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ABSTRACT 

Part I of this thesis is concerned with measuring the 

proton chemical shift in solids using a homebuilt high field 

(6.3 tesla) multiple pulse spectrometer. The distinctive 

features of the spectrometer are described. The chemical 

shift tensors for the carboxylic protons in potassium 

hydrogen malonate, potassium hydrogen oxydiacetate, and 

potassium hydrogen dicrotonate are reported as determined by 

multiple pulse experiments. The isotropic part of the 

chemical shifts relative to a spherical sample of TMS and 

the anisotropies for the three compounds are -20.5(5), 

-19.6(7), -18.2(7), and 27.6(6), 28.3(9), 28.9(9) ppm 

respectively. 

Part II of this thesis presents a two pulse double 

quantum nuclear magnetic resonance {NMR) experiment which is 

designed to measure the Pake doublet splitting in systems of 

isolated proton pairs which are inhomogeneously broadened. 

This experiment is applied to the water molecules in the 

channels of a single crystal of cordierite as a function of 

orientation and temperature to obtain structural information 

about the water molecules. Based on the NMR data, the water 

molecules are found to exhibit substantial anisotropic 

motion at room temperature and combined with previously 

reported infrared absorption data, a two site hopping model 
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is proposed where the water s_pends 85% of its time with its 

proton-proton vector parallel to the channels and 15% of its 

time perpendicular. The difference in free energy between 

these two sites is 0.8 kcal/mole. 

Average harniltonian theory is extended to cover the 

case of strongly coupled proton-pair systems by transforming 

the hamiltonian to the dipolar pair-toggling reference 

frame. It is founa that the residual dipolar hamiltonian 

for the Burum-Rhim 24-pulse cycle is governed by a four-body 

interaction and any other multiple pulse cycle based on 

phase alternated WAHUHA 4-pulse cycles will do no better 

than the 24-pulse cycle at reducing the residual dipolar 

harniltonian. 
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CHAPTER 1 

General Introduction 
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Solid state NMR encompasses a wide variety of NMR 

techniques which are applied to many solid state systems and 

various nuclei. All solid state NMR techniques have a 

common goal: that is, to elucidate the structure and 

dynamics of solids. Over the past 10 years or so, great 

strides have been made in the development of •high 

resolution" techniques which provide more detailed 

information about more solid state systems than in the 

past. This thesis is concerned with developing and using 

new techniques, namely double quantum NMR and high field 

multiple pulse NMR to obtain useful information in solid 

state systems which heretofore were outside the domain of 

NMR. 

One of the characteristics which distinguishes solid 

state NMR from liquid state NMR is that the many static 

magnetic interactions present in the solid state, which in 

general serve to produce broad featureless spectra, are 

averaged by the rapid molecular motions in the liquid state 

thus producing narrow absorption peaks which are highly 

resolved. The magnetic interactions include the Zeeman 

interaction, hornonuclear dipolar interactions, heteronuclear 

dipolar interactions, quadrupolar interactions, chemical 

shift interactions, spin-lattice interactions, and applied 
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radio-frequency fields to name a few (1,2}. As an example 

of the difficulty in obtaining •high resolution" NMR spectra 

in solids, consider the measurement of the proton chemical 

shift spectrum in water in a high magnetic field with only 

homonuclear dipolar interactions and chemical shift .. 
interactions. (The measurement of the chemical shift in 

solids is the problem which is addressed in Part I of this 

thesis}. In the liquid state, the dipolar interaction is 

completely averaged to zero and the chemical shift 

interaction, which is a tensoral quantity, is averaged to its 

isotropic value and we observe a single, narrow absorption 

peak ( < 1 Hz broad), which is used to identify the 

corresponding proton (i.e. to identify OH groups or CH 3 
groups etc.}. In the solid state, the dipolar interaction 

is very large, up to 100 kHz, and completely obscures the 

chemical shift, which varies over 5 kHz depending on the 

strength of the external magnetic field. We can use 

multiple pulse NMR (3,4} to remove the homonuclear dipolar 

interaction and observe the chemical shift. However, 

since the chemical shift is a tensoral quantity, in 

polycrystalline solids, each crystallite contributes to the 

absorption at its own chemical shift, which results in a 

broad chemical shift powder pattern, on the order of kHz. 

If there is more than one inequivalent proton in the sample 

with a different chemical shift tensor, we have overlapping 
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powder patterns which are in general very difficult to 

separate (5). However, we can spatially average the 

chemical shift tensor to its isotropic value by spinning the 

sample at the magic angle (2) • Thus to obtain a liquid-like 

spectrum, we must employ both multiple pulse and magic a~gle 

spinning techniques (6,7) both of which place stringent 

requirements on the spectrometer. 

On the other hand, in a single crystal, we can use 

multiple pulse techniques to measure the complete chemical 

shift tensor by measuring the chemical shift as a function 

of crystal orientation in the external magnetic field. The 

chemical shift tensor gives us directional information about 

the electronic structure around the proton, unlike the 

isotropic value of the chemical shift tensor in liquids 

which gives us the spatial average. Thus with the complete 

tensor, we gain information about the bonding arrangement of 

the proton ((8) and Chapter 4 of this thesis). 

Also, in some cases we can use the lineshape due to the 

dipolar interactions to provide structural information about 

the solid, such as in the case of isolated, rigid water 

molecules ((9) and Chapter 8 of this thesis) where we can 

obtain the inter-proton distance and orientation of the 

water molecule. In the liquid state, the dipolar 
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interactions are averaged to zero. 

This example serves to illustrate that by virtue of the 

greater number of interactions in solids, NMR has the 

potential for providing much more information than liquid . 
state NMR, but it is more difficult to extract this 

information. Accordingly, the thrust of new high resolution 

techniques in solids has been to use spin manipulation to 

isolate one interaction by nullifying the unwanted 

interactions, or to use cross-correlation schemes which, for 

example, measure the chemical shift tensor in polycrystalline 

samples as a function of the dipolar interaction (1,10). 

This example also illustrates the complexity of solid 

state NMR even in simple systems and that NMR is at present, 

not a viable technique for all solid state systems. 

However, new techniques are being developed which extend 

the domain of solid state NMR. 

The investigations in this thesis deal with two NMR 

techniques: high field multiple pulse NMR and double quantum 

NMR. Both of these techniques provide data that were not 

readily attainable before. Part I of this thesis is 

concerned with removing the dipolar interactions and 

measuring the proton chemical shift in solids. The 
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homonuclear dipolar interactions are removed by multiple 

pulse NMR and the heteronuclear interactions are removed by 

using a high field (6.3 tesla) spectrometer which is 

described in Chapter 3. Chapter 4 presents the results of 

multiple pulse experiments in strongly hydrogen-bonded 

systems: KH malonate, KH oxidiacetate, and KH dicrotonate. 

Some limits in resolution of multiple pulse NMR are 

considered in Chapter 5 which is also concerned with 

extending average hamiltonian theory to cover the case of 

strong homonuclear dipolar interactions. 

Part II of this thesis is concerned with measuring the 

Pake doublet splitting due to the homonuclear dipolar 

interaction in a system of proton pairs ( such as water 

molecules) which is inhomogeneously broadened • Chapter 7 

introduces a two pulse, double quantum experiment which is 

capable of measuring the doublet splittings in such 

systems. In Chapters, this experiment is used to provide 

the doublet splittings of the water molecules in 

cordierite. The NMR results are used to characterize the 

orientation and motional properties of the water molecule. 
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PART I 

The Determination of Proton Chemical Shift Tensors with 

Multiple Pulse NMR 
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CHAPTER 2 

Introduction to Part I 
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Part I of this thesis is concerned with multiple pulse 

experiments which furnish the proton chemical shift in 

solids in three respects: 1) the construction of a high 

field (6.3 tesla) multiple pulse spectrometer (Chapter ~) ! 2) 

measuring the chemical shift tensors of the carboxylic 

protons in KH malonate, KH dicrotonate, and KH oxidiacetate 

(Chapter 4); and 3) extending average hamiltonain theo~y to 

cover the case of very strong homonuclear dipolar coupling, 

such as in water or CH2 groups (Chapters}. 

Ever since Waugh presented the WAHUHA 4-pulse cycle to 

measure the chemical shift in solids (1,2), researchers have 

been trying to find ways to improve the spectral resolution 

in multiple pulse experiments so that these techniques can 

be applied to more solid state systems with stronger dipolar 

interactions. 

There are basically three methods to improve the 

spectral resolution in a multiple pulse line narrowing 

experiment, depending on the solid state sample. First of 

all, one can run the multiple pulse cycle with a faster 

cycle time; that is, to shorten the time between pulses. 

Typically, the MREV 8-pulse cycle is run with a pulse 

width of 1 to 1.5 µs and a pulse spacing of 3 to 5 µ5 for 
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protons. To shorten the pulse spacing requires an increase 

in the strength of the radio-frequency pulse and a reduction 

in the probe ringdown time simultaneously. This is not an 

easy task since the radio-frequency pulse strength and probe 

ringdown time are both proportional to the Q (quality 

factor) of the probe. 

Secondly, one can construct new multiple pulse cycles 

to remove more of the higher order error and homonuclear 

dipolar hamiltonians in the average hamiltonian, such as the 

new 24 and 52 pulse cycles (3) which show remarkable 

improvements over the 8-pulse cycle. 

And thirdly, one can construct a high field 

spectrometer. The effect of the high magnetic field is to 

increase the chemical shift interaction in absolute 

frequency while both heteronuclear and homonuclear dipolar 

interactions are unaffected by the larger field. Thus, we 

need to remove less of the homonuclear dipolar interaction 

with multiple pulse at high fields than at relatively low 

fields to achieve the same resolution. Combined with 

methods 1 and 2, a high field multiple pulse spectrometer 

represents the state of the art in multiple pulse NMR 

spectral resolution. The advantages of a high field 

multiple pulse spectrometer are demonstrated in Chapters 3 
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and 4 of this thesis. 

In Chapter 3, the distinctive features of the 

construction of a high field spectrometer are discussed and 

the resolution is compared with resolution of a low field 

spectrometer. 

In Chapter 4, the chemical shift tensors of the 

carboxylic protons in KH malonate, KH dicrotonate, and KH 

oxidiacetate are measured using the high field 

spectrometer. These data are significant in two respects: 

1) Besides the chemical shift tensor of the carboxylic 

proton in KH maleate observed by Achloma et al.(4), the data in 

Chapter 4 represent the only high field multiple pulse data 

to date and demonstrate the superior resolving power of a 

high field spectrometer in systems with large heteronuclear 

dipolar coupling. It is not possible to resolve the 

chemical shift in these systems at lower fields. 2) The 

observed chemical shift tensors in these systems also 

represent the only chemical shift data in strongly hydrogen 

bonded systems (r 
0

_
0

< 1.49 K). It has long been known that 

the chemical shift tensor is sensitive to the strength of 

the hydrogen bond, but it has only been recently that enough 

chemical shift data have become available to correlate the 

chemical shift tensor with other parameters in hydrogen-
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bonded systems, such as the 0--0 distance and the 

quadrupolar coupling constant. Thus the data reported in 

chapter 4 extend the range of these correlations to include 

very strong hydrogen bonds (see reference 5 for a review). 

As a result of the improved spectral resolution due to 

the new 24 and 52-pulse cycles, multiple pulse NMR is being 

applied to systems with very large homonuclear diplolar 

interactions, on the order of 80 kHz, such as ice and the 

water molecules in gypsum (6-8). However, the average 

hamiltonian under which the spins evolve during the multiple 

pulse experiment has been calculated using average 

hamiltonian theory which assumes that the dipolar 

interactions are small compared with the time between 

pulses. This assumption is not fullfilled with a 80 kHz 

dipolar interaction. In Chapter 5, average hamiltonian 

theory is extended to cover the case of strong homonuclear 

dipolar interactions, by transforming to the dipolar 

pair-toggling reference frame before applying the Magnus 

expansion. Of paramount importance in the case of strong 

homonuclear dipolar interactions is the question of whether 

or not the pulse imperfection hamiltonians or the dipolar 

harniltonians couple with the resonance-offset harniltonian 

(i.e. the chemical shift) in such a way that multiple pulse 

cycles give us a dipolar dependent chemical shift scaling 
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curve. Also, in the dipolar pair-toggling reference frame, 

we gain insight into the broadening mechanisms which are 

coupled with the dipolar hamiltonian during the multiple 

pulse cycle. This insight will aid us in designing new 

multiple pulse cycles in the future. 
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CHAPTER 3 

A High Field (6.3 Tesla) Multiple Pulse Spectrometer 
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INTRODUCTION 

There are two advantages to building a multiple pulse 

nuclear magnetic resonance (NMR) spectrometer operating with 

a 6.3 tesla magnet (270 MHz proton resonance) compared w~th 

lower field spectrometers. These advantages are: an 

improved signal to noise ratio (sensitivity) and improved 

resolution. However, there are some difficulties which are 

encountered in building a 270 MHz spectrometer due to the high 

operating frequency that must be overcome. The purpose of 

this section is to provide the motivation for building a 

multiple pulse spectrometer at 270 MHz by detailing the 

advantages of a high field and to describe the modifications 

we had to make in the design of the high field (270 MHz) 

spectrometer using the 56.4 MHz spectrometer described by 

Vaughan et al.(l) as a model. 

The signal to noise ratio is improved in a high field 

spectrometer for two reasons: the first reason is that the 

equilibrium magnetization is directly proportional to the 

size of the Zeeman field, according to Curie's law for 

magnetization in the high temperature limit, and in pulsed 

NMR experiments, the size of the NMR signal is proportional 

to the equilibrium magnetization. The second reason is that 

we can build a probe which is more sensitive in detecting 
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the magnetization in our sample by increasing the quality 

factor (Q) of the probe circut. We can accomplish this 

without increasing the ringdown time in our probe or 

decreasing its bandwidth because the ringdown time is 

related to Q/w1 and not Q. Theoretically, the size of tpe 

NMR signal is proportional to the Q of the probe c1rcuit so 

that the total increase in signal to noise is proportional 

to the square of the Zeeman field. It should be noted, 

however, that a high Q probe is also more efficient in 

detecting noise and transmission lines become more lossy 

with increasing frequency (2) so that we shouldn't expect 

the complete theoretical enhancement in sensitivity. In 

addition to improving the sensitivity of the probe, a high Q 

probe requires less radio-frequency power to produce the 

same H1 field strength as a low Q probe. 

In some solid state systems, the increased resolving 

power of a high field spectrometer is more important than 

the increased sensitivity. The increased resolving power of 

a high field spectrometer is due to the fact that the value 

of the chemical shift in absolute frequency units is 

proportional to H while most broadening effects due to 
0 

pulse imperfections and all nuclear dipole-dipole 

interactions are independent of B
0

• Thus compared to the 

chemical shift, the heteronuclear and residual hornonuclear 
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dipolar broadening effects are relatively smaller in a high 

field than in a low field. In the event that residual 

homonuclear dipolar interactions limit the spectral 

resolution, we don't have to work as hard in a high field 

with our multiple pulse cycles to achieve the same 

resolution as in a low field spectrometer; that is, we can 

use longer cycle times which are easier to achieve 

experimentally. In the event heteronuclear dipolar 

interactions limit the spectral resolution, a high field 

spectrometer is an alternative to decoupling the 

heteronuclear dipole by radio-frequency irradiation. A high 

field spectrometer is especially attractive when a low y 

(magneto-gyric ratio) spin with a moderately large 

quadrupole interaction, like potassium, needs to be 

decoupled. The improved resolving power of a high field 

multiple pulse spectrometer is demonstrated at the end of 

this chapter and in Chapter 7. 

The difficulties in building a 270 MHz multiple pulse 

spectrometer have to do with the high operating frequency, 

where the dimensions of the radio-frequency circuits are 

comparable with the quarter wavelength of the radio 

frequency (22.5 cm for 270 MHz) and where each reactive 

element (R,L,C) in a circuit cannot be considered as a 

separate entity; i.e. the self-capacitance of an inductor 
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cannot be ignored. Also, radio-frequency components like 

frequency synthesizers, phase shifters, broad banded 

amplifiers, etc. are less dependable and more expensive 

with increasing frequency. 

THE SPECTROMETER 

Figure 1 is a block diagram of the 270 MHz spectrometer 

which is patterned after the 56.4 MHz spectrometer described 

by Vaughan et al.(l) in that the 270 MHz spectrometer 

employs a high Q probe circuit and a high Q transmitter, and 

that the spectrometer is constructed of commercially 

available prefabricated units (with the exception of the 

pulse programmer, the phase locked fast clock, and the 

intermediate (lOOW) amplifier). The frequency source for 

the spectrometer is a 30 MHz frequency synthesizer and the 

6.3 tesla magnet, a Bruker super conducting solenoid, 

operates at a fixed field. 

The 270 MHz radio-frequency pulses are obtained by a 

two step process: first, a 30 MHz signal is divided into 

four channels for the x, -x, y, and -y pulses and 

individually gated, phase shifted, and gated again in the 

same manner as described by Vaughan et al.(l) Secondly, the 

30 MHz pulses are heterodyned with 240 MHz in a single side 



21 

band mixer to produce 270 MHz pulses. The 240 MHz signal is 

obtained by octupling the 30 MHZ in a series of double 

balanced mixers. This two step process allows us to retain 

the good gating characteristics of the low frequency (30 

MHz) electronic switches and take advantage of the long~r 

wavelength of the 30 MHz signal to set the phase of the 

radio-frequency pulses accurately. However, the 

heterodyning procedure produces pulses which have turn-on 

and turn-off transients which are dependent on the relative 

phases of the input radio-frequencies creating an overall 

pulse stability problem. This problem is corrected, 

however, by locking the timing of all pulses to the 

frequency source at 30 MHz. 

The 270 MHz pulses are amplified to 400 watts in three 

stages: The pre-amplifier consists of a broadband, class B, 

high gain, 10 watt amplifier that drives the intermediate 

amplifier which consists of a homebuilt 100 watt class AB, 

push-pull amplifier (3) with an 8 db gain. The intermediate 

amplifier is broadbanded from 200 to 400 MHz. The final 

power amplifier consists of a high power (>400 watts), 

narrow banded, tunable cavity amplifier (class AB). The 

quarter wavelength circuit shown in Figure 2 is placed 

after the power amplifier to insure that the amplifier 

ringdown time after the pulse is as short as possible and to 
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prevent oscillations in the amplifier. During the pulse, 

the peak to peak voltage of the radio-frequency at point A 

in Figure 2 is typically 400 V, which opens the diodes, 

thus shorting the quarter wavelength stub. Since a shorted 

quarter wavelength stub has an infinite impedance, all of 

the radio-frequency power passes to the probe. When the 

voltage at point A falls below 1.5 V after the pulse, the 

crossed diodes close and the 50 D terminator dissapates the 

remainder of the radio-frequency energy in the amplifier. 

Crossed diodes have been placed after each amplifier from 

time to time to increase the on-off ratio of the pulses. 

The transmitter, probe, and receiver are isolated from 

each other by the standard quarter wavelength cable 

arrangement {4,5). Due to the importance of fast receiver 

recovery times, the receiver is protected further by the 

circuit shown in Figure 3. This device is a 300D quarter 

wavelength step up-step down transformer. A quarter 

wavelength cable transforms the voltage according to the 

equation 

v = v [~] out in Zin 

where z. is the impedance of the incoming signal {SOD) and 
in 

zc is the impedance of the transmission line (300D). Thus 

during the pulse when the voltage at point B is greater than 
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1/6 x the cut-off voltage of the diodes (1.5 V), the 

transmission line 1.ha.s infinite impedance. After the pulse, 

the voltage at point A is less than .25 V and the NMR signal 

passes through to the receiver. 

The receiver itself is essentially the broadband unit 

described by Vaughan et al. (1). The receiver output at 270 

MHz is phase detected with 240 MHz, passed through a 30 MHz 

phase shifter and finally phase detected with the 30 MHz 

reference signal. The D.C. signal is sampled by a 

Biomation waveform recorder capable of sampling rates up to 

5 MHz. The Biomation is interfaced to a PDP8-a 

mini-computer, where the NMR signals are accumulated, signal 

averaged, and Fourier transformed. 

One of the most important components in a high frequency 

spectrometer is the probe. The probe consists of the circuit 

shown in Figure 4. We have had the greatest success with 

high frequency probes when the coil is floating, i.e. when 

both sides of the coil are not grounded. The coil is a ten 

turn solenoid made out of flattened, bare copper wire which 

was wound on a mandrill with an i.d. of about 5 mm and a 

length of about 15 mm. The coil was annealed while it was 

in place on the mandrill to insure that the coil did not 

lose its shape after taking it off the mandrill. The H
1 
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homogeneity of the coil, which is critical in multiple pulse 

experiments, is approximately 0.3° • The inductance of the 

coil is approximately 0.2 µhand the tuning capacitor is 

approximately 3 pf. The overall dimension of the probe 

circuit is about 12 cm, which is comparable with the quarter 

wavelength of 270 MHz, 22.5 cm. The theoretical Q of the 

isolated probe is approximately 300 based on the bandwidth 

of the probe as measured by a vector voltmeter. 

The tuning of the resonant circuit is very sensitive to 

the circuit geometry in the probe body due to the low value 

of the tuning capacitor and the capacitive coupling between 

the probe circuit and the probe body. The probe is tuned 

simply by comparing the voltage reflected by the probe and 

the voltage inciderit to the probe using a dual directional 

coupler and a vector voltmeter. 

OPERATION OF THE SPECTROMETER 

The 270 MHz spectrometer is capable of generating 90° 

pulses as short as lµs while the dead time (due to probe 

ringdown) for an undistorted signal after a 90° pulse is 

approximately 4µ~. The radio-frequency pulses were 

completely stable when the phase locked fast clock was 

employed and no power droop problem was encountered. The 
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radio-frequency phase transients, which are created by the 

transient response of the high Q probe circut and the high Q 

transmitter to the rise and fall of the radio-frequency 

pulse, are controlled by slightly detuning the probe and the 

transmitter and adjusting the input and output coupling to 

the transmitter cavity. When the probe and transmitter are 

detuned, the length of the 90°pulses is increased. H 
~ 

homogeneity is approximately 90 Hz, 1/3 ppm. 

The linear chemical shift scaling curves for the 

8-pulse (6) and 24-pulse (7) cycles are shown in Figure 5 

for the well tuned spectrometer: the pulse width is 1.5µ s 

and the pulse spacing is 4 µ s. The theoretical and 

experimental chemical shift scaling factors (i.e. the slope 

of the chemical shift scaling curve) for the 8-pulse cycle 

are .49 and .48 respectively and for the 24-pulse cycle they 

are .40 and .3~ well within experimental error. 

The enhanced resolution of the high field spectrometer 

(6.3 tesla) is demonstrated in Figure 6, which shows the 

chemical shift spectrum of the water molecules in a single 

crystal of gypsum using the 24-pulse cycle. The two peaks 

are due to two inequivalent water molecules in the unit 

cell: at room temperature the hydrogen in each water 

molecule is exchanging rapidly to produce a single line. 
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The single crystal of gypsum is oriented such that the 

intra-pair dipolar frequencies for the two water molecules are 

about 65 kHz and 30 kHz. For this particular experiment, 

the pulse width was 1.5 µ s and the pulse spacing was 4 1J s. 

The full widths at half max. are 1.6 and 2 ppm which can 

be compared with the linewidths reported by Burum and Rhim 

(8) at the same orientation, about 3.6 and 4 ppm (shown in 

Figure 6), in a 1.4 tesla magnetic field. For their 

experiment, the pulse width was 1.5 µs and the pulse spacing 

was 2.8 µs. The spectral resolution of the chemical shift 

spectrum in the high field spectrometer is about twice as 

good as the low field spectrometer even though the multiple 

pulse cycle time is 40% slower. 

Typical spect'ra for the case of systems with 

heteronuclear dipolar broadening ( 1 kHz) are shown in the 

next chapter. 
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Figure 1. A block diagram of the spectrometer. 

Figure 2. This circuit is placed after the transmitter to 

dissipate the energy in the transmitter after the 

radio-frequency pulse has passed. When the voltage at 

point A is greater than 1.5 V (during the pulse), th.e 

horizontal transmission line has infinite impedance. 

After the pulse, the voltage at point A drops below 1.5 

V and the horizontal transmission line has a 50 ohm 

resistive impedance. 

Figure 3. This circuit is a transmission cable step up-step 

down voltage transformer, which is used to protect the 

reciever during the intense radio-frequency pulse. 

Figure 4. The probe circuit. 

Figure 5. The chemical shift scaling curve for the 8- and 

24-pulse cycles.. The ordinate is the actual offset 

frequency while the abscissa is the measured offset. 

The slopes of the two lines are 0.48 and 0.38 for 

the 8- and 24-pulse cycles respectively. 

Figure 6. The chemical shift spectrum of the water 

molecules in gypsum, observed at 6.3 tesla using the 

24-pulse cycle with a pulse width of 1.5 s and a pulse 

spacing of 4 s. At this orientation, the dipolar 

interactions for the two water molecules are about 65 

KHz and 30 KHz. The linewidth observed at 1.4 tesla with 

a pulse width of 1.5 s and a pulse spacing of 2.8 s. 
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Figure 6. The chemical shift spectrum of the water 

molecules in gypsum, observed at 6.3 tesla using the 

24-pul se cycle with a pulse width of 1. 5 p s and a pulse 

spacing of 4 ll s. The linewidths are approximately 2 ppm 

(full width at half max.). At this orientation, the 

dipolar interactions for the two water molecules are 

about 65 KHz and 30 KHz. The bars at the top of the 

spectrum represent the linewidth observed at 1.4 tesla 

( 4 ppm) at the same orientaion with a 1.5 p s pulse 

width and a pulse spacing of 2.8 ll s. 
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CHAPTER 4 

The Chemical Shift Tensors for 

Strongly Hydrogen-Bonded Protons: 

The Carboxylic Protons in 

(Chapter 4 is taken from two articles: The Chemical Shift 

Tensor for a Strongly Hydrogen-bonded Proton: The Carboxylic 

Proton in KHCH
2

(C00) 2 , by B. Berglund, D.G. Carson, and 

R.W. Vaughan which was published in the Journal of Chemical 

Physics, January 15, 1980, and The Chemical Shift Tensors 

for Strongly Hydrogen-bonded Protons: The Carboxylic Protons 

in KHO(CH
2
C00)

2 
and KH(C

4
H

5
o

2
)

2 
, by B. Berglund, J. Allison, 

D.G. Carson and R.W. Vaughan which has been accepted for 

publication by the Journal of Magnetic Resonance.) 
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ABSTRACT 

The chemical shift tensors for the carboxylic 

potassium hydrogen malonate, potassium 

oxydiacetate, and potassium hydrogen dicrotonate 

protons in 

hydrogen 

have been 

determined from a proton multiple pulse experiment carried 

out at 270 MHz. The isotropic part of the chemical shifts 

relative to a spherical sample of TMS and the anisotropies 

for the two compounds are -20.5(5), -19.6(7), -18.2(7) ppm 

and 27.6(6), 28.3(9), 28.9(9} ppm, respectively. The 

eigenvectors are oriented similarly to those found for other 

hydrogen bonded systems. The angle between the most 

shielded direction and the 0-H bond vector, for example, is 

9 (2) 0 
, 4 (2) 0 

, and 0 (2) 0 respectively for the three 

compounds. 
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INTRODUCTION 

The proton chemical shift tensor has now been measured 

for a number of solid systems since the development of 

multiple pulse nuclear magnetic resonance in solids (for a 

review, see Refs. 1-3). 

It has been observed that protons involved in hydrogen 

bonding exhibit chemical shift tensors with a larger 

anisotropy than found for non-hydrogen- bonded protons and 

that such hydrogen-bonded proton tensors are nearly axially 

symmetric in most cases. It has recently been pointed out 

(3) that both the isotropic value of the chemical shift 

tensor, a, and the'anisotropy,~o., of such hydrogen-bonded 

protons correlate very well with the hydrogen-bond 

strength. The anisotropy increases for increasing 

hydrogen-bond strength, while the isotropic value becomes 

smaller (more negative relative to tetramethylsilane, 

TMS). In terms of principal values of the chemical shift 

tensor (approximated as axially symmetric), the component 

directed along the 0-H direction, ol I , appears independent 

of the strength of the hydrogen bond, while components 

perpendicular to the 0-H bond direction,ol, exhibit a large 

decrease (become more negative relative to TMS) with the 
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increasing strength of the hydrogen bond. 

Most of the high resolution NMR studies of 

hydrogen-bonded systems have been performed on materials 

with weak to moderately strong hydrogen bonds (oxygen-oxygen 

distances of 2.55-2.65 ~), and the present study was 

undertaken to provide more information on those systems 

containing the strongest hydrogen bonds. We have chosen to 

examine KH malonate, KH oxydiacetate, and KH dicrotonate, 

since, as appears to be the case for the acid salts of weak 

carboxylic acids (4,5), they contain particularly strong 

hydrogen bonds, with an oxygen-oxygen distance of 2.468 (5) 

~' 2.476(2) ~' and 2.488(2) i, and the development of multiple 

pulse capabilities at 270 MHz allows one to overcome easily 

the heteronuclear dlpolar broadening produced in the spectra 

· by the potassium cation. These bond distances are 

comparable to the one in KH maleate(2.437 K), which has been 

studied previously (6,7) and were the only data on very 

strong hydrogen bonds used in the correlations (3) discussed 

above. The study of KH maleate (7) is the only other 

high-field {270 MHz) study previously reported, and the 

advantage of using a high- frequency (field) for spreading 

out the chemical shifts was demonstrated. 

The crystal structure of KHCH2 (C00) 2 has been studied by 
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x-ray (8) and neutron diffraction (9). The structure shown 

in Figure 1 consists of infinite chains of hydrogen malonate 

residues linked together by a very short O-H-0 hydrogen bond 

across a center of symmetry. The crystal structure of 

KHCH 2(COO~ belongs to the monoclinic space group C2/m 

(a=9.473 (6), b=ll.559 (7), c=4.726(5) 1\ and s =91.6 (l)° 

and consists of one crystallographically independent 

methylene and one carboxylic proton in the asymmetric unit. 

The NMR spectra are therefore expected to contain four 

lines, two from the symmetry-related methylene protons and 

two from the symmetry-related carboxylic protons. 

The crystal structure of KH oxydiacetate has been 

studied by neutron diffraction (10) and contains hydrogen 

oxydiacetate chains '(Figure 2) with a hydrogen bond length 

of 2.476 (2) A between the molecules. The hydrogen bond 

angle is 174.2(3) 0 and the 0-H distance 1.152(3) A showing 

the significant asymmetry in the bond. The very strong bond 

is also associated with a small deuterium quadrupole 

coupling constant, 64 kHz (11). 

The structure of KH oxydiacetate belongs to the 

monoclinic space group P21 /c (a= 7.102, b = 10.451, c = 

8.558 A and S = 101.44°). The asymmetric unit contains 5 

protons and at most 10 lines are expected in the high 
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resolution spectra of a single crystal. In the presence of 

the proton-potassium dipolar broadening it is of course 

extremely difficult to resolve all these lines 

simultaneously. Since the anisotropy of the shift tensors 

for carboxylic protons are much larger than for C-H prot~ns 

(1 ) , it is, however, fairly easy to locate the lines from 

the carboxylic proton, whereas all the other lines will 

overlap to one structureless band. 

The crystal structure of KH dicrotonate has also been 

studied by neutron diffraction (12) and it belongs to the 

triclinic space group P 1 (a= 12.459, b = 6.049, c = 7.452 

$..and a= 65.02°, f3 = 104.04°, Y = 97.44°). The structure 

contains dimers of crotonate anions bonded together with a 

nearly, but not quit~ symmetrical hydrogen bond (Figure 3). 

The o--0 distance is slightly longer (2.488(2) K) than the 

distance in KH oxydiacetate. The asymmetric unit contains 

eleven different protons associated with eleven different 

tensors and at most eleven lines are therefore expected in 

the high resolution NMR spectrum, one from the carboxylic 

proton, four from the olef i~ic protons and six from the CH3 

protons. The lines from all the CH protons will have a 

small shift relative to TMS for any orientation of the 

crystal and it is possible to measure the location of the 

carboxylic line, when it is shifted away from the others. 
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EXPERIMENTAL DETAILS 

Potassium hydrogen malonate was prepared by dissolving 

equimolar amounts of KHC0 3 and malonic acid, and single 

crystals were grown from a saturated solution by slow 

evaporation. Two crystals were ground to cylinders (h/l 

ratio=l.5) with the cylinder axes arbitrarily chosen 

relative to the unit cell. The crystals were mounted on 

glass rods so each crystal could be rotated in the magnetic 

field around an axis parallel to the cylinder axis. 

KH dicrotonate was made by dissolving crotonic acid and 

KHC0
3 

(2:1) in water and single crystals were grown from a 

saturated solution by slow exaporation. For KH 

oxydiacetate, a commercial salt was used and the crystals 

were grown by the same method. Two different crystals were 

grown for KH oxydiacetate and four for KH dicrotonate. All 

crystals were cut to either cylinders or parallel epipeds, 

with the long axis of the crystal arbitrarily oriented in 

the unit cell. All crystals were mounted on glass rods, 

allowing each crystal to be rotated in the magnetic field 

about an axis parrallel to the axis of the cylinder or 

parallelepiped. 
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The rotation axes were determined on a four-circle 

X-ray diffractometer (syntex P2 1 ) where 10-15 reflections 

were measured accurately and used in a least-squares 

refinement of the axis. The rotation axes are given in 

Table 1. Each crystal was then transferred to a home-built 

NMR spectrometer operating at 6.3 tesla. 

The procedure of rotating the crystals around 

arbitrary axes has some advantages compared to the more 

conventional procedure of rotating around three orthogonal 

axes, usually a, b, c for a monoclinic space group. Most 

importantly, one does not have to worry about ambiguities 

which can occur when rotating around axes parallel to 

symmetry axes, and furthermore, it is usually, more 

convenient experimentally not to have to mount and grind 

around symmetry axes, especially when the crystals do not 

have well- developed facets. 

The tuning of the spectrometer for the multiple pulse 

experiments was carried out in a way described elsewhere 

(13). The epoxy used to mount the crystals to the glass 

rods was used as a convenient internal reference for the KH 

malonate and KH dicrotonate samples. In order to determine 

the chemical shifts relative to a spherical sample of TMS, a 

spectrum of the crystal plus the epoxy was recorded with a 
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free induction decay ( the epoxy line showed up as a narrow 

line) and was compared to a spectrum of TMS. The same shift 

was found for all crystals, and all results are reported 

relative to the TMS reference. The chemical shifts in the 

KH oxydiacetate crystals were measured relative to a line 

from an occluded KHO(CH2C00)2 solution (-7.2 ppm relative to 

TMS). The eight-pulse sequence (13) was used with a cycle 

time of 48 microseconds and the scaling factor was monitored 

from time to time to confirm proper operation of the 

sequence. The spin-lattice relaxation time (T
1

) in the KH 

dicrotonate crystal was short due to the CH3 rotation. For 

the KH malonate and KH oxydiacetate samples, however, the 

crystals were doped with Mn++ , which reduced T
1 

to about 

one minute. 

Figures 4, 5, and 6 give typical spectra for the three 

samples and demonstrate the resolution obtainable in the 

presence of the potassium. The relatively large linewidths, 

due to the proton-potassium coupling, made neither a 

grinding of the crystals to spheres (14) nor correction for 

the bulk susceptibility effects (15) warranted. The 

susceptibility effects are typically of the order of one ppm 

or less for crystals ground to cylinders, whereas the 

linewidths are of the order of 3-4 ppm. The reported 

tensors might, however, be affected by a systematic error of 
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one ppm or less. 

DETERMINATION OF THE CHEMICAL SHIFT TENSORS 

The chemical shift for a proton may be written in an 

arbitrary coordinate system 

6 = u s u (1) 

The vector u is a unit vector along the magnetic field, 

and s is a matrix containing the six elements in the 

chemical shift tensor. If we write ~d for the diagonalized 

form of S and we choose a coordinate system for Eq. (1) 

to be an orthogonal crystal fixed system (i, j, k) where k 

is along the axis of rotation, the chemical shift may be 

written 

= u (2) 

u now has components (cos 1jJ sine, sin 1jJ sine, cos 8), where 

,/, = <1> '"' '"' 't' - 't' 0 , 't' 0 is a reference angle and e is the angle between 

the axis of rotation and the magnetic field (usually chosen to 

be equal to 90°). The matrix L transforms a vector from the 

principal axis system of a particular chemical shift tensor 

to the crystallographic system. The matrix R is the 

translation free part of the transformation of a vector from 

the asymmetric unit of crystallographic cell to a 
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symmetry-related unit, i.e.,~ is a transformation belonging 

to the point group isomorphous with a factor group 

associated with the space group of the crystal. For 

KHCH2 (C00) 2 , for example, the space group is C2/m and the 

two tensors R are 

1 0 0 1 0 0 

0 1 0 and 0 -1 0 

0 0 1 0 0 1 

P, finally, transforms a vector from the crystallographic 

system to the (i, j, k) system for a particular rotation - - -
axis. The chemical shift tensors were refined using the 

least-squares program QSPL4 (16). 

RESULTS AND DISCUSSION 

The refined chemical shift tensors for the carboxylic 

protons in KH malonate, KH oxydiacetate, and KH dicrotonate 

are given in Table 2 and in Figures 7, 8, and 9, the 

experimental chemical shifts as a function of the rotation 

angle are given together with rotation patterns calculated 

from the tensors given in Table 2. 

The three tensors are very similar to each other and also to 

the tensor reported for KH maleate. In Table 3 the four 
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tensors are compared, and it can be seen that the isotropic 

shielding decreases for increasing bond strength (decreasing 

R 
0 

__ 
0

). The anisotropies are almost the same and do not 

correlate with R . Also, the z-principal axes (the most 
o--o 

shielded directions) are almost along the 0-H vector and the 

x-principal axes (the least shielded directions) are normal to 

the plane defined by the carboxylic groups. The errors in 

the angles are about 2° • 

It is interesting to notice that the difference between 

the components co~responding to the two least shielded 

directions, 60, is rather large for all compounds in Table 3 

except KH maleate. In KHF (17), which has a very strong 

F--H--F hydrogen bond, the difference is 7.3 ppm. These 

values should be compared to differences of 0-4 ppm usually 

found in weaker hydrogen bonded systems (1 ) • Since the 

anisotropies, 60 , are larger for the strongly 

hydrogen-bonded systems, the asymmetry parameter n = 

00 /( 0 22 - 0 ) , which is a measure of the axial symmetry in 

the tensor, will not be significantly larger, however. n is 

usually found to be around 0-0.4 (1 ) and as can be seen in 

Table 3, n for KH malonate and KH oxydiacetate is just 

slightly larger than that. The large values of 60 are, 

however, notable. Ditchfield showed (la) that the induced 

currents on the acceptor oxygen in the O-H--0 hydrogen bond 



48 

is almost totally responsible for the changes in the 

anisotropy when the water dimer was formed and this effect 

is of course increasing as the proton approaches the 

acceptor oxygen. It would be interesting, however, to 

follow the variation of the individual eigenvalues of the 

theoretical shielding tensors with decreasing o--o bond 

length to see if just the approaching of the acceptor oxygen 

can be responsible for a larger oo value. For an 

equilibrium value, R = 2.83~, Ditchfield calculated a 00 o--o 
value of 0.4 ppm in the water molecule dimer and 1.4 ppm in 

the water monomer, so the effect on the two eigenvalues is 

not the same when the dimer is formed. It is , therefore, 

reasonable to believe that the two eigenvalues have 

different variations as a function of R o--o 
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Table l. Rotation axes for the crystals used in the HR-NMR 

experiment. The axes are given in a coordinate 

system defined by the unit cell axes. 

KH malonate 

KH oxydiacetate 

KB diacrotonate 

Crystal No. 

1 

2 

l 

2 

l 

2 

3 

4 

Rotation Axis 

-0.0429 

-0.0106 

0. 04 89 

0. 006 5 

-0.0010 

0.0303 

0.0340 

-0.0004 

-0.0665 

-0.0022 

0. 07 26 

-0.0068 

0.1639 

0.1506 

-0.0067 

-0.0013 

0.1020 

0.2098 

-0.0574 

-0.1152 

0.0022 

0.0214 

-o .1064 

0.1345 
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Table 2. The proton chemical shift tensors determined for 

the carboxylic protons in the three compounds. 

The eigenvectors are given in the coordinate 

system defined by the unit cell axes. The shifts 

are in ppm relative a spherical sample of TMS. 

Eigenvalues 

KH malonate: 

-35.1 (3) 

-24 .3 (3) 

- 2.1 (7) 

KH oxydiacetate: 

-34. 7 (6) 

-23 .4 (3) 

- 0.7 (10) 

KH dicrotonate: 

-31.7 (4) 

-23. 9 ( 9) 

1.1 (8) 

-0.0653 (11) 

0.0437 (15) 

0. 07 0 5 ( 8) 

a = -20. 5 ( 5) 

0.0806 (40) 

0.0869 (40) 

0.0823 (18) 

-a = -19 .6 (7) 

0.0001 (33) 

0.0396 (22) 

0 .07 27 (12) 

a = -18.2 (7) 

Eigenvectors 

0.0141 (14) 

0.0778 (5) 

-0.0351 (9) 

-0.1662 (15) 

-o .027 6 (2 9) 

- 0 .12 81 ( 19 ) 

!:::.a = 27 .6 ( 6) 

0. 0081 (21) 

-o. 0697 (18) 

0.0656 (19) 

0.1100 (15) 

-0.0247 (31) 

-0.0399 (31) 

t:.o = 28.3 (9) 

-0.1078 (126) 

0.1311 (117) 

-0.0645 (34) 

0.1441 (39) 

0.0421 (138) 

0.0128 (24) 

t:.rJ c 28.9 (9) 
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FIGURE CAPTIONS 

Figure 1. A view of the structure of KH malonate showing 

the hydrogen bond arrangement. 

Figure 2. A view of the structure of KH oxydiacetate 

showing the hydrogen bond arrangement. 

Figure 3. A view of the structure of KH dicrotonate showing 

the hydrogen bond arrangement. 

Figure 4. A multiple pulse NMR spectrum of KH malonate at 

270 MHz. The reference is a line from epoxy. 

Figure 5. A multiple pulse NMR spectrum of KH oxydiacetate 

at 270 MHz. The reference is a line from an 

occluded solution. 

Figure 6. A multiple pulse NMR spectrum of KH dicrotonate 

at 270 MHz. The reference is a line from epoxy. 
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Figure 7. Angular dependence of the lines associated with 

the carboxylic proton. The solid curves are 

calculated from the tensor given in Table 2. 

Symm 1 and 2 refer to the symmetry operation 

associated with the symmetry related protons •. 

The shifts are relative to a spherical sample of 

TMS. 

Figure 8. Angular dependence of the line locations 

associated with the carboxylic protons in KH 

oxydiacetate. The solid lines are calculated 

from the tensor given in Table 2. Symm 1 and 2 

refer to the symmetry operation associated with 

the symmetry related protons. 

Figure 9. Angular dependence of the lines associated with 

the carboxylic protons in KB dicrotonate. The 

solid lines are calculated f rorn the tensor given 

in Table 2. 
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CHAPTER 5 

Analysis of Multiple Pulse NMR in Solids: 

Spin 1/2 Dipolar Pair Systems 

(Chapter 5 is an article by D.G. Carson to be published in 

the Journal of Chemical Physics) 
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ABSTRACT 

Average hamiltonians are calculated in the dipolar 

pair-toggling reference frame for the WAHUHA 4-pulse cycle, 

the MREV 8-pulse cycle, and the Burum-Rhim 24-pulse cycle, 

thereby extending average hamiltonian theory to cover the 

case of dipolar pair systems with strong intra-pair dipolar 

coupling. The residual dipolar interaction for the 24-pulse 

cycle cannot be reduced further by any multiple pulse cycle 

based on phase alternated 4-pulse cycles and the residual 

dipolar interaction for the 4- and 8- pulse cycles is 

significantly larger than for the 24-pulse cycle. 

Finite pulse width effects are calculated exactly for a 

system of isolated spin 1/2 pairs with an arbitrary 

intra-pair dipolar coupling. The 24- and 8-pulse cycles 

perform better than the 4-pulse cycle but the 24-pulse cycle 

offers no improvement over the 8-pulse cycle in this 

regard. In this system, for all three multiple pulse 

cycles, finite pulse width effects can be completely removed 

to all orders by proper choice of the flip angle, which is a 

function on the dipolar interaction, pulse width, and pulse 

spacing. 
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INTRODUCTION 

Recently, new multiple pulse cycles, such as the 24 

and 52 pulse cycles (1,2), have been proposed which provide 

greater line narrowing capability than the •traditional" 

WAHUHA-4 (3)and MREV-8 (4,5) multiple pulse cycles 

(henceforth referred to as the 4-pulse and 8-pulse cycles). 

With the 8 pulse and 24 pulse cycles, proton chemical shifts 

have been reported for the water molecules in single 

crystals of gypsum (6) and ice (1,7) at orientations where 

the proton-proton vector was parallel to the Zeeman field, 

giving rise to homonuclear interactions greater than 85 

KHz. These new multiple pulse cycles have been described by 

the same average hamiltonian theory (8-12) which was used to 

describe the 4-pulse and the 8-pulse cycles. However, a 

critical assumption in the average hamiltonian theory is 

that the dipolar interaction is very small compared with the 

time between pulses; that is HT <<l (13). This assumption 

does not hold for a dipolar interaction of 85 KHz with a 3µs 

pulse separation, even though the line is successfully 

narrowed. 

In this paper, I shall extend the average hamiltonian 

theory to treat multiple pulse cycles in this limit for 
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certain applications. In particular, I shall extend the 

theory to handle multiple pulse cycles for the case of 

strongly interacting spin 1/2 dipolar pairs. Finally, I 

will discuss the factors which contribute to spectral 

resolution in a multiple pulse experiment for this case. 

REVIEW OF AVERAGE HAMILTONIAN THEORY 

Basically, average hamiltonian theory provides the 

means with which one can calculate in a straightforward 

manner the time development operator for complicated pulse 

cycles for extended periods of time {8-12). It is not 

difficult, in principle, to solve for the complete time 

development operator at all times for any pulse cycle but 

its form may not be amenable to interpretation. 

The expectation values of the magnetization, <M > x , 

<My>' and <M
2
> in a nuclear magnetic resonance experiment 

can be calculated using the equation 

= t11.{p(t)M } 
x 

where p is the density operator. The equation of motion of 

the density operator is 

p(t) =~[p(t), H(t)] 
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and the formal solution is 

p(t) = U(t) p(O) U-
1
(t) 11 

U(t) is known as the time development operator. For the 

case where the hamiltonian is time independent, U(t)= 

exp(-~ Ht). If H(t) = H
0 

+ H1(t) and H
0 

is time 

independent, equation il can be simplified by transforming 

the density operator to the interaction reference frame 

dictated by H : 
0 

p* ( t) 

p* (t) 
i = fi [ p * ( t) , Hi ( t) ] 

i i 
H*(t} =exp( fi H

0 
t} H1 (t) exp(--ri H

0 
t) 

1 

For the case where the hamiltonian ~s time dependent, time 

dependent pertubation theory must be used, most simply by 

means of the Magnus expansion (13). 

u ( t) = exp ( -k { H ( o) + R < 1 ) + R ( 2 ) + •••• } t ) 

where 

t 

TT(O) = f J H(t'}dt' 

O· 

; 
ft' tI [H<t'>,Hct">J at"at' 
"'0 0 

Clearly, for the Magnus Expansion to converge we must have 

H(t)t << 1. 

In general, the time development operator can be 
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written in terms of the product of time development 

operators for any set of convenient sub-intervals: 

U(t.)=U(t. ,t )U(t. ,t. 
2

)U(t. 2 ,t. 3 ) ••••• U(t1 ,0) #2 
l l i-1 1-1 1- 1- 1-

U(t ,t ) is the time development operator for the time 
i i-1 

period t to t. and U ( t . ) =U ( t . , 0) • In particular, 
i-1 l l l 

equation #2 is useful for evaluating U(t) for a train of 

radio frequency pulses, where the hamiltonians may be time 

independent for the time t. 
1 

tot. but are time dependent 
1- l 

overall. But since Hi and Hi~l do not neccessarily commute, 

U(t ,,t. ) and U(t. ,t. 
2
) do not neccessarily commute and 

l 1-1 1-1 i-

thus equation #2 can be a cumbersome expression to 

evaluate. However, by placing two conditions on the pulse 

train, termed the periodic condition and cyclic condition, 

equation #2 can be si~plif ied. 

The periodic condition requires that the hamiltonian, 

including the radio frequency pulses, is periodic in time 

with periodicity t. That is H(Ntc+t)= H(t), where N is any 
c 

positive integer. Thus U(Nt )=(U(t )f, which simplifies c c 

the problem of evaluating U(t) to one of evaluating U(t ). 
c 

The cyclic condition requires that the Zeeman reference 

frame and the interaction reference frame dictated by the 

radio frequency pulses (termed toggling reference frame) are 
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coincident at Ntc. 

U{Ntc) = 1 

This condition allows us to use the Magnus expansion in the 

toggling reference frame to evaluate U(tc> provided the 

dipolar, resonance offset, and pulse error hamiltonians are 

not too large. Accordingly, the time development operator 

for a multiple pulse cycle is 

H( O) * 
tc 

= f r H* (t) dt 
c • 

0 

#3 

= ~ fr:•H*(t'),H*(t")] dt"dt' 
c 0 0 

where H* (t) is the dipolar and pulse error hamiltonian 

expressed in the toggling reference frame. Equation t3 is 

valid only at time Ntc in the Zeeman reference frame, since 

in general this is the only time that the Zeeman reference 

frame and the toggling reference frame are coincident. 

If H*(t)tc<<l, it is necessary to calculate only the 

first couple of terms in the expansion, but if H*(t)tc<j<1, 

higher order terms must be kept to insure convergence. 

Alternatively, the exact form of the time developm~nt 

operator can be obtained by solving an N-body problem where 

N is the number of coupled spins in the solid, on the order 

of 10 20 • Obviously, this is not feasible. On the other 

hand, the approximate solution for the time development 
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operator given by average hamiltonian theory (eqn.t3) may 

* . not converge when the inequality H (t)tc <<l is not 

satisfied, which is the case for a number solid state 

systems. However, many of these cases may be treated 

successfully by solving for the time development operator 

exactly with respect to a system of dipole pairs of 

arbitrary strength while using average hamiltonian theory to 

approximate the net effect of inter-pair interactions. This 

is accomplished by applying the Magnus expansion in a new 

interaction reference frame, the dipolar pair-toggling 

reference frame defined below. 

ISOLATED PROTON PAIRS 

First, consider. the simplest case of a dipolar coupled 

system, that is, a system of completely isolated, identical 

dipole pairs such as isolated water molecules. The 

hamiltonian for free precession in the rotating frame is 

1 i
01

i+l 
H = -11 ~ A (I I -- ) + /::,wl.. (Izi· + Iz1·+1) #4 

L.J i zi zi+l 3 
i=l,3,5, •• 

For convenience of notation in this section, the hamiltonian 

can be written 

+ /::,wI ] 
z 

without ambiguity. Accordingly, for free precession, 
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Il·I2 
U (t) = exp [ iAt (I 21 r 22 - 3 ) + i6wtI 2 ] 

From this we obtain the time development operator in the 

rotating frame at the end of the 4-pulse cycle (Figure 1) 

applied with delta function pulses: 

i TI i TI U(6T) =exp(- -ti" HT)exp(i 2 Ix)exp(--11 HT)exp(-i 2 Iy) 

i TI i . TI i exp(- 112HT)exp(i 2 Iy)exp(-1'1" HT)exp(-1 2 Ix) exp(- -Tl" HT) 

is given by equation #4. Transforming to the interaction 

reference frame we have 

I •I 
U(6T) = exp(i6wIZT)exp(iA(Izliz2 - 13 

2
)T)exp(i6wIYT) 

I1·I2 I1·I2 
exp (iA (Iyl ry 2 - 3 ) T) exp (i26wlx T) exp (i2A (Ixl rx 2 - 3 ) T) 

I ·I 
exp(i6wI T)exp(iA(I 1 r 2 - 1

3 
2)T)exp(i6wI T) y y y z 

Il·I2 
exp ( iA (I z 1Iz2 - 3 ) T) 

Traditionally, the Magnus expansion is applied at this point 

to approximate U(6T): 

( 6 ) ( ' /:,w ( I I ) 6 u T = exp i~ Ix + 2 + Y T 

#5 

#6 

And we obtain the result originally obtained by Waugh et al. (3). 

Equation #6 is valid when AT <<l. However, equation #5 can 

be sirnplif ied further before applying the Magnus expansion, 
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exp ( iAizl Iz2 T ) = cos (A4T) + i4 Iz1Iz2 sin (A4T) 

and = 

Thus the exact form of the time development operator is 

U(6T) = exp(i6wI 2T)exp(i6wIY(cos(A;J - i4 I 21 r 22sin(A;J 

exp(i6wix2T)exp(i6wIY(cos(A;J + i4 I 21 r 22 sin(A;J ) 

exp(i6wI T) 
z 

This sirnplif ication procedure has the same effect as 

transforming the time development operator to a new 

interaction reference frame dictated by the dipole pair 

interaction in each of .the inter-pulse intervals. This new 

reference frame meets the cyclic and periodic conditions 

previously discussed. Now, applying the Magnus expansion: 

#7 

Equation #7 is valid provided6wT<<l. The difference between 

equation #6 and equation #7 is that the average hamiltonian 

in equation #6 was calculated in the interaction reference 

frame dictated by the radio frequency pulses while the 

average hamiltonian in equation #7 was calculated in the 

interaction reference frame dictated by both the radio 
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frequency pulses and the dipolar-pair interaction. Because 

the dipolar hamiltonian is generally larger than the 

resonance off set hamiltonian, equation #7 is more accurate 

than equation #6. At t = N6T, all reference frames are 

coincident. 

The exponent in equation #6 is the chemical shift 

scaling factor currently used for the 4-pulse cycle and is 

independent of the dipolar interaction. However, the more 

accurate chemical shift scaling factor given by equation #7 

is dipolar interaction dependent. For the 4-pulse cycle, a 

liquid sample has a different chemical shift scaling factor 

than a system of rigid dipole pairs, even though the dipolar 

broadening is successfully removed. 

The 8-pulse cycle (Figure 1) is obtained by putting two 

4-pulse cycles together and replacing the x pulse with a -x 

pulse, and vice-versa, in the second 4-pulse cycle. Thus, 

the traditionally calculated time development operator is 

U(l2NT) = exp(i 6w (I +I )12NT 
3 x z 

Equation #8 is valid when AT <<l. The exact time 

development operator in the dipolar pair-toggling 

interaction frame is 

U(l2T) = exp(i6wizT)exp(-i6wIYT(cos(A;J - i4Izlrz 2sin[A;J )) 
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exp ( i6ulIX2 T) exp ( -i6wIY T (cos ( A2T) + i4Iz1Iz2 sin ( A2T J ) ) 

exp(i6wI 22T)exp( i6wIYT(cos(A;) - i4I 21 r 22 sin(~TJ)) 
exp(i6wix2T)exp( i6wIYT(cos(A;) + i4r 21 r 22 sin(A;J)) 

exp(i6wI T) z 

Applying the Magnus expansion at this point yields 

U(l2NT) =exp( i 6w (I +I )12NT) 
3 x z #9 

Equation #9 is valid when 6wT<<l. There is no difference 

between equations #8 and #9. The chemical shift scaling 

factor is invariant with respect to the dipolar 

hamiltonian. 

I have thus shown that by dealing with the intra-pair 

interaction explicitly by going to the dipolar pair-radio-

frequency pulse (toggling) interaction reference frame, it 

is possible to calculate the time development operator to 

0th order more accurately than using the traditional method 

to 2nd order. I shall now apply the dipolar pair-toggling 

reference frame concept to non-isolated proton pairs. 

NON-ISOLATED PROTON PAIRS 

Proton-proton pairs may be considered isolated as in 
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the previous section if the inter-pair dipolar interaction 

is small compared with the desired resolution of the 

chemical shift spectrum, which is typically on the order of 

50 Hz, depending on the size of H0 • In general, the 

inter-pair dipolar interaction is large compared with the 

chemical shift and must be included in the hamiltonian. · 

I: ( 
Ii. Ii+l 

ilw.I . -11 A. (I .I ·+l - 3 1 zi i zi zi 
#10 

i=l,3,5 

L .:.- _ _ I . · I . I . +l • I . ) 
--/ i J 1 J 

+ [B .. '{I .I . - 3 ) + Bi.+lJ' (Iz;+lI'7J. - 3 }] 
j i+l 1J Z1 ZJ -'- ~ 

The dipolar hamiltonian in equation 110 is a pairwise sum of 

all of the dipole-dipole interactions in the solid but is 

written in terms of the intra-pair dipolar interactions (of 

strength Ai) and the inter-pair dipolar interactions (of 

strength Bi ) • For a system of isolated dipolar pairs, B =O 

and equation tlO is equivalent to equation #4. Equation tlO 

is also valid for a general system of coupled dipoles not 

paired. In this case, there is no distinction between the 

magnitudes of A and B • 

For this more complex hamiltonian, the time development 

operator at (61) for the 4-pulse cycle with delta function 
-pulses in the interaction reference frame of the pulses is 

-i 
exp (fl Hz T) 
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#11 

where k is either x, y, or z. If the Magnus expansion is 

used at this stage, then we have 

t:.w. 
U(6NT) =exp{ i """-31 (I. +I. +I .)6NT) L.....i Xl. Zl. y1 

i 

However, equation tll can be simplified further by 

transforming to the interaction reference frame dictated by 

the intra-pair dipolar interaction as discussed in the 

previous section. In this reference frame, the harniltonian 

is given by 

time hamiltonian 

0 - T Hz 

2T 
-1 H uz T - u z y 

2T 3T u H -1 - ux x x 

3T - 4T Hx 

4T ST 
-1 

Hy ux - - u x 

ST 6T uz Hz 
-1 - uz 
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+ I ·1 l.~l. l)t) 
"'""' ( l . i+l)t)exp(iA. (lkJ.lkJ·+1- J 3J+ .i.-J exp(iAi Iki ki+l- 1 3 J 

1=1, 3 ••. 
j> i+l 

l l ·1· l.·1. 1) 
( · ')+B {I l . - 1 J+ 

Bij Ikiikj- 13 J i,j+l ki kJ+l 3 

"l l. l"l.+1)1 l. ·) + B (I I . - 1+ J 
Bi+l,j(lki+llkj- 1+~ J i+l,j+l ki+l kJ+l 3 

I ·I r.·I. 1 i i+l . J J+ 
exp(-iAi(Ikirki+i- 3 )t)exp(-1Aj(Ikjrkj+l- 3 )t} 

[
) r.·r.+l ] 

Uk := exp 4 iA i ( Ik i Ik i + 1 1 3 1 ) T 
l 

t is measured from the beginning of each time interval. 

H can be seen to be time dependent at all times. 
I 

Provided a . T << l , the Magnus expansion can be used to 
1] 

calculate the time independent average hamiltonian. The 

general expression for the 0th order term in B. . and llw for 
1] 

the 4-pulse cycle is given in Table l. The first term in 

Table l is due to the resonance offset hamiltonian. The 

analogous term for the 8-pulse cycle is given in Table l 

also. Note that even for the 8-...Pulse cycle, the resonance 

offset hamiltonian is a function of the intra-pair dipolar 

interaction. 
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The second term in Table 1 is the residual dipolar 

hamiltonian, which is the same for both the 4-pulse and 

8-pulse cycles. The intra-pair dipolar interaction (Ai) is 

zero to all orders but the 0th order inter-pair dipolar 

interaction is a function of A (a .. ,b .. , etc.=f(A·,A·)) .. 
lJ lJ l J 

This residual dipolar hamiltonian is anisotropic in spin 

space; that is, it commutes with 1y but not ~ or 1z • Of 

course, alternative 8-pulse cycles can be constructed to 

commute with I or I by properly choosing the phases of x z 

the radio-frequency pulses. The Burum-Rhim 24 pulse cycle 

(2) {Figure 1) is composed of three 8-pulse cycles, one 

which commutes with Ix' another with 1y' and the third with 

I • The factor by which the inter-dipolar hamiltonian for 
z 

the 24-pulse cycle is scaled is the average of the factors 

for the 3 different·8-pulse cycles. Thus, the 24-pulse 

cycle has an average hamiltonian which is isotropic in spin 

space, to 0th order in B (see Table 1). 

FINITE WIDTH PULSES 

An important aspect of multiple-pulse NMR which 

heretofore has been neglected in this treatise is the effect 

of finite width pulses. I will now show that the effect of 

finite width pulses can be treated ex ~tly for the case of 

isolated pairs of identical spin 1/2 nuclei, no matter how 
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large the dipolar interaction is and including non-negligble 

double quantum effects. 

In general, the time development operator for a 

multiple pulse cycle can be written in the form of equation 

i2, where the sub-intervals are defined as the time 

intervals between pulses and the time intervals during the 

pulses. In the rotating frame, the respective hamiltonians 

are 
Il·I2) -H = LiwI + A(Izl 1 z2 -

f z 3 11 

-H = LiwI + A(I 
1

1 
2

- 1 1° 1 2) + wlik ( k=X I -X f YI -y) 
~ z z z 3 

h 

and the respective time development operators for the 

sub-intervals are 

UF ( t. It. 1) 
l i-

For the 4-pulse cycle 

U(6 ) = UF(6T,5T+ t /2)U (ST+t /2,ST-t /2)U (ST-t /2,4T+t /2) w px w w F w w 

U -(4T+t /2,4T-t /2)U (4T-t /2,2T+t /2)U (2T+t /2,2T-t /2) PY w w F w w py w w 

UF(2T-tw/2, T+t /2)U -(T+t /2,T-t /2)U (T-t /2,0) 
w px w w F w 

where t is the pulse width and T is the pulse spacing. It 
w 

is well known that a system of isolated pairs of identical 

spin 1/2 nuclei which forms a three level system so that H , 
F 
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Hpk , U F , and Upk can be expressed as 3 X 3 ma tr ices. With 

the basis set !aa>, 12llas> + Isa>), and lss>, 

A/6+6w 0 0 A/6+6w W1 //2 
0 l 

HF = 0 -A/3 0 H = W1 j/2 -A/3 w'; 12J 
~ 

11 
0 0 A/6-l:iw 

h 0 W1/v'2 A/6-6w 

exp(·-i(~l:iw) (t'-t")) 0 0 

UF ( t I 't II) 0 exp(-iC~) (t'-t")) 0 3 

0 0 

-i 
exp (h Al ( t I -t")) 

u (t' t") 
-1 -i = T 0 exp (h A2 px ' 

0 0 

;\ l 0 0 
-1 

T H T = o· ;\ 2 0 px 
0 0 ;\ 3 

where T is the unitary transformation 

and \, ~, and ;\ 3 
are the eigenvalues 

6w =O, 

u ( t ' t " ) = exp ( - iA ( t ' - t" ) ) [ : : YaS] 
PX I 12 

y s 

exp(-i(~-6w) (t'-t")) 

0 0 

(t'-t")) 0 T 

-i 
exp (h ;\3 (t'-t")J 

that diagonalizes Hpk 

of H • In the event 
pk 

iA(t'-t") iA 
a= ~[c.:os(X) + X sin(X) + exp( 4 (t'-t"))] 
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y = a - exp ( i: ( t ' - t" ) ) iw (t'-t") 
B = 1 sin(X) 

12 x 
A o = cos(X) - 4X sin(X) 

Note that U is an exact expression for the time 
px 

development operator of a radio-frequency pulse and includ~s 

all double quantum effects. Thus calculating U(6T) exactly 

for the 4-pulse cycle from equation #12 is a matter of matrix 

multiplication. Multiple pulse cycles which have more 

pulses are handled in the same manner but there are more 

matrices to be multiplied. 

The on-resonance time development operators for an 

isolated spin 1/2 system using the 4-pulse and 8-pulse 

cycles with finite width pulses are given in Table 2. 

Ideally, the time development operator should be the unity 

operator at the end of the pulse cycle. The resolution of 

the pulse cycles is limited by the broadening expressed in 

the time development operators given in Table 2. 

In general, A < w1 and the magnitude of the broadening 

is governed by the spin function which has the lowest order 

term in A/w1 . For the 4-pulse cycle, there are two terms 

which are 1st order in A/w1 , and to 2nd order, the time 

development operator is 
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A AT U(6NT) = exp(4i[~- cos(~2 ) 
4 1 + [4~J TI . (AT)] - sin -4 2 

A is the dipolar interaction, T is the pulse spacing, w1 is 

the pulse strength tw is the pulse width, and tw w1 = TI/2 • 

Note that as T increases, the broadening due to finite 

width pulses decreases until 

AT A TI . (AT) 
cos(~2 ) = - ~~sin """2 16w

1 

at which point the time development operator is the unity 

operator to second order in A/w1 • 

The exact time development operator for the 4-pulse 

cycle given in Table 2 can be compared with the results of 

an average hamiltonian treatment of the finite width pulse 

problem. The 0th order dipolar term in the average 

hamiltonian is (12) 

H(O) = - ~A t (I (I +I ) +I (I + I
21

)) 
D 6TIT w yl x2 z2 y2 xl 

The 1st order term is O. Accordingly U(6T) =exp[-~ HD6T] 

which is precisely the expression 113 when T= O. 

For the 8-pulse cycle, there are three terms from Table 

2 which are 2nd order in A/w 1 in the time development 

operator, 
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and for the 24-pulse cycle, there three terms from Table 2 

which are 2nd order in A/w1 in the time development operator 

U(36NT) = exp(-4i[4~J
2

sin[AT){Ix1Iz2 + Iz1Ix2 + 

1xl1y2 + 1yl 1x2 + 1yl1 z2 + 1zl1y2}N) 

Note that in both cases, the 2nd order term is ~o when AT<< 

1 and increases when AT increases. The 0th and lst order 

dipolar terms in the average hamiltonian (11) are both O for 

finite width pulses which is consistent with the exact time 

development operator when AT <<l. Also, when sin (AT) =O, the 

time development operator is the unity operator. 

DISCUSSION 

The utility of the time development operators derived 

in the previous section is in characterizing multiple pulse 

cycles for systems of strongly coupled spin 1/2 

dipolar-pairs, such as rigid H
2

0 and CH
2

groups. This 

treatment is equally valid for weakly coupled spin 1/2 

dipolar-pairs, thus all spin 1/2 systems, but has no real 

advantage over the time development operators calculated in 

the toggling reference frame discussed elsewhere (8-12}. 

Thus this discussion will be limited to the case of strongly 
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coupled dipolar pairs. For such cases, the time development 

operators calculated in the dipolar pair-toggling reference 

frame point out some limits in resolution for multiple pulse 

schemes due to the strongly coupled dipolar-pairs. These 

limits fall into four categories; residual dipolar 

broadening for ideal pulse cycles, changes in the intercept 

and slope of the chemical shift scaling factor curve as a 

function of the dipolar coupling, finite pulse-width 

effects, and pulse errors. I will consider the 4 pulse 

cycle, 8-pulse cycle, and the BR-24 pulse cycle, since they 

are representative of three generations of homonuclear 

decoupling multiple pulse cycles. 

First of all, to get a feeling for the magnitude of the 

residual dipolar broadening, consider the following average 

hamiltonian for the simplified case of B .. =B. ·+i=B. 1 .=B·+i·+i 
1J 1J 1+ J 1 J 

when the pulses are perfect delta-functions: 

= ~ L (4B .. ) [a". (I .+I ·+i> (I .+I ·+i> 
'=l 3 5 1J 1J y1 y~ YJ YJ 
1 , , ••• 

j odd > i a! . l 
- .2.1 3 (Ii+Ii+l). (Ij+Ij+l) 

#14 

-
1
3& B . . d . . , \( (I. • I . ) (I . +l • I . +l) + (I . • I . +l} (I. +l • I . ) ) 

1J 1) 1 J 1 J 1 J 1 J 

- 32 
-3 B .. d ! . (F + F ) (I . + I . +l) (I . + I . +l) 

1J 1J x z y1 y1 YJ YJ 



where F 
x 

8-pulse: 
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=I .I . 1 r .I . l xi xi+ XJ XJ+ 
1 A A. 

aij = 3 cos(~)cos(-t-) 

a!. 
iJ 

. [(A.+A.)T/2) = sin_ i J _ 
(A. + A.) T 

i J 

+ 

- 1 

. ((A.-A.)T/2~ 
sin_ i J J 

(A. - A.) T 
i J 

For the 4-pulse and 8-pulse cycles, the first two · 

- 1 

terms in equation 14 with coefficients a and a• resemble 
ij ij 

closely the dipolar hamiltonian for a spin 1 nucleus except 

that the residual dipolar hamiltonian commutes with I 
y 

instead of Iz and the ratio a. · : a•· · iJ iJ is not quite unity. 

Thus, if Lw. = Lw. 1 = Lw. = Lwj+l and the magnetization is i i+ J 

along y, these terms do not contribute to the linewidth 

if the magnetization is along x or z, the a. . term does 
iJ 

contribute to the linewidth which is consistent with the 

but 

fact that the experimental linewidths are broader for y 

pre-pulses than for x pre-pulses. Also, the dij and d'ij 

terms in equation il4 do not commute with either Ix' IY, or 

I and thus contribute to the linewidth. On the other hand, 
z 

for the 24-pulse cycle, the average harniltonian has fewer 

terms and is completely isotropic in spin space. The only 

term which does not commute with either Ix' Iy' or I 2 is the 

d term in equation il4. 
ij 

The 2nd and 4th terms in equation il are dot product 

terms which are like some kind of residual scalar coupling. 

These terms, which are common to all three pu~se cycles, 
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commute with I , I , and I and thus contribute to the 
x y z 

linewidth only in the event that the chemical shifts for the 

i, i+l, j, and j+l nuclei are not the same. 

Thus in general, the coefficients a .. , a' .. ,and d .. in 
1] lJ lJ 

equation #14 determine the magnitude of the residual dipolar 

interaction provided B .. = B = B 
lJ ij+l i+lj 

= B • Figure 
i+lj+l 

and d .. as a function of 
lJ 

Ai/ (Ai +Aj) assuming 2 sh ow s a , a ' . . , 
lJ lJ 

for both the 8-pulse and 24-pulse cycles (A.+ A.)T=0.64 
l J 

that 

(the 4-pulse cycle is the same as the 8-pulse cycle). 

Figure 3 shows a .. , a' .. , and d .. as a function of A
1
. 

lJ lJ lJ 
assuming A.=A .• The a .. 'sand d .. 's for the 24-pulse cycle 

l J lJ lJ 
are an order of magnitude smaller than a .. 'sand d .. 's for 

lJ lJ 
the 8-pulse cycle in all cases. Note that d ~O when A.= O 

lJ l 
irrespective of the size of A. and if A. +A.= a constant, d .. 

J l J lJ 
is a maximum when A. =A. (see Figure 2) • Thus the largest 

residual di polar 

not necessarily 

l J 
broadening for the i,i+l spin 1/2 pair does 

occur when A. is a maximum. 
l 

This is due to 

the fact that the residual dipolar interactions given in 

equation #14 are due to a 4-body interaction and are 

subsequently a function of the environment of all four 

spins. The dipolar broadening experienced by one spin in a 

quartet of spins is the same for all four spins. 

Note that one of the consequences of the fact that the 
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residual dipolar interaction for the 24-pulse cycle is 

isotropic in spin space and is invariant under a 9a8 rotation 

about x, y, or z, is that any •super cycle" based on any 

combination of phase alternated 4-pulse cycles will do no 

better at removing dipolar interactions than the 24-pulse 

cycle.The d .. term in equation #14 can be reduced by second 
lJ 

averaging (10,12) or sample spinning (14,15), but it will 

not be completely eliminated. Also, the a .. term is a dot 
lJ 

product and is invariant under any rotation so it will 

always be present. 

Another factor which may limit the resolution is a 

multiple pulse experiment is the functional dependence of 

the chemical shift scaling factor on the strength of the 

intra-pair dipolar interaction (A). This factor is 

potentially serious since the chemical shift scaling factor 

in a multiple pulse experiment usually is determined 

experimentally with a convenient liquid sample (A=O) with a 

known chemical shift and then the chemical shift in the 

solid sample is measured relative to this chemical shift 

scaling factor. 

The hamiltonian in question for perfect delta function 

pulses is the term in Table 1. All three multiple pulse 

cycles have error terms of the form 
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(6wi - 6wi+l) 
(I . - 1 zi'+l) 2./ Zl 

l 

. r Ai Tl 
~==-tr-
(A~ T) - 1 

Essentially, this term changes the intercept of the chemical 

shift scaling factor curve ( u 
1 

vs u b ) only in the · 
rea o s. 

event that the chemical shifts of the i and i+l nuclei are 

different from each other, and is significant if A is 

large. For example, if A=80 kHz, T =4.0 , then this term is 

0.073 (6 wi-L'iwi+l) (I .-I ·+l). 
2 Zl Zl 

Additionally, the 4-pulse cycle has an error term of 

the form 

(
A. Tl 

(Iyi + Iyi+l) (1 - cos + ) 
which changes the slope of the chemical shift scaling factor 

curve. (i.e. the error is offset frequency dependent). 

For example , if A=57 kHz, T = 4.0 , the error is 

I y 
Due to second averaging, the actual change in the slope of 

the chemical shift scaling factor is 8%. For large values 

of 6w this error is quite significant. It should be noted 

that neither of these error terms is responsible for line 

broadening but actually shift the resonant frequencies as a 

function of A. 
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The third factor that can limit the resolution in a 

multiple pulse experiment is the residual intra-pair dipolar 

broadening due to finite pulse widths. The expressions 

which describe this broadening for the 4-pulse and the 

8-pulse cycles are complex functions of A,T,w 1 and tw(see 

Table 2). But, there is one factor, F, that is common to 

all spin operator terms in the time development operators 

for both the 4-pulse and 8-pulse cycles. 

F ~ 2i [cos(xtw)sin[A(T -
2
tw/

2
)] + 4~ sin(xtw)cos[A(T 

x = I wf + (~) 2 

Additionally, there is another factor, G, common to all spin 

operator terms for the 8-pulse cycle. 

G ~ 2[ cos(xtw)cosr(T: tw/
2

)] - 4~ sin(xtw)sin[A(T 
2

- tw/
2)]l 

In the limiting case of AT<<l, F and G are the same common 

factors calculated to 1st order in A using standard average 

hamiltonian theory (10,12). 

F(l)= iA(T-tw/2) cos(w1tw) + sin(w1tw) 

( W l ( 2 T -tW) ) 

Note that for given values of and w1 and T, and an 

arbitrarily large value of A, there is a unique value of tw 

for which F=O and an unique value of t for which G=O. This 
w 

means that we can set the pulse width at a certain value,t
0

, 
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which has the effect of completely and exactly 

eliminating the intra-pair dipolar interactions. However, 

ta is a function of both A and w1 , so that in general there 

is no unique value of t for the entire sample due to 

different values of A in powders and different values of 

throughout the sample due to radio-frequency inhomogeneity. 

Thus, it is important to know the residual dipolar broaden-

ing as a function of radio-frequency field strength, w1 

The best way to see what the residual intra-pair 

dipolar broadening is as a function of w1 near the point 

t w = 'IT /2 is to calculate the coefficients of the spin 
w 1 

operator terms from Table 2 for specific values of A, t , 
w 

and T. For example, consider a proton resonance experiment 

with A=40 kHz, tw =l. 5JJ s, and T =4. 0 JJ s. For this case, the 

Ix I Y + 1y 1x and ·1x 12 + 12 1x terms dominate the 

residual dipolar broadening for the 4-pulse cycle and the 

121 122 - 1xi Ix2 and Ix I z + I z Ix terms dominate the 

residual dipolar broadening for the 8 pulse cycle so we need 

to consider only these terms. Accordingly, 

4-pulse: 

U(6NT) = exp (F { (I I + I I ) + (I I + I I ) } N ) 
x y y x z y y z 

8-pulse: 
U(l2NT) = exp(FG{ 2I 

1
1 

2
-21 

1
1 

2
+ (I I + I I )}N 

z z x x x z z x 

Figures 4a and 4b show the coefficients of the spin 

#15 
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operator terms (F and FG) as a function of flip angle, S= 

w t with T =4.0µs, w =166 kHz, and with A=40 kHz and 
1 w 1 

A=80 kHz respectively. The qualitative behavior of the 

coefficients as a function of tw is the same as the 

coefficientscalculated using standard average hamiltonian 

theory but the zero crossings occur at different flip 

angles. The "standard" zero crossings, which are 

independent of A, are marked with an X in Figure 4. 

Finite pulse width effects can be estimated for other 

multiple pulse cycles which are based on the 8-pulse cycle 

for the experimental conditions given above by using 

equation #15. Thus we can approximate the time development 

operator for the 24-pulse cycle as 

U(36NT) = exp[FG{(I I +I I }+(I I +I I )+(I I +I I ) }NJ x z z x x y y x y z z y 

Comparing equations #15 and #16, it is evident that the 

24-pulse cycle is no better at reducing the residual dipolar 

broadening due to finite width pulses than the 8-pulse 

cycle. However, it is possible to construct a multiple 

pulse cycle which is better at reducing the residual dipolar 

broadening due to finite pulse widths without losing the 

benefits of the 24-pulse cycle. We can accomplish this by 

replacing the 8-pulse cycle as the building block for the 

24-pulse cycle with a 16-pulse cycle consisting of two phase 
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altered 8-pulse cycles (i.e. interchange y and -y pulses in 

the second 8-pulse cycle) • For the 16 pulse cycle we have 

The resulting 48 pulse cycle (x,y,-y,-x,-x,y,-y,x,x,-y,y;-x, 

-x,-y,y,x,y,x,-x,-y,-y,x,-x,y,y,-x,x,-y,-y,-x, y,x,-x,-y,-y, 

x,-x,y,y,-x,x,-y,-y,-x,x,y,x,y) will have a time development 

operator which contains terms of the order F G 
4

A and F G 
U.ll 

cos(W1tw) which is an order of magnitude better than the 

24-pulse cycle for the conditions A=40 kHz,T =4.Qµs, 

w1=166.7 kHz, tw=l.Sµs. The averaged resonance offset 

hamiltonian is along the (1,1,1) direction but is severely 

scaled, by approximately l~/9; thus other broadening 

mechanisms become relatively larger for the 48-pulse cycle 

than the 24-pulse cycle. 

The final factor that can limit the resolution in a 

multiple pulse experiment is pulse imperfections. Table 3 

summerizes the 0th order pulse error hamiltonians and the 

1st order coupling between resonance offset and the pulse 

imperfections calculated in the dipolar-pair-toggling 

reference frame for the 4-pulse and 8-pulse cycles. The 

main difference between the terms in Table 3 and previous 

pulse error calculations (11) is that the terms in Table 3 

include the complete intra-pair dipolar coupling with the 
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pulse imperfections. Note that for the 8-pulse cycle, there 

is no 0th order radio-frequency inhomogeneity term and that 

both the 0th order pulse length and phase error terms become 

smaller as A becomes larger. The 0th order phase transient 

term is independent of A • 

The remainder of Table 3 shows the dependence of the 

1st order resonance offset-pulse imperfection couplings on 

A. For A T1< 1, this dependence has the effect of adding 

new constraints to a well tuned spectrometer, such as 6y+ 

8-- 28 =O for the 8-pulse cycle. However, due to second 
y x 

averaging, many of the added terms have no adverse effect on 

the multiple pulse cycle. For example, the resonance 

offset-phase errors for the 8-pulse cycle are a function of 

A but are completely second averaged provided ¢!<< 1, and, 

the resonance offset-phase transient errors actually are 

attenuated with increasing A • Also, the most serious pulse 

imperfection problem, that of resonance offset-radio-

frequency homogeneity couplin~ remains unaffected by the 

size of A • 

CONCLUSIONS 

Average harniltonian theory can be extended to describe 

multiple pulse cycles in coupled dipole pair systems where 
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the intra-pair dipolar interaction is arbitrarily large by 

applying the Magnus expansion in the dipolar pair-toggling 

reference frame. The 0th order average dipolar hamiltonian 

calculated in this reference frame for the 4-, 8-, and 

24-pulse cycles is a function of the inter-pair dipolar 

interactions and in general is non zero, unlike the average 

hamiltonian calculated in the toggling reference frame which 

is zero to second order. 

The resultant 0th order term for the residual dipolar 

interaction in the 24-pulse cycle is isotropic in spin space 

and invariant under 90° rotations about the x, y, or z axis, 

indicating that the residual dipolar interaction cannot be 

reduced further by any multiple pulse cycle based on the 

4-pulse cycle. Also, the residual dipolar interaction is a 

sum of 4 body interaction and thus the dipolar broadening is 

governed by the environment (i.e. geometry) of all 4 

interacting spins. 

Finite pulse width calculations for the 4- and 8-pulse 

cycles in a system of isolated pairs of identical spin 1/2 

nuclei show that the intra-pair dipolar interaction is not 

completely eliminated for n/2 pulses as in the delta 

function case. However, an arbitrarily large intra-pair 

dipolar interaction can be completely and exactly eliminated 
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by choosing the proper flip angle, which is a function of 

the dipolar interaction, pulse width, and pulse spacing. 
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Table 1. 

The 0th order average dipolar and resonance offset 

hamiltonians calculated in the dipolar pair-toggling 

reference frame for the 4- 8- and 24- pulse cycles. Perfect 

delta function pulses were assumed. The intra-pair and 

inter-pair dipolar interactions are symbolized by A and B 

respectively. 
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TABLE l 

-CO) ...CO) + _ (0) 
H "' H t:.w H dipolar 

idi?pl = _61"' Bl .. (a .. (I .+I . l) (I .+I '+1) ~ L..... l.J iJ yi yi+ YJ YJ 
i=l,3,5 .. . 
j=3,5,7 ... j>i 

B2ij (bij(Iyi+Iyi+l) (Iyj-Iyj+l) 

-2 (F -F +F ) ) x y z 

-~Jij fij((Ii·Ij-2Iyilyj) (Ii+l·Ij+l) + (Ii+l·Ij-2Iyi+llyj) (Ii·Ij+l>) 

- 2(F -F +F )) .x y z 

F = I ·I · iI I x - xi xi+ xj xj+l 
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4-pulse: 

a-pulse: 

24-pulse: 

4- and 8-pulse: 

a' .. = 
l.) 

A.T+A.T 
sin( 1 J 

2 
(A. + A.}T 

l. J 

A.T-A.T 
+ sin( 1 

2 J ) 

(Ai - Aj)T 
-l 

9A~ 
b..... l:: 

~ A.T A.T 
2sin(T)CX>S(+) - sin(+) l.J A. (9A~ - A~)T 

J l. J 

AiT A.T 
l.8Ai sin <yl CX>S <+> b!. II: 

l.J (9A~ - A~} T 
l. J 



9 A~ 
J 

cij "" 2 2 
A. (9A. - A.)T 

l. J l. 

A.T A.L 

c' '"' l~sin(+)a:>s(~ 
ij (9A~ - A~)T 

J l. 

A.T - A.L 
sin( l. J ) 

2 
d .. = ) 

l.J 3(Ai - Aj T 

24-pulse: 
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A.T+A.L 
sin( i 

2 
J ) 

3(Ai + Aj)T 

A.T + A.T A.T - A.T 
a' .. = - ~ +sin( i 2 J ) + sin( i 2 J ) 

l.J 3 

18A~ 
b' = l. 

ij A. (9A~ - A~)T 
J l. J 

IBA~ 
c' • J 
ij A. (9A~ - A~)T 

l. J l. 

e .. = 0 
l.J 

A.L A.T 
CX>S (+) CX>S (+) 

3 
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Table 2. 

The exact time development operator for the 4- and 8- pulse 

cycles evaluated at the end of the cycle for the case of 

finite width pulses. Isolated proton pairs of arbitrary 

coupling were assumed. Any deviation from the unity 

operator represents residual dipolar broadening. 



4-pulse: a"" l + F(F - 6 3)/2 

b ""F(6* + 6y + 6 3)/2 

c., F(y - 1)6/2 

d=O 

e = O 

f = F{86) 

g = F{l - )') 

h = F8{1 - 62
) 
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TABLE 2 

8-pulse: a= l + FG(F6 5 + F~6 2 + F6* + 2F6 - 62 )/2 

b = F G(l + F 2 (1 + 6 2 + 6") - F6 3 + 26 2 )/2 

c = F G((y - l) (1 + F(26 + 6'))/2 

d = F2G 8(1 + 62 +.6") 

e ""F G(y - 1)62 

f = - F G 8 (F6 3 
- 1) 

9 = 0 

h=O 

+ h(I I + I I ) y z z y 



106 

(.j 2 ,A2 .A t 

J 2 .A 2 A t A sin w
1 

+ \7'
4

l t )sinr.,;-
2 

Ct -
2
w )) 

G = 2 CX>S ( W + \7) t ) CX>S (- ( T - W )) - '""7 
1 4 w 2 2 f .A2 

4VW~ + l4) 

y = oos <Jw2 + ~) 2 t J - i A sin( /w21 + (~4) 2 tL, ) 
1 4 w l6w2 + A2 f' .. 

1 

tw = pulse len;t:h 

T = pulse spacing 
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Table 3. 

0th order pulse error hamiltonians calculated in the dipolar 

pair-toggling reference frame. 

0 . pulse length error , 

¢ ; pulse phase error 

E ; radio-frequency inhomogeneity 

T . phase transient error: , 

t 
w 

Jl = f wT(t){sin~t - cosw
1 t ) dt 

0 t 
w 

J2 = f wT(t} (sin~ t + cos~ t )dt 

0 
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4-p.tl.se: 

- (0) 
H ¢ co 

8-pulse: 

- (0) 
H 6 = 

t ~ (Izi + 1zi+l) (¢x - cp_x) + (Ixi + 1xi+l) (cjiy - cjl_YJ 

i~,3 .. 
AiT 

+CDS(~) (Iyi + Iyi+l> (cjl_x - cjlx + cjl-y - cjly) 

A.T 

- 2sin<+> (Ixi1zi+l + 1zi1xi+l> (cjl_x - 4iy - cjl-y + cjlx) 

2 " A.T 
t L.J cos(_;_) (I . + I ·+l> (6 - 6 ) 

C . l 3 
"' Xl. Xl. -X X 

1= , ' •• 

( 

A.T 
2sin( ~ ) 
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1st order resonance offset-pulse imperfection hamiltonians. 

4-pulse cycle: 

1i ... ""' -6
1 

-CI . + I ·+1> Cc + c )cos (~) - (I . + I ·+1> (o + oy)sin (_.-) Cl) t;,w. r 2A.t 2~' 
t;,w-c t-- Z1 Z1 -x X ~ Xl. Xl. -y ~ 

l=l ,3 .. 

- {l) 
H~¢ 

-C1yj.Izi+l + Iziiyi+l> <cy - c-Y)sinCAi•> - (Ixi.Iyi+l + Iyiixi.+l> <c-x - ox)sinCAit) 

A.t A.T 

-cryi + ryi+l> Coy+ o_y>cosc+> - 2crxi.rzi+l + rzirxi.+l> Cc-Y - oy>sinc+> 

_ (1) t;,w. [ A.t A.t 

Heiw:T = .~ T (Ixi. + Ixi.+l>J2 cos<+> - Ciyi + Iyi+l>J2 - 2Ciyiixi.+l + Ixiiyi+l>J1 sin{ ~ ) 

1-1,3.. ' 

+ 4(Izilzi+l - Ixilxi+l)sin(Ait)] 



8-pulse cycle: 

;:r (1) 
""1-6 
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Figure 1. A schematic diagram for the 4-pulse, 8-pulse 

and 24-pulse cycles. 

Figure 2. The coefficients for the reduction in the inter-pair 

dipolar interaction as a function of A. /(A. +A. ) assuming 
1 1 J 

(A. + A.) T = 0 .64 • This corresponds to (A. + A.) = 80 KHz 
1 J 1 J 

With T =4 µ S. When a .. = 1, there is no reduction in the 
1J 

inter-pair interaction for that particular term. 

Figure 3. The coefficients for the reduction in the inter-pair 

dipolar interaction as a function of A assuming A. = A .• 
1 J 

For the condition T = 4 µ s and A= 80 KHz, AT= n /2. 

Figure 4. The broadening due to finite width pulses for the 

4-pulse (F) , 8-pulse (FG} , and 24-pulse (FG} cycles is 

plotted as a function of flip angle for the conditions w = 
1 

2 7T 166 KHz ' T = 4 µ s ' and a) A = 40 KHz and b) A = 80 KHz. 
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Figure 4a. 
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PART II 

The Determination of Pake Doublet Splittings in 

Inhomogeneously Broadened Systems 
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CHAPTER 6 

Introduction to Part II 



119 

It is well known that the NMR spectrum of a pair of 

isolated, identical spin 1/2 nuclei consists of a doublet 

whose splitting (A) is a function the inter-nuclear distance 

(r), the angle (8) between the external magnetic field aDd 

the inter-proton vector, and the gyromagnetic ratio of the 

nucleus (Y) (1): 

A =f h ~-
#1 

Ever since 1948 when Pake first observed dipolar pair 

doublets in a proton magnetic resonance spectrum of the 

water molecules in gypsum and presented equation il, many 

researchers have used NMR spectra to deduce structural 

information about rigid water molecules in crvstalline 

hydrates ( see references 2 and 3 for a review). NMR data 

are in close agreement with the neutron diffraction data (2) 

for cases where neutron diffraction data are available. 

However, in gen~ral, the proton-proton distances determined 

by NMR are longer than the distances determined by neutron 

diffraction: mean values of 1.60 ~ and 1.563 K respectively 

are given in the review by El Saffar. The median difference 

in e is 1.6° • The discrepancy in r between NMR results and 

neutron diffraction results is due to the thermal vibrations 

and librations of the water molecule (4) and due to the fact 

that the averaging processes are different. Neutron 
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diffraction gives the position of each individual proton 

based on the maximum of a distribution of scattering density 

while in a NMR experiment the NMR average of the 

proton-proton distance is given according to equation #1. 

Besides thermal vibration effects, the accuracy of the 

NMR results is determined by the spectral resolution, which 

in turn, is limited by either homogeneous broadening ( such 

as homonuclear dipolar interactions) or inhomogeneous 

broadening (such as heteronuclear dipolar interactions or 

paramagnetic interactions). In the event the spectral 

resolution is limited by homogenous broadening, the spectral 

resolution cannot be improved by spin manipulation. 

However, in the event the spectral resolution is limited by 

heterogeneous broadening , there are techniques, in 

principle, that will improve the resolution in terms of 

measuring A. 

For instance, consider a go 0 T 180° pulse echo 

experiment (5). At time 2T after the go 0 pulse, the 

inhomogeneous interactions will be refocused by the 180° 

pulse. Thus by varying T and recording the echo amplitude 

at 2T, we can observe the frequency A. However, this 

technique requires many experiments {>200) varying T to 

produce 1 spectrum and thus is quite time consuming. A 
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Carr-Purcell sequence (6), which consists of a train of 

refocussing 180° pulses, can be used to provide the 

complete spectrum with 1 experiment, but in general, the 

intra-pair dipolar interaction for a water molecule is 

rather large, on the order of 50 kHz depending on the 

orientation of the proton-proton vector in the external 

magnetic field, so that finite pulse width effects are very 

large and the pulse sequence actually alters the measured 

dipolar frequency. Clearly this is unacceptable. 

Alternatively, we can use double quantum NMR 

techniques to measure the intra-pair dipolar coupling in 

inhomogeneously broadened systems of spin 1/2 pairs. Double 

quantum techniques are well suited for this kind of 

experiment because the double quantum transition probability 

is a strong function of the dipolar coupling, the resonance 

offset (i.e. inhomogeneous interactions), and the intensity 

of the perturbing radio-frequency field (7-9). On the basis 

of this functional dependence, an easy-to-use , two pulse 

double quantum experiment is presented in Chapter 7 which 

provides the intra-pair dipolar interaction directly and 

unambiguously in one experiment. The resolution, as in the 

90°T 180° experiment, is limited by the homogeneous 

broadening. 
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The utility of the two pulse double quantum experiment 

is demonstrated in Chapter 8, where the orientation and 

motional properties of the water molecule in cordierite are 

elucidated by measuring the Pake doublet splittings as a 

function of orientation and temperature. The orientation of 

the water molecule has been the subject of a recent 

controversy (see Chapter 8) and the NMR data provide an 

important piece to the puzzle. 
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CHAPTER 7 

The Determination of Pake Doublet Splittings 

in Inhomogeneously Broadened Systems 

Using Double Quantum NMR 

{Chapter 7 is an article by D.G. Carson and R.W. Vaughan 

to be published in the Journal of Magnetic Resonance.) 
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Multiple quantum transient nutations in NMR were first 

observed in 1975 by Hanakata et al.(l) and in 1976 by Pines 

et al. (2). Since that time, several pulse techniques have 

been developed to create and detect multiple quantum 

coherence (3-10). These techniques are useful in the 

measurement of the deuterium chemical shift in solids (3), 

in the measurement of multiple quantum relaxation times (4), 

in the measurement of intra-molecular interactions (5,6), in 

proton-deuteron cross polarization (9,10), and the list 

keeps growing. 

Basically, multiple quantum coherence is a 

superposition state involving non-adjacent levels in a 

multi-level spin system (Figure 1). There are a number of 

ways to create multiple quantum coherence; such as with low 

intensity, selective radio-frequency pulses, where the 

multiple quantum transition probability is a function of ow 1 

the resonance offset, and the strength of the pulse (11,12), 

or we can create multiple quantum coherence non-selectively 

with intense radio-frequency pulse schemes (13). In all 

cases, the time scale for inducing multiple quantum 

transitions is governed by ow • Most experiments performed 

to date have been concerned with inducing and monitoring 

multiple quantum coherences. 
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Double quantum NMR techniques are well suited to 

measure the intra-pair dipolar coupling in systems of 

isolated pairs of identical spin 1/2 nuclei which are 

inhomogeneously broadened. This is because the double 

quantum transition probability is a function of the dipol~r 

coupling, the resonance offset, and the intensity of the 

perturbing radio-frequency field (10-13}. However, this 

system poses a problem. In real systems, the dipolar pairs 

are never completely isolated and there is some spin 

communication between the dipolar pairs, thus limiting the 

time scale of any spin manipulation experiment. On the 

other hand, we want to be as selective as possible in 

inducing only double quantum transitions so that the results 

of our experiment will provide the Pake doublet splitting 

unambiguously, which is done on a long time scale. 

The following two pulse experiment solves this problem 

by using a radio-frequency pulse which is approximately the 

same intensity as the intra-pair couping. However, for this 

case, both single and double quantum transitions are induced 

and the approximative method for calculating the transition 

probability will not work (11-13}. 

Consider the two pulse experiment depicted in Figure 1, 
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which is designed to measure the inter-pair dipolar 

interaction (A) in a system of isolated proton pairs which 

is inhomogeneously broadened. The purpose of the double 

quantum pulse (the first pulse in Figure 2) is to 

selectively invert the magnetization of only those spins for 

which 6w = O. At the conclusion of the double quantum 

pulse, there is intensity in all elements of the density 

matrix, to some extent. The off diagonal elements will 

relax and decay to 0 according to T2 processes while the 

diagonal elements <I
2

> will remain unchanged provided T 2 << 

T1• At a time after the double quantum pulse, an intense 

90° pulse is applied, rotating the z magnetization into the 

xy plane where it can be observed. Then during the 

subsequent free induction decay, these spins will evolve 

according to the free precession hamiltonian but they will 
0 be 180 out of phase with the rest of the spins, thus 

providing a direct measurement of A upon Fourier 

transformation. 

What we need to know for this two pulse double quantum 

experiment is the density matrix at time T1 as a function of 

A and 6w. We can start by calculating the time development 

operator , U(t), during radio-frequency irradiation of a 

system of isolated pairs of identical protons in a large 

external magnetic field. U(t) is defined by the equation 
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p(t) = U(t) p(t) U-l(t) #1 

and the equation of motion for the density operator, p (t), 

is 

d P(t) 
dt 

= .k[p(t), H(t)J #2 

The hamiltonian for this system can be written in the 

rotating frame as 

2 w is the strength of the 
1 

w - w 
0 

( w is the Larmor 
0 

radio-frequency irradiation, 6w = 

2 2 frequency) and A= 3y fl(l-3cos e). 
2r 3 

Since H is time independent, we obtain the formal solution 
p 

U(t) = exp(i6w(I 21 +1 22 ) + iA(I 21 r 22 - r 1 ~r 2/3) + iw1 (Ixl + Ix 2)t) 

However, in its present form, U(t) is useful only if A is 

effectively O. This is because only single quantum 

transitions are induced during the pulse and we can use a 

vector representation for the phase coherence of the spins 

(i.e. the magnetization) and the exponential operators are 

simple vector rotation operators. But if A f O, both single 

and double quantum transitions may be induced 

simultaneously. For this reason, a vector representation of 

the phase coherence and exponential operators are no longer 

possible. 
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Accordingly, U(t) is more conveniently written in 

matrix notation. 

u .. (t) i = exp (- - H t) 
lJ h p 

(exp ( - ~A 1 t ) 0 0 

0 
i 

0 = T exp (--A t ) h 2 

0 i 0 exp ( - h A 3 t ) J 

-1 
T 

where T is the transformation that diagonalizes HP and A 1 , 

A2 , and A3 are the eigenvalues of HP. In general, we have to 

solve a cubic equation to obtain the eigenvalues of H for 
p 

this particular system. Thus 

exp ( - _hi t ) = 
p 

r 12 , r l3' r 2 z. are given in Table 1 in terms of Al , ~ 2 , and 

A3 in the eigenbase of the equilibrium hamiltonian ( 11> = 

laa>, IO>= (las>+ lsa>)/i!T, 1-1> = ISS>). IntheeventL'iw= 

0 we have 
1 

rll = r33 = 2 ( cosxt + 

iw1 
rl2 = r32 = -- sin Xt 

/2~ 

which essentially is the 

!~ sin x t + exp ( iA t/ 4 ) ) 

r 13 = r 11 - exp(iAt/4) 

r 22 = cosX t - (iA/4 X) sin Xt 

solution obtained by Brewer and 

Hahn (13). Other closed form solutions exist whenever L'iw 

satisfies the equation 



then Al = AS/4 - A/12 

A = ~( l - S 
2 8 3 
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for any S 

The matrix U .. (t) also may be expressed in terms of· the 
lJ 

fictitious spin 1/2 operators proposed by Vega and Pines (11) or 

wokaun and Ersnt (12). These operators are useful when there are 

transitions induced between only two of the three levels in 

the three level system while the third level remains 

unchanged (i.e. 6w = 0 or 6w =± A/2) In this case, we can 

retain a vector representation for the phase coherence and 

think of spin transitions simply as vector rotations. 

One of the most important experimental parameters is 

the strength of w1 because it controls both the selectivity 

( in6w) and the efficiency of both single and double 

quantum transitions. By efficiency we mean the time 

required to completely invert the magnetization. This is an 

important factor due to the fact that in most samples, 

proton pairs are not completely isolated and we want the 

length of the double quantum pulse to be shorter than the 

time for inter-pair spin diffusion. We can examine the 

efficiency of the double quantum pulse by following <Iz> 

during the pulse. Assuming p(O) = c Iz and 6w = O, 
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(~w = O is the most efficient condition for inducing 

double quantum transitions) and using equations 2 and 3; 

< I z ( t) > = c ( l - ~ ) cos [ { X + A/ 4 ) t ] + 2 4x 

£2 ( l + ~ ) cos [ ( X - A/ 4) t ] 
4x 

If we apply a very selective pulse, w
1 

<< A, then equation 4 

reduces to 

(rz (t))= cos (2 w ~ t /A) 

2 2 and <Iz(t1 )> = - <Iz(O)> when t 1 = (4n/A) (A /8w1 ) • On the 

other hand, if we apply a nonselective, intense pulse, w 1 >> 

A 

(rz (t' )) = cos (w 1 t') cos (At' /4 ) 

(Note that if we only allow w1 t'= n2n where n =any positive 
0 

integer, then the strong pulse case is the same as a 90 t' 
x 

0 

90x pulse sequence (5)) ti = 4n/A for inversion through 

the double quantum transition. 

nonselective intense pulse is more efficient than the weak 

selective pulse. Thus we have a trade-off between eff icency 

and selectivity; the size of w1 must be chosen for each 

case. 

The selectivity of a double quantum pulse can be seen 

graphically in Figure 2 which shows <I (t) > vs t.w /A for 
z 
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specific values of w1 ;A and T1 A (the Figure is presented 

with dimensionless parameters for generality). Here, we 

have neglected relaxation effects. When w <<A, single quantum 
1 

transitions are induced at 6w = ± A/2 and double quantum 

transitions are induced at 6w = O. Note that even when w = 
1 

A/4, we maintain a reasonable amount of selectivity. F~r 

proton pair systems, the fine structure and oscillations 

shown in Figure 2b are smoothed out somewhat due to 

inter-pair dipolar interactions, which generally limits the 

resolution to about 1 KHz or greater. This is actually 

benif icial for the experiment at hand since we are not 

interested in the complicated oscillations but only the 

intra-pair dipolar interaction. 

EXPERIMENTAL RESULTS 

The two pulse double quantum experiment was performed 

on the pulsed NMR spectrometer operating at 270 MHz 

described in Chapter 3. The intensity of the double quantum 

radio-frequency pulse was chosen to be a little less than 

the magnitude as the dipolar coupling ( 1 to 5 gauss) and 

the intense 90°pulse was about 50 gauss. In general, some 

a priori knowledge of the dipolar coupling is necessary to 

set the intensity and duration of the double quantum pulse. 

A can be estimated by the free induction decay linewidth or 
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established by trial and error. For water molecules, we know 

that O < A < 90 KHz. Finite pulse width effects for the 

intense pulse were neglected. All experiments were 

performed on resonance; that is, close to the center of 

gravity of the broad line. 

The sample was a single crystal of cordierite in the 

form of a 4 mm cube. The structure of cordierite is a 

network of stacked rings of alumino-silicates forming 
0 

continuous channels where water molecules reside about 6A 

apart. All of the water molecules have the same 

inter-proton dipolar interaction. 6 A away from the water 

molecules are Fe ions in octohedral symmetry. These 

paramagnetic ions are a source of inhomogeneous broadening 

for the protons (see Chapter s for more details ) • 

The spin 1 nature of the proton pairs in the water 

molecules in cordierite can be seen directly from a double 

quantum echo experiment; the double quantum pulse in 

Figure 1 is an intense pulse, which is highly non-selective 

creating double quantum coherence for all of the spins , 

provided A= O, irrespective of lw. During the time after 

the double quantum pulse, the double quantum coherence 

evolves with the frequency 26w. The intense pulse transfers 

the double quantum coherence into an observable coherence 
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( 1x or 1y ) , and evolves with -l'c.w • Therefore at time = 2T 2 

after the 90° pulse, the coherence is refocussed and we have 

an echo. Note that this echo is not a quadrupolar echo; 

quadrupolar echos at 2T 2 for a spin 1 particle are strictly 

forbidden. The dipolar hamiltonian is not refocussed, but 

since we have a single crystal, all spins are evolving wjth 

the same dipolar frequency. The double quantum echos are 

shown in Figure 3. The double quantum pulse was 10 µ s long 

with an intensity of 15 gauss; T
2 

was 80 JJ s. By changing 

the phase of the double quantum pulse by ¢ , the phase of 

the double quantum echo is changed by 2 ¢ This 

effect can also be seen in Figure 3. 

The result of the two pulse double quantum experiment 

to measure A is shown in Figure 4. The intensity of the 

double quantum pulse is 2 gauss and T 1 = 800 µ s, T 2 = lms. 

Figure 4a shows the Fourier transform of a simple free 

induction decay of the cordierite at an arbitrary 

orientation. The free induction decay was recorded on 

resonance at two orthogonal phases and then a complex 

Fourier transformation was performed. Due to receiver dead 

time, the lineshape may be distorted slightly. Figure 4b 

shows the Fourier transform of a free induction decay at the 

same orientation with the double quantum pre-pulse and 

Figure 4c shows the difference between 4a and 4b. The 
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doublet splitting is 20 KHz (5 gauss). Since the double 

quantum absorption peaks are narrow compared with the dead 

time, a linear phase correction of the spectrum will leave 

the doublet splitting undistorted. 

Figure 5 shows the theoretical results under the same 

experimental conditions using a 20 KHz Lorentzian function 

to model the inhomogeneous broadening and al.KHz broadening 

function to model the homogeneous broadening. The intra-pair 

dipolar frequency was assumed to be 20 KHz. The peaks in 

the theoretical spectrum are narrower than the experimental 

spectrum due to the fact that we have ignored inter-pair 

spin communication during the pulse. Nonetheless, the 

resolution in Figure 4 is more than sufficient to assign a 

Pake doublet splitting. 
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Table 1. The matrix elements for the time development 

matrix of a radio-frequency pulse applied to a system 

of isolated proton pairs (a three level system). 

The matrix elements are a function of the intra-pair 

coupling, the strength of the pulse, the duration of 

the pulse, and the resonance offset. 

r ij 2:, aijk exp (-iAkt) 
k 

+ 

2Cw 1 l
2

(Ak - A/4 - 6w)
2 

a22k = Dk 

4 2 (wl) - 4Cw1 ) (Ak - A/4 - 6w) (Ak + A/4) 

Dk 

4(Ak - A/4 - 6w)
2

(Ak + A/4)
2 

Dk 

f2°Cw1 l 3
(Ak - A/4 - 6w) 

Dk 

2 2(w
1 l (Ak - A/4 - 6w) (Ak + A/4) 

Dk 

2/2 w1 (Ak - A/4 - 6wl
2

(Ak + A/4) - /2 Cw1 )
3

(Ak - A/4 - 6w) 

Dk 
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Figure 1. Above, an energy level diagram for a multi-level 

spin system. Provided ow :f 0, double quantum 

transitions can be induced from between levels 1 and 3 

without perturbing level 2. Below, a schematic diagram 

of a two pulse experiment to measure the Pake doublet 

splitting in an inhomogeneously broadened system of spin 

1/2 pairs. 

Figure 2. <I (t)> during the double quantum pulse is 
z 

plotted as a function of !:i~ for various values of wl/A 

and AT3. • a) w = A/40 and T = 2 TI 8. O/A • Single 
l 

quantum transitions are induced only at !:iw = ± A/2 and 

double quantum transitions are induced only at !:iw = 0. 

b) w1 = A/4 and T = 2 TI0.2/A The single quantum 

transition probability at !:iw = 0 is small but non-zero. 

c) w1 = 2 .SA and T = 2 TI. OB/ A The single quantum 

transition probability is large everywhere. 

Figure 3. Double quantum echos observed using a non­

selective, intense double quantum pulse. When the 

relative phase between the double quantum pulse and 

the intense TI /2 pulse is changed by ct> the phase of 

the double quantum echo changes by 2¢. 
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Figure 4. a) The Fourier transform of a simple free 

induction of rigid water molecules in cordierite. The 

Pake doublets are completely obscured by the 

inhomogeneous broadening. b) The Fourier transform of a 

free induction decay preceded by a double quantum 

pulse. The strength of the pulse was approximately 

A/4. c) A difference spectrum, a) - b). 

Figure 5. A theoretical spectrum corresponding to the 

double quantum experiment in Figure 4b. A 20 KHz 

broadening function was used to model the inhomogeneous 

broadening and a 2 KHz broadening function was used to 

model the homogeneous broadening after the intense 90° 

pulse. 
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CHAPTER 8 

Orientation and Motion of Water Molecules in Cordierite: 

A Proton Nuclear Magnetic Resonance Study 

(Chapter 8 is an article by D.G. Carson, G.R. Rossman, and 

R.W. Vaughan which is to be published in the Physics and 

Chemistry of Minerals.} 
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INTRODUCTION 

The structure of cordier i te, (Mg, Fe)2 Al4 S~ 018 
has been 

refined by Gibbs (1), Cohen et al. (2), and more recently 

by Rochella et al. (3) and Wallace and Wenk (4) among 

others. The structure of cordierite is a network of 

aluminosilicate tetrahedra forming six membered rings joined 

together by four membered rings. The six membered rings are 

stacked to form continuous channels parallel to [001] with 

maximum and minimum diameters of 2. 2 A and 1. 4 A 

respectively. water molecules reside in the channels of 

cordierite as do many other molecules and cations (2,5). 

The effect of the channel water on the crystal structure of 

cordierite has been·discussed (6,7,8), however, the 

orientation of the water molecules in cordierite has been 

interpreted differently in a polarized infrared absorption 

study by Goldman et al. (9), a neutron diffraction study by 

Rochella et al. (3), and a previous NMR study by Tsang and 

Ghose (10). The infrared absorption results indicate that 

there are two types of water in the channels of cordierite; 

one type oriented with its hydrogen-hydrogen vector parallel 

to the channels ,[001], and the other type oriented with its 

hydrogen-hydrogen vector parallel to [010]. The planes of 

both types of water are in the {100) plane. The neutron 
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diffraction results indtcate that there is only one type of 

water with its hydrogen-hydrogen vector tipped 19° away from 

[0011 with the plane of the water molecule inclined by 29° 

from (100). The conclusion of the previous NMR study is 

that there is only one type of water molecule with its 

inter-hydrogen vector parallel to [001]. The purpose of the 

present NMR study was to provide additional data to resolve 

this discrepancy. 

The hydrogen nuclei in water, which behave as an 

isolated pair of spin 1/2 magnetic dipoles, have an NMR 

spectrum consisting of a doublet, termed Pake doublet, with 

a splitting given by 

fiH = lH<l ·- 3cos
2
6) 

2 3 

il 

r 

where µ is the magnetic moment of the nuclei, r is the 

length of the dipole-dipole vector, and e is the angle 
+ 

between the dipole-dipole vector, r, and the magnetic field, 

B0 (11). By measuring the dipolar splitting as a function 

of e, it is possible to calculate accurately the orientation 

of the hydrogen-hydrogen vector with respect to the crystal 

axis. It is also possible to calculate the NMR averaged 

hydrogen-hydrogen distance (12). Many studies of solid 

hydrates have been performed using the Pake doublet 
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splittings; reviews are given by Chidambaram (13) and El 

saffar (14). 

EXPERIMENTAL DETAILS 

The cordierite used in the NMR study is part of the 

same sample used in the polarized inf rared absorption study 

of cordierite by Goldman et al. (9), their sample #3 from 

the Malagasy Republic. Its composition is Na. 02 (Mg1 . 86Fe. 21 ) 

Using cleavage and optic figures 

for orientation, it was fabricated into approximately a 4 mm 

cube with (100),(010), and (001) faces. Orientations of the 

fabricated cube were verified by X-ray alignment 

photographs. 

Several NMR techniques were used to measure the nuclear 

magnetic dipolar interaction given by equation 1. These 

techniques consisted of conventional free induction decays, 

solid echoes (15), and double quantum NMR (16). Basically, 

the Fourier transform of a free induction decay gives the 

Pake splitting in frequency space, but the loss of the first 

5 microseconds of the decay due to receiver recovery 
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slightly distorts the spectrum. To alleviate this problem, 

solid echoes were employed to obtain the same information as 

the free induction decay without distortion, since the echo 

occurs microseconds after the last radio frequency pulse. 

For cases where the Pake doublets were broadened due to ~he 
paramagnetic iron, double quantum NMR was employed in the 63 

kilogauss magnet. Basically, double quantum NMR provides 

the same information about the dipolar interaction as a free 

induction decay but it is more selective in that it induces 

transitions for only a narrow part of the broad line, thus 

providing the Pake doublet splitting. 

The NMR experiments were performed on two 

conventional, pulsed NMR spectrometers operating at 63 

kilogauss (270 MHz proton resonance) and 14 kilogauss (56 

MHz) (described by Vaughan et al. (17)). Experiments were 

performed as a function of temperature and orientation on 

both spectrometers • The double quantum experiments were 

performed on the 63 kilogauss spectrometer as a function of 

orientation. For the low temperature experiments, the 

sample was cooled by cold, dry, nitrogen flowing through the 

sample chamber while the temperature was kept constant to 

within 3° C. The sample was mounted ± 5° on a NMR 

goniometer accurate to within 2° • 
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RESULTS 

Figure la shows the hydrogen spectrum of cordierite 

observed in the 63 kilogauss field at room temperature with 

the channel axis [001] parallel to the external field, 

Two sets of doublets are observed, both with the same 

H • 
0 

splitting of 60 kHz, separated by 22 kHz. The ratio of the 

areas of the two doublets is 3:1. As the crystal is rotated 

about an axis perpendicular to H , either [100] or [0101, 
0 

the doublets become broader and the splitting becomes 

smaller. Figures lb and le show the spectra when the 

crystal is rotated 7° and 90° about [010] respectively. In 

the 14 kilogauss magnet, the doublets were much narrower 

than those in the 63 kilogauss magnet. The spectrum in 

figure ld was observ.ed in the 14 kilogauss field at the same 

orientation as figure la. Only one doublet is observed with 

a splitting of 60 kHz. The line in the center is due to 

impurities arising from the sample holder. As the crystal 

was rotated about an axis perpendicular to H , the doublet 
{:J 

splitting became smaller and the peaks became broader but 

not nearly as severely broadened as at 63 kilogauss. 

In figure la, the shift of the center of gravity of 

the two doublets is -22 kHz at room temperature in the 63 

kilogauss magnet, while at 100 K the shift is -50 kHz as is 
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shown in figure le. The shift is plotted as a function of 

inverse temperature in figure 2. Comparing figures la and 

le, the doublet splitting also increases as the temperature 

decreases. The doublet splitting observed with [001] 

parallel to H0 is plotted as a function of temperature i~ 

figure 3. 

Figure 4 shows typical spectra from the double quantum 

experiments. Figure 4a is the Fourier transform of a free 

induction decay and figure 4b is the result of the double 

quantum experiment at the same orientation as figure 4a. 

Figure 4c, which is figure 4b subtracted from figure 4a, 

shows the Pake doublet. The resolution of figure 4c is 

markedly increased over figure 4a. The doublet splittings 

were observed as the' crystal was rotated about an axis 

perpendicular to H0 along the [100] ,[010], and [001] crystal 

axes and are plotted in figure 5. The maximum splitting was 

observed when [001] was parallel to H
0 

while the minimum 

splitting was observed when [010] was parallel to H0 • The 

observed splitting when [100] was parallel to H0 was 14 kHz 

larger than for [010] parallel H0 • 

DISCUSSION OF RESULTS 
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Figure la contains two sets of doublets with the same 

splitting. The shift of the center of gravity of the less 

intense doublet is due to interaction with paramagnetic 

ions. In cordierite these would be predominantly Fe++ in 

the octahedral site, replacing Mg. Fe++ has 6 valence 

electrons and in octahedral symmetry Fe++ has an electron 

spin of 2. The shift due to such a paramagnetic center is 

( 18) 

6 H s = AHo ,,1 - r3c
3
os

2 e > 'T S(S+l) ~- #2 

where H is the Zeeman field, T is the temperature, S is the 
0 

electronic spin, r is the Fe-hydrogen distance, e is the 

angle between the Fe-hydrogen vector and H0 and A=0.83 

kHz A3 K. The nearest midpoint of the nearest channel to the 

octahedral site is 6.2~. Using this distance with S=2, 

H
0

=63 kilogauss, and 8=90°, which corresponds to the 

orientation where the channels are parallel to~H0 , equation 

2 predicts a shift of -23 kHz for room temperature. This is 

in excellent agreement with the observed splitting of -22 

kHz for the same conditions. Also the experimental shift 

(Figure 2) follows the temperature dependence of equation 2 

(Curie law). This is further confirmation that the low 

intensity doublet arises from the interaction of a 

paramagnetic ion with the water. 
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It is interesting to note that there is only one 

relatively narrow displaced doublet in figure la. This 

means that the water molecule is in a unique site in the 

channel and is not randomly distributed in the channel •. If 

the water molecules were randomly distributed, the displaced 

doublet would be very broad and unresolvable. The next 

nearest channel to the -Octahedral site is 15A away giving 

rise to a 2 kHz effect, which is small and can be 

neglected. The water site one lattice spacing above or 

below the nearest site is 9A away but the geometric factor 

<l-3cos2e> is almost O. However, this site will be 

broadened as the crystal is rotated away from the 

orientation [001] parallel to H • Because there is no 
0 

longer a unique orientation for all the water molecules in 

the channels at orientations other than the channel axis 

parallel to H , these spectra are broadened as in figure 
0 

le. The water molecules are isolated from one another as is 

demonstrated by figures ld and 4c. The line width of the 

doublets in figure 3c is 2 kHz and is due to intermolecular 

dipolar interactions. Based on a second moment analysis of 

the line width, the distance between water molecules is 

approximately SA . 

Equation 1 gives the Pake doublet splitting for an 
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isolated pair of hydrogen nuclei such as an isolated water 

molecule. The doublet splitting is independent of the size 

of the magnetic field and depends only on the geometric term 

<l-3cos2e>/r 3 and the gyromagnetic ratio of the hydrogen 

nucleus, which is an intrinsic property of the hydrogen . 

nucleus. The lack of magnetic field dependence for the 

water molecules in cordierite is demonstrated in figure 1 

where the doublet splitting is the same at 63 kilogauss as 

it is at 14 kilogauss. The significance of the geometric 

term is that two geometrically inequivalent rigid water 

molecules will give rise to a spectrum with two sets of 

doublets, each with a splitting according to its own 

geometric term. At some orientations, two geometrically 

inequivalent water molecules will give rise to the same 

doublet splitting due to our inabilty to distinguish between 

positive and negative doublet splittings. However this 

ambiguity is resolved if the crystal is rotated about the 

two axis perpendicular to H • Also, proton NMR observes all 
0 

hydrogen nuclei with equal weight, i.e. the area under the 

absorption curve is directly proportional to the number of 

hydrogen nuclei in the sample. The consequence of all this 

and the fact that only one doublet splitting was observed at 

all orientations, is that there is only one type of water 

molecule in the channels of this cordierite, within the time 

scale of the experiment and within the sensitivity of the 
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spectra, about 5%. In this sense, one type of water means 

that all the water molecules are indistinguishable with 

respect to geometry and motion. 

According to equation 1, the doublet splitting of a. 

rigid water molecule should conform to the geometric term 

<l-3cos2e> as the crystal is rotated in the magnetic field. 

Figure 5 shows the doublet splitting as the crystal was 

rotated about three mutually orthogonal axis very close to 

[100], [010], and [001]. The observed splittings do not 

conform to the geometric term of equation 1. Of prime 

importance is the fact that at some point during the 

rotation of a rigid water molecule by 180° about an axis 

perpendicular to H the minimum doublet splitting must be 
0 

observed. That is, the hydrogen-hydrogen vector is at some 

point perpendicular to H • This is not observed. Also, 
0 

just below room temperature (~l0°C), the maximum doublet 

splitting in cordierite is 62 kHz and occurs when [001] , the 

channel axis, is parallel to H • A rotation pattern 
0 

conforming to the <l-3cos2e > term with a maximum doublet 

splitting of 62 kHz would result in a measured 
0 

inter-hydrogen distance of 1.80 A. Typically, the 

hydrogen-hydrogen distance in water is about 1.60 ~ (14). 

The maximum splitting for such a rigid water molecule is 88 

kHz. This means that the geometric term is being motionally 
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averaged. Figure 3 supports this contention; the doublet 

splitting for the orientation [001] parallel H
0 

increases as 

the temperature decreases. The exact nature of the motion 

cannot be determined from the present data alone because it 

is conceivable that several motional models could explaip 

the data. However, it is possible to rule out some types of 

motion and it is also possible to give a feeling for the 

order of magnitude of the motion needed to explain the 

data. 

First of all, since Pake doublets are indeed observed, 

motion such as random isotropic reorientation can be ruled 

out; such motion would completely average the geometric term 

and the doublet would collapse into a single line, as in a 

liquid. A simple exchange or 180° rotation does not alter 

the doublet splitting. The NMR data exclude molecular 

diffusion through the channels since a water molecule 

exhibiting such motion would average all the magnetic fields 

acting on it. Thus the paramagnetic effect discussed above 

would be averaged and it would not be directly observed. A 

hindered rotation could be responsible for the averaging, 

however e would have to change by over 60° to explain the 

data. The effects due to molecular vibrations and 

librations as quantified by Pedersen (19} are undoubtedly 

present in the water molecules of cordierite but these 
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effects are small. Typically, vibrations and librations can 

account for a decrease of 5 kHz in the dipole splitting; the 

decrease in the present case is 20kHz. However, what can be 

said is that on the basis of the rotation data, the motion 

must be anisotropic and have mirror planes along (001}, 

(010}, and (100) since the minima and maxima in the doublet 

splittings occur when the magnetic field is parallel to 

[100] ,[010], and [001]. Also, since only one set of Pake 

doublets are observed which are relatively narrow even at 

100 K, the motion is fast compared with the total line 

width; that is, faster than 1 microsecond. 

COMPARISON WITH OTHER STUDIES 

Recently, the water molecules in the channels of 

cordierite have been the subject of an NMR study (10}, a 

polarized infrared absorption study (9), and a neutron 

diffraction study (3). As stated previously, the cordierite 

used in the present study is from the same sample used in 

the infrared absorption study, Goldman's sample t3, while 

the cordierite used in the neutron diffraction study is 

similar in- composition to sample i3. The results of the 

present study of water molecules in the channels of 

cordierite appear to contradict both the infrared absorption 

results and the neutron diffraction results which contradict 
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each other. The conclusion of the neutron diffraction study 

is that there is one type of water molecule with its 

hydrogen-hydrogen vector tilted 19° from (001] • This 

conclusion cannot be reconciled with the present NMR data, 

in particular the demand for the symmetry planes. It is 

possible that the symmetry plane of the motionally averaged 

geometric factor is not exactly in the (010] plane but the 

deviation from this position is at most 7°, based on the 

combined maximum of all potential goniometeric errors. 

Also, the motion which averages 20 kHz of the NMR doublet 

splitting is substantial. One would assume that the neutron 

density would be smeared to give a diffuse density map. It 

must be pointed out, however, that the sample used in the 

neutron diffraction study was not the same specimen used in 

the present study. 

On the basis of the observed fundamental stretching 

and bending modes of water in the inf rared region and the 

combination and overtone modes in the optical region at 

different polarizations, Goldman et al. (9) conclude that 

there are two distinct types of water in the channels of 

cordierite. Type I water is in the (100) plane with its 

hydrogen-hydrogen vector parallel to (001], and type II 

water is also in the (100) plane but with its 

hydrogen-hydrogen vector parallel to [010]. Using the 
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intensities of the polarized infrared absorption peaks, they 

report that approximately 77% of the water is type I and 23% 

is type II for sample t3. These conclusions are consistent 

with the present NMR results if one assumes that there is 

only one type of water which is jumping back and forth 

between type I and type II orientations rapidly compared to 

the time scale of the NMR experiment (1 microsecond) but 

slowly compared to the time scale of the inf rared experiment 

(1 picosecond). According to this motional model, the Pake 

doublet splitting is given by 

2 2 6 H = 40 pl(l-3cos e1) + 40 p2(1-cos e2) #3 

6H has the units of kHz and 

where pl is the fraction of time that the water molecule 

spends at an orientation corresponding to e1 and p2 is the 

fraction of time that the water molecule spends at an 

orientation corresponding to e2• Equation 3 is plotted in 

figure 5 as the solid curves, assuming the type I type II 

hopping model with pl=.85 and p2=.15. The agreement of the 

distribution of type I and type II sites between IR and NMR 

is good considering the uncertainty in the inf rared 

determination. Further, assuming the relative populations 

pl and p2 follow a Boltzman distribution, the Pake doublet 

splitting for the orientation [001] parallel to H as a 
0 

function of temperature is given by 
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6H ~ 40 kHz[ 2 - (l + !xp(dE/kT)) l #4 

where dE is the difference in the standard free energy 

between the type I and type II water sites. Using the room 

temperature values of pl and p2 from above, the temperature 

dependent data can be best fit with dE = .8 kcal as can be 

seen in Figure 3, where the solid curve is equation 4. 

Again, the agreement is excellent. According to this model, 

the hydrogen-hydrogen distance in the water molecule is 

l.64A • This value is close to the average value of 

hydrogen-hydrogen distances calculated by NMR (14) for rigid 

water molecules, which is l.60A • 

Another conclusio'n of the study by Goldman et al. (9) 

is that 95% of the iron occupies the octahedral site and 

only 5% occupies channel sites. Therefore for Malagasy 

++ Republic cordierite, 10% of the Mg is replaced by Fe • 

Figure 6 shows a side view of the channel with the lattice 

vectors shown in the figure. For every octahedral site, 

there are two channel sites for the water molecule. Site 

one and the octahedral site are in the same [001] plane 

while site two is half a unit cell below, about 4 .9 A • A 

Fe++ ion residing in the octahedral site would cause a shift 

of the doublet of the site one water by -22 kHz while 
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shifting the doublet of the site two water by only 2 kHz due 

to the geometric factor in equation 2. Thus, one-half of the 

water sites produce doublets which are effectively unshifted 

irrespective of the constituent of the octahedral sites. On 

the other hand, the other water site may produce doublets· 

which are shifted, depending on the constituents of the 

nearest octahedral sites. Every channel site one has six 
0 

octahedral sites 6.2A away. Based on a random distribution 

of the Fe++ in the octahedral sites, 53% of the site ones 

would have no neighboring Fe++, 35% of the site ones would 
++ 

have one neighboring Fe and 10% would have two neighboring 

++ Fe s. If the water molecules were randomly distributed 

between site one and site two, one would expect three sets 

of doublets. 76% of the doublets would not be shifted, 17% 

of the doublets would.be shifted by -22 kHz, and 5% would be 

shifted by -44 kHz. Based on these numbers, the ratio of 

the no Fe++ to one Fe++ intensities is nearly 4. 5. 

Experimentally the ratio is 3.0. The doublets shifted by 

-44 kHz were not observed but they may have been below the 

. 1 1 . f f t ++ . noise eve • However, 1 or some reason wo Fe ions were 

prohibited from occupying adjacent octahedral sites, 73% of 

the doublets would not be shifted, 24% would be shifted -22 

kHz, and 3% would be shifted -44kHz. The ratio of the no 

Fe ++ to one Fe++ intensities for this case is 3. 09. The 

agreement with the experimental value is significantly 
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better. In any event, the NMR results support the 

conclusion of Goldman et al. (9) that 95% of the iron 

occupies the octahedral sites as opposed to the conclusion 

of Duncan and Johnston (20) that only 75% of the iron 

occupies the octahedral sites because the lower the 

occupancy rate of the octahedral site by Fe++ the higher the 

non-shifted to -22 kHz shifted ratio would be. 

The NMR study by Tsang and Ghose (10) was conducted on a 

sample from the same region as the sample used in the 

present study. They report a maximum room temperature 

doublet splitting of 60 kHz when the channels are parallel 

to Ho and they conclude that the doublet splittings follow a 

l-3cos 2e dependence. Within experimental error this is in 

agreement with the present NMR data. However, based on the 

room temperature NMR data alone, Tsang and Ghose could only 

state that the dipolar interaction was somehow motionally 

averaged • Their final conclusion was that the water 

molecule was oriented with its motionally averaged 

hydrogen-hydrogen vector parallel to the channels. 

HADDAM CORDIERITE 

Most of the cordierites studied by Goldman et al. 

(9) were found to have roughly the same proportion of 
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type I water ( 80%) as the Malagasy Republic cordierite with 

the exception of their sample #6 from Haddam,Connecticut. 

According to their polarized inf rared absorption results, 

Haddam cordierite contains only 27% type I water and 73% 

type II water making it an ideal sample to test our proposed 

motional model. 

We obtained a single crystal of Haddam cordierite from 

the same speciman as Goldman's sample #6 and conducted the 

same magnetic resonance experiments discussed previously. 

However, due to the presence of a large amount of 

paramagnetic iron (5.7 weight per cent), we were only able 

to observe well resolved Pake doublets when the [001] 

direction was parallel or near parallel to the external 

magnetic field. At this orientation, the Pake doublet 

splitting is 42 kHz ± 5 kHz and decreases when the crystal 

is rotated about either [100] or [010]. Only broad lines 

were observed at other orientations. If we assume the two 

site hopping model, then the 42 kHz splitting indicates that 

there is proportionally less type I water than in the 

Malagasy Republic sample. The quality of the spectra, 

however, allow us to neither quantify this nor even to 

verify the hopping model for the Haddam sample. 

CONCLUSIONS: 
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The most important conclusion that the present study 

can provide is that there is only one type of water molecule 

occupying a well defined site in the channels of Malagasy 

Republic cordierite. Further, this water molecule is 

undergoing some kind of motion on a time scale faster than 1 

microsecond. The exact nature of this motion cannot be 

determined on the basis of the NMR results alone. However, 

if the NMR results are combined with the conclusions of the 

infrared absorption study, a plausible model can be 

presented. Namely, one water molecule is jumping back and 

forth between two orientations within the cavity. 

Orientation I is the type I water and orientation II is the 

type II water. At room temperature the water occupies 

orientation I 85% of ·the time and orientation II 15% of the 

time. The standard free energy difference between these two 

orientations is .8 kcal. 
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FIGURES 

Figure 1. Typical proton magnetic resonance spectra of 

water in a single crystal of Malagasy Republic 

cordierite: a) room temperature spectrum with [001] · 

parallel H in the 63 kilogauss field. The two pairs 
0 

of doublets, labeled Dl and D2, have the same· doublet 

splitting (60 kHz) but are separated by 22 kHz. A 

small signal is also observed due to an impurity in the 

sample holder, labeled imp. As the crystal is rotated 

about [010], the Pake doublets broaden, as shown in b) 

{7°), and c) (90°). Figure ld was observed with [001] 

parallel H
0
at room temperature in the 14 kilogauss 

field. Figure le was observed at the same conditions 

as la except at 110 K. 

Figure 2. The temperature dependence of the shift of the 

Pake doublets due to the paramagnetic_ iron for the 

orientation (001] parallel to H
0

in the 63 kilogauss 

magnet follows the Curie law (6H~l/T, represented by 

the solid line). 
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Figure 3. The temperature dependence of the Pake doublet 

splitting for the orientation [001] parallel %observed 

in the 63 kilogauss magnet. The points are 

experimental data and the solid curve is the predicted 

temperature dependence for a water molecule jumping . 

between two orientations {site I and site II as 

described by Goldman et al. (9) ) faster than 1 

microsecond. 

Figure 4. Typical double quantum spectra: a) a conventional 

spectrum broadened by paramagnetic iron, b) a selective 

inversion of a Pake doublet employing double quantum 

NMR, c) a difference spectrum, a) minus b). 

Figure 5. The doublet splitting as a function of 

orientation as measured by double quantum NMR. The 

single crystal was rotated about an axis perpendicular 

to H
0

• Specific orientations are marked in the 

figure. 

Figure 6. A side view of the channel. The circles 

represent oxygen atoms and the ferrous ion is shown. 

There are two cavities (a and b) where the water may 

reside. The cavities are distinguished from each other 

by their proximity to the ferrous ion in an octohedral 

site. 
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APPENDIX 

A Proton Magnetic Resonance Study of the 

Water Molecule in Hilgardite 

(The Appendix is an article by M.J. Peltre, B. Berglund, 

D.G. Carson, and R.W. Vaughan which was published under 

the same title in American Mineralogist, Volume 65, page 

346, 1980.) 
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Abstract 

A proton magnetic resonance study, at room temperature, 

of a single crystal of hilgardite, ca2 [B5o9JCl·H2o, has been 

carried out at 270 MHz. The variations of the dipolar 

splittings in the NMR spectra have been studied as a 

function of the orientation of the crystal relative to the 

magnetic field. This provides more accurate information 

about the orientation of the water molecule than a recently 

reported x-ray diffraction study of the crystal structure of 
0 

hilgardite. A length of the proton-proton vector of 1.66 A 

is calculated and the vector is found to be fairly close to, 

but significantly out of the b-c plane. The positions of 

the hydrogen atoms ot the water molecule are estimated from 

the NMR results by making some assumptions about the 

hydrogen bond arrangement, giving coordinates rather close 

to those estimated from the x-ray diffraction experiment. 



INTRODUCTION 

The mineral hilgardite, ca
2
B

5
o

9
Cl·H 2

0, found in the 

Choctow Salt Dome, Iberville Parish, Louisiana, has recently 

been studied by x-ray diffraction by Ghose and Wan (1) . The 

crystal structure of hilgardite belongs to the monoclinic 

space group Aa, and the structure consists of a three­
-9 

dimensional pattern of pentaborate polyanions B5o12J • 

The arrangement of the polyanions is such that open channels 

parallel to the a and c axes are formed, with channel 

diameters of about s~6 R. Within these channels the water 

molecules and the chlorine atoms form almost linear hydrogen 

bonded chains parallel to the c-axis. As x-ray diffraction 

gives poor information about the positions of the hydrogen 

atoms and since we were kindly provided with a single 

crystal cut from the same crystal used in the x-ray 

diffraction experiment, we decided to undertake an NMR 

experiment in order to get more precise information about 

the orientation of the water molecules. 

According to Pake (2), the dipolar splitting in an NMR 
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spectrum of a single crystal containing an isolated proton 

pair can be written as 

3 )J 2 L H = ~- (3cos e - 1) 
2r 3 ( 1) 

where µ is the magnetic moment of the nuclei, r the length 

of the proton-proton vector, and e the angle between rand 

the magnetic field. 

For the purpose of analysing proton spectra, a crystal 

containing water molecules can be considered, in most cases, 

to contain isolated proton pairs. This is , of course, an 

approximation since the water molecules in the structure 

will couple to each other. It has been shown, however, by 

Holcomb and Pedersen (3) that even in such cases, equation 1 

can be used if LH is .taken to be the separation between the 

centers of gravity of the two peaks rather than between 

their two maxima. A large number of studies of solid 

hydrates using Pake's technique has been published and 

reviews are given by Chidambaram (4) and El Saffar (5). 

EXPERIMENT AL 

NMR spectra were recorded on a pulsed NMR spectrometer 

operating at 270 MHz. A solid echo technique was used as 

described by Boden and Mortimer (6), and references therein, 
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in order to minimize the deadtime problems usually occurring 

when very broad lines are studied by a pulsed NMR 

spectrometer. 

The size of the single crystal of hilgardite used in 

the experiment was about 4 rnrn 3, containing 1019 protons. 

The plate-shaped crystal had well-developed facets, which 

were used in the orientation of the crystal. In order to 

protect the crystal, it was embedded in a polymer. To 

eliminate the narrow line from the polymer, a spectrum from 

the polymer was recorded and subtracted from the crystal 

spectra. 

The NMR spectra were recorded every 5-10 degrees in an 180° 

rotation of the crystal about an axis perpendicular to the 

magnetic field. Three mutually orthogonal rotation axes 

(a,b,c, S =90 .06°) were used to obtain full information about 

the orientation of the proton-proton vector. Since the 

crystal structure belongs to a monoclinic space group, two 

dipolar splittings are expected for each independent 

proton-proton vector in the unit cell ( except when the 

magnetic field is parallel or perpendicular to the b-axis, 

where the two doublets collapse to one), for all angles (see 

Figure 1). 
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The proton-proton vector was refined using a 

least-squares procedure described by Berglund and Tegenfeldt 

(7). The fit between the experimentally observed splittings 

and the calculated splittings is illustrated in Figure 1. 

RESULTS AND DISCUSSION 

The lengths of the proton-proton vector is 1.66 (l)i 

and it makes an angle of 24 (1) 0 with the c-axis and 80 (2) 0 

with the a-axis, i.e., the vector is tilted by 10° from the 

b-c plane. The proton-proton distance is slightly longer 

than found for other hydrates studied by NMR. El Saffar (5) 
0 

has given a mean value of 1.60 A taken over a number of 
0 different hydrates including lengths up to 1.64 A (8,9). 

Therefore the proton~proton distance in hilgardite has to be 

considered as reasonable. It is known, however, that 

internuclear distances from an NMR experiment are 

significantly longer than the equilibrium value, Re' due to 

the vibrational averaging. Similarly, the lengths 

determined from a neutron diffraction experiment are also 

affected by vibrational motion of the water molecule. In 

order to obtain a value for Re from either NMR or neutron 

diffraction, the vibrational behavior of the molecule has 

to be known (10,11). 
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From a proton NMR experiment alone it is impossible to 

calculate directly the position of the hydrogen atoms. It 

has been shown, however, by El Saffar (5) that estimates of 

the positions, agreeing very well with those obtained from 

neutron diffraction, can be obtained from the NMR data if 

some assumptions about the hydrogen bond arrangement are 

made. The procedure is as follows: estimate the two 0-H 

distances in the water molecule and then minimize the sum of 

the squares of the hydrogen bond distances H1 ··A1 and 

H2 ... A2 where A1 and A2 are the two hydrogen bond acceptors 

(assuming that for each hydrogen bond there is only one 

acceptor}. In the case of hilgardite only the chlorine 

atoms in the quasi-linear chain can act as acceptor since 

all distances from the proton atoms to all oxygen atoms in 

the borate arrangement are too long to be within the limit 
0 

for a hydrogen bond ( 2 .4 A). Both 0-H distances in the 
0 

water molecule were put equal to 0. 965 A , a mean value 

calculated by Ferraris and Franchini-Angela (12) from a 

review of 41 hydrates studied by neutron diffraction. In 

this average 90 water molecules were involved. 

The fractional coordinates of the hydrogen atoms are given 

in Table 1 together with those determined from the x-ray 

diffraction experiment. As can be seen the agreement is 

fairly good. 
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In order to illustrate the arrangement of the water 

molecule in hilgardite based on the new hydrogen atom 

coordinates, a stereographic plot of the water molecule and 

its hydrogen bond arrangement is given in Figure 2. 
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Table 1. Fractional coordinates of the hydrogen atoms in 

hilgardite as determined from the NMR data 

together with those determined from the X-ray 

data. 

H(l) 

H(2) 

NMR 

0.006 

0.039 

0.759 

0.030 

-0.015 

1.000 

X-ray 

0.034 

0.026 

0. 7 89 

0.041 

-0.005 

1.021 
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Figure 1. Experimental dipolar splittings (6u) for the 

three axes as a function of the rotation angle ~ 

together with the calculated splittings (soli~ 

lines). The errors in 6u and ~ are about l KHz 

and 2°, respectively. Sym land 2 refer to the 

two symmetry-related proton-proton vectors in the 

unit cell. 

Figure 2. A steroscopic view of the water molecule in 

hilgardite based on parameters from the X-ray and 

NMR data. The hydrogen bond angles O(W)-H(l);· Cl 

and O(W)-H(2)·· Cl are 170°and 125°, respectively. 
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