential equations need be solved.

A ray is determined geometrically by specifying the initial point



Xrs the final point Xp» and each contact interface. On each segment
[§k—l’ §k] its type of propagation must be known. To determine the
ray path, only the speed of propagation is required in each medium. At
each contact with an interface, Snell's law must hold. This supplies
sufficient information to determine the contact nodes, as shown by the
following.
Denote the speed on segment [gk-l’ §k] by Vi for each
k=1,2, ..., N2. Let the tangent vector to the interface at node X

be denoted by Ek’ The most general form of Smell's law then requires:

v T, - k7 %k-1 _ . k1 T 2k
Y T w1 el T = =0T

(2.2)

In the above the vector notation X = (xk,yk) is employed and
(I : 5) represents the usual scalar product of vectors. From the

interface representation (2.1), when X is on interface ik we have

L2 (x,y,) = (x, £, (x)) (2.3)
) 5 F(meyyY = (g, £ G
With %ﬁ(x) = f'(x), a tangent to interface ik at x is given by:
b) T.o= (L,£; (x)) (2.3)
~k i *x

Substituting (2.3) in (2.2) one obtains:

G~ M) ¥ ETap O By () - gy (e p))
k+1 !
[Gox_ 2 + (£5, () - fik_l<xk_1>>2] %

¢k=v

Cap17) * £3y O By Oyp) = £1,, ()
[Gorr = 20% + gy Gy P=£1, 60 ]

(2.4)



Relation (2.4) must hold on each interface which is crossed
between X and Xp- Since the source location and receiver location
are given, we obtain a system with N variables, where N is the number
of interfaces which are crossed. The unknowns are the scalars
Xys +e 5 Xg. For k =1 and k =N in (2.4), we require values for

x, and X1t BY definition we use:

X =x. = (x,,y.) = (x., f; (x.))
2o 2 027 i
a) I I o I (2.5)
Bl T3 T O T T O £y Oy
The use of £ and f, is simply for a standardization of the
1 N+1

computer code. In reality, these functions are defined by

b) (2.5)

Using (2.5) in (2.4), we are left with N nonlinear equations in N

unknowns. By introducing the vector notation
- T -
X = (xl{xz, cens xN) s V = (vy,vys -0e, VN)
= T
¢ (XQV) - (dlséZs ety dN) (2°6>

then the system to be solved is given by:

¢ (X,Vv) =0 (2.7)
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II.2.2. Ray Signatures, Ray Classes and Propagation Types

In order to implement the preceding formulation, it is necessary
to specify on each desired ray the speed of propagation on each of its
segments ffk-l’ §k] and the appropriate interface formula at the nodes
X - This is done by assigning an integer label, say m, to each

different material. The speeds in material m are then labelled as:

c = Vo Cs,m = Vomb1? B = 1,2, ... M. (2.8)

Therefore, P waves are denoted by even subscripts and S waves by
odd subscripts. Given Xy and §F; wg may classify any desired ray
by sequentially listing its speed on the first segment, the number of
the first interface, speed on the second segment, number of second
interface, ..., speed on the final segment. We shall call this listing
a ray signature. This is equivalent to listing the subscripts of the

speeds and the subscripts of the interfaces. Thus a signature is

specified by giving an ordered set of integers

) S[as1y5 Gp01p5 oen 3 dyains Jaiq ] (2.9)
4 N*"N’ YN+l

Given two signatures ;5(1) and ;3(2), we shall say they correspond to
rays of the same class if iél) = iQZ) for all k=1, ..., N. In
general, there are 2N+1 ray types in each class (there may be more
actual rays, since there may be more than one ray corresponding to a
given signature).

Some simple examples will be illustrative. Figure 1 depicts a
sketch of four layers, the first and third of which are composed of the

same material. Two classes of rays are indicated, one with one internal
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node (I) and the other with two internal nodes (II). Classes I and II,

with all possible signatures, are listed below:

Class I Class II
1. [4,2;2]~[p;P] 1. [4,3; 4,2;2] ~ [P;P;P]
2. [4,2;3]~[p;s] 2. [4,3; 4,2;3] ~ [P,P;5]
3. [5,2;2]~[s;p] 3. [4,3; 5,2;2] ~ [P;S;P]
4. [5,2;3]~1s;s] 4. [4,3; 5,237 ~ [P;S;8]

5. [5,3; 4,2;2] ~ [S;P;P]
6. [5,3; 4,2;3] ~ [S;P;8]
7. [5,3; 5,2;2] [S;S;P]

8. [5,3; 5,3;3] ~ [s3S:8]

Next to each ray signature is listed the sequence of propagation
types. This is redundant information since it can be gleaned by
simply observing the parity of the speed indices. However, it is often

quite useful to display this simpler propagation signature.
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//”—-‘—_————————7 m=3

Figure 1. Four layered media with ray classes I and II depicted.
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II.3. Solution Procedures

I1.3.1. Newton's Method and Continuation for Rays of the Same Class

Newton's method and a continuation procedure are utilized to solve
the system (2.7). 1In particular, given an approximation to the

solution, say Xv, then an improved value is given by
X\ =X+ 8x' (3.1a)

where

JV8xY = -¢” (3.1b)
In (3.1) we have used:
KDE (2, 0%, s vees x), O 2 0X,W), 3V =0,V (3.2)
where J(X,V) 1is the Jacobian matrix of the system

= 2%V (3.3a)

From (2.4) - (2.6), we deduce that J is an NxN tridiagonal matrix,

J = [bk’ 4. ¢ ], where

bk z gxék , & = 225 s = 83¢k (3.3b)
n-1 k e+l
Introducing the following notation:
dfy.(x.)
AX.E.—X.,A.E.—.’ '.= 3.3
i j-10 Y3 T V5.7 Y510 Y dx, ’ (3.3¢)

J

D, = [(x)® + (by)?] g

then the components of J may be written explicitly as:
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' 2
Vr+1 L+ v . (312 - Axk * Yy AYk
k D, Tk T Dy

fu
fl

' 2
A IR v g1y Brpir ¥ Ve
D Tk T k+1 Tk D

k k+1
- ' '
S oo (Axk+yk_1Ayk> (Axk+ykAyk> (3.34)
K o | k-17k B, D,
i ' ' .
S T I _(Axk+1+ykAyk+l)(Axk+1+Yk+1Ayk+1)
k De+1 | kTktl Dr+1 Dr+1

0
Newton's method converges quadratically when X , the
initial guess, is sufficiently close to a solution [if J

is nomnsingular at the root]. That is,we are assured that

lex"|l Sk "I, v = 1,2,... (3.4)

. o . . : 0
if X is close enough to a solution. To obtain such a X we

use a continuation method.

We introduce a one parameter family of speeds.

wd) TAV+ (1-0)V, 0SS 1 (3.5)

Clearly w(0) = G and w(l) = V. Thus if the solution of (2.7) using
the speeds (3.5) is denoted by X(}), it follows that X(0) is the
solution using speeds V  and X(1) 1is the solution with speeds V.
If we know the solution for any value of A, then we can ﬁse

XO(X +A)) as the initial guess in Newton's method for the value

A + A\, where XO(A + AA) 1is given by:
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X2 + Ax) = X(A) + AKXV (3.6)

This is accurate to order (AA)2 if we know i(l) = diik) . We

can obtain this derivative by substituting (3.5) in (2.7) and

differentiating to obtain

IEQ, W) kO = - LEDLLD g, (3.7)

The matrix B 5-5— is Nx(N+1) and is bi-diagonal. 1In particular,

the kth row of B (bk 3 (recalling (3.3c)) has the elements:

]
b _ % Bxpr B
ok SE, T D
k k+1

a '
. _ d¢k ) Axk + ykAyk
k,k+l = 3V Dy
bk,j 20, j#k,k+l (3.8)

Since we know J(X(X), w(A)) at A, we can easily obtain k(k) by
solving (3.7).

Note that once we have any one ray in a given class, we may use
this continuation technique to compute all desired rays in that class.
If the rays of different propagation types are ordered appropriately,
we can obtain vectors V and g which differ in only one component ,

i,e., for some k :

- A T
v-v = (0,...,0, vk-jk,O,...,O) . (3.9
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The right hand side of (3.6) has only two non-zero components in this
case, the (k-1)St and the kth, In more than 90% of all test examples,
this continuation procedure succeeded for AA = 1, That is, in one step,
we obtain an initial guess for which Newton's method converges for the

new speeds YV from B.6)with A = 0 and AX = 1.

I1.3.2, Obtaining the First Ray of a Class

In I1.3.1, it was shown how to compute all the rays of a given
class after one ray of that class had been determined. A simple
technique for determining some first ray in a class will now be
exhibited. Usually we choose the pure compressive ray [P;P;...;P],
but this is by no means necessary.

Assuming that X1y Xpo and a signature have been specified, then

F

an initial vector X 1is chosen arbitrarily. For example, we often

choose

AN

Xp = Xp
) , k=20,1,..., N+l (3.10)

ﬁklefk(”gil—-
From the signature, we can now determine the nodes gk = (%k,fik(ﬁk)).
For V,;, the correct value of v; is chosen. Noting that (2.2) is
linear in the speeds v,, we now use the values of ik and Vv to
successively compute 32, ey GN+1 to generate the speed vector G.
The speeds thus generated are generally unrelated to any physical
materials (in fact, some may even be negative). Additionally, the ray
in question may pass through the same material several times with a

~different propagation speed ¥ on each segment. One may envision

this as treating the earth as a Riemann sheeted material. Every time
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the ray traverses a medium, it travels on a different Riemann sheet.
Regardless of the non-physical nature of the generated data, the

procedure has generated vectors X and V such that
® (X, V) =0.
Once again, we can employ the continuation method of II.3.1 to determine
the solution for the true physical speeds V. The continuation process
for this first ray is typically somewhat slower than for the subsequent
rays. But, in most cases, it converges surprisingly quickly.
For certain exceptional cases, some segment [ﬁk, §k+1] may be

tangent to an interface. A simple shift of some components of X can

always be found so that this does not occur.

I1.3.3. Smale's Boundary Conditions for the Simplest Case;

Niceties of J

There is no guarantee that the continuation method given in the
preceding sections must always yield a path leading to A = 1.
However, Smale has presented conditions under which the continuation
method cannot fail. These conditions follow.

Suppose we wish to solve

f(u) =0 . (3.11)

We use the continuation method with the parametrized problem:

G(u,A) £ f£(u) - Af(u®), u = u(s), A = A(s). (3.12)

By differentiating, we obtain the initial value problem:
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f'(wa - A £@W® =0 (3.132)
all2+ 3% =1 (3.13b)
u(0) = u°, A(0) =1 (3.13¢)

where b 1is simply a normalization which makes the parameter s
mimic arc length.

Smale's boundary conditions guarantee that a path exists
satisfying (3.12) such that A(s) has an odd number of zeroes on that
path (i.e. the path passes through an odd number of solutions of
(3.11)) for almost all choices of u°.

Given Q==RN and 0Of) smooth and connected, Smale's conditions

become:

£'(u) is non-singular Yu€odf (3.14a)

G(£'(u))” '£(u) points in ¥ u € 3 Q (3.14b)

where O 1is a constant equal to either 1 or -1.
We shall show that for the simplest case (simple reflection or
transmission), that we can guarantee that Smale's conditions hold.

By defining S; = Xy~X,_;, We may formulate the problem for

parallel plane layers in terms of the s,'s.

i
s S.
Vg - —-:-'—-F—l]—)—-— = 0, i=1,...,N (3.15a)
11 Vi+1¥i+1
n+l
Z s; - (xp=-xp) = 0 (3.15b)
i=1

For N=1, we will show that Smale's boundary conditions hold for

£

{055,025, s;#4s, S (x7x) + ¢} (3.16)
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where € 1s a sufficiently small positive number.

The Jacobian for this case is

ky kit
v.D.3 v...D 3 a1 5
~ i7i i+173i+1
J = = (3.17)
1 1 1 1//
where ki = lyi - yi+1!.
Since both a; and b; are positive, J is non-singular
(i.e.y det J =a; +b; > 0) for all finite values of s. Thus
we may write
N 1 b:
=1 1
J = ————— ) (3.18)
a1 + b; -1 a1
and we note that condition (3.l4a) is satisfied on 0.
To test condition (3.14b) we form the product
i 1 BT (3.19)
¥ al + bl —fl + a1f2
The outward normal to s, +s, =1+¢€ is n, = (l,l)T. The
component of 3‘1f in the n; direction is
¢, =n - J—lf =f, =85, +5s, - (xF - xI) (3.20)

On s; +s; = (xF - xI) + €, we have c¢; =€ > 0. Hence J s
points.out on this portion of the boundary.
The outward normal to s, =0 is n, = (-l,O)T. Thus we have

on s, =0,
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Since 0 < s, < (xF - XI) + g,, we have vs - (x, = XI) s g,- Hence

we can choose g, small enough that c, 1is positive.

Similarly for s, = 0, n (0,-1)T. On s, = 0 we obtain

c; = my t T 'f = - ;11‘7;; (-£, + a,f,)
51 _ k1 - _
7.0, N (sy = (x5 = %)) (3.22)

As before, we may choose an g, such that for O < s, < xF-xI+ €29
¢; > 0. We now take ¢ = min(g,,g,). Themn ¢; >0, c; > 0, c¢3 > O.
Hence (3.14b) holds with ¢ = -1 on 3Q. Thus Smale's boundary
conditions are satisfied and the continuation method must produce a
path which leads to a solution in .

We return now to the matrix J of (3.3) for the case of parallel
plane layers. For this case it is easy to show that J is symmetric
and positive definite.

From (3.3) with y' = y" = 0, we obtain the elements of J as

b, = - i < 0
i viDi
k ks
8 = v Dl 3t v 1;1 T = _(bi + Ci) > 0
ii i+17i+1
i+l
4 - bi+1 <0 (3.23)
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Since J is tridiagonal and c, = b J 1is symmetric.

i+1’
First let us show that any matrix of this type has a positive determinant.
Since all principal submatrices are also of the form, they all will

have positive determinant and hence the matrix must be positive definite.

Thus we need only show that det J > 0. If we decompose J dinto L U

factored form where L 1is lower triangular and U is upper triangular,

e — e R
01 1y
baaa 1 vz
bi3ds 1
J = LU = » Y
Yy-1
b,, O
N 1
- Y | (3.24)

Then we find [Isaacson and Keller [10], p. 56]

Gy =a , Y = ’31/0'1
a;, =a; - biYi-l s i=2,3, N
Y; = ci/(xi s i=2,3,... N (3.25)
By Theorem 5, Isaacson and Keller [10], p. 56, oy > Iai] - Ibi .
However, we have from (3.23)
lag| = byl =legl >0 (3.26)

Hence Oy >0 for all i. Now det J =det L - det U= det L =

N
11 ai >0, Thus det J > 0. 1If we denote by J(k) the matrix

composed of the first %k columns and rows of J, then each J has

the form exhibited in (3.24). The above determinant condition thus



applies to each J(k), k=1, ..., N. Hence

® 5,

det J , k=1, ..., N (3.27)

Thus by Theorem 1, p. 152, Franklin [6], J 1is positive definite.
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1I1.4. Travel Time, Amplitude, Phase

I1.4.1. Travel Time

After a ray path has been determined, we compute the time for a
signal of the given propagation type to travel from X7 to Xpe Since
th i
the speed on the kth segment [gk-l’ §k] is Vk and the length of that

segment is Dk’ clearly the travel time is given by:

N+1 Dk

t = v . (4. 1)
z_: k
k=1

11.4.2. Amplitude Calculation

The amplitude along a ray is computed assuming that a source of
unit strength is located at X.. 1In a narrow tube of rays surrounding
the ray in question, it is assumed that the energy carried by the wave
1s conserved. The change in energy along a ray is proportional to the
normal cross-sectional area of the ray tube which is proportional to
the Jacobian of the mapping induced by the rays. Also, at each interface
a ray may split into two reflected and two transmitted rays. This must
be taken into account for energy conservation. This yields the standard
reflection and transmission coefficients at the interfaces.

The Jacobian of the mapping has been calculated by Cerveny et al.
[4]. This result follows.

With the following definitions

(1 + (£g e D2
R, = - = radius of curvature of
[fik (xk)l interface ik at X
ek = incident angle
6 Z angle of reflection/transmission
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v. Vv = i
k* k+l propagation speeds
T = radius of curvature of wavefront prior to
incidence
fk = radius of curvature of wavefront after

incidence (4.2)

The geometric spreading factor G may now be computed as follows:

. N %
G = [y + Dgpp) j21 4] (4.3a)
2
v cos“8, r. v. .
dj = ;;i%353~:—1' + TR goszé [ %flgosej+6jcosaj] (4.3b)
3 03 i3 i3
A T
g, 0= <1 (4.3c)
k| d.
3
r, = T, ., +D 4.3d
h| j-1 b ( )
r, = 0 (4.3e)

where Gj and ﬁj are determined by the following rules. The tangent

line to interface ij at the point §j is given by (see Figure 2).

tj(g) = fij(xj) (x=x

j) + yj . (4.4)

Figure 2. Tangent line ¢t, and a tube of rays

i
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One now wishes to determine under what conditions spreading occurs,
and under what conditions focussing occurs.

There are two cases to be considered. 1If the curvature is
negative (with respect to the incident ray),then spreading occurs for
a transmitted ray and focussing for a reflected ray. Similarly, if
the curvature is positive (with respect to the incident ray), focussing
occurs for the transmitted rays and spreading for the reflected rays.
(Note that this implies that the amplitude is not independent of the
direction of transversal!) Since Gj = 1 corresponds to spreading,

Oj = -1 to focussing, we obtain the following determination.

g, = sgn (f'i'j(xj) [tj(xj_l) - yj_ll) (4.5)

The factor 6j merely signifies whether the ray is reflected
or transmitted. This determination is easily made by examining the
ray signature. Hence from (2.9), a ray is reflected at % if
I - kaod 2

determined with

= jk+l - jk+lm°d2 . So the Jacobian is completely

R 1, j, - j,mod2 = j -3 mod 2
5 = k k k+1 k+1 (4.6)

-1 , otherwise

Next we must consider the amplitude change due to the splitting of
rays at an interface. This requires the solution of a 4x4 linear
system at each interface (2x2 at free surfaces). A derivation of this
system may be found in Keller [12], pp-. 371-381. Only the portions
relevant to the functioning of a working computer code will be detailed

here.
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Let I' be an interface separating medium A from medium B. We

define the following unit vectors (see Figure 3) at the point gj.

gj(o) = incident ray
1
§j( } = reflected P ray
G _
gj = reflected S ray
3 -
éj( ) = transmitted P ray
iy
§j( ) = reflected S ray (4.7)

(1) (2)

The unit normal, zj , and unit tangent, zj » to interface ij at

the point Xj are defined by:

(2) . (0) _>_ 0 (4.8)

(see Figure 3).

(M

Figure 3. Unit vectors gz and

g(n)
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We now define the angles’ei by

cos Gi = ng) . Egl)
3 j

sin 63 = gV . 1P (4.9)
ki 3

and the elastic parameters by

Ui (u%) = shear modulus in medium A (B)
oi (p%) = density of medium A (B)
Ai (A%) Z Lamé constant in medium A(B) (4.10)

Thus we can define the amplitudes and the appropriate speeds by

ai Z amplitude of ray in direction §§v)

1)

speed of P ray in medium A

|
j Ha -
c, =4 ~J Z gpeed of S ray in medium A
o8
. kg + 21%
e = Z gpeed of P ray in medium B

speed of S ray in medium B (4.11)

]

J

Using (4.7), (4.10) and (4.11) one can now write the system for the

amplitudes as



e = o g 4.12
Q%5 o X, ( )
with:
cos & sin 07 - cosei - sinG{
sinfg - cose:zl - sine‘g coseﬂ
< . : : 3 3 b 3 desmnad
={_pnda] J A3 A3 J p~e3cos2f c,sin26
Qj P,y cos283 p,C251in26; B 4 Pp 4
Uj uj ;
A 0] J.J | B oio0gd 3. k|
- = 31n261 QACZCOSZGZ 3 51n283 DBchosze“ (4.13)
e e
. . .
o, = oh o b
. . T
R, = G, K], &, k).

The ki are determined by the type of the incident ray as follows.

(Incident P ray) j
kg = cos@?, kg = 4coseg, kg = —picgsineg, kﬂ = -—? sin263 (4.14a)
<1
(Incident S ray) j

; - ; . H .
A _.
kg = —picgsinZGg, kﬁ =3 31n283 (4.14Db)

kg = -sineg, kg = —cosf?
C1

2,

For reflection from a free surface, the density on one side of the
interface is zero. Thus no transmitted rays exist. One is left with a

2x2 system, which may be solved explicitly to yield:
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(Incident P ray)
_— . . . .
. ﬁﬁi) cos'ze% + (c%)zsinZQ% sin263

3 _ : < - .
! %o (¢])2cos?263 - (c3)2sin2g3 sin2g)
i 2c§c§ sin29% cosZ@i
%2 T % \(c))2cos?26) - (c%)zsinZGgsinZeg (4.15a)
(Incident S ray)
3 F 2c}cg cosZG% sinZGﬂA
4 T TG (cg)ICOSZZG% + (cg)zsinZGQ sinZGg
5 —(c;)zcogée% + (cg)zsin29g sinZQg
gz = QY (4.15b)

(c?)zcoszze?, + (c3)2sin2p] sin2g3

From the signature (2.9), we know which ai to choose for each j,

say ui . This yields the amplitude factor
i

N .
E = [ q (4.16)

~1
of the travel ray at Xp» then from (4.3) and (4.16) we obtain

If ar is the strength of the disturbance at x, and ap the amplitude

I1.4.3. Phase Shifts

In order to produce a synthetic seismogram, it is necessary to
input an initial impulse. There are standard convolutions which take
the so-called '"peak" seismograms (amplitude versus time for individual

rays) as input and produce a continuous seismogram as output. Although
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we are not concerned with that problem here, we must supply all necessary
information required as input in order to utilize the existing software.
The preceding sections have shown how the amplitude and travel time may
be computed. The only additional data necessary are the phase shifts.
There are three sources of phase shifts to consider: (1) reflectioms,
(2) caustics, and (3) critical and supercritical rays.
Let us first deal with ordinary reflections, since this is the
simplest case. Upon reflection, a phase change of 7 occurs. That is,
the amplitude changes sign (since the wave reverses direction), hence

a factor of eni is introduced. We define the quantities Yy by

1, jk - jkmod2 = jk+1 mod 2

Y, = (4.18)
0 , otherwise

The total phase shift due to ordinary reflections is then expressed

trivially by:

v, = 12 "k (4.19)
k=1

N
Secondly, passage through a caustic results in a phase shift of

m/2. How to determine whether a caustic has been encountered is treated

in II.4.4. It suffices here to state that since the rays are straight

line segments, a maximum of one caustic can be encountered on each

segment. The quantities Bk are used for this purpose.

1 caustic crossed on segment [ b'4 ]
B - ? gn By s ~ktl (4.20)

0 , otherwise



The total phase shift due to passage through caustics may be expressed

as:
N

V]
™w

v o= 3 k (4.21)

[

k=
The final source of phase shifts occurs when one or more of the splitting
rays is supercritical. In this case the associated angles are imaginary.
This may yield a complex solution to (4.13). If we represent the

amplitudes by:

i¢
a =wen
n n
w 2 0
n
0 = ¢n < 27 (4.22)

then the phase shift is given by év . Hence the total contribution due

J
to supercritical rays is

N
Y, = Z 8, - (4.23)
k=1 'k

Thus we arrive at the total phase shift ¥, from (4.19), (4.21), and

(4.23):

3
v o= Z b - (4.24)
k=1

I1.4.4. Location of Caustics on Ray Segments

When a ray passes through a caustic, then the amplitude as given
by geometrical optics is formally infinite. We can detect such a point

by examining the factors dj of (4.3b). If dj is 0 at any point of
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[Xj-l’ Ej]’ then that point lies on a caustic. Hence, if dj < 0,

we have passed through a caustic on [x 1’ x ]. Locating the point

~

on [X’—l’ xj] where the caustic occurs is then quite simple. For

infinite amplitude (dj = 0), we need (from (4.3b)):

R.V, s2g, + r,v,,,cos8, + g.v.cosf. = 0 4.25
O 3Vj+1 €O8705 F TyVy, €088, F o4v,coshy (4.23)

~

Replacing rj by r + Dj via (4.34d):

R.v.,. cos2g, + (¥, , + D,)v., ,cosg. + ~,v.cos~. = 0 (4.26
95757 5+1 85 * (¥j1 ¥ Dy)vyy 00865 + ogvscosey )

Solving for ﬁj we obtain

5 . ijjvj+lcos Qj + ngJCOSG + r -1 J+1cose
h|
vj+1 cos ej
v.3.cos@ .,
= .R,cosg_. - - T, 4.27
0By eJ , oo j-1 ( )
j+l J

D, 1is the distance along the segment [xj, xj+1] where a caustic would

~

be located. If D, > 0, then we can determine the crossing of the

J

caustic X, = (Xc’yc)' (Note Bj < 0 = spreading is occurring,

~

hence no caustics are possible.) If 53 < Dj((3.3c)), then [xj—l’ xj]
passes through a caustic. For this case we obtain the following equation
for x:

c

- 2 - 2 = 2
(xc xj-l) + (mxj_1 + b fij_l(xj-l>) ADj (4.28a)

where we have used



o = h| j-1
- x,
*5 j-1
b = yj-l - m xj—l (4.28b)

The point X, is then determined by the solution of this quadratic as:

xt = x 1 W2 - 4uw (4.29a)
c i=-1 2u
with the definitions
u = m?+ 1, v=2 [m(b~yj_l) - Xj-l ]
2 2. N2
w o= . + (b-y, . -D 4,.29b
-1+ oYy 3 ( )
Finally X is determined by
+
. - X, xj_1 < xj
c - >
X, xj-l xj (4.30a)
(4.30b)

<

il

B

ox
+
o
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II.5. Diffracted Rays and the Problems of Existence and Uniqueness

TI.5.1. Diffracted Rays

For planar interfaces, the path of a diffracted ray may be cal-
culated in exactly the same manner as non-diffracted rays. One need
only specify that the diffracted ray travels in the medium with the
higher velocity. However, the amplitude cannot be determined by simple
ray theory. Thus although we can determine the path and the travel
time, we are unable to include these rays in an artificial seismogram.

For non-planar interfaces, simple modifications to the system (2.7)
are required. The system decouples into n-1 independent systems, if

n diffractions occur. Consider Figure 4.

Rz Re
V?.
5& ) \a'= g(")
Xa
Vy

Figure 4. An example with a diffracted ray

The algebraic system is

x1 - % ¢ £'(x1) (£(x1) - YI) '
vy + Siv2 V1 + £'(x)2 =0

D, : (5.1a)
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- x, ¥ £1(x,) (v, - £(x,))
T A S 48y, TFE(x)? (5.1b)
D3 ) :

Vy

i e . . . .
61 is chosen so that the angle between [El’ §1+1] and [§1+1, §1+2]

is not acute. This difficulty does not arise if we use a parametric

form of representation for the interfaces, i.e.,[xi = xi(t), y; = yi(t)

denotes the ith interface] . Note that (5.l1a) and (5.1b) are independent.

For larger systems we obtain similar results. The 9x9 system in

Figure 5 decouples into one 3x3, one 2x2, and one 4x4 system.

[

L
!
)
!
|
i
]
]
J

_-\_-__._._.--..-J

Figure 5. An example with two diffracted segments

Although calculation of the amplitudes is not possible in an

elementary way, the travel time may be determined using any numerical

integration routine. For example, in the system (5.1), once X, and

X, have been determined, the travel time along the curve f(x) from

x;, to x, is simply
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xz ) ] -
£ = f v1+ (£7(x))? dx (5.2)
Vy
X

Thus, we are able to identify the time of arrival of a diffracted ray,

allowing us to determine the beginning of a head wave.

II.5.2. The Problem of Existence, Non-Pliysical Rays, and Non-

Uniqueness

In the most general setting, we have no guarantee that a ray of any
given type exists. More important, the solution which we obtain may
not correspond to a physically meaningful ray. From II1.3.3, we know
that for parallel plane layers a solution exists (and is in fact unique),
and thus for small perturbations this will remain true. (The perturbations
must be small in the first two derivatives of fi’ as well as fi.
itself.) Figure 6 illustrates the very simplest case in which a sglution
exists, but thevray is non-physical. In general, only examination of
the solution allows us to determine if it is physically acceptable. A

scope with graphing capabilities may be utilized to reject any rays which

are unacceptable,

X

Figure 6. A ray path directly joining X to Xp exists, but is

non-physical.



37

Similarly, the problem of non-unique rays is equally perplexing.
For very general interface shapes the solution need not be unique.
Indeed, an infinite number of solutions may exist. Figure 7 depicts
such a case, where the source and receiver are located at the same

point, the center of a circle.

]}
Ix
"

Figure 7. All radii of the circle are physical ray paths

A less contrived example of both non-existence and non-uniqueness

appears in I1I.7.



38

I1.6. Stratified Media with Non-Constant Speeds

The previous sections have all dealt with media having piecewise
constant elastic properties. However, for certain non-constant velocity
distributions, the problem may still be rendered completely algebraic
with a tridiagonal Jacobian matrix.

Let us examine the travel time principle upon which geometrical
optics is based. We desire to locally minimize the travel time between

two specified end points. Hence, we must minimize the functional

X t, 7_______

T+ 52
I = Yx_+ yZ .
[ v(x,y) f v(x,y) de (6.1
Xy t,
s = da = da
where a = at and a' = ix

1

Setting w = » from the calculus of variations, we need

v(x,y)
the first variation to be zero, yielding [Gelfand and Fomin [8] , p. 19]:

"

vy - wxy' -w T—%——Tz- = 0 (6.2a)

y

y(xy) = vy,

y(x,) = ¥, (6.2b)

where the subscripts x and y refer to partial differentiation. In
general, we cannot obtain even a first integral of this system. However,
if we restrict ourselves to the class of velocity distributions given

by the ansatz

v(x,y) = h(Ax + By + C) (6.3)

then we are able to obtain a first integral in the following manner.
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First, we make the change of variable

- Ax + ¢
P A

Substituting (6.4) into (6.1) and using (6.3) we obtain

t, ‘ t,
V(x,y) h(Ap + By)
t t1

We now perform a rotation of the p-y coordinate system.

Define X, Y, and 9 wvia:

X = p sin® + y cosb
Y = -p cosB® + y sin®
sin 8 = A
VAZ + BZ
/AZ + B2

Using (6.6) in (6.5) yields

t
2 T ST
I=f/x + ¥ dt

h(vA24+B2 X)
1

Finally, to obtain our final desired form, we define

a = /AZ¥B2X , b = /JAZ +BZ Y

Substituting (6.8) into (6.7) gives

t2
I = f vaz + B2 dt
VAZ + B2 h(a)

ﬂ'

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)
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We thus arrive at the problem which is of immediate interest.

tz ’
/a2 F 52
Minimize I = _/ﬁ-ii—itli—— dt

t h(a)

az _
12

= ./——__;tll_— da (6.10)
a, h(a)
where b' = 92 Note that h 1is now independent of b. Thus from

da °

(6.2) we must solve
b"h - b'(L +b'?R' = 0 (6.11)
This is a first order differential equation for 2z =b' ,
2(1 + z )h'- hz' =0 (6.12)

In differential form, we have

dz . h'
z(l+z0) - p da (6.13)

This can be integrated to get

log z - %log (1 + z?) = log h + c, (6.14)
Solving this for 2z, we obtain the following expression for %% ,
L., R (6.15)
vl - ¢ h2(a)

c
where c, =e !,

Finally, to obtain b as a function of a, we integrate once more:

a3

| h(c) U
b = de + 6.16
(@) 2 f Y1 - ¢ h?(c) T ( ‘

ai
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with ¢, and ¢, determined by the initial conditions b(a,) =b, ,

2 3

b(a,) = b,. Thus, if we can integrate (6.16) explicitly, we are left
with purely an algebraic problem [i.e.,matching segments of curves at
interfaces, involving no differential equations]. Even if we cannot
perform the integration, a numerical integration can be applied to
approximate b(a). Since this has not, as yet, been implemented, it is
not clear if this is more efficient than solving the system of o.d.e.'s,
although one would tend to believe it should be.

In order to be useful, it is necessary that we can obtain a closed
form for b for a wide variety of choices of the function h. The
following list of integrals indicates that this is possible for many
elementary functions. (Recall, however, that we have already performed
a rotation,translation, and compression or expansion on the original
coordinate system.) E and S represent integration constants in the

following:
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h(a) b(a)
constant b =Ea + S (lines)
a (b - 8)% +a% = E? (circles)
e? b = arcsin E e® + S
sin a b = arcsin (E cos a) + §
sinh a b = arcsin (E cosh a) + §
cosh a b = arcsin (E sinh a) + 8§
211- b =1log (a+ vaZ - E) + 8
sech a b = F(arcsin (sech a), E) + S

(F is the Legendre elliptic integral)

;%2 b = arcsec (Ea®) + S
cosec a b = F(arcsin (E cos a, %p) + 8
sec a b = F(arcsin(E sin a, é)) + S
a-% b=vx-E +8
(c;a + czaz)-% b = log (2Vc,(E + c,a + c,a?)+ 2c,a + ¢,) + S
cot c,a _ b = arcsin (E sin c1a) + S
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II.7. Examples of the Direct Problem

II.7.1 Example 1 - Vertical Layers

The set-up for example 1 is shown in Figure 8.

(15,0) (30,0) 45,00 = xg

Figure 8. Geometry of Example 1

This example was used to test whether results were correct. Since
the geometry is so simple, the y-coordinates can be calculated easily
by hand a priori. Also, Pereyra [15] was dealing with this geometry at
the time the code was being developed, and thus this provided an
additional test of the validity of the results. One interesting
sidelight is that due to the symmetry of the geometry (45-30 = 15-0),
and the fact v2 = ve, all rays which are strictly of type P
(i.e. PPP, PPPPP, PPPPPPP, etc.) must pass through the point (22.5,
-21). Plot #1 illustrates that this is indeed the case. Note that
in this example, the interfaces are given as x = fi(y). The program
can, in general, handle interfaces represented both as x = fi(y) and

y'=gi(x) simultaneously.

II.7.2. Example 2 - Layered Media with Oscillatory Interfaces

Three media consisting of three pieces separated by sinusoidal

cracks are considered (Figure 9).
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m=
/———\m—zo
=2 ©
\—/_—-\_—//)‘
= £3‘=CcS(?o>_3o
Figure 9. Geometry of Example 2
The speeds are given by:
v, = 6.8, v, = 3.7
v, = 6.1, vg = 3.5 (7.1

This test example is included merely to illustrate the applicability
to truly non-planar interfaces. Several families of rays are depicted
in plots 2 - 5. The given disturbance was assumed to generate only P
waves. The initial and final points are not shown on the plots, but

all rays begin and end at the same points.

11.7.3. Example 3 - Parallel Plane Layers

A point seismogram is computed for each of three receivers. Time
is plotted on the horizontal scale versus the base 10 logarithm of the
amplitude on the vertical scale. The 20 most direct rays are computed
(using only a P wave source). All P to S and S to P conversions are

included (see Figure 10).

D = (1,0 22 = (42,00 P = (54,0)
m=1
£, = -11
m= 2
£, = -62
m= 1
x, = (82,-85)

Figure 10. Geometry of Example 3
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The same basic pattern is observed at each station with merely a time
shift. This is precisely what one would expect from plane layers
(see Plots 6 - 8).

This example serves to illustrate some of the output options
available to the code user. Table 1 gives the maximum available output
for each ray. The first six entries labeled SMAX refer to the maximum
norm of the residual using the initial guess x(1) = x(0) + g(O) via
continuation. Even though the iteration is converging, the program
decides to try a smaller step. (A maximum of 6 iterations per step
was imposed. If the residual, r, 1is not smaller than the tolerance,

7, a smaller continuation step is used. Also if r

here set to 10
exceeds 10" , @ smaller step is immediately implemented.) The blank
line indicates that a smaller step is being tried. The following two
values of SMAX indicate the residual using x(1) = x(s) + %k(s) as
initial guess (i.e.,two steps of continuation lead to convergence).

At the third iteration r < 1077, (The final residual is not printed.)
The x and y coordinates of the intersections of the ray with the

interfaces are then printed. Finally, the amplitude and travel time

are output.

II.7.4. Modelling of a River Bed

Figure 11 shows the set-up for Example 4.

= 3] )
(0,00 = x2 Xe=(2,0) \
m=l "8"|+.z.sx"
m=2

Figure 11. Model of a River Bed
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This problem is of true physical interest due to the fact that many
cities are located over former river beds. Table 2 gives an example

of the minimum printed output (short of complete suppression). The
integer, n, following these data, allows one to determine the number
of continuation steps used. Since only uniform steps are currently
employed, 2n—1 steps are taken across the interval. The amplitude is
decomposed into vertical and horizontal components to reflect that
aspect of the actual recording machinery. Note especially that for each
of the stations, the most direct ray is not the strongest. There are
several multiply reflected rays of greater or equal intensity (see

Plots #9 - 12).

On this problem the first attempt to produce a gather was put forth.

The source was located at (0,-8) with receivers at (i,0) for i = 1,2,3,4

(see Figure 12).
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Figure 12, Source and Receivers for Gather

Graph 1 depicts the results. Both P and S waves are generated by

the source. The 20 most direct rays at each station are included. The
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right half of the basin is clearly discernible in the gather, with an
echoing effect attributed to the slower § wave arrivals.

I1.7.5. Example of Non-Uniqueness and Non-Existence

The geometry of this example is depicted in Figure 13.

L) . -
Xpe(-zp)  Be= (500,670,500

)((x,"loo)
b —=s -3

Figure 13. Geometry for Example 5

Graph #2 is a gather from the five stations indicated in Figure 12.
Although two distinct structures are visible, more stations are required
to refine their precise shapes. 228 rays are computed at each station.

The rays included are rays of the families shown in Figure 14.
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Figure 14. Ray Families for Example 5

However, as indicated by Plot #13, multiple solutions exist. The
continuation method used always produces the same solutions starting
from the same initial guess 3(0). No attempt is made to deflate the
system to find further solutions. As illustrated by this plot, there
are actually three solutions for the propagation type PP()~<I = (-2,0),
xp = (4,0)).

Plot 14 illustrates that some members of a family may exist while
others do not. The ray of type SPP is exhibited, however there is
no ray of type PPP (vz = 2,44, v, = 1.71). Since no rays of this type
exist, they obviously do not appear in the gather.

One interesting aspect of this problem is that shown in Plot 15.

The initial guess x(0) always begins with the x~coordinates ordered
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X; < %X <x5 <%y ...< Xy This means that some of the initial speeds
for =x(0) must have been negative. There is no difficulty encountered

due to this, and the actual solutions are exhibited in the plot.
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III. THE INVERSION PROCESS

IIT.1. Introduction

Now that a reasonably fast and efficient method has been developed
in Chapter II for solving the direct problem, we are set to attack the
inversion process. Given a series of seismograms from several receivers,
we seek to reconstruct the shape of the interfaces, elastic properties
of each medium, and, for some problems, the location of the source,

X- The problem, as stated, must possess non-unique solutions in general,
since only the portions of the interfaces which lie on the ray paths
which reach the receivers affect the data. However, given a reasonably
good initial model, it will be possible to refine this by using standard
nonlinear least squares techniques. The entire process should be
interactive, so that a geophysicist can monitor the alteration of the

model to insure a physically relevant result.

'I111.2. 'An Analytic Inversion for One Interface

One can analytically invert for ome reflecting interface given a
continuous distribution of first arrival times on the surface of the

earth and known source location, x,. The situation is as depicted in

Figure 1.
‘é° X
- ‘;:3(:&)
v
— w ‘\-\_______\32 $($)

Figure 1. Inversion for One Reflecting Boundary.
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We assume that =x, is given and for all x, we know T(x, xo)

where
travel time from x, to x if PP ray
exists for first PP arrival

T(X,XQ) = (2-13)

© if PP fails to exist

g(x) = earth's surface (2.1b)

-«
[l

(x,8(x)) , Xp = (xo’ g(xo)) (2.1¢)

(-
]

From this information, we wish to determine the shape of the reflecting

interface (see Figure 1):
y o= £(x (2.2)

For ease of notation we introduce the following definitionms:

a(z) = v 7T (z,x4) (2.3a)

c(z)

5 (z - %) (2.3b)

Then for each 2z, there exists a locus of points which satisfy the

travel time constraints. These correspond to all points on the ellipse,

7.

2

(x - 21 %o o 2
;27 . 2 + (g(x) - £(2))° _ 1 (2.4)
2 a2(z) a%(z) - c%(z)

To determine £(x), we must eliminate the parameter 2z, since the
solution is just the envelope of the ellipses ‘%72. This is obtained
by differentiating 7@; with respect to 2z and setting the result

equal to zero. This yields:
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z + x0.2 v ' (x - .Z__g_xﬂ.)
-2 a®(z) T'(z, xo0) + a2 (z)
2
(azE§§xZ)cz(z))2 (a(z)vI'(z,x4) ~ c(z))
2 f'(z) (g(x) = £(2)) - 0 (2.5)

a2(z) - c*(z)

Thus, (2.4) and (2.5) determine £ and z.

The result only applies to portions of the surface where T(x,z) < @

(see Figure 2). The region corresponding to infinite travel times

cannot be recovered from the above data. In Figure 2, the portion of

the boundary corresponding to AB cannot be recovered using only PP

rays connectin X to the surface of the earth.
y g %

|
w—Shadow zZone —————s
| T = eo

Aa

- — -

— —
——

Figure 2. Non-Recoverable Portion of Interface
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Also, when a region on the surface is multiply covered by PP rays,
only the portion corresponding to first arrivals is recovered. If we
wish to use this additional information (making T(x,x,) multivalued),

then we can obtain the appropriate portion of the reflecting interface.
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ITI.3. 1Inversion by Nonlinear Least Squares

I1T.3.1. Inversion Using Only Travel Times

We make the assumption thét we have some algorithm to determine
the type of an observed ray. (This may be included in the least squares
process by allowing the redefinition of data types at some iterations,
but it tends to complicate the notation. Hence we shall assume that
this is automatically taken into account.) We define the observations

and the computations by (j stations with k rays given at each)

0 observed travel time of ray 1 at station m-

im
C

]

computed travel time of ray 1 at station m
im (3.1)

The function which we desire to minimize will be:

k3
s = X (0

- 2
i=1 m=1 Cim) (3.2)

im

Defining F by

F Dk Oy = G " » E= (Fyy Fay veny Fiy)

(3.3)

We may now introduce the Gauss~Newton method for the solution of

the least squares problem.

oF

~

Jn = —3—!; (En) (3.4a)
T T
(Jn Jn) [gn+1 - B ] . Jn

P, F (gn) (3.4b)

with P = (P1s P2s o+« & pN) the parameter vector (see Section III.3.2)

and P, the initial guess for the true solution p.
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111.3.2. Inversion Parameters

For clarity of notation, we shall confine ourselves to the case of
a single receiver (i.e. j = 1). This inversion problem may be divided

into three separate categories:

i) hypocenter locations
ii) elastic properties
1ii) interface shape

Of course, any combination of 1 - iii may also occur.

'111.3.2.1. ‘Hypocenter Inversion

We start with the hypocenter case, since this is the simplest
of the three categories. The unknowns are the two coordinates of the

source location X Thus, the parameter vector P is the 2-vector

In

representing those coordinates.

p o= G oyt (3.5)

Hence, the Jacobian is simply

J = I (3.6)
ByI

Since the travel time can be written down explicitly from (4.1), we can

Bci Bci
obtain analytic expressions for =— and -+ .
3 SyI
wir o pd
¢y = 5
i =1 ey (3.7a)

3
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._aij; R S @.g_l_). - e (3.7b)
BxI (i) ox (i) :
v, I D,
ac, ap{1) gy - £Dx))
__]; = ....1___ ! = 1 il (3 7c)
ayI Vfl) ByI . Dgi)
'1711.3.2.ii. Elastic Parameters
For the case of elastic parameters, the parameter vector P
is a 3% vector, where £ 1s the number of media considered.
g = (Al’ ul’ 019 Aza uZ; pzs.'°'s Azs UZa pi ) (3'8)
From (3.7a) and (2.9) of Chapter 1I we determine the appropriate
derivatives:
aci N+1 Dlgi) -
Dol L —p—;——g— (n + 1) mod 2 (Sj n (3.9a)
n =1 nn k
(i) 6. n
dc N+l D. Yk
i_ * k (3.9b)
= - 3 — .
Bun &= pnvn (2 ~nmod 2)
Bc N*l D(i)
aoi = 2p : %5, (3-9¢)
n k=1 nvh Ix
where Gnm is the Kronecker delta
1, n=mnmn
8 = (3.10)
nm 0, n#nm
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IT1.2.iii. Inteérface Shapes

This third type of inversion is the most complicated.
First, one must decide upon a suitable representation of the interfaces.
As a first choice, we shall use simple cubic curves. It is a minor
alteration to use piecewise cubic splines (or any other set of functions);
however, for our simple test examples, simple cubics will suffice.
One restrictive assumption which we impose is that the number of
interfaces is known a priori; and that we seek only to resolve their

shapes. Hence, the following structure is assumed:

= 3 2
fi+1 a,x + Bix + Y4¥ + €y (3.11)

This leads to a 4m parameter vector, where m is the number of

interfaces:

P = (o, By, Yis €15 »eey Opy Bms Yo’ €m\ (3.12)

Again from (3.7a) and (2.9) of Chapter II we obtain the derivatives:

dc N+1 £ (x) - f;. (%, )
i n % 1p-1"*k-1 s
-é-d; = k{:l - D(i) X (Sikn (3.13a)
k'k
dc N+1 f (x) -~ ¢ ( )
i n ¥k i1 %k-1 2
— = ) (3.13b)
86n k=1 kaéi) x ikn
dc N+1 f (x) - £ ( )
i n "k ik-1"*k-1

k'k
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dc MELF (x) - fq, (% )
= = X a7k kel ol (3.13d)

n k=1 v

Note that for all cases covered in 1 - iii we obtain the Jacobian via:

3Fi dcy _
Thus, if we use only travel times, we can easily compute the Gauss-~
Newton iteration matrix explicitly. Examples of these inversion

processes can be found in the Appendix.

If we treat the travel time and amplitude of a ray as independent

quantities, the new function to be minimized is determined as follows:

E

{m observed amplitude

e - computed amplitude (3.15)

im

with the highest peak normalized to unit strength in both cases. Then

we wish to minimize:
k 3 R
= : - _ 2
S iél mél (Eim eim) + (Oim cim) (3.16)

Obtaining the derivatives of the amplitudes with respect to the
parameters is a bit more complicated than the preceding travel time
derivation.

This is due to the fact that a 4x4 system is solved at each

interface to determine the amplitude change. The work involved in
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determining these derivatives exceeds that required to use a finite
difference approximation (i.e. the work required to trace one additiomnal

ray per parameter). Hence we use the approximation:

de e.(p. +h) -e.(p.)
i _ i3 T 3
,;p_j = = (3.17)

The parameter h 1is completely at our disposal. Thus, we choose a

suitably small quantity, but not so small that it is swamped by the
round-off error of the computer., Typically, h is fixed somewhere

between 10”° and 10 2. We then achieve the appropriate derivatives via:

At = 2 - E) 5 (3.18)
3 3
One final consideration is the appropriate weighting of the
amplitude data versus the travel time data. We define
- _ 2
Foi = 1+2(m-102 0Oy = ¢4p)
= _ 2
Foi + 2(m-1)k B(E:I.m eim) (3.19)
and formulate the new cost function
2jk
3 = 1};1 F, (3.20)

One then may ask how to choose the ratio B/A. 1In most existing

codes B/A = 0. 1In the current code, this is left up to the user.
Presumably the user will be familiar with the reliability of the physical
data, and will thus be able to make a reasonably good determination.

For all examples in the Appendix, we have used either B/A =0 or

B/A = 1.
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PART II
ANALYSIS OF OPTIMAL STEP SIZE SELECTION

IN HOMOTOPY AND CONTINUATION METHODS
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I. HISTORICAL INTRODUCTION

Perhaps the best survey of continuation methods prior to 1950 is
contained in Ficken [29]. We shall begin this survey with a brief
review of Ficken's exposition. He begins by dividing all continuation
procedures into two basic categories: stepwise and topological. The
stepwise grouping is further subdivided into set-theoretic and construc-
tive approaches. Throughout Ficken's summary, the homotopy parameter
is confined to the interval J = [0, 1].

An early example of the usage of stepwise methods is due to
Schwartz (1869) (detailed in Lichtenstein [49]). Given that to a point
P(0) in one manifold there corresponds a unique Q(0) in another
manifold, one wishes to show that for each P(s) along a given curve
there corresponds a unique Q(s) for all sgJ. The set-theoretic
method of proof consists of showing that the set K<[0, 1] which has
the desired property is both open and closed and hence must be the
entire set. One drawback of this is the absence of a lower bound on
the step-length. Other examples of set-theoretic arguments have been
used by Schlesinger [70] (differential equations), Hadamard [34]
(inversion of point-transformations in Euclidean r-space), and Lévy
[45] (inversion of point-transformations in the function space L,).
Bernstein [8] applied continuation to the Dirichlet problem for the
circle. Given a solution for the boundary values $(8), he sought a
solution with boundary values F(g). He observed that the solution

depends analytically on @ for the boundary values:

F(6, o) = &8) + alF(e) - ¢o)] (1.1)
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which allowed him to apply continuation. He included the notion of an
a priori bound and also advocated the use of a uniform steplength.

Constructive proofs have been employed by Schauder [68] (differen-
tial equations), Weinstein [83] (conformal mapping), Weyl [84], and
Lewy [46], [47] (differential geometry).

The use of topological methods is best exemplified by Leray and
Schauder [44] (functional equations). Topological index is employed
with a priori bounds and complete continuity to obtain a pure existence
theorem for a solution in [0, 1]. Additional details may be found in
Leray and Schauder [44], and applications are presented in Leray [43],
Dolph [25], and Cronin [17]. Theorems on uniqueness were developed
by Rothe [63], [64].

The first notable use of numerical contiﬁuation was due to
Lahaye [40], [41] (1934-35) for a single equation and [42] (j948) for
systems of equations. There have been numerous authors who have
employed numerical continuation. Others of note who will not be
discussed below include Sidlovskaya [74] (1958), Anselone and Moore [5]
(1966), and Deist and Sefor [22] (1967).

In 1953, Davidenko [18], [19] introduced the idea of examining the
differential equation.underlying a related homotopy. For example,
suppose we wish to solve:

F(x) =0 (1.2)
We introduce the homotopy

F(x) - ¢ F(x®) = 0 (1.3)
Note that for A =0, x = §° is a solution of (1.3). By differentiat-

-~

ing (1.3) with respect to A, we obtain the initial value problem
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oF

-2 [ °
> ox e FED =0,  x(0)=x (1.4)

2.8

Then using (1.3) in (1.4) results in

or 9%
o EX’ + F(f) = 9 R 5(0) =X (1.5)

This is referred to as the Davidenko differential equation underlying
the homotopy defined in (1.3). A similar differential equation may be
obtained for any homotopy. (An exposition of Davidenko's work is
contained in Rall [57].) Others who have examined this technique include
Bittner [9], Kleinmichel [39], and Bosarge [10]. The extension to
Banach spaces has been studied by Yakovlev [86], Meyer [52], and
Avila [6].

Considerable effort has been expended on the application of
continuétion methods to obtain Brouwer fixed points. A good survey
of this work is contained in Alexander and Yorke [3]. Scarf [66] first
used the idea of "following a path'" from the boundary to the fixed point.
Eaves [26] uses a standard set of maps, homotopes to one of these, and
follows the fixed points of the changing maps. This was jointly refined
by Eaves and Scarf in [27]. A similar method was used on a 20-dimen-
sional fixed point problem by Kellogg, Li, and Yorke [38]. Eaves'
homotopy approach was made rigorous by Yorke, who then applied it to a
variety of problems (see Chow, Mallet-Paret, and Yorke [16]). Although
Scarf used simplicial methods, he did not introduce an extra parameter.
Eaves initiated the homotopy approach, but he employed Sperner simplices.
The resulting method of Kellogg et al [38], has since been superceded by

a variety of superior algorithms (Li [48], Smale [75], Alexander and
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Yorke [3], Chow et al. [16]). These methods were then adapted for use
on two-point boundary-value problems. (Alexander [1], Alexander and
Yorke [2], Chow et al. [16], Peitgen and Prufer [55])

Before expanding on a few notable papers, let us first refer the
reader to some general references on continuation methods. Extensive
discussion of these techniques may be found in Ortega and Rheinboldt [53]
and Wacker [80]. For theoretical details of homotopies see Eaves [28],
Eaves and Scarf [27], Todd [78], or Luthi [50]. Conference proceedings
on continuation methods are presented in Karamardian r35], Wacker [80],
and Peitgen [54]. Two other shorter specialized papers worthy of
mention are Saigal [65] and Gould and Tolle [32].

In 1967, Roberts and Shipman [62] applied continuation methods to
two-point boundary value problems (TPBVP). The continuation parameter

employed was the location of one boundary point. Given the TPBVP

a) . X = F(x, t)
(1.86)
b) g (x(a)) + h(x(b)) =c
the following homotopy was used
a) x = F(x, t)
1.7)
b) g ( x(@) +h(x(V) = ¢

where Aec(a, b]. The technique was to solve initially for A - a
small and then continue. The interval [a, b] was normalized to

[0, 1]. In regard to step size the statement is made, "No general rule
is applicable at this time". The suggestion was to use a "modest" step
size (AX £ .1) . The advantage of this technique for solving TPBVP's

is that the same differencing scheme may be used at each step. Two major
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problems are encountered. First, AX may tend to zero before A = 1
is reached. Second, how does one choose the initial AX so that the
solution does not blow up?

Thurston [77] in 1969 proposed a method for continuing Newton's
method through limit points and bifurcation points. The method only
applies when the linear '"variational equations' are self-adjoint, and
seems to be very heuristic. The nonlinear terms are expanded about any
good approximate solution, but near critical points, quadratic terms
must be retained. No theoretical results are given, but some impressive
computations are displayed.

Bosarge [11] (1970) examines the Davidenko differential equation
(1.5). Conditions are given on F to ensure the existence of a solution.
(This is essentially a rewording of the Kantorovich criteria for the
convergence of Newton's method.) Bounds are required on the first and
second derivatives of F. If bounds may be obtained for q + 1
derivatives of F, Bosarge shows that the relaxed Newton method works
and derives a bound for the relaxation constant hq. It should be noted
that

lim hq =1 (1.8)

q-)oo

He proves Relaxed Newton (Euler-Newton) will work for q = 1 with h,

where this method is defined by

a) xn+l = xn - th'-l(xn)F(xo) ’ ns= 0,..-, Nl - 1

-1
b) 1 T % T F! (Xn)F(Xn) » n=N,,... (1.9)
¢c) h, = __l.._
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Also for q = 2, the Trapezoidal Newton scheme works with conditions on
h .
-1
= - L '
a) ’yn =X th (xn)F(xo)
n=20,1, N, -1
-1
- - \J
b) X1 *n h.F (yn)F(xo) (1.10)
-1
= - ' =
c) X1~ % F (xn)F(xn) s n=N .
1
d) h, =+
2 N 2

The basic idea here is to use a Relaxed Newton iteration until the region
of convergence for Newton's method is entered. One then uses regular
Newton iterations. The results of this paper are applied to TPBVP's by
Bosarge and Smith [12].

Wasserstrom [82] (1973) gives a nice illustration of the power of
continuation methods. Several simple examples of applications are
exhibited : polynomials, TPBVP's , parameter identification, eigenvalue
problems. A brief histérical section is included; however, no new
developments are presented.

The question of the feasibility of numerical continuation was
addressed by Avila [7] (1974) in an extension of his doctoral disserta-
tion. Theorems on feasibility are developed for initial guess (4.1la)
of Section II. Basically, conditions are presented so that the
iterative method will converge for some ﬁositive step length AA . Only
uniform steps are comnsidered.

Deuflhard, Pesch, and Rentrop [24] applied continuation to parallel

shooting (1976). The method of choosing the initial guess is that of
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. o -
(4.1) a) of Section II, x_(Ai+l) = x(Ai). The TPBVP

y' = £f(x, vy, 1) , Xela, b] (1.11)
+ Boundary Conditions

is replaced by

1

y' = £f(x, ¥y, T) + boundary conditions
' =0 (1.12)
h(t(b) ) =0
with the conditions on h:
h(a) = 0
(1.13)
h'(t) # 0
(h >0 and h convex) or (h <0 and h concave).
Initial conditions for (1.12) are then guessed as
) =g.° 1.14
y(xJ) oL ( )
The following update schéme is then used
R A\ R
sk+1 = sk + Ak (Ask + ATk Ask) , 0 < Ak 21
> k
Tk+l =Tk + Ak AT
Ask = -J(sk s 'l'k)-l F(sk s Tk) (1.15)

-l
—3isk L, 5 F (s

&>
(/)]
]

k _ _ h(Tk)
h'(rk)

where F is the discretized version of (1.12) and J = %5- . . is

>

a relaxation factor for Newton's method. This may be extended if f is
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a function of more parameters, say £f(x, vy, T15Tys Ty .++), by the

update scheme

AN
-1

Ask =~J  F_ (s, Tys T s oe)

Tl Ti 2

k
k+1 k > .
= <+ : .

Ty T4 Ak Ari (1.16)

k¥l _ k0, k Kk
s = s+ A (s + :;:Ati e, )

Deuflhard [23] (1977) developed estimates for step size in terms of
only local quantities. For the guesses of (4.1)a) and (4.1)b) of
Section II, a ratio of the maximum feasible step size, AR, 1is obtained.
The homotopy used is

F(x) = (1 - B)F(xo) = 0 (1.17)

The bound is given by

b
_Aﬁzgéi = _::éi___ (1.18)
AB . V2 -1
max

independent of the function F. For the relaxed Newton method, he

k+1
also obtains the value of Akk which minimizes leij;—“ where
|ax"|]
xk+l - xk + XkAxk
(1.19)
A = -3 T RS

and Ak is the relaxation constant. (The optimal value depends on the
constants in the Kantorovich theorem.) The case of a rank-deficient
Jacobian is also considered. In general, Deuflhard seeks to maximize

the size of the step taken, without regard to the work required.
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Schmidt [72] in 1978 studied adaptive step size selection. He
determined that there were four major considerations in determining the
step size: (1) maximum and minimum step sizes, (2) a simple rule for

determining the step size, (3) ability to recognize non-convergence,

and (4) ability to recognize convergence. With AAi+l = Ai+l - Ai,
Schmidt suggests using the method:

a) mItt = gt

b) f=a+p L= (t-20)

where a and b are fixed constants, and @ is an estimate of the

convergence constant for the iterative method which is given by:

) ||§k+l - §k”
a) T |
=" - ="l
(1.21)
b) 0 = max
ax B
This is applied to the problem
H(x, A) = K(E)x - AP =0 (1.22)
The iteration process is deemedto be non-convergent if the
following three conditions all hold:
a) Bk > 1
b B A |- e a2 A e (1.23)
k k-1 '
) = -x "~ | .
c
max (lx.k_ll)
§ J

where A essentially represents the maximum percentage increase

allowable in the residual with respect to P. As a test for convergence
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the following criteria is employed:

< specified error tolerance (1.24)

a ”Xk
l1-a "<

§R—1”

An attempt to minimize the computational effort in solving the
numerical continuation was presented by Wacker [80] (1978). He analyzed
the Newton initial guess ( (4.1 a) Section II) and the Modified Newton
initial guess ( (4.1)b) Section II). However, he restricts himself to
uniform step sizes. With this restriction, he develops theorems on a
minimum step size which will guarantee convergence at every step.

Alexander and Yorke [ 3] (1978) developed an algebraic topological
condition that guarantees that the continuation method will work. Many
areas of application are cited, but the method is not applied to any
in this paper.

Keller [36] (1978) introduces the idea of using pseudo-arclength
as a new parameter. Given a problem

G(f, A) =0 (1.25)

both x and X are allowed to depend on the parameter s. The
Davidenko differential equation is then solved with the additional
condition that a normalization condition is satisfied (which mimics the

condition that s be arclength, hence the notation pseudo-arclength).

dx

dG =96 > 96 dr
a) ds (§ (s), A(s) ) = 9x ds + oA ds 0
-~ (1.26)
dx
X A, _

where N 1is the normalization. The major advantage to this is the fact

that limit points in the parameter ) are regular points under the
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s-parametrization (i.e., s 1is always increasing along the solution
curve). A method for estimating a As so that iteration will
converge is presented based on estimates of the derivatives of G and
the condition number of the iteration matrix.

Rheinboldt [61] (1979) examines the method of obtaining an initial

guess. He suggests using a quadratic approximation:

dx d?x
(o + M) = x(A) + 8gp () + BN — () (1.27)
v - ° dx

The radius of convergence is estimated by extrapolating the estimates
for previous values of A. The intersection of this extrapolated curve
and the quadratic in (1.27) determines the maximum allowable size of
A\A. No discussion is given as to how to obtain an estimate for the
radius of convergence at any fixed A value.

Schmidt [71] (1979) advocates using an approximation to the
Davidenko differential equation, which results in considerable

computational savings.
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II. CRITERIA FOR STEP SIZE SELECTION IN THE HOMOTOPY AND CONTINUATION

METHODS

II.1 Introduction

In the following sections, our purpose will be to examine the
optimization of the continuation procedure. In this formulation, we
desire to minimize the amount of work required over some class of
methods which is assumed to be at our disposal. We shall examine severél
of the simplest methods in this context. The preceding chapter has
given an historical overview of previous work devoted to this subject.
We shall attempt to expand upon some of the procedures mentioned there,
and, perhaps, unify some of these methods. We shall begin With a
general formulation of the homotopy problem in Section II.2. The problem
is formulated in such generality that we have no hope of obtaining a
solution. It is then shown that the problem may be reformulated as
an optimal control problem. Again this formulation provides no method
of obtaining a solutiom, but does allow the introduction of the concept
of feasibility. Simple theorems which parallel those of Avila [ 7] are .
presented to determine the feasibility of numerical continuation.

In Section I1I.3, the problem is dissected into its component parts.
Also, work variables are introduced as a measure of the effort expended.
The actual weighting assigned to each of these variables is dependent
on both the user and the physical machinery involved.

Section II.4 addresses the topics of choice of initial guess for
5(A + AN) and the iterative method used to converge for a fixed
value of A. It is found that high order interpolatory methods are

far superior to lower order methods for small AA. It is thus suggested
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that these methods be used in lieu of the standard constant and linear

approximations. In terms of storage requirements, the opposite is the

case. High order methods require more storage than low order methods.

Thus, one concludes that a high order method should be used, but not so
high that the storage capacity of the given machine is surpassed.

For iterative methods, the standard Newton and chord iterations are
examined along with several variants. For large systems, it is shown
that one should use chord iterations until sufficiently close and only
switch to Newton iterations when they are truly quadratically convergent.
Two examples are presented combining the iterative methods with initial
guesses, illustrating that the higher order approximations are more
efficient. Also, the various iterative methods are compared for several
model problems. The results are somewhat mixed for small scale problems,
but the result stated above for large scale systems tends to be borne out.

The continuation method is reformulated in terms of the "power"
expended; i.e., the work per unit parameter step. For this formulation
with fixed initial guess and iterative method, it is possible to obtain
a value for AA which minimizes an upper bound on the power. This is
given in terms of convergence constants and bounds on derivatives in
Theorems 5.1, 5.2, and 5.3. Since the convergence constants usually
involve a bound on the inverse of a matrix, a computational method for
determining such a bound is developed via Theorem 5.4 and Corollaries
5.5 and 5.6

Section II.6 presents two computational procedures based on the
theorems of Section II.5. Computational Scheme I requires that a

dependence of the convergence constant on the error be specified. It is
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then possible to apply the theorems of Section II.5 directly to determine
an optimal value of the convergence constant. One then interpolates

the values of AA to obtain the desired rate. Based on the conclusions
of Section I1I.4, a particular chord variant iteration is proposed.
Computational Scheme II employs extrapolatory techniques to obtain
estimates for the radius of convergence, and extends the work of

Rheinboldt [61] to higher order initial guesses.

Finally in Section II.7, the question of intermediate error
tolerances is addressed. For uniform step lengths, it is shown that
uniform error tolerances optimize the work.

This is merely a first attempt at examining the continuation method
in its greatest generality. No tremendously startling results are
obtained, although a basis for guidelines is developed. Hopefully, this

may be expanded to obtain more computationally implementable results.
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11.2 The Homotopy Problem

11.2.1 General Information

We shall make a distinction between a homotopy problem and a
continuation problem. By the homotopy problem, we shall mean a problem
for which only one value of the parameter is of physical interest [i.e.,
the parameter has been artificially introduced]. Continuation shall refer
to a problem in which there is a naturally occurring parameter, and hence
all values of the parameter are significant [e.g., Reynolds number].

Let us assume we are given a homotopy problem with parameter ) .

G(x, A) =0 (2.1)
We shall assume that for A = Ao we know a solution, say x°, and

desire a solution for X\ = Al. Define the sequence of sets Pi as

follows:
P° = {[)\09 Al]}

P (tl’ﬂ"’ t 1) = {lte, £,1, [ty t2],e00s0t 4y £ 1)

t = A (2.2)

Note that Pn is a partition of the interval [Ao, A;] into ntl

pieces. We now define the set of all partitions into n subintervals by:

P = LB (b, £ 0] g8 Gy A (2.3)

Finally we form the set of all partitioms of [X °,Xl].

Q= U P 2.4)
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It is over this set of partitions which we seek to minimize work.
We assume that we have at our disposal some set of methods available for

obtaining a solution at ti+l’ given a solution at ti' Thus we define
- . i+l i
n; € = {all available methods for obtaining x given x}.

(2.5)
We must also introduce the concept of the work involved in producing
3é. For the purposes of this section we shall leave this fairly vague.
This is actually a subjective quantity. The work may differ depending on
the economics employed by the problem—solvef. The following section shall
pin down this concept for the class of methods which we will study. Hence,

we define

W .(zl, zz) = work required to go from z; to 2z, in one step

Ny
using method n (2.6)
For any given partition of qeQ, we then define
la] -1
W(q) = 2 Voo (t, t,0) (2.7)
n 1=0 ng i
where n = (no, ceesy nlﬂl-l)’ allowing for a change of methods from one

step to the next.
With the above notation (2.2) - (2.7), we can now state the homotopy
problem in the broadest generality. Assume we are given (2.1) with Ay

fixed. Then we wish to find qeQ and nngql such that

W* = min min W_(q) (2.8)
n g 1
It is abundantly clear that this problem cannot be solved for n

~

and q in this generality. Therefore, we shall examine it from various
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perspectives and attempt to analyze its component parts, hopefully lending

insight on reasonable ways to proceed.

I1.2.2 Formulation as an Optimal Control Problem for Fixed

Iterative Methods

If we fix the method ny which is used to be the same for each i,
then it is possible to state the problem in the context of nonlinear
optimization. Assume we seek a solution of (2.1) for A = Al. Since
we have fixed the method, say ny = a, then we can make the following
definitions:

r(t = radius of convergence of the method n at ) = ti

1)

s(ti, t = error incurred at ti+1 by using initial guess

i+l)

defined by method 7 . 2.9
We, of course, do not know either of these functions. Hence the following
formulation is only of theoretic interest. However, it does allow us to
make rigorous a few statements which should be fairly obvious. Since the
theory does not allow fof variable numbers of unknowns, we fix the number
of steps to be taken as large, and assign zero work to steps which do not
take us outside a predetermined error tolerance. A standard theorem of
optimal control theory (see McCormick [51] ) is adapted for use on this
problem. First we state some preliminaries.

The nonlinear programming problem is stated as

minimize f(f)

subject to

v
o

gi(x) for i=1, ..., m

hj(§)

(2.10)

L]
o

for j

It
|
.
-
.
-
°J
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The generalized Lagrangian is then defined by

X‘ (5 0,5 s Wy uw ) = U FG) - Fugg, () + Twih ()

(2.11)
The theorem is then as follows:

Theorem 2.1. Assume f, g, and h are continuously differentiable.
Necessary conditions that a point %. be a local minimizer to
Problem (2.10) are that there exist multiplier values

@ Tys ooy Ty Wiy ey )
(not all equal to zero) such that
a) g @20 , i=1,...,m
b) hj<§)= 0 , 3=1, ...,p

e) u, 20 , i=0,1, ..., m (2.12)

i
d) uigi(g) =0 , i=1, ..., m
) VA G ey s Ty Wyh ey W) = 0

where V 1is the gradient with respect to x.

-~

If we reformulate the problem in this context, we find the constraints

are

)20, ¢t 0 (2.13)

vty ) —eley, to, 141 "t 2

(i.e., we are within the radius of convergence).

Hence the Lagrangian is given by

A = uws @ (Do (e - eepe,,)) (2.14)
s ~+Z Uned (fin"ti))
Using (2.13) and (2.14) in (2.12) we obtain a necessary condition

for t = (tc, s ovey t to be optimal.

n+1)
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a) Bigp ~ 1 20
i=20, .y I
c) uj 20 , j=0, ... 2n
& uy (e, ) - elt, £) ) =0 (2.15)
i=0, ..., n
e) Ui (Byqg ~ £4) =0
£) t, = Ay, tr =N

2}
8) VW = 3 u V(T (£)) - ety £y))
i=1
n

- 1=21 Untr V (Eypp = 8g) = O

Let us examine the significance of (2.15)g. This says if the work
is increasing at some point ti’ then one would want the distance from
the path to be decreasing, implying one should take smaller steps.
Alternatively, if the work is decreasing, then the distance from the path
should increase, implying that larger steps are required for efficiency.
In the present generality, it is impossible to obtain useful qualitative
results for use in actual computation. With this in mind, we proceed
to study some fixed methods with more constraints applied in the following
sections.

Some very trivial theorems follow directly from Theorem 2.1. Let us
first introduce the idea of a feasible partition (cf. Avila [71]). 1If
the initial guess determined by ﬁ at ti produces a convergent sequence

for the iterative method specified by nn , then the step [ti—l’ ti] is
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feasible. If [t ti] is feasible for all i =1, ..., n, then the

i-1’°

partition Pn(t is called feasible.

1> e tn-l)
Theorem 2.2. Let I = [}, A;] and r (1) >0, for all tel.
If {ti} satisfies (2.15) b) and (2.15) f), then the partition

Pn(tl, ceey t is feasible X

n-l)
The preceding theorem assumes that x(ti) has been calculated exactly.
In reality, this is impossible, hence we must take round~off errors into

consideration. Consider the method of formulating an initial guess given

by:
x°(t, ) = x (t,) (2.16)
~ i+l ~ i '
where x° = initial guess, xF = accepted value for §(ti).

We shall assume a tolerance has been specified at ti, say 6(ti). xF is

accepted as a solution if
F —
| =" () - x(ep || < 8(ty) (2.17)
where G(x, ti) = 0.

We may bound the quantity e(ti, tj) as follows:

o = F — —
elty, t) = I| = (e)) - g(tj)H = {l =t - x(t)) - §(tj)H
< @) - Tepll + Te) - x|

< 8t + || x(e)) - x(e )| (2.18)

Thus we may state:

Theorem 2.3. Let the initial guess be given by (2.16). If

”E:_(ti) ~ x( <rltg,,) - 8(tg) for 1 =0, ..., n-1

tip) |

them P (t., ..., t ) 1is a feasible partition. X
n 1 n-1
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Immediately we see that it is required that r(ti+l) > d(ti). This
is essentially the problem in Avila's example of infeasibility (and the

solution curve is not differentiable). This example is cited below.

Define (
a,x< -8
s(x; a,B. a) = < o y < x<aQ (2.19)
-a , X >f
\.

and on the intervals (-8, -o) and (o, B8) by straight-line segments so
that s is continuous everywhere in R!,

G(x, t) 1is then defined for te[0, 1] by:

t, O0<stx<k
G(xa t) = (2.20)

1 1 3 5
t + s(x-t; 3t 5 3t-§, 5t-5)

Functional iteration is used for the iterative convergence process

x™ = g, b (2.21)
For G defined in (2.20), the radius of convergence of (2.21) may

be determined explicitly as

l1+t, 0<t<3}
r(t) = (2.22)
t-3% X<t<l

Thus we see that as t approaches %- from above, the radius of

convergence tends toward 0. Since §(t) 4is set a priori as positive
and bounded away from 0, then we may take

inf §(t) = § > 0
te(%,1) (2.23)

lim r(t) =0
t v %
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Thus for € < § we obtain the result
rG+E) -8G+e) =e-8G+e) <ec-8<0 (2.24)
Hence the numerical continuation process need not be feasible, (In
fact, Avila has shown that by using (2.16) and (2.21), one cannot

proceed past the value ¢t = % , even if &(t) = 0.)
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I1.3 Components of the Problem and Definition of Work Variables.

II.3.1 Basic Components of the Problem

Before examining any specific methods, we should first state exactly
what we mean by a '"method'". Each method may be decomposed into several
component parts, each of which may be analyzed if we freeze all others.

Let us begin by assuming we wish to solve (2.1). Given that we have
converged to a solution at )(to within some specified error tolerance),
how do we obtain an initial guess for the solution at ) + A)A? This
determination shall comprise the first component of our method, i.e.,
the choice of §°(A + AA) given §?(A) such that
=250 - =00 || < 800

Secondly, given the guess x°(A + AA), how do we proceed to solve

G(f’ A + A)A) =0 ? This convergence process shall be deemed the second
component of the method. 1In the following sections we shall confine
ourselves to the very simplest iterative methods.

A third consideration is the choice of intermediate error tolerances.
And the final, and traditionally the most intensely studied factor, the
choice of the step length AJ.

At this point we shall begin to consider continuation problems
rather than the homotopy problem. (Although a reparametrization of any
homotopy can convert it to a continuation problem, this may do more
harm than good.) If a sufficiently large number of steps are required
for the homotopy problem, then all estimates are essentially the same as
considering it as a continuation problem. Only when examining the

intermediate error tolerances do we return to examine the homotopy

problem again.
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Before our examination of particular methods, a standardization of
the work function shall be imposed. This will correspond to one
particular choice for W n of (2.6),

i

I1.3.2 Work Variables

Work will be decomposed into two components: multiplicative
operations (m—op's)’and storage requirements. By multiplicative opera-
tions we mean either multiplication or division. The storage is the
actual amount of computer memory required (exclusive of the program
for continuation). Thus we make the following definitioms.

a) N = i of m-op's to perform on LU facterization

b) N, = # of m—op's to evaluate G

c) Ny = # of m-op's to evaluate G,

~ (3.1)

d) N, = # of m-op's to evaluate GA

e) N_ = # of m-op's to perform one back substitution in a

factorized system

: 4ci+
f) N(G; i, j) = # of m-op's to compute 7
h|
90X dA
a) S = storage locations required for Gx
b) §, = storage locations required for G (3.2)
c) S3 = { scalars stored aside from G or its derivatives
aGi+j
d) 8(G; 1, j,) = storage locations required for 1.3
9x 9A

For most of the methods of the following sections, we shall not
require anything higher than first derivatives. Hence our standard

function to be minimized will be given by:
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5 3
W=A Z Ny, + B Z S:¥4i45 (3.3)
i=1 i=1

where this is to be minimized over the considered methods. Note that

!

i

simply constants, the relative weights assigned to m-op's versus storage.

the yi's, N.'s and Si's are all method dependent. A and B are



107

II.4 Initial Guesses and Iterative Methods

11.4.1 Computation of the Initial Guess for §°(k + AN)

First, we turn our attention to one-step methods of approximation.
That is, methods which use information only at the point X to
approximate the value at Al + AA. The two most popular of these

methods are

a) x°(\ + M) = x(A)

I

X
- e . (4.1)
b) §°(X + A)\) = x(A) + AX x()) = X

= 9
—ax.
Avila [4] has analyzed the feasibility of continuation methods using

where -

(4.1) a) and functional iteration or Newton's method, whereas Wacker
[34] has done the same for both (4.1 a) and (4.1) b) using Newton's
method; in both cases only a uniform step length is considered.

(4.1) a) and b) can, of course, be generalized to arbitrary order
approximations. Thus, we shall group all other truncated Taylor series

into the classification

i _ @
x = x (4.1)

n
c) X CA+ M) = Z

i=g 1!

We shall also consider some general multistep approximations

H =0, Exo\ )’Il e T e x, (4.1)
- =0 xk ’
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° = -
e ¥ O) = Hypy Q) 2 X g (4.1)
where H2m+l is the Hermite polynomial of order 2m+l wusing data at
the points Ai’ i=0, ..., m.

We must now weigh the error involved in using each such approxima-
tion versus the work involved per step. For this purpose, we use only
the # of m-op's. TABLE 1 illustrates each case. The vector G is

assumed to have length WV,

§°(A + AX) error € work
x_ N || €z 0
X %— (a2 ||%(z,) || N, + N,
i 3
1+1
A 1+1 .
x| Gr e ol R DD ILCERY
3=2 k=2
1+1) - 1 [k
[ O]
% CETRY T2 o | e + o
k=0 { =1
21
. Iz +2)(25,1)”
Te,i (2i+2)! ) N, + N, + 1(6i+4) + 2iv
i k 2
TT 2 By
k=0 |3=0

TABLE 1
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By themselves, we may not use these figures to determine which is
best to use. However, if we use them in tandem with some particular
iterative method, we may be able to make a determination.

1T.4.2 Work Analysis for Some Specific Iterative Methods
IT.4.2.1i Newton's Method; xn+1 = x" - J—l(§n)f(§2l

~ -~

We now determine the work required for Newton's method to converge

within a preset error tolerance, say €pe At each iteration we require
1 LU factorization, 1 back substitution, 1 evaluation of f and

1 evaluation of fx. Hence from (3.1), the work per iteration is
N1 + N, + N, + st By the Kantorovich theorem (Ortega and Rheinboldt
[53] ) we have the following. We wish to solve the system f(§) = 0,
with fx = J.

Th;orem 4.1

Given

a) |37 <8

b I =] = - x || < .2

o fla -3l < vllx-yll i [lx-%| < 2] = -x|

If h = asy<-%—, then

2V
gV = I x’ - % I < -(-Z}—l-\)-)——— (4.3)
- - By2 X

Let By = C. Then (4.3) may be restated as

~ AV ~ N
v e B L G -2 g -2 O (4.4)
. x° - x

Thus we may guarantee that the error is less than €p if

Ce 5_(2a6)2v. This yields an upper bound on the number of steps

F
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A

needed for convergence, say vN, as

R log E o)
2 log2 —_— (4.5)
log 2 aC

An upper bound on the work required using Newton's method is then

obtainable using (3.1).

Wy = Vp(Np + N, + Ny + N) (4.6)

11.4.2.i1i Chord Method

The chord method will be defined by
n+1
p 4

~

= x" - 3_1f(xn) 4.7)
where we assume that the iteration matrix 3 is available.
Furthermore it is assumed that the convergence constant for the

iterations is known, i.e.,

eV < Kcsv_1 (4.8)

An upper bound on the number of steps required to meet the

tolerance is

log €p ~ log e,
(4.9)

<>
[

log Kc

Only one evaluation of f and one back substitution are required
per iteration. Hence, from (3.1) and (4.9) we obtain an upper bound on
the work:

Wc =V, (N2 + Ns) (4.10)
I11.4.2.iii Standard Modified Newton

This method involves the use of the Newton matrix at the point

x° (d.e., J(®) ) as J in (4.7). Thus the iterations are defined

-~

by
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P, ey YT (4.11)

To factor J(x°) initially requires N,; + Nz' At each iteration we
shall require N3 + N;. The upper bound on the number of non-Newton
steps necessary (the first step is a Newton step) may be obtained by

considering the error relationship

ep < Y e! < kY ()2 (4.12)
m m

Thus we obtain the upper bound

. log 57— 7% log €, ~ log [6(2a)2]
5 = de a - F (4.13)
log Km log Km
This then yields ﬁﬁ as
Wo=N+ N+ (1+95) (N, +Ng) (4.14)

I1.4.2.iv Special Modified Newton

This method uses a Newton step to start the iteration process and

1
also to end it. The last Newton iteration is used when Ev < e:F'i

From (4.3), (4.11), and (4.12), we have

9 3
-2 .o
e, < ®)2 e, = ®) e (4.15)
F — m 2 m 2 "2 '
log €
Setting 62—%: KZ: yields vy = —% —_i and (4.15) then gives us
log Km
~ log €
L (v - =28 &y
€p s.(Km) m log K, (4.16)

The upper bound on the number of steps is simply the ceiling of

the exponent
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~ 1~ log €,
Vs |2 Ym T Tog k. (4.17)
m
For purposes of comparison, we will use the approximation
log €, = log [(20)2 € ] (4.18)
Using (4.18) in (4.17) results in
G l(A log[(2a fﬁ]
= |5lv._ - ——5~——————9
s 2\'m log K
& %n
. i ’a X
1 log €p log [(20)°C] _ log [(20)28]
2
log Km log Km
(4.19)
12 10g [(20)%0)
2log Km log Km
Hence we obtain the upper bound on the work
Ws = (\)s +2) [N, + N;] + 2(N; + N;) (4.20)

11.4.2.v Reverse Modified Newten

In this method a Newton step is used only for the last step. Some
chord matrix is used for all other iterations (perhaps, using
J(xF(l - A))) would be advisable since it is available at no cost).

Here we need to satisfy the relation

YR
ep =K, "€ (4.21)
Solving for 23 gives €p
; o &
VR = (4.22)
log K
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The corresponding upper bound on the work is

Wo = (L+9) (N, +N;) + N +N, (4.23)

r

II1.4.2.vi Convergence Sphere Approximation

For the purpose of comparing the preceding methods, we shall
assume that the initial guess lies within the intersection of the
convergence domains of all the methods. Also, we shall use the approxi-
mation

e°x 20 (4.24)

in order to compare the work required for the various methods. This
is a reasonable approximation for €° small, but might be quite bad
for large €°. However, o and €° enter only through log €° and
log 20, thus extending the region of validity of the approximation.

II1.4.3 Two Examples of the Usage of the Work Function

As an example of how we may employ the preceding work estimates to
develop useful algorithms, we start with a coﬁparison of one-step
initial guesses to multi-step guesses. For the present, we shall
assume that the length of the parameter steps has been predetermined.
The vector G is assumed tohave length v . The initial guesses of
(4.1) b) and (4.1) e) with m =1 will be compared.

I1.4.3.1 Newton's Method

The work to compute ((4.1) b) is simply an evaluation of
bt

GA and one back substitution, i.e., Ny + Ns. v multiplications are

also required. From TABLE 1 the error &, = %’“ x| (an? .
To compute X, 1> Wwe need to do 2 GA-evaluations and 2 back
~is
substitutions per point. However, one of these is again required at

the next step; so, an average of only one is performed per step.
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Hence, the average work is also N, + Ns, but 2v + 10 multiplications
are requi : =1 (& 4
quired. From TABLE 1 the error is €01 =% =71 )

For A)\ small and =xeC° we have Ee 1= O(Ebz). This implies we will

?

need at least one extra Newton step to converge. Therefore

T = Wb .1

When is T > 0 ? Almost always. Since N1 is in general a v?

=W, ;=N +N, +N, + N, - (v + 10) (4.25)
operation, T is positive for all but the smallest values of V. Thus
using Xa 1 is more efficient from the standpoint of m~op's required.
~y
However, if we analyze the storage requirements, we find that
X1 requires the storage of 2 extra v-vectors. Thus
vy

S§=85 -8 =2v> 0 (4.26)

b e,l
For full systems, this does not seem particularly significant, but
for banded systems with a small bandwidth this could be a large per-
centage of the storage requirements. Here it is up to the individual
to develop a weighting system for determining the relative cost of

m~op's (computer time) and storage.

I1.4.3.1i Chord Method

In analyzing the chord method, we need to consider the number of
iterations required to bring €y down to €a 1" Using the approximate
3

relationship €a 1 ® & Kc €y solve for n to get

?

log €y
n=—— (4.27)
log Kc

Then the difference in the work required is

T=W =W, =2, +N) - (v+10) (4.28)
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In general, Ns is a v? operation. Hence T is negative only
if n=0, i.e., sbtv Ee 1° But for small step lengths we know that
s
€ ~ c? is a good approximation. Thus, x is again the clear
e,l b ~e,l

cut winner in terms of m-ops. The storage considerations are exactly

the same as in II.4.3.1 (see 4.26).

II1.4.4 A Digression Concerning Choice of Method

Three model problems shall be examined. For these models we
shall assume a reasonable Newton convergence rate (20 = €° = ,56).
For a given error tolerance, we calculate the number of work-equivalent
iterations for each method, and the required convergence constant to
obtain the same error bound.

IT.4.4.1 Scalar Polynomial

We seek to find a root of the nth-degree polynomial

y = " + alxn—l + ... + a (4.29)
From (3.1) we determine the work variables:
N, =0,N =n-1,N=n-1,N =1 (4.30)

The upper bounds on the work required are obtained from (4.6),

(4.10), (4.14), (4.20) and (4.23):

Wy = (20 - 1)V

AM = n-1+ nGM

Ve = mv (4.31)
ﬁs = 2(2n-1) + nGS

ﬁR = n-1+ nGR

A table may now be used to illustrate the equivalent work

required to bring the error within a desired error tolerance. 1In
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TABLES 2 and 3, Ka denotes the value of Ka such that the upper
bound on the work using method a is the same as for Newton's
method. TABLE 2 depicts the case n = 2. TABLE 3 is the general case

for n > 8.

TABLE 2
n=2
VN Vm Km vs Ks vc Kc VR KR EF
2 2 .56 - - 3 .56 2 74 107!

3 4 42 1 .31 4 .36 4 .64 1072

4 5 .19 3 .31 6 .23 5 WA 107"

5 7 .08 4 .13 7 .07 7 .29 1078
6 8 .01 6 .05 9 .01 8 .10 107168
TABLE 3
n>8
“wil Yo % Ve K5 Ve K R K €p
2 2 .56 - - 3 .56 2 .74 1071

3 4 42 1 .31 5 A 4 .64 1072

=8
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We can write a general formula for the ﬁ's. If €p 1071

and €° = 10°P then

2p-9q

K = 10 Vo
4p=q

~ 2v

K = 1

s 0 s (4.32)
=g

ﬁc = 10 \)c
2p-q

K. = 10 2R

This is valid for all the following tables.

TABLES 1 and 2 indicate that for scalar polynomials it is vastly
superior to use Newton's method; note that the reverse Newton is the
next best in terms of work.

IT.4.4.i1 Full Matrix System

Let us solve the system
n

fj(g) = :E: aijxixj - bj =0 , j=1, ..., n (4.33)
i=1

The work variables of (3.1) become
N; = nd, N, = 3n?, N, =1, N, = n? (4.34)

Thus the corresponding work bounds are given by

ﬁN = (% + 4n% + 1) vy

ﬁm = n® + 1+ 4n? Vo

& (4.35)
[ [

W= 2(n®+ 40+ 1)+ bn?v_

We could again formulate tables similar to TABLES 1 and 2, but

it is more convenient to look at the general expression for the



118

K's and v's for n > 3.

2VN
v = l%-n(vN -1) + vNJ , Rm - 10 -~ Vy(@+4)-n
2VN
vg = l% n(vyg =2) + vNJ , R =10" vy(nts) - 2y,
(4.36)
2N - 1
v, = I.% vy + "NJ , R =107 Vi)

VN 4 3

2
v, =V . ﬁR =10~ Vs

A comparison of the chord method to the Newton method now yields
mixed results. For large n, the ratio of Newton steps to any
modified Newton or chord scheme tends to 4/n. This indicates we

can do many "chord-type" iterations and still cost less than one

Newton step. However, the size of the '"trade-off" constant K
v
2VN

T (nHa)vy

decreases with Ve at the rate 10 . Since most current

codes set a limit on the number of allowable Newton steps the
behavior for fixed vy is important. If we fix Vs then for any
of the K's in (4.36) we have

lim Ka(n, vN) =1 (4.37)

 $masd
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Thus for the large dimensional problems, this indicates the chord
method is preferable to Newton's method even though
véimw Ka(n, VN) =0 (4.38)

A comparison of the two behaviors is given in TABLE 3 for ﬁc'

TABLE 3
IEc
n g 2 3 4 5 6
10 .719 .645 .517 .349 173
50 .918 .892 .843 .761 .634
100 - .956 <942 .915 .867 .789
250 .982 .976 .964 .943 .907
500 .990 .987 .981 .971 .952
1000 .995 .993 .990 .985 .975
2000 .997 .996 .995 .992 .987

Since Newton becomes more efficient the closer you come to the
root, this suggests beginning with chordsteps and shifting to Newton
when sufficiently close. This fits in well with the generation of an
initial guess in continuation methods. At the point A we use
Newton's method for the final step with iteration matrix J(gn, 2.
This is also used to determine the tangent vector. This may then be
used as J [see (4.7)]. This will be further discussed in succeeding

sections.
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IT.4.4.1ii A Banded System

Consider the problem
Vi - £(9, %, y) =0 (4.39)
on a rectangular domain with homogeneous boundary conditions where
f = Ax+ Bx* + C + Db + E¢® + Fy + Gy° (4.40)
Let us discretize the domain using n points in each directionm.

Then the work wvariables of (3.1) are

=9n% , N, = n? (4.41)

N, = ns, N, = 2n2, N s

1 2 3

and the work bounds are given by

M

(n® + 11n2)0N

N
~ - 2/\
Wc 1ln vc (4.41)
= =nd + 11n%
R m m
w,o= 2(n® + 11n?) + 11n20s

The same basic results as in Section II.4.4.ii are obtained. That

is both (4.37) and (4.38) are valid.
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I1.5 Power Formulation

I7.5.1 Optimality Theorems

For the general continuation problem, we obviously do not wish to
minimize work, as such, since we have no particular parameter value in
mind. Instead we should seek to minimize the work per parameter step
length, which we shall call the power. (By way of analogy, if the
parameter is time, we may actually consider X to be
power.)

To do this, we represent both ﬁ and the step size A)A as
functions of the error «¢.

Thus, our desire is to minimize:

>

P(e) = §2) (5.1)

We note that this is not the actual power that is expended, but
an upper bound on that power.

First we turn to Newton's method.

Theorem 5.1 Assume €p is given, and Newton's method (section

II1.4.2.1i) is used with initial guess (4.1) a).

Assume

b) " < (e771)2 (5.2)
) Jlx |lg™ for 0 <AA<A
Then a lower bound on the optimal step size (i.e., minimization

of P din (5.1) using initial guess (4.1) a) ) is given by

£
o= — (5.3)
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where np is defined by

1

D
2 . 2
n.c = minn g (5.4)

FF a >1

1
n

Proof: The work involved in Newton's method may be derived from

(4.9), with 2aC = ¢

o » as:
log € > log ¢
AL oy F - F
W) = logy Topg. DN, 7{ 198) Tog e, (5.5)
i=1
i#4
From (4.1) a) and (5.2) c¢) we obtain
e(AN) = A\ ||x(2) || <M Ax (5.6)
whence
M) > (5.7)
Using (5.5) and (5.7) in (5.1) yields
log €
v K Fl = 7 (e
AN S‘e l.og2 Tog c = P (g°) (5.8)

Note that the ceiling in (5.8) can be replaced by an integer n
by redefining (5.8) as follows:
1 1

- Ma -1 P
P(c°) = ea‘K, € I_=| ¢, . € (5.10)

Since %b is monptonic over each In’ we need only minimize over

1
Eﬁ
the discrete set EF . Thus we must minimize
-1
Eﬁ

g(n) = n g (5.10)
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an n
But N = min ne = min g(n) from (5.4).
n>1 n>1
Hence ng minimizes P in (5.9). The minimum is attained for
1
2°F
€ = €p . But from (5.7)
1
21F .
Er
A)‘opt.‘z‘_mﬁ___ =0 X

Obviously if || % || is small then AX is a good approximation to
the optimal step-length. This, of course, presupposes the knowledge
of || % II. We can use the values of || % || at previously computed
A values and extrapolate to estimate the bound M.

The above result is easily extended to other types of initial
guesses.

Theorem 5.2 Let conditions (5.2) a) and b) of Theoremn 5.1

hold, and in addition let (see (4.1) c¢):

| (1) i <M. for 0<AM <A along the path (5.11)

y(AX) = x

~c,n

Then using Newton's method and initial guess (4.1) ¢), a lower

bound on the optimal step length is given by

1
L W
2"F
g
M = (5.12)

My
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where np is defined by

1 1

IR N n
(N+1)2°F (N+1)2 (5.13)

= min n ¢
n>1

npEp

1
Proof: Simply use AX Z_FN + 1)! MNe]N-’“l from TABLE 1 in the

proof of theorem (5.1). X

Similarly, this can easily be extended to other iterative methods.

If we examine any of the modified chordmethods discussed in Section

II1.4.2, we can write the work as A + Bn, where A and B are method

dependent constants and m 1s the number of iterations required.

However, an extra parameter, the covergence constant K, also appears.

If we denote the points where m(e) = i (an integer) by m,, then

we can formulate a general theorem.

Theorem 5.3
Let (5.2) a) , (5.2) b), and (5.11) hold.

Let the iterative method used have the work function defined by
W = A+ Bn, mn_l(eF, K) <e < m (g, K) (5.14)

with convergence constant K. Then the lower bound on the optimal

step size AX yields the power:

A + Bn MN
— F .
P T ' 1 (5.15)
@ ) HD2F kn + 1)1 MN] N+l
n
F
where ng is defined by
-1 -1
nF n
(N+1)2 = min n mn(N+l)2 (5.16)

Bp n>1
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and the lower bound AA is given by

1
m N+1
3
™ o=|—
1
2"F
Proof: Replace ¢ by m in Theorem 5.2. All steps follow the
F
proof of Theorem 5.1 mutatis mutandis. X

The most restrictive aspects of these theorems is that we require
€< 1. However, they can all be modified by replacing € by 2h (with
a slight change of various constants). In that form, the theorem then
replaces conditions (5.2) a) and b) by (4.2) with h = aBy < %—.

Recalling that B is a bound on the inverse of the Jacobian, this
leads us to an examination of a technique to obtain such a bound.

II.5.2 A Bound for the Inverse of a Matrix.

Theorem 5.4
Let L be lower triangular.

Define L by

a) 2. =2..]
i3 i (5.17)
b) Ry = -l for i # j
men L > 17
where || «|| is the maximum absolute row sum.

Proof: We can write L and L as the difference of diagonal

and nilpotent matrices.
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a) L=D-N
A A oA (5.18)
bP) L=D-N
where by (5.17) we have
a) [l 2w,
® (5.19)

» D I_= DIl
and ﬁij 2 0 for all i,j. Thus all elements of [N]K are

non-negative for any positive K.

But given L in nxn, and N nilpotent the inverse may be written

as a finite expansion:

a) L =D+ N+ N2+ N+ Rt
~- « an-1 (5.20)
p) Ll=D+R+RN2+R3+ ...+
If we now take the norm of L ! we obtain
L] = D+ N+N+ ...+ N7
[++] o0
n-1
<ol g+ N+ e+ N
S A A—l
<UBI_ o+ 8, + eee + IR0
~ ~ A“l A_
=D +N+ .o+ NT = LT, X
Corollary 5.5
Let U be upper triangular
Define T by
a) 0., = |U..]
i3 33 (5.22)
b) t?ij == ol for 1 # 3

Then |07, 207,

where || +]]1 1is the maximum absolute column sum.
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Proof: || Ufl, = || uT)|_ and | 3”H1 = 187

Thus by theorem 5.4
=1 -1
T T
Ho™ g, = o (5.23)

[+ <}

Hence
674, = Tul, X

Corollary 5.6 Let J = LU be a nonsingular nxn matrix.

Then

97l = et JLETH| | 872, (5.24)
Proof: By the properties of matrix norms:

197, = el o™, (5.25)

| «]l1 , there exist constants c(n)

Also for || «|| and
dependent only on n, such that for an nxn matrix A,
I Al < el af, (5.26)
Using (5.21), (5.23) and (5.26) in (5.25) yields

ERTIPI Bl IRy (RRYeS
' (5.27)
< ITI, N, em %

The usefulness of these theorems is evidenced by the small
operations count required to obtain this bound. Computationally,
changing the signs of zij and uij can be done by simply altering
the sign bit. Then one only need solve the system.
ty = % (5.28)

with x = (1, 1, ... 1)T. It is easy to show that with

| x ”u’= 1 and Ly = x that

I3l = 1 sl | (5.29)



128

But this is just the definition of the induced norm.

Iyl s I L™ xll, = L7, (5.30)
x| = n N
Similarly one can”show that || E”a: =|lu lle where
0z = x (5.31)

Thus only 2 back substitutions are required to obtain a bound on
Il 77| , sgiven that J has been LU-factored. The maximum amount

: -
of work required is 2n + 1 operations. To actually compute || J !|]|

3

is an order n operation.
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II.6 COMPUTATIONAL PROCEDURES

I1.6.1 Computational Scheme I.

In reality we really cannot determine €° or h (see (4.2) and
(4.3) ) very well a priori. Thus we need to develop a criterion based
on computable quantities. If we return to the method suggested in
Section II.4.4.ii, using J(§F, A) as the iteration matrix at the point
A + AX, then Theorems 5.1 - 5.3 can be reformulated in terms of the
convergence constant Kc (see (4.8) ).

It is necessary to make an assumption on how Kc depends on AA
or €°, The simplest assumption is that it is a linear function, say
Kc = K(AA). Since we have the solution within our desired accuracy
at A, we set Kc =0 at (§F, A). By now choosing some increment
A\ and doing one iteration at A + AA, we obtain an estimate for Kc
at A + Al(which is of course dependent on the method of initial

guess) :

e, A+ an |
e - (6.1)

K
¢ llEGx®, A + a0

Since AA 1is known, we can now determine an estimate of A.
How does this help? Let us reformulate Theorem 5.3 as an example. The

work is now expressed as a function of Kc’ as 1s the step length.

a) W=A+ Bn(Kc) R m_1 S Ksm
Ke
A
~, A + Bn

+
c) P-AMT——
c
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Since n(Kc) is known as a function of Kc’ let us consider this

as a continuous function of Kc’ i.e., define:

n(Kc) = n(Kc) . 0 < Kc <1 (6.3)
Then by minimizing P, we obtain a value for KC = Kopt given
by -
32 _ 2 AY G 0 (6.4)
3K oK K '
c c c

Once we have obtained Ko by solving (6.4) (which is very

pt
easy for all the methods of Section II1.4), we use'a linear interpolation
to determine a better choice for A)A. We have Ki(O) =0, KC(AA) =K.
(Note K may be greater than 1, indicating the method may be diverging
at A + AA.) Thus we determine AA, such that KC(A + AX,) = Kopt'

If the iterations fail to converge at A\, , the process can be
repeated, or a higher order interpolation scheme could be used since
we now have values of KC for three AX points. Since we do not
compute a new Jacobian during this process, the cost of obtaining Kc
is order n?. Thus several failures are not significant in comparison

with the cost of factoring the system (for n large).

11.6.2 Computational Scheme II

The following scheme is quite similar to a method suggested
recently by Rheinboldt [61], but more attention is paid here to
obtaining an estimate for the radius of convergence. Also, higher order
extrapolation methods are incorporated.

Define:
V)

x' = I EX)

~

2) Sy(x
(6.5)

b) Sc(fv) %Y - J-1(§°)f(§v)

~
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Then Newton's method is

v+l
X

- AV
x =8 (x) (6.6)
and the modified chord method is

= s ) (6.7)

-~

The function S in the following may refer to either SN or Sc.
For convergence of (6.6) or (6.7) we need

s -sil< o [[x-yl (6.8)
for x, Zé,g e

where 0<p<1l, o>1 andji G = {f] ]B - §°||5,0}. We shall

use the local approximations to p, say pv » given by

Is = s ™| = &7 -2 = o (1= - 27
(6.9)
If the method is converging, we obtain
w1 Y
vl == =7

Jl_ézs\_)_lL - ——— =g (6.10)

[l ax” | | =" - =7 -
Or, expressing pv as a function of Ev = ” §v - %ﬂ , we have

Wl v
Le™™ -l _ oy (6.11)

| e¥ -¥71|

Thus we have the two sets of data {|| €’|| } and'{pv} . We may
extrapolate to find an approximation to the radius of convergence at ),

say T,= ”'E H, where IIEWI 1s the extrapolated value for which

o, = 1.
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If we have taken some finite number of steps i, then we have

the values {rA }l . We may now extrapolate ry versus Xj to
i) =1 3

obtain an estimate of the radius of convergence for A > Ai. We shall
denote this curve by r(A).
Assuming that we now have ;(Aj) for j < i, where x and Aj

satisfy (2.1), then we attempt to approximate ;tki + AA) by
- - =~ p? .
x(A + 1) = x(A,) + wj(li) +5 x (2) (6.12)

where Ai Lz j_li + u
Then using (4.1) a) as initial guess, we should choose U so that
lx, 3y + 1) -2 <7 Oy +w (6.13)
Thus to first order we obtain
ull g(xi) Il < ?(xi + 1) (6.14)
If r is linear, quadratic, or cubic, we can solve explicitly for

H . It is obvious that for higher order approximations, one obtains

P IE® op I <m T Gy + ). (6.15)
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IT.7 INTERMEDIATE ERROR TOLERANCES

For the homotopy problem, we do not desire the solution at
intermediate values of A. However, it is necessary to compute the
solution accurately enough so that we may proceed. Thus we should
examine the choice of intermediate error tolerances €p- Let us assume

that we have a priori decided on the steps to be taken, i.e., we have

N
{Ai } {=1 * For Newton's method we may write the work in terms of
€
Fi as
A log €F1 N-1 log eFi
W=‘){ log ———— +Z log ——m—
log c - log(cte )
- 1=2 Fi-1
log EFN
+ log
log(etey ;) (7.1)
@ " [ =)
where €p is fixed, ¢ 1is a bound on throughout
N n!
the interval, and 7{ is a constant.
To minimize with respect to Ep we take the derivatives with
i
respect to these variables and set them equal to O.
azw =0$(c+st)].og(c+r;:F)-—€Floge:F =0 Y7.2)
Fi i i i i

fori=1, ..., N-1.

This implies that we should choose all the Ep to be the same,
i

i.e., a uniform choice determined by (7.2). (This is a consequence of
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the fact that a uniform bound on ¢ was imposed.)

Allowing the c¢'s to vary, say ci,will yield different values for

€g at each step determined by (7.2) with ¢ replaced by cye. In
i

either case, we cannot determine the optimal value for Ex using
i
calculable quantities.
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APPENDIX

One example of each type of inversion possible is illustrated in
the series of following plots. In all cases the horizontal scale is
the iteration number and the wvertical scale is the maximum norm of the
residual. The initial guesses used are off on the order of 100%Z. The
exact solﬁtion is calculated using the data from Example II.7.5.

Five receivers are utilized and the 18 most direct rays are traced for
each receiving station. Thus 90 rays are traced at each iteration.

The criterion used for convergence ié‘that all components of the residual
have an absolute relative error of less than 1Z.

Plot 1 illustrates inversion for source location using only travel
times. The process converges in 2 iterations to within the specified
tolerance.

Inversion for the elastic parameters is shown in Plots 2 - 3.

Plot 2 uses travel times only and Plot 3 both travel time and amplitude.
This is a 3-parameter inversion as the parameters U, A, and p are
also assumed unknown. Ten iterations were required for Plot 2 and 12
iterations for Plot 3.

Plot 4 (travel time) and Plot 5 (travel time and amplitude)
represent the inversion for interface shapes. Both required 4 iteratioms
for convergence. There are 4 unknown parameters, the constants in the
cubic representing the interface.

The following table explains the inversions depicted in Plots 6 -

13 (TIT = travel time, A = amplitude).
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Iteration
Required to
Plot # Inversion Parameters Data Converge
6 hypocenter, elastic parameters TT only 6
7 hypocenter, elastic parameters TT and A 8
8 hypocenter, interfaces TT only 5
9 hypocenter, interfaces TT and A 10
10 elastic parameters, interfaces TT only 14
11 elastic parameters, interfaces TT and A 9
12 hypocenter, elastic parameters, TT omly 17
interfaces
13 hypocenter, elastic parameters, TT and A 14
interfaces
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