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Abstract

The creeping motion of a neutrally buoyant drop in Poiseuille flow is studied numeri-
cally using the boundary integral technique. The effects of the viscosity ratio, interfacial
tension and drop size on steady shapes and velocities of the deformed drop are considered.
Particular attention is given to cases involving large deformation which occurs when the
interfacial tension becomes small. The critical value of the capillary number, for a given

viscosity ratio, above which a steady shape for the drop does not exist is determined.

The stability of annular flow of two fluids of different viscosities through a circular
tube is studied. The instability considered in the present study occurs at the interface
between two fluids. Linear stability analysis is carried out for axisymmetric disturbances
when the mechanisms of instability due to a viscosity difference between two fluids and
interfacial tension are simultaneously present. The growth factor of instability is nonlinear
in the viscosity ratio and the interfacial tension because the governing equations and
boundary conditions are linearized with respect to a disturbance amplitude function, but
not linearized with respect to the viscosity ratio and the interfacial tension. The effects of
the viscosity ratio, interfacial tension, radius ratio and Reynolds number on the stability

of the interface as well as the modes of maximum instability are studied.

Numerical study of the axisymmetric approach of a deformable drop toward a de-
formable interface under the action of a constant buoyancy force is carried out using
the boundary integral technique. Unlike the previous film drainage theories, governing
equations are applied in all fluids including the drop, lower bulk and upper bulk fluids.
Therefore, physical properties of the drop fluid and the upper bulk fluid, which are ne-
glected in the film drainage theories, are included in the present study. The influence of
the viscosity ratio and interfacial tension is considered. Three distinct mechanisms of film
drainage are identified: rapid drainage where the film between the drop and the interface

is thinnest at the centerline and the film thickness increases with radial distance, uniform



drainage where the region of uniform film thickness appears and persists during further
approach of the drop toward the interface, and dimpled drainage where the film is thinnest

at a rim radius rather than at the centerline.
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Chapter |.

Numerical Studies of the Creeping Motion

of a Drop in a Tube



NUMERICAL STUDIES OF THE CREEPING MOTION OF A DROP IN A TUBE

i. Introduction

The creeping motion of a neutrally buoyant drop in a straight tube is studied
nurnerically using the boundary integral technique. The problem of droplet
motion through straight or wavy-wall tubes is of general interest as one simple
model for microscale phenomena in two-phase flow through a porous media,
Indeed, one main motivation for the work reported here is the application to
tertiary oil recovery where a micellar solution is injected into an oil reservolr to
displace the residual oil left after secondary water flooding, by lowering the
interfacial tension, g, between oil droplets and the aqueous phase. We are con-
cerned here with the limiting case in which interfacial tension is lowered to a
point where the capillary number, uu./, characteristic of the drop motion
becomes O{1) or larger. Here, u is the viscosity of the suspending fluid, u, is the
characteristic velocity of the drop, and ¢ is the interfacial tension between the

drop and the suspending fluid.

A number of theoretical analyses of related problems have been done previ-
ously. Bretherton {1961) used the lubrication approximation to obtain the
velocity of a long bubble in a tube filled with a viscous fluid. His analysis is valid
for very small Ca of 0(107%). Haberman and Sayer {1958) considered the case of
a single spherical drop moving axisymmetrically in a tube. A first order correc-
tion to the shape, using the method of reflections, was obtained by Hetsroni et
al. {1970). Shortly thereafter, Hyman and Skalak (1972ab) considered an
infinite row of equally spaced spherical and moderately deformed drops in an
infinite, circular cylinder by numerical evaluation of a truncated infinite series

of algebraic equations. However, as the ratio between the undeformed drop
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radius and the tube radius, kK, increases, the number of algebraic equations
required for convergence becomes excessive even with the shape specified. Con-
sequently, all of Hyman and Skalak’s calculations were limited to k= 0.8. The
restriction to moderate deformation in their solution restricts it to cases where

Ca < O(1).

On the experimental side, Ho and Leal {1975} studied the creeping motion of
neutrally buoyant drops through a tube Later, Olbricht and lLeal (1982)
extended the work of Ho and Leal by investigating the effect of a density
difference between the drop and the suspending fluid. In both of these works,
however, the range of parameters was rather limited. In particular the viscosity
ratio between the drop and the suspending fluid, A, varied from 0.2 to 2.5 while
Ca varied only from 0.1 to 0.34. Kung (1985) considered a larger range of
parameters, but his studies were still limited in the sense that drops with Ca of

0{1) were considered for low viscosity ratios (A < 0.5) only.

Previous experimental studies, reviewed briefly above, have shown that a drop
suspended in a pressure-driven flow through a tube, becomes increasingly
deformed as Ca is increased, while simultanecusly its mobility relative Lo the
fluid increases and the incremental pressure drop due to the presence of the
drop decreases. However, the range of experimentally realized parameters with
our flow system and readily available liquids was quite restricted. We are con-
cerned here primarily with larger, O{1), values of Ca. Our approach is to study
the motion of a neutrally buoyant drop in Poiseuille flow numerically, using the
boundary-integral method. Specifically, for three viscosity ratios of 0.1, 1 and
10, and several values of the drop size parameter k from 0.5 to 1.0. we investi-
gate the effect of Ca on the deformation and mobility {velocity) of a drop for Ca
as large as 4.0. One important cbjective is to determine whether critical value of

Ca exists, for a given viscosity ratio, above which a steady shape for the drop
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does not exist. The value of Ca at this critical point provides an estimate of the
largest capillary number which can be attained In the motion of oil drops

through porous media without risk of significant dispersion (or breakup).

fI. Formulation

We consider a neutrally bucoyant drop of viscosity x4, located concentrically in
a circular tube filled with a second immiscible fluid of viscosity ug {Fig. 1a). The
drop moves due to a pressure-gradient driven Poiseuille flow in the tube. In the
following analysis, we shall assume that the Reynolds number characteristic of
the motion of the drop is very small sa that the creeping motion approximation
is applicable, i.e.

Re = u.Ro

<< 1,

where a conservaltive estimate for u. is the maximum Poiseuille velocity, Ro is

the tube radius, and v is the kinematic viscosity of the suspending fluid.

Thus, the equation of motion in dimensionless form reduces to

0

i

—V p; + AV Py

for fluid 1 (1)

V'u;:

~¥ pg + AV %y = 0

for fuid @ (2}

Vouag =0

and these equations are to be solved subject to appropriate boundary conditions



on the drop interface and on the wall of the tube. The parameter, A, in Bg. (1)
denotes the ratio of the drop viscosity relative to the viscosity of the suspending
fluid, and appears explicitly because the characteristic pressure pe is chosen as

lglle U in both fluids,

On the drop surface, x€Sp, the boundary conditions can be expressed in the

form

_dbgro Lo (
at ‘*}‘ TF 8t 2

where Ca denoctes the capillary number, upu./. In writing Eq. (5), we have
adopted a global coordinate system that is fixed relalive to the tube. However,
for convenience of describing the drop shape a local spherical coordinate sys-
temn is utilized. The origin of this local spherical coordinate system is located at

the center of mass of the drop and is related to the origin of the global coordi-

nate system by L{t) as shown in Fig. la. Then, %L{“ denotes the velocity of the

center of mass of the drop. In Eq. {5}, %J;—ds inciuded because the present prob-

lem is solved in the global coordinate system fixed on the tube. And the func-
tion f for drop shape is related to the position of its surface, as f, = t{§t). Here,
~s denote the variables in the local spherical coordinate system. Of course, the
drop shape is unknown and this must be determined as part of the solution.
, The guantity n that appears in {4) and (5) is the outer normal at the drop sur-

face,
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n=VF/VF

where

F=f —{{6L).

On the tube surface, x£3¢, the no-slip boundary condition applies,
up = 0. (8)

Far away from the drop, | X! » = upstream and downstream, the flow returns to

its undisturbed form. Therefore,
Up =W,, (X[ = inthetube (7)
where u, denotes the Poiseuille velocity profile.

Since the drop is assumed to be neutrally buoyant, a body force term does
not appear in the governing equations or boundary conditiens. [t is important
to realize that the solultion of Stokes Egs. {1) and {2). subject to the boundary
conditions (3)-(7). automatically satisfies the macroscopic condition of zero
drag on the neutrally buoyant drop. In particular, the equations and boundary
conditions stated above are sufficient to determine both the drop shape and the
drop velocity, in addition to the velocity and pressure fields inside and outside
the drop. without the necessity of explicit application of the macroscopic condi-
tion, F, = 0. The fact that this latter condition is inherent in the basic equa-

tions and boundary conditions is demonstrated in the Appendix to this paper.

The governing equations and boundary conditions, (1)-(7), are solved using a
boundary-integral method that we will describe shortly. For this procedure, the
tube surface is described via a global circular cylindrical coordinate system. We
have already indicated above that a local spherical coordinate system is utitized

to describe the geometry of the drop surface, and this is adequate so long as the



deformation of the drop is not toc extreme. When the drop becomes highly
elongated, on the other hand, local spherical coordinates can be used to
describe the upstream and downstream ends of the drop, but it is more con-
venient to adopt a local cylindrical coordinate system for description of the mid-
dle section as shown in Fig. 1b. In this case, the drop surface is described as

f = h(Zt) and the cuter normal at the drop surface is given as

n=VH/VH]

where H = £~ h{Zt). The origin of all local coordinate systems is located at the
center of mass of the drop and is related to the origin of the global cocrdinate

system by L{t) as shown in Fig. la.

The problem, then, is to solve {1) and (2) subject to the boundary conditions
{3)-(7). In addition to the two dimensionless parameters A and Ca which appear
explicitly in these equations and boundary conditions, a third dimensionless

parameter of the system is

k = a/Ro

which provides a measure of drop size. The problem is both nonlinear and
unsteady due to the boundary conditions {4} and {5), and the fact that the drop
shape {and thus n and f) is unknown. However, the governing Stokes equations
are linear. Therefore, we can represent a general solution of these equations in
terms of a superposition of fundamental solutions corresponding to a distribu-
tion of point force singularities over the boundaries of the flow domain. Follow-
ing earlier work in this group and elsewhere (cf. Lee and Leal 1982, or Geller, Lee
and Leal 1985), we use the formulation of Ladyzhenskaya (1963) in which distri-
butions of so-called single- and double-layer potentials are used at the boun-

daries of the fluid domain, in this case, for an arbitrary point x in one of the



fluids,
o1 I (x—mx-
u(x) = 33_7?‘4 3 + =5 “T(n) nd3,
_8 rlx-mx-mix-m oy /
pye jsr oo u{n) ndS, {8)
and
_ i ol _3x-mix-m)fo

+ ~1—-f % “T{n) ndS, (9

417 vy

where 7 denotes a position on the bounding surtface for the particular fluid R =
x — 7., and S represents the boundary of the fluid domain Thus, in fluid 2, 3
includes both the drop and tube surfaces, while in fluid 1 3 includes only the
surface of the drop. As before, the outer normal to 5 is denoted as n. To soive
the problem posed in (1)}-(7), we must determine the particular single- and
double-layer distributions at the boundaries and the drop shape which satisfy
the boundary conditions (3)-(7). In the Ladyzhenskaya's formula, the single-
and double-layer distribution functions are just the velocity and stress com-

ponents at the boundaries.

When the general solutions {8) and (9) are applied at the boundaries and the
boundary conditions {(3), {4), (8) and {7} are incorporated, we obtain integral
equations for the velocity and stress components at the boundaries. As noted
by earlier investigators, of. Lee and Leal {1982), the double-layer potentials [the
second terms in Egs. (8) and {9)] are not continuocus, but suffer a jump at the

drop surface. If the double layer potential is defined by the function



B rEx-nE-nx-n (1
W(x) = py= .g G undSp (1)
the jurnp condition for the double-layer potential is expressed as

Wilf) = Su(é) + Wy(¢ (1)

Nii-"

W(8) =~ ulg) + W(o) (12)

where W,{£) and W.{¢) denote, respectively, the limiting values of W(¢) as €S is
approached from inside and outside the fluid domain, and W,({) is W)

evaluated al x = £€3,

The general solutions (8) and (9) are applied at the boundaries using the

jump conditions (11) and (12). First, applying (B) to fluid i, we obtain for xSy,

[
; Dix) = I sy
Aw(x) = .é lﬁ' =

where r = X —n, and subscripts and superscripts D indicate variables evaluated

u’(n)ndSs (13)

f
TR ndSa - A [ 15

at the drop surface. TP is the stress tensor evaluated as the drop surface is

approached {rom fluid 1.

In order to apply the general solution {8) to fluid 2, it is convenient to define

a disturbance velocity and stress

TH =T - Tap .

where 'I‘gp denotes the stress tensor associated with the Poiseuille velocity

profile. Then, the boundary conditions {8) and {7) become
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XEST, ' =0 {14}
x| » o, u' =0, {15)

and it follows from {B8) that the disturbanece velocity for xin fluid 2 is

) = o ok I  rr 1 . rr
uy(x) = = gﬁ—fsb 7t geg‘l ¥ (n)ndSp — Nasa) TZ (1) ndSy
+ S [5'..’5',1'.... u¥(n)nds (18)
4t : [ RS "I 3] A\

where we have utilized the fact that ug' = 0 on the tube surface. Since Tpp(X)
and u,{x) have no singularity, we can apply the divergence theorem to (16} and

integrate over the drop volume {Rallison and Acrivos, 1978) to obtain

[ o] ,
uz(X) = ugp(x) — té-' %]'Tg(n)'ndsn - 8—;—4 lg{- + %]-Tg (n) ndSy

3 .
Al lRﬁ lﬁaxﬂ)ndsn' (17)

Applying the jump condition (11} to Eg. {17), we obtain for x€3p,

M Al
—é—?\ng(x) (X) - -é.? l'ﬁ"‘ % “TH(n)ndSp — "é;‘.__g{ iﬁ“ %rém T3 (n)ndSe
[
3 ITr | pron, 1
e ‘é) {mRﬁ ]ue(ﬂ) ndSp . (18)

and for x€Sr,

X ] T§ {n) ndSy




1.

-uf{n)ndSp . (19

f
rw L |F

To eliminate TP, we can add {13) and {18} together and use the boundary condi-

tion {4). Then, we obtain

. | T
1 4 — B }
-2'--()\ + ;)UD(X) = upD(X} - W . 1&;4" —ég“iQdSB

where the function Qis the stress difference at the drop surface,

Q - Q(f) = n‘TQ - }\nTl

1 K K |cosé | 8t 8°f
=n {8k - D00 10, e 2 21
ol G s ae‘} {a@e] (21a)
with
K= 1
{1 . (8t V12
I+ =~
|
for spherical coordinate, or
Juved = . — . md .....j':mn .--K———- ha ‘anz_i'}m ey
Q=Qh)=nT: -AnT,=n & {h K“[ Py }} (21b)

with

AV

el |
0 |57

i

for cylindrical coordinate.
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In order tc calculate the steady-shape of the drop, we begin with an initial
shape — either a sphere or the shape obtained previously with nearby values of
the parameters. With the initial shape prescribed, Eq. (21) is used to evaluate
the stress difference at the drop surface and Eqgs. {18)-{20) are soived to obtain
u’, TP and T7. The resulting solution satisfies the original Stokes equations {1)
and {2}, plus the conditions {3) and {4) at the drop surface and {8) and (7) at
the tube walls and far from the drop. All that remains is the kinematic condi-
tion (3), which can be used to increment the drop shape to a time At later. In

the limit, as a steady solution is achieved, the left-hand side of (3), calculated

using u®, vanishes.

The kinematic condition {5} is applied in the approximate form

Ly —L
uf - i) oy

A /
At At ) (22)

K;

fa=1t+

In Eq {22), the variables with the subscript j are known quantities at the jth
time step. Of course, Ly,; must be known before Eg. (22) can be used to obtain a
new shape. L, is determined by the condition that the origin of the local coor-
dinate systern used to describe the drop shape is located at the center of mass
of the drop at every time step. Then,

ZdV
= .I__’?...__.._?_ (23)

£ =0
o f pdV;;

where Z; denotes the center of mass in the local coordinate system. For con-
stant density, g, Eq. {23) can be stated in the form
0= [2dVy. (24)

In the local spherical coordinate system, Eq. (24) becomes, integrating in azirmu-

thal direction,
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” !
0=2m FecossinSdddr, (25
[&G jr;zxc 8 = ] 3 )

letting f = cosé, Fq. (25) becomes

13
0=2L [ ti5an (26)
4 ;j:..;

Equation {26) must be satisfied at every time step,

0=[ ttpaf=[ 14,749 (27)
H=—1 f=-1
Thern, at j+ith time step,
1
o=4 (t; + AL)*HdR (28)
=1
where
D L N S Mk I
Af; K {uj Ak n:At

as given by the kinematic condition in FEq {22). Then, L., is determined by
satisfying Eq. (28).
The velume of the drop was conserved al each time step by calculating the

volume of the drop and adjusting £{8) and/or h{f) to keep the constant dimen-

sionless volume of -g—m&

Since we are considering a concentrically located neutrally buoyant drop in a
tube, the problem is axisymmetric. Thus, Eqs. {1B)-(20) can be integrated
analytically in the aximuthal direction, and the surface integrais transformed to

the line integrals. Thus, for axisymmetric flows, Egs. (18}-(20) become

ul(x)
ul(x)

0
up(x)

___.:i...... B(_).Tf?fdg
Sﬁ‘é X =D (4o

L
2



1h,

0P
Y} dip

Tar
T;:z‘ }Cﬁ’;

49(3??) "]df + #‘é clxm)-
——;—éan) {?%]dzn = 'é;B(x,n}-

3 ul
+ :{;r—_gn C(X,?}}'{ué}}dli}

u,g(x)
u; ix)

0 Q
ug{x)} - é;’—“éa B(x7) g }dﬁn

T+

"";Ym_é B{xn) Ei}dl? 2 (1 —A) ‘é C X‘!’;)[ ;'D]dln.

where
[ a 132
dip = fsin@[fa + Fry dé for spherical coordinate
[ an V7|
= h[i + vy dZ for cylindrical coordinate
and

le = dz .

Here, B and C are tensors whose elements consist of elliptic integrals.

B(xn)-*{ﬁn B”} xn)~lc g:]

Z!'

The elemnents of B and C are given by Lee and Leal (1982).

(29)

Txamination of {29)-{31) shows that there are six linear integral equations,

(29)-(30), for six unknown functions, uf, ul, TS, T8, i and Tr;.
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As in the works of Lee and Leal {1982) and Geller, Lee and Leal {1985), a colle-
cation method was used to convert the integral equations to a system of linear
algebraic equations. In particular, the drop and tube surfaces were divided into
small elements, with u®, T® and TT approximated in an element by their values
at the center of the element, By this means, we obtain a system of {4Np + N7}
linear algebraic equations where Np and Nr dencte the number of elements on
the drop surface and the tube surface, respectively. The integral coefficients
which result from Eqs. {29)-(31) were evaluated by Gaussian quadrature, and the
resulting system of linear algebraic equations was solved by Gaussian elimina-
tion. When x =7, the integrands in (18)-(20) become singular. However, finite
values for the integrals were obtained by analytically integrating over a small

neighborhood of X = 57 using a linear expansion of the integrands about x = 7.

HI. Preliminary Calculations

When the coliocation method is applied to the integral Egqs. (23)-(25), the
domain must be truncated at some large, but finite distance from the center of
mass of the drop. A similar truncation was used earlier by Lee and Leal (1982)
for the case of a solid sphere appreaching an infinite plane interface to lirit the
collocation to a large but finite region of the interface around the centerline
that passes through the center of mass of the solid sphere. To illustrate the
effect in the present case of truncating the domain at different distances, zg,
from the center of the drop, we ran a number of test calculations for the

representative case of a spherical drop in a tube with k = 0.7, Ca = 0.2 and A =

n1 at the drop surface does
imax

p_ 4L,
TR

10.0. It can be seen in Fig 2 that g

not vary significantly beyond zo = 9. For larger drops, ie. for larger k. larger
values of z; were used to insure comparable accuracy. In addition, as the drop

became elongated due to viscous forces for finite values of Ca, larger values of z;
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were used in the calculation. Typically, 2z was assigned values between 9 and 13.

As noted earlier, the tube surface and the drop surface were discretized into
small elements in which u” Ty and T" are assumed to be constant. On the tube
wall, the region close to the drop was discretized with smaller elements, and
larger elerments were used as the distance from the drop increased. Non-uniform
eiements were also employed on the drop surface depending on its shape. For
an initial spherical drop, uniform elements in & were used, but as the drop
deformed, more elements were employed in regions where u’,T° varied most
rapidly with position. Taking a spherical drop with k =095 Ca=0candA =1

p_ dL.

| |
!
the effect of varying Np is shown in Fig. 3 where j{u TR g at the drop
i

max

surface is plotted against Np. It can be seen that Np = 20 is sufficient to give
accurate results in this case. Starting with Np = 20, more elements were added

as the drop became significantly deformed.

We have indicated earlier, that the drop shape was changed using the

kinernatic condition {22) in the form

f Lot — L
fjﬂxfjw»[u?mﬁ_?gt-iiz m -K—At (286)
]

The time increment Al was chosen so that {f,,, = {;)/f; < 0.005 fcr each time step
in order to avoid large changes in the shape for any one step. The above cri-
terion was found empirically to insure the stability of the numerical method.
Typically At varied from 0.02 at the initial stage of a calculation to G2 as a

steady shape was approached. The calculation was terminated, and the shape

‘n! < 1079 every-

was assumed to have reached steady-state when i[txD - g%— i
{

where en the drop surface.

IV. Comparison with Previous Results



17.

Calculations were initially done for a solid sphere and a spherical drop
suspended in Poiseuilie flow to compare the velocities obtained via the present
numerical technique with existing theoretical results. In Fig. 4, the velocity of a
sclid sphere is plotied against k As the sphere size increases, its velocity
decreases due to the increase of the wall eflect. The calculated result agrees
very well with the theoretical results of Haberman and Sayer {1958} and Wang
and Skalak {1969). Similarly. in Fig. 8, the velocity of a spherical drop is plotted
against k for A = 1, 10 and 40. Comparison between the current results and the
theoretical results of Hyman and Skalak (1972a) is again very geod. The case of
A = 40 nearly coincides with the results for the solid sphere in Fig. 4. It can also
be seen that less viscous drops move faster than more viscous drops for the

same value of k.

Two calculations were also done to compare current results with existing
experimental results. First, in Fig. 8a, we show a comparison between the
predicted steady-state drop shape and a photographic result of Ho and Leal
{1975) for the case k = 0728, Ca = 0.356, A = 0.93. It can be seen from the
figure that the comparison between the shapes is quite good. The calculated
velocity of the drop is 0.768 which is also in good agreement with the experimen-
tal value, 0.785, reported by Ho and leal. Second, in Fig. 6b, the shape predicted
in the current calculation for k = 0.7, Ca = 3, A = 0.1 is compared with a photo-
graph from Kung (1985) for which k = 0.7, Ca = 2.8, A = 0.047. Again the agree-

ment is excellent.

¥. Results

In the current study, our goal is to determine the effects of Ca, A and k on
drop shapes and drop velocities. As mentioned previously, we are particularly

concerned with cases for which Ca= 0{1). In Fig. 7, calculated drop shapes are
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shown for various values of Ca and A= 0.1, 1, 10 for k = 0.7. Taking a sphere as
the in:tial shape for Ca = O, the steady shape for Ca = 0.2 was calculated using
the procedure described above. Then, the steady shape for Ca = 0.5 was calcu-
lated using the result for Ca = 0.2 as an initial condition, and so on. Drop
shapes for various values of k with Ca = 1 and A = | are shown in Fig. 11 In this
case, each solution was obtained using the shape for the next smalier vaiue of k
as an initial condition. The eflect of varying k for a number of additional values
of Ca is shown in Fig. 12 where drop shapes are drawn for k = 0.7 and 0.95 with
Ca =02, 1.0, 2.0 and 3.0. Drop shapes in Fig. 12 for k = 0.85 and k = 0.7 were

obtained by increasing Ca starting from a spherical shape for each value of k.
A. Drop Shape

In the following part of this section, we consider the effects of Ca and A on the

drop shape in more detail.
1. Effectof Cu

As can be seen in Fig. 7, the drop eicngates in the axial direction and conse-
quently the maximum width of the drop decreases as Ca increases for all A This
elongation of the drop is a consequence of the increase in viscous forces relative
to interfacial forces as Ca increases. A similar elongation of the drop was also
observed in the experiments of Ho and Leal {1975} for Ca up to a maximun value
of 0.34. As Ca increases beyond 1.0, an indentation appears al the back of the
drop which becomes increasingly significant as Ca increases. Since the detailed
modes of deformation are somewhat different for the different viscosity ratios, it

is useful to consider each of the three values A = 0.1, 1 and 10 separately.

The case A = 1.0 is considered first. In this case, as Ca increases, the drop
elongates and the rear of the drop flattens until the indentation occurs at the

rear of the drop for Ca > 1.0, As the drop elongates the maxirmum width occurs
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at the rear of the drep, not at the middle section of the drop as fer an unde-
formed spherical drop. In fact, the middle section of the drop becomes almost
straignt and paraliel to the tube wall, while the front of the drop becomes more
pointed as Ca is increased. FPerhaps the most important fact, however, is that no
steedy shape could be obfained for Ca > 32 For larger values of Ca, the drop
was found to elongate continuousty in the axial direction with a waist developing

in the middle.

The velocity distribution in the suspending fiuid is shown in Fig. 8 in a frame
of reference that rmoves with the drop for k = 0.7, Ca = 2.0 and A = 1.0. The fluid
sufficiently far from the drop flows almost unidirectionally. The drop moves
slower than the maximum velocity of Poiseille flow. Therefore, in a frame of
reference moving with the drop, the axial velocity is in the positive z-direction in
the center core of the tube and is in the negative z-direction for the rest of the
tube. it is this forward velocity at the center core of the tube which leads to the
indentation at the rear of the drop when the interfacial force can no longer

resist viscous forees as Ca increases.

When A = 0.1, the drop also elongates as Ca increases, like the caseof A = 1.0
in this case, however, the drop shape beyond Ca ~ 1.0 becomes approximately
prolate spheroidal with an indentation at the rear of the drop. In particular the
maximurm width of the drop moves toward the middle of the drop as the drop
becomes increasingly elongated. As Ca increases, the curvature of the rim at
the rear becornes increasingly large. As a consequence, the calculation was ter-
minated at Ca = 4.0 In this case, however the termination poini does not
correspond to a critical point for loss of steady state solutions as was true for A
= 1, but exists because of resclution difficulties in the region of high curvature
for large values of Ca. The predicted indentalion at the rear of the drop was

also observed experimentally by Kung (1985) for A = 0.047. Reproductions of
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three of their photographs are shown in Fig. 9. Since the photographs were
taken with a side view, the indentation at the rear is difficult to discern for Ca <
2.6, But the shape of the drop coincides weil with the shape obtained numeri-
cally. The experimental pictures of Kung {1985) for Ca = 4.4 and 5.4 show that
the drops lose axisymmmetry as Ca is increased to these values. Due to the loss of
axisymmetry, the indentation at the rear is more rapidiy apparent. It is not
clear whether this experimental loss of axisymmetry is an intrinsic property of
the flow at such high Ca or is caused by slight deviations in matching the densi-

ties of the drop and suspending fluid.

Finally, for A = 10, the series of shapes shown in Fig. 7 is qualitatively similar
to those for A = 1, though the degree of deformation is somewhat greater for Ca
= 0.8 and 1.0. /ndeed, in this case, the calculation was terminated af (o = ]
because we were not able o obfoin a steady shape for larger values of Ca.
Attempts to obtain such solutions showed that the drop simply continued to
elongate in the axial direction, with a waist developing in the middle like the
case of A= 1.0. It is evident, then, that a critical value of Ca exists bevond which
the drep can no longer exist in a steady configuration, The critical value of Ca
appears Lo decrease monotonically with increase of the viscosity ratio, A, at least
based upon the three values 0.1, 1.0 and 10 that we studied here. It may be

expected that the critical values of Ca will also depend upon the drop size, k.
2. Effect of A

The effect of A on the drop shape can be discerned qualitatively from Fig. 7. A
more quantitative indication of the effect of A is shown in Fig. 10 where we plot
' 'the drop length of the deformed drops against A for Ca = 0.2, 0.5, 0.8 and 1.0
For Ca = 0.2 and 0.5, the drop length exhibits a weak maximum near A = 1.0,

However, for Ca = 0.8, 1.0, the drop length increases monotonically as A
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increases over the range of values of A that we have considered. The implication
of these Lmited results is that the critical A, A., where the drop length is a max-
imum must increase with increase of Ca. For the larger values of Ca, the drop
becomes increasingly elongated as A increases and consequently the maximum
width becomes smaller. This effect of A on the elongation of the drop was also

observed in the experiment of Ho and Leal (1875).

3. Effect of k

The effects of variations in the drop size parameter k on the drop shapes are
shown in Figs. 1l and 12 for Ca = 1, A =1 and Ca =02, 1,2 3 and A = 0.1,
respectively, When there is no wall effect, ie. k » 0, the drop remains as a
sphere as shown by Hadamard {1911) and Rybezynski {1911) for creeping fiow of
a drop in an unbounded uniform flow. However, as k increases, the increasze in
the wall effect causes the drop to become increasingly deformed. The drop
shapes for Ca = 1, A = | are shown in Fig. 11 as k increases from 0.5 to 1.9. The
drop becomes more elongated in the axial direclion as k increases. Beyond
k=0.7, however, the maximum width of the drop remains constant and the
upstream and downsiream sections of the drop retain the same shapes. Thus,
the effect of increasing kK is to simply increase the length of the straight section
in the middle of the drop. For the cases with higher Ca {Ca > 1), shown in Fig.
12 for A = 0.1, the drop becomes more elongated as k increases as in the case of

Ca = 1 and A = 1, and the indentation at the rear becomes rnore significant.
B. Drop Yelocity

The effect of k on the drop velocity is shown in Fig. 13forCa=1and A = 1 as
k varies from 0.5 to 1.0 The drop velocity decreases monotonieally as k
increases from 0.5 up to 0.7. However, with further increase of k, the drop velo-

city becomes independent of k because, as Fig. 13 shows, the maximum width of
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the drop becomes almost censtant for k > 0.7. This apparent correlation
between the drop velocily and the maximum width of the drop was also observed
by Ho and Leal {1975), who noted that the velocity of the drop with the largest
experimental value of Ca {(0.34) became practically independent of k as k
increased beyond 0.9 because the maximum width of the drop did net change

beyond k ~ 0.9.

The effect of Ca and X on the drop velocity is shown in Pig. 14 fork = 0.7 As A
increases, the drop velocity decreases. This effect of A on the drop veloeity is in
agreement with the experimental results of Ho and Leal {1975). The variation of
the drop velocity with Ca is more interesting. For A = 0.1, as Ca increases, the
drop velocity approaches an asymptotic limit of about 1, the maximum of the
Poiseuille flow. For A = 1, on the other hand, the same trend can be seen in the
sense that the velocily of the drop approaches an asymptotic value for
sufficiently large Ca, but in this case the limiting value is about 0.91. As Ca
increases for fixed A, the rate of the decrease in the maximum width of the drop
decreases in all cases as can be seen in Fig. 15. Thus, although a clear asymp-
tote was only found for A = §.1 (and perhaps A = 1.0}, it is obvious that max-
imum width of the drop will appreach some asymptotic value in all cases. Since
the drop velocity depends on the maximurn width of the drop. as mentioned ear-

lier, the drop velocity alse approaches an asymptotic value as Ca increases.

¥1. Conclusions

The creeping motion of a neutrally buoyant drop in a tube has been studied
using the boundary integral technique. Steady shapes and velocities of the
deformed drop are presented as Ca. A and k vary. Particular atiention is given

to cases involving large deformation which occurs when Ca = 0(1).



Z3.

We have shown that the modes of deformation are different for different
viscosity ratios. When A = 0.1, as Ca increases beyond ~ 1.0, the drop shape
becomes approximately prolate sphercidal with an indentation at the rear of
the drop which becomes more significant as Ca increases. The curvature of the
rim at the rear correspondingly increases as Ca increases further up to 4.0, the
maximum value we could achieve due to difficulty with numerical resolution in
the region of high curvature. For A = 1.0 and 10.0, on the other hand, the drop
elongates as Ca increases, and the rear of the drop flattens with the indentation
occurring at the rear of the drop for Ca > 1.0. However, in these cases, the mid-
die section becomes straight as Ca increases until a waist develops for Ca > 3.2
and Ca > 1.0, respectively, for A = 1.0 and 10.0, and no further steady shapes
are possibie. As Ca increases for fixed A, the maximum width of the drop
appreoaches some asymptolic value, and conseguently the drop velocity

appreoaches an asymptotic value.

Acknowledgement: This work was supported by a grant from the Fluid

Mechanics program of the National Science Foundation.
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Appendix
In dimensional form, Bq. (4) is
nT, -nT, =V nln (AL}
Rearranging Eq. (A1), we obtain
nT; =nT, +»V nn (AR)
The drag force on the drop is
Fp = [ nTdSp= /nTidS; + f »V nndSp . (A3)

Applying the divergence theorem to the first term on the RHS of Eq. {A3), it may

be shown that
S nTidSy= v -Tydvp =0 (A4)
because

V'TI;{}

for the Stokes approximation.

The second term on the RHS of Eq. {A3) can be evaluated by means of the
surface divergence theorem which states that for any scalar function ¢ on a sur-

face S5
S o(v minds = 9 ¢dS - [ ot (A5)
o

where ¢ denotes any closed curve on the surface S, and t denotes the unit vector
that is normal to the curve ¢ and tangent to the surface at each point. Then, by
applying the surface divergence theorem, the second term on the RHS of Eq.

(A3)
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S 79 nndSp = [V ydSy ~ fytdi (A8)
c

The first term of the RHS of Eq. {A6) is zero because ¥V ¥ = O for constant y, and

the second term of the RHS of Eq. {AB) is zero because
Stdt =0
[
for a closed volume. Therefors, the above result confirms the fact that solutions

of Stokes equations subject to the stress conditions in Eq. (4} will automaticaily

satisfy the condition of zero drag force on the drop.
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Figure Captions

Figure la:

Figure 1b:

Figure 2:

Figure 3;

-

igure 4:

Flgure 5;

Figure &

Figure 7:

Figure 8;

Figure &:

Description of the coordinate systems. O, origin of the local coordi-

nate systermns; Og, origin of the global coordinate systems,
Description of the drop shape for an elongated drop.
Maximum absclute value of the dimensionless normal velocity on the

ul - 9—-1-?“13 M pay, 88 a function of the truncated dimension-

drop, | o

less distance on the tube from the center of mass of the drop zp.

Maximum abselute value of the dimensionless normal veloeily on the

D

drop, ||u’ — 3—1512 N}y 88 & function of the number of elements

on the drop surface, Np.

Dimensionless particle velocity as a function of the dimensionless

particle radius for a spherical particle in a tube.

Dimensionliess drop velocity as a function of the dimensionless drop

radius for a spherical drop in a tube.

Comparison of the calculated drop shapes with the experimental
photographs.

Comparison drop shapes for various values of Ca and A = 0.1, 1, 10
fork =07

Velocity distribution in the suspending fluid for k =07 Ca=20 A =
1.0

Experimental photographs of Kung (1988) for k = 0.7, A = 0.047 and

Ca=28 44and 5.4,



Figure 10;

Figure 1 1:

Figure 12:

Figure 13:

Figure 14:

Figure 15

3.

Dimensionless maximum length of the drop as a function of the

viscosity ratio, A
Calculated drop shapes for varicus values of kfor Ca = 1, A = 1,

Calculated drop shapes A= 0.1, La= 02, 1, 2and 3. —— fork = 0.7

fork = 0.85.

Dimensionless maximum width of the drop and the dimensionless

drop velocity, fd%“ as a function of the dimensionless drop size k for

Ca=1,A=1

Dimensionless drop velocity %%m as a function of the Capillary

number Ca for = 0.7.

Dimnensionless maxirnurn width of the drop as a function of the Capil-

lary number Ca for k = 0.7.
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Ho and Leal {1975)

k= 0.726
€a = 0.356
A= 0.93

Kung (1985)

k= 0.7
a = 2.6
ho= 0.047

Figure 6
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{a)

Calculated Result

k = 0.726

Ca = 0.356

A= 0.93
VR

Calculated Result

k = 0.7
Ca = 3
L= 0.1
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Chapter |1.

Stability of Annular Flow
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STABILITY OF ANNULAR F1LOW

1. Introduction

The stability of two fluid systems in the presence of a primary flow consti-
tutes an important class of problems. In particular, the stability of a long liquid
droplet has received much attention because of its relevance to many industrial
areas of chemical and polymer processing. For example, in the spinning of
bicomponent fibers, two polymers are extruded together through a tube and
then breakup of the inner Auid must be prevented. On the other hand, if ferma-
tion of emulsions is the main concern, breakup of droplets must be encouraged
to obtain a well dispersed two-phase systems. Tertiary oil recovery processes are
more efficient if crude oil droplets coalesce to form an oil bank (Wasan et al,

1979). In this context, breakup of "oil ganglia” should be prevented.

In the present work, we consider the stability of annular flow of two
Newtonian fluids through a circular cylindrical tube under the action of an
applied pressure gradient. Specifically, we consider interface-driven instabilities
that are unique to the two-fluid configuration. There are two mechanisms by
which instability can develop at the interface. First, as shown originally by Yih
{1967), the viscosily difference between two fluids can lead to instability when a
primary flow is imposed. Second, the existence of finite surface tension can lead

to instability via the growth of capillary waves.

The capillary instability of an infinitely long liquid cylinder was first recog-
nized by Plateau {1873), and analyzed by Rayleigh (1892) who developed a linear-
ized stability theory for a stationary viscous cylindrical liquid thread under the
action of surface tension forces, but without a second suspending fluid. Tomo-

tika (1935) extended Rayleigh's work to include the effect of a second viscous
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fluid. His results show that the inner liquid thread is stable to disturbances with
wavenumber ka > 1| and unstable when ka < 1. Between ka = 0 and ka = 1
there is a fastest growing linear mode near which breakup of the inner liguid
into small droplets would most likely occur. The case of a stationary viscous
liquid cvlinder in a second stationary viscous liquid in a cylindrical tube was
considered by Mikami and Mason (1975). Their results are similar to Tomotika's
except that the effect of the tube is te make the interface less unstable. In all of
the above works, instability arises solely from capillary forces, and the viscosity
difference does not play a role in generating the instability. It only modifies the

effect of capillary instability by decreasing the growth rate ol unstable modes as

the inner fluid becomes more viscous.

Yih {1987) seems to have been the first to recognize that an interface can be
unstable at any Reynolds number, in laminar flow, due to the viscosity difference
between two fluids. Yih carried out a linear analysis of the stability of long wave
disturbances for two superposed fluids of different viscosities in plane Couette
and Poiseuille flow including the effect of inertia. Hickox (1971} utilized Yih's
long wavelength technique to consider annular flow. However, he considered only
the case when the less viscous fluid is at the core, which is unstable at all Re.
Joseph et al. {1983,1984) carried cut a numerical study of the stability of annu-
jar flow at all wavelengths, but neglecting surface tension. They found that the
flow is unstable to long waves if the less viscous fluid is at the core, in agreement
with Hickox's result. When the more viscous fluid is at the core, the stability
depends on the volume ratio of the two fluids. If a large volume of more viscous
fluid is at the core, the flow is stable to long waves. On the other hand, the flow
is unstable to long waves if a small volume of the more viscous fluid is at the
core. In Joseph's work, however, modes of maximum instability were not deter-

mined because the numerical analysis was carried out for a few selected values



43,

of ka, the dimensionless wavenumber.

In a related study, Hooper and Boyd {1983} considered the linear stability of
the shear flow of two fluids of different viscosities in an infinite region. They
found that the interface is unstable to short wavelength disturbances. In a con-
tinuation of this work, however to consider the stability of the interface
between two viscous fiuids when the lower fluid is bounded by a solid boundary
and the upper fluid is of infinite extent. Hooper (1985) found that the flow is
unstable to loﬁg*wavelength disturbances when the lower fluid is more viscous
than the upper fluid. Renardy {1985) extended the work of Hooper (1985) by
numericaily evaluating the growth facter of linear stability for plain Couette flow

composed of two immiscible fluids in layers of arbitrary depths.

Qur current study considers the linear stability of axisymmetric disturbances
in annular flow through a circular tube when the mechanisms of instability due
to a viscosity difference and to surface tension are simultaneously present, but
with the restriction to small values of the Reynolds number [ie. Re £ 0(1)]. The
results of Joseph et al. {1983) indicate that for small Re {< 1) axisymmetric dis-
turbances and non-axisymmetric disturbances show similar qualitative
behavior, and this suggests that our analysis of axisymmetric disturbances in
the small Re range will exhibit the general stability characteristics of the fAow.
The range of Re is limited in the present work due to the convergence require-
ments of the series type soluticn which we pursue. The objective of the current
work is to study the effects of viscosity ratio, surface tension, radius ratio, and
Reynolds number on the stability of the interface as well as on the modes of
maximum instability. There is no intrinsic restriction placed on the disturbance

wavenumber {i.e. wavelength).
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II. Formulation and Solution

We consider two fields of equal density, but differing viscosities u and &
flowing through a tube of radius R, with the inner fluid occupying a cylindrical
region of radius R, (Fig. 1). The primary flow ig then given in dimensionless

form as

2 m I —a

4
T -
&

(r) = — {1—-’:-rz]m a®

where a = Rp/R; and m = G/ Now, we assume that the steady Poiseuille flow
given by {1} and (2} is subject to an infinitesimal disturbance at t = 0. Then the
altered flow can be expressed as a sum of the primary and disturbance flows.

For exarnple, in fluid 1,

where u and w are the radial and axial velocity components, respectively. Res-
tricting attention to axisymmetric disturbances, the disturbance velocities are
expressed in terms of a stream function in the form ¢(r)}e™*2 where ¢ is the
amnplitude function, K is the wavenumber {real), and n is the complex eigenvalue
n = n, +in;. The flow is unstable if n; < 0 and stable if n; > 0. Substituting the
above form of the disturbance strearmn funetion inlo the linearized Navier-Stokes
equations, we obtain the Orr-Sommerfeld equation in cylindrical coordinates

with the primary Poiseuille flow in Aluid | given by Eq. {1).



Lilgg =0 (3
where
- _ci - _é._ - k3 fa
L= dr®2 r dr k (4)
1 """‘FE

and Re denotes the Reynelds number, {,u.4. In deriving these equations, we

utilize the [ollowing characteristic variables for nondimensionalization:

gc = Eb21 (6)
= G _/p2 ;
e = 7 (Ri ~RE) {7)

¥

pe = =t (8)
o
12

te= = (9)

where G is the applied pressure gradient, and v is the kinematic viscosity w/p.
Similar equations apply also to fluid 2 with ,; denoting the amplitude function
for fluid 2. Same characteristic variables are utilized in fluid 2 as in fluid 1 for
nondimensionalization. The operators in Eq. (3) are commutative with each

other. Therefore, ¢ can be separated into two parts
® =Pt P (:0)
with ¢, and ¢ saltisfying
Ligy =0 {11)

and
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Legs = Q, {(12)
respectively, The linearized stability analysis thus reduces to the sohution of
{11) and {12) for p, and ¢a.

A general solution for Eq. {11} can be expressed in the form

@y = Alril(kr) + BtrK;(kr)

where A; and B) are constants, and 1, and K; are modified Bessel functions of
first order. Equation {12) does not yield a solution of simple form in terms of
well-known functions. However, a general solution can be obtained in terms of a

Frobenius series. If we rewrite Eq. {12) so that the independent variable is kr,

then Eq. (12) becomes

d%, dgs @ B s
———— D Ypy + X = {i3
dx? ax E: Pa K, ¥2 {(13)
where
X = Kkr
a=k? +in + Ijeaglk {14)
Re
’3“?-*&2 ik

Assuming a solution in terms of a Frobenius series

Pa=x® 5 A, (15)

nz=d

we obtain the general solution of Eq. (13) in the form
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#2 = Agy.(x) + Bewp(x) (16}

where Az and By are constants, and v, and vy, are infinite zeries of the form

Ya ™ 2 bﬂxn <-?}
n=t
in which
bGzO
by =bg=bg = =0
bgﬂ i
SR S NN S ..
bn nin -2} k4 br-s o5 i@ bn-2 for n= 4
and
Yo = logxy,(x) + Z a,x" (18)
n=0
in which
a; T ag =ag = - =0
_ k*
ag""'z . b2
ag = 1
S - M — o _2n-1) o4
B T A8 BT an-g) *  hnog) on X RS

and
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a=k?+in + Re ik

Then, a general solution of Eq. {3) is

¢ = Ayrli(kr) + BirKi(kr) + Agyalkr) + Bayn(kr) .

A similar analysis for fiuid 2 yields a solution of the same form

9; = §1PI1(L€I‘} + gfolik!‘) + gz?a'(}ﬁ') + ﬁz?‘b(kr} .

where
Fa= 2, box®
nx
gg:O
by = by =by = =0
bo = 1
g-—wu—lmmAS p—t A B torn=4
n nin-2) k* “* nh-2) ° n-2 -
$o = logx Falx) + 2, &x°
n=0

B =83= 8= =
- K~
=2 by

(22}
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ﬂm)

Tkt n(n-2) kg -2 2}
and
; o f 2
=K+ B4 2504 2 ik
m ml {1 —a%m
A__Rei 1
ﬁ"m l{l-—az}m ]Ik

At r = 0, the velocity components 4. # must be finite. Therefore,

¢ = Arrlylkr) + AgFalier) | (23)
All that remains is to apply boundary conditions in order to determine the con-
stants Ay, Ag, Bl Bg, 51 and 5:2

in deriving the boundary cenditions, second and higher order terms in distur-
bance gquantities are neglected. In the following discussion, prires on ¢ and ,2
denote differentiation with respect to r. The position of the interface is denoted
as r = a + n where n denotes a small deviation from the steady shape of the

interface {Fig. 1}. Since u' at the interfaceis

U pmarn = «-3L+ W(a) -g—g = = pa)etnriaix, (24)

solving Eq. {24), 7 is found to be

n= ;_ ﬁf)_ei(m*—kz} (25)

where
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n
c= —+ Wia}.
k I

The boundary conditions are then

1. No-zslip at the tube wall, r = 1.
and

2. Continuity of radial velocity at the interface, r = a + 7.

! o~y -~ ‘
Wie = 07, or  play=¢(a) (28)

3. Continuity of axial velocity at the interface.

[
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wen ]

( o 7|
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4 Continuity of tangential stress at the interface.
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5. Balance of the normal stress difference across the interface and the capil-
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lary force due Lo surface curvature.

, Ju’ 3w oy ~ o W &n ]
—_ 402 Sl sins R S 2m — AN !
| P i 2 Fralie ]r—a { F +2m " 2m

:...;_{.._.zz,__a_n_} )

In Eq {31). Ca denotes the capillary number, pu./r, where ¢ is the interfacial

tension.

In order to apply {31), it is necessary to express p’ and p" in terms of ¢ and z.

Since it is assumed that the motions are preportional to etk Thus, letting
p' = i(r)elmtti®) (32)
F = ?{(z.)ei{nukz} ) (33)

the z-component of the governing equations for fluids 1 and € give

fz"""—%'—'—””‘!— - fP”""["’"‘

1k n ReW
.i- [P et
ikr ikr? ¥

k o - Re oW ¢
ikrd ir Kr r

r ar

m_,mk, n +Rew]¢a,~_§§“g§m,A (35)

A-—........:.._..A ......I..'I.}.......A" — v oty
= ikr 7 +ikr2¢ +{ 1ggr3+ ir kr r r ar ‘

Then, in terms of ¢ and g; the interface boundary condition {31} becomes
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! o o ] 0w v 1"\\’ f A z
oo Zmik 2mik oW _ Re oW b N ke ’ (36)
| a? ac  dr a dr | Ca | a’c ac

-~

Substituting the general solutions ¢ and ¢ into the boundary conditions of
Eas. (28)-{30) and {36), we obtain six simultaneous algebraic equations for the

six unknown coefficients, A,, Az, By, B, A; and 43.2.

Fx=10

with x denoting the vector of unknown coefficients [A;, Ag. By, Ba. A, Az]". The
elements of the matrix F are given in the Appendix. Since Eq, {37) is a system of
linear homogeneous equations, it has a nontrivial sclution vector if and only if
detF = 0. The probiem here then is to find the eigenvalue n that satisfies the
characteristic equation detF = 0 given a, k, m, Ca and Re. Se far, we have placed

no restrictions on any of these parameters.

HI. Results

Numerical calculations using Newton's method were carried out to evaluate
the complex eigenvalue n which satisfies detF = 0. The series y,, yp and v, were
truncated at the 40th term. The initial guess for n in each case was the value of
n from the calculations of Mikami and Mason (1975) who considered the

corresponding stability problem when both liquids are stationary.

In view of the fact that the stability analysis is linear in the magnitude of the
disturbance amplitude functions, ¢ and E it might seem at first that the growth
factor —n; {and the criteria for instability) could be obtained as a superposition
of the separate results for capillary instability in the absence of flow (Mikami
and Mason, 1975) and for instabililty due to a viscosity difference with pressure
driven-flow in the absence of capillary forces {y = 0 or Ca » =) However, this is

not possible because the growth factor is nonlinear in m and Ca. The governing
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equations and boundary conditions are linearized with respect to disturbance
amplitude function z and ,;: but not linearized with respect to m and Ca. One
indication of the problem can be seen by considering results for m = I, where
only the capillary instability is present at the interface, and for Ca = =, when
instability iz due solely to the viscesity difference between Lhe two fluids. An
atternpt to obtain the growth facters due to the simultaneous presence of the
viscosity difference and surface tension by a linear combination of the growth
factors for capillary instability and for instability due to the viscosity difference
clearly does not work in this case Mikami and Mason {1975) have shown that the
growth factors for capillary instability alene is a nonlinear funciion of the
viscosity ratio. In particular, one cannot obtain the growth facltors for m # I
from the growth factors for m = 1 by multiplying by a factor that is independent
of ka. The results of Mikami and Mason {1975) show that the rultiplication fac-
tor depends on m as well as ka. The fundamental "nonlinearity” of the depen-
dence of n; on m and Ca can also be dernonstrated by considering our own
numertcal results, For example, in Fig. 8, we consider the general problem with a
=07 m = 2.0 and Ca = 1.0. The sclid lines represent the growth factors for a =
0.7, m = 2.0, Ca = 1.0 when beth surface tension and a viscosity difference exist
simuitanecusly, and the broken lines represent the growth factors obtained by
adding the growth factors for a = 0.7, mu = 2.0, Ca = = in the presence of
Poiseuille flow and those fora = 0.7, m = 20, Ca = 1.0 with no primary flow. In
other words, the broken lines are obtained by adding the the growth factors due
to the viscosity difference alone {Ca = =) and due to capillary instability alone
{no primary flow). As can be seen in Fig, 8, when Re = 0.0 the broken line coin-
cides with the solid line. However, for Re = 0.4 simple addition of the two
separate instabilities does not yield the overall instabilily represented by the

solid line. in general, for the cases of finite Re in Fig 8, the growth factors due
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to the simultaneous presence of the vizcosity difference and surface tension
cannot be obtained by adding the separate growth faclors due to the viscosily

difference and surface tension.

Our current study exhibits the simuitaneous effects of surface tension and
the viscesity difference between two fluids for finite but small Re. Since there is
no restriction on ka, neutral stability peoints and modes of maximum instabilily
are also studied in the present work. The ranges of parameters considered are
as follows: viscosity ratic from 0.5 to 2.0, capillary number from 0.1 to =, Rey-
noids number from 0 to 0.4, and radius ratio from 0.1 to 0.9. There is no intrin-
sic restriction on the range of ka; however, the range of ka considered in this
study is between 0 and 2 because instabilities occur in this range of ka. Current
calculations are done for small Re because the series in Eqgs. {17}, {1B) and {27)

diverges for Re > O(1).
A Effect of m and Ca

In Figs. 2, 3 and 2, the negative growth factor. n,, is plotted agamst ka for m =
0.5, 1.0 and 2.0 with Ca = =, 2.0 and G.1, respectively. for the case when a = 0.7
and Re = 0.1, When Ca = =, the surface tension is zero and it is evident, as
shown in Fig. 2, that the existence of stable or unstable modes is determined
solely by the viscosity difference between the two phases. In particular, when
there is no viscosity difference between the two fluids, le. m = | Lhe interface i3
neztraily stable for all ka. This result not only agrees with the result of Yih
{1987), but is obvicus physically since no mechanism for instability then exists
at the interface The flow is unstable for the long wavelengih disturbances con-

"sidered in the current study when m = 0.5 However, as can be seen in Fig. 2

the magnitude of the growth factor decreases as ka increases beyond 1.30 and it

can therefore be surmised that the interface would be stable for sufficiently
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short wavelength disturbances The interface s stable for all ka considersd
when m = 2.0, and the interface becomes more stable as ka increases, Then. by
extrapolating the above trend. the interface is expected to be stable for short
wavelength disturbances as well Therefore, in the absencs of surface tension.
the configuration with the less viscous liguid on the inside 15 unstable to long
wavelength disturbances, wnile that with the more viscous liquid on the inside is
stable to all wavelengths. This behavior is consistent with the results obtained
by Joseph et al. {1983) for higher values of Re, and is therefore presumably true

over the whole range.

The effect of surface tension can be seen in Fig. 3 for Ca = 1.0, The flow is
now unstabie Lo long wavelength disturbances for all three viscosity ratios con-
sidered, inciuding m = 2.0 which is stable when Ca = =, but is stable to short
wavelength disturbances. It can aiso be seen in Fig. 3 that the neutral stability
point ocours for ka greater than 1 ifm < 1, equal to ~ if m = i, and less than
if mx > 1. Specificaily, the flow becomes unstable at ka = 085, 1.0, 1. form =
2.0. 1.0, 0.5, respectively. In other words, the unstable range of wavenumbers s
decreased as the viscosily of the inner fluid is increased relative to the other
fluid, and the growth factor is decreased. Similar effects of surface tension are
shown in Fig. 4 for Ca = 0.1 except that the flow is more unstable cornpared to
the case of Ca = 1.0. 1 is interesting to compare ka for neutral stability for the
two cases Ca = 1.0 and Ca = 0.1, When Ca = 0.1 and m = 0.5, neutral stability
occurs at ka = 1 02 which is smaller than the critical valuefor Ca = (0 and m =
0.5. On the other hand, neutral stability for m = 2.0 occurs at ka = 0.98 which is
larger than the critical value for Ca = 1.0 and m = 2.0. However, form = 1, neu-
tral stability occurs at ka = 1 for all values of Ca. Therefore, the influence of
increasing surface lension is to destabilize the flow to long wave disturbances

and to make the wavenumbers for neutral stability for various m's concentrate



around ka = ..

The effect of m and Ca on modes of maximum instability, i.e ka for highest
growth rate, is further illustrated in Fig. 5. Here, kap.y 18 plotted against Ca for
m=05,10and 20 whena =07 and Re = 0.1, When m = !, Kanm,y does not shift
as Ca varies. So withoutl the viscosity stratification, the effect of surface tension
is to increase the growth rates witheout shifting kan.,. For m = 0.5 maximum
instability occurs at larger ka {i.e. smaller wavelengths) than for m = 1. but the
shift of Kamax Pecomes smaller as Ca decreases (i.e. surface tension increases).
And for m = 2.0, on the other hand maximum instability occurs at smaller ka
{l.e. larger wavelengths) than for m = 1. Again, the shift of Kanay becomes less

as Ca decreases.

As seen above, maximum instability cccurs for 0 < ka < I, which means that
breakup occurs for disturbances whose wavelengths are greater than the cir-
cumference of the inner liguid cylinder. Also, we see thal maximum instability
vceurs at larger values of ka as m increases from 1 and at smaller values of ka
as m decreases from 1. Breakup of the cylindrical liquid produces drops whose
size is of the order of Amae the wavelength for maximum instability (Levich,
1962, p. 633). Thus, a more viscous inner liquid would tend to yield larger drops
when it breaks up. The effect of surface tension is to modify the viscosity effect
by suppressing the shift of the modes of maximum instability relative to those

form= 1.0
B. Effect of Re

The effect of Re is iliustrated in Figs. 8, 7 and 8. In Fig. 6. the effect of Re on
the stability of the interface is shown for a = 0.7. m = 2.0, Ca = =. Since Ca = =,
there exists only the instability due to the viscosity difference between inner and

outer fiuids. It can be seen that the effect of increasing Re is to increase the
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growth rates Figure 7 shows the effect of Re when only the capillary instability
is present on the interface for a = 0¥, m = 2.0, Ca = .0 The interface becomes
more unstable as Re lncreases. However, the neutral stability polnts remain
fixed at ka = ! for all Re, and the wavenumber ka for maximum growth rate
does not vary as Re increases. This means that as Re increases the effect of
inertia on the capillary instability i1s to increase the growth rate of already
unstabie disturbances, witheut the shift of the ka for neutral stability or max-

imum stability.

When both surface tension and viscosity difference affect the stability of the
interface simultaneously, as shown in Fig 8fora = 0.7, m = 20, Ca = 1.0, the
interface becomes more unstable as Re increases. In addition, ka for neutral
stability increases so that the interface becomes unstable to shorter wavelength
disturbances. As Re increases, the disturbance with fastest growth rate cccurs
at larger ka fie. srmaller wavelength} This result shows that as more inertia
effect i3 present, the inner Awd will tend to break into smaller {shorter

wavelength) fragments.
C. Effectof a

 The effect of a on the stability of the interface is discussed for Re = 0.1
There are two mechanisms that affect the stability of the interface as the radius
of the inner cvlindrical core Auid varies: one (s associaled with the relative
volume changes of the inner and cuter fluid, and the other is a result of hydro-
dyramic influence of the tube wall. The efect of the volume change is such that
an increase of a has a stabilizing effect for m > | and a destabilizing effect for
m < 1. The influence of the wall as a increases is {o stabilize the system, in a

manner that longer wavelength disturbances are stabilized more than shorter

wavelength disturbances. This latter behavior is iliustrated in Fig. 9. for which
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the effect of the relative volume change is absent becausem = .

When the only instability 1s due to the viscosity difference at the interface, as
shown in Fig. 10 for m = 0.5, Ca = ==, Re = £.1, the interface al firsl becomes
more unstable as a increases from 0.3 due to the volume increase of the less
viscous inner fluid, but beyond some critical value of a the growth factor begins
to decrease with further increase of a due to the stabilizing effect of the wall
This critical value of a depends on ka. When a = 0.5 the interface is less
unstable than a = 04 for long wavelength disturbances, but for short
wavelength disturbances the interface for a = 0.5 is more unstable than for a =
0.4, This behavior 1s caused by the fact that the wall interaction stabilizes the
iong wavelength disturbances more than shert wavelength disturbances as men-
tioned previously. The eflect of varying a on the instability generated by the
viscosity difference for several m'sis shown in Fig 11 forka =02 Ca == Re =
0.1. When m = 0.5, as mentioned above, the interface becomes more unstable as
a increases up to about 0.4 bul then becomes less unstable as a Increaszes
beyond about 0.4. When m = 1, the interface is neutrally stable because Ca = =
in this case. When m = 2.0, the interface is unstable for small a and the inter-

face becomes less unstable as a increases and becomes stable beyond a = 0.23.

In Fig. 13, the effect of varying a on capillary instability is shown for m = 1.0,
Ca = 1.0, Re = 0.1. For capillary instability, only the wall effect influences the
stability of the interface as a varies because m = 1. Therefore, as a increases
the interface becomes less unstable, but neutral stability aiways occurs at ka =

Since the wall effect stabilizes longer wavelength disturbances more than
shorter wavelength disturbances, maximum instability occurs at a larger ka as a

increases.

The effect of varying a when both surface tension and viscosity difference



65.

simultanecusly generate instability at the interface i3 shown in Figs. 12 and ~4
As a increases, the interface becomes less unstable for long wavelength distur-
bances. It is interesting to note that for m = 0.5, neutral stability cccurs at ka
> 1 and increases with a while neutral stabilily occurs at ka < I whenm = 2.0

and decreases with a.

As a increases, ka for maximum instability increases for all cases mentioned
above except the case when m = 2.0, Ca = 1.0, Re = 0.1 {Fig. 12} In this case,
when a = 0.7 the interface is unstable only for small wavenumbers so that the

maximum instability occurs at a small wavenumber,

11l. Conclusion

The stability of annular flow of two fluids through a circular tube has been
studied. The instability considered in the present study occurs at the interface
between two fAuids. Linear stability analysis was carried cut for axisymmetric
disturbances when the mechanisms of instabtlity due te a viscosily difference
hetween twe fluids and surface tengion are simuitaneously present The effects
of parameters, a, m. Ca and Re, on neutral stability points and modes of max-

irmum instability are also reported.

When surface tension is zerc and viscosities of two fluids are same, the inter-
face is neutrally stable because there is no mechanism that generates instability
for the interface-driven instability. Instabilities develop when surface tension is
finite and/or viscosities of two fluids are different. When viscosilies are same,
only capillary instability is present for finite surface tension. And only the insta-
bility due to the viscosity difference is present when surface tension is zero and
m # :. The instability developed by the sirnultaneous presence of surface ten-
sion and the viscosity difference were compared with the capillary instability

and the instability due to the viscosity difference. The eflect of varying the
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radius ratio beiween inner and ouler Awids and Reynolds number s te modify

the instability developed by the viscosity difference and surface tension

The instability due to the viscosity difference alone was studied by Joseph et
al {1983). Unfortunately. quantitative comparison of current results with the
results of Joseph et al. [1983) is not readily done because our calculations are
done for smali Re due to the convergence requirement of the series type solu-
tion of the Orr-Sommerfeld equation and Joseph et al (1983) encountered
numerical problems for small Re(< ). However, qualitative comparisons
between the current results and those of Joseph et al. {1983) indicate general

agreement,



Aza

Agy

Age

Agy

Ags

Aag

Asy

The elements of the matrix Fin BEq. {48) are given below.

= 1i{k}

= yuik)

a® Kk}

= wik)

= 0

= kdolk)
= vtk
= -kKqy(k)

= w'(k}

= al;(ka)
= yolka)
= aK;{ka)
= ypika)
= -al,(ka)

= '?a{ka)

= -kalglka) +

g

C

ow

r

67.

Appendix

} i likﬁ)
r=a



68,

o aw
Agp = =valka) + —‘—-%—a—i; vaikal
“ i r Jr=a
. oy alaw
:143 e kaKg\i{a} + —g——i leka)
e 0r .,

o L
A= —vulka) + =

f ! ! a— «%mg.}.‘i-] £
Ass kala(ka) l@r ;r_ai; lka)
, ooy L[ 9W
Agg Fa'(ka) o {5!‘ rza)’a\ka)
[ < larw ] |
= ] ol R B I,{ka
‘&'51 o arg ]rza} 1L )
o [ arw ] 2k  in  Reik |
et (L T e T T e
a2 ||
= —ZKF w( - K,'ka
Asa [5!‘4 Jr::a;! 1ika)
Ny = | 84w _2k* in_ Reik (ka)
Tad ac | ar® | ... a & b
[ [ VAT
N N )
Ags = m{ 2K+ = 57 Ii{ka)
Agg = rmﬁi— Call p B2y §—+g§-ik]§6’ka)
88 l e 81‘2 e a = a 2 i, as
Lt (
gy = 20 - n - Rekllg(ka) + |- 2K~ ?il@i— + Re Pﬁu I {ka)
’ : c or raa T r=a
Agz = [%& ¥ alka)
| 2k 2ik | aw 2Re {f}w
— ZIX =IK 1O 2N AL k
+i a® ac | dr ],...a a | or ]ma vatka)




63.

Agz =  —2ik® + n + Rek|K¢{ka)
. oik | aw A
{ a c l ad Fa r r=a j
_ ek ]
Ags = l—;— ¥'pika)
[ ok 2ik [aw 2Re | 3w ]
_ DK ZlK oW PR R {
i l ¢ ac { or }r“a a |0 Jrza }Yb\kﬂ)

Aes =  [—2mik?® + n + Re-k}lg(ka)

a C ar r
! 1 Kk* /
e e ey 2
Ca a*c  «© ]I“ka)
o= o B o) + (ol 20 _ 20k [0
o] jere ot ] [l
Cal alc ac i a roesa |77




70,

References

Hickox, C. E. 1971 Instabilily due to viscosily and densily stratification in
axisymmetric pipe flow. Phys. Fluids 14, 251,

Heoper, A. P. and Boyd, W. G. C. 1983 Shear flow instability at the interface

between two viscous fluids. Phys. Fluids 28, 1613

Hooper, A. P. 1983 Long-wave instability at the interface between two wiscous

fluids: thin layer effects. Phys. Fluids 28, 1613

Joseph, D. D., Renardy, M. and Renardy, Y. 1883 Mathematics Research Center

Technical Summary Report #2503.

Joseph, D. D., Renardy, M. and Renardy, Y. 1984 Instabilily of the flow of two
immiscible liquids with different viscosities in a pipe. J. Fluid Mech. 141,

309,
Levich, V. G. 1962 '"Physicochermical Hydrodynamics” Prentice-Hall, N.J.

Mikami, T. and Mason, S G. 1875 The capillary breakup of a binary liquid

column inside a tube. Can. J. Chem. Eng. 53, 372,

Plateau, ¥. 1873 Statique experimentale et theorique des liguides scumis aux

seulea forces moleculaires, Paris.

Ravleigh, lord 1892 On the instability of a cylinder of viscous liquid under
capillary force. Phil. Mag. 34, 143

Renardy, Y. 19B5 Instability at the interface between two shearing flulds in a

channel. Phys. Fluids 28, 3441,

Tomotika, 5. 1935 On the instability of a cylindrical thread of a viscous liquid

surrounded by another viscous fluid. Proc. R Soc. London A 150, 322



/1.

v

Wason, D T., McNamara, J. . Shah, S M., Sampath, K and Aderangi. N. 2879 The
role of coalescence phenomena and interfacial rheclogical properties in

enhanced oil recovery, an overview J. Rheol 23, 181

Yih, C. 3 1987 Instabiiity due to viscosity stratification. J. Fluid Mech. 27, 337



72,

Figure Captions

Figure .. Schematic sketeh of the system.

Figure 2. Dimensionless negative growth rate, n;, as a functien of the dimen-
sionless wavenumber ka fora =07, Re= 0.1, Ca = o

Figure 3: Dimensionless negative growth rate, n;, as a function of the dimen-
sionless wavenurnber ka fora = 0.7, Re=0.1, Ca= 1.0

Figure £. Dimensionless negative growth rate, n;, as a function of the dimen-
sionless wavenumber ka fora =07, Re= 0.1, Ca = 0.1.

Figure 5. Dimensionless wavenumber for maximum growth rate, (K&)max. a8 &
function of the capillary number Ca for a = 0.7, Re = 0.1,

Figure 8;: Dimensionless negative growth rate, n; as a function of the dimen-
sionless wavenumber ka fora =07 m =20, Ca = =,

Figure 7: Dimensionless negative growth rate, n;, as a function of the dimen-
sionless wavenumber kafora =07 m= 10, Ca =10

Figure 8 Dimensionless negative growth rate, n; as a function of the dimen-
stonless wavenumber ka., — for a = 0.7, m = 2.0, Ca = 1.0 with
Poiseuille flow. —— addition of growth factorsfora =07 m =20, Ca
= = with Poiseuille flow and for a = 8.7, m = 2.4, Ca = 1.0 without
Poissuille flow.

Figure 9. Change in dimensionless negative growth rale wilh respect to the

dimensioniess inner radius, dn;/da, normalized with the absolute
value of the dimensionless growth rate, nyl. as a function of the

dimensionless inner radius a.

Figure 10: Dimensionless negative growth rate, n;, as a function of the dimen-
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sionless wavenumber ka form =05, Ca ==, Re = 0.1

. Dimensionless negative growth rate, n; as a function of the dimen-

4o

sioniess inner radius aforka = 0.2, Ca = =, Re = 0.1,

Dimensionless negative growth rate, n;. as a function of the dimen-

sionless wavenumber kaform =2.0,Ca= 10, Re=0.1.

Dimensionless negative growth rate n; as a function of the dimen-

sionless wavenumber kaform = 1.0, Ca= 1.0, Re = 0.1,

Dimensionless negative growth rate, n; as a function of the dimen-

sionless wavenumber kaform =05 Ca=10 Re =0.1.
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Chapter 111,

Creeping Motion of a Deformable Drop

toward a Deformable Interface



33.

CREEPING MOTION OF A DEFORMABLE DROP TOWARD A DEFORMABLE INTERFACE

I. Introduction

When a droplet of a light liquid rises through an immiscible heavy liquid
toward an interface, separating the heavy liquid and a large boedy of the light
tiquid, the droplet decelerates and the heavy liquid between the drop and the
interface drains until the film ruptures and the drop coalesces with its homo-
phase. This process is depicted in Fig. 1. The problem of a drop of a heavy
liquid in a light bulk phase can be obtained by simply inverting the
configuration of Fig. 1. The coalescence problem described above is of particu-
lar interest in the final separation stages of liquid-liquid extraction processes
where droplets of light liquid rise through heavy liquid and droplets of heavy
liquid fall through light liquid toward the common interface between the bulk

phases.

When fluid ! is the same as fluid 3 (see Fig. 1), ie. p, = pa, it is generally
assumed that the rate determining step in the coalescence process is film
drainage. The result of the current calculation indeed shows that this is true.
The vetocity of the drop obtained in the present calculation reaches almost zero
abruptly, as the drop approaches the interface as if the drop really does come
to rest. Indeed, the rate of coalescence is frequently characterized via a so-
called "rest time", defined as the time interval between arrival of the drop at the
interface and coalescence, Charles and Mason (1960). The rest time is depen-
dent upon the rate at which the thin liquid film between the drop and the inter-

face drains as a function of time.

Most theoretical attempts to model coalescence have been concerned with

the film drainage step alone, with te goal of determining the 'rest time” for
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assumed initial shapes of the interface and the drop. Provided that physically
correct initial shapes are used. such models can give predictions for the ‘rest
time'" Atiemnpts to model the film drainage step are summarized by Woods and
Burriil {1872). Charies and Mason {1960) estimated the rate of thinning by con-
sidering twe rigid parallel disks. In the film of liquid between the two parallel
discs, a parabolic profile was assumed with no-slip on the surfaces of the dises.
Their work was extended by Frankel and Mysels (1962) and Princen {1963) who
allowed for curvature of the interfaces, and either a mobile or immobile
surface/interface on the drop surface and the interface. For a mobile interface,
the shear stress on the interface was assumed to be zero, while the tangential
velocity was set to zero for an immobile interface. Burrill and Woods (1969}
atternpted to predict the shape of the interface and the drop a posteriori by
assuming an empirical correlation for the pressure distribution in the film
region. This empirical correlation was included in equilibrium force balances on
the drop surface and the interface in the film region, and coefficients of the
empirical correlation were deterrnined by trial and error by comparing the
experirmental film thickness with the predicted film thickness between the calew
lated interface and drop shapes. Using an experimental profile of the draining
film, i.e. the interface and drop shapes, as an initial condition, Hartland (1970)
deveioped an analysis to predict the interface shape and the drop shape as a
function of time for small variations of the drop surface and the interface from
spherical shapes. Jones and Wilson (1978) carried out an asymptotic analysis
for the drop and interface shapes using the ratio of film thickness to radius of a
spherical drop as the small parameter. However, they were not able to solve the
resulting integro-differential equations. Lin and Slattery (1982) recentiy con-
sidered the case when the drop surface and interface are immobile, for which

the tangential components of velocity are zero due to the possible existence of
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surfactant gradients. The dependence of the drop surface and the interface
upon the radial direction is assumed ic be weak. Chen, Hahn and Siattery
{1984) later extended Lin and Slattery's {1982) analysis to include the effect of

Llondon-van der Waals forces.

In all of the above theoretical developrnents, the investigators considered
only the motion in the thin film region, and either no-slip (immobile interface)
and zero tangential stress {(mobile interface) as boundary conditions on the
drop surface and the interface. Therefore, the physical properties of the drop
fluid {and the upper bulk fluid) were not included in the analyses. Also, a cer-
tain initial shape was assumed for the drop surface and the interface, either "a
priori” or taken from experiments, and the lubrication approximation is applied
to the very thin film region for which the ratio of the film thickness to the
radius of a spherical drop is very small. One recent departure from this pat-
tern, however, was reported by Chervenivanova and Zapryanov (1985) who used
a domain perturbation technique to study the shapes of the drop and of the
interface, including the physical properties of the drop fluid (upper bulk fluid).
However, their results are restricted to the cases when the drop is relatively far
away from the interface because they considered only small deviations from a

spherical drop and a fiat interface.

The majority of experimental investigations of drop coalescence were per-
formed by releasing a drop formed at the tip of a needle very near an interface.
Allan, Charles and Mason (1981), MacKay and Mason (1963), and Princen and
Mason {1965) used a light interference technique to measure the film thickness
and rest time. Hartland {1967a-d,1969) used a capacitance technique to meas-
ure the film thickness and also presented experimental pictures of overall
shapes of the drop near the interface. For a pure interface and interfaces with

controlled addition of surfactants, Hodgson and Woods (1969} and Burrill and
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Woods (1973) also used the light interference technigue to study film drainage.
For the pure svstems, the interface was cleaned very carefully by removing the
contamination from the interface. They found that for pure systems symmetri-
cal drainage occurred. but that unsymmetrical drainage occurred when a
moderate concentration of surfactants exists on the interface. If the concen-
tration of surfactants was increased to still higher values, the film again drained

symmetrically.

Lee and Leal {1982) and Geller, Lee and Leal (1985) carried out numerical stu-
dies of a rigid sphere moving normal to an initially flat but deformable inter-
face. In this paper., we report on a complementary numerical study of the
approach of a deformable drop toward a deformable interface using the same
boundary integral technique. We restrict our solutions for drop and interface
shape to an axisymmetric form, and thus limit our solutions to the so-called
symmetric drainage mode, as is relevant if the interface is uncontaminated
{(assumed implicitly in the boundary conditions for our numerical solution). The
objective of the present work is to calculate the shapes of the drop and the
interface and the velocity of the drop as it approaches the interface. In the
current work, unlike the filrn drainage theories, we consider the complete prob-
lem, starting with a drop at some distance from the interface, and including
motion both within the drep and in the upper bulk fluid. Furthermere, no res-
triction is imposed on the deformation of the interface and the drop. The initial
configuration has the drop several radii {usually three radii} from an unde-
formed flat interface. This initial configuration enables the observation of the
evolution of the shapes of the drop and the interface as the drop approaches
the interface. As the film between the drop and the upper bulk fluid becomes
thin, the time step must become smailer, and current computation is ter-

minated when the cost of further calculation becomes unacceptably large.
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Consequently, the drainage of a very thin film is not studied in the current work.
Hewever, the caleulation could be continued using the film drainage theory with
the final shape obtained from the current computation as an initial shape for
the film drainage theory. Eventually, instability must be considered to complete
our understanding of the coalescence phenomenon. We consider gravity, inter-
facial and viscous forces. London-van der Waal's forces and electrostatic forces
are neglected, but will be the subject of a subsequent study These forces

become significant only when the film thickness becomes very thin (1000 ).

II. Formulation

We consider the approach of a droplet of a light liquid {fluid 1), through an
immiscible heavy liquid (fluid 2), normal to an initially flat interface which
separates the heavy bulk fluid (fluid 2) and another tight bulk fluid (fluid 3), as
indicated in Fig. 1. All fluids are Newtonian. In the calculation reported later in
this paper, we will restrict our attention to systems for which the drop and the
upper bulk fluid are the same, i.e. fluid ! = fluid 3. Here, however, the formuia-
tion is carried out for the light drop rising through the heavy fluid toward a
second light fluid. The governing equations and boundary conditions for the

cage when a heavy drop falls through a light fluid are identical.

We assume that the creeping motion approximation is applicable to the
motion of the drop, and thus all inertial effects are neglected. The resulting

zolutions are therefore valid when

.l
Re= <% oy (1)
Mz

where 4, is chosen as the velocity of a spherical drop in an unbounded fluid 2,
U.., and 1, is the undeformed drop radius a. Since the drop moves as a conse-

quence of buoyancy,
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This characteristic velocity is an upper bound on the actual velocity of the drop,
because the drop velocity decreases as the drop approaches the interface.

Therefore Eq. {1} represents a conservative estimate of the conditions necessary

to neglect inertial effects.
The governing differential equations in dimensionless form are then

-~V p; + AV 2u1 =0

Voau, =0 forfluid: (3)

—‘G’p3+V2ugﬂ(}

Vu=0 forfud? {4}

~V pa + AaV Pug = 0

Voug=0 forfluid 3 (5)

with the following characteristic variables



In Bq. (8), Ag = Uadis.

We have adopted a global coordinate system that is fixed at the undeformed
flat interface, as indicated in Fig. i, with z = 0 corresponding to the plane of the
undeformed interface. Then. the boundary conditions at large distances from

the drop are
upug» 0 as x| > =, {8)

On the interface surface, X€3;, we require

Uz = Ug (7)
. _ . = _1_ . —_— _...1:.._.... f
ng Tz — Asng'Ts = ng Cag V 'ng o hng (8)
. = g - 1 gg}.ﬂ. i
Dg'lp = Ng'ls = oo S (9)

where the interface shape is described as z = h{r,t}, and ng denoctes the unit nor-
mal vector into fluid 2 at the interface, ng = —V H/[VH; with H = z - h{rt). In
Eq. (8), Cag dentes the capillary number for the interface, upU./yz;s and
Cgs = uel~/ga%{py — p3) where g is the interfacial tension between fluids 2 and
3. The stress T, is the total stress minus the hydrostatic centribution, and
therefore the body force term appears explicitly in the boundary cendition (8).
rather than appearing in the governing differential equations. On the drop sur-

face, x5y,
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. (12)
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w + -é—{—iz] :nl-{ug * 5k

In writing the boundary conditions {10)-(12), we again utilized the global coordi-
nate system that is fixed at the undeformed flat interface. However, it is con-
venient to describe the drop shape in terms of a local spherical coordinate sys-
tern. The origin of this local coordinate system is located at the center of mass
of the drop and is related to the origin of the global coordinate system by L{) as
shown in Fig. 1. Then, dL/dt denotes the velccily of the center of mass of the
drop. In Eq. {:12), dL/dt is included because the present problem is solved in the
global coordinate system fixed at the undeformed flat interface. The function f
for drop shape is related to the position of its surface, as 7, = f{ét). Here, 7s

denote the variables in the local spherical coordinate system.. In Egs. (11) and

{12), n, is the outer normal at the drop surface,

n, =VF/VF!

where

F=f-{{6t).

In Eq. {11). Ca, denotes the capillary number based upon the interfacial tension
at the drop surface, uoU. A2 and Cg; = upU.&a%(0z ~ o), where 7,5 is the inter-
facial tension between fluids | and 2. Using the definition of U, in Eq. {2). Cg,

can be expressed as 2/98. Then Eq. {i1) becomes
n Te — AT, =y -é_;—;‘{?’ ‘n; — -gmﬁ{f ~1)cosén, . {11a)

Fquation (11) includes both the continuity of tangential stress and the normai
stress jump condition at the drop surface. It is important to note that a solu-

tion of the creeping flow Eqs. {3)-(5) satisfying the boundary conditions in Eq.
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(11) will automatically satisfy a macropscepic force balance on the drop. In

particular in the present problem, the drag force on the drop wiil equal the

buoyancy force at all times. The equations and boundary conditions {3)-(11) are

sufficient to compietely determine the velocity and pressure fields in the three

fluids, as well as the shapes of the interface and the drop and the velocity of the

center of mass of the drop, without need to impose the macroscopic force bal-

ance on the drop. Indeed. the macroscopic force balance is not independent of

these equations and boundary conditions. In the Appendix, the macroscopic

force balance on the drop is derived from the stress conditions in Eq. (11}, and

the equations of motion.

Independent dimensionless parameters in the present problem are

and

a0

Ca1 =

712
Uw
Cag = ke
723
HoUs
Cgs =

gat(pe — pa)

}\1:&3....
Mg
Ma
Ag = e—
°7 e

Now, the problem is to solve {3)-(5) subject to boundary conditions {6)-(12).

The problem considered here is both nonlinear and unsteady due to the boun-

dary conditions (8), (9), (11) and (12). However, the governing equations are
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linear. Therefore, as in the works of Lee and Leal {1982} and Geller, Lee and Leal
1985), we can represent the solution in terms of boundary distributions of the
fundamental solution of Stokes equations due to Ladyzhenskaya (1963). In this
formulation, the pressure and velocity at any point in the fluid domain are
obtained in an integral representation by distributing point singularities on the

boundaries of the fluid domain. Thus, for an arbitrary point x in the domain,

u(x) = 'gl;: [ ; + W T(n) nds,
- Z%,Js" {x—n)(xigﬁn)(x“n) u(n)nds, (13)

0= 5 [ - 2= s,
35—111)- “T(n) nds, (14)

417

where 7 denotes a position on a bounding surface of the fluid domain, n is the
outer normal to this surface, and R = x ~#n|. In fluid 2, the bounding surface 3
includes both the drop surface and the interface. Fluids 1 and 3 each have one
boundary, the drop surface and the interface. respectively. As is well known, cf.
Lee and Leal (1982), the double layer potentials, L.e the second terms in Egs.

{13) and {14), are not continuous, but suffer a jump at the boundaries.

Using the jump conditions for the double layer potentials (Ladyzhenskaya,
1963). the general solutions {13) and (14) are applied at the boundaries. First,

applying {13} at the boundary of fluid 1, we obtain for x&3y,

uP{n) mdSp

; e [ rrr
Shul(m) = o AR R ]m;m>mdsn—;~;mgpl~§g

where r = x —7 and subscripts and superscripts D indicate variabies evaluated
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at the surface. TP is the stress tensor evaluated as the drop surface is

approached from fluid !. Applying (13) to the body of fluid 2, we obtain for

XESQ,
1 .1 I  rr 1 (1, 3
—é-un(x) = — E—TF—‘QD 7+ 'ﬁg‘“}‘Té}(T?)‘ﬁldSD T 4, l =+ ﬁ"g"}"fé{??)'ﬂsdbi
3 f D ds ds {18
+Z—l— ,[R5 (n)ni B+m‘€lRé ung 1 \i}
and for x<35;
é_u1<x)3___é_ [_1_.+,.1‘$.., }n,dSp — o {}—4-1-?“"[';( ) ngd3
2 sk B R ™S — g [ | g g | T medS:
KN« < o 6. RS S B Ll(y).
t [Rﬁ w(n)mdSp + o~ £ 5 u(n) ngdSy {17)

Here, subscripts and superscripts 1 indicate quantities evaluated at the buik
interface. For example, T? is the stress tensor evaluated as the drop surface is
approached from fluid 2, and T} is the stress tensor evaluated as the interface is
approached from fiuid 2. Finally, applying {13) to the body of fluid 3. we obtain

for x€3;,

L xgqul( -ul(n)-ngdS; (18)

2

¢ 'y

= a i;{ 25 | AaTh(n) pedS; = ““““3\3_&{ =5
where Ti is the stress tensor evaluated as the interface is approached from fluid
3.

The stress at the drop surface, TP, can be eliminated from (15) and {16) using

' the boundary condition (11). To do this, we add (15) and (18} together to give
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Here, the function QP{f) is the stress difference at the drop,

Qbff) =ny Ty —Am Ty

=g -t K,
"Ta, | T

(3 ~ K2) — KD cos§ {ag ] s Kﬁ[?ﬁ,] - 9_3(f - L}cos6n, (20)

sing a6* 2

with

Similarly, Eqs. (17) and (1B) can be added together to eliminate TS, using the

boundary condition (8).

[ 1 f
S0+ D) = - 5 [é— %—]' TR o - 5 [ | 24 %i'd(h)ds‘
3 [_rf_.,r_ Pl nad 3 ¢ - Ag) {g_ l(n) nedS (21)
ar L | T [ mmdS S_QtRﬁ ul(n) nadS;

where, @h) is the stress difference at the interface.

@ (h) = ng'Tz — Aang Ty

- ........l__.. KB 8°h ,.._1_..... {2
S R @

with
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For specified shapes of the drop and the interface, Egs. (18), (17), {19) and
(21) can be solved to obtain u?, u!, TY and T}. The resulting solution satisfies the
original Stokes Egs. (3)-{5), pius the conditions {7) and (8) at the interface, (10)
and {i1) at the drop surface and {8} far from the drop. All that remain are the
kinematic conditions (8) and (12). which can be used to increment the interface

shape and the drop shape to a time At later, respectively.

The kinematic conditions {9) and {12) are applied in the approximate form

hiet = by + [0l ng;Jat —ﬁ-{« for Eq. (9) (23)
|
and
[ -1
fiog =1 + i uiD + Bﬁém.t&_iiz]-nli}&t *ﬁ%’* for Bq. (12) (24)

The variables with the subscript | are known quantities at jth time step. In Eq.
(24), Ly, must be known before Eq. (24) can be used to obtain a new shape. Ly,
15 determined by the condition that the origin of the lecal coordinate system
used to describe the drop shape is located at the center of mass of the drop at
every time step. Then,
. pZdAV,
Zn=0 ——-—————-——-—-—-f D (25)
Spdvp
where 7y denotes the center of mass in the local coerdinate system. For con-

stant density p, Eq. (25) becomes
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¢= [ 7dVp (286)

In the local spherical coordinate svstem, Eq. {26) becomes
5 1
0=2n f f fécosSsinSdédfs . (27}
§=0 f"sﬁc
after integrating in the azimuthal direction. letiing 7 = cos@ Eq. (27) becomes
_ Rn : LT /
0==%1 [ rAdF. (28)
4 = -1
Equation (28) must be satisifed at every time step.
t !
0=/ (}df=f 1470, (29)
-1 Azt

Then, at j+1 th time step,

i

Om‘é

1

where

LH«E"Lg' :
D, Her T
TR

nijl.‘&t

as given by the kinematic condition in Eq. (24). Then, Li,, is determined by
satistying Eq. (30).
The volume of the drop was conserved at each time step by calculaling the

volume of the drop and adjusting f{8) to keep the constant dimensionless

velume of %—ﬂ‘ks. The change in the volume of the drop was so small at each

time step that the shape of the drop was hardly changed. However, the volume
of the drop is adjusted at each time step io avoid the accumaulation of the

change in volume.

Since the drop is assumed to approach the interface symmetrically. the sur-
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face integrals in {18), {17), (19) and {2!) can be reduced to line integrals by

analytically integrating in the azimuthal directicn. Thus. for axisymmetric

fows, Egs. {18), (17),{19) and {21} become

= [l f;;} B—n—-é. B(x.n) T%r}dls 'QB(X??}{ ]dii
2 Uz 5 ne
3 u? SE
;;”‘L (x7) ?3 fc(xﬂ) ul [d {31)
1 1 TS ! TL,
L) - g e ] & [ en [
(32)

31 )% ap + 2 fuod
+ g L Clxm b [dio + o L Clxm) ] fah

D D £ 1
L ou+ 0|0 | = - g [ B350 |4 ~ g [ Boxn) [ th
; (e + 2 [ ey ¥l (33)
+ g (=) [ Gy pjdlo + 2 L G| gffdi {
PR )3:;% mmébB(xn)[Tal n*méB(Xﬂ) %
+ —5? DC{x,n)[ dig+ 3 ;\a)fom){ dly (34)
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36

[
dlp = fsiné”ifg +

and



The quantities B and C are tensors whose elements consist of elliptic integrals

2T

[ {
Blxn) = [ﬁ;; g‘;l C{xm) = [2” g:} : {35)

The elements of B and C are given by Lee and Leal (1982).

There are eight linear integral Eqs. (31)-(34) for eight unknown functions
uf ul ul ul TR TR, TL, and TL,. As in the works of Lee and Leal (1982) and
Geller, Lee and Leal {19B5), a collocation method was used to approximate the
linear integral equations by a system of linear algebraic equations. To apply the
collocation technique, the drop surface and the interface were divided into small
elements so that uP, of, T°, T! could be approximated as constants within each
element by the values at the center of the element. Then. we obtain a system of
{4Np + 4Nj) linear algebraic equations where Np and Nj are the numbers of ele-
ments on the drop surface and the interface, respectively. The integrals in Eqs.
(25)-(28) were evaluated by Gauss quadrature, and the system of linear egua-
tions was soived by Gaussian elimination. When x =7, the integrals in {18), {17},
{19) and {(2!) become singular. However, finite values for the integrals were
obtained by analytical integration over a small neighborhood of x using a linear

expansion of the integrands.

IIi. Results

Numerical calculations are carried out for the case when fluid ! is the same
as fluid 3. For this case, Ca; = Caz=Ca, A; = Ag = A, and Cgs = Cg, =2AF. This
is the system occurring most frequently in industrial processes (e.g. liquid-liquid

extraction). When fluid 1 is the same as fluid 3, Geller, Lee, and Leal {1985) have
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shown by using a macroscopic force balance for a sphere approaching an inter-
face, that coalscence must occur via some type of film drainage mechanism
(because the density of fluid 1 is the same as the density of fluid 3), though this

is not true in general

The initial configuration considered in the present calculation was always a
spherical drop and a flat interface. For non-zero Ca's, the drop shape is spheri-
cal only when the drop is far away from the interface, ie rising in an
unbounded fluid. As the drop approaches the interface, the drop deforms due
to the hydrodynamic interactions with the interface. Therefore, an idealized ini-
tial condition would be to start the numerical calculation with a spherical drop
located very far from a flat interface. But starting the calculation with the drop
teo far from the interface is clearly not practical, Therefore, we start with the
drop at a fnite distance from the interface, after first evaluating the effect of
the initial position of the drop via numerical calculations. In Figs. 2 and 3. drop
shapes and interface shapes are shown for three different initial positions of the
drop {Ly=¢ = 1.2, 3 and 7) with Ca = 2.0, A = 0.5 and Ca = 2.0, A = 10.0, respec-
tively. It can be seen that at L = C.01, the drop and interface shapes become
identical for the two inilial positions, la=g = 3 and 7. But for Lizg = 1.2, the drop
and interface shapes differ significantly from the shape for l4=g = 3 and 7. Fhy-
sically, the drop "rests” very near the interface until a rupture occurs due to ins-
tability. Since there is very little motion of the drop and the interface in this
‘rest’ state, no matter where the calculation was started, the drop and interface
shapes should converge to one shape very near the interface. Thus, the shapes
with Ly=g = 1.2 should eventually become the same as the shapes obtained with
Leze = 3 and 7 if the calculation is continued until the film becomes extremely
thin. In the current calculation, as the film between the drep and the upper

builk fluid becomes thin the time step must become smaller, and the
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computation iz terminated when the cost of further calculation is unacceptably
large. In the following sections, the calculaticns are started at ili=¢ = 2 to
observe the evolution of the shapes as the drop approaches the interface. In
Fig. 4. the velocity of the center of mass of the drop is plotted against L for the
three different initial positions (Iy=¢ = 3, 5, 7) and Ca = 2.0, A = 0.5, As can be
seen in the figure the veiocities becomes identical beyond L ~ 0.7, This again
confirms the fact that starting at 4= = 3 will simulate the appreoach of an ini-
tially spherical drop toward an initially flat interface from far away from the

interface.
A. Preliminary Calculations

When the collocation method is applied to the integral Egs. (25)-(28), the
domain of the interface must be truncated at some large, but finite distance
from the central symmetry line. It was shown by Lee and Leal {1982) that the
integrals decay like 1/pg for large r for the case of a solid sphere approaching
an interface. In Fig. 5, ul'ng on the interface is plotted as a function of r for Ca
= 2.0 and A = 0.5 when the domain of the interface is truncated at r = 13. It can
be seen that u'ng becomes almost zero béyond r ~ 10. Thus, it appears to be
reascnably accurale to truncate the interface around r = (0. In the calcula-

tions reported later, the interface was usually truncated al r = 13,

In this numerical study, the drop surface and interface were discretized into
small elements in which u”, TP, u!, P are constant. Non-uniform elements were
used on the drop. For the initially spherical drop, uniform elements were used
and as the drop approaches close Lo the interface, more elements were given to
the region where uP, T° varied rapidly. Usually 20 elements were used for a
spherical drop, and up to 30 elements were used as the drop deforms. On the

interface, the region close to the drop is descretized with smaller elements and



101.

as the distance between the interface and the drop increases, the element size

becomes increasingly large.

The drep shape and interface shape were changed using the kinematic condi-

tions (9) and {:2) that

hiy; = hy + [ulngjAt ‘f(:m for the interface {23)
) # L] I}‘
f p, b =1y 1
fo=8+ | lu’ + -——>1; | 'n;;|At ==— for thedrop (24)
LT AL 15 1

as explained earlier. Typically, At varied from 0.02 to 0.08. For the initial spher-
tcal drop 3 radili away from the interface, At of 0.08 was used. As the drop
approaches ciose to the interface, shorter time steps were used because the rate
of deformation of the drop and interface increased. When a shorter time step
was introduced, calculations are done again using the shorter timne step for the
overlap region with the old larger time step. If the difference in the shapes was
greater than 2%, then the overlap region was increased untii the difference was

27%.
B. Comparison with Previous Results

Calculations were carried out for two cases to compare present theoretical
results with the previous published experimental results of Hartland
{1987b,1969). In figure 8, the shapes of the drop and interface for the two cases
when Ca = 0.5, A=580and Ca = 1.0, A = 0.02 are compared with the experimen-
tal pictures of Hartland. In these experimental investigations, the drop was
formed at the tip of a needle aimost touching the interface. So the drop was
already deformed during the formation at the tip prior to the release from the
needle. However, current calculations are started with a spherical drop 3 radii

away from a flat interface. Therefore, a quantitative comparison of the results
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would noet be expected Lo add much to cur understanding. However, our present
results agree well, on qualitative basis, with the Hartland's results. Particularly,
in Fig. Bb, the film drains uniformly. while in Fig. 6a, a "dimple” eccurs so that
the film is thinnest in the region away from central symmmetry axis. Different

drainage mechanisms will be discussed more in detail below.

An attempt to compare current result with film drainage theory is illustrated
in Fig. 7 where the present numerical solution is for Ca = 0.05, A = 30 and the
film drainage result is for Ca = 0.019, A = 32.8. The film drainage solution was
taken from the work of Lin and Slattery (1984) where the initial shape was taken
as a dimpled shape for calculation. In the film drainage theory, the typical film
thickness is 0{107%) whereas our computations are terminated when the thick-
ness is ~0.05. Therefore, the comparison cannot be of guantitative nature.

Only qualitative agreement is shown in Fig. 7.
C. Numerical Results

Caleulations were carried out for caseswhen A= 0.1, 1, 10andCa =02, 1, LG
In the present calculations, the evolution of the overall drop shape and the
interface shape as the drop approaches the interface was observed by starting
the calculations with the initial pesition of the drop three radit away from the
interface. The motion inside the drop and in the upper Auid was included in the
caleulations. Therefore, the effects of the physical properties, namely viscosity
ratios, of the drop fluid and the upper bulk fluid, which are not included in the
film drainage theory, are studied, Resulting shapes as the drop approaches the
interface are shown in Figs. B, 9 and 10. The film thickness at the symmetry
’ime, Heen. and the minimum film thickness, Hyn, are plotted against time, t, in
Fig. 11. In Fig. 12, drop velocities are plotted against L as the drop approaches

the interface.
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1. Shapes and Film Profiles

In the foliowing part of this section, the effects of A and Ca on the shapes of
the drop and the interface as the drop approaches the interface are discussed.
In Figs. 9 and 10, the drop and interface shapes are drawn for three distances, L,
relative to the interface, L = 1.0, 05, 0.01 when Ca = 1.0 and 10.0. In Fig 8 when
Ca = 0.2 the dotted lines represent L. = 0.36, 0.29, 0.28 for A = 0.1, 1, 10, respec-

tively, because L = 0.01 cannot be reached by the drop in this case.
Effect of A

When Ca = 0.2, as A increases, the drop shape becornes slightly more flattened
and the interface becomes more deformed as the drop approaches the inter-
face. In additon, for A = 0.1, the film between the drop and the interface is thin-
nest at r = 0.0, and the film thickness increases as r increases. This type of film
profile is associated with 'rapid drainage” and occurs for systems with low A for
which the drop approaches toward the interface faster than for high A systems.
For A = 1.0, the variation of the film thickness with r is so slight that the film
appears to have almost uniform thickness up tor = 0.7 ie belween 0 = r=
0.7, and the film drains almost uniform!iy as the drop moves closer to the inter-
face. However, for A = 10.0, dimpled drainage occurs for which the fiim is thin-
nest at the rim radius r = 0,66, rather than the center r = . This is also shown
in Fig. 9 where the dotted line for Hy, diverges from the solid line for Heen at t =
8.12. When the minimum thickness occurred at the rim, Charles and Mason
(1980), Hodgen and Wood {1869), and Burrill and Wood (1973) observed that rup-
ture occurred off-center as an apparent physico-chemical instability set in.
However, current calculations are terminated before we can observe the insta-
bility, although the gpatial resolution of our solution algorithm is such that dis-

turbances on the scale of the minimum filrm thickness could be decreased if
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they were present. All three types of drainage were cbserved in the experiments
by Hodgen and Wood {1969) and Burrill and Wood {:973) for the systems with
surfactants. They attributed the different mechanisrns to the effect of surfac-
tants. However, present results show that these different types of drainage,
namely rapid drainage, uniform drainage, and dimpled drainage, can also occur
as the result of different viscosity ratios between the upper phase {also drop

fluid) and the lower phase fluids, at least for Ca = 0.2.

Let us now consider the effect of the viscosity ratio for larger values of Ca. In
particular, when Ca = 1.0, the results in Fig. 7 show that the drop shape is more
flattened as A increases. Further, for any given A, the interface is rmore
deformed compared to Ca = 0.2, because the interfacial force is reduced relative
to viscous forces all else being equal. The film thickness shows the same trend

as A varies as was seen for Ca = 0.2.

Finally,when Ca = 10.0, the drop becomes flatter and fiatter at the rear for A
=0.1 and 1.0, until eventually an indentation appears at the rear stagnation
point of the drop. The indentation is more significant for A = 0.1 than A = 1.0.
For A = 10.0, the drop retains fore-aft symmetry to a good degree of approxima-
tion. However, as A varies, and same trend in film thickness is seen as for Ca =
G2 and Ca = 1.0. By considering the motion inside the drop and in the upper
bulk fAuid, the current calculations identified the three distinct mechanisms of
film drainage which are rapid drainage, uniform drainage and dimpled drainage.
These distinct drainage mechanisms arise as a result of the variation of the
viscosity ratio between the drop {and the upper bulk) fluid and the lower bulk
Auid. In the fiim drainage theories, the motion inside the drop and in the upper
bulk fluid is not considered. Instead, either no-slip {immobile interface) or zero
tangential stress (mobile interface) is used as boundary conditions to selve the

motion in the thin film region between the drop and the interface. Therefore,
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the thin film theories are not able to predict the different drainage mechanisms

described above.
Effect of Ca

We can also use the same results to deduce the effect of variations in Ca for
fixed A, When A = 0.1, as Ca increases, the drop shape changes from spherical to
oblate spheroidal in shape. The rear of the drop becomes flatter and flatter and
for Ca = 10.0. the indentation appears at the rear, while the front of the drop
remains as a spherical cap. As Ca increases the deformation of the interface
also becomes broader because a larger region of the interface is affected by the
presence of the drop as the drop becomes flatter. As mentioned previously

rapid drainage occurs for all Ca when A = 0.1,

The same trends can be seen for A = 1.0. However, in this case, the rigion of
uniforn film thickness appears and persists thereafter during further approach

of the drop. Therefore, uniform drainage occurs for all Ca.

Finally. for A = 10.0, as the drop becomes flatter, fore-aft symmetry is main-
tained and ne indentation forms at the rear of the drop. The difference in the
film thickness between the centerline and the rim increases as Ca increases.
This can be seen in Fig. 9 where dotted curve diverges from the solid curve
further for A = 10.0. This is caused by the fact that the drop flattens cut more
for high A sysyems due to the resistance of the more viscous upper bulk fluid.

In this case, then so-called "dimple” drainage occurs for all Ca.
2. Velocity of Drop

The dimensioniess velocity of the center of mass of the drop as it approaches
the interface is plotted against L in Fig. 12 The velocity obtained for a solid
sphere approaching a solid wall, obtained by letting A = 100 in the current cal-

culation, is also plotted in Fig. 12. The velocily of the solid sphere approaching a
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solid wall coincides with the analytical result of Brenner {1961). For all A's and
Ca’s considered, the velocity of the drop appreaches zero abruptly as the drop
approaches the interface, indicating that the drop seemns te reach the 'rest”

state very ciose to the interface.

As can be seen in Fig. 12, more viscous drops move slower that less viscous
drops. However, it should be noted that the drop velocity shown here is nondi-
mensionalized with the characteristic velocity

ga(pz —p) 1
e 8

fo
[
H
o
§
i
COII\)

where 8 =

Since 1/8 = 1.4347, 1.2000, 1.0312 for A = 0.1, 1.0, 10.0, respectively, it is evi-
dent that if all parameters except the viscosity of the drop are same, the dimen-
sional velocity of the more viscous drop will be relatively smaller than the velo-

city that appears in Fig, 12.

As Ca increases, the interface and the drop becomes less resistant to defor-
mation due to the increase of the viscous force relative to the interfacial force.
Though the drop becomes more flattened as Ca increases, the velocity of the

drop increases as Ca increases for all viscosity ratios.

As the drop approaches the interface, the drop slows down due to the hydro-
dynamic interactions with the interface. In Fig. 12, it is illustrated that the velo-
city of the drop with smaller Ca is always less that that with larger Ca for fixed
X Upto L~ 15, the velocity decreases at almost the same rate for all Ca as L
decreases, i.e. as the drop approaches the interface. Beyond L of 1.5, the velo-

city of the drop with smaller Ca, particularly Ca = 0.2 decreases more rapidly
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than the drop with Jarger Ca. Though the drop shape becomes flatter for larger
Ca, the hydrodynarnic resistance of the interface has rmore domimant effect on
the velocity of the drop. Therefore, the drop with smaller Ca slows down more
because the interfacial tension tends to maintain the interface in its initial flat
configuration. For Ca = 0.2, the drop velocity becomes aimost zero, ie. the
drop reaches the ‘rest” state, at L = 0.36, 0.28, 0.28 for A = 0.1, 1.0, 10.0, respec-
tively. For Ca = 10.0, the velocity decreases almost at the same rate ag Ca = 1.0

while the drop with Ca=10.0 always moves faster than that with Ca = 1.0,

IV. Conclusions

Numerical study of the axisymmetric approach of a deformable drop toward
2 deformable interface under the acticn of a constant buoyancy foree has been
carried out. In the present study, the initial configuration has a drop located
some distance (usually three radii) away from an undeformd flat interface so
that the evolution of the overall drop shape and the interface shape as the drop

approaches the interface was observed.

The motion inside the drop and in the upper bulk fluid was included in the
calculations. Therefore, the effect of the physical properties, namely viscosity
ratios, of the drop fluid and the upper bulk fluid, which are not included in the
film drainage theory, are studied. In the film drainage theories, instead of solv-
ing the motion inside the drop and in the upper bulk fluid, either no-slip {immo-
bile interface) or zero tangential stress {mobile interface) are used as boundary
coenditions on the drop surface and the interface. We have shown that three dis-
tinct mechanismes of film drainage arise as a result of the variation of the viscos-
ity ratios between the drop (and the upper bulk) fluid and the lower bulk fluid.
For A = 0.1, rapid drainage occurs, and uniform drainage cccurs for A = 1.0,

Dimple drainage for which minimum film thickness appears at a rim occurs for
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A = 10.0. These drainage patterns were observed experimentally by Hodgen and
Wood {1969) and Burrill and Wood {1973) by varying ihe concentration of the
surfactants. However, the current study illustrates, for pure interfaces, that

these different patterns can arise as the viscosity ratio varies.

The drop becomes flatter as Ca increases. For A = 0.1 and 1.0, indentation
appears at the rear of the drop when Ca = 10.0, and this indentation is more
proncunced for A = 0.1 than A = 1.0. As the drop approaches the interface, the
velocity of the drop decreases more rapidly for smaller Ca because the interfa-

cial tension tends to maintain the interface in its initial flat configuration.

As the film between the drop and the interface becomes very thin, the time
step must become smaller in the present calculations, and the calculations were
terminated when the cost for further calculation became unacceptably large.
Consequently, the film drainage of a very thin film was not studied. The
drainage of very thin film between the drop and the interface can be solved by
film drainage models which employ lubrication approximation in the thin film
region. In order to use the fiim drainage models, initial shapes of the drop and
the interface must be proovided. The final shapes of the drep and the interface
of the current calculation can be used as initial shapes of the film drainage

models in the very thin film region.

As mentioned previously, the motion inside the drop and in the upper fluid is
not considered in the film drainage models. Since cur calcuiation was ter-
minated before the filtn became very thin where the thin film theories can apply,
it is not possible to estimate the effect of considering the motion inside the drop

and in the upper fluid for the very thin film.
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Appendix
In dirnensional form. Eq. {11) is
0T - o' Ty = 7127 myloy — (o2 - pilgzln, (A1)
Rearranging Eq. (A1), we obtain
n; Tz = 0Ty + 712¥ 'mny - {pe — p1)gzlny . (AZ)

Then, the drag force on the drop is
Fp= [ nTedSp = foTidSp + [ 72V mumdSp — f{pe —p1)ezlmdSp  {A3)

Applying the divergence theorem to the first term of the RHS of Eq. {A3), it can

he shown that
Sy TydSy = [V -Tdvp =0 (A4)
because

VT, =0

for Stokes equations.

Now, consider the second term in the RHS of Eq. (A3). Surface divergence

theorem states that for any scalar function ¢ on a surface 3

J#(V m)ndSp = [V ¢dS - fetdi (A5)

where ¢ denotes any closed curve on the surface S, and t denctes the unit vector
that is normal to the curve ¢ and tangent to the surface at each point. Then, by
applying the surface divergence theorem, the second term of the RHS of Eq. (A3)

becomes
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J7127 m)mdSp = 7 91,dSp ~ frtdi (AB)
[+

The first term of the RHS of Eq. {A6) is zero because ¥V ¥ = 0 for constant v. And

the second term of the RHS of Eq. (AB) is zero because
iytdl =0
for a closed volume. Finally applying the divergence theorem to the third term
in the RHS of Fgq. {A3)
~ fipa = pr)gzlmdSp = ~ (pe — p1)g fV 21V (A7)
The RHS of Eq. (A7) is then
~{pp — p1)giy [dVp = — (pz — £1)gi, -g’—ffas (AB)

where a is the undeformed drop radius. Then, the third term of the RHS of Eq.

{A3) represents buovancy force. Therefore, the above result confirms the fact

that the stress conditions in Eq. {11) satisfy the force balance on the drop.
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Figure Caplions

Figure 1.

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8

Figure &

Descripiion of the coordinate systems. Op, origin of the local coordi-

nate systems; Og, origin of the global coordinate systems.

Shapes of the drop and the interface for Ca = 2.0, A = 0.5, —- - —Lzg
=12 —L==8 —--—La=s =7

Shapes of the drep and the interface for Ca = 2.0, A = 10.0; —- - —
Lizg = 1.8 —lieg = 3 — -~ —Laug = 7.

Dimensionless velocity of the center of mass of the drop dL/dt as a
function of the dimensionless distance of the center of mass of the
drop from the undeformmed flat interface Lfor Ca = 2.0, A = 0.5, —Lizq

=3 el = O - Limg = 7

Dimensionless normal velocity on the interface u'ng, as a function of
the dimensionless radial distance, r. —Ca = 10, A = 0.1, —— Ca =

10 A, = 10.0

Comparison of the calculated drop shapes and the interface with the
experimental photographs. —Ca =10, —L=05 —- L =01
Comparison of the calculated drop shapes and the interface with the

results of the flim drainage theory for the drop with undeformed

drop radius of 8.2 x 107 cm obtained by Lin and Slattery (1982).

Shapes of the drop and the interface for Ca = 2.0, A = 0.1, 1.0, 10.0;
=10 ==L =05 —L=036 029 02B8forA=01 10 100,
respectively.

Shapes of the drop and the interfaceforCa =1, A= 0.1, 1.0, 10.0) —0

L=10 -—~L=05 - L=001L
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Figure (0. Shapes of the drop and the interface for Ca = 10, A = 0.1, 1.0, 10.0;

—L =10 -——=—=L=05--—-—-L=001.

Figure 11 Dimensionless film thickness at the centerline, He.e, and at the rim,

Hayr. a8 a function of the dimensionless time.

Figure 12: Dimensionless velocity of the center of mass of the drop (dL/dti as a
function of the dimensionless distance of the center of mass of the
drop from the undeformed flat interface L. —-Ca = 0.2, w -~ ~Ca =

1.0; - Ca = 10.0.
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Ca = 10.0
Figure 10
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