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ABSTRACT

In this thesis analytic formulas are derived for the elements
of" the inverse covariance matrix of sampled rational noise. It is
shown that the number of terms composing these formulag is dependent
only on the order of the noise and not on the dimension of the
covariance mmlrix. Some specelal cases are worked out in detail.

The estimation of the parameter § in the process
y(t) = 88(t) + n(t) , where t dis in the interval [0,L] , n(t)
is rational noise, and &(t) ie dctcrminictic, is considered in
detall for first and second order noise. A minimum variance continu-

ous filter, f(t), which gives an estimate of @ through
L :

A

e :.[’f(t)y(t)dt and its associated variance are computed. Alsc
o}

computed is a dilscrete minimim variance estimate of the form,

N
8 = Zfd(.p'l‘)y(p’l‘) where the £ (+) eve the "weights" for the
il
gsampled data and T 1s the sampling period. It is shown that the

discrete weighting function and its variance approsches the continu-
ous welghting function and its variance when the density of obzerva-
tions approaches Infinity. It is seen that in general the discrete
welghting function does not create the equivalernt of a delta function
and 1ts derivalives by a simple diflferencing operatlion through the use

of Kronecker deltas.
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Asymptotic properties of the variance of the discrete estimate
are considered. The asymptotic term is defined as the first order
term in the power series expansion of the variance. It is seen that
for a smooth 8(t) and first order noise, the asymptotic term is
zero. In the special case of 8(t) equal 0 a constant and Second
order noise it is shown that the asymptotic term is zerc if the
noise has zeros in 1ts spectral density and nonzero if the noise is
211 pole,.

The commection betwéen autoregressive nolse and rational noise
is considered in detall for second order noise. It 18 seen that
rational noise will have autoregressive properlies uuly for a specilal
pole-zero configuration and a particular sampling rate. The advan-
tages of sampling at this rate are discussed and a special case is
considered.

It is shown that the resulte obtained for one parameter, one
signal, and one ncise can be easily extended to a vector of parameters,
g matrix of signals, and a vector of noises. The only restriction s

that the components of the noise vector be uncorrelated.
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DISCRETE AND CONTINUOUS ESTIMATTON IN CORRELATED NOISE

WITH FINITE OBSERVATTION TTME

CHAPTER I

MINIMUM VARTANCE ESTIMATTON

1.1l Introduction

The concept of minimem variance estimastion 1s rather old and
originated with investigators who should be classified as mathemati-
cal statisticlans. They were primarily interested in obtaining "besgt"
egtimates of populstion parsmeters when a set of sample values was
avallsble, and minimum variance was one of the criterions decided
upon. Ancother important criterion was that of maximum likelibood
estimation which is credited to R. A. Fisher. Tt is well known that
when the sample values are obtained from a gaussian population, the
linear, unbiased minimum variance estimate is identical to the maxi-
mun likelihood estimate. Therefore, sny statements concerning the
variances of minimum varisnce estimates apply to the variances
obtalned by maximum likelihood estilmation when the population is
gaussian. The estimates just discussed are usually referred to as
discrete estimates since they are obtained from a finite number of
samples from a population.

In many problems which have been of interest over.the lgst 25

years the observed information has been in the form of a continuous
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fecord. This record was consiﬁered to be.composed of a desired
signal pius an additive random process and the problem wss to
estimate the signal or some function of the signsl at prescribed
times. Wiener (1) and Kolmogoroff {2) are credited with ploneering
work in the solution of the above problem. Many extensions and
generalizations followed their bssic work. #Uwo falrly comprehensive
lists of references are given in Reference 3 and Reference L.

In Reference 5 it is shown that the solution of the continuous
catimation problem, when the noise is generated by passing slatiou-
ary white noise through a time-invariant linear system with the

transfer function %%g% (8 1is the Laplace variable and N(8) and

/D(S) are polynomisls in S)*, involves solving an integral equation
for the optimum filter or weighting function. In Reference 5,
Zadeh and Ragazzini find a solution of the Integral equation which
involves delta functions and the higher order derivatives of the
delta functions. This solution raises the following problems:
Suppose that a record which contains an additive combination of a
deterministlic signal with s multiplicaiive unknovn parameter and =

- noige of the type discussed above is sampled at equally spaced
intervals in time. Further, suppose that a discrete, linear,

unbiased minimum variance estimate 1s made of the parameter and the

variance of {the estimate is computed, then:

%  Juch g noise is called rationsl noise in this thesis. The order
of the denominator polynomial Ls called the order ol the nulse.
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1. Can analytic results be cbtained for the form of the
discrete estlmate and its assoclated variance?

Z. Lboeg the limiting form of the discrete estimate and
its wvariance approach the continuous estimate and its variance as
the time between samples gpproaches zero and the number of samples
approaches infinity?

3. If the answer to the above question is affirmsitive,
then by what mechanism does the discrete estimate create the
equivalent of delta functions and their higher order derivatives?

I, Can analytic results concerning the asymptotic proper-
ties of the variance of the discrete estimate be obtalined?

The first question ean be answered affirmatively for a large
class of signals by use of an analytic inverse covariance matrix
which is the subject of the next chapter. The snswer to the second
question was shown to be affimative by ap indirect method in a paper
by Swerling (10) but he was unable to give any clues to the answers
t0 the third and fourth guestions. In this thesis, the second
guestion 1s answered by a direct method for first and second order
noise - namely, analytic formulas for the discrete estimate and its
variance are determined as a function of the time between samples
snd the pumber of samples, and the limiting properties of these
formulas are calculated. It will be seen that analytic formulas for
the higher order noises are easlly derived from results.presented
in this thesis but that an investigation of their limiting properties

would become algebraically tedious.
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In answering the third guestion posed above for the cases of
first and second order nolse, the mechanism for the creation of the
discrete eqnivalent of delta functions and thelir higher order
derivatives is exposed for the higher order noises. The fourth
gquestion is also answered for first and second order noise in some
special cases. However, here, toc, the method used is general, but
algebraicaily tedious to apply.

Tt should he peointed out that quasi-discrete estimates involving
orthogonal functions such as described in Chapter 14 of Reference 6
and the limiting properiies of these estimates are not discussed in
this thesis.

A briel summgmry ol the couleals of Lhls Lhesis 1s glven below.
Some of the more pertinent work of other guthors along the lines of
discrete and continucus minimum variance estimation is discussed in
the remaining two ocectiono of thiso chaptcr. In Chapter IT analytic
formulas for the elements of the inverse covariance matrix of
sampled rstional nolse are derived. The equivalence of the continu-
ous and the limit of the discrete minimwm variance estimators is
shown in Chapter III. gSome asymptotic properties of the variance of
the discrete estimator are given in Chapter IV. A discussion of the
connection hetween autoregressive nolse and rational nolse is given
in Chapter V. A general formuis for the variance of the discrete
estimate of a constant in Butterworth noise is derived iﬁ Chapter
VI. The work of the preceeding chapters is extended to the multiple

dimensionsl case in Chapter VII. Chapiter VIII gives a summary of
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the major resulis, draws some conclusions; and gives suggestions
for further study. An expansion of second order all pole noise is
Qerived_in Appendix A and Appendix B discusses the connection between

estimation problems and detection problems.

1.2 Dilgerete Minimwmm Variance Estimation

The basic discrete minimum variance estimation problem consid-

ered in this thesis is as follows:

Given the observed function of time
y(t) = 8s(t} + n(t) 0t <L (L.2.1)

where O 1s the parameter to be estimated, 8{t) is a deterministic
signal, n(t) 1is rational noise, and I is the length of the obser-
vation time, find the minimum variance estimate of 8§ using only the
values of y{i) al times T seconds spart where the ratio % is an

integer. It 18 shown in Reference T that the minimum variance

egtimate of © is

A SR B o !"_

o= (SR ls) 4 (R JLs) ¥ (1.2.2)
and the variance of the estimate is

o = BRE) (1.2.3)
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where y and S are column vectors whose elements are the sampled
values of the observed process and the value of the signal at the
sample times, K 18 the covariance matrix of the sampled noise,
that 18 R = (Rij) = (E{n(ti) n(tj)}), and "prime" denotes
transpose.

Equations 1.Z.2 and 1.2.3 expose one of the ma])or problems
involved in minimum variance estimation - that the inversion of the
covarlance matrix of the sampled noise is necessary for minimm
variance estimation. With the prescent state of the art of digital
computaticn it is a practicél impossibility to invert a noise covar-
iance matrix of a dimension_greater than 100 x 100. Adding to the

‘maj or difficulties occurring simply because of ﬁhe high dimension ie
the fact that a noise covarisnce matrix becomes highly singular as
the dimension becomes large. Thus 1t is desirable and essentially
a neceseity to find analyitic formulass for the inverse covariasnce
matrix in order to accurately compute the minimum variance estimate,
its associated variance, and their limiting and asymptotiec properiies.

One attempt at computing analytic formulas for the inverse
covariance mstrix was made by Janos in Reference 1l. His basic attack
involved a very novel idea, which is discussed in the next chapter,
but he did not carry out the analysis correctly. In his paper he
made about 30 errors, some of them very serious, which led him to
completely incorrect results. Among other things, it caﬁ be shown
that his resulting "inverse" matrix is not symmetric, which is =

necessary condition for an inverse covarisnce matrix. TIn the next



=

chapter the correct formulas for the elements of the inverse

covariance matrix are derived.

1.3 Continucus Minimum Variance Estimstion

Suppoae that the random process glven in 1.2.1 is observed

and it is deslired to estimate 6 in the following marmer:
L
8 - [f(t) y(t)} at (1.2.4)
G

A
If f{t) is to be chosen such that 9 defined by 1.2.4 is an
unbiased, minimum wvariance estimsie, then it can easily be shown by
-use of standard calculus of variation techniques that f£(%) must

satisfy the integral equation

L
[ 86 - 2y ar = of s(o) (1.2.5)
O

and the constraint

L
ff('t;) s(t) at =1 (1.2.6)
o)

where Gg is the varlance of the estimate and @{t) is the auto-
correlgtion function of' the noise.

A general method of solving the integral equation 1.2.5 was
glven by Zadeh and Raggazzini in Reference 5. One of the difficul-

Lies encowrbered in Lbelr method 1s that it requires thé solutlon of
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a system of linear eguations of an order equal to twice the order of
the noise. This difficulty was eliminated in the case when the
numerator polynomiol wase iacntical to a conctant by Martel and
Mathews (8). Both tile methods discussed above are used to determine
the continuous solutions which are compared with the limiting forms

of the discrete =zolutions.
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CHAPTER II

DERIVATION OF ANALYTIC ¥ORMULAS TFOR THE INVERSE COVARTIANCE

MATRIX OF SAMPLED RATIONAL NOLSE

2.1 (Cenerali (ase

Tu this lhesis ratlional neise ls delflianed as the steady-state
noise which is obtained when white nolse is the input to a time-
invariant system whose transfer function is the ratio of polynomials
in 8 (the Laplace variable). It will also be assumed that the
system just mentioned is stable iIn the sense that bounded inputs
yield bounded outputs. This assumption eliminates the possibility
of’ polee on-the imeginary axic or in the right-half planc of the
S-plane.

The random process Or nolse ﬁhich 1s generated as Just described

has an sutocorrelation function of the form

D - ‘t
p(t) = Z GE e el (2.1.1)

k=1

where D 1s the order of the system, the GE

that their sum is the wvariance of the process, and the Bk are the

are constants such

poles of the system. (Tt is assumed in the following analysis that
the Bk are distinet, however 1t will be clear that this assumption
is not really a restriction since all the derivations caﬁ be modified
to include multiple poles.) If a record of the Process of L

gseconds duration ies sampled at equally spaced intervals the covari-
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ance between the samples at time 4+ =mT and t = uT is

D
=B Tim -
¢i(m - BT] = Z{: az e Pl . (2.1.2)
k=1

where T 1is the time between samples. The covariance matrix of the
process 1s dellned as lhe malrix whose m, pth element is @[ {m-p)7].
It is the. purpose of this section to compute a formula for the
elements of the inverse covarlance matrix.

In order to determine the elements of the iaverse covarlance
matrix it is first necessary to consider the factorablility property
of the two-sided Z-trsnsform of the sampled autocorrelation function.

The sampled autocorrelation funetion iz given by

D
il .. =B Tim

G(mT) = Zcﬁekll -o<m<® (2.1.3)
k=1

and its two-sided Z transform is

-2B, T
1. K (2.1.4)

@ D
07 = Ypamz" - ) o BT TR I
o k=1 (1-e Z)(1-e “z )

From 2.1.4 it can be seen that if Z_  1is a zero of Q*(Z) then
- *
Z, 1 is also a zero. Therefore § (Z) can be expressed in factored

form

()2
g (L))

¢ " (2)

(2.1.5)
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where (the ¢'s in the following expressions are functions of T)

D - =B.T th
QiD(Z) =% | [1-e S order polynomial {2.1.€)
J=1
1) -y, T th :
¢N(Z) = 1] {1-e 4l =N order polynomial (W <D - 1)
J=1

(2.1.7)

Equations 2.1.5; 2.1.6 and 2.1.7 express the factorability of 2.1.h.
Let Wp(mT) denote the elements of the inverse covariance

matrix, then by definition of an inverse matrix

M
Z Wu(m'T)gé[(m-mr)T] =5

L
m =0

2.1.8

. (2.1.8)
vhere O < p<M, O<m=<M and M+ 1 is the number of equally
spaced points in the sampled record. Now let a set of discrete

Tunctions be defined in the following manner

I
A
A

=

W (mT W (mT 0 m
H() “() by

= 0 ¢therwise

Therefore for fixed u , the sequence of values of ﬁu(mT) are the
elements in the “ﬁh row of the inverse covarigace matrix when
O =m= M. By use ol the apbove definitions, 2.1.8 can be written in

the form



M 1z

vpﬁmT) = ji: ﬁ“ﬁm’T)¢[(mrm3T] - 6wn (2.1.9)
m =0
where
VH(mT) =0 for 0< ums<M (2.1.10)

Outside of the interval 0 =m £ M the first expression of
2.1.9 decays in & macner determined by the poles of ¢*(Z) since
the convolved expression may be interpreted as the response of o
nonrealizgble digital filter (nOnZErO impulse response for both
positive and negative time) to an input W“(mT) which is nonzero
only over O = y,m £ M. To explicitly exhibit the hehavior discussed

above, the Z +transform of 2.1.9 may be written as

-(41) Pu(Z_l) P“'(z).

QjD[Z_l + Z 5;?-2—5—- (Z-l.ll)

*
VH(Z) =7
where Pp(Z_l) and PH'(Z) are polynomials of their respective
arguments, each of degree not greater than D-1. (At this point the
coefficients of PH(Z-J) and PM'(Z) are unknown.) The Z +trans-
form of vu(mT) can also be determined from 2.1.9. Upon noting that
the first ferm on the right-hand side (RHS) of 2.1.9 is a convolu-

tion, the transform becomes

=]

VZ(Z) = Zvu(mT)Z-m = W*(Z)ci)*(z) - gH (2.1.12)

-0



13
solving 2.1.11 and 2.1.12 for W (Z) gives

R R ROU o BN O NG

e N I 6,08,z e 2T

(2.1.13)

Inverting the transform 2.1.13 gives

1

(z)P n L
W, (m1) = [—?_;lr(m-u)Ti + Pp(2) “( )

¢ (2 (2

[(m-M-1)7] «

2, 2 2)
¢ (23827

[(m+1)T] (2.1.14)

where the large square brackets, in conjunction with the smaller
square brackets, signify the time sequence whose transform is the
enclosed expression.* It is now necessary to explicitly evaluate the
components of 2.1.14 and determine the coefficients of PP(Z_l) and
P;(Z) in order to determine the elements of ﬁp(mT) and hence the
elements of wp(mT).

The method of attack which will be used is to first expand
2.1.14 as a time sequence in terms of the unknown coefficients of

T D
P“( Z—l) and PM(Z) and then use Lhe Cacl that Wp(mT) 1s nonzero

¥  For example, let f{mT) =1 + 25m,1 + 5%,2 , ‘then
F*(Z) -1+ 227t 52-2 and [P*(Z)J {mT)] =1 + 26, 4 +
2
+ 5am,2 = f(mT)
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only in the interval O < p,m <M to obtain a set of simultaneocus
equations of order N which determine the coefficients. Actually
it will turn out to be coﬁvenient and sufficlent Lo determine a set

of coefficients which are non-singularly related to the coefficilents

_ t
of P (Z l) and P (Z).
" m

Evaluation of [

] [ ()]

¢ (2)

To facilitate the determination of the time seguences it is
convenient to reduce the Z-transforms that have numerator polynomials
of order egqual to or greater than the order of thelir denominstor
polynomials by long division. This method of reduction will be used
several times in the sequel.

pr(2)
The ratloc of polynomials A can be expressed by use of long
N Z

division as

(2.1.15)

where @Q(Z) 1is the guolient (of degree D-N ) and R(Z) 1s the

remainder {of degree N-1 ). Using 2.1.15 can be expressed

¥*

(z)

-1 "
¢*'1(Z) ] ¢D(Z)¢D(Z_l) oo R(Z) alzd) . Rz _L
¢N(Z)¢N {Z ] ¢N(Z) ¢N(Z




Consider the term Q(Z)Q(

D-N , theretore detine

R(2) ) 3{2‘1) _

N(Z) Q(Z ) + ¢N(z”l (z) +

R(Z)R(Z—lJ | ’
e (8220
Z“l) . The polynomial @Q(%) is of degree

-
a(z) = ) qz" (2.1.17)
k=0
and hence
D-N D-N
ezt - 88,7 "
k=0c 4=0
D-I D-N D-N
- Qf: + (24—2"1) G (ZZ+Z"2) Qe o +
k=0 k=1 k=2
N . (ZD-N -(D—N))
+ 2 -1
D-N DK D-N
- 2 o + Z (z%427Y) Z Uy
k=0 4=1 k=F,

{2.1.18)
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where

D-N
4y = Qf: (2.1.19)
k=0
D-N
9 = %y (2.1.20)
k=4,
Trom 2.31.18
az)alz” ) - Z [Q(Z)Q(z’*)J [z = a + L q, (2h7t)
A= | =1
hence
_ D-N
{Q(Z)Q(Z'l)} [(nT)] = q_oam’o + Z q%(am,f 51[1,%) {2.1.21)
L=l

Upon replacing m by wm-u , 2.1.21 becomes

D-N
-1
{Q(Z)Q(Z )] [(m-p)T] = 98y, ™ z q, (6111_“’& + E’m-u,—f&) (2.1.22)
£=1
R(Z) 1y -1
Text consider the terms V24 Q(Z- ) and R\Z — Q(z). The
P (2) gz

ratio of polynomlals R(z) ‘can be expressed in a partial fraction

2, (2)

expansion
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N

R(2) P |
= : (2.1.23)
¢N(Z) ;. 1- emc{klj:l

where the p, are a new set of constants defined through 2.1.23.
Therelore
R(2) = X
-y e Y
(z) < -O’kT Q&
Q‘N k-1 l-e Z 4L=0

Z z Qg’pz‘ (2.1.25)

k=L {=0 l-e

where 2.1.17 was used to obtaln the expression for Q(Z).

Inverting 2.1.24 and replacing =m by m-u gives*

(gt s cemm - 3., e I e

k=1 4L=0

*
Ressoning similar to that used in obbaining 2.1.25 glves

N D-N .
-1 T(m~|.1.+~f'/)
[R_((Z_l]_ Q(Z)} [(m~p)T] = Z Z pk N (z.1.26)
¢N z k=1 f=0
* The notation means:
+0y Ty -4 Ty v 20

1A
o
1
[
—
-3
o
®

Q’kT(T) B e T

and e =
..I...
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Finally consider

R(x4) R(Z—l) =Z Z Picfy (2.1.27)

-1 - T -0 T
G Gl == A A
-
i i pkp’E Ze ak 1
= = R aT T T T
k=1 £=1 l-e % -1-e % zZ l-e % 7t
- -Q.T
- -(a )T ~Q T
ey I Ak L:L-e %,
X PP
+ kL = (2.1.28)
Z_' ; l-e (o)t l-—e_a&TZ_l

Upon interchanging the dummy indices of the first sum in the above

expression and comblning the double sums

N

R(Z)R(z'lJ ~ i PPy

sl 45 e T [

Inverting 2.1.2% and replacing m hy m-p glves

(2.1.29)

r(z)r(27Y) oy -0ty T}
L(m-p)T] = - i e * (2.1.70)
(z);zﬁ (z" ) kz_:l &Zl l-e (%Jr%‘)T
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Therefore, from 2.16, 2.1.22, 2,1.25, 2.1.26 and 2.1.30

1 'm_i ) 1 - [ R(®) 2-1] . X
[d)*(z)] [ [q(z)a(z_ )]Ec W7 [%(Z) o{zY] tlawye3

-1 -1
| 212 -)1 Q.(Z)} [(m-p)7] +[R(Z)R(Z ]_1 J [ (m-p) 7] (2.1.31)
Byl2 B (2)8[27)
D-N
- qoélm*!-’-lao * Z % (633”#){' m-p.,—'{’,)
L=1
N D-K N D-K
O/kEE(m- u=L.) -0 T (= et )
" Z Y Pyt * }: Pkt
k=1l L=0 k=1 £=0
N
-¢, T{m-
N Z c,e Tl (2.1.32)
£=1
where
D-N
g, = Z Qka_{ 40, +++, D-N (2.1.33)
k=t |
i PP
kFE
€ = z - (o +0 )T o (2.1.3)

kxl l-e
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-1
v (z Jg.(2)
Evaluation of t ) [(m-M=-1}T]
g (278, (2)
P (z'l)
The ratic of polyncmials p.( - can be expressed by use of
g \Z
long division as u
Pu(z'l) } ) Ru(z"l)
; (z"l = QH(Z + p e (2.1.35)
N N

where in terms of the variable Z“:L » Qp(Zhl) is of degree D-N~1
and RH(Z-:L) ig of degree N-1. (The coefficients of Q!i and RLL
are the new unknowns and they define the coefficients of Pp through

2.1.35). The use of 2.1.15 and 2.1.35 gives

I
gtz g (2)

t
i O
o
———
Ni
—
+
S
=
pm—— ] T
N' L\‘JI
[ S
|
L) )
]
]
o
.|_
2‘& /bi
=
L
| S |

(2.1.36)

-+

6,27 9.(2)

Consider the term QM[Z—l)Q(Z). Define the coefficients QH(Z_I) by

Q“(V-—l) - Z Q2" (2.1.37)
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then
D-N-1 DN D~I-1 D-K
B S LR -k L (t-k)
Qe = Y e,z 2 s ) Y auer
k=0 1=0 k=0 4{=0
D-N-1 D-N
_ 0 1 D-N
z Z G T Z Z AT R T
k=0 f,:l
D-N-1
-1 - (D-N-1)
A Z kaQk-l + i QM,D-N-l o
k=1
D-N-1 D-N-1 D-N D-N
. Z 7t Z Q 4 ¥ Z Q,Q
quk-'»f, CANTER £
L=0 k=t k=1 L=k
D-N-1 -~ D-§
~£ £
= Z Bl + Z G % (2.1.38)
{,:O ff,ﬂ
where
D-N-1
Bo= ) Q8 (2.1. %)
k=t
and
D-N

GM, = QkQu,k—JL (2.1.40)
%



zz2

Tnverting 2.1.38 and replacing m by m-M-1 gives

D~N-1

| | _ D-N
[Q“(Z‘l) Q(z)][(m—M-l)T] = Z Epvf’,am—M—l,{, + Z kaam_M_l’_k
k=1

=0 (2.2.41)

R(z) x (2

—(_). Q(7). From

Next conaider the terms QH(Z )

2.1.23 and 2.1.37

D-N-1 D-N-1

- T o Lkaz
Z Hh Z z - cz{T

/r;_lle Z k=0 4=1 l-e Z

(Z R(Z)

{(2.1.42)
Upon inverting 2.1.42
D-N-1 N
o, T{m-M-1-k)
-1\ R(Z) v ~ %, 1.4
[QH(Z )W—;} [(m-t4-1)1] Z Z P8, (21
=0
Reasoning similar to that used in deriving 2.1.43 gives
-1 D-T N
R (Z ) -, T{m~-M-1+k)
A
"““*‘—7 q(z) |[(m-M-1)T] = 2{: e (2.1.44)
¢N{Z k=0 2;'1 H{JQ’K i

where the puﬁ are defined by the expansion

--—-R J = i = . 1.
¢N(Z_1) ZE: AT (2.1.45)
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From 2.1.23 and 2.1.25

£4=1 k=1 l-e -e 7 l-e
(2.1.46)
N N :
1 i3
= Z Hu{, "—":am -1+ Z J”& ——_{iET— (2-1.1#7)
£=1 l-e Yz 1=1 e V7
where
Pk (2.1.148)
H, =p 2.1.
i, 1L j{: -{Ct,+C0 )T
(3 1e 2k
and
. ' Pl "
T =Py Z TG T (2.1.19)
k=1 l-e '

Inversion of 2.1.47 with the required shift in argument gilves



2 r(2) = [
£
e o F s [

+ Z ka e (2.1.50)

Therefore, from 2.1.36, 2.1.41, 2.1.43, 2.1.4% and 2.1.50

-1
[RM(Z )%(Z):\[(m-m_l)mj - [QH[Z—l)Q(Z)][(m‘M‘l)T] !

P (Z_l) P (2)

AR(Z) ] R (2 >
+ QH{Z ) [(m-2-1)1] H ot a(2) |[(m-m-1)7] +
4, (2) | Bl

R (z)z(z) ]
+ £ — [ (m-M-1)T] (2.1.51)

Bz d(2) |

D-N-1 N D-N-1

7 (m- M)

= Z m’, m-—M-—l ¢ T Z G 5m—M-l w ¥ Z. Z DLQ;JKG

£,=0 £4=1 k=o

N oA e T(m-M—l+k.) i o, T(m-M-1)

£

+ Z pu&Ql + + Z J“&e

L=l k=0 =1

m -0, T(m-M-1)
+ Zl HH‘£|:E+ t - 6(m—M-l),O | (2'1-52)

2=



2>

P;(Z)QD(Z_]")

B (23 (z7)

Evaluation of [ }[(m+l)T]

1
P (Z)
The ratio of polynomials H can be expressed (the

$,(2)

technique just used is now going to be repeated)

P(z) R (2)
b~ _ g (z) + A (2.1.53)
Py (2)

g, (z)

1 t
where Qu(z) is of degree D-N-L and RM(Z) is of degree N-1.

J'Using 2.1.15 and 2.1.53 glves

Pgm%kd):{, *Rgml{ J_+R@*}1
¢N(Z)¢N[Z_1) Qp(z) ¢N(Z) Q(Z ) ¢N Z-l

. ¢N(Z)¢N(Z'l) (2.1.54)
Consider the term Q;(Z)sz”l). Let
D-N-1 .
0 (m) = ) a7 (2.1.55)

k=0
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then

D-N-1 D-N

3 ZQlQ& ere)

k=0 4=0

Q,(4)a(z)

D-N-1 D-N-1 D-N D-N

Z " Z Q}:qu-f, * Z z ) Q’KQ;L,I:-JL

'{r=0_ k% . tf’,:l k%

D=-N-1 D-N

oL -4 .
Z EM{Z + Z Gw{,’Z (2.1.56)

'€,=O n&:l

where

D-N-1

Eu = f ) (2.1.57)
k=1,

G“L = Z QkQu,k-% (2.1.58)
k=,

Inverting 2.1.56 and replacing m by m + 1 gives

D-N-1

[Q;(Z)Q(Z'l)} [(m+l)7] = Z waifsml’wt + Z G% w1t (2.1.59)
4=0 4=l
. R(-Z-l_] R (z)
Next consider the terms @ (Z7) ~——+ and Q(Z )
S B2 ¢N(Z>

From 2.L.23 and 2.1.55



=

N ! k

. P%ka

() -z**"}* .
QZ.N zo leea{'TZl

or in the time domain

-1 D-N-1 W e T(m+l+k)
\:Q, (z) RiZ )l} [(mil)T] = Z Z 0195
gtz kK=o A-1

Reasoning similar to that used in deriving 2.1.61 gives

a, T(m+l k)

R (Z 7) '
Lﬂ TR )}[(Mm'z ), Puses

where the are defined by the expansion

s
R(2) o
QN(z) 2=1 1l-e

From 2.1.23 and 2.1.63

N N ! - =T
) z Z PPy Ze . 1
- -{a +a )T =0y T -t T
4=l k=1 l-e * e Lt~ Y7 iee %1

N _

oy
-(cx +a )T -, T - T

£=1 k=1 1l-e % [ 4me Tz 1l-e % z'l

(2.1.60)

(2.1.61)

(2.1.62)

(2.1.63)
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N

N ' 1
:Z Z ?tké?ak)t’c\: T |t

£=1 |k=1 1l-e loe ¥

N | N ) 'p 1
uk"Z \
* Z z -(a£+oi§)T !:l_e-—a TV_1 - l]

2=1{k=1 1l-e

N I
t l t l
= Z Hp& m~a£T +-Z Ju{’ (-—u——_%T - l) (2.1.6h)}
£=1 l-e Z 4=l l-e Z
where
N p
1 )
k
k=1 l-e ‘
) o !
4
' pk
PN Z (2.1.66)
VA -{a,+a )T
k=1 l-e 1 Ok

Inversion of 2.1.64 with the required shift in argument gives

' -1 N
EM(Z)R(__Z _) :\[(m+l)T] = Z Hp{é e?’tT( ) +
L@ [z =

€s " §m+1,o

(2.1.67)

Therefore, from 2.1.5k, 2.1.59, 2.1.61, 2.1.62 and 2.1.67



a2

'R’(Z)R z"‘;L .
[ = ( _)}E(m«l)ﬂ?] :[Q (Z)Q(Z'l]}[(ma-l)fv] +
g ()9, (2 g

(=Y

SO )][( 11l +|e (2) - }[( 1)7]
+ m+L )T +|Q (Z m+l)T| +
P(2) gl
l:R (V)Rk l)
[(m+1)T] (2.1.68)
g (2)8,z)
D-N-1 D-§-1 , =Y T(m+l+k)
= Z ,f, m+l, -& Z G zf,am-vl,{, Z Z p%Q
L=0 £4=1 k=0
NN Plail-k) N, o T(mel)
£y pp&le‘f& e Z e O‘ Tt (2.1.69)
£=1 k=0 £=1

Expression for Wu(mT)

From 2.1.1k, 2.1.32, 2.1.52 and 2.1.69
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D-N N D-N
. -0, T(m-prk) o T(m- - k)
b - Z | um* Z Z “Pp (% L *
£=0 £=1 k=0
N -0 lm-ul D-N-1
+ Z c«f,e Z ud, m-M-l i Z uk m-M— -k
2=1
N D-N-1 oc T(m-M-l k) o, Dl oy T(m—~M-l+}:)
DN S R :
1=1 k=0 L=l k=0
N a&T(m~M~l) Ll -ozLT(m—M—l)
* Z JH-‘E'e" * Z H% et - a(m-.-Mnl)o
2=l =1
D-N-1 D-N N D-N-1 -1 (4 1%)
* Z Emaml,wt Z Gm mal, 1t Z Z Pe ke,
£=0 L=1 L=l k=0
NoD-N o7 T(m+3. k) N \ ontT(mHL)
D IPPL DI
£=1 k=0 =1
N ' ~a{,/T(m+l)
+ 2 JHL e, KR (2.1.70)



where

D-N N

i PPy,
G = Z Y%z ’ Gy = Z -(q,+ )T
K=

k=1 1l-e

D-N-1 D-N D-N-1
By = Z Uy F G T Z U wr OBy T Z QS y, 3
k=L . k=t k=¢,

D-N
' o 1 o
GM = Z Qk%,k-& (2.1.74)
k={,

al p N p

k pE
H, =p 3 Jd ., =p H
e H&Z -(o +, )7 el «{LZ -(a,+Q )T
k=] l.e Ok < k=1l 1l~e 1 Qk

T

I p o P
' 1 ¥ e ! pk
H, =p H g, =p
et il Z ~-(Q +0, )T ud, L E -(Q,+a )T
3 lee KR o IR A

Equeaticn 2.1.70 and the definitions 2.1.7l express the final
result in terms of the quantities ka’ Qn;, ppk’ and pHL
which are at present unknown. The fact that ﬁp(mT) is nonzero only
for O <ms<M will now be used to determine these unknown quanti-
ties. It should be noted that to insure that WM(mT) is nonzero only
for 0 =m=M with arbitrary qi ; it 1s necessary and sufficient

to set the coefficlients of the Kronecker deltas terms and the

exponential terms which occur outslde of the interval separastely
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equal to zero.

Upon examination of the Kronecker delta terms for m =M + 1

(with the cxccption of +the term in 6 which will be discussed
m-M-1,0
later) it is seen that
D-N D-I-1 m=M+1
E - O 2.1- 2
). Yol e * ) Falned s peu M

must hold. But from 2.1.22 and 2.1.41, for the values of m and

 being considered, 2.1.72 is eguivalent to

[é(Z)Q(Z'l)}[(m-u)T] + [QH(Z-l)Q(Z)}[(m-M:l)T] =0 (2.1.73)

or after a shift in argument

{Q(,Z)Q{Z-lﬂ[(mMJrl-u)T] ¥ {Q (2] Q(z)] [(mT)] = O (2.1.74)

L

Because of Uhe form of 2.1.74 und the polynomlal nature of g(z)

QlZ-l) , and QH(Z—l) the solution of 2.1.74 is
Q =X§H(z"ly¥(nm)] = —lé(zniﬂt(n4M+l—p)T] 0 =n = D-N-1

= - QmMJr_l_LL O=n+M+1-p<DN (2.1.75)
As before, examination of the Kronecker delta terms for m = 1

(with the exception of the term in 8,10 ¥hich will be discussed
2
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later) shows that

D-N D-N-1 moe o1

i t
:E: qﬁélm—ul,% * Ei: Ep&§m+1,-& =v o <y < (2.1.76)
£=0 L=0 = u=sM

But from 2.1.22 and 2.1.59, for the values of m and u being

considered, 2.1.76 is equivalent ‘o

{Q(Z)Q(Z_lﬂ[(m—u)ﬂ - - [QL(Z)Q(Z-l)J [(wed)], (2.1.77)

which by reasoning similar to that just used, has the solution

[Q;(Z)][(nm)] = - [Q(Z)] [(n-p-1)T] 0>nz - (D-N-1)
or

Ospu+l+ns<DN (2.1.78)

0 <n < (D-N-1)

ik B

explicitly 1n terms of the Qk « It is now necessary to determine

To summarize, Equations 2.1.75 and 2.1.78 give the and @

1
the and, .
Pk P
Examination of the exponential terms of 2.1.70 outside of the
interval O =m = M shows that for there to be no exponential com-

Pponents outside of the interval it is necessary and sufficient that



¥ D-N

Z Z ], - T(m-M-1+k)
SUANS

£=1 k=0

i) N

o) —-OtLT(m—M-l)
T Z pprf', Z —(ock+aL)T € *

4=1 k=1 l-e

N D-N-1

. Z Z 0 , -0 rF'(m+l4~“|z<)
Pr Yk

£=1 k=0

Now
0 .e
pde -

v )0, gy -0 mEMrd

and
N D-N a&T(m-p-k) N —O:{T(p-m)
T. ), Pyt + Z%e +
fE,:l k:o ' {,31
N D-N-1 a T(m-M—-l k)
Z 08"
{,_l k=0

-

(2.1.79)

AR 1) & . {melk)
* Z Py Z -?£;+O£)T e * 2 ZPkae% i

L=1 k=L l-e L=l k=0
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@, (m+1)

P®
Zp% Z S CEAL: =0 ms -1 (2.1.80)

k=1 l.e

A

The definitions for the J's and H's given in 2.1.71 were used

in obtaining 2.1.,79 and 2.1.80. Also, it was noted thet

N N N N
1 T
S J = Z H, and Z J = ZH in eliminating the
Z e 172 : pe e &
4=1 1=l £=1 =1
terms ig 6m+l,o and ém—M—l o
—C!&T
Collecting the coefficients of e Coin 2.1.79 and the
QIm

coefficient of e in 2.1.80 and setting them separately equal to
zZero gives

D-I N
uc, T ~ko, T .~ T(1l+k)

L £ £

e Qkp%e + ;Jk

k-0 k=o

Q@ bl il -0 T(K L) N Py Oﬁ’,T
+ ). % ). oy G, )T ©
k=0 k=1l 1-e
1
-Od T p
IS
Z - (o +OLK)T (2.1.81)

k=1 1l-e
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and

D-N-1

-ka, T '—ua&T —a&MT _ -Oz/tT(lH:)
Z Ry ® Gy +e Z Pp % k°
k=0
t (k'l) u % &, -Tl |
+op Z e + Z k e t
") Qk N CEGAL
_ k=1 l-e
(M—i—l) p
k. -
p Z —(Oﬁ{-f-cx%)T =0 (2-1-82)
k=0 l-e
7 -0 MT
Atter multiplication of 2.1.81 by e and using 2.1.75 and 2.1.78,
Equations 2.1.81 and 2.1.82 become
-(M—p,)cx DI -ka, T -(M—u)cx&T -aLT(M+l) D-N-1 -C
© Z Py T8 Py C Z Qp+l+1<:e
k=0
-ot Tk N Py
Z ® N Z -(a +oﬁ§)T "
k=1L 1-e
1
(M+L)a, T al P
+pge Z -1q +OfkTT (2.1.83)
k:l 1~ -

and
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~p@ p D= -ka T -, T -, T(M+1) bAh-1 -, Tk
+ C,e z -p,€ t e t
4 £ Q’1<+M+l—;1
N
! (X T yl ! pk ’
le + E{l -(o,+a )T *
' k=1 l-e t Ok
-{(M+l) e, P
"y
+ p,e - =0 (2.1.84)
E# (a&+o¢kTT

k=0 l-e

(It should be noted that the largest subscript value for the @'s
is D-N; hence Q's with a larger subscript are considered to be
rzero.)

The system of eguations of order 2N, 2.1.83 and 2.1.84, in thé

ZN  unknowns must be solved to cbmplete the solution

PM& P“L
for the inverse matrix. From the form of these equations 1t can be
geen that ppé can be obtained from pu£ by replacing u with

M~u. To exhibit some of the other properties of 2.1.83 and 2.1.84
they will now be placed in matrix-vector notation and solved in terms

th . \
-ofa N order inverse matrix.

1n terms of the following detinitions

— — - t
Pa Pa
t
- . -1 .
Pu = ] 3 le =
. 1
Pun P
L] L]



'D N
By \ Z le
k-o

~{M+1) a, T
p ,&e
2k - (a£+Otk7T

l-e
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i)

P

ey,

k=1 1-c
, B =(B

——k@ T

- (M-p)
e =~ v Z Py -

- T(M—z—l)
TP,

D-N-1

Z Q‘u+l+k

. ~pct, T - ~kQ, T
ﬂh;: ~-€ E: Qkp%e - CLe
k=0

- T(M+ZL)
+ P
T
ﬁi N
|

D-N-1

Z t:’ik+M+l—

- (aK+aL) T

i)

C&e

- WLT

o, Tk

« (M~} a,T

\%ﬂ s A= (A

(2.1.85)
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2.1.83 and 2.1.84% becone

Ay +Bp =P 2.1.86
P, + B m ( )
and
— — 1 — 1 .
- 2.1.8
Bp, +&p, =[] ( )

-1 3 -1
. : 1
by = [A - BA ] {[:l - BA G (2.1.88)
, i {_ﬂ 1 =] (2.1.89)
pu = [A - BA B} E: - BA r1_

Tn 2.1.88 and 2.1.89 it is important to note that A - RA-l B does
not depend ocn p and is a Nth order matrix and that A 18 a
diagonal matrix. This means that to invert the Myl order covarisnce
matrix only a Nth order matrix must be inverted where N 5 D-1
gnd D is the crder of the noise.

The finsl answer for the inverse covariance natrix is

N D-N

- T(m (et-A, ) a&T(m-u-/f,)
W (mT) = j{l q, 6 |-}, 2t j{; 3{: QP ie, + e +

£-L k=0

N
T im—
+ ;E: C,e 1 \m “l<+
A

=1



L0
N D-N-1

L -t k)
* Z ¢ Cnae, -kt Z Z P ®
k=1

L= k=0

N D-N - '1‘(1]1—M-l+1§)
;g; 22; pLle

Cgumew) YR N D-N-1 - (s 1+5)
* Z%f’- * Z Cadmen Z Z Pe s
'f‘;:l k.:l —.1 k=0

N D-N o T(m+l k) e T(mil)
L Z M;le LJWL + O<m=<M
2=1 k=0

(2.1.90)
where the components of 2.1.90 are determined through 2.1.71, 2.1.75,

2.1.78, 2.1.85, 2.1.88 and 2.1.89, and only the terms which are non-

zero in the interval O < m <M have been retained.

2.2 First Order Noise

In this thesis first order nolse is defined as noise with the

autocorrelation function

-
g(t) = Ulze Ll (2.2.1)

and hence the m,pﬁh element of its covariance matrix is



L3

: -5 T |mm-
- @l(m-p)T] = ulge 1 ] “I : (2.2.2)

The sampled autocorrelation function is

-p,7fn|

1

@ (mT) = glge (2.2.3)
and the two-sided transform of 2.2.3 is

- 2pT
¢*(Z) _ a l-e 2

1 ( -PT )( -PT _1j
l-e ZjHl-e Z

(2.2.4)

where

(2. 2.

Ba
N
—
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Now that the preliminsries have been disposed of, the elements

of the inverse covariance matrix will be calculated. From 2.1.15
and 2.2.5

p(Z) -pT R(z)
=Kll-e Z]=(Z) + s (2.2.6)
Py (2) ¢(z)
therefore
Q, =K
q = ke PT (2.2.7)
rR(z) = 0 (which ilmplies oy = 0)
Since Py = 0O,

inspection of 2.1.81 and 2.1.82 shows that
T f
= =0 therefor nty Gl cl d be det ined.
pp.«f‘, pil‘& s herefore only the ka am ka nee e determine
Using 2.1.75 and 2.1.78 gives

%o = Uy = by (2.2.8)
Qo = Q1 = "%, (2.2.9)

From the final form of the inverse matrix, 2.1.90,
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T

Wu(mT) = %8 z-ulo T U8 mep],1 T Gnlnenen, -1 T Bt

' t
- a8 |mp|,0 ¥ 98 m-p,1 * G100 T Gt o (2.2.10)
where from 2.1.71, 2.2.8, 2.2.9
—ZﬁlT
2 2 =2 lte
=% *Y "0 Ty
l~e
-2 e_ﬁlT
G = Q8 =0 BT
t-e
_Be-eﬁlw
6. -0q =-q2 =2 6
1 - 9%, % O m 2R T M
l-e
-2 - 28T
v ! o Ul €
GLL]-ZQlQ'LLoz-Ql SI.LO:—-_—-T&T”— 6IJ-O P
il-e
therefore
5 2 -2B.T BT 26T
1 1 "F1 TePy
W (T} = we——e—— | l|1l+e & - ] -e & .8 -
p( ) -2B, T ( ) fm-p 50 lm-p],1 UM, M
l-e
- 28T
- .2.31
© 6moéuo (2.2 )

Equation 2.2.11 is the final result and explicitly shows that the

inverse covariance matrix has nonzero elements only on the main
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diagonal and the two adjacent diagonals.

2«3 BSecond Order Nolse

In this section the inverse covariance matrix of equally
spaced samples of second order nolse will be determined by the use
of formulas derived in 2.1. By definition, the autocorrelation
function of second order noise is

-8 [t 8.t
B(t) = olze gll | + cgze gl | (2.3.1)

where the R's and o's can be complex conjugates or one of the

’cz’s could be negative. The sampled autocorrelation function is

-3, T -B8,im|T
Qf(mT) _ Ulge 1 lIﬂI N ozze zlml

and its two-gsided Z-transform is

2 l-e +
=BT -B.T
(l-e 1 z) (3.-e 1 z'l)

-~ 728, T
2 l-e @

2 -B_T -B.T
(l-e 2 Z)(l-e 2 Z-:L

4’*(2‘) =0

+ g

. -l)
. BA, (z+z

- B, T - -B.T -B.T
(l—e 1 ZJ (l—e & Z)(l-e L Z*:L)(l-e z Z'l)

{2.3.2)
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where

-2B8,T\ ~B,T
@ )e * (2.3.3)

e + 022 (1—(::

-2p. T —2p.T  -2p,T -2p.'F
B = clg(l—e 1 )(l+e 2 ) + 022(1-e 2 )@Ae 1 )

(2.3.4)

Upon factoring the numerator of 2.3.2 and using the definitions

(2.3.5)

(2.3.6)

2.3.2 can be expressed

- T -, T
l-e - 7L l-e E Z

where

~-B.T ~B,T (B 4B, )T
}——l:l-( l+c2)z+c 1222

) - =



_QiT

¢N(z) = l-e A W=1 (2.3.9)

p,(2)
By long divisicon the ratio can be expressed
P ()
g.(z) p
D 1
= Q7 + Q  + {(2.3.10
#(2) + O 10Ty )
~ where
1 ~(B 4B ~)T
Q = -k %e tE (2.3.11)
o[ - (B +B,m2)T - (B -
Q, = ke ; -e (2.3.12)
(B +Pym20)T - (B -)T ~(By-)T
Py = K"%[%+e 172 e e f (2.3.13)

and the subscript on o will be cmitted in the remainder of this
geetion.

H

The Qu's and the Q“’s will now be determined. From (2.1.75)

QMO - 'QM}l-u — _QléuM (2.3.1%)

and from (2.1.78)
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@.
li

Lo -Qu+l - _Qléuo (2.3.15)

’ 1
1 only le and p“;L are present and they will now

Since W

be calculated. It is convenient to use the quantities (see 2.3.9 and

2.3.10)
@ (e'(ﬂ) p
D -QoT 1 oo
P I (e326)
N
¢N(e'0ﬂ') _ 1-em 20T (2.3.17)

in the solution. From (2,1.85)

_ cx]?%[e”m)
P %
) plen(Mll)OT
™)
and hence
-1 1 - (Me2) ey )
BA™T = p e (2.3.18)
@5 1
T Pl |
[A«—BA B] :ng 7 Ze-Z(M+2)O:I' (2.3.19)

D "l
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where the arguments of ¢1\I (e—cﬂ) and ¢D {e"ar) will be omitted in
the remainder of this section.

Also from 2.1.85 (see 2.1.71 for the definition of ¢

1)
_¢D - (M- ) &I - (M+1)
I‘pl = =Py % e - Qlc‘juoe (2.3.20)
! -¢D - poT ~OT{M+L) 1
F}Jl = -pltﬁg e - QléuMe (2.3.2%)
Therefore (2.1.88) gives
" —oT{(M+l-p) —G!I'(M+2)]
= ~Q,8, ¢
i 4 Py ? - 207 (M+2) ¢D[¢De 1% N°
p “P1*®
_ple—-otr(M+2) [%e-ar(lw) ) Q:LGUMSAN@—@I(MZ)}
(2.3.22)

¥
Ao previously mentioned lel can be obtained from ppl by replacing

g by M-p. The result of performing this operation in 2.3.22 1s

' A1 -ar(L+p) -0 (M42)
Pul ” g 2 2g-20R (1) %Eé“ "y }
n f1°
_ple-Oﬂ?(M+2)[¢D o0 e-O!T(.M - H)“leuogsme"w(mg)

(2.3723)
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The following quantities are necessary to specify (2.1.90),
which is the final answer (see 2.1.71 for definitions and note

that O < m,p < M)

D-N
oo = Z )
k=¢£
2
q‘O = QO + Q.lz
g“l = Qle
and
D-N )
2 2
= .3.24
Zq{6|m-ul,& (Q‘o +Ql )élm~p,],0 + Qleélm-u],l (2.3.2%)
-0
N D-N - T(m-pd) @, T(n-p-L)
z. Z Qkp{,' e, + e =
£=1 k=0
Qpy e;OfT(m 1) + ;@T(H“m)
+ @0, e;aTE:LJr(m"“)] + e+—df|:l—(m-—p):|

- off | m- ~or|_-ar|m-y| |
= Qopl[amp + e “l]+ lel e Le “]+olm_pl’o]

+ alm—u]:l (2.3.25)



o - pkp{, _ ! =C
3 E -+ )T~ -2af 1
k_:.l. L-g < lek “e
N a
-a, Tjm-p|  p
3 1 =0 |- |
C,e = e (2'3'26)
i3 - 20
i3 l-e
D-N

a
D-N
j{: . - -q.% & 2
m-M-1,-k S MMM (#:3:20
k=1
N T)-N-_l a&'L'(m-Md—K) - ot M+1-m)
Z Q&Q“ke_ = “ngléuMe (2. 328)
£=1 k=0
N D-N -, T{m-H-1+)
) )P, = Py (#:3:%)
4=1 k=0

N
p pyP
) Lk _dTpl
T = Py 24 SCATH L ey

k=l l-e l-e
K a, T(m-M-1) P, P
Z g e’ o 1T -oT(dl-m) (2.3.30)
- l_e-zodI* |

£=1



D-N ' ol

. ! 1
8. GHk - Zz: Qﬂqp,Luk
4=k
2
Gpl - —Ql 6po
D-N
Z G 15 = ~Q 25 % (2
pkm+l,k Y1 TuoTmo -3-31)
k=1
N D-N-1 . -%T(m+1+k) - {m+l)
9' Z p'fLQ‘p}i e+ = _lelépoe (2'3'32)
£4=1 k=0
AU | cx%T(m+l-k)
10. Z pHLQKe_ = pplQlﬁm’o (2.3.33)
£=1 k=0
il p | P9 1
? _ “k B l pl _ t
e Jp{’, =Py Z -(Otl{,J+Cﬁ§)T - -2o0 T Jpl
k=1 l-e l-e
- ' -a&T(ma-l) plpu]!_ - (m+1)
Z Ju!Le+ z'l'—t?oTTe (2.3.34)
L=1 ~¢

Therefore from 2.1.90 and 2.3.24 through 2.35.34
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Cate?)s o [o-olm-gl
Wp(mT) = la " +@y )5]m-p.{,o+Q1Q05|mH|,1+Qop1[e +6|m—p.‘,o
-al |, -of|m-p]
LAY [ +6im-ul,o]+ * el 2
0 ol
1 o fm=- 2
+ 1_e“zom e - Q1 (6uM6mM+5u06mo>
_go.ls erom(lom) e"O’T(mﬂ)] - 5 4p @6
10718 1o | Py o P % o
P1 [ -OT(M+1-m) ' -Om(m+l)\
b ——— 1 p .€ + p € (2.3.35)
l—e-zaT il pl
where ppl and p“i are defined 1In 2.3.22 and 2.3.23. TUpon

substituting 2.3.22 and 2.3.23 in 2.3.35 and performing some alge-

braic manipulation, WH(mT) can be expressed
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-aT{M+2)

ol p 0 e |
Wu(mT) = -Q . N ~aT(M+2)E)

6pM6mM+5uoamo] 2 2 -200{M+2) 1 uMMW+6m06uO
L ¢D—ple

- ?
D -l |m-p
_¢D amM6g0+6pM6mo] P1 @E < | ‘

P, —om{(Ml-m) T (M 1-y3)
PG €T 7y {%Me O +
Pry-pye

e-aT(l—x—m)

+6 +8

mo

e"(ﬂ(lﬁ-u)j\- ple'OIT(M+2) [SpMe—OdT(l+m)+

HO

5 e—OdT(l+u)+6 e-CdT(M+l—m)+6 e-ozr(M+1—u)]

mM 1o mo

2 2 -aT
+|Q R HQ P +Q; 048 ]ﬁlm—ul:o +[Q1QO+lel]6lm~}.Ll,l

: D
2 =200
P4 @N

VR
§E- e 2mTE)

¢D[e-ozr[(M-m)+(M-m . e-otf(mm)}

(2.3.36)

omor(2) [G-OE(Mfu—m) R e-m(wm—u)}

where



5k
-5 - (B +B,-0)T

Ql =k e (See 2.3.11)
- (BT - (BT
oy = k F_e l-g (see 2.3.13)
qQ k“% ( 1
- -p see 2.3.12 and

o 1 2.3.13)

-\ -Er (B +a)T - (B +Q) T
¢‘D = ¢D(e ): % 2 l-e . J[l—e z :I

(seg 2.3.8)
(2.3.37)

2k = B+ Boz—ll-Ao

~-2B8.T -2B.T -28. T
(1+c 2 ) + cz(l-e a ) (l+e 1 )

~2B, T
pas 1
Bo - 61 (l—e ) >
-26, T\ -B,T -2, T} -B.m
%): di(l—e 1 )e a + Oz(l—e 2 )e L
¢ o
D -of 1
@g =@, Ql € * l_e-EOE

Equation 2.3.36 gives the solution in terms of the definitions
Z2.3.37 and the autocorrelation function

-B |t -B
() = G% ll l+ Ug e Bltl

(2.3.38)

Some specific exémples of 2.3.38 will now be considered. Suppose a
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nolse has the spectrazl density

o 2
i I
5(0) = a1 T 1; - ey 212 (2.3.39)
tn-+§l (m +62 ) Sz-ﬁl I +Bl W +Bl

then it has the autocorrelation function

e o]

po) = [e %50 20

-

2 -8, |t -B,|t]
- Kg . L - (2.3.40)
2{52-81 B By
Therefore from 2.3.38

2 2 K°

2 '
K
O-,l — 2 2 bl (52 = - 2 2 (2- 3-1"'1)
2y (P o) 2Bz (ﬁ 2P

Another noise of interest is one that has the spectral density

z ( w2+a

2)
3 3 L] =) (2' 3'42)
(w°+BI )(m°+[53; ’

and the sutocorrelation function

S(w}) = K

K° 1 ( 2 2}@"31“' 1 { 2. g) ~B,[t]

g(t) = —fa"-p —|a“-B,|e
a(ﬁi—sﬂ B\ L Byl -
(7.3.43)

and hence
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2 2 ' 2 2
o 2 a 'Bl 5 2 a mﬁz
ol =K , a, =K (2.3.44)
S 207 [l e
“~1 ARNE ) 62(52'51

Finally to congider an cxample involving complex numbers let

By =a + Jb
R (2.3.46)
ai = 02 = %
then
g(t) = ci e-ﬁlltl + 02 E'letl

= e_altICos bt (2.3.47)

which is a well known autocorrelation function. It can be shown
that all the gquantities defined in (2.3.3() are real when the sub-

stitutions 2.3.46 are made.

2.4  Autoregressive Noise

Let Xo? X127 "te Xy be observatlons of a random process at

timea + -0, T, 2T, ... MT and lét the model for Lie generation of
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these samples be

agky Tt AqXgim T orre * ApKe pm = Dy o (2.4.1)

vhere the Z's are independent with zero mean and the roots of the

eguation
D
i
a, =0
).
J=0
lie inside the unit circle |y| =1 in the complex plane, then the

random process is called an autoregressive process of order D(9).
!It is shown in Reference 9 thal the inverse covariance maitrix of this
noise hag nonzéro elemente only on the main diagonal and the 2D
adjacent diagonals. It will be shown in this section that the
inverse covarlance matrix of the noise considefed in 2.1 can also
have this property whern the rate is chosen properly.

Relferrlng back to 2.1.4, suppose that T 18 chosen such that
¢%(Z) has no zercs in the finite ¢ plare (that such a rate can be
found will be demonstrated in Chapter V in the case of seccnd corder
noige), then

¢N(Z) (2.4.2)

il
S
=
[
1 .
i}
—



: "

This means that

?.,(2) |
fa = (%) = Q(z) (2.4.3)
N

and hence

i
<

R(Z)

which implies

i 1

=0 = = =C, =dJ , =d 2.4.4
Py * Puac = P = C =9 " T ( )
Using 2.4.% in 2.1.90 gives
D D D
WH(IIIT) = Zq{’,é]m-p!,-& * Zkaﬁm-M-l, -1{. + Zkaém-rl,k
{.:O kil ]’Sﬁl
D D D
g R ¥
= Zqﬁalm—ul,& + ZG;.kam,M+.'l.-k + Zepkstk_l (2.4.5)
4=0 k=1 k=1
D
Cunsider Lhe term ;z: q{plm_“]’% . This term is nonzerc only on
{4=0

the main diagonal and the 2D adjacent diagonals. IbL will now be
shown that the last two terms of 2.4.5 are nonzero only on the inter-
section of the last D rows and columns and the first D rows and

columns respectively. Once this is demonstrated, it will have becn
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shown that the elements of the inverse covariance matrix are nonzern

only on the main diagonal and the 2D adjacent diagonals.
D
Consider the term Ez: Gﬁkam,M}l—k + This term is nonzerc only
k=1
on the last D rows (which are denoted by m = M-{D-1) because of

the Kronecker delta texrm. From 2.1.75

D
Qpn - "Qn+NHl—u - ;z: Qpau:M+l+ﬂ'p
p=h+ld
and hence
D D D
St = ) Uy et SRS O, Mrlak-4-p | %
k=4, k=f Lp=k-4+1 (2.4.6)

Inspection of the limits on the sums .and the Kronecker delta term

shows that = M-(D-1) for the nonzero compcnents of 2.4.6. There-

D

fore, is nonzero ordy for m,p = M-{D-1) which is

G B, M1k
k=3

the intersection of the last I rows and columns.

D

1

Finally consider EZ: kaém,kwl . This term is nonzerc only on
k=1

the first D rows (which are denoted by m < D-1) because of the

Kronecker delta term., From 2.1.78
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b
Qpﬂ B _Qp+1+n T Z{: qpﬁp,p—l—n
P=n+d
and hence
D n i)} . .
H 1 :'a,‘
Gm = ZQka,k-f& = - Z Z Qpéu,p-l-k% Qy 1.(2.4.7)
k={ k=fip=k-f+1 j

As before, inspection of the limits on the sums and the Kronecker
delta term shows that p < D-1 for the nonzerc components of 2.4.6.
D
* 1
Therefore, ZEiJGukam,k-l is nonzero only for m,u = D-1 which is
k={,
the intergection of the first D rows and columne which completes
the demonstration that the WP(mT) is nonzero only on the main

diagonal and the 2D adjacent ones.
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CHAPTER III

BQUIVALENCE OF THE INTEGRAL EQUATION SOLUTION

AND THE LIMIT COF THE DISCRETE SOLUTTLON

3.1 Minimum Variance Estimation in First Order Noise

The problem of winimuwe varizpce estimation when an infinity of
data polnts are available is treated from two points of view in this
section. The nolse is assumed to be first order. In the first

point of view it is assumed that a continuous record of the process
y(£) = 8s(t) + n(t) 0<ts<lL (3.1.1)

is available and 1t is desired to find an unbiszsed minimm variance

egtimate of 6 of the forn

I
3 =[f(t) v(%) dt (3.1.2)

(=
and the variance of the gbove estimate. The solution of this problem
is well known and leads to an integral equation which is solved by
the method of Reference 8. Thus in part 3.1.1 of this section the
optimum weighting function £(%) is determined snd the assoclated
variance is calculated.

In the second point of view it is assumed that the record is

sampled at equally spaced intervals of time T seconds apart, and

that a minimum variance estimate and its associated variance are czl-
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culated. The 1imiting form of the estimate and its variance are
then determined as the duration of the record is held fixed, the
nﬁmber of samples approacﬁes infinity and hence the time interval
between samples approaches zero. It is shown that the limiting
Torm of the discrete estimate and its variance ig identical to the

form of the "continuous' estimate f£(t) and its variance.

3.1.1 Integral Equation Approach to the Continuous Estimation

Problem.
It has previcusly been discussed That finding an estimate of the

foxrm

L
g =]f(t)y(t)dt

o
leads to an integral equation of the form

L
[ot-nzar - e (3.1.9)

o)
with the constraint

L
ff(t)s(t)dt =1 (3.1.4)
A .
The constraint 3.1.4 forces the estimate to be unbiased.
If the noise is first order it is easily shown that it has an

antocorrelation function of the form
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B(t) = oBePlt] (3.1.5)

and a corresponding spectiral density

2
Gw) = 2 G (3.1.6)
[ +B
Inspection of the spectral density 3.1.6 shows that it has no finite
zeros, therefore the Integral equation 3.1.3 can be solved directly
from the resulis of Reference 5.

*
Using the formulas of Reference & the solution of 3.1.3 is

found to be
Oi Tea Uz 0'2
() = 2 les(o)-gi0)] - [ s(6)55(0)]8(1) + w30 ataeo)
(3.1.7)
where
.2 L L -1
-:-:;: = 2 Blsz(t)dﬁ gla— dt + & (o) + s5(1) {3.1.8)

Equations 3.1.7 and 3.1.8 express the desired result for the cone

tinuous cases.

* A further discussion of these formulas is included in Chapter VII.
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3.1.2 Iimiting Form of the Discrete Minimum Variance Estimator

In this part of Section 3.1 it is assumed that the process

v(t) = os(t)+m(t) 0<st=<1 (3.1.1)
is observed at equally spaced points in time which are T eeconde
apart. It is desired to make an urbilased minimum variance estimate

of the unknown parameter §. As discussed in Section 1.2 this esti-

mate is

7

” SV S = I T
8 =(8R ls) (R ls) v (1.2.2)
and the variance of the estimate is
-1
-a-o.‘ — —
cg = (8 r ls) (1.2.3)

Since the noise is first order it has an autocorrelation function of

the form

d(t) = o2e-PlEl (3.1.5)

The inverse covariance matrix of the sampled values of Tirst order

noise was determined in Sectlion 2.2. The elemenis of that matrilx,

which are denoted as Wu(mT), are
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-2
o] - 26T -BT - 26T
e 1{1te - - -
9,000 = o 106 o, e e
-2pT
~e 6moépo 0 < pm<M (2.2.11)

The elements of the vector § are defined by

5 = (S(HT_)} E(SMJ O<p=M

Therefore from 1.2.3 and 2.2.11

M M
5
= 7 Z W (mT)s s
%0 M=0 m=0
MM
1 ~2PT
| e DYD N
-
H=0 m=0
MM MM
-BT - 28T
SEEPIDY ORI CER D ) NN
H=0 m=0 =0 m=0"
8 6 MO) 5,5,
M-1
et |14 2FT ZS e25T8+s r3TZSS
1.e"2PT Bl
-
|=0 =0
- M-1
B i 2 o2 o -PT -2pT Z 2
= 1——:§ET So+SM 2e Z{: SMS“+1+(l+e ) S“ (3.1.9)

Equation 3.1.9 gives the variance of the estimate of the parameter

¢ in terms of the sampled values of the general signal S{t).
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To find the limiting form of (3.1.9), let
T - 0 , Mo with MT =1,

Carryluyg oul Lliese cperatlons gives

. M-1
5° 2 2 2 1.2 2
Y - (87480~ 2| 1-AM=p5T g 8
z [ 22 8.3 3J oM [ 2 ] Wl T
Ge I-PT+ep T -66 T o
M-1.
2{1..5%32112} Z si
=l
M-1 TM—l
~ g2 5: 22 1 1
ot s Sy 2[1 5T+—B T } SMSH+1+ 2[1 BI+B7T Z [WJ_%&T}
M=0 =
M-1 "
~-l-s+sz 5,8 +2Zs +S+S+BTSE+SZ+
= BF L 3 o M
=0 L
M-1
Zgj H u+l+ . j{: Su
: IJ,—l

which 1s correct to order 7. Now as 'I' — O

[M-1

%rf +S—?.ZSS +zz =—é— Z(“*l “) w%jégdt
8] o]

2 2 2 2
8,48y = 87(0) + 8%(1)
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' M- M- M-1 M-1
lomia? o2 2 1 2 2
3BT SO+SM + Z SHS“+1+8 ZSLL gﬁT SO+S + Z 8 +2 Z SM
: =0 =2 =1

" p=l
M-1 M-1
1 2 5: 2
- ZBT dt
=BT 3 Z 5. |- pr 8@ fs
p=2 n=2
Therefore
2 L L -1
%9 2 1
—§—>2{3de’5 E]Qd++s(n)+S(L) (3.1.10)
(e}
(o] Q

which agrees with 3.1.8.
It remains to determine the limiting fortr of the estimate.

From 1.2.2 and 1.2.3 the minimun variance weighting vector is
T-oRE (3.1.11)
th =
The component of the vector f is
M
2
=op ) W (s, (3.1.12)
m=a

and using 2.2.11 T can be expressed



From 3.1.13

So‘e-ﬁTsl 1 122\ /1 .1
T ~ 5 {8,-8; [1-5114—2-;3 i } et
3. -8
11 1 1171 Yo 1
- E{E@ (80'81) * (So-sl"'sl” = E[ o B —*T_—) ]_’ H
-BT

3 ~e g 8 -3
M M-l 2| 1fPwPm-1\| 1 1
% = SM+-E(——-——--~—T ) - E[S(L)@S(L)]

-e_ﬁTS +(l+e_26T)S —e”BTS
p-L B

ptd

1-¢~EPT

—

ol 3

%b‘( w1y - —é é(u’r)}

BT

T 7

I e
2P

L

i
[6 Sp~l+6 5

i

~-25 +8
[V

2
T

(3.1.13)

-

it is seen that the following limits are nesded

[s(@-%é(o)}

16 Su+lJ )

u—l}
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Therefore -

9]

2
1 C. . ] :
5 - -.d-é[sm) - %sm}y(n) .

Dﬂb*m
o‘~—-—--..\L—i

[BS(“t) - %éi(t)}y(t)dt n

d2

¥ Eé[s(m + %é(L):ly(L)

which agrees with 3.1.7, the solution of the continuous problem, in
conjunction with 3.1.2. This completes the demonstration of the
equivalence between the integral equation solution and the limit of

the discrete solution for first order noise.

3.4 Minimum Variance Egtimation in Second Order Noise

The remarks made in 3.1 concerning first order noise apply to
the second order noise case treated in this section. However, it
wiil be necessary to 2pply the method of Reference Y when the noise
has two finite zeros in its spectral density. The method of Refer-
ence 8 is used in the case of all-pole second order noise. It will
also be convenlent to determine Lhe limiling form of the discrete
minimum variance estimate separately in the cases of noise with and

without finite zeros in ite spectrum.

3.2.1 Integral Equation Approach tc the Continucus Estimation

Problem.

In 3.1.1 it has been noted that to obtain the continuous filter

f(t) 1t is necessary to solve the integral equation
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L
[ﬁ(t-—.’f)f(’r)d'? = cis(t) - (3.1.3)
o]

with the constraint

L
[f(t}s(t)dt =1 (3.1.1)

O

This problem is solved in 3.2.1.1 when the noise has the spectral

density

0.)2-!-'& & cn2+a

o))

5 (3.2.1)

T RNPR IR,

and in 3.2.1.2 when the noise has the spectral density

1 1

clw) = K, (m2+[3]:?_‘} (m2+6§) = K T (ﬁ%pg )w2+9§13§ (3.2.2)

3.2.1.1 Necise with Two Zeros in its Spectrum.

The integral equation 3.1.3 is now going to be solved for the
~case of a noise with the spectral density 3.2.1. Upon noting that
the spectral density and the autocorrelation function are Fourier

Transform pairs, 3.l.3 can be written

L _
j;ﬁ(t—'r)f('r)d'r = cgs(t) 0<t =L (3.1.3)
Q
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L 23]
2
£(1) |x m +a egaﬁt-w) do oo _ GZS(t)
E 2 2 2 P L
5 o+ Bl+5 Bl
(3.2-3)
Formgl differentiation of 3.1.7 gives
T, w© ' 2
2 o] b 2
g 2 Jo(t-1) doo ,_ _ "LId '8 2 21478
=2 - JFf(T) N =T T rTE (Pt 32 2*‘5'3.1B
dt . 2 dt
_ : (3.2°h)
and upon use of the formal identity
8 (1) :vj’eaw(t'T) do (3.2.5)
2
" 3.2.4 becomes
2| .4
2 ool a3 2
d-f 2 2 .2id 2ae -
dt K Ldt dt

It is well known that the function of time which satisfies 3.2.6 is
not the complele sulution of the lntegral equatlion (see Reference 5)
but is only part of the solution which is denoted herein by fc(t).

In Reference 5 1t is shown that the complete solution is of the form
P{t) = fc(t) + Bla(t) + Baa(t—L) (3.2.7)
The method of attack used in solving 3.1.3 is then as Fallows:

First find the solution of 3.2.6 and hence determine 3.2.7f, then

substitute 3.2.7 back into the integrsl equation 3.1.3 to determine
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the unknown constants. The differential equation 3.2.6 will now be
solved. (For notational convenience the substitutions Bl =B
and. 52 = v are used in the remainder of this chapter.)

As discussed in the above paragraph the differential equation to

be golved is

2 27 b 2
a™f g. 1438 478
c 2 L 2 .2 2.2
LAY A S — -5 - Y-}-ﬁ —m—-%-TISS('t) (3-2-8)
cl‘tz Kl dt ( ) d.“bz

The particular solution of 3.2.8 iam

a |42

a. a s
L 2 2 2 2 .2 a2 2
=~ —={—5+ [a —(B +y )]S(t) + (a -B )(a ~T-)g(t)
°P % | at®
(3.2.9)
where
t t
g(t) = %5 eatufﬂe_atS(t)dt - e_atu[‘eats(t)dt
L 0
L
= - %E‘J—e_a\t-u\s(u)du {3.2.10)
O
The "trénsient component™ of the solutlon is
8 .
° —at at
f.=% [%le + Age } (3.2.11)

therefore, from 3.2.7, 3.2.9 and 3.2.11



T3

02 dzs | . L

F(t) = e —5 + [52+T2-a2]8(t) + i~~(232-BE)(az-ﬁz)d/-e"alt“uI..")(L;L)du
X dt Z2a : 4

v a4 ™ LB s(t) + B,6 (t-L) (3.2.12)

The result 3.2.12 must now be substituted into 3.1.3 to determine
the unknown constants. It should be noted that noise with the

spectral density 3.2.1 has an autocorrelation function of the form

F(t) = cfe-ﬁltl + dge_Titl | (3.2.13)
where
2 .2
2 X a"-pB
o = = (3.2.1%)
1 28 Y2-52
2 _2
oo = & L8, (3.2.15)
a2y v -8

Upon substituting 3.2.12 1n 3.1.3, using 3.2.13, and considerable

algebra and reduction of integrals, the following result is obtained



Th

1 L cz . A A
?[(mwwm~WAiﬁm@ﬁwhwmf#%wmii-
oL % K B-a PB4a
o> \
+ B e Pt 4 2L1y8(0)-8(0) Je(a-y) |aP-E) s (o) -
K
z
A, A
S S By LI [Bs(L)+S(L)] -
™a  yia K
o o A AﬂeaL
- (a-B) (a“-r“)g(L) o
P B-a

' 2
- e Pt 2 {EYS(L)+é(L)]~(a-T)(ag“ﬁz)g(L)

aL
+ fi— e 3l 22t - B e_Y(L—t)
e Ta P
= a(t) (3.2.16)

where g(t) is defined in 3.2.10. Tt is seen from 3.2.16 that for
3.2.12 to be a solution of the integral equation the system of

equations
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A

A ' .
o g - By = (-8) (%) a(0)-Les(0)-5(0) ]

A A

=t e - By - (aer) [a%e7e(0)-[ys(0)-5(0) ] (3.2.17)
A A |

s 4 5 By = (eop) o5 )a(n)- TS ()41 ]

A AT 2 .2 :

= D - B, = () (a0 )e(0)- rs(L)+5(0) ]

must hold. The solution of the system of equations 3.2.17 is

Ay =£( -p )( % 2){ ( -B )(32 2 )e(o)- (a- ﬁ) 2(a-y) % g (1) ]
+ [(a+B) (a+T)S(O)~e-aL(a~é)(a-r)S(L)1}
Ap = 2[32"52) S {[(32-52) (a%-¢%) (1)~ (a-B) E(a-1) Vg 0) ]

+ [(a+ﬁ)(a+r)S(L)-6'aL(a~B)(a—r)S(O)]} (3.2.19)
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B =% [-2a(as8) (arn){a™-p7a% 1) (o) +
+ Ba(az-ﬁz)(a - )(a B)(a-v)e “Fg(L)
—2a(a—[3)Z(a-r)zenzaLS(o)+2ae_al‘(a2-62){a2—~TZ)S(L)]

+ (Bry-a)s(0)-5(o)

B, =% [-2a(a+p) (arp) (%09 2)em) +

+ eafafpfpty )(a“ﬁ)(a~r)e'aL (0)-2a(a-) *(a-y) %" L5(1)
+ zae (2 pf b2 Y s(0)] + (Brpa)s(@) + B(1)

The guantities of 3.2.18 determine the solution up to the constant

cﬁ "which 1is the varlance of the estimate. The varignce di can be

determined from the constraint 3.1.4 and the result, in terms of &(t),
. is
* L

1 L
f s(t)at +(p%+y%-a) ISZ(t)dt +f[Ale”at+A2eat]s(t)dt
Q 8]

Q
L L
+ %g(az-ﬁz)(ag—rz)f je"alt'uis(t)s(u)dudt + By 8(0)

o ©

!D
o

-1
+ B,8(L) | (3.2.19)
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Equations 3.2.12, 3.2.18 and 3.2.19 complete the solution for the

case of the spectral density_3.2.l.

3.2.1.2 All Pole Second Order Neise

Tt uow remsins tu solve the integral equation 3.1.3 when the
*
noise has the "all pole” spectral dernsity 3.2.2. Explicit formulas

are available for this problem in Reference 8. Using these formulas

gives
UE d4S 5 2 dZS 5 o

£(t) = (%) — + B Ps(t) +
D dat

7
'%4:]

+ é'(0)+(ﬁr(&r)z}é(O)JrBY(BW)S(O)? 6(t)

) 1
- ﬁ(L)+(67a(B+v)2)é(%)—sr(ﬁ+v)s(L) 5(t-1)
N

I .-

R é(o)-(m>é(o)+srs(o)] 6’(t)-{S(L)+(ﬁ+r)S(L)

+ ﬁvS(L)]a'(t~L) (3-2.20)

and the variance of the estimste is

* A discussion of these formulas is included in Chapter VII.
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b a%g

azﬂrgﬂg + 88% ) sl at

.
cqm

L
i
iy
o

+[§To)+

a

By-{B+y) 2)5(0)+Br(ﬁ+r)S(O)J S(o)

{S L)+ ﬁr~ (B+y) )S(L)-ﬁr(ﬁw)S(L)}S(L)

[S(O) (!3+T)S(O)+r3¥8(0)] 5(0)-1—[S(L)+(B+Y)S(L)+ByS(L)J S(L) .
(3.2.21)

which completes the solution for this case.

3.2.2 Limiting Form of the Discrete Minlmum Varlance Estimator

In this part of the theslis, as in part 3.1.2, it is assumed that

the process

y(x) = 88(t) + n(%) 0<t<l (3.1.1)

in obgerved at equally spaced pointe in time which are T =seconds
apart. Tt is desired to make a linear, unblased, miniwum variance

estimate of the parameter 8. As discupsed in Section 1.2z, this

eatimate iz
- ErEtEs) T (1.2.2)

and the variance of the estimate is



79
-1
)

cg - (8r'8 (1.2.3)

It should be noted that since the estimate is unblased, the discrete

filter
? = (-5 R—lg)ml:ﬁ-l-s- = U'SBHLS (3.2.22)

gatisflles the constraint

]
tal
I

|

(3.2.23)

S8ince the nolse ¢onsidered in thig part is second order it has

an autocorrelation function of the form
glt) = die—ﬁltl + dge_rlt] (2.2.24)

The inverse covariance matrix of the gampled values of second order
noise was determined 1n Sectlon 2.3 and this result will be applied in
this part. The same method of attack that was used in 3.1.2 will be
used here also, that 1s, obtaining the limiting form of the filter as
T-0, M- oo with MT =1I. It is necessary to treat the two
noises with the spectral densitles 3.2.1 and 3.2.2 separately since

for the all pole nolse, the conditlon

505 + Tag - 0 (3.2.25)
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holds. As will be seen shortly, it is important to know whether or

not 3.2.25 holds when carrylng out the required limiting opefations.

3.2.2.1 Noise with Two Zeros in its Spectral Density
The limiting form of 3.2.22 is now goiung Lo be determined when
the autocorrelation functlion is 3.2.24 and the condition 3.2.25 does
notlhold. Only the limiting form of R -5 will be found since if
two unhiased filtérs differ only by a multiplicative constant, then
the constants must be identical. For convenient reference the éon-
tinuous filter is summarized below. The numbers on the terms are for

identification with parts of the limiting discrete solution.

2k.) 2k 7))
UE s 2 4 . 2 2 2 2 al %
£{t) = = (- — +(ﬁ“+rb-aa)s(t)~(a -B Na -y-)g(t)+Ale'd +A2ea
K at
+ Blé(t)+B26(t-L) (3.2.26)
where
L
1 =[f(t)s(t)dt (3.2.27)
0
L
g{t) = - l"za[c"alt"uls(u)du (3.2.28)

a



11,y 81 11.)

A = %(aa-ﬁz){ag-rz){[(ag-ﬁz)[az-rz)gb) (a-8)*(a-7) % aLg(L)]

+[ﬁa+s)(a+r)8(o)—e‘aL(a—B)(a—v)s(zi}} (3.2.29)
13.) 15.)

11.) 11.)
i, - e'A (52_82)(a2_rz){“92_82)(92 vF)e(n)- (anf) P any) %o (0)}

+[(a+a)(aw)s(L)-e‘aL(a-m(a-ws(o)] (3.2.90)
13.) 15.)
A = (ra)B(pea) B (Boa) H(y-a) PR (3.2.31)
15.) 13.)
B =2 (a2-87)[a®- )[(a-s)(a-r)e‘al*g(m-(aw)(amg(o)}
16.) 17.}
- (a-8) (a-7) %" # L5 (0)+ [a2-pFa - F) e s@)}
21.) 21.)
+ (Bry-a)s{o) - S(o) (3.2.32)

) o 15.) 13.)
By =% {(a“ﬁ“J(aﬁ-r“) [(a-s) (a-r)e_aLg(O)—(aJrﬁ)(a+r)e;(L)}
17.) 16.)
~(a-B) (a“ﬂze ZaLS(L) ( 2 2}( 2. 2) aLS(L)}

21.)  21.)
+ (Bryr-a)s(L) + 5(1) (3.2.33)
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The quantities B, v, a, of, og, and K are not all independent
The relatlone defining them zre
@F(t) = crie"ﬁlt'l + oge—rltl (3.2.24)
m?+a2
Gle) =K oo (3.2.1)
@ + | By o BTy
2 2
1o + Ba
a® = py ——"t (3.2.3k)
Boy + 195
2 2 .
K = 2|pa] + yo, (3.2.35)

The limiting form of R-l§ is now going to be determined

1.) From 2.3.37

-0 1
e = _Z—A-; BO '#O%EAO)(BHEAO)

where

D, = o [1re e ) 4 o]




mT

li
it

Expanding A  and B glves (using 3.2.3% and 3.2.35 to simplify

. the results)

i

B, T UT { FK-EK(p+B)T +[F3032-_(r2+5y+%62) + wg(s“‘w&%ﬁ) T

A, = 21 (FK-EK(y+B)T +[Bcf(%r2+ﬁw—§r32)+ wg(%ﬁzﬂﬁ-%rz ]Ta .

therefore
- ~ .22 .. 2.3
BO 2A0 = 2697 [r01+502} =Ka T
~ K_K| _
B, + 2A, = AT[2+-£} = UKT
and hence

\/(BO+2AO) (BO-—ZA] = ZKaT®

From the above



8L

| - 2 2
om0 _ 2}% [:Bo - /Bi“l‘ﬁg :[_, 2KT=ZK (+8) T -gxarn
o 2TK~ 2K (y+B) T

_ ZKT[I-(atyeB)T]

~aT + O(Tz)* (3.2.36)
ZKT[1- {y+B) T)

"M, [l-a[[‘-}O(‘I'z)}M - [1 - %I: +0 [TZHM

et 4 oem) (3-2.37)

This completes the expansion of e % and e M
2.} From 2.3.37
k = §[B, +\/B§-1LA§]
;1“—. 2 2
- 3| 2T - 2K(y+B)T" + ZKaT ]
L
.2-
- KT[l-(mr-a)T + O(T )J (3.2.38)

where the expansions of A  and B in 1.) were used. .

¥ The notatlou O{Tz) denovtes a power serles whose lowest order

term is of an order at least T .



85
3.) From 2.3.37

k% [1 '.(B‘Q)TJ [:L-e'(' Q)T-J - (a~B) (a—f)Tg (3.2.39)
Py TE
and
4.)

1;%5ES = {lﬂe-(mam}[l-e'(ﬁam:l - (a+f3)(a+T)T2 (3.2.40)
=

' L
Fo - _[e_(wzam_e-(s-m _e—(T-G)TJ 1y,

2.0
1 - (a-B)(a-7)T° (3.2.41)

1

6.)
1B = e o (FT -[L(&r-a)T] (3.2.52)
| -

7.) Now consider the term

Py -O!Ilm—pl
~Oi
oy ?_3_3, e'@le-H] - pl]:Qo+Q,le + T —‘DOdTJe

Py




86

which appears in 2.3.36. Expanding gives

e v — | Ly e » P
) -+ e t =1~k a- a-v =L+ {P+1iT +
e d 1-e” 20T 2aT

. Tafaz—ﬁgﬂag-yﬁ) (3.2.43)

z2ak

vhere the expansions of k, Q’o’ Qs e-OAT’ and p, were used.

1

Therefore the contribution of this term to R -8 1is
a o
- T 1 - |m-
Z Py |Q e +— e | HISm -
- i l-e
m=Q
M
2 Eﬁ. 2~-?l _ _
- (a P (a X Z Te G«Tlum_‘sm (3.2.44)
rak
m=—0
. L ] ]
ol 2 22 21 1 —-alt-u T{a 22 2
—>-K-(a -3 ](a "T) -E_a[e S{u}du = - K(a -f )[a =T )g(t)
Q

(3.2.45)

where pT -t and mT - u.
Kquation 3.Z2.45 gives the term marked 7.) in 3.2.26. It should
be noted that the quantity T which occurs in 3.2.45 is similar to

the dt in the integral
L

ngfﬁﬁ&Mt

o
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Some other quantities which are needed are
8.)

G2 . 2 omeemwz) -1 [(Hﬁ)z(aw)z_(a_ﬁ)é(a_r)ze-aaL}Tu

D 1
- a7t | (3.2.46)
9.)
Pi?jge‘z‘ﬂ' Tz(a_ﬁ)Z(a_r)2(8+5)2(a+.r)2
e e
(3.2.47)
10.)
93 e‘zalle—(ﬂ‘(M—i-Z) Tg
1D ; ; -
(1 -e'EO"T) [¢2”pze-2ar(m+2)] - on (a-B) (a-1)  (a+p) (a+y)e
o (3.2.48)

11.) ©Now consider the term

z - Ol
pl¢De

- [l_e-zom) [gjg__p]z_e-ar(mz

-20MT_o{m+y) | -oT(m )J
)J ¢D [e e e T

} ple—cxr(M+2) [e-aP(M+u—m)+e-O$(M+m— H)J

which oceurs in 2.3.36.
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Note that -

M ~ L au al, at
ZE:TE~ZQMTGOT(m+u)sm ) C—ZaLeat-/’e S(u)du =-2ae e g(L)
m=0 . O
M L
E{: Te"Om(er“)Sm - e-atJ/.e_auS(u)du = —2&1@;(0)«9_at
m=0 0
M i
Ei pe~ OTH omueommsm -al, -at'/' BUg (0 Vau = -zag(L)e ™
m=0 (o]

M L

,jzl Te-oTMéQTpé-ommS o o8l at'j'e»au - -zae~8lg(0)e®"
m=0 (o]

Using 9.), 10.) and the sbove gives the contribution or this term

to R"l§ as

= (a-ﬁ)"“‘(a—wz(aw)z(aw)z[e'aLgme“““ + g(o)e“at]

= (a-8)7(a-1) F(a18) (a4) [g(me“a’“ - g(o)e"aLeat]e'aL

(3.2.49)
which gives the terms marked 11.) in 3.2.29 and 3.2.30.
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12.}

2

P97y 1 2 Af2 2
- - = {[pf-af) |y a
e el e G ICRIOR S

13.) Consider the term of 2.3.36

2
) P&y 5 o-OT(HL-m) o om(isi-p)

2 2 _-2ar(e) | uM O
¢D-ple

e-ofI'(l+m) 4 e—oﬂ‘(lﬂz)]

* 5po mo
-Note that
M L
Z " -Or:E(M+l«-m)gm . @—aL[p—auS(u)du
m=0 s}

M )
Z T&J e TS(L) = lst order term (epproaches 7e710)

=
I
o]

=

m

L
Te_aT(l*m)S ﬁfe—aus(u)du
0

=
[
O

=

T6,,.5, = TS(0) = lst order term {approaches zero)

m=0G

Using 12.) and the above, the contribution of this term to R -8 is
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- L | L
I%—A(ag-sz)(ag—vz) (a+8) (a1 y) SpMe-aL]c_auS(u)du + 6uofenaus(u)du
. o} o]

uaLeat

+ Te (L) + me~3Pg(0)

2

- - 22 [oP-87)a ") (a4) () (o)

n + g(L)s

o}

M

+ %Z( 2-52Ma2—y2)(a+5)(a+r)[e-aLeatS(L)'+ e-ats(oil

(3.2.50)
which gives the terms marked 13.) in 3.2.29 through 3.2.33. Note

that in this case the discrete equivalent of a delta function is a

Kronecker delta operating on a sampled signal.

10.)

2 - {M+2)

1@ % e L

é lzD;zom(M+2) - (az-BZXaz-Tz)(a-ﬁ)(a-Y9 Te %
SDID-'ple KA

15.) Couaslder Lhe Llerm

2 - (M2
p1& e (2)

-T{1+m) - (1+p) -0l (M4+1-m)
) [5UM? + O T
¢D"ple

‘s e-OE(M}l-p)]
mo
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Upon using 1k.) and the sums of 13.) the contribution of this term
to RS becomes
L L
1{. 2 2) -al, -al, ~aL [ &
- KZ( -B (a -7 )(a—B)(a—r)e ]ﬁe S(u)du + 8,08 e*a(u)du
e

aL at

+ e 35(1) + we ‘5(0)

{aE_BZM?Z“YE)(a—ﬁ)(a-r)e-aIW%ag(L)éuo + 2ag(0)8

i

gl

- -
. Te"atS(L) ~ aL ats( )} (3.2'51)

Jee terms marked 15.) in 3.2.29 through 3.2.33.

16.} Consider the term

ple( 1oe zocr) - 20T (M+2)

42 2o~ EOR(H2) ®no®po 6pM6mM]

p~P1®

Note that
2.2 -zar) - 20T (1M+2)
lQ'l(l e © = (a-) (e y) Be~ 2T
¢2 22T (NiZ) n

M
z 6,8, = S(o) and Zamsm=s(L)

m=0

Therefore the contribution of this term +o R-lS is
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- E—Z (a—B)2'(a-r)2e'EaL[S(o)5uo + S(L)épM:I (3.2.52)

See 3.2.32 and 3.2.33.

17.) Consider the term

M 2 - 20T~ M+2
EjJ ¢2_ 2E—OT(M+2) [%ﬁMspO * SpM5mo]$m
m=0 D Py

- %—z(az-ﬁz)(az—yz)e-aL[S(L):S“O + s(o)am} (3.2.53)

See 3.2.32 and 3.2.33.

* 2
18.)" Consider - Q FpMﬁmfﬁpoamo]
Trom 2.3.37

-
L

Qf - 1 E-E.’(Ei-l--y-a)t[‘ L _ 1-2(pty-a)T
1k

KT[1-{P+y-2)T]

(Using 2.))
o 2 [1-(Bry=a)T]
KT

M M
Note that Z 5y = 5(L)  and Z 58, =5(0),
m=0

m=0

%¥  In parts 18.) - 21.) the remainder of Kronecker delta terms will
be determined. fThese terms arise for p =0 and pu = M



93

therefore -

M .
- erzj Z [apMGmM+5poamo]Sm - - %&‘ (1+{p+y-a)T] |:S(L)5HM+S(U)6“_O}
- (3.2.54)

which is the contribution of this term to R'lﬁ.

19.) Consider [Q§+Q32_+Qopl+lele_w]6 for p = o,M.

Jm=pu] ;0
Note that Z [%05 oo pM} = [S(O)GMOJFS(L)émil
m=0

From 5.)

2

@ - [1-20ems) pie®

%1 ~ { - (a=p) (a= )77 [<a-e>(a--r)wz}~%;(a—m(a--x-mz

M
-1 Tz
also @y py@ - - {a-8}(a-7) =

k - KT

Therefore for p = o,M

M
}: {Q +Q1+Qopl+lel Oﬂ]ﬁ 1111-}.11,08]:& - {%Ll+OTJ+Qi}':8(0)5HO+S(L)6PM}
e (3-2-55)
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20.) Consider the term [%lQo + lei}élm ul,1 for
= >

B — 0,M which is equivalent to coneldering thc tcrm

(QlQO + Qe | [ésmlauo + Sm_,M—lépM]

M

Note that: Z [%lamwm,M_lém-‘Sm = {S(T)6HO+S(L—T)6HM}
=y ’
Q@ = - k% PHOTy L 2n (g
Qe = - k'sz(a-ﬁ)(a—T) (too high of an order)

Therefore for p = o,M

M
z [Q1Q0+Q1pl] ﬁlm-ul,lsm - - %—[l-(ﬁa—r—a)T][S(T)6p0+S(L-T)5pMi|

m=

2l.) Now consider

2 2,42 -ar
- Ql [5m6mM+6uoﬁm0:]+[QO'FQ]_"'QDP]_"'Q'J_ple }6 Im_u[ s0

* [%Q:L“L%PJ Ylm-p|,1
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for o = o,M and after summing with respect to the signal and m.

1

From 18.), 19.) and 20.) (note that k ~ - %-*T-[u(aw-a)wj)

~ EL40m] {8(0)5HO+S(L)6HM}— Z[1-(Bry8)T] [S(T)aHO+S(L~T)6“M]

= 'ié [S(O)-S(T):|6HO+[S(L)—S(L-T_)]éilM-i-(,B-z—«(-a) [S(T)6M0+S(L~T)6“M]T

2 (- BI)-5lo) 5o+ —-—-—_-—S(L)'i(L'T) 5“M+(;3+T-a)[s(o)auo+s(L)auM]
- % - é(o)6u0+é(L)6“M+(B+y»~a)\:S(o)éuOJrS(L)s“M} (3.2.56)

See the terms marked 21.) in 3.2.32 and 3.2.33.
This completes the determination of the delta function and the

exponential components of the solution. The remainder of this part

rLe

ig devoted to the determination of the term - %{g~§ +(62+r2m32)3(t%.
dt
22.) (Consider @ Q,+Q; py in more detail

=

k"le = ( B+T) TeCEl

- L
Q (Qo+pl} = Ql(k -—pl—%-pl): k EQl = -

o1 ~(prpdT 0T 1
rc
C

0
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But

Jt\;{.}*:—a(BJ’Y)rP = oi(eﬁT~e"BT)+ og(eYT-e"YT)= 2(c§ sinh BT + cg sinh yT)

2 2 A
liofﬁi’(l + —-6--—[3 T )+ UgyT{l + T—Y T ]

a0

2
= TK[ZL + &[530'32_ + ygﬁg)]
X
1 1 T (3 2 3 2)
- ® - =+ == |PToy + 7O
a PT g0 LT e
1 e 1 21 { 22 32
- - = izlpol + T O {3.2.58)
(BT 2 3Eo\ L 2

23.) Consider Q,C2)+Q,]2_+Q,Opl+lelE—dIl in more detall

Q Q
a2 2 (8] 2 -~ 2 o -
= [Q'O“i-@'l-%- kTg - Q’O+Q'l ple } = Ql-l- 1:% + Ql ple

o al

2 -
Q’D+Q':|2.+Q'O P+ P e

After using the definitlons 2.3.37, the sbove equation tzkes the

form



2 2 -or 1 BT 1T\ 1 -BT -~
Ut ety = m(e <) —'@m(& 1)
O

But

Boe(ﬁﬂ”)T = U;f (ew-e_ﬁT)(eTTw_YT)““ Gg(eﬂ_e-ﬂ)(eﬁT+e-ﬁT)

= 1}[05 sinh BT cosh YT + cz sinh yT cosh BTJ

Z 2 a 2y 1.2
=~ T[ZK +(Ka + -5(63614—«(302))‘1? }

lpon noting the following limits
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2
o - SR - el

%{m(&ﬂm +[%(

il 4]

-1 2
\'Aoe(&ﬂ Tl (e'.BTJre'YTJ_, :_Lﬂ_{[l- %(B3c§+y~3@§)}[2—(ﬁ+r)fﬁ+— B” +r Ta]

g {2- (B+v) T{%(

®° 3K

-[Aoe(mr)ﬂ-z Bde(BJHr)T - {*l"-— |z %(53 2 2)

32+r2) ( 302"'7'3 62):| 'I'2

Oy+Y7C, \?K +

j S )

2 2
+(Ka + §(S3GE+T3G§)) TE]T
.- T[__z_ EL (el s
w2 3 g2 1Y %2R
21 2 32
"3 Kz(ﬁ'BUJ_JfYB"zﬂ (3-2.60)

and from 3.2.59 and 3.2.60

Ay #0079 9367 ‘IK'" [( ryt-of)- S (

5302+'r302):| (3.2.61)
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2%.) Consider the terms

2 2 ~aT
[Q'0+Q'l+q‘o P @ Jému*' [Q'J_QO ' QlPJJ(Sm s p,—l+5m, p+l)

for ;é Q,M.

M | M

te that -8 =

Note tha Spy S = 8, = 5(t) end Z(sm’u_lmm’wl)sm
m=0 m=o

= 8(t-T) + S(z+7)

Therefore from the resulits of 22.) and 23.) the contribution of

the sbove terms to R B approaches

—ET: [s(t-T)-28(t)+8(t+T) ]{% [(Bzwz 2] (63 2 2)}8(1:)

+ (B %E) s(t-m)ss(tem)]

2
. %i.% T(Bz a_ z)s(t) (3.2.62)

which completes the demonstration of the eguivalence between the Iimit
of the discrete solution and the continuous solution in the case of

the spectral density 3.2.1.
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3.2.2.2 All Pole Segond Order Noise

‘The limiting form of 3.2.22 is now going to be determined when

the autocorrelation function is 3.2.24 and the condition 3.2.25, the

all pole condition, is satisfied. Only the limiting form of R-lg
is necessary because of the reason mentioned in 3.2.2.l. For con-
venient reference the contiauous filter is sumusrlved below. The

nunbers on the terms are for identification with parts of the limit-

ing discrete solution.

14.) 16.) 17.)
b 2
1 = ia's 2 2\4%s 22
T F(B) = i - |B%") —= + B v s(t)
Gf ( Tz-ﬁz E;E ( ' ) dt2 '
27.) 23.) z2.) -
+[8(0)+(Br-(Br) 2)3(0)+Br(BrrIs(oJa(t) -
25.)  2h.)
—[‘S"(L)*(ﬁr-(&"r)%(L)—Br(ﬁ—kr)S(L)}6(t-L)+[§(O)~(B+r)é(O)+
20.)
+ By8(0)18 (8)-[B(L)+(B+y)8(1)+8yS(T) I8 (£-1) (3.2.63)
As in 3.2.2.1 the relations between the quantities B, 1o af_,
Gg, and KP of 3.2.2 and 3.2.13 are not all independent. Without

loss of generslity Llhe values for 0§ and 'Gg which were chosen axe
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2 _1
17
(3.2.6%)
o2 - zi
2 v
and, hence
2 .2
x, = 2(%-6") (3.2.65)

It should be noted.that the constraint 3.2.25 is satisfied.
The guantities A, and B, of 2.3.37 and some related func-
tlions will now be expanded.
1.) Using 3.2.6L the guantity A, of 2.3.37 can be

expressed

ET

A = 2'I‘e_(ﬁ+T)TF-'-— sinh BT - %T- sinh YT}

=3[ o

- —T—;(Tz Bg] (Bﬂr)Tl:l L (5 +T) 2 _(5 +f3 T 2, 1*)&*4—0(@6)}
, (3.2.66)

Similariy BO can be expressed

5 - he«-(m)TP_
(e}

AT gich BT cosh ¢T - 1 sinh yT cosh fSTJT

YT

,;% 2om (BHI)T)) —(;32+ 2) 2, 2—,[%(&‘+62r2+r”)+2ﬁ2~rﬂw“

+ or® MP-p?) (3.2.67)
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2.) Using 3.2.66 and 3.2.67 glves

2 bl 2 T [ (s e2 TR

16 22 a 2 b §)
+gT Pr o+ Eé-(ﬁ +y J JT + O(T )
(3.2.68)
which will be needed later.
3.) Again using 3.2.66 and 3.2.67, some other expansions

of future interest are

i 4, 2). b oy 2
Fo ) 3(7 -g° )3 (E+T)T o(ﬁd‘iﬂrd)Td +[%66[5d+ra) )

AGECES h)]Tbr*O(Té) (3.2.69)
ié; [ 5-p” )g 3(3+rTT{l - %B(BZHZ)TE +[?r§§(52+v2)2 i

- %—?—(sﬂsaﬁwﬂ] * + 0fr°) (3.2.70)

o}

B
= 4{1 +‘£w(5 Ty ) 2 +[%T 32T2 7;(BQ+B2 2 h

AD
1 (.2 2\3k (+6)
e (S Al (3-2.71)
Bo or -ar
It should be noted that T ig important since e and e are

the roote of
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' -1
0 = BO - [z+z )AO

or

.. B
eI Ol _ 15'9 (3.2.72)
s

4.} From 2.3.37

~QT 1l } 2.2
e = EJ_\:; (BO - o_l“Ao ) 2

which by use of 3.2.62, 3.2.68 and 3.2.69 becocmes
2z (e A - Bl ol (3.2.79

Hquation 3.2.73 shows that « is a funetion of T, +the time between
samples.

In 5.) through 8.) some more algebraic manipulations and
expansioﬁs are performed. The results are needed in the cdemonstra-
tion of the equivalence between the limit of the discrete solution
and the continuous solution. It is recommended that the reader skip
to 9.) and refer back to 5.) through 8.) when they are referenced.

5.) The quantity 01 @2 can be expressed
N



7
f @E

10k
o P ]

pl l:QO+Qle + —m——:ﬁ =

l-e

X T L
OﬁI'( zaIIJ

Aoe l-e

SO

| Aoe(8+r)TedT(l- 'ZOT)

e
6.) A term which will be needed is

T pn
e

2 .2 -OT 1

= — BT 2 cosh BT + 2 cosh yT - 2 - =

' B
Pl Pl el e¥T . 0 5,

) Aoe:&' )T AO
[ e g
+l+e—u:1' -2. cosh BT a.v 2 cosh yT - yi
l»e—w eaT(l+e—QT) (l—e-om)
B

o]

(3.2.74)

Aoe o
B B
- = 2 cosh BT - =112 cosh T - =
B A A
o 0 o]
4T E
(=]
o}
where is defined through the above equation. Rquations 3.2.59
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and 3.2.7h were used in deriving the final result.

After considerable expansion it can be shown that

C, = - % ﬁgygTh[l + O(TE)} (3.2.75)
and hence
2 2
27y 1 o)
0~ 1 | 2
ol r[1 ¢ ofr (3.2.76)
Ay 2 (Tz_gz) )

7.) The following sums Will be needed, where x = e OO

e Z)

I
XW
[
]
1
#

w(1-y) "2

o
gl
1
1
2
P
1l

Ty

x(1-0) "% + 2x2(1x)" = x 3
Y oo (L=)

(3.2.77)

0
™1
I
[

A%}
"o
1

-l

I

) (1mx) "6y B (1) 3463 (1-x)

a. E:‘= §i53gk
3 k=0

. z _ Zk“ﬁ (o)™ Bl B (L) " 34363 (L) a2l (2
b |

k=0 ‘
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8.) The following is an expansion involving the signal S(t)

o 2q o 3 o
S(t+r) T 8(t) + 2 1+ ld—§T“+-l~i~%T3 L 48 gt ofr)
dt 2 dt 6 dt 2h as
s(t-T) = s(t) - L g 4 leTE—EﬁgT3+}-—d48 ™ - ofr’)
dt 2 at? 6 at° 24 EE
and hence
a%s 2, 1 a's b 6
S(t+T) + 8(t-T) ~ 23(t) + — I+ == 1 + O(E[' ) (3.2.78)
. dt” 12 dt

Tuspection of 2. 36 shows that in evaluating lhe 1imlliog

—Q'Tlm_u‘ will have to

properties of R’l_S- a term of the form Z’Sme
Q

bc investigated. It 1o the purposc of 9.) to invcotigatc this term.

g o me|
9.) The term YSme can be expressed
M M M
LS e‘O’T]m'“l = ZS [eaf(m-“)—e"m(m"“):l + OTH ZS e o
i m m
o o o
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et k =m-u, then

ST o
-OoT jm~p| ~-o |k
Zsme = Z Sy,+ke
0 -
_ o] I l M-p
3 - |k -a7k
B §i,su+ke " E: Spk® 8y
_“ O
M M-p
~ -k - Ok
_Z Su_ke + Z kae --SLl (3.2.80)
0 )

Expanding Sp—k and S_p+k about Su = 8(t) and assuming u >> 0

‘and M-p >> 0 gives

M

2 Lok
E: -0 [m-pf ~ 2 4 T a8
5 e = 8(t)l2 =1+ 17—y E +— —7 § (3.2.81)
i EE; at® 2 lzat

M
The behavior of Zsme-arlm_ul will now be investigated for small

0

. The following approximate sums are obtalned by expanding Sm

about 5 = s{o0).

M i i M

ZS e"(lemm""l _ " OTH ZS MOT_ 0T TS e T, LOTH ZS "ot
m m ,m m

ol o) o o

(3.2.82)
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v ' i : W o
Zs T = g(0) Zem‘ﬂ’ + TS(O)TmemOE .z Tz's'(o)zmzemr
m - a
o o — Q ) (o]
3 3 maT
+ X2 g(0) ) me™ (3.2.83)
; 500),
(o]
m b H 2 B
Zsme—moﬂ = 8(o) Z.e_mOJII + T8(o) Z‘me_ma;II + E—é (o) Zmze—moﬂj
O‘ o] c Q
P s
+ Lz (o) Zm3 e T (3.2.80)
[®]
M

o

Sme_m = s{o) Z + T8 (o) Z + -]2; Tzé'(o) Z + % 3 ‘5(0) Z
o} 1 2 3

(3.2.85)

Now from (3.2.81) note that for p >> 0, and M-u >> 0, which

loosely speaking 1s the "middle" o the range O =t < L,
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M

Vs ekl 2 )2 §T s 1P ) ST e
2 B

o]

=~ (2 Z —l[S(O).+ H’I’é(O)+ ...]+

Q

2.. 3--.
+ {T S(o) + ur’s(o) + ---]+ cee
Eié

=12 Z ~1i5(o} + i Z d(o) + terms in
a

l+e
l-e

~

5(o) + Tzé(o)e-om e + terms in

-off (l_e—om 3

(3.2.86)

where 3.2.77 was used.

The behavior of the sums 3.2.83, 3.2.84 and 3.2.85 for small
will now be found and hence the behavior of 3.2.82 determined. The
method of attack will bhe to examine separately the funcilions of 4

which miltiply 8(o), 8(o), 8(o), ‘and  §{0).
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Coefficient of 5(o)

From 3.2.82 through 3.2.85

" W -
F_ = coefficient of 8(o) = e 0K :E:emommeomp ji:e—mom+e"om“‘iil
' o

o] o]

which can be expressed

where &g and CO are at present unknown.
Now it is important to note that as T - O, the quantity e O
approaches a number with magnitude less than unity {see 3.2.73),

therefore e_OT“ approaches zerce "faster” than any power of 1 as

i @, This means that

F - C, for p>> 0

-of

but from 3.2.86 the coefficient of s(o) 1s ;igfaﬁ ; therefore
l-e
o - 14e”
0 l_e~05
Now note that for p = o,
Foo= =a | C oy a. = :g-OT =vm;%m~
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Therefore

\ -ar
coef of 8(0) = loﬂ, e Ot iﬁ;ﬁ (3.2.87)
1l-e l-e
Coefficient of 8(o)T
From 3.2.82 through 3.2.85

") |

Fy = coefficient of S(o)T = 0K zg:mémam—e+amu E[:me"mam
o o

+ e"drpjiz
1

whilch can be expressed

s + blp + ¢

where - a. b

17 and c, are at present unknown. AS was noted in the

lJ

determination of the coefficient of §(o)
Fl—)'blp.-i-cl &5 u = w

Comparing the sbove with 3.2.86 shows that ¢, = o since 3.2.86

containe no constant term in BS(o). Now note that for H =0

-
e

_Fl = dl +Cy =8y ==§:l = Tz:g:aﬁjﬁ
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Therefore

coef of é(O)T = e P 4 terms of 3.2.86

(3.2.88)

Coefficient of £5(0) 2

Application of the technique just used shows that
coel of '%‘-E';(O)TZ = - Z EHOTU' + Lerms of 3.2.06 (3.2.09)
' 2

Coefficient of %'s"(o)T3

Application of the technique just used shows that

coef of %'é'(a)m3 = Z e OTH | terms of 3.2.86  (3.2.90)
3

Therefore to summarize, a more accuraie expansion of the term

;E:Sme_amlm_“l has been obtained. The result is

o]
2

5 |
Zsme-oﬂ?lm-ul » I;_Oﬁ?g(o) +Zl 5(0)T ZZ 8oy L

2

3
+ Ejtﬂ{o) T N P ~178(t)
3 6 -

Lok
2 d%s E T dsy
+ — = (3.2.91)
at 2 1l2 dt b
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10.) PFrom 3.2.73 it can be seen that
ie"om|‘< 1
therefore

lim Tke_ (Mp)T 50

for v,k Tinite

This meang that for large M, all pole noise, the inverse covariance

matrix 2.3.36 becomes

~ 2] . _ ~ o {(M+1-m) o {Msl-p)
WM(mT) = Qll:o pM6 mM+Op06mo} plQ‘l [6 “Me +5 .

- ~o{1+m) -a.r(lm) 2.2 -QT
* 6‘Moe +6moe * Q‘O+Q’1+Q'op:I.A-QCLple 6'111-1,[_‘,0

1 e-cdflm—p]

=200

-ar
¥ [Q1Q0+Q’lpl:l O mep], 1t [QO+Q16 T

[e_ofr[(M-mH(M-u)] + e"aT(me“)- (3.2.92)

P

o e-BOﬁI‘

By T5aD
ll-e aor

Al.) From 10.} the “th component of RE 1s



11k
M
E: 'Wp(mT)Sm = - QE[S(L)&HMfs(O)SHo]

m=0

M
- 09 6pMe'O£I_(M+l)Zeamsm+s(L)e"m(M’3“”)

ol
M
. -af —on - {(34p)
+ §H0e Ze Sm+S(o)e +
o)

oA -
+[QO+Q1+QOpl+Ql p.e O’Tj[s(t) +[Q3_QO+Q1 plil [S( t+T)+8¢( t-T)]

M
~0fp pl -O[I"Im—u’
+ pl[Qo+Qle | + —-———Le_zaz]z S,
e}
M M
-2
2 e | om(up) T 0 (em) | -0 -0
°1 1 - 20T m m
-¢ 0 0

(3.2.93)

It now remaing to determine the limiting behavior of 3.2.93.

The behavior for p >0, M-p > 0 will be determined first.
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12.) Consider the term [Q1Q0+lel}[S(t+?)+8(tmiﬁJ. From

3.2.57 and 3.2.69

| a1 3 1 (.2, 2).2
9% 0P = T ) Sy {l - (%) }
C

Therelore {rom 3.2.76

[91Q0+Q191}{S(t+T)+S(t'Ti}* 8‘Q1Q0+Q191)S(t)

n

V]

2
sl B

i dAS

.2.9
L[5 ot (3.2.9%)

+

The term

(3.2.95)

will now be discussed.
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13.) Consider the component of 3.2.95 (see 3.2.7k)

B B
- |:2 cosh BT“KEJI:Z coshyT~K9]_l N
ZdST o o 1° §'s

l E_- 4 gt 12 Aoe(&r)ecﬂi(l..e*zcﬂl) b1 E_E

term} gives

H\1lz dt

p %(Th dhgz% (3O -1
N 3(2 2)‘.24\5-2“/_}

Holding only the term of order T {which is the lowest order
N

s/‘)_h a's
18/12 av”
d 8

.2.96
( ;7: (3.2.96)

Equations 3.2.69, 3.2.71, 3.2.73 and the fact thet
L -oma V3
ZLL —_ Zm = - IS
m=0

were used in deriving 3.2.96.

1h.) Combining the results af 12.) and 13.) for the term
"

in — gives

where T d1is similar to d4dt.
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15.) Consider the component of 3.2.95 (see 3.2.77)

¢ 5 ' B B [ -2QT | 2
Di 2478 1 fay ol] & 2 478
p T == = geoshfT- — JjZcoshy - — T
W\ ase Zz Aoe(ﬁ’“”jT A, ‘gl at?
-3 7 (2 2\ 2lafs 1
_,..ﬁ[l +-6-5(f3 +y )T —5 5> (3.2.97)
at® ¢°-p

Equations 3.2.69, 3.2.71, and 3.2.73 were used in deriving the above

result.
a%s
16.} From 3.2.94% and 3.2.97 the term in —5 is
dt
ol - eSS - s B
. Yz_ﬁz 412 T(Yzwﬁz) 60 I
z
1 1 a“s -
= B +y T
2 “—"zﬁ ( )dtz

17.) From 3.2.95, 3.2.94%, and 3.2.93 the term in 8(t) 1is

—OT

g
{Q§+QJZ_+QOpl+lel + 20,Q,+2Q,p + LCT N ¢_] a(+)

2 2
18
'*E(—sz) 5(t)T
Y -p

where the results of 6.) were used.
Thus far the non~delita function components of the solution have
1
been determined. The coefficients of §(t) and § (t) will now be

determined.
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18.) From 3.2.93, for small p, it is seen that only the
following terms need be considered in the determinstion of the

coefficients of §(t} and 6,(t):

B 2 . -ar -GTm ~oTy
b, = "S(O)Qléuo“PlQle 6MOZE:SME +3(o)e

v @ (Qu*ey)S(T5 (3.2.98)
¢ M 2o M
D ~Of |- | 2 e el ~ (flm
+ 0 @E j{:e Sm—pl Ejgjéaﬁ-e j{jsme
o o

From 1.2.2 the minimum variance estimste ig

A = 2
5 = Ug(R s = g z W (mT |7 : (3.2.99)

H=0bMm=-0

Therefore to evaluate the component of the estimate associated with

the terms 3.2.98 it is necessary to evaluate the sum §: p“ "
p=0
" To this end it is useful to note the following

(1) * 5(o) + 6(o)T + % 5(o)r® + %é(o)z3 - O(Tu) (3.2.100)
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M w o]

lim 5 e ~om o S(D)ZE: - o +15(0) ) me” My I S(O)j{}n

Moo
o e}

+_ET;3'S"(0) ste"dl%- O(Th]
8]

= s(o) Ejo+ Té(o)iz;-+-%T2§(o) ij;+%T3§ZO) §ZéfO(Th)

(3.2.101)

M

7>;i2 E;:y“euom“’m y{o) Ejg + &(u):E;lT + OAFH) * (3.2.102)

where it should be noted that y(o) and y(o) are random variables.

19.) ¥From 3.2.91, 3.2.98, 3.2,100, 3.2.101 and 3.2.102 the

M
coefficient of §(o) in E: Py 1s
_ 2 -Qr
T e Y - e o

. _ @ - 20T
+[y(o) zo+ y(o)T+ Zl:\{- P{y e Ofl‘+pl @'E l-—i JE_ -C,cdlz}

1-e

(3.2.103)

k ) .
* The notation UOJT ) denotes a random variahble whose wvariance

approachés zero like Tk a3 T approaches zero and hence k=3
gives t00 high an order to warrent consideration in the analysis
which follcows. See Appendix A for a further discussion of
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20.) Consider the term of 3.2.103 in y(o) and &(n)

' 0
-aT - 1 \ 1
coef = ig: - e T 4p, |Q 4Qie T
Y % 1{%™ I
-20T
2 c 1
-9 ~ — (3.2.10k4)
1 l-e eal 1l-e or
-0 -oT
_ TZ “P1® T PGy tR 01 ¥R, 01 @ -2 14e” A _-or
1) 1-e9T ol ESEE )
vwhich after substituting for Pys Ql’ Qb,{§: s can be put in the
: 1
Fform
of_-pTf, _of -yT) -2aT ) _
coel = - T (l—e < )(l s € )e (l-e BT](I.—E YT) (3.2.105)
oT l (}fI')Ll-
A e 1-e
o)
coef ~ 3 Pt I [1+0(T

)] - -3 By
s ey e ey

(Ta_ ﬁa)eczr (l_e—cez) z2 T

Therefore this part of the estimate is

L

- 3 =Ly s(o)i(o) =3 =B 8(0) | 8 (t)v(t)at

T -P T -B .
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21.) It is now important to make the following observation.

Q
l-e”

2 -ar o _ S\ L -
U T - (mm(i_e_ QT)[(_'L—e EJI\'(:L-e ). [1-e o{f)]

1

QE(QO+PE) = - ;m;TEI?Tf
a

. i | e~ PYfy T
. '.|:- Q,i"'P]_Qle o Zc; Q’l(QOlpl)};— ,(Aie?&}))(i(l-engﬂl) i A e(;T)T
o

But the term - Eﬁ is part of the non-delts 'F‘unr:finn

solution - it is equal ZQl(QO+pl} (see 12.)). It will be dropped
in the remainder of this analysis when it is associated with 8(o)
“and S(o). (See 26.))

Therefore the analysis of 21.) gives

- _e~PTY 7T
[— Q§+P1Q1e aT §jO—Q1(QO+pli}q LIE?B+Y¥$(1,E"2T) (3.2.106)
o]

22.) Consider the term of 3.2.103 in y(o) and 8{o).

From 3.2.103, 3.2.106, 3.2.104, 3.2.106 and the observation that
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the coefficient of the term in y{o) =and (o) becomes

coef =

[l-e-gT](lue;YT) 1 _(eﬁT.—ed'I)(éYT-eQT)
“ﬂ [ 1-e

A e(&rr)T( l-e” eZOAP( —OdI‘)Z

which after expansion

Therefore this part of the estimate is

L_
2 Brlery) y(o)s(o) - 3 EX{ET) s(o)j 6(t)y(t)dt
v -B v -P o

23.) From 3.2.98, 3.2.101, 3.2.91, and 3.2,102 the

. M
coefficient of y{(o)sS(o)T in }: P is
|=0

~oT
€

. ¢
coef. = - p,Q,e o Zf’ qu%*’@j_)* 20[91 @%m

a w200 -0T
G (= [
l-e

-0 -2om(lme-om)2
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Upon expansion the above coefficient becomes {see 3.2.69 and

3.2.73)

1
coef — 5

1
s [B‘r“( By 2}%
r -B

or the term In y(0)S(o)T is

. L
3 g P (6 p905(0) = 3 g (e 18(0) [ s(0)s(orar
e}

v -B Y-

2%.) From 3.2.98, 3.2.101, 3.2.91, and 3.2.102 the

M
coefficient of ¥y(o)3(e) in Z ry, is
. -

, ¢ -QT 5 o-P0T -aT
coel = Tz Z Pl D = 5 - pi = 3] - 5 |7
1 %u—e_w) l-—e_“w(l—e_(ﬂ)“
TBE-‘ZC@

-z2aT
e g e
-G 1 1
— o RANE + — - -~ =
(’—“‘)'El_e aF 1{0 S e zaz}

A o Bl
o}
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Therefore the term in y(o)s(o) is

1 BT S(o)5(0) - - 3 g S(o)] 6 (1)y(t)dt
¥ -B Y-

25.) From 3.2.98, 3.2.101, 3.2.91 ard 3.2.103 the

8(c)y(o) in Z P is
coef = —[pl ;2 + pl -fZ;I }[Z Zl l

B
2 cosh BT - -—)
DN N | %
- 172 Aoe(ﬁ-w)T

(lme_ ZOA'IW

coefficient of

mll—'

B
2 cosh yT- f)
o]

o~ 20T, - (&Y)Tii

o 20T ( —om]lr
1 P l-e 1 1 1
[‘ 6) 66+ e @ }) 7 Y‘Z-Bz 3 (36r36)

where 3.2.69, 3.2.73, 3.2.74, and 3.2.77 were used in obtaining the

final result. Therefore the term in %'s‘(o);ir(o) is
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L

. L
. 2 s(0)y(o) = = 5(o) y(t)ﬁi(t)dt
| 28" T 5 . jc; |

mIH

26.}) Now consider the term in % .S'(O)y(o)‘_[’2

Z D g e Ao
coef = - p Qe "t T " lelﬁp'“”’pl |

As explained in 21.) the term - —MM%B;?TT is pari of the non-delta
A e

fimetion component of the solution and will be dropped. Therefore,
upon Gropping this term and rewrlting, the above equation can be put

in the form

—ar 14e” & e"(B+T)T ‘eﬁT eOENe

(l—e-om)3 Aoe(B+T)TeQT

coel = e

'rT_eOE) N 1
Aoe(B*TjT

Z Z [2 cosh ﬁT—%(Z cosﬂﬁ-%}’)__i-

(5+T)T l_e“ZOT

R
l_e-ZQT
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| -Rom .
- Aoe(;r)T\}l_ede\lL {l-e Zoel?) [1.-(&«,—)11} %l-e@f) +(B+~()T(l-e(ﬂl)ﬂ?]+ 1

l-e”

_ -2aT 3L+e'gﬂjE 5{36 + e-zd[(l;e'“f) 2+(m~() (1-em)Tr{l-(ﬁ+‘r)i;ﬂ

. ] L -
. A_C;élﬁﬂ NSRS T L 2o <s§6)ﬂ [(1_0 2o, cm).
3
[1.o-2amyy_ om|® . -zar {l-eer 36
(1-e72 ) -2 —— 1_6_04

S —ET 0 + %6(l3+r)T[—6_—12+18+[6-12+6)ﬁ] - _(%PTFTT O+OT+O(T2)

Aoe

S H— O+OT+O(T2)

TB(YE_ﬂZ)

whcrce 3.2.69, 3.2.73, 3.2.74k and 3.2.77 were uccd in obtaining the

final result., From the above equalion
coef of > 3{0)y(0o) - {const) T -0 as T - o

Therefore there should be no term of the form £(o)8(t) in the

continuous filter.
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27.} Finally consider the term in %'é(o)y(o)

- - — g, _-2ap
. _J_ -~ T . D_ 2 e 3
coel = (- p9;® ! (%*Pl)““ Za Zo PLp. " P | (T

It can be shown that Z ; which is defined in 3.2.77, has the
3

limiting form

).

3

O + O(Tg)
Therefore

33
Ae(ﬁ+r)T T2'52

coef - Ql(Qo+pl)T

which gives as a contribution to R 'S

‘ L
s [% "s‘(o)ywﬂ S R O RIOHOL
v -B 7P 5
This completes the determination of the coefficients of 6(t)
“and él(t). The coefficients of &(t-L) and 5,(t~L) are determined
in precisely the same manner as above, In fact, with the exception of
sign changes, the algebra is identical. It should be noted that if
the teym of 3.2.102 given by QP(TB] had been carried through in the
above analysis it would have given terme whoce mcans and variasnces
would have approached zero as T - O. Therefore, in the‘lindt as

T -0, 'they vanish.
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CEAPTER IV

ASYMPTOTTC PROPERTIES OF THE VARTANCE OF THE

DISCRETE ESTIMATE

4.l TFirst Order Noise Case for a General Signal

- In part 3.1.2 of this theeis it was shown that if the process

y{t) = 83(t) + n(t) 0t sl (3.1.1)

is observed at equally spaced points in time which are T seconds

apart, the variance of the minimum variance estimate is defined by

. M-1 M-1
! 2 2 -BT Z ~z&11) 2
S = — g |Esy2e 88,1 +(.1+e H (3.1.9)
09 l-e — ~

p=0 ped

where the autocorrelation function of n(%) is

d(t) = oIt (3.1.5)

It is the purpose of this section to expand 3.1.9 Lo zero corder and

. Tirst order in T. The first'order term is defined as the asymptotic
term. It should be noted that the zero order term has already been
calculated and the result is given in 3.1.10.

Rewriting 3.1.9 in terms of hyperbolic functions gives

2 M-1 M-1 .
2 _[ 2 2) AT }: 2
;E- = SO+SM e cschPT -~ 2 cschffT Sjsj+l + 2 cothBT. Sj

(%.1.1)
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and upon using the series

P21y pr s %52T2
1 (er)? . 1w(pm)
csch BT = a1 1~ 3t T .. (k.1.2)

2 L
tanhBT:-JéT[l+(B§) -(fg) +}

4,1.1 can be expressed

© M_l
26" ~ [,2..2][1 1 3) 2 1,02 u) Z
;dz = (SD+SM) (ﬁ +1 + 3 BT + O(T )- T [1 - ’g(ﬁT) +0(T sjsj+l
8 j=
M-1
2 1, .2 ( l;) Z 2 i
— = o1,
+ ﬁT]:l + 3(65[‘) + OfT 8, ( 3)
J=L
Therefore to first order in T
. N-1 M-1
200 .1 1.2 .2
crz = BT SO+SM-2 SJSJ+1+2 z g, 1+{8 +SM +
e j-u_—o j:
M-1 M-l
1 2 .2 yat
+ 2PT|S 8y + 83,1 * 2 sj} (h.1.4)
j:O j:l

bul
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M-1 2
2 42 J+l J
BtByr 2 ) B8y ¢ 2 Z g = 1% Z
. j;o )

hence

M- l z M-1 q g 2
_i___, J+lJ 2420 1 ZZ JHLTP
ol Z +[SO+SM]+ 5 BIIT =
%% j=0 J=0

F3 Z 5.5, 1 (4.1.5)

If the signal is sufficiently smooth so that

. 1.. 2
5. 3. +8.7T+~=8.7 £.,1.6) .
J+i J J 2 ( )

ne

where

. ds
S, = =—

J dt £=]T
'S' 3 dgsl

j T z2

Jate g7

then upon using %#.1.6 in 4.1.5 and retaining up to Iirst order terms
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. M-l M-1 C M-l M1
207 ~ T .2 >: 2 2 Z 2 Z
o S+ T 3.8, |+ S_+5 +pT S+ 8.4, .1,
02 B E:: d Jd d oM P d T Jd d ( 7)

The trapesoidal approximation to an integral gives

L M-1
[utmiar=n ) wam « Sxyx(o)] (4.1.8)
0 j:D

as a first order expression for the integral. Therefore using L.1.8

in 4.1.7 and again retaining only up to first order terms

5 L L L
26 1 .2 T |2 22 T 2 .2 z2 prl| .2 2
s - B[S at - T‘Z_B{SM_SO]-F Ef 834t + SO+SM+'3]S dt 5 ljSM Sojl
U@ O &} o
T
+ BTjSédt
[#]
o
o L T E
A A - 2gl at |+ 21T "éu;-—(a-a
= -3 E[Sdt+(S+SM)+B S +2f3 85 ZBSMSO
GE—) o) o
L
, . Blo? o 1
+ ﬁjssm 2(5M so) (3.1.9)
O

But the integrals in the first order term can be expressed
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and

hence the coefficient of the first order term is zero. In conclu-

sion the varisnce of the estimste in first order noise can be

expressed

oF - og(l . O(TZ)) (4.1.10)

whexre UE ig defined in 3.1.18.

4.1.1 Asymptotic Variance when the Signal is a Constant

The variance of the estimate of a constant is expanded in
terms of T, the time between samples, in this section. ILet the

observed process be

y(t) = & + n(%) 0O<t <L

hence
a(¢) =1 (h.1.11)
S =1 O<p<M (£.1.12)
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From 3.1.9 and a 1little algebra

-pT : 2
O”g = 0'2 }E; BT = ; T (i{‘.l.13)
M(l-e )+(1+e ) 1+ o tanhg pr
Therefore
a2
g L 1 ~ L1 1 2 1 Ly
?_l+ﬁtanh§ﬁT—.l+T\:-§BT-B—.§(BT) +l_57§:€(6T) -"’}
g
~ BL L 2 1 a
=1+ - 3p (B [1"1'5 (BT)" + J
and
P
BL PL
14 & =
2 o~ 1 z 2 1 2
2 = l"'i"é' BL(ﬁT) [l_m.(ﬁ']f) +'-'+.]
) 1 4 =
3 2
02 2
Bui = = O = variance for continucus "sampling”,
1+ PL
2
therefore

2 BL

L 12 2 1
% =1 - 135 '—“‘“"""B'z (BT) [l - E(ﬁT)Z‘l‘ "'] (ll--l.llf-)
Ue 1+ Cl
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It is important -to note that does not have a flrst order

CDQN| L—*Qr:\:»

term and hence does not have this texrm either (as predicted in

tgnﬁagx

%,1.10). Tt is also important to observe that the series 4.1.1k4 is
an alternating serles and hence the error is less than the last term
used. Therefore the improvement in variance gained by going to con-

tinuous sampling is defined by (for BT < 1)

bg 1
? < ) BD i (k.1.15)
L 2
+ e —
2
Since
BL
2
< AL
BL ?
1+ 5
1T the time between samples is chosen such that
BT =% (4.1.16)

ther < 1.0l which glves the followlng useful criterion:

ol o

If the samples are spaced at one-third the corrvelation time (é)

P
aparts, then the variance of the estimate of the unknown constant @

is within one percent of the wvariance that would be obtalned at an
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infinite sampling rate.

L,2 Second Order Noise Case for a Constant Signal

In this part of the thesis as in part 4.1.1 it is assumed that

the process
y(t) = 6 + n(t) 0 <t <L

is observed at equally spaced times and = minimum variance estimate

of ©® is made. From l.2.3 the variance of the estimate is defined

by
EE -5 & s (4.2.1)
%

where
5 o1 ... 1] (4.2.2)
-1
R~ = (WH(mT)) . (4.2.3)

Therefore, upon substituting 4.2.2 and 4.2.3 into L.2.1 the result

M M
Z Z W () (h.2.4)

is obtained. Tn this part of the thesis 4.2.4 will be expanded in T

comIH
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up to and including the first order term, which is defined gs the
asymptotlic term, for the case of second order noise. As in Chapter
III 1t will he convenient to treat the all pole noise and the noise
with two zeros in its spectral density separately. However, before
undertsking this task, 4.2.4 will be expressed in closed form by a
rather efficient method which is now described.

From 2.1.5 snd 2.1.13

N ENCY

+z”(M+l).¢D(Z)PH(Z“1) + 7 -

¢ (2 @ (2

Wi(z) = 2 e)

M
= j{: WH(mT)Z—m (k.2.5)

m=0

therefore by letting 2 =1

M 1)P (1 1)p (1
Z wu(m‘l‘) 4ty + o )Pu( ‘ + P )P“( : (k.2.6)
e g, (g (1) F,(1)8,(2)
and
MM M '
" ¢, (1) P (1) P (2)
>0 Y W) = () Fhay « 2= ) b (k.2.7)
=0 m=0 ¢N(1) p=0 ¢N(l) ¢N(l)

Tt now remains to evaluate 4.2.7 in closed form. The autocorrelation

funetion of 2.3.1 is assumed with ﬁl = B, ﬁz =y
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From Z.3.2,
§ ) = P s :
- 2
032_(1+e-ﬁT)(l-e—rT)+ cg (1+e"7T)Ll-e'ﬁTJ
(h.2.8)
2.1.35, 2.1.45 and 2.3.1k,
P (1} 0
¢ ut
= - @6 .+ —t 3 (£.2.9)
g () L gmOT
2.1.53, £.1.63 and 2.3.15,
Pt(l) '
P
B g+ “ﬁﬂ ; (4.2.10)
¢N(1) he l_e_
2.3.8 and 2.3.9
g_(1) -pIl, _ -
D o e _Eé-e fg ; (k,2.11)
G (1) VE (l—e )
and finally from 2.3.22 and 2.3.23
' Pl%e—(ﬂ { = OMT QT |~ Ch
o 4+p 4 = - T | © e e +
pl Pl ¢D+ple (M+2)
PR (.1“3-20&1) o) ; (hoz.12)
(i E) (oo™ ) -

¢D+ p;e
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Upon substituting 4.2.8 through 4.2.12 into 4.2.7, the result

1 (e e o)
Gg' 2(l+e“3T)(l-e_ﬁJ'+ dg (l+e-YT) -e—ﬁT)

°1
M '
e B
where
& : 2p, % | -ar(M+l)
3 (Pul"*’ppl):’ i ¢D+pli—gw(M+2) 1-:2@_1

u=0

20,0, (1'_6-2051) o-om(M2)

n ; +ple“ﬂ(M+a) (k.2.14)
D

is obtained which is the final result. It should be noted that the
quantities of 4.2.13 and 4.2.1h are defined in 2.3.37.

The asymptotic term of 4.2.13 will now be determined for secondl
order noise when the condition 3.2.25 does not hold. In so doing it
willl be necessary to make many expansions similar to those of
Chapter III, hence only the final results and occasionally an inter-
mediate step will be glven. ‘"he definitions of the quantities

P s ¢D’ ete. are identical to those of Chapter II and Chapter ITI.
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Second Order Noise When Bai + ycri 20

The components of 4.2.13 and 4.2.1) are expanded below

1.} (1-6"6T)(l-e"‘T) (M+1)
032_ (l+e ) fEBT)(l--e B TT) + cg (3.+e— 1(T)(l-e- BT)

_ M+l
o2 [=38 2
crl coth = + Ga coth -éﬂ
2 2
Pri" L |1{By
—’(a i +[K a ) ]T (;4“2-15)

1 [1-e"a@ﬁ,e'f@_’

2 E (l—e -ot J
. 1 [1-- (41-— BT+%B2T2)] [l~( 1- YT*%‘YZTZH
KU1+ (a~p-y)L] [l‘(i“aTJ'%aBTz)]

(k.2.16)

- Brha (e
3.) ~2k%Ql - o (BT | ory (girea)] (4.2.17)

By expanding 3.2.36 for one more term it can be shown that

*
e 1-aT+%a2T2+O(T3)
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KB (aaB) (ay) 11 (2a+Brr)T]

k%pl - (a-B){a-y) Tz[l%( 2a~B-1)T]

e-otr(M+z) . e-aL[l_zaT]

k%ple‘m'(M-i-z) - TZ(H-B) (a_r)e*aLEl_%(Za_l_a_l_T)T]

5-)

6.)

+ (a-ﬁ)(a~r)e—aL] (4.2.18)

koofy —(a%-8%e%F) T 1a- (B e (h.2.19)
4 }_..e"(ﬂl(M"*'l) 2 I T ..e“aL
l_e—O,'I' { eOﬁI‘_l aZT'cl (1 h ) ! T(l-e_ab)

(4.2.20)

-1 p1 85 2 [l_e—ar(mu.)
&stple-o@(mz) )

-2 (a2-52 az_ra)(l_e_az,) B s
- Kaz (a-i—ﬁ) (a+_r)+(a_s) (a_T)e-aL 1 E(B‘f‘“f -E.L) T




| L
T.) lepl = -kPe (&T)Teompl - |
- ~(a-p) (a-7)T° [l%@a-—ﬁﬁr)l‘] (%.2.22)
~ 20l
R L EE R (h.2.23)
l-e
L - -
. ok qul(l_e zam)c or{M+2)
l_e*dz' ¢D+ple-af(M+2)
Ly (aB)(ampe™ — [1 +(% -B-r) T]
(a+B) (a+y)+(a-B) (a-y)e ™

(h.2.24)

The preliminary calculations have now been completed. The zero
order term of 4.2.13 will now be determined. Upon substituting
4,2.15, Lk.2.16, L.2.17, .42 and L4.2.2% into 4.2.13 and 4.2.14 and

collecting terms of zero order, the result

£H34ﬁfL4mﬂbaﬁE%ﬂhaﬂ)
ol K2 al (Bra) (y+a)+(B-a) (B-a)e 2T

(k.2.25)

+(26- (Bta) (ya)-(B-a) (y=a)e " |
a | (Bry) (yra)+(B-a) (y-a)e 2T

9|
-t

is obtained.
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Repeating the above substitutions, but this time collecting terms of

order T gives,

3(2:)2+9z{2_;z_(a-3l e aL)

Ka Ka (+B) (aty) +(a=p) (a-7)e ™

_ ) (a=B) (a-p)e™™ Bry-a
(a1B) (a1y)+(a-B)(a-p)e @0 | 2

. s

Ka 2 (a+B) (a+y)+(a-B) (a-y)e

(3-5)(3-T)e_aL (a }
- L = B~
(a+B) (a+y)+(a=B) (a-7)e 2F \ T)

_ By [(a-B)(a—r):\ 1 . (a+B) (a+y) (l+e'aL)-Za(f.’>+T)e_aL

Ka
(2+P) (aty)+(a-p) (amy)e 2"

= Br (a-p)(a-p) {1 - (a+p) (a+y)+(a=p) (a-p)e 2"
KaZ (a-B)(a-v) (a+B) (a+y)+(a-B) (a;T)e'aL

=0 (h.2.26)

which glves the interesting result that the asymptotic term is zero.

It will turn out, as is next shown, that the asymptotic term is not
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ZEero when BOE + TUS': 0 (the condition for all pole noise).

Second Order Noise When Bci e ycg =0

The asymptotic term of is now determined for second order

Q |H
DY

a
nolse when the condition 3.2.25 holds, that is, the noise is "all

t

pole.” Again it is necessary to make many expansions similar to those

of Chapter ITT, hence only the final results and occasionally an
intermediate step are shown. Without loss of generality the condi-

tions

%]

2 1

0'2 = =- "}:

are used again.
The componcnto of 4.2.13 and 4.2.1L are expanded below

L) [1-ePY1-e ) (w1 L

1 -pT - 1 - BT} 1 BT 1
E{l+e Ml-e TT)_.?(l+e YTXl-e ﬁT} B coth§~ - -f_coth%I
‘ 252
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2) _Lfl-e‘BT)(w-e'TT)Q ) 1 (J.;e“ﬁT)(lme'Y’T)
Vi 1™ g (BT -a

By
.3\ i J{ 2, 15- 7\/_}1 J
T(‘rz—ﬁz)l S(Pry)T (5 TE)( 60(3-y3) JTr‘(LL 8
.2.28)

3.) As merntioned in Chapter ITT, e_OT(M+l) - 0 faster

than any finite power of T when ﬁcf + ycg = 0. Therefore

M
Z(p“l+p;l)—+ - Zple-Oﬂ?. l-(}fI' (4.2.29)

l-e
=0

ey - ;% (1;e-OT)2 P1®
g e Bl g o
(k.2.30)
. 11 BETT RN 2] .
SR ey [l 0(3-/3) e (e

The preliminary results have now been given. Upon gubstituting
4.2.27, h.2.28, k.2.30, and 4.2.31 and collecting terme of zcro and

first order, the result
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ﬁi%ﬁLL+1_iﬁLu&& (k. 2. 32)

1
GS Bl B 2r+B 3-\5

is obtained. The above result completes the analysis of this

section.

4.3 Numerical Results

Numericzl values for the variance of the estimate of a constant

in second order nolse are easily calculated from the closed form

expressions 4.2.13 and 4.2.1&. TIf 05 and. 02 are chosen to be
2 52
2 -
ol = .r__E_fi_é__ (4.3.1)
(v-B) (a_ +Yl3)
2 2 az
~ -
o5 = P —-—L——»—z (4.3.2)
(y-BYa™+ )
then the random process has the spectral density
2 .2 2 @
6(w) = 2oy -57 —_— (4.3.3)

(T-E) (D.zl yﬁ) ((.02![32 a)z%-rz)

and

a
I

varlance of process

fon]

jG(m) g (b.3.4)

- oD

fl
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The curves shown in Figure 4.3.1 giwe the vériance of the estimate
of a constant (when the spect:al density‘is.that given in h.3.3)
versus M. It should be reﬁembered that M + 1 1is the number of
equally spéced data points. An observation time of 10 seconds was
assumed fdr each of the three cases: a =1, PB=2, y=3; a=35,
p=3 yv=1; a=3 B=1, y=2. Vvalues Tor M vere:
1, 2, 3, u,ls, & 7, 8 9, 10, 20, 30, k40, 50, 60, 7O,
80, 90, 100, 200, 300, koo, 500, 600, TOO, 800, 900, 1000

znd the Lobal T09% execution time was 40 seconds.
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CHAPTER V

DEGENERATE SAMPLING RATE

5.1 Advsntage of Sampiing at the Degenerate Rate

In Section 2.4 it was shown that 1f the two-sided Z-transform
of the sampled autocorrelation function had no finite meros, then the
inverge covarlance matrix had nonzero elements orly on the main
diageonal and the 2D adjacent diagonals. A sampling rate T for
which thisg phenomena occurs lie termed a degenerste rate in this
thesis.

It has already been noted that the discrete minimum variance

estimate of the parameter 6 1in the process

y(£) = 63(t) + n(t) 0=t <L

ig computed from the vector of ohserved values, y, by the relation

A
8 =1y
where
— 2 1.
f = 69 R 8
-1
S R
02 = (S R ls)
9
-1

=
il

inverse covariance matrix of the sampled noise.
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The prominent rolé played by the inverse covariance matrix in the
above relations shquld be noted. It can be seen from the sbove
reiations that 1f the inver%e covariance matrix has the simple form
meniioned in the first parsgraph, then the calculation of dg and

T will be relatively simple. Therefore simplicity is the main
advantage of sampling at this rate.

In order %o be able to take advantage of the simplicity gained
when the samples are taken at the degenerate rate it 1s necessary
that the variance of the estimate be below an acceptable maximum. A
special czse will now be worked out which will show that the variance
obtained when sampling occurs at the degenerate rate can be acceptable
ﬁnder all but the most stringent criterions.

Consider the problem of estimating the constant 6 in the

process
y(t) =6 + n(t) O0<t<L

where the nolse has the spectral density

@) Eﬁf(ra-ﬁz) (uﬁ+az) 5.1,
G (w) (rﬁ)(azwﬁ) (m2+ﬁ2)(m2+rz) (5.1.1)

and the corresponding autocorrelation function
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[w{az-ﬁg)e—ﬁltl+ 5(T2*ag)e-r|tE
(5.1.2)

( - .
p(t) (Y*B)(az+rﬁ)

It should be noted that the @(o) =1, hence the noise has unit

variance.

In the notation of Section 2.4

#(t) = cfe-5|t1+ cge-rltl (5.1.3)
where
0'2 = T(az-ﬁz) . .14-
1 (r-ﬂ)[a2+rﬁ) (5.1.4)
and
o Bl (5.1.5)
(+-8) [a%+18)

*
From 2.3.2, for ¢ (z), the % transform of the sampled auto-
correlation function, to have no finlte Z-plane zercs it 1s necessary

gnd sufficlent that the quantlity Ao defined by

A = oi(lue"EBT]e-YT + Ug(l-e"'zﬁ)e_ﬁT (5.1.6)

0

be equal zero or eguivalently
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B HZ—YZ sinh BTO
== 2 2 = (5'1'7)
v a-p  sioh w(TO

I—'qm! qu

wWhere “i‘o is the time between the sszmples taken at the degenerate
rate. Under the assumption that the sampling rate has been chosen
such that 5.1.7 helds and from the results of Section 2.4, the inverse

covariance matrix of the nolise takes the form

—

.
i |
Qn Q]Qo QEQD
2 .2
e, Qe §0.+4A, 2.4,

e, 040, 4 +Q1+Q2 Q,Q,+4,Q,

N\

\\\A\

O

2 2
Ul DA R 9t 4%

a
Q‘ZQO Q’lQo. Qo

p—

where

- -2 B~ -{B+
k = z(l—e' 25TO} [l+e o —e+( T)To—e ( T)T] (5.1.8)
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IR

Q, - k" (5.1.9)
[ -FT -yT

q = -k a(e ° e 0) (5.1.10)
L "(5+T)T

Q =kFe © (5.1.11)

The optimum weighting vector T and its associated variance

!
will now be computed. Upor noting that § = (11 --+ 1 1) and the

form of the inverse covariance matrix given above, Gg can be
expressed
2 B T 2 .2 .2
oy = (8R78) = [(M+l) (QO+Q1+Q2)+ ZM(QOQ1+Q1Q2)+
2 2]t
+ B(M-l)QoQa-lFQle-LPQZ-ZQlJ (5.1.12)

and the elements of the weighting vector ¥ :(fp)z g.R B8 are
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: 2t 2
f = g (QO“LQJ.QO“LQon)

<

fy = “g(Q;+Q§+2Q1QO+Q1Q2+Q1Q0)

2( 2 2
T2 = Ge(Qo+Q1+Q§+2Q1Qo+2Q1Q2+2Q2Qo)

2
£oo= cg Q§+Q1+Q§+2Q1Q0+2Q1Q2+2Q2Q0) (5.1.13)

2( 2 2 2
T2 = ge(Q0+Q1+Q2+2Q1Qo+2Q1Q2+2Q2Qo}

2{ 2 2
-1 = % Qo+Q1+2Q1Qo+Q1Q2+Q1Qo)

2] .2
fM‘: GO(Q0+Q1QD+Q2Q0)

The simplicity of 5.1.12 arnd 5.1.13 should he noted.
A numericsal example will be worked out now. ILet a =3, p =1,
and y = 2, then 5.1.7 has only one solution for T, and the result

?lﬁ To = 1. Iaspeclion of Figure 4.3.1 shows that M = 10 corres-

ponds to TO =1 and the variance for an eleven point estimste is

02 = ,205. Also from this figure it can be seen that the variance of

an infinite point estimate is 02 = .20. Therefore, if the units are

0

seconds, it can be coneluded that ssmpiing at one polint per second

gives a varlance within 3 percent of that obtained at an infinite rate.
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5.2 Pole-Zero Configuration for the Degenerate Rate to Exist for

Second Order Noise

In this section it will be shown that a reai TO cannot he
found as & solution to 5.1.7 for arbitrary a, B, y. It will be

shown that a, B, ¢ must satisfy the relation

a>y>p (5.2.1)

where it has been assumed, without loss of generallity, that

v > B (5.2.2)

The proof of 5.2.1 is as follows. From 5.1.7

sinh BT p_ 2 2
— 222X Zo (5.2.3)
sinh T ra-b
therefore
sign (aZ—TE) e Sign(aa-ﬁz) (5.2.4)

and hence the relation
T‘>&>B

cannot hold. Equation‘S.z.h allows 5.2.3 to be written in the form



155

sink BT
R 2 .2
.ﬁTO' |a =Y ‘ <l ( )
> = = 5.2.5
ginh YT, aZ_BEI
T I
, Sinh X ; ; :
where the fact that the function ———— 15 monotonically increasing

from unity was used. Rearrangement of the above equation gives

2
la®?) < |2%-5%] (5.2.6)
which implies that
a>v>p (5.2.7) ‘

and that the relation
r>B>a

cannot hold. Hence 1t has been shown Lhat for s degenerate rate to
exist, the pole-zero configuration of the filter, which will generste
noise with the spectral density 5.1.1 when white noise is the input,

munt be as chown below.

<D




156

Tt remains to show that the relation

g

o 0o

"sinh ﬁTO
P (5.1.8)
s8inh ﬁ%

|

[l ne)

o}

cannot be satisflied for nonrerc, real T, if the noise 1s all pole

second order npolse. Without loss of generality, let cz = % and
cg = - %‘ where ¢ > B, which forces the noise to be all pcle.
From 5.1.8
sinh 5Td
f—ET(.'J
Sinh YTO =1 ()-l-9)
L&

which only has the solution TO = 0. Therefore a degenerate rate

doeg not exist for all pole noise.

" 5.3 Connection Between Antoregressive Noise and the Degenerate

Sampling Rate

In this section the connection beiween the autoregressive noise
discussed in Section 2.4 and samples of continuocus noise taken at the
degenerate rate, when it exists, will be explored for second order
noise. In Reference 9 it 1s shown that a discrete random process

defined in the foliowing manner

oty * YRyl T SRy op = W ’ (5.3.1)



157
where the W£ "are independent gaussian random variables with zero

mean end unit variance, has an sutocorrelation function

¢[(i"J)T] = E{n'b—i'fn‘t-,jT} (5'3'8)

and an inverse covariance matrix which is identical in form to that
shown in Section 5.1. Becsuse of the uniqueness of an inverse
matrix, the covariance matrix of samples taken at the degenerate rate
must be identical 1n form to the covarlance matrix of the auto-
regressive samples, and hence they must have the same sampled auto-
corretation function. In conclusibn, it ecan be said that when the
degenerate rate exists, and semples arc btaken at that rate, then the
linear combinetion 5.3.1.gives an independent gaussian random variabie
where the Q's are defined in 5.1.8 through 5.1.11. Stated in
another way, it can be said that samples taken at the degenerate rate
can be simulated by obtaining a new sample from a linear combination
of the past two samples and an independent gaussian random variable.
Tt should be noted that if samples of a continuocus random

process are to conform to the medel 5.3.1 Then it 1s necessary that

En, W, =0 (5.3.3)
Ent—ETWt =0 . (5.3.4)

Conversely, 5.3.3 and 5.3.4 can be used to derive a relation between
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the parameters of the noise and the sampling rate which must be
satisfied in order for the sampled noise to be autoregressive and
hénce degenerste. Of coufse this relation has to be 5.1.7. That
this is true will now be shown directly after some preliminary
concepts, which are important in themselves, are discussed.
The simulalion of samples of random processes with the epectral

density

2 aa>2+a2
tlw) =K (
2 2 2
. w Bty
at equally spaced intervals in time will now be discussed. Noise
with the spectral density 5.3.5 can be generated by péssing gaussian
white noise of unit spectral density amplitude through the system of

Figure 5.3.1.

W(t) K(5+a) a(t)
(5+B) (S+y)

Figure 5.3.1
System for the generztion of noise with the spectral density 5.3.5.

where W(t) is the input white noise, n{t) is the cutput correlated

noise, and 8§ 1is the Laplace variable. TUpon ncting that
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(5.3.6)

K S+a . X a-f _ a-y
(8+B)(5+y) ~ v-B|S+B S+t

it is seen that the system of Figure 5.3.1 is equivalent o

vl
m
]
W

[+

|1 *2 -
| § T
—
LY |

Figure 5.3.2

hguivalent system for the generation of noise

with the spectral density 5.3.5.

where Xl(t) and Xe(t) have-been introduced for mathematical con~

venlence. Tt should be noted that
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n(t) = (a-Bly (t) - (a-y)x,(t)

(5.3.7)

In matrix notation the differential eguation describing the

system of Figure 5.3.2 is

R E B e (L)
e - K
X = = t 7B (5.3.8)
F2] [0 T e ) |
The solution of 5.3.8 is (where t, 1s an arbitrary initial time,
'to<1-.)
-B(t-t) ]
%y () e 0 % (£
X(t) = =
~r{t-t,)
%o (1) 0 e %o ()
) -B{t-T) W i
. 1€ 0 wir)
-
=7
t 0 S B e
L _ |
(5-3.9)

which can be verified by substitution into 5.3.8.

Now suppose the

o

process started at to

and it is desired to obtzin the covari-

ance matrix at sowe linite time +t = ti. Putting © = ti and
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to = - @ in 5.3.9 gives
U -B(t,-) 17
tile 0 w(T)
- K
X)) -5 | ar
1 T"ﬁ /. “T(ti"'r)
0 e LW(T)
- o .
0 0 1
Z%Bf Wi+t )dr  (5.3.10)
L J
and hence
fToo L L ’_eff‘11 0 ,
. ' 2 0 o
EX(t )X (5,)} = ( K‘S)z ff 8(7-n)drdn
TPoseze | 0|y 1] |0 om
L . (5.3.11)
1 1
2 2B By
o KB)E (5.3.12)
T
i L
Py ar |

where the orders of integration and expectation were interchanged and

the white noise property of W(t)

B{W(t, +T)W(t;m)} = 8{r-n) (5.3.13)



was used in obidaining 5.3.11.

stationarity of the vector
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Equation 5.3.12 illustrates the

‘i(ti) in that its covariance matrix

doco not depend on ti. Defore progreasing to the technique of

similating discrete samples of the random process it is necessary to

calculate another covariance matrix.

0 eﬂB(t_T)

LW(T)

o1 (t-7) o |lwo]

dr

Define the vector E(t,to) by

(5.3.14)

then in a manner similar to that used in cbtaining 5.3.12, the

relation

E{Z(t,t.)Z (t,8,)} = -~
T

is obtalned. Tt should be noted that E(t,to)

X{t,) since Z(t,t ) depends on white noise which occurs after t_.

1( ~25(t-t0)) 1( —(aw)(t-tO))
2B 1-e Py 1-e
[ et ( -2r(s-t ))
-
(5.3.15)

Equation 5.3.9 can now be written in the form

X(t) = G(e-t )X (t ) + B(t,t,)

(5.

is independent of

3.16)
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where

¢(r) = ' | | (5.3.17)

s .

and the only restrictions on t and to is that t > to. The
technique of simulating discrete samples of the process n(t) at
the times O, T, 2T, =++- , (WN-1)T, NT, <+ will now be
described. First a random vector with the covariance matrix 5.3.12
is generated and denoted X(0)

%7 (0)

X(0) = : (5.3.18)
x5(0)

and the linear combination (see 5.3.7)

n(0) = (a-B)xy (0) = (a-1)x,(0) (5-3.19)

ig cﬁmputed. The quantity n(o) is the firset sample of the process
with spectrsl density 5.3.5. To get the sample at £ =T a random
vector
7y ()
Z(T,0) = : _ (5.3.20)
z5(m)
is gemerazted such that its components have the covariance matrix

5.3.15 and then the calculations
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(P(T)-}'{"(O)‘ + Z(m,0) - (5.3.21)

It

X(1)

n(m)

il

(a-B)xy (T) = (a-v)x, (1) (5.3.22)

are made. The quentity n(T) is the second ssmple of the Process,
In general, the Nth sample is determined from the (N-l)th sample

from

X(NT) = ¢(MT((w-1)1) + Z(wT, (N-1)T) (5.3.23)

B(NT) = (a-B)x (NT) = (a-y)x,(NT) (5.3.24)
zl(NT)

Z.(NT, (N-1)T) = (5.3.25) "
ZZ(NT) '

-1
where the Z 8 are independent of one another snd have the covariance

matrix - -
1 -2pT 1 - (B+y)T
| ; EE(l_e ) ﬁ+Y(lwe Y )
R{7Z } = —= 5
(Y-B) i—__(l_e'(fj'i‘Y)T] l_(l_e"B'YT)
B+y Y
- (5.3.26)

Now that the preliminsries are completed, attention 1s turned to
deriving 5.1.7 by a direct method.
To restate the problem, it is desgired to derive a necessary

condition such that



a,n(T) ;azn(o) - w(aT)

finite variance discrete white noise

n(2r) +

where
. =Z_: L (BT
w(zT) =

and hence
E{n(T)w(zm)] =0
E{n{0)W(2T)} = O

In the analysis which

M= [(a-8) -(a-7)]

50 that 5.3.24 can be written in matrix notation

n{NT)

(a=P)yg (NT) - (a-y)x,(NT)

ME(NT)
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(5.3.27)

(5.3.28)

(5.3.29)

(5.3.30)

(5.3.31)

fcllows it i1s convenient to define the matrix

(5.3-32)
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The samples n(0) and n{T) will now be expressed in terms of

the components of X(0) and %Z(T,0). From 5.3,32

n(0) = MZ(0)

(a-B)xy (0) = (a-v)x,(0) (5.3.33)
and from 5.3.23 and 5.3.32
u(T) = MX(T) = M[¢(T)X(u)+2(f,u)]

= (a-B)e Py, (0)- (ay)e Ty, (0)+ (B2, (2)- (8- 1)z, (T)

(5.3-34)
"Solving 5.3.33 and 5.3.34% for Xl(o) and. xz(o) gives
1 -pr_-yr|? T
%, (0) = (a-p) L emPle [n(m)-e .II(O)-(a-ﬁ)zl(T)Jr(a—T)Ez(T):‘
(5.3.33)
-1
x;(0) = (a-n)* e"BT-e“fT) [ntw)—e”ﬁTn<o)-(a-s>zl(w>+(a-r>7.z<m>}
But

n(21) = ME(21) = M{¢(T)X(T)+E(2Tr,T)}
= M{Q(T) [$(T)X(0)+Z(T,0)] + Z(2T,T)}

= ME(T)E(0) + MY(T)T(T,0) + ME(20,7)  , (5.3.36)
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therefore upon substituting 5.3.35 in 5.3.36, using 5.3.25, and some

algebraic manibulation
n(ZT)-(e_ﬁT+e_TT)n(T)+e_(B+Y)Tn(o) = e_ﬁT(a—T)zz(T)—e—TT(a-B)zl(T)

+ (a-B)z,(21)-(a-v)z(2T)

(5.3.37)
Comparing 5.3.27, 5.3.28, 5.3.29 and 5.3.37 shows that the left hand

sides of 5.3.27 and 5.3.37 agree. The quantity W(ZT) is defined us

W(zn) = e P (ay)z,(1)-e 1 (a-8)z) (1) +(a-B)z, (21) - (a-y)z ,(21)

(5.3.38)

and it remains to derive a condition for

E{n(T)Ww(2T)}

1
O

1l
o

E{n(o)w(2T)}

It should be noted that n(o) is uncorrelated with Z(T,0)
and Z(2T,T) since they are generated independent of n{o) and
simllarly =n(T) 1is uncorrelated with Z(2y,1l). ‘iherefore it
remains to find the condition for n(T) to be uncorrelated with

-e-rT 0]

e P amp)a (1)~ T (a-p)ay (1) = 1 Z(T,0)  (5.3.39)
0 -e_ﬁT
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Now
n(T) = ME(T) = M4(T)Z(0)4Z(T,0)] = MY(TIT(0)+ME(T, o) P

therefore siuce ZX(o) and %(T,u) are ilndependent

. -e_YJIl 0 -e"YT 0
E n(T)M‘: }Z(T,o) = B{MZ(T,0)M { :}‘Z'(T,o)
0 -PT 0 e BT

(5.3.40)

, E{(a—ﬁ)ae-ﬂzi(T)—(a-ﬁ)(a—r)zl(T)zz(T)(e_ﬁT+e—YT)-t-(a—y)ze_Bng(T)}

%,—3(&5) ae“ﬂ[l—e‘ﬁﬂ i 18;%17((@1[1_8- (5+T)T'J [ePTie- YT}

+ %(a-r) 2e"BT[J.-e“?"fT] (5. 3.41)

I

[Br(ﬁw)]“l(sw)e'(B*T)T{r(az-sg)sinh ﬂT—B(aZ-vz)sinh TT} (5.3.42)

where 5.3.20 was used in obtaining 5.3.41. Therefore from 5.3.42 for
the correlation between n(T) and W(2T) +to be zero, T must be

chogen gsuch that

ginh BTO
sinh TTo

&

T2
Z (5.1.7)

_pa‘
T 2_5

a

This completes the analysis of thig chapter.
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CHAPTER VI

ESTIMATION OF A CONSTANT IN D-th ORDER

BUTTERWORTH NOISE

6.1 Derivation of the Autocorrelaticn munction of Butterworth Noise

The problem of estimating the constant 6 1n the process
y(t) = 0 + n(t) C =% =1L (6.1.1)

when the noise has the spectral density

2D
K
a(@) = ~——t ° (6.1.2)
1+(§L D I D+m zb
2P P,

is considered in this chapter. Noise with the spectral density 6.1.2
is usually called "Butterworth" noise since it can be generated by
passing white noise through the "maximally flat" or Butterworth fil-
ter. The integer D is referred to.as the order of the noige and
W, and X are constants.

In the next section formualas will be derived for the variance
of the estimate of a constant in D-th Order Butterworth noise when
an arbiltrary number of equally spaced data points are used in making
the estimale. In order Lo zpply the geaeral formulss of Chapter IT
it is8 necessary to determine the autocorrelation function corres-

ponding to the spectral dehsity 6.1.2 and to place it in the form
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% At
Uke

k=1

gty - (6.1.3)

It is fhe purpose of this section to compute the autocorrelation

function of Butterworth noise and to place it in the form 6.1.3.
The flrst step in obtaining the autocorrelation function ig 4o

mske a partial fraction expansion of 6.1.2

Glw) = KwOZD =K N x (6.1.4)
w) = o — .
Wk kg OO
where the E% are the roots of
xP 1 1=0 (6.1.5)
2D
@, 3
and the Bk are the residues of 2D+w =5 at the poles ORI
(o]

Fquation 6.1.5 is simple to solve for the roots E& and the result
is
k

Ek = cos 0, + 1 sin g, k=1, 2, »«+« , 2D (6.1.6)

where
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' ® on _ 9% 180 _
ek_ =55 + *B-ﬁ(k—l) =T + -f)_(k-l) k=1, 2, . » 2D
(6.1.7)
=i_m = angle of Ek
2D
. (4] = *
The residue of 555 at the pole @, can be obtained from
@
w 2D @®
(o] o) )
By = 251 =TI - (6.1.8)
2Dw : ZDuk
W= 0,
and therefore the magnitude of Rk is
) 1 o
0 0
B | - =2 — T = (6.1.9)
2D [mk ‘ [ zD
and the angle of Rk is
By = -(e1)/ - -2y /Ek
| P 180
- ‘2‘D[D v (1) |+ ey
= =180 + 360 - k360 + B (6.1.10)

k

* In gencral, if 2 - ﬁ—?% is the ratioc of Lwo polynumials 1n
where the order of p 1s lower than the order of g, ard 2 has

only simple poles, then the residue of the function at the pole

_ plw)
1" 73g
day

oy, is »r
i

=l
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which is equivalent to

iak = 18C + . (6.1.21)

where 8, 1s defined in 6.1.7. Using the above results, G{w) can

be written in the form

Ko 2P L1180 _18

Glw) = 553 = 35 Z ' ‘ (6.1.12)

a +bd
[8)

Before proceeding further in cbtaining the autocorrelation function
of the noisc, the congtant K will be chosen such that the nolse

-has unit varisnce. To accomplish this let K be chosen such that

dew K do o dx % 1
L= jsle) g - ® V2D ex  w 20T T T Tx
l+(——] 14X 2D sin =—
-0 -0 (_D (@] 2D
o
or
20 ., =
K =+ s8in = (6.1.13)
[8]
Substituting 6.1.13 in 6.1.12 gives
G(w) =~ sin %Q‘ Z i“-:—' (6.1.1k)

Blnce the autocorrelation function and the spectral density are

Fourier Translurm palrs



@(t) = %{ jG(m)cimtdm

- T
« 7D ~iwt i_ek
~-1sin 2L c £ 4w
N D 2md z —
o k=l %
D 3B, -iwm m t
-is‘in%—o-ZeKe 0% t <0
k=1
={ _ (6.1.15)
2D i, -l w t
+isin%9 Z ek Omk t >0
k=D+1
ig, -im @t
—isin%Q—Zeke Omk t <0
3 k=1
D {0, +n) -iw {-m)t
:'L,':“.ing-(2 e(k )e o "% t>0
D
k=
D 16 -iemt
—1sin9£ eke nmk t <0
D .
. k=
= (6.1.16)
D i6_ iowt
-isin%Zeke O(DK t >0
D 3
D 16 iw w |t]
—-isinZ P oo % 0%k (6.1.17)
k=1



17k
where the symmetry of the E& about the origin in the w~plane

was used in obtaining 6.1.16. Since

in
e = co8 @k + 1 sin ek

and

wk = CO8 Bk + 1 s;n ek

then

D %0 - (sin Gk-i cos ek)ltl
@(t) = Ei sin £=|sin 6,-1 cos eée ©
k=1 (6.1.18)

If the definitions

2 _ .90
o, = 8in ==|sin 8~ i cos ek) (6.1.19)
B, = a%(sin 8, - 1 cos Bk) (6.1.20)

arc uscd In 6.1.18 ther

D,. -
B(t) = oﬁe Bkltl

k=1

(6.1.21)

Equations 6.1.21, 6.1.20, 6.1.21, and the relation
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0 180
6, = %— + 22 (k1) k=1, voe , D (6.1.22)

complete the analysis of this section.

6.2 Analytic Formulas for the Variance of the Estimate of a

Constant in Butterworth Noise

In this section analytiec formulaec for the variance of the
estimate of a constant in Butterworth noise are derived. Tt will be
seen that the formulss can be used for all noises that have suto-

correlation funetions of the form

L

-8, |t
g(t) = Z d?e P 1] (6.2.1)

J=L
and hence sampled gutocorrelstions of the form

-2B.T
D U?(l—e J )

¢*(z) = Z (lie_B'szl_e_ﬁ'T l) , (6.2.2)

:I:l dJd d Z"'

AB was shown in the last section

0§ = sin %g(sin ej - 1 cos 93] (6.2.3)
Sj = ab(sin 8y - 1 cos Bk) (6.2.4)
6, = £(180) - 90) (6.2.5)
J D

for Butterworth noise.
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The formulas for the variance of the estimate of a constant in
a noise with the autocorrelation function of the form 6.2.1 will now

be derived. Upon making the definitione

. -72B.T
ay = cg(l-e J ) (6.2.6)
-258,7
by =1+e J (6.2.7)
_5.*:['
ey =e J (6.2.8)
w =z +zT (6.2.9)

6.2.2 can be put in the forms

[

D

* D a, .Z% ‘A,j)(-l
452y = ) ~—L- -5 (6.2.10)
1 —E.% b.-e.
J i }1&\ j eax}

where the Aj are new constants and are defined through 6.2.10. The
*
guantity ¢ (z) will now be expressed in factored form (see 2.1.5).

Working on the numerator of 6.2.10 gives

g o D-1
| Z AJ’"‘J = fp1 Z Y Lyl = a5 IT (x=x4) (6.2.11)
320 . j=o D-‘l J:l
D-1
B AD—lz_(D-l) TTi (Zg-sz+l) (6.2.12)
J:
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where the %3 are the roots of the polynomial on the left hand
side of 6.2.11 and 6.2.9 was used in obtaining the above equation.

After solving the (D-1) quadratic equations

. -Q.T o,
A XéZ+1 =|z-e Y (Z-e J (6.2.13)

a,T -0 T

where e © and e Y are the roots with the largest and smallest

magnitudes, respectively, 6.2.12 can be expressed*

-, T

D-1 3 D-1 Dt ocJ.T D-1 -O%T . .
Z ij =|(-1) A1 :ir—rl e T i1-e Z |l-e p2 (6.2.14)
J=0

3=

¥*
‘Using the above factorization allows ¢ (Z) to be written in the

Torm
D-1 -, T D-1 -, T
[|1-e ¢ Z-l) (l—e d Z) ¢N{Z_l) QN(Z)
¢-X~(Z) _ J=1 . J=1 . .
D -B,T 4 D -ByT 1
k T |1-e 7, k T] |1-e ° Z ngD Z ¢D(z)
J=1 ' J=1
(6.2.15)
where
-1
D-1 .7
2 D-1 3 .
E™ = | (-4) A e (6.2.16)
D-1 )

*  Note that it has been assumed that the polynomial 1s of order
D-1. It is possible that for certsin nolses and sampling rates
thls assumption would not be valld. The derivation is eagily
modified to handle such cases.
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-1 -, T
#,(2) = l1-e d 7

J=1

D -p,7 |
go(z) = ﬁ(l—e ’ z)

J=1

(6.2.17)

(6.2.18)

The operations described in the preceeding paragraphs are easily

programmed on a digital computer.

The method of attack which is used in the remsinder of the

derivation will now be described. In Chapter IV it was shown that

the variance of the estimate of a constant could be expressed

M | -1
(1) P () P (1)

E{: ¥
ge(1)  B,(1)

p==0

-1
of = { ()7 (1) +

° g, (1)

where from 2.1.35 and 2.1.Lk5 (wﬁere N = D-1)

-1 )
2, (1) T ey
H =q (1) —
qQ (1) + E{: .
gy M %
N zf,:l l-e
and from 2.1.53 and 2.1.63
t _l ) Y
P L ey
-a () v ) —E
@ * Gt
N L=l l-e

(6.2.19)

(6.2.20)

(6.2.21)

*
Tt should be noted that ¢ vy , ¢N(l) , and ¢D(l) can be

calculated from 6.2.2, 6.2.17, and 6.2.18 respectively.

From 2.1.75 and 2.1.78, and in view of the assuwmption that

N = D-1
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QQO = - QlauM '. (6.2.22)

%o 77 Ul (6.2.23)

Therefore from 6.2.20 through 6.2.23, Gg can be expressed

-'l ) D-l M
o = (M}l)¢*(l) § 2 —* (p + ’) - 2Q (6.2.24)
5 — o i el
Ay (1) | EE; LAt ;2; HL Tt

which shows that it is only necessary to calculate Ql and
M

L
E:} (put+ppﬂ) to complete the analysis.

=0
The system of equations defining the P pué (see 2.1.85,
2.1.86, and 2.1.87) is
— ----a1 I—_)' 6
A +B = 12-2
Pt B, =1, ( 5)
-3 -ty -
Bp + Ap = 6.2.26
Py T Ao, ll | ( )
Adding the above equétions and summing over p  gives
M M
wa| Y (o, RN | (6.5.77)
A+B + = + <R
Ei; PurPy E: FERT! i
p=0 p=0

From 2.1.85; 6.2.22, 6.2.23



Ly 1z T % Z = CRTon: (6.2.28)

which is the k0 element of the right hand side of 6.2.27. The

definitions

£ - {ﬁk) | (6.2.29)
M

by Z (puk+puk) (6-2.30)
p=0

v - v ) (6.7.31)
M

v, = Z(\:fruk) (6.2.32)
=0

allow 6.2.27 to be written in the form

- -

(A+B)E = V (6.2.33)

or

o

— (A+B)-l v (6.2.3144)
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Using the solutions of 6.2.34 in 6.2.24 gives

NG D B -
o“g - (M+1)¢X'(l) + ¢D - : Z H-:%Eﬁ - 20, (6.2.35)
_ N =1 1l-g

It now remains to determine formulas for Qo, Ql, and the p's

to completely specify cg .

Expanding 6.2.17 and 6.2.18 gives

D-1 -, T D1
8,(2) = _Iil lre 9z )=1+ P2 + 00 + By paZ (6.2.36)
3= .
and
D -B.T D
gziD(z) =k 1:rl l-e Y9z]-= k[1+¢]'312 +oree 4 ¢D 2 (6.2.37)
J= ‘ ’ _

vhere the ¢N's and ¢D's sre new constants defined through

6.2.36 and 6.2.37. Dividing ¢D(z) by ¢N(z) by long division

gives
D .
. B~
QSD(Z) jgz TD'jZ 6
e = QZ + Q, + k5T =R (6.2.33)
L} TT11-e A
i=1
vhere

(6.2.39)
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,
Ao = X = (6.2.40)
Py, p-1
? i1
-3 = ¢D,D-j " gyyfg;g;;__ Jek,eve,D-1  (6.2.41)
N,D-1
B po1Tpo1
-3 T Mp-g T j%?E‘Q‘E“- J=2y++"5D (6.2.42)
N,D-1
By o =1 (6.2.43)
Mo =1 (6.2.44)
o=t (6.2.45).

A partial fraction expansion of the last term on the RES of

6.2.38 gives

0.
J=a _ i
ke - > —aT (6.2.46)
lee zl i=1 l-e 4
i=1

where the p's are calculated from

A

(6.2.47)
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Equations (6.2.39) through (6.2.47) define the Q's and p's and
hence complete the anélysis of this section.
The equétioné Just derivéd were programmed on the TO9L.
Figure 6.2.1 shows curves whick were plotted from results of the

computer prograim.
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CHAPTER VIT

MULTIPLE UNCORRELATED DATA SOURCES

{.1 Derivation of the Matrix Integral Equation Satisfied by the

Optimm Filter

Ap an extension of the one dimensional process
y(t) = os8(t) + n(t) 0t <L (1.2.1)
consider the vector random process

y{t) = ¢(x)7 + n(t) (7.1.1)
(ex1) (dxp)(pxl) (&x1)

where y 1is a (pxl) vector of unknown paremeters, §(t) is a
(¢xp) matrix, and n(t) is the (£x1) noise vector of the
observed (4x1) vector process y(t). It is desired to find the
minimum variance, unbiased, linear estimate of 3 of the form
L
A -
- [ st (7.1.2)

(px2)° (pxt) (£x1)

where Z(t) is a pxf matrix which is delined as the opblmum

filter. BSubstituting T.1l.1 into 7.1.2 gives

L L
. jz(t)(b(t)dt - +f Z(t)a(e)at  , - (7.1.3)

G Q
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hence for the estimate to be unbiased, the constraint

L

fz(t)q)(t)dt =T = the identity matrix (7-1.4)
Q

must be satisfied. Using the constreint 7.1l.4 in fode3 glves

L
T=7 +jZ(t)n(t)dt (7.1.5)

o]

’ — 1
The covariance matrix is defined as E{(y-y)(y~Y¥) ] where

"prime"” denotes transpose. Therefore from 7.l1.5

Eli; = E{(r-*r) (T‘T) - ij(t)E{n(t)n (1)) (r)dtdr

L L
=f [Z(t)R(t-T)Z‘(T)dtd'r (7.1.6)
o ©

where R(t) 1is the autocorrelation matrix of the noisge and is

defined by
R(t-7) = E{R(H)E (1))

The minimum variance estimate is defined as the estimate which

—r —
minimizes the quadratic form E ?g for all (pxl) vectors

. Becasuse of the constraint, minimizing & is

]

equivalent to minimizing
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sl [re
Q=TT +T l:‘c[z(t)(b(t)dt—l} R Ufb (t)z (t)d’“'IJ “(r.2.7)

where the transpose of the cénstraint hag been added to facilitate
determining the final integral equation and the matrix of Lagrange
Parameters A 1is used in this natural generalization of the method of
Lagrange parameters.

Using 7.1.6 in 7.1.7 gives

L L I
- [ ,C(Z(t)R(t—T)Z'(T)dth +[fz(‘t)¢(t)dt—-]j} N+

a]

L
+ k{f@t(t)%'(t)dt-r] E (7.1.8)
G .

Taking variations in 7.1.8 gives

L L
6 = ff[az(t)ﬂ(t-q-)z'(rr)dta-r + Z(ER(5-1) 82 (1) Jatar
O O 1, I
+‘J’ sz (t)P(t)atr + . f(b'(t)az'(t)dt T
o} o]

L L .
1 {IR(T,- )Z («;)dT+ClJt))\ dt +

1l
yre
\*"\

on

[y
P

L_'_
e

LT L
+f fz(-f R(t-r)dr + 2 4 (8) |2 (6)atpE
Q O -
L "1,
= E' sZ(t) R(t—T)Z {T)dsr + @(t)?{\dt +
J=

o] o}

L L ' '
+[j6Z(t)(/R(f~¢)Z'(T)dT + Q(t)h)dt:l T (7.1.9)
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For @ +to be statliomary, &Q = O. A necessary and sufficient condi-

tion for 6Q =0 for all &Z(t) is

L

jR(t-rr)z'(T)dT = - {(t)n : (7.1.10)

[a]

From 7.l.k, 7.1.6 and the above equation

L L ' L
f[z(t):ﬁ(t-,,)z,'(rr)dtd’r = -jz.(t)&?(t)dt?\ = ~A :EI:? (7.1.11)
o 0 c

when Z(t) is the optimum filter.

Therefore the integral equalicn which wmust be solved 1s

L
fR(t-T)Z’(T)dT = Q(t)j}r (7.1.12)

or equivalently

L
IZ(T)R(t—T)dT =21j7( C%'(t) (7.1.13)

o

under the constraint T.l.k.

Under the assumption that the components of the noise vector

are uncorrelated, the matrix R(t-v) takes the form
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R, (t-1)
Rz(téT) <::::>
(::::) R&(t—T) (7.2..14)

and a Lypleal equation of the set 7.1.13 is

R(t-7) =

L

‘szinj(t—T)dT = E{:oikgjk(t) (7.1.15)
k

o]

For the nolses considered in this thesis, Zij is determined from
a linear operation or the right hand side of the integral equation.

That is

7oy = 8 ) (8 ) = ) Oy (8) (7.1.16)
k k

where Iﬁ is the linear operation associated with the autocorrela-

tion funetion Ré(t-T). Equation 7.1.16 expresses the superposition

pronérty of integral equaticns of the form 7.1.15. In matrix

notation 7.1.16 becomes

7 ==§t? ¢FL (7.1.17)

1
where I 18 a mairix opersior which operates on ¢ and is defined

in the following manner
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<:::> I (7.1.18)
L
L J

Fquation 7.1.17 can be put in a more standard operator form since

z :Et;q 3 EL? (1) (7.1.19)

- The covariance nmatrix 21:? can be computed from the constraint

L =L

L L
1= -!;Z(t)q)(t)at - EE? l(LCP).(I)dt (7.1.20)
oI
L
-
= | (14) gat (7.1.21)
Xl

Therefore when the components of the noise vector are uncorrelated,
the matrix filter and covariance matrix of the estimate can be
determined directly from the solution of the che-dlmensional integral

equation. An example of this is given in the next section.



191
7.2 Explicit Scolution of the Matrix Integral Equation for all Pole

Noise

The solution of the integral equation 7.1.13, for the case of
uncorrelated components of the noise vector, is specified by 7.1.19
and T.1.21. This . solution can be given explicitly in terms of the
elemenfs of the matrix 7 when the Fourier transforms of the
individuael autocorrelation functions of T.l.lk have only a
denominator polynoﬁial.

The solution of 7.1.13 for &1l pole ncise and uncorrelated
components of the noise vector involves a strailght forward extension
of the results obtained in Reference & for the one dimensional case.
“Therefore, in preparation for the muliiple dimensional solution, =

brief discription of the results of Reference 8 will be given now.

Congider the cne-dimensional integral equation

L,
fZ(T)R(t-T)dT = 8(%) 0<t <L (7.2.1)

where R(%) is the autocorrelation function of & nolse whose spec-
tral density is a rationasl function of frequency having only poles
and 8(t) is an arbitrary known signal. Tn Reference 8 it is

ghown that the solution of 7.2.1 is

D D-1 N
z(t) = Z ang(Zk) + Z fia(i)(t)+gi5(i)(t-.L) (7.2.2)
k=0 i=0

¥  The superscript (n) indicates n-fold differentiation with

respect_ to time and the qpantlty 6(1)(t) is the 1P derivative
of & delta function.
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wheré
D-1
K~1
;= z{: bk+lU2( 1)(0) .(7'2'3)
k=i
1i=0,1,+++,D-1
D~
ke
g =) (D% nE ) (7.2.1)
k=1
D B
k
Uy (t) = Z ka( IO (7.2.5)
: k=0
and
D
k
u,(0) = Y (1), () (7.2.6)
k=0
The quantities 8oy and bk are defined in terms of the spectral

density and will now be determined. If the spectral density G(w)
is rational in frequency and contains only poles (2D in number), it

can be expressed in the form

ol = = - (7.2.7)

T
ao—azuz +a}+(.0 - :i_'a-ZDﬂ)

Such a ncise could have heen produced by passing white noise of
unit spectral density through a filter whose transfer funetion E(S)

has D poles,
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1
T {7.2.8)

b0+bis+o . ¢+bDS

H(S) =

The a's =and b's are related thrnngh the well known relation
RNT- : :
¢la) = |E(Gw)|" = Bdw)u(-ju) | (7.2.9)

Therefore from 7.2.2 - 7.2.6 it can be seen that the solution of

T.2.1 can be expressed
7z(t) = 1La(t) (7.2.10)
“where I is a linear operator.
To illustrate the use of the sbove equations a simple example

will be worked.

Example 1: Consider 7.1l.13 in the one-dimensional case,

L
fZ(T)R(t—'T) = criS("t) s (7.2.11)
0
Wwhere
R{t) = oae_ﬁltl | (7.2.12)

The spectrsl density corresponding to the asutocorrelation funetion

T.2.12 1s
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jos]

lw) = ‘jacze_sltle_jamdt

-

2 2p 1

w0 —p—p =T —> (7.2.13)
w +B st BA—
202( Br)
-1 1 (7.2.14)
1 \/“ Jdg) 1 ( J
B+ B - =
Vel VBl Jes \ /B
and therefore from 7.2.9
zH(E) = 1—-1—-—-—-— (p=1) ' (7.2.15)
I (/s+ _.,5)
Jeo\ /B

From 7.2.7, 7.2.8, 7.2.13, and 7.2.15 the a's and b's can be

determined and the results are

p
8 =
o] 202
1
8, =~ — (7.2.16)
20 B
/B 1
bo *VA; e
b o ]
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From 7.2.5, 7.2.6, 7.2.3, and T.2.24

Uy (8) =2 2 8(s) + 2:;0%% (7.2.17)
U, (t) =\F— z s(t) - - .2.18
: 2 o Vego at (7-2:18)

2g
1 1é
=— |1 - = =1 8(0o 2.1
202 [ P t] (©) (7.2.19)
g, = 'blUl(L) - ;3? [l | %d—t] a(n) (7.2.20) |

Therefore from 7.2.2 the solution for Z(t) is

i_z 2(t) = = [a - %ﬂ_é.] S(t) + == 5(1;){1 - %%E} 5(0) +

Yale)

: -2}-2- §(t-L) [J. + % %E} sty {(7.2.21)
a

where ci is determined from the constraint

L
fZ(t)S(t)dt -1 ' (7.2.22)
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To illustrate the multiple-dimension solution specified by

felelY and 7.1.2L a two dimensional example will now be worked.

Exsmple 2. Congider the random process

¥ (L) A ﬂl(t)
= + 0=t <L (7.2.23)
;Y2<t) o 1 Xl nz(t)

or in the notation of T.1l.1

v (8)| 1 n (4)
y = ;¢ o= 5om(t) = (7.2.24)
y_a(t) o 1 nz(t)
It is desired to estimate the quantities x_ and Xo which can be
thought of as an Initisl posilloa and rate of an unaccelerated

particle. In accordance with 7.1.1k let

-8, |t]
R, (%) - o'ja_e 1 (7.2.25)
., =Bt
2 2

and therefore irom the results of Example 1 and 7.1.19
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211 %4
7 =
Loy 2o
_ , o
i 1
— Bl~ B 6‘—-2- 0 1t
z—: 20’1 1l dt
MK
1 L
0 2 132' T2 c 1
. 202 f32 dt
- - r
f’(;) -2 4 0 1t
201 By dat
t=0
0 6(t) 1- l_ E_ e} 1
oot B, at
2 t=0
e o -
o S
201 1
+ t=I,
265 52 dt
2 =1

(7.

[av}

)
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It should be noted that the operators defined in 7.1.18 are

2

Lo lpot a8 L) 8Ty LA},
Tooagfl P oa? 2t Py dt 26° Py dt
1 i peo 41 =1,
(7.2.28)

After performing the indicated differentiations T.Z2.27 becomes

e

1T T r 1 1
L+ P
By Byt 1 . 3 1 Py
2 7 2 2 | 2 2
: 1 Gl Gi Gl Blci 201 261
Z =3/ + 5(t) + : 6(t-L)
v B 1 1
0 2 0 T 0
o P
2 2 O

(T.2.29)

It is now necessary to compute Eq:? . From the constraint,

1 0 I
I = = | Z2(£)P(t)at
N

or equivalently

L .
I - cp‘(t)z'(t)dt (7.2.30)
J .

Trom T.2.24% and T7.2.29
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(NS

ol -

or

=1l

r'—
=

[l
o | o+
E—JQ mlpl H

I

6(t—L)-> 5_‘_

199

e
Cl.

ol

red pa”

S

"
J

[24"31L)

%BlL2+L+ L

Hhoof ™

ool
RN

(7.2.31)
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{.3 Discrete Minimm Variance Estimation

Again consider the vector random process

y(t) = ¢(t)y + n(t) 0<zt<i (7.3.1)
(2x1)  (Lap) (ped )+ (231)

or

P
y; (8) = Z S?iij(t)rj +n,(t) isl,eeet (7.3.2)
j=1

ITf this process is sampled at the equally spaced times tl,tg,--«,tN,
then the relations between the observations, unknown parameters, and

noise points are

i'—'—"l?'."&

1Y
vy (6 = ) By (v + () (7.3.3)
3=1 k=l,+--,N

Fguation T.3.3 can be expressed in matrix form in the following

manney.



Pra(ty)  Pyp(t)

A (ty) 915(8)

By (ty) 8,508

201

¢1P(tl)W
1,

P )
T

Byp(t)

B (typ)

, (1)
L&N_

(7.3.4)

where the partitions are made relative to the noise points which

are correlsted.

Y. =
1
bt
¥ o=4"
Iy

1
yi(tl)

Ly'i(tN)

Upon

moking the definitions

aCaPialiy) - Figh)

¢ Ny

: 3 N =

¢ N

2 3
. L

-¢kl(tl)¢k2(tl) et ¢Kp(tl)q

o (t)) |
;ﬁl‘: .
nr(tN)
(7.3.5)
p (7.3.6)
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the relations 7.3.4 can be written

Y=a7+% ' (7.3.7)

The minimum variance estimate of the vector 7y is (7)

T = (arTa) AR (7.3.8)
where
; - - 1
Bi1 O ' Ry Q
R = E{ﬁﬁ'} = " . and R = .
R R"l
O e O 14
) — ) (7-3.9)

T - oo
and the guantity (A R 1A) T AR is the matrix weighting function.

The inverse covarlance matrix of the estimate is

-1 f 1
le = AR A (7.3.10)

T

or from 7.3.6 and 7.3.9
-1 1,
1 1 Pl
Z‘:? = §R07 4y + o0 v 4R, = Z Ry (7.3.11)
=1

The matrlx weighting function 1is
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zZ zE‘Z_A'R"l (7.3.12)
‘Y‘ .
roo1 ) -1
=§1:?' thll | OoRop 1o

Therefore as can be seen from the form of T.3.ll and T7.3.13, the

E ¢T”"R;i] (7.3.13) |

.formulas which have been derived in this thesis for the inverse
coveriance matrix can be applied directly to the muliiple dimension
minimum variance problem.

The limiting form of the partitioned components of 7.3.13 can be
deduced, in the case of second order noise, from the results of
Chapter IIT. That this is so can be seen by expanding a typical

component -of T.3.13. Consider

R;i) (7+3.14)

rJ

[tima),, - Tt

' -
which is the ijth element of the product ¢kRki . Fquation

7.3.14 is of the form

Z(R_l] 155(%)
d
which is the form of the sum whose 1imit was found in Chapter ITI.
Therefore the limiting form of 7.3.13 can be deduced directly from
the results of Chspter TTT.
The limiting form of T7.3.11 can aiso be evaluated from the

results of Chapter III. A typical component of T.3.11 is
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F-l
¢kRkk¢k » Or expanded

(¢1;R£f;¢k)ij = Z Z g ()R , s ()
g r
= ) B P () (Rkll) (7-3.15)
q T rq

But the limiting form of the sum in curly brackets is known (see
Chapter ITI) and inspection of the form shows that the limiting form

of 7.3.15 can be expressed

L
) st G = [ g omg,, at (7.3.16)
g 0

where T 1s the time between samples and Lh is the linear

operator relative to the k°° noise (see Section 7.1).

L
Trom T.3.16 the 1ij term of T.3.1l is 2f¢kj(t)lk¢ki(t)dt,
ko

but this is preclsely the 1ij term of 7.1.21, therefore the
limiting form of the inverse covariance matrix of the discrete

estimate approaches that of the continuous estimate.
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CHAPTER VIIT

FINTS

8.1 Summary and Conclusions

In this thesis analytic formulas were derived for the elements
of the inverse covariance matrix of sampled rational noise. It was
shown {that the number of terms composing these formulas was dependent
only on the order of the noise and not on the dimension of the
covariance matrix. It was seen that the calculation of numericsl
results with these formulas involves at most the solution of s
(Dml)th order poclynomial, -1 quadratic equations, and the
inversion of a matrix of dimension D-1, where D is the order of
the noise. As examples of the use of the analytic formulas, inverse
covariance matrices were derived fur nolses with the sutocorrelation

2 'Blt] 2 'Blltl o ”ggltl

functions: o' e and ole o4 Uze . The inverse

covariance matrix corresponding to the autoaorrethTon functiTnl

-B. it -B. it
e_altleos bt, which ic & opccisal casc of cie 1 -+ cge 2 ’
was also discussed.

The estimation of the parameter € i1n the process
v(t) = 8s(t) + n(t) 0<t<1I (8.1.1)
was conéiﬁered in detall for first and second order nolse. A minimm

variance continuous filter, 1(t), which gives an estimate of 8

through the intégral relation
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A

0 =ff(t)y("t)dt (8.1.2)
=]

and i1ts associated variance were computed. Also computed was a

discrete minimum variance estimate of the form

M
8= £,(my(um) (8.1.3)

L

p=0

whexre the fd(-) are the optimum "weights" of the sampled data.

It was then shown that the discrete weighting function and its
associated varlance approached the continuous weighting function

and its variance when the density of observations approached infinity.
The second order, all pole noise solution exposed the fact that in
general the discrete welghting function does not create the
equivalent of a delta function and its derivatives by a simple
differencing operation through the use of Kronecker deltass. To
identifly the equivalent of a delta function and its derivative it

was necessary to expand 8.1.3 in a power series and collect the terms

that were of zero order in uT. It was seen that the function of T,
e = {-(2-/3)[1+0(1%)] 0O< <M

became the equivalent of a delta function in much the same way that
im -aft]
oo € cos b

becomes a deita function.
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The asymptotlc properties of the varisnce of estimates of the
form 8.1.3 were consldered mext. The asymptotic term was defined as

the first order term in the power series expansion

2— 2 - 2 LI
ce = GL 1 -+ alT + aZT + (8-1-#)

where OE is the variance that would be obtained with an infinite
density of observatioms. It wés seen that for a smooth S(t) and
first order noise, the coefficient, 8, , Was zero. This indicates
that the variance of the discrete estimate approaches the variance of
the continuous estimate very rapidly as the time botween samples
approaches zero. In the special case of a constant signal and second
order noise it was shown that a; was zero if the noise had zeros in:
its spectral density and nonzero 1f the noise was all pole.

The connectlon between the historically significant autore-
gressive nolse and rational nolse was considered in detail for second
order noise. It was shown that rational noise will have autore-
gressive properties only for a specisl pole-zerc configuration and a
particular sampling rate. This rate was designated a degenerate rate.
The propossl was made that if the conditions were such that a degen-
erste rate exists, then samples should he taken at that rate because
of the major simplification of the filters that occurs when the rate
is degenerate. It was seen, in a special case, that the wvariance
obtained at the degenerate rate was within a few percent of the

variance obtaired at an infinite rate.
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As a further example of the usefulness of the analytic formuilas
for the elemente ol the inverse covariance matrix, Iormulas were
derived for the wvariance of the estimate of a constant in Butierworth
nolse. Some numerical results were presented.

Finally, 1L was shown Lhal the resulls oblaiped for oue parameley
one signal, and one noise could be easlly extended to a vector of
parameters, & matrix of signals, and a vector of noises. The only
recobriction was that the components of the nolse vector be uncorrela-

ted.

8.2 Suggestions Tor Further Study

An area of lnvestigation which was exposed in this thesis was
that of exploring the connection between degenerate rational noise and
autoregressive nolse. This exploration was considered only in the
special case of second order processes. What is needed is a general
method of determining the pole-zero locations of the rational filter
which, with white noilse as an input and a properly chosen sampling
rate, will give an autoregressive process. As was pointed out, the
numericegl aspects of the estimation problem are greatly simplified
when sampling takes place at a degenerate rate. Formulas can be
derived which express the ratio of the variance obitained when
gamples are taken at the degenerate rate to the variance obtained
with an infinite rate. Any statemenis that could be made concerning
the conditions under which this ratio is close 10 unity would be very
useful. Of course, in any particular case, numerical results can be

obtained.
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In Chepter IT it was shown that the two-sided Z-transform of

the sampled autocorrelstion function ccould be expressed

@iz
ROVRPR

" (z) (8.2.1)
where N is the order of the polyncmial ¢N(Z) , and N =< D-1.
It is of interest tp determine the pole-zero configurstions for
which sampling rates exist such that N takes on values less than
D-1. This kneowledge would be useful in the Programming of +the
formulas for the elements of the inverse covariance matrix on s
digitol computer.

It has been noted that in order to compuite numerical values for
the elements of the inverse covariance matrix it is usualiy necessary
to invert a matrix of order D-1 and solve a (D—l)th order poly-
nomial. An explicit solution for the roots of the polynomial and/or
the elements of the (D—l)th order inverse matrix would simplify
numerical calculations for large D.

Finally, analytic formulas for the elements of the inverse
covariance matrix of sampled, band-limited noise would be useful in
theoretical studies. It has been noted in Reference 8 that =
continuous filter gives an estimate which has zero variance winen the
noise is band-limited. Therefore it is of theoretical interest to
determine the manner in which the discrete filter and its varisnce

approaches the continuous filter and its variance.
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APFENDIX A

AN EXPANSTON OF ALL-POLE SECOND ORDER NOISE

An expansion of all-pole second order noise is given in this
gppendix. This expansion will then bhe used to derive BEquation

3.2.102 of Chapter ITI:

M
Jﬁ-ii Y“e_am ~ y{0) ZO + ¥(0) Zl T + or(rp3) (a.1)

o}

vhere Or(-) 1s a random variable whose variance decreases as its
argument. The nolse copsidered in this section can be generated by
bassing Zero mean, white noise throuvgh a linear filter with the

transfer function (the gain constant has been chosen as unity) -

1 _1[1_1] (5.2)

(8+v)(s+B)  yBLEIB &y

and hence the impulse response, h(t), is

n(t) = - {e'ﬁt-e'rt} | (4.3)
B

Since the filter is linear, the output noise, n(t), can be

expressed 1n terms of the impulse response by the equation

+
nm):i-[Jmnm@na&{ﬁmp@@ngﬁ+jh@qmﬁmT
B : 1 A 3

n{t) = n(o) + n(o)t + O(tz) +_£ h(t-T)W(T)aT (AL}
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where W(t) is the white noise.

The last term on the right hand side of A.k will now be

examined. Iet

t
2(t) = | n(t-7)W(7)dn , (A.5)
/
then
t .
E{z{t)} :fh(t—T)E{W(T)}dT = Q (4.6)
(o]
and

1l

o, = B{z"(t)]

t %
E {{h(t-ﬂh(t-n)ﬁ('r)W(n)dnd'r

£t t
=f[h(t-'r)h(tm)ﬁ("r-n)dﬂd’l' ~—~fh2(t-“r)d'r
oo ©

%
N . f[e”zﬁt-ae'(ﬁ““‘f)tw'zﬁ}dt
(+-B)" 4
- > i—[}-e—éﬁtJ~ -2 [l—e'(s+r)t]+ E—[l-e"aer
(v-B)" | 2B Pty 2y

(A-7)

The fact that the autocorrelation function of white noise 1is a delta

function and A.3 were used in deriving A.7.
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Expanding A.7 gives

cg'; 1 [1 - (1-28ti26%5- g 833 4 ... )}
(y-8)°
P2 - @z 233 4 o)
2r TteaY r
2 2,2 1
R O SR )
= %(ﬁ-—r)’t?) + o(thh ces (A.8)
From A.8 and the definition of Or(—), A can be wrilien
a = () 2 n(o) + uTa(o) + wFo_(13) + w2+ .- (2.9)
and hence
- L
I:‘L/;'g Z nHe_OT“ = n(o) zo X fz(O)ZlT + Or(T3)ZZ + Or[T JL o
H=e (4.20)
where
Zi - uem R (4.11)
H=0

e"% - _(2-/3) [l + O(TZH

Sinece



y(t) = es(t) + n(t) (a.12)
and

5(t) = 8(0) + &(0)t + **-
then

_— 3 v = y(0) + (o) L + o r’) (8.13)

where y, = y(uT}. FEquation A.13 is the desired expansion.
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APPENDTX B

DISCUSSION OF AN EQUIVALENT DETECTION TEEORY PROBLEM

In this gppendixa brief discussion of maximum likelihood detec-
Lion Ls glven fur lhe case ol addltlive gausslsn nolse. This dis-
cussion follows the discussion of Reference 8 very closely. Tt will
be shown that the results of this thesis apply directly to the
solution of +the pfoblem defined in Reference 8.
Let the random.procesé
n(t)
y(t) - ‘0=zt =L (B.1)
s(t) + at)
be observed at the M+l equally spaced instants of time 0,7,2T,-+,ML
It is desired to defermine in an optimum manner (which will he defined
shortly) from the sampled observations if the noilse, n{t), alone is
present or if the signal, 8{t), plus the noise is present. The
assumptlion is usually made that the noise is gaussian with zero mean
and that it has a rational power spectral density.
Because of the assumption of a rational power spectral density

the nolse has an autocorrelation function of the form

D

-8 |+
B(t) = z cf:e <[]
k=1

(2.1.1)

and hence
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= E{n(uT)n(mT)} = @[ (m-p)T] (B.2)

¢

il

where ¢“m is the p,mﬁh “element of the covariance matrix of the
sampled noise. The notation wp(mm) will be used to denote the
elements of the inverse covariance matrix of the sampled noise. From
the.assumption of zero mean gaussian noise the density function of the
samples of y(t), when the process is composed of nolse slone, can be

expressed through

_ fyn(yo’ e, YM) = fn(yo: oy yM) (B'3)
“and

Y
- (M3 = 1
f‘n(l\]o, cee n_M) = (2x) ( )lwlexp -3 Z WH(mT)nunm
HsT0

(B.4)
where IW[ 1ls the determinant of the inverse covariance matrix and
n = n(uT). The density function of the samples of ¥(t)} when both

¥
the signal and the noise are present is

(yo, cee yM): (zﬂ)“(M+1)]w[ixp - % Z WH.(HIT) (Yu-Sp](Ym"Sm)

H,M

f
ysn

(8.5)

where SH = S{uT).
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The likelihood ratio L‘yo , e yM) is Gefined as

: 'ysn(yo"” "yM)

fm(yoJ "'JYM)

T

]

1
exXpi- = W (mT)3 8 Yex E: W (mT}S

BZHHMP ()8 v,

My . Hy T2
(B.6)

As mentioned in Reference 8, a maximum likelihocd detectior,
which is defined as the optimum detector, says that the signal is
present, if the test statistic L(yo,---,yM) ig greater than some
threshold « and will maximize the conditional probability of
'detecting a 8lgnal when it is present for a given conditional

probabllity of indicating signal for noise alone. Since L(yo,--o,yMJ

is a monotonic function of the statistic |,

=y W ems (8.7)
Hat

an equally good test is ¢ > o, where o% is an equivalent
~threshold. The quantity ¢ is characterized by two density
functions, one if the random process is noise alone, the other i

the process 1s signal plus noisge. For noise alone, \l!n (the sub-

1t L .

script ™n" designates noise alone, sn'" signal plus noise) is

gausgian with zero mean and variance,

E{yS} = Z W @S 8 | - (3.8)

H, M
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IT signal and noise gre present, ¢Sn ig also gaussian with the

variance given by B.8 but with mean

'Ean} = ) s s, (B.9)

i 1

As digcussed in Reference 8 the effectiveness of the maximum
likelihood detector can be characterized by the detectability d,

defiped by

4 = W (w8 8§ B.10
Y s s, (.10)
[y 10
Comparing the above equation with Equation 1.2.3 shows that the
reciprocal of the varisnce of the minimum variance estimate and the
detectability arc analogous. @imilarly, a comparison of B.7 with the

minimum variance estimate of a parameter 6 (see 3.1.1)

A > ‘ .
8 = o Z W“(mT)Suym
oM

shows that the test statistic ¢ and 6 differ only by a constant

A
or equlvalently —J-a:— & is analogous to ¢ . The preceeding compari-
o)

sons show that theeresults of the previous chapters apply not only

to minimum variance estimators but alsc to maximum likelihood detec-
tors of signals in gaussian noise. Tn particular, it hasz heen
explicitly demonstrated in the case of gecond order noige that the

limiting form of B.T is
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i =If(t)y(t)dt (B.11)
5 .

where f(t) satisfies the integral equation
L
f¢(t—u)f(u)du =a(t) 0<+t<1 (B.12)
)

Also it has been demonstrated that in the limit of M - o s T -0

that the minlmum variance approaches

—

£{t)s(t)dt (B.13)

aF
[«r AV}

O\L—'

~and hence because of the analogy between d and Eﬁ
a
8

L
d /f(t)s(t)dt . (B.14)

o}

This concludes the discussion of detection problems.
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