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ABSTRACT

The estimation of petroleum reservoir properties on the basis of
production rate and pressure observations at the wells is an essential
component in the prediction of reservoir behavior. The reservoir proper-
ties to be estimated appear as parameters in the partial differential
equations describing the flow of fluids in the reservoir. The estimation
of these properties is referred to variously as the inverse or identi-
fication problem or as history matching. In this dissertation, new results
have been obtained pertaining to the estimation of petroleum reservoir
properties.

Most of the prior analysis of the reservoir parameter estimation
problem has been confined to reservoirs containing a single fluid phase,
e.g., oil. We consider here reservoirs that contain two fluid phases, e.qg.,
0il and water. The parameters to be estimated in such a case are the
porosity and permeabi]ity,‘Which depend on spatial location, and the
saturation-dependent relative permeabilities. In this work we treat two
basic problems in reservoir parameter estimation: (1) establishing the
ability to estimate the desired parameters (so-called identifiability),
and (2) developing and testing a new algorithm, based on optimal control
theory, to carry out the estimation.

In regard to problem (1), we have extended the classic analytical
(Buckley-Leverett) solution for incompressible flow to heterogeneous
reservoirs. Analysis for an incompressible water flooding situation shows
that the spatially varying properties at locations behind the saturation

front have an effect on the pressure solution. The spatially varying
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properties can be uniquely determined based on data taken up to the time
of water breakthrough. Only an integral value of the porosity can be
determined from the water-oil ratio data alone; however, the spatially
varying porosity may be determined when the initial saturation varies
with location. The values of the relative permeabilities which are
identifiable, and the information about the relative permeabilities
obtained for other intervals of saturation, is established. Analytical
expressions are derived for the sensitivity of the pressure and water-oil
ratio observations to paraméters appearing in functional forms of the
relative permeabilities. When the relative permeabilities are represented
as exponential functions, the coefficients and exponents can be uniquely

determined.

For problem (2), an algorithm is developed for the estimation of
porosity, permeability and the relative pefmeabi]ities for two-phase,
compressible reservoirs. This work represents the first study for which
relative permeabilities have been estimated based on a model generally
used to represent fluid flow in petroleum reservoirs. An objective
function, composed of the weighted sum of squares of the deviations
between the observed and calculated values of pressure and water-oil ratio,
is minimized by a first-order gradient method based on optimal control
theory. The algorithm is tested for one- and two-dimensional hypothetical
water floods. The algorithm performed well for problems in which the
porosity, permeability and relative permeability exponents were simultane-
ously estimated. The increase from one to two spatial variables does not
appear to change the properties of the estimation problem. Small obser-
vation errors are shown not to significantly affect the convergence of the

estimates.
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1.  INTRODUCTION

The flow of fluids in multi-phase petroleum reservoirs is described
by a system of coupled, nonlinear, partial differential equations. Gen-
erally, the reservoir boundaries and initial pressure and relative distri-
butions of the fluids (the saturations) are established through geological
and drilling data. The estimation of porous rock properties on the basis
of pressure and flow rate data taken during production is an integral part
of the mathematical modeling of the reservoir. The reservoir parameters
that are to be estimated are the porosity and permeability, which are
spatially varying, and the relative permeabilities, which are nonlinear
functions of the saturations of the reservoir fluids. Thus, the reservoir
parameter estimation or identification problem is one in which the
parameters to be estimated may depend on the spatial variables, or the
state, of the system.

Due to the complexity of the equations governing reservoir behavior,
the estimation of multi-phase reservoir properties has received little
attention. The work developed for the estimation of reservoir properties
on the basis of data taken during production has been for single-phase
(e.g., 0i1) reservoirs, or multi-phase reservoirs in which the spatially
varying properties are to be estimated on the basis of pressure data alone.

We consider here the general two-phase parameter estimation (history
matching) problem for fluid phases. The transient pressure and saturation
for a two-phase, immiscible reservoir model are described by two coupled,
nonlinear, partial differential equations. When capillary pressure is

neglected, the reservoir properties in this model are the spatially varying



porosity and permeability, and the saturation-dependent relative permea-
biTities. We investigate the estimation of these parameters on the basis
of data usually available during production. The available data consist
of the pressure at the injection and production wells, and a ratio of the
flow rates of the two f1uids at the producing wells. The total flow rate
at the wells is assumed to be known exactly. These specifications are
common ones in field applications.

Although the solution of the reservoir model equations must usually
be carried out numerically, there is a particular reservoir model for
which the equations can be solved analytically. In this model, the
reservoir fluids are taken to be incompressible, and the fluid flow is
described by one spatial dimension. The analytical solution provides a
convenient means for studying the structure of the estimation problem. In
this dissertation we use the model to investigate the effect of the
spatially varying properties — the porosity and permeability — and the
saturation-dependent relative permeabilities on the observable quantities.
We then develop an algorithm for the estimation of two-phase petroleum
properties for the more general resérvoir model.

In Chapter 2, the equations that describe the flow of fluids in a
two-phase reservoir are derived. The particular two-phase system inves-
tigated is specified, and the partial differential equations for
compressible and incompressible flow are classified. In Chapter 3, the
analytical solution for one-dimensional, incompressible flow is developed.
The effects of the spatially varying properties and the relative permea-
bilities on the solution of this system are illustrated. In Chapter 4,

the numerical solution of the compressible reservoir model by the method



of finite-differences is developed.

The identifiability of the reservoir parameters is investigated in
Chapter 5. Based on the incompressible reservoir model, we establish the
observations of pressure or the ratio of the flow rates over intervals of
time which will be important in the determination of the reservoir param-
eters. The observability of the spatially varying and saturation-dependent
parameters is established. In Chapter 6 an algorithm for the estimation
of reservoir properties in a two-phase, compressible reservoir is developed.
The performance of the algorithm is tested for one- and two-dimensional

hypothetical reservoirs.



2. FLOW OF OIL AND WATER IN POROUS MEDIA

The partial differential equations used to describe the simultaneous
flow of two fluid phases in porous media are presented in this chapter. In
the first section, Darcy's law for single phase flow in porous media is
given. This equation is extended to two-phase flow, and the particular
form of the two-phase system which is investigated is presented in Subsec-
tion 2.1.3. Section 2.2 contains a general study of the nature of the govern-

ing partial differential equations.

2.1 Development of Equations for Oil-Water Flow in Porous Media

2.1.1 Single Phase Flow
The flow rate of a single phase through a horizontal porous material

is represented by Darcy's law as:

_ KA AP
Q—TT (2.1)

where Q is the volumetric flow rate of the fluid, u is the viscosity of the
fluid, A and L are the cross-sectional area and length of the system respec-
tively, and AP is the pressure differential across the sample. The perme-
ability K is a measure of the fluid conductivity of the porous material,

and is typically given in units of darcies (or millidarcies). The unit of
darcy is defined by Eq: 2.1 as follows: a porous material will have a per-
meability of one darcy if a pressure differential of 1 atm applied across a
sample of the material with a cross-sectional area of 1 squarecmand a length
of 1 cm will produce a flow rate of 1 cubic cm per second when the fluid
viscosity is 1 centipo%sel. The unit darcy can be expressed as length

squared.



The differential form of Darcy's law is

9. _K3P (2.2)

where v is known as the superficial velocity, and the minus sign signifies
that fluid flow is in the direction of decreasing pressure.
For multidimensional flow Darcy's law can be written as:
K
V= -2 (WP + pg) (2.3)
where p is the density of the fluid, v is the superficial velocity vector,

and the vector g denotes the magnitude and direction of the gravity force.

~

K is a symmetric second rank tensor2. In this study we will make the

usual assumption that the principal axes of permeability coincide with the

directions of the coordinate system so that 5 is diagonal.

2.1.2 Two-Phase, Immiscible Flow
To describe the simultaneous flow of two immiscible fluids in porous
media, a Darcy equation is written to relate the superficial velocity of

each phase to the pressure gradient of each phase:

Ku
Y = T W, (vp, * 0,9) (2.4)
v = _ 52&-(vp + ) (2.5)
nw . nw " Prwd .

Due to the surface tension and curvature of the interphase between the two
phases, one fluid, referred to as the wetting phase, tends to wet the por-

ous medium more than the other fluid. The wetting fluid is denoted by the



subscript w, and the other fluid, referred to as the nonwetting phase, is
denoted by the subscript nw. The saturation, or volumetric fraction of

the void volume of the porous medium which is occupied by a particular
fluid, is the measure of the relative amounts of each fluid which is pres-
ent. Since the void volume is completely occupied by the two fluid phases,

the following equation applies for the saturation S:

Sw + Snw =1 (2.6)

The pressures of the two phases are related to each other by the capillary

pressure PC:
P =P ~P : (2.7)

Capillary pressure is empirically taken to be a function of the saturation
of the wetting phase!’?

By relating the effective permeabilities Kw and to the single

K
fluid permeability, K, the relative permeabilities krw and krnw can be

defined:

kK = K, (2.8)

rw~.

kPHWE - Enw (2.9)

The relative permeabilities are empirically taken to be functions of satura-
tion and are assumed to be independent of direction!. Since the presence of
one fluid tends to interfere with the flow of the other fluid, the relative

permeabilities of each fluid should be less than or equal to one.



Two additional equations, the equations of continuity, can be written

for each phase:

3(¢p, S,,)
—p— = - V(o v) * a, (2.10)
3(0, S )

ot - v'(pnw\~'r1w) T Yw (2.11)

where ¢ is the porosity, or void fraction of the porous media, and Ay and
D represent source or sink terms.

Eqs. 2.4-7,10,11 represent the mathematical model for the flow of
two immiscible phases in porous media; In order to solve these for the
transient pressure and saturation of each phase, the following additional
information is necessary: (1) appropriate boundary and initial conditions,
(2) capillary pressure and relative permeabilities as functions of satura-

tion, and (3) the porosity and fluid properties (densities and viscosities)

as functions of pressure.

2.1.3 Simplified Model

We will confine our attention in this study to a less general model
than that given above. Our model will be based upon petroleum reservoirs
which can be represented by one or two horizontal dimensions. Since the
areal dimensions in petroleum reservoirs are usually much greater than the
thickness, and since reservoirs are usually more permeable in the horizon-
tal direction than the vertical direction, many reservoirs are modeled as
two-dimensional areal reservoirs®. The injection and production wells will

be modeled as point sources or sinks in the continuity equations.



We will Targely be concerned with water flooding problems. The two
phases, oil and water, will be denoted by subscripts o and w, respectively.
The effect of capillary pressure will be neglected as is often doﬁe in two-
phase reservoir studies®.

With these changes, the equations describing our system are:

3(¢p, S, )
“ggu - Vo) * Z Gy 6(x - x)8(y, - ) (2.12)
3(¢p S _)
*‘—“‘at°°=-\7 (pgvy) * Z A 6(x - x)8(y, - ¥) (2.13)
Kk
v = - =lgp (2.14)
~w uw
Kk
Yo T ° ~u:° vP (2.15)
5o * 5 = 1 (2.16)

where G(Xm—x) is the Dirac delta function, NW is the number of wells, and

L is the location of a single well. A positive value of q, ©Or 4,
m

represents fluid injection, while a negative sign denotes production.
[f the boundaries of the reservoir are taken to be impermeable, the
necessary boundary condition on pressure and the initial conditions for

pressure and saturation can be expressed as

oP
-a—ﬁ'-' 0 on?d | (?-17)
P(t=0) = P, (2.18)

in



5,(t=0) = Sin (2.19)

where n denotes the outward directed unit normal on the reservoir bound-
ary 3, and Pin and Sin denote the specified initial pressure and satura-
tion. Rather than the no-flux boundary condition on pressure, values of
pressure could be specified over some or all of the reservoir boundary.
In this study we will assume that fluid viscosities are independent
of pressure. We will use the following relations to represent the fluid

densities and porosity as functions of pressure:

4, dp
1 Tw
CW = p—w- ap (2.20)
dp
_ 1 0
CO = -—po - (2.21)
_1d
C,. = 3 | (2.22)

where constants Cws Co? and c, are the compressibilities of water, oil,
and the porous space, respectively.

When the rock properties, ¢, K, krw and kro’ and the well rates 9
and q, are specified, Eqs. 2.12-22 can be solved for the transient pressure
and saturation throughout the reservoir. These equations constitute the
reservoir model. The remainder of this chapter, and Chapters 3 and 4, are
devoted to the solution of these equations for transient pressure and sat-

uration. Chapters 5 and 6 are concerned with the inverse problem - given

portions of the solution, estimate the rock properties ¢, K, krw and kro'
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2.2 General Study of Qil-Water Flow Equations

In this section some preliminary remarks on the structure of the
coupled partial differential equations 2.12-15 are made by deriving single
partial differential equations for pressure and saturation®. For simplic-
ity, in the following derivations we represent the source and sink terms

in Eqs. 2.12 and 2.13 as simply 9 and q, as was done in Eqs. 2.10 and 2.11.

2.2.1 Pressure Equation
By eliminating the flow velocities from Eqs. 2.12 and 2.13 and using
Egs. 2.16 to eliminate So from Eq. 2.13, the following set of coupled par-

tial differential equations are obtained:

3(¢p..S ) Kk o

ww! o STrww

5t ( W) VPl +q, (2.23)
30, (1-S,)] Kk0Pq )

=t = Ve _.._..___uo vP| + q, (2.24)

We will use the following steps to obtain a single partial differen-
tial equation for pressure: (1) expand the left hand sides of Eqs. 2.23
and 2.24, (2) use the compressibilities to e]iminate the time derivatives
of the porosity and densities, and (3) eliminate the time derivatives of
saturation.

Expanding the left hand sides of Eqs. 2.23 and 2.24, we obtain:

3(¢0,S,,) 3S,, 3p,, 3
5t Pt T Sw(¢ i pwlgf) | (2.25)
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219p,(1-S,)] oS

. ap

= - v - -9 39

5t v, 5t * (1 Sw)(%t ¥ Py 3t
The following identities can be derived from Eqs. 2.20-22

I I
ot dP 3t “wfw 3t
o _YPop o op
ot dP ot oo Bt
3 - dp P _ . . P
3t TP 3t T Sr? 5t

(2.26)

|

(2.27)

(2.28)

(2.29)

Using these relations to eliminate the derivatives of the density and por-

osity in Eq. 2.25, Eq. 2.23 can be written as:

¢pw[ + S (Cr+cw) 3P] v-l:

Using a similar procedure, Eq. 2.24 becomes:

Kk

~

m

BS
ot

W

Py VP:, +q,

w

(2.30)

as Kkr0
0, [- el (1-S )(c +c ) ] = Vol . P,YP | * 9, (2.31)
Dividing Eq. 2.30 by Oy Eq. 2.31 by Py and adding the two results we
obtain
Kk
aP 1 ~ W
¢atC+C(1S)+CS]B; [“w pva]

1y
Po

Kk
+ 2 Yo vP| +
[uo Po %

(2.32)
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q q ‘
where Q, = LU 59-. The densities on the righthand side of Eq. 2.32

»
W 0

can be eliminated if the spatial variation of density is neglected®. A

more precise statement can be made by making use of the following identi-

ties obtained from Eqs. 2.20 and 2.21:

Vo, = il VP = ¢ o VP (2.33)
W dP wWw :
dp
. 0 -
Vpo =ar vP CODOVP (2.34)

By expanding the terms on the right hand side of Eq. 2.32 and using Egs.

2.33 and 2.34 to eliminate the gradients of Pu and P> We obtain:

oP =
¢ 5 cr+co(1-5w) + Cwsw] =

1k k
(._EE c + 19 co) 5(VP°VP)

Yy WoH,
& k
+ v»[(—"ﬂ + —fﬁ) KVP:I +Q (2.35)
My Yo |~ t

By non-dimensionalizing this equation with respect to some characteristic
reservoir pressure P* and length L, the conditions for neglecting the non-

linear term are:

P*cw << 1
P*c0 << 1

Neglecting this term we obtain the following equation for pressure:

C.o 22 - . 1<1"’—+l—(rg KvP | + Q (2.36)
t® 3t TR B t :
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where

Ct =c.t co(l-Sw) + chw

Eq. 2.36 1is a parabolic partial differential equation? If we are deal-

ing with an incompressible system, then Ct = 0 and Eq. 2.36 becomes:

k k
rw ro
. —_— + = .
v [(“w m )EVP] Q= 0 (2.37)
Eg. 2.37 is an elliptic equation. For the incompressible problem, some
value of pressure must be specified on the boundary 5 in order to solve
Eq. 2.37 uniquely for pressure. The initial condition given by Eq. 2.18

is no longer necessary.

2.2.2 Saturation Equation
To derive a single equation for saturation, we eliminate the pres-

sure gradients from Eqs. 2.14 and 2.15 to obtain:

Aw
Wwx Y (2.38)
0
‘ krw ‘kro
where A, =—— and A_ = — . The total velocity v, is
LT 0 I, ~
given by:
Ve =V, t Yy, (2.39)

We can define the fractional flow rate of water fw by the relation:

v =fvy (2.40)
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From Eqs. 2.38-40 we find that:

A
f o= (2.41)

W A0+Aw
Using Eq. 2.40, the flow velocity can be eliminated from Eq. 2.12 to
obtain:

319p,5,,]

— = _4 v.(pwfw!t) + a, (2.42)

If we assume that the reservoir fluids and rock are incompressible, we can

divide Eq. 2.42 by Pu to obtain:

.BSW 9,
¢ wg = - V'(fwyt) + 5;' (2.43)

Expanding the first term on the right hand side of Eq. 2.43, that equation

can be written as:

. aSw q
o mpr = - F V0V - VeoVF, =S (2.44)

Making use of the following identity
| df
Vfw = ag;-vsw s (2.45)
Eq. 2.44 becomes:
aS. . dfw a,
¢ 5 = - fLVeve - v ag—--vsw-+.5_ (2.46)
W w
If we are concerned with flow away from the boundaries and sources or

sinks, then Ay = 0 and V-vt = 0. Eq. 2.46 then becomes:
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3, df
q) '5{_ = - Ve .a_S; oVSw (2.47)

This is a first order hyperbolic equation’

2.3 Summary

The particular reservoir model used in this study has been specified
in Subsection 2.1.3. This model was obtained by first developing the
general equations used to describe two-phase immiscible fluid flow in por-
ous media, and then making the following assumptions: (1) the reservoir
can be modeled with two horizontal dimensions and‘(2) capillary pressure
can be neglected. The different forms of Darcy's equation used in this
development are summarized in Table 2.1.

‘A general study of the structure of the model equations was made by
deriving a single partial differential equation for pressure and a single
equation for saturation. The pressure equation is shown to be parabolic
if the fluids or reservoir are compressible, but is elliptic if the system

is incompressible. The saturation equation is hyperbolic.



Table 2.1. Forms of Darcy's Equation Used in the Development
of the Reservoir Model

EQUATION SYSTEM
K
vV = ﬁ-(VP + pg) Single phase flow
KKy
Vg T ° W (vp, +0,9) Two-phase immiscible flow
~krnw
Yw = T o (VP N pnwg)
Pe = Pow = Pu
Kk
v = - =Wogp Zero capillary pressure and
~W My gravity effect
Kk
= - xT0gp
~0 u
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3.  ANALYTICAL SOLUTION FOR ONE-DIMENSIONAL INCOMPRESSIBLE FLOW

Assuming that the reservoir and fluids are incompressible and that
the reservoir can be represented with a single spatial dimension, two
equations can be derived from Eqs. 2.12-16 which can be solved analyti-
cally for the saturation and pressure. The saturation equation is the
well known Buckley-Leverett equation® and can be solved by the method of
characteristics.

Since the saturation equation is nonlinear, the solution of that equa-
tion by the method of characteristics becomes complicated because shocks,
or discontinuities in the solution, must be constructed. There have been
numerous studies of the solution for homogeneous reservoir models in the
Titerature!*®7°, The solution by the method of characteristics can readily
be extended to apply to heterogeneous reservoir models -- those for which
the porosity and permeability vary spatially. This chapter contains a
comprehensive review of the ana]yticél solution for homogeneous models,
as well as the extension to heterogeneous models.

In Section 3.1, the reservoir model is specified and the governing
equations are derived. The solution of the saturation equation is dis-
cussed in Section 3.2. In Subsection 3.2.1 and 3.2.2, the analytical and
graphical construction of shocks for homogeneous models is developed!®®710,
and this is extended to heterogeneous models in 3.2.3. In Section 3.3,
saturation and pressure solutions for example problems are presented, and

the effect of different reservoir properties on the solutions are discussed.



18.

3.1 Development of Equations

The decoupling of the saturation and pressure equations to obtain
analytical solutions is similar to the derivations in Section 2.2. The
saturation equation which will be derived is, in fact, Eq. 2.47 for one-
dimensional flow. However, in order to unify the assumptions made in the
model, the pressure and saturation equations will be derived below begin-
ning with Eqs. 2.12-16.

We assume that fluid flow is along the single spatial dimension x.
The reservoir model has a constant cross-sectional area A at all Tocations
X, and the length is X - Water is injected at a specified volumetric flow
rate Q at location x=0 and fluids are produced at X=X 3 the reservoir
model is otherwise free of sources or sinks. This model is shown schemat-
ically in Fig. 3.1. MWe also assume that the fluids and reservoir rock
are incompressible. Now, the equations describing our system, Eqs. 2.12-
16, can be written as

EN

W _ ]
5t = " 3x Vw (3.1)
3S
By o
*5t = "3 Yo | (3.2)
Kk ‘
_ rw 9P
VW = - -F‘;—E(- (3.3)
Kk
v = -_rodk (3.4)
0 Ho X
S0 + Sw =1 (3.5)

Using Eq. 3.5 to eliminate S0 in Eq. 3.2, then adding Egs. 3.1 and 3.2, we

obtain:
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Inject Water — cgpy

Figure 3.1
Schematic Reservoir Model
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d

B (vW + vo) = 0 (3.6)

This means that the total superficial velocity is independent of location.
Since the total superficial velocity Vi is known at x=0 (vt = %—by Eq. 2.2,

where Q is the volumetric flow rate injected) the solution of Eq. 3.6 is:
vV, = v+ YV (3.7)
The fractional flow of water fw can be defined as:

fu = ViVt (3.8)

Using Eq. 3.8, Eq. 3.1 can be written as:
v
W __t_w (3.9)

Eliminating the pressure gradients in Eqs. 3.3 and 3.4 we obtain:

K.n U
ro "w
vV =V (3.10)
0 Wiy Ky

The following relation for fw can be obtained from Eqs. 3.7,8,10:

-1
T
fw=(1 +ﬂ£k-"2) (3.11)

o rw

Since the relative permeabilities are functions of saturation, Eq. 3.9 can

be written as:

Wt W W (3.12)
. W
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With an initial and boundary condition on saturation, Eq. 3.12 can be
solved for the saturation distribution Sw(x,t).

For simplicity, we will refer to the water saturation as simply S
and use f to refer to the fractional flow of water. We will use f' to
denote the derivative of the fractional flow with respect to saturation.

With these changes, the equations which specify the saturation are:

3s _ vt ., 95

i TF-f X (3.13)
S(x,0) = Sin(x) (3.14)
S(0,t) =1 - Sro (3.15)

Eqs. 3.14 and 3.15 are the initial and boundary conditions, respectively,
where Sro is the residual oil saturation.

Eq. 3.3 can be solved for the pressure P(x,t). Using the definition

of f,. Eq. 3.3 can be written as:
Kk
- _ _.rwoP
vtf = TR (3.16)

By specifying the pressure at x=0, the necessary boundary condition on pres-

sure is:
P(0,t) = Py(t) (3.17)

The solution to Egs. 3.16 and 3.17 is

X .
P(x.t) - Pylt) = vy, ka‘f‘“ dx (3.18)
0 rw
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In this study we will confine our attention to the pressure drop, AP,

across the reservoir model, Eq. 3.18 then becomes:

X
L

AP(£) = P(x,t) - Pylt) = vtuwf o dx (3.19)
0 rw

3.2 Solution of the Saturation Equation

Eq. 3.13 is a nonlinear first order hyperbolic equation which can be
solved analytically by the method of characteristics. This solution will
be discussed in detail in this section.

The total derivative of saturation is

dS _ 3S ., 9S dx

dt T3 T dt (3.20)
By comparing this expression to the partial differential equation for sat-
uration, Eq. 3.13, we see that solutions to the partial differential equa-

tion are equivalent to solutions of the following two ordinary differential

equations:

ds _

=0 (3.21)
v

%s =.?¢£f'(s) (3.22)

The solution to Eq. 3.13 can be given graphically as curves (called
characteristic curves) in the (x,t) plane which satisfy Egs. 3.21 and 3.22
and the initial and boundary conditions, Eqs. 3.14 and 3.15. Eq. 3.21
specifies that the value of saturation along one of these characteristic

curves remains constant. Eq. 3.22 specifies the derivative along each
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curve. The intersection of the characteristics with the x-axis satisfies
the initial condition, 3.14, and the intersection with the t-axis satis-
fies the boundary condition, 3.15. If Vi is independent of t and ¢ is
independent of x, the slope for each curve given by Eq. 3.22 is a constant,
and hence the characteristics are straight lines.

We now consider an example problem. The velocity is taken to be in-
dependent of time, and the porosity is independent of location. For sim-
plicity, we will define a dimensionless time T and distance & such that

t

<
ot

©

XL

(el
]
><|><

L

For the f and f' functions given in Fig. 3.2 and initial saturation pro-
file shown in Fig. 3.3, the characteristic solution is plotted in Fig. 3.4.
The solution can be calculated analytically. If ¢ is independent of

location and v, is independent of time, Eq. 3.22 can be integrated to

t
obtain

Vtt
x(5,t) - xy(S) = —— £'(s) (3.23)

where xO(S) is obtained by inverting the initial condition given by Eq. 3.14.
The location of saturations at time t can be calculated by Eq. 3.23.

For the example problem considered above, S is plotted for three dif-
ferent times in Fig. 3.5. For time T3 the saturation curve becomes multi-
valued for some range of x. The reason for this is that the function f'

has a maximum for some Sc <S<1- Sro’ where SC is the connate water
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Figure 3.2
Fractional Flow for Example Problem
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saturation. That is, some intermediate saturations travel faster than
saturations in the neighborhood of Sc and therefore overtake them. This
feature can also be seen in the characteristic diagram Fig. 3.4. Multi-
valued saturations occur where the characteristics intersect.

Obviously, the existence of more than one saturation at a particular
position is physically impossible. Shocks, or discontinuities in satura-
tion, are introduced to avoid these mu]ti—va]ued saturations. Both the
analytical and graphical construction of shocks will be presented.

For the example problem considered above, Vi was taken to be indepen-
dent of t and ¢ was independent of x. Although the same principles of solu-
tion apply to the more general case of varying Vi and ¢, the analytical
solution becomes more difficult since certain explicit forms can not be
obtained. Rather than obstruct certain features of the problem by study-
ing only the more general case, we will first obtain the solution for con-

stant Vi and ¢, and later generalize it.

3.2.1 Analytical Construction of Shocks
At the time at which multi-valued saturations appear, the curve S
as a function of x becomes vertical (time Ty in Fig. 3.5). Hence, at some

value of x we have the following condition:

35

—_— > 00

X

The solution breaks down because the continuity equation 3.1 no longer applies
since the saturation is not continuously differentiable there. However,
material must still be conserved. The more general form of the continuity
equation shown below applies regardless of the differentiability of satura-

tion!?.
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Consider a mass balance on water for some X_ < X < xb. Then

a — —
rb
%‘}gf ¢Sdx = v, (x.,t) - v, (x,t) (3.24)
Xa

(If S(x,t) has continuous derivatives, we obtain Eq. 3.1 in the limit as
Xq xb). Assume that the saturation is discontinuous at the point x,(t),

and continuous elsewhere. Eq. 3.1 applies for x < x_, and x > Xy - For

a
Xy <X < Xy Eq. 3.24 becomes

a —
Xd *b
vw(xa,t) - vy, (x t) gt[f $Sdx +f ¢de] (3.25)
Xa X4

By carrying out the derivative in the right hand side, this equation

becomes

vw(xa,t) - vw(xb,t) ¢S(xd,t)xd-¢S d’ -]ﬁ¢ T dx t’ﬂ 35 4x (3.26)

dx
| - d = +
where X4 = 6 and S(xd,t) and S(x ,t) are the values of S as x - X4 from

X < Xqg and x > X4 respectively. Since gi is bounded in each of the inte-
grals in Eq. 3.26, in the limit as X, xd and Xy > x; these integrals tend
to zero and Eq. 3.26 becomes:

v G t) = v (xgt) = o [S0xgat) - S(xgst) ] xg (3.27)

Denoting S(xa,t) and S(x;,t) by S and st, respectively, and applying the
definition of f given by Eq. 3.8, Eq. 3.27 can be written, after rearranging,

as:
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dx, vt[f(s')—f(s*)]
2 - - (3.28)
(S -S")

This equation gives the velocity of the shock if the saturations are known

on either side of the shock. An equivalent fo}m for Eq. 3.28 is

dx vV, —————
d t [3 - +
T =5 (5,8 (3.29)
where -
S
-I~ f'dsS
S —— . +
- ¥ 'S
Cf'(S,S) = Seme——
s™_st

From Eq. 3.29 we see that the shock moves with a velocity which is propor-
tional to the average velocity of all saturations S° > S > s*.’

In order to find the time t. at which the first shock is formed, we
find an expression for 95 and determine the first time at which g§-+ w10

X
Taking the derivative with respect to x in Eq. 3.23 we obtain:

dx v
0 _ 't w 99
l-g5 5% ° ) t 5% (3.30)
After rearranging, we obtain the following expression for g% :
dx v -1
__g)S( = [H’S—O + -—-¢t tf'] (3.31)

Investigating the conditions for which _g_)_S(__) o, we see that tC is given by:

.dXO/dS
(3.32)

v
t n
S ™ min
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Once a shock is formed, the location of the shock X4 and the values
of saturation at either side of the discontinuity, S~ and S+, can be found
by using the following argument. Since both the multi-valued curve and
the discontinuous curve of S satisfy conservation of mass, then the area
X

Sdx must be identical for both curves®!®, Hence, the shock is construc-
0
ted on the multi-valued curve at the location which cuts off lobes of
equal area (see Fig. 3.6). Since X is a function of saturation over the
range S’_z S > S+, this condition can be derived more easily by consider-

ing the area given by_/3d$) dS. The equal area requirement theh becomes:

s
f x($)ds = (s - s7) xy (3.33)
S+

Using Eq. 3.22 in the integral, we obtain:

S S
'Vt _ +
f Xn(S) ds+t——ff'ds=(s -S') x (3.34)
+ 0 q) + d
S S

Since the saturations to the left and right of the shock must satisfy the

continuity Eq. 3.1, we have from Eq. 3.23 two expressions for X4

t
Xy = xO(S+) + %— £ (sh (3.35)
X, = xn(S7) + it £1(57) (3.36)
d 0 ) ’

Substituting Eq. 3.35 into 3.34 for X4 and rearranging, we obtain:
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S
on(s)ds-(s'-s+)xo(sf)

vt
S t
= 3.37
< ; (3.37)
(s‘-s*)f'(s+)-ff'ds
<t
Treating Eqs. 3.36 and 3.34 similarly, we obtain:
<
f x(S)dS-(S™-ST)x(S7)
AR 0
3 vtt
= 3 (3.38)

=
sT-sT)F(sT)- [ #
(s™-5%)F1(57) _S[+fds

Equating Eqs. 3.37 and 3.38 and evaluating the integral in the denominators,

the following equation, which appears in Cardwell®, is obtained:

S S
f+ Xo(S)ds-(57-5)xy(s") [xo(s)ds-(s'-sJ')xO(s')
S

S -—
- - _F _ ~ o (3.39)
(s7-s)fr (s*)-0e(s7)-f(sT)1 (S-S )-TF(ST)-F(SH)T

After the time of shock formation, the shock can be constructed by finding
pairs of saturations S  and st which satisfy Eq. 3.39. The time at which

a particular pair S~, st exist is given by

X (57)-x, (57)

t(s™,s") = (3.40)

';;‘i [f'(S+)-f’(S')J
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Eq. 3.40 is found by eliminating X4 between Eqs. 3.35 and 3.36 and re-
arranging. The position of the shock for the particular time is then
given by Eq. 3.35 or 3.36 evaluated at t(S',S+).

For arbitrary initial conditions, the construction of shocks in the
saturation solution is complicated since not only does the position of a
shock and saturation values on either side of the shock vary with time,
but there may be multiple shocks as well as merging of shocks!® An impor-
tant Timiting case of the Buckley-Leverett problem has the following initial

condition for the saturation:
S(x,0) = SC (3.41)

where SC is the connate water saturation. For this case, a single shock

is formed immediately (i.e., x=0+, t=0+). It is not convenient to use

Egq. 3.39 to construct thé shock analytically since xO(S) is no longer a
function. Welge’ proposed a graphical method to determine the upper value
of the shock S° for this Timiting case. It consists of plotting f vs. S.

A straight line is drawn from S=Sc, f=0, such that it is tangent to the f
curve. S 1is given by the value of saturation corresponding to the inter-‘
section of the line with the f curve, and st = Sc’ The va]des of the shock

are independent of time. Construction of the shock graphically provides

an important insight into the Welge solution.

3.2.2 Graphical Construction of Shocks
Graphical construction of the solution by characteristics is: often
used to determine approximate solutions to the problem and determine the

general nature of the solution. In the previous section it was shown that
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shocks must be constructed in the solution when multi-valued saturations
are calculated. In this section the graphical construction of shocks will
be discussed®.

Multi-valued saturation solutions correspond to regions in the char-
acteristic diagram for which characteristic curves intersect. The char-
acteristic solution for the example problem in the previous section (see
Fig. 3.4) is plotted with shocks in Fig. 3.7. The position of the shock
in the (£,t) plane is denoted by a broken 1ine. The characteristics first
interesect at the point (E;%) in Fig. 3.7. The values of saturation for
the characteristic curves which meet at this point correspond to S~ and S+.
Theoretically, these values should be only infinitesimally different.
However, when graphing the characteristics the first intersection will gen-
erally be at some time greater than tC and S~ and S+ will have finitely
different values. To find the position of the shock at T + AT where AT is
some small increment of time, a straight line can be extended from (£,T)

with a slope given by

95y e(sT)-F(s)]

(3.42)
dT S-‘S+

This is the dimensioniess form of Eq. 3.28, the equation for the velocity
of the shock. The point at which two characteristics intersect at T + At
can be found by trial and error. This point will be in the neighborhood
of the intersection of the straight line extended from (£,T) and the line
with zero slope given by (&,T +AT). The new values of saturation across
the shock, S~ and S+, belong to the two characteristics which intersect at
this point. This process can be extended to trace the development of the

shock with time.
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The characteristic diagram for the initial condition given by Eq. 3.41
consists of vertical lines along the x-axis and a "fan" at x = 0 (see
Fig. 3.8). For this case, st = Sc» but the upper value of the saturation
across the discontinuity cannot be found directly from Fig. 3.8.

Sheldon, et al.® considered initial saturations of the type given by
Fig. 3.3 (i.e., concave) for a typical function f. By plotting the charac-
teristic solution they show that S~ and st approach 1imifing values as t
increases. The steeper the initial profile is, the more quickly this Timit-
ing value is attained. For the 1imiting case given by Eq. 3.41, the proper
solution is that S = 5. for all time and S” is constant for all time. Hence,
graphically the proper solution can be chosen by considering these steeper
initial saturation profiles. This shows the uniqueness of the Welge
solution.

If Sd is the saturation S~ corresponding to thé 1imiting characteristic,

then the velocity of the shock is given by Eq. 3.29 evaluated at Sd and Sc:

dxd vt S
T T (S4>Sc) (3.43)

where

— f(S,)-f(S.)

Evaluating Eq. 3.22 at the saturation Sd gives us another expression for

the velocity of the shock:

dx v
d _ "t .,
a "7 F5g) (3.44)



38.

ol

Ix/x ‘edueisiq ssajuoisuswiq

g = Nlg 105 uonnjog susuaseieyy
- 8°¢ aunbiy

suun Adeanqey ‘awn




39.

The following relation can then be obtained by equating the right hand
side of Eqs. 3.43 and 3.44:

F'(Sq) = £ (SyS.) (3.45)

Since geometrically the average slope of a curve between two points is
given by a straight line joining those points, Eq. 3.45 is an analytical
statement of the Welge solution.

+, it is not neces-

To obtain a single shock with constant values S°, S
sary that the initial saturation be the connate water saturation Sc- The
initial saturation can be any constant value Sa < Sm such that f'(Sm) =
max f'(S) for all Sc <S$<1- Sro' Then S™ is found by drawing a straight
line from S = Sa, = f(Sa) so that it is tangent to the f curve on the

plot of f vs. S. If Sd > Sm’ then no shock is formed.

3.2.3 Solution of. the Saturation Equation for ¢(x) and vt(t)

Although the solution of Eqs. 3.21 and 3.22 is more difficult for
spatially varying porosity and temporally varying velocity, the derivation
closely parallels that for the less general case. The chief difference in
the solution is that Eq. 3.22 can no longer be integrated to give x(S,t)
as an explicit function of saturation and time. Instead, Eq. 3.22 can be
solved as |

x(S,t) t

[ stadx = £(s) [uy(t) at (3.46)
xO(S) 0



Lo,

For any time t, Eq. 3.46 gives x implicitly as a function of S. For con-

venience, we will write Eq. 3.46 as:

o(x) = V(t)f'(s) (3.47)
where x(S,t)
o(x) =f ¢(x)dx
Xo(S)
and
t
v(t) = [y (t)de
0

The derivation of Eq. 3.28, which gives the velocity of the shock, is
jdentical to the previous derivation since ¢ was not taken outside of the
integrals in Egs. 3.24-26. By noting the functional dependence of Vi and ¢,

we can write Eq. 3.28 as:

dx v (t) ————r
d t i fe= ot
CE e fr(s,s") (3.48)

To obtain an expression for tC which corresponds to Eq. 3.32, we dif-

ferentiate Eq. 3.46 with respect to x to obtain:

'dXO
oS _ " N
o(x) - ¢(XO)'E§"'5; = V(t)f"(S) X (3.49)
Rearranging, we obtain the following expression for‘gg :
S _ ¢ (x)
X " $TR X GV (EITTS) (3.50)
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X
where xb = H§9 . The time at which the first shock forms, t., is given

implicitly by:

x(')(S)cb(xO)
£(S)

(3.51)

min

The condition that both the discontinuous and continuous saturation

profiles conserve mass, which is analogous to Eq. 3.33, is:

S
S oxes = alx) (57-5"0x (3.52)
S

where x(S,t) is given implicitly by Eq. 3.47. The saturations S™ and st
satisfy Eq. 3.47:

V(t)f'(S7) (3.53)

@(Xd)

3(xq) = V(£)F'(ST) (3.54)

For t > t_, Eqs. 3.52-54 must be solved for the functions S (t), S+(t),
and xd(t).

The graphical construction of shocks is identical to the method out-
lined in Section 3.2.2 for constant porosity and velocity since the velocity
of the shock (given by Eq. 3.28) is the same for both cases. The character-
istics will now be curves rather than straight Tines.

For the 1imiting initial condition given by Eq. 3.41, the following
derivation shows that the Welge condition given by Eq. 3.45 applies to a
heterogeneous reservoir. Consider a mass balance on water for time t, such

that t < tB’ where t, is the breakthrough time, or time at which water is

B
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first produced. The volume of water in the reservoir at time t is then
equal to the volume of water initially in the reservoir plus the volume
of water injected. The mathematical statement of this is:

X XL
A¢ S, f¢dx +V(E)) = qu;de (3.55)
0 0

Eliminating the area A from both sides and rewriting the integral, Eq. 3.55
can be written as:

X

L X4 XL
S, f¢dx + V(E) = f¢$dx ¥ scf odx (3.56)
0 0 X,

The first integral on the right hand side of Eq. 3.56 can be trans-
formed to an integral over S. By taking the derivative with respect to S

of Eq. 3.47 evaluated at time T, we obtain
X _ vrTyven
¢(x) 55 = V(t)f"(S) (3.57)

Then, the integral can be transformed as follows:

X4 Sd | 34
f¢5dx = f ¢S -% ds = V(t) f Sfds (3.58)
0 1-S 1-S,.,

Here we have assumed that the value S = 1'Sro occurs only at x = 0 -~ i.e., we
have taken f'(l—SrO) = 0, as is usually done. .The integral in Eq. 3.58 can

be integrated by parts to obtain:

s
d
f sf'ds = S4F'(Sy) - [ F(sy) - 1] (3.59)
1-S
ro
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where f(l'sro) has been evaluated as 1 and f'(1-Spy) has been evaluated
as 0.

Using Eq. 3.59, and rearranging, Eq. 3.56 can be written as:

X ul
sc[_f¢dx - ¢dx] = V(%) [Sdf'(sd) - f(Sd)] (3.60)

0 Xd

The two integrals on the left hand side of Eq. 3.60 can be written as a

single integral, and then simplified by Eq. 3.46, as follows:

ul X Xq
S, [{q)dx —fcpdx:} = s, [:{q)dx:l = S V(E)F'(Sy) (3.61)
X
d

After rearranging, Eq. 3.60 becomes:

£(S )

(3.62)
Sd"s

P (Sq) = 15,55

Since‘f(SC) = 0, this is identical to the Welge solution given by Eq. 3.45.
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In this section the effect of different reservoir and fluid properties
on the pressure and saturation solutions are discussed. A computer program

was written to solve Eqs. 3.19 and 3.22 with the following boundary and

initial conditions:

S(0,t) =1-5 (3.63)
(3.64)

I
w

S(x,0) =

The superficial ve]ocity was taken to be constant.

The relative permeabilities were represented as follows:

b
[ s-s. W
kY‘W(S) = aw T‘_—S—-—_'g——— (3.65)
ro ~c
b
k. (S) (1-sm-s ) i (3.66)
= a .
ro ol 1- ro2c

For each set of relative permeabilities and viscosity ratios used, the upper
value of the saturation at the shock, Sy, was determined analytically using
Eq. 3.45. A detailed description of the computer program is given in Appen-
dix A.

Nine cases were run using the data given in Table 3.1; These cases are
divided into three groups. In the first group the effect of different rela-
tive permeabilities and viscosity ratios on the solution is investigated.
The effect of spatially varying permeability is investigated in the second
group, and the effect of spatially varying porosity is investigated in the

third group.



bs.

Table 3.1. Specification of Reservoir Properties Used for
the Example Problems

- -3 =
v, = 5x1077 ft/hr W, = lcep
x = 1x10% ft
L
GROUP I:
K = 0.2737 darcy ¢ =0.3
Relative Permeability
Case Set Used?T? “o(cP)
1 A 1
2 B 1
3 C 1
4 A 10
GROUP 1II:
'ﬁ Relative Permeability Set A, Fig. 3.9 ¢ = 0.3
By = 1cp
Permeabili
Case Set Used?¥)
1 a
5 b
6 C
7 d
GROUP III:
Relative Permeability Set A, Fig. 3.9 K = 0.2737 darcy
Porosity(z)
Case Set Used
1 | a
8 b
9 C

(Dsee Figs. 3.9-3.11
(2)see Fig. 3.15
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The three different sets of relative permeabilities used for the cases
studied are given in Figs. 3.9-11. The four permeability profiles and
three porosity profiles used are shown in Fig. 3.12. The graphs of the
calculated saturation and pressure drop are plotted in terms of a dimen-
sionless distance X, a dimensionless time T, and a dimensionless pressure

AP*(t) defined as

X = x/xL (3.67)
T= t/tB (3.68)
AP*(t) = AP(t)/AP(0) (3.69)

where t is the time of water breakthrough. The calculated values of AP(0)

and tB for each case are given in Table 3.2.

3.3.1 Relative Permeability and Viscosity Ratio
A constant permeability and porosity profile were used for these

four cases. Three different sets of relative permeabilities were used for
Cases 1-3. The parameters used in Case 4 were the same as Case 1 except
for By = 10 (see Group I in Table 3.1).

For Case 1, the pressure solution in shown in Fig. 3.13, and the sat-
uration solution is shown in Fig. 3.14. The functions f and f' which corre-
spond to the relative permeabilities in Set A are shown in Fig. 3.15. The

pressure solution AP*(t) for constant Vis K, and ¢ have this same form for

different relative permeabilities: The pressure drop is linear with time

for t < tB’ and then it asymptotically approaches the limiting value
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Figure 3.12
Permeability and Porosity Profiles
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Table 3.2. Calculated Data for the Example Problems

Initial Pressure  Breakthrough ¢ B(1) jl'_L ClS(1)

Case Drop (atm) Time (days) d 0 krw
1 4.8 1610 0.672 1.33 2.37
2 4.8 1820 0.777 4,67 5.77
3 16.0 1340 0.552 0.12 3.80
4 48.0 1080 0.443 -0.34 6.78
5 8.6 1610 0.672

6 8.6 1610 0.672

7 5.0 1610 0.672

8 4.8 1610 0.672

9 4.8 1610 0.672

(Dsee Eqs. 3.65 and 3.66
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| | |
T1=0.08
T2=0.28 _
T3=0.48
T4 =068
T5=0.88 ]
Tg=1.07
T6 _
Tq TT5 _
= 5 —
| =
.0
g 4 —
A3
3 —
2 - —
d L ]
0 ] ] l | | ] ] ] 1
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Figure 3.14

Saturation Solution — Case 1
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uok (S))
_ Pwhrot e
AP* () = uokrw(l-sm) . (3.70)

which is a measure of the driving force required for the flow of water at
saturation S = l—Sr0 relative to that required for the flow of oil at
S = SC.

Using the pressure equation 3.19, we can show that AP*(t) is linear with
respect to t for 0 < t f-tB' This development does not depend upon the
particular shapes of the relative permeabilities represented by Eqs. 3.65
and 3.66. Since the saturation for x > x4 1is S., and since K is constant

for these cases, Eq. 3.19 can be written as:

X
d
v u
AP(t) = L T dx + -2 - 3.71
K [UWJ krw X ——kro—(-s_—c) (XL xd)J ( )

For t = 0, X4 = 0, we obtain the following expression for the initial pres-
sure drop:
Vi Mo
AP(O) = e W XL (3.72)

The equation for the normalized pressure drop is obtained from Eqs. 3.69,71,72:

kro(sc) Yy ¢ f 1 (x, - %) (3.73)
ppr(t) = LS| M [T gy kots T (LT % -
L Ho 5

For constant porosity and velocity and the initial and boundary condi-
tions given by Eqs. 3.63 and 3.64, the saturation equation 3.22 can be inte-

grated to:
v, t

x(S) = —%— £ () (3.74)
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We will define a new variable £ by:
g = -)-(-_ (3'75)

Now the integral in Eq. 3.73 can be expressed as:

X4 1
J& dx = xy [ - de (3.76)
0 rw 0 rw

Using this form of the integral in Eq. 3.73 and replacing X4 with its
equivalent given by Eq. 3.74, Eq. 3.73 can be written as:

1
k. (S.) | u f'(S,) u X
= _ro‘c W d f _ 0 L
AP*(t) ————XL ,:—“o v, —5 t(-ol'm dg kro(sc)uw) + kro(sc)] (3.77)

Using Eqs. 3.74 and 3.75, the variable £ can be expressed as a function of

saturation:

_ (s
£ = S, (3.78)

Since Sq s independent of time, Eq. 3.78 implies that the integral in

Eq. 3.77 is independent of time for t< tB’ and the normalized pressure

drop is a Tlinear function of time.

Eq. 3.77 can be further simplified by writing it in terms of the dimen-

sionless time defined by Eq. 3.68. The time of breakthrough can be found

by evaluating Eq. 3.74 at x = Xq and S = Sd and rearranging:
£ = ik (3.79)
RN

Using Eqs. 3.79 and 3.68 to eliminate t from Eq. 3.77, that equation can be

written as:
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AP*(T) = gT + 1 (3.80)
where

(S.)u, °
_ ro c'w f
B = J g de - 1 | (3.81)
0

Using Eq. 3.11 for f, the integrand in Eq. 3.77 can be expressed as:

f _ W -1
K- (kY‘W + " kY‘O) (3-82)

The quantity AP* is the measure of the driving force required to main-
tain the water flood at a fixed velocity relative to that required for the
flow of o0il at that same velocity, and the quantity 8 shows the effect of
the relative permeabilities and fluid viscosities on that driving force.
Although in Eq. 3.81 these effects are not independent, they can be illus-
trated by considering two examples.

The first example is the limiting case represented by a moving satura-
tion boundary (or infinitely steep saturation front) first described by
Muskat!!. Assume that the saturation at locations behind the front (i.e.

X < xd) is l'sro’ and the saturation before the front is Sc‘ This case

would correspond to the following relative permeabilities:

krw(s) = krw(l-sro) S = 1-Sro
=0 S # 1-5‘,‘0
kro(s) - kro(sc) S =3¢

0 S # S¢
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The discontinuity in saturation is bounded by S~ = 1-Sr0, S+ = Sc, and

moves with velocity vt/(l—S For this case the normalized pressure

ro'sc)'
drop is given by Eq. 3.80 and B is:

k (S )u

ro’ c''w
B = ¢ -1 (3.83)
kl"W(l Sr‘o)uo

If we further assume that kro(sc) = krw(l's then B is simply

o)

-1 (3.84)

t'éﬂ

o
If By < Ho» the slope of AP*(T) vs. T is negative, and less pressure is
required to maintain the waterflood as the more viscous fluid (oil) is dis-
placed. Thus, in the absence of relative permeability effects, the pres-
sure drop which characterizes the flood is a function of the viscosities.
If u, = Ho and kro(sc) = krw(l-Sro) = 1, the pressure drop corresponds to
that for a single phase fluid flow, and AP*(T) = 1.

We can also consider the effect of relative permeabilities in the ab-

sence of the viscosity effects. If My = Hoo and kro(sc) = 1, then B is

= —de- 1 (3.85)
™
0
Almost invariably when o0il and water are the two phases in a reservoir, the
sum (krw + kro) < 1, except perhaps at S = ScorS = 1-Sr0. Since the
integrand in Eq. 3.85 is given by this sum (see Eq. 3.82), B is greater
than 1. That is, the pressure drop necessary for the simultaneous flow of

two fluids is greater than that for a single fluid. In fact, we might
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expect that this integral represents a measure of the degree of nonline-
arity (or concavity) in the relative permeability curves since by decreas-
ing the relative permeabilities, the term given by Eq. 3.82 is increased.
However, since changing the relative permeabilities also changes the f
and- f' curves, and hence the relation of S as a function of &, the effect
of different relative permeabilities on this integral is not so obvious.
For Cases 1-4, the values for the integral and B in Eq. 3.81 and the values
for Sd are given in Table 3.2.

In Case 2, the relative permeability of o0il is the same as that used
in Case 1, and the relative permeability of water is three-tenths that of
Case 1. The pressure for Case 2 is shown in Fig. 3.16. The slope B in
Eq. 3.80 for the pressure profile for this case is greater than that of
Case 1, as is the integral in Eq. 3.81.

The saturation solution for Case 2 is shown in Fig. 3.17. Since the
fractional flow is different from Case 1, a different value of Sy is ob-
tained. This value is greater than that obtained for the first case, and
the saturation profile more nearly approximates piston-like displacement.
Since the porosity and velocity are identical to Case 1, the time of break-
through is later than Case 1. The f and f' curves for Case 2 are shown in
Fig. 3.18, and the values for Sy and tg are given in Table 3.2.

In Case 3, the relative permeability of water is identical to that
used in Case 1, and the relative permeability of oil is three-tenths that
of Case 1. The pressure solution for this case is shown in Fig. 3.19. If
we compare the values of the integral and 8 given by Eq. 3.81 to those for
Case 1 (see Table 3.2), we find that the value of the integral is larger,

but g is smaller for this case. The reason is that the value of kro(sc)
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Saturation Solution — Case 2
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is much smaller for Case 3. This value has the inverse effect of o in
the moving boundary problem discussed above (see Eq. 3.83) and appears
explicitly in the value of B given by Eq. 3.81.

The saturation‘solution for Case 3 is shown in Fig. 3.20. For this
case the value calculated for S4 is smaller than that in Case 1, and water
breakthrough is earlier.

The parameters used in Case 4 are identical to those used for Case 1,
except that My = 10. The effect of increasing the oil viscosity is similar
to that of decreasing the relative permeability of o0il, as was done in
Case 3. This can be seen by examining Eqs. 3.81-83. For this case the
value of the integral in Eq. 3.81 is larger than Cases 1-3, and the slope B
is sma]]ef, and in fact negative as shown in Fig. 3.21. The saturation
solution is shown in Fig. 3.22. The value for S4q s smaller for this case
than the previous case,and the water breakthrough time is earlier. Compari-
son of Figs. 3.15, 18 and 23 shows the effect that changing the relative

permeability and viscosity parameters has on the values of Sd that were obtained.

3.3.2 Permeability’

Here we consider the effect of spatially varying permeability on
the solution. The parameters used are given in Table 3.1. In Cases 5-7
we used the same parameters as Case 1, except that different absolute per-
meability profiles, shown in Fig. 3.12, were used.

For times t < tB’ the pressure equation 3.19 can be written as:

%4 gl
- f Ho ~l' 1
0



65.

T T .
8 Te
o
2
5 s
®
2
NG N -
3+ —
'+ 1
1+ e o
e
| 1 | I a 1 | 1 L i

R

4] A 2 .3 4 .5 .6 7 .8 .9 1.0
" Dimensionless Distance, X/XL

T

Figure 3.20
Saturation Solution — Case 3




66.

£l

A}

L'l

o't

811 'awiiy sss uoisuawig
g 1 9 G

¥ 8se) — douq ainssaug Juaisues ]
Tz ¢ aunbiy

(0)dV/(1)dV ‘doiq ainssaid ssajuoisuawig




67.

1.0 1 | 1 T 1 l |
T1=0.08 —
T2=0.28
T3=0.48
T4=0.68
T =0.88
Te=1.07 _
g —
(]
2
5 =
3 6
2
(g T3 T4 T5 —
3 —
2 —
N —
0 | | | | 1 ! | |
0 A 2 3 4 .5 .6 7 .8 .9 1.0
Dimensionless Distance, X/XL
Figure 3.22

Saturation Solution — Case 4



68.

4.0
3.0
£ 20
1.0
0
0 0.2 . 04 0.6 0.8 1.0
Saturation (Water)
Figure 3.23

Fractional Flow — Set A, £2 = 10
Hw



69.

Investigation of the effect of relative permeabilities in Section 3.3.1
showed the importance of the saturation solution, and consequently the
integral in Eq. 3.71, on the pressure solution. Now the spatially vary-
ing permeability appears in that integral, and the relation of the satura-
tion profile relative to the absolute permeability profile is important.
The pressure solution for Cases 1, 5-7 are shown in Fig. 3.24. The

initial pressure drop for these cases is given by

X
L
VU X
- _to’L 1

The saturation solution is independent of the permeability, so the satura-
tion solution for these cases are identical to that of Case 1, which is
shown in Fig. 3.14.

Since Vy and ¢ are constant and the dimensionless X and T were chosen
as in Egqs. 3.67 and 3.68, the location of the shock at time T < 1 is given
by T (i.e. Xd(T) =T, T <1). The permeability profiles for Cases 5 and 6
are constant for X < 0.483. The pressure solutions for T < 0.483 are Tinear
with respect to time for these cases. This can be shown by considering some
permeability profi]é K such that

K= Km X < X
K = K(x) X > X

iA

For X4 < X Eq. 3.86 can be written as:

X4 X,
Hw f Ho Ho 1

AP(t) = v, { + f dx + (x -x )|+ —_T—)_f = dx (3.88)
t Km[ 0 Ky kro(sc)“w m “d KrolSe X K
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Comparing Eq. 3.88 to Eq. 3.71, we note that the parameters which are

X
functions of time (i.e. x4 and de Ef—-dx) appear in the same way in
0 rw

both equations. By an analysis similar to that used to show that Eq. 3.71
is a linear function of time, it can be shown that Eq. 3.88 is Tlinear with
respect to time.

Once the saturation front has passed into a region for which the per-
meability varies, then the spatial distribution K(x) for X < X4 enters
into the solution for the pressure drop (through the first integral in
Eq. 3.86), but only an average of K(x) for x > X4 (the second integral in
that equation). |

The importance of the characteristics of two-phase flow in the calcu-
lated pressure drop for spatially varying permeability can be illustrated
by examining the moving boundary problem which was considered in the dis-
cussion of relative permeability in Section 3.3.1. For this limiting case,

the pressure equation 3.19 can be written as:

AP(t) = f dx + f 1 ax (3.89)
[ (15 JJ K m( C?
If v, = u, and krw(l'sro) = kro(sc) = 1, then Eq. 3.89 becomes
L
_ 1
AP(t) = Vi f 7 dx
0

This solution is identical to the solution for the single phase flow prob-

lem (see Eq. 2.2). The pressure drop is a constant which only
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depends upon an integral of the spatially varying permeability. The cal-
culated pressure drop would be identical for permeability profiles b and ¢

in Fig. 3.12, and the normalized pressure drop would be equal to one for
H U
all times. If L # 9 , the pressure solutions given
krw(l'sro) kro(sc)
by Eq. 3.89 would be different for the two permeability profiles for

t < tB.

3.3.3 Porosity
The parameters used in Cases 8 and 9 are the same as Case 1, except

that different porosity profiles were used (see Fig. 3.12). The saturation
solution is different for these cases; the saturation solutions for Cases 8
and 9 are given in Figs. 3.25 and 3.26. However, the time of breakthrough
for these cases is the same since the value of ng ¢dx is the same for
each case.

A smaller porosity has the effect of increasing the velocity at which
a given saturation travels (see Eq. 3.11). Since the porosity profiles
for Cases 8 and 9 are not constant, the value of Xd no Tonger corresponds
to T. By comparing the saturation solution for Cases 1 and 8 (see Figs.
3.14 and 3.25), we see that the times for which thefront.xd is at a par-
ticular location are different for these two cases. Careful examination
of Fig. 3.25 shows that there is a kink in the saturation profiles for T4,
T5, and T6 at approximately X = 0.5 which corresponds to the change in the
porosity profile b at that location.

The pressure solutions for Cases 1, 8, and 9 are shown in Fig. 3.27.
Note that for Case 8 the slope of AP* is linear for T < 0.4. Since the

porosity for profile b is a constant for X < 0.483, Eq. 3.74 can be used
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to construct the saturation solution for X < 0.483. In particular, if
we use that equation to compare the times for which the shock is at loca-
tion Xd for Case 1 and Case 8, we find that
- 1.25
Tlcase 81~ (73"') Tlcase 11
where 0.3 and 0.25 are the porosities for X < 0.483 for Cases 1 and 8,
respectively. That is, for Case 8 the shock is at the location of the

change in the porosity profile at T = 0.4.

3.4 Summary and Conclusions

In Section 3.1 a model was specified for which an analytical solution
of Eqs. 2.12-16 can be obtained. In Subsections 3.2.1 and 3.2.2 the solu-
tion of the saturation equation for homogeneous reservoir models by the
method of characteristic was developed. Both the analytical and graphical
construction of shocks in the saturation equation were discussed?!?®®-1?

The solution was extended to heterogeneous reservoir models in Subsection
3.2.3. It was shown that the Welge solution’ also applies to heterogeneous
models.

The effects of reservoir model properties on the saturation and pres-
sure drop solution for a water flooding problem were examined in Section 3.3.
In Subsection 3.3.1 it was shown that the pressure drop is linear with
respect to time before breakthrough for a constant flow rate and homo-
geneous reservoir properties.

The effect of spatially varying permeability on the pressure drop solu-
tion was illustrated in Subsection 3.3.2. For single phase incompressible

flow, the pressure drop depends upon an integral of the permeability. Any



e
permeability profiles which have the same harmonic average will have the

same pressure drop response. For two-phase flow, the pressure drop at
any time depends upon the position of the saturation profile. The spa-
tially varying profile of permeability at locations behind the saturation
discontinuity (i.e., for locations for which the water saturation is greater
than the connate water saturation) affects the pressure drop solution.

The effect of spatially varying porosity was discussed in Subsec-
tion 3.3.3. Porosity appears explicity in the saturétion equation and im-
plicitly in the pressure equation. At any time, the saturation value cal-
culated at a particular Tocation depends upon an integral value of the
porosity behind that Tocation. Spatially varying porosity indirectly
affects the pressure drop since the calculated pressure drop is a function

of the saturation profile.
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4,  NUMERICAL SOLUTION FOR COMPRESSIBLE OIL-WATER RESERVOIRS

In order to simulate multi-dimensional, compressible two-phase reser-
voir flow described by Eqs. 2.12-22, it has been necessary to resort to nu-
merical techniques. Although different numerical techniques have been in-
vestigated, the method now used universally in the production industry is
finite-differences.

Formu}ation of a finite-difference procedure for these equations is made
’difficult by the presence of nonlinear relative permeability terms and the
mixed nature of the coupled partial differential equations illustrated in Sec-
tion 2.2. There is in fact a variety of ways in which the nonlinear terms
can be handled and the method chosen usually depends upon the particular
application®.

In Section 4.1 the finite-difference equations used are developed®®**!3,
The stability and truncation error associated with this finite-difference
form is examined in the second section®®'*, Some solutions to test problems

which indicate the effects of truncation error on the pressure and saturation

solutions are presented in Section 4.3.

4.1 Finite-Difference Equations

In this section we develop the finite-difference equations used to solve
the system described by Eqs. 2.12-22. The spatial domain is represented by
a Cartesian coordinate system with axes x and y. In this development, we
make the following assumptions regarding the geometry of the reservoir:
(1) the boundaries can be represented, or approximated, as a rectangle
bounded by x = 0, Xg and y = 0, Yg» (2) the boundaries are impermeable to

fluid flow, and (3) the thickness of the reservoir is independent of location.
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The manner by which assumptions (1) and (2) can be relaxed will be discussed
later in this section. Although assumption (3) 1s not necessary since reser-
voirs which have a thickness that depends upon Tocation can readily be
handled, that case was not considered in this study.

Using Egqs. 2.14 and 2.15 to eliminate the flow velocities Vi

and Yo in
Egs. 2.12 and 2.13, the partial differential equations describing our system

can be written as:

(9o, S, ) [K p } [K 0 ] NW
Ww 0 X W oP 9 W aP
L B XMy B B a5 g, S(xex)6(y-y,)
ot oX M, W oX oy Hy fw 3y m=1 " m m
(4.1)
3(¢p_S,) Ko K p N
0o’ _ 9 | xo0 P, 9] yo aP _ _
at Tdx ‘i u kro 8x]+ By[ u kro 3y]+ 2_: c'o 8(x Xm)a(y ym)
0 0 m=1 “m
(4.2)
The no-flux boundary conditions (see Fig. 4.1) are:
P _ _
5;- 0 x =0, XB (4.3)
ap = =1 ?

We will introduce into Eqs. 4.1 and 4.2 the formation volume factors B,
and Bo’ the ratio of the volume of a fluid at Tocal reservoir conditions of
pressure and temperature to that at standard temperature and pressure (600 F

and 1 atm.). The formation volume factor for a fluid can be expressed as
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o5t
Bg = Res (4.5)
P
where the subscript & denotes that the equation applies to either reser-
voir fluid and the superscripts St and Res refer to standard and local reser-
voir conditions, respectively. By dividing Eq. 4.1 by pzt and Eq. 4.2 by pgt
and using Eq. 4.5 to eliminate the densities and Eq. 2.16 to eliminate So’

Egqs. 4.1 and 4.2 become

K k K k NW
o fos) . o | xwap|, 3 [N w o . _
a3t {B,| ax[Bwuw Bx] * 3y [Bw“w 3y] * [:4;1 qwmé(x X 8(y=y.) (4.6)

K k K k NW
9 1-S) | _ 8| xrodP| 3| yrodP L ) )
—T'[ B, ] [B u ] * oy [Bou0 ay] * %;1 qomﬁ(x X 8(y-y, ) (4.7)

where S refers to the water saturation and al = qz/pit.

We will divide the spatial domain into a block-centered finite-differ-
ence grid as is shown in Fig.4.1. The grid points, or block centers, are at
locations X5 i=1,..., NX in the x-direction and locations yj, J = 1,...,NY
in the y-direction. The time domain is divided into discrete times tn,

n=0,...., NT. At time t"1/2

, the derivatives in Eqs. 4.6 and 4.7 are ap-
proximated at each grid point i,j with the following first order time and

second order space differences

Al )
ot Bw N l_tn Bw Bw
n+1 n+l
o [yee]. 1 [z PrengPig) w172 P15 g) (4.9)
ox | ax) “mg | Mise i-172 :
i+1/2 i-1/2
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where the subscript i+1/2 refers to the block boundaries, so that Ax, i+1/2 =
X;p17X; and Ax; = Xi+1/27%4-1/2" Justification for the implicit evalua-
tion of pressure in Eq. 4.9 is given in the next section.
In order to express the production terms as standard volumetric flow
rates, we will multiply the finite-difference equations by the volume of

the block Vi j = Axi<ijh, where h is the reservoir thickness. For con-

venience the following difference operators are defined:

8, () = —r— (™ - ) (4.10)
th -t
- n+l/2 - n+l % antl/2 _ 4N+l

(4.11)

Our finite-difference equations for grid point i,j can thus be written

v (ﬁ) A (T,aP) + 8 (T AP) + Z Q2 64,1 )6(5,4,) (4.12)
tiB
W m=1 "m
¢(1-S)) _ +1/2
VA, ( B )"Ax(ToAP) * Ay(ToAP) _ Qn (i, )5(3 g ) (4.13)
0 m= 1 m
where v refers to V, j? 5(i,1m) is the Kronecker delta function (1 ) is

the grid block location of well m, and

( . )n+1/2 Ay h ( Kek'y /2 0
™o - :
i+1/2,] Ax ht1/2,n+1/2

/2 \ vy By T hsay2,
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Eqs. 4.12 and 4.13 written for the grid blocks which are adjacent to the
boundary contain fictitious values of pressure. These values PO j and

= 1,.. NX, can be eliminated

P 1,..., NY, and Pi and Pi

Nx+1,50 9 = 0 N+ T
by applying the following reflection boundary conditions:

P, .=P

0,J 1,j
Poret. i = Phx. i= 1oee., NY (4.15)
Pi,0 - Pi1
Py ovet = Piony i=1,..., NX (4.16)

The initial conditions, Eqs. 2.18 and 2.19, can be written as:

0o
$O =5, (xeay.) di=1 NX, § = 1 NY
'i,j in 'I’J 3e ey s seves

Egs. 4.13-17 represent the basic form of the finite-difference equations

we will use. Before our system is completely specified, the following will
be done: (1) the method of handling the source and sink terms must be speci-
fied, (2) a time derivative with respect to pressure will be introduced

into the left hand sides of Eqs. 4.12 and 4.13 through the use of the com-
pressibilities, (3) the way in which the nonlinear terms are handled must

be specified. The production terms require special treatment. The flow

rate sz can be assigned at the injection wells. However, the fraction

of each fluid flowing at the production wells is a function of the relative

permeabilities, and hence the saturation of the grid block at which the
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well is situated. Therefore both flow rates cannot be specified at the
producing wells. We will specify the total production QT at those wells
and derive a function of saturation which relates Qw and Qo to the total

flow rate.

At a producing well, the volumetric flow rates at reservoir conditions

Qzes are related to the fractional flow fw as?:
Res _ . ARes
Qw - waT
‘ (4.18)
Res _ Res

~ The flow rates Qz in Eqs. 4.12 and 4.13 are expressed as volumetric fiow
m
rates at standard conditions. A function o8 such that

QW = ngT (4.19)

Q, = (1 -9,)0; (4.20)

0

can be derived by algebraic manipulation of Eq. 4.18 and the following
relations:
Q, = Q°°%/B (4.21)
L 2 A . ‘

3

0 = Q, * O, (4.22)

That function is:

B u k

oMo rw

-1
B u .k
g, (1+——————wwr°) (4.23)

The source term in Eq. 4.12 can then be expressed as
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NW
%;1 Q79,,8(1,1,)8(3,3.) (4.24)
and the corresponding term in Eq. 4.13 becomes:
Nw - 3 - -
%;& Qp(1-g,)8(3,1 )6(3.3,) (4.25)

A time difference with respect to pressure is introduced into Eqs. 4.12 and
4.13 through the use of compressibilities in the accumulation terms in the
conservation equations. The following derivation will be carried out for
the accumulation term in Eq. 4.12. For consistent differencing of a prod-

uct, we can write

At(uv) = Z%_ [un+1(vn+1-vn) + v"(un+1-un)] (4.26)
n
where At = t"1 - ¢",

The following identity for the accumulation term in Eq. 4.12 can be

written by using Eq. 4.26 and rearranging:

n+1
B, (LS) - (Bﬁ"-) a,(s) + s [¢"+1At (—51;) + El’T At(qs)] (4.27)
W

W w

The following difference equations can be written from the definitions of

the compressibilities, Egs. 2.20-22:

n+l n_ n+1/2 ntl  on
By - B, =-B, cw(P PY) (4.28)
n+l n

- ¢n+1/2Cr(Pn+1 _ P") (4.29)
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Using Eqs. 4.28 and 4.29, Eq. 4.27 becomes:

|

By a similar analysis, the accumulation term in Eq. 4.13 can be written as:

n+1 n+l n+1/2
_ n
)_ (é’;) B (S) +'s [Eg;_m c + i—B—n— CJAt(P) (4.30)

w w

=&

B n+1/2 %o n
0 0 B0 Bo

+1 +1 +1/2 '
Ay (9%-_51) = - (i)n 8,(S) + (l—S")[ ] + o cr] A (P) (4.31)

These relations could have been derived more directly from the forms of the
accumulation terms given in Egs. 2.30 and 2.31. However, the derivation
from those equations would call for dating of the parameters in Egs. 4.30
and 4.31 at different time levels, the important difference being that the
saturation in the second terms of Egqs. 4.30 and 4.31 would be dated at time
Sn+1/2, where saturation is unknown.

Now the method of treating the nonlinear terms must be specified.
Settari and Aziz'? have reviewed the various techniques of handling these
terms. The nonlinear terms can be categorized as weak or strong nonlineari-
ties. If the porosity, viscosities, or formation volume factors are func-
tions of pressure, they represent weak nonlinearities in that their value
would change very little over any time step. The usual method of treating
these terms which are evaluated at times tn+1/2 and tn+1 in Eqs. 4.14,30,31
is by approximating them as their values at time t".

The relative permeabilities, which appear in the term T in Eq. 4.14
and in the function g,, represent strong nonlinearities. It can be shown

that implicit evaluation of these terms in the finite-difference equations

results in unconditional stability®. However, the finite-difference

7
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equations are nonlinear and special techniques must be used to solve the
finite difference system. Evaluation of the relative permeabilities ex-
plicitly yields a Tinear finite difference system which is conditionally
stable when upstream weighting is used, but unstable for mid-point or down-
stream weighting. This is explained further in the next section. While

for certain problems it has been found that an implicit procedure is neces-
sary, many reservoir problems can be simulated using explicit relative per-
meabilities with upstream weighting®. 1In this work the relative permeabili-
ties are evaluated explicitly using upstream weighting. In order to avoid
oscillations in the solution near the producing wells®, the production terms
are semi-implicit. With these specifications the difference equations 4.12 and

4,13 used in this study can now be written as
b n w W
A(S)+CA(P) (TAP)+A(TAP)
BW t t y

dg n
+ E o"*l[ (dsw) (s””-s”)J 8(i,1,08(3,d,)  (4.32)

- (E‘P;)" 84(S) + C Ay (P) = 4, (TO4P) + 4 (T%P)

dg \"
+ §: Qn+1 [ O (a§ﬂ9 (Sn+1-sn)J S(i’im)s(j’jm) (4.33)

where
n
¢, = " (g’—) (c, + c,) (4.34)
W
n
¢, = (1-s") (g%) (c, * c,) (4.35)
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For this study, the viscosities are taken to be independent of pressure.
The formation volume factors at the grid block boundaries which appear in

Eq. 4.14 were evaluated as arithmetic averages:

1 n
B -1(g  +3 | (4.36)
Lis12 2 ( Li+1 Z1)

The relative permeabilities in Eq. 4.14 can be expressed as:

k = " if PM(i+1,5) > P"(4,3) (4.37)
Pivtzz "Hie -
‘ _.n cr pNyas . N,s
= kr“i if P(i+1,3) < P (i,5)

The permeabilities in Eq. 4.14 can be expressed as arithmetic or geometric
averages of the grid block permeabilities. In this study, the permeabili-
ties were defined at the grid block boundaries.

The finite-difference relations needed to simulate the two-dimensional
reservoir are given by Eqs. 4.32-37, with boundary and initial conditions
Eq. 4.15-17. Given the solution for the pressure and saturation at time
" (or to), these relations represent a linear system of equations which

"+1. The method of

can be solved for the pressure and saturation at times t
solving the system is given in Appendix B. A]though only rectangular keser-
voir boundaries were used in this study, more arbitrary reservoir boundaries
can be specified by assigning the permeability or porosity of certain grid

blocks to be zero3’?!3,
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4.2 Analysis of the Finite-Difference Method

An analysis of the stability and truncation error associated with the
finite difference solution of Eqs. 2.12-16 has been made by analyzing the
solution of single equations for pressure and saturation which are obtained
from the coupled system®®!*. Here, this analysis is illustrated using the

pressure and saturation equatfons derived in Subsections 2.2.1 and 2.2.2.

4,2.1 Pressure Equation

For one-dimensional flow without sources or sinks, the parabolic

pressure equation 2.36 can be written as
oP ) ro kro aP
Ct¢_.=_ — 4+ — | K — (4.38)

where Ct =C. + co(l-S) + ch. If it assumed that S, ¢, and K are constants,

Eq. 4.38 can be written as

o _g% - EE% (4.39)
aX
where o can be determined by comparison with Eq. 4.38.

It has been well established that an explicit finite-difference solu-
tion of Eq. 4.39 is conditionally stable and an implicit solution is uncon-
ditionally stable®***'3  For most reservoir problems, the conditional sta-
bility requirement is too restrictive!®, and hence pressure is usually
evaluated implicitly as done in Eq. 4.9. The truncation error associated
with the finite-difference approximations given by Eqs. 4.8 and 4.9 can be
shown to be first order with respect to time and second order with respect

to space3?13,
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4.2.2 Saturation Equation
The first order hyperbolic equation for saturation,Eq. 2.47, im-
poses a greater limitation on the quality of finite-difference solution

than does the pressure equation. Defining a dimensionless time t and dis-

tance & as
xL¢
X
£ =
X

Eq. 2.47 can be written for one-dimensional flow as:

s _ _of (4.40)

The following explicit finite-difference solution of this problem can be

considered:
sT*L_g"
i i_ 1 n _ ¢n _ n _ en
e Y [w(fi i) + (1-W)(f5 fi)] (4.41)

where we have assumed equal grid point spacing in £ and W is a weighting
parameter. A value of W=1 corresponds to upstream weighting, W=1/2 is mid-
point weighting, and W=0 is downstream weighting. If it is assumed that f
is a linear function of saturation, Eq. 4.41 can be put in the following

form which is convenient for analysis:

g+l _en v
L R L R (" - s
i M [w(si ST )+ (1) (sT, si)] (4.42)
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It can be shown by a von Neumann stability analysis that Eq. 4.42 is un-
stable for downstream and mid-point weighting. For upstream weighting, or

W=1, Eq. 4.42 is conditionally stable®. The condition for stability is:

flat (4.43)

The truncation error associated with Eq. 4.42 with upstream weighting
can be quantitatively assessed!®. This derivation is shown in Appendix C;
it shows that the truncation error, or numerical dispersion, is controlled

by the following term:
f'(AE-f'AT)/2 (4.44)

While the truncation error associated with the pressure equation is second
order in space, the corresponding error associated with the saturation
equation is first order.

A similar truncation analysis for an implicit finite-difference
approximation to Eq. 4.40 using upstream weighting yields an expressior
identical to Eq. 4.44, except that the space and time truncation contribu-
tions are additive!®. While the explicit formulation is less stable than
the implicit formulation, the explicit formulation exhibits a smaller trun-
cation error. This trade off of stability and truncation error can be seen
in a more complete analysis of the various time and distance weightings

which could be used with the finite-difference solution of Eq. 4.40°.
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4.3 Test Problems

The finite-difference model developed in Section 4.1 can be used to
approximate the reservoir model developed in Section 3.1 for which ana-
lytical solutions were obtained. Comparison of the finite-difference solu-
tions to the analytical solutions provides a practical test of the simu-
lator. In this section, the method used to approximate the model developed
in Section 3.1 is described, and the effects of the truncation error on the
pressure drop and saturation solutions are illustrated.

The matrix formed in the solution of the finite-difference equations
(see Appendix B) is singular when the compressibilities of the reservoir
formation and fluids are zero. In this case, as shown in Subsection 2.2.1,
some pressure on the boundary must be specified. Incompressible flow can
be approximated by specifying a small, non-zero value of compressibility.
For these problems the fluid compressibilities were assigned to be zero,
and the reservoir formation is taken to be slightly compressible.

The finite-difference grid consists of a single row of blocks centered
at equally spaced points X i=1l,..., NX. Injection and production are
specified at grids blocks 1 and NX, and the length XNx~X1 is given by XL’.
the Tlength of the reservoir model shown in Fig. 3.1. The boundary condi-
tions used in Chapter 3 are approximated by assigning the blocks centered
at X1 and XNX one-half the pore volume of the other blocks while specify-
ing the total pore volume of the finite-difference model to be the same
as that for the model shown in Fig. 3.1.

Using the guidelines given above, Case 1 in Section 3.3 was simulated

using the finite-difference model. With a spatial grid consisting of
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twenty-five blocks, three cases using different time steps were run. The
data used for each of these cases are given in Table 4.1.

The pressure drop across the reservoir model as a function of time
for Cases 1-3 are shown in Fig. 4.2 along with the pressure drops calcu-
lated analytically for Case 1 in Section 3.3. This figure illustrates the
effect of the truncation error given by Eq. 4.44 on the pressure solution.
As the time step At is increased from 20 to 40 days, the difference between
the numerical and analytical pressure drop is decreased. As the time step
is further increased from 40 to 50 days, oscillations in the numerical so-
lution become larger. We can reason that as At is increased from 20 to
50 days, the numerical dispersion term given by Eq. 4.44 was initially posi-
tive and has passed through a minimum at approximately At = 40, and it has
become negative for At = 50. Peaceman® showed that a negative numerical
dispersion is usually associated with instability. For At = 50 we can ex-
pect that the stability requirement given by the linear analysis of the
saturation equation 4.43 has been violated.

For Cases 1 and 2, the saturation profile at t = 1080 days is plotted
with the Buckley-Leverett solution in Fig. 4.3. This figure illustrates
the degree of smearing of the saturation discontinuity and the decrease of

the numerical dispersion with the increase in the step size.
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Table 4.1. Specification of Data Used for Test Problems

Reservoir Properties and Fluid Properties

K = 0.2737 darcy My = 1cp

¢ =0.3 u, = 1cp

c. = 4x107° atm] c =c¢ =0
r o W

Pin = 20 atm Sin = 0.11

Relative Permeability Parameters

a, = 0.9458 a, = 0.9814
W 2.557 b0 = 3.163
¢ =0.11 Spo = 0-0

Model Dimensions
h=1cm Ax = 41,7 ft
Yp © 100 ft NX = 25

Injection/Production Rate

Qp = 0.07 bbl/day

Time Step Size

Case At (days)
1 20

2 40

3 50

(1)see Eqs. 3.65 and 3.66
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4.4 Summary

In the first section the numerical finite ~difference scheme used to
solve Eqs. 2.12-22 is developed. The method used here is the simultane-
ous solution. The relative permeabilities in the transmissibility terms
are explicit, pressure is implicit, and the production terms are semi-
implicit. The total production rates at the wells are specified.

The stability and truncation error associated with the finite -differ-
ence method is analyzed in Section 4.2. It is shown that the hyperbolic
saturation equation presents the greatest problems in the numerical solu-
tion.321*%

In Section 4.3, some numerical results are presented. The effects
of truncation error on the pressure drop and saturation solutions are

illustrated.



98.
5. IDENTIFIABILITY IN INCOMPRESSIBLE RESERVOIRS

In this chapter we investigate the estimation of reservoir properties
from flow data based on the incompressible, linear, two-phase reservoir
model developed in Chapter 3. Although the numerical solution developed
in Chapter 4 must be used for solving the general history matching problem,
certain features inherent to parameter estimation in two-phase flow can
be elucidated by studying this simplified problem.

The reservoir model considered is shown schematically in Fig. 3.1.
Water is 1njectéd at a specified rate at x = 0, and production takes place
at x = X, - Unless otherwise stated, the initial saturation is taken to be
the connate water saturation so that a single shock is formed in the
saturation solution at the saturation Sd.

We assume that the measurements of the dependent variables pressure
and saturation available to use are the pressure drop across the reser-
voir , AP(t), and the relative rates of flow of the two fluids, oil and
water, at the producing end. The measurement of the relative rates of
flow can be expressed as either the ratio of the flow of water to oil,

designated as WOR (water-oil ratio), or as the fractional flow of water f.

The two quantities are related by:

_ __WOR
f= T+ WOR (5.1)

This measurement represents an indirect measurement of saturation since,
if the relative permeabilities are known, the saturation at that Tocation

can be calculated from Eq. 3.11.
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Three estimation problems are considered separately. In Section 5.1
the porosity and relative permeabilities are taken to be known, and the
estimation of spatially varying absolute permeability is investigated. In
Section 5.2 the estimation of spatially varying porosity is considered.
The relative and absolute permeabilities are taken to be known. The esti~
mation of the relative permeabilities assuming that the other reservoir

properties are known is investigated in Section 5.3.

5.1 Estimation of K(x)

The porosity and relative permeabilities are assumed to be known, and
we consider here the problem of estimating the spatially varying absolute
permeability. For simplicity we assume that the superficial velocity Ve
is independent of time, and that the porosity is independent of location.
Eq. 3.74, repeated below, can be solved for the saturation solution. at any
time t :

v.t

x(s) = —g— £'(s) (5.2)

Since this equation is independent of the absolute permeability, measure-
ments of the fractional flow at x = x| give no information about the
absolute permeability. Eq. 3.19 relates the permeability to the pressure

drop across the reservoir:

X
L.
f
AP(t) = v.u .}’ —— dX (5.3)
t'w 0 KK pny
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The inverse problem we consider here is the estimation of K(x) given AP(t)
in Eq. 5.3.

A general approach to estimating the permeability if we are given q
measurements of AP at times tis i=1,...,9, can be made by defining a

performance index J as:

3 = 3 [ap®S(e,) - apS(e,)]? (5.4)
i=1

where the superscript obs refers to the observed (or measured) pressure

drop and c refers to the pressure drop calculated by Eq. 5.3. We would
choose K(x) so that J is minimized. In Appendix D an analytical minimization
procedure based on calculus of variations is formulated. An iterative
procedure has also been formulated by Van den Bosch and Seinfeld!> based

on the analytical solution of the two-phase problem in radial geometry.

In the following subsections we consider the explicit estimation of
the unknown absolute permeability for two simplified problems. In
Subsection 3.3.1 we showed the effects of viscosities and relative permea-
bilities on the pressure drop calculated from two-phase flow by analyzing
two special problems: (1) the moving boundary problem, and (2) relative
permeabilities given by the functional forms in Eqs. 3.65 and 3.66. Here
we consider these two problems and show the important effect that the -
characteristics of two-phase flow has on the estimation of spatially

varying absolute permeability.
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5.1.1 Moving Boundary Problem
For the Timiting case of a moving saturation boundary or infinitely
steep saturation front (see p. 57), the location of the saturation dis-

continuity is given by:

vtt

o Y 6] S-S (5.5)

C

For t < tB’ the breakthrough time, the pressure equation 5.3 can be written

as:

dx ] (5.6)

-
(o]
(o)
o
g .
N
P ()

P() [ uW Xd 1 d
AP(t) = v - dx +
t [ Knay(1-Sp -5 K k(S

Assume that the reservoir consists of n discrete zones over which the
absolute permeability is constant. That is, the absolute permeability can

T

be expressed as :

K(x) = K; Xjip < xsx, d=1,...,n (5.7)

Assume that we are given the values of AP corresponding to the n times that
the saturation discontinuity is at the location of the zone boundaries.

Since the porosity is known, these times are given by Eq. 5.5 as:

£ = ¢(1'Sr65c)xi
i Vi i=1,...,n - (5.8)

At time ti’ Eq. 5.6 can be written, after rearranging, as:



102.

BP(t. )k (S)  wk.(S) i n
L ro' "¢’ _ wkro(IES 3 2 oUAX. F 2 ULAX, (5.9)
'tHo Hotrw' " ro j=1 9 9 j=i#1 9 9

where u, known as the reservoir resistivity, is given by uj =-%— .
J
For the n times ti’ i=1,...,n, Eq. 5.9 can be written as the

following linear system:

13>

u=>b (5.10)

. T , .
where u is an n-vector u = [ul uz...un] s g is an n-vector with elements

P(t.)k_ (S
b. = 8P (t; g (S¢) , (5.11)

(5.12)

A“wkro(sc)

MoKy 1S o]

where m =

If the matrix A‘is nonsingular, then each of the n values of the
resistivity can be obtained by solving Eq. 5.10. It will be shown below
that the matrix A given by Eq. 5.12 is nonsingular form # 1 (m = 0 is not
physically meaningful for two-phase flow, and x # 0 by definition of the

zonation).
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Assertion: The determinant of the nxn matrix A given by Eq. 5.12

in nonsingular for m # 1.

Proof: The proof is by induction. For simplicity, we will Tlet

d. = AX..
1 A 1

Forn = 2, 5 becomes
ma a
ma1 ma,
Then detA = malaz(m-l) # 0.

~

Given that det(gn’n) # 0, we show that dEt(An+1,n+1) # 0. The

matrix Bn+1,n+1 can be written in abbreviated form as:
[ ma1 a, aq a 41
ma, ma, ag cen an+1
A = :
|
_mal - man+1

Subtracting the second row from the first row, and then expanding

the determinant by the first row, we obtain

ma, a, 3, a1
ma ma a cee a
detA = -a,(1-m)det 1 3 4 n+l

mal ma3 o man+1-
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The determinant of the matrix in brackets is nonzero since, by
renumbering the indices, that matrix is equivalent to the nxn matrix

defined by Eq. 5.12; therefore, det(An+1,n+1) # 0.

-

Note that for m = 1, the matrix A is singular. When By = M, T M

and k ) = kro(sc) = 1, the pressure solution for Eq. 5.6 is

rwl1-Sro
equivalent to the solution of the pressure drop for the single phase

flow problem, which can be obtained by integrating Eq. 2.2. In that case,
the n values of u, cannot be uniquely determined.

A second example of the moving boundary problem can be considered.

Assume that we are given continuous measurements of AP(t) for times

0<tcs tB . Taking the derivative of Eq. 5.6 with respect to time, we

obtain :
dx M u
daP(t) d [ W 0 ] 1
—a=t =y - (5.13)
dt t dt krw(l-Sro) kro(SC) ledi
dXd
An expression for —q¢ can be obtained by differentiating Eq. 5.5 with

respect to time. Eliminating that term from Eq. 5.13 we obtain:

2

daP(t) _ Vi Hw Y 1 (5.14)
Tat T SIS, 5 | (TS 0T T K ST | RTxg) :

ro cC

The spatially varying permeability can then be calculated provided that

Hy Ho

K (15 # 15T -
krw 1'Sro kro Sc
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If the pressure drop data are available for only 0 < t ¢ E, where t < tB’
then the permeability K(x) can be calculated from Eq. 5.14 for
0 < x < X4 (E), where xd(i) is obtained from Eq. 5.5. The values of

K(x) in xd(f) < x s X cannot be obtained, although the integral

L
1
J[ _ K % can be calculated from Eq. 5.6.

5.1.2 Unit Viscosity Ratio

As in the previous subsection we will consider a problem which allows
us to express the pressure drop as a linear function of the resistivity.
For unit viscosity ratio and with certain assumptions about the form of
the relative permeability functions, we will show that the n values Ki
can be uniquely determined.

For times t < tB’ the pressure Eq. 5.3 can be written as:

L]

X X
d
AP(t) = v[u f f Yo f 1 ]
t| " w T dx + 7 dx (5.15)
0 Kkrw kro(SCS X K
Similarly to the moving boundary problem, we note that if only the values
AP(t) for 0 < t < t, where t < tp, are available, we would not be able to
determine K(x) for x = X4 (E). The best we would be able to-do is to

X
determine an average for that range--the va]ue-[L l-dx. We need to

(Fy K

40
investigate the effect that the saturation dependent terms in the first
integral in Eq. 5.15 has on the determination of spatially varying

permeability.



106.

As in Subsection 5.1.1, assume that the reservoir consists of n
discrete zones over which the permeability is constant (see Eq. 5.7) and
that we are given n values of AP at the times for which the position of
the saturation discontinuity coincides with the zone boundaries. These
times are given by Eq. 5.2 as:

_ % -
t'i = —\7; f (Sd) 1= 1,...,n (5.16)

For time ti’ Eq. 5.15 can be written as

sP(t )k (S) i X3
ioroe o My 50T uf glt)ex + S uax,  (5.17)
o't Mo =1 3. j=i+1 33
3-1
f 1
where g = +— , U, = 7— , and Ax, = X, - X, ,.
Kew ~ 3 Ky J J j-1

The n equations for times ti’ i=1,...,n can be written as the

following linear system:

x>
3 =

1
1=

where the ith element of b is

AP(ti)

by = v, kro(sc) (5.18)

Elements of the nxn matrix e are given by

Ai,' = kro(SC_Iﬁ g(t )dx i>3] (5.19)
J 1
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To further investigate this linear system, we must determine some
properties of the integrals in the matrix given by Eq. 5.19. Assuming
that the relative permeabilities can be represented by the parametrizations
given by Eqs. 3.65 and 3.66, with bw’ bo > 1 (which gives the typical

concave shape of the relative permeabilities), we will show that

X,

-3 -I*XJ d .
S Cotenpae [ 7 steecs k(s ax,
Xj-1 Xj-1

J (5.20)

v

Verification. The first inequality can be verified in two steps:

(1) show that S(x,ti+1) > S(x,ti), X1 S X5 xj » and (2) show that
g(S) is a strictly decreasing function of saturation for Sd <S¢ l"sro’
which is the range of all possible saturations in the integrals

given by Eq. 5.19. The second inequality is then easily verified.

The following verification applies for the general case of arbitrary
viscosities.

(1) 1In Section 3.2 it was shown that a single shock in the saturation
solution is formed at Sd for the initial condition that Sin(x) = Sc'
It is necessary that the function f'(S) be strictly decreasing with
saturation over the interval SgsS< 1—Sr0, since otherwise multiple
saturations for x < X4 would be calculated by Eq. 5.2. Since f'{S)

is strictly decreasing with saturation, it follows from Eq. 5.2 that
S(x,t.+l) > S(x,ti) for x < Xd(ti+1)'

i
(2) The function g(S) is given by

g(s) = YE;;%EE;SS' ' : (5.21)
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M
where m = Ew-, and f is defined by Eq. 3.11. To show that g(S) is
0
strictly decreasing with saturation over the range of interest, we can

show that

g'(s) <0 Sys Ss 1§

We can investigate the function g(S) by examining its derivative

with respect to saturation. The derivative of Eq. 5.21 is

= (kpy k)
g(s) = vwirel Y] (5.22)
( kY‘W+mk ro )

The derivatives of the relative permeabilities given by Eqs. 3.65 and 3.66

are:
b -1 " \b
1 W
k' = ab (S-S) w (T———————>
™ W W c 1 S‘r,0 SC | (5.23)
b -1 : b
' = - - - 0 _____1_____ 0
kro 3,0, (1-5,5-5) <1-sro-sc> (5.24)

Since bw’ bO > 1, the function k;wf is strictly increasing with saturation
from k;w(s ) = 0. The function k;o is also strictly increasing from a
negative value at Sc to kro(l'sro) = 0. Since Eq. 5.22 is positive at

S = Sc’ negative at S = 1-S__, and continuous, that function must be zero

ro
at some point Sm in the interval Sd < S < 1'Sro’ There must be only one
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point at which Eq. 5.22 is zero since Egs. 5.23 and 5.24 are monotonically
increasing functions. At the point Sm’ the second derivative of Eq. 5.21
is
u n
_ - (kpyimki)

1 S -
9" (Sy,) (k k)2 (5.25)

Since bw’ b0 > 1, the second derivatives of the relative permeabilities
are positive, g”(Sm) > 0, and the function g(S) has a maximum at 'the point
Sm.

We have shown that the function g(S) has a single stationary point,
which is a maximum, in the 1interval Sd <S < 1'Sr0' If we show that
g‘(Sd) < 0, it follows that ¢g'(S) < 0, SqsSs 1—Sr0.

The equation for the analytical determination of Sd (see Section 3}2)

is
f(Sd)
—£— = f'(Sd) (5.26)
(Sd_sc)
This can equivalently be written in terms of the function g as:
k. (S,)g(s))
rw "d d - ' '
Rearranging this expression, we obtain:
' (S,) g'(S,)
rw " ~d d
+ - =
[m gy | e 7 -28)
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From Eqs. 3.55 and 5.23, the following identity is obtained:

k;w(Sd) b

= W 5.29
krw(sd) (Sd'sc) ( )

Eq. 5.28 can now be written as

9‘(sd)
b,, * ETEZD"_ (S4-S) = 1 (5.30)

. : 1
Since b, > 1, 9(S,) > 0, and Sy > S_, it follows that g (Sd) > 0,
The second inequality is easily verified. We have shown that g'(S) < O,

S, 5S¢ 1'Sro' It follows from Eq. 5.21 evaluated at S = 1-S‘r,0 that

d
g(s) > krw(l'sro)’ SqsS< l'sro’ and consequently

X .
J _ . .
S alt)dx >k (1-S Jaxgs 12 3
X
j-1
The matrix given by Eq. 5.19 can be written in abbreviated form as:

41 2 a3 4
| 321 3o 3
A = (5.31)
a
n
_anl an2 nn
where Xj
3.5 ° kro(SCZI. g(ti)dx i> ]
X5_1
a, = AX, j=2,....n
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It if is assumed that kro(sc) > krw(l'sro)’ then this matrix has the

following properties:

a'i,j > a'i+l,j > aj >0 . (5.32)

It will now be shown that A is nonsingular, and hence we can solve for

the n values of ui.

Assertion: The determinant of the matrix given by Eq. 5.31, with
the properties given by Eq. 5.32, is positive.

Proof: The proof is by induction. For n =2, A is

DetA = a Since, by Eg. 5.32, a1 > 39 and Ao > By»

113227321%-
it follows that

det A > a21(a22-;62) > 0

Now, given that ann is nonsingular, we Sshew that 6(ﬂ+1)x(n+1) is

nonsingular. The matrix A(n+1)x(n+1) can be written as:

1 % %n+1
51 a22 as. - a1
A=
an+1
a a
i n+tl,1 n+l,n+l
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By subtracting the second row from the first row and then

expanding the determinant about the first row, we obtain:

a a a

22 3 n+l
37 433 4 A+l
detA = (all—a21) det]|:
an+1
an+1,2 Tt an+1,n+1
—_ (a2-a22) 351 a, e 341
31 43 41
an+1
a
i n+l,1 an+1,n+1

The determinants of the two matrices in brackets are positive since
by renumbering the indices, they are nxn matrices with the properties

given by Eq. 5.32. Since ;7 > 259 and 350 > a2, detB(n+1)x(n+1)'> 0.

We. note that the restrictions of unit viscosity ratie and
kro(sc) > krw(l'sro) can be replaced with a more general statement. The
properties of A given by Eq. 5.32, and hence the demonstration of the
ability to solve the linear system given by Eqs. 5.17 and 5.18, follow by

specifying that
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krw(l"sro)”

0 1
kro(sc)”w

M=

1
where M is the mobility ratio.

5.2 Estimation of ¢(x)

In this section, we consider the estimation of the spatially varying
porosity assuming that the relative permeabilities and absolute permeability
are known. The pressure solution is given by Eq. 5.3. The saturation is
governed by Eq. 3.22; the integrated form given by Eq. 5.2 no longer applies
since ¢ varies spatially.

Since the saturation solution depends upon the porosity, we expect to
obtain information about the porosity from measurements of the fractional
flow as well as from measurements of the pressure drop. The identifiability
of the porosity with respect to these two types'of data will be considered

separately.

5.2.1 Fractional Flow Data

The fractional flow of water is zero until breakthrough. For toxtps

Eq. 3.22 can be integrated to obtain:

Xy
f bax = vt (S)) (5.33)
0

where SL is the saturation at the production location x at time t. The

saturation SL at any time can be determined from the fractional flow data
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by Eq. 3.11. Only the integral value of the porosity given by the left
hand side of Eq. 5.33 can be determined from the measurement of the
fractional flow. That is, given the fractional flow at any time t, t2 tB’
the average value of the porosity can be calculated. The fractional flow
at any other time gives no additional information.

It is possible to obtain more information about the porosity from
fractional flow data for problems with an initial saturation profile which
varies with x. If we consider initial saturation profiles which can be
inverted to obtain functions XGKS) (note that the initial condition

S. (x) = SC cannot be inverted to obtain a function xO(S)), the equation

in
for the saturation at the production location X can be obtained by

integrating Eq. 3.22:

_laXL o(x)dx = vttf'(SL) (5.34)

xO(SL)

We can consider two examples for which information about the spatially
varying porosity, rather than just the average porosity, can be obtained,
Since the saturation SL can be obtained directly from fractional flow
data from Eq. 3.11, we can consider S rather than the fractional flow to

L
be the observed quantity.

Example 1.

Assume that we are given an initial saturation Sin(x) which is a
monotonically decreasing function such that no shocks are formed in the
saturation solution. That is, all saturations SL, where Sin(xL) < SL < Sin(o)’

are represented in the continuous fractional flow data for all times t » 0.
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For this case, the porosity can be calculated at all locations in the
X
reservoir since, by Eq. 5.34, the integral -/F L¢dx can be calculated
X

for all x, 0 < x < X If n discrete measurements were available which

L
correspond to the saturations Si’ i=1,...n, then the following integrated

values of the porosity can be obtained from the application of Eq. 5.34:

X
~/’L ¢dx
X
(Sl)
x(S. ,)
~/~ -1 4dx i=1,...,n

Example 2.

Assume that we afe given an initial saturation Sin(x) which is a

monotonically decreasing function such that a single shock is formed in

the saturation solution at some t > 0. The continuous fractional flow

data for all times would represent the saturations S for Sin(xL) %‘SL < S1
and S, < S| < sin(o), where S; and S2 are upper and lower saturation bounds
of the shock when it isat the location X| - As in the previous exampiet’ the
porosity can be calculated at all locations x such that xO(Sl)/< X <X

and 0 < x < XO(SZ)' However, in the range XO(SZ) < X < XO(SI)’ only the

x (S
integral value -:/“ 0( 1)¢(x)dx— can be calculated.
XO(SZ)
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5.2.2 Pressure Drop Data
In Subsection 3.3.3, the pressure drop was calculated for several
different porosity profiles. Although the porosity does not appear
explicitly in the pressure equation 5.3, the term E{;' in the integrand
is a function of saturation, which is related to the variable of integration
x and the spatially varying porosity ¢(x) through the saturation equation 3,22
When the pressure equation is written as Eq. 5.15 for t ¢ tB’ we note that
no information about ¢(x) for xd(f) < X s x can be obtained from a
measurement of the pressure drop at time t < tB' Consequently, the
porosity for all x can not be determined from data taken before breakthrough.
Further analysis of the identifiability of the porosity by explicit
means is difficult due to the implicit dependence of the pressure solution
on the porosity. An additional difficulty is that the Tocation of the
saturation discontinuity for times before breakthrough cannot be calculated
directly as in the case when the porosity is specified. However, the
moving boundary problem can be investigated analytically.

For t < t,, the pressure is governed by Eq. 5.6 and the equation

B’
for the saturation boundary is:

dxd vt

a4t F(xI(1-5 =5 )

(5.35)

If the absolute permeability is independent of position, the pressure

solution can be written as:

b(t) = X * xd(t)(m—l) (5,36)



AP(t)Kk . (S ) w ok  (S_)
where b(t) = ro ¢ and m = —2ro € .
Vo ”o“rw(l"sro)

If the pressure drop is given for all times t < tB’ the Tocation of the
saturation discontinuity at any time can be calcutated from Eq. 5.36
provided that m # 1. By differentiating Eq. 5.36 with respect to time
and using Eq. 5.35 to eliminate the ternxéé%; » the following expression
is obtained:

vt(m-l)

b'(t) = ¢(Xd)(1_s (5.37)

ro"sc)
The porosity - throughout the reservoir can then be determined with Eqs; 5.36
and 5.37 provided that m # 1. If m = 1, the pressure drop is constant

for all times and the porosity cannot be determined.
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5.3 Estimation of the Relative Permeabilities

A method for determining relative permeabilities from pressure and
flow rate data obtained from laboratory water floods was reported by
Johnson et a1.16 Their derivation of the relations used to calculate the
relative permeabilities (see alsc Appendix E) shows that the relative
permeabilities for a particular range of saturation values can be
explicitly calculated using both pressure and flow rate data. While the
water flooding of laboratory cores are generally taken to the point that
nearly all of the moveable oil is expelled from the core, the water flooding
of petroleum reservoirs are not taken to completion. In Subsection 5.3.1,
we specify the range of saturations for which the relative permeabilities
could be explicitly calculated for a water flood which is not taken to
completion. The information which can then be obtained from the pressure
and flow data for the relative permeabilities at other saturation values
is specified. In the remainder of the section we investigate the estimation
of coefficients in parametrizations of the relative permeabilities. This
serves as an introduction to the approach used for the history matching
method developed in Chapter 6 for compressible two-phase flow.

For simplicity, the reservoir model used in this section is taken to
be homogeneous and the superficial velocity is independent of time. The '
pressure drop is related to the relative permeabilities by the following
equation:

wp(t) = 2w LT g (5.38)
0 rw
The saturation is related to the variable of integration x through the

saturation equation 5.2, and integrand is given by:
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f o 1

k u

A S |
rw uo

ro

The fractional flow at the producing location is a function of the relative
permeabilities evaluated at the saturation S, (see Eg. 3.11).
The parametrizations we investigate are given by the following

functional forms:

S-S te b R b
k (S) = a (~————°~———-) M a (————%————-) W (5.39)
rw W l-Sro—SC+e w 1-Sro Sc+a
( < 1-5,5-3c*e > by ( € bo )
k_(S) = a \s———— - a_ | e (5.40
ro 0 1'Sro'sc+€ (o} l'sro'sc+€> ‘
3

where ¢ is equal to 10°~. For ¢ = 0, Egs. 5.39 and 5.40 are identical
to Egqs. 3.65 and 3.66. The specification of a small, positive value for
e changes the shape of the relative permeabilities only slightly, but is
necessary to avoid singularities in the derivatives of these equations
with respect to bo or bw at certain saturations. The advantage of the
functional forms 5.39 and 5.40 is that, a1though‘they contain only four
adjustable constants, they give the typically concave, or bowed, shape of
the relative permeability curves for bw, b0 > 1.

In Subsection 5.3.1, we make some general comments about the
identifiability of the relative permeabilities corresponding to certain
ranges of saturation. This investigation applies to general relative

permeability curves, and does not depend on the particular functional forms
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given by Eqs. 5.39 and 5.40. We then specify the identifiability of
the parameters in the functional forms 5.39 and 5.40 based on data taken
before water breakthrough. In Subsection 5.3.2 we use a sensitivity
analysis to investigate the determination of the relative permeability

parameters based on data taken after breakthrough.

5.3.1 Pre-Breakthrough Data and General Considerations

Data taken before the time of water breakthrough are of Timited use
in determining the relative permeabilities. Since the fractional flow-is
zero for t < tB’ we obtain no information from the fractional flow during
that period. Multiplying Eq. 3.77, which was developed in Section 3.3.1
for the nbrma1ized pressure drop defined by Eq. 3.69, by the initial
pressure drop (given by Eq. 3.72), the following equation is obtained

for the pressure drop for t < tB

A f'(S) 1 M X u .
AP(t)=k—t-[uwvt ¢d t<f l—(i—dg—ukos )+FL—-‘(’S—7] (5.41)
0

rw wro cC

Using the definition of £ given by Eq. 3.78, Eq. 5.41 can be written as:

S
_ Vt Vt d FEu ]Jof' (Sd) XLNO

. 1-S rw
ro

This relationship, which is linear with respect to time, can be specified
by any two exact measurements of pressure at times tl’ t2 < tB; no
additional information is obtained by measurements at other times before
breakthrough. The following values can be calculated from Eq. 5.42 when

at least two values of the pressure drop are specified:
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(1) k (sc)

ro
S
1 d e
f iSd; 1-5r0 kr,w

Alternatively, kro(sc) can be calculated from the single observation of
the initial pressure drop given by Eq. 3.72. If the ‘time of break through
is known, the value of f'(Sd) can be calculated by the following relation

obtained from Eq. 5.2:

£1(s,) = i (5.43)
d vttB *

With this additional information the value of the integral in (2) above
can be calculated. The value of Sd is unknown, but is related nonlinearly
to the relative permeabilities by Eq. 3.45.

Based on the derivation of the relations used to calculate the relative
permeabilities from Tlaboratory water floods by Johnson et a116, the va1ﬁes
kro(s) and krw(s) for S > Sd are determinable from pressure drop and flow
rate data. If data ére available for only the range of time t s tf, where
te 2t then the relative permeabilities of 0il and water can be calculated
for the saturations Sd <S¢ Sf, where Sf is the saturation at the producing
location at time tf. This follows directly from the analysis by Johnson
et a116 (see Appendix E). The information about the relative permeabilities

for S > Sf is given by the following integral which can be obtained

directly from Eq. E.15:



122.

2

v tu S "
wp(t) = T [P FE g (5.44)

K k
’ 1-S.5 "rw

In summary, based on the pressure drop and fractional flow solution

for t < tf, the values of the relative permeabilities which are identifiable

are
(1) Kk S,)
(2) Kk (S), Sy S<S,
(3) k.(S), Sy S¢S,

In addition, we have certain information about the relative permeabilities
for the range S > Sf given by an integral of the values of the relative
permeabilities in Eq.5.44. The values of‘Sd and Sf are determinable (see
Appendix E), and the information which can be obtained about the relative
permeabilities for the range SC < S «< Sd is contained in the relation
given by Eq. 3.45, which relates the value of Sd to a function of the
relative permeabilities. While this additional information does not allow
us to determine the individual values of the relative permeabilities, it
may be of some consequence in determining coefficients in a parametrization
of the relative permeabilities. Thus, in the next subsection we consider
the analysis of the determination of the relative permeability parameters

- given by the functional forms 5.39 and 5.40. This analysis is based on

data taken after breakthrough. We note that the observability of the
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relative permeability value kro(sc) from the pressure drop data taken
before breakthrough gives information about the value ays since, with

e =0 in Eq. 5.40, we obtain

kY‘O(SC) - a0

Hence, the value 3, is observable from pre-breakthrough data.

5.3.2 Analysis for Data Taken after Breakthrough

In this subsection we investigate the estimation of the relative
permeabiTity parameters in Eqs. 5.39 and 5.40 using pressure drop and
flow data taken after breakthrough. In Subsection 5.3.2.1 we derive

the sensitivity coefficients 3AP and sf , j = 1,...,4, where

BYJ- BYJ'

T o* 3y and a, in Egs. 5.39 and 5.40. The
information that is obtained from examination of the sensitivity coefficients

j=1,...,4, refer to bw, b

is discussed. In 5.3.2.2, the sensitivity coefficients are used in

the calculation of the covariance matrix associated with parameter
estimates. In that subsection confidence intervals are compared for the
estimates of the relative permeability parameters in Eqs. 5.39 and 5.40
based on pressure data alone, flow data alone, and pressure and flow data
combined. Confidence intervals for the estimates of the parameters bo and
bw (i.e. we assume that the endpoints kro(sc) and krw(l—sro) are specified)

are also given.
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5.3.2.1 Sensitivity Coefficients

The quantities AP and 3f , j = 1,...4, are called sensitivity

oy

coefﬁ'cients.17 These quantities give us a measure of the change in the
calculated quantities with respect to perturbations in the parameters.

If, for example, the sensitivities of the quantities AP and f with respect
to one of the parameters Y5 were small for all observation times, this
parameter could not be determined very accurately, since large changes in
its value would produce only small changes in the observed quantities.

In this subsection, we derive expressions that are used to calculate
the sensitivity coefficients for specified values of the relative permeability
parameters and viscosity ratio.

We define a dimensionless time t, the moveable pore volume injected,
as :

vtt

T=
¢XL(1-SrO—S

N (5.45)

The sensitivity coefficients will be calculated as functions of the
dimensioniess times Tys rather than ti‘

Using Egs. 5.39 and 5.40 to eliminate the relative permeabilities in
Eq. 3.11, the fractional flow at time T; can be calculated from the
relative permeability parameters Y J=1,...,4, and the calculated value

of SL at time Ty We denote this functional dependence of the fractional

flow as:
) (5.46)

f('t_i) = f(I’,SL
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where we have used T to refer to yj, J=1,...,4. The saturation SL at

time T; can be calculated using Eq. 5.45 and the following relation

obtained directly from Eq. 5.2:

v, t
x = -t f' (S

L s L) (5.47)

Using Eq. 5.45 to eliminate t in Eq. 5.47, and evaluating that expression

at time Ty» We obtain:
- ' -1
o om [ esgs0) ] (5.48)

The prime denotes the derivative of fractional flow with respect to
saturation. The functional dependence of SL given by Eq. 5.48 can be

expressed as:

SL = SL(P,Ti) (5.49)

The sensitivity of the fractional flow with respect to Y; is given by:

= + (5.50)
3Ys 35 Yy

aY 3

J J J
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5S

An expression for E;L-is obtained by taking the derivative of Eq. 5.48
j .
with respect to & and rearranging:
3S af' (1, af' (1,3 )
S / 3 (5.51)
J J L

Substituting Eq. 5.51 into 5.50, we obtain the following expression for

the sensitivity coefficient:

'Bf(T{) af (r,S,) of' (1,5, )
e 5 - - By (TS
Yj 'Yj Yj

(5.52)

) f'(r,s,)

The sensitivity coefficients for the water-oil ratio can be obtained
directly from the sensitivity coefficients given by Eq. 5.52, Rearranging
Eq. 5.1, the following expression is obtained for the value of WOR calculated

at time Tt

f(Ti)

WOR(Ti) = [j:F(;;XT (5.53)

The sensitivity of WOR with respect to 4 can then be calculated by the

following equation:

3f ()
av-1 (5.54)

J

SWOR(Ti)

Y.
Y3

= [1-f(< )]

In order to obtain the sensitivity coefficients of the pressure drop,
we use the following change of variables in the integral in the pressure

equation 5.38:
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P

L f L f ax
foax = f L T (5.55)
J K. K 39

X - L pus) (5.56)

so that the pressure equation can be written as:

) ,
\' t-].l S 1
AP(t,) = -t 1w ‘Wf SR S (5.57)
i P K k-
1-S rw
ro

Using the dimensionless time defined by Eq. 5;45, the pressure drop at

T is:
V. T, (1 S )
aP(r;) = LT ro>L f L )dS (5.58)
where g(r,S) = {fi .
™

The sensitivity of the pressure drop with respect to Y; is given by:

aAP(t.) v (15
) L ML [ s
Y« K
J 1-S Y3
ro

35,
g(r, S, ) —J (5.59)
i
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pressure drop AP(0) given by Eq. 3.72, and using Eq. 5.48 to eliminate

The quantity is given by Eq. 5.51. Dividing Eq. 5.59 by the initial

T; on the right hand side, we obtain:

o aPlr) wy K (SE) [ L ag(r,) i
AP(0) Byj Mo f! SL 1-Sr'0 a'yj
3
+ g(r,s) 5;?] (5.60)

The normalized sensitivities can thus be calculated when I' and the

viscosity ratio are specified.
The sensitivities of the fractional flow and normalized pressure drop

can be exhibited for a specified value of r and viscosity ratio. Choosing

the relative permeability parameters as a_ =

o aw =1, bO = 3, bw =2, and

U

ﬁ%-= 1, we plot the sensitivities for dimensionless times t £ 10. The

sensitivities Ei;~ and i are shown in Fig. 5.1, and _af and af
oa 2a, . ab,, ab,

are shown in Fig. 5.2. The corresponding sensitivities for the pressure
drop are shown in Figs. 5.3 and 5.4. We see from these figures that both

fractional flow and pressure drop are sensitive to changes in each of ‘the

four relative permeability parameters.

Note from Fig. 5.1 that af o af for all times r. These sensi-

Bao Baw

tivities are thus linearly dependent for all times t, and consequently

both quantities a, and a, can not be determined from fractional flow data



129.

.05

04

.01 -

.05 L1 1 1 1 1
6 8 1 2 4
Moveable Pore Volume, 7

Figure 5.1

Sensitivity Coefficients ——a—f and —@—f-



130.

07
of
06 - abo
SR ——Qi
05 | db,,
04 |

of of o3}

dbgy * by,
.02 -
.01 -
0 -
1 I | 1 |
6 .8 1 4 6 10
Moveable Pore Volume, 7
Figure 5.2

e - of of
Sensitivity Coefficients 55; and a'!':;v



131.

6
5 prmn
4 -
dAP

AP (0) 9a,
2 -
1}
o}
1k

AP

_ 2}

AP (0) oa,
iy = \/
-4 | I T 1 1

6 8 1 2 4
Moveable Pore Volume, 7
Figure 5.3 3AP JAP

. . . -— and —————
Sensitivity Coefficients " P(O)aao AP(0)3a,,



132.

5
4 -
3 -
dAP
AP(O)abo
1 -
0 -
-1 b
-2
AP
AP(O)abw sk
-4 |-
-5 | L1 | ] | 1
6 8 1 2 4 6 8 10
Moveable Pore Volume, 7
Figure 5.4

0AP  .1d dAP

e e ff. H t P T
Sensitivity Coefficients AP(0Bb, AP(0)ab,,



133.

17
alone. This fact can also be established by simply noting that the

quantities 2, and a, appear as a ratio in Eq. 3.11 for the fractional flow
when the relative permeabilities are expressed by the functional forms

5.39 and 5.40.

5.3.2.2 Analysis of the Covariance Matrix

In this section we present an analysis of the accuracy associated
with estimates of the relative permeability parameters based on observations
of the pressure drop and water-oil ratio containing random error. Now that
we are considering observations which have error associated with them, we
use the water-oil ratio rather than the fractional flow since the former
quantity is generally used in petroleum reservoir studies. It is assumed
that the errors associated with the measurements of the pressure drop have
a Gaussian distribution with zero mean and variance opz. Similarly, the
errors associated with measurements of the water-oil ratio have zero mean
and variance Gwz

Assume that we are given estimates T of the true relative permeability

parameters r which minimize the function
LT
Jd = Z :Y. ,‘"};,l'i (5'61)

where the vector ¥ is given by

aAPODS (L y L pCio ) o
y; F [ zp(o) 1 WORObs(ri) - WORC(T-]-)}T
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The superscripts obs and ¢ refer to the observed and calculated quantities
respectively, and n is the number of discrete times 5 at which measurements
are taken. The 2x2 matrix wi is the inverse of the covariance of the
measurements.ls’19 The quantity AP(0) is assumed to be exactly known.

The pressure drop is normalized so thét our analysis will not depend upon

specification of all the reservoir properties (see Egs. 5.59 and 5.60).

obs o
Thus, the variance associated with Z%%ET' is (Zﬁ(ﬁT) , and the

weighting wi is given by:

Wy = (5.62)

If we assume that the difference between the true and estimated values
of Yj’ given by aj, is small, the distribution of the error in the
parameter estimates can be calculated. The probability density for

18,19
@ = [og oy ag a4]T will be Gaussian with mean zero and covariance C. ’

~

That is,

where E denotes the expected value. The inverse of the covariance matrix

C_l, which we denote here as H, is given by

D (5.63)
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where Pi is the following 2x4 matrix of sensitivity coefficients:

24P () 24P%(z. ) 28P%(x, )
ap(0)ay, aP(0)ay, 4P(0)ay,
D; =
(5.65)
3WOR® 3WOR®
| 3Y1 BY4 i

The sensitivity coefficients are derived in Subsection 5.3.2.1. The
eigenvalues of the covariance matrix 9, which are the variances of certain
linear combinations of the errors oy give us a measure of how well the
parameters can be determined.17

The covariance matrix was calculated for the set of relative
permeability parameters, measurement variances, initial pressure drop,
and viscosity ratio given in Table 5.1. These values might correspond to
a typical water flooding problem, although the discrete times at which
measurements are taken are arbitrary. The range for t is appropriate,
however, since water breakthrough corresponds to r = 0.75, and t = 2.0 is
a reasonable upper bound for a water flood. The eigenvalues of the covariance
matrix, Ai’ are given as Case 1 in Table 5.3. The largest eigenvalue
has the value 0.83, which is of the same order of magnitude as the parameters
that are to be estimated. Consequently, we would not expect to be able to
determine all four parameters very accurately. However, the inverse of C,
given by H, is nonsingular, and so the four parameters are observabhe.18

We now consider several cases specified in Table 5.2 all based on the
parameter values of Table 5.1. Case 2 corresponds to the estimation of the

four relative permeability parameters based on pressure drop data only.
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Table 5.1 Specification of Properties Used in the Calculation of
the Covariance Matrix

Relative Permeability Parameters:

a = 1 a, = 1 Sc = 0.1
bo = 3 bw =2 Sro = 0.1
Viscosity Ratio: “o/“w =1
Initial Pressure Drop: AP(0) = 20 atm
Measurement Times: T, = 0.8+ (i-1) 0.1 i=1,..., 13
Measurement Variances: og = 0.5 atm2 03 = 0.5

Table 5.2 Specification of Cases for Which the Covariance
Matrix is Calculated

Cases Estimated Parameters Data Used
1 ao,aw,bo,bw AP, WOR

2 ao,aw,bo,bw AP

3 a,58,5b, b, WOR

4 bysb,, AP, WOR

5 bo,bw AP

6 bgsb,, WOR
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Table 5.3 Eigenvalues of the Calculated Covariance Matrix

Case _lxl Ao A Ay
1 8x107} 7x1073 2x10 4 1x10 ~
2 5x10 1 2x1071 2x1074 1x1076
5t
4 2x10™% ax107°
5 2x10™% 4x107°
6 8x10™2 1x1073

+§ is singular
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The eigenvalues for this problem are given in Table 5.3. The largest
eigenvalue has the value 50, which is much larger than the corresponding
value for Case 1 for which both flow and pressure data were used. Case 3
corresponds to the estimation of the relative permeability parameters based
on WOR data only. As noted in Subsection 5.3.2.1, all four relative
permeability parameters are not observable; H is singular in this case.

In Cases 4, 5, and 6 we assume that the endpoints values krw(l'sro)
and krw(sc) are known, thus specifying the values a and 3 The
covariance matrix calculated for these cases corresponds to the error in
the estimates of the exponents b, and b, . In Case 4, both pressure drop
data and water-o0il ratio data are used. The largest eigenvalue of the
covariance mdtrix for this case is several orders of magnitude smaller
than the values of the exponents, and consequently we expect that the
exponents bo and bw can be accurately estimated. Case 5 is based on pressure
drop data alone, and Case 6 is based on WOR data alone. The eigenvalues
of the covariance matrix for both of these cases are small, and hence it
appears that the exponents bo and bw can be determined accurately from

either pressure data or water-oil ratio data.
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5.4 Summary and Conclusions

In this chapter we have investigated the identifiability of reservoir
parameters in a two-phase, incompressible, one-dimensional reservoir model.
The analytical solution for this problem provides a convenient means for
studying the structure of the parameter estimation problem.

In Section 5.1, it was shown that the fractional flow data do not
depend upon the spatially varying permeability, and thus only the pressure
drop is used in the estimation of the permeability. The pressure drop
solution does not depend upon the spatially varying permeability at locations
in the reservoir ahead of the saturation discontinuity. Hence, the
spatially varying permeability throughout the reservoir cannot be deter-
mined from pressure drop data taken before the time of breakthrough. The
pressure drop does depend upon the spatially varying permeability at
locations in the reservoir behind the saturation discontinuity. The iden-
tifiability of the spatially varying permeability was established for two
Timiting cases of two-phase flow — the moving boundary problem and the
representation of the relative permeabilities by the functional forms 5.39
and 5.40,

The spatially varying porosity has an effect on both the saturation
and pressure solutions. The identifiability of the spatially varying
porosity based on fractional flow data alone, and pressure drop data alone,
was‘considered in Subsections 5.2.1 and 5.2.2. Similar to the case for
the absolute permeability, it was shown that the pressure drop solution
for times before water breakthrough does not depend upon the spatially

varying porosity at Tocations ahead of the saturation discontinuity. The
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identifiability of the spatially varying porosity based on pressure drop
data taken through the time of breakthrough was established for the moving
boundary problem. The fractional flow depends only upon the average por-
osity, and not the spatially varying porosity. Consequently, if the initial
saturation in the reservoir is the connate water saturation, only the
average value of the porosity can be obtained from fractional flow data.

It was shown in Subsection 5.2.1 that the spatially varying porosity may

be identifiable when the initial saturation profile varies with location

in the reservoir.

Both pressure and saturation solutions depend upon the relative per-
meabilities. In Subsection5.3.1, the identifiability of the relative per-
meabilities was investigated. It was shown that the pressure solution
(S

before breakthrough depends on the value k ) and a single value of an

Yo' ¢

integral of the relative permeabilities over the range of saturation
Sq$Ss 1-S .o If the water flood is taken to completion (i.e. the
water saturation value 1-3‘(‘o is attained at all locations in the reservoir),
the relative permeability values of 0il and water are identifiable, based
on the pressure drop and fractional flow data, for all saturation S > Sd.
Based on data taken for times t < tf, the relative permeabilities for the
range Sd < S« Sf, where Sf corresponds to the saturation value at the
producing location at time tf, are identifiable. An integral value of the‘
relative permeabilities for the range of saturation S > Sf can be obtained.
The determination of the coefficients in a parametrization of the
relative permeabilities, given by Eqs. 5.39 and 5.40, based on data taken

after breakthrough was investigated in Subsection 5.3.2. Sensitivity

coefficients were derived for the four parameters in those functional forms.
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An analysis of the covariance matrix of the error in the estimates based
on noisy observations of the pressure drop and water-oil ratio was pre-
sented. From this analysis, it was concluded that the four parameters
could not be determined accurately from measurements taken for a limited
range of time after breakthrough, although they are observable. If the
endpoints of the relative permeabilities are exactly known, and hence the
values a, and a, specified in the functional forms 5.39 and 5.40, the
values of the exponents b0 and bw can be accurately determined. These
values can also be accurately determined from either pressure drop data

alone, or water-oil ratio data alone.
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6. ESTIMATION OF TWO-PHASE RESERVOIR PROPERTIES

The use of an algorithm which proceeds systematically from an initial
set of reservoir parameter guesses to one that minimizes an objective func-
tion is commonly called automatic history matching. Most of the published
work to date on automatic history matching has been devoted to single phase
reservoirs in which the unknown parameters to be estimated are the reservoir
porosity and absolute permeability. In the single phase problem the objec-
tive function usually consists of the deviations between the predicted and
measured reservoir pressures at the wells. Parameter estimation, or history
matching, in multiphase reservoirs is fundamentally a more difficult problem
than that in single phase reservoirs. The multiphase equations are nonlinear,
and in addition to the porosity and absolute permeability, the relative per-
meabilities of each phase may be unknown and subject to estimation Measure-
ments of the relative rates of flow of oil, water and gas at the wells may
also be available for the objective function.

The aspect of the reservoir history matching problem that distinguishes
it from other parameter estimation problems in science and engineering is the
large dimensionality of both the system state and the unknown parameters.

As a result of this large dimensionality, computational efficiency becomes

a prime consideration in the implementation of an automatic history matching
method. In all parameter estimation methods a trade-off exists between the
amount of computation performed per iteration and the speed of convergence
of the method. An important savings in computing time was realized in single
phase automatic history matching through the introduction of optimal control

theory as a method for calculating the gradient of the objective function
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with respect to the unknown parameters?®’2! This technique is currently
limited to first-order gradient methods. First-order gradient methods gen-
erally converge more slowly than those of higher order. Nevertheless, the
amount of computation required per iteration is significantly less than that
required for higher order optimization methods, and thus, first-order meth-
ods are attractive for automatic history matching. The optimal control al-
gorithm for automatic history matching has been shown to produce excellent
results when applied to field problems?? Therefore, the first approach to
the development of a general automatic history matching algorithm for multi-
phase reservoirs would seem to proceed through the development of an opti-
mal control approach for calculating the gradient of the objective function
with respect to the parameters for use in a first-order method.

In this chapter a new algorithm based on optimal control theory is
presented for the estimation of absolute permeability, porosity, and relative
permeability in two-phase reservoirs using pressure and production rate data.
In Section 6.1, the algorithm is summarized. In Section 6.2, detailed re-
sults are presented for test problems for one- and two-dimensional water

flooding situations.

6.1 Summary of the Algorithm

In this section, the basic algorithm developed in this work is outlined.
An objective function J is defined as the weighted sum of the squares of the
differences between the observed and calculated values of the reservoir pres-

sure and flow rate data at the wells:
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D I U D Il Sl (6.1)

i J
where‘P is the pressure, R represents the flow rate data, and W, is a
weighting factor for data element i. The production rate data consist of
the production rate of one of the phases, or a ratio of the flow rates. In
most simulation of two-phase reservoirs, either the total flow rate of the
two fluids, or the flow rate of oil, is specified at each production well.
If the total flow rate is specified, either the 0il production rate or the
water-oil ratio may be used as the rate data in Eq. 6.1. The water-oil
ratio may be used if the o0il production is specified. For the test prob-
lems presented in this study, the total production is specified, and the
water-oil ratio is used as the flow data.

The reservoir properties to be estimated are the porosity and absolute
‘permeability and the saturation-dependent relative permeabilities. Porosity
and absolute permeability may vary spatially throughout the reservoir. The
most detailed spatial resolution available corresponds to the finite-differ-
ence grid of the simulator. The algorithm developed here allows each of the
unknown parameters associated with each grid block to be estimated. The tech-
nique of zonation or specification of regions of the reservoir within which
a property is assumed to be constant is easily included within the present
development. The relative permeabilities are represented by the functional
forms specified by Egs. 5.39 and 5.40. Thus, the relative permeability esti-
mation problem we consider is that of estimating coefficients a, and 3, and

the exponents b0 and bw'
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The history matching problem éonsists of determining the unknown reser-
voir properties so that J is minimized. The first-order gradient method
requires that we calculate the partial derivatives of the objective func-
tion with respect to each of the unknown reservoir parameters. These deriva-
tives can be calculated most efficiently through the use of optimal control
theory. The detailed derivation of the equations used to evaluate the de-
rivatives of the performance index are given in Appendices F and G. In Appen-
dix F, the derivation is based on the partial differential equation fbrmu]a-
tion of the reservoir model developed ih Subsection 2.1.3. In Appendix G,
the derivation is based on the finite-difference formulation of the reser-
voir model which was developed in Section 4.1. Using this derivation, no ap-
proximations are made in the solution of the adjoint system which is used to
calculate the partial derivatives of the objective function. This is dis-
cussed further in Appendix G. Finally, in Appendix H, the gradient method
used in this study is specified.

The objective function in Eg. 6.1 is written in a general form that
allows each data point to be weighted separately. Considerations on an analy-
sis of confidence intervals for estimated parameters shows that the weighting
should be chosen to reflect the relative uncertainty of each measurement??®
However, a priori information usually will not be available to warrant weight-
ing individual pressure and flow rate measurements differently. In this
study, a single weighting is used for all pressure measurements, and another
weighting is used for all rate measurements. Since the objective function J
can be multiplied by any positive constant without changing the problem,
only the relative weighting between the two terms in the objective function

is important. With these simplifications, Eq. 6.1 can be written as
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J = JP + wlp (6.2)

where Jp refers to the sum of the squared differences between the observed

and calculated pressures, and JR is the corresponding sum for the water-oil

ratio data. Given a variance 02 associated with the pressure measurements,

p
and variance cﬁ associated with the rate measurements, w would be specified
as the ratio cg/oﬁ. The selection of the weighting factor in the objective
function if no estimate of the relative errors in the data is available is

discussed in the following section.

6.2 Test Problems

In this section, we present several test problems to illustrate the use
of the automatic history matching method developed. A1l the cases correspond
to the water flooding of hypothetical reservoirs initially at the connate
water saturation. The "observed data" were generated by exercising the simu-
lator developed in Chapter 4 with the true, but presumed unknown, parameter
values. In all except one of the cases, the data consist of the pressure
in the injection and production grid blocks and the water-oil ratio in the
producing grid block at each time step in the simulation. In the final case,
errors generated by a Gaussian random number generator with specified vari-
ances were added to the observed data.

In practical or field history matching prob]ems; the test of the quality
of the match is given by the magnitude of the objective function at the con-
clusion of the estimation. For a hypothetical history matching problem the
true but presumed unknown parameter values are available so that the quality
of the match can be determined by comparing not only the initial and final

values of the objective function but also the estimated and true parameter
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values. A question related to the quality of the match is that of the

rate of convergence of the algorithm, that is, the number of iterations
required to achieve an acceptably low value of the objective function. Al-
though we do not assign acceptable minimum values for the objective func-
tion, the quantities Jp and JR for several iterations will be presented for
each problem. These quantities serve as a measure of how well the data have
been matched.

From Eq. 6.2, we note that for a given set of estimated reservoir
parameters, the value of the performance index J will depend upon the weight-
ing w. When the weighting is specified as the ratio of the variances of the
pressure and water-oil ratio measurements, the quantities Jp‘and mJR are ex-
pressed in the same units. When no estimate of relative error is available,
the choice of w is somewhat arbitrary. For the problems in which the rela-
tive permeabilities were estimated, the rate of.convergence generally im-
proved when Jp and wJR were of comparable orders of magnitude based on the
initial parameter guesses. For the cases in which exact data were used as
the observed data, w was set to 10. For the case in which the simulated

data were corrupted with noise, w was set to the ratio og/cs.

6.2.1 One-Dimensional Water Flood |

To explore the properties and performance of the algorithm, it is de-
sirable to study a one-dimensional hypothetical reservoir. Therefore, five
cases based on a water flooding situation are presented. The reservoir di-
mensions, injection and production rates, and relative permeabilities are
the same for all cases; only different sets of reservoir parameters are esti-
mated in each case. The water flooding problem is specified in Table 6.1,

and the set of parameters estimated in each case are given in Table 6.2.
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Table 6.1. Specification of Water Flood Cases

Fluid and Reservoir Properties

K = 0.08 ¢{1) =5 ¢, = 107 atn?
¢ = 0.3(2) W= 1ep ¢y = 1x10™% atm™1
Initial P = 50 atm Initial Sw==ch ¢ = 0
Relative Permeability Parameters
a, = 1 b0 =2 ch = 0.1
a, = 1 bw = 3 Sro = 0.1
Model Specification

1-D 2-D
Model Dimensions‘(Length/Width): 10/3 1
Grid Blocks: 10 10x10 3
Inj/Prod Rate (PV/Time Step): 0.0137 ' 0.0107( )

(Avg.)

Number of Time Steps: 60 89

(1) Step function was used in Case 1

(2) Sine function was used in Case 2

(3) variable time steps were used to control AS at each time step
to approximately 0.1.
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Table 6.2. Parameters Estimated in Test Problems

Case Dimensions

Parameters Estimated

1 1

N NN = B e s

Step function of K
Sine function of ¢

ao,aw,bo,bw

(1) A Gaussian random error term was added to

the "observed data"
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In Case 1, the unknown parameter values are the nine harmonic-average
values of the absolute permeability. The true harmonic-average permeabili-
ties form a step function with the discontinuity occurring between grid
blocks 5 and 6. An initial quess of 0.2 darcy is used for each of these
parameters. The estimated values after 11 iterations of the algorithm and
after 48 iterations’are shown in Fig. 6.1. The quantity Jp at several iter-
ations is summarized in Table 6.3 For Case 1 JR is zero and consequently
does not provide information about the parameters. Note from Table 6.3 that
the objective function at the 11th iteration is less than one percent of its
initial value. More iterations lead to further reductions in the objective
function, although the rate of reduction is much slower than during the
initial iterations. After 48 iterations the objective function is less than
1 atmz. The corresponding root mean square deviation is less than 0.1 atm,
which represents a smaller tolerance than one might require for a practical
problem. We note from Fig. 6.1 that a reduction of the objective function
from 15 to 1 atm2 (which corresponds to the 11th and 48th iterations, respec-
tively) does not lead to a significant improvement in the parameter estimates.

In Case 1 we note that at a Tow value of J (1 atm2 based on the root
mean square deviation of less than 0.1 atm) the correct values of the har-
monic-average permeabilities have not been attained. In fact, the estimates
have not moved appreciably from their values when J equaled 15 atmz. This
behavior, noted frequently in the estimation of spatially varying proper-
ties, is a result of an attempt to estimate too many parameters on the basis
of the available data leading to a very shallow minimum in the objective func-

tion surface?® Because our main interest here is not the uniqueness problem
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Table 6.3. Summary of the Objective Function as a Function
of Iteration Number for the Eight Cases Presented

Case No. Iteration Number
0 5 10 20 40  Final

1. Jél) 2900 660 33 1.9 1.1 0.96(48)(?)

J 0
R

2. 9, 360 35 3 0.75(15)
a 560  0.57 0.32 0.015

3.9, 3000 620 190 25 7.1 0.33(76)
Nis 190 150 58 5.7 1.3 0.06

4. 9, 3000 1300 31 0.40(13)
3 190 98 2.2 0.03

5. J, 3400 430 64 3.8 0.12(32)
Jh 64 a4 10 0.84 0.057

6. J, 4800 2300 3.5 2.4(11)
is 230 100 0.25 0.01

7. J, 10,000 1600 130 3.8 3.2(24)
3 52 57 17 0.31 0.16

8. J, 12,000 1420 310 170 165  165(60)
i 91 65 22 12 1 11

(1) J, has dimensions atm

P

(2) The value of the performance index at the final ijteration taken.
The corresponding iteration number is given in parentheses.
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of history matching we will not pursue this aspect further here. The inter-
ested reader is referred to Shah et al?® for such a discussion for single
phase reservoirs. The algorithm developed here does perform as desired in
that J is significantly reduced.

In Case 2 the unknown parameters to be estimated are the values of
porosity of each grid block. The true porosities are assumed to be a sine
function, and the initial guess is the uniform value of 0.18. The estimated
values after 15 iterations are shown in Figure 6.2. The value of Jp that
corresponds to this estimate is 0.75 atmz. As in Case 1 the correct values
have not been attained, although the true profile is represented.

The values of Jp and Jp for several iterations are shown in Table 6.3.
While the initial value of Jp is approximately one-tenth of that for the
previous Case 1, JR is now nonzero. In Section 5.2 it was shown exactly
that the water-oil ratio is a function of the average porosity but not of
the individual grid block porosities. For this case, the value of JR de-
creases as the difference between the true average of the porosity and the
average of the estimated values decreases. The true average is 0.25; the
average of the estimates for the first five iterations is successively 0.197,
0.215, 0.236, 0.256, and 0.246. The corresponding values of JR are 273, 97,
12, 6.6, and 0.57.

In Cases 3 and 4 we assume that the porosity and absolute permeability
are known and the parameters in the relative permeability functions of Egs. 5.39
and 5.40 are to be estimated. We consider in Case 3 the estimation of all four
parameters, a_, 4

0o’ W o
attempt to estimate the exponents b0 and bw‘

., b, and bw. In Case 4 we assume a, and a,, are known and
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In Case 3 the true values of a_ and a, are 1, and the true values of

)
bO and bw are 2 and 3, respectively. An initial guess of 1 is used for all
the parameters. The iterative estimates for this case are shown in Fig. 6.3.
While the parameter estimates do converge to the true values, the rate of

convergence is slow particularly for parameters a, and bw' The values of

W
the objective function for different numbers of iterations is shown in Ta-
ble 6.3.

A qualitative understanding of this case can be obtained by first exam-
ining the relative permeability functions given by Egs. 5.39 and 5.40 with €

set to zero. The endpoints of the relative permeability curves are given by

keo(Sc) = ag (6.3)

krw(l'sro) = Ay , (6.4)

Thus, if the relative permeabilities are known at the endpoints, the two
curves are completely specified by bo and bw.

For this case, the endpoints are not specified. The initial guess for
the relative permeabilities correspond to straight line functions. With the
exceptions of kro(sc) and krw(l'sro)’ the true values of the relative per-
meability curves are less than those represented by the straight Tines. Con-
vergence towards the true curves is accomplished by either decreasing the
or increasing the exponents bO and bw' Note from

W
Fig. 6.3 that in the early iterations, both a, and a,, have decreased, even

coefficients aO and a

though the initial guesses for a, and a, were the true values. Note also
that the values for Jp and JR shown in Table 6.3 have, in fact, been reduced.
Consequently, the pairs of parameters a,> bO and a,s bw appear to be

correlated.
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The fact that the estimates of the oil relative permeability parameters
converge to their true values before those for the water relative permeabil-
ity can be reasoned by investigating the effect that the end point values
kro(sc) and krw(l'sro) have on the pressure and saturation solutions for
the reservoir model. For the incompressible case, it was shown in Sub-
section 5.3.1 that the pressure drop solution before water breakthrough
does depend upon the value of kro(sc)' However, the reservoir saturations
must reach the residual oil saturation before krw(l'sro) will have an effect
on the solution.

In Fig. 6.3 we note that after 15 iterations, the estimates for a,
are its correct value. Thus, although the pairs of parameters values in
Eqs. 5.39 and 5.40 are correlated, the additional information about a, which
is obtained from the dependence of the observed data upon the endpoint per-
meability of o0il appears to significantly improve the estimation of oil per-
meability parameters.

In Case 4, the values a, and a, are specified. Fig. 6.4 shows the
parameter estimates as a function of iteration for Case 4. Convergence is
seen to be much faster than in Case 3. After 11 iterations both‘parameters
are within five percent of the true values and Jp and JR are both less than
one. Thus, specification of the endpoints of the relative permeability
curves markedly increases the rate of convergence. Since good estimates for
the relative permeability endpoints may often be obtained from core flood
data, it appears most advantageous to determine the coefficients a, and a

W

separately and estimate only the exponents b0 and bw.
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In Case 5, the porosity and absolute and relative permeabilities are
to be estimated. Here the porosity and absolute permeabilities are repre-
sented by a single zone. The parameters to be estimated are thus the single
value of porosity and permeability, and the relative permeability exponents
b0 and b,. The iterative estimates for this case are shown in Fig. 6.5.
While some parameter values converge to the true values before others, all
the parameter estimates are within 5% of the true values after 20 iterations.
This test case demonstrates that porosity, permeability, and relative per-

meabilities can be jointly estimated.

6.2.2 Two-Dimensional Water Flood
Three cases based on the water flooding of a hypothetical quarter of

a five-spot are presented here. The properties used for these three cases
are summarized in Table 6.1. In Case 6, the parameters to be estimated
are the relative permeability exponents b0 and bw. In Case 7, we estimate
the porosity and absolute and relative permeabilities. The porosity and
absolute permeability are represented by a single zone. For these cases,
the observed data correspond to the pressures at the injection and produc-
tion grid blocks and the water-oil ratio at the production grid block for
each step in the simulation. The final case presented is similar to Case 7,
with the exception that the observed data have been corrupted with Gaussian
error.

The iterative estimates for Cases 6 and 7 are shown in Figs. 6.6 and
6.7, and the quantities Jp and JR for several iterations are given in Table 6.3.

For both problems, the parameter estimates converge to the true values. The
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number of iterations required in each case is about the same as for the
corresponding one-dimensional problems. This suggests that an additional
space dimension does not change the characteristics of the estimation
problem.

In Case 8, the observed data correspond to the simulated data to which a
random error term have been added. The error was obtained by a Gaussian
random number generator with mean zero and specified standard deviations.

The standard deviation used for the pressure and water-oil ratio measure-

ments was one atmosphere and 0.5, respectively. The weighting factor w used
in this case was 4, which is equal to the ratio of the variances of the pres-
sure and water-oil ratio. The parameter estimates for several iterations are

given in Table 6.4, and the corresponding values of J_ and JR‘are given in

p
Table 6.3. Comparison of the iterative parameter estimates for Cases 7 and 8
shows no significant differences. After 20 iterations, all estimated values
are within 10% of the true values. The introduction of Gaussian error to

this problem has not affected the performance of the algorithm.

6.3 Summary and Conclusions

An automatic history matching algorithm based on an optimal control
approach has been developed to estimate porosity, permeability, and safura—
tion-dependent relative permeability curves in two-phase reservoirs. Both
pressure and water-oil ratio data are used in the objective function. The
algorithm was tested for one- and two-dimensional hypothetical reservoirs.

When the relative permeapi]ities are expressed as exponential func-

tions, the exponents can be determined readily if the endpoints of the
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Table 6.4. Parameter Estimates for Case 8
Iteration Number

Parameter 0 5 10 15 20 40 60

K (Darcy) 0.04 0.063 0.075 0.081 0.081 0.081 0.081

o) 0.25 0.29 0.33 0.32 0.32 0.31 0.31
bO 1.5 1.6 2.2 2.2 2.2 2.1 2.1
b 1.5 1.5 2.4 2.6 2.7 2.8 2.9
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relative permeability curves are specified. If the endpoints of the rela-
tive permeability curves are not specified, the coefficients and exponents
of the functional forms can be determined, but convergence is slow.

The algorithm works well for the cases in which the permeability,
porosity, and relative permeability exponents are determined simultaneously.
The spatially varying properties were represented by single zones in these
cases.

There were no significant differences in performance for one- and two-
dimensional cases in which the same parameters are estimated. Small meas-
urement errors did not cause any significant differences. in the convergence

of the estimates.
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7. CONCLUSIONS

In this dissertation several new results have been obtained per-
taining to the estimation of petroleum reservoir properties.

For one-dimensional, incompressible flow of 011 and water, analytical-
solutions for the pressure and saturation can be obtained. The saturation so-
lutions consists of the well-known Buckley-Leverett equation.sw Chapter 3 contains
a comprehensive review of the solution of the saturation equation for

1,6-9

homogeneous reservoir models by the method of characteristics. These

techniques are then extended to heterogeneous models. When the initial
water saturation is the connate water saturation, it is shown that the

7 for the determination of the saturation discontinuity

Welge technique
also applies to the heterogeneous reservoir model.

Before water breakthrough, the pressure drop solution across the one-
dimensional reservoir is linear with respect to time for a constant,
specified injection rate and homogeneous reservoir properties. When the
reservoir properties vary spatially, the pressure solution is nonlinear.

The spatially varying permeability at locations behind the saturation front
has an effect on the pressure drop solution, while only an integral (the
harmonic average) of the permeability corresponding to the locations ahead
of the saturation front affects the pressure drop. The saturation solution
is independent of the spatially varying permeability, and hence observations
of the fractional flow rate at the producing location give no information
about that property. The identifiability of the spatially varying per-
meability based on the pressure drop solution for the range of time up to

the breakthrough time is established in Chapter 5. The spatially varying
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porosity at locations behind the saturation front has an effect on both
the pressure and saturation solutjons. The information that can be ob-
tained about the porosity from observations of the fractional flow rate
at the producing location depends upon the initial saturation profile.

In Chapter 5 it is shown that only the average value can be obtained when
the initial saturation is the connate water saturation. The spatially
varying porosity for portions of the reservoir may be identifiable when
the 1initial saturation profile varies with location in the reservoir.
The identifiability of the spatially varying porosity on the basis of the
pressure drop solution is established for the moving boundary problem.

The identifiability of the relative permeabilities is investigated in
Chapter 5. It is shown that the value of kro(sc)’ and an integral of the
relative permeabilities for water saturations greater than the value at
the saturation discontinuity Sd, is identifiable from pressure drop data
taken before the'time of water breakthrough. The relative permeabilities
for the range of water saturation Sd <S¢« Sf, where Sf corresponds to the
saturation at the producing Tocation at the final time for which pressure
drop and fractional flow rate data are taken, are identifiable. Only an
integral value of the relative permeabilities for water saturations greater
than Sf is identifiable.

In Chapter 6, an algorithm is developed for the estimation of pro-
perties based on a two-phase, compressible reservoir model. The objective
function, composed of a weighted sum of the squares of the differences
between the observed and calculated values of the pressure and water-oil
ratio, is minimized by the method of steepest descent. An optimal control

approach is used to calculate the gradient of the objective function.
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The algorithm is tested for one- and two-dimensional hypothetical water
floods. When the relative permeabilities are expressed as exponential
functions, the coefficients and exponents of the functional forms can be
determined, but convergence is slow. The exponents can be determined
readily when the end points of the relative permeability curves are
specified. The algorithm performed well for problems in which the
porosity, permeability and relative permeability exponents were estimated
simultaneously. The porosity and permeability in these problems were
represented by single zones. There were no significant differences in the
convergence of the estimates for one- and two-dimensional prob]ems; It

is shown that small measurement errors would not affect the convergence of

the estimates.
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NOMENCLATURE
A — cross sectional area
ao’aw’bo;bw — relative permeability parameters given in Egqs. 5.39 and 5.40
Bo’Bw — formation volume factors
€03y Cpr — compressibilities of oil, water and rock
f,fw — fractional flow of water
9.9, — function defined by Eq. 4.23
h — reservoir thickness
J — objective function
JP — sum of squares of the deviations between observed and cal-
culated pressures (atmz)
JR — sum of squares of the deviations between observed and cal-
culated water-oil ratio
K — permeability
o  _ relative permeability of oil
krw — relative permeability of water
N — time index corresponding to the final time in the simulation
NX — number of grid b]ocké in the x-direction
NY — number of grid blocks in the y-direction
P — pressure
Pin o initial pressure
AP — pressure drop across one-dimensional reservoir
AP* — normalized pressure drop defined by Eq. 3.69
A% — volumetric flow rate/unit volume
Qo’Qw — volumetric flow rate

QT — total volumetric flow rate



170,

Nomenclature (con't)

R — water-o0il ratio

S,Sw — saturation of water

SC — connate water saturation

Sd — upper value of water saturation at discontinuity
Sin — initial water saturation

SL — water saturation at location XL

t — time |

tg — time of water breakthrough

T — dimensionless time defined by Eq. 3.68

v — volume of grid block (Ch. 4)

VosVy superficial velocity

vt . total superficial velocity

X,y — spatial coordinates

Xg — Tlength of reservoir in x-direction

x4 — TJocation of saturation discontinuity

X — Tlength of one-dimensional reservoir

XO(S) — function which is the inverse of S, (x)

X — dimensionless distance defined by Egq. 3.67
Yg — Tlength of reservoir in y-direction

WOR — water-oil ratio

Y; — relative permeability parameter

r — vrefers to all relative permeability parameters considered
A1sAp  — adjoint variables

Ugoly, — Viscosities

Po2Py densities
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Nomenclature (con't)

Operators

8 — variation, or perturbation

8(- ~+) — Dirac delta function

8(-,*) — Kronecker delta function

At — difference operator defined by Eq. 4.10
A LA — difference operators defined by Eq. 4.11

X"y
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APPENDIX A. Solution of Equations for the Incompressible Reservoir Model

A computer code was written in Fortran to solve Egs. 3.19 and 3.22
with boundary and initial conditions given by Eqs. 3.63 and 3.64. Relative
permeabilities were input with the parametrization given by Eqs. 3.65 and
3.66. For each set of relative permeabilities and viscosity ratios used,
the upper value of the saturation at the shock, Sd, was determined analyti-
caT]y using Eq. 3.45. The superficial velocity was independent of time.
The method of solution after breakthrough was slightly different than that

before breakthrough, and both methods will be discussed below.

Solution for t < t,

A dimensionless distance X and time T were defined as:

X = x/x (A.1)

T

t/tg (A.2)

In terms of these variables, the solution to Eq. 3.22 is:

v, t
(x) =( t B) T £(S) (A.3)
X
where X(s)
o(x) = f odx
0
For t < tB’ Eq. 3.19 can be written as

u

AP(T) = v, x fXd—f—dx+ 0 fl-l-dx (A.4)
t*L | Hw KoK k_(5) K '
0 X
d

ro cC
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The spatial grid was divided into n discrete blocks with length
AX = 1/n. The absolute permeability and porosity were assigned at points
centered within each discrete block, and the permeability and porosity at
all Tocations were then obtained by linear interpolation. To solve Egs.
A.3 and A.4, X, rather than time, was chosen independently. The integra-
tions inthose equations were carried out numerically using trapezoids.

The following steps were taken in the solution of Eqs. A.3 and A.4:

1. Using the values X =1, T=1, and S = Sq> solve Eq. A.3 for tB.
2. For X4 =0, T =0, solve Eq. A.4 for AP(0).
3. Set g =1.
= o AX
4. Calculate (Xd)z =45
5. Solve Eq. A.3 for TR’ the time at which the shock is at location

(Xd)z'
6. Setm= g.
o,
m
8. Use Egq. A.3 to calculate (f‘(S))j at the m + 1 values of Xj'

7. Calculate Xj =3 , Jj=0,1,..., m

9. Invert (f'(S))j to obtain Sj‘

10. Use Eq. A.4 to calcualte AP(TQ) (the m + 1 values of Sj are used
in the evaluation of the first integral in the equation).
11. Set m = 2m and repeat steps 7 - 10.

If the difference between the value of AP(TQ) just calculated and the
previously calculated value meet some tolerance test, set £ =2+ 1 and return
to step 4 (provided that % < 2n, which is equivalent to t < tB). Otherwise,
set m = 2m, repeat steps 7-10, and check the new tolerance. Continue to

double m until the tolerance is met.
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Solution for t > tB

There are two differences in the solution for t > tB: (1) the equa-
tion for pressure is different from Eq. A.4, and (2) time, rather than Xd,
was chosen independently. In terms of the dimensionless distance and

time defined by Eqs. A.1 and A.2, Eq. 3.19 for t > tB can be written as:
1
_ f
AP(T) = vthuwf A X (A.5)
0 rw

Times ti > 1 were chosen for which the solution was desired. For each
time Ti the following steps were taken:
1. Setm-=n,.
:J_ 1 =
Calculate Xj _ Jg=0,1,...., m.
Use Eq. A.3 to calculate (f'(S))j at the m+1 values of Xj.

Invert (f'(S))j'to obtain Sj

g R w N

Use Eq. A.5 to calculate AP(Ti).

6. Set m = 2m and repeat steps 2-5. Apply some tolerance test to
these two values of AP(Ti). If they do not meet the tolerance, then set
m = 2m, repeat steps 2-5, and check the new tolerance. Continue doubling m

until the tolerance is met.
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APPENDIX B. Linear System Used for the Solution of the Compressible
Reservoir Model

Here we outline the method used to solve the finite-difference equa-
tions for two-phase flow developed in Chapter 4. Writing Eqs. 4.32 and 4.33
for each grid block, a linear system is constructed which can be solved for

1 given the solution at time t" (or

the pressure and saturation at time tn+
initial conditions at time to).

The reservoir grid consists of NXY blocks, where NXY is the product of
NX and NY, the number of blocks in the x and y directions, respectively (see
Fig. 4.1). We use the single index k to refer to the grid block at loca-

tion i,j, where k is defined as:
k= (i-1)NX+3 1=1,..., N, j=1,..., NY (B.1)

Using the index k, the finite difference equations given by Egs. 4.32 and

4.33 can be written as:

n+l n+1 n+l n+l n+l
OBy nxPk-nx T CByo1Pro1 + CAS, =+ CBLP ™ + OBy Py
n+l _
+ OB pgProny = Ey (B.2)
n+1 n+1 n+1 n+1 n+l n+l _
DBy _nxPr-nx * DByo1Pr-1 * DAYS, ™ + DBPL ™+ DBy Pt * DBranxPianx = Fi
(.3)

Two letters are used to refer to the coefficients which multiply the unknown
terms -- the saturation and pressure at the time level n+l -- in those equa-

tions. The first letter, C or D, refers to Eq. B.2 or B.3, respectively.
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The second letter, A or B, refers to the unknown which the coefficient mul-
tiplies; A refers to saturation and B refers to pressure. |

Using the reflection boundary conditions given by Eqs. 4.15 and 4.16,
Egs. B.2 and B.3 apply for all k, k = 1,..., NXY. These 2NXY equations

can be written as:

Au=b (B.4)

o

where the solution vector u is given by:

[s"*l pitl gnil g

S n+l _n+l n+l _n+l T
1 1 2 . e

u= ko Pk NXY ©NXY

The (2NXY) x (2NXY) matrix A can be written as:

—
%,1  %1,2 0 %1,Nxy
%2,1
A:
L ONXY,1 ONXY ,NXY _J
where each o is a 2x2 matrix defined as:
CA CB
ak2=[k k} for £ = k
DAk DBk
0 CB,
= for % = k+1, k-1, k+NX, or k-NX
0 DB

2
0 0
= otherwise
1.0 0
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The vector b can be written as

b= [8) & BNxv]T

where the Bk are vectors with dimension 2x1 defined as:

_[EkJ

Bk =

F

k

Eq. B.4 was solved by a direct method for sparse matrices. The algo-

rithm used was supplied by Chevron Qi1 Field Research Company.
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APPENDIX C. Truncation Error in the Finite-Difference Solution of the
Saturation Equation

The truncation error associated with the explicit, backwards differ-
ence approximation to Eq. 4.40 is derived. The procedure used in the analy-
sis is outlined by Lantz!*. The resulting equation from this analysis, Eq.
C.9, is also given by Lantz, although the actual derivation is not
presented.

Since the term f in Eq. 4.40 is a function of saturation, that equa-

tion can be written as

aS _ |_3_$_ ;
AT T f 5E (C.1)

where the prime denotes the derivative with respect to saturation. The stand-

ard backwards difference approximation to C.1 is:

- S(t+AT)-S - v [S(&)-S(£-AE)]
(T Z')[ (T) = - f (5) Aég g) (C.2)

The following expression for the difference terms in Eq. C.3 can be

obtained from Taylor series expansions for S(t+At) and S(&-A%):

S(erar)=5() L 35, z_} br) + o(ar)? (c.3)
. 2
S(e)-5(e-t8) . 25 .z.gg_ (8S) + o(ag)? (c.4)

Substituting Eqs. C.3 and C.4 into Eq. C.2 and omitting the second order

terms, we obtain the #ollowing differential equation:

s . _ 3% (an) . fes _ 9% (ae) (c.5)
9T 8T2 2 13 ag2 2 :
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To second order in space and time, Eq. C.5 is the differential equation
actually being solved by the finite difference approximation given by

Eq. C.2.

This equation can be written in a different form by establishing an
equivalence between time and space derivatives. Taking the derivative of

Eq. C.1 with respect to time we obtain:

2
§E§ = f" as as f‘va S (C 6)
5 2 T 35 9&0T '
T
The derivative of Eq. C.1 with respect to space is:
0% pfa) s (c.7)
J9Tog 13 352 '

Using Eq. C.7 to eliminate the second derivative of saturation on the right

hand side of Eq. C.6, the following is obtained:

2 2 2
9°S _ v2 9°S w| 9838 o [3S

Using this equation to eliminate the second derivative of saturation with

respect to time in Eq. C.5, we obtain:

- 2 2
35 .38, o [aefi(ar)] 8% | At . [3S 85 . [3S
TRRREE f[ 2 ]ag2+2f[arag'f(ag)] (C.9)

If we assume that the function f is linear, or that the second derivative

of f is small, Eq. C.9 can be written as:

2
aS ¥ as [ Aa‘f'(AT) 3 S
- fgrf [ 5 ]agz (c.10)
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By analogy of this equation with the convection - diffusion equation, the
truncation error associated with the finite difference solution of Eq. C.1
is called numerical dispersion, and the term which multiplies the second

derivative in Eq. C.10 is known as the numerical dispersion coefficient.
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APPENDIX D. Formulation of Algorithm to Estimate Permeability for
Incompressible Reservoir Model

Using the analytical formulation developed in Chapter 3 for the two-
phase flow problem, a system is formulated here to estimate the absolute
permeability from measurements of the pressure drop, assuming that the
porosity and relative permeabilities are known. This system is based upon
the Ritz‘method.25

Given g measurements of the pressure drop at times tz’ a performance

index J can be defined as:

8 o c,. 2
Jd = é;i wl [AP (tg) - AP (t2{J (D.1)

where the superscript o refers to the observed (or measured) pressure drop

at time t,, W, is a weighting coefficient associated with that measurement,

2> 7%
and the superscript ¢ refers to the calculated pressure drop. The pres-

sure drop is calculated from Eq. 3.19 evaluated at time tzz
X
AP(tK) = Vtuw.]’ g(tz)udx (D.2)
0

where g = f/krw and u = 1/K. Eq. 5.2 must be solved to determine g(tz) as
a function of x.

The estimation problem is to choose the absolute permeability (or al-
ternatively the conductivity u) so that J is minimized. We will assume
that the conductivity can be approximated as the following sum of specified

functions Qi(x)

n

ulx) = X c;.(x) (D.3)
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where the c; are constants which are to be determined. The necessary con-

ditions for the minimization of Eq. D.1 are:

=9 i=1,...,n (D.4)

Ac = b (D.5)
where ¢ = [c; C,... cn]T, the ith element of b is

X
1 0 L d
T zl WP (tz)[ g(t,)o, dx
0

b(i) =
w 2=

and the i,j element of the nxn matrix A is:

X

q XL L
M) = 3w, [ ee, dx [ glt))e, o
=1 0 0

The matrix A is symmetric. If that matrix is nonsingular, Eq. D.5 can

be solved for the unknown constant o
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APPENDIX E. Determination of Relative Permeabilities by the JBM Method

The method of Johnson et al'® to determine relative permeabilities of
0oil and water from laboratory water floods on reservoir cores has become
a standard technique used by the production industry. Their derivation is
somewhat difficult to follow since much of the nomenclature and derivation
is contained within a paper by Welge’ Also, some of the assumptions, as
well as the conclusion that the relative permeabilities for a certain range
of saturations are not determinable by this method, are not stated. Here
we have augmented, and attempted to clarify, the derivation by Johnson et all®

It is assumed that the one-dimensional, analytical solution developed |
in Chapter 3 can be used to describe the water flood. The initial satura-
tion of the core is the connate water saturation, SC. Water is injected
at x=0, and fluids are produced at X=X - It is further assumed that:

1. The core is homogeneous

2. ¢, X, Hos Hyo and K are known, and k_ (S.) is taken to be 1.

ro*~c
The following equations can then be used to describe the water flood:

L
U
-y W f
AP(t) = Vi Kj krw dx (E.1)
0
\'
.g% - ’@E f1(s) (E.2)
S
-1
. k
£ = (1+ W ro) (5.3)
UOkY'W

The following data are taken during the water flood:

i) AP(t) for t > tB
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e - t
ii)  The cumulative effluent Vt(t)--a[vt dt

jii) The volumetric fraction of each phase in the cumulative
effluent as a function of time.
The volume of oil produced Vo can be calculated using ii) and iii). Then,
using a mass balance, the average saturation Sav can be calculated:

_ax (18 )=V (1)

Sav ¢XL (E.4)
Integrating Eq. E.2, we obtain:
Vt
= —= FY{S .
X|s = 3 (S) (E.5)

From this equation we obtain the following expression for the saturation at

the production end, S, , at time t > tB:
v

= L o
X = 3 f (SL) (E.6)
The cumulative effluent in pore volumes, W(t), is:
v, (t)
.t 1
W(t) 3, f.(SL) (E.7)
The average saturation in the reservoir is:
X,
[
_/R S dx
_J0
Sav = T (E.8)
L
Using the following expression obtained from Eq. E.2:
Vt
dx = — df' (E.9)

¢
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the integral in Eq. E.8 can be written as:

S

AL v, FL
f S dx = 5= S df (E.10)
0

1°Sr0

This can be integrated by parts to obtain:

X
L
v
-t .
f S dx = e [SLf (SL) - f(sL) + 1] (E.11)
0

where f'(l'sro) and f(l-Srn) are evaluated as 0 and 1, respectively. Sub-
stituting Eq. E.11 into Eq. E.8 we obtain the following expression for

Sav:
Vt
S, = —;E-[SLf (SL) - f(SL) + 1] (E.12)

av. ¢
Using Eq. E.6 to eliminate the term Vt/¢xL, the following is obtained:
[l-f(SL)j
Sav = SL + —?ﬁ7§zj——- , (E.13)
The following expression is obtained by taking the derivative of Eq. E.13
with reépect to W(t) and rearranging:
dsav
f(SL) =1- a0 (E.14)
The following can then be calculated for any time t > tB:
1. f(SL) using Eq. E.14
2. f'(SC) using Eq. E.7

3. S, using Eq. E.13.

L
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Using Eq. E.9, the pressure equation E.1 can be written for t > tB as:

X
L
AP(t) _ _E"iit 4 (E.15)
Vi K ¢ k :
rw
0
Define Ir as
4P(0)/v4(0)
Le = BT/ ,(T) (E.16)
The numerator in Eq. E.16 is obtained from Eq. E.l1 as:
ar(0) _ Mo
v, o) = K XL (E.17)
The following can be obtained using Eqs. E.15-17 and Eq. E.7:
X
L
1 “wj f
= — — df! (E.18)
W(E)T, Ho 5 K
Taking the derivative of Eq. E.18 with respect to 1/W(t), we obtain:
d(1/WI) nu f(sS,)
ro- W L (E.19)

d(1/W) Hy ka§L)

The relative permeability of water can be determined from this equation
since f(SL) and SL have been determined independently by Egs. E.14 and E.13.
Then kro(SL) can be calculated from the following expression obtained from
Eq. E.3: f(SL)

k(S ) = 1-1!;- Kpo(SL) T-_f—(gf)' (E.20)

=
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The relative permeabilities can thus be determined for the range of satura-
tion which are at the production Tocation. The relative permeabilities

for S < S, are not determinable.
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APPENDIX F. Derivatives of the Objective Function with Respect to the
Reservoir Parameters - Derivation for Partial Differential
Equation Model

In this appendix we derive expressions for the derivatives of the ob-

Jective function with respect to the reservoir properties based on the formu-

lation of the state equations as partial differential equations. The state

equations are given by Eqs. 4.1 and 4.2. Before proceeding, we make the

following changes in those equations: (1) Eq. 2.16 is used to eliminate So’

(2) S is used to refer to the water saturation, (3) the flow rate of water

at well m, q » is given by the product of the total flow rate 9% and the

m
fractional flow f, and (4) the flow rate of oil at well m is given by 9, =
m
qm(l-f). With these changes, the state equations are:
S 5 [%Pw o), 2[5, 2o
at X[ M rw  9x syl H rw 9y
W W
+;§: A S(x-x)6(y-y ) (F.1)
ot X Ho ro 9x oy Mo ro 3y
+ j;;qm(l-f)ﬁ(x—xm)é(y-ym) (F.2)

The boundary and initial conditions (see Eqs. 4.3, 4.4, 2.18, and 2.19) are:

3P _ -
_)Z— O’ X 0, XB (F-B)
aP _ =
ay - 0¥ =0, ¥ \ (F.4)
P(t=0) = P. (F.5)
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$(t=0) = S, (F.6)

The objective function given by Eq. 6.2 can be written as the follow-
ing integral:

fff { [PObS(X Yoot ) = P{X .y,,t )JZ §{x-x,.)8(y-y,)6(t-t_)
£70° "t £V’ T £ 8 T

00 O

2.2, 0 ["bs Yysty)-R(x yv,tn)]2 G(X—xs)d(y-y\))é(t-tﬂ)}dxdydt

B v n
(F.7)
The subscripted values of x, y, and t refer to the location and time of each
observation.
Using an optimal control formulation, the problem is stated as follows:
choose the reservoir parameters (or control variables) so that Eq. F.7 is
minimized, subject to constraints F.1-6. The derivatives of the objective

function are derived using a variational approach.

Estimation of the Absolute Permeability

Here, we specify that the quantity to be estimated is the spatially vary-
ing permeability. Our objective is to relate perturbations in Kx’ GKX, and
Ky, SKy, to a variation in J, 8J. First, we consider perturbations, which
are functions of the location (x,y), about some nominal, or specified, values
Rx and Ry:

K, = K, + 6K/ (F.8)

(F.9)

~
fl
~
+
(2]
~
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We then relate these perturbations to variations in the state variables

P and S through Egs. F.1 and F.2. The perturbation equations are

2l¢p, (S+6s)1_ 5 [(waKX) (R +ok ) 2(P¥eP)
at X Hy pw rw - rw ax

(R +8K ) _ 5
+ gi-[—~x——iﬁ—p (k. +ok ) PSP ]
y H, wWrw Trw oy

+ Y 0 (Fro)8(x-x )6 (y-y, )
m

Ardp _(1-5-85)] [(K +5K_ ) B
0 _ 9 X X - ) 3(P+sP)
5t T X po(kro+6kro) 39X ]

(K +8K_ ) 5
d y Yy 3(P+éP)
T3y { o po(Ero+6kro) 3y ]

+ }E: q,(1-F-8F)8(x-x_)8(y-y )
m

(F.10)

(F.11)

To first order, the variations of the nonlinear functions of saturation

are related to variations in the saturation by:

8k, = kI 6S
6K, = K085
§f = £'6S

(F.12)
(F.13)

(F.14)

where the primes denote the derivative with respect to saturation. The first

order variational equations are given by:
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8(¢pw65) - 9 [ Puk k 98P o 9P
at X “w X OX X 9X

o K.
W rw aP
+ m Kx Y 65]

dy | u y dy y dy

0.k
.2 [ Werw (K 3P, oy gg)
o

oK.
P Ll
M, Y oy

+z Gy, F'888(x-x )8(y-y ) (F.15)
m

3(¢p 8S) o,k
0 .0 [ o°ro (K 8P | sk gg)

ot X Hy X 9X X 9X

o k!
0 ro aP

+ —ﬁgm—-Kx % 65]
9 [pokro 98P aP)

L K + oK, =
3y L uy Yy oy y oy
pokllro aP '

+ ~a;- Ky 5;-65 - E q, f 656(x—xm)6(y-ym) (F.16)

m

For convenience we have omitted the bars used in Eqs. F.10 and F.11.
To simplify notation, we introduce the following variables:
d, = oo, d = ¢p

p, k
D = Worw D 0 ro
WM, IR
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] 1
c - b c = fo’ro
LTS 0 M,
hm = f a,

We now multiply Eqs. F.15 and F.16 by adjoint variables Al and Az,

respectively. The left hand side of Eq. F.15 can be written as:

o(d 8S) o{n,d 8S) %2
W - 1w - 1
MRt T TTae 4,55 5% (F.17)
Similarly, the left hand side of Eq. F.16 can be written as
3(d _8S) o(A,d 8S) A
0 N 20 2
S B e T ST (F.18)

We now develop an identity for the first term on the right hand side of

Eq. F.15. That term is:

3 36P P 3P
M EQ'[bw (Kx ax T SKy ax) * CKy 9X 65]

= 98P 2 3P 3 P
=M (DwKx X ) * AL X (Dwst BX) t A1 X (CwKx ax 65) (F.19)

The first term on the right hand side of Eq. F.19 can be written as:

3 36P | _ o 36P
A X (DwKx 9x ) T X (AlDwKx X )
A A

9 _1 2 _1
- (DWKXGP o~ )+ 6P = (DWKX o ) (F.20)

The following identities can be written for the second and third terms in

Eq. F.19:
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A —3—(0 5K 9—3>=-3—-(A05K §3)

10x |\ w 'y ox X { "1°w x.ox
- D, %g-z;—l- 6K, | (F.21)
>‘1 58{ (FwKx %)P( 8s ) - %(AICWKX %)P( 65)
- G, %%;i—l 85 (F.22)

The second term on the right hand side of Eq. F.15 can be written in a form
analogous to Egqs. F.20-22, as can the first and second terms on the right
hand side of Eq. F.16.

Combining Eqs. F.15 and F.16, using the identities specified by Egs.

F.17-22, the following equation can be obtained:

a(xldWSS) ) 3(>\2d06$) [q ﬁl g 3}_2_
3t 5t w 3t o 3t
N
3P °M
*:2::hnxxl—xz)ﬁ(x'xm)(y_ym) - G o e
m
Y\ A
ek XL oy 22

W'y 3y oy 0 X 9X oX

A oA A
aP 2 P 1 2
- CoKy 5§'567-} 8 + [Bx (DwKx'5§— *+ DoKy 5§")

31 32
5 1 2
Ay (Dwa w 0%y W—)] oP

+

)
2 8P _ 1L
(x D K D K Sp x

-+

dX 17w 'x 3x

ap aP
}\].DW(SKX ™ + }\].CWKX X 8S

oA
6P 2
ADoKy ax = DoKydP 3%

-+

4
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oP

+ A0 8K —
X 9X

o0y + A,C K

20 X%

3
+ 2 ik %P _pgoept

oy \"1'w'y oy wy 2ay
D sk 2P

Wy ady

98P

+ lewa

)

+)\1

DOKySP

+ 2,0 K

2°0y oy

+ 2D 6K £+ 3

ydy 2
o M
IX 9X

o M
oy oy

2 CoK

-,
s

P P
C 9X 9
op 2
0 9dy 9

A
D __a)

7.

aP

5—;65

ap
oy
A

&S

2

y

P s

%)

Ao

tD '77') Ky

SK

Y y

(F.23)

Note that certain terms can be omitted by use of the boundary conditions

“given by Eqs. F.3 and F.4.

We now integrate Eq. F.23 over the spatial domain [O,xB] and [O,yB],

and time domain [0,T].

following equation is obtained:

TX

H

Y5 XB I
.f ‘[ (Aldwas-xzdoas),o dxdy =
0 0 0
#0208 (x-x )8 (y=y,) - €
m

P 2 TP I 2
0 X 3X 23X 0y 3y dy
T.TB 35P %
* [llDwszr' Dkx 3x OP
00

B YB

axl
f [dwﬁr'd
0

K @E.Eﬁl._ C K
W X 9X 9Xx

dxdydt

oP
+ AlDW X GKX

WYy ay

BAZ

0 ot

aP

+ X, C K

17w

o
9

Y

P
X oX

§S

After evaluating the explicit integrations, the
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98P ] 3P 9P Xg
+ 0 Kk 2P _p g 8P + A0 926K+ a,C K s dydt

0 X 9X 0 X 9X 2°0 9X X 270 X 9x 0

JJB 36P i 5P
[ADK - DK % + A0, 3 oK

o+

1w x ay Wy By y
NN y
3P 38P 2 B
+ }\leKy gy— s8S + )\ZDOKy ay DOKX '57 SP:] . dxdt

Ty
oA
1 oP "2
JJ'J [(waxax D5 9x x )6Kx
00

ap 2 1 oP 2
+ (D 57-3‘};— DO By 3y )aKy-] dxdydt (F.24)

We will add Eq. F.24 to the variation in the objective function. The

first order variation of Eq. F.7 is

Tt x
B B
S IEENY) ) N L HPES TN
00 0 £ §) T
8(y-ygls(t-t ) + ZZZ w [RObS(xB,yv,tn)
B v n

- R(xB,yv,tn)J R‘GSG(X-XB)ﬁ(y-yv)S(t—tn)}dxdydt (F.25)

Eq. F.23 can be simplified after obtaining the variations of P and S at the

boundaries and initial time. From Egs. F. 3-6, we obtain the following

relation:
98P _ _
e 0, x =0, Xg (F.26)
6P _ -
T y =0,y (F.27)
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1}
(=]

8P(t=0) (F.28)

8S(t=0)

il
[en]

(F.29)

Using Egs. F.3, F.4, and F.26-29 to simplify Eq. F.24, and adding the

resultant equation to Eq. F.25, the following relation is obtained:

Y *p
§J + f J {)\ldw AszGS’Fdedy
0 0
Y X
T BB N My s
= f d, 57 - d, 57+ E hm(kl-kz)a(x—xm)é(y-ym)
0 G 0O m
' oA A 9 EY
_ck 91 _ P 71 P 2 g P72

W X 9X 9X wy ay oy 0 X 3X 9x 0y 3y oy

-2 ZZZM[ Obs(xs,y b)) - R(xB,y\),tn)J R'6(x-xg)8(y-y,)
B v

§(t-t )} §S dxdydt

T Yg Xg

ff f JVRNN 33,
* X DWKXW)"‘@‘ Py s‘r)
00 0

3\

2 3 2

5§'(DOK ax ) ¥ Ey'(DOKy Ey—)

- Z;Z[ 0bs (x e Ygrty) - Pxpaygst, )]}ap dxdydt

£ T
T

y
B 2, 2, Xg
- L-DWKX X + D K X &P 0 dydt

-+

Wy dy 0y dy 0

X
r(Br o8 Oy g
- DK, o=+ DK Jsp dxdt
0

O¥
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+p & -—) (SKy:] dxdydt (F.30)

We now specify that Al and Az satisfy the following partial differential

equations:

8A1 SXZ
dy 55~ 9o 5% +§E:mexl-kz)d(x-xm)d(y-ym)
m

A oA oA A

T W 2 WP et B
= Gukx 3x ox wy dy dy on X ax CoKy 3y dy
-2 E E E w RObS(x Yoot ) - R(x,,y st )| R'&(x-x,)8(y-y )
BV’ ™ B™v*™M 8 v
B v
G(t-tn) =0 (F.31)
oA oA 3 A
> 1 2y, 2 [y M ]
Ei'(DwKx ax T DoKy 52"')+'ay (Dwa 5y DoKy Jy )
obs =
22y Y ,[P (xg:7got,) - P(xg,ye,tT)] 8(x-x)6(y-yg)8(t-t ) = 0
£ b T
(F.32)
The boundary conditions for Al and AZ are specified as:
) A
1. 2, =
= = 5% = 0 x =0, xg (F.33)
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1—_&: =
=3 0, y =0,y (F.34)

and the final conditions are given by
M(T) = 2,(T) =0 (F.35)

With these specifications, the variation in the objective function

resulting from perturbations in the absolute permeability are given by:

T y, X
jJBJB o M\ op
§J = - [(Dw R Do % | ox K«
00 O

Bkl ‘axz N
+ (Dw 5y-+ Do R 55'6Ky dxdydt (F.36)

Finally, the functional derivatives of the objective function with respect

to the absolute permeability are given by the following expressions:

T

oA oA
&J 1 _2\2P ~
sk J.[(Dw ax % 3x >3x] dt (F.37)
X
0
T
A A
6J_ 1 2 | 2P
0

If it is assumed that the reservoir is isotropic (i.e. KX=Ky=K) then the
functional derivative of the objective function with respect to the absolute

permeability is given by the following relation obtained from Eq. F.36:
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T

A R 3 9
& - lyp 2)ep L B A )
K 'f [(Dw s+ Do 5% )ax + (Dw 5t D, m ) By] dt (F.39)

0

Estimation of the Porosity

Here we outline the derivation of the relations that are used to cal-
culate the derivatives of the objective function with respect to the
porosity.

b =& + 8¢ (F.40)

Analogous to the steps used to obtain Eqs. F.15 and F.16, the following

first order variational equations are obtained:

3(¢p, 85) . 3(Sp,,59) s [DWKX (k 58P
U rw ax
W

ot ot T X
e Pl e 2[NS [ B, 2P
rw 9x ay Wy rw Jy rw sy

+§E::qm f'656(x—xm)6(y—ym) (F.41)
m

+

3(pp,88)  3[(1-S)p 801 ) ji_[pon (k AP yr AP 65)}
X

ot ot U, ro 9x ro 9x
3 [PoX 35P 3P
| 2k 2T+ k! 2l s
ay Yo ro oy ro Jy

- Z q, '8S8(x-x )é(y-y ) (F.42)
m
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With the exception of the terms in Eqs. F.41 and F.42 that contain S¢,
and the terms in Eqs. F.15 and F.16 that contain 6KX and égy, Eq. F.41
is identical to Eq. F.15, and Eq. F.42 is identical to F.16. The deriva-
tion can be carried out analogous to the previous derivation given by
Egs. F.17-30. With the specification that xl and AZ satisfy Eqs. F.31-35,
the following relation is obtained for the variation in the objective
function:

T yB xB 312
) fJ f [ Py at + (1-S)o, 3¢ ] Spdxdydt (F.43)
00 0

Thus, the functional derivative of the objective function is given by the

following equation:

T
& =f So P + (1-8)p 2 dt (F.44)
8 3 wat o at .

Estimation of Relative Permeabilities

We assume that the relative permeabilities are given as functions of

unknown coefficients vy,:

J
krw = krw(S;Yj) (F.45)
Kpo = krO(S;Yj) (F.46)

We consider perturbations in each coefficient yj, such that

=y, + Sy, F.47
Y5 =Y, Y ( )
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Perturbations in the nonlinear functions of saturation are now given by:

Sk

il

ak
1 W
g = Ky 85 Zj ,(——-—3yj Gyj)

ok
' ro
Kpg = KpgdS # :§:(3YJ 6YJ)

f6$+2<—————6y)

Sf

The first order variational equations are:

3(¢p,85)

ot

3(00,85) 5 [Pk 3P, 4 3P
— K + K

8S

T X My rw 9x YW 9X

LIRS (ise TP U AT LT I
ax S\ 3y ;i oy | w, LWy

J
+ aP 8krw s
By &\ 5y, Oy
J J
. y [ of
+ fi: [% 6S + ('7?— )] §(x-x_)8(y-y )
m J
_ 9 PoKy K 98P L sS
X Ho ro oX ro Bx
ok p. K
aP 2( ro )]} d { 01[ 3sP
+ — 8y. + — k
X 3 0 i J Yy Ho ro oy
ok
v P 3P ro
" rroay & Ty 3 (an 6YJ)] }

""‘5Yj)] 6(x—xm)6(y-ym)

(F.48)

(F.49)

(F.50)

~ 65

(F.51)

(F.52)
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The derivation proceeds analogous to Eqs. F.17-30. Note that the

first order variation in the objective function, Eq. F.25, is now given by:

50 = - 2 ff I{TYT[”S( XesYgoty) = Plxga¥gat, )]
SPS( x- xg)é(y-ye)d (t- t ) +ZZZ [obs B,y ,t )- R(xB,y ’tn)]

[R 8S + Z = 6y ] s(x-xs)d(y—y\))ﬁ(t-t\)) }dxdydt (F.53)

With the specification that }‘1 and )\2 satisfy Eqs. F.31-35, the following
relation is obtained for the variation J&J resulting from perturbations in

the relative permeability coefficients:

fff Zpak M et
pB‘Y xaxax Yy oy oy

o ok o A
0 ro(K oP 2+K3P__g)

+ﬁ; Byj X 3X 9X y dy oy

.f.'
qu 1 2 T S(X-Xm)ﬁ(Y'ym)

J
+ ZZBZ\) znw LRobs(XBsy\)atn)‘R(XB’y\)stn):l BYJ 6(X -X )S(Y—y\))
S(t-tn)} <Syj dxdydt (F.54)

The derivative of the objective function with respect to the coefficient Yj

is given by:



af
+‘mj n177g) gy SCexy) 800y

E E E bs aR
+ 2 W [RO (X 3y 3t ) -R(X 5y st )]
=SS B>¥v’™m B™¥v’™ 3Yj

6(x—x8)6(y-yv)6(t—tn) dxdydt

(F.55)
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APPENDIX G. Derivatives of the Objective Function with Respect to the
Reservoir Parameters-Derivation for the Finite-Difference
Equation Model

In this appendix we derive expressions for the derivatives of the
objective function with respect to the reservoir properties based on the
formulation of the reservoir model as finite-difference equations. Using
this derivation, the adjoint equations are specified in finite-difference
form. In this way, the various approximations made in the solution of
the partial differential equations by the method of finite-differences,
such as upstream weighting and explicit evaluation of the relative perme-
abilities, are reflected in the adjoint equations. That is, we need not
consider the effects of the method chosen to solve the adjoint system
when they are derived as partial differential equations.

For simplicity, the detailed derivation is presented for the one-
dimensional reservoir model only. The adjoint system for the two-
dimensional model will be specified; the addition of a space dimension to
the derivation given here is straightforward.

The objective function given by Eq. 6.2 can be written in the fol-

Towing form:

J = z z [PObS(ig,nT) - P(ig,nT)]Z
E T
+ Z Zw[RObS(iB,ne) - R(iB,ne)]Z (6.1)
g o

where the subscripted values of i and n refer to the grid block location
and discrete time index which correspond to the location and time of the
measurements. The finite-difference equations for the reservoir model

form a linear system, specified in Appendix B, which is solved for each
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time step in the simulation. The simulator (see Eq. B.4) is thus
specified by

Au = b n=0,1...,N-1 (6.2)
where N is the time index which corresponds to the final time for which
the pressure and saturation solutions are calculated. For a one-dimen-
sional finite-difference grid of NX grid blocks, we define a vector of

adjoint variabTes, A, as
A= Dy (1n) ap(1,n) ag(2an) oo ag(NK,n) Ay (NK,n) T

We obtain an augmented objective function, 5, as
T T
J=0+ Z AT (Au - b) (6.3)

The problem of minimizing Eq. G.1, subject to Eq. G.2, is equivalent to
minimizing the augmented objective function 3,, We consider first the
derivation of the derivatives of the objective function J with respect to

the absolute permeability.

Estimation of the Absolute Permeability

Our objective here is to relate a perturbation in the harmonic
average permeability, sK- 1 at the boundary between each grid block to
'I+?'
a variationin J,8J. First, we write the product of the adjoint vector
and simulator equations in Eq. G.3 as a sum of the product of elements of

the vectors A, u, and b, and matrix A. Eq. G.3 can thus be written as :
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N-1 NX 2NX
J=0+ Y Bt | D] al2i-1iu() - blai-)
n=0 i=1 =1
2NX
+ (i) | D al2i,iuld) - b(2) (6.4)
j=1

The term given in the first set of brackets is the finite-difference
equation at grid block i and time index n for water, and the term given
in the second set of brackets is the corresponding equation for o0il. For
two-dimensional flow, these are given by Eqs. 4.32 and 4.33. The terms
Ay(TWAP) and Ay(TOAP) do not appear in the corresponding one-dimensional
equations. Expanding the operators defined by Egs. 4.10 and 4.11, the

finite~difference equations 4.32 and 4.33 can be written for one-dimension

as:
v o(i,n) A : )
("1 B, li.n) (cp+c,) S(1,n)IP(i,n*1) - P(i,n)]
(t"+¥4t“) B¢é}:2% [S(i,n+1) - S(i.n)] - TW(1+“l,n)[P(i+1,n+1) - P(i,nt+1)]

+ TW(1-~—,n)[P( n+1) - P(i-1,n+1)7 - ZQHH n+1 s(i,i ) =0 (6.5)

v olin) (o ose ) r1-S(i,0)1 [P(in#1) - P(i,n)]
(tn+1‘tn) Bo(1,n) r o
+(tn+‘1" z B¢§} 0 [S(ion) - S(,m1)l- T2(1+3,n) [P(i+1,n41) - P(1,n)]
+ T0(i-L.n) TP(,n#1) - Pi-1,n+1)7 - ZQ"H 1-g™h) a(i,i ) = 0

(G.6)
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where

K K"
THlrz.n) = o (-—3&)
R T U B |
L 71+

1

n-
TIL(i—-l n) = — -E—Ef&
2 Axi “2 g" . 1

2

The subscript 2 refers to the oil or water phase. For simplicity, we have

n+l rather than the semi-implicit

~evaluated the quantity e at time t
approximation of that value used in Egs. 4.32 and 4.33.

We now want to relate perturbations in K. 1 to variations in the

'I+?

pressure and saturation. To simplify notation, we introduce the following

variables:

s ¢(i,n)
M™(i,n) (t"+¥-t") Bz(},:)

Lol v 1 1
Fi+z.n) 'ZS("( 0 ) 1
i+

. n
Ting BSL
= +
CW CW CY‘
= +
C0 CO CY‘

Also, we will write Q?+1 as simply Q, with the understanding that it is
m

to be evaluated at the same time as the multiplying term 9> and omit the
n+l

W

The perturbation equations corresponding to Egs. G.5 and G.6 are:

subscript w from g
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Mw(i,n)Cw[S(i,n) + 8S(i,n)I[P(i,n+1) + 6P(i,n+1) - P(i,n) - sP(i.n)]

+ MY(i,n) [S(i,n+1) + &5(i,n*1) - S(i,n) - 6S(i,n)]

Uitz an) (K 1+ 6K 1 )k (i+5.0) + ok (i+2,n)I0P(i+1,n+1)

[ne)

+ 8P(i+1,n+1) - P(i,n+1) - &P(i,n+1)]

+ FW(J"V-%,n)(K‘- 1 * 8K 1)[k,,w(i‘-%,n) + cs.km(,.i—%—,n)][P(j,n+1)
1-? 1--2-
+6P(i,n+1) = P(i-1,n#1) - 6P(i-1,0+1)] - D (g™ + 6g")s(i,1,)
f
=0 (6.7)

MO(3,n)C L1 - S(i,n) - 8S(i,n)ILP(i,n#1) + 6P(i,n+1) = P(i,n) - 6P(i,n)]

+ MO (i,n)0S(i,n) + 8S(i,n) - S(i,n+1) - §S(i,n+1)]

FO(+5.m) (K ¢ + 8K DIk (i+3.n) + sk, (145 ,n) IIP(i+1,n+1)
'i+'§' i+ il
§P(i+1,n+1) - P(i,n+1) - SP(i,n+l)]

+

F0(1__,n)(;< + 8K 1)[km(1'—%-,n) + 8k, (1-*,n)][P(1,n+1)
i-5 i-=
J 2

+=

+

SP(i.ntl) - P(i-1,n+1) - 8P(i-1,n+1)] - ZQm(l—g"H - ag"”)a(,i,im)
m
-0 (6.8)

The first-order variational equations are:
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M (i,n)C, {S(i,n) [8P(i,n+1) - 8P(i,n)J + 6S(i,n) [P(i,n+1) - P(i,n) 1}

+ MY(i,n)[8S(i,n+1) - 8S(i,n)]

Fied n) ‘K

! Ko {1+ 50) BP(i+1,141) = 6P(i,n+1)]

.1
1+—2"

[P(i+1,n+1) - P(1',n+1)]k;.w(1‘+—21-,n)63(1'+—21—,n)

B o

K
3 1

+

1 . A
(14 2 m)IP(141,m41) - P(,l,n+1)JcS.Ki+_1_}

2
+ Fw(i--%—,n){K_ 1 km(i—%,n)[&P(i,nﬂ) - §P(i-1,n+1) ]
-z
1

[P(i,n+1) - P(i-1,m+1)Tk,., (i-F,0)8S(i- 2 n)

-+
~

-7

k(1= 2.0 XP(i,n+1) - P(i-1,n+1)1<s~!<i_l}
2

S Q)™ ss (i )s(ini,) = 0 (6.9)
m

+

MO (i ,n)C_{[1-S(1,n) JL6P(i,n+1) - 6P(i,n)] = 65(i,n) [P(i,n+1) - P(i,n)1}

+ MO(i,n)[8S(i,n) - &5(i,n+1)]
FO(i+d,n) K o k. (i+3,n)[6P(i+1,n41) - &P(i,n+1)]
2 j#L ro 2
2

* Ki+l[P(1‘+1,n+1) - P(i,n+1),]k;,o(i+%,n)(gs(i..._zl_,n)

3
+ Kk (i+%,n)IP(i+1,n+1) - P(i.n+1)18K
Yo 2 1.+_21_
+ F°(1-—21-,n){|< . km(i-—zl—,n)[c‘SP(i,n+1) - §P(i-1,n+1)]
jo=
7

K 1 [P(,n+1) - P(.i-l,nﬂ):lk;\o(i-%—,n)as(j--:zl-,n)

-2

o+

+

. 1 . . !
km(,1—§,n)[P(1,n+1) - P(1-1,n+1)]6Ki-l}
2



213.

S0, ssliunk)sliig) = 0 (6.10)

where the primes denote the derivatives with respect to saturation.
We now obtain the first-order variation of the quantity J in Eg. G.3.

That quantity can be written as the following sum:

8J = - 2 Z{EE[PObS(iE,nT) - P(ig, n)JP(1,n#1)8(1,1,)8(n+1,n )
= g T

+ wZZ[RObS(iB,ne) = R(igng)R'6S(i,n+1)8(i,1,)8 (1,0 )l (Gi11)
B 6

Using Egqs. G.9-11, the following equation can be obtained for the

variation &J of Eq. G.3:

o)
.
1

uMz

{K Gin)MY (4 n)C S(i,n) + A2(1 n)MP (1,n)C [1-S(i,n)]

n)[TWm-—,n) + ™= 2,m)1 + 2, (1,n) 0T+ 5 ,n) + T0(3i-2,n)3

P0b5(1£,n ) - P(1£,n Y18(4, 15)6(n+1 n )}SP( ,n+1)

Ay (i
33
il

||M>2<'4M

{A Gin)T™ (1———,n) + A (1 n)T°(1———,n)}6P(i—1,n+1)

)

- {A Giyn)T" (1+ .,n) + Kz(i,n)TO(i*~%gn)}6P(i+1,n+1)
=0 i=1

=
—
=
><

=
o
il

N-
- {l G (4 n)C S{i,n) + A (1,n)M (i, n)C [1-S(i,n)] }6P(1,n)
=0 i=1

[
=
>

=3
s
IR
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N-1 NX
z lxl(i,n)M"’(i,n) - Az(,i,n)M°(.1‘,n)
n=0 j=1

—

# 2 Gy - A (i,m) g )™ st i )
m
-2 ZEERObS(iB,ne) - R(igung)IR"8(3 i g)8(n+1,n )} 8S(i,n+1)
B ]
N-1

NX
+ z z ‘ A ( )M (4 n)[C LP(i,n+1) - P(i,n)7 - 1]

- )\Z(i,n)Mo(i,n)[Co[P(i,n+1) - P(i,n)] - 1] }6S(i,n)

N-1 NX
vogs 1
+ 2 Z {[Ph n+l) - P(i-1 n+1)][A (i, n)Fw(1-—,n)Ki_?1_k m(i—?—,n)

+ }\2(1 n)Fo(.l__sn)Ki-lk'ro(.i"%5n)_]] 65(1‘%9"])

NlNX

- Z Z {[P(Hl n+l) - P(i n+1)][>\1(1 n)F" (1+2,n)K 1k'y\w(j+%’n)
n=0 i=1 2

. O/. .. 1
+ )\2(1,n)F (1+§,n)K1+_1_ ro (1+2 .n)J] }65(1+—2—,n)
N-1 NX 2

+y z {[P (fon+1) - P(I-1,m#1) 00y (1,0)FY(3- 2 n)k (3= 4 on)
n=0 i=1
A ,n)FO(1-——,n)k (1——2—,n) } 8K 4

'I_—
N-1 NX 2

} z Z {[p(1+1 n+l) - P(i ,n*+1) 02, (i n)FW(1+§sn)k (1+2 an)
n=0 i=1

+Az(i,n)Fo(i'*-zl-,n)km(1'+~21—,n)3}6‘K]_+l (6.12)
2
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We will obtain from Eq. G.12 an equation which contains only the
variations &8P(i,n), &8S(i,n), and &K . 1 We will consider each of the
itx

2

terms in Eq. G.12 which contain perturbations at other values of i and n.

By simply changing the time index in the first term in Eq, G,12,

that term can be written as:

N
z z {1(1n1 IMY(4,n-1)C, S(1,n-1) + A,(i,n-1)M°(i,n-1)C [1-5(i,n-1)]

+ A i,n—‘l)[Tw(1'+§,n-'1) + Tw(i-—z—,n-l)]

1(
+ Az(i,n—l)[TO(H%,n—l) + 10~ 3 n-1) 1

- 2 22[P0b5(1 ng) - Plin, )Js(i,ig)s(n,nr)]sp(i,n) (6.13)

Changing the time and space indices in the second term in Eq. G,12, that
term can be written as:

N NX -
z z { 1+1 n- 1)T ( % yan']-) + )\2(1”’1,”—1)1-0(1""%' ’n'l)} 6P(-i9n)
n: ’:

N-1
¥ 2 {Al(l,n)Tw(%—,n) + xz(l,n)TO(%,n)} §P(0,n+1)
n=0

N-1 |
- z {Al(l\lx+l,n)Tw(NX+%~,n) + AZ(NX+1,n)TO(NX+%,n)}GP(NX,n) (6.14)
n=0

Similarly, the third term in Eq. G.12 can be written as:
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N N
z z {)\l(fi-l,n-l)Tw(fi‘—%,n«l) + )\2(1"1,n"1)T0(1-"%—pn"1)} Gp(ian)
= :1

-l

N-.

e

{kl(NX,ﬁ)T WiNk+E n) + ?\Z(Nx,n)TO(_NX+%-,n)} 8P(NK+1,n+1)

+

2

=
H
(e

N-
2 [y 0m ™G m) + 25000725 .m0 | (2,me1) (6.15)

|_..\

The fourth term in Eq. G.12 can be written as a sum over n=1,...,N:

N NX
25 :E { (i,n)MY(3, n)C S(i,n) + %z(i,n)Mo(i,n)Co[l—S(i,n)]} SP(1i,n)

=
>

- {Al,(i,N)Mw(i,N)CWS(i,N) + ‘)\2(1,N)Mo(i,N)CO[l—S(i,N)]} 8P(1,N)
1

—e
i

=
>

+ {x1<'1",o)MW('i~,o)cWS<i,0) + xz(i,om"(i,omom—sn,o)J} 8P(1,0)
1

e
i

(6.16)
Variations in the pressure and saturation corresponding to time index n=0
are zero since those values are specified as initial conditions. That is,
§P(i,0) = 0; consequently, the Tast sum can be omitted from Eq. G.16,
The fifth term can be written as the following sum be simply changing
the time index:

N NX |
25 :S {Al(i,n—l)Mw(i,n—l) - kz(i,n-l)Mo(i,n-l)
n=1 i=1

£ QDp(n-1) = Ag(1,0-1)2(g") 80 p) ~ zwg}:m"bsug,n
m 8

(6.17)

- R YIR'S(1,1 )6(n,nT) 8S(i,n)

8'"s B
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The sixth term can be written as

N NX
2 2 l)\lh n)M" (i n)[C [P(i,n¥l) - P(i,n)] - 1]
n=1 i=1

= AU, (i) [C TP(iun+1) - P(i,n)] - 1]}as(i,n)

NX
- z {H ,N)MY(4, N)[c [P(i,N¥1) - P(3,M)] - 1]

: xz(_i,N)M"(i,N)[cotp(‘i,Nﬂ) - P30 - 1]} asi M)

NX
+ Z{Al 1,00M(1,0)[c TP(1,1) - P(3,0)1 - 1]

Similarly to Eq. G.16, the last term can be omitted since §S(i,0) =

- 2, (1,0010(3,0) [6,TP(1,1) - P(1,001 - 1] | 5(i,0)

(6.18)

The variations 55('1‘-%—,n) and §'S(v1"+%~,n) in the seventh and eigth

terms represent fictitious values since the relative permeabilities are

evaluated at the upstream value of saturation.

and aS(_,1’~+%,n) are given by:

i

55(i-3.n) = " ] 68(i-1.n) +(‘1—aﬁ‘. 1)55(_1‘,n)
-7 =7
65()1'+-%—,n) = u’j 168(1’ n) + (1 o 1)5S(i,n)
T+-2‘ T+'2“
where ol 1 = 1if P(i-1,n) > P(i,n)
-i.._..
2

Eq. G.

0 otherwise.

The quantities &S(i- %— ,n)

(6.19)

Using Eq. G.19, the following is obtained for the seventh term in

12:
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N-1 NX
z z {[P(T,YH"].) - P(19n+1)]|z)¥1(.ian)f:w(.i”%“’n)K 1 Y,w('l—%-,n)
n=0 i=1 ' 1= )

* (1, n)FO(i- ,n)K 1 kpo (= 7,n):” [” 1 6S(i-1,n) + (1 o 1)<SS(1‘,n):|
"2 =7 -7

N-1 NX
= S; :E {[P i+1,n+1) ~ P({, n+1)][% (i+1, n)F (1+——,n)K k}w(ﬁ+%’n)
: : + ?'

+ 2(1+1 n)F (1+ ,n)K 1 kl (."*'2 an)] _1”
*7 *2

+ [P{i,n+1) - P(i-1, n+1)J[A1(1 n)FwU—?,n)K lk}ﬂw(_i——%—,n)
e
2

+%ﬂ1nﬂ’h—— n)k . 1 m012,nﬂ< %]%)}Gﬂim)

-7
N-1
+ > {IP(1nt1) - P(0,n+1)I0- .+ .3} 65(0,n)
n=0
N-1
- D {rPows1,n1) < PO T 4 LT ) (K, ) (6.20)
n=0

The Tast two sums do not contribute to 6,20 since, from the reflection
boundary conditions, we obtain:

P(1,n) = P(0,n)

P(NX,n) = P(NX+1,n) (G.21)
for all values n. Noting that 8S(i,0) = 0, the first term on the right-
hand side of Eq, G.20 can be written as the sum from n=1,,,.,N, rather

than n=0,...,N-1, as:
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N-1 NX | NN
{____._} ssti) =SS {_____} ss(in)
n=0 i=1 n=l =1
NX
S S|
i=1 n=N

The terms in brackets are identical to those given in Eq, G,20.

Similarly, the following can be obtained for the eigth term in Eq.

G.12:

.1
k;w(1—§an)

NX ;
§ E {[P(w’,nﬂ) - P(i-1,n+1) 30 (-1, (- on)k
i~%
n=0 i=1 2

= i- 1
2
i+

+ Az(i—l,n)Fo(’i-%,n)K. lk' (1-§,n)]<1 ~a" )
"2

+ [P(i+1,n+1) - P(i,n+1)][A1(i,n)Fw(Tf%,n)K 1
2

1 } 88(1,n)

+ Az(iﬂﬁF°($F7,n)K ) rO(TPZ,n)]a

1
i+ i*3

O
[}

+ > {IP(NX+1,n41) - P(NX,n+1)I[- « -1} 6S(NX+1,n)

=3
[i}
o

0
s

+ 5§ {rp@1,n#1) - PO,n#1)I0- - +1}65(1,n)

33— =S

n=1 j=1

=
1]
fen)

8S(i,N)
=N

(G,23)

The right-hand side of Eq, G.23 is obtained by the same steps which were

used to obtain Eq. G.22 from G,Z20,
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The following can be obtained for the ninth term in Eq. G.12:

N-1 N
> {rpei+nnen) - PO MDA (141,04 0k (743 0)
n=0 i=1
+ x2(1+1,n)F°(++%,n)kro(f+%,n)]=5K. 1
re i+
N-1
- > {rP(NL,n41) - PONKHDIC - D) ek
n=0 NX+2
N-1
+ > {Tp(1,me1) - P(O,me)IE. - 3) oK (G.24)
n=0 2

The final two sums can be eliminated by use of the boundary conditions

(see Eq. G.21).
With the changes in the terms in Eq. G,12 given by Egs. G.13-18, 22,

24, Eq. G.12 can be written as:
N NX

8 = z z {xl('i,n-l)Mw(i,n-’l)Cw_S(i,n—l) + Az(i,n-l)M°(1',n—l)Cotl—S(i,n-1>J
n=1 i=1

+ 2, (1-D)IT™(i-F0-1) + (145 ,0-1)]

+

3 (1:0-1)IT0(= 3 ,n=1) + T+ 2 1101 - A (3+1,n-1)T(34 3 on-1)

>\2(1'~+1,n-1)T°(1'+% n-1) = 2 (i=1,n-D)T"(4- % n-1)

Ap(i=1,0-1)T0(4-5'5n-1) = 2 (F,mM"(3,n)C S(4,n)

Ap(1.,m)M°(1,n)C [1-5(i,n)]

2 ;Z[PObs(ig,nT) - P(‘ig,nT)]cS(,i,ig)d(n,nT)} 8P(i,n)
~
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N -
+ 2 ‘ (Al(.i,n)Mw(,i,n)[Cw[P(i,nﬂ) - P(i,n)] - .1]
- }\Z(T,H)Mo(i,n)[Co[P(i,n+1) - P(i,n)] - 1] + Al(i,n-l)MW(i,n-l)
- Az(i,n-l)MO(i,n-l) +Z Qm(g')n 6(1',1'm)[7\2(1',n-1) ~ Ay(1,n-1)]
+ [P(i+1,n+1) - P(i,n+1)J[D\1(1'+1,n) - Al(i,n)J Fw(i+%,n)K 1 k!
i+

* [y(i+1,n) - Az(i,n)JF°(.1'"'+%,n)K +1k' (1+2 ,n)] 1+%

rw

rw

+ [P(i,n+1) - P(i-1,n+1)] [[A1(1 n) - A1(1 -1 n)JFW(1-——,n)K' 1k (ji-ﬁ,n)
i~

+ [hg(i,n) = Ali=1,n)IF%(i- 7 ,n K 1k;0(1-%-,n)] (M: 1)
2 "2

- 20y Y RS(ig,n,) - R(iB,ne)JR‘G(i,iB)G(n,ne)} 85(1,n)
B 6

N-1 NX
+ E z ‘[P(1'+1,n+1) - P(i‘,n+1)][[x1(vi+1,n)
n=0 i=]

- 11(1',n)]FW(1'+%,n)krw(i+%,n) + [9\2(1+1,n) _ 'Az(i,n)]FO(i +%,n)

| |
kr0(41+—2—,n)]} (SK. 1
'|+?

+ 2 ITW(NX+—;-,n)D\1(NX+1,n) - Al(Nx+n)]

# TO(NKE 3 ) DA (WX1,) = A,(NK,n)T | 6P(Nxs1,n41)

+i{ 2,n[>\(0n)~>\(1n)

1

(1+°2" o

1

)
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+T°(%,n)[A2(0,n) - Az(,..l,n)J’ SP(1.n+1)

NX

+# S GG e S + 3 (1M (1, N)C, [1-S(1,8) 1P (1,N)
i=1
NX

-y {Al(i,N)Mw(i,N)[Cw[P(i,N+1) - P(i,N)7 - 1]
i=1

- Ao (1, NMO(ELN) [C TP(1,N41) = P(3,N)] - 1]

+[P(i+1,M41) - P(,i_,N+1)][[>\1(_i+1,N) - AWK K (i

: y 0(:y 1 .1 N
I (IH1,N) = A, (1,N)TF- (45 N)K 1";'«0(‘“?’”)]0‘. 1
1+?‘ 'l+-2—

+[P(1,N41) - P(i—l,N+1)][[A1(1',N) - 2 (=1, IF(3- 2K lk;w(i-%,N)

"2
+ D01 .N) - Az(i—l,N)]Fo(i—%,N)Ki 1 Kbolin 7 M) ](m':‘ l))55(1,1\1)
"2 "2
(G.25)
We now specify A and Ao by setting the quantity in braces which
multiply each quantity 6P(f,n) in the first term in Eq. G,25, and each
quantity 6S(i,n) in the second term in Eq. 6,25, equal to zero with the
following additional conditions:
Al(O,n) =Al(1,n) » n=0,1,,,.,N-1 (G.26)
A (0,n)  =3,(1,n)
Al(NX+1,n)= Al(NX,n)
Ao (NX,n) =, (NX,n)
A (iaN) = A (1,N) =0, i=1,.., ,NX (6.27)



223.

Using the vector for the adjoint variables defined previously, these con-

ditions can be expressed as the following Tinear system;

T4

A = R n=N-1,N-2,...,0 (6,28)

te i8]

where the elements of the 2NX x 2NX matrix A, and 2NX vector b can be
determined from the first two terms in Eq, G.25, The linear system G,28
can thus be solved backwards in time subject to Eq. G,27. The derivative

of the objective function with respect to K 1 is given by the following
i+ 5
2

expression obtained from Eq, G.25 after Eqs. G.26 - 28 have been used to |
simplify that expression:
- N~1

6K6J]_ - zz {[P(i+1,n+1) . p(19n+1)][txl(i+1,n) - Al(i,n)]
ity n=0

T .1
FP(i+5.n)k  (i+5,n)

+ [Dp(i+1.n) - 12(,1’,n)]F°(J'4%,n)kro(i+%,n)]} (6.29)

Estimation of the Porosity

The derivation for the derivative of the objective function with
respect to the porosity closely parallels the previous derivation. We
note the differences here,

The reservoir is taken to be slightly compressible so that we consider
only perturbations 8¢(i), rather than §¢(i.n). The first-order yariational
equation will be exactly the same as Eq, G.12 with the exception that the

terms which contain perturbations 6K 4 (the ninth and tenth terms in
'i+-2
Eq. G.12) will be replaced with a term containing the perturbations 8¢(i).,
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After the adjoint variables are specified as in Eq. G.26.- 28, the

following is obtained:
- N-1
—ETTY 2{ [A i,n)D"(4, n)[C S(i,n)[P(i,n+1) - P(i,n)T+[S(i,n+l) - S(i n)i]
n=0

+ 2, (1,n)0°(3,n) [C,[1-5(i,n) I(P(i,n+1) - P(i,n) 1= [S(i,n+1) - S(.i,n)]])
S (6.30)
.
(£"*1-t™B, (1,n)

1]

where D

Estimation of Relative Permeabilities

The methodology used to estimate the relative permeability parameters
A is specified in Appendix F (see Eqs. F.45 and F.46). Note that the
variations in krw and kro are now given by terms which contain the

derivatives of the relative permeability with respect to the parameters
Y5 (see Egs. F.48 and F.49). The perturbation in the function g(i,n) is

given by

sg(i,n) = g'(i,n)SS(i,n)+z(—g%f Syj) (6.31)
A\
N

The first-order variation of J in Eq. G.3, previously given by Eq. G.11,

will now be:

N-
-2 Z Z {ZZ[pobs(ig,-nT) - P(,ig,nT)Jgp(i,n+1)5(1,1€)g(ﬂn+1,nﬁf)

T z 2[R0b5(16,n R‘(_iB,ne)J[R'as(i,nu)

(%5— .>] (1, 16)&(n+1,n6)} (G.SZ)
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The first-order variational equation will be exactly the same as

Eq. G.12 with the exception that terms containing perturbations in 6K 1

i+5
will be replaced with the following term containing perturbations 6y5:
N-1 X o . 3™ .
> SiDtn - @l S, (E— JECRN
n=0 i=1 j m J
w 1 akrw(-ﬂ?l_ n)
- [P(i+1,n+1) - P(i,n+1)]{r, (i,n)F"(i+5,n)K
1 2 ! v
'I+§ J
.1
ok (i+=#,n)
+ >\2(1",n)F°(1'+%,n)K. 1 POBY-? ]
(4 1 n)
. ak 1" Y
+ [P(3,n+1) - P(i-1,n+1)] [xl(i,n)FW(i-%,n)K_ ;] — BY?
(i- 7 .n) ot J
ok (i-%,n
+ A, (1,n)F0(i- 4+ ,n)K ro__2
2 2 1._1, oY »
Vi J
obs, . . 3R ..
- 2w gz [r (igsng) - R(‘B’"e)] w5 6(,1,1B)a(n+1,ne)}ayj (6.33)
)

We now rewrite the terms in Eq. G.33 which contain the derivatives of
the relative permeabilities in order to specify the grid block for which
these terms are evaluated. Similarly to Eq. G.19, we write the following

expression for the derivative of the relative permeability:

.1 . .
Bkr2(1-?,n) g 8kr2(1-1,n) X <}-an ) akr£(1,n) (.38)
ay . .1 ay. . 1 oY )
J 1"'2 J 1’2 J
where ol 17 1 if P(i-1,n) > P(i,n)
j-
2

0 otherwise
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Using Eq. G.34 and the boundary conditions given by Eq. G.21, the following
identity is obtained:

N-1 NX Bk (1 ,n)

S S Aretint1) - PE-1Lm )1 ()P G-gandk ) —D
i-5 Y5

n=0 i=1 ‘
1
3k -(-,l""sn)
# M (1n)FO(i-F oK | —T0 ]
i- Vi J
1 NX .
ok (i,n)
- 2 [P(4+1,n+1) - P(1,n+1)] [u" | MUz n) T
n=0 i= i+ J
20 iz 2

(i,n) ok
(141, n)F° (1+2-,n) ———-5—l—?—:| ( ocr.‘+ 1>[Al(i,n)FW(1’—%—,n) J%'—g-—f—)—
i 5 J
rolian)
+ A (1 n)F° (1 2—,n) ———7;——~—— ] (6.35)

Using Eqs. G.34 and G.35 in Eq. G.33, and specifying that the adjoint
variables satisfy Eqs. G.26-G.28, the following expression can be obtained

for the derivative of the objective function with respect to the parameter

Y.

J N-1 NX
g . . 3 n+l o
z z Dyt - 2 Gm 3% g <—3$———> 8(i,1 )
: = : m ‘J
‘ ak . (i,n)
+ [P(i+1,n+1) - P(i,n+1)IK 1 a" [x (1+1 n) - Al(i,n)JFW(H%—,n) —-—‘"%—-—
i+5 -2- Ys
ok (i,n)
+ o DL(i+1,0) = A, (1,n)IF0(i+ 4 ,n) —2
i+ Yj
n Bk (1+1 n)
+ [(1-0" [x (1+1 n) - A (1 n)]F (Pffyn) —-5—————~—
'i""é‘ YJ
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Bkro(i+1,n) ]

n . . 0.1
+ (1- aﬁ_l_) Dap(+1,n) = 2, (1,m) IFO(i+ 5 n) — o
2 J
obs, . . oR -
-2 D YRS 0ng) - R(ig,n)] by 800 1g)e(m.ng) (6.36)
B ©

Specification of Adjoint System for Two~Dimensions

Here we specify the system of equations which are used to determine
the derivatives of the objective function with respect to the reservoir
parameters. First we will specify the 1inear system which is used to
solve for the adjoint variables M and Ap-

For a finite~difference grid consisting of NX and NY grid blocks in
the x and y directions, respectively, we define a single index k to refer
to the grid block at location i,j. The index k is defined by Eq, B.1.
Using this index, the Tlinear equations for the adjoint variables xl and

Ao for grid block k can be written in the following form:

CAkkl(k,n—l) + CBkAZ(k,n-l) = C (6.37)

DA _jxtq(k-NX,n=1) + DB, _pydo(k-NX,n-1) + DA, _;3;(k-1,n-1)

+ DBy_;2,(k-1,n=1) + DA X, (k,n-1) + DB, (k,n-1) + DA )y (k+1,n-1)
(G.38)

Eq. G.37 represents the terms which multiply the variation 85(i,j,n) in

the equation for two dimensions which is analogous to Eq. G.25. Similarly,
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Eq. G.38 are those terms which multiply the variation &P(k,j,n). The

terms in these equations are as follows:

CA, MY (k,n-1) -sz(g‘)"fS(k,km) (6.39)
m

n

CB,, -M%(k,n-1) +z Qm(,g')”a(k,km) (6.40)

Cp = Ap(ksmMC(k,n) [C [P(K,n#1) ~ P(k,n)7T - 1]

A ComM(k,n) e, [P(k,n+1 - P(k,)T - 1]

- [P(k+1,n+1) - P(,k,n+1)]K_ 1. o [[Al(k"‘l n) - Al(k n)JF (1+%—,J,n)
1+’?’9\] 1+7

Kpy(ksn) + Dig(ktLin) = aplkom) PO+ 5.3,k (kn)]

- [P(k,n#1) - P(,k-1,n+1)]|< . (1 " '\)[D\l(k,n) - g (k-1,n) IFY(i- 33,0
7 aJ 1"’2‘9
L (kan) + Dy(kon) - 2 (ke1,m) IFO(i- 2 3.mk! (k)]

- DP(k#Xn+1) = PUGIFL) Ky ol O (ki)
ity 1.0+5

- Al(k,n)]FW(‘i,j+%,n)k;w(kan) + [, (k+NX,n) - "Az(k,n)JFo(i,J'+%—,n)k}',o(k,nﬂ
- [P(k,n+1) - P(k-NX,n+1)IK 1(- >[D\1(k .n)

i '-2 i,J-
- g (k=N I3, - 5 mdKE (kan) + Dap(k,n) = Ap(k-NX,n) ]

Fo(isj" % 9n)k;..o(ksn)]

2w ZZ[RObs(kB,ne) - R(kgang)R'6(k,k,)8(n,n,) (G.41)

w1
DAy = - T (.= .n-1) (6.42)
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DBk_NX = 'To(i:i‘%5n‘l) (G.43)
Wi 1.
DAk_l = =T (PrfaJ:n'l) (Gr44)
DB, _, = ~T°(i-3,3,n-1) (6.45)
pA, = M(k,n-1)C,S(k,n=1) + T(i-1,3,n-1) + ™(i+1,3,n1)
+ T35 an-1) + V(3,544 ne1) (G.46)
DB, = MO(k,n-1)C [1-5(k,n-1)1 + TO(i~ 3 ,dun-1) + T°(i+3,3,n-1)
+ 101 ,3- 5 a01) + T1,3+5 4n-1) (6.47)
_ oWya, 1
DA,y = ~T"(i+5,d.0-1) (6.48)
0,.,1 .
DBy, = -T (r+§,3,n—1) , (G.49)
DAy = ~T(1.3%5.n-1) (6.50)
DB, ,yy = ~TO(3,d+%,n-1)
keNx T T VIR0 (6.51)

D, = A (ko) (kon)C S(i,n) + A,(k.n)M(k,n)C [1-S(k,n)]

£ 2SS kn) - Plkn ) J(kk)s(nun,) (6.52)
£ T

Using the reflection boundary conditions for Al and Aos the following
system specifies the adjoint variables:

A= § n=N1N-2,,..,=0 (6.53)

¢ =1

The solution vector § is given by:
é = [%l(lan'l) 12(19n‘1) %1(2,n-1) "{ Kl(k;n'l) Az(k:nql)

e AI(NXY,n-l) Az(Nxv,n—l)JT

where NXY is the product of NX and NY, The (2NXY) x (2NXY) matrix A can

e

PR
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be written as:

A=Tag g oy, ' OpNXY |
%2.1
| ONXY, 1 ONXY ,NXY |
where each O o is a 2x2 matrix defined as:
o . =[CA  CB
K, 2 k k for 2 = k
DA, DB,
-To o ] for 2 = k+1,k-1,k+NX, or K-NX
DA, DB,
- [O 0 ] otherwise
0 0

The vector § can be written as:
b o= .. T
b= 8 8, Byyy]

where the Bk are vectors with dimension 2x1 defined as:

Bk = [Ck]
Dy
The derivatives with respect to the reservoir parameters are given as

follows:

N-1
_6_,_<_§QT_ z {[P(kﬂ,m_l) - P(k,n+1)] Ej'xl(kﬂ,n) - Al(k,n)]
1‘+7,j n=0

[t}
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™+ 53,00k, (i+5,3.0) + Dy(kel,n) - Az(k,n)JTo(‘H%,j,n)km(1'+%—,j,n)]}

(6.54)
SNl
22— {[P(k+Nx,n+1) = POn+1)[0r (k#WX,0) = Ay (kon)]
1,45 10
™0, 3500k (1,305 .0) + Dip(kiiX,n) = ay(k,n)]
T°(i,j+%,n)kro(i,j+%,n)]} (G.55)
- N-1
g%%py = :Z {xl(k,n)Dw(k,n)[@WS(k,n)EP(k,n+1) - P(k,n)] + [S(k,n+1) - s(k,n)ﬂ
n=0
+ a(km)0%(k,n) [Cor1-S(kin) JP(k,m#1) = P(K,n)]
- IS(k,n+1) - s(k,n)]]} (6.56)

n+1

N-1 NXY
== {[xz(k,n) - aq(m3S o, <9%Y———> 5(k,ky)
Y00 k=1 m %

+ [P(k+1,n+1) - P(k,n+1)IK [u” 1 D (k1,n) - 2y (k,n)]
i+5 .3 | |

ok_ (k,n)
w,., 1l . TUrw ) ? n . ; "
Fili+5,dun) ———+ o, g [Ap(k+l,n) - A,tK,n)]
£ 1+'2'5J
3k, (k,n)
FO(i+d,5,n) —0 "~ + (1., [aq (K+1,n) = %,(k,n) ]
2 Y .1 . 1 2
L 1+—2-QJ

ok  (k+1,n)
P2 gun) e <1-u“ )
%

2
'BkrO(k+1,n)
3Y£

[, (k+1,n) - A, (k,n)]
i+'2_ aJ) 2 ' 2

FO(i+5.3,n)
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+ [P(k#NX,n41) = P(k,n+1)IK o o 1 DA (X,n) = 2 (k,n)3
ity | 1,05

ok (k,n)
PG,a¢3.n) =21 N T (k#NKn) - Aa(kun)T
2 Jy . ., 1772 2
L 'I,J'_"-Z-
ak__(k,n) _
POk g+ 5n) —Co— (126" \Ia (kiXan) = 2,(k,n)]
Yq i35
ok , (k+NX,n)
FYi,54= ,n) —W +(1-a" N\, (k#NX,n) - a,(k,n)]
2 oY .. 102 2
2 1,J+'2—
ok . (k+NX,n)
Or. ., 1 "Tro >
FP(1,d+5 .n) 5, ]

obs 5 9R .
- 2w E z[R (kB,nT) - R(kB,ne)] 57}: S(k,kB)G(nH,ne) (G.57)
g 6
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APPENDIX H. Specification of the Minimization Algorithm

The method of steepest descent is used to iteratively update the
parameter estimates. This method is easily demonstrated by the following.
We represent the parameters to be estimated as a vector 7. Expanding the

th

objective function corresponding to the &+1 iteration in a first-order

Taylor series, the following is obtained:

%
I m) = oM + (P - DT (H.1)
Thus, in order to minimize J, the 5&+1th estimate is calculated from the
gth estimate by the following relation:
'3
El+1 = EQ - o (H.2)

where the positive scaler o is the iteration step size.

For problems in which one type of reservoir parameter is to be
estimated-——-i.e.,the permeability alone, the porosity alone, or the
relative permeability coefficients alone — the vector y is composed of
the reservoir parameter itself. For example, if the values of porosity

corresponding to each of M grid blocks are to be estimated, then

= Ce(1) 6(2) ... o(M)1T

The evaluation of the gradient g%-is specified in Appendix G. To use

~

zonation, the vector 7 consists of one parameter value corresponding to
each zone. The derivative of the objective function with respect to each
zone is the sum of the derivatives for each grid block in that zone.

For problems in which different types of reservoir parameters are

estimated, dimensionless parameters are estimated. These parameters

th

are the values of the reservoir properties normalizedby the 2 estimate.
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For example, the dimensionless parameter n; associated with the value of

porosity at the ith grid block would be defined as:
_ 9(i)
v (H.3)
o(i)
From Eq. H.2, the following is obtained for the calculation of the pa-
rameter T4 at the £+1th iteration:
B b A (H.4)
Multiplying Eq. H.4'by the value ¢(i)2, we obtain the following expression

to update the parameter ¢(i):

%
¢(1‘)2+1 = o(i)* - a[¢(1)232 5%%TT (H.5)

We note that the estimation of dimensionless parameters which can be
defined similarly to that given here have been used by Jahns?"* for a
single-phase problem.

The iteration step size o is chosen so that the largest change in
any reservoir parameter value is the fraction g, which is initially specified
as 0.1. When new parameter values lead to an increase in the objective
function, B is multiplied by 0.6, and the new parameter estimates are then
recalculated.

We now summarize the steps taken for one iteration of the algorithm:

th estimate of the

(1) Solve the simulator equations using the 2
reservoir parameters,

(2) Ccalculate J%,

(3) Solve the adjoint system and evaluate the gradient of J, and

(4) Update the parameter estimates using the method of steepest

descent.
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These steps are repeated until some termination criterion is met. The
criterion used is a minimum acceptable value of J, or a total number of

iterations.



