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ABSTRACT

The use of low thrust devices with continuous and discontinu-
ous thrust programs is investigated to determine whether or not a
discontinuous thrust program will provide a greater payload and
structure mass fraction, where the program must impart a specified
amount of energy to the satellite in a specified total time, starting
from a circular parking orbit. A discontinuous thrust program is
developed, based on the elliptic orbit, using a perturbation analysis,

and a series solution is obtained which permits investigation of this

elliptic orbit. These results are compared with a continuous thrust
program which gave a spiral orbit. Under certain conditions, where
storage batteries must be carried as part of the payload but arc
available for use during the thrust program, the discontinuous thrust
program is found to provide a greater payload and structure mass
fraction. Further investigation at angles greater than one radian

either side of perigee appears to be warranted.
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LIST OF SYMBOLS

gravity at surface of central mass

radius at surface of central mass

radius at any point in the orbit

angle of position vector in the plane of motion
angle of velocity vector in the plane of motion
angle of thrust vector in the plane of motion
time

non-dimensional time

non~dimensional reciprocal radius
non-dimensional angular momentum

energy per unit mass

eccentricity

acceleration due to thrust

acceleration ra.tiol

mass

initial mass of satellite

mass of power supply

mass of propellant

mass of structure

mass of payload

mass of electrical generating unit
mass of batteries

specific mass of batteries

specific mass of power supply
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ratioof M_ to M
P o

exhaust velocity

power supplied

vector notation

derivative with respect to 9

derivative with respect to time

perigee reatriction
Lagrange multiplier

specific power

“initial cutoff angle

number of thrust cycles
2

factored ratio of vy

ratio of Mbatt to Mg
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I. INTRODUCTION AND SUMMARY

Once in a parking orbit, low thrust devices may be used to
alter the path of a satellite, In particular, it is anticipated that one
use of the low thrust device. will be to add energy to the satellite for
an eécape or a near escape condition. The exact path and thrust
program must be determined by the mission requirement, but in any
event, the system should be optimized for efficient launching.

The problem of optimizing an arbitrary mission is a for=-
midable task to say the least. To simpiify matters, it is assumed
that the mission is to impart a specified energy in a specified total
time to the maximum fraction of payload and structure mass. To do
this, one must make éfﬁcient use of the power supply and propellant.

The usual variation procedures may be used to derive the
differential equations for optimum direction and magnitude of thrust
when continuous thrust is employed, as shown by Irving in reference
(1). He has shown that a constant acceleration is optimum for the
gravity~free case. No analytic solution has been found for the dif-
‘ferential equations in the central force field, but I:L;ving has made a
nume rical study and found the acceleration to be practically constant
for various escape programs.

In reference (2), Casey has shown the distinct advantage of
energy addition by thrusting near the perigee of an elliptic orbit in
such a manner that the perigee remains constant, His thrust pro-
gram is formulated to require that the perigec distance remain con-

stant throughout the thrust cycle, and results are obtained by
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numerical procedurés. The reason for thrusting near the perigee is
to take advantage of the greater velocity, since in any elliptic orbit
the velocity is greatest at the perigee and since the energy addition
rate is proportional to the velocity. Further, if the perigee distance
is kept constant, then the perigee velocity will increase as the eccen=
tricity of the elliptic orbit increases.
| Ag pointed out by Casey, there will be a period of coasting
between each thrust cycle which will make a considerable contribu-
tion to the total time. For this reason, we cannotsaysimply by in-
spection whether the continuoué or discontinuous method of energy
addition will provide a greater fraction of payload and structure
mass, where both methods are required to impart a specified energy
in a specified total time. |

To invest'igate this problem, we shall use the idea of .re-
stricting the perigee distance, but only at the beginning and end of
each thrust cycle. This permits added freedom in an effort to gain
more energy. Since we are only considering low thrust devices, a
perturbation technique is uéed with a simple variation to develop the
first perturbation integral equations for the maxirm;m cha.hge of en-
ergy during one thrust cycle and for the Lagrange multiplier neces-
sary to satisfy the above perigee restriction. The équations apply
for any period of thrusting up to one complete circuit of 27 radians,
but 'coﬁld' not be integrated in closed form. By making a series ex~

pansion of the integrands, the equations may be integrated term by

term to obtain results useful to an angle of one radian either side of
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the perigee. While this does not permit a complete comparison of
these two methods of energy addition, it is possible to draw definite
conclusione for angles less than one radian,

After obtaining equations for one cycle of energy addition,
the effect of a large number of cycles is obtained by integrating the
changes of the various elliptic orbit parameters,

To compare these results, an approximate solution for the
spiral orbit, using a low thrust device, is obtained. Then a compari-
son is made of the payload and structure mass fraction, where both
methods are required to fulfill the mission of imparting a specified
energy in a specified total time,

Finally, since the discontinuous thrust program could
generate energy while coasting, the use of storage batteries to aug-
ment the power available during the thrust cycle will be considered.
In one case, the batteries will be considered as part of the power
supply; and in another, they will be taken as part of the payload, but
available for use during the thrusting program.

When thrust is only permitted up to an angle of one radian
either side of perigee, the discontinuous thrust prégram was found
to have no payload and structure mass fraction advantage unless bat-
teries are employed. When the silver-zinc battery is considered as
part of the power supply, there is an area of marginal advantage due
to the low specific mass of this battery, but its poor recharging re-
liability rules out its present use in such a system.

The nickel-cadmium storage battery, which is very relia-

ble, provided an area of definite advantage for the discontinuous
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thrust program when the battery is considered as part of the payload.
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II. PRELIMINARY ANALYSIS

We shall first write the equations of motion for the satellite,
making the usual simplifying assumptions of a very large, central,
spherical mass and take the coordinate system at the center. We
shall further assume motion in a plane, keeping the thrust in the
plane of the orbit, and neglect the effects of other bodies. Then,
using plane polar coordinates, as in fig. 1, and the dot notation fox

time derivative, we have:

Ao, = (11 (2.1)
A = TR +]R6 (2. 2)
f:(:,,, = (R Re ) + j(n A‘t‘ n e}) (2.3)

Equa.ting equation 2.3 to the acceleration due to thrust, o , and grave.
ity, we have: i e
= e . =, - T -« o
((7-ne%)+ j 7{;‘2//2 6 = L(ac"‘(ﬂ*q))",)?“"ﬂz)
_,_j'-(o. sIN(B+)) (2. 4)

where Ro is the radius of the central ma,ss,. and g, is the acceler-
ation of gravity at 7 =R, . Since a/go is amall for a low thrust
device, we shall first take d =0 and obtain the usual solution in
dimensionless form. The thrust will be considered later as a per-
turbation. Choosing © as the independent variable, and letting ( )*

be differentiation with respect to & , then with U as the dependent
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variable and & as the dimensionless angular momentum, we have:

- R
u = - (2. 5)

. 2
n%é = a./R, Ro R (2. 6)
but when a=0 , Z‘lit( Née)=0 ; therefore £ = constant =

 ZP

& =Yg 7RI A U 2.7)
n ==Y3.R, H.u’ (2. 8)
io=-gehoutu”

° M, (2.9)

nét= 9.k u? (2. 10)

Substituting into equation 2.4, taking a =0 » and simplifying,

we have:
" !
u + U = —‘ﬁ_zi (2.11)
A solution may be written
J
U = u‘,:vﬁ-]—zl'_u-eo co_s(9~sP)] (2. 12)

where €, is the eccentricity and ©p is the angle of the perigee
position. The non-dimensional time, AT , for any portion of the

orbit is given by:



T

) 8;

g “do 3 de |
A?a&f“(b . bf“]af = =+ (rc.cor o)t (2. 13)
J |

o, S8

. -

using equations 2,7 and 2.12. The integral can be evaluated to give:

- 8
AT’ﬁ:ﬁa{h’”('—ebt 6) amfaug /{ 2

(t-ef [ +€ 2] T (1+ey+(i-8,)tan*g

‘

In equations 2. 14 through 2, 26, we shall essentially follow the
work of Irving, reference (1), since his approach provides a conveni=
ent parameter for cbmputing the mass fraction of the satellite.

The mass of the power supply, Mw , is assumed to be pro=
portional to the power suﬁplied, P |

= KP | (2. 14)

where K 1is the specific mass of the power supply. It is further
assumed that the maximum power is utilized when thrusting, appear=~

ing as kinetic energy in the exhaust:
P =5(tw)c? (2.15)

where C is the exhaust velocity, " the mass of the vehicle at
time t , and -w is the propellant flow rate. We also have the

acceleration of the satellite due to reaction:

2 = thrust _ w C A(2.16)

mass Y1

Using equations 2,15 and 2. 16, we eliminate C(
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L _ ’Vv'wz[E'ZJ/'yna-‘
2P - wa cé -

(.

= ﬁ(—,ﬂ;) (2. 17)

Equation 2, 17 may be integrated to obtain an expression for mass as

a function of time:

] | ) 43
7\-4..-:—{:/‘-—; +-—2—g P ‘[f (2.18)

where M, is the initial mass of the satellite, If we let Mp be
the propellant mass, then the '"burn out" mass, M, , attime T,

is given by::

sz /\/{a - MF (2.19)

Substituting in equation 2. 18 and using 2. 14, we have:

Mooy k12 o (2. 20)
My 2 Mw

[4

To optimize the power supply, we write the relation between
the payload mass, ™, , the structure mass, Mg , and the other

masses.

M+ Mg+ Mp+My, = Mo (2. 21)
Further, let
T
Y = %. S o® dt (2.22)

[}

Then, manipulating equations 2.19, 2,20, 2.21, and 2,22, we have:

M, +Mg M, ] —}]
M, M, [(Mw/M.)+Y? (2. 23)
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There is an infinite number of programs for & which will keep Y2
constant while fulfilling the mission as My /M, is varied., Thus,

taking the derivative of equation 2. 23 equal to zero, we have the

maximum of (M, +M;)/Ma with respect to My /M, when:
M ,
=Y -y (2. 24)

Substituting equation 2. 24 into 2. 23, we have:

M, + M

4]

= (!~Y)2 (2.25)

Using equations 2,21, 2.24, and 2.25, we have:

Me _
Mo

From equation 2, 26 we see the range of ¥ must be zero to one,

Y (2. 26)

since MP/Mo must iie in this range. Further, for a particular
mission, we Seé from equation 2. 25 that the structure and payload |
mass fraction will be .gre.atest when ¥ is a minimum. After de-
termining the minimufn value for ¥ , the optimum power supply
mass is given by equation 2. 24,

We are now ready to investigate equation 2.:)22. In reference
(1), Irving has shown analytically that the acceleration must vary
linearly with time in gravity~free space, if ¥ 1is to be a minimum.
Further, when the mission of specified energy in a specified time is
considered, the optimum accele-ra.tioh becomes constant., For the
case of a central force field, Irving made a numerical study using
continuous thrust, and found the optimum a.cc*;eleration to be practi-

cally constant. Thus, the spiral orbit with constant acceleration is a
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"near optimum solution which will provide a fair comparison be=
tween continuous and discontinuous thrust programming.

If we consider a discontinuous thrust program applied to an
elliptic orbit, it seems clear thal the thrust should be applied near
the perigee, where the velocity is greatest, to impart the greatest
energy. If the thrust is parallel to the velocity vector, we will im-
part the maximum eﬁergy during a}hy given thrust cycle, Such a pro=-
gram will allow the perigee distance to increase, and with this in-
crease there is a decrease of perigee velocity, thus decreasing the
energy imparted during a subsequent given thrust period. To obtain
the advantage of thrusting near the perigee, but still keeping the
same distance for a velocity advantage in subséque'nt cycles, a pro=
gram must be found that imparts maximum energy during any given
thrust cycle while providing no net change in the perigee distance.
After obtaining the restricted perigee equations for one cycle, the
programming of thrust time will be considered and ~ ¥ will be com~
puted for a large number of cycles.

After developing the restricted perigee equations, we shall
obtain an approximate solution for the spirai orbit with continuous
thrust to compare with the restricted perigee thrust program. Fi-
nally, we shall consider the use of batteries with the restricted peri=
gee thrust program. The batteries can be charged while coasting to

'provid-e added power when thrusting. In one case, the batteries will
be considered as part of the power supply, and in another case they

will be considered as part of the payload.
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III. PERTURBATION EQUATIONS

When Q 1is not zero, we have a small non~dimensional ace-

celeration:
Qa
€= —

ﬁd

since we are considering only low thrust devices. This suggests the

{<L (3.1)

use of a perturbation analysis for each cycle.

Since % is no longer constant, we must rewrite equation

2.9
A== gbh Ut (AU +hu’) (3. 2)

and for the j- component of equation 2.3 we also have:

L 4 n2g) = gt b (3.3)
— —(nf6) = 2.U 'ﬁl ’ °
— 5 (r*6) =g

By using fig. 1 and simple trigonometry, we write:

~piang + Ucosy

s:N(Lprp) = W (3. 4)
and
u’aa: - U sIrs
cos(@p+B)= r_sé._—-._v 2 (3. 5)

Jure
Substituting equations 4.5, 4.10, 3.1, 3.4, 3.3, 3.4, and 3. 5 into

equation 2.4, we have the radial equation:

(3.6}

" 'gl/u, — —-!-— + e .ulw{¢ t L(SIAI¢ )
U +u + N _&2. (ﬂauavuz_,,um'

and the tangential equation
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£ = e('“'s'wﬂ + U m¢)

Wh Yurrut

(3.7)

’
We get some simplification in equation 3. 6 by substituting for +

U’ + u= - + € Gu‘ﬂ-u sm/c"ﬁ

£ 22Ul

from equation 3. 7:
(3.8)

For the perturbation solution, we take -fqo constant and W, as

given by equation 2. 12 to write the assumed solutions:

U = u,+eu,+eaua+€?u3+ o (3.9)
and

$y = b, + €b 8L 4N+ (3. 10)
where W, = UYUy,= -~ - =ﬂ,=‘3\1='-'=0 at &, , the angle where

the thrust for a particular cycle is started. Substituting equations
3.9 and 3. 10 into equations 3.7 and 3.8, we obtain the first perturba=

tion differential equations:

57 = “USsING + U, cos

- (3. 11)
' B, U2 JuZ ¥ ul®

and

]u - u 2
+ ot Us” 5/A/¢ (30 12)

™
x‘a[:«,
3“>
S:

For a particular cycle, where the thrust is started at angle &, and

© -6 %< 2T , the solutions may be written:

2 .
(e = | 4 (#)4Y (3.13)

&,



and
6 Y f-——_—~_,
ul(e)=§sm(o—4*)[-é— %ﬁ odr + M —E——— 5N cpJ (3. 14)
6, ° u
For a unit mass, the energy is given by
E = kinetic energy + potential energy
n
d
:2(n+nga)+3k -/-Tjji
= %K-(ﬂ*uhama) +'9.R, (1=U)
2
- &
= 3,,12.,[ Io- T ] (3. 15)

by using equations 2.5, 2.6, 2.7, 2.8, and 2,12, and where the po-
tential energy is considered zero at 5 = K, . By substituting equa~

tions 3,9 and 3. 10 into equation 3. 15, we obtain the first perturba-

tion energy change:

=, (ul +u:a)£ (P u) U, + RE S/ (3. 16)
eg R

The perigee distance ratio is obtained by evaluating equation

2,12at © = 6p :
+ &,
5}:—; = L—_E‘:{“ (3.17)

We could require that this quantity remain constant during the thrust
cycle, as done by Casey in reference (2), but we should have a gain
in the energy imparted if we require that the perigee distance ratio
be equal before and after the cycle. We shall pursue this latter
method of perigee restriction and will demonstrate a slight gain of

energy over the method of continuous perigee restriction.
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The eccentricity may be evaluated before and after the thrust

cycle:

e
e =1 (u-1*+ uUh (3. 18)
by using equation 2, 12, Then, substituting equations 3.9, 3.10, and
3. 18 into equation 3,17 and equating the results before and after the
thrust cycle, we obtain the first perturbation perigee restriction:
2 N €, (1+
PR=O= E[ﬂ,M,+ﬂ°Ua'"*&“ "L%&Lﬁ'élz]‘gh +

AU~ u, + hiulw
(3.19)

evaluated at &, , where ©, 'is the angle at the end of the thrust

cycle..
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IV, OPTIMIZATION OF THE RESTRICTED

PERIGEE CYCLE

To find the thrust angle which will impart maximum energy
during the thrust cycle and still satisfy the perigee restriction given
by equation 3. 19, we shall take a simple variation, using the La-
grange multiplier, equal to zero, We write the non-dimensional en-~
ergy, equation 3, 16, plus the perigee restriction constraint, equation
3. 19, with the Lagrange multiplier, A s where A is a constant to
be determined, and, assuming € = constant during the cycle, take a

variation on ¢ equal to zero:
4E
2B 4aPR| =0

For convenient notation, we rewrite equations 3. 16 and 3,19 as

éL;oERaz Ah, + Bu, +Cuf (4.2)
and
PR=10= A% +Bu, +Cu/ (4.3)

where A , A , B, and C are shown in equations 3. 16 and 3. 19.

Here, we note,by taking the difference of equations 4.2 and 4.3, that

AE
é?ogo

is the energy change for the thrust cycle. Substituting equations 4, 2

= (A-A") 4,06,) (4. 4)

and 4. 3 into 4. 1, we have:

(A+2A)Sh, + I+ D[ BSU + Csuw/ | = 0 (4. 5)
Before taking the variation, we must first integrate equation 3. 14 by

parts to obtain the more useful form:



& e 6
U,e Ssm(a «,b)£ - S/A/q‘)c[l/’ %K[cos(e @) - ]ﬁ (P)d¥ (4. 6)

a o
1 94

Then, taking a derivative of equation 4, 6 with respectto © :

) 2
u,’(a) =SWS(G‘¢)FSIU¢J‘7U - —_21; g SIn(B- ‘//)14: () d¥ (4.7)
9‘ ™ [ ] 9‘

Using equation 3, 11, we note that:

&,

o ‘ sl - 1 s,
Sﬁ@94547MwP=g U Corf L“SN¢ §pd¢ (4. 8)

{
5, 5 hooud qu u

{

Now, taking the variation of equations 4.6 and 4.7, using 4. 8, we

substitute into equation 4, 5 to obtain:

g+ z
S[Eiofzo ;IP] Sﬁ u.?vu +u¢§u£ (BSIN(G ) +Cc::s(9 W))cogd) -

A+ AR 2Br. s ). /
-(TE——_A—- + E[Cbs(@z ¥) IJ—%S/M(Q{MX OS/;\/¢+L(° cosﬁ} g(;»a[y’

(4. 9)

For equation 4. 9 to be zero, we must require that the integrand be

zero, so that
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+AA 28 _
uamcp[{i—;;— + Ed(costerp)-1) ﬁ 2Ecimie,-w)] =

/
=-=U, C.05¢[A)t)f ZB (COS(& Lfl) {) - —22‘%- SINCQL ¢) -

o

- M(Bsw(é YY)+ ( cos(e,- W))J

fo U (4.10)

Substituting the expressions for A , A’ , B , and C from
equations 3, 16, 3,19, 4.2, and 4. 3, using equation 2. 12, and taking

ef’ = O , equation 4, 10 becomes -

sIN & N e, (1 +e)°
- | 4,11
ran q> ')*600069[)#'802-#26,60:9 +2Ae°(3059-,)] ( )

where A is a constant to be determined. It will be shown that the
shift of ©Op 1is negligible for the symmetrical thrust cycle, so that
a choice of.ze:ro for GP piesents no problem in going from one
thrust cycle to the me:.cte We now hé.ve the thrust direction program
given by equatiqn 4,11,

Substituting the expressions for A and A/ and equations

2,12, 3.11, and 4,11 into 4. 4, we have:

AE
Eg L RBE
(1+e it e coplf[I+ef+28,cos¢ +2 08 (Cos-1)] - €, (I +e,) * Voo st 4y
S(He,m‘/’) 'UHezi-ae.cas‘P (1tgcos¥)P[1+e2+2e, Cos‘P-f- 2 Aeo(cos¥~1]]%+
8, + Xl iveyt el
: (4. 12)

Also, substituting equations 3.11, 4.6, 4.7, and 4. 11 into 3.19, and
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using 2. 12, we have:

PR=0 =

o _
Z)\go(u—e,,)“s/n/a% +2 (+e.cosWiE[ 1+l +2e,0o5¥ +20e, (cos ¥ -] (cos¥-1)

§(H— E‘°CD5\P)3vl+e‘a+Ze‘,Cn;§7y([+ea coswE[telae, cos¥ +2pe, (cos ¥- )] +
' + YelZ(ire, ) siviy

(4. 13)

From equation 4, 13 we determine the value of the constant A&,
for any particular cycle, since A always occurs with €, in the
iwo equations 4. 12 and 4. 13,

Since it is not possible to integrate the above equations exact=
ly, we must use numerical methods to carry the investigation to
large angles, This would be fairly simple for one cycle, but when
one considers a large number of cycles, a computer program appears
to be mandatory. We shall not pursue this route, but instead, we

shall present an approximate evaluation which is useful to angles of

one radian,
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V. APPROXIMATE EVALUATION FOR ONE CYCLE

To make an approximate evaluation of the optimum restricted
perigee equations for one cycle, we shall make series expansions and

integrate term by term. First, using equation 4. 13, we may rewrite

49 12 as.; 6 .
AE e PR +§?l+€}+2€.£os‘/’)( l+€,£as‘/‘)2—[l+€:+a €,Cos¥ +ZA€°(¢05¢,/)] A v/
T DENOMINATOR
A > " (5.1)

since PR=0O ' by the appropriate choice of A€, and where
DENOMINATOR is the denominator of the integrand in both equations

4,12 and 4. 13,
Now consider the function ’
. &2
G = S b 4y (5. 2)
8,

where

éﬁ _Vdre, coswr[+edrae,cos )b +2 e, (cosw-i]* + el(1+e) s ¥

7 (5» 3)
(1+€,eosw)® Yl+e2 +2e,c05¢
We notice that
138 =L 2 (day] = ¢ 22 4y
C3r|  Co 2R )5 (5. 4)
Y bet
has an integrand identical with equation 4. 13, and
- e, .
36| _ P__g d Q@
> =35 94 = =AY (5. 5)

b=l 8, b=l e b=l
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has an integrand identical with the non-vanishing term of equation
5.1, since PR =0 . Thus, if we perform the integration of equa~
tion 5. 2 , we may evaluate A&, . and the increase in energy by
taking the derivatives indicated in equations 5. 4 and 5, 5,

Expanding in series, we collect the coefficients of the various
terms of % and integrate. Noting that the result is symmetrical

about €=0 , we write

- ?
1 A__b N, e Ne ©; . _Ns &z
2 G “{+e) [92 * (et & titentizo  Gtentis 080 f (5. 6)
Wﬂere
N,=2el+e, -20 +a? (5.7)

N,= 16e. + 19e3-e2 -e, —22Tel-32Te, +2.T +20 T2 +

+340%e, - 4T2+ 1207 =307 . (5. 8)

. G _?—
Ny= S, +1038 e raazet-3c2el-|8el t2e, ~3FITE -2ULTE;

- 2.2
—74cTel +344 re. 4T +i232 v} + 3638077 +2802 Ties

z - 3 - to2 o
-922 7%, +3202%+ 11%06 r3el +2e4003%e,-3000T3 -4207 ¢,

A
-9%07%, +8400% - 54005 + 907

(5. 9)
and for convenience we have used
: Py
r= =4 (5. 10)

Now, taking the derivative of equation 5. 6 as indicated in equation 5. 4

equal to zero, we satisfy the perigee restriction of equation 3.19 and
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solve for Ae, :

soisef-3¢72el -pescef-993ce, -399p o

re, = |- 6
°m g0z (1reo)? ig,800

(5, 11)

Here, we note that equation 5. 11 would be much more complicated if
a non-symmetrical thrust program were used. However, since we
can see from the form of equation 5. 6 that this will have no energy
advantage, a symmetrical thrust program is chosen to simplify the
results as much as possible,

Similarly, taking the derivative of equation 5. 6 as indicated in
equation 5.5, and using equation 5,11, we have the energy for one

half of the cycle:

-
L _AE - H; {e _ (-zen 88 L (71-i3e.*iGel) e;
Zéjoﬂo '+eo Z ([+e‘) 6 (,+e°)2 /20
7
2720€° +5190e° +3924e8-2504€2 - 150662~ (34€, -111] O,
(1+¢,)° 50400
(5. 12)

To determine the advantage of this method of perigee restriction
over that used by Casey, the energy equation giveh in reference (2)
was expanded in series and integrated to the same number of terms
as we have in equation 5. 12. The two energies are identical to the
last teri‘n, but if we compare the last term of the constant perigee

energy expression:

, 2720 e +5190ef +1125¢% - 20003 - 2550e2 - 4230¢,-2335 o, ‘ 1a
(| +€.)® 50400 (5.13)

with the last term of equation 5. 12, we see that for values of &£,
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between zero and one, the constant perigee restriction yields less
energy.
To find the changes of the elliptic orbit parameters U, h,

and &€ , we note from equation 4. 4 that

I A E
(A‘A,)egoR"

where the energy is given by equation 5. 12, Substituting the expres-

h, (6, = (5. 14)

sions for A and .A’ and neglecting the higher perturbations since
g g g

€ is small, we have

42 aE

= 8,) =
A‘sz Eﬁl( 4 (l+e0)2 gaRa

(5. 15)

Now, from the perigee restriction, we may write equation 3. 17 before

and after the thrust cycle:

I+ &, |+e,+8€ .
T = 2 (5..16)
b, (f,+4%)
from which we solve for the change in eccentricity:
2
_ , _h. _4AE ,
se =12 (+resd 9oRs (5.17)

using equation 5, 15. To scc if there is a shift of perigee, we assume
that the equation for WU , at the end of the thrust cycle, has the form

of 2,12 :
[ +(€,+28)Cos(6,-a a,,)]

(£°+A£)Z (5. 18)

where we have provided for & shift of the perigee with the term A@P o

U=

Then, using equations 2.12, 3.9, and 5.18, we can write
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A
| | +(q+ae)ws(9,-ae,o)-(l+é.,¢0591)(I+ %:)Z
O RYTIE ; .
and
, ' ‘—(e,+Ae)SW(6‘z‘40r)+e°S'N@=-U+ E_‘ﬁa)Z
u'= ¢4 o +24)° % 520

Substituting these two equations into 4. 3, with the expressions for

A, B , and (C , we obtain the result
(cos(6,-a8p) ~cos8,)cos 6, +(sim(62-a8p)-sim 8, )siwe, = O + O(€) (5. 21)

Thus A&p. 1is at most of order £ ., Using this resull, we may
evaluate the terms of order £ in equation 5.21, using 5.15 and
5. 17, and we find that they are zero. Thus, there is no shift of the
perigee within the magnitude of the first perturbation as would be ex~
pected with a symmetrical thrust pi'ogram.

Before proceeding with the discontinuous thrust program, we
shall obtain the approximate solution for the spiral orbit with thrust
tangent to the velocity vector. For this case, Qﬁ is zero, and equa-

tion 3.8 becomes
’ !

2
h= DT (5. 22)

From equation 3.7 we have
! l :
r_ E “Uyel-z
ﬂﬁ—a—g[l+(u)] (5. 23)
Taking twice of equation 5, 23 equal to the derivative of 5. 22 and ex=-

panding, we obtain
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uw'=-eefivz B LT (5. 24)

where we have assumed starting from a circular orbit with (H”/M)
and (U/U) much less than one. Integrating from O to & we

have:

=]
# R i .
Uz= Uz- 466-Z§(uu raey —€(4)% . )de (5. 25)
[+

To determine approximately the small quantities not yet integrated,
let us take for the first approximate solution

2 _ 2 ‘ ’
which is merely the first result from equation 5. 25. Then, taking

derivatives of equation 5. 26, we have approximately:

u _ _ Z2e
u - UZI (5, 27)
*u‘llz - 462 5. 28
3
uu” = - 24-46 (5. 29)
Ua

Substituting equations 5, 27, 5.28, and 5. 29 into 5, 25, we obtain the

result:

J J
e = Yyt etl— T — “"‘] © (5.30
g L{Q + 27 [ ua UOZ (5. )
where U, is given by equation 5.26. We may now use the second

term of equation 5, 30 to choose values of &€ and U, , assuming

U, is given, to insure that our results lie within a certain accept~
) g 2 :
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able error, We should also note that (é/ua) | must be much less
than one if equation 5. 30 is to have meaning,
To determine the time, we use part of equation 2,13 and sub=

stitute equations 5. 22 and 5,30. Then, using equations 5,26 and 5. 28,

we obtain

ET:?;?: ) iqSul;?—H” €oo = f(l X sz_” ~%

o 4 15}

Eolo

eT=§)uf/a(’* ’Z&%a' el el )ede
o

71
— gef 37 _ 17 4 A0
eT=1m 1w - [ UF T e T
(5. 31)

Here, we see that for specific values of U, and & , we will have
a larger error in equation 5. 30 than in 5. 31, since U, is less than
Uo.and U, 1is less than one.

To determine the energy input, we substitute equations 5, 22,

5,27, 5,28, and 5,30 into 3. 15, and take the difference between the

final and initial values:

AE -é' [(b{o“ Ug) — €2< 32 - ulzlua)] (5. 32)

o

where again the error may be estimated by the second term. Of
these three equations, 5.30, 5.31, and 5. 32, equation 5.30 will have

the largest error as' Ua becomes small, and it should be used for
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choosing values of &€ and U, .

We have reached the point where we must decide how to pro-
gram the cycles for the restricted perigee. To do this, we shall
choose a ratio of (Ra/ﬂ) =0.95 to be the maximum value for U .
For the case of the earth, this corresponds to an altitude of 208 miles
and is adequate to insure negligible atmospheric effects.

If we form the quotient using equations 2,13 and 5, 12,

specific power = ?r— éj:;l:ﬁ'a % (3.33)
then expanding A0 in series and performing the division
2 +
1 +&, ! 21-13¢ée,
- )__ 92 + = 62 ks (5034)
f, [+& G (I +e.)* 3¢0

This equation is plotted in fig, 2 for various values of &€, , with

corresponding values of CE /go Ro) for PD =0.95 : Where

P is defined as
€,
P, = — (5.35)

Also plotted in fig. 2 is the specific power for the spiral orbit for the
same values of (E /ﬁo Re) . We can see thatw_when the eccen~
tricity is small, there is not much difference between the two methods
near the perigee, but the discontinuous thrust program hecomes inef-
ficient if we proceed too far from the perigee. This is because the
thrust must be directed away from the velocity vector to satisfy the
perigee restriction. Thus, for a given energy increase per cycle
when the eccentricity is small, & must be larger with discontinuous

thrust, since the thrust is not on for the full 27 radians. There=

fore e o lawe
ore, £ 1e larg
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ratio is reduced, as seen in equation 2, 25. If we manipulate equa~

tions 2.13 and 3. 15, we can obta.in the time for Z77 radians of trave

el in terms of the total energy:

3

_ I 1’\’[ E ]"'Z’
= —— |l e — (5.36
AT = =5 ”g 1 2R, )

which holds for both elliptic and circular orbits. Now, if the mission

is to be accomplished, both methods will have about the same number
of cycles, where in the case of the continuous thrust method, cycle
means A7 radians of travel. Thus, we want to impart about the
same amount of energy during each corresponding cycle.

We can also see in fig, 2 that for larger values of eccentricity,
say 0,75, thé specific power is much greater for the elliptic orbit,
In this case, for agivenenergy increase per cycle, AY for the

spiral orbit will be greater,
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VI. APPLICATION TO MULTIPLE CYCLES

To find the total energy input, total time, and ¥ , we must
make a summation of the results for each cycle. However, since we
are assuming a large number of cycles, with small changes for each
cycle, we may write integrals for the summation operation and ob-
tain our results by integration. The thrusting time, At , is taken
as constant for all of the cycles, and the variable of integration is
de .

We must first express the cutoff angle, 6& s in terms of &
because it must be varied slightly to keep the thrusting time constant.

Expanding equation.2, 13 in series, we have, for the symmetrical

orbit:
262 e c. el-se) 4% (6, 1)
& = + oo o
Atb]—"‘ A TS {1 T30e) F co(irer © %
Then, if we let
3
/.
P % P >
'& ROA'I{' E‘ A { (6‘ 2)

we can write approximately

=17 ,51_’,8{){21;;‘5__2_‘_%4% 6.3
- | | +& 3 5(1‘4’8) | (6.3)

where % is the initial value of 8, . Care must be used in
"'cho_osing £ so that ©, 1ie less than one at & =/ ; otherwise,

the series expansions will not be good approximations.
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Substituting equation 6. 3 into 5. 17, using 5. 12, and replacing

the finite '"delta quantities with differentials, we obtain

._ RS 2 72e’-29e%-32e-11 ,4
d :_:.._.9-{ & + %
‘E L 4% (HG )I)H-Ez 360 (| +e)¥e k (de (6. 4)

The term d{ is in effect one, that is, one cycle, and (d€/€) is
the small change of eccentricity during that one cycle. To perform

the integration, we shall take € as constant to obtain:

s

(6. 5)

AR,
EN‘;‘%‘{W?W“‘—’* 2700 7

3821+1828Ee-577e%+ 2/4@3,{?]

€;

where &; is the initial eccentricity and &, is the final. N is

the number of thrust cycles, and the total thrusting time is given by:
€ 1= ENST | (6, 6)

We find the energy input very simply by replacing the finite ""delta'

quantities in equation 5. 17 with differentials, using 5. 35, and inte-

grating to obtain

A

- -~ 4. Ko
t.ﬁ‘t’: La'_}:?:(e#”e[) (6. 7)
Then, using equations 2. 22, 3.1, and 6.6,

Y2 = _(;_ﬁfEZNAf‘: %QOZEZE—ENA'Z‘ (6. 8)

To find the total travel time for 27T radians, we write equation
5.36 in dimensionless form, replacing the finite ""delta' guantities

with differentials; then substituting 3. 15 and 5. 35, we have
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2T di
P (1-e)

0{ ( - 3/2 (60 9)
where again, di is in effect one. Substituting equation 6. 4 for
di  and neglecting "end effects' in the integration, we have

ef

I (0 L & it vt
€= ——F 4% ? )r"ﬁ (23 sive + .v—l—_——e—aﬂ ) (6. 10)

-

Ll

The "end effects' we mention are the initial cutoff angle and the final
cutoff angle not being equal so that we have a small amount of time
neglected for each cycle due to the shift of the cutoff angle; the final
energy is added before starting the final coasting orbit; and the initial
energy is added during the latter part of the initial coasting orbit.

This might be clearer if we note that the integration gives us

T = a7, +a7, + +A/€¥_I +A7£;{ (6, 11)

¢ i+

where 4 7éj- is the travel time for 27 radians at eccentricity

;i » whereas the true mission time would be given by:
T =87 +4T + - b d T H+AT T FAT; (6. 12)
7: 4 (i-/-l+d “ *e 4 4,+:.+ 017;'2 d[ -z e—f-/ Fer
where a7y is the thrust time for the initial cycle,
ej = e. +Aej , and d 73 is the cutoff angle shift
I-1

time. If the number of cycles is not large, then equation 6. 10 should

be corrected for end effects! by adding

. i 7
Toee = A7 (1 F *f':}g) Al - ATy (6. 13)
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where % is the initial cutofl angle given by eguation 6. 2, @Z-F is
obtained by evaluating equation 6.3 at @=&¢ . The cutoff angle
shift time correction is an average value obtained by using the first.
term of equation 6. 1. ‘'Lhe other corrections follow simply by com~

paring equations 6,11 and 6,12,
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VII. RESTRICTED PERIGEE CYCLE WITH
BATTERY STORAGE

We must still consider the possibility of different values of
specific power plant mass, K , for the two systems, since we have
the capability of storing energy with the discontinuous method while
coasting if we provide batteries. The energy generated by the power
supply while coasting could be stored in batteries and then used in
addition to the power supply while thrusting.

To study this possibility, we shall first assume that a battery
pPack is included with the power supply and that other conditions of
the thrust program are unchanged; later the battery will be consid- .
ered as part of the payload. We shall further assume that during the
early part of the érogram, when € is small, that the coasting time
is not sufficient to fully charge the batteries, but as € increases,
a point is reached where the batteries do become fully charged, and
are fully recharged during each subsequent coasting period. We

have equation 2. 18, evaluated at the '"burnout condition'':

M M, K T, of
o _. I -~ o ‘ g w 0! +
My, M, % 2 K

P (7.1)
whexre we have multiplied and divided by (K/Mw ) ; and must now
consider P as a function of time. When the batteries are not fully

charged, the power is given by

p = Mg ACeyee
K AT (7.2)

neglecting battery losses while charging, where Mg is the mass of
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the electrical generating unit, K is the specific mass of the gener-
ating unit, A7 is the constant thrusting time per cycle, and
A?‘cycle

5.36. The batteries will be fully charged when

is the travel time for 27T radians given by equation

M batt, Mg
K = K (A Torbit 4 T) (7.3)
batt,
or
M batt K
ATorbit/ AT + v < (7. 4)
| batt,
where Mbatt. and Kbatt, are the mass and the specific mass of

the battery, respectively. From equation 7.1, we define 7(2 sy COTr=

responding to 2. 22:

T T
i K .'Y’,"Z’.E‘:f - L N_ﬂ &
A A - B al (7. 5)

[}

But since € is comstant, and M, = MCé * Mpap

T M byt
EZ fg M‘f () + Mg ) £(+)
Yz = _éi /S fD 0’1- - (7° 6)

&

where f(#) is introduced to remind us that the integrand is
zero wien not thrusting., Using equation 7.4 in 7.2 , we can write

the maximum power available when the batteries are fully charged:

M Miatt,
PN’ ~__3_(}+ bat K | ) (707)

Ak K Mj l<ba-h\-’ AT
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Using equations 7.2 and 7.7 in 7.6 :

__«i ferir. T T f£¢) |
feoaT ' At 7 8
}/O + M7 ){g Aloeger ¥ <§ bl Mg K ) ] (7. 8)
° fcmr at Ma Kb t
where t . is the time at which the batteries become full
crite ¥

charged. Now, the integrals in equation 7.8 may be treated as sum-
mations since the thrust is on for the constant time 47 during

each cycle:

Nerir

éz‘g% M " R‘, 2 l (N "Ncszn‘) AT
2 - .._?:.KO + —’\——q”%ﬁ)]/-;[(‘&?)z o, +(I oL M K ) (7.9)
n=i AT Ma Kpait

where Ncrit is the cycle number after which the batteries are
fully charged. Using equations 6.9 and 7.4, we can solve for the ec~

centricity when the batteries become fully charged:

2T :
e = | - — (7. 10)
¢ Bl a7 + Mot K
V“g KLA'H‘-
Then, using equations 6.4 and 6,9 :
Ncm'r | NCV’:TA_ Nc.rl'r
= g di} yr =
8 T, ‘Z( )~§ (‘1) ‘T
hZI ey n=i JTM ey A
)
P2 % 72¢°-29¢e"-32€ -
= \(i-€) i(w y %" de
T E R I+€ 3co(I+e)’ (7.11)
[¢]

Integrating this equation and determining N - N rit from equation
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©. 5, using 7. 10, equation 7.9 becomes:

v Gt el oo o,

i - 3 2
+Ggsei~230€c+!083€¢-2404€c Twe It jois, it o?) g]+

6 I-e%" 3 Jico
2 k €
(2+£‘-) —, e tigzge-597e4+z1c€ g
(] +) 3 ) 2700 Jj+e”
€.
(7. 12)
where
Mba'ﬁ'
i = - 7. 13
[+ H =] + My ( )
and
I Mba“t‘f"- K
+ & = B T A
! AN Mg Kpath. (7. 14)

Now if we form the ratio of equation 2. 22 for the

equation 7. 12, multiplied by the factor J +H

spiral orbit and

s we have
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s e (4R (€T ) . pr e
FRyz=( W)Yf = {(EJ/és) =& jZ : {(47‘)22-7—[- [(HE}(gswec-:‘-

il 4 3 _ 04 o2 -
.+(2__§% UFZE?-Z)—P<7686‘ zaocc+42f;e; aj 4ec -3lllect4814
I-ef

jois— <! + e G
+iaie, - 2007 ) ] +(-,—§—1;-;)[(2+§-)151+e' +

(7. 15)
2700 .U[ +8I

4 3821+ 8282 -572e%4 215 €7 )%jef
e,

When FRYZ is less than one, the spiral method of energy addi=-
tion must have a Y less than the Y for the restricted perigee
method, and by equation 2. 25 the spiral method must have a greater
payload. If FR yZ is greater than one, then there may be a pos=
sibility of carrying a greater payload by using the restricted perigee
method. This Wzll depend on the ratio of K/Kbatt. that can be

obtained,
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VIII, COMPARISON OF RESULTS

Now to compare the results we have obtained, equation 5.31,
the spiral thrust time, is plotted against the energy added, equation
5,32, in fig. 3. Using a value of kR=o0.8 s which corresponds to
a maximum &, k= 0. 944 by equation 6.3, the restricted perigee
thrust time is computed using equations 6.2, 6.5, and 6. 6 for values
of eccentricity from zero to 0. 95, with F, = 0.95. The corre~
sponding increase of energy is computed using equation 6,7, and
these results are plotted in fig. 3. Since the total time must be equal
for either method at a specified energy additfion, we may compute
equations 5, 31 and 6, 10 at specific energy levels and take their ratio
to plot (éd /Es) in fig. 3. This is the ratio of acceleration for
the discontinuous to the spiral that is necessary to accomplish the
mission,

It seems clcar from fig, 3, in view of the acceleration ratiocs
required for the mission and equatioﬁs 2.13, 2.22, and 6.8, that Y°
will be greater for the discontinuous method if K is the same for
both methods and starting from the circular orbit V;ith Po = 0.95.
For these conditions, the discontinuous thrust method will provide
less payload. ZFurther, if we decrease ﬁ, , the initial cutoff angle,
we see from equation 6, 10 that € must be increased for the same
total time; thus, Xz will be even larger for the discontinuous
method? resulting in even less payload.

Using equation 7. 10 and fig, 3, we have evalualed equalion

7. 15 for three different final energies, expressed as eccentricity, for
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various values of ©< , These results are plotted in fig. 4.

From reference (3), we find that a typical value of K would
be about 150 pounds per kilowatt, This value will decrease as space
power plant technology progresses. In reference (3), we also find
K batt, of 75 pounds per kilowatt=hour for nickel-cadmium batteries,
which have very reliable charge and dischargé characteristics, and
14 pounds per kilowatt-hour for silver-zinc batteries, which are not
as reliable for a large number of recharging cycles. From equation

7.3, we see that both values of K must be divided by

batt,
7
3600 (?o/Ro) : to have the proper non-dimensional time units.
Thus, we have the values for Kbatt of 16. 8 for nickel-cadmium

and 3, 13 for silver=-zinc,

We cannot improve over the spiral thrust program with either
battcry supply if the final energy must corvespond to an ecee.ntl'icity
of 0. 95, since in fig. 4‘the maximum FRYZ is 1.006 .

Using equations 5. 35 and 6.9, we compute the non-dimension-
al thrust time for one cycle, corresponding to an initial cutoff angle
of d, 8 and e,= 0

e~ (2)(0.8) dT I &
A = 4T 728
{ 2T AT (095~

(8. 1)

Using this and equation 7. 14, we compute the values of 4 for the
nickel-cadmium battery, for ~=7,5 and o< =10. 0, respectively:

/L,(::l.4'5_) p=193 (8. 2)
and for the silverzinc battery:

M=027 , M=036 (8.3)
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From fig. 4, we read FRYE:L 21 for the final ccceniricity of
0.4and <=7.5, Butfrom equations 7.15, 8.2, and 8, 3, the
values of M for either battery will require Yj to be greater
than YSZ } again, we find no advantage in the restricted perigee
method of energy addition. However, for the final eccentricity of 0.7
we read from fig, 4 FRYZ of 1.29 and 1,39 for o<'s of 7.5 and
10. 0, respectively, From equations 7.15 and 8.3, we compute for

this condition:

X5 - hos 35— 010 (8. 4)
¥ S

for the two values of o<, respectively, From equation 2.25, we can
see that in this case the restricted perigee method has a slightly
larger payload than the spiral method for this particular final energy.
To see this result more clearly, we form the ratio of equation 2,25

for the two methods using 8. 4:

2
(M, + Mg)q _ U=y (8. 5)

(Ma +MS)S (]"}.OIYG[)Z

for =10.0. Now, clearly, the numerator of 8,5 is greater than
= y 8.5 is g

the denominator, so the ratio must be greater than one.

Although we have found that the restricted perigee method of
energy addition, using silver-zinc batteries, yields a slightly larger
payload than the spiral method for certain values of final energy, we
still have the problem of battery reliability. There is no question of
the recharging reliability of the nickel-cadmium battery, but wé
found the specific mass, K batt, ? to be too high to be useful. The

silver~zinc battery could be used for a slight payload advantage, be=-
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cause of its lower specific mass, but its recharging reliability must
first be improved.

We must finally compare the iwo methods of energy addition
when reliable, rechargeable batteries are part of the payload but are
available to be used in the thrust program. In this case, H=0 and
we see immediately from fig. 4 that there are certain values of
and final energy where the restricted perigee has a decided advantage
over the spiral method,

As an example, let us determine the advantage where a
nickel-cadmium battery, Kbatt. = 16,8, is part of the payload.
Using equations 7.14 and 8.1, we compute values for (MLAH-. /Mg)

for =~ =17.5 and ‘o< =10.0, respectively:

Mobatt. _ 4 4 M batt.  _ ) gs (8. 6)
M, M3

Zven though the ratio of battery to power supply mass is rather
large, it is not unrealistic since we could easily have a satellite
where both battery and power supply are but a small fraction of the
initial mass. From fig. 4 we read FR y2 = 1.21 for the final

eccentri'city of 0.4 and o =7.5 » and since M =0

Ss (8.7)
%, .10

Forming the ratio of equation-2. 25 for the two methods, using 8.7 :

(M;+M5)d: (i*zgf _ (3. 8)
(M +Mg)g (1=110%y)

Similarly, from fig. 4 we read FRYZ of 1.29 and 1. 39 for the

final eccentricity of 0.7 and eo<'s'of 7.5 and 10.0, respectively.
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Since M =0 , we have immediately:

¥s Ve
—_— —_— , 79 8‘

for the two values of o< respectively., Again forming the ratio of

equation 2. 25 for the two methods, using 8.9, we have

(MEMs)y (=)t (MM (- vd)?

(M +Me)s (=036 (M Mgy (-19n)? (8- 10)

for the two values of & =7,5 and <= 10.0, respectively. The
ratios in equations 8.8 and 8. 10 will depend on the value determined
for Yd , computed from equation 7.12, but they do show a definite
advantage for the restricted perigee method of energy addition.

For example, suppose the value for ¥y is 0.25, that is,
let 25 per cent of Mo be propellant. Substituting in equation 8. 10,
we compute ratios of 1, 097 and 1. 131 for the two values of o¢ , re-
spectively., Now, this is about a 10 per cent gain in payload and
structure mass by using the discontinuous rather than the continuous
method of thrust programming, where the batteries are part of the
payload.

It seems rather surprising that we have found no advantage
for the restricted perigee method of energy addition for the final ec-
centricity of 0. 95, where we found a definite advantage for the final
eccentricity of 0.7. There ai'e two reé,sons for this resulto. First,
we can see from equation 6, 9 that the travel lime for 277 radians
increases as the eccentricity increases. Thus, if we thrust for the

same amount of time during each cycle, there is a greater percentage
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of coasting time as the eccentricity increases, This requires an in-
crease of (éd/és) s as shown in fig. 3, to accomplish the
mission, and in turn, we find a decrease in the ratio of (YS/YA)
so that there is no advantage when @  reaches 0.95. Second, by
restricting the cutoff angle to one radian or less, we do not take full
advantage of the greater velocities provided by the elliptic orbit as
the eccentricity approaches one. This can be seen clearly in fig. 2
where,at a cutoff angle of one radian and € = 0.95, the specific
power of the restricted perigee is many times greater than the spiral
method of energy addition. To obtain the full advantage of this much
greater speciﬁd power, we must go to larger cutoff angles.

A study of the restricted perigee method of energy addition
at larger cutoff angles would require the use of numerical methods.
This would be rather involved, using equation 4. 13 to evaluate A€
for various values of 92_ and € , then using this result for a
corresponding evaluation of the change in energy, equation 4. 12.
After tabulating these 'cycle' results, summations of time and energy
could bemade with a corresponding calculation of XZ for various
values of &, By making such a numerical s‘tud’y’,vwe can clearly
defire the area where the restrict .perigee method, with batteries,
has an advantage over the spiral - :thod of energy addition. We will
also be able to determine if therr s any area where an advantage ex-

ists without the use of batteries.
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IX, CONCLUSION

We have found that the discontinuous method of enexrgy addi-
tion, using a restricted perigee, has no payload and structure mass
ratio advantage over the spiral method when a specified energy is
imparted in a specified time and the cutoff angle is restricted to one
radian or less, There is the possibility of a very small advantage,
for a certain range of final energies, if silver-zinc batteries are in-
cluded in the power supply to store energy during the coasting periods,
p;:oviding their reliability can be improved to an acceptable level. On
the other hand, a moderate decrease of the power~plant specific mass
will rule out any advantage of including batteries in the power supply.

In the case where batteries are included in the payload, say,
to periodically energize a transmitter after the satellite has been
piaced in final orbit, we can deiinitely increase the payload and
structure mass ratio for certain values of final energy by using these
batteries in the restricted perigee thrust program. This does not ap-
ply in general, obviously, since the mass fraction of the batteries re-
quired in the payload must be compatible with the mass fraction of
batieries required for the thrust program to accomplish the mission.
When we do have a compatible batiery requirement, then we can in=
crease the payload and structure mass ratio by using the restricted
perigee method of energy addition.

Since we are restricting our investigation to low thrust de-
vices, a numerical study o.f the restricted perigee method of energy

addition at cutoff angles greater than one radian could be made using



N . .
the perturbation equations developed earlier. Such a study would
follow the procedure briefly cutlined in the last paragraph of the nre~
ceding section, and is necessary to clearly define the area where the

restricted perigee method can be used to advantage.
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