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ABSTRACT

The monochromatic absorption of infrared and microwave
radiation due to pressuré—induced rotational and translational
transitions in H2 gas and gaseous mixtures of H2 and He is
investigated quantitatively. Existing laboratory data are used
to obtain semi-empirical absorption coefficients of the rotational
transitions as a function of frequency. A quantum mechanical
calculation is carried out to obtain the translational absorption
coefficient as a function of frequency for a diatomic gas, mixtures
of diatomic and monatomic gases and mixtures of monatomic gases.
The resulting expressions are used to compute the translational
absorption coefficient for H2 and the enhancement in Hz—He
mixtures using a 6 - 12 Lennard-Jones potential for the molecular
interaction and the EXP-4 model for the expectation value of the
induced dipole moment over the ground electronic and vibrational
states. A numerical method is devised for the efficient computation
of the translational absorption and the results of the computations
are given. The infrared opacity of NH3 is also considered. With
certain assumptions, existing laboratory data are used to obtain
approximate, semi-empirical mean transmissions over the rotation
structure of NH3 as a function of frequency. |

Several non-gray model atmospheres are constructed for
Jupiter, Saturn, Uranus and Neptune for various effective temper-
atures and He- I-I2 ratios taking the opacity due to H2 and He into

account. The effect of adding the opacity due to NH,, is considered.

3
The models are examined for self consistency and characteristic

phenomena. They are then compared with the observations.
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The observations are used to restrict the range 6f the free
parameters of the models. It is found that models of Jupiter
and Neptune for which only ’Fhe thermal opacity of Hz and NI—I3 is
taken into account are incompatible with the observations, The
presence of He is strongly indicated in the atmospheres of Jupiter,
Uranus and Neptune. In the case of Jupiter, a rather large
N(He)/N(Hz) value is implied if there is no internal heat source.
However, the observations indicate a preference for N(He)/N(HZ)
less than 2 and thus imply the existence of a small internal heat
source greater than one-tenth of the incident solar flux. The
effect of NH3 on the thermal equilibrium of the major planets is
negligible except possibly in the case of Jupiter. However, its
presence in the Jovian atmosphere does not alter the above

conclusions.
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THE COMPUTATION OF THE THERMAL OPACITIES

I-1. INTRODUCTION

Molecular hydrogen, methane and ammonia have been
detected in the atmospheres of the major planets and the presence
of helium is strongly suspected, as well. Methane bands are
quite visible in the spectra of all the major planets and are very
strong in Uranus and Neptune. The A6460 ammonia band is
easily seen on Jupiter but is not visible on Saturn. No ammonia
has been detected on Uranus or Neptune either. Since molecular
hydrogen quadrupole lines are visible on Jupiter, Saturn and
Uranus and the pressure-induced dipole lines are detectable on
Uranus and Neptune, all of the major planets contain molecular
hydrogen in their atmospheres. The presence of helium on
Jupiter is suggested by the mean molecular weight of 3. 3, derived
from the occultation of o- Arietis (Baum and Code 1953), and the
low ammonia and methane abundance relative to hydrogen
(Kuiper 1952; Zabriskie 1962; Spinrad and Trafton 1963; and
Foltz and Rank 1963). The presence of helium on Uranus and
Neptune is indicated, according to Hertzberg (1952), by its effect
of inhibiting the double transitions in the spectra of the pressure-
induced (3, 0) lines, but blending due to methane makes it difficult
to ascertain the relative helium abundance in these cases.

This thesis investigates the role played by these molecules,

with particular reference to hydrogen and helium, in determining



‘the physical structure of these atmospheres. We observe that the
solar and thermal spectra of the major planets must overlap
negligibly in frequency. For the greenhouse mechanism to be
operative in this case, it is sufficient that the bulk of the solar
radiation be absorbed below a layer which is optically deep at
thermal frequencies. This condition is satisfied when the
atmosphere is composed of molecular hydrogen or mixtures of
molecular hydrogen and helium. This is because these molecules
have a pressure-induced rotational-translational absorption lying

1 2nd 1400 cm™! or in the thermal region of the

between 10 cm~
spectrum. The small value of the absorption coefficient is more
than compensated by the long path lengths of hydrogen available in
the atmospheres of the major planets and the fact that the absorption
increases as the square of the density (Trafton 1964). This
motivates us to study this pressure-induced absorption.

Ammonia also absorbs in the infrared, but at cold planetary
temperatures, it will be saturated and the vapor pressure then
decreases very rapidly with temperature. Only in the deeper and
warmer part of Jupiter's atmosphere is ammonia apt to affect the
radiative equilibrium.

Methane is a non-polar molecule and does not give rise to
marked absorption in the frequencies of the planetary thermal
spectra longwards of 1200 cm_1 (Opik 1962; Gross and Rasool 1964).
For this reason, we ignore its opacity contribution. We assume that
the major opacities are due to molecular hydrogen, helium and
perhaps ammonia and construct model atmospheres of the major
planets on this basis. With this in mind, we turn to the investigation
of these opacities.



'I-2, EMPIRICAL LINE SHAPES OF THE PRESSURE-INDUCED
ROTATIONAL SPECTRUM

The pressure induced absorption can be divided into
contributions from three physical processes. The first, called
quadrupolar induction, arises from the permanent quadrupole
moment of the hydrogen molecule. Its field induces a dipole
moment in its partner by virtue of that partner's polarizability.
Molecular hydrogen has no permanent dipole moment and hence,
no permitted dipole spectrum. However, the dipole moment which
is induced in a neighboring molecule is modulated by the rotation
and relative motion of the hydrogen molecule, resulting in
absorption. That is, the system absorbs a photon and undergoes
a change of translational and possibly an accompanying change of
rotational state. Furthermore, if that partner has an anisotropic
polarizability, as well as a set of rotational energy levels, the
induced dipole will also be modulated by the latter molecule's
rotation, permitting transitions between its energy levels and
permitting ""simultaneous' transitions where a single photon causes
a change of state in both molecules as well as changing the relative
kinetic energy.

The second process, due to overlap forces, arises from the
asymmetry of the electric cloud distortion when the hydrogen
‘molecule is in close proximity to another molecule or atom. Due
to lack of symmetry, a dipole moment is formed by this distortion
during collision. This moment is modulated by the rotation and
translation of the H2 molecule relative to its partner and hence,

confributes to the rotational-translational spectrum.



The third process, termed "apparent absorption' by
Van Kranendonk, is negligible except at extremely high densities.
It results from the long range dipole-dipole interaction between
the molecules. Classically, it results from the interaction of one
molecule with the wavelets emitted by the dipole moments set up
by the radiation field in the other molecules. It is an internal
field effect and is not due to any intrinsic change in the properties
of the molecules themselves. In the worst case delt with by Kiss,
Gush and Welsh (1959), who worked with pressures higher than
100 atm, this correction amounted to less than one percent. We
ignore this process in the treatment of planetary atmospheres.

Laboratory measurements of the absorption as a function
of frequency have been made at several temperatures for pure
hydrogen and hydrogen-helium mixtures using a variety of pressures.
Unfortunately, the laboratory measurements are confined to
frequencies greater than 300 cm"1 as the window of the high-
pressure cell becomes opaque at lesser frequencies. For this
reason, much of the translational profile was not measured
although most of the rotational profile was (Kiss, Gush and Welsh
1959; Colpa and Ketelaar 1958). The first group found that the
integrated absorption coefficient, integrated between 300 cm™ 1 and
1400 cm~ 1, varied quite accurately as the square of the density for
pure hydrogen and as the product of the densities of hydrogen and
helium for the enhancement in hydrogen-helium mixtures. This
- implies that over a large range of densities ( 0 to 120 Amagats),
binary collisions are the dominant sources of absorption rather
than collisions between three or more molecules., The absorption
Cv per cm is defined as
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!
Cv® 1
where L is the path length of the absorption cell, Ivo the measured
intensity at frequency V with the cell empty and IV the corresponding
intensity with the cell charged. For binary collisions,

C_=A n2+B nn' (1-2)
v v v

where AV and BV are called the binary absorption coefficients, We
define AV as that due to hydrogen alone and Bv as the enhancement
in mixtures of hydrogen and helium. n and n' are the number
densities of hydrogen and helium, respectively. When these
coefficients are integrated over wave number dV, the corresponding

equation for the integrated binary absorption coefficients B and C is

C=An2+Bnn'. (I-3)

The optical depth is then

L
TS Tuot fL CVdX. (1-4)

0

The quantities AV and Bv depend on the temperature in a
way which reflects the Boltzmann distribution of the rotational and
translational energy states. As the temperature is lowered, the
smaller-J rotational lines become stronger at the expense of the
other lines and the maximum of the translational profile shifts
towarc_is longer wave lengths. The half-widths of the rotational and



‘translational profiles also decrease and the profiles become more
asymmetrical. Figure 1 shows the experimental profiles at three
temperatures. The Raman frequencies of the four lowest rotational
absorption lines, S(0), S(1), S(2) and S(3) are 354.4, 587.1, 814, 4
and 1034.7 cm”~ 1, respectively. Note that the continuity of the
profile is due to the large half-widths. The latter is a consequence
of the uncertainty principle. The fact that absorption can take place
only during collisions instead of anytime between collisions severely
limits the uncertainty in the time that a transition occurs, resulting
in a large uncertainty in the energy (Heastie and Martin 1962). At
the same time, the Raman and quadrupole lines remain quite sharp,
even at very high pressures. Therefore, the energy levels them-
selves are not significantly perturbed. The shape of the rotational
profiles results from the coupling between the rotational and
translational energies. That is, when a photon is absorbed, part

of its energy may cause the S(0) transition while the difference
appears in the relative kinetic energy. The asymmetry of the
rotational profile is explained by the fact that as the energy of the
absorbed photon becomes weaker (i. e. as its frequency becomes
smaller), the kinetic energy available to make up the difference
between the photon's energy and the rotation-energy falls off
exponentially. If the observed profile is divided by V, the profile
which results is proportional to the probability that a photon of
energy hcV is absorbed. If we then localize a rotational line at a
 low enough temperature such that the translational contribution is
negligible and compute the ratio at various frequency intervals AV
above V0 to AV below VO, we find that this ratio varies as
exp(hcAV/KT) with only an 8° error at 85 °K using the wings of the



7

-wR A 314044  |epuemiaadx ]
ae91 QQEl 003 Q0%
2
g

S
P \4
[\ 1
o<
L+ ]
[ %5
V1]
< : 4 ,

‘qupink3f . gl M. S8 o)
o w Lol M. 561 '8
T \Eéiﬁmsz N, 862 'V

FiG 1



S(1) line (Kiss and Welsh 1959). These profiles thus have the
intensity distribution of a continuous distribution of summation
and difference translational tones with the rotational frequency.
That is, for a rotational transition at Vo’ the simultaneous
tranglational transition and its inverse occur at equal frequency
intervals on opposite sides of VO . The relative transition proba-
bilities at these two frequencies is given solely by the translational
Boltzmann factor exp(hcAV/kT). This appears to be the case for
both equilibrium and normal hydrogen (where normal hydrogen has
an ortho to para ratio determined by equilibrium at room
temperature).

Kiss and Welsh also find that the high frequency wing of the
rotational probability curve can be fitted with a Lorentz profile with
a half-width 2% where & is equal to 9.1 Tl/2
temperature. This is in agreement with the uncertainty principle

1/2

We do not expect the Lorentz profile to fit exactly, because the line

cm_1 and T is the

since T is inversely proportional to the duration of the collision.
is also broadened by translational processes. In fact, the Lorentz
profile is observed to be too large in the tail. The low freguency
wing is given quité accurately by the product of the Lorentz profile
and the Boltzmann factor, exp(-hcaV/kT).

In their discussion of the profiles of the vibrational funda-
mental Hunt and Welsh (1964) obtain 5 about equal to 8 Tl/ 2 cm_l.
They also mention that their value 9.1 Tl/ 2 for the rotational profile
was rough. I found that 8 should be 8.1 Tl/ 2 for the rotational
profile if the Lorentz profiles are truncated at (V-Vo)/ & = 14 in
normalizing by comparing empirical and experimental laboratory

integrated absorption. This appeared to give a better fit. The



‘equations for a single rotational probability line profile are

S)) if v>V
(m@@ﬁu -0
S(J) .
(-he(V_-V)/KT) if V<V (I-5)
(v-v)%/6% 4 1 el VI/KD) ©
_ -1
5=81/Tcm

where Vo is the Raman frequency of the line in wave numbers and
the S(J) are the normalization factors determined by integrating
these expressions from V = 0 to V = 1468 + VO and comparing them
with the corresponding theoretical expression derived in the next
section. To get the final rotational absorption profile, we sum over
all four rotational lines and multiply by V if V is less than
V' = 589 + 2.56 or by V' if V is greater than V'. The latter -
improves the fit with the experimental data by causing the Lorentz
profile to fall off faster in its high frequency tail. The errors in
this correction are not critical for application to planetary
atmospheres. _

While not strictly true, we assume that 6 is the same for
H2—He collisions as for HZ-H2 collisions. The error is about 12 per
cent and since the H2— He rotational absorption is several times
weaker than that for Hz— H2, we neglect the error, We now have
determined all of the parameters of the empirical fit to the observed
2~ Hy
and for Hz—He collisions. To evaluate these, it is necessary to go

into the theory of the integrated absorption coefficient and this is the
subject of the next section.

rotational profile except the normalization factors, S(J) for H
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'I-3. THE ROTATIONAL NORMALIZATION FACTORS S(J)

I-3.a. Assumptions of the Theory.

We neglect the apparent absorption mentioned in section 2 on
the grounds that this correction is very small at planetary densities.

We assume that the absorption of the rotational lines results
only from binary collisions, on the grounds that the absorption
varies quite accurately as the product of the partial densities up to

and for H,-He

densities over a hundred Amagats, both for pure Hz 9

enhancement in mixtures.

We assume that the expectation value of the induced dipole
moment over the ground electronic and vibrational states is given
sufficiently accurately by the EXP-4 model used by Van Kranendonk
and Kiss (1959). This model approximates the induced moment by
its shortest and longest range components. The gquadrupolar
induction moment is taken ‘to vary as the inverse fourth power of
the separation of the molecules and the overlap induction moment
is taken to vary exponentially with this separation. The intermediate
terms are ignored. No adequate theory exists for the overlap
proportionality and scale constants and so these quantities must
be evaluated by laboratory éxperiments. The induced moment is
expanded in spherical harmonics and the iJth coefficient of the overlap
component is xiexp(— r/p) where ) i and p are overlap parameters.

We make the assumption that the intermolecular potential
U is a function of the separation r but not of the angular orientation
of either molecule. In the expressions for the integrated absorption
coefficient, only the pair distribution function is affected by this

assumption.
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We further assume that U(r) is given adequately by the
6-12 Lennard-Jones potential

Ul = e [(2)2-(2)% 7 (1-6)

where ¢ and o are the Lennard-Jones parameters. Objections to
this potential have been raised because it does not increase fast
enough to explain experiments at high temperatures. However,
we are encouraged to use it in planetary atmospheres because it
has been quite successful in helping to explain the low temperature
experiments on the second virial coefficients of the equation of
state.

We assume that the temperature is high enough so that we
may use a quasi-classical pair distribution function involving the

classical expression with the first and second guantum corrections:
- 2 4 6,
g(x) = exp(-UE)/KT) [1+ 27ax) + 2 bx) +0(x )] I-7)

where x is equal to r/oc. We make use of results tabulated by

Van Kranendonk and Kiss (1959) containing this correction and find
that the error is not more than 7 per cent at 40 K for pure H2
according to the alternating nature of the correction terms. For
H2-He mixtures, we get the corresponding accuracy at about 60 °k.
At these low temperatures, the Planck curve is shifted into the

. translational domain where the back-warming is due almost
entirely to the translational absorption, and the errors in the
rotational profile may be quite large without affecting the thermal
equilibrium. Therefore, the errors after the quantum corrections

are not critical to our ultimate problem.
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We assume that the dipole approximation suffices since the

wave length of the absorbed radiation is large compared to the

effective range of the intermolecular forces.
Following Van Kranendonk and Kiss (1959), we assume

that for unlike collision pariners, the Lennard-Jones parameters

are given by the arithmetical mean of the ¢ and the geometrical
For want of experimental data, we assume that

mean of the €.
o/p is the same for H2— H2 and HZ—He enhancement. The A, are
obtained empirically by fitting the theoretical absorption to the

laboratory data.
I-3.b. The Theoretical Expressions For The Integrated

Rotational Absorption.

If the respective coefficients for the transition probability
6 .
cm are defined by

rotational line in units of sec”

of the Jth
A(J) = ¢ jm ‘ch(J)fl‘-,Y
° (1-8)
B = ¢ fo BV(J)%;’
th

where c is the speed of light, AV(J) is the contribution of the J
rotational line to Av and BV(J) is that to Bv’ then the normalization

factors are

v

for Hy-H,
(1-9)

»>

i

(J

s@) =

Wi

J) for Hz— He enhancement

B
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‘where B is the integral of the empirical profile for the case
S@) = |

I-3.b. 1. The H2-H2 Case.

Van Kranendonk and Kiss (1959) give for this case

A@) = L) [(x Lo )xwz

I +ul - AA)KT p+ LOLw s (1-10)
where u = aQ/ec5, u' =~/88/225 YQ/ec5, e is the cgs unit of
charge, Q is the expectation value of the quadrupole moment

over the ground vibrational state and equals 0. 4;9ea.2 where a, is

the Bohr radius, p = 41T2620 /3%, o is the mean polarlzab111ty of

the H2 molecule (2« )+ ocll)/ 3 and v is the anisotropy of the

polarizability of the hydrogen molecule Uyq ™ s

L) = _gl(%%%{t&) [ PU) - PE+2) ] (I-11)
o J(@+1)(27+1
=L (251)(2.1133 P, (I-12)

Cy

P(J) is the Boltzmann factor normalized so that Z (2J+1)P(J) = 1.

J
For equilibrium hydrogen,

P(J) = grexp(-E()/kT)/Z

1 if J is even (1I-13)
gJ =
3 if J is odd
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“and the partition function Z is given by

7 = Z g;(23+1)exp(-E(3)/kT) (I-14)
J

where E(J) is the energy of the JJCh rotational level. Also, we have
e [ 2
I=4nm j exp(-2(x-1)o/p)g(x)x"dx
)

= tor | xS (x)x2dx (1-15)
0

K = %E x_4exp(- x-1)o/ p)g(X)XZdX
0

where the pair distribution function g(x) is derived in Appendix B.

The result for the Hz—H2 case is, including the first quantum
correction,

o(x) = exp(- U(X)/kT)J- 2 4"“"( - Lin-22, 5{] (1-16)
X

which is good down to a temperature of about 180 °K. In evaluating
equation (I-10) we ignore the xz and “.2 terms, giving

A@) = L) [437 + mK1p (1-17)

where ) = A - A 2//3 = 0.8x10"% by empirical fit, ¢/K = 37.0°K,

= 2.93x 10" %em, /0 = 0.126, o = 5.7a), 4 = 5.126x107%,

=1, ﬁag and p = 4.63x 10'29cgs. Summing over J gives
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A=L(.213+0.19K) x 10°°° gec™ ! cm® (I-18)

where L as a function of temperature plotted in Figure 2 and A
is tabulated in Table I-1. The normalization factor is given by

L(J

E

e

8(J) = A (I-19)

o

for pure hydrogen, where A(T) is computed once and for all.

I-3.b.2. The Hz— He Enhancement Case.

The corresponding expression is
B@) = L) G2 3" + 1A K p (1-20)

where only the L(J) remain unchanged. Therefore, the distribution
among the rotational lines is the same for helium enhancement
as for pure hydrogen. Van Kranendonk and Kiss (1959) quote this
expression with a factor of 1/2 out in front, in disagreement with
Colpa and Ketelaar (1958). Our own derivation of this result is in
agreement with the latter indicating that the former is erroneous.
Note that the terms involving the anisotropy of the
polarizability do not occur. Also, note that the angle-independent
term in the dipole moment expansion is now permitted, but does
not contribute to the rotational absorption since it is not modulated
by rotation. The Lennard-Jones parameters for this case are
o= 2. 74x10—8cm and ¢/k = 19.4 °k. They are averaged using
the values for helium obtained from the second virial coefficient
(Michels and Wouters 1941). The numerical values of the other
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100
110
120
130
140
160
180
220
260
300
380
500

17

Table I-1

The Rotational Binary Absorption Coefficients

T T T T T o T e S T G T g G S Y

.72 x 107
.72
.72
.69

. 645
. 580
. 492
. 422
. 371
. 325
. 288
. 267
. 254
. 242
. 232
. 218
. 210
. 202
. 193
. 180
. 158
.145 x 107

A

34
se

34

-1 6

cm

.325x 107
. 264
.211
. 169
. 145
. 132
. 1262
. 122
.118
. 1179
117
.116
. 117
117
. 118
. 118

B

6

0
8

1
9
1
5
0

(9]

34

sec

-1

cm

8
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quantities in equation (I-20) are p = 3. 335x10_2gsec— 1cmﬁ,
p/o = 0.126 (approximately), o = 1.4a2 = 2.02x10™2%cm?,
Q = 0.49 ea.cz), A= 0.5X10_4, o= or.Q/ec5 = 1.843x10'4 and

the integrals J' and K are functionally the same as equations
(I-15) but with a different g(x), given by

sz8 Tx

g(x) = exp(-U(x)/KT) { 14188 l-2336 ( %12 - ——%+ 1) - —2% + 5__' }
X X X _
(1-21)

according to the derivation in Appendix B giving the first quantum
correction term. The summation over all the rotational lines gives

36 -1 6

B=L(1.13,J +0.307K) x10"°° sec”~ cm (1-22)

3
and is tabulated in Table I-1. The normalization factor for the
Hz-He enhancement is given by

L(3)

I-4. THE THEORETICAL FORMULAE FOR THE INTEGRATED
TRANSLATIONAL ABSORPTION

Because the translational profile has not been measured
below 300 cm—l, it will be necessary for us to compute this profile
theoretically. In order to provide an independent check on our
calculation, we first give the expression for the integrated
translational absorption, obtained by trace methods, which is due

to Poll and Van Kranendonk (1961). We also find it useful to quaote
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these expressions in checking the self-consistency of the theory and
the observations and in evaluating the assumptions of the theory.
Both the rotational and translational absorption formulae depend
upon overlap parameters, which must be evaluated by fit to the
observations. As the same parameters often appear in both
expressions, they must be fitted simultaneously. The >‘i which we
have quoted are those given by the authors of these formulae. We
postpone to section I-5 the evaluation of the assumptions of the
theory.

I-4.a. The H,-H, Case.

2 72
Poll and Van Kranendonk (1961) give for the integrated

translational binary absorption coefficient in the units sec_1 cm5,

fee}

a, = c jo a_dv (1-24)

where a, is the translational contribution to Av’ the expression

2 2 2
ay = ‘.—za('r)(x1 I, + g Ig + M7 T+ M, K)p (I-25)

where the numerical quantities used are p = 1. 2093 x 10—280gs,

b= 5.1260x107% &, = 1.0x107% A, = 0.6x107% o/p = 7. 037,
o = 2.93x107" cm, o/k = 37.0 °K, a = 5. 4425, Q = 0. 49¢a’,
¢ = 2.9979x10" 10 cm/sec, e = the esu unit of charge, u' = the

reduced mass of H2 in grams, and the functional quantities are
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ne203/3u'c

1l

M= aQ/ ec®

I = 4n jo exp(- %9 (- 1)) (2 )2, I:_(ng_l_)) o(x)x2dx  (I-26)

J' = 336m j‘ x_8g(x)dx
o

o©

K = 32n/3 [ exp(- % (x-1)) (% +§ Ye(x)x Sdx
O

where only the first few terms of the dipole moment expansion in
spherical components have been used. g(x) is the pair distribution
function and is given by equation (I-16). Numerically, we find

-36

ay= (1.001, + 0.36 12 +26.283'+3.08K)£(T)x1.209x10 (1-27)

1
in units of sec” 1 cms. £(T) is the factor which accounts for the
distribution of the I-I{2 molecules over their rotational states. For
equilibrium hydrogen, it is given by

£(T) = ggJ '22(3"3 ggiég exp(-8E())/Z (1-28)

where g5 and Z are given by equations (I-13) and (I-14), respectively,
and 8 = 1/KT so that

BE(J) = J(J+1) [ 85. 3768 - 0, 06618 J(J+1)+. 000075 J2(3+1)21/T
(1-29)
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where the coefficients are taken from the data of Stoicheff (1957)
and therefore, may differ somewhat from those actually used by
Poll and Van Kranendonk. The summation in equation (I-28) is

carried out over both even and odd J.

I-4.b. The HZ—He Enhancement Case.
Poll and Van Kranendonk (1961) give the corresponding
formula:

2

by = (2 I +uf 2 (1) ) p (I-30)

where
by = ¢ j b dv sec—1 cm5 (I-31)
o v

and where bV is the translational contribution to Bv'

The first term of equation (I-30) is 97 per cent of the
contribution because \ is the angle-independent overlap parameter
which did not arise in the rotational spectra and it is more than an
order of magnitude larger than the first angle-dependent terms.

It appears here because its corresponding term is modulated by
the relative translational motion. Poll and Van Kranendonk do not
quote a value for .. We determined the value of A by comparing
the results of the calculation of the frequency- dependent trans-
lational profile given in sections I-6 and I-7 and the fit to the
rotational profile with the observations at room temperature.

The calculation of the frequency-dependent translational profile
was checked by using an arbitrary )\ and comparing the integral



23

~with equation (I- 30) using this same arbitrary . The numerical
8

b

values used are p = 7.44 x 10”29 cgs, 0 = 2,74x10°

e/k = 19.4 °K, o/c = 0.126, o = 2.02 x 10"2° ¢cm3, Q= 0.49¢a?

=1.84,x10% 2 =88x107% = 10724 o
o= 1, 3x , A =8.8x10 7, u' = 2,226 x 10 gm and the
functional quantities are the same as given by equations (I-26)

except that the pair distribution function is given by equation (I-21).

I-5. THE EXPERIMENTAL EVALUATION OF THE U(r)
ASSUMPTION

The experimental profiles of Kiss, Gush and Welsh (1959) and
Kiss and Welsh (1959) are plotted at various pressures for 300, 195
and 85 °K. While the integrated absorption between 300 cm'1 and
1400 cm'1 increases quite accurately with the product of the densities
of the colliding components, the frequency-dependence of the profiles
is not quite independent of these densities at a fixed temperature.
We conclude that the absorption is due entirely to binary collisions
but that there is a coupling between the rotational and translational
wave functions. In other words, U is a function of the angular
variables as well as a function of r. We now investigate the error

made with the U(r) assumption.

I-5.a. For the rotational lines, the theory (equation (I-10) )
gives A(0)/A(1) = 1. 38 for the ratio of the strengths of the S(0) and
S(1) lines. X the profiles have the same half-width and are other-
wise similar, apart from a proportionality factor, this implies that
the maxima also have the same ratio. When the corresponding

experimental ratio is formed by taking the observed profile at 85 °x
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-and 118 Amagat units of density, dividing by the frequency and
taking the ratio of the maxima of the S(0) and S(1) lines, the result
is 1.06. The tail of the translational profile is weak at this low
temperature and its presence only reduces this experimental value
still further. However, when we form this ratio for the lower
density profiles, the gap between the theoretical and experimental
ratio diminishes. The lowest density profile given for H2- H2 by
Kiss and Welsh (1959) is for 48 Amagats where this ratio becomes
1.16. Since we want the absorption for densities less than 5
Amagats in planetary atmospheres, this gap may be unimportant
if it continues to monotonically decrease with the density. In the
experimental range, the errors due to the U(r) assumption increase

monotonically with the density.

I-5.b. When the experimental S(1) profile was fitted using
the Boltzmann asymmetry factor exp(-hcAV/KT) at 85 OK, it was
found that the fit was best for T= 93 °K. At 93 °K, the gap between the
S(0)/8(1) ratios mentioned in section I-5.a. becomes small, but
this is probably a coincidence. The fit of this Boltzmann relation
is not perfect, so that the 93 °k may not be significant. The effect
of the presence of the translational profile would be to give a higher
fitting temperature. However, the imperfect fit could simply

reflect the complications not accounted for in the idealized model.

I-5.¢c. The overlap parameters xi contribute to both the
translational and rotational absorption. Because the coordinate
frame is different in these two cases, the numerical values of the
)‘i Will_ be different for the two cases but related by a linear
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transformation. Only the simplest angle-dependent terms are
ever considered in the dipole moment expansion, the rest being
negligible. No successful theoretical calculation of these para-
meters has been made. As a result, they must be inferred
from the comparison of the expressions for the integrated
absorption coefficient with the laboratory data. With the ex-
ception of the H2-He translational spectrum, which is due almost
entirely to the overlap contribution, the overlap terms give less
than 20 per cent of the absorption. As a consequence, these para-
meters are not well determined but suffice for purposes of ex-
pressing the net strength of the absorption with fair accuracy.
Using equation (I-10) for the distribution of the line strengths
for the individual rotational transitions, Kiss and Welsh obtained
an empirical profile for the translational spectrum for V greater
than 300 cm—l at room temperature, assuming that it was
monotonically decreasing in this range. They did this by sub-
tracting the calculated rotational profiles from the observed
profile under the assumption that all the rotational lines have
the same shape apart from a scale factor in the ordinate. Using
the shape determined from S(1), they were able to get a unique
profile for the translational tail and derive » = 0.8 x 10_4 for
equation (I-17). Poll and Van Kranendonk (1961) then transformed
this into the corresponding parameters in the translational frame,
A o= 10_4 and k3 = 0.6 x 10-4It for use in equation (I-25). However,
when we compared the integrated translational absorption computed
from equation (I-25) with the corresponding experimental quantity
for the tail (V greater than 300 cm”~ 1), we found it to be less than
this tail. When the frequency-dependent profile was computed, the
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portion for V greater than 300 cm-1 at room temperature was
divided by V and integrated giving 0.45 x 1073° sect em®
compared with the derived experimental value of Kiss and Welsh
(1959) for the corresponding quantity, 1.80 x 10"35 sec—1 cmﬁ.

This is a factor of four discrepancy. Also, the ordinates at

300 cm_1 of the respective profiles are in disagreement by a

factor of three.

At first, we thought that the discrepancy could be entirely
explained by correcting the A\'s. One easily sees that the overlap
parameters are going to affect the rotational and translational
profiles simultaneously, and can only be properly evaluated by
fitting the sum of these profiles to the experimental data. How-
ever, no A gave a fit better than 5 per cent on the average over
the entire range of temperatures for H2- H2 absorption at high
densities. However, comparing the fit of the final profiles at
lower densities was more encouraging. Again, the gap declines
with the density. At low densities, the above quoted values of the
xi should be adequate. The fit is best at low densities and low
temperatures, precisely the case for application to the atmospheres
of the major planets. Figure 6 shows the comparison with the
computed and measured prof_ilés for pure Hz.

I-5.d. For the Hz—He enhancement case, the molecular
constants are less well known and less experimental data is
available. The rotational A = 0.5 x 10™% was obtained by Van
Kranendonk and Kiss (1959) at 300 °K by the usual method,
although the rotational spectrum is quite weak in this case. The

translational A = 8.75 x 10'4 is an order of magnitude greater
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and gives rise to most of the translational spectrum. We evaluated
this parameter by comparing the ordinate of the translational
profile, computed theoretically with \ as a free parameter, with
the semi-empirical curve obtained by Kiss and Welsh (1959). The
ei'r_or is small in this case because of the dominance of the trans-
lational spectrum. However, the shapes of the two profiles do not
closely agree, the empirical one falling off slower than the
theoretical one. In fact, the empirical profile mimics the shape
of the theoretical one at a higher temperature. In the H2-He case,
the Lennard-Jones and EXP-4 parameters are not known as well
as for the HZ—H2 case and this may be mainly responsible for the
lack of close agreement.

Insufficient laboratory data are available to determine
whether the theoretical and experimental fit improves at low
densities for the HZ— He case. However, laboratory data at
300 °K exist for the translational absorption in mixtures of noble
gases in the region V greater than 300 cm'l. Because of the.
symmetry, we expect the U(r) assumption to hold for mixtures
of noble gases. Neglecting the difference in the matrix elements,
we deduce a A for He-Ne mixtures approximately equal to 9 x 10'4
from fitting equation (I-30), using the dominant contribution of the
Hz— He matrix elements and fhe He-Ne constants, to the observed
profile for He-Ne mixtures at 300 0K. This value is in close
agreement with the Hz— He case where the dominant contribution
is from the angle-independent term of the induced dipole moment.
In addition, the experimental value for He-Ne mixture falls off

faster than for the Hz- He enhancement case, leaving the theoretical
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,Hz—He case intermediate between the experimental He-Ne and
H2— H2 curves. We must be satisfied with this fit until further
experimental data are available.

At least for the Hz- H2 case, the pressure-induced
absorption coefficient is known to about 6 per cent accuracy
on the average. For the Hz— He case, the error is greater,
because the molecular constants are not known as well. That
is, applying nearly the same theory to the Hz—He enhancement
case as was applied to the H2—H2 case, one expects to obtain
results of comparable validity. It does not appear that our
assumptions will prevent the construction of meaningful models

of the atmospheres of the major planets.

I-6. THE QUANTUM MECHANICAL CALCULATION OF THE
TRANSLATIONAL ABSORPTION COEFFICIENT

It is necessary to calculate the translational absorption
profile as most of it lies below the range of experimental obser-
vation and in the region of the Planck curve's maximum at
planetary temperatures. It will play an important role in the
energy balance of the major planets.

We approach the problem from a somewhat general view-
point. We consider a closed system of N molecules interacting
with each other and the radiation field. The eigenvalues and
eigenstates are for the whole system of N particles with the
absorption computed in the dipole approximation. By means
of the Ursell cluster expansions, the absorption coefficient is

expanded in powers of the density. The U(r) assumption is
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.employed with the EXP-4 model for the induced dipole moment
to derive the final binary absorption coefficient. At 20 OK,
Boltzmann statistics govern the relative coordinate distributions
of H2 provided the density is less than 11 Amagats. We may
therefore use Boltzmann statistics for the energy levels and
relative velocities in planetary atmospheres. However, the
discrete nature of the angular momenta requires that the rest
of the problem be treated quantum mechanically.

Consider a niedium of volume v containing a gas of molecules.
Let a, be the translational absorption coefficient at the frequency

V, measured in wave numbers. It is defined by the expression

b=t

Yo
I

e}

(1-32)

where L is the path length and IV is the light absorbed only by the
translational processes. The corresponding integrated translational

absorption coefficient is
a=c J a_ dv . (1-33)
Poll and Van Kranendonk (1981) give

a =k ) (P-Pplu,l?nev (1-34)

i<f

if
where k = 8Tr3/ 3h2c, h is Planck's constant, P, are the normalized

Boltzmann factors of the state i, i and f are the initial and final
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stationary states of the system (eigenstates of the Hamiltonian),
u is the expectation value of the total dipole moment operator of
the gas over the ground vibrational and electronic state, Ui is
the matrix element of u between i and {, thif = Iiif-~IiIi where E
is an eigenvalue of the Hamiltonian, H; and the sum runs over all
pairs of states for which Ei is less than E £ Note that the Pf term
takes the stimulated emission into account. Also, note that u is a
function of the nuclear configuration of the gas. The dimensions
of a are sec L cm>.

Using the Hermitian property of u,.., equation (I-34) can be
written in the form of a trace (see the derivation in Appendix C)

which is invariant with respect to the states. The result is
a=kv' Tr {Pu- [Hul} (1-35)

where Tr denotes the trace, [H, ul is the commutator of u with

the Hamiltonian, and P is the operator which, when acting on state

i, gives rise to the normalized Boltzmann factor as an eigenvalue.

P = exp(-8H)/Z (1-36)

where 8 = 1/KT and k is the Boltzmann constant (in this relation)

and the partition function Z is

Z = Tr { exp(-5H) } = Zexp(—BEJ) (1-37)
J
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where the summation is over all the possible states of the gas.

Notice that whatever the form of the potential likely to occur in

the Hamiltonian, it will commute with u giving
a =k Tr{Pu- [Kul} (1-38)

where K are the kinetic terms of H. These terms are independent
of each other.

I-6.a. The Cluster Expansion of the Absorption Coefficient Into
a Power Series In the Density.

Equation (I-38) is the expectation value of kv_1 Q where the
operator Q is

Q=u- [Ku] (1-39)

If the volume v contains N molecules, then

Q=Q(1..N)
u = u(l...N)
P = P(l...N)
K = K(1)+XK(2)+...+ K(N)
are functions of the N sets of coordinates; 1,2,...,N. Each set

includes all the coordinates of a single one of the molecules. In
this gas each molecule exerts its own effective force field out to
a volume which may or may not inclose several neighbors,

depending on the range of this force field and the density. Such
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an association is called a cluster. Each cluster may give rise to
absorption since a significent dipole moment is induced. The

wavelength of the absorbed light is much greater than the effective
| range of the intermolecular force field so that the cluster behaves
like a quasi-molecule for purposes of absorption and the dipole
approximation will suffice. From the classical viewpoint, the
cluster rather than the collision concept appears to more adequately
describe the processes taking place during absorption. This is no
doubt due to the slow speeds of these heavy particles at low
temperatures and to the diffuse nature of the collision due to the
somewhat diffuse character of the effective range of the inter-
molecular forces.

Because of the short range of these intermolecular forces,
clusters with large populations will be extremely rare and we may
approximate the absorption by that due to the lowest populated
clusters. This is the basis for the expansion of the absorption
coefficient in powers of the density. For molecular hydrogen and
mixtures with helium, the laboratory data indicate that we may
ignore all but the two-body clusters. However, for mixtures of
hydrogen and xenon, we must take the three-body clusters into
account at higher densities. We will develop the cluster expansion
as far as the three-body case in order to illustrate the expansion
and to provide a term for evaluating the error of taking only the

two-body clusters into account.

- I-6.a.1. The Diatomic Gas Case

We begin the derivation of the absorption coefficient for a

diatomic gas by considering the Ursell cluster expansion for the
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induced dipole moment. Consider a single component diatomic
gas of N molecules in a volume v. Let uf...n) be the dipole
moment induced in the cluster of n molecules when they alone
are present in v. We let i stand for the set of coordinates of the

ith molecule. The cluster functions I_J_(l. ..n) are defined by

u(12) = U(12)

u(123) = U(12) + U(13) + U(23) + U(123) (I- 40)
u(l...N) = Z U(ij) + z U(ijk) + ...
i<j i<j<k

These cluster functions are completely defined and can be solved
for in terms of the u's by successive substitution. We strongly
emphasize the fact that these cluster functions have the desired
property of being zero unless all of the molecules of the cluster
are close enough to induce a non-negligible moment. When the
U's are substituted into the last of the above equations, we obtain
the cluster expansion of u(l...N). That we are doing this for a
diatomic gas is manifested in the fact that each molecule can give
rise to absorption and each can induce a moment in the other.
Thus, Poll and Van Kranendonk (1961) obtain the above form of
the cluster expansion.

Equation (I-38) may be written in the equivalent form for N

molecules in the volume v:

a=iw [ ) @t (..M P...N) QL..N) g (.. NdL...dN
Vs (I-41)
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In order to obtain the expansion of a in powers of the density, we
consider the cluster expansion of the above integrand. We do this
by first considering the expansion of Q(1...N) using equation (I-39)
and the above cluster expansion for the u(l...N). In this connection,
we note that [K(1...N), U(i...J)7 = [K(@...j), U@...j)] and obtain
Q(1...N) as the sum of cross product terms between K and U.

Let Qm(i. .. j) denote the terms in the expansion of Q(1...N)
involving the m molecules, i...j. Now because the remaining
factor in equation (I-41) is symmetric with respect to permutation
of 1...N, we may re-label the molecules so that i...j becomes
1,2...m. There are (N-1)N/2 terms of the form U(ij)- [K(ij), U(ij)]
in the expansion of Q(1...N) that involve just two molecules,
(N+1)N(N-2) terms of the form U(ij)- [K(ik), U(ik)], N(N+1)(N+2)/2
terms of the form U(ijk)- [K(ij), U(ij)] or U(ij)- [K(ijk), U(ijk)],
N(N+1)(N+2)/6 terms of the form U(ijk)- [K(ijk), U(ijk)] which involve
exactly three molecules and so on for the terms which involve more
than three molecules. The terms of the same form give the same
contribution to the absorption. We may therefore write equation
(I-41) as the sum of contributions from the terms of different form,
each weighted by the number of terms having the same form.

Let us now consider the contribution from an arbitrary one of
these terms. We define

x _ —
R_(m...N)= Z o (L..N) P(L..N) q (... m) g (...N) (-42)
form = 1,2,...,N and Ql = 1. Let the molecules 1...m remain

fixed in the cluster. Treat their coordinates as that for a single
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. molecule with 3m degrees of freedom. Hence, m is to be
considered as the set of coordinates for a single particle in
the following equations. We now make the corresponding cluster
expansion, which is motivated by the fact that Rm(N) breaks up

into independent factors in the limit of weak interaction. We

obtain
Rm(m) = S(m) |
Rm(mk) = S(mk) + S(m)S(k) (I-43)

R (mkp) = S(mkp) + S(mk)S(p) + S(kp)S(m) + S(mp)S(k) + S(m)S(p)S(k)

wherem = 1,...,N, Notice that Rl(l) = 1 and that this expansion
is quantum mechanically valid. The S functions may be solved for
explicitly in terms of the Rm for m = 1,...,N by successive
substitution. These S functions vanish if any member of the
corresponding cluster gets lost. The indices in the arguments of
S and Rm denote which molecules are present in the corresponding
cluster or volume v, respectiVely. The quantities Rm(m. ..n) are
the values that equation (I-42) would take on if there were only
particles m...n present in v. The particle labeled m corresponds
to the fixed m particles and the other labels refer to the other
individual particles.

Expressing Rm(m. .. N) in a form where we distinguish
between clusters containing and not containing the '"molecule' m,
De Boer (1949) gives
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R_(m...N) = S(m)R,(m+1...N) + ;'S(mk)Rl(M+2...N)

+ Z 'S(mkp)Rl(M-a-B. LN) L (1-44)
k,p

Whei'e the summations are over all the possible ways of forming

a cluster containing the particles mkp... by choosing the particles
kp. .. from the available N-m particles and adding to them the
original m particles. The number of terms which result is just
the number of permutations of N-m quantities taken n at a time

where n is the number of particles kp... . This value is

(N-m)! _
n! (N-m-n)! (I-45)
We note that Tr { P } must be unity and this implies that
f Ry (m+n... N)d(m+n). .. dN = 1 (1-46)
v

so that the integral over d(m+1)...dN of equation (I-44) becomes,
with the aid of equations (I-43 and 45),

R_(N) = R_(m) + (N-m)by(m) + (1/2)(N-m) (N-m- Dby(m) + ...
(1-47)

which defines Em(N), and

by(m) = j S(mk)dk
v (1-48)

b3(m) = J\v S(mkp) dkdp
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We now argue that the bn(m) are proportional to v_ (m+n- 1). By
virtue of the cluster properties of the S functions, the integrand
of bn(m) vanishes whenever any of the molecules involved becomes
far removed from any other. Therefore, the above integration
over the coordinates of the n-1 molecules is independent of the
volume so long as it is large. However, the S contain a

normalization factor v_ (m+n-1)

arising from the contribution of
the partition function for the continuous states of m+n-1 particles

in the quantity P(m+n-1). We therefore have

B, (m) B, (m)
_ N- 2 1 N-m N-m-1 =3
R (M=R_(m)+ Vm — +3 Vm ffn —— (1-49)
where
B _(m) = Sm+n- l)bn(m) (1-50)

are independent of v, so long as it is large. Now the contributions
from the terms of larger m will be negligible if the density is
small enough and the effective range of the intermolecular forces
is short enough. In this case we may take N to be much greater
than m and obtain the density expansion

B, (m) g Bg(m)

1
+-2-n _‘;—ﬁl_+... (1-51)

ﬁm(N) = Rm(m) +1n

where n is the number density, N/v and
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Bz(m) = Vm+1 fv [Rm(mk) - Rm(m)Rl(k)] dk

B,(m) = g+l . fv R_(mk)dk - R_(m)] (I-52)

B3(m) = Vm+2 f S(mkp)dk dp
v

When we integrate equation (I-51) over dm, we obtain its
contribution to the absorption coefficient. A factor of v arises
when this integration is effected and a factor N® (in the large
N approximation) from the summation over terms of given m so
that we obtain a contribution proportional to

kv"1 {nm j vam(m)dm+ pm+l f Bz(m)dm
v v

1 m+2p
+5n Jv B3(m)dm} +... (I-53)

We now sum the terms of lowest m (for m greater than 1) and
collect terms with the same power of the density to obtain the
density expansion of the integrated absorption coefficient. Notice

that vam(m) does not depend upon the volume,

a = —% kv_1 n2 fv VZRZ(Z)dZ +—% kv 1n3 [ fv B2(2)d2 + J‘v v3R3(3)d3]

+ oY (1-54)
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where 0(n4) means "terms of the order of n4 + etc. . Note that
the subscripts 2 and 3 on R and B indicate that the integration is
to be performed over m = 2 and 3 particle-space, respectively,
rather than over the single particle-space d2 or d3. Letting the
density expansion be written in the form

2 3
@ = A a4, (I-55)

we have

ey

a; = 3 kv Tr {P(12)u(12)- [K(12), u(12)1} (I-56)
and

a, = kv’ Tr {B(123)u(12). [K(13), u(13) 1}

+ 3 kv? Tr {B(123) [U(128)- [K(12), U(12)] + D(12)- [K(123), U(123)]

| (I-57)
+ % U(123)- [K(123), U(123)1} + 5 kv® [Tr{B(123) T(12)}

- Tr {?(12) 0(12)} ]

where 0(12) = u(12)- [K(12),u(12)]. Equation (I-56) gives the
integrated translational binary absorption coefficient and equation
(I-57) gives the corresponding ternary absorption coefficient.

We have illustrated the technique for obtaining the density
expansion of the pressure-induced integrated translational
absorption coefficient for any diatomic gas. From this point on,
we will consider only the low density limit (al) and obtain an

explicit evaluation of equation (I-58).
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We let coordinates 1 refer to the center of mass of the pair
of molecules and 2 to the relative coordinates in the center of
mass frame. Taking the trace over the center of mass introduces

a factor of unity, leaving

. = 5vTr {Pu(Kul} (1-58)

where the trace is now over only relative coordinates. Equations
(I-36 and 37) and give

Z = Zz(rot) Z(trans), (I-59)

where Z{rot) is the rotational partition function of the diatomic
molecule and Z (trans) is the translational partition function given

by

Z(trans) = f L 4‘1‘Tp2 dp dr h_3exp(—3p2/2u). - (1-80)

This is found to be

where (1I-61)

22 = h?/(2mukT)

and u is the reduced mass of the two molecules. We finally have

3
1—2{ % (rot) Tr {exp(—BH) u [H,gl} . (1-62)

a =
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‘This is in agreement with the corresponding expression given by
Poll and Van Kranendonk in their freatment of the integrated

translational absorption.

I-6.a.2. Monatomic Gas Mixtures and Mixtures of a Monatomic

and a Diatomic Gas

We here consider the absorption arising from the dipole
moment induced between molecules of different species. No
absorption takes place between like monatomic molecules because
no net dipole moment is induced due to the symmetry present in
this case.

Consider one molecule of species A in the volume v with
N-1 monatomic molecules of species B. In this cluster all the
molecules of species B will contribute to the net moment induced
in A. Denote the coordinate of A by 1 if it is monatomic and by
1' if it is diatomic and denote the coordinates of B by 2...N.

i = R, are the coordinates of the center of mass of the monatomic
molecule labeled i and i’ = (Ei, \Ei) is the corresponding quantity
for the diatomic molecule if W, are the angular coordinates of the
Internuclear axis in an inertial frame.

If u(l...n) is the net moment induced in a cluster of n
molecules alone in the volume v, the cluster expansion for

mixtures of monatomic gases is

u(12) = U(12)

u(123) = U(12) + U(13) + U(123) (1-63)
N N

ul..N) = ) UAD+ ) UL .
i=2 i<j=3
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For a diatomic-monatomic gas mixture, the cluster expansion is
the same as equation (I-63) except that the label 1 is replaced by 1'.

Again, the U(1... n)'s all have the property that they vanish
if any member 1...n is far removed from any other member.
Successive substitution allows us to solve for the U in terms of the
u.

The operator Q(1...m) is expanded as before in terms of the
U functions and inserted in the cluster expansion of the trace of Q
for the N-1 molecules of type B and M molecules of type A. We do
this for M = 1 and multiply the result by M since the absorption is
simply proportional to M in this case. Substituting u(1...N), we get
cross terms of the type C—Qz(li) = u(1i)- [K(1i), u(1i)] where only a
pair is involved, plus higher order terms. There are N-1 such
terms so the integrated translational absorption b for mixtures of

monatomic gases is
-1 - -
b/M = kv (N-1) Tr { P(12) Q(12)} (1-64)

b

n, ng kv Tr {B(12) Q(12)} (I-65)
Taking the trace over the center of mass,we get

= =1
b=n,ng kv Tr {P G (1- 66)
where only relative coordinates appear. An analogous expression
for diatomic-monatomic mixtures is obtained for the corresponding
absorption b' by replacing 1 by 1'. We finally obtain the binary

absorption coefficients
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, 3
by = k gy Tr {exp(-8H) u(1'2) [K(1'2), (1'2) 1} (1-67)
by = k1% Tr {exp(-5H) u(12)- [K(12), U(12)1} (1-68)

where

Y
b' = blnl,n2+
(1-69)
b = b1 nyng+ ..
are the absorption enhancement in diatomic- monatomic gas
mixtures and the absorption in monatomic-monatomic gas

mixtures, respectively, Also, we have the relations

22 = h2/(2mukT)
K = 875/(3h%c)
B = 1/kT

n, = the number density of species i

H = the Hamiltonian operator for the system

k is Boltzmann's constant ahd is not to be confused with k. We
mention at this point that we do not make an attempt to calculate
the ternary absorption coefficient for gas mixtures.

The outline of the above calculations is due to Poll and Van
Kranendonk (1961) and our results agree with theirs. However,
they do not give their calculations in detail nor do they give the

explicit expression for the ternary absorption coefficient as we
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have done. The method is quite general and fairly powerful. We
therefore decided to include it in this thesis., We will next make
use of the results for the binary case to find the frequency
dependence of the absorption coefficients. As this has not been

done before, it will be an original contribution.

I-6.b. The Frequency Dependence of the Translational Absorption

Coefficient

Up to now, we have followed the procedures set up by Poll
and Van Kranendonk in obtaining the density expansion of the
integrated translational absorption coefficient. Since we desire
the frequency dependence, we must depart from their discussion
at this point. We now propose the following derivation to obtain
the hitherto unavailable expression for the frequency-dependent
pressure-induced translational absorption coefficient.

The trace is a sum of probabilities that a transition takes
place starting from a specified level and terminating on any of
the possible remaining levels. We must therefore transform the
trace to another expression in order to obtain the frequency
dependence. We use the procedure given in Appendix C in reverse
to transform the trace back to a summation whose initial energy
levels lie below the final ones. To do this, & s must be the energy
eigen-functions. Designating the three cases by A, B and C, we

obtain
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3
kX ¥ 2
i<t -
3
te g A Y 2
B. b=k Zf (B; - BY |uyl® hevy, (1-70)
i<

C. b, =k’ Z (B, - B) |u,l? hev,
i<{f

where Z is now the rotational partition function given by equation
(I-14) for the case of an equilibrium mixture of H2 and Bi is
exp(-BE(i)), the Boltzmann factor for state i. Equations (I-70) are
the two-particle analogues of equation (I-34). In the equations to
follow, A stands for the diatomic case, B stands for the diatomic-
monatomic case and C stands for the monatomic-monatomic
mixture case.

Let v go to infinity, so that we have essentially a continuum
of franslational energy states. Let the labels i and f define a two
dimensional energy space for the systems A, B and C. That vis,
let i and f be directly proportional to the energy of the corresponding
translational level where the discrete rotational states are held
fixed. Then, as ior f changes, only the translational state is
understood to change. The summation of the translational states

in equations (I-70) will then become a double integral
= ot 2 . .
f I (B, - B |uyl® heV, gli)g@di df (1-71)
=0 i=o

where g(i) and g(f) are the densities of the initial and final

translational states, respectively. We now wish totransform to
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the situation where we first integrate over E(i) for constant
heV = E{f) - E(i) = E(w) and then integrate over E(w) (c.f.

Figure 7). The Jacobian for this transformation is 1 so that
' di df = di dw and we find that

]«.oc n OO

J _J (B, - B | _t_xiflz heV., g(g(i+w)di dw (1-72)
w=0 i=0 _

is equivalent to equation (I-71).

We now recognize the integrand of the dw integral to be
proportional to the probability that a translational transition of a
given frequency will take place. Therefore, this integrand must
be the frequency-dependent translational absorption coefficient.
These quantities become for our three cases in the limit as v
goes to infinity

3 o)
e Ty
SR e I DL R MR e PR
3

. A

v ‘Z“IJ: z (B; - B, ) |u L1 1+WI2h Avel)g(rw)di  (1-73)

B. b

LNy 1+W‘ 2p2c Vg(l)g(1+w)d1

_ 3777
C. b =k f ) (B, - B, ) lu
i=o
where we have used the fact that dw stands for dE(w) = hc dV.
The summations are over all the discrete states for which the

total energy does not change during a translational absorption.
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Figure 7, The Fquivalence of the i=f and i=w

inteprations.
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Now B, = exp(-BE(i)) = exp(—-BEt(i))exp(-BEr(i)) where
E.@) = E (). Then B, - B, = exp(-8E,(1))(1 - exp(-BE(w)))
exp(-BEr(i)) = Bi(trans)B(rot)(l - exp(-BhcV)), giving rise to
the familiar stimulated emission factor.

A. Bi - Bf = exp(—kz/k(z)) B(rot)(1 - exp(-BhcV))
B. B, -B,= exp(—kz/k(z)) B'(rot)(1 - exp(-B8hcV)) (1-74)
C.  B;- By=exp(-K2/k2) (1 - exp(-gheV)

ngT/hz, B(rot) = exp(-BE(1)-BE(2)) and

B'(rot) = exp(-BE(l)) where E(i) now is the energy state of the jth

diatomic molecule.

where k = p/a, kg = 8

For the evaluation of g(i)g(i+w)di, it is convenient to transform
irom energy to momentum, or rather, wave number (k) space.
Morse and Feshbach (1953) quote the expression for the total
number of eigenvalues dn between k and k+dk in the case of the
general Lioville equation:

b -
o 1 r(z) )
dn—dklrﬂ faj}m dzl (1-75)
where a and b delineate the range of z and

£ 0 W)t 1@+ @)} v =0 (1-76)
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is the corresponding Lioville equation. Applying equation (I-75)

to the three-dimensional radial Schroedinger equation, we find

- dn = dkR/mfora = 0Oand b = R as R goes to infinity. Now

g(i)di = di(dn/di) = dk(i)dn/dk(i) = dk(i)R/m so that

g(i)di = R dk(i)/m

and therefore

g(i+w) = ?dk(i+w)/d(i+w)
Because
E = h2k2/8TT2H ,
we have
g(i+w) = R 4rmu/k(i+w) .

Using E(i+w) = E(i) + E(w), we obtain

k(i+w) =‘\/;:2(i) + 8TT2}J.CV/ h

and finally

g()gi+w)di = R 1 (félv dk dk(3) i
1+ bk (i)/8n"ucv

Inserting equations (I-74 and 82) in equations (I-73), we obtain

A a - % (1 - exp(-BheV)) /V S,(V,T)

(I-77)

(1-78)

(I-79)

(1-80)

(1-81)

(1-82)
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B. bl = K'(1- exp(-BheV)) /V Sy(V,T)
C. bV = k'(1 - exp(-BhcV)) /V S3(V, T) (1-83)
Where
(00 ] et () Iy 250} e
(1-84)
and
k' = 4/7€ (b/kT> 2 /30
and
7% exo(-8(@®(i;) + Bly)) 1= 1
Py - 21 exp(-8E() i=2 (-85)
1 i=3

where E(ji) is the jth rotational energy level of molecule i. The
factor 1 - exp(-8hcV) accounts for stimulated emission.

T is the local temperature, u the reduced mass, c the
speed of light, h Planck's constant, k Boltzmann's constant,
Z the rotational partition function, V the frequency in wave
numbers and the summation is carried out over all of the angular
momentum states compatible with translational absorption. It

remains to evaluate this sum in each case.



54

Because of the large amount of symbolism, we shall explain
the matrix element expression. First of all, the wave functions
cI:S are normalized to unity in the volume v as it goes to infinity.
This follows from the fact that the trace of P must be unity (where
P is exp(-8H)/Z). For central forces, @ breaks up into the
product of a radial and an angular eigenfunction. The radial eigen-
function is X(r)/r, where X(r) is the solution of the one-dimentional

Schroedinger equation
. 2 2 2 _
X'"(r) + [kK° - 2uU(r)/2° - L(I+1)/r"1X(xr) =0 (1-86)

where kz = ZuE/‘hz, E being the relative energy. The boundary
conditions on X are that

X(0) =0
X'(0) = is finite

(I-87)

and X(r) cannot increase faster than linearly with r as r goes to
infinity. The asymptotic form of X(r) for large R and r is

XkL - /2/R sin(kr + 6L(k) ) (1-88)

where 4, (k) is the phase shift. The factor R™! arising in the
corresponding matrix element cancels the factor of R in equation
(I-84) so that we might as well have written this equation without
this factor, if it is understood that the amplitude of the radial
eigenfunction is to be normalized to /2 as r goes to infinity. This
is the method we use to normalize the numerical solution for X(r).
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If we denote the angular eigenfunctions by i, the total wave
function is |

@ = yY(Q) X(r)/r (1-89)
where ( is the set of angular variables. In the Dirac notation,
I’Ehgj)l ? = 1<f|3(j)l i>|? (1-90)
where the matrix element is given by

<t]uD}i> = [ _jme,L,E(j)kadr_ pdo  (1-91)
r=90

where the limit as R goes to infinity has been taken.
We note the identity

| <tluji>|? = | <tluy|1> |2+ | <tlu_[i>] 2+ | <tu [i> |2
(I-92)
where
uy = (uX+ iuy)/fz
u 4= (uX - iuy)/fz (1-93)
u =1
a Z

are the spherical components of u and they form an irreducible
tensor operator of rank one. The Wigner-Eckart theorem assures
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us that the sum over the angular momentum states of equation
(I-90) using equation (I-92) will take a particularly simple form.

In evaluating this sum, we expand the spherical components
of u, denoted by u - in terms of the complete set of angular eigen-
functmns Yw(Q). For the case of diatomic molecules, it is
necessary to couple three angular momenta. We do this by first
coupling the two rotational angular momenta, denoted by the
quantum numbers J 1 and J 2 to give J 19 and then couple J 12 with
the orbital angular momentum L to give the total angular momentum
J. The corresponding projections are my, mz, 190 ™ and M,
respectively. The y are then related to the spherical harmomcs
Y{jm) by the following formula:

YT T,LT o TM) = Z Y(3,m))Y(T,m )Y (Lm; ) C(F,3,31p3m m, M, )

My

M,,m .C{,LI;M

L M) (1-94)

12™

where the C's are Clebsch-Gordan coefficients, described in

Appendix D and the spherical harmonics are normalized such that

Jm]-m /(2j+1) (G-|m]|)!

Y(jm;6,®) =i 4 Gelm)] P;n(cose) exp(ime)  (I-95)

This is orthonormal with respect to both j and m.

At this point, we should point out the fact that because H2
contains an even number of Fermions, the wave function y should
be symmetrical with respect to the interchange of the H2 nuclei,
This causes the normalization factor of i to depend on the angular
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momentum quantum numbers. For example, in the case of the
He-He wave function, this factor vanishes when L is odd (Beth
and Uhlenbeck 1937). We have ignored the symmetry properties
of y and have simply defined it by equation (I-94). We do this on
the basis that the quantities that we are ultimately interested in are
the summations over the angular momentum states of the square
of the matrix elements, while at planetary temperatures, the L-
dependence of these matrix elements for the important values of
L is slowly varying (c.f. Figures 9-13). A rough estimate of the
error may be obtained by summing over the even values of L,
multiplying the result by two and comparing with the summation
over all values of L. The slower the variation of the summands,
the smaller the error and the closer the quasi-classical case.
For HZ— He enhancement, we are less concerned with symmetry
properties because the molecules involved are less similar and
the mean molecular weight is greater. Therefore, the pseudo-
classical approximation is better in this case.

We expand u, according to

3
64
u, = —STL- Z A(ylyz WL;r) zp(ylyzLW1v) (1-96)
'ylyzWL

where the A's are fixed by the specific model for the induced
dipole moment and will be discussed later.
We define

R

<A> = <k'L'|A(y;y,WL")|kL> = Lim J‘ RXY ()
R=» "p '

. A(y1y2WL" ;r)XkL(r)dr . (1-97)
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‘We now take the matrix elements of equation (I-96), square and
analytically sum over the initial and final angular momentum

states with the Boltzmann weighting factor for the rotational

states. In the course of this, the selection rules will be determined.
We treat the general case of the diatomic molecule first and then
simplify the results to apply to the cases of the diatomic-monatomic
enhancement and the mixture of different monatomic gases. I

these are designated cases A, B and C, respectively, then the
reduction {o case B is effected by setting J2 = 0, le = J 17

M12 = my, Yo = Oand W = V1 To reduce to case C, we also set

J1=m1=y1=0,J=LandM=m

Equations (I-94 and 96) are inseIPted in equation (I-91). The
result is squared, weighted by the rotational Boltzmann factors
and summed over all initial and final angular momentum states.
The integrals over the spherical harmonics are evaluated
analytically. This calculation is done in detail in Appendix E,

giving

. 2 — 2
) IRy 1%P= ) Ly (L', L) <k'L'| Aly,y,WL") | KL>]
k'L’ V1Yo WL" LL!
1¥2
| (1-98)
) PUPRGL, U3y 03y
3,303 T
191722

where the Racah coefficient Ly(j', i) = (2§+1) |C(, v, i';000)] 2 is

symmetric in j and j' and P(j) is the rotational Boltzmann factor.
At this point, it is necessary to distinguish between the three

cases A, B and C in an important way. In case A, a double
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rotational transition, where the rotational energy of the colliding
diatomic molecules changes by equal but opposite amounts,
contributes to the translational absorption. Therefore, translational
absorption results only if there are no rotational transitions at all
or a double transition occurs for which the initial level of one
molecule is the final level of the other and no net change of
rotational energy has occurred. The quantity on the left hand

side of equation (I-98) then becomes:

) Ly oL, D] <KL | Ay, 7, WL KL> |2 ) PE)PE,)
Y1YoWL"LL I3
(1-99)
. {Lyl(Jl, 7)) Lyz(Jz, Jg) + Lyl(Jz, Jl)Lyz(Jl, I} -

We follow Poll and Van Kranendonk (1961) by making use of the
EXP-4 model for the induced dipole moment. They give the
symmetry relations that Y1+ Vgt L + 1 must be even and thev
triangular relations, A(ylyzw) and A(WL1) must hold. Also, if

the colliding molecules are identical, we have the further symmetry
relation that A(y1y2WL) = (- 1)W+1A(y2y1WL). These relations
give rise to the selection rules. We retain only the first few terms
in the dipole moment expansion as the rest of them are negligible

in comparison. For homopolar diatomic molecules, we retain the

expressions (containing the constants for Hz):

A(2021) = -A(0221) = 0. 820 exp(-17. 94 x) e- Angstroms

A(2023) = - A(0223) = 0, 00260(189. 2exp(-7. 94 %) + 1.00/xh) ~ (-100)

e- Angstroms
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where x = r/o, e is the esu unit of charge. We insert these
values and make use of the relations

). LG9 = 2+ 1 (1- 101)
j'

Note that Lo(JZ’ Jz) = 2J, + 1 and Lo(Jl’ Jl) = 2J, + 1, sowe

have

) B@) L (3,9) = 1 (1-102)
Kj

Summing over the J-states, we have

£(T) ) 2{L, (L', L)] <A2021)> | + L (L', )| <A(2023)> | %}. (1-103)
L L'

Where

2T) = ) P(I)L,(J, J) (1-104)
J
and LZ(J’ J) = J(@+1)(23+1)/(2J-1)(23+3) so that £(T) is the same
as given by equation (I-28). The selection rules are given by the
factors Ll(L', L) and LS(L', L) which are zero unless L' = L+ 1,
+ 3. From the definition of Ly, we find the values of the statistical

weights:



61

L,(L+1,L) = Lel
L (L-1,1) = L

_ 5(Le+1)(L+2)(In-3)

Ly(1#3, L) = oot s)@trs)
 3L(L+1)(I42

Ly(L+1, L) = 2(2(L—1))(2L-|-g) (I-105)
 3(L-1)L(L+1)

Ly(1-1,1) = SG529)(0n3)

_ 5(L-2)(L-1)L
L3(L-3, 1) = 9T 3L 1)

Letting B,(kL;k'L') = | <k'L'| A(202i)| KL> 12, we finally obtain

2 B ] o]t
Z |Ru, o [#P = 2¢(1) ) {L B, (KL;k', L-1) + (L+1)B, (KL;K', L+1)
k'L L=o0
(1-106)
+ Lg(L-3, L)B,y(KL;K', L-3) + Ly(L-1, L) B, (kL;k', L-1)
(case A)
+ Lo (L1, L)By(KLsk', Lt1) + Ly(L#3, L) B, (KL;K', L+3)}

The value of k' is fixed by k and V. The above expression is for
case A. To reduce to case B, we notice that for purely
translational absorption, no rotational transitions at all are
permitted in this case. Therefore, J’2 = J2 and J '1 = J 1 must
hold in equation (I-98). Noting that LO(O, 0) = 1and P(J 2) = 1
in this case we reduce equation (I-98) to

) L, )| <KL|AGOYLY) [k'L'> | 2) () L(,9) | (1-107)

yL" | J
LL
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Introducing the EXP-4 model, the A(0001) term is now permitted
since non-identical molecules are involved in the collision. Poll
and Van Kranendonk (1961) then neglect the angle-dependent part
of the overlap moment and take care of the quadrupolar induction
by A(2023) = /3 Q) oy e 4, Therefore,we obtain

) [LI(L',L) B, (KL;k'LY) - zP(J)(2J+1) + Lg(L', L) By(kL;k'Ly)
L, L' J

- ) P Ly, J)_, (1-108)
7 g

where Ey corresponds to By except that the A's for case B are
used. Making use of equations (I-102 and 104), we obtain for

case B:
Y R u |2 P = Z {LE (kL;k', L-1) + (I+1) B, (kL;:k', I+1)
_k L 1 yix 1 LR
k'L’ =0
+ £(T) ‘[L3(L—3, L)E3 (k1k', L-3) + L3 (L-1, L)E3(kL;k',L- 1)
(case B) | (1-109)

Lig(L 1, L) By (kLK L1) + Ly (143, L)B, (KLjk', 1+3) 1}

In this case, A(0001) = 24 exp(-xo/p) and A(2023) is given above.
Notice that £(T) does not affect the A(0001) term.

In the simplification to case C, the only non-vanishing
coefficient is A(0001) = Eg exp(-xo/p). Wesety =0, L" =1
and J = 0 in equation (I-107) to obtain
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). Ly(L, L) <kL|A(Q001) | kL'> | 2 (I-110)
L L'

- and this becomes

[L| <kL| A(0001)| k', L-1> | 2
0

t:rb/‘_!s

(I-111)
(case C) + (L+1)] <KL| A(0001)| k', L+ 1> |27 .

This expression is independent of the temperature. The
actual temperature dependence of the absorption coefficient
enters when we integrate over the translational states. The
Boltzmann factor, exp(kz/ k(2)), then governs the temperature
dependence. Again, the value of k' is fixed by k and the
frequency V{cm~ 1).

This completes the analytical formulation of the problem.
To obtain the translational absorption, it is necessary to
numerically compute the radial matrix elements By and I—3y.
We then use equations (I-106, 109 or 111) with equations (I-83
and 84). The next section deals with the problem of the
numerical computation of equations (I-106, 109 and 111).



65

1-7. THE NUMERICAL COMPUTATION OF THE TRANSLATIONAL
TRANSITION PROBABILITIES

This section explains the methods by which the translational
matrix elements were numerically computed for the cases of
Hz-' H2 and Hz- He pairs. Because of the large number of matrix
elements needed, it was necessary to use efficient and sometimes
original numerical techniques. As a result, a complicated but
numerically fast IBM 7090-7094 electronic computer program was
developed for accurately computing the summation over the orbital
angular momentum states of the squares of the translational

matrix elements.

I-7.a. Starting the Solution of the Radial Schroedinger Equation

When we let x = r/o, t = ok and denote the unnormalized
form of X(r) by S(x), the one dimensional radial Schroedinger
equation takes the dimensionless form

(X" 12 "6

a®s/ax? + 112 - ax" 12 - 576 - L1218 = 0 (I-112)

where we note that the origin is an irregular singular point and
a = Bucol/n’ (I-113)

and equals 52. 73 for the Hz- H2 case and 32. 1 for the H2-He case.

¢ and o are the Lennard-Jones parameters and y is the reduced

mass. The WKB solutions for small x are
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3
S(1) = X (a2 /559 (I-114)
;WZ expi-a X
s(2) = x° exp(+al/2/5x0) (I-115)
a174

and only the first one satisfies the boundary conditions,

Notice that we should not start the numerical solution at the
origin because 1nS and InS' diverge to -« there. Instead, we
start the solution in the region x greater than 0. 5 using the
approximate WKB solutions for the initial values and the Runge-
Kutta technique for the continuation. If the initial value of x is not
too large, the error in S due to the approximate initial conditions
will be rapidly damped out as we integrate in the direction of
larger x in the non-oscillatory region. The reason for this is as
follows: The approximate solution at the initial value of X is a
linear combination of solutions which behave like S(1) and S(2).
The coetficient of the latter must be very small since this solution
goes very rapidly to infinity as x goes to zero. As x increases
from this initial value, this latter solution decreases to the order
of magnitude of the former so that the term containing this former
solution is practically the entire contribution of the numerical
solution. It was found by comparing numerical solutions of spe-
cific k and L values but different initial x values that the relative
error in S and S' is less than 10_5 if we start the integration at a
point for which S is less than 10'4 times its maximum value, or is
less than 1070 if 8 is less than 10”° times its maximum value. At
either point, the contribution of smaller x to the matrix elements
is negligible.
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We now explain how the initial value of x and the initial step
size H was determined as a function of t and L for a tolerance of
107°in Sand §'. Let

2 -12 -8
-X ).

D(x) = t% - LIL+1)/x2 - alx (I-116)
When t or L is large enough so that the "a'" term is negligible, the
solution of the radial equation is approximated by the spherical
Bessel function. This, in turn, is approximated by Carlini as

(Watson 1944)

v+1
(wi-z)/2
S@) ~Vvz/2 |3 (va)| < 2 (I-117)
v (1_22)1/4 1 ]II_ZZ)V

where z is less than 1. This is more accurate than the WKB
approximation. We set this expression equal to 10'5 and solve
for z by iteraction using Newton's method, z equals tx/v, where
we approximated v by/f(lTﬁ for convenience. This procedure
is quite successful for producing the initial x when the Bessel
approximation applies.

The initial step size need be found only roughly since the step
size is tested during the Runge-Kutta integration. Nevertheless,
Carlini's approximation is too crude to give an estimate of the step
size in the Bessel case. From empirical calculations, it was
found that the initial step size was given with sufficient accuracy
for the Bessel approximation by
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H=0.291x%/v-0.086/t. (I-118)

This was obtained by fitting a linear curve in z to the empirical
step sizes plotted as a function of z.

In the non-Bessel case, the Lennard-Jones term of equation
(I-116) dominates. We distinguish two cases in this event: One is
where the ax 12 term dominates and the other is the transition
case where it does not. We consider the former case and modify
it later to accommodate the transition region. We use the WKB

approximation to get

3 1/2
0

0

where we let X, be the smallest root of D(x) = 0. Our criterion
requires that this be set equal to 10—5. We then solve the resulting

transcendental equation for x by iteration, giving

-1/5 (1120

x=x [1+x 5 53._1/2 (31In(x/x ) + 11.5)]
o} o 0
This converges without difficulty. In the transition region we find
that the following expression fits:

-1/5 _

x=x [1+5a 1/2 (31n(x/x ) + 12.4)] (I-121)

These expressions suffice except that for low t and L, it is
necessary to change the constant 11, 5 in equation (I-120) to 15,
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‘The number of additional computations is not large in this case
since the step size is large. For t less than 3, we use the initial
values for t = 3. We obtain X by Newton's method starting from
x_ = v/t.

© -12
The step size for the first non-Bessel case, where the ax

term dominates in D(x), is given by the criterion

8S/S ~ constant (1-122)
where the variation is with respect to x. In other words,

HoCS/S' (I-123)

We compute S and S' from the WKB approximations and determine
the constant of proportionality empirically. Thus,

H = 0.066x/(3 + 7. 25/%°) (I-124)

where x is the initial value of x. This suffices for the desired

accuracy of a factor of two or four in H. For the other non-

Bessel case (the transition c_asé) the Bessel step size suffices.
The second order differential equation for S may be written

as a system of two simultaneous first order differential equations:

dW/dx + D(x) S = 0

dS/dx - W = 0 (I-125)
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where D(x) is given by equation (I-116). Once the initial values

are known, we integrate this system by a modified Runge-Kutta
scheme of order four. The general Runge-Kutta scheme, such

as provided by Library routines, is numerically inefficient. An
important simplification of the Runge-Kutta method occurs for

the case

Y" = G(X: Y, y’) (I" 126)

and another simplification occurs when G is independent of y'
(Hildebrand 1956). Such is our case. We find

S+1) = S@) + H W) + 5 (m(0) + (m(1)+m(2)))

(1-127)
W(nel) = W) + 5 (m(0) + 2(m(L}+m(2))+ m(3))
Wher_e
m(0) = -H D(x)S(n)
m(1) = -H D(x + H/2)(S() + -21- H W(n))
1 1 (1-128)
m(2) = -H D(x + H/2)(S(n) + 3 HW(n) + Z'H m(0))
m(3) = -HD(x + B) (S) + H W(n) + %H m(1)) .

This scheme was tested for the case where a = 0 in D(x). The
resulting numerical solutions were compared with tables of
spherical Bessel functions where these tables also provided the

initial values. The agreement of these solutions with these
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- tables at all of the values of x, L and t examined, indicated that
the program was correct. Replacing the correct value of "a" in
D(x) then gave us the correct program for S(x).

After integrating six steps, the last values of S and W
computed are recomputed using a double step. If the relative
errors are both less than a tolerance of 10'6, then the stepsize
is automatically doubled and the integration is continued. I not,
then the last point is recomputed using a half-step with two cycles
from the previous point. If any difference is greater than the
tolerance, the step size is halved and the integration is continued.
Otherwise, the same step size is used. The tolerance 10_{5
controls the cumulative error accumulating over the 50 to about
300 steps to the matching point. The induced moment falls off as
x_4 so that the contribution to the error in the matrix element
decreased as x increases beyond a certain point.” The dominant
error in S appears in the phase rather than the normalization so
that the matching point may be at quite large x before the values
of the matrix elements are affected significantly.

We compute the initial and final states simultaneously, so
that the abscissa will match, making interpolation unnecessary in
the matrix element integrations. The step size is fixed by the
final solutions since they oscillate more rapidly. In general, there
are four possible final states for each initial state. Simpson's rule
is used to effect the integration of each of these matrix elements
as soon as the ordinates have been computed by the Runge-Kutta
scheme. We found that empirical calculations using just the X—4
term of the induced moment (which always has a truncation error

greater than the exp(-7. 9x) term when Simpson's rule is used) that
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a Simpson's rule step four times that of the Runge-Kutta step
gave results similar to those then a Simpson's rule step equal
to that of the Runge-Kutta integration was used. In this case,
the integration error in a fixed interval is proportional to the
fourth power of the step size. This indicates that the Simpson's
rule step is not too large. To be safe, especially at low t, we
used a step three times the size of the Runge-Kutta step. This
amounts to about six intervals per semicycle of oscillation. The
error is greatest for the low t and low At solutions. Comparing
the matrix elements with those calculated for a Runge-Kutta
tolerance of 1077 per step (instead of 10_6, which is the adopted

value), we found a relative difference of less than 0.5 x 1074,

I-7.b. The Solution of the Radial Equation in the Oscillatory Region

If we were to simply integrate the wave functions by the Runge-
Kutta method out to the point where the Bessel function approximation
was valid, normalize and continue analytically, too many caléu-
lations would have to be made. The computing time would be
prohibitively long and expensive and the accumulating round-off
error makes the results only approximate. The reason for this
is that the step size of the Runge-Kutta integration is restricted
by the variation of S in the oscillatory region so that there are about
20 steps per semicycle for a relative error of 10_6 per step. The
higher the value of t, the higher the frequency of oscillation of S in
a given X interval and the smaller the step size. Only for the
lowest t is the above scheme practical.

For these reasons, it was decided to use an entirely different

method for solving the radial equation in the oscillatory region.
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Since the amplitude of S is a much more slowly varying function of

x than is S, we let the amplitude and the phase be the dependent
variables. In this way, the oscillatory behavior is factored out as

S(x) = A(x) exp

- X
i j p(X)dXAl (1-129)
a

where A(x) is the amplitude and the integral is the phase difference
between a and x. D(X) is positive in the oscillatory region. When
we substitute this expression into the radial equation for S and
separate the real and imaginary parts, we obtain

A"-pPA+DA =0

(1-130)
2PA'+ p'A =0

The last equation is separable and may be integrated directly,
giving

() = K/A%(x) (1-131)

where K is the constant of in_te'gration. We emphasize the fact
that the phase is an integral function of the amplitude only. When
equation (I-131) is substituted into the first of equations (I-130),

we obtain the "amplitude equation':

A"+DA-K2/A% = 0 (I-132)
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‘which is a non-linear differential equation involving only the
amplitude as the unknown and differing from the radial equation
by the KZ/A3 term. The above derivation was found in Modern
Computing Methods (Teddington 1958).

Examining the amplitude of the WKB solution for large x,

we note the boundary conditions:

A(m) =
(I-133)
Al(=) = 0

to give the proper normalization. Also, A'(*) = 0 asymptotically
and D goes to tz so that the constant k is found to be

k=2t (I-134)

for positive phases. We thus obtain the explicit equations

S(x) = A(x) sin l;t dX + P(c)_ (I-135)

d A(x)

for x greater than ¢, where ¢ is an arbitrary point on the x axis
in the oscillatory region and P(c) is the phase at that point. The
amplitude A(x) is the solution of

A'(x) + DR)A() - 4t2/A%@x) = 0 (I-136)

for which A' and A" go to zero as x goes fo infinity. It should be
noted that equations (I-135) and (I-136) are valid for D(x) containing
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potential functions different from the Lennard-Jones. We will
postpone to later the discussion of a stable method for solving
the tricky amplitude equation and now discuss the matching and
normalization of the solutions.

Let x = c be the matching point. The integration up to ¢
is accomplished by the Runge-Kutta technique described above.
Then the solution in the oscillatory region is fixed by the boundary
conditions at infinity and extended analytically by a power series
solution of the amplitude equation down to a value of x = x. where

{
the series begins to fail and is extended from x,to c by a

numerical solution of equation (I-136). At the rfnatching point c,
the unknown constants P(c) and the normalization factor of S,
which we denote by F, are evaluated by imposing the conditions
of the continuity of the wave function and its slope at the matching

point. When this is done, we find, at x = c;

P(c) = tan_l( 5 LI 1 (I-137)
(A%7/2 + A%w/s

where we carefully note that the derivative (Az)’ is with respect
to d(-x) since we are procedi_ng from infinity to x = ¢. To resolve

the ambiguity of the branch of the 1:.21,11—1 , we note

0<P()=m if S(c) >0

(1-138)
T < P(c) < 2m if S(c) <0

and finally, at c,
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F =8/A sin P(c) . (I-139)

F loses some figures of accuracy if S is close to zero at the
matching point. This can be avoided by not matching near a
zero of S,

We now look at the asymptotic solutions of the amplitude
equation, The first is the WKB solution, for which A"'(x) = O.
This leads to

AR T[4/ D) ]1/4

(1-140)
which is pretty good for larger t or x sufficiently larger than

the zeros of D(x). However, the error is difficult to pin down
guantitatively. For this reason, we constructed a power series
expansion in x-2 for A(x). This expansion is done for the case

of the 6-12 Lennard-Jones potential in D(x), I E = L(L+1) and

M = the value of "a'" of equation (I-113), we have ‘

Ax) = /2 [1+ a/xz + b/x4 + c/x6 + d/x8+ ..l (I-141)
where

a = E/K2

b = E(5E - 12)/2K™

3 2 1 240 E)/2K5 - M/K? (I-142)

3 2

(15 E° - 148 E

il

c

(42 - SE)M/K* + (135E%/4 - 656 E
3

d + 3969 E

- 5040 E)/K° - (15E%/8 - 45 B3 + 54 £%)/K10
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-and for the phase, we find

PG = | = dx+ P(x) (1-143)
Xf A
so that
X
P(x) = Plx) +3 [x- a/x- 3/3x° - v/5x° - 5/1x -...1|  (1-144)
X
where
o = -2E/K>
8 = 2E(6 - E)/K
_ 2 3 2 6
y = 2M/K” - 4(E° - 28 E + 60 E)/K (1- 145)

3 2

5 = AM(E - 21)/K* + (-95 E*/4 + 850 E
3

- 2868 E

+ 10080 E)/K° - (15 E%/4 - 00 £% + 108 EH/K10.
We find x = X, by requiring the last term of the A(x) expansion
to be equal to the desired error, which we took as 10° 5.

At this point, we discuss the numerical solution of equation
{I-136) in the range from Xe to c. The boundary conditions are
established at the point x = Xe by means of the power series
expansion for A(x).

I we try to solve the amplitude equation by the Runge-Kutta
technique, the solution blows up no matter what the direction of
integration, This is partially because an extraneous oscillatory

solution exists with a very short period for high t requiring a
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-very small step size and partially because A" is a fairly small
quantity and is the difference of two large quantities which are
nearly equal. Consequently, many significant figures are lost
in computing A" and the solution is unstable for any step size.
Transforming equation (I-136) to an integral equation will get
rid of the former difficulty because the boundary conditions are
"built in", but we could find no way of efficiently coping with the
latter difficulty by this approach. We finally found an iterative
technique involving correction terms to the WKB solution which
gives a rapid and satisfactory convergence. Because of the
originality and utility of this method, we will derive it below:

Multiplying equation (I-136) through by 2A', we obtain

2A'A" + 2AA'D - K22A1/A3 = 0 (I-146)

where K = 2t. This is

Aad + @YD+ 2 H =0 (I-147)
or
t .
9.2 _3
[ié_ﬁf_f_{_-l + %D =0 (I- 148)
— A —
or
@2 /m? 1] 22
= + A% D/K% = 0 (I- 149)
A
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Letting
y = A2
s = (y/2K)% (I- 150)
B = D/K2
then
1+s,’ _
( 7 ) +y'B =0, (I-151)

When s(x) is zero (identically), the WKB solution is obtained:
-1/2
y=B """

of the left hand term and rearrange the terms and find that

With this in mind, we carry out the differentiation

1+s _ s'
g = B+2 -
y (v")

:
v =+ s (I-153)
B+2s'/@F%)

(I-152)

or

We now introduce the quantity

f=wE (I-154)

which is 1 in the WKB approximation and is slowly varying in
actuality, as long as x is significantly greater than the largest
zero of B, Introducing the definition of s in equation (I-153), we

have
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)2
y =\/1+ b /ZK)T (- 155)
B+ y'"/2K %y

where we could solve for y by iteration. However, we work with
the better-behaved £:

yv = fv/Bl/z - (f/2)B'/B3/2 (I... 156)
y' = t/BY2 _ pp/B%2 4 38:2/482 - B/2B)E/BY/2
and
2 [}
__ 11+ (y'/2K)
f = (I-157)
\[1 + y/2K%BY 2

Inserting equations (I-156) in (I-157), we obtain the iteration
formula for f. We note that as f goes to 1, both f' and "' go to
zero., In the WKB approximation,

2
no 0B -
B 5 (WKB) (1-158)
and we make use of this relation to check that the denominator
of equation (I-157) equals the numerator in the WKB case, so that
f goes to 1 as it should.

Letting

R = B'/B = D'/D (1-159)

we finally obtain the desired equation:
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1/2

- [1 + (' - 1R/2)%/4D i (1-160)

1+ (26"/f - 2Rf'/£ + 3R%/2 - D"/D)/4D |

which also holds for any likely intermolecular potential, U(r).
If we choose the WKB solution as the starting point of the
iteration, the initial value of the function f(x) is then given by

5 1/2
fi = [1 +R /216D ‘[ ' (I-161)
|1+ (6R" - 4D"/D) / 16D |
Using equation (I-161), we compute f' and f"" by three point
formulae:
fro= 2 (¢ - 4f +31) llEf"'(é)
1 - 2aY-1" FoTY TS
(I-162)
Tt 1 1ee
f1 = ;2 (f_1 - 2f0+ f1)+ hf'''(g)

We then substitute these results in equation (I-160) to obtain the
result for the first iteration. We do this for each point on a grid

of equally spaced points between ¢ and x,, comparing the result
with the previous result. I the difference is less than 10'5, the
iteration is assumed to be complete at that point. The largest-x
points are always the first to converge. The interval under treat-
ment thus shrinks with each iteration cycle giving a rapid con-
vergence with a minimum of unnecessary calculations. In our
application, equation (I-161) is already so accurate that it gives

the correct values of f to within this tolerance for about 80 per cent
of the interval. More than two iterations are seldom required. The
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- last point to converge is the matching point c. Thenumber of
iterations depends on the value of c. The matching point must
be chosen at a value of x for which the wave function has already
made several oscillations so that the third and fifth derivatives
of f are not so large that the error terms in the numerical
differentiation formulae are too big. For a fixed step size,
equations (I-162) are the greatest source of error, Their error
contribution exceeds that of matching (c.f. equation (I-163)) or
of the Simpson's rule for the phase integrations, If ¢ is toosmall,
f may give the appearance of converging whereas the result may
be in error by more than the desired tolerance. On the other hand,
after several oscillations of the wave function, one iteration cycle
usually suffices to obtain A(x) within the desired accuracy.

In matching, we make use of a five point formula for f':

1 h4 v
'2 = 19% (3:E_2 - 161 1t 36fO - 48f1+ 25f2)+ 5 7(8) (I-163)
where h is the grid interval and £ lies in the corresponding interval.
In general, we require that the error terms be limited and h large
enough so that the amplitude method is more efficient than the Runge-
Kutta scheme. This puts an upper limit on the derivatives of f and
hence, a lower limit on the value of the matching point. We found
no way of estimating the values of f''' and £ except by numerical
differencing techniques on solutions computed for various matching
points. This, in effect, is the basis of our error determination and

quoted tolerances.
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I-7, c. Integration Schemes For the Matrix Element Computation

We now discuss the computation of the matrix elements. The
dipole moment consists of two functional parts. The quadrupolar
induction part behaves like X—4 while the overlap part varies like
exp(-7.94x), As soon as both the initial and final states take on
significant values, the computation of the matrix elements begins.

The corresponding analytic expressions are

| i S(t', L')exp(-7. 94x)S(t, L)dx
" (1-164)

¢ -4
[ s, 1) x7* s(t, Lyax
X'

where x' is the value of x where we may no longer neglect the
contribution to the matrix element. t' and L' are the final states
and t and L are the initial states. These integrals are computed
in this fashion by Simpson's rule up to the matching point. They
are normalized after the matching has been accomplished. The
constants of proportionality are not added until the summation
over L has been effected.

In order to save computing time, it is necessary to stop the
relatively inefficient Runge-Kutta process as soon as possible and
transfer to the amplitude-phase iteration procedure. However, it
was decided to continue the Runge-Kutta process until the
contributions to the overlap matrix element became negligible,
For safety, this was taken to be the point x = 2.2, If the matching
point ¢ was greater than this value, the Runge-Kutta process was
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continued to x = ¢, Because the x"4 integrands fall off slowly, we
must take the higher-x contributions into account, Because the
amplitude varies more slowly than the wave function, the numerical
solution of the amplitude can take place at a much larger step size
for the higher t. However, the matrix elements involve the rapidly
oscillating wave functions so the advantage is lost unless a method
more suitable than direct quadrature is employed for the integration.
We now introduce such a method:
In the amplitude-phase region, the relevant matrix element

contribution is

%t

M= [ sx¥sax (I- 165)

c

where S' denotes the final state wave function. This expression

becomes
AA'sinPsinP! (1-166)

where P and P' are the phases. The rapid variation comes from

the sinP sinP' factor. From a trigonometric identity, we obtain

X X )
M= 1/2 I f dx x_4 AA'cos(P-P') - 1/2‘J t dx x 4AA’cos(P+P’)
c

¢ (1-167)

The first integral now has a more slowly oscillating integrand
and may be integrated by Simpson's rule with little error except
when |P-P!| is large. The second integral has an even faster

oscillating integrand. We propose the following evaluation of this
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.integral: (1) Letz = P+P' be the independent variable. (2) Fit
a quadratic polynomial in z to AA'X—4dX/ dz in each pair of un-
equally spaced intervals of z into which (z(c), z(xf)) is divided.
(3) Integrate analytically
Za
| Z"costz)az n=0,1,2. (1-168)
21

(4) Finally, evaluate the coefficients of the integrals in equation
(I-188) in terms of A, A' and x. We find that

dx/dz = K/A%(z) + K'/A2(z) (I-169)
Let the two integrals in equation (I-167) be denoted by Q and R,

respectively. Let AR be the contribution to R of a pair of equally
spaced intervals in x. If these corresponding intervals in z are

called h1 and h2 so that
h, =z -2z
1% -1 (I-170)
h2 = z1 - zO

for Z4 greater than Z, and z, greater than z_q, We have

AR = 2a [hy cos zy - sinz, + hy cosz_y +sinz_; +0. 5(h§ sin z,

- hi sin Z-l)] + b [cos zZy + h2 sin Zy - COSZ_g+ h1 sin z_1]

+ ¢ [sin zZy - sin z_1] (1-171)
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.where
Q- E1 + E2
h1 + h2
h,E, + h E
171 272
b = (1-172)
h1 + h2
c= P
o
and where
Ey = (Py-P)/hy
(1-173)
By = (Py=P_q)/by
and
P(z) = A A (1-174)

ax” 2(K/A% + K'/A2)

is computed numerically. This scheme was checked by planimeter,

In fitting the parabola to equation (I-174), the error is, after
6

b

integrating, like that for Simpson's rule. For a tolerance of 10”

8/5-

this implied a step size roughly like 0.1 x For safety, we used

h =037 x°/°

(I-175)
and when this exceeded an even multiple of the grid step size, the
step for the quadrature of Q and R was increased accordingly. We
add up all the AR to get R and then compute



M=Q - R. (I-176)

From empirical calculations, we found an approximate
formula for the grid step size containing the adjustable para-
meter p:

h = px @x/)0 4 (I- 177)

where p varies between 0. 01 and 0. 07 depending on { and the
matching point. The ultimate check in the step sizes is the
separate computation of matrix elements, varying the step sizes
and comparing the results. The error of a given step size or
set of parameters is determined by comparing its result with
the asymptotic results of the smaller step sizes. This is a
successful procedure provided that the step sizes are not so
small that the round-off error begins to dominate.

We finally explain the calculation of the contribution of the
values of x between X, and = to the matrix element. The integrand
is known analytically in this region but there is no simple
expression for the integral. We therefore make an asymptotic
expansion, starting from equation (I-167). The power series
expansion of the phase is used to compute P-P' as a function of
X. The terms of order x_5 in this expansion are neglected. This
is the criterion for fixing the position of x,. The cos(P-P') term

f
is expanded as

cos(P-P') = cosacosy - sinasiny (I-178)
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‘where « contains only positive powers of x and y contains only
negative powers. Cos y and sin y are expanded as far as 0(X8).
AA'/ 2x4 also is expanded in powers of x_2 and is multiplied by
the cos(P-P*) series. We then get

Q= th (l/X4 - (36/::6 + G8/X8 +...)cos a(x)dx
X .

f (I-179)

- f: ((}5/x5 - (3:,7/x'7 + Gg/x9 +...)sin a(x)dx .
i

The odd powers of 1/x are eliminated by integrating by parts and
the even powers are evaluated by a fairly rapid asymptotic
expansion derived by us in Appendix F and based on an idea
obtained from G, Blanch's fast asymptotic expansion for the
exponential integrals (1946).

In the R integral, we set z = A(P+P')/(t+t') as the
independent variable, where A(P+P') is the phase difference

between x and x. This z series is inverted to give x(z). The
quantity dx/dz is found by directly differentiating the x(z) series
term by term. We then obtain the z-series for (AA'/X‘4(Z))(dX/dZ).

The result is that we obtain an expression of the form

[=e]

R=[ (/2" +H/s%+Hy/s+.. )costaz+b)dz  (1-180)
z(xf)

which we evaluate by the same asymptotic expansion used for the
Q integral. The final contribution is



T=Q-R (1-181)

The value of R must be less than 2/ 3(Xf)3.

Several matrix elements were computed varying the value
of X, in each. The results appeared to be independent of the
value of X, SO long as it was above its minimum allowed value
and not so large that round-off error was important. This is
our final check on this part of the program.

I-7.d. The Summation Over the Orbital Angular Momentum States

As the initial orbital angular momentum of a matrix
element of fixed t and t' is varied, the matrix element typically
goes through a maximum and then begins to decrease more and
more exponentially, giving a straight line on a semi-log plot of
the high L values (see Figures 9 to 13)., For this reason, after
each matrix element is ca.lculai:ed (taking about a quarter of a
second execution time), the value of the next one is predicted by
extrapolation in the logarithm. Also, the present value is compared
4, the
step in L is doubled and the omitted matrix elements are computed

with the previous prediction, If the error is less than 5 x 10~

by logarithmic interpolation. In this way, much computing time is
saved, especially in the cases where the sum extends up to L over
100. In addition, the summation is halted whenever the contribution
becomes negligible with respect to the current value of the sum.

We emphasize that these summations are molecular
gquantities and are computed once and for all for the adopted grid
of parameters and tolerance. As far as the numerical accuracy

goes, they should be accurate to about a tenth of a percent or better.
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I we interpolate among these values to get the sums at other
frequencies and t-values, those sums will be less accurate due

to the truncation error of the interpolating process. Final

checks by comparing the integrated absorption from interpolated
values with the formulae of section I-4 for different temperatures,
indicate an overall accuracy of 1 per cent or better, as far as the

(0

greater due to uncertainties in the values of the physical constants

numerical process is concerned The actual error may be

of the problem, particularly those for the Hz— He collisions. In
addition, certain physical assumptions have been made along the
way in obtaining a formula for the translational absorption. These
will also affect the accuracy of the results,

We mention that in the Hz— He case, we computed the
summations for only the angle independent term (which is 98 per
cent of the entire absorption). Therefore, only the overlap matrix
elements were computed in this case. It was unnecessary to use
any process other than Simpson's rule for the matrix element
integration because the induced moment dies off quite rapidly with
increasing x. However, the same program was used to compute
these quantities but the constants were changed and only two final
states were necessary for each initial state.

(1) In the H case, the tail was extrapolated and the
proflles were mtegrate& over frequency The results at 600 K

300 °K and 100 °K were compared with those obtained from equa,tmn
(I-27). The relative errors were 0.5, 1. 2 and 3 per cent, respective-
ly. This agreement is an independent check on the calculations of
sections I-6 and I-7, We expect the error to increase as the temper-
ature decreases because equation (I-27) was computed using only the
first quantum correction term. Therefore, we may rest assured that
no significant computational error has been made in the calculation of
the translational absorption coefficient,
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The sums given by equation (I-106) and the temperature-
independent part of equation (I-109) are tabulated in Appendix G
for the Hz— H2 and Hz—He' cases, respectively. Note that for a
fixed frequency, the higher-t values are approximately proportional
to a power of t. The frequency dependence for various values of t
is illustrated by 'Figure 14, TFigures 15 and 16 give the resulting
translational absorption profiles.

I-8. THE THERMAL OPACITY OF NEH,

Laboratory measurements of the 10 g band of NH3 (Mould,
Price and Wilkinson 1959), the 10 ¢ and 16 u bands (Garing, Nielsen
and Rao 1959) and the rotational lines (Loewenstein 1960; Hadni 1957;
McCubbin and Sinton 1950; Foley and Randall 1941; Barnes 1935;
Wright and Randall 1933; and Cartwright 1929) show that the NH3
spectrum is scattered throughout the thermal region of the spectrum.
They also show that the self-absorption is quite strong in the centers
of the individual lines. That is, the lines become saturated in path
3 at STP. As
we observe about 700 cm of NH3 at STP in the Jovian atmosphere
(Kuiper 1952), we should make an estimate of the importance of NH3

in governing the thermal equilibrium. In this connection, we consider

lengths on the order of several cm through pure NH

the mean transmission of a sample of NH3 over a frequency interval
containing many lines but for which the planck function does not
change very much, Even though the sample becomes opaque at
irequencies in the centers of the lines, the mean transmission can
still be quite high due to the fact that most of the radiation is being
transmitted between the lines, However, as the pressure is raised

and the path length is increased, even the absorption hetween the
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-lines becomes strong because of the fact that each line has a
frequency tail of indefinite extent. The transmission of an NH3
band is therefore quite sensitive to the shape of the line profiles

in the extreme wings, the variation of this shape with temperature
and pressure, and the relative positions of the lines. The fact is,
that insufficient experimental data is available to give a reliable
curve of growth for a band of NH3 lines. We can proceed only by
making certain dubious assumptions. One of these assumptions is
that the shape of the wings is given by the Lorentz profile (the
Doppler broadening being negligible). Goody (1964) points out that
we are completely reliant on the observations for the shape of the
wings since the theory indicates that this shape depends somewhat
delicately on the statistics and the actual type of molecular inter-
action involved. For example, the R(0) wing of HC1 is found to vary
as (v- vo)'l' 73 whereas the self-broadened lines of the 4.3 u CO

2
band are damped out exponentially in the wings according to

o exp(-0,135 |v - vol 0. 7)
A © 3 3 (1-182)
m[(v- vo) +a ]

where Yo is the central frequency of the line. On the other hand,
the half-width 20 is consistently found to vary directly as the
pressure. Since the mean transmission varies exponentially on
quantities which we are calculating on the basis of observations
combined with crude assumptions, the results at best are very
approximate. A better course of action would be to measure

these mean transmissions experimentally as a function of tempera-
ture and pressure by means of a low-resolution infrared spectro-
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‘meter. In addition to yielding information for our purposes, such
a series of measurements woﬁld yield information on the line shapes
in the extreme wings and consequently on the statistics and form of
the intermolecular potential between NH3 and other molecules or
atoms.

Lacking adequate observations, we proceed with the
approximate calculation of the mean intensities. We make the
approximation that the lines of the 10 u and 16 u bands fall at
random within local frequency intervals.

The monochromatic transmission is given by Lamberts's
. law

tv = exp(—TV) = exp(- j avndL) (I-183)

where Ty is the monochromatic optical depth at frequency V, 2,
the molecular absorption coefficient, n the number density of
absorber and dL the increment of path length through the absorber.
The mean transmission over a frequency interval A for a band

containing N lines falling at random in 4 is given by
t = exp(-W/6) (I-184)

where W is the mean equivalent width of these lines and 6 is the
mean separation, A/N. The equivalent width for a single line is
defined by

w©

w= [ @ -t )av . (1- 185)

J

0
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By analogy with equation (I-183), we use equation (I-184) to define
a mean optical depth of the band over this frequency interval by

T = W/6 (1-186)

so that the mean transmission is given by exp(-T). T is computed
for the NH3 band by making the frequency intervals A small enough
so that the absorption or the Planck function can be taken constant
throughout each interval and by using high-resolution laboratory
data to obtain W for each of these intervals,

Neglecting the influence of Doppler broadening, the NH

3
line absorption coefficient is approximated by

a = S h(x) (I-187)

where we assume the Lorentz profile for h(x):
o ,
h(x) = —5—sx (I-188)
2 2
m(x" + a”)

andx = V - Vo’ where Vo is the central frequency of the line in
wave-numbers, S is the line strength, which depends on the

temperature through the Boltzmann factor,and a is given by
J,K = o (J,K)2 o (I-189)
o, B = &y, P \T

where J and K are quantum numbers, and Po and TO are the

pressure and temperature at standard conditions. For the NH3
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inversion lines, Townes and Schawlow (1955) give for self-
broadening at room temperature
K2 -1

_ p
G.(J, K) = (0, 38 -:"P—O m cm (I— 190)

which gives values in the neighborhood of 0, 2 cm 1 at atmospheric
pressure, in good agreement with the values of a for the 6 u NH3
band, which vary between about 0. 08 and 0.3 em™ 1 (U. S. National
Bureau of Standards 1958). We therefore assume that this formula

approximates the values of a for the 10 4 and 16 u NH,, bands for

3

the purpose of computing the mean line strengths. The finite

instrumental slit width makes the direct evaluation of a for these

bands inconvenient. We always have K less than or equal to J for

a given J transition. If we further approximate the mean value of

K by J/2, equation (I-190) becomes essentially independent of J

so that the average value of o over this region of the band is simply
- _ -1
a = 0,19 P/P0 cm . (I-191)

Generalizing to include the temperature dependence and expressing

a in terms of the number density n instead of the pressure, we obtain

-1

- n T _
a= 0, 19 -].:O -2—9—:.-3- cm (I 192)

for self-broadening of NH, (where L, is Loschmidt's number).

To include the contribution of H2 and He to a, we make use of
the results of Howard and Smith (1950) for a mixture of NH
foreign gas:

3 and a
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2 (1-193)

& = 1/27 b2+ n' b
where v is the mean velocity of NH3, b and b'" are the effective
collision diameters for self and mixed collisions, respectively,
v is given by

T = (7247212

(I-194)
and the primed variables denote the corresponding quantities for
the foreign molecule. Their values are given in Table I-2. The
first column under b(A)-c

TABLE I-2
Line Broadening Parameters of Mixtures of NH3 R H2 and He(For
the 3, 3 line)
Perturbing Gas b(A): ¢ a(cm” 1)for 1 mm Hg of perturber
NH, 13. 8 o x107*
H, (2.95, 3.1) 1.0 x 107
He (2.00, 2.4) 0.4x 1074

contains the values of Howard and Smith (1950) and the second
contains those averaged from various sources by Townes and
Schawlow (1955). The values of a correspond to the NH3 (3,3)
line at STP. According to Table I-2, H2 is only 11 per cent and

He 5 per cent as efficient as NH3 in broadening the NH3 lines.
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.Equations (I-12 and 13) indicate that a is the sum of terms varying
like

n T
= — (I-195)
LO uTO

Cc

where U is the reduced mass of the colliding components. There-
fore, the o for combined self and foreign broadening is

o= 0.19 [£(T)+ (0. 11 ., + 0. 045 o, )N/L 1 T/273 (1- 196)

1

where the first term corresponds to the self-broadening of NH3,
the second to the H2 enhancement and the third to the He enhance-
ment, Cq and Gy are respective ratios of H2 and He number
densities to the total number density N. £(T) is the number density
of NH3 divided by LO and for saturation, is given by

log £(T) = 1.01 + 3(log T) - 1550/T - 8 x 1072 718

. (3-197)
When unsaturated, f(T) presumably is proportional to the total
density, as we assume complete mixing for the unsaturated
components of the atmospheres,

We notice that the NH, lines will be broadened mainly by
H2 and He rather than by self-broadening in the upper atmosphere
since £(T) goes rapidly to zero at temperatures below about 180 K.
The self-broadening becomes important when the partial pressure
of NH3 becomes as large as about 10 per c;ent of the total pressure.
NH3 is at most a minor constituent in the atmospheres of the major

planets. Each NH3 molecule is perturbed more frequently by H2
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.and He than by other NH3 molecules. Below about 180 0K, we may
neglect selt-broadening.

We now turn to the problem of computing the curve of
growth for the 10 and 16 u bands of NH3 for isobaric and iso-
thermal paths. We will then generalize to paths along which the
pressure and temperature vary.

Since the laboratory data are for self-broadening, we will
develop the formula for T generally so that we may reduce to

either case. In our case,
j andl=anlL (1-198)

and the expression for the equivalent width becomes

e

W =| (- exp(-nLSh(x))dx . (1-199)

This expression may be evaluated analytically for the h(x) given
by equation (I-188) to give

W = 27 a£(nLS/2ra) (1-200)

]

for

2(u)

H

u exp(-u) (Io(u) + Il(u)) (1-201)

where the I are Bessel functions of the first kind with imaginary
arguments. The asymptotic forms of equation (I-201) are
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W - nlLS when nLS/2rq is small
: (1-202)
W - 2+nLSa when nLS/2mo is large

The typical laboratory lines are found to be saturated, so that we
take

W= 2L Y/2 5172 (1-203)

with sufficient accuracy for our purposes. Inserting the value of

a for self-broadening, we obtain
W = (/L)L L 0.76+T/273) si/2 (1-204)

It turns out that even in the unsaturated case, the error in assuming
the saturated case formula is negligible for our purposes. We are
referring to individual lines when we mention saturation in this
discussion. The expression for the mean optical depth then bécomes,
in the general case,

7 = (f0.76L,, /8 s /L ey (r/2n Y 11+ 0. 1¢
" (I-205)

+ 0.05a)N/L,_/2(m)1 /2

which is proportional to the square root of the path length.
From the experimental data of Garing, Nielsen and Rao

(1959), we measure the equivalent widths of typical NH, lines in
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frequency intervals chosen according to the strength and density
of the individual lines, This is done by a triangle approximation
and is valid since the instrumental slit width will not appreciably
affect the equivalent width of the lines. By this means, S1 2 is
obtained and the results are given in Table I-3. These values
are then inserted in equation (I-205) to obtain the mean optical
depth for each interval. The value of the constant 0. 76 in equation
(I-205) is not critical since the value of S/2 derived from the
comparison with the lab data will be compensated accordingly.
That is, it is the quantity 0.76 L _N/a S/2 which is experimentally
derived, The main error in 7 is due to the non-randomness of line
positions and the derivation of h(x) from the Lorentz curve in the
wings.

We now generalize the results to actual paths along which
the self-broadening is negligible., Define C by

C = ( 0.76 L K/ 5172 (1-206)
and let
C'=C- (01a,+ o.osaz)l/ 2 (1-207)
and
H =+T/273 N(T)/L_ . (1-208)

Then, we find
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1/2
T = C! “f HdL‘[ . (1-209)

The number of cm-atm of NH3 in the path is found by

N'(L) = | - £(T)dL . (1-210)
o

In the case of the rotational lines, we must modify the above
treatment in order to account for the gaps between the bands
of given J state. The rotational lines are conspicuous in the
interval 20 cm™ ! to 320 em” 1 Eacn group of lines arising
from the same J state is separated from the neighboring groups
by about 20 em™ 1. The number of lines in each group is about
2J and the width of each group is proportional to J. Within each
group, we may approximate the transmission as that due to a
random band. The transmission in the gaps between the lines
must be treated differently or the absorption will be grossly
overestimated, We give an approximate freatment below, based
on the Lorentz line shape:

Let the gap be of width 24 and be large enough so that a
Lorentz line is essentially proportional to V_2 for V greater than
A' from the line center. Also, let the gap be surrounded by a
random array of equally strong lines of mean separation 6. Goody
(1964) gives the expression for the expected transmission at the

center of the gap for a path at constant temperature and pressure:

t = exp [—ZnLkA, -2/ I i av( - exp(—nLkv))'[ (1-211)
AY

—
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With our approximations, the corresponding optical depth becomes

T = 2z - 24'/6 [(1 - exp(-z) - TZ erf(/z) ] (I-212)
for which the limiting cases are

2(1 + 4'/8) = small z

2z + (24'/38) (Ymz - 1) large =

(I-213)

where z = nLSoc/rrA’z. We use the small z approximation until it
exceeds the large z approximation. For the rotational bands of
NHg, A"~ 5 cm™ ! and & is about 0.3 cm™ Y, This implies that
2mA'/6 is about 100. I we define

y = (2/8)y/nLSa (1-214)

then in the center of the gap,

TR (5/00)y2/2m (1-215)
for y less than 65, and in the band,

Tx~y. (1-216)
We now assume that the gaps constitute half of the band interval

and average the transmissions in the band and in the gaps according
to
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t = (exp(-y) + exp(-(5/A")y2/2m)/2 . (1-217)

We fit equation (I-217) to the laboratory data. This is done by
measuring the integrated equivalent widths of each rotational
band for given initial J and dividing by 20 em™ 1 (the separation
of these bands) to approximate the mean optical depth in an
interval including the band and gap. The corresponding
transmission is equated to that of equation (I-217) and y is
solved for as a function of frequency. Next, equation (I-214)

is used to reduce y to 1 cm-atm of NH,. In this way the constant

3"
of proportionality is determined. If this constant is denoted by

Cv’ then Cv is given analytically by equation (I-206) and we find

y=C_HT)/L 1+ (0. 1la +0. O45a2)N(T)/(f(T)LO)]1/ 2(p/213)1/4,
(I-218)

This equation is for isothermal and isobaric paths. We find the
mean optical depth to be:

T = - In[(exp(-y) + exp(-y>/100))/2] (1-219)
T - y/2 as y - zero (1-220)
T - 1n 2+ y2/100 for intermediate y (1-221)

We are not interested in the large y approximation (y greater than
65) since equation (I-215) does not hold in this case. Also, this
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‘would correspond to more NH3 than we find on Jupiter. Inter-
mediate y is defined to be from about 1.4 to 65. The small y
case may be taken from zero to 1.4. The value of o becomes
equal to A' at 25 Amagats of NH3. As this density exceeds that
found in the portions of planetary atmospheres which are under
study, the assumption that A' be large enough so that the lines
vary as v~ 2 in the center of the gap is valid if the Lorentz shape
is valid.

The values of Cv are plotted in Figure 17 for the 10 yu,
16 u and rotational bands. The rotational values were reduced
25 per cent to roughly account for the fact that we have ignored
the remaining gaps in the computation of the transmission in the
gap in question. In addition, the values have been corrected
from room temperature to 130 °x by altering the Boltzmann
factors of each of the 16 rotational bands and estimating the
change in the normalization factor (partition function). While
not intended to be accurate, this should approximately account
for the temperature difference. For the highest energy band
(320 cm” 1), the correction amounted to a reduction by only two-
thirds.

The errors in this approximate treatment are such that the
opacity tends to be overestimated. For example, the 10 4 and
16 1 NH3 bands are not actually "random'". This means that there
will be more gaps than predicted by the random band model.
Therefore, the actual light transmitted is greater. In addition,
the half-widths of a line depend on both the quantum numbers J
and K, The high-X lines are broader and are more apt to control
the opacity in the gaps.
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On the other hand, if the actual wing decreases more
slowly than the Lorentzian wing, then the absorption could be
underestimated by this tr‘eatment. We must rely upon experi-
mental determinations of the transmission for meaningful band
models of NH3. In this connection, we note that because of
the square root dependence on the path length, the T's do not
have the property of being additive. The implications of this
on the construction of radiative equilibrium models are given

in section -4,
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PART II

THE CALCULATION OF THE NON-GRAY MODEL ATMOSPHERES
FOR THE MAJOR PLANETS

1I-1. ASSUMPTIONS

The non-gray models for the atmospheres of the major
planets were calculated using the following assumptions:

a. Hz, He and possibly NH3 are the chief thermal opacity
sources in the atmospheres of the major planets.

b. Scattering is negligible in the thermal region so that the
source function is approximated by the Planck function BV(T).

¢. The atmospheres are optically thick at thermal
frequencies in layers where the solar radiation is absorbed and
converted to thermal radiation. This requires that the overlap
between the diluted solar and thermal spectra must be negligible.
This is indeed the case for the major planets.

d. The heat capacity of the atmospheres is high enough and
the rotation is fast enough so that the effective temperature at a
given latitude is independent of longitude. The value of this effective
temperature, which is a measure of the thermal flux, will depend
on the planet's albedo to solar light, its distance from the sun, the
latitude and the inclination of the pole to the ecliptic.

e. The plane-parallel atmosphere approximation holds and
the surface gravity is constant throughout the depth of the
atmosphere, That is, the thickness of the atmosphere is negligible
with respect to the radius of the planet. .



117

f. The atmospheres are in hydrostatic equilibrium.
~g. Complete mixing obtains for the unsaturated components.

h. The atmospheres are in a state of radiative equilibrium.
We thus ignore convection; thereby restricting the range of applica-
bility of the models to the upper atmospheres. If the convective
zones lie deep enough, the solutions in the radiative zones will be
valid,

i. The electron and radiation pressures are negligible.

jo The populations of the energy levels are given by LTE
(local thermodynamic equilibrium).

As a consequence of these assumptions, the planetary
thermal flux is constant above a certain layer at a given latitude.
Above this layer, the planetary atmosphere behaves like a stellar
atmosphere in which the energy is supplied from below, except that
this energy varies with latitude in a way which can be approximated
by varying the effective temperature of the model. Our approach is
to construct planetary atmospheres according to the above as-
sumptions and to check the self-consistency of the resulting models
and obtain the regions in the planetary atmospheres where the
solutions are valid. Then we complete our evaluation of the above

assumptions by comparing the models with observations.

II-2. THE EQUATIONS AND METHOD OF SOLUTION

The problem is to obtain the run of physical variables with
depth in each of the atmospheres of the major planets according to
the above assumptions. To this end, it is convenient to choose the

monochromatic optical depth (Aller, 1953) at a particular frequency
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Ty as the independent variable. The advantages of this procedure
over using a mean optical depth T are three-fold: Firstly, there

is no unique T(T) relationship in the non- gray case where the
absorption coeifficient varies with frequency. Secondly, the compu-
tation of T involves an integration over frequency which is unneces-
sary when T is used. Thirdly, one retains the option of adding
additional minor constituent opacities to the model without altering
the solution to the hydrostatic equation, provided they do not lie at
the standard frequency for which To is defined. Of course, the
temperature distribution may be significantly altered in the latter
case.

Our goal is to first obtain T(TS) in each atmosphere. Then,
we make use of the equations of state for the perfect gas and the
saturated gas, liguid and solid to help obtain the remaining physical
variables of interest. T(t S) is obtained by iterating an initial
assumed T(TS) distribution for 50 prescribed and fixed values of
Tq given in Table II-1 until flux constancy has been obtained. At
each iteration cycle, the physical variables, opacities and fluxes
are computed at 30 frequencies covering the thermal spectrum using
the current T('rs) distribution by means of a version of Dr. Mihalas'
program for model stellar atmospheres (Mihalas 1964) modified by
us to treat the major planets. Mihalas' modification of the Krook-
Averett technique is used to correct the temperature and optical
depth and obtain a new T(‘TS) distribution. The iterations are con-
tinued until the desired degree of convergence to flux constancy is

obtained. The condition of radiative equilibrium is then fulfilled.
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TABLE II-1

The Grid of Depths and Frequencies Used in the Planetary
Atmospheres Program

Tg Viem" 1)
0 0.6 32 520
0.001 0.7 64 553
0. 002 0.8 96 5817
0. 003 1.0 128 638
0. 004 1.2 161 690
0. 006 1.4 193 741
0. 008 1.6 225 793
0.010 1.8 257 845
0.015 2.0 289 896
0. 020 2.5 322 948
0. 025 3.0 354 1000
0.030 3.5 387 1125
0.035 4.0 420 1250
0. 040 5.0 454 1375
0.060 6.0 487 1500
0. 080 8.0
0. 100 10
0.125 14 The underlined frequencies
g- ;(5) ;g are the standard frequencies
0- o5 26 at v{hich Ts are defined for
o 20 30 various models.
0.35 40
0. 40 50
0.5 60
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In the case where molecular hydrogen and helium are the
major constituents of the atmosphere, the monochromatic optical

depth at the wave number V is related to the opacity by

[ gy A(T) + m' B (T) )dx/c (I-1)

X
0

i

T =T
v vo

where the distance x is measured positive downwards, n is the
number density of H2’ n' is that of He, c is the speed of light, and
the pressure-induced binary absorption coefficients AV(T) and
BV(T) correspond to pure H2 absorption and enhancement in Hz— He
mixtures, respectively. They depend only on the temperature, T.
Each coefficient has been given in Part I as the sum of rotational
and translational contributions. The rotational contribution is
given by equations (I-5, 19 and 23). The translational contribution
for our cases of interest are evaluated numerically in units of sec-1
cm6 by

-33 T—3/2

a, = 27,461x10 22£(T)(1-exp(- 1. 43880V /T))/V

(11-2)
B exp(M-tz/tg)dt

x | ,
Jtm 7/ 1+1.95052t3/v

for pure H, and

2
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b, = 38,588 x 103 T°%/2 (1_exp(- 1. 43880v/T)) /v

¢ (1-3)

M exp(N - tz/t';“) it

th

.
m Y1+ 1674V

for H2-He enhancement. £(T) is a partition over the rotational
states for an equilibrium mixture of ortho and parahydrogen at
the temperature T, given by equation (I-28). Also,

ti = 0.35633 T
(11-4)
t? = 0.4151 T .

Analytically, ty 1s infinity but may be approximated by 2.35/T
since the higher t contribution is negligible. Also, tm is analyti-
cally zero but we used tm about equal to 1 in the program. The

M and N are pre-computed data which are a function of both V and
t. Exp(M) and exp(N) are computed from equations (I-106 and 109),
respectively. M and N are slowly varying when plotted against
In(t), so that they are computed only for the eleven values of 1n(t)
given in Table II-2, The numerical values of exp(M) and exp(N)
are tabulated in Appendix G at the standard values of 1n(i).
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TABLE @I-2

STANDARD VALUES OF 1in(t)

0. 54930614 2. 9957323
1.3862944 3.3296470
1, 6479184 3.7336856
1,8718022 4, 0081590
2,1972246 4, 1470249
2, 6390573

The interval (t m’ tM) is divided into (1:m - tM)/ H intervals of
length H. M and N are interpolated quadratically on this range
using the independent variable, 1n(tn) where tn = nH for integral
n. The quadrature of equations (II- 2 and 3) is then effected by
Simpson's rule for each V less than 700 cm 1. The translational
absorption at higher frequencies is negligible with respect {o the
rotational absorption.

Using the fixed T grid, the numerical calculation of the Ty
is effected by

rrv('rs) =] kv/ks d'rs (I1-5)
o

where kv is the absorption coefficient per gram given by

-1
kv = p d’rv/dx (I-6)

where
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p = p.mpP/ kT (I-7)

is the mass density, W the mean molecular weight in units of
m, m, is the mass of the proton, P is the total pressure, k
is Boltzmann's constant and Tv is given by equation (II-1).

The equation of hydrostatic equilibrium is
dP = pgdx (13-8)

where g is the surface gravity. Now taking advantage of the fact
that the explicit density and frequency dependence of the opacity
is separable, we reduce the equation of hydrostatic equilibrium
to an integral depending only on the temperature and optical depth
at the standard frequency. From equation (II-1), we find

= (a2 ' a
drg = (@° A + o' B) dx/c . (1I-9)
Letting
ay = n/N
(I-10)
g = n'/N

where N is the total number density and dividing equation (II-8) by
equation (II-9), we obtain
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dp/dT = —5 P 8C ) (-11)
N O°1(°L1As * a2Bs)

Using the relations p = umpN and N = P/KT for perfect gases,
this becomes

2 _ 2
d(p“)/ de = 2y.tmp gckT/ oy (AS + Bsaz/ a (I-12)

7

where W, g, oy and aq are essentially constant, by assumption,
Therefore, we finally obtain the expression

rr
2um gck | s T() at

2 - p
PUT ) = —— (I1-13)
S a% fo ASIT(t)] + BS[TitH onz/on1

which has a well-behaved integrand and may be integrated by
2
Simpson's rule. Note that P is proportional to 'TS for smaller TS.
The physical depth is evaluated by

log p
X = XO +.g_'_3_(.)._2_._..__._.5851 f 2 d]_ogP (]:[_14)
g log P, e
using the trapezoidal rule and taking x 0 = 0 at T T 0005. The
equivalent number of Km of H2 at STP overlying a given depth is
given by
aq P 10-5 0.1P

K = = (1I-15)
p.(Hz)g mpLo g 8.98
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.where u(Hz) is the mean molecular weight of H2 in units of m
and LO is Loschmidt's number,

According to our assumptions, the equation of transfer
may be written

aIv(u, Tv)

vl
a'rv

=1 - Bv(Tv) (I-18)

where I is the specific intensity in frequency units, u now is
the cosine of the angle between the pencil of radiation and the

vertical and Bv is the Planck function for unit frequency interval

2h\)3 1
c2 exp(hv/kT)-1"

B (1) = (- 17)

When radiative equilibrium holds, it is convenient to apply
equation (II-16) in its integral form:

T

Fv(Tv) = 2m ['J:r Bv(tv)Ez(tv' 'rv)dtv- fo
Loy

v
B,(t JE,(T,, - tv)dtv‘[

(11-18)

where E, is the second exponential integral (Aller 1953) and F,
is the monochromatic net flux at frequency v. It is related to the
total flux F by

4 B .
F=oT, = jo F_dv (11-19)
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which is a constant given by the effective temperature, Te’ and o
is the Stefan-Boltzmann constant.

For the emergent specific intensity, we have the ex-
pression

=+

1,(0,u) = fo B,(t,) exp(-t,/u)dt /u (1-20)

and for the mean intensity we have
J (r) = 1 me EI)E (]t - 7 ])dt (I-21)
VARV 2 5 YV 1My v v

where E1 is the first exponential integral. These equations are
evaluated by fitting polynomials to Bv(tv) over short t  intervals
and doing the integrations analytically.

Mihalas (1964) gives for the temperature-optical depth
correction formulae:

J.m H%n'/n dv
0

ViV v
T = -1y —— |+ (1 - B/H) (I-22)
o
Ty = —o—> l>(1+'r'1)dHo/dt-f3 (1- B/H(0)) [ n H)(0)dv
fo n B (T)dv | 0

(I1-23)

® .0 0,
+ Ty J.O(Jv - Bv)nvdv]
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-where T4 and T1 are the corrections, equation (II-22) is solved
subject to 'rl(O) = 0, Hv = Fv/ 4, H is the frequency integral
over Hv’ n, is kv/ks’ the primes denote differentiation with
respect to TS, the dot denotes differentiation with respect to
temperature and the quantities with zero superscripts are the
uncorrected values.

The radiative gradient is computed according to

2 dr
dinT 2P dT
dmp | = (@) () (0-24)
rad s dP

where dT/d'rS is obtained by low order numerical differentiation
and d’rS/ dP? from equation (I-12). Therefore,

dnT | _ ar (P12 Ag+Bgag/og
dinP d'TS T ugmpck

(I-25)
rad '

where W is the mean molecular weight of the atmosphere in units
of m o

To check the assumption of radiative equilibrium, the wet
adiabatic gradient must be computed assuming phase equilibrium
on the time scale of the adiabatic processes (or less) between the
solid, liquid and gaseous states of the condensable components in
the atmosphere. To this end, four constituents, H2, He, NH3 and
CH 4 Are considered. When NH3 or CH4 is saturated, there will

be a heat of transformation released during an adiabatic expansion



128

~opposing the decrease of temperature and resulting in a shallower
adiabatic gradient.

~ We follow Lasker's technique (1963) in computing the wet
adiabat for a multicomponent system containing two saturated
components, denoted by subscripts n and ¢, The adiabatic change
in such a system is given by

dQ = dU + PdV + Ldnn + MdnC =0 (I1-286)
where

dU=@nC_ +nC_ +nC_ +n'C_ ,+n'C_ )T (T1-27)
uw'v,u nv,n ¢ v,c nv,n cv,ec

where the subscript u denotes the uncondensable components, L
and M are the heats of transformation per mole of constituents
n and ¢, respectively, and are given by the Clausius-Clapeyron
equation for perfect gases by '

dP_
L=T% 5 = GRT
n
| (I1-28)
M=TY e _ RT
=Tx ar = °
C

where the specific volumes of the condensed components are

neglected, R is the gas constant and

Pn = A exp(-0)
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P, =B exp(-B) (11-29)

are fitted to experimental saturation vapor pressure curves. For
a given molecule, these curves are a function of the temperature

only. n, is the number of moles of component i, C 1s the

specﬁlc heat at constant volume (per mole) of spe01es i, Cv a is
)
the mole- average of Cv i for the uncondensable components,
b4

Cv, i is for th;1 ith condensed gomponent and n!1 is the number of
moles of the i” condensed component.

Noting that the number of moles of uncondensable components
remains the same during an adiabatic expansion, algebraic mani-

pulation reveals that

P dinP P P
dlnb = <2 S A+ B (11-30)
dinT ad P dInT b b
where
dinP [P C P C P C n' C_ _,
| % pu, npn, _c pc,  n v,n
dinT P R P R P R n _+n_+n

(11-31)

and where Cp . are the corresponding specific heats at constant
pressure. It should be mentioned at this point that when this
expression is reduced to the case of one saturated component

and compared with Lasker's result (1963), a relatively small
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term, (Cp, n/R - Cv, n'/R)Pn/ P, obtained and later neglected by
Lasker, is not obtained in the above derivation. Its physical
significanée is not clear to us, either.

Our particular application of the above equation is to the
and c to CH,. Note that

3 4

Pu = P - PC and that if either or both of NH3 or CH 4 is unsaturated

at a given level, the corresponding adiabat is obtained by setting

case where n corresponds to NH

the corresponding partial pressure equal to zero in equation (II-31).
This is valid when both NH3 and CH 4 are minor constituents.
Neglecting the specific heat terms of the condensable components
with respect to their a and 8 terms, we may finally write

dinP. T /R+P a?/P+P B2/P

u ’;’__ p,u n C (H-32)
dinT 1+ Pn a/P + Pc B/P

where -
Z n, Cp, i
~ i
C = = (I1-33)
p,u
’ Zi ]

the summations being carried out over the uncondensable
constituents.
We find from the International Critical Tables (1928) that

the saturation vapor pressures, when fitted to equations (II-29),

give
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13

146° t0 195° A = 1.325 x 10*° «

3753, 6/T

10

79°to 89° B = 5.966 x 107 B

1190.1/T (II-34)

9

99° t0 110° B = 9.714x 10° B

1024, 2/T

where the units of A and B are dynes/ cm2 (c.f. Figure 18).

We must now evaluate equation (II-33). Since NH, and
CH 4 are being neglected as they are minor constituents, we
consider only the specific heats at constant pressure for helium
and hydrogen. The value for helium is simply 2.500 R at all
temperatures. For molecular hydrogen, we must distinguish
between the ortho and para components and {reat them as two
separate gases.

During the adiabatic processes taking place in the atmos-
pheres of the major planets, we expect the ratio of ortho to para
hydrogen to remain constant in a given mole of H2 because the
half-life of ortho-para equilibrium is much longer than the duration
of the adiabatic process. As a result, the specific heat of the
mixture is an average of those for the pure ortho and pure para
components weighted by their fractional abundance in moles. This
abundance ratio is assumed to be given by the equilibrium mixture
of ortho and para hydrogen at the local temperature. Table II-3

gives the values of C p/R for H,.
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TABLE II-3
EQUILIBRIUM VALUES OF (’?p/R FOR H,
‘ C C
T p/R T p/R
0 2. 5000 125 2. 9708
15 2. 5000 150 3.0976
20 2. 5000 175 3.2037
25 2. 5000 200 3. 2899
30 2. 5000 225 3. 3577
40 2. 5022 250 3. 4085
50 2.5154 273.1 3. 4424
75 2.6369 298. 1 3. 4679
100 2.8138

At about 10 °K below the saturation temperature, the wet and dry
adiabats approach each other.

II-3. NUMERICAL TESTS OF THE PROGRAM

The program's solution to the equation of hydrostatic
equilibrium was checked by doing a couple of integration cycles
by hand and comparing the results with those of the program.
The temperature-depth correction procedure was then checked
by running the entire program for a gray opacity, for which the
solution is known, and examining the final T(TS), flux, variation
of flux with depth and degree of convergence. The flux was
constant to within 0, 03 per cent for Tg less than twenty in the
T, = 110 °K gray model.
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The frequency grid was chosen fo trace out the opacity profile
adequately. The frequency integrations were tested by running the
same model twice; first, .using a Simpson's rule and second, using
a Weddle's rule for the integration. The results were virtually
identical. The low frequency flux tail was approximated by
Rayleigh's law and the upper limit of the integration was taken at
1500 cm” ! instead of at infinity. The H,-He opacity is weak here,
but a strong methahe absorption begins at frequencies greater than
about 1250 c:m_1 so that we are justified in neglecting the flux above
the upper limit of integration. The only case where it makes a
difference is for the planet Jupiter. Finally, radiative equilibrium
was also checked by examining the degree of validity of

jo kJdv = fO k B, dv (11-35)

at each depth for each model. The results were quite satisfactory.

II-4. ADDING NH3

The NH3 opacity depends on the amount of NH3 along the
absorbing path in gaseous form. Because of the low saturation
vapor pressure of NH3 at low temperatures, we may neglect the
opacity due to NH3 in the upper atmospheres of Saturn, Uranus
and Neptune. In the case of Jupiter, use is made of the rough band
model constructed in section I-8. If instead, we were to use
equations (II-18, 20 and 21) directly, too many frequency points
would be required due to the extremely rapid variation of the
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absorption coefficient in the band and the computing time would
therefore be prohibitive. Consequently, it is desirable to work
with some kind of an average over the rotational structure, where
BV varies much less rapidly than kv' However, as Castor (1965)
has pointed out, the mean "optical depth" for an NH3 band, defined
by the mean transmission of this band over a given frequency
interval (c.f. section I-8), is not additive. For example, it may
vary as the square root of the path length so that we cannot express
the optical depth between two layers by the difference in the optical
depths of the layers. For this reason, the term "optical depth" is
perhaps bad terminology. It would be better to consider the "mean
transmission"”, where it is understood that this quantity depends on
the depths of the layers bounding the zone in question.

Because of this non-additivity, it is necessary to perform
the proper frequency averages of equations (II-18, 20 and 21) over
the NH3 bands before the effect on radiative equilibrium of these
bands can be quantitatively ascertained, We have not yet extended
the formalism to this case and can therefore make only qualitative
deductions. This is done in section III-4, d.
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PART III

THE PROPERTIES OF THE MODELS

II1-1, COMPUTATIONAL RESULTS

Using the IBM 7040-7094 electronic computer, several non-
grey models in radiative equilibrium were constructed for the
major planets; Jupiter, Saturn, Uranus and Neptune. These models
are tabulated in Appendix A. Table III-1 lists the models constructed
for each major planet, their parameters and their major character-
istics.

Models including helium were computed only for the extreme
cases of Jupiter and Neptune, In these cases the helium number
density was taken equal to that of the molecular hydrogen in the
model. We note that helium cannot play a role in the thermal
opacity when hydrogen is absent (neglecting the translational
absorption resulting from collisions of He and other atmospheric
constituents, such as methane). Models taking into account the
contribution of ammonia to the thermal opacity were considered
only in the case of Jupiter because this contribution is negligible
in the radiative portions of the atmospheres of the other major
planets due to the low saturation vapor pressure of ammonia at
low temperatures. In the Jovian atmosphere, the ammonia con-
centration was taken to be that given by the saturation vapor pres-
sure. Figure 18 shows the saturation vapor pressure of ammonia

and methane as a function of temperature (International Critical

Tables, 1928). As was mentioned previously, methane contributes

negligibly to the thermal opacity.
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The surface gravity for Jupiter was taken from Kuiper
(1952) and for the remaining major planets was computed from
the masses and radii using the data of Brower and Clemence
(1961), Because of the uncertainties in the radii, the values
for the surface gravities of the major planets are uncertain to
the point where it is not worth while to correct for the planetary
rotation. The error increases as the apparent size of the planet
decreases. In section ITI-2 we shall see that the models are
homologous with respect to changes in the surface gravity so that
they may be easily corrected as better values of this quantity are
obtained.

The effective temperature Te is a measure of the thermal
flux according to equation (II-19). Where possible, the effective
temperatures for these models were chosen to bracket the likely
value at a representative latitude for each planet. Further
discussion of this point is postponed to section III-4.

In column one of Table III-1 the surface gravity g is ex-

pressed in cgs units and T, is the corresponding rotating black

body temperature (see sect]?;on m-4), T o is the boundary temper-
ature and To/ TOg is the ratio of the boundary temperature to the
corresponding gray value. In columns six and seven, T is the
Planck mean at the depth for which the temperature is equal to

| Te and at the depth where convection begins, respectively. TC

is the temperature at the top of the convective zone and Kc is the
number Qf km-atm of H2 (the equivalent number of km of H2 at
STP) overlying the depth at which convection begins, In the last
column, AF/F is the percentage maximum relative deviation of

the flux from the value given by Te’ in the layers of the atmosphere
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for which the standard optical depth T is less than twenty. For
Jupiter and Saturn, T was taken at 520 c:m—1 and for Uranus and
Neptune, it was taken at 289 cm™~. The rest of Table ITI-1 is
self-explanatory.

I-2. HOMOLOGY INVESTIGATION

The equation of hydrostatic equilibrium and the equations
relating the physical variables are given by (O-7, 13, 14, 15, 25,
30 and 32). We attempt to reduce these equations to a homologous
form by the following transformation of variables:

p = g2, 1/2 O1/2 a1-1 P

32, ~1/2 -1
LG22l ot

X = g_lu_lT

o X
(Tm-1)

K = g~ 1/2,1/2 Té/z P/8. 98

T=T T,

T =T .

These equations define the underlined variables. We have used T0
instead of Te in order to improve the degree of homology. When
equations (III-1) are substituted in equations (I-1, 7,13, 14, 15 and
25), we find



. 1/2
-8 T d'r
P=12m Ckf A + B az/oc
p = m_P/kT
Py
x = 2,3025851 = dlogP
P B -
—0
T = T/T, (ITI- 2)
= T + .._l_. j§ (As+ BS az/al) Pzdx
-8 -0 2 2 - =
ck™ X, I
dlnTl 4T (22 (A g+ Byag/ay)
dinPl g a7 T g 92x10°

The models are homologous if the underlined variables are the
same from model to model. These equations show that a homology
can exist only for a fixed helium-hydrogen ratio, ocz/ Gy and only

if T is the same function of Is for all the planets considered and
As and BS are insensitive to the temperature, I these conditions
are satisfied, the first two of the equations (III-2) show that P(r )
and p(T S) will each be independent of g, 4 and T . It then follows
that x(P), IS(§) and d1nT/d1nP rad will be independent of the
model. However, the adiabatic lapse rate d1nT/d1nP la d depends
on the absolute value of the temperature when saturation is
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important so that the height of the convection zone is not
homologous in this case,

Our models show that T is not a unique function of T in
the non-gray case and varies as much as 27 per cent in the deeper
layers. T/ T, as a function of T deviates even more at the
surface, TFigure 19 shows the deviation from grayness and degree
of homology of the T(r S) relation. In this connection we note that
only the Jovian models neglecting NH3 appear to have a fairly
unigue _T.(IS) relation. The dispersion in the other planets
incre;ases as the effective temperature is lowered. At VS = 520
cm T, AS is quite insensitive to the temperature, while BS is
somewhat sensitive. AtV = 289 cm- 1, both A_ and B_ are some-
what sensitive to the temperature, explaining the increased
dispersion for Uranus and Neptune in Figure 19,

We note from equations (III-2) that if onz/ %y and T  are
fixed, the underlined variables are not affected by changes in
g, Horay provided that the changes in u and ay reflect the addition
or subtraction of atmospheric constituents which play no role in the
thermal opacity. Under this condition, the temperature distri-
bution will not be altered during this change. In this way, the
models are indeed homologous with respect to g, 1 and aq, except
for the height of the convection zone.

Plots of log P(T) for the various models show a significant
dispersion except for the case of the Jovian models. Plots of
log P(logT S) are well defined for Jupiter and Saturn pure H2 models
but not for Uranus or Neptune models. For each model, however,
the pressure was found to vary quite accurately as the square root
of Tg in the region where radiative equilibrium is valid so that the
curves could be superimposed by an appropriate scale change of 'I'S.
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Figure 21 shows that _:_;(IS) is remarkably well defined for
all of the models, with only a small dispersion at the deeper
layers. The agreement between the models using different
standard frequencies is explained by the fact that in a given model,
d_:_;(_'[V)/dIV is the same for constant value of T, at all frequencies
where the absorption coefficient varies negligibly with frequency
or temperature, Such is the case for the two standard
frequencies, 289 and 520 cm~ 1

We .summarize by pointing out that except for the wet adiabat,
the variables of the Hz- He models are homologous with respect to
changes in g, U and aq under the conditions noted above but are not
homologous with respect to changes in Te (in contrast with the
gray case), TO or ccz/ aq. Exceptions are that the Jovian models
for ocz/ 4y = 0 appear to be homologous in Te as well and the
variable x('rs) appears to be universally homologous at either of
the two standard frequencies used.

III-3. THE SELF-CONSISTENCY OF THE MODELS

We are now in a position to check the self-consistency of the
models by evaluating some of the assumptions listed in section I-1.
Scattering was assumed to be negligible with respect to

absorption in the thermal spe.ctrum. Vardya (1962) gives

p)
3 2
8 -1
o = ”4 [“n ] (I11-3)

3\

for the Rayleigh scattering cross section. For molecular hydrogen,
this becomes
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o =8.49x10° ¥4 om?

(I-4)
where X is in cm. . Dalgarno and Williams (1962) point out that
this is correct in the long wavelength limit or for A greater than
5500 Angstroms. They also give the Planck mean for Rayleigh
scattering by H2 as

0,(T) = 1.48 x 1074214 8. 13 x 1079178 , . (II1-5)

33 cmz/molecule. For a path

At 200 °K, this becomes 2. 37 x 10
length equivalent to 100 km-atm, the corresponding mean optical
depth is 6. 38 x 10-7, which is negligible, At 1000 wave numbers,
the monochromatic optical depth for 100 km-atm Hyis 2.1x 1075,
Since the absorption increases with wavelength in this region, it
is quite clear that scattering due to H2 is negligible in the thermal
spectrum. Also, since the index of refraction of He is less than
{hat for HZ’ the Rayleigh scattering due to He is negligible in the
thermal spectrum. This is also the case for CH4 and NH3.

The Mie scattering for solid crystals of N H3 and condensed
particles of CH 4 Day be important if the size of the particles is
on the order of the thermal wavelengths and the particle density
is high enough. We may neglect Mie scattering at thermal
frequencies in the radiative portions of the atmosphere if the
particles of about 50 U are either too heavy to remain suspended
in a convectionless zone or are otherwise too rare in these zones
to be important. Perhaps this problem can be made the target of

future observations.
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Reference to the models shows that the Planck mean optical
depth at the 160 °K level, where the NH, bands in the visible
spectral region become strong, varies from 4 to 10 in the Jovian
models and is greater than 15 in the Saturnian models. This
justifies assumption II-1. ¢ for Jupiter and Saturn. In Neptune,
Uranus and possibly Saturn, CH 4 is frozen out in the upper atmos-
phere, There, the CH 4 concentration is at most given by the
saturation vapor pressure (see Figure 18). If the absorption of
solar light through the resulting paths of CH 4 is negligible with
respect to the net absorption at thermal frequencies, we are
justified in making the assumption that the atmospheres of all
the major planets are optically thick at thermal frequencies in
the layers where the solar radiation is absorbed and converted
to thermal radiation. Both Uranus and Neptune exhibit very
strong CH4 absorption in the visible spectrum, but this absorption
must arise in the deeper, warmer layers where the saturation
vapor pressure is high enough to produce it. The assumption
therefore seems justified.

We now consider the effect of longitude on the mean temper-
ature of a 100 km-atm radial column of H2 1 cm2 in cross-section
in the Jovian atmosphere. This column contains about 4 moles of
H, and has a thermal capacity Cp about 108 ergs/ mole/OK. The
upward flux in this column is supplied from below and is repre-
sented by the effective temperature. If Te = 120 °K on the
average, this flux is 1. 17 x 104 ergs/sec/ cmz. The Jovian period
is about 10 hours so that this column spends five hours in darkness.
If we stop the energy supply of this column and let it radiate
through its top surface, it will radiate about 2,1 x 108 ergs, When
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equated to the change in internal energy of the column, this
amounts to a change in the mean temperatures of only one-half
degree in going from the evening to the morning limb, Thus,

the heat capacity of the atmosphere is great enough so that the
'temperature distribution is essentially independent of the longi-
tude on Jupiter. This result, first pointed out by Urey (1959),

is insensitive to the numbers used to obtain it. The rotation
periods of Saturn and Uranus are also about 10 hours and that

for Neptune is about 16 hours. The values of Cp are about the
same as for Jupiter. The effective temperatures are all lower

so that the above calculation is representative of the other major
planets, as well. The main difference is that their poles are less
perpendicular to the ecliptic plane so that elements passing
through the subsolar point spend less than half of their time in
darkness. As a result, the time average over a rotation period
of the effective temperature of points on the "summer" side of
the equator are higher (and lower on the "winter" side) than would -
otherwise be the case. Again, there will be a latitudinal, but
hardly a longitudinal temperature dependence. The seasonal
variations for Uranus are particularly extreme, since ifs pole
lies nearly in the ecliptic plane. At times, its equatorial plane
passes through the sun and at times, its pole points in the
direction of the sun. The sun thus alternately back-warms first
one pole and then the other with a period of 84 years. When a
pole is pointed towards the sun, Uranus radiates from a surface
' 21'rR2. .This is in contrast with the case where the sun is at an
equinox and Uranus radiates from a surface 4TTR2. Therefore,
the warmest weather on Uranus is found near the pole during mid-

- summer,
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Table III-1 shows the values of ?C (Planck mean) where the
models become unstable toward convection. Strictly speaking,
the presence of the convective zone affects the solution not only
in this zone but also in the radiative zone above it so that the
radiative equilibrium models are only approximations to the
idealized situation. Since convection occurs where the radiative
gradient dInT/d1nP exceeds the adiabatic gradient, the tempera-
ture at a given level in the convective zone will be less than that
given by radiative equilibrium. Section III-4 investigates the error
made by assuming the radiative solution in the convective zone.
The temperature at a given level in the radiative zone is affected
by the temperature distribution in the convective zone by an
amount depending on the difference in optical depth between the
respective layers in the convective and radiative zones according
to equation (II-18) in which T is taken to lie in the radiative zone.
As a result of this coupling, the actual top of the convective zone
may differ from that given by Table III-1, where the Schwarzschild:
criterion was used. The point we wish to emphasize is that if the
top of the convective zone is optically deep, the temperature
distribution in the uppér radiative zone will be unaffected by the
presence of the convective layer and the radiative solution will be
valid. In this sense, we see that the radiative solutions for the
Saturnian models and the Jovian models where He was added are
most valid because their convective zones lie deepest (’FC from 3.5
to 4.5). On the other hand, the pure H2 models for Uranus and
Neptune are least valid because they have the shallowest radiative
zZones ﬁc = 2,3). Adding He has the effect of increasing the value
of Te defined in ITI-1. In all cases, the temperature distribution
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- in the radiative zone is a somewhat insensitive function of the
convective details of a model and the radiative equilibrium models
will suffice for our purposes.

Figure 22 shows that in all cases, the extent of the atmos-
phere between x = 0 and the convective zones is negligible with
respect to the radius of the planet. We are therefore justified in
making the plane-parallel atmosphere assumption and assuming
the surface gravity constant throughout the atmosphere.

The electron pressure is negligible at planetary tempera-
tures and pressures because no substance is degenerate in the
upper atmosphere or ionized except in the sunlit portion of the
extreme upper atmosphere where the density is very low (Gross
and Rasool 1964),

The radiation pressure varies like aT4/ 3 where a = 7. 57
x 10710 ergs/ cm3/0K4. At T = 300 °K, the radiation pressure
is2.0x10°° dynes/ cmz, which is quite negligible.

The assumption of LTE was checked by checking the validity
of Kirchoff's law:

i =kB (II- 6)

where jv is the thermal emission coefficient per gram, .kV is the
absorption coefficient per gram and BV is the Planck function,
This was accomplished by computing, at each level of the model,
the ratio between the number of absorptions per gram of material
per second (equation III-7)
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® kVJV
4 fo =Y dv (I-7)

and the number of thermal emissions per gram per second
(equation ITI-8) assuming Kirchoff's law,

« k B
4nj V.V oav . (I11-8)
(o]

hv

This ratio should be unity when LTE holds. The models show

that LTE indeed holds in the deeper atmospheres of all the major
planets, but deviates toward the surface so that the above ratios
become as low as 0,98, 0.98, 0.96, and 0. 93, respectively; for
Jupiter, Saturn, Uranus and Neptune pure H2 models. For the
H2- He Jovian and Neptunian models, the ratios with the maximum
deviation are respectively, 0.93 and 0.91. We see that the devi-
ation is worse for the models with He, This is because He provides
an effective block for radiation leaving the surface of the planet at
low frequencies so that at these frequencies, Jv falls further below
Bv'

By and large, the deviations from LTE are not serious. The
populations of the rotational levels and the relative velocity
distribution of H2—H2 and Hz— He collisions will be affected in the
upper atmosphere as well as the equilibrium mixture of ortho and
para hydrogen. However, the validity of the assumption that the
ortho-para ratio is given by the equilibrium mixture at the local
temperature is itself open to doubt as there is sure to be some

mixing in the atmosphere and the half-life of this equilibrium
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' process is very long at low pressures in the absence of para-
magnetic catalysts (Farkas 1935). With such catalysts present,
equilibrium could be achieved in a few hours. In the absence of
catalysts, equilibrium could be achieved in a week or so deeper
in the atmosphere where the pressure is higher, The upper
atmosphere is apt to contain a '"normal' mixture of hydrogen,
where the ortho-para ratio is a cross-sampling of equilibrium
mixtures at temperatures characteristic of the deepest regions
of the atmosphere. The affect of this uncertainty on the opacity
may be more pronounced than those resulting from deviations
from LTE near the surface, Figure 4 shows the temperature
dependence of the factor which depends on the ortho-para ratio
in the translational opacity for Hz-H2 collisions (the Hz— He
translational case is quite insensitive to the ortho-para ratio).
This figure shows the case corresponding to an equilibrium
mixture. For temperatures above 200 0K, the equilibrium |
ortho-para ratio is essentially 3 : 1. Therefore, if equilibrium
was achieved deep in the atmosphere, where the temperature was
greater than 200 OK, the error in the translational opacity at
100 °K would be several per cent too low., That is, the actual
back—warming would be even greater. In this sense, our
equilibrium H2 models represent a lower limit to the actual
greenhouse effect. The ortho-para dependence of the rotational
absorption is such that the error in taking an equilibrium mixture
above 112 OK, when the ortho-para ratio is essentially 3 : 1, is
less than 4 per cent. This holds for both the H,-H, and the

2 72
Hz-He cases.
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-4, PHYSICAL INTERPRETATION
ITI-4.a. The Effective Temperature

The effective temperature is a measure of the thermal flux
in the case of the major planets, where the thermal and diluted
solar spectra are separate., We cannot measure this flux from
the earth's surface because of the strong CO,,, HZO and 03
absorption in the earth's atmosphere at thermal frequencies.
There is é "window' in the 8 - 14 | region and a small weather-
sensitive window at 26 U through which light may pass with
relatively little absorption. This is insufficient for measuring
the thermal flux but may be used to measure fluxes in certain
frequency intervals. This information could then be used to
narrow the range of possible models satisfying the observations,
thereby bracketing the effective temperature. In the case of the
major planets, however, the emission from the earth's atmos-
phere masks the light received from Uranus, Neptune and Saturn
so that we cannot get very reliable measurements in their cases,
One solution to the problem would be to measure the planetary
fluxes from outside the earth's atmosphere. This may soon be
feasible from an orbiting observatory.

For the present, we consider the indirect evaluation of the
effective temperature. If the Bond albedo to sunlight A of ea.ch
planet were known, then the thermal flux could be derived since
it is (1 - A) times the diluted solar flux at the planet. The Bond
albedo is defined to be the ratio of the total integrated flux reflected
in all directions to the total incident integrated flux and is given by
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A= —JLFQl 2 Iﬂ @(a)sin a da (I11-9)
)

where F is the incident flux, j(0) is the reflected flux at
opposition, &is the phase function and "a" is the phase angle.
This equation is usually applied only to visible light, The
incident solar flux which is not scattered must be absorbed and
converted to infrared frequencies by thermodynamic processes
and be manifested by the thermal spectrum. However, the
Bond albedo depends on the scattering phase function which, in
turn, depends on the nature of the scattering particles in the
planetary atmosphere. The phase angle is the angle at the
planet between the sun and the direction of the scattered ray.
An earth-bound observer cannot measure rays singly scattered
in the atmospheres of the major planets for which the phase
angle exceeds 12 degrees. Therefore, he cannot measure the
Bond albedo directly and thereby obtain the effective temperature.
In order to estimate the Bond albedo, one must make as-
sumptions about the nature of the scattering particles. It would
be better to derive the Bond albedo by fitting the models to the
observations, if possible, and thereby obtain information on the
nature of the scattering particles. With this philosophy in mind,
models were computed at various likely effective temperatures.
To get an idea of the effective temperature, we computed
the equilibrium temperature of a rapidly rotating black body
located at the same distance from the sun as the planet in question.

This is denoted by T, in Table III-1 and is given by

B
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Tg = 276//t °x (I- 10)

where r is the semi-major axis of the planet's orbit in astro-
nomical units. When the sun is at an equinox, the body absorbs
solar light over an area rrR2 where R is its radius and radiates
uniformly from a surface area 41'rR2. The resulting equilibrium
temperature is TB‘ This is also equal to the effective tempera-
ture of the body and is an upper limit on the mean effective
temperature of the corresponding planet, averaged over latitude.
That is, TB is also an upper limit to the effective temperature of
the corresponding planet when there is thorough latitudinal mixing,

In this case, the mean effective temperature is given by

T =T 1-A (I1-11)

where the black-body case corresponds to zero Bond albedo, The
Jovian atmosphere is rotating differentially parallel to the equator
with the shortest period near the equator and the longest at the
poles. The atmosphere exhibits little latitudinal mixing, We
estimate the effect of latitude on the effective temperature in the
case that the latitudinal heat flow is negligible, However, we
should point out that the absence of latitudinal mixing does not
necessarily preclude a strong latitudinal flow of heat. For example,
local convective zones could support such a flow, We proceed by
substituting a rapidly rotating body of Bond albedo A for the black
body and compute the effective temperature at each latitude Te(q:)
by assuming that the flux absorbed at a given latitude &is also
radiated at that latitude. The result is
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Te(dn) =T, cos @ . (IMI-12)

£
= TN

This equation shows that the maximum temperature at equinox is
1. ‘06 Te at the equator. During the solstices, this temperature is
greater, depending on the inclination of the axis of rotation to the
orbital plane. In the case of a specific model for Saturn, the
presence and inclination of the rings must be taken into account.
In our models, we have computed Te from equation (ITI-10) and
used equation (II-12) to set an upper limit on the grid of effective

temperatures for which models were computed.

IOI-4.b. The Interpretation of Prominent Features

All of the models of the major planets exhibit a pronounced
increase of temperature with depth. In the absence of internal
heat sources, this must be true down to a level where sunlight can
no longer penetrate. In the overlying layers, sunlight is absorbed
and converted to thermal radiation. That which is not absorbed is
scattered into space. However, the presence of a strong opacity
at thermal frequencies in the upper layers inhibits the free
radiation into space of the thérmal radiation. Above the layers
where the sunlight is absorbed, such molecules absorb a fraction
of the outgoing thermal flux and, upon emission in all directions,
cause some of this flux to be directed inwards. Conservation of
energy requires that the net flux be constant with depth (in the
plane-parallel atmosphere approximation). Therefore, the
stronger this ""backwarming' is at a given level, the stronger the
outward flux is. The energy density, and therefore the temperature,
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s proportional to this outward flux. This is the basis for the
"greenhouse effect',

The efficiency of the opacity in backwarming the atmosphere
will govern the extent to which the atmosphere is heated. In each
mbdel, this etfficiency may be compared with that for a gray
opacity source. ' To this end, the ratio of the boundary temperature
to that for a gray atmosphere of the same effective temperature
To/ Tog is tabulated in Table II-1 for each model. In addition,
?(Te), the Planck mean optical depth at which the temperature
equals the effective temperature, is tabulated. Examination of
or H,-He models the

2 2
backwarming is less efficient than in the gray case. This is due

these quantities shows that in all of the H

to the fact that the monochromatic absorption near the flux maxima
is less than the mean absorption. Consequently, not as much flux
is trapped and the energy density is less than that in the corre-
sponding gray case. This causes smaller boundary temperatures
and deeper mean optical depths where the temperature equal‘s the
effective temperature.

Table III-1 shows that the most efficient models are those
containing He. For these models, the gray values are the most
2—He
translational absorption coefficient is stronger than that for the

closely approximated., This is due to the fact that the H

Hy-H, case (see Figures 15 and 16) and is shifted to larger
frequencies, thereby filling the gap between the rotational and
translational Hz-H2 profiles, Therefore, adding He increases the
backwarming relative to the gray case. Table II-1 shows that, on
the whole, the H2—H2 models become progressively less efficient
as the effective temperature is lowered. This is indicated by both
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To/ Tog and ?(Te). This is due to the fact that as the temperature

is lowered, the maximum of the Planck curve is shifted intc a
frequency region where the absorption is progressively less than

the mean. This reflects the weakness of the translational absorption
coefficient with respect to the rotational case. The least efficient
case is given by the Uranus model for which ?(Te) = 1,8, compared
to the 0. 64 for the gray case. Neptune is slightly more efficient,
giving ?(Te) = 1.5. As we have not yet run a model including NH3
to convergence, we cannot give the corresponding numbers for this
case. However, the presence of the rotational band in the 20 cm'1
to 300 cm™ ! region means that the effect of adding NH, will be to
increase the backwarming efficiency of the model with respect to
the gray case.

Figures 23 and 24 give the emergent monochromatic flux for
each model. The dips at 355 cm_ 1 1nd 590 em™! are due to the
S(0) and S(1) transitions in H2. The relatively large opacity at
these frequencies causes the emergent flux to be smaller near
these frequencies. Since the total flux must be constant, this
causes the flux to be higher at other frequencies. In all the models
excluding NH3 , the flux appears to l;ave a minimum near 900 cm~ 1.
The increase longwards of 300 cm ~ eventually reaches a maximum
and then declines. It is due to the fact that the opacity in the high-
frequency tail of the pressure-induced rotational transition is
decreasing faster than the emission from the high-frequency tail of
the Planck curves in the lower layers of the atmosphere,

The flux maxima oceur near 200 cm™ * between the rotational
and translational maxima where the absorption is weak and the
Planck emission is strong. The effect of addillg He is to strengthen
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- the translational absorption and dilute the rotational absorption.
This depresses the maximum and raises the rest of the curve.

This is particularly apparent in the case of Neptune. The 9.5

magnitude increase of the flux at 1000 cm_1 with the addition of
He is due to the fraction of a magnitude decrease at 200 cm”~ 1.
This is possible quantitatively because the flux at 200 cm'1 is
20. 5 magnitudes stronger than that at 1000 cm” 1

We have seen that the pressure is proportional to the square
root of Ty This is a consequence of the fact that the pressure-
induced absorption is proportional to the square of the density.
Another consequence is the presence of a marked stratosphere
on each major planet. That is, each model is approximately
isothermal up to about one-tenth of an atmosphere pressure or a
density of 3 x 107° gm/ cm®. In this region there is a transition
zone, below which the temperature increases linearly with physical
depth. Therefore, the scale height (kT/umpg) also increases
linearly with depth below the transition zone, Increasing the
effective temperature has the effect of decreasing the derivative
of the scale height with respect to depth. That is, since the
pressure at a given mass-level is fixed by the surface gravity,
increasing the temperature causes the density to decrease and the
atmosphere to swell,

The effect of sublimation equilibrium is to lower the adiabat,
thereby raising the altitude of the convection zone. This particu-
larly is apparent in the cases of Uranus and Neptune where the
presence of CH 4 moves the top of the convective zones from
Te = 4 to 2. 3 and from 3. 2 to 2.7, respectively.

- Figure 25 shows several limb-darkening curves. In the

8 - 14 u region, the darkening is very pronounced in the H2 and
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' Hz- He models. This reflects the increase of the Planck function
with Ty for V in this region. In addition, light in this region is
coming from the high-frequency tails of the Planck curves. These
tails diminish exponentially with increasing frequency and de-
creasing tevmperature. The steepness of the limb-darkening curves
in this frequency region is due to the fact that the increasing
temperature at greater depths causes the Planck function at that
depth to "'shift' to higher frequencies causing a rapid BV(TV)
variation, The addition of NH3 results in shallower limb-darkening
curves because NH3 masks the deeper layers giving a slower Bv('rv)

variation in this frequency region.

III-4.c. The Convection Zone

By equating the work done by the bouyancy forces on a rising
element of gas to the mean kinetic energy of this element, one
obtains (DeMarque 1960)

V[V =yEH(T- V e/ o/ (- 13)
R, = 0 C, T (W/E)(V- V). (- 14)

.

In these equations, v2 is the mean square velocity of the rising
element of gas, Fc is the flux transported by this convective
element, H is the scale height, 4 is the length of a typical
convective column, V= din T/din P and VA is the corresponding
quantity for the adiabatic lapse rate, g is the surface gravity,

p is the density, Cp is the specific heat capacity per gm-mole

at constant pressure, T is the temperature and Q is given by
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Q=1-31nu/31n T D (TI1-15)

where | is the mean molecular weight. If we approximate v by
o v2 and insert equation (II-13) into (II-14), we find that

5 1/3
132m F
V-V, = B2 ¢ (Hy (II- 16)
/E’ [ 2
A T k Czsz

p

In the models, we neglect the rate of change of the mean molecular
weight with respect to T at constant pressure so that @ is on the
order of unity. In addition, we assume that the turbulence para-
meter 4 is on the order of the scale height. We note that the total
flux ¥ emitted by the planet must be an upper limit on the convective
flux, Fc’ I we substitute F for Fc and insert values of the physical
variables which are typical for planetary atmospheres in equation
(1I-16); we obtain, for these values, an upper limit for /- VA' In
all cases of the major planets, this upper limit is quite small, being
about 10_4. Therefore, we conclude that within the convection zones
of the atmospheres of the major planets, we may safely make the

approximation that

dinT _ dinT
dinP dinP a

. (Io-17)
d
This result is in contrast with that for stellar atmospheres, where

the radiative rather than the adiabatic gradient approximates
dinT/d1nP., The difference is due to the much smaller fluxes in
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planetary atmospheres and the larger densities in their convection
zones. KEquation (II-17) is therefore valid for all planetary
atmospheres provided that p or Q is not too small within the
convection zone.

I equation (III-16) is inserted into equation (II-13), one
obtains |

_V_Z' = [..lf. F.Q f’.A‘ Ve (- 18)
4mp pCp H_

Again, if Fc is replaced by F and typical values are inserted for
the physical variables, equation (III-18) gives an upper limit to

the rms velocity for the turbulent element corresponding to these
variables. For the same reasons, we find that this velocity also
must be small in planetary atmospheres. For example, near the
top of the convective zone in the Te = 120 °K Jovian model, the
upper limit to the rms convective velocity is 2. 0 meters per second
(4. 5 miles per hour) and becomes smaller at greater depths. The
corresponding velocity near the bottom of the earth's atmosphere
is, according to equation (III- 18), about 6 miles an hour. This is
in good agreement with the observed velocities. Equation (TI-18)
and our models lead us to predict that the turbulentmotion in the
atmospheres of the major planets should decrease in the pro-
gression from Jupiter to Neptune at least as fast as the four~thirds
power of the effective temperature. It may be possible to use
equation (IT1-18) with the models of this thesis to determine lower

limits on the effective temperatures of the majqr planets by
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observationally studying the turbulent velocities, Since the
absorption in the visible region of the spectrum is weak near
the top of the convective zone and since the extinction at this
level is apt to be due primarily to scattering by solid particles
tossed about in the convective zone, such observations may be
feasible.

We are now in a position to check the validity of the models
in the convective regions. Egquation (III-17) can be reduced to
quadrature:

T
log P = logP_+0.4343 [ &L (II-19)
c Ty,
T A
c
where VA is given by equations (II-30) and (TI-32). PC and Tc
are the values at the top of the convection zone. Inverting the

equation of hydrostatic equilibrium, we obtain

2
ay T » 9 (AS + Bsaz/onl)
s " Tet Ugm ok j (T) d
p Tc VA

T  (II-20)

where Te is the value at the top of the convective zone, Obtaining
P/T from the solution of equation (III-19), the integrand of
equation (III-20) is known as a function of temperature and can

be integrated numerically to give TS(T) in the convective region.
The other physical variables follow directly from these solutions.
The correction to logP(T) for the four planets, together with the

radiative equilibrium solutions, are plotted in Figures 26 and 27,
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As these figures show, the correction deep in the atmosphere can
be quite large.

and CH

The tops of the convection zones depend on the NH 4

3
relative abundances by number. The upper limits of these

abundances are given for each model in Table III-2, If the gas is

TABLE UI-2
The Adopted Values of the Relative Abundances of NH3 and CH 4
Planet NH3 / H2 CH 4/ I—I2
Jupiter 0. 0002 0. 003
Saturn 0. 0002 0. 006
Uranus 0 0.01
Neptune 0 0.01

saturated, then its saturation vapor pressure instead of the value
in Table III-2 determines its relative abundance. The values in
this table fix the level at which saturation ends. The models in
Figures 26 and 27 were computed using the values in this table.

In the above fashion, we have accounted for convection.
However, the correction is still a "first order" one because it is
evident that the solution in the radiative equilibrium zone will be
affected by the correction in the convective zone. A given layer
in the radiative zone will receive a smaller contribution from the
source function in the convective zone, Therefore, our correction

has the effect of destroying radiative equilibrium in the radiative
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- zone and we must alter the temperature distribution in this zone
until radiative equilibrium is again achieved. In general, the top
of the convection zone will occur at a different level after this
correction, so that we must also alter the solution in the convection
zone, We repeat this process until it converges to the final
temperature distribution before getting models which are valid in
both the radiative and convective zones. We have not extended

the calculations to this point. However, we point out that in all

of the models, the top of the convection zone lies below a Planck
mean optical depth of 2. 2 and lies below 3. 4 for five of the models.
Therefore, the actual solutions in the upper radiative zones must
be approximated reasonably well by the present radiative solutions.

II1-4.d. The Effect of NH3 on the Jovian Thermal Opacity

The effect of adding NH3 to the thermal opacity is to increase
the efficiency of the backwarming process. As a result, the
temperature and radiative gradient of a given zone will increase.
Also, the top of the convection zone will rise, Table II-1 shows
the temperatures and Planck mean optical depths at the top of this
zone in the models. The height of this zone was computed on the
basis of an adiabatic gradient which included saturated NH3 (in the
Jovian and Saturnian models) but for a radiative gradient which
excluded the opacity due to this NH3. The result therefore gives

a lower limit on this height.

We assume that the Jovian NH3 is saturated until the temper-
ature is high enough so that the NH3/ H, ratio is 0.0002. At
deeper levels, we assume the mixing ratio of NH3 to be a constant,
Because of the low saturation vapor pressure of NH3 at low

temperatures, the partial pressure of NH3 in the upper part of the
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~ Jovian atmosphere (above the 115 °x level) may be neglected.
Therefore, it is not necessary for NH3 to be saturated above this
region. As a consequence, we side-step the question of whether
the NH3 crystals go high enough into the radiative portion of the
atmosphere to maintain saturation there, I NH3 were saturated
throughout all of the layers of the Te = 120 °K H2 model, 7 meter-
atm of NH3 would be traversed by the time the 160 °K level was
penetrated. Our adopted upper limit to the NH3/ H2 ratio causes
saturation to end at the 148 °K level, which underlies 100 cm-atm
3 to
the 230 °K level, which underlies 73 km-atm of H2' To refine the
0. 0002 figure, it is necessary to know the effective depth of
penetration of light from the A6470 band of NH3 and whether the
T meter-atm figure for the NH3 abundance, which was obtained
from the strength of this band, is itself reliable.

In the Te = 120 °K model under congideration, the top of the
convection zone occurs at a temperature of 140 0K, a mean optical

of NH3, and lowers the level underlying 7 meter-atm of NH

depth due to H2 of 2. 9 and at the bottom of a 17 cm-atm column of
NH3. Only 0. 2 cm-atm of NH3 overlies the 120 °K level so that
most of the NH3 in the radiative portion of this model occurs in the
zone between the 120 and 140 °K levels. At the 120 °K level, the
Planck mean optical depth due to H2 is about 0. 94. According to
section I-8, the mean optical depths, due only to NH,, of the

140 °K and 120 °k layers are approximately given by T = 0. 65 C and
0.05 C, respectively, where C is plotted in Figure 17 as a function
of frequency. These values are overestimates since the tempera-
ture of the bottom layer was assumed constant throughout the path

in their calculation. Very approximately, the corresponding Planck
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means of these NH3 optical depths are 0.3 and 0. 02, respectively.
When compared with the corresponding Planck means for H2 alone
(2.9 and 0. 9, respectively), we see that the opacity due to NH,
plays only a minor role in the radiative portion of the Te =120 °k
H-2 Jovian model. If the effective temperature is lowered, this

role becomes vanishingly small. I He is added, this role increases,
because the convective zone is lowered.

The opacity of NH3 in the convective zone cannot be ignored,
because it may be important in determining the frequency distri-
bution of the flux emerging from this zone, If the l\IH3 were
saturated right down to the 160 °K 1evel (corresponding to a 7
meter-atm path length), the Planck mean optical depth of this
layer due to NH3 would be about 0. 8, according to our rough band
model, and this is still quite smaller than the value of 5.5 due to
H2 alone. However, the monochromatic H2 absorption is weak at
Irequencies near the maximum of the Planck curve, varying from
1to 5 between 200 cm™ and 300 ¢m™ at this level. On the other
hand, the monochromatic NH3 absorption in this region is stronger
than the mean, being about 1. 7 near its maximum. Consequently,
the presence of NH3 can a1th the emergent flux, change the depth
of the convection zone and alter the temperature in the radiative
zone even though it may be operating only in the convective zone.
However, because of the relative weakness of the NH3 mean
opacity compared to that of Hz, the most noticeable change would

probably be in the redistribution of the emergent flux.
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- II-4.e. Phase Equilibrium, Mist Levels, Cloud Levels and
P recipitation Zones

When NH3 orC H4 is in equilibrium with either the solid or
liquid phase, the vapor pressure is a function only of the local
te.mperature. We refer to this situation as phase equilibrium.
Under this circﬁmsta,nc'e, the vapor pressure cannot exceed its
saturation value.

It is likely that either NH3 or CH4 is saturated in the upper
atmospheres of the major planets, at least in the zones where its
density may not be neglected. In these cases, the partial pressure
depends only on the temperature (provided mixing is negligible).
This temperature dependence is not necessarily that given by the
solution of the hydrostatic equilibrium equation. Therefore, one
cannot, in general, have phase equilibrium and hydrostatic
equilibrium simultaneously. For this reason, if NH3 or CH 4 is
initially distributed in the atmosphere according to the saturation
vapor pressure, it will not be in hydrostatic equilibrium. Because
the pressure increases more slowly with temperature in the case
of hydrostatic equilibrium than it does in the case of phase
equilibrium (below the isothermal stratosphere), this distribution
will tend toward hydrostatic equilibrium. In the process, elements
of the saturated gas will rise to higher levels where they become
super-saturated and unstable towards phase equilibrium. Asa
result, the gas will condense and fall to deeper, warmer and un-
saturated layers where it will vaporize and replenish the supply of
the gas at the lower levels. Thus, a cyclic process occurs in the

upper troposphere whereby continuous NH, or CH 4 "rain'' or "snow"’

3
precipitation may occur, even above the '"convection zone' referred
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to in the previdus sections. This process also transfers heat,
not only by the mass mo_vemént of the saturated gas, but also by
the fact that as the gas condenses in the upper levels, it releases
its "heat of condensation' and as the precipitate vaporizes in the
lower levels, it acquires the "heat of vaporization'. Again, the
total flux transported must be less than that emitted by the planet.
This sets an upper limit to the activity in the precipitation areas
which becomes progressively more restrictive as the effective
temperature is lowered. In addition to heat transport, this cyclic
process could help to mix the atmospheric constituents in the
radiative zone.

In the convection zone, there tends to be strong mixing of
the CH4 and NH3 with the H2 and He because changes are too fast
to allow phase or hydrostatic equilibrium to take place. Therefore,
in the absence of saturation, their mixing ratios in this zone should
be constant with depth. At the level where saturation begins, the
- strong upward currents will cause condensation and precipitation,
From this level to the top of the convection zone, there should be
solid or liquid precipitation so that this zone should define the cloud
layers. The precipitation will extend into the unsaturated zone to a
depth where vaporization occurs (cf. Figure 28).

The storm activity in the convective zone should be stronger
than that in the cyclic cells of the radiative zone because of the
strong turbulence and greater saturation vapor pressure. On the
other hand, because of the relatively long time scale of the
equilibrium process in the radiative zone, the activity in the cyelic
cells is comparatively weak, Therefore, the convection zone is

probably responsible for the observed clouds and storm activity
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whereas the cyclic cells probably give rise to a relatively thin

ice mist of the frozen vapor or a tenuous fog of the liquified

vapor, Both NH3 and CH4 are crystalline substances in the

solid state and should give rise to weather phenomena with much

the same physics as occurs with HZO in the Earth's atmosphere.

In cases where the convection zone is unsaturated, violent storm

activity should be absent, but there still may be a visible mist

zone if the density in the saturated region is high enough., Table

II1-3 gives the positions of the mist or cloud layers for the adopted

TABLE III-3
NH, CH, Con-
vective
Planet Te He/ HZ Tc Tsat 1OgPsat Tsat lOgPsat Clouds?

Jupiter 130 0 149 143 2.07 - - none
120 0 139 146 2.21 - - NHg
120 1 158 145 2.15 - - none
110 0 131 148 2.33 - - NH;3

Saturn 100 0 118  (146) (2. 23) - - (NHg)

90 0 105 (149) (2.35) marginal (NH3)

80 0 91 (151) (2.48) 11 3.04 (NH3)
Uranus 64 0 76 - - 78 3.91 CHy
Neptune 50 0 52 - - 82 4,46 CHy
50 1 61 - - about same CHy
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NH3 and CH 4 densities of the models, As there is doubt whether
NH3-exists on Saturn, the NH3 values in this case are enclosed
in parentheses. These NH3 values for Saturn were computed
neglecting the correction for convection. In the other cases, this
correction was taken into account, if it mattered. The last
column indicate's whether the model contains a saturated region
in the convection zone.

Note that the Saturnian models have no CH 4 cloud zone but
will have a deep NH3 cloud zone if NH3 is sufficiently abundant.
The Te = 80 °K model shows the presence of a high CH4 mist zone.
If the rings are sufficiently tilted, the effective temperature might
be low enough so that such a mist could extend to low latitudes. ¥
this is the case, then it might be possible to detect this mist by
polarization measurements or satellite eclipse observations.
Detection of the mist would yield information on the effective
temperature of Saturn. In the Te = 80 °K model, this mist level
lies about 35 km above the top of the convection zone and about 75
km above the NH3 mist and cloud zone, if the latter exists.

Note that the Uranus and Neptune models all have a CH

4

cloud zone. Also, note that the existence of an NH, cloud zone

in the Jovian models depends on the He/ H2 ratio an?a the effective
temperature. In these models, the thermal opacity of NH3 was

ignored. However, we recall that one effect of adding the NH3
thermal opacity is to raise the convection zone. This may cause

even the Te = 120 OK Hz— He model to have a cloud zone.
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PART 1V

COMPARISCN WITH THE OBSERVATIONS

The existing observations indicate the presence of a signifi-
cant amount of backwarming in the atmosphere of each major
planet. For example, Jupiter exhibits limb darkening in the radio-
metric (8 to 14 u) region (Murray, Wildey and Westphal 1964). In
the 8 to 14 W region, Low (1964) obtains a brightness temperature
of 93 + 3 °K for Saturn. Kellermann (1965) finds unpolarized
radiation with greater brightness temperatures in the 6 to 20 cm
region. Due to the lack of polarization, he interprets the radiation
as being of thermal origin (It should be noted, however, that Rose,
Bologna and Slonaker (1963) reported that the 10 cm radiation from
Saturn was observed to be polarized). The differences in the
brightness temperatures can be explained by the existence of a
thermal opacity which varies with frequency so that at different
frequencies, one sees contributions from layers of different temper-
atures. The very presence of strong CH4 bands on Uranus and
Neptune is evidence that there is an efficient backwarming process
in operation. This conclusion is due to the fact that CH 4 solidifies
at 90 °K and its saturation vapor pressure decreases very rapidly
below this temperature. Kuiper (1952) finds 2. 3 and 3.7 km-atm
of CH 4 O1 Uranus and Neptune, respectively. To support such
columns of CH 40 the partial pressure of this gas at the base would
have to be greater than the saturation vapor pressure of CH 4 at
95 °K. This temperature significantly exceeds the rotating black-
body temperatures of Uranus and Neptune, which are 64 °K and

50 OK, respectively. Therefore, in the absence of the backwarming
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 of planetary radiation (regardiess of origin), the base of this
column cannot be in phase equilibrium and will freeze out leaving
aCH 4 abundance which is significantly less than that observed.

In addition, the observation of the presence of CH4 in the
atmospheres of all the major planets indicates that in each of
these planets, convection cannot occur to very great depths. This
puts a restriction on either the magnitude of the thermal flux which
may be due to any internal heat source or the depth of the atmos-~
phere, Wildt (1958) pointed out that ""An adiabatic temperature
gradient persisting over any large depth below the cloud level is
clearly impossible because high temperatures would be reached
very soon. Methane would then be destroyed irreversibly, and
convective exchange with the atmosphere above the clouds would
long ago have deprived it of all methane, which is so prominent a
spectroscopic feature of all the giant planets., There remains the
possibility of a sub-adiabatic temperature gradient extending to
great depths'. Our models show that backwarming is indeed im-
portant in the atmospheres of all the major planets and that
convection is indeed attained in the upper portion of the atmospheres.
However, at depths below the layers where solar light penetrates,
we expect, in the absence of an internal heat source, convection to
cease and the temperature to tend to a constant value. This is com-
patible with the observation of CH4. If there is an internal heat
source, then the observations require it to be sufficiently weak so
that convection does not occur in the high temperature regions,
making exchange with the upper atmosphere efficient, If convection
occurs, then the atmosphere must not be so deep that high temper-
atures are reached. A solid surface must then exist below the
‘atmosphere and lie at a relatively shallow depth.
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The presence of H2 in the atmospheres of the major planets
has been detected by the observation of the vibrational overtones
of the quadrupole and pressure-induced dipole lines. The S(0),

S(1), S(2) and Q(1) quadrupole lines of the (3-0) band and the S(0)
and S(1) quadrupole lines of the (4-0) band have been observed on
Jupiter by Kiess, Corliss and Kiess (1960) and Spinrad and
Trafton (1963). Munch and Spinrad (1963) have detected the S(0)
and S(1) quadrupole lines of the (4-0) band in the Saturnian spectrum
and Spinrad and Trafton (1963) have detected the corresponding
S(0) line on Uranus. Herzberg (1952) has detected the pressure-
induced S(0) line of the (3-0) transition and Spinrad (1963) has
observed the corresponding (4-0) line in the atmosphere of Uranus
and Neptune. Contamination of the spectral region with CH 4
absorption makes the detection of the other rotational transitions
of the pressure-induced spectrum, including the double transitions,
rather difficult.

In an attempt to obtain quantitative data on the pressure-
induced lines for the purpose of evaluating some of the free para-
meters of our models, such as the He/ H2 ratio, we have investigated
the (3-0) and (4-0) regions of the spectrum observationally for all
of the major planets. However, these data must wait for laboratory
comparisons of absorption in H2— He mixtures at low temperatures
in the A6420 region. The (3-0) region at A8270 is contaminated with
CH 4 making the results of such a comparison less accurate., We
describe, briefly, the manner in which the observations were
obtained.

We used high contrast-fine grain IV-N Eastman Kodak

spectroscopic plates and the medium-dispersion B spectrograph
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with the 1. 5" (solid block) and 3" schmidt cameras. Obgervations
were made from the Newtonian foci of the 100" and 60" telescopes
of the Mount Wilson Observatory. The OG or K2 filter was used
t_o remove the higher order spectra. In the cases of Jupiter and
Saturn, the Whitford screens were used to reduce the intensity
without the loss of definition which occurs when screens are used
in the collimated beam of the spectrograph. The low dispersion
was necessary in order to make the pressure-induced features
visible (their half-width is about 40 Angstroms).

To offset the long exposure times needed for the A5500-18800
sensitive IV-N plates, these plates were ammoniated prior to
exposure, This process decreased the exposure time required by
about a factor of 15, After exposure, the plates were developed
for 8 minutes in D-19 with continual agitation. If the plates were
developed soon after exposure, there was no problem with fogging.
Figures 30, 31 and 32 show representative spectra of the major
planets in the (4-0) region, |

At a dispersion of 700i/m, the 26420 line (S(0)) of the (4-0)
pressure-induced line was easily detectable on the Uranus and
Neptune plates. On Jupiter, the presence of the 16470 N‘H3 band
prevents us from seeing this line in the Jovian spectrum. We
examined a high-dispersion Coude plate of this region, but the NH3
lines are so numerous, that the continuous pressure-induced
feature could not be seen, even on a compressed wavelength scale.
The presence of CH 4 bands prevents us from identifying neighboring
pressure-induced lines. In Saturn, there is some gquestion about
the presence of NH, above the cloud level, Dunham (1934)

3
observed a ''trace" of NH, on Saturn, but the stronger 27900 band

3
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was photometrically examined and found to be absent (Mﬁnch
1965),

Several Saturnian spectra show the presence of an absorption
near A6420 which is stronger than that of the spectra of Titan (see
Figure 3)). I this is not due to NH3, then it must be due to H2 as
the Titan spectra show that H20 vapor absorption in the Earth's
atmosphere cannot be responsible. At any rate, the Saturn feature
is weaker than either the Uranus or Neptune features. The half-
width of the pressure-induced line varies as the square root of the
temperature so that the line would be more difficult to detect at
higher temperatures. However, the weakness of this line may also
be due to an abundance rather than a temperature effect. It would
suggest that the path length of H2 was shorter on Saturn than on
Uranus or Neptune (due possibly to the presence of a higher cloud
layer). As the theory of line strengths for the higher vibrational
overtones is at present inadequate for obtaining quantitative
estimates of the amount of H2 above the cloud layers of the planets,
we must resort to laboratory comparisons. Herzberg (1952) found
that 120 meters of a 3 :1 mixture of He and H2 at 100 atm pressure
and 78 °K best fitted the (3-0) absorption in the spectra of Uranus
and Neptune. The temperature is based on the observed half-width
of the S(0) line at 18270. To compare with Herzberg's results, we
examine the 78 °K levels of our Uranus and Neptune models. We
square the local pressure and multiply it by the number of km-atm
of H2 and compare the result with 75, which is the laboratory value
9 if that due to He can
be neglected in comparison (if not, then 75 is an upper limit). On

corresponding to the absorption due only to H

this basis, the pure H2 Neptune model can be ruled out since it
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~ gives a product equal to 325, far in excess of the value, 75. The
1:1 He- H2 model gives a product equal to 46, and therefore can-
not be ruled out. Also, the H2 Uranus model gives a value equal
to 39 and cannot be ruled out. The only basis thus far for ruling
out the H, Uranus model is the observed 3:1 He-H, ratio. We
have not computed such a model but it seems likely that it will give
a product less than 75. Herzberg claims that the temperature
78 °K may be an underestimate, but he does not believe it to be an
overestimate. Increasing this temperature will have the effect of
improving the agreement between our models and the observations.
Because of the blending due to neighboring CH 4 bands, it does not
seem very wise to put much emphasis on this laboratory comparison,
except to note the general overall compatibility between the Hz— He
models of Uranus and Neptune and the observations. However, we
note that the lowest visible layer in the frequency of the S(0) line
of the (3-0) band of H, is below the top of the convection zone in all
of the computed models. Adding He to the models has the observed
effect of lowering the top of the convection zone. This may be
another argument for a He/ H2 ratio greater than unity since we
expect the top of the cloud layer to be associated with the top of
the convection zone. Since laboratory data for the (4-0) pressure-
induced band do not yet exist, we cannot make a comparison of
this band with the laboratory spectra.

Spinrad and Trafton (1963) estimate that 27 km-atm of H2
exists above the Jovian cloud level on the basis of the strengths
of the S(0) and S(1) guadrupole lines of the (3-0) band, assuming
that these lines are not saturated. Foltz and Rank (1963) claim
that this figure could be as high as 270 km-atm if the lines are
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saturated. Field (1965) has reviewed the problem and shown that
all data are consistent with 30 to 80 km-atm of H,, but that the
absence of strong Rayleigh scattering at 0. 4 u indicates that 30
km-atm is the most likely value for Jupiter. This is in excellent
agreement with the amount of H2 found above the convection zone
in our H2 and Hz— He models (see Table III-1). It would appear
that the amounts of H2 required to cause convection in the atmos-
pheres of the major planets, as evidenced by our models, is quite
compatible with the amounts of H2 observed above their cloud
layers. It thus appears that the top of the cloud layer and the top
of the convection zone are correlated in the atmospheres of the
major planets. As it is well known, this is indeed the case in the
Earth's atmosphere.

The cloud layer on Uranus and Neptune is presumably due to
the convective movement of saturated CH 4 while the Jovian cloud
layer is due to the convective movement of saturated NH3. The
cloud layer of Saturn is more of a mystery since NH3 is not
observed and CH 4 is likely to condense only in the upper part of
the radiative portion of its atmosphere. The CH4/ H2 ratios used
in the models were comput_ed using Kuiper's observed CH4
abundances (1952) and estimates of the amount of H2 above the
cloud layer. These ratios were applicable only where CH 4 Was
not saturated. In the saturated layers, the equilibrium vapor
pressure determined the value of this ratio.

Baum and Code (1953) determined the scale height of the
Jovian stratosphere by means of observing the differential
refraction during the occultation of o-Arietis. They find that it is
unlikely that this scale height is greater than 12,5 km 'or less than
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- 8.3 km. It appears that a value around 9.5 km would be close to
the actual value. They assume that the region of the atmosphere
responsible for the diminution is isothermal, As the extinction
is small in this region, our models indicate that this is likely to
be true. The range of mean molecular weights and boundary
temperatures compatible with the occultation observations are
presented in Figure 29 along with the points corresponding to our
models. Right away, it is apparent that the H2 models with
boundary temperature TO greater than about 80 K can be ruled
out, This corresponds to H2 models for which Te is greater than
about 102 °K,

We now attempt to fix a likely range for the effective temper-
ature on the basis of a rough consideration of the Bond albedo and
the observed geometric albedo, assuming no internal heat source.

The Bond albedo (equation ITI-9) depends on the value of the
phase integral. This phase integral, in turn, depends on the
particle phase function, &. If this phase function varies as

@ = Tvo(l + bf(a) ) (Iv-1)
anti '

where f(a) is,symmetric about a = m/2, then the phase integral does
not depend upon the value of b, It then equals 2_030. Various forms
of & have been investigated from the limb darkening observations in
the visual region of the spectrum (Horak 1950; Anderson 1965). A
common form is one in which f(a) = cos a and 750 is the particle
albedo. The particle albedo is observed to vary considerably with
wavelength in the visual region, as does the geometric albedo. The
resulting Bond albedo must be averaged over wavelength with the .
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solar spectrum as the weighting function in order to yield the
effective temperature. This average is not well known, but it
appears likely that it is less than the Jovian visual Bond albedo
obtained by Harris (1961) of 0.73. As a result, the Jovian
effective temperature is probably greater than the 85 °K value
implied by this albedo. IfEO is greater than 0. 65 and the mean
geometric albedo is greater than 0. 35 (which seems quite likely),
then an upper limit to the Jovian effective temperature is 104 OK.
When converted to To’ this region is shown on Figure 29.

We now consider the Jovian limb darkening in the 8 to 14 u
region. Figure 25 shows several limb darkening curves for the
H2 and Hz— He models along with the observed limb darkening.
These models always give a limb darkening which is too steep.
We conclude that the limb darkening is due to another molecule,
Methane is excluded because its absorption at frequencies less
than 1200 cm™ ! is negligible. On the other hand, NH, has a
strong absorption band in the 9 to 13 u region. As we will see,
this band is responsible for the shallowness of the observed limb
darkening profile,

From the analysis of section I-8, we found that the mean
"optical depth' of an NH3 band, averaged over the rotational
structure, varied as the square root of the path length, I we
perform the corresponding average of IV(O, M), defined by equation
(I-20), we obtain

-2}

T, 00 = | By (T) exp (/W (1v-2)
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for the limb darkening due to NH3 alone. Using the temperature
and pressure distributions of the T o = 120 OK, H2 and HZ' He

- models, several limb darkening curves in the 10 to 13 U region
were computed neglecting the contribution of Hz and He and normal-
izing so that TV(O, 1) equaled the observed value, It was found
that in all cases, the slopes of these curves were even shallower
than the observed slope. Since the slopes in the models excluding
NH3 are all significantly steeper than the observed slope (when
normalized as above), we conclude that the observed slope can be

9 He and

NH3. Since the form of the absorption due to He in this frequency

represented by a model containing the proper ratios of H

region is like that for HZ’ the main effect of varying the He/ H2
ratio is to alter the importance of the role played by NH3 in
determining the slope of the limb darkening curve in the 8to14 u
region.

Because of the approximations often required in making
analytical estimates, it is sometimes more convincing to make a
more exact, but numerical, estimate. This is the case when we
attempt to estimate the He/ H2 ratio and To from the observed limb
darkening and other data. It would be better to compute a finer
grid of Jovian models about the most likely values in order to make
the fullest use of the observations. However, this requires more
computing funds so that for the purposes of this thesis, we must be
temporarily satisfied with a rough analytical estimate,

Wildey (1964) has approximated the Jovian mean limb darkening
curve observed in the 8-14 micron region by an analytical expression.
However, the observations exist only in the range of 4 = cos 6 from

0.6 to 1. 0. As Wildey points out, the extrapolation to smaller p
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‘values may be inaccurate. This expression predicts a value of T0
of about 140 0K, which is unlikely in view of the observations
unless a Strong internal heat source is present. As the values of
this T0 is quite sensitive to the observations when they are
restricted to a range of U greater than 0.6, it seems probable
that the actual value of TO is lower and the Jovian limb darkening
curve decreases rapidly for u less than 0.6, We interpret the
flatness of the observed profile in the 0.6 to 1.0 region as being
due to the 10 micron band of NH3. When i is greater than 0. 8,
the NH3 opacity causes the temperature of the influential levels
to change slowly with optical depth. For u less than 0. 6, one sees
a dominant contribution from higher levels where NH3 is weak due
to the temperature dependence of its saturation vapor pressure.
Therefore, NH3 should be more influential in determining the
shape of the limb darkening curve for the larger u values and
H2 - He should be more influential for the smaller values of u.

In this way, compatibility may be obtained between the models
and the observations.

When BV is a linear function of - the theory of steller atmos-
pheres predicts (Aller 1953) that the form of the limb darkening
curve near the center of the disk (4 = 1) is determined by the
layers for which the total optical depth at the frequency in question
is about unity., We find BV to approximately vary linearly with
Ty near T = 1. On this basis, we will try to deduce information
on the He/ H2 ratic and T o values in the Jovian atmosphere. Let
TN be the optical depth of a given layer due to absorption by NH3

and let H be the optical depth of this layer due to absorption by

H2 and He. We are concerned with layers for which Nt THY 1
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- in the 8 to 14 micron range. The ratio TN/TH will then give an
indication of the relative importance of NH3 and H2-He mixtures

in determining the shape of the limb darkening curve. The

Te = 120 °K model with He/ H2 = 1 suggests that TN/THz 3 will
reproduce the observed slope. Equations (I-9), (I-209), Table I-1

and ™ Ty © 1 imply that

| 1/2
(_-]_7_ )4+C‘ 0 1c,1+ 02.O5oc2
)
(20L1 + 4a2)(a1 +0.09 0,10,2)
(Iv-3)
T 1/2
1 2. ~
- [ m*%mar| =1
o T,

where C is a constant and the latter term is the dominant
contribution.

From this equation, we see that if T0 is decreased, T must
be slightly lowered since the integral is a rapidly varying function
of T and is insensitive to To'- This implies that T/ TO is raised
and TN/ TH is lowered. Decreasing ay corresponds to increasing
the He/ H2 ratio. To preserve the equality, T must be lowered
(when a, is small enough), This means T/ T, is lowered and thus,
TN/’I'H is raised. Therefore, we can compute models where the
limb darkening is flatter by increasing the effective temperature,
including the thermal opacity of NH3 or by increasing the He/ H2
ratio. For example, we find that a model for which T0 is 105 or
110 °K and He/ H2 = 1 may yield the observed slope of the limb

darkening curve when it is normalized at 4 = 1. However, the
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slope may also be duplicated by models of lower TO and higher
He/ H-z ratios. When ay is small, the explicit o dependence of

equation (IV-3) becomes onl_ 1/4,

The value of T must be reduced
to compensate for the change in Gy Thus, TH decreases while
Ty Increases.

Our models indicate that for He/ Hy, = 0, a value of T equal
to 94 °k (Te = 120 OK) is not sufficient to explain the flatness of
the observed limb darkening profile. Equation (IV-3) shows that
the limb darkening of all such H2 models at lower boundary
temperatures will depart even further from the observations when
the effect of NH3 on the thermal opacity is neglected. Taking this
opacity into account, we can hardly expect the value of T0 to
decline, This is because the thermal absorption of NH3 occurs
in the gap between the maxima of the translational and rotational
profiles thereby restricting the flow of radiation into space.
Because of the gaps in the rotational bands of NH3, the transmission
at these frequencies is less than at the 10 micron region. We have
found that the Planck mean optical depth due NH3 absorption is
significantly less than that due to H2 in the case of the Te =120 °K
model. Furthermore, it becomes less quite rapidly in the lower
temperature regions due to the upper limit on the concentration set
by the saturation vapor pressure. The absorption of NH3 in the
thermal spectrum is insignificant above the layers responsible for
the observed limb darkening curve. The NH3 will affect the
temperature distribution in this region by altering the frequency
distribution of the flux entering this region from the deeper layers
(where the thermal absorption of NH3 is not insignificant). In all

of our models, as well as those of Mihalas (1964), themﬂboundary
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temperature is less than that for the gray case of the same
effective temperature. It appears that the effect of a non-gray
opacity is to permit freer radiation into space. Therefore, the
eff_ect of adding NH3 may raise the boundary temperature by
several degrees. However, in order to raise the value of
'TN/ TH significantly, the increase in temperature of the region
responsible for the limb darkening must more than compensate
for this rise in T o In the layers responsible for the limb
darkening, a model for which the NH3 thermal opacity is taken
into account would have to mimic the temperature distribution of
the corresponding layers of a H2 model with a value of Te = 120 OK,
while exhibiting a value of TO which is more than 20 °K lower than
that for the Te <120 °r models, It appears highly unlikely that the
presence of the thermal opacity of NH3 could bring about such a
change in these layers merely by altering the frequency dependence
of the flux emerging from deep within the atmosphere. ‘

Since the models for which He/ H2 = 0 and Te is greater than
102 °K have been ruled out due to the fact that they cannot explain
the occultation results, it follows that all the models for which
He/ H2 = 0 must be ruled out, even if an internal heat source is
considered.

We now consider Jovian models which contain He. For the
He/ H2 = 1 models, the boundary temperature is close to the gray
value. Neglecting the thermal opacity of NH3 for the above reasons,
we find that the limb darkening of the models is still too steep at
To = 96 °K. Therefore, the cooler models are ruled out. However,
the He/ H2 = 1 models between T0 = 105 and 115 °K may be

permitted, but it is necessary to incorporate an internal heat
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source for these models since their effective temperature exceeds
130 °K and the rotating black body temperature is 120 °K, By
increasing the He/ H2 ratio, we may obtain models which satisfy
the albedo estimates and therefore do not require an internal heat
source, but then it is necessary that the He/ H2 ratio be large. The
9° Ha
very large He/ H2 ratio existed, the Rayleigh scattering would be

Rayleigh scattering of He is 13 times as weak as that for H

important. As it is, the frequency dependence of the Jovian
radiation in the blue is not characteristic of Rayleigh scattering
except perhaps between the clouds (Munch 1965). It is probably
due to particle scattering near the top of the cloud layer. The
models imply that convection takes place from 30 to 60 km-atm

of H2 below the surface of Jupiter. The Rayleigh scattering of this
column of H2 at 0.4 microns is from 0. 24 to 0. 48. It is difficult
to see how a large He/ H2 can exist on this basis.

In addition, Spinrad and Trafton (1963) have found that the
half-widths of the CH 4 lines indicate that the total pressure at the
Jovian cloud level is such that a 2 :1 mixture of He and H2 is
indicated. It is difficult to see how an effective temperature less
than 130 °K could satisfy this observation. Possibly, problems
may arise, due to the variation of temperature and pressure along
the absorbing path, that make interpretation of the observed widths
difficult and the deduction of the bottom of the absorbing layer
uncertain, However, the observations, taken as a whole, indicate
a preference for the existence of an internal heat source yielding a
flux greater than 4 x 103 ergs/sec/ cmz, somewhat less than the
incident solar flux. At the same time, they set an upper limit to
the He/ H, ratio, complementing the lower limit obtained above.
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In conclusion, we observe that the models are flexible
enough to account for the observations made thus far, However,
when compared with these observations they predict various
phenomena. It would seem profitable to make future observations
that would verify or negate these predictions in order to obtain

a better understanding of the major planets.
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APPENDIX A

NON-GRAY MODEL ATMOSPHERES FOR THE MAJOR PLANETS

- In the models tabulated below, T stands for the optical depth
at the standard frequency. This frequency is underlined in
column seven, which contains the grid of frequencies (in wave
number units) used in the computation of the models. T is the
temperature in degrees Kelvin, P is the total pressure, K is the
number of km-atm of Hz overlying the layer in question, and x is
the geometric depth in km. The zero-point of x is taken at

= 0,0005. S is the value of (AS + Bsaz/ ocl) x 106 in cgs units,
where A and B are the binary absorption coefficients for Hz— Hz
and H2 He colhsmns at the standard frequeélcy F is the mono-
cromatic flux in frequency units, ergs cm “ sec (cps) To
obtain the monochromatic flux per unit wave number mterval,

F should be multiplied by c.

Convection occurs for the values below the horizontal 11ne
Since these values were computed for radiative equilibrium, their
error increases with depth. See section III-4. ¢ for a discussion
of the corrections to be applied in the convection zone. The
relative CH 4 and NH3 abundances are used only for computing
the position of the convection zone; the opacity of NH3 has not been
included in these models (see section III-4, d). An inequality sign
indicates that the ratio is an upper limit. This ratio fixes the
level where saturation begins. Models including He have been
computed only for the limiting cases of Jupiter and Neptune.
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T, = 130 °k g = 2597 cgs

JUPITER
CH4/H2 <.003 NH3/H2 < .0002 He/H2 =0
T logP K X S Vv Fv/rr
101.6 3.824 0.29 - 82.2 32 cm_1 0.52-10
101.8 4.125 0.57 11,2 82.3 64 1.37-10
101.9 4,276 0.81 16.8 82.3 96 2.41-10
102,1 4.364 0.99 20.1 82,3 128 3.53-10
102.3 4,475 1.28 24.3 82,4 161 4,61-10
102.9 4.526 1.81 29.9 82.6 193 5.48-10
103.4 4.714 2.22 33.2 82,7 225 5,.84-10
103.8 4.777 2.56 35.6 82.9 257 5.36-10
104.7 4,866 3.14 39.0 83.1 289 4,17-10
106.1 4,978 4,07 43.3 83.6 322 2.92-10
107.6 5,067 5,00 46.8 84,1 354 2.07-10
110.3 5.180 6.49 51.3 84.9 387 1.82-10
112, 6 5.254 7.70 54.3 85.6 420 1.70- 10
113.5 5,284 8.256 55.8 85.9 454 1,59-10
115.3 5.334 9.25 57,7 86.5 487 1.35-10
117.0 5.375 10.2 59.4 86.9 520 9.56-11
118.5 5.409 11.0 60.9 87.4 553 5.87-11
120.0 5.440 11.8 62.2 87.8 587 3.62-11
122.6 5.490 13.3 64.4 88.4 638 2.68-11
125.0 5.531 14.6 66.3 89.0 690 2.36-11
127.2 5.567 15,8 89.5 67.9 741 2.21-11
129.2 5.597 17,0 90.0 69.4 793 1.97-11
131.1 5.624 18.0 90.2 70.6 845 1.84-11
132.9 5,649 19.1 90.6 71.8 896 1.93-11
137.2 5,700 21,5 91.5 74.4 948 2.06-11
140.8 5.743 23.7 76.5 92.3 1000 2.10-11
'144.3 5.779 25.8 78.4 93.1 1125 2.20-11
147.5 5,810 27,7 80.1 93.7 1250 2.48-11
153.4 5.863 31.3 83.0 95.1 1375 2.64-11
158.5 5.906 34.6 85.5 96.1 1500 2.68-11



_cont'd

T T logP K
8.00 187.8 5.975 40.5
10.0  175.8 6.029 45.9
14.0  189.3 6,112 55.4
18,0  200.6 6.175 64.1
22.0 210.2 6.226 72.1
26.0  218.8 6.269 79.6
30.0  226.5 6.306 86.7
40.0  242.9 6.382 103.3
50.0  256.7 6.442 118.5
60.0  268.5 6.491 132.8

203

89.6

93.0

98.5
103
107

110
113
120
125
130



JUPITER

T =120°K
e .

204

g = 2597 cgs

CH4/H2 <.003 NH?’/H2 <.0002 He/H2 =0

T T logP K X S
0. 93.6 3.812 0.28 - 80.0
G. 002 93.8 4,113 0.56 10.3 80.0
0.004° 93.9 4,264 0,79 15.5 80.1
0. 006 94.0 4,352 0.96 18.5 80.1
0.010 94.3 4.463 1.25 22.3 80.2
0.020 94,8 4.614 1.76 27.6 80.3
0.030 95.2 4,702 2,16 30.6 80.4
0. 040 95.6 4.765 2,50 32.8 80.5
0.060 96.4 4.854 3,06 35.9 80.7
0. 100 97.7 4,966 3.97 39.9 81.1
0. 150 99,1 5.055 4,87 43.1 81.5
0.250 101.5 5.168 6,32 47.3 82.2
0.350 103.5 5.243 7.51 50.1 82.8
0.400 104.3 5.273 8.04 51.2 83.0
0.500 106.0 5.323 9.02 53.1 83.6
0.600 107.4 5.364 9,91 54.7 84.0
0.700 108.8 5,398 10.7 56.1 84.5
0.800 110.1 5.428 11.5 57.3 84.9
1.00 112.4 5,479 12.9 59.3 85.6
1,20 114.6 5.520 14.2 61.1 86.2
1,40 116.5 5.555 15.4 62.5 86.8
1. 60 118.3 5.586 16.5 63.8 87.3
1. 80 120.0 5,612 17.6 65.0 87.8
2.00 121.6 5,637 18.6 66.1 88.2
2.50 125.3 5,688 20.9 68.4 89.1
3.00 128.6 5.730 23.0 70.4 89.9
3.50 131.7 5,786 25.0 72,1 90.3
4,00 134.5 5,797 26.9 73.6  90.9
5.00 1392.9 5,850 30.4 76.2 92.1
6. 00 144,5 5,893 33.5 78.5 93.1

\'A

32cm
64
98

128

151

193
225
257
289
322

354
387
420
454
487

520
553
587
638
690

741
793
845
896
948

1000
1125
1250
1375
1500

1

Fv/ﬂ'

0.46- 10
1.20-10
2.08-10
3.01-10
3.88-10

4,55-10
4,73-10
4,16- 10
3.03-10
1.97-10

1.32-10
1.12-10
1,02-10
9,40-11
7.91-11

5.47-11
3.17-11
1.84-11
1,30-11
1,13-11

.04-11
.30- 12
.67-12
.14-12
9.86-12

O OO O =t

1,02-11
1,10-11
1.26-11
1.34-11
1.36-11
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“cont'd

T T logP K X
8.00 153.0 5,962 39.3 82.
10.0 160.3 6.016 44,4 85.
14,0 172.9  6.097 53. 7 90.
18.0 183.4 6.159 61.9 94,
22.0 192.5 6.210 69.5 a1.
26.0 200.5 6,252 76.6 101
30.0 207.7 6.289 83.4 104
40.0 223.2 6.364 99.1 109
50.0 236.1 6.423 113 114
60.0 24'7.3  6.472 127 119

O LW W w N

95.
96.
98,
99.
99.

99.
99.
99,
98.
98.

=3 U1 U > 2

O =Tk 0w



JUPITER
T T

0. 95.5
0.002 95. 7
0. 004 95.8
0. 006 96.0
0,010 086. 2
0. 020 96.7
0.030 97.2
0. 040 Q7.7
0. 060 98.5
0. 100 99.9
0.150 101.4
0.250 104.2
0.350 106.4
0.400 107.5
0.500 109.5
0.600 111.2
0.700 112.9
0.800 114.5
1.00 117. 4
1.20 120.1
1. 40 122, 5
1.60 124. 8
1,80 127.0
2.00 129.1
2.50 134.0
3.00 138.1
3.50 142. 1
4,00 145,17
5.00 152, 4
6. 00 157.8

T = 120 °K
e

206

g = 2597 cgs

CH4/H2 <.003 NH3/H25 . 0002 He/H2 =1

.31
.63
.89

faey

.09

1,41

WD

bt
oo

11.
12.
13.
14,
18.

17.
18.
19,
21,
23.

26.
28.
30.
34.
37,

.99
.44
.82

46

. 47

50
13
46

YOO OO RN

O WO

X

10,
12,
15,

18.
20,
22,
24.
217,

290,
32.
34.
34.
36.

31.
38.
39.
40.
41.

42,
43.
44,
45,
46.

48,
49,
50.
52.
54.

O DI U1 O T -3 Q1 = D) W DN W=D W DO U1 W 00 =J [L- M eriio) I A ]

OO T W

96,
96.
96.
96.
96.

oM DN

96.
96.
96.9
a1.
a1.

-3 O

(ool &

a8.

99,
101
101
102

[or 1) ]

103
103
104
105
106

107
108
108
109
111

113
114
115
118
119

v

32cm

64

96
128
161

193
225
257
289
322

354
387
420
454
487

520
553
587
638
690

741
793
845
896
948

1000
1125
1250
1375
1500

1

Fv/ﬁ

0.41-10
1.08-10
1.80-10
2,46-10
3.00-10

3.39-10
3.58-10
.49-10
.00-10
.23-10

.56-10
.36-10
.27-10
.19-10
.03-10

bb ped Bk DD GO GO

7.22-11
4,20-11
2.40-11
1.82-11
1.74-11

1,79-11
1.73-11
1,75-11
1.98-11
2.23-11

2.34-11
2.51-11
2.77-11
2.84-11
2.74-11
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| cont'd

T T logP K X S

8,00 167.2 6.316 44,4 56.9 122
10.0 175.1 © 6.370 50.2 59.1 124
14.0 187.7 6,451 60.6 62.7 127
18.0 197.9 6.513 69.8 65.6 128
22.0 206.3 6.562 78.2 68.1 129
26.0 213.8 6.604 86.1 70.2 130
30.0 220.5 6.639 93.4 72.1 130
40.0 234.6 6.712 110 76.1 131
50.0 246.3 6.768 126 79.4 132
60.0 256.4 6.815 140 82.2 132
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T =110°K g - 2597
JUPITER
CH,/H, < .003 NH,/H, < .0002
T T logP K X S

0. 85.3  3.798 .27 - 7.8
0.002 85.5 4,100 .54 9.4 7T
0.004 85.6 4,250 76 141 T
0.006  85.7 4.338 .94  16.9 777
0.010 85.9 4.450 1.21 20.4 77.8
0.020 86.4 4.600 1.71 25.1 T7.9
0.030 86.8 4.684 2.10 27.9 178.0
0.040  87.2 4.752  2.42 29.9 78.1
0.060 87.9 4,840 2.97 32.8 178.3
0.100 89.1 4.953 3.85 36.4 78.7
0.150 90.3 5.042 4.72 39.3 179.1
0.250 92.5 5.155  6.13 43.1 79.7
0.350 94.2 5.230 7.28 45.6 80.2
0.400 95.0 5.260 7.79 48.2 80.4
0.500 96.5 5.309 8.74 48.4 80.7
0.600 97.7 5.350 9.61 49.9 81.1
0.700 99.0 5.385 10.4 51.1 81.4
0.800 100.1 5.415 11.1 52.2 81.8
1,00  102.2 5.466 12.5 54.1 82.4
1.20 104.1 5,507 13.8  55.7 82.9
1.40 105.8 5,542 14.9  57.0 83.5
1.60  107.4 5.573 16.0  58.2 84,0
1.80  108.9 5.600 17.1  59.3 R4.5
2.00 110.3 5.624 18.0 60.2 84.9
2.50 113.7 5.875 20.3  62.3 85.9
3.00 116.6 5.717 22.4 64.1 86.8
3.50 119.3 5.753 24.3  65.6 87.6
4,00 121.8 5.784 26.1  67.0 88.3
5.00  126.6 5,836 29.4 69,4 89,4
6.00  130.7 5.879 32.5 71.4 90.1

He/H, = 0

v

32cm
64
986

128

161

193
225
257
289
322

354
387
420
454
487

520
553
587
638
690

741
793
845
896
948

1000
1125
1250
1375
1500

1

Fv/rr

0.40-10
1.03-10
1.77-10
2.51-10
3.20- 10

3.68-10
3.72-10
3.09-10
2.07-10
1.22-10

7.59-11
6.16- 11
5.44-11
4,94-11
4,13-11

2.79-11
1.51-11
8.03-12
5.43-12
4,59 - 12

4,18-12
3.80-12
3.53-12
3.70-12
3.99-12

4,18-12
4,61-12
5.28-12
5.64-12
5.71-12



cont'd

10,
14,
18.
22,

26.
30.
40.
50.
60.

COOCOCO

SOOCOCO

T

138.
144,
156.
165.
174,

181,
188.
203.
215,
225,

O N oM

CO WP OO

logP

5. 948
6.001
6. 083
6. 144
6. 194

6. 236
6. 272
6. 346
6. 404
6,452

38.
43.
51,
59,
617.

73.
80.
95.

109
121

209

OO OoOo

O N

X

74.
1.
82,
85,
88.

a1.
93.
99,
103.
107.

1O DN O Ot

~q 3O U1



SATURN

T

= 100 °k

210

g = 1063 cgs

CH,/H, < .006 NH,/H,<.0002 He/H, =0

T T logP K X S
0. 76.8 3.589  0.41 - 75.1
0.002 76.9  3.890 0.81 20.7 75,2
0.004 77.0 4,040 1.15 31.0 75.2
0. 006 7.2 4,129 1.41 37.1 75,2
0.010 .4 4,240 1.82 44,8 175.3
0.020 77.8 4,391 2,58 55.2 75.4
0.030 78.2  4.479 3.16 61.4 175.5
0. 040 78.5  4.542 3.65 65.8 75.7
0. 060 79.1 4,631 4,48 72.1 175.8
0. 100 80.2 4,743 5. 80 80.0 76.1
0. 150 81.3 4,832 7.12 86.5 76.5
0. 250 -83.2 4,945 9.24 94.8 77.0
0. 350 84,6 5,020 11,0 100.4 TM.4
0. 400 85.3 5.050 11.8 102.6 77.6
0.500 . 86.6 5,100 13.2 106.5 178.0
0.600 87.7 5.141 14.5 109.7 78.3
0. 700 88.7 5,175 15.7 112.4 178.6
0. 800 89.7 5.205 16.8 114,8 78.8
1.00 91.4 5.256 18.9 118.9 79.4
1.20 93.0 5.297 20.8 122.3 79.8
1.40 94,4 5,332 22.5 125.2 80.2
1. 60 95.7 5.363 24.2 127.8 80.5
1.80 97.0 5,390 25,7 130.1 80.9
2.00 98.2 5.414 27.2 132.2 81.2
2,50 101.0 5.465 30.6 136.8 82.0
3.00 103.5 5.507 33.7 140.6 82.8
3.50 105.8 5.543 36.6 144,.0 83.5
4. 00 107.9 5.574 39.3 146.9 84.2
5. 00 112.0 5.626 44.3 152.1 85.4
6,00 115.5 5,669 48.9 156.4 86.5

v

32cm °

64
96
128
161

193
225
257
289
322

354
387
420
454
487

520
553
587
638
690

741
793
845
896
948

1000
1125
1250
1375
1500

1

[or I N G LG

1

5

2.85- 12
1

1

Fv/ ™

3.34-11
8.54-11
1.44-10
2,00-10
2.49-10

.80-10
.12-10
.10-10
.26-10
.67-11

.81-11
.92-11
.45-11
L14-11
1,76~ 11

DO DN W

JA7-11
.91-12

.82- 12
.48 - 12

.30-12
. 20- 12
.11-12
.16 - 12
.25-12

[WER T g W §

.33-12
.55-12
LT7-12
.80- 12
.85-12

bk jh ek ek



cont'd

10.
14,
18,
22.

26.
30.
40,
50.
60.

o

QOO COCO

COOOO

122,
127,
138.
146.
154.

161,
1617.
180.
191.
201.

DO 0o

DD =3 OO i N

logP

[ B0 S B BRSO |

(=21 o> Mo e I en)

137
. 790
. 871
. 933
. 982

.024
. 059
. 132
. 189
. 236

211

K

57.
64.
1.
89.
100.

110.
120.
141,
161.
180.

DO ONN

> 00 O i O

163.
169.
179,
187.
193.

199,
204,
216.
225.
233.

ST ON U1

o U1 O -3 O

88.
89.
91.
93.
95,

96.
on.
99,
99.
99.

LW -J-JW

OdDWH D



SATURN

T = 90

€

%k

212

g = 1063 cgs

CH4/H2 <.006 NH3/H2 <.0002

T T logP K X S
0. 68.3 3.571 0.39 - 72,7
0.002 ©68.5 3.872 0.178 18.4 72,7
0.004 68.6 4.022 1. 10 27.6  72.7
0.006 68.7 4.111 1.35 33.0 72.8
0.010 68.9 4, 222 1.75 39.9 72.8
0.020 69.3 4.373 2. 47 49.2 72.9
0.030 69.6 4.461 3.03 54.7 73.0
0.040 69.9 4,524 3.50 58.6 73.1
0.060 70.5 4.613 4, 30 64.2 73.3
0.100 71.4 4.725 5. 56 71.3 73.5
0.150 172.3 4.815 6. 84 7.0 73.8
0.250 73.9 4,928 8. 87 84.4 74.2
0.350 75.1 5.002 10.5 89.4 74.6
0.400 75.7 5.032 11.3 91.4 74.8
0.500 76.7 5,082 12.7 94,8 175.1
0.600 T77.6 5.123 13.9 97.6 175.4
0.700 78.4 5.157 15,1 100.0 75.6
0.800 79.2 5,187 16.1 102.1 75.9
1.00 80.6 5.238 18.1 105.7 76.3
1.20 81.9 5.279 18.9 108.7 76.7
1. 40 83.1 5.314 21.6 111,3  717.0
1. 60 84,2 5,344 23.2 113.5 77,3
1.80 85.2 5,371 24.6 115.6  77.6
- 2.00 86.2 5,395 26.0 117.4 77.9
2.50 88.5 5.447 29.3 121.4 78.5
3.00 90.5 5.484 32.3 124.8 79.1
3.50 92.4 5.524 35.0 127.7 79.7
4,00 94.1 5.5556 37.6 130.3 80.1
5. 00 97.5 5,607 42.4 134.7 81.0
6.00 100.5 5,650 46.8 138.5 81.9

gRNe=H

CO O bt bt DD
e o 3 a .



cont'd

10.
14.
18,
22,

26.
30.
40.
50.
60.

OCOO0OO

OCOOoOOCOo

1086.
111.
120,
127,
134.

141.
147,
159,
169.
178.

OWO O

CO O i s W

logP

GO O1TO1T

DO OO D

. 718
L1771
. 852
. 913
. 963

. 004
. 040
. 112
. 112
. 215

K

54.
61.
74.
85.
96.

106
115
136
155
172

= 00 U1 O Co

213

144,
149,
158,
165.
170.

176.
180.
190.
198,
206.

O Wwwo

00 U1 OO O

83.
85.
81.
89.
91.

92,
93.
96.
a7,
99.

= O W D OJOMND



DN DD et = OO O OCOO0OOO OO0 O

G O LW W

OOOOSD

SATURN

T T
60.0

.002 60,1
.004 60,2
.006 60.3
.010 60.4
.020 60.8
.030 61.1
.040 61.3
.060 61.8
.100 62.5
.150 63.3
.250 64.5
.350 65.5
.400 65,9
.500 66.7
.800 67.4
.700 68.0
.800 68.6
.00 69.7
.20 70.6
.40 71.5
.60 72.3
.80 73.1
.00 73.8
. 50 75.6
.00 7.1
.50 78. 6
.00 79.9
.00 82.5
.00 84.9

T =
e

CH,/H, < .006 NH,/H,<.0002 He/H, = 0

logP

3. 547
3.848
3. 998
4,087
4,198

4,349
4,438
4,501
4,589
4,702

4,791
4, 905
4, 980
5.009
5. 059

5. 100
5. 135
5. 165
5.215
5. 257

5. 292
5,322
5. 349
5,373
5. 424

5. 466
5. 501
5.532
5. 584
5. 627

80 °k

e O O

10.
10.
12,

13.
14,
15,
117,
18,

20,
22,
23.
24,
21,

30.
33.
35.
40,
44,

g
)
33

K

.37
.14
.04
. 28
.65

O -I O ODMNWWN O =T O W 0O W
2 QO N =3 W

LN ~IboO

214

g = 1063 cgs

X

16.
24,
29,
35.

43,
48,
51.
56.
62.

617.
74,
78.
80.
83.

85.
81.
89,
92.
95.

917.
99,
101,
102.
106.

109.
111,
113.
117,
120.

ok w b p DN OO =T e DD ek O S LW O N DO WN

D DO

S

71.
71.
71,
71.
71.

71,
71,
71,
71,
71.

71,
71,
72,
T2,
T2,

T2,
72.
72,
73.
73.

73.
73.
4.
74.
74,

75.
75.
76.
76.
1.

O DI O T W W WM N

OO,

Ol OO0 =t =J I

S TN

WOTJC W,

\'

32cm
64 '
96
128
161

193
225
257
289
322

354
387
420
454
487

520 -
553
587
638"
690

741
793
845
896
948

1000
1125
1250
1375 -
1500

1

Fv/”
2.18-11
5.33-11
8.40- 11

1.09-10
1.28-10

1.34-10
1.15-10
6.99-11
2.99-11
1,20-11

5.53-12
3.57-12
2.54-12

- 1,90-12

1.42-12

9.11-13
4,10-13
1.55-13
8.22- 14
5.75-14

4,33-14
3.70-14
3.33-14
3.43-14
3.80-14

4,23-14
5.59- 14
6.91-14
7.33-14
6.28 - 14



cont'd

T T logP K X S
8. 00 89.3 5.694 51.8 125.8 78.7
10.0 93.3  5.747 58.6 130.2 179.9
14.0 100.6 5.828 70.6 137.2 81.9
18.0 107.3  5.890 81.2 142,9 84.0
22.0 113.4 5,939 91.0 147.7 85.8
26.0 119.1 5,980 100 152.0 87.5
30.0 124.1 6.016 109 155.9 88.8
40.0 135.0 6.088 128 164.2 91.0
50.0 144,1 6.144 146 171.3  93.0
60.0 152.0 6.191 163 177.4 94.9



DO PO

0

216

Te = 64 'K g = 1025 cgs
URANUS
_CH4/H25 .01 NI—I3/H2 = 0 He/H2 = 0
T T logP K X S vV
0 47,5 3,739 0. 60 - 22.5 32cm
0. 002 47.8 4,040 1,19 13.3 22.6 64
0. 004 47.9 4,190 1.68 20,0 22,7 96
0. 006 48,1 4,278 2, 06 23.9 22.8 128
0. 010 48.3 4,389 2.66 28.8 22,9 161
0.020 48,7 4.539 3.76 35.5 23.2 193
0. 030 49,1 4,627 4,60 39.5 23.4 225
0.040 49.4 4,689 5.31 42,4 23.6 257
0.060 49.9 4,777  6.50 46.4 23.8 289
0. 100 50.6 4,887 8. 38 51.5 24.3 322
0. 150 51.2 4,975 10, 2 55.7 24.6 3b4
0. 250 52.2 5.085 13.2 61.0 25,1 387
0. 350 53.0 5,158 15.6 64.5 25.5 420
0. 400 53.3 5,187 16. 7 65.9 25.6 454
0. 500 54,0 5,235 18,7 68.3 25,9 487
0. 600 54,5 5,275 20.5 70.3 26.1 520
0. 700 55.0 5,309 22.1 72.0 26.2 553
0. 800 55.5 5.338 23.6 73.5 26.4 587
1.00 56.5 5.387 26,5 76.1 26.8 638
1,20 57.4 5,427 29.0 78.2 27.1 690
.40 58.2 5.461 31.4 80.0 27.3 741
60 58,9 5,490 33.6 81.6 27.5 793
.80 59,7 5,516 35.7 83.0 27.8 845
.00 60.5 5,540 37.6 84.3 28.0 896 -
. 50 62.2 5,589 42,2 87.2 28.4 948
3.00 63.8 5.830 46. 4 89.6 28.7 1000
3.50 65,3 5,665 50, 3 91,6 29,0 1125
4,00 66.8 5,696 53.9 93.5 29.2 1250
5. 00 69.6 5.747 60,7 96.8 29.4 1375
6.00 72,1 5,790 66.9 99.6 29.8 1500

Fv/rr

- 1.39-11

3.19-11
4,54-11
5.31-11
5.65- 11

5.37-11

5

3.95-11
1.71-11
4.77-12
1.45-12

5.46-13

2.84-13
1.60-13
9.31- 14
5.51-14

3.12- 14
1.34-14
4,25-15
1.69-15
8.73-16

5.35- 16
3.68-16
2.85-16
2.58-16
2.54-16

3.05-16
4,58- 16
7.00- 16
9.48- 16
1.11-15



cont'd

10.
14,
18.
22,

26,
30.
40,
50,
60.

QOO0

0

CSCOOOO

77.0
81.7
90.5
98.9
106. 6

114,
120.
133.
145,
154.

PO Ok

logP

Dy U1 OV Ot

DDA DN

. 858
. 913
. 999
. 066
. 122

. 170
. 212
. 297
. 365
. 421
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78. 4
88,9
108
126
144

161
177
215
252
286

104,
108.
115,
121,
1286.

131,
135.
145,
154,
162,

3
3
2

HS b

B -3 © 00 W
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T, = 50 °x g = 1373 cgs

NEPTUNE
CH,/H,<.01 NHy/H, =0 He/H, =0

T T logP K X S \' Fv/rr
0. 37.4 3.842  0.56 - 14.7 32cml 0.86-11
0.002 37.6 4.143 1.13 7.8 14.8 64  1.72-11
0.004 37.7 4.203 1.59 11.7 14.9 96 2.09- 11
0.006 37.7 4.380 1.95 14.0 15.0 128 2.10- 11
0.010 37.9 4.401 2.51 16.9 15.3 161 1.95-11
0.020 38.1 4.640 3.54 20.8 15.3 193 1.68-11
0.030 38,3 4.727 4.33 23.1 15.5 225 9.63- 12
0.040 38.4 4.789 4.99 247 15.6 257 2. 43 - 12
0.060 38.6 4.876 6.10 27.1 15.8 289 3. 57-13
0.100 38.9 4.98 17.85 30.0 16.0 393 8. 40 - 14
0.150 39.2 5.073  9.59 32.3 16.2 354 2.61- 14
0.250 39.6 5.182 12.3  35.3 16.6 387 1.01- 14
0.350 39.9 5.254 14.5 37.3 16.8 420 4.05- 15
0.400 40.1 5.282 15.5 38.1 17.0 454 1.64- 15
0.500 40.4 5.320 17.3 39.4 17.2 487 6.63 - 16
0.600 40.6 5.368 18.9 40.5 17.4 520 = 2.87-16
0.700 40.9 5.401 20.4 41.4 17.6 553 9.92- 17
0.800 41.1 5.429 21.8 42.2 17.8 587 9. 86 - 17
1,00 41.6 5.476 24.3  43.5 18.2 638 = 6.89-18
1,20 42.1 5.514 26.5 447 18.6 690 1.96- 18
1.40 42,5 5.547 28.6  45.6 18.9 741 6.8 - 19
1.60 42,9 5.575 30.5  46.4 19.3 793 2.9 -19
1.80 43.3 5.599 32.2  47.2 19.6 845 1.6 -19
2.00 43.7 5.621 33.9 47.8 19.8 896 1.2 -19
2,50 44.7 5.668 37.7 49.2 20.5 948 1.0 -19
3,00 45.5 5.705 41.1  50.4 21.2 1000 9.5 - 20
3.50 46,4 5,737 44.3 51.4 217 1125 12 -19
4.00 47.2 5.765 47.2  52.3 22.2 1250 1.7 -19
5.00 48.7 5.811 52.5 53.9 23.2 1375 1.6 -19
6.00 50.1 5.845 57.3 55.2 24.0 1500 1.4 -19




cont'd

10.
14,
18.
22,

26,
30,
40.
50.
60.

DO OO0CO
(o]

OO O

52,
55,
59.
63.
68.

71,
74,
81.
81.
92,

OO0 I

O o O

logP

5. 909
. 956
. 028
. 084
.130

Y O OY

6.169
6. 203
6.274
8.331
6.379

65.
73.
86.
98.

109

120
129
152
174
194

U1 N -3
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517,
59.
61.
64.
66.

68.
70.
73.
1.
80.

B Wwwow

bt pd CO O W
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He/H, = 1

Te = g = 1373 cgs
NEPTUNE

CH4/H2_<_ .01 NH3 = 0
logP S A%

0 4,084 0. 49 31.2
0 4, 385 0. 98 5.6 31.3 64
0 4,535 1.39 8.4 31.4 96
0 4,623 1.70 10.0 31.4 128
0 4,734 2.20 12,1 31.7 161
0 4,885 3.11 14,9 31.8 193
0 4,972 3.81 16.6 32.0 225
0 5.035 4,39 17.8 32.2 257
0 5.122 5,38 19.5 32.5 289
0 5.233 6.93 21.6 33.1 322
0 5.320 .48 23.3 33.7 354
0 5. 431 .9 25.5 34.8 387
0 5.503 .9 27.0 36.2 420
0 5.532 .8 27.6 36.2 4b4
0 5. 580 .4 28.6 36,9 487
5.619 .9 29.5 37.6 520
5.652 .2 30.2 38.2 553
5.681 .5 30.8 38.7 587
49.8 5,729 T 31,9 39.7 638
51.0 5,769 .8 32.8 40.7 690
1. 52.1 5,802 T 33.6 41,4 741
1, 53.1 5.831 .5 34.3 42,0 793
1. 54.1 5,857 .2 35.0 42.6 845

2, 55.0 5.880 .8 35.6 43.1 896

- 2. 57.2 5.929 .5 36.8 44,2 948
3. 59.0 5,970 .8 37.9 45.1 1000
3. 60.9 6,004 .9 38.9 45.9 1125
4, 62.5 6.035 .9 39.7 46.6 1250
5. 65.6 6.085 4 41,2 47.7 1375
6. 68.2 6,128 .4 42,5 48.5 1500

32¢cm”

i | DD = U100

F\/TT

1.02-11
1.96-11
2,21-11
1.99-11
1.60-11

.21-11
.63-12
.19-12
.13-12
.97-13

.41-14
.27-14
.67-14
9.80-15
6.48- 15

4.33-15
1,78-15
- 16
- 16
- 16

e
© o

- 16
- 16
-16
- 16
- 18

U1 W W N
. - . L] »
O 0O W 2 O1

- 16
- 16
7-15
6-15
- 16

.

LR
00 i i (O 2



cont'd

T T logP

8. 00 73.2 6.195

10. 0 77.4  6.248
14.0 84.9 6.331
18.0 91.2 6.393
22,0 96.7 6,444
26,0 101.7  6.488
30.0 106.0 6.525
40.0 115.5 6.600
50.0 123.3 6.659
60.0 130.0 6.708

63.5

71.8

86.8
100
113

125
136
162
185
207

44,7
46,
49,
52.
54.

56,
58,
62.
65.
68.

= WO DN BN gD

49,
50.
51.
52.
53.

53.
53.
54.
55.
55.

D DOy O O OW-10
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APPENDIX B

THE DERIVATION OF THE PAIR DISTRIBUTION FUNCTION
INCLUDING THE FIRST QUANTUM CORRECTION TERM

Letting g(x) be the pair distribution function, we have
g = g°@) + g (=) + ... (B-1)
where go(x) is the classical expression,
g2(x) = exp [-U(x)/kT] | (B-2)

and gl(x) is the first quantum correction term in the expansion
in powers of 22, Letting u be the reduced mass and 8 = 1/kT,
Uhlenbeck and Beth (1936) give the expression

2.2 '
g(x) _ AR 2 2
;—6—(—}{—) = 1 +m— ["V U + (VU) B/2]+... (B_3)

where x = r/0. In our application, U = 4e¢ (x 12 x_6) so that

-2
N2 + u)2 = [-(xzuv)v/xzmvzs/zja‘ . (B-4)

Differentiating U(x), we find

- (XZU')’/X2 =24¢(-22x 14 + 5X—8)
(B-5)
2 20

+ 36x%

6 _ 144x 14y

U'%8/2 = 882 (144x
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Defining the dimensionless quantity A2 = h2/ 2uecz, we obtain

g®) _ 2Bey2 [ 22 5 4.0 4 4 1
2= —1+A(TT 17 + 8+12£Be:( 56~ 55+ 14) S
g (%) . 4 X X X > S|

(B-6)

Inserting the values for the Hz— H2 case, namely Az = 3.0 and

e/k = 37.0 OK, we obtain equation (I-16). The corresponding
values for the H,-He case are AZ = 4,92 and ¢/k = 19.4 °K. ..
Insertion of these values leads to equation (I-21),
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APPENDIX C

THE DERIVATION OF THE TRACE FORM OF THE ABSORPTION
COEFFICIENT

Equation (I-34) may be written

_ 2 2
av/k= ) Pilugl®heVy- ) Plugl*hev, (C-1)
i<t i<t
RN 2 2
= ; P.|u.| “hev +_Z Py |uy | “hev, (c-2)
i<f i<f

where we have made use of the Hermitian property of u.., namely,
Yy = _1_1’;1; The energy of a level labeled i is E.. We define

thif = K - Ei so that the plus sign arises from the interchange
of the subscripts. We now re-define the labels in the second
summation so that the old index i becomes the new index f and

the old index f becomes the new index i. We can do this because
both i and f are dummy indices. This gives us '

2 2
av/k = z P, u.|“heV + ) Pylu| “heV (C-3)
i<f i>f
= Y P.lu | ?hev (C-4)
il Byl €V

it
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where the summation now extends over all initial and all final

states. This expression becomes

av/k= ) P u,u. (B -E) (C-5)
it
= .Zf P, u, [ <fluli> B, - <f|uli> E,] (C-8)
1’

where i and f are the energy eigenstates in the Dirac notatidﬁ; |
Therefore, if H denotes the Hamiltonian operator,

av/k = Z Pi<i[_g|f> [<f|Hul|i> - <flu H|i>] (c-1n

it

= \ZfPi<i|1_1[f><f[HE—_qH[i> - (C-8)
i, :

= ) P.<ilu: (Hu- uH)|i> | (C-9)

i

= Z <i|Pu- [H, ulli> (C-10)
i

= Tr{Pu- [H, ul} f (C-11)

where Tr denotes the trace operation, defined by the last two
equations, and P denotes the operator, which when acting on i,

gives rise to the normalized Boltzmann factor, Pi‘ That is



Pli> = pil i> (C-12)
wheré
P, = exp(-8E)/) exp(-8E ) (C-13)
J
and the summation extends over all energy states. Finally,
a=kv Tr{Pu-. [Hul} (C-14)

in agreement with equation (I-35), where [H, u] denotes the
commutator of H and u. Equation (C-14) is invariant with
respect to the states in which it is represented, provided these
states are a complete set which span the space in question.
Equation (C-1) can be derived from (C-11) by proceeding
in reverse order, provided that |i> and |f> are the energy |

eigenstates.
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APPENDIX D

PROPERTIES OF THE CLEBSCH-GORDON COEFFICIENTS

The notation is the same as that used by Rose (1957). In
the vector addition of angular momenta, the representation
where J 2 and J_, as well as J i and J 3, are diagonal with eigen-

values j(j+1) and m, respectively, is given by y(j m), where

pim)= ) Cly iy s my my my(iym)plomy)  (D-1)
My, My

and where the C are the Clebsch-Gordon, or C-coefficients, The

inverse transformation is

Wigmy) w(j2m2)=jzr'nw(j m)Cly Jp s mymym).  (D-2)

The orthogonality relations are

) C(iyiyds mymym)C(jy joi'smy mym) = 5(j, §')8(m, m’),
my, My (D-3)

). €y igi; my, m-my, m)C(iy jpi; my, m-my, m) = 5(m, m}) (D-4)
j
or
). Cliy i3 mymym)C(iy iy 5 my my m) = 3(m, - m}) 0o5)
: ]
. G(mz,m—ml)ﬁ(mz,m’z).
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Note that in the notation of the C-coefficient of equation (D-1),
the Clebsch— Gordon coefficient vanishes unless m = m, + m,
and the triangle relation A(j1 j2 i) holds. This triangle relation
means that unless ‘

J= g g Iy tig- 1 een s lig -3yl - (D-6)

the corresponding Clebsch-Gordon coefficient vanishes. For
explicit values of these coefficients, see texts such as Condon
and Shortley (1951). |
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APPENDIX E

THE SUMMATION OVER THE ANGULAR MOMENTUM STATES .

- Using equations (I-59, 63 and 64), we find that the

expression for the matrix element is

Vo WL"

R<t|u |i> =1/641'r3/3f ) YRy Ty L' Iy, I M) <A>
yl 2 ' .

(E-1)
Wy Tg L' W1v) p3; 3, LI, M) da

where the singly primed variables denote the final states. Making
use of equation (I-61), the above equation becomes (neglecting
exchange symmetry)

| 1 — 3 \’ ‘ ] H ) "
R<f|u_|1> -1/64n /3 ) <A>) "r1 Y3 (3ym))Y, (y,m})¥ (5, m )d1
YIYZWL”

mymym; M,,

mymymy My,

mimymy My,

: Iz Y3(J5 mp) ¥y (yy mp)Y, (I, my)d2 I3Y§(L' my ) Y5 (L' 'my’)
¥, (L m)d3

. C(JlJ M

g J1g5 My My Myp)
CWy Iy Jyg; my my Mj,)
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C(@yy L J; My, my M)

12

C(12L'J Mj, mp M)

12
Clyy y9 W; mj my My,)
cC(w1i" 1; My, my. v) ' (E-2)

where the C's are the Clebsch-Gordon coefficients (described

in Appendix D), Y, (3 m) is the spherical harmonic of the i #

set of angular varlables and di is the differential for integration
over these variables, Let '

<j'm'|ly Mjm>= f4 Y(j' m")¥(y M)Y(j m)do (E-3)
TT o
then

}: <i'm'[yM jm><y' M'jm|j'm>=L MUPILIN )G(M M')/4m
t

where Ly(j’ 3 is given by equation (I-66) and vanishes unless
A(3 yj) and j+ y+ j'is even.
\ Now square equation (E-2) and start summing:

Z IRy ;| 2p =z P(J,)P@,) Z (64n3/3)<A><é> Z

KL ML 1YWL 1Mo™my Myg
171 m1 2m'LM12
| Tt
273 1YWL mymym? My,
M M
J19712

JdJd’
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) <Jy myly; my Iy my><y, my Iy m, |y my>

m.m,m, M ' " " 1
—1=2—1L—12 -<J} 2|Y2m J, m ><y2m2J2m2|J m/ >

5 Jp My m)
BB MY) L | Ly L1 mp Lo | mps
mymomy Myg (E-5)
" Gy dp Jygimy my My )CWy I Jypimy my M)
CWy Iy Jygimy my Myp)C(Ty Jh J3gimy my My)
CEyo LI My, my M)C@,, LT M, m M)

C@y, L' ' ;My, mj M)C(Tyy L' J';My, mf "M

C(Yl Vg Wimj my an)ck(l’l Yo Wimj ___” M”2)

C(W L" 1;My, mj v )C(W L" 1; M’iz my v ).

12 ™

 The P(J) is the Boltzmann factor for the Jih

is normalized such that

rotational state and

z @I+ 1)PE) =1 . . (E-6)
S |

We now effect the summation over J and then J°'. Referring to
| the orthogonality relations of the C-coefficients in Appendix D,
we see that this results in the replacing of the C-coefficients
containing these variables by the factor, §(M12’M12)6(mL’ _I_n_L)
é(m M-M 2)6(M12,M 2)fs(m 'L)é(m'L, M'-M'12),~where

5(i, 3) is the Kronecker delta,

Since M and M' appear only in these 6-functions, summing

over M and M' merely has the effect of removing the,’fa.ctors
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5 (m M- Mlz)é(m M- M! 2) Summing over M5, my, My,
and m’L results in the elimination of the remaining delta

g = Mygy my = my, My = My
= m’L. It is then possible to apply an orthogonality

functions and the setting of Ml
and m’L
relation to each of the two pairs of C-coefficients containing

J 12 and J! 12 respectively., Summation over J 12 and J ,12 results

in the factors 6(m1, 1)6(m2, 2)6(m2, 12’m1)6(m'1’ 1)5(111'2, '2)

6(m 1) We then sum over m,, m,, 1, m) M12 and
12 to obtam
! 3 —i R

z PEI)PE,) ). <A><A>64°/3 ) )
b Y13 WL" {mymy,  mymy

J' 1 1 1 1t A0
JlJ,l : 1Yo WL" my Moy, —@L-N—Ilz

2°2 , mlmszM12 ' |

(E-17)

- <J! m'lly1 m Jl m,><y, mj Jy m1| Jy my>
<dj my|y, my I, my><y, my Iy m,|Jy my>
< L' m! anmn L %><I;"Tln_" L InLlLv mt >
Cly; v Wimy my My))C(y; y, Wimy my My,)

C(W L" 1 ;M{, m} v )C(W L" 1;My, mi v) .

This may be written in terms of the Racah coefficients as
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L PUPRGY ) <A<a/3) ] Ly(3,3)80,5)0m)m)
f,‘ f; v Y1y WL" mymy mymp
1 1 1t " 1" 17 121
Ty Ty J1 WL my My, my My,
(E-8)

Ly (T3 S5 3ol m) Ty (L1, ) 305, L)o(en )
Clyy yp W smy mj Myp)Clyy yp Wimy my My)

C(WL"1;My, my v )C(W L" 1;My

12 Mo my v ).

Summing over Yy» Yoo mi‘, ]_1_4" and m; now gives

). PEPPE,) ) <A><A>/3 Lyl(J'l,Jl)Lyz(J'z,Jz)L (L', L)

LH
LL'v VYo WL
12w

I, (E-9)
)
my,

C(Yl yzw myi nan)C(yl YZW m':i nan)

FCWL" 1;My,mp' v )C(W L" My, my v ).

171
JZJ’2 .
My oMo

Summing over m'l' and m'z' replaces the first two C-coefficients
by 8(W, W)G(M'l'z, M"z) Summing over M12 and W results in
setting M'l'2 = M'iz and W = W in all remaining expressions.
Then we sum over m'I'_‘ and MY

12
C-coefficients., The resulting expression is independent of v

to get rid of the last two

so summing over v introduces a factor of three. We finally

obtain
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) Lp@,ni<as?y PUPPUYLy @3, Iy G55

y,gWL" 3, 3 ,,
L L' Ty 3y - (EB-10)

which is the same as given in equation (I- 98),
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APPENDIX F

e

A FAST ASYMTOTIC EXPANSION FOR I x S cos(ax + b) dx

X

We use a technique similar to that of G. Blanch (1948) in

computing a rapidly convergent asymptotic expansion for the

exponential integrals: Let

joe]

A= I x ° cos(ax + b) dx
X
then
A = Re { exp(ib) B}
where
oS nCO
B = f x © exp(iax)dx =J exp(iax - s 1n x)dx.
X X :
Letting
G=iax-slnx
we find
dG/dx = (iax - s)/x
so that

o«©

B = f (exp(G)dG)dx/dG .
X

(F-1)

(F-2)

(F-3)

(F-4)

(F-5)

(F-6)
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We integrate equation (F-6) by parts. This is accomplished by
integrating the factor exp(G)dG and differentiating the factor
dx/dG. The result is

B = - exp(iax)/ [Xs_i(iax - 8)]+ f m(exp(G)dG)xs/ (iax- s)3.
* - (F-7)

This process is repeated several times to yield the result,
- . s-1 .  . a
A = Re jexpli(ax + b)1/[x” "(s - iax)]- [1 + s/(s - iax)

+ s(s + 2iax)/(s - iax)4 + s(s2 + 8iaxs ~ 6a2x2)/(s - ia.x)6

+ s(s3 + 221::1.2{52 - 58a2xzs - 24ia3x3)/ (s - iax)B]
(F-8)
+ remainder} .
When x| = -iax, n = sand x = 1, equation (F-8) reduces to

G. Blanch's expression and agrees with it, We evaluate equation
(F-8) using complex arithmetic in the IBM 7090-7094 high-speed

electronic computer, and then take the real part of the numerical
answer.
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APPENDIX G

NUMERICAL VALUES OF THE MATRIX ELEMENT SUMMATIONS

The first part of this appendix presents the numerical values
of equation (I-106) exclusive of the factor 2 (T), evaluated for the
H,-H, case. The column labeled A gives the value of the final
minus the initial value of the square of t. The paragraph of
equation (I-112) defines t. Column B gives the initial value of 1:2
and column C gives the corresponding evaluation, which is the
value of exp(M) used in equation (II-2) for computing the frequency
profile of the translational absorption coefficient due to Hz—’sz
collisions.

The second part presents the numerical evaluation of
equation (I-109) for the H2— He case, exclusive of the term con-
~ faining the factor £(T). This omitted term is only 2 per cent of
the total contribution. Columns D, E and F correspond to columns
A, Band C, respectively, except that column F contains the
results for the H2— He enhancement. This column gives the value
of exp(N) used in equation (II-3) to compute the frequency profile
‘of the translational absorption coefficient due to HZ- He collisions.

(The values in columns C and F are interpolated logarithmically
in the t2 - A(tz) plane before actually evaluating equations (II-2)
or (II-3) ). ,

The accuracy declines for large values of A(tz)/ t2 (where
the values are small). However, the bulk of this table should be

accurate to within a 0. 1 per cent relative error as far as the

numerical approximations warrant.



A

7:500E
14250E
1«750E
?24250E
34750E
4« TSOE

?+500E
7+4500E
14250E
1. 750E
2+250E
2+750E
34750E
44750F

?«500F
74500E
1+250€
1¢750E
?e250E
?«750E
3.750F
4o 750E
1+250E
? «500E
5« 000E
Te500E
1+ 000E
14250E
1+500E
1 750E
2+250E
2¢750E
34750E
44.750E
T+500E

1+250E
2+500E
34750E
5+ 000E
6.250E
7+500E
1+ 000E
1250€
1+500E
1+750E
2+ 000E
24250E
2+500F
?:750E
34750E
44 TSNE

01
02
02
02
02
02

44000E
44000E
4000E
44000E
44000E
44000E

3.030F
3+.030E
3.030€
3.030E
34030E
34.030E
3.030E
3.,030E

1. 750E
1. 750E
1«4750E
1.750E
14750E
1. 750F€
14750E
1+750E
74800E
T7+800E
T+800E
7.800E
T+800E
7.800E
T+800E
T«800E
T+800F
T+800E
T+800E
T4800E
7+800E

4 4000E
44000E
44000E
44000E
4,000E
4.000E
44000E
4 40N00E
44000E
44000E
4.000E
4+000E
44000E
4.000E
44000E
4 4000E
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C

3.056E-02
34044E~02
24968BE-02
24818E-02
24054E-02
14515%E=02

2.081E-02
2+095E-02
24071E-02
14984E-02
1.826E=-02
14620E-02
14173€~02
T+4969E-03

9.884E-03
94959E-03
9.548E-03
Be524E-03
7¢109€~03
Se67TE-03
34377E-03
14926E~03
3+332E~03
34363E-03
3.390E-03
34310E-~03
34094E-03
24743E-013
24396E-03
24021E~03
1.371E-03
94052E-04
34991E~-04
14B64E-04
3.156E-05

1«387€E~-03
1e410E-03
1+419E-03
1.402E-03
1+4351€-03
1275€E-03
14070E~03
B84480E-04
64538BE-04
4e4941E-04
3.719E-04

24806E-04

24129E~04
1.630E=04
6¢141E~05
2.631E~05



A

1.250E
?«500E
34750E
5+ 000E
64?50E
7.+.500E
1+N00E
14250F
1+500E
1«750E
2« 000E
2+ 250E
?«TS0E
34750E
3.750E
44750E
74500E

1+250€
2+500E
3+750E
5+ 000E
6+250E
7+500E
1+000E
14250E
1+500E
1«750E
2+ C00E
?+250E
2+ 750E
3+750E
44 T750E

1250E
?+500€E
3¢750E
54 000E
64250E
T+4500E
1+000E
1+4250E
1¢500F
1.750E

2+250E

1.250F
2+500E
3+750€
5+ 000€
64250E
7«500E
14000E
14250€
14500
1+750E

1+960E

1.960E
1.960E
14960E
14960E
14960EF
1+960F
1.960E
14960E
1.960E
1.960E
1.960E
1e¢960E
1e960E
1960E
14960E
14960E

84+100E
84100E
8e¢100F
8e.100E
8¢ 100E
8e100E
84100E
84100E
84100E
8.100E
84100
Re100E
84100E
8+100E
84100E

44225E
442?75E
44250E
44225E
44250E
44225E
44225E
44225E
4e?25E
44225E
4e?225E

24 T00E
?+700E
2+700E
2«700E
?«700E
?«700E
2« T00E
?+T700E
2+ T700E
2+ T00E
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C

5+581E=-04
5+ 728E=~-04
5.6615-04
54331E-04
44801E~-04
H441TTE~OG
24962F-04
2:024E=04
1.381E-04
94534E-05
6. T0BE=-05
49 T94LE=-0O5
2.611E~05
1.511E~05
94164E-06
34 T44LE-0B
5.047E~07

1s912E~04
1.953€~04
1,780E-04
1:475€-04
1e168E-04
Be979E~05
5426BE~05
34191E-05
2+030E-05
1e344E-05
9.210€E-08
6+509E-06
3¢473E-06
1.188E~06
4eT735E~07

94164E~05
9.035E~05
T«463E-05
5e499E~05
34994E-05
24851E~05
14564E-05
9+280E~06
5¢862E-06
34892E~C6
1.893€-06

5¢T11E~05
5.385€-05
44.053E-05
?+812E=05
14939€~05
14373E~-05
Te4b46E-06
44437TE-06
2.817E-06
1.876E=06



A

14250E
2+500E
3.750F
5« 000E
6+250E
7+500F
1.000E
14250
14500E
1.750E

1+250E
2+500E
3+750E
5 « 000E
64250E
T+500E
1.000€

1.600F
1.600E
14600E
1+600E
1.600E
1+.600€
1.600E
1.600F
1.600E
1.600E

34000€
3.000E
34000E
3.000E
3.000E
3.000E
3+.000€

240

0l
01

01
01l
01
01
01
01
01

C

34419E~05
3.011E~05
24060E-05
10348E‘05
9.119E~-06
64412E~06
3.510E-06
24111E-06
14352E=06
94041E-~07

9¢312E-06
6e354E-06
3.694E~06
24359E-06
le617€~06
14162E=06
64596E~07



D

7+500E
14250E
1+750E
?+250F
3750k
44750E

?+500E
7+¢500F
1.750E
1750E
2+250E
?+750E
3e750E
4 ¢750F

2+500E
7+500E
14250E
1 750E
?+250E
?+750E
34750E
44750E

1+250€
7 +500E
5 000E
7+500E
1+000E
1«250E
14500€
14750E
24250E
2+750E
34750E
44750E
7+500E

14250F
2¢500E
3¢ T750E
54 0NOE
6+?250E
7+500E
1+.000F
1750E
1+500E
1.750E
2+ 000E
?4250E
?«500E
?«750E
34750F
44750E

01
01
02
02
0?

02
a2

E

44NO0F
44000F
4 4000E
44000E
4 4000E
44000E

3.030E
3.030E
34030F
3+030E
34030E
3+030E
34030E
3+030E

1.750E
1.750F
14750E
1+ 750E
1« 750E
1+ 750E
1+ 750E
1+750E

7+800E
7+800E
74800E
7 «800E
7.800E
T«800E
7 «800E
7«800E
74800E
7+800E
T7+800E
7+800E
7+800E

44000E
44000E
44000E
44000E
44000E
44000F
44000E
44000E
44000F
4,000E
4 4000E
4 4000E
44000E
4 4N0O0OE
4o NOOF
44000E

03
03
03
03
03
03

03

03

03
03
013
03

03

02
02
02
02
02

02
02
02
02

02
02
02
nz
02

241

F

B4855E~02
Be63BE-02
8,281€-02
T+829E~02
64079E~02
44866E-02

54524E-02
Bes4T2E~N2
54285E~02
5+018E-02
44661E~02
44253E-02
3,380E-02
2+576E~02

2.126£~-02
24091E-02
1.979E~02
1+809E-02
14595€£~02
l14381E-02
9,857E~03
64686E-03

54112€~03
54138E-03
5,102E-03
44958E-03
4o T24E~03
4e624E~03
4,079E~03
34711E-03
2:978E-03
24320E~03
1e345E-03
Te687E-04
14782E-04

1,586E-03
1.602E~03
1.,583E~03
1.565E-03
1.531€E-03
14497€-03
14375€E-03
14231E~03
1.079E‘03
9.317E‘04'
7.958E~04
6. 745E-04
54690FE=04
4, T8TE-04
?2e390E~04
14223E-04



D

1+250E
2+500E
34 750€E
5 s 000F
6+250E
7.500F
1.+000F
1+?50E
1+500E
1+750E
2+ 000F
?:750E
?eT50E
34750E
34750E
44,750E
7+500E

14250E
7 «500E
3+ 750E
5«000E
64250E
7+500E
1.000E
14250E
1+500€
1+ 750E
7 «000E
2+?50E
?+750E
34750E
44 750E

14250CF
24500E
34 750E
5+ 000E
64250E
7500E
1+N00E
1+250E
1.500E
1750E
?2+250E

1+250E
7 «500E
3+750E
54 N00E
64250E
T«50N0E
1.+.000E
1250E
1+500E
1.750E

E

1¢960E
14960E
14560E
14960E
14960E
14960F
14960E
1+960E
1+960E
1+4960E
1.960E
14960E
1+960E
1.960F
1.960E
1.960E
14960E

8+100F
8+100E
84100E
8.,100E
8e100E
84100E
8+100E
84100F
84100F
8.100E
8¢100E
Be100E
84100E
8.100E
8+100E

44?775E
44275E
44275E
4 4225E
44225E
44225E
447225E
44225E
44225E
4e?225E
44225EF

2+ 700E
2+ 700E
?«T00E
2+ 700E
?+ TOOE
2+ 700E
2. T00E
2+700E
2+700E
?«700E

242

F

44553E-04
44.638E-04
44621E=04
44517E-04
44342E-04
44115E=-04
3,576E~04
3.010E-04
2e483E~04
2+026E~04
14642E~04
14330E-04
BeT734E~05
54 799E-05
3.,907E-05
1+854E-05
34,098E-06

14014E=-04
1.052E~04
1.042E-04
9,958E~-05
9.2T74E~-05
844 T6E~05
6+833E-05
54372E-05
44182E-05
3,252E~05
2+535E~05
1985E-05
1238E~05%
54165E=-06
2.341E-06

34573E=-05
34778E=05
3.709E-05
34473E~05
34158E-05
2¢820E-05
2+185E-05
1.667E-05
14269E-05
9.701E~06
S+781E-06

1+.830E-05
1+959E-05
1.908E~05
12 764E~-0S.
1.584E~05
1+399E=-05
14066E-05
84048E-06
6+ 082E~06
4 4623E~06



D

1+2%0F
2+500E
3+4750E
5+ 000E
64250
7+500E
1.000E
1.250€
1.500€
1.750E

14250E
2«500E
1+750E
5+ 000F
6+250E
72500E
1+000E

E

1.600F
1.600E
14600F
1.600F
1+600E
14600E
14600F
14600E
1.600E
14600F

3.000E
34000E
3.000E
3.000E
3.000E
3. 000F
3.000E

243

F

B 49N3F=06
94643E-06
9+308BE-06
B4511E-06
T4572E-06
6.640E~06
5e011E~06
3.T58E=-06
24828E=06
24143E~06

14457E~06
1.592E-06
12525€E=06
1.385€E-06
1.227€E-06
1.073E-06
84074E=07
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