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ABSTRACT

Low temperature specific heat mcasurements have been
used to investigate the electronic structuré and superconduct-
ing properties of metallic glasses based on transition metals
Mo and Ru alloyed with metalloids B and Si. An apparatus con-.
structed for making these measurements is described. The
results obtained are discussed in terms of the dependence of
the density of states at the Fermi level N(eF) and of the
Debye temperature GD on metalloid content, and the influence
of these parameters on observed properties. N(eF) is shown
to reflect the short-range order of the metal atoms and in
Mo—-Ru-B alloys, indicates the existence of two distinct amor-
phous phases. In addition, N(EF) strongly influences the super-
conductivity and electronic properties of these materials.
Alloying with metalloids increases the Debye temperature of
the amorphous Mo-Ru phase and thus affects the superconduc-
tivity through the dependence of the electron-phonon coupling
on average phonon frequency. A comparison with elastic prop-
erties shows an anomalous effect in the lattice specific

heat commonly observed in insulating glasses.
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TI. INTRODUCTION

The primary objective of this study is to obtain the
low temperature specific heat of two series of transition
metal-metalloid glasses based on molybdenum and ruthenium.
To do so, we have constructed apparatus for use with a
thermal relaxation method which allows the heat capacities
of very small samples to be determined. The results of
these measurements allow us to examine the composition
dependence of the density of states at the Fermi level and
of the Debye temperature in these alloys. We thus obtain
structural information which gives insight into the elec-
tronic and superconducting properties of the material.
Conversely, analysis of the superconductivity reveals a
great deal about the structure. The behaviour of these
alloys is considered in the context of two more general
problems: the electronic structure of transition metal-
metalloid metallic glasses and in particular the role of the
metalloids; and the systematics of superconductivity in
transition metals and alloys.

A fundamental problem in solid state physics lies in
understanding the electronic structure and properties of
metals. Until recently, most emphasis was placed on crystal-
line metals, in which the atomic structure can be defined in
terms of the positions of a very small fraction of the total
number of atoms. The impetus for studying non-crystalline
bulk metals came with the work of Duwez [1], who demonstrated

that stable non-crystalline alloys could be obtained in bulk



form by rapid quenching. However, in amorphous systems,

the long-range symmetry which characterizes crystalline
solids is absent. Consequently, a description of the struc-
ture of an amorphous solid in terms of the positions of all
the atoms is not possible. The question of the electronic
structure of amorphous metals is further complicated by the
lack of a well defined band structure e(i). This follows
from the non—periodicity of the lattice, since k is no longer
conserved. '

A concept which is highly useful for describing elec-
tronic structure and which is applicable to both crystalline
and non-crystalline metals is the density of electron states
N(e), particularly the density of states at the Fermi level
N(EF). In d-band metals, the behaviour of N(EF) largely
determines the transport properties, and is a very sensitive
probe of the local environment of the transition metal atoms
[2]. The most direct experimental measure of N(eF) is pro-
vided by low temperature speéific heat measurements. The
specific heat of a normal metal at low temperatures can often
be described by C = vyT + 8T3 where the electronic coefficient
Y is proportional to N(eF). In addition, the Debye tempera-
ture BD which characterizes the phonon system can be extracted
from the coefficient 8. Hence, specific heat measurements
give direct information about microscopic parameters influenc-
ing properties such as transport and superconductivity.

In studying metallic glasses, one must frequently over-

come experimental difficulties associated with having materials
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only available in small quantities. One such case is in the
measurement of heat capacity, since traditional adiabatic
techniques require relatively large samples. Since techniques
for measuring small-sample heat capacities have only been
developed recently, the use of low temperature calorimetry in
metallic glass research is relatively new. However, such
experiments have already yielded information obtainable from
no other experimental technique, and promise to contribute a
great deal to our understanding of the fundamental nature of

the structure of metallic glasses.



II. THEORY AND BACKGROUND



IT.1 SPECIFIC HEAT
A. Thermodynamics

Measurements of specific heat have long been- important
in studying all states of matter. As early as 1819, Dulong
and Petit had formulated an empirical rule describing the
specific heat of solids, which was subsequently accounted for
by classical equipartition theory [3]. It was later realized
that quantum effects were clearly manifested in the specific
heat of solids at low temperatures. The models of Einstein
and Debye, which view atoms in solids as quantum mechanical
oscillators, accounted for the observed breakdown of the
Dulong-Petit law at low temperatures.

The usefulness of specific heat as an experimental tool
lies in its direct connection with fundamental thermodynamic
guantities such as entropy. In addition, a theoretical
description of a system in terms of energy levels allows a
partition function to be defined, from which the specific
heat can be directly computed.

The specific heat is defined by [4]

_ (@
Ca = (a‘f)
(¢4

where an amount of heat dQ raises the temperature of a unit
mass of a substance by an amount AT while a given property o
is held fixed. 1In principle, the parameter a could represent
a large number of physical properties of a given system.
Practically though, only the specific heats at constant pres-

sure and volume, CP and C are important. The difference

VI



between the two is expressible in terms of the thermal expan-
sion coefficient a = V-l(BV/BT)P and the isothermal compres-

sibility kT as

"% X (1)
where V is the molar volume.
CV can be calculated directly from the internal energy;

since

dE = TdS - P4V '

Cv is given by
v =(%), = (%) 2
Y v
According to the third law of thermodynamics, the entropy of
a system in thermal equilibrium must approach zero at a
temperature of absolute zero. Hence, integrating (2),

T'
C
S(T') =[ —,—I—,Y-dT

0

where S(T') is the entropy at a temperature T'. This is a
very useful fact, since if specific heat data can be taken to
sufficiently low temperature and extrapolated to zero, the
entropy of the system can be calculated.

S+-atistical methods are generally used to reveal the
detailed thermal behaviour of a system. These yield descrip-
tions in terms of a set of energy levels Ej which can be
occupied by the particles or excitations of the system. The

partition function of the system, given by



€.

z=2 exp |- %
> B

J

can then be calculated and used to obtain the Helmholtz free

energy, F = -kBT 1n Z, and the specific heat

2
cV=—Tg—T% .
\%

It is evident that calculations generally yield values
for the specific heat at constant volume. For solids, however,
measurements of specific heat are normally made at constant
pressure owing to the experimental difficulties involved in
making constant volume measurements. Thus, Cv is usually
obtained by measuring CP and using equation (1) or a suitable
approximation [3]. Fortunately, at low temperatures, Cp and
CV differ negligibly and such corrections are not necessary.
This can be seen in the behaviour of the expansion coefficient
o which vanishes with roughly the same temperature dependence

as the specific heat. Hence, the right hand side of equation

(1) is vanishingly small at low temperatures.

B. Low Temperature Specific Heat of Normal Metals

The specific heat of a normal metal at low temperatures
(neglecting nuclear quadrupole interactions, magnetic effects,
etc.) is well represented by a series in odd powers of tempera-

ture



where the linear (n=1) term is due to the heat capacity of
conduction electrons and higher order terms arise primarily
from the lattice heat capacity. Fof most metals, the first
two terms suffice to describe the heat capacity té an accuracy
of better than 1% at temperatures in the liquid helium range.
Hence, the low temperature specific heat of metals is usually
written as

. 3
Cv = yT + BT .

In this section, we discuss the physical basis of models used
to interpret the coefficients y and R.

Formally, the problem of lattice specific heat can be
approached as follows. For small oscillations, the harmonic
approximation can be applied to the thermal vibrations of an
assembly of N ions. This allows the collective vibrations of
the ions to be resolved into a set of 3N noninteracting har-
monic oscillators; i.e., the normal modes. The partition func-
tion can then be expressed as the product of the individual

partition functions of the 3N normal modes,
3N
z =[] Z, -
o
The functions z, are given by

ad (3+%) ho

o

2, = 2. exe |-~
. B
3=0

where Ej = (j+%)ﬁwa is the quantized energy of the jth level.

The free energy of the system is
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_ _ a’ "B
F—Fo+kBTZln(l e )
o

where FO is a constant related to the zero point energy of

the solid. It is convenient to define a vibrational fre-
quency distribution g(w), whereby g(w)dw = the number of modes
with frequency in the interval (w,w+dw). (An integral over
all frequencies gives the total number of modes ng(w)dw = 3N).

The free energy can then be expressed in terms of an integral

over the normal mode frequencies,

© -ﬁw/kBT
F=FO+kBTf ln(l-e )g(w)dw

o]

and the specific heat at constant volume is

o (‘hw/kBT)z Jhe/kgT
C.. = k.
v = Kp _[

5 g(w)dw (3)

o e‘l‘xw/kBT

( - 1)

Thus, the lattice specific heat is dictated by details of the
normal mode distribution g(w).

It was first shown by Einstein in 1907 that the quanti-
zation of vibrational energy in a solid leads to a reduction
in the specific heat at low temperatures. In the simple
Einstein model, all ions vibrate at the same characteristic
frequency Wpe With gE(w) = 3N6(m-—wE) substituted into equa-
tion (3), we find that at low temperatures
CV n (l/Tz) exp(—ﬁmE/kBT). Although this is not the correct
temperature dependence, the Einstein model is still useful as

a model for optical phonons. At low temperatures, only low

frequency, long wavelength modes are excited, and details of
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the atomic arrangements are unimportant. This is the basis of
the well-known Debye model, which views lattice vibrations as
the acoustic oscillations of an elastic continuum. In this

model, the normal mode frequency distribution is quadratic out

to a maximum frequency Wht

Pkl © =%
2T CS '

gp(w) =
(@] w > mD

where CS is an effective sound velocity. This distribution
follows from the linear dispersion relation of sound waves.

The cutoff frequency o known as the Debye frequency, depends

DI
only on the sound velocities in the solid and on the number of

atoms in the solid. With gD(m) substituted into (3), in the

limit of low temperatures we obtain

4 3
¢, + & Nk (l> = gr°

Vv 5 GD

where the Debye temperature SD is defined as th/kB. For an
isotropic solid, the sound velocity Cqg is a weighted average
of longitudinal and transverse sound velocities, whereby
3/C3 = 2/C3 + l/C3. Since C. and C,, can be defined in terms

S T L L T
of the elastic moduli, the Debye temperature can be calculated
from measured sound velocities or elastic moduli. For example,

GD can be written in terms of Young's modulus E and the density

1/2 1/3
_ 4 E N
GD = f(\))(a) (__.)

p as

where f(v) 1s a dimensionless function of Poisson's ratio v.
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Although the Debye model correctly predicts the tempera-
ture dependence of the specific heat at low temperatures, devia-
tions from the Debye form of g(w) in a real solid are consider-
able. In actuality, the normal mode dispersion relations are
not linear. A more realistic distribution includes higher
order terms

gl({w) = uzwz + a4m4 + a6w6 S

giving higher terms in the specific heat [5]

C = BT3 + 6T5 + uT7 + ... .

Terms higher than n=3 become increasingly important for tempera-
tures greater than about GD/BO. The lack of odd order terms
in the frequency distribution is a consequence of the symmetry
of interatomic forces [6]. |

According to clasgical equipartition theory, which is
reasonably successful in describing the transport of conduc-
tion electrons in metals, the specific heat of the electrons
should be comparable to that of the ions in the lattice. 1In
fact, the electronic specific heat is considerably lower than
predicted and at room temperature is completely masked by the
lattice specific heat. Although the iﬁternal energy of the
electron gas is very large, it changes little with temperature.
This is a consequence of Fermi-Dirac statistics which are
obeyed by the electrons. At a temperature T, only a small
fraction of the electrons, on the order of kBT/eF is thermally

excited with each electron acquiring an energy “kpT. Since
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5

the Fermi energy €. is on the order of 10 K for most metals,

F
the electronic specific heat is %NkB(kBT/eF) which is approxi-
mately .01 NkB at room temperature. The lattice specific heat,
by comparison, is %NkB. However, at low temperature, where the

lattice specific heat vanishes as T3

, the linearly temperature-
dependent electronic specific heat becomes observable.

The electronic specific heat can be calculated in detail
by evaluating the integral describing the mean energy of the

electron gas,
E=2 f £f(e)N(e)de
o

(€—u)/kBT -1
where f(e) is the Fermi function (e + 1) and N(g)

is the single spin density of electron states. Integrals of
this type are evaluated by exploiting the fact that the deri-
vative of f(e) is zero everywhere except in a narrow region of
width %kBT near €=u. This ledds to a series expansion of E in

terms of kBT which, to second order in kBT, is

i

_ 2
E = EO + T (kBT) N(E

F)

giving

In the free-electron model,

2
m 2 n
vy = % 2
2 B SF

and is only a function of the electron density n. Reasonable

agreement with experiment is obtained for monovalent metals
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such as the alkali series and to a lesser extent for the noble
metals. Discrepancies are commonly expressed in terms of a
thermal effective mass ratio m*/m = Ymeasured/Yfree electron”
Very high values of m*/m are obtained for transition metals,
indicating large departures from the free electron description.
There are two main reasons for this: large densities of

states near the Fermi level due to the d-bands of the metal,
and enhancement of the electron mass due to interaction with
phonons. The first factor is illustrated in Fig. 1. 1In this
simple picture of the band structure of a transition metal
(neglecting hybridization), the bands are divided into very
broad s-bands and relatively flat d-bands. The former describe
the nearly-free s-like conduction electrons, while the d-bands
correspond to the highly localized d electrons. This results
in a density of states like that shown in the figure. One or
two s electrons in states spread over approximately 10 eV make
a small contribution to the density of states, while up to 10

d electrons are accommodated by states in a range of about

5 eV resulting in a very large d-band contribution to N(g).
Since the d-bands are not completely full, the Fermi level

lies in the region of the d states, where the density is lar-
gest. In crystalline metals, the Fermi level frequently lies
on a singularity in the density of states arising from regions
of the d-band structure where de/dk goes to zero. Consequently,
the value of y is very large in these materials. Examples
among the 4d transition elements are Y, Nb, and Pd which have

Y values on the order of ten times typical free-electron



Figure 1.
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(b)

Simplified illustration of (a) energy bands, and
(b) density of states, for a bcc transition metal.
In (a), k is shown for the (100) direction. The
position of the Fermi energy in (b) is appropriate

for Cr or Mo. (After reference 8 (b).)
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values [7]. Although increased scattering in amorphous
materials leads to a smearing of sharp structure in N(¢),
these essential features remain: a large contribution to
N(eF) due to d electrons, and correspondingly high values
of v.

For electrons near the Fermi surface (on the scale of
phonon energies), interactions with phonons shifts the elec-
tronic energies by a factor 1/(1 + A). These energy shifts
result from screening of the electron-electron Coulomb inter-
action by the ions [8]. Physically, this can be thought of
as the effect of the electron carrying along a "wake" of
phonons. As a consequence, the electronic velocity is
decreased and the density of levels at the Fermi surface is

enhanced by a factor of (1 + X)), whereby

y=%'n2 kéN(eF)(l+}\) i

In this expression, N(EF) again refers to the density of states

for one spin orientation.

II.2 SUPERCONDUCTIVITY
A. Electronic Specific Heat of Superconductors

One of the distinguishing features of the superconducting
state is the expulsion of magnetic flux from the interior of a
superconductor. Application of a magnetic field greater than

a value known as the thermodynamic critical field H_. destroys

C

this perfect diamagnetism. HC depends on temperature and at a

temperature T, the free energy difference between the normal
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and superconducting states, known as the condensation energy,
is given by [9]
2
He (T)

fn(T) - fS(T) = e .

(fn and fS represent the zero field Helmholtz free energies
per unit volume of the normal and superconducting states re-
spectively.) It follows that the entropy difference is
¢ ¢

n S aT oT )
At the critical temperature TC’ where the thermodynamic criti-

cal field vanishes, the zero field entropies are equal. How-

ever, the corresponding specific heats are not equal at TC:

(Cn—cs)i =T

d
p, DT AT Bn T SS
C Cc

2

=__C(§’£)
4T oT

Hence, the electronic specific heat is discontinuous at T

H

C
as shown in Fig. 2.

The manner in which a magnetic field penetrates a super-
conductor leads to a division into two types [10]. Supercon-
ductors known as type II exhibit properties which are described
and H, .
€1 2
c is applied to a type

1
II superconductor, the field is expelled. For fields inter-

in terms of temperature dependent critical fields H

Roughly speaking, if a field less than H

mediate between HC and HC , the flux penetrates the sample
1 . 2
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.5+

Electronic specific heat (units of yTC)

Figure 2. Electronic specific heat in reduced units pre-

dicted by BCS theory.
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forming the "mixed" state in which the flux exists in quantized
bundles enclosed by supercurrent vortices. For fields greater

than the upper critical field H, , flux completely penetrates

c
the sample and it is no longer siperconducting. The value of
the thermodynamic critical field HC defined above lies
between Hcl and HC2 so for type II materials, it is not an
actual "critical" field.

Although the thermodynamic relations agree well with
experiment, no insight is given into the microscopic nature
of superconductivity. First elucidated in the theory of
Bardeen, Cooper and Schrieffer [11], superconductivity
involves a pairing of electfons due to an attractive electron-
phonon coupling. A certain energy is required to break a pair
and this produces an energy gap in the excitation spectrum of
the guasiparticles created from the paired electrons. The
presence of an energy gap drastically alters the electronic
specific heat in the superconducting state. It gives rise to
the effects predicted by thermodynamics, such as the discon-
tinuity at TC‘ In the BCS picture of superconductivity,
fermion quasiparticles are thermally excited to states above

the gap with energy given by [9]

2

E = €2+ a(T)? (4)

where A{(T) is the temperature dependent gap energy and £ are
single particle energies referred to the Fermi level. From
considering the entropy of a fermion gas with excitation spec-

trum given by (4), the specific heat is obtained as [12]
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40 2
__2 : 2 , B 3A%) 3
Cg = TN(EF)f dE(E + 55 )

@
| o

where B = l/kBT and f is the Fermi function. The first term
in the integrand represents the specific heat of the quasi-
particles in the various energy states E, while the second
term arises from the rearrangement of the energy states due to
the temperature dependence of the gép. Using this expression,
the magnitude of the discontinuity in the electronic specific
heat can be calculated. One obtains

CS - Cn

C
n

= 1.43 .

-A(T) /K,T
It is customary to model the specific heat by e

to extract a value for the zero temperature gap energy and
even the temperature dependence of the gap. Strictly speak-
ing, the specific heat does not show this dependence, even
for so-called'BCS superconductors [13]. The presence of the
gap will produce a dominant term in the specific heat of the

form Ae-B/T

but in general, the coefficient B is not related
in a simple way to the gap energy of the BCS theory at all
temperatures below TC. In the original treatment, the expres-

sion given for the specific heat at T << T, is [11]

C

C T 2
b2 (03 (F) praGd) « = (9]
YTC 2Tr2 kBTC T 1 kBT 3 kBT

where Kn are modified Bessel functions of the second kind.
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Using the asymptotic form of the Bessel functions [14], this

reduces to

Cq T, 3/2 -1.75T/T
—— =~ 3,09 ? e

but this is only valid for T ~ TC/lOO. A useful expression,
also given in the original paper although not in the correct
limit, is [11]

—1.44TC/T

Ce ¥ 8.5 YTo € . (5)

]

As shown in Fig. 3, this closely approximates the exact BCS
result, as computed by Muhlschlegel [13], in the temperature
range 0.2 TC < T < 0.6 TC' The expression in equation (5)
can be used to compare predictions of the BCS theory with
specific heat data measured in this temperature range and

fitted to the form Ae_B/T.

B. Results of Strong-Coupling Theory

In this section, we discuss facts about strong-coupling
theories of superconductivity relevant to the analysis of
specific heat data. The BCS theory applies to materials in
which the electron-phonon coupling is weak, i.e., A << 1.
Microscopic parameters responsible for superconductivity
enter the BCS theory in a simple way. In the BCS theory,
the transition temperature is related to the coupling con-
stant A and a characteristic phonon frequency <w> through‘the

relation [12]



Electronic specific heat (units of YTC)
CS/YTC

Figure 3.

22

Reduced temperature t = T/TC

Comparison of exact solution of BCS equations for

electronic specific heat in the superconducting

-1.44/t

state (I), and approximate form 8.5e (I11).

Note agreement in the range 0.2 < t < 0.6.
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T, = 1.13 <u> e~/

The coupling constant is given by the product of the density
of states at the Fermi level N(eF) and an effective electron-
phonon matrix element V. Attempts to verify this equation
using values of TC' SD, and N(eF) determined from specific
heat measurements meet with little success, since V depends
on N(eF) and <> in a nontrivial way.

The relation between microscopic parameters and observed
transition temperature was first studied extensively by
McMillan [15]. Based on the Eliashberg theory of supercon-
ductivity [16], a central result of McMillan's work is an

expression relating T, to the coupling constant A and averaged

C
phonon frequency <w>:

<> 1.04(1L+1)
Te = 120 exP[ A= (14 0.620) ]

where U* is the Coulomb pseudopotential describing the repul-
sive Coulomb interaction between two electrons. A can be
defined in terms of the electron-phonon spectral function
azF(m) as

\ = Zfdwocz F (o) /o

where F(w) represents the phonon density of states and az(w)
is an averaged frequency-dependent electron-phonon matrix
element. Thus, the McMillan theory is based on a much more
realistic view of the material parameters than is the BCS

theory. The prefactor in the McMillan expression appears in
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many forms in the literature. Usually it involves <w> or

2. %

<w“>*, where

<wn> = %fdmocz F(w) wn—l .

Experimentally, the function uzF(w) is obtainable from super-
conducting tunnelling measurements, but a more common pro-
cedure is to use the Debye temperature to approximate the
characteristic phonon frequency, even though this is some-
times not a good representation of <w>.

Allen and Dynes [17] later showed that the McMillan
equation is applicable to a wide variety of intermediate-
coupled materials, i.e., those for which 0.5 < A < 1. How-
ever, for A >1, a more complicated logarithmically averaged
prefactor must be used. The McMillan equation is thus widely
used to estimate the magnitude of the coupling constant from
specific heat data. For transition metals, a value of
u* = 0.13 is used [15].

McMillan also showed that A can be written in terms of
electronic matrix elements and phonon frequencies as

2

N(sF)<I >

M<w2>

where M is the ionic mass, and <Iz> is a Fermi surface averaged
squared electronic matrix element.

Another result from the theory of strong-coupled super-
conductors which is used in analyzing specific heat data con-

cerns the relationship between the normal state electronic
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specific heat coefficient y, and the slope of the upper

critical field at the transition temperature, dHC /4T TC.
2

For superconductors in which the mean free path of the elec-
trons is much less than the coherence length, it is predicted

that [18]

an
Y= - 1 )
a.48 x 10% 9T g

C

where p is the normal state resistivity in ohm cm, vy is in

ergs cm—3 K-2 and the gradient is given in Oe K_l.

I1.3 METALLIC GLASSES

The term metallic glass is generally applied to non-
crystalline, metastable alloys prepared by rapid cooling
from the liquid state. The strategy used in forming metal-
lic glasses is to cool the liquid sufficiently quickly to
avoid crystallization and thereby preserve the structure of
the liquid. To do so requires cooling the liquid below the
glass transition temperature Tg which lies below the melting
point [19,20]. Although the material is amorphous above and
below the glass transition, a fundamental change occurs
there. Above Tg' the time required for atomic rearrangements
is very short and atomic motions are largely translational.
At Tg’ the time associated with atomic translation becomes
extremely long (typically on the order of 1 day) and below

this point atomic motion is confined to vibrations about
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equilibrium positions in a fixed lattice. (For the moment,

we neglect structural relaxation processes.) The change at

Tg is reflected in viscosity, which increases by several
orders of magnitude over a few degrees of temperature near

Tg, and specific heat, which decreases rapidly and approaches
the specific heat of the corresponding crystalline phase.
Thermodynamically, the supercooled liquid, which is in metas-
table equilibrium above Tg, makes a transition to the glass
state. The drop in specific heat is a result of equilibrium
configurations of the liquid becoming inaccessible as the
complex atomic motions of the liquid afe frozen out. The
glass is thus frozen into a restricted region of configuration
space, which can be thought of as a local free energy minimum.
It has been well established that the principles of thermodyna-
mics apply in this region of configuration space, on the time
scale of most thermal measurements [3,19].

Upon heating, atomic rearrangements occur and the glass
can move to other regions of configuration space. Given suf-
ficient thermal energy, the system will eventually find the
free energy minimum corresponding to its equilibrium crystal-
line state. This normally occurs at a fairly well defined
temperature near Tg although this is strongly dependent on
the heating rate. Annealing below the crystallization tempera-
ture can bring about structural relaxation processes involv-
ing changes in free volume; such processes are not necessarily
related to crystallization.

The "freezing" of liquid alloys into glasses can be

accomplished by rapid quenching if the growth of crystalline
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nuclei is given insufficient time to occur. The two most
widely used methods of rapid quenching are the piston and
anvil [21], or splat-quenching technique, and the melt-
spinning technique [22]. 1In the piston and anvil technique,
a molten droplet of the alloy is cooled between the paral-
lel faces of a fast-moving piston and a fixed anvil. Samples
prepared in this manner are in the form of round foils,
typically 1-2 cm. in éiameter and on the order of 50 um in
thickness. A more imﬁortant method commercially is the
melt-spinning technique which allows large amounts of
material to be prepared. In this method, a stream of the
molten alloys flows under pressure onto the surface of a
rapidly spinning copper or steel wheel. The liquid quickly
cools and spins off as a ribbon of metallic glass. In this
way, material in many forms, from fibers to sheets several
inches in widths, can be fabricated. Both of these methods
achieve cooling rates on the order of 105 to 106 degrees per
second, which is high enough to allow a wide variety of
metallic glass alloys to be prepared.

By far the largest group of metallic glasses are the
transition metal-metalloid glasses. These alloys have com-

position TM —xMx where TM represents transition metal atoms

1
and M represents metalloid or "glass-former" atoms such as B,
P, Si, and C. The metalloid content x is generally around
202, but for most of these alloys, a range of x exists over

which the alloys can be made amorphous. The glass-forming

range is very often close to a eutectic composition, nominally
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TM80M20. Glass formation is favored there since the liquidus
temperature is closest to the glass transition temperature in
this region of the phase diagram [19].

The main source of structural information on metallic
glasses is obtained from X-ray diffraction studies. Dif-
fraction patterns can readily reveal whether a material is
crystalline or amorphous. The diffraction pattern of a
crystalline material exhibits a series of sharp peaks.

These are the diffraction maxima, corresponding to the well-
defined atomic spacings in the crystal. In non-crystalline
materials, this is not the case and the pattern consists of

a small number of very broad bands. In addition to being
useful for qualitative characterization, diffraction measure-
ments provide quantitative information in the form of radial
distribution functions. These are related by a Fourier trans-
form to the diffraction intensity patterns. Figure 4 shows
the reduced radial distribution‘function G(r) = 4wr(p(r)-po)

for a (W alloy [23]. 1In this expression, p(r)

0.5%0.5) g0P20
is the atomic density at a distance r from a given atom and

p_ is the mean density. At a distance of about five atomic

O

diameters, the atomic positions are no longer correlated and
the density p(r) approaches the mean density Poe Hence, the
function G(r) approaches zero. Herein lies a distinguishing
feature of the amorphous state--the lack of long-range cor-
relations in atomic positions, i.e., long~range order. At
distances closer to r=0, the function exhibits a series of

peaks corresponding to successive atomic shells around the
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given atom. The position of the first peak is well defined
and gives the most probable nearcst-necighbor separation. The
area under this peak is related to the coordination number of
the metal atoms. Coordination numbers for metal atoms in
TM-M glasses are usually around 12, which is comparable to
the number of nearest neighbors that an atom has in a close-
packed crystal. It should be emphasized that the radial
distribution function does not represent a unique character-
ization of the structure since it involves a radial average
of atomic positions. However, it does serve as a check on
structural models. Models based on dense random packings
agree well with experimentally determined structure factors,
but the physical content of such models is limited [24].

The low temperature £herma1 properties of glasses have
been found to be quite different from those of crystalline
materials [25]. In particular, the lattice specific heat is
anomalously large (compared to predictions based on measured
sound velocities) and contains a linear term. These effects
appear to be intrinsic to the glassy state. The anomalous
linear specific heat seems to support the tunnelling models
of Anderson et al. and Phillips [26]. Recently, much atten-
tion has focused on the specific heat of glasses at tempera-
tures below 1K to observe this linear term [27]. These
experiments have shown that the coefficients of this excess
heat capacity are on the order of .05 mJ mol--l K_z, which is

much smaller than a typical electronic term.
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III. EXPERIMENTAL CONSIDERATIONS
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III.1 RELAXATION METHOD AND APPARATUS

The experimental method used in this study is based on
the relaxation time technique developed by Bachmann et al.
[28]. The technique is illustrated schematically in Fig. 5.
As shown, the sample is in thermal contact wiﬁh a heat reser-
voir through a heat link having thermal conductance k. A
measured amount of power is applied to the sample, thereby
raising its temperature a small amount AO above the reservoir
temperature To' When thermal equilibrium is attained, the
power to the sample is turned off and the sample temperature
relaxes exponentially to that of the reservoir. The time
constant of this relaxation is given by 1 = C/k, where C is
the heat capacity of the sample. This process is analogous
to the charging and discharging of a capacitor in a simple
RC circuit. The situation can be described by a simple power
balance relationship

T
P —f k(r')dr' = ¢ 9%
To

where P is the power into the sample, the integral describes
the power out through the heat link, and the derivative term

gives the time rate of change of heat in the sample. For

small temperature charges A T - To’ or for a linear thermal

conductance,

ar
dt

P - k(Tav) (T—To) C (6)

where Tav = (T-+To)/2. In steady state,
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and if at t=0, P » 0, then equation (6) has solution

-t/T

T(t) T +A e
o o

with 1t = C/k(Ta . It is essential that Ao be kept small so

V)
that the temperature dependence of C over the range of AO can
be neglected.

To facilitate the relaxation time measurements, several
sample holders like that shown in Fig. 6 were constructed.
These holders consist of a copper support ring and a small
sapphire bolometer linked to the six connectors on the copper
ring by six fine wires. This copper fixture attaches to a
mating fixture on a copper block, which forms the heat reser-
voir. A noninductively wound manganin wire heater on the
block is used to vary the reservoir temperature. Samples,
usually single splat-quenched foils or 5mm diameter cylindri-
cal compacts, are bonded to the 5mm square sapphire bolometer;
the wires support sample and bolometer and serve as the heat
link from the sample to the reservoir. 1In addition to pro-
viding mechanical support for the sample, the wires are elec-
trical leads for heater and thermometer elements on the bolom-
eter.

The bolometers used are cut from sapphire wafers having
thickness .25-.35 mm. Sapphire was chosen as the substrate

material because of its high thermal conductivity and low

heat capacity. Three pairs of Au contact pads are evaporated
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Figure 6. Sample holder comprising sapphire bolometer,
copper supporting ring, and pin connectors.

Height of the fixture is 3.5 cm.
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onto the sapphire following the evaporation of a Cr adhesion
layer. These form contacts for an evaporated Cr-Ti heater
strip and two DAG low mass graphite resistance thermometers
[29]. (Heater resistance is typically 50002 - 2KQ and is
temperature independent.) Au-7% Cu wires having diameter
.003" (.075mm) are attached to the contacts on the bolometer
and to the pin connectors on the ring using conductive silver
epoxy [30]. The epoxy forms a very strong bond ensuring that
the leads do not detach during sample changes. The six pin
connectors are anchored to the copper supporting fixture as
shown in Fig. 7. Quartz bushings electrically insulate the
pins from the copper holder while the thermally conducting
grease [31] ensures good heat conduction. The grease also
allows for the relatively high thermal expansion and con-
traction of the copper relative to the quartz.

This sample holder design offers low addenda, provides
the necessary thermal isolation of the sample, and minimizes
crosstalk between heater and thermometer elements. With
several holders, samples can be mounted away from the probe
and easily interchanged.

The components described above are contained in a vacuum
can on a probe designed for measurements in a standard helium-4
cryostat. Electrical leads are brought down to the sample
chamber through separate thin-wall stainless steel support
tubes to minimize electrical crosstalk. Heat conduction from
the room temperature end of the probe is reduced through the

use of thin-wall tubing and by having the wires coiled several
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times in the sample chamber before contacting the block. The
reservoir block itself is in thermal contact with the pumped
liguid helium bath through an adjustable heat link. This
makes it possible to quickly cool the apparatus to cryogenic
temperatures without the use of an exchange gas and also
stabilizes the block temperature when it is heated above the
bath temperature. It is essential that the thermal conduc-
tance of this heat link be much greater than that of the
wires linking the sample to the reservoir [28].

For temperature measurement, a calibrated carbon glass
resistance thermometer mounted in the reservoir block is
used. The resistance versus temperature characteristic of
the carbon glass thermometer is shown in Fig. 8. This cali-
bration has stayed constant over many cycles from room
temperature to liquid helium temperature. A Lake Shore
DTC500A temperature controller used with a silicon diode
sensor provides regulation of the block temperature to within
5 mK.

A block diagram of the electronics used for measuring
sample thermometer resistance and for recording cooling curves
is shown in Fig. 9. The sample thermometer on the bolometer
forms one arm of a Wheatstone bridge circuit which is driven
by a 1500 Hz sinusoidal reference signal from a PAR HR-8 lock-
in amplifier. A high precision 0-111KQ adjustable resistor
in parallel with an adjustable capacitor makes up the opposing
arm of the bridge. The signal from the bridge circuit is

amplified by a differential pre-amplifier and its output is
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phase detected by the lock-in. A null signal indicates a
balance condition allowing the thermometer resistance to be
read off the adjustable resistor. Near the balance condition,
small changes in the resistance of the thermometer will pro-
duce a proportional signal at the output of the lock-in. Thus,
a transient signal proportional to the sample temperature is
obtained as the sample cools. However, if the integration
time of the lock-in amplifier is comparable to the time con-
stant of the exponential transient, the signal will be dis-
torted by the bandpass characteristic of the lock-in. For
this reason, the time constant of the lock-in must be much
less than the time constant of the relaxation. The signal
at the output of the lock-in is in turn converted to a series
of pulses by a highly linear voltage controlled oscillator
which produces a square wave of frequency 10-500 kHz propor-
tional to the input signal voltage. These "pulses" are
collected by a 1024-channel Canberra Series 30 Multichannel
Analyzer operating in multi-channel scaling mode. The relaxa-
tion curves obtained in this manner are transferred to a PDP
11/23 computer and stored on floppy disks for later analysis.
A typical relaxation curve shown in Fig. 10 demonstrates the
signal-to-noise achievable. These data were collected on a
40 mg sample at approximately 6K.

A test of the apparatus on a standard sample was per-
formed by measuring the heat capacity of a small sample of
Cu, and comparing the results to published values [32].

Details of the experimental procedure are given in the next
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TABLE 1. Measured specific heat parameters for Cu.

Measured Standard [32]
Y 0.65 + 0.1 0.69 nJ mol™! K~
6 340 + 5 343 K
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section. The results obtained are shown in Fig. 11. Values

of v and eD obtained from these measurements are given in

Table 1 along with values from the literature. The agreement
is very good and indicates no systematic errors associated with
thermometry. These results further indicate that the error in
determining the absolute heat capacity with the apparatus is

about 5% for a sample of this size.

II1.2 EXPERIMENTAL PROCEDURE AND DATA ANALYSIS

In this section, we outline the procedure used to measure
specific heat using the apparatus and method described above.
We then describe how specific heat data are obtained from the
raw data and examine the assumptions made in reducing the

data.

A. Experimental Procedure

A sample is attached to the bolometer with a small
measured amount (typically .1-.5 mg) of a thermally conducting
binder. For most measurements reported here, the binder used
was Apiezon 'N' grease [33]. The vacuum can is then sealed
using an indium O-ring. The probe is leak tested with a mass

spectrometer leak detector and pumped with a diffusion pump
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for 1-2 days. During this time, the liquid helium cryostat
is prepared. The heat capacity measurements are made point
by point at roughly 0.2K temperature intervals from 2K to
12K. For superconducting samples, smaller intervals are used

near the transition temperature T The temperature range

cr
is determined by inherent 1imitétions of the apparatus.

Since the top end of the probe is at room temperature, the
resultant thermal gradient down the probe causes heat to be
conducted to the liquid helium bath. Thus, the reservoir
temperature is always higher than that of the bath and this
determines the minimum reservoir temperature. The upper

limit is set by thermometry. Both the standard carbon glass
thermometer on the block and the DAG thermometer on the sample
become very insensitive above 15K.

The reservoir temperature is varied by adjusting the set
point of the temperature controller or manually setting the
heater current. At each temperature, the sample thermometer
resistance is obtained by balancing the ac bridge. A balance
condition is indicated by a null signal on the lock-in. These
resistance values, along with readings of the standard carbon
glass resistance are used for calibration of the sample thermo-
meter. Because the DAG characteristic changes upon cycling
to room temperature, it is necessary to recalibrate during
each run. The sample is heated by passing a current through
a series arrangement of the Cr-Ti heater on the bolometer and
a standard resistance. The standard resistor voltage and the

heater voltage are measured so that the power into the sample
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at each temperature can be calculated. The sample power is
typically on the order of 10—6 watts. With the sample
heater on, the sample equilibrates at a slightly higher
temperature; the bridge is again balanced and the resistance
noted. The power is then turned off, and as the sample cools
back to the reservoir temperature, the exponential transient
signal is recorded. At all times, the lock-in time constant
is maintained at less than 1/20 of the relaxation time constant
of the sample. The heating and cooling of the sample is
repeated so that at least two cooling curves are collected
at each temperature. These are transferred to the computer
and stored. Finally, the initial balance condition is verified.
The initial temperature throw AO is constantly checked
during the run and maintained at between .5 and 1% of the
absolute temperature. (This value represents a trade-off
between signal size and measurement accuracy.) This requires
that the power to the sample be constantly increased as the
temperature, and hence the thermal conductance of the lead
wires, increases. As the heat link to the thermometers also
increases with increasing temperature, they can dissipate
larger amounts of power without significant self-heating.
As a result, the carbon glass thermometer current used is
1 pA below 5K and 10 uA above 5K. The voltage driving the
ac bridge is increased several times during the run as well.
However, the sample thermometer power, which is typically on
the order of 10"9 watts, is always much less than the heater

power.
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The raw heat capacity data will reflect contributions
from the sample heat capacity and from that of the supporting
addenda. The addenda heat capacity is determined. in a separate
run using the same procedure but with no sample. Once the
heat capacity of a sample holder is known, it can be used for
several samples. Occasionally, it has been found that the
silver epoxy which is used for sample holder contacts ceases
to conduct after several temperature cycles. When this occurs,
addition of a very small amount of silver paint or epoxy re-
stores the contact. Since this increases the addenda slightly,
the sample holder heat capacity is remeasured. However, we
have found that the addition of small amounts of paint pro-

duces no noticeable effect.

B. Data Analysis

The sample thermometer is calibrated by comparing the
initial sample thermometer resistance readings to those of
the calibrated carbon glass thermometer. This produces a set
of values of (Ri,Ti). From this, temperatures at the top of

the throw are obtained by Lagrangian interpolation:

A value of n=4 is generally used. This eliminates effects of
changes due to thermal cycling since only data points taken

close together are used for the interpolation. With
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interpolated values for the temperatures at the top of the
throw known, the temperature throw Ao = Tl - To and the
average temperature on the interval TaV = (Tl + TO)/Z can
be calculated. Values of thermal conductance for the leads

are now calculated from

where VH is the voltage across the heater during heating of

the sample, V is the voltage across Rstd’ the standard

std
resistance in series with the heater. 1In calculating heat
capacity, these individual values of k==P/AO, or values taken
from a polynomial least-squares fit to all of the thermal
:onductance data are used. It is desirable to use the
individual values since no assumptions regarding the form
of k(T) need be made. _However, using fitted values helps to
smooth the data and for smaller samples, fitted values are
usually used.

A typical set of thermal conductance data is shown in

Fig. 12. Experimentally, we have found that the thermal con-

ductance of the six wires is well described below 10K by

k(T) = aO + alT

6 2

where a_ = 0 and a; v 3 X 10”° watts K . The steady state

1
power balance for this simple form of k(T) is
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T

1
P =f k(T')dar'

T
o

ao(Tl-To) + —=— (T

k(TaV)AO .

Thus, for smooth data, the individual values should give the
same result as the fitted values, independent of the size of
by-

The relaxation curves, from which the time constants are
obtained, are well described by a single exponential for the
alloy samples used in the present study. This indicates that
the thermal conductance of these samples is much greater than
the thermal conductance of the leads. Hence, the curves can

t/t + b. This is accom-

be fitted to the simple function ae”
plished by using a least-squares fit to a and b and a one-
dimensional search to find 1. It is assumed here that for
small temperature throws, the thermometer resistance is pro-

portional to temperature. To check this assumption, the

thermometer resistance can be expanded as

R(T) = R(TO) + u(T-—TO) + €

where
o = R
dT T
fo)
and
1 a°r 2
€=2' -——5 (T—T) + ...
Yoar o
T
o

To estimate the size of the error term e, the resistance

versus temperature characteristic of the sample thermometer
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is fitted to the following polynomial in temperature:
9
R(T) = n
(T) =) AT
n=0

The derivatives an/dTn}T can then be estimated. We have
found that for temperaturz throws of 1% of the absolute
temperature To the error ¢ is less than 1%. Thus, in most
cases, R(T) is very linear and no correction is necessary.
As noted previously, the temperature dependence of C(T) also
produces errors of the order of AO/TO.

The final step in calculating the heat capacity is sub-
tracting the heat capacity of the supporting addenda. For
this, the measured sample holder heat capacity is fitted to
a polynomial in temperature. Correction for the binders is
made using values from the literature [34]. A set of heat
capacity data (Ck, Tk) is thus generated where Tk is given by
the value of Tav for the kth data point. The Ck are computed
from Cp = k(Tk)'rk - Ak where Ak represents the contribution of
the addenda at Tk. The values of Ck are then normalized to
the number of moles in the sample to obtain specific heat.

Subsequent analysis of the data involves fitting the
normal state data to polynomials in temperature to obtain v,

B and higher order coefficients, calculatiqn of the electronic
entropy in the superconducting state, and extracting param-

eters such as T, and the discontinuity at T

C The fitting

c
routines used employ a least-squares procedure in which the

function
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2

N
&= L (F(x) - y;)
i=1

is minimized for a set of N data points (xi,yi) and a given

function f(x). To fit specific heat data (Ci,Ti) to a series
n

in odd powers of temperature, the function f(x) = I ay xk
i=1

with y; = Ci/Ti and X; = Ti2 can be used. This gives

Minimizing & with respect to the aj defines a system of n+l
equations:

9d
3T=0 k=0,...,n

.

More explicitly,

n
U, ,. a. =V k=0,..., n
i=0 k+3 73 k
where
N N
U, = 2: X.k and v, = Z: Y. x.k .
k o i k —~ i1
i=1 i=1

Solution of the system gives the optimum aj. For example,
fitting to C = yT + BT3 corresponds to solving the above with
n=1, Y=a, and B=al.

In analyzing data on superconducting samples, we wish to
calculate the electronic entropy at Tc from the data below To-
To do this, we fit a small number (~ 10) of data points at the

lowest temperatures to C = a; exp(—az/T) after subtracting the
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lattice contribution. For purposes of this calculation, this
is merely a convenient form to use for extrapolating the

data to T=0. Defining T3

in as the lowest temperature at which

there is a data point, we obtain the entropy at Tmin from the

fitted values al and a2:

Tmin -a2/T
a;le
S =‘/~ —F daT
o .

o o]
n
:al—Y—lnz—Z_(:ﬁ.%_

n=1 nn.

where z==a2/T and y is the Euler constant = .577216... [35].

min
The latter expression is a series representation of the expo-
nential integral El' The series converges rapidly and is

easily evaluated. The remaining contribution to the entropy

at T, is gotten by numerically integrating the data from Thin

to TC using the formula
T

o N
c. C.
-l. C 1 3 j=1
= dr = > (T, - T. M=+ == .
T 2 -U\T, T T,
- j=2 73 i T3
min

ITI.3 SAMPLE PREPARATION
The samples used in this study were a 3/16" diameter
cylindrical piece of pure Cu and amorphous foils having

composition (MO.GORU.4O)100—XBX where x = 14, 16, 18, 20 and
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22, and (Mo } Si where x = 24, 26, 28 and 30.

608,407 100-xx
Measurements were made on foils as-quenched.

The Cu sample was prepared from 3/16" diameter Cu rod
of purity 99.995%. The mass of this sample after machining
was 253.8 mg. Prior to mounting, it was kept sealed under

vacuum to prevent oxidation.

Ingots of Mo-Ru-B and Mo-Ru-Si were prepared by levitation

melting of those elements by rf heating on a water-cooled
silver boat under an argon atmosphere. Purity of the start-
ing materials was Mo, 99.99%, Ru, 99.98%, B, 99.999%, and

Si, 99.99%. The uncertainty in metalloid concentration in
these ingots is less than 0.5%. Foils were subsequently pre-
pared from these ingots by rapidly quenching from the melt
with a piston-and-anvil apparatus. The foils obtained were
typically 1-2 cm in diameter and between 30 and 60 um in
thickness. The amorphous nature of the foils was verified by
X-ray scanning using a Norelco diffractometer. Cu Ku radia-
tion (A = 1.542 &) was used to scan foils from 26 = 30° to

80° at a rate of 0.125° min '. Samples which showed evidence
of crystallinity were not used for heat capacity measurements.
A typical x-ray pattern is shown in Fig. 13. Before measure-
ments are made, copper from the piston and anvil faces of the
splat-quenching apparatus was removed from the surface of the
foils by briefly soaking them in a stréng aqueous solution of
HNO,. The surfaces were then cleaned with acetone and methanol

3

to remove residual greases.
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The sample holders accommodate samples up to 1/2" in
diameter so it was sometimes necessary to cut larger foils.
The mass of the foils after cutting ranged from 20-60 mg.
Two of the Mo-Ru-B samples used were made from several foils
bonded with GE7031 varnish [36]. The foils were powdered
using a tungsten carbide mortar and pestle and pressed under
high pressure into cylindrical pellets. The mass of such a

sample was about 200 mg.
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IV. RESULTS AND DISCUSSION
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IV.1l LOW TEMPERATURE SPECIFIC HEAT OF Mo-Ru-B ALLOYS
We have used the relaxation time method to measure the
heat capacity of transition metal-metalloid glasses having

composition (Mo Bx where x = 14, 16, 18, 20, and

.60%%, 40 100-x
22% boron [37]. These measurements cover most of the com-
positional range over which the alloys can be made amorphous.
Our results, primarily in the composition dependence of the
density of states at the Fermi level, indicate the existence
of a "phase" boundary in the middle of this compositional
range. Previous work on this alloy system has shown that
certain properties--electrical resistivity, nearest neighbor

distance of the metal atoms and 11

B NMR linewidth--change
discontinuously near 18% B [38,39]. The behaviour of the
resistivity is shown in Fig. 14. In addition, the high boron
alloys are considerably more brittle [38]. This composition
dependence has been inéerpreted in terms of changes in the
defect structure of the material, which is consistent with
an overall structural transition. The present specific heat
results also show that these alloys are intermediate coupled
superconductors whose thermal behaviour is in accord with
the BCS fheory of superconductivity.

Heat capacity is measured using the method and procedures
outlined in the previous chapter. Measurements were made at
temperatures ranging from 2K to 15K on as-quenched single
foils, or on compacts made from several foils. Masses of
the samples ranged from about 25 mg for a small single foil

to about 200 mg for a compact. Samples were bonded to the
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sample holder bolometer with Wakefield thermal compound or
Apiezon 'N' grease. At 4.2K, the total addenda heat capa-
city represented about 40% of the measured heat capacity for
the smallest sample and about 5% for the largest sample.

The specific heat data for the Mo-Ru-B alloy series
are presented in Fig. 15. Normal state and superconductivity
parameters obtained from this data set and from a second
measurement on (MO.GORH.40)82B18 shown in Fig. 16 are given
in Tables 2 and 3. Normal state parameters are derived from
a least-squares fit of the data above the superconducting
transition to the polynomial C(T) = YT + BT3 + 8T°. As dis-
cussed in Chapter II, the coefficient of the first term is
related to the density of states at the Fermi level through
the relation

vy =51 K2 N(eg) (L+2) .

In this treatment, we neglect effects of non-electronic origin
which may also lead to a specific heat which is linear in T.
The contribution of such terms to vy is generally quite small

[27]. The Debye temperature is calculated from

o - (1948\'/3
D~ \7B

where B is in J mol™t k™% and 6, is in degrees K. It is

evident that the data deviate from the simple Debye 73 law
for temperatures greater than GD/30 and we include the T5
term for fitting data above 10K. This non-Debye like be-

haviour has been obscrved in several metal-metalloid glasses

[40].
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TABLE 2. Normal state parameters for (MO,GORu.40)100—XBX

X (%B) y (mJ mo1™t K]z) 8 (K)
14 3.4 295
16 3.1 301
18 (1) 2.6 283

(2)* 2.8 286
20 2.0 277
22 2.1 280
*Two-phase material
TABLE 3. Superconductivity parameters for

(Mo goRU 40 100-xBx"

x (%B) TC(K) ’ A AC/YTC B (K) B/TC
14 6.3 0.69 1.4 9.67 1.55
16 6.4 0.69 1.7 9.87 1.54
18 (1) 6.1 0.69 1.5 9.39 1.55

(2)* 4.7,6.1 - —— - -—
20 5.9 0.69 1.9 9.10 1.54
22 4.7 0.64 2.0 8.8 1.8
BCS - - 1.43 1.44TC 1.44

*Two-phase material
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Values given in Table 3 for the superconducting transi-
tion temperatures of the alloys are taken at the midpoint of
the transition, after subtracting the lattice contribution.
The McMillan equation for the transition temperature [15],

in the form

0
_ % [ 1.0aa+n
Tc = 1775 %P [x —u*(1+0.62>\)]

is used to calculate ), using u* = 0.13. Values of AC/yTC
represent the normalized discontinuity in the electronic
specific heat at the transition. It should be noted that
this quantity can only be calculated to an accuracy of about
25% owing to errors in determining y and AC. The entropy at

T is given by
= c(T)
S(Tc) —f —T—dT .

The value of S(TC) must be the same whether calculated by
extrapolating the polynomial fit to T = 0 or if derived from
the data below Tee This provides a self-consistent check on
the fit which is evidently well-satisfied by our fitting pro-
cedure; values of y derived from the integral of the data

below T, are within 10% of values derived from the polynomial

C
fit. This is comparable to the uncertainty in the fitting
parameter. In calculating S(TC) using the data below TC' it
is necessary to extrapolate the data to T = 0. This is accom-
plished by fitting the electronic specific heat at the lowest

temperatures to the exptession C = Ae—B/T. The fitting
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parameter B can then be used to compare the data to the
approximate BCS relation for the heat capacity of the super-
conducting electrons given in equation (5) in Chapter II.

The most striking feature of the data above T, is the

cC
rapid decrease of Yy as the boron content in the alloy series
increases. As shown in Table 3, the electron-phonon coupling
constant Yy shows little variation as a function of x. Hence,
the density of states at the Fermi level must be changing
rapidly as well, in the region around x = 18% B. Additional
evidence for this trend is given by values of Yy calculated

from the measured gradient of the upper critical field. 1In

convenient units,

a"
2.23 C
oa ar

2

(7)

where p is the normal state resistivity in uQ cm, o is the
density in mol cm_3 and the gradient is measured in kOe K—l.
Values of Y derived from specific heat measurements and de-
rived from upper critical field and resisitivity measurements
are plotted as a function of boron content x in the lower part
of Fig. 17. (The values of p and dHCZ/dT - used are taken
from reference 38). The agreement is very C good, and we
conclude that equation (7) above can be used to estimate N(gF)
in these materials in the absence of specific heat data. The
variation of the limiting Debye temperature p is plotted in

the upper part of Fig. 17. For the data from samples with

x = 14, 16, and 18% boron, where measurements were taken to
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higher temperatures, the best fit was obtained using a T5
term. GD generally decreases across the series but appears
to change discontinuously from an average value of about
300K for x < 18% to an average value of about 280K for

x > 18%. The value of GD obtained for (Mo

605" 407 g2B18
of 283K agrees with the Debye temperature for this alloy

determined from Mossbauer studies of Fe-doped Mo-Ru-B
[41,42].

Estimates of the ratio B/T and of AC/yTC, the jump in
the electronic specific heat at the transition, are within
experimental errors of values predicted by the BCS theory
of weak-coupled superconductors [11]. ©Like many transition
metal superconductors, the electron-phonon coupling in these
materials appears to be weak to intermediate [43]. This is
also reflected in Valués of the coupling constant computed
from the McMillan equétion. Values of the superconducting

transition temperature T, shown in Table 3 are in good agree-

C
ment with previously reported values of TC for Mo-Ru-B measured
inductively and resisitively [38].

In Figure 16, specific heat data obtained from a second
sample with x = 18% are presented. The y and GD values agree
with those of the other sample of this composition but the
specific heat clearly shows the presence of two superconduct-
ing phases. The transition temperatures of the two phases

are 6.1K and 4.7K. The sample used was a compact made from

several foils. Following the heat capacity measurements,
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this sample was analyzed with additional x-ray diffraction,
transmission electron microscopy, and Mossbauer spectroscopy
in an attempt to discover the nature of the second phase.
Depression of TC by magnetic Fe impurities was ruled out by
Mossbauer measurements, which showed no evidence of Fe [44].
This places an upper limit on the Fe content of .03% by weight,
which could depress the transition temperature by no more
than 0.7K [45]. Extensive x-ray diffraction and TEM showed
no evidence of crystallinity in the sample and thus the low
To peak in the specific heat curve could not be associated
with a crystalline phase. Measurements of Tc on samples of
related crystalline borides MozB and Ru7B3 gave further
support to this assumption. We obtain values of 3.8K and
3.2K respectively, for the transition temperatures of these
materials measured inductively; both are much lower than the
4.7K observed in the 18% B sample. We cannot discount the
possibility that one of the foils in the compact had the
wrong composition. However, this seems unlikely as great

care was taken with all samples.

IV.2 LOW TEMPERATURE SPECIFIC HEAT OF Mo~Ru-Si ALLOYS

As a companion study to the heat capacity measurements
on Mo-Ru-B, we have determined the specific heat of a similar
group of alloys having composition (Mo.60Ru.40)100_X51X.
The silicon content of these alloys ranges from x = 24% to

30%. All samples were single foils prepared by rapid quench-

ing. The masses of the foils used are given in Table 4. The
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foils were bonded to the bolometerkusing 0.1 to 0.2 mg of
Apiezon 'N' greases. The binder heat capacity is accounted
for using literature values and typically represents from

5% to 20% of the total measured heat capacity, depending on
the temperature. The total addenda heat capacity is equiva-
lent to that of roughly 15 mg of Mo-Ru-Si.

The specific heat data up to T = 10K is given for all
alloys considered in Fig. 18. The data from 2K to 10K were
analyzed to obtain the parameters shown in Table 4. Normal
state data above the transition temperature were fitted to the
polynomial C = yT + BT3 to obtain y and eD values. These
are plotted as a function of silicon content in Fig. 19.
Values of T, were taken at the midpoint of the transition.

C

From GD and T the electron-phonon coupling constant A was

c’
calculated using the McMillan relation. For alloys with

28% and 30% Si, the transition occurs at too low a tempera-
ture to allow a meaningful fit to be obtained for the data
below TC. For the other alloys, for which there are several

points below T the data were fitted to C==Ae_B/T providing

c’
an extrapolation of the data to T = 0 so that the electronic
entropy could be computed. For those alloys where S(TC) could
be calculated, the values of y and GD determined from the fit
were consistent with the thermodynamic constraint on S(TC).
As shown in Fig. 19, y decreases with silicon content x
while GD increases. This results in decreasing values of A

as x is increased. Hence, the bare density of states at the

Fermi level, normalized by a factor of (1 + 1), decreases
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slowly for this series as the metalloid content is increased.
v values calculated from upper critical field gradient and
resistivity do not agree well with the trend in y that is

observed in specific heat. (Values of p and dch/dT T used
C

to prepare Fig. 19 are taken from reference 38.)
As with the Mo-Ru-B alloys, values of AC/TC obtained
for Mo-Ru-Si are within experimental errors of the BCS value

of 1.43.

IV.3 COMPARISON WITH RELATED PHASES

For comparison, results are presented in Table 5 for
crystalline o-phase Mo, Rugg [46], body-centred cubic
Mo.gRus, [47], and amorphous thin-film Mo gRu, 5 [48]. The

values of vy and T, for these alloys follow the trends that

C
we observe for splat—-quenched amorphous Mo-Ru-B and Mo-Ru-Si
alloys. The TC (6.7K)  for Mo70Ru30 is somewhat low, but in

the bcc Mo-Ru alloys, TC increases with increasing Ru content

[47] and could be >8K for a bcc Mo, Ru,, alloy. The Debye

40
temperature of the thin film M058Ru42 sample is gquite low for
a 4d-44 alloy [49] and it would appear that this may not

be representative of bulk melt-quenched Mo-Ru-metalloid alloys.
Using the McMillan formula, one calculates a value of A = .84,
indicating a more strongly coupled superconductor. However,
the BD values of alloys with x < 18% B and of all Si alloys
appear to increase with addition of metalloid atoms. Thus the

thin film material may have a similar type of lattice. Also,

linearly extrapolating the TC values of Mo-Ru-B to x=0 yields
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TABLE 5. Properties of related Mo-Ru phases.

Y TC GD A B/TC Ref.
c M°61Ru39 4.11 7.2 418 0.65 1.50 46
bcce Mo70Ru30 3.9 6.7 435 0.62 - 47

MOSBRU42 4.9 8.3 238 0.84 - 48
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a value of 8.6K which is close to the value of 8.3K observed
for M058Ru42.

IV.4 DISCUSSION

A. Structure and Properties

It has been reported previously that certain properties
of (Mo gRu ,4),_,B, alloys show marked changes as a function
of boron content at around x = 18% boron [38]. 1In particular,
the normal state electrical resistivity has been shown to be
independent of x below x = 18% and to increase rapidly for
x > 18%. Based on the specific heat results presented here,
there is strong evidence for a significant structural change
near 18% boron which can be correlated with the resistivity
behaviour.

Firstly, both specific heat and upper critical field
data for the Mo-Ru-B ailoys indicate a change in N(eF) by
almost a factor of two as the boron content changes from 14%
to 22%. Also, the Debye temperature appears to change dis-
continuously in the middle of the range. The latter may
indicate a modification of the lattice étructure since the
composition range is small, but such variations are not uncom-
mon in alloy systems. However, the change in N(EF) implies
a change in structure which strongly modifies the total
density of states. The effect is too large to be accounted
for in a rigid band picture. Unless the density of states
contains sharp features like that of a crystalline transition

metal [50], then a very large change in the electron-to-atom
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ratio (e/a) would be needed to account for the changes in
N(eF) resulting from shifts of Epe Owing to the large
energy width Ae of an electron state in the amorphous solid
due to disorder-induced scattering, it is expected that
the density of states of a glass would not contain sharp
structure [51]. Thus the addition of a relatively small
number of metalloid atoms could not change e/a enough with-
out significant charge transfer between the metal d bands and
the metalloid s-p bands. Such effects are not expected in
view of the similar electronegativities of the constituent
atoms in Mo-Ru-B: for Mo, the electronegativity is 2.2; for
Ru, 2.2; and for B, 2.0 [52].

In transition metal alloys, the dominant contribution to
the total density of states N(e) comes from d-bands. From
a tight-binding analysis of the d-band contribution to N(eF),
it is expected that the d-band partial density of states
Nd(eF) will largely be determined by the local environment of
the transition metal atoms [2]. Hence the observed Fermi-
level total density of states for Mo-Ru-B should reflect the
short-range order of the metal atom environment; that is
the number and type, directions and separations of atoms
around the Mo and Ru atoms in the glass. The behaviour of ¥y
as a function of x shown in Fig. 17 suggests one type of
short-range order for x < 16% boron and the dominance of
another type of short-range order for x > 20% boron. This
behaviour is similar to that which occurs when crossing com-

pdsitional phase boundaries in crystalline alloys. In a
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binary alloy system, one typically observes transitions from
single phase material to two phases and back to a single
phase with varying composition. In a crystalline material,
this is accompanied by a change in long-range order. For
amorphous phases, the variation of composition could pro-
duce a similar change in the short-range order. That is,
one could progress from a material having one predominant
short-range order to a mixture of two structures and finally
back to a material with predominantly the second type of
short-range order. Formation of different phases in Mo-Ru-B
is dependent on boron content, but details of the structural
inhomogeneity, that is, the distribution and spatial extent
of these phases is probably more a function of quenching con-
ditions. Such details could account for the observation of
two superconducting transitions in one of our 18% boron
samples. This sample, which is in the middle of the composi-
tional range, could contain both types of short-range order
with sufficient phase segregation to allow each region to
possess a distinct transition temperature. Interestingly, the
low TC of the sample is the same as the TC observed for the
22% boron sample. The behaviour of T is discussed further
in the next section,

Similar behaviour in amorphous Ni-P and Zr-Cu alloys
has recently been reported [53,54]. In the Ni-P system, NMR
Knight shift measurements demonstrated the existence of two
distinct local structural configurations at one composition.

-The configuration present was found to depend on the technique
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used to produce the amorphous phase. The presence of two
distinct superconducting transitions in melt-quenched ribbons
of Zr-Cu alloys has been observed by Samwer. The composition
of these alloys ranged from 26% Cu to 50% Cu; the samples
used showed no evidence of crystallinity [55].

Although the exact nature of these short~range structural
configurations—-topology, spatial extent, etc.—--cannot be
determined by a bulk measurement such as specific heat, such
a transition should be manifested in the density of states and
transport properties such as the electrical resistivity p.
Since resistivity primarily involves scattering events with
momentum transfers of the order of twice the Fermi wavevector,
it reflects changes in structure on the scale of interatomic
distances [56].

Electrical conductivity in transition metals is usually
viewed in terms of a two band model, whereby ¢ = o + 94
[57,58]. But due to the large effective mass of the d
electrons, most of the current is carried by the s electrons.
A large contribution to the resistivity arises from scattering
into unfilled d states near the Fermi level. The ratio of
s > d scattering to s -+ s scattering roughly follows the
relation [57].

P
p

Na
NS

-
s->d A

S—>s

where Nd and Ns are the d-band and s-band contributions to

the density of states at ¢ Evidence for this is shown by

F*
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the strong correlation between room temperature resistivity

p and the electronic specific heat coefficient y in the tran-
sition elements. Table 6 shows measured values of y and p for
transition elements of the 5B, 6B, 7B, and 8B periods. This
correlation also follows from other factors, such as the
variation of y with electron effective mass, but clearly
elements with high values of N(eF) also exhibit high resis-
tivities. The trend éontinues to the noble metals, in which

€., lies above the filled 4 states.

F
This relationship contrasts with what we observe in

amorphous Mo-Ru-B where the sharp decrease in N(eF) is

accompanied by an increase in resistivity. The reason may

be that there is a significant contribution to conductivity

from 4 electrons in these materials. The high value of the

resistivity in these materials (on the order of 150 ohm-cm)

is close to the "saturation" resistivity corresponding to

the electron mean free path approaching the interatomic

spacing [59]. This implies strong disorder scattering of the

plane wave s electrons. Since d electron conduction most

likely occurs by an intraband hopping mechanism among the

extended d states of the solid [2], the d-band conduction

could thus be of the same order as the s-band conduction.

In this case, N(eF) would influence the conductivity by

determining the number of electrons involved in the conduc-

tion process. Hence, as in Mo-Ru-B, a structural change re-

sulting in a decreased N(eF) would be reflected in an increased

electrical resistivity. Thus, the resistivity is tied to the



81

TABLE 6. Values of electronic specific heat coefficient
Y in units of mJ mo1~! k2 and room-temperature
electrical resistivity p in yohm cm. (Taken
from reference 7.)

v Cr Mn Fe Co Ni Cu

Y 9.26 1.40 9.20 4.9 4.7 7.0 0.7

p 19.9 12.9 139 9.8 5.8 7.0 1.7

Nb Mo Tc Ru Rh Pd Ag
Y 7.8 2.0 ~NT 3.3 4.9 9.4 0.65
o 14.5 5.3 n14 7.4 4.8 10.5 1.6
Ta W Re Os Ir Pt Au
Y 5.9 1.3 2.3 2.4 3.1 6.8 0.73
o 13.1 5.3 18.6 9.1 5.1 10.4 2.2
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behaviour of electrons in d states near the Fermi level.

In contrast to the Mo-Ru-B glasses, no discontinuities
are evident in the composition dependence of the Mo-Ru-Si
alloys. 1In Fig. 20, the bare (Fermi-level) density of
states is plotted for both sets of alloys. The Si alloys
show a smooth decrease with composition. Hence, we expect
a small increase in resistivity with increasing Si content
across the series. The measured resistivity of these alloys
is essentially éonstant, but the relative error in the
measurements is large [38]. A slight increase of p with Si
content is not unreasonable in view of these uncertainties
and this could be the source of the disagreement with y values
determined from ng— measurements.

As remarked earlier, the Debye temperature of the Mo-Ru-Si
series increases with Si concentration and the value of
6D=238K reported for amorphous M058Ru42 [48] is consistent
with this trend. In addition, the observed Vicker's hardness
for both Mo-Ru-B and Mo-Ru-Si alloys shows a roughly linear
increase with metalloid content, with the effect being larger
for Mo-Ru-B alloys [38] . Thus, one effect of addition of
the light metalloids B and Si is to increase the Debye tempera-
ture of the amorphous phase. This is not surprising in view
of the high values of the Debye temperature for these elements;
1220K for B and 630K for Si [3,7].

A comparison with elastic properties can be made for the
Mo-Ru-B alloys since values of Young's modulus have been

obtained for (MO.GORu.40)86Bl4 and (MO.GORu.4O)82B18 alloys
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[60]. These can be used to calculate Debye temperatures from

the relation

1/2 1/3
6. = 2.62 iﬁ—(g) (11)

D kB ¢ \Y%

We obtain the prefactor 2.62 by assuming a value for Poisson's
ratio of 0.41, This is obtained from measured sound velocities
of amorphous Pd and Pt alloys [61]. Using measured densities
for these alloys [38], we calculate GD = 312K and 362K for
(MO.GORu.4O)86Bl4 and (MO.GORu.40)82B18’ respectively. There
are few such comparisons for metallic glasses but in general,
it has been observed that the lattice specific heat of insula-~
ting glasses exceeds predictions based on elastic properties

by a factor of 1-2 [27]. The values of 6, that we have cal-
culated indicate that the measured lattice specific heat is
larger than predicted by factors of 1.2 and 2.0, respectively,
for (Mo 4

and (Mo Thus, although

607, 40) 86B14 608" 40) 82B13"
the calculated Debye temperatures depart considerably from the
measured values, the magnitude of the departure agrees with

general observations regarding the anomalous lattice specific

heat of glasses.

B. Superconductivity
In this section, we examine the interplay between the

parameters A, N(SF), and T, in amorphous Mo-Ru-Si and

c
Mo-Ru-B as evidenced by the specific heat data. It was

shown by McMillan [15] that the electron-phonon coupling
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constant could be considered as the product of an electronic
part n = N(eF)<Iz> and a phonon part ¢ = (M<w2>)_l. Attempts
to systematize superconductivity in transition metals and
alloys have generally focused on the behaviour of A and of
n, the so-called Hopfield parameter, since these strongly
influence the transition temperature. The Hopfield para-
meter was originally viewed as being a constant across the
transition series [15,62]. Hopfield [62] further argued
that N(sF) should have little influence on the transition
temperature. However, calculations by Butler [63] show that
a large part of the variation of ) across the 4d series is
due to variations in N(sF), particularly in the middle of
the series. Recent work by Varma and others indicates that

the factor <I2

>® is constant and thus A\ depends linearly on
N(egp) [64,65].

For the Mo-Ru-Si alloys, an increase in the Debye
temperature with increasing silicon content is accompanied

by a decrease in T This indicates an overall decrease in

c*
the strength of the electron-phonon coupling, as shown by
values of )\ computed with the McMillan expression. In the
Mo-Ru-B series, A appears to be approximately constant across
most of the series but decreases for the 22% boron sample,

which had a particularly low T When A values for all

c
alloys are plotted as a function of metalloid content as in
Fig. 21, it appears that X decreases in a roughly linear

fashion and is more dependent on the number of metalloid

atoms present than on the type of atom. Linearly extrapolating



86

il (Mo 0B 40) 100-xMx

x (% metalloid M)

Figure 21. Electron phonon coupling constant plotted as a

function of metalloid content.

40



87

the values of A to x = 0 (corresponding to a composition
Mo oRu,,) yields a value of X = 0.83, which is close to the
value of A = 0.84 computed for amorphous M058Ru42.[48]. This
linear relationship suggests a dilution of the d-band due
to the decreased density of transition metal atoms [38].
However, since <m2> g 6D2' the observation that 8o increases
with increased B and Si content implies that addition of
metalloids acts to increase the averaged squared phonon fre-
quency w?>. This in turn would decrease A, since XA l/<w2>.
The electron-phonon coupling constant A appears to be
more strongly influenced by the electronic structure. Based

on non-orthogonal tight binding calculations, Vvarma and

Dynes predict that

§ = )=W(l-T—S)

should be a constant for a class of materials dominated by
the same type of orbital near the Fermi surface [64]. 1In
this expression, W is related to the width of the d-band and
S is the overlap integral of orbitals on neighboring sites.

The + sign refers to €, in the upper or antibonding half of

F
the d-band while the - sign is for €p in the lower or bonding
half of the band. Generally, the density of states curve of
crystalline transition metals can be described as having two
peaks separated by a region of low density. In bcc alloys,

these two peaks correspond to the bonding and antibonding d

orbitals near the Fermi level [2]. This two-peaked structure
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is mirrored in the Matthias rules for the superconductivity

of transition metals [66]. Plotting T, versus electron-to-
atom ratio for the 4d series as in Fig. 22, it is evident that
high TC phases occur for e/a values near 4.5 and 6.5. Also
shown in Fig. 22 is the Collver-Hammond [67] curve which,

in a similar fashion, is thought to reflect the density of
states of amorphous transition metals. The two peak behaviour
of the crystalline TC curve appears to be broadened into a
rather featureless single peak for the amorphous materials.
Nonetheless, the Varma-Dynes model is reasonably successful

in accounting for the behaviour of amorphous transition metal
superconductors. Johnson and Tenhover [68] have shown that
for both crystalline and amorphous alloys of Zr, Nb, and Mo,

A versus N(eF) data could be grouped on two well defined lines.
These were‘interpreted as resulting from the positioning of
the Fermi level (eithei’in the upper or lower half of the
band) in accordance with the Varma-Dynes relationship. This
grouping corresponded with Fermi level positions that would

be expected from the electron-to-atom ratio in the different
alloys.

The lines obtained by Johnson and Tenhover are reproduced
in Fig. 23 along with data for the Mo-Ru-B, Mo-Ru-Si, and
M°58Ru42 alloys. Since e/a is approximately 6.8 for M060Ru40
we expect €p to be in the upper part of the d-band, corres-
ponding to the upper curve in the figure. As shown, the data
and (Mo

for all Mo-Ru-Si alloys, Mo and

58842 .60%%. 40" 86514
(MO.GORu.40)84B16 lie on or near the upper curve. For Mo-Ru-B
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alloys with x > 18% B, the data points deviate from the
Varma-Dynes curve as N(eF) decreases.

If the high boron phase of Mo-Ru-B which we have identi-
fied as having a low vy is a well defined single-phase material,
then the Varma-Dynes concept should still apply. This sug-
gests that the 4 bandwidth Ws is increased for the high boron
phase which in turn may be the cause of the observed decrease
in the density of states. How this is reflected in resisti-

vity is not clear, since p depends on both N(eF) and W In

d‘
tight binding theory, the width of the d-band is a function
of the average short-range order near a transition atom [2].

It is related to an average of matrix elements of the form
B = <i,m|Vj[j,m'>

where |i,m> is an atomic d level on site i with orbital
moment m; Vj is an atomic potential centered on lattice
site j. Such matrix elements mix the atomic d levels into
extended states of the solid. Thus, the atomic d states
are broadened into a band of width Wd' The mean 1ifetime
T of an electron in these states is of the order of h/wd
giving an interatomic hopping frequency of 1/1. The con-
ductivity associated with such a mechanism should therefore
increase as the bandwidth increases. If we are to assume a
high degree of d-band conduction, then this effect must be
smaller than the effect of a decreasing density of states.
The transition temperature in these systems depends on

the electron-phonon coupling primarily through the behaviour



92

of N(eF). In Figs. 24 and 25, we plot T, as a function of

C
A and of N(EF). (Results for the (MO.GORu.4O)82318 sample
which showed two transitions are not included.) The depen-
dence of TC on X is not surprising since A is calculated
using the same measured values of TC‘ However, these is a
correlation between TC and N(EF) for each alloy series. This

correlation also exists for the higher T, Mo-Ru phases, both

C
crystalline and non-cfystalline. The dependence arises
through the influence of N(EF) on A, but it is apparent that
details of the atomic arrangements do not strongly influence
TC' We have argued that N(eF) should depend to a large extent
on the local environment of the metal atoms, and TC clearly
depends on N(eF). However, the transition temperature does
not exhibit the discontinuous behaviour observed for other
properties of the Mo-Ru-B system near 18% boron [38].
Evidently, in these sYétems, superconductivity is not as
sensitive to changes in short-range order. This is a conse-
guence of the characteristic length scale for superconduc-
tivity being larger than that for structural inhomogeneities
in these materials [69]. The superconducting coherence
length, which gives roughly the spatial overlap of the paired
electrons, is estimated to be on the order of 100 2 [70].

This gives a natural length for changes in the superconducting
properties. Thus, the structural changes which occur on the
scale of a few atomic diameters that can be reflected in, for
example, the electrical resistivity, may not be reflected in

superconductivity.
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V. SUMMARY
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v. ‘SUMMARY

In this thesis, low temperature specific heat data for
transition metal-metalloid glasses of molybdenum and ruthenium
alloyed with boron and silicon have been reported. The data
were obtained from measurements which employed a thermal
relaxation time technique developed for small samples.

There is strong evidence for the presence of two dis-
tinct amorphous phases in Mo-Ru-B alloys, characterized by
different local structures. By contrast, the structure of
Mo-Ru-Si alloys seems to be dominated by a single type of
short-range order. However, the idea of structural inhomo-
geneities in metallic glasses must be viewed in terms of the
length scales involved, as this determines to what extent
macroscopic properties are sensitive to variations in local
atomic arrangements. The properties of Mo-Ru-B and Mo-Ru-Si
glasses which we have considered in detail are the normal
state electrical resistivity and superconductivity. We have
attempted to demonstrate the strong influence of the density
of states at the Fermi level N(eF) on these properties. In
Mo-Ru-B, the increase in the resistivity with increasing boron
content has been related to the decrease in N(eF). This implies
a conduction mechanism in these materials in which a substan-
tial part of the current is carried by d electrons. This
contrasts with the case of crystalline transition metals, where
changes in resistivity are associated with similar changes in
N(eF). The applicability of the Varma-Dynes model to the super-

conductivity of Mo-Ru-Si and an amorphous Mo-Ru alloy is
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indicated by the linear dependence of the electron-phonon
coupling constant A on N(EF). These phases appear to be
closely related. The deviation from the Varma-Dynes picture
exhibited by Mo-Ru-B alloys with high boron content may follow
from the structural change which is manifested in resistivity
and density of states.

Alloying with metalloids B and Si increases the Debye
temperature of the amorphous Mo-Ru phase and can be correlated
with an overall depression of A. The latter effect may follow
directly from the influence of B and Si on the average phonon
frequencies or indirectly from the effect metalloid atoms
have on the d-band density of states. For two of the Mo-Ru-B
alloys, calculations of the Debye temperature from measured
elastic properties show that these materials exhibit the excess

lattice specific heat observed in many insulating glasses.
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