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ABSTRACT

Two topics are presented which advance the use of magnetic devices in
switched-mode power converters. Part I discusses a novel method of detecting
impending saturation of magnetic materials. The technique exploits the
interaction of perpendicular magnetic flelds to provide a simple, direct and
continuous measure of the‘increasing nonlinearity of the material without any
elaborate unconventional devicés or complex electronic circuitry. Theoretical
foundations and applications to ferrite cores in switching converters are given.
Specific practical hardware examples are described including magnetics for a 4-
kilowatt push-pull buck converter. Part Il presents a discussion of the analysis
of zero ripple integrated magnetic structures. These complex devices are of
great interest in the field of switched mode power conversion because they have
the ability to exclude ac currents from some of their windings when they are
excited by ac voltages. A thorough analysis is carried out to establish which of
the many characteristic parameters of these devices are responsible for the
unusual zero ripple behavior. Practical methods of modelling and analysis are
developed by which a designer can quickly determine the conditions required for
zero ripple. Equivalent electric circuit models are given to aid in the electrical
design of converters and to suppoft the simple physical explanations of the
observed phenomena including the effects of parasitic quantities. A number of

experiments confirm the validity of the models.
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INTRODUCTION

This thesis is divided into two parts, each one a self-contained
treatment of an interesting problem in the rapidly expanding fleld of Power
Electronics. Part I describes a novel way to detect impending magnetic
saturation in power converters. This very simple and easy-to-use technique
effectively uses the magnetic device as its own magnetometer to assess the
amount of flux in the material. The chief application of the technique is to
protect semiconductor devices from the damaging currents which result when a
power transformer saturates rapidly and unexpectedly. Part II addresses the
curious phenomenon of zero ripple which is a property of certain properly-
designed magnetic structures. Several years ago it had been discovered that
some multi-winding magnetic devices have the remarkable ability to exclude ac
currents from some of their windings despite their being driven by ac voltages,
and this has been of great interest to power processing engineers who desire
pure dc currents on the input and output ports of their power converters. This
long-awaited analysis shows which of the many characteristic parameters of the
device are chiefly responsible for the zero current ripple effect and illustrates
simple techniques for analysis and design of these special structures.

In keebing with the tradition and purpose of earlier theses that have
come from the Caltech Power Electronics Group, the discussions presented here
are hot esoteric treatments written for academic experts, but rather are

presentations of practical solutions intended to be understood and used by
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practicing engineers in industry. Therefore, to ensure that the intended
beneficiary is adequately familiar with these topics, each discussion
contains a substantial review of basics and background material.
Although the presentation of some of the fundamentals may appear to be
trivial and unnecessary, one should consider that both topics addressed
here were discovered by accident, and for 5. long time those
unanticipated results were quite mysterious, even to the experts.

This presentation breaks tradition in that it is the first thesis
from the Power Electronics Group to be written entirely about magnetic
devices. Although rapid advances have been made in the field of
switched mode power conversion over the last decade, the development of
magnetic devices has not kept pace with the progress made in other
important areas of power electronics such as electronic devices, circuit
topologies, modelling, analysis, measurement and control. As explained in
the introductory chapters which follow, a major deterrent to progress in
this area has been the intimidation which comes from a general
unfamiliarity with the tools of analysis and an overestimation of the
complexity of the problem. This thesis will demonstrate that just as
magnetic and electronic devices are equally important to switched mode
power conversion, they are also equal in complexity and facility of
analysis. The following chapters will show that analogous to the more
familiar electronic devices, very simple models can be found which give

good engineering solutions to some very complicated magnetic problems.



PART 1

USE OF ORTHOGONAL FLUX
TO DETECT IMPENDING MAGNETIC SATURATION
IN SWITCHING CONVERTERS






CHAPTER 1
INTRODUCTION

Electrical engineers who become involved in the design of electronic
equipment for power conversion find themselves working in the often
unfamiliar world of magnetic devices. The topic of magnetics design is not
extensively covered in textboeks, and, although it is based on uncomplicated
fundamental principles, its application to modern power conversion is often
considered to be black magic. This reputation, however, is undeserved.
Design with magnetic components is no more difficult than design with
electrical components, for both classes of elements suffer from the same
problems and limitations as all physical devices, which include nonlinearity
and saturation.

The first part of this thesis addresses the problem of magnetic
saturation and discusses a novel method [1] by which one may easily detect
impending saturation to avaid its undesirable effects. The importance of
finding a solution to this problem has become more acute with the advent of
switched-mode power conversion, because unexpected saturation of a high-
frequency power transformer not only degrades the performance of the
converter, but often triggers spectacular catastrophic failures.

The new method uses the interaction of two perpendicular magnetic
fields in the core of a transformer to produce a voltage signal which is

related to the magnitude of the total flux in the magnetic structure. This
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signal can be used directly by the control circuitry of a power converter
to prevent saturation of the transformer.

The mechanism by which the perpendicular magnetic fields
interact is an exploitation of the nonlinearity of the magnetic material of
the transformer’'s core. Although thé principles of nonlinear interactions
in magnetic media have been well-known for quite some time [2], they
are not yet widely known, and are certainly not widely uéed in the fleld
of switched-mode power processing.

Because the field of Power Electronics is still a relatively new
and unfamiliar discipline to most electrical engineers, the treatment of
this topic has a tutorial tone for the benefit of new practitioners in this
growing area. The purpose is two-fold: (1) to provide a simple but
complete explanation of the principles of the phenomenon to give the
practicing engineer a good understanding of why the technique works, and

(R) to supply sufficient information and practical examples to illustrate

how to use it



CHAPTER 2
USE OF MAGNETIC DEVICES IN SWITCHING CONVERTERS

Part I of this thesis describes a simple and novel way to detect
impending saturation of magnetic devices. Although the idea may be applied
to practically any area of electronics where magnetic materials are used, it
is of particular interest to engineers in the field of Power Electronics. This
chapter establishes the motivation not only for the topics discussed in both
parts of this thesis, but also for further work in magnetics from the point of
view of the Power Electronics Specialist. It will be seen that unlike most
other areas of Electrical Engineering, where the use of magnetic devices may
be only casual at best, the field of modern Power Electronics depends on the
magnetic component as one of the basic elements essential for lossless

power conversion.

2.1 The Importance of L's

Electrical Engineering, as an academic discipline, has come to be
synonymous with Signal Processing - the electronic manipulation of
information. Most electrical engineers are very much at home in the domain
of Signal Processing Engineering, where amplification of analog signals,
analog-to-digital and digital-to-analog conversions, frequency conversions, and
so on, are to be accomplished with a minimum amount of power. In contrast

to this point of view is the emerging discipline of Power Processing [3], in
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which the goal is to process power with 100 per cent efficiency, rather
than information with minimum power.

The differences between Signal Processing Systems and Power
Processing Systems begin at the most basic level of engineering design,
the components available for use by the engineer. All electronic
systems are constructed from components which may be simply classified
according to only flve categories: resistors, inductors, capacitors, linear-
mode semiconductor devices and switched-mode semiconductor devices.
The designer of a signal processing system has at his disposal all these
elements with the possible exception of the inductors. He tries to avoid
magnetic elements because they are bulky, heavy, and are difficult to
fabricate on silicon chips. Often the designer chooses to develop
elaborate circuits t§ simulate inductor properties over the painful
alternative of using a real magnetic device.

The designer of a power processing system, on the other hand, is
much more restricted in the types of components he can use. Because
he cannot afford losses of power (just as the signal processing engineer
cannot afford loss of information) he must avoid both resistors and
linear-mode operation of semiconductors. Therefore, there are only three
types of elements available for use in power processing circuits: L's, C's

and Switches.



2.2 Isolation and Energy Storage

A power processing system converts power of one voltage, current,
and frequency combination to another voltage, current, and frequency
combination. The power processing engineer must accomplish the conversion
by means of suitable connections of the available elements. The "suitable
connections" involve periodic topological switching of energy storage elements
(inductors and capacitors) under the constraint that all voltages and
currents remain finite. One can see immediately that inductors are very
important because they are one of the two elements available for energy
storage. Furthermore, magnetic devices are valuable for energy transfer in
the capacity of transformers. The ability to transfer energy via a magnetic
field is an attribute of transformers which makes them indispensable for
satisfaction of the often mandatory requirement that input and output ports

of the power system be electrically isolated.
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CHAPTER 3
SATURATION OF PHYSICAL DEVICES

The undesirable saturation of electronic and magnetic devices has
always been a troublesome problem for circuit designers because the
boundaries of saturation impose limitations on the performance of almost
any design. Saturation of most elecironic devices is generally easy to avoid
because the physical quantities which are responsible for the saturation
(voltages and currents) are nearly always quite accurately known, and are
therefore are easily controlled. The problem of magnetic saturation, on the
other hand, has been much more difficult to overcome owing to the lack of
a good practical way to measure the quantity which saturates the magnetic
material, the flux density. This chapter describes some of the problems
peculiar to the magnetic devices used in power processing systems and

discusses a number of proposed solutions.

3.1 Special Problems with Transformers

The preceding chapter established the importance of magnetic
devices ta electronic power conversion as components for both energy
storage and energy transfer. In some applications a single device is used for
energy storage only, as an ordinary inductor. When used as a transformer,
only energy transfer is desired and the device is designed and optimized for

that purpose. Part Il of this thesis will show that sophisticated devices can
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be designed to perform both functions in a single integrated physical
structure. However, all these components are limited in their capacity,
whatever that might be, by the maximum flux density the magnetic
material can sustain and still retain its desirable properties. Although
one must protect all these devices against unwanted saturation, the most
difficult problem in practice is associated with the pure transformer.

The isolation transformer of a dec-dc power converter, in order to
take full advantage of the available magnetic material and simultaneously
meet minimum size and weight constraints, is required to be designed to
handle only ac currents. For a compact, efficient, and otherwise high-
performance design, no net dc magnetization current can be permitted in
the transformer windings. If a net dc current were present, the resultant
dec flux, which cannot transfer energy, would consume part of the
maximum flux density available for energy transfer. Furthermore, if the
device is properly designed for use as a transformer, any attempt to
store energy or otherwise introduce more than the expected flux density
in the magnetic material will ultimately lead to magnetic saturation.
Whole or partial saturation of a power transformer is undesirable for
many reasons, but the most significant one is that it causes excessive
and often destructive stresses on the power semiconductor devices in the
converter.

Unfortunately, unless one takes definite measures to prevent it,
it is possible for a well-designed transformer to saturate as a result of

transient excitations or naturally occurring nonidealities of components.



a) Tt o+
[ ]
g DC OUTPUT
AC INPUT °-—
b)
I DH—o o +
L DC OUTPUT
AC INPUT
c)
AC INPUT g DC OUTPUT

Fig. 8.1 Some transformers jor power converters. Addilion of a de-
blocking capacitor to the primary of (a) guarantees steady-state
volt-second balance, (b), but does not prevent steady-state dc
magnetization current, Series capacitors on both primary and
secondary, (c), guarantee zero dc magnetizalion current, but the
transformer can still saturate in response to transients.
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Subsequent chapters of this thesis will describe and demonstrate a new
and interesting way to sense impending saturation of the power
transformer so that one may be able to take proper measures to avoid
this common problem. Several other methods have been proposed and
used to detect or to prevent saturation of power transformers, and these

are described in the following sections.

3.2 Passive Solutions

Consider the particular transformer of Fig. 3.1a. The ac input at
the primary is a periodic rectangular voltage waveform which could come
from a common full-bridge or equivalent push-pull pulse width modulated dec-
to-dec converter. If the time average of the primary voltage is not zero, then
a dc magnetization current will rise in the transformer and the magnetic
core will eventually saturate. One technique to counter this cause of
saturation is shown in Fig. 3.1b. The primary is ac-coupled to the input
voltage by means of a de-blocking capacitor. Thus any average input voltage
will appear across the capacitor and not across the primary. A steady-state
volt-second balance will be maintained and therefore no net dc current can
exist in the primary circuit.

The insertion of a capacitor in series with the input, however, is not
sufficient to prevent a dc flux component from saturating the core. A net
de current may still be introduced from the output. This will happen if the
output diodes and winding resistances are not perfectly matched, or if there
is an asymmetry in the timing of the voltage waveform at the primary. The

latter condition always exists to some degree when bipolar transistors are
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used as switches owing to natural differences in storage time between
individual devices. Although the possibility of dc saturation exists when
the primary is ac-coupled as in Fig. 3.1a, it does not usually occur in
practice because the important parameters are usually reasonably well-
matched and sufficient margin is usually designed into the transformer
[4, 5].

The only passive way to guarantee that there will be no steady-
state dc magnetization current is to ac-couple both input and output as
shown in Fig. 3.1c. If there is more than one output, then they all must
be dec-blocked.

Even with ac coupling of the input and all the outputs, however,
the possibility of saturating the transformer still exists. This can occur
if there is a sudden-increase in input voltage, for example. A transient
on the power line can produce a large magnetization current which can
last for several switching periods - ample time to saturate the
transformer and damage the components.

The semiconductor dévices can be protected by means of active
current limiting on each transistor, but this safeguard does not eliminate
the need for the dc-blocking capacitors. The capacitors are required to
prevent a steady-state dc magnetization current, which, if permitted,
would force half of the switches to operate at the current limit level all
the time.

Clearly some sort of active compensation is needed to correct

for these naturally occurring mismatches and imbalances [4, 5]. This
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necessity becomes especially apparent at high power levels, where the
magnetics have to be optimized for efficient power transfer, and thus can

tolerate very little dc current.

3.3 Active Solutions

Several methods are available by which one may avoid saturation of
the transformer without the need of a dc-blocking capacitor at each port.

Some are quite obvious (with equally obvious disadvantages):

(1) Integrate the voltage on the transformer and maintain
a volt-second balance by control of the drive symmetry.
This very straightforward approach requires an accurate
integrator with its associated sensitive analog circuitry. In
addition, a knowledge of the dc flux level is required, since

integration yields only the ac flux excursion.

(2) Sum all the winding currents in the proper ratios to
find the magnetization current and then have the control
circuit work to minimize the average. Users of this very
basic technique have to work against the fundamental
problem of the resolution of small differences between
large numbers. This is especially difficult to do for typical
situations in which the winding currents are very much

greater than the magnetization current.

(3) Build a Hall device into the structure to sense the flux
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in the transformer core. Although this would provide a
means to sense the peak flux density, the use of such a
sensor would amount to the introduction of a low
permeability gap in the flux path. The accompanying
reduction of the magnetization inductance would lead to
higher current stresses on the transistors and reduced

efficiency of the converter.

In addition to these, however, there are several novel and diverse

solutions reported in the literature:

(4) In [8] and [7] Schwarz uses a two-core transformer
of uncut square-loop material. The two toroidal cores
are pre-biased by a dc current in auxiliary windings
such that one of the two cores saturates first. In so
doing, it generates a signal pulse which is used to turn
off the transistors while the remaining unsaturated core

supports the primary voltage.

(5) Hirschberg in [B8] demonstrates a '"Twin Pulse
Circuit’  which  desensitizes a converter  against
transformer saturation by virtue of an unconventional

pulse-width modulation system.

(8) Patel describes a method in [9] in which one can

detect impending saturation by the wuse of an
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unsymmetrically gapped EE core.

(7) Kuttner in [10] senses the switch currents and uses
a tuned  ©circuit to detect the presence of the
fundamental component of the switching frequency in
the primary circuit. If the magnetization current is
zero, then the lowest frequency present is twice the
switching frequency. The presence of a fundamental
component indicates an unbalance -- a manifestation of
a dc magnetization current. The control circuit works

to minimize this fundamental component.

(8) In [11] Wilson uses both the primary voltage and
primary current as inputs to a new pulse-width
modulation circuit which maintains flux balance by the

allotment of equal V-I areas to alternate pulses.

The technique to be described in the following chapters is yet
another way to detect impending saturation in magnetic materials. The
method exploits the interaction of perpendicular magnetic fields to
provide a simple, direct, and continuous measure of the increasing
nonlinearity of the magnetic material of the transformer without any
elaborate devices or complex electronic circuitry.

It should be noted that all the techniques described above,
including the one presented in this thesis, can be supplanted by the use

of a sophisticated method of control commonly known as current
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programming (12, 13, 14], in which the output voltage of the power
converter is regulated indirectly by precise control of the currents in the
switches. This method of control can provide protection if (1) the
currents can be measured with sufficient precision and (2) the transistors
can be turned off in time to avoid destruction. Because of transistor
storage time and delays in digital circuits, the latter requirement is often
very difficult to meet when the transformer saturates without warning.
In any case, since the conventional method of woltage programmed control
is still highly desirable and widely used in many applications, the focus
here will be on that scheme. The new sensing technique described here
is not devalued by the use of more sophisticated methods of control, but,
on the contrary, offers yet another very attractive alternative to the
circuit designer. In addition, the new method is not limited to
transformers for power converters, but may be extended for applications

to magnetic devices in other circuits as well.
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CHAPTER 4
REVIEW OF FUNDAMENTALS

This thesis presents a discussion of some first-order magnetic
effects which occur in practical circuits for electronic power processing.
Although the circuits involve some rather unconventional magnetic
structures, the analysis is not difficult, amounting to straightforward
applications of well-established fundamental ideas. While Part II solves a
linear problem with techniques familiar to most engineers, Part I deals with
a topic which involves a strictly monlinear phenomenon. With constant
exposure to linearized engineering problems one may tend to forget the true
nature of the working materials. It is easy to be led astray by the natural
temptation to take relationships which were derived from linear models and
to apply them incorrectly to phenomena which are governed exclusively by
nonlinear processes. For this reason the foundations for the treatment of
the topic of Part I should begin from first principles, with all assumptions

and approximations explicitly stated and justified as they arise.

4.1 Maxwell's Equations

The foundations of all descriptions of classical electromagnetic
phenomena are contained in Maxwell's equations, written here in integral

form.



fj;loscdD.dA = Qrree (4.1)

ad
_];lde-dl = Tt f f BdA (4.2)

_/;lde-cu =f_/'JdA+ ffDdA (4.3)
= Iconduction + ldisplacement

S j;tmdB'dA =0 (4.4)

where the boldface quantities are wectors having both magnitude and
direction.  Quantitities which are not emboldened are scalars with
magnitude only.

It is appropriate to write these equations in this way rather
than in the alternative point form because the objective of this analysis
is to describe macroscopic rather than microscopic effects. The plan is
to model observed electrical phenomena from bulk material properties
which can be obtained from the electrical terminals of the magnetic
device and the geometry of its structure.

Equation (4.1) will not be required for this analysis. The
remaining equations, however, will be applied under the following
assumptions which are reasonable for the study of first-order effects in

practical situations.

1. Displacement currents are negligible compared to
conduction currents. That is, Ilconduction > ldisplacement.

and Eq. (4.3) becomes
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j;loscd Hdl =17 (4.5)

where I = Inguction: the total conduction current
which passes through the the area defined by the closed

path of integration {.

The frequencies of the time-varying quantities are low
enough such that the wave-nature of the fields can be
ignored. In other words, traditional quasi-static

approximations and lumped parameter models apply.

. All the flux outside the volume of the magnetic material

is negligible compared to the flux inside.

The geometry of the structure is such that the
magnitude of the flux density B can be assumed to be

uniform throughout.

There are no currents within the magnetic material.
This is a very reasonable assumption for materials of

high resistivity such as ferrites.

. The structure is homogeneous. That is, the material is
the same throughout; it does not change in composition
and has the same properties everywhere within the

structure.

The material is isotropic. That 1is, it has the same
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properties in every direction. Given a block of material,
a structure carved from the block would behave the
same regardless of the original orientation of the block.
Ferrite is generally considered to be isotropic for quasi-
static fields. Some magnetic materials, however, are
highly anisotropic owing to their having a single crystal
structure or Dbecause of heating and mechanical

treatment.

4.2 Ampere's law

Equations (4.3) and (4.5) are known as forms of Ampere’s Circuital
Law. Under certain common conditions this law reduces to a very simple
form. If the magnet.ié fleld intensity H is both uniform on and parallel to
some path [, and if this path encloses N turns of wire each carrying a

current I, then one can write from Eq. (4.5),
Hl = NI (4.8)

which is arranged into the familiar form

_ NL
H‘z

Note that this relationship is valid only if H is uniform on the path . In
other words, there must not be any discrete gaps in the material along the
path, as this would introduce boundary conditions which would force H to

take on different values along the path of integration. The absence of gaps
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is the common situation for analysis of transfomers, which will be
addressed. here. A similar treatment for gapped structures is
straightforward. Although slightly more complicated because one must
then consider flelds of the gap as well as those of the material, it is

conceptually no more difficult.

4.3 Faraday's Law

If one can find a situation where a component of flux density of
magnitude By is uniform and perpendicular to a path I which defines an

area A he can write from Eq. (4.2)

j::l.osch'cu = —Et—BOA (4'7)

The product of flux density and area is just the flux ®. If the area does not
change with time and is always perpendicular to By one can replace the:

partial derivative with an ordinary derivative and write

_ _a%
j::loudE.dl - dit (4.8)

The potential difference v is related to the electric fleld E by the relation
b
vy = —f E-dl (4.9)
a

Using (4.8) and the standard mathematical conventions for integration
around the path I one finds that if one were to traverse the path N times,
the potential at the start would be higher than that at the finish by the

amount
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Ty
v =N (4.10)

This is commonly known as Faraday's Law.

4.4 The Relationship of B to H

In addition to Maxwell's equations there remains one other rule to
be established, and that is the relationship of B to H. This relation is of
paramount importance, for it is the only one which depends on the medium.
The success of any analysis of magnetic phenomena depends on one's ability

to model the relationship between these two magnetic vectors.

Units

In this thesis all dimensions will be measured according to the
MKSA rationalized system which is now widely accepted, as it is part of the
international standard (SI) system. In this system the two fleld quantities

have the the following unit dimensions:

_y A |ampere
H (=) m [ meter [
B (=) T (tesla)

where the symbol (=) designates dimensional unit.

Unfortunately, the old CGS or Gaussian system is still widely used in
the United States. In the Gaussian system the unit for magnetic fleld
intensity H is oersted (Oe) while the unit for flux density B is gauss (G).

There is, however, a simple conversion between the units of the two systems:
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1 gauss = 10™* tesla

1000
47

1 oersted = A
m

That is, to convert to gauss multiply tesla by 10000; to convert to

oersted divide A/m by 1000/4m ~ 79.8.

Free Space

In free space the relationship between B and H is simple and

linear:
B = uoH (4.11)

The two vectors are colinear and their magnitudes are related by the
scalar constant f3, the permeability of free space, which has the value

henrz
= x10~7
Ko 4mx10 meter

Li Material
For the case of linear isoiropic media other than free space the
relationship is like (4.11) but with a different value for the scalar

constant:
B = uH (4.12)

Since the two vectors are colinear it is sufficient to write only the
relationship between the magnitudes of the vectors if the direction is

known. Thus,
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B = uH (4.13)

is the simplified expression which will be used here. Figure 4.1a illustrates
this relationship for some arbitrary direction in a linear isotropic
material.

If the material happens to be linear and anisotropic the
relationship between B and H depends on the direction, and Eq. (4.12)

must be generalized to
B = uH (4.14)

where the bold u is a tfensor of second rank in three dimensions. As

mentioned previously, this case will not be considered here.

Nonli Material

For nonlinear isotropic materials the B and H vectors, although
colinear and independent of orientation, do not have their magnitudes
related by a scalar constant as in (4.13). Instead, the relationship is
described by some nonlinear operation. This idea can be written in a

compact form as
B = M(H) (4.15)

where the operation M, whose argument is the magnitude H, is whatever
may be required to model the desired nonlinearities. Figure 4.1b shows a
fictitious nonlinear B —H characteristic without any hysteretic effects.

For this case M is a single-valued function. It could be chosen to be a



a)
BA
B=pH
W= CONSTANT
y
H
b)
BA
B=M(H)
.
H

Fig. 4.1 The relalionship belween B and H for ideal isoiropic magnelic
materials: (a) linear material; (b) nonlinear material.
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piecewise linear representation or a continuous representation such as an
inflnite series -- whatever is suitable for the situation. Equation (4.15)
may of course be used to model the effects of hysteresis also, but at the

hidden expense of a much more complicated M.
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CHAPTER 5
ORTHOGONAL FIEILDS IN NONLINEAR MEDIA

As a result of extensive use in the early literature, the word
"orthogonal” has come to be used as a common synonym for
"perpendicular.” Although it is used here in the same way, the term is
perhaps inappropriate to this discussion because orthogonality implies
independence, at least in the strict mathematical sense. This chapter
addresses the phenomenon of interactions between perpendicular magnetic
fields in nonlinear media. - The nonlinear coupling is shown in contrast to

the independence expected from similar flelds in ideal linear devices.

5.1 The Notion of Cause and Effect

In working with magnetic materials it is sometimes beneficial to
think in terms of a cause-and-effect relationship. For the purpose of
understanding the interactions of perpendicular flelds in nonlinear media it
is helpful to think of H as the cause and B as the effect.

Suppose there is a magnetic structure with two separate windings
arranged to produce magnetic fields in two mutually perpendicular
directions. Call one direction the principal direction and the other the
transverse direction. A current /p in the principal winding V{ill produce an
H-vector, Hp, in the principal direction. erﬁse, a current Jp in the

transverse winding will give rise to another fleld Hy in the transverse



Fig. 6.1 Vector addition of two perpendicular magnetic fields Hy and Hp
to form the equivalent tofal fleld H.

a) - b) ¢l
B=M(H)h
— ﬂ=.H.T+BP ey g
He¢ [T A i
He
4) e)
—————————————————— BT“
B=B;+Bs = )

Bp

Fig. 6.2 Illustration of cause and effect. Perpendicular fields Hy and Hp
produce the corresponding fluz densities By and Bp according to

a relationship which depends on the characteristics of the
medium.
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direction. The two magnetic fleld vectors, Hp and Hp, will sum as
vectors to form the resultant vector H, which is the total magnetic
intensity in the material. Figure 5.1 illustrates this straightforward
vector addition. Vector quantities are indicated by underlines in the
figures.

Figure 5.2 shows how the idea of cause and effect can be used
to deduce two orthogonal B flelds from the two orthogonal H fields. In
Fig. 5.2a are the principal and transverse H flelds. Figure 5.2b shows
how the original individual fields are replaced by the equivalent resultant
field H. This in turn leads to the total resultant B fleld of Fig. 5.2¢
where fl is a unit vector in the H direction. The notation in the figure
emphasizes that the vector B is of magnitude M(H) and is in the
direction of H. Figure 5.2d then shows how the total flux density vector
B can be resolved into the sum of two orthogonal component vectors, By
and Bp. The equivalent resolution of B is shown in Figv. 5.2e.

A key point to be made here is that, owing to the nonlinearity

of M, one must write for the general case:
By # M(Hyp) (5.1a)
Bp # M(Hp) (5.1b)

The next paragraph demonstrates that Eqs. (5.1) are true for nonlinear

M.
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One can easily derive the following relations from the geometry

of Fig. 5.2.

H = \/Hf% + Hp? (5.2)

B = M(H) = ~/Br® + Bp? (5.3)
M(H) o,

Br = =g Hr (5.4)

i
=
ay

)

Bp (5.5)

If the material happens to be linear such that M(H) - uH then from

(5.4) and (5.5)

Br = pHr (5.6a)

Bp = uHp (5.6b)

But if the material is nonlinear, say for example M(H) - H?, then trom

Eqs. (5.2) through (5.5)

By = HTVHT"' + Hp"' # HTZ (5.7a)
Bp = HpN/Hp® + Hp® # Hp? (5.7b)

Thus the inequalities of (5.1) are true except for the special case of

linear materials.
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5.2 Time-varying Fields

Suppose now that the transverse current [y is constant such that
Hp is held constant. Let the principal current /p change with time. As the
principal current changes, Hp will also change because of Ampere's Law
(4.8). Figure 5.3a shows the effect of a changing Hp on the resultant total
H. As Hp takes on the magnitudes Hp,, Hps, Hps, and Hp,, the magnitude
and direction of H changes respectively to H;, Hz, H3, and Hg This
straightforward vector addition can go on without limit as long as the
material remains homogeneous. This restriction precludes any non-uniform
saturation of the material which would have the effect of introducing air
gaps in the magnetic path. Some non-uniform saturation is unavoidable in
practice, but it is nearly always negligible for ferrites when they are operated
within practical limits.

If the material were linear, such as the one characterized by Fig.
4.1a, then the application of the method of cause-and-effect would yield the
B vectors with the components By and Bp as shown in Fig. 5.3b. The B's
are in the same directions as their respective H's and the By's are all of the
same magnitude. One would naturally expect this result from (5.8) since the
material is assumed linear and Hy is constant by design.

Now consider the nonlinear material of Fig. 4.1b. As Hp increases
while Hy remains constant, the magnitude of B increases in exactly the
same way as for the linear material until it is limited by the abrupt
nonlinearity of hard saturation. This situation is illustrated in Fig 5.3c.

Note that the B's are all in the same directions as their respective H's, but
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a)
Hy 4
ﬁl H2 ﬂS t‘4
EP| Epz Hes Hea
b)
Bs Ba
épz, §P4

c)

PFig. 5.3 If Hr is constant and Hp changes (a) o lnear material will
maintain a constant By (b); but in a nonlinear material Br
will eventually be forced to change (c).
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as the magnitude of B becomes restricted, both Bp and By must change
accordingly. Thus it is easy to see from the figure that, although Hp is
constant, By must change with Hp and Bp. This is how orthogonal
(perpendicular) magnetic fields can interact. They are coupled not in the
conventional manner by sharing of a common fluz path, but rather by
sharing the constraints imposed by the nonlinearity of the medium. The
By and Bp are no longer independent. In the nonlinear region, where
B is at its limit in Fig. 5.3c, any change in Bp must be accompanied by
a change in Bp. This requires, of course, that B change directions, and

that occurs because Hp changes with Bp according to (5.5).

5.3 Exploitation of Nonlinear Effects

If there are Ny turns on the transverse winding, then a transverse

voltage vy will be produced according to Faraday's Law (4.10) as

dBr
dt (5.8)

vr = NTAT

Hence the transverse voltage vy is a measure of the rate of change of By,
which is in turn a measure of the increasing nonlinearity of the material.
This suggests the possibility of the use of the transverse voltage to detect
the impending saturation of a transformer. Real-life materials (even the so-
called square-loop ones) do not saturate as abruptly as the flctitious
material characteristic illustrated in Fig. 4.1b; there is always a gradual
increase of nonlinearity as the material comes closer to saturation. This is

illustrated in Fig. 5.4, which shows the characteristic of a typical ferrite
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Fig. 5.4 The measured magnetic characteristic of a typical ferrite
material under the assumption of uniform fields. The small
amount of waviness in the curve is an artifact of digital

acquisition and processing of real-time data.
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material, for which this technique seems best suited.

When produced by a constant transverse fleld Hp, the magnitude
of the resulting transverse flux density By indicates the degree of
nonlinearity of the magnetic material, and hence is a measure of the
instantaneous state of the medium as a position on the characteristic
B—-H loop. In practice, however, the absolute flux density is not
measured directly, but only its rate of change is known, being directly
proportional to the transverse voltage vy (5.8). Fortuitously, this
restriction is not a drawback, but rather an advantage, simply by virtue
of the way transformers are commonly used. In practice it is the
principal wvoltage (primary or secondary voltage) and mot the principal
current (magnetization current) which is the more accurately known and
controlled quantity. After all, if it were easy to measure the
magnetization current accurately, one would merely use that signal to
limit the B—H excursion and the problem of saturation would be solved.
The principal voltage vVp is related to the rate of change of BEp by
Faraday's Law just as vy is related to the rate of change of Hpy. Thus,
the increasing nonlinearity of the material can be deduced just as well
from the ratio of vp/vp as it could from the ratio of Bp/Bp or from
By alone. For example, if the material happened to be linear in some
region, then Bp shbul& not change and vy would be zero, which would
indicate no nonlinearity. Moreover, since in most applications of
switching converters vYp is constant during the time that the

transformer is being energized, the ratio vp/vp is just vy scaled by a
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I

I PRIMARY SECONDARY

/

ITRANSVERSE

Fig. 5.5 Cutaway view of a hypothetical hollow toroid with principal and
transverse windings. The fwo magnetic fields Hy and Hp are
perpendicular everywhere within the structure.
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known constant determined by the input voltage of the power converter.
Thus the degree of nonlinearity can be deduced from observation of just

the transverse voltage vp.

5.4 Application to Conventional Transformer Structures

The problem to be addressed now is how to easily introduce a
transverse field into the core material of a transformer. Figure 5.5 is a cut-
away view of a fictitious transformer wound on an idealized hollow toroidal
core with a transvefse winding. Here the principal current is the familiar
magnetization current, which, according to the directions assigned in the

figure, is just

Ip = Nylppmyary — Nalsgconpary (5.9)

where N; and N3 are the number of primary and secondary turns,
respectively. This is the quantity N/ used in Ampere's Law (4.8). It is clear
from the cylindrical geometry of this structure that the principal and
transverse fields are everywhere mutually perpendicular. (This idealization is
slightly flawed for an actual physical structure of this type, because the
wires of the transverse winding must somewhere penetrate the wall in order
to be accessible.) Cores of this type have actually been built by others [15,
18, 17] tor a variety of different purposes related to the use of orthogonal
fields. This is the first time, however, that orthogonal fields have been

exploited to detect impending saturation in power converters.
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a)
TRANSVERSE
WINDING —a
i
b) TRANSVERSE
WINDING
PRIMARY SECONDARY

Fig. 6.6 Implementation of a lransverse winding on a standard pot core
(a) and a pair of UB4 cores (b). The transverse winding is
threaded through holes mnormally intended for mounting
hardware,
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In a more practical vein, it is relatively easy to find standard
off-the-shelf ferrite parts with holes already in the right places to
accommodate transverse windings. Figure 5.8a shows the implementation
of a transverse winding on a standard pot core, and Fig. 5.8b shows how

it may be used with a set of Ferroxcube UB4 cores.
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CHAPTER 8
GENERAL MATHEMATICAL TREATMENT

It has been established that perpendicular magnetic flelds can
indeed interact. Furthermore, a motivation and a philosophy are in place to
exploit this phenomenon as a saturation detector for transformers. The
next step, then, is to analyze this interaction to better understand how it
may be used eflectively to avoid undesirable saturation in real-life power

transformers.

8.1 Qualitative Description

As a first approach to any mathematical treatment, it is useful to
obtain a qualitative picture of the expected results. Assume that a pure,
symmetrical ac voltage (dc-blocked) is applied- to the primary of a
transformer, and that any effects of hysteresis are negligible. Under these
assumptions and with a constant Hp, Fig. 6.1 illustrates the relationship
between Bp and By for specific instants of time for the simple nonlinear
characteristic of Fig. 4.1b.

Several salient features of the response to be observed on the
transverse winding are now apparent. As Hp swings positively and negatively
along the horizontal axis, the symmetry of the geometry gives the same By
for both positive and negative excursions of Bp. Thus it is easy to see that

the fundamental frequency of the signal on the transverse winding is exactly
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\
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Fig, 6.1 [llustration of the locus of the total B wvector for the ideal
nonlinear material characteristic of Fig. 4.1b. As the principal
flux density Bp wvaries positively and negatively along the
principal azis, the wvector B swings back and forth, its
magnitude being limited alt the heavy dashed line. Symmetric
periodic positive and negative variations of Bp cause the Bp to
vary periodically at twice the frequency of Bp.
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twice that of the ac voltage on the primary (principal) winding. This
same sort of frequency-doubling is observed when a signal is full-wave
rectified (another nonlinear process). Note, however, that nothing has
been said yet about the relative shapes of the waveforms of the voltages
vp and vrp.

It can also be seen from the flgure that By decreases in the
positive transverse direction as KHp increases in magnitude. If the
direction of the transverse current were reversed to change the direction
of Hp and Bp, then Bp would decrease in the negative direction, which
is equivalent to an increase in the positive direction. Thus the polarity of
vp would change if the transverse current were reversed.

One more important attribute can be predicted from Fig. 6.1. If
Bp changes at a coﬂstant rate, the By changes more rapidly as Bp gets
closer to the saturation limit. Thus, one should expect the voltage on
the transverse winding to increase monotonically in magnitude if Bp
varies linearly with time.

As a prelude to the general mathematical treatment and in
support of the qualitative understanding described above for an ideal
material, a ferrite pot core (Fig. 5.6a) made from the material described
by the characteristic of Fig. 5.4 was excited by perpendicular fields.
Observations for two different principal voltage waveforms, square and
sinusoidal, are shown in Fig. 8.2. The photographs on the left are of
principal and transverse voltages; their respective flux densities (obtained

by integration of the voltages) are on the right. All the voltage
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gt bt

L

ig. 6.2 Principal and transverse valtages and Jluz densities for two

different ezcitations. Voltages are on the left and fluz densities
are on the right. Upper traces are principal quantities and
lower (races are Ltransverse quantities. Note the Jrequency
doubling caused by the nanlinear process.
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waveforms and the principal flux densities (top traces) are centered
around zero, but the transverse flux densities are always positive, owing
to the presence of the constant bias of the dc transverse current. Scale
vfactors are immaterial at this point because only the qualitative features
are of interest here.

Photographs (a) and (b) are illuminating because the principal
flux density varies at a linear rate owing to the (nearly) square-wave
drive. Thus the time axis of (b) is directly proportional to Bp, and
hence the transverse flux density at the bottom of the photograph traces
the relationship of By to Bp. If the material had the ideal piecewise-
linear characteristic of Fig. 4.1b, then the locus of By would consist of
repetitions of parts of semicircles with flat tops, as suggested by Fig. 8.1.
Because the actual material is not piecewise-linear, however, it is not
necessary to drive the core to its limits in order to see the nonlinear
effects. In fact, these observations were made with rather small flux
excursions to illustrate the presence of nonlinearity far from the obvious
regions of saturation. In addition it should be pointed out that,
commensurate with the levels of excitation, the principal and transverse
quantities are not shown at the same scale factor -- the bottom traces
are much smaller in absolute magnitude than their principal
counterparts.

Photographs (¢) and (d) show the results for a sinusoidal voltage
drive. Although the shapes of the waveforms are quite different from

those in (a) and (b), the observations are consistent with our qualitative
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understanding of the phenomenon. That is, the transverse quantities
repeat at twice the frequency of the principal excitation, and the

transverse flux decreases as the principal flux increases in magnitude.

8.2 Derivation of Practical Expressions

Now that the qualitative examination is complete, one may attempt
a more quantitative analysis. One possibility is to find an expression for B
in terms of vy and vp. With such a relationship one should be able to
compute the magnitude of B in the material from observation of vy and
knowledge of vp. A more practical design-oriented approach, however, is to
find an expression for vy in terms of B and vp. With the latter form of
expression, a designer would first choose a maximum B to which he wishes
to drive the transformer’s core. Then, because he would know the vp at
which his transformer would operate, he would be able to calculate the
magnitude of vy which would appear on the transverse winding when that B
is reached. Upon detection of this voltage level, the circuit would take
appropriate action to prevent a further increase in B to keep the
transformer out of saturation. The goal, then is to find an expression of the

form

vr = f(B,vp) (6.1)

At this early stage of the analysis there is no assurance that it is
possible to find such an expression in a closed form. And even if an
expression is found, it may not be useful to the designer owing to excessive

complexity, limited accuracy, or a strong dependence on unquantified
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characteristics of the material. Nevertheless, it will be beneficial to
undertake this analysis to acquire a better understanding of the
phenomena and to test and refine the rather crude qualitative predictions
made in the previous discussion.

The starting point is to look for a general expression whose only
time-varying quantities are By and Bp. One could then differentiate this
expression with respect to time to obtain another expression which
relates vy to vp and B.

From (5.2), (5.3), and (5.4) one can write the general relation

VBT! + Bp!

\/HT! + Hp (8.2)

Br = Hry

This is almost what is required. The only difficulty is that Hp is an
unknown function of Bp. The two are linked in a very complicated
fashion through the material property M(H) as shown previously in (5.5).
It is absolutely essential that the characteristic of the material be
included somewhere in the expression, because that is the very
mechanism responsible for the variations in Bp. The easiest way to
incorporate the material properties into (6.2) is to use the inverse of
the customary form. Traditionally the B-H relationship has been given as
a function of H; but there is no reason whatsoever why it cannot be
presented as a function of B! That is, for a given material one may

write either
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B = M(H) (4.15)

or the equivalent

H W(B) (8.3)

This defines W to be the inverse operation of M. Now one can rewrite

(6.2) as

W(VBZ ¥ B (6.9

This relationship is the foundation upon which the general analysis is
constructed, and some difficulties are already apparent. The fact that it
is not possible to solve (8.4) explicitly for By (except for the linear case
where W = B/u ) means that any useful result obtained from this
analysis will not be exact. Since the resulting expressions will necessarily
be only approximate, care must be taken when they are used to see that
the underlying assumptions of their derivations are valid.

Implicit differentiation of (8.4) with respect to Bp gives

Hyp [ Bp dW(R) BP]

By _ __W®B)\WB) dB "~ B]
dBp L+ Hy [ Br dw(B) 3 Br)
W(B)| W(B) dB Bp) (8.5)

where B = VBT',' + sz.

Although this expression is exact, it is quite useless owing to the

presence of the unknown variable By on the right-hand side. Clearly
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some judicious approximations are in order.

For practical applications, the transverse fleld Hr will be much
less than the principal field Hp in the region of interest. This is
reasonable since the only purpose of the transverse field is to sense the
state of the core. An excessively large Hp would mean that a
significant portion of the total H available in the core would be devoted
to the sensing function, and this would indicate that the magnetic
structure is being used ineflectively for power processing.

From (5.4) and (5.5) one gets the relationship

By = ﬂ- Bp
Hp (8.8)
From this it is clear that if Ay «< Hp then
Bp K Bp (8.7)
The inequality is reinforced when both sides are squared:
Bp? & Bp® (8.8)
Now one can use (6.8) to make the simplifying approximation
Bp?® + Bp? = B? ~ Bp? (8.9)

which, when substituted in (8.4), yields the approximate relation
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Bp

Br ™ Hr 3rpS (8.10)

This expression, when differentiated with respect to Bp gives

dByp ~ Hp Bp dW(Bp) .
dBp W(Bp) W(Bp) dBp (8.11)

A comparison of this approximate relation with the exact
expression (8.5) shows that the validity of (8.11) is subject to the

satisfaction of an additional inequality, namely,

Be Hp Bp dW(Bp) 1 « 1
Bp W(Bp) |W(Bp) dBp (8.12)

Thus, although the inequality of (6.B) is mecessary for (6.11) to be valid,
it is not sufficient. The validity of (6.11) depends also on the material
characteristic according to the second inequality, (6.12), which usually can
be easily estimated with knowledge of the W(H) of the magnetic material
and the chosen region of operation. Note that a knowledge of By is not
required for this computation since from (6.8)

By _ Hp
Bp ~ Hp (8.13)

The general analysis is now nearly complete, for all that remains
is to produce an expression in vy and vp from (6.11). This is
accomplished by application of the chain rule of calculus and Faraday's

Law (4.10):



52
dBy _ dBr dBp

chain rule: dt ~ dBp dt (8.14)
Faraday's Law: vy = Ny o (Brdr) = Nrdr —; " (8.15)
vp = Np g (Bpdp) = Npdp —; (6.18)

In {8.15) Ny and Ay are respectively the number of turns and the cross-
sectional area in the transverse direction. In (8.18) Ap is the cross-
sectional area in the principal direction and Np is the number of turns
on whatever winding (primary or secondary) happens to be associated

with the voltage vp.

Use of (6.14) with (8.15) and (B8.18) yields the desired

transformation:

. Nrdr dBr
P NpAp dBp (8.17)

vr =

A useful dimensionless quantity by which models and designs
may be easily compared is obtained by normalization of (8.17) with
respect to the principal voltage vp. The normalized expression, here

called the Magnetic Transfer Ratio (MTR), is defined to be

4 - NY’AT dBT
Vp - NpAp dBp (8.18)

MTR =

The material properties are included by substitution of (8.11) into (8.18):
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ELN _ NTAT Hr [ Bp dW(Bp) _
vp Npdp W(Bp) |W(Bp) dBp (8.19)

The transverse fleld Hr may be related to external parameters by

Ampere's Law (4.8)

Nrply
iy (8.20)

Hr'—'

In this last expression, /y is the constant current in the transverse
winding and [y is the eflective path length of the transverse magnetic
field.

Substitution of (8.20) into (8.19) is the final step, which yields

the MTR in terms of known quantities:

vro _ g, NrPAr 1 [ Bp  dW(Bp) _
vp T NpAply W(Bp) lW(BP) dBp (6.21)

This result comes very close to the desired goal, which was to obtain a
general expression that relates vy to vp and B in the form suggested by
(6.1). Recall that here Bp = B by virtue of the approximation (6.8).
This form of the expression isolates the three factors which are of
greatest interest to the designer: the sensing current, the geometrical
factor, and the material factor. The MTR is written with a minus sign in
front to emphasize that in the region of interest (B increasing toward
saturation) the signal is negative, as was predicted in the qualitative

analysis.
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It will be demonstrated later that for common ferrites the
expression in brackets is positive for positive vp and negative for
negative vp as the material approaches saturation. Note that, for an

ideal linear material whose characteristic may be described as
Bp
W(Bp) = -;— the term in brackets is identically zero as one should

expect.
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CHAPTER 7
PREDICTIONS OF PERFORMANCE

This chapter addresses the problem of finding suitable
mathematical models for the intrinsic properties of magnetic materials.
Several "W" functions of increasing complexity are used to approximate the
dynamic magnetic characteristics of common ferrites. It is not the intent of
this meodelling to be able to give an accurate quantitative prediction of the
observed performance, for that would require a model of such great detail
that it would be much too complicated to be useful. Rather, simple models
are sought to help understand the first-order effects of ’variations in the
characteristics of practical materials to provide guidance for a good
engineering design. The models will ultimately be evaluated on the basis of
their ability to predict the Magnetic Transfer Ratio observed for typical

ferrite compositions used for switched-mode power transformers.

7.1 Models for Practical Materials

Because of their low-loss properties and other favorable qualities,
ferrite materials are widely used for high frequency switched-mode power
processing. Despite their popularity in this and other areas, however, very
little information is available to explain or to model the behavior of ferrites
under various environmental and large-signal conditions. The intrinsic

material properties depend not only on external parameters such as
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Fig. 7.1 B-H charactleristic of an RM10 core of H7C1 material. The curve
is computed from measurements of voltage and current wunder
the assumption of uniform fields in the core.

B A

SAT [ T T T T T 7

SAT

Fig. 7.2 B-H characteristic for the piecewise hard safuration model,
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temperature, but also on the electrically induced excitations to which
they are exposed. For example, the results of recent work on such
characterizations [18] show that measurements of inductance made on
ferrite toroids with signals of different magnitudes and shapes agree only
at low signal levels. This being the case, one should expect at best to
be able to find a model which gives only a good gqualitative description of
the MTR, since that ratio depends strongly on the nonlinear

characteristics of the material and is interesting only for large flux

excursions.

7.2 Piecewise Model for Hard Saturation

Figure 7.1 shows the material characteristic of a typical ferrite
when it is driven far into saturation. The simplest model for this behavior is
the familiar straight-line approximation introduced in Fig. 4.1b and
reproduced with appropriate labels in Fig. 7.2. The approximate expression
(6.21) is not very useful for this special case because the oversimplified
model in combination with the analytic approximations hides all the
interesting information behind singularities. Although the original expression
of (6.5) can be used, its evaluation would be quite painful. But luckily, since
this is such a special case, the extra mathematical labor can be avoided and
at the same time an ezxact expression can be found from the geometry of
Fig. 5.3c. This is possible only because B is a constant for H > Hgsp, and

hence, the locus of the B vector is known to lie on a circle of radius Bgup.



58
Since the model is linear for B < Hgyr we know that the MTR

must be zero in that region:

vp (7.1)
When B = Bgsr one can write
By = \VBgjr + Bp (7.2)

where Bsyr = CONSTANT.

Differentiation with respect to Bp gives

dBp _ Bp
= —
dBp VBsir - Bp? (7.3)
. . Yr o . T
Since the ratio —— is directly proportional to the scale factors are
Vp dB P

immaterial to our interest in the shape of the MTR, and they therefore
may be set to unity.

The MTR changes from the description of (7.1) to (7.3) at the
point where B = Bgsr: that is, where Hy = Bp/u and Hp = Bp/u. It
is easily shown, after a line or two of algebra, that at this point the

value of Bp is

Bpo = /Bsir — u?Hp? (7.4)

at which place
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Fig. 7.3 General shape of the MTR as predicted by the piecewise hard
saturation model.



dBy
dBp
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MPHp? MHp

Bp = Bpo (7.5)

In these last two expressions positive square roots are to be taken for
Bp in the positive direction. The results of this analysis are shown in

Fig. 7.3.

The flgure shows a discontinuity in at Bp = Bpg which

T
dBp
occurs at the point where the B vector reaches its maximum magnitude,
and, consequently, forces By to begin to change. There is no violation of
fundamentals here, for the discontinuity is not a step change in fluz, but
rather a chénge in the rate of change of flur. There is nothing wrong
with an instantaneous change of voltage across an inductance, and that
is just what happens in this model at Bpg.

According to this model, the response is independent of Hyp tor
Bp > Bpg. The only role played by Hp is to determine the‘point of
discontinuity at HBpg. The result that the magnitude ofv the MTR tends to
infinity as Bp approaches Hgyp is predictable by inspection of Fig. 5.3c,
which shows that the circle of maximum B has a vertical tangent at

Bp = +Bgr.

7.3 Piecewise Model for Soft Saturation

It was shown in the last section that the piecewise model for hard
saturation predicts an unbounded MTR, independent of Hy as Bp approaches

Bgyr. Both these results are caused by the vertical tangent of the limit of
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Fig. 7.4 B-H characteristic for the piecewise soft saturation model
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B in the principal-transverse plane. A closer look at the material
characteristic measured for Fig. 7.1 reveals that, contrary to the
description of the hard saturation model, the flux density is not
asymptotic to a line that is parallel to the H-axis, but rather approaches
a line with non-zero slope. This observation motivates the proposal of
the piecewise model for soft saturation illustrated in Fig. 7.4.

There are several important differences between this model and
the previous one. The major distinction between the two is that the soft
saturation model permits B to exceed Bgyr. The locus of the tip of the
B vector in the principal-transverse plane is not limited by the boundary

of a circle at By,y, but is now described by the relation
B = [\/Hrz + Hp? - HSAT] + Bsar (7.8)

for \/HT! + Hp! > HSAT

The curve described by (7.8), unlike the circular boundary, does
not have a vertical tangent in the principal-transverse plane because the
total B is not limited, but rather increases as a function of Hp and Hp.
The shape of this locus is not precisely known because it is not possible
to solve the equation explicitly for By in this region. This additional
complexity is another major difference between the two models. The
nonzero value for the slope s is a mathematical complication which
obviates the possibility of one’s finding an exact general expression for

the MTR. It is beneficial, however, to look at an approximate expression.
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As in the hard saturation model, we know that the MTR must
be zero in the linear region where B < Bgup. For B = Bgur the

characteristic model of Fig 7.4 is easily inverted to give

(B — Bsar) N Bsur

wB) = 7% [ (7.7)

which may be used either with (6.5) or with (6.11) and (8.12) to find an
approximate expression for the MTR. Either way, it turns out that an
approximate expression can be found for the general case only under the
assumptions that By <& Bp and Hp & Hp. Under those circumstances
the general approximate expressions are valid only for values of Bp equal
to or greater than Hgyp. For a particular characteristic model.> where
the actual numerical values for the parameters are known, one may write
approximate expressions that are valid for a wider range of Bp. In the
absence of such details, however, it is not possible to make such claims
in general.

Use of (B.11) under the constraints of (6.12) gives the

M1
=
3 (7.8)

where it is understood that us < ;. This expression is valid for

approximate relation

M2Bsar

agp =~ ~ Ar

Bp — Bgur

Bp > Bgsr (where the hard saturation model is not defined) if Hp is

sufficiently small. Although this model is of little practical use, it does
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+Bsar
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ig. 7.5 General shape of the MTR as predicted by the piecewise soft

saturation model for the conditions of Bp > Bgsyr and Hy < Hp.
The model, of course, does mnot predict discontinuities at
Bp = +Bsar. but, since good general approrimations cannof be
made in the region between +Bssr, nothing is plotied there.
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show the two important theoretical results, that the MTR is proportional
to Hy and that it tends to zero as Bp -» . Figure 7.5 shows the
general shape of the MTR predicted by (7.8) for Bp = Bgur, Hy < Hp,
and (s <K puy for one arbitrary value of Hp. Although the MTR for this
model is in general not strictly zero for |B| < Bg4r nothing is shown
for that region in the figure because good approximations cannot be

made without the consideration of numerical values.

7.4 Continuous Model for Hard Saturation

The second piecewise model predicted two important features of the
MTR that were not predicted by the first model. The range over which the
second model is valid, however, is rather restricted owing to a lack of
detailed information about the general characteristics of the material. In
each of the piecewise models just discussed, there were only two distinct
slopes associated with the material characteristic and only a single point of
intersection which formed the knee at B = Bgsp. If the number of slopes
and the number of intersections could be increased, more detailed
information about the general shape of the material characteristic could be
incorporated into the model. Consequently, the range of validity would be
increased and the general accuracy of the model would be improved. The
necessary details are held in one's a priori knowledge of the general
properties of the material.

A generalization of the idea of piecewise modelling is to find a
continuous function which more closely approximates the known shape of

the B-H characteristic of the material than the piecewise approximation.
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Fig. 7.6 Plot of the gudermannian.

cosh (x)
sinh (x)

Fig. 7.7 Geomelrical representation of the gudermannian, which relates
the circular (irigonometric) functions to the hyperbolic
(exponential) functions.
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Such a function, if it matched the actual magnetization curve fairly
closely, would be able to predict the behavior of the MTR in the vicinity
of the knee of the B-H curve, which is the region of greatest interest.

For nearly one hundred years there have been attempts to
develop equations to fit magnetization curves [19]. One of the most
attractive continuous functions, first proposed for this purpose by J. D.
Ryder [20], is the gudermannian [21]. Named for the German
mathematician Guderman, who first investigated these functions, the
gudermannian relates the circular functions to the hyperbolic functions

according to the definition
gd(z) = tan™! sinh(z) (7.9)

The gudermannian is plotted in Fig. 7.8 and a geometric interpretation is
given in Fig. 7.7. Notice the remarkable resemblance of the curve in Fig.
7.8 to the measured B-H characteristic of Fig. 7.1.

The first step to continuous modelling is to adapt Eq. (7.9) to

the familiar format of B = M(H) from which one obtains the relation

B =

=l|m

Bgar gd(aH) (7.10)

where a is a constant scale factor having the units of meters/ampere
and Bgyr is the limit of B at an infinite H, analogous to the hard
saturation model of Fig. 7.2. Since this model does possess the hard
saturation characteristic of a horizontal asymptote, one should expect

that the MTR predicted by this model would become infinite as Bp
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approaches Bgyr. This may not be a serious limitation, however, for in
order for Bp to approach Hgur in this model the Hp has to approach
infinity, which requires infinite principal current. Since the ultimate
practical purpose of this entire effort is to prevent an inflnite principal
current by limiting the Bp, the unbounded MTR may not be a serious
defect in the model if in the region of interest Bp is not too close to

Bsar.
The inverse of (7.10), in the form of H = W(B) is

B
1 +
Bsar l (7.11)

W(B) = i-ln tang—

Use of (6.8) through (6.12) gives

m s m
dBp 5 F sec(2 F) In tan ) (1 + F)
—— = —aHr 3
45p In tan = (1 + F
an — +
4 ) (7.12)
where F is a normalized saturation factor deflned as
F Bp h 0=<7F <1
= where
Bsar (7.13)

The first point to note in (7.12) is that the function is directly
proportional to Hp. That is, the magnitude of the MTR should increase
with transverse current. Also, the magnitude is directly proportional to

a, which means it is greater for curves with sharper knees.
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+|

Fig. 7.8 General shape of the MTR as predicted by the continuous hard
saturation model represented by the gudermannian.
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An accurately scaled plot of the properties of the gudermannian,
such as Fig. 7.8, permits one to easily verify that Eq. (7.12) is valid for
all practical regions of interest on the B-H curve. That is, for practical
cases the condition of (8.12) is well satisfied. Repeated applications of
L'Hospital’'s Rule enable one to verify that Eq. (7.12) is indeed unbounded
as Bp approaches Hgsr and that the limit is zero as Bp goes to zero.

The result of a numerical evaluation of (7.12) for arbitrary a
and Hp is plotted in Fig. 7.8 to show the general shape of the predicted

MTR.

7.5 Continuous Model for Soft Saturation

The next and final level of sophistication is to introduce a finite
slope to the asymptotes of the gudermannian to more closely approximate
the characteristic of the real device. A model can be formulated in principle
simply by adding a linear term to the previous description of (7.10). This
gives a relation of the form

_ 2
B = ﬂ—BSAT gd(aH) + cH (7.14)

where ¢ is a positive constant. The addition of this linear term corresponds
to an effective counterclockwise rotation of the curve in Fig. 7.8 about the
origin of the B-H axes. This modification is easy enough, but it introduces
the complication that the inversion of (7.14) to the form H = W(B) is quite
hopeless. An alternative way to approach the problem is to modify (7.11)

e

such that it retains its original characteristics for small values of H, but
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Fig. 7.9 Modified gudermannian funcltion for the continuous soft
saturation model The particular modification wused in this
analysis is valid only in the first quadrant,

dB,

= A

dB,

Pig. 7.10 General shape of the MTR as predicted by the continuous soft
saturation model. The resulis of the analysis are wvalid only
in the fourth quadrant owing to the limitations of the modified
characteristic of Fig. 7.9.
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has a finite slope for large values. The procedure is first to take the
derivative of (7.11), then multiply the result by a suitable function to
prevent the slope from blowing up at B = Bgspr, and finally integrate to .
obtain the properly modified W(B). This modified function can be quite
complicated, and reversion to the form of B = M(H) is usually not
possible.  Also, the modifled functions may not have the desired
characteristics for all values of B or H, since the range of validity
depends on the choice of the multiplier for the derivative, for which
many functions are possible. 7

A soft saturation model has been derived by application of the
above procedure and the results are given in Figs. 7.9 and 7.10. Figure
7.9 is actually a rotated plot of the modified W(B) expression and Fig.
7.10 is a plot of a very large expression resulting from substitution of
W(B) into (6.11). The details are not important, and presentation of the
messy derivation here would only show that the resulting expressions are
too complicated to be of much practical use. The flgures portray only a
single quadrant because the particular modification presented here does
not work for negative values of B and H. As one would expect, a soft
saturation model predicts a bounded MTR, and the portion of the curve
ﬁo the right of Bgupr in Fig. 7.10 is similar in shape to that of the

piecewise soft saturation model of Fig. 7.5.
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»
7.8 The Inductance Analogy

The interaction of orthogonal magnetic flelds is a first-order
nonlinear phenomenon - it works solely because of nonlinear eflects. For
this reason the treatment of the subject thus far has avoided the use of
terms and ideas which have been developed exclusively for linear problems.
Although this approach leads to an explanation of the effect that is correct
on fundamental physical grounds, it unfortunately lacks a close tie to the
more familiar "intuitive" principles of linear magnetism with which an
engineer may feel more comfortable. This section offers an alternative
explanation of the phenomenon in terms of more familiar linear models.

From Eqs. (5.2) and (5.4) we can write the exact relation

H(VEF ¥ B

Br = H
T VAR T B (7.15)

Now, if Hp < Hp we can make the approximation

M(Hp)

Bp N H
d T\ Hp (7.18)

Suppose that Hp were held constant and Hy were varied by an infinitesimal

amount. Then the variation in By with respect to Hp would be

dBr _ M(Hp)
dHp Hp (7.17)
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Substitution of (7.17) back into (7.18) results in the

dByp
dHp (7.18)

Use of the chain rule of calculus and Ampere's Law gives

approximation

Br ® Hyp

dBy _ dBy dlp _ dBp [lig)
dHp ~ dly dHp ~ dlp |Nr] (7.19)
Since By = $p/Ap. Eq. (7.19) can be written as
dBr _ ddp [ lp |
dHy = dly |NrAp) (7.20)

Now, if we define the incremental transverse inductance to be

Ir = N ddp
T = 7T 4rp (7.21)
then from (7.18) and (7.20) we get
Bp ~ Hplp —Z
T T*T Np24p (7.22)

But by Ampere's Law this can be written as

Iy
NrAr

BT RS LT

(7.23)

Finally, from (5.8), since Iy, Ny, and Ar are all constants, we arrive at
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the desired result for the transverse voltage:

dLp

vr 8 It — (7.24)

Equation (7.24) says that the transverse voltage is approximately
equal to the transverse current (which is constant) multiplied by the rate
of change of the incremental inductance measured in the transverse
direction. Most working engineers should find some degree of comfort in
this explanation, for it relates a foreign idea of the nonlinearity of a
magnetic material to the familiar notion of a rate of change of the value
of a linear circuit quantity. A similar idea has been used historically in
discussions of electric machinery, where, for different reasons and
definitions of V, L, and /, it has been useful to think in terms of the

relationship

dl , ,dL

d
V=g @) =L+ Ig (7.25)

The change of inductance in (7.24) might also be interpreted as
a variance in the slope of the B-H curve, if that slope may be thoughﬁ
of as an "incremental permeability,” ;. This can be seen by substitution
of ®p = BpdAp = u;HpApr in (7.21).

There are several cautions which should be heeded regarding the
use of the inductance analogy (7.24). The foremost caveat is that even
though the inequality Hy <« Hp may be very well satisfled, (7.24) is
fundamentally incorrect. This is because the above derivation relies on

the validity of the differential equation of (7.18), whose only solution is
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By = pHp, the linear case in which the transverse voltage must be
identically zero. Therefore, one should not expect the the approximation
of (7.24) to be meaningful where the material is highly nonlinear.

A further caution should be made with regard to attempts to
make numerical predictions of vy from measurements of incremental
inductance in the transverse direction. The major difficulty here is with
the definition of the inductance ferm. Lp. Equation (7.21) defines the
incremental inductance in a strictly mathematical sense, and no easy way
has been found to relate this definition, based on the large signal B-H
characteristic, to any measurable small-signal quantity [18, 22].

Although the inductance analogy of (7.24) is not completely
correct in a rigorous sense, the idea is nevertheless an extremely useful
one. It will be seen in the remaining sections that the application of the
idea of the rate of change of the slope of the B-H characteristic enables
one to make reasonable qualitative predictions about the shape of the

MTR.
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CHAPTER B8
MEASUREMENT OF THE TRANSFER RATIO

The two previous chapters have introduced theorsetical tools and
mathematical models to describe and to exploit the phenomenon of
nonlinear interactions of perpendicular flelds. In Chapter 8 the Magnetic
Transfer Ratio (MTR) was introduced as a dimensionless quantity which
could be useful for modelling and design. Chapter 7 developed four models
to describe typical B-H characteristics of ferrite materials and used the
expressions which were developed in Chapter 8 to predict the MTR from
those models. Now, in this chapter, the Transfer Ratio will be measured on
a ferrite transformer core to examine the true nature of the phenomenon

and to evaluate the models.

8.1 Instrumentation

The measurements given in this section were taken on an RM10
core of H7C1 material manufactured by TDK. This is similar in struecture to
the pot core pictured in Fig. 5.7a. ’The core was excited with an ac-coupled
square-wave voltage at a frequency of 30 kHz on a principal winding of five
turns. The transverse fleld was applied with a 100 mA constant current
source on a single-turn transverse winding. An ac clip-on current probe
measured the principal current and a dc ammeter monitored the transverse

current.
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A Tektronix 7854 digital oscilloscope was used to acquire the
analog information and process the data numerically. The MTR was
obtained by division of the digitized waveforms of vy and wvp. Flux
densities were obtained by integration of the voltage on a single turn and
division by the appropriate cross-sectional area. The areas and mean path
lengths were coxznputed from measured dimensions of the particular core.
Because the structure is rather oddly shaped, one must take care to
obtain values for the areas and path lengths which are effectively those
which would be used to characterize the imaginary hollow toroid of Fig.
5.8. To check the validity of the values obtained, B-H characteristics
were measured separately in both the principal and transverse directions
and the results compared to the manufacturer’'s curves for that material,
which were measured on a standard toroid. The digitized waveforms were
then stored on the floppy disc of a Hewlett-Packard 9828 desktop
computer for subsequent‘ plotting, comparison, and for archival storage.

Although these instruments offer obvious advantages over other
more conventional means of measurement, the use of such highly
sophisticated equipment is by no means required for the study and
characterization of the MTR. The same information may be obtained in
real time with conventional analog instrumentation. In fact, this simpler
method may actually be preferable for use in the design process. The
designer is most interested in the transverse voltage vy, which is just the
MTR multiplied by vp as deflned in Eq. (8.18). If vp is a rectangular

pulse-like waveform (nearly always true in dc-dc power converters), then
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the transformer will be energized by a vp of constant magnitude but

alternating polarity. During the intervals where ¥p is constant, the flux

dB
density Bp is directly proportional to time. Consequently, _dBT will
P

B
have the same shape as ) tT. This being the case, it is clear from Eq.

(6.19) that the transverse voltage as a function of time is an exact
replica of the MTR repeated at twice the frequency of vp. Therefore, the
necessary information is easily obtained with conventional instruments,
and the data can be taken on transformers under actual operating
conditions in situ on a power supply breadboard. The transverse voltage
shown in the oscilloscope photograph of Fig. 6.2a is then actually a

measurement of the MTR.

8.2 Salient Features

Figure 8.1 is the B-H characteristic of the RM10 core as measured
on the principal winding. Strictly speaking, this is really a ¢ versus / plot
scaled by effective linear dimensions of the structure to arrive at an effective
B and H. Although this is not precisely the actual intrinsic characteristic
of the material owing to the presence of nonuniform flelds within the
structure, it is assumed to bé adequate for the purposes of this study. One
should be aware of the effects of nonuniform flelds on such measurements,
and further discussions of this topic can be found in [23].

Figure 8.2 shows the MTR measured for the same excitation used to
produce Fig. 8.1. Since both vy and vp were measured with respect to a

single turn, the MTR given here is normalized to the equivalent of a single
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Fig. 8.1 Repeat of Fig. 7.1, measured B-H characleristic of an KM10
core of H7C!1 malerial,
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Fig. 8.2 Magnetic transfer ratio (MTR) for the characteristic of Fig. 8.1.

Transverse current is 100mA in a single turn. The
measurement was made as the material went from a region of
negative saturation Lo posilive saturation. The MTR 1is mnot

symmetric because the curvature of the B-H characteristic as
the material leaves saturation is different from when il enters
saturation.
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turn on both the principal and transverse windings.

Owing to magnetic hysteresis, the material has different dynamic
properties for increasing and decreasing flelds. This eflect can be seen
as differences in curvature at the knees of the B-H curve for increasing
and decreasing B and is manifested in the asymmetry of the MTR.
Another eflect of hysteresis is that the MTR does not cross zero at
Bp = 0. This shows that the actual B vector in the material lags the
position inferred from integration of the terminal voltages. Hysteresis in
the transverse direction can leave a remanent flux bias such that a small
transverse voltage can appear on the transverse winding even after the
transverse current is brought to zero. However, if the core is driven into
hard saturation from the principal winding so that nearly all the
magnetic domains are aligned in the principal direction, the residual
transverse bias disappears.

Probably the most notable feature of Fig. 8.2 is that the
magnitude of the MTR, and hence the transverse voltage, does not
increase without bound as Bp gets larger, but rather has a definite limit.
Recall that this is contrary to the qualitative picture given by the simple
hard-saturation models but is predicted by the soft-saturation models
developed in Chapter 8.

An interesting and informative illustration is given in Fig. 8.3,
which shows the ac variation in transverse flux density HBp plotted against
the variation in principal flux density Bp over an entire period of vp.

The arrows show how the trajectory is traced out in time. Since these
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Fig. 8.3 Plot of the lransverse Auz densily Br wversus the principal fluz
density Bp for the RM10 core of H7C! material. By on the
vertical azxis is 0.01 tesla per division while Bp is 0.1 tesla per
division. The scales are nol labeled because it is impossible to
determine the frue position of the origin from only ac
measurements. This clearly shows that, owing to the complex
physics of the magnetization process, the way the material
leaves a region of saturation is different from the way it
approaches saturation.
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are only ac measurements, the absolute magnitudes of the flux densities
are unknown and no effort has been made to determine them. The axes
-in Fig. B.3, however, have been positioned to achieve a qualitative
resemblance to the locus of B in Fig. 8.1.

A rather subtle feature of Fig. 8.3 is that the curve is not
perfectly symmetric with respect to any set of axes. This is caused
partly by remanent B-flelds and partly by imperfections and asymmetries
both in the core and in the driving voltage waveform. Because it is
physically impossible to make a structure so that the transverse and
principal directions are ezactly perpendicular everywhere, there will always
be some degree of direct coupling between the two windings. Thus a
very small signal at the frequency of the principal voltage will be present
on the transverse winding even when the transverse current is zero. In
other words, one should not expect the fundamental frequency of vy to
be twice that of ¥p unless the core and drive waveforms are perfectly
symmetrical and Hp has no dc offset.

Hysteresis is responsible for the large change in the slope of the
curve of Fig. B.3 as HPp increases in the positive direction (from —Bp to
+Bp) or increases in the negative direction (from +Bp to —Bp). This
effect gives the MTR a greater magnitude in the fourth quadrant than it
has in the second quadrant (Fig. 8.2). Since this asymmetry seems to be
a natural characteristic of all ferrites, the measured MTR will have its
greatest magnitude in only one quadrant, and only that part will be

shown in subsequent figures.
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An important observation is the change in magnitude of the MTR
as a function of transverse current. This is illustrated in Fig. 8.4, which
shows the fourth quadrant of several MTRs for this core for different
values of transverse current [p. Note that more transverse current
(greater Hp) produces a greater magnitude MTR for the same principal
excitation. The trend shown in these curves is consistent with the
qualitative predictions given by all the models in Chapter 8 except for
the oversimplified piecewise model for hard saturation, which predicts a
curve of the same magnitude for all values of Hp.

This chapter has presented a preliminary examination of the
characteristics of the Magnetic Transfer Ratio measured on a typical
ferrite core. The remarkable similarity of the measurements to the
predictions of the earlier analysis demonstrates that often very simple
engineering models can be used effectively to understand a problem which
at the outset may seem hopelessly complicated. The next chapter will
examine in more detail several aspects of the the measured MTR which

have great practical importance.
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Pig. 8.4 Fourth quadrant plot of the MTR of the RM10 core for different
currents in the transverse winding. The increase in magnitude
with increasing dc bias current is qualitatively consistent with
the predictions of Chapter 6. The artificial waviness of the
curves is the resull of digilal processing and expansion of data
points.
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CHAPTER 9
EXPERIMENTAL OBSERVATIONS

In the last chapter some measured MTRs were presented and their
salient features were compared to the predictions of the analytical models
developed earlier. Because the models predict that the magnitude should be
a strong function of the transverse fleld Hp, MTRs for several different bias
currents were displayed in Fig. 8.4. The response of the MTR to changes in
transverse bias, however, is only a small part of the total picture. The
nonlinear characteristics of the particular magnetic material determine the
response of the MTR, and these characteristics are strong functions of
several variables which the designer cannot always control. This chapter
takes a closer empirical look at some of the more important parameters
which affect the MTR, and discusses how they influence the engineering

applications of this phenomenon.

9.1 Characterization for Design

Because wide variations are possible in the nonlinear characteristics
of magnetic materials, it is practically impossible to construct a simple
universal model that is very accurate and at the same time useful for design
purposes. The most reasonable course for a designer to take is not to
attempt to calculate every minute detail of the response, but rather to know

the trends and the bounds of the response as a result of expected changes
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in the operating conditions. When this information is reinforced by the
understanding which comes from a general analysis, one can produce a
sound design. Such is the case in the traditional design of conventional
magnetic devices. The properties and performance of the various
magnetic materials are not calculated, but are merely measured and
cataloged. The designer uses the information provided together with his
understanding of the basic principles of operation to arrive at a design
which meets the requirements over a range of known operating
conditions. For these reasons, the MTR is proposed as a fundamental
descriptive characterization of a magnetic material which may rightfully
appear on data sheets along with the more traditional B-H characteristics
and core-loss information.

The description of this technique to detect impending magnetic
saturation by the introduction of a perpendicular field is almost
complete. The principles of operation have been established along with
practical descriptive expressions which one can use for design. The only
step remaining is to characterize the MTR for variations in magnetic

materials, physical environment, and different operating conditions.

9.2 Variations with Transverse Bias

According to Eq. (6.21) the general analysis predicts that the
magnitude of the MTR should be directly proportional to the transverse
current [p. This is, of course, subject to the satisfaction of the inequalities
(6.8) and (B8.12). To test the validity of this claim, MTRs for the same core

and conditions described previously in Chapter 8 were measured at several



88

different values of /p. The peak value of the magnitude of each MTR is
plotted against its transverse current in Figs. 9.1 and 9.2. From the
figures it is quite clear that the MTR is indeed directly proportional to Ip
for small values of transverse bias (Fig. 9.1), but the relationship deviates
from that rule, as expected, at high values of Ip (Fig. 9.2). It one uses
the actual dimensions of this core, it is easy to compute from these
graphs that the relationship begins to deviate from a straight line when
the ratio between Hp and Hp is larger than approximately 1/10. The
fact that the deviation does occur, however, is really of no practical
consequence as long as the designer knows the true relationship for his
particular type of core at a particular set of operating conditions.
Moreover, large biases are usually not required; the transverse bias needs
to be only large enough to swamp out the effects of noise and parasitic
hysteresis on the transverse voltage signal. The currents given in the
figures may seem rather large because these data are referred to a
single-turn transverse winding. The same magnitude of transverse voltage
can be obtained with reduced /Iy if Np is increased. This relationship is

shown explicitly in Eq. (8.21).

9.3 Variations with Flux Excursion

The fact that the magnitude of the MTR, and hence the transverse
voltage, does not increase indefinitely with flux density may at first appear
to be a serious limitation on the utility of this technique. These doubts are
quickly put aside, however, when one makes a closer comparison between the

MTR and the measured B-H characteristic of the material.
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It turns out that in practice a designer would generally not want
to permit the flux excursion to come very near to the point of peak
MTR, because at that level of excitation the principal current begins to
get unreasonably large, and it is desirable to stop the excursion short of
this point with some margin to spare. Thus, in practice, the MTR would
not usually be measured at the extended excursions demonstrated in the
previous sections.

Unfortunately, it is a fact of life that the characteristics of the
material generally depend on the characteristics of the excitation: the
shape of the B-H characteristic changes according to the magnitude and
spectral content of the flux excursion. Since all variations with all
possible combinations of these parameters are much too numerous to be
given in this presentation, only the variations in MTR with flux excursion
for voltage drives of a single waveshape (square wave) at a single
frequency (30 kHz) will be shown.

Figure 9.3 gives several MTRs for the same RM10 core for various
peak flux densities. There are substantial differences in the magnitudes
for different excursions, but luckily the changes occur in a favorable
direction. Note that in all the cases of Fig. 9.3, for a given flux density,
the magnitude of the MTR gets larger for smaller flux excursions. This
means that if a designer were to set a limit on the peak flux density
from an MTR measured for an excursion that was larger than he desired,
then the flux would be actually limited at a somewhat lower level. Thus

there would be an extra margin of safety built into the design.
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Fig. 9.3 The MTR of an RM10 core of H7Cl1 material for wvarious
excursions of mazximum flux density. Transverse current is
100mA in one turn.
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9.4 Variations with Material Composition

Ferrite materials are commercially available in many different
compositions, and each is distinguished from the others by a unique B-H
characteristic. It is only natural, then, to expect that the MTRs of different
ferrites should in some way reflect these fundamental differences in the
individual materials.

Consider the two measured B-H characteristics in Fig. 9.4, for
example. The data for the curve in Fig. 9.4a were obtained from the TDK
RM10 core of H7C1 material which has been discussed previously. The curve
in Fig. 9.4b was measured on a Ferroxcube 2616 pot core of 3CB material.
Aside from the differences in maximum flux density, the two curves are quite
unalike in that they have distinctly different shapes. The H7C1 material of
(a) has nearly a straight-line characteristic below the knee of the curve, but
it begins to bend rather sharply with increasing Hp. In contrast to this
behavior is the 3C8 material in (b), whose characteristic is rather S-shaped
below the knee, and then curves gradually as it begins to saturate. From
the inductance analogy of Section 7.8 or from an understanding of the
general analysis, one would expect a material with a sharper curvature in its
B-H characteristic to have a greater MTR. Thié prediction is indeed correct,
as shown by the comparison of the MTRs in Fig. 9.5. The gradual S-shaped
bending observed in the B-H characteristic of 3CB results in an MTR which is

quite remarkably different from that of the H7C1 material.
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Fig. 9.4 Comparison of the principal B-H characteristics of an RM10 core
of H7C1 material, (a), and a 2616 pot core of 3C8 material,
(b). Comparison with measurements of these characteristics in
the transverse direction and also with manufacturers’ data
taken on toroids of the same material show that the small
geometrical differences in the two cores have an insignificant
effect on the general shapes of the curves,
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Since the gudermannian function closely resembles the actual B-
H characteristic of H7Cl it is able to model the salient features of that
MTR quite well. It is not a very good mathematical model for 3C8,
however, and thus one should not expect the gudermannian to yield a
very good prediction of that MTR. On the other hand, note that the
soft-saturation model still accurately predicts that the MTRs tend to zero
for large values of Bp. Figure 9.8 shows a magnified detail of a
comparison of the two B-H characteristics in the first quadrant. The
differences in the curvatures in the vicinity of the knees of the curves
are apparent. It is unfortunate that these two materials were not
available for testing in exactly the same core geometry, for such a test
would leave no doubt that the differences in the MTRs are the result of
different materials and not different geometries. However, because the
two cores are so similar in structure and have nearly identical critical
dimensions, it is most unlikely that the small differences in structure
could have more than a second order influence on the dramatic
dissimilarities of the two MTRs.

For another comparison, refer to Fig. 9.7, which shows the MTRs
for three 2616 pot cores of bthree different ferrite compositions:
Ferroxcube 3C8 and 3B7 and Magnetics F material. One can deduce
from the figure that the 3B7 and F materials have B-H characteristics
with approximately the same shape with the F material saturating at a
higher flux density. Both these materials have characteristics which are

more linear below the knee than 3CB, but not nearly as linear as H7Cl.
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Fig. 8.7 MTRs of three 26168 pot cores of different materials. Transverse
current is 100mA on a single lturn. This comparison shows that
these three materials should have similar B-H characteristics,
and this is supported by measurements,
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The ability of the MTR to chart the subtle differences in the
nonlinearities of magnetic materials suggests that measurement of the
MTR may be a means by which materials might be readily identified.
This idea has not been thoroughly investigated, and it invites further
work to test the reliability of the MTR as a means of '"fingerprinting”
magnetic materials. One possible application is that it could be the
basis of a simple test method for inspection and quality control in the

manufacturing process.

9.5 Variations with Temperature

Of all the environmental conditions which affect the characteristics
of magnetic materials, changes in temperature are probably the most
influential and are therefore of great concern to the designer. Figure 9.8
illustrates the scope of this problem. The B-H characteristics in the figure
are of H7C1 material for two extremes in temperature, —55°C and +150°C.
The saturation flux density changes by a factor of two over this temperature
range, and the width of the loop shows a similar variation.

This observation immediately leads one to question the suitability of
this sensing technique for large variations in temperature. The data in Fig.
9.9 were taken in response to these concerns. The figure shows several MTRs
of H7C1 material for various temperatures in the range of —=55°C to +150°C
at a transverse current of 100 mA. As one would expect, the MTR does
change substantially with temperature; but, fortunately, it changes in a
favorable direction. Note that as the temperature increases and the

saturation flux density retreats to lower values, the magnitude of the MTR
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increases. This means that if a limit for the peak flux density were set
from a low-temperature MTR, then the FBp would be restricted to a
smaller excursion at higher temperatures. One must be certain, however,
to consider the MTR for the lowest temperature expected, for otherwise it
is possible to lose protection as a result of reduced transverse voltage
when the transformer gets cold.

For H7C1l, as can bre seen from Figs. 9.8 and 9.9, the MTR is
more sensitive to changes in temperature than a designer might desire
for optimum performance. To be more specific, if one wanted to use the
entire available flux swing at —55°C, say +0.4 tesla, he would monitor
the transverse voltage and cut off the excitation of the transformer when
vp reached a level corresponding to an MTR of about —0.2. But then at
+150°C his circuit would limit the flux swing to roughly +0.15 tesla, or
about 75% of what is available at that temperature. This is only a small
imperfectidn. considering the large temperature variation of over 200
degrees, but the performance can be improved if desired.

One can compensate for the non-ideal response to changes in
temperature by proper variation of the transverse current. For the case
illustrated here, one would waﬁt the Jp to decrease at higher
temperatures. This is not difficult, for as the next chapter will
demonstrate, a genuine current source is not required for the generation
of Iy - just a voltage source and a single resistor will suffice. Thus it
is a simple matter to make the transverse current temperature-

dependent: a thermistor with the proper temperature coefficient is all
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that should be required. When one compensates for temperature effects
he should remember that since the storage time of power transistors
typically increases with temperature, some additional margin in the design

is desirable at high temperatures.
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CHAPTER 10
PRACTICAL IMPLEMENTATIONS

In this section two practical circuits are shown which use a
perpendicular field to sense the level of flux in a powef transformer. One
circuit is a relatively low power (100W) free-running push-pull converter
which depends on the transverse voltage to toggle its two power transistors.
This converter, running open loop, illustrates the simplicity of the idea in a
straightforward and uncluttered manner. The other circuit is a 4kW push-
pull buck converter which uses the transverse voltage signal to keep the
power transformer out of saturation. This example shows how the sensing
technique can easily be used in a high-power system to maintain high

reliability without need for excessive overdesign in the power transformer.

10.1 Low-Power Free-Running Converter

Figure 10.1a is a schematic diagram of the entire power-processing
circuitry for this simple converter. The purpose of the converter is to take
a dc input, nominally 12 volts from a storage battery or automobile
electrical system, and provide positive and negative dc outputs at
approximately twice the input voltage for use by an audio power amplifier.
The input voltage is "chopped” by the two D44H10 power transistors which
alternately switch on and off to deliver a square wave of +12 volts to the

primary of the power transformer. The primary voltage is stepped up by the
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1:2 turns ratio and full-wave rectified by the diode bridge. Since precise
regul;tion of the output voltages is not required for this application,
neither inductive energy storage nor pulse-width modulated control is
needed. The absence of these requirements permits this extremely simple
power supply to be highly efficient and very densely packaged.

The schematic of the control circuitry is shown in Fig. 10.1b.
The complete control circuit consists of a comparator, one flip-flop, two
drivers for the power transistors, and some nominal protection circuitry.
The comparator trips when the transverse voltage reaches approximately
-1 volt to toggle the flip-flop and complement the states of the power
transistors. At an input voltage of 12 volts, each transistor is on and off
for about 16 wus, and thus the transformer sees a square wave at a
frequency of about 30kHz.

Figure 10.2 shows some pertinent waveforms from this converter
as it runs unloaded. The top trace is one-fifth of the principal voltage,
taken from a single-turn sense winding. The scale is 2.5 volts per
division. The center trace shows the principal current measured from
the collector currents with an ac clip-on current probe. This scale is
500mA per division. The bottom trace is the transverse voltage at one
volt per division. Note how this shape resembles the MTRs as discussed
previously in Chapter 8. The signal from the transverse winding of §
turns is quite clean and uncorrupted by noise with a transverse bias of

only about 10mA derived from a single resistor and the 5-volt bias

supply.
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Pig. 10.2

Some relevant waveforms for the 100W free-running push-pull
converter with no load. The top trace is the principal voltage,
center is the principal current (proportional to Hp) and the
bottom 1is the woltage on the transverse winding. Note how the
transverse vollage is the same shape as the MTR. PBecause the
input voltage is dc, the MTR can be easily measured directly
Jrom the breadboard with conventional instruments.
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To evaluate the performance over temperature of the sensing
technique without any thermal compensation, the transformer was
detached from the rest of the assembly and was heated and cooled from
+150°C to -55°C. TFigure 10.3 shows the MTRs measured on the
transformer while it was operating over this temperature range. The
measurements are not shown in their entirety, but rather are truncated
close to the ends of their actual excursions. The last few points on the -
curves could not be taken as legitimate parts of the MTR owing to the
ever-present parasitic voltage spikes at the switching transitions: therefore,
to avoid confusion they were not plotted in Fig. 10.3. Note from the
maximum flux densities shown in the figure that this design is a rather
conservative one, as the room-temperature flux density is limited to less
than 0.3 tesla. As the MTR increases in magnitude with increasing
temperature, the comparator causes the power transistors to toggle
sooner, and, consequently, the converter runs at a higher frequency. At
+150°C the comparator’'s trip-level corresponds to a maximum flux
density of about 0.1 tesla, and the converter then operates at a

frequency of approximately 70kHz from a 12 volt supply.

10.2 High-Power Constant-Frequency Converter

This section presents an example of the use of the saturation-
detector as applied to a 4kW push-pull back converter which switches at a
constant frequency of 20kHz. Some simple refinements are made to the
detection circuitry of the free-running converter of the previous section to

compensate for variations in input voltage and enhance reliability in noisy
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environments. Schematic diagrams of the essential circuitry are given
and typical waveforms are shown. The latter are especially interesting as
they very nicely illustrate the circuit’s ability to govern the flux excursion

of the transformer.

p Circuit

Figure 10.4 is a schematic diagram of the power-processing
circuit of this converter, which is part of a prototype inverter designed
to interface a solar power system to the 80Hz ac power line [24]. The
power transtormer is a TDK EIC90 core of H7Cl1 material with a foil-
wound primary and secondary. The two-turn transverse winding is wound
with regular insulated wire through a 3.5mm-diameter hole drilled through
the center leg. The hole was made with an inexpensive diamond-tipped
core-drill. Figure 10.5 is an illustration of the power transformer which
shows a single-turn transverse winding.

The transformer was designed to support a maximum
magnetization current of about 2A (referred to the primary) while the
maximum primary current is S50A. The new sensing technique makes it
easy to keep the magnetization current within this limit at any power

level or operating condition.
Control Circuitry
The essential parts of the control circuit are detailed in Fig.

10.8. The signal from the transverse winding is used to truncate the on-

time of either power transistor as necessary to prevent the flux in the
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has two turns for the transverse winding. Since most of the
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the two cores even though their overall geomeiries are quite
different. '
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transformer from exceeding a selected maximum. The circuit terminates
the on-time if any one of three events occurs: (1) the ramp voltage
exceeds the control voltage; (2) the current in either transistor exceeds
the current-limit threshold; (3) the flux density in the transformer
exceeds 0.3 tesla.

The transverse winding is biased with -13mA by a resistor
connected to -5V, which is a simple but adequate current source. This
gives a positive transverse voltage to indicate the approach to saturation,
because the negative transverse current causes the voltage signal to be
the inverse of the waveform shown in the last section. The inversion was
done to facilitate a refinement to the detection operation. The threshold
of the comparator is no longer constant, but rather is proportional to
the converter's input voltage. This feature, which should be standard
practice on all designs, makes the saturation detector independent of the
converter's input voltage. (Recall that the transverse voltage is directly
proportional to the principal voltage.) This addition is an improvement
over the simpler constant-threshold design, which dangerously permits a
greater maximum flux density at lower imput voltages. The f{ree-running
converter described in Section B.1 does not face this problem because its
input voltage is fairly well regulated.

In contrast to the free-running converter, this circuit does not
maintain zero flux offset, but merely keeps the maximum flux density
between the limits of +0.3 tesla. Figure 10.7 makes this distinction

clear. Tigure 10.7a is a typical unrestricted B-H loop. The dashed lines
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indicate the boundaries of permissible flux density. Owing to natural
asymmetries in the power-processing circuit, a small de magnetization
current will usually build in the transformer such that the flux excursion
will not be centered between the two limits, but rather will drift to one
end of the permissible operating region, as shown in Fig. 10.7b. Thus
the normal mode of operation is that one power transistor is turned off
by the ramp comparator while the other is turned off by the saturation-
detector. The on-time of the second switch is made shorter than that of
the first by typically a few hundred nanoseconds to maintain the volt-
second balance. At light loads and at low duty factors, the extremes of
the flux excursion \may drift away from each limit and become naturally
centered as in Fig. 10.7c. In this case the saturation-detector does not
truncate the on-times of the switches because the transverse voltage
never reaches the threshold of the comparator.

Figure 10.Ba shows typical waveforms. The upper trace is the
primary voltage measured at the collector of one of the switches, and the
lower trace is the transverse voltage. The fact the the flux excursion is
being limited at one of the boundaries, as indicated in Fig. 10.7b, is
clearly shown by the asymmetry of the transverse voltage signal. Recall
that one should expect the frequency of the transverse voltage waveform
to be twice that of the principal voltage only under conditions of perfect
symmetry.

A further refinement to the detection -circuitry is that the

transverse signal is low-pass flltered by a 0.5 us RC before it is fed to
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ig. 10.8 Waveforms from the 4kW converter. In (a) the primary voltage

is in the top trace and the unfillered transverse voltage is at
the bottom. The transverse voltage tells that the peak flux is
being limited only on one side of the loop. The photograph in
(b) shows the pure transverse voltage in the top trace and the
filtered and strobed signal which goes to the comparator.
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the comparator. The fllitering eliminates false triggering from spurious
voltage spikes induced by the high electromagnetic fields in the vicinity of
the detector. Also, it was necessary to sirobe the transverse voltage
signal to maintain reliable operation at very high duty ratios. Because of
transistor storage time, the transverse voltage overshoots the threshold,
and, owing to parasitic effects believed to be caused by eddy currents in
the core, the voltage remains above the threshold for a few microseconds
after the transistor turns off. Without the strobe, this hold-up of the
transverse voltage can cause the other transistor to be turned off at the
beginning of its on-time. The simple strobe was implemented with a
single fleld-eflect transistor and two RC networks which hold the input to
the comparator low for 10 us following the turn-off signal. The filtered
and strobed signal is shown in the lower trace of Fig. 10.8b relative to

the pure transverse voltage signal in the upper trace.

10.3 Notes on Engineering Applications

In support of the examples presented in the previous sections, and
as a general aid to design, this section offers some brief footnotes to
facilitate the implementation of this technique to detect impending magnetic
saturation.

The first note is concerned with the determination of the cross-
sectional areas and lengths of the magnetic paths, which are of interest to
the designer for scaling purposes. One can clearly see from Eq. (6.31) that
if the behavior of the MTR is known for one core of a particular material,

then it can easily be scaled for another core of a different size and geometry
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it the appropriate dimensions are known. Unfortunately, the areas and
the path lengths for both the principal and transverse directions are
usually not given explicitly on manufacturers’ data sheets. Therefore, the
designer must wusually compute these quantities from the mechanical
dimensions of the structure.

Special consideration should be given to the principal area,
because the correct value for Ap is usually not the same as the eflective
area A; that is given on the data sheets. For most pot cores and RM
cores the A4, on the data sheet is the area enclosed by the
circumference of the center post. To obtain the correct principal area
from Ag. then, one would have to subtract the area of the center hole.
Since the area required to determine the flux density in the material is
the actual area of the ferrite according to the assumptions in Chapter 4,
the area not occupied by ferrite must be excluded.

The second note involves the general use of the technique. The
practical examples demonstrated in this chapter require a net dc current
to flow in the primary of the power transformer to compensate for
excessive magnetization current which is supplied from the secondary.
Therefore, the method of flux control shown here cannot be used when
only the primary is dc blocked, as in the half-bridge converter. This
limitation does not depreciate the orthogonal flux-sensing technique,
however, because the difficulty is not related to the method by which the
flux is sensed, but is a consequence of the manner in which the dec flux

is limited. A study of special circuit techniques to limit flux for this
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class of converters is a possible topic for future research.

Finally, because the flux density in practical structures is not
uniform throughout, not all parts of a real magnetic device saturate at
the same time. Although the MTRs given for difflerent magnetic
structures in this presentation are qualitatively very similar, one should
not assume that the shapes shown here are representative of all
structures., Because it is possible that the transverse voltage observed on
other transformer structures may be somewhat different from that
expected from a more ideal geometry, it is advisable to characterize
other geometries to evaluate their suitability to this method of detection

before any design is begun.
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CHAPTER 11
CONCLUSION

In contrast to other disciplines of modern Electrical Engineering,
the emerging field of Power Electronics emphasizes the eficient processing of
power rather than the distortionless processing of information. Because
dissipative elements are forbidden in circuits which process power, the
elements available to the designer of a power-processing system are limited
to switches, capacitors, and magnetic devices. The magnetic device has thus
been elevated to a position of greater importance and higher visibility, driven
by the need for improved performance and greater sophistication in the
circuits which process and control electrical energy. One of the basic
problems encountered in the use of magnetic devices is the avoidance of
undesired saturation of magnetic material, particularly in power
transformers.

Part 1 of this thesis has presented a new active method to detect
the impending saturation of power transformers, particularly for use by
designers of switched-mode power converters. This technique offers a simple
and straightforward solution to the problems of degraded performance and
catastrophic failures which can result from saturation of the power

t.ransfprmer.
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The method exploits a first-order nonﬁr;ear effect, in which two
perpendicular magnetic flelds interact in the transformer’'s core to
produce a voltage signal which is related to the total flux. This signal
can be used directly by the converter's control circuitry to prevent
further increase in flux density, and thereby protect the converter from
the undesirable effects of saturation. An especially attractive feature of
this flux-sensing technique is that it can be implemented directly on
many standard, off-the-shelf ferrite cores without any mechanical
modifications. In other configurations, only a small modification is
required which does not introduce any unwanted air gaps or otherwise
affect the length of the magnetic path.

One of the two perpendicular flelds in the core is produced by
the voltages on the conventional primary and secondary windings. The
other field is introduced by an additional winding, transverse to both
primary and secondary, which carries a few milliamps of dc current. The
voltage which appears across the transverse winding outlines the
nonlinearity of the B-H characteristic of the magnetic material, and, in so
doing, gives a direct indication of impending saturation.

Since the mechanism of nonlinear interactions is not widely
known to engineers in the fleld of Power Electronics, a simple but
complete explanation of the phenomenon has been presented and the
explanation has been reinforced through mathematical modelling and
analysis. In addition, a simple but useful conceptual model has been

developed which relates the transverse voltage to a time-varying
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inductance.

Owing to the close relationship between the transverse voltage
and the nonlinearity of the material, the voltage signal is a function of
several extrinsic and intrinsic parameters: temperature, maximum flux
excursion, frequency, and chemical composition are a few. The
relationship of the transverse voltage to these and other parameters has
been studied, and the information has been presented and discussed as
an aid to practical design.

The {facility of implementation of the orthogonal flux sensing
technique at both high- and low-power levels has been demonstrated in
two specific hardware examples: a 100W free-running converter and a
4kW push-pull constant-frequency pulse-width-modulated buck converter.
The important specific details of each design have been discussed with
the hope that this treatment will contribute another useful tool to the

Power Electronics Specialist.
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PART II

ANALYSIS OF INTEGRATED MAGNETICS
TO ELIMINATE CURRENT RIPPLE
IN SWITCHING CONVERTERS
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CHAPTER 12
INTRODUCTION

Part 1 of this thesis discussed the application of a well-known
natural phenomenon to the relatively new fleld of switched-mode power
conversion. Although the interaction of orthogonal fields in nonlinear media
had been known to physicists and material scientists for nearly a century,
its practical application to the modern field of power electronics has just
recently come to light. Part II discusses another remarkable phenomenon of
certain magnetic devices, which is the extraordinary ability of certain multi-
winding structures to exclude ac currents from some of their windings
despite their being driven by ac voltages.

In contrast to the interaction of orthogonal fields, this zero ripple
eflfect was only recently discovered on a modern switching converter [25].
Unlike earlier discussions of this topic, which were concerned with the
performance of power converters which exhibited zero-ripple behavior [26],
the treatment given in the following chapters is concerned with the analysis
and design of the magnetic device itself. Although the phenomenon had
been demonstrated in the laboratory, there was no good analytical basis
from which one could properly design the magnetic devices or adequately
explain some of the observed phenomena. This general lack of

understanding was the chief motivation for this work.
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Just as Part 1 was written to introduce the topic of orthogonal
flux to practicing engineers of power conversion equipment, Part II is
intended to be a self-contained discussion of the principles of operation
and methods of analysis of these rather unusual and still quite

unfamiliar magnetic structures.
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CHAPTER 13
EVOLUTION OF MAGNETIC INTEGRATION

As explained in Chapter 2, magnetic components play an important
role in the lossless conversion of electrical power, and for that reason it
should come as no surprise that several inductors and transformers may be
found in sophisticated power converters. Until recently these components
were treated as separate and individual elements in the design of converters
in much the same way as discrete transistors and diodes were used in the
design of early sigﬁabprocessing circuits. However, just as semiconductor
devices can be consclidated into an integrated circuit and packaged on a
single silicon chip, magnetic components often can be integrated into a
single magnetic structure to enhance the performance of switched-mode
power converters. This chapter gives a short summary of the recent
developments which have motivated continued work in integrated magnetics,
of which this thesis is a part. The review presented here is very brief, for
there is an abundance of literature available to describe the details of

previous work in the area [27].
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13.1 The Basic (fuk Converter

The pioneers of switched-mode power conversion technology had at
their disposal the three basic converter topologies shown in Fig. 13.1, the
buck, boost, and buck-boost converters. In addition to their useful
properties, each of these circuits has the practical disadvantage of pulsating
current at the input or the output, and this undesirable feature impeded the
acceptance of switching converters for power suppliés in electronic
equipment. To reduce the often intolerable electrical noise pollution
associated with these pulsating currents, designers resorted to brute-force
filtering and heavy shielding which added extra components to the power
supply and significantly increased its size and weight. Because such
techniques were counterproductive in most applications, a number of new
switching conflgurations were proposed to find a "quiet” converter which
possessed all the desirable properties of the original circuits.

A topological simplification of a cascade connection of the boost
and buck converters resulted in the basic Cuk converter [28] shown in Fig.
13.2. This circuit was initially called the optimum fopology converter because
as a basic converter it possesses all the desirable properties of a universal
switching converter with the minimum number of components. That is, in
addition to having an ideal conversion efficiency of 100 per cent, the
magnitude of the output voltage can be either greater than, less than, or
equal to the source voltage and both input and output currents are non-
pulsating. The decision to call the circuit optimum was premature, however,

because it was soon discovered that it was possible to make the converter
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even '"more optimum.”

13.2 Cuk Converter with Coupled Inductors

Examination of the voltages on the inductors of the basic Cuk
converter of Fig. 13.2 showed that the steady-state waveforms of v; and v,
are identical, and that this feature is independent of the operating point of
the conyert.er. If the voltages are always proportional, the inductors can be
coupled such that both inductors can be wound on the same magnetic core
[29]. Besides simplifying the converter by reducing the number of discrete
components, the coupled-inductor configuration had the unexpected ability
to steer the current ripple from the input to the output and vice versa [25].
While the sum of the input and output ripple magnitudes remained constant,
the individual components could be adjusted to virtually any positive or
negative value. As illustrated in Fig. 13.3, this remarkable discovery meant
that the current ripple on the coupled-inductor Cuk converter could be
reduced to zero at either the input or the output with real components of
finite value. Furthermore, it was found that this new phenomenon is a
property not of the converter per se, but a feature of the magnetics alone.
For example, when the coupled-inductor structure is removed from a
converter with zero output ripple and then replaced with the input and
output windings interchanged, the input becomes the zero-ripple port.

The coupled-inductor extension of the basic Cuk converter
demonstrated for the first time that two magnetic components which were
previously considered to be separate entities could be integrated into a

single magnetic structure with two windings. Moreover, the integration not



132

i, J L i

+ > ° +

Yi :“P <": V2

-— P 9 -
] 1

Vy = + qq - c R
" —= _"_.. 2 %

[}

. 13.83 Coupling the inductors of the basic Cuk converter gives the
"more optimum' =zero-ripple converter. By proper design of the
magnetics, the triangular ripple current on either the input or
the output may be reduced to zero.
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only preserved the basic functions of the original two separate inductors
(energy storage and filtering) but in addition showed a surprising new
and useful effect.

With the ability to produce zero current ripple on one side of a
switching converter comes the unavoidable question of how to get zero
current ripple on both sides of the converter at the same time. This
problem can be solved by brute-force with a cascade connection of two
Cuk converters -- one with zero ripple on the input and the other with
zero ripple on the output. There is a more elegant solution, however,
and the next section prepares the groundwork for a more enlightened

approach to this problem.

13.3 The Isolated Cuk Converter

The basic Cuk converter is extended to include electrical isolation
between input and output via the steps outlined in Fig. 13.4 [25, 30]. The
central energy-transfer capacitor is first split into two capacitors in series as
shown in Fig. 13.4a. The dc properties of the converter are unchanged by
this modification, but the individual voltages on the two series capacitors are
indeterminant. The addition of a third inductor as shown in Fig. 13.4b,
however, sets the average voltage at the node between C, and Cp to zero,
which fixes the steady-state voltages on each capacitor without altering any
of the dc properties of the original converter. In the third step the new
inductor is replaced by two inductors in parallel as illustrated in Fig. 13.4c,
which leads to the evolution of the real transformer in the final isolated

version of Fig. 13.4d. Because the waveforms of the inductor voltages v,
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and vy are still proportional after each of these transformations, the

inductors L, and Ly may be coupled just as in the basic Cuk converter.

13.4 Converter with Zero Current Ripple on Both Input and Output

The circuit in Fig. 13.4c, which was an intermediate step in the
derivation of the isolated version of the basic converter, provides a means
for achieving zero current ripple simultaneously at both ports of the
converter. Analysis of this modified converter reveals that the voltage
waveforms on all the inductors are identical. Hence, the inductors may be
coupled as shown in Fig. 13.5 to provide separate coupled-inductor
structures for the input and output. Because the zero-ripple property
observed in the basic Cuk converter was demonstrated to be a characteristic
of the magnetics alone, one should expect to achieve zero current ripple on
both the input and the output separately, simultaneously and independently
by proper design of the two coupled-inductor structures. It is easily verified
that this is indeed true by construction of the circuit as shown in Fig. 13.8,
which is drawn to emphasize the hardware implementation of the two

coupled inductors.

13.5 Cuk Converter with Integrated Magnetics

Although it may seem at this point that the ultimate de-de
converter topology has been found, one can further simplify the circuit of
Fig. 13.5 and at the same time introduce isolation while maintaining zero
current ripple at both input and output. It is clear that isolation can be

achieved by simply dividing the circuit into two parts with a transformer as
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Fig. 13.6 The coupling of the induclors in Pig. 135 may be
accomplished with two sets of U-cores. By proper design of
these two coupled inductor structures one can achieve zero
current ripple simulianeously and independently on the input

and the output.
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shown in Fig. 13.7. The mechanical implementation of this final
consolidation of inductive elements is shown in Fig. 13.8, which clearly
illustrates the concept of integrated magnetics as applied to an isolated
single-output Cuk converter [31]. By adjustment of the air gaps in this
single totally integrated magnetic structure, one may control the current
ripples on both the input and output to achieve the ideal dec-de

conversion properties not possible with discrete magnetic components.

13.8 Magnetic Integration for other Converters

Although the phenomenon of zero current ripple was first observed
on the coupled-inductor Cuk converter, its use is by no means limited to
that topology. As mentioned in Section 13.2, the zero-ripple property is a
characteristic of the magnetics -- the converter merely provides the voltage
excitations in the proper proportions. To take advantage of this
phenomenon, a converter need only provide proportional voltages across two
or more independent inductive elements over the entire range of intended
operation. Many converters possess this property in their multiple-output
extensions [31-33], and therefore have the ability to provide at least one
output with zero current ripple [34, 35]. There is no such restriction for
magnetic integration, however. Even though it may not be possible to
achieve zero ripple with a given converter topology, it is often advantageous

to integrate the inductive devices to save on magnetic material [31, 38, 37].
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incorporated infto the magnetization inductance of the

transformer.
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Fig. 13.8 Ilustration of how the circuit of Fig. 13.7 may be realized
with a magnetic structure. If the windings of the dewvice have
the proper mnumber of lurns, one can adjust the two air gaps
to change the current ripples on both the input and output
Jrom positive to negative lo zero.
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CHAPTER 14
DEFINITION OF THE PROBLEMS

Progress in the fleld of Power Electronics has been driven jointly by
revelations which come from theoretical analyses and by experimental
observations of unexpected phenomena. The observation of the ripple-
steering capability of the coupled-inductor Cuk converter of Fig. 13.3
motivated an analysis -which predicted the existence of zero ripple-current
[25, 27]. The analysis also established the necessary electrical
characteristics of the coupled-inductor structure which permitted design of
two-winding magnetic devices with the zero-ripple property. It was clear that
this knowledge could be applied directly to the dual coupled-inductor
converter of Fig. 13.8 to obtain zero current ripple simultaneously and
independently at both the input and output, and these expectations of the
design were verified by experiment.

The converter with totally integrated magnetics of Fig. 13.8 was
conceived by simple topological manipulation of the dual coupled-inductor
converter. Although hardware implementation of the circuit demonstrated
that zero ripple could indeed be achieved by proper adjustment of the two
air gaps, no analytical model existed for the integrated structure. The
concept of zero ripple by magnetic integration could be demonstrated
empirically by trial and error, but no one could design such a structure for

that purpose, nor could anyone explain the unexpected phenomena observed
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in the adjustment process.

14.1 Adjustments for Zero Ripple

When the integrated structure in the converter of Fig. 13.8 was
adjusted for zero ripple, it was observed that the input and output ripples
could not be adjusted independently. This was an unexpected result. Figure |
14.1 illustrates the observations schematically. Starting with some arbitrary
initial combination of the two air gaps, input gap zg and output gap ygo, one
observes the typical triangular current ripples as shown in Fig. 14.1a. Then,
by adjustment of only the input gap from zgy to z,, the input current ripple
is made to vanish while the output current is still substantial as shown in
Fig. 14.1b. Next, the output gap Yo is adjusted to some value ¥, which gives
zero ripple on the oﬁtput. As seen in Fig. 14.1c, the last adjustment
produced zero ripple on the output but caused some ripple to reappear on
the input, although at a significantly smaller magnitude than at the original
(zg,¥o) combination. Returning again to the input gap and adjusting it to
T, nulls the input ripple, but forces a small amount of ripple to reappear on
the output. This sequential adjustment in practice 'converges very quickly to
the final solution of air gaps zy and Yy for which input and output have (to
first order) zero current ripple. Oscilloscope photographs of a typical series
of adjustments are shown in Fig. 14.2.

If the same experiment were repeated with different initial gap
positions, the same solution (Zg,s) would be obtained, but the sequence of
intermediate gap combinations would be different. Given that it is possible to

obtain a solution for simultaneous zero ripple, there appears to be an input
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Fig. 14.1 By successive adjusiments of the two air gaps, one can adjust
both the input and oulput currents to zero ripple by an
iterative procedure.
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Fig. 14.2 Photographs of the inpul and output currents Jor a typical
session of adjustments. for simultaneous zero Tipple. The
triangular ripple is nulled out after only a few iterations.
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gap = for any output gap ¥ at which only the input current has zero
ripple. Similarly, for any input gap one finds an output gap which gives
zero ripple only on the oufput. Plotting these gap combinations in the y
vs. £ gap plane results in curves similar to those in the qualitative
illustration of Fig. 14.3. The combination which results in zero ripple on
both input and output simultaneously is obviously at the intersection of

the two curves.

14.2 Zero-Ripple Solution and Models for Design

The ébove experimental observations demand further analysis of the
integrated magnetic structure of Fig. 13.8. First, one would like to know the
analytic solution for the combination of gaps which gives zero current ripple
simultaneously on both the input and the output. Secondarily, there are
several other questions which naturally arise. Is the solution unique? Which
physical parameters are most important in the design of such a structure
for practical applications and what are the limitations to such a design?
What causes the unexpected interactions between the gap adjustments and
can they be predicted?

In addition to finding answers to these questions which are related
to the design of the magnetics, there is a need to provide models which one
can use to design the converter. The strange integrated magnetic structure
in Fig. 13.8 is not compatible with any conventional transformer model. The
analysis should provide as a by-product simple circwit models which relate
the physical parameters of the magnetic structure to electrical elements to

aid in the design and dynamic characterization of the power converter.
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CHAPTER 15
TOOLS FOR ANALYSIS

Although the behavior of the zero-ripple integrated magnetic
structure in the circuit of Fig. 13.8 had been demonstrated in the laboratory
for several years, no explanation of the observed phenomena was available
until now, Analysis of the magnetics had not been enthusiastically pursued
simply because everyone believed that it would be too cumbersome and too
difficult.

Magnetic structures can be analyzed and characterized in many
different ways, and, indeed, if one chooses the wrong approach the situation
can quickly become quite hopeless. This chapter reviews some of the basic
tools available for the general task of analysis of magnetic structures, and
each has its own particular strengths and weaknesses. Subsequent chapters
will show how these rather elementary concepts can be applied to obtain

good engineering solutions to some very complicated magnetic problems.

15.1 Conventional Coupled Inductor Equations

One way to characterize a static magnetic device is to consider the
device to be a black box of linear inductive components, as illustrated by
Fig. 15.1. The electrical terminal properties of the device are described in
general by a system of linear equations éommonly known as the coupled

inductor equations, which are written below in matrix form.
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Fig. 15,1 One can model a magnetic device by the coupled inductor
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the terminals of a magnetic black boxr without any
cansideralion of the internal structure.
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It can be shown from reciprocity and conservation of energy that
M;; = M;, and hence the matrix of inductive elements is symmetric.
This rigorous mathematical representation is useful for linear
network analysis, especially when one is interested in a state space
description of the circuit. The values of the elements in the matrix can
be obtained from direct measurements at the electrical terminals of the
physical device without knowledge of the structural details. In addition,
the coupled inductor equations can be used in the synthesis problem to
deflne the requirements of the magnetic device for a particular purpose.
The major deficiency, however, is that the coupled inductor equations
contain no information about the physical description of the magnetic
structure, and therefore they are not much use for design purposes. The
link between the mathematics of the coupled inductor equations and the
hardware of the physical device is easily made through the concept of
reluctance and permeance, which follows directly from the idea of the
magnetic circuit. These straightforward connections are briefly reviewed

in the next section.
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15.2 Reluctance, Permeance, and the Magnetic Circuit

The concept of the electric circuit is a simplification of the general
field relations which describe electromagnetic phenomena. If one examines
these relations in the same light which motivated the idea of the electric
circuit, one finds that there is a correspondence bet.ween the fundamental
equations which describe electric and magnetic fields. This can be seen in

the following comparison, in which colinear vectors are assumed.

1=ffAJdA @=fLB dA (15.2)
emt =V = [E dl mmf =N = [ _Hdl (15.3)
J = oF B = uH (15.4)

The relationships on the left are the basis for the concept of the electric
circuit, in which an assumed uniform current density J is totally contained
in a material and driven through a resistance by an electromotive force
(emf) V. Magnetic circuits can be analogously considered as the
simplification of the corresponding field equations on the right, in which a
uniform flux density B is contained by a high permeability magnetic
material and driven through a reluctance by a magnetomotive force (mmf)
NI.

To elaborate, consider the electric circuit of Fig. 15.2. For a given
voltage source V, and under the assumptions of uniform cross section and
uniform current density, the current / can be found by sequential solution

of the fleld equations on the left side of (15.2-15.4) as
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Of course, no engineer would actually do this. Instead, he would bypass

the fleld equations completely and find the current directly by using the
Vv

lumped parameter version of Ohm's Law, [/ = R °r I = VG where
R = ;tA— is the resistance and G = Fll_ is the conductance.

An analogous procedure may be applied to magnetic circuits
under the same assumptions of uniformity. Consider the circuit of Fig.
15.3. To find the flux ¢ which results from the magnetomotive force NI,

one can use the fleld equations on the right side of (15.2-15.4) and get

® = BA = uHA = pu

3‘13

(15.8)

where l,, is the mean path length along which it is assumed that an

average magnetic fleld intensity A exists. Again, the field equations can

N

be bypassed and the flux can be obtained in a single step as & = K

l
or equivalently ¢ = N/p, where R = ﬁ- is the reluctance and

p = }? is the permeance of the magnetic path.

The topology of the reluctance model of the magnetic circuit has
a one-to-one correspondence with the physical magnetic structure, as
demonstrated in Fig. 15.4 for the case of an air gap in the magnetic
path. This correspondence is the forte of the reluctance model for the

analysis of magnetic devices. As subsequent chapters of this thesis will
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show, not only is the often-ignored reluctance model valuable as the link
between the physical device and the mathematical description of the
coupled inductor equations, but it can also be used directly to find

simple and accurate answers to aid in the design of complex structures.
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CHAPTER 186
EXACT SOLUTIONS VIA THE COUPLED INDUCTOR APPROACH

A natural first approach toward understanding the zero current
ripple phenomena is to use the coupled inductor equations. Since the
experimental observations do not provide any obvious clues as to which
parameters of the magnetic structure dominate the response, it is logical to
turn to an exact description of the system for guidance in developing a
simple model.

The objective is to find the simplest possible model which
satisfactorily explains all the observed phenomena. Rather than starting
with an oversimplified model and gradually building toward greater
complexity, this treatment will take the opposite approach of starting from
the most complete description and working toward greater simplicity. In
this way no parameters will be overlooked, and a retrace of the steps of
simplification will provide a guide to the other method of analysis, which

may then be applied to other problems of this type.

16.1 Review of the Two-Winding Coupled Inductor Structure

The magnetic structure in the circuit of Fig. 13.3 is modelled by the

coupled inductor equations as



_ di, dis

vy = I+ M (18.1)
_ Md'lol d?-g

ve = M+ Ly

To find the conditions for zero ripple on the output, one need only find

dig
where the time derivative It is zero. Since v; = vy Cramer’s rule

gives
rLll k7
diz Yy o 0
dt L, M) ~
det[ M Loo (16.2)

from which it follows that for zero current ripple on the output it is

required that
Lll =M ng M (16.3)

Although this condition for zero ripple is simple, rigorous and perfectly
correct, it is quite unilluminating and no help at all to an engineer who
wishes to build such a device. One significant conclusion can be drawn
from this analysis, however, and that is that it is impossible to obtain
zero current ripple on both input and output with such a structure.
This is clear from symmetry or by direct solution for the conditions for

zero ripple on the input.
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In an effort to give some physical meaning to the conditions in
(18.3), the treatment in [25] introduced the coupling coefficient, which is

defilned in many physics and engineering textbooks as

M
VLjLae (16.4)

k =

Substitution of L;; = M into (16.4) yields the "matching condition" given
in [R5] for zero ripple on the output:

k=n (18.5)

where . is defined to be the effective fturns ratio, which for coupling

coefficients close to unity is approximately the actual turns ratio.

o Lul7 | Ny
- [Lzz] N2 (18.8)

Measurements of self inductances in [25] resulted in numerical
verification of the matching condition of (16.5), but the phenomenon was
not well understood in terms of the geometric dimensions and acfual

number of turns on the physical device.

18.2 Exact Solution for the Integrated Magnetic Structure

Because the isolation transformer in the circuit of Fig. 13.8 is
required to handle pulsating currents, the primary and secondary must be
very tightly coupled. Owing to this practical restriction, the voltages which

appear on those two windings can be considered to be exactly in the same
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ratio as the physical turns ratio, which can be taken to be unity without
loss of generality. This being the case, it is both appropriate and
desirable to merge the primary and secondary into a single winding,
eflectively connecting the two in parallel and removing the isolation
property. Although this maneuver is transparent to the other windings
on the structure, it has the benefit of eliminating redundant terms in
the analysis. Figure 18.1 shows the non-isolated three-winding version of
the zero-ripple Cuk converter with the integrated structure simulated with
two sets of U-cores, after the circuit of Fig. 13.8. This configuration was
actually one of the intermediate steps used in [31] ta arrive at the
configuration in Fig. 13.8, and its zero-ripple behavior is indentical to
that of the completely integrated isolated converter.

With only a single winding on the center leg of the integrated

structure, the coupled inductor equations are

[l (L, My Mg [y
Vgl = |Myz Lgz Ma3| [iz
V3 Mis Maps Lgs| |is (18.7)

where the quantities for the input winding have subscript 1, the output
is subscript 2 and the new center winding is designated by subscript 3.
Here the time derivatives of the currents are written using the
conventional dot notation. As in the previous section, use of Cramer's

rule and the fact that v; = vy = vg3 give the conditions for zero ripple:

ZERO INPUT RIPPLE
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Fig. 16.1 A mnon-isolated (hree-winding wersion of the zero-ripple Cuk
converter., The integrated structure of Fig. 13.8 is simulated
with two sets of U-cores. This circuit ezhibils the same type

of interactive behavior as the more complicated isolated
version,
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Loa(Lag—M13) + M1(Ma3—Lg3) + Mas(M3—Mz3) = 0 (18.8)

ZERO OUTPUT RIPPLE
Lyy(Lgsg—Mz3) + Mi5(My3—Lgs) + Mis(M23—M3) = O (18.9)

with the restriction that the determinant of the coupled inductor matrix

is not zero. That is,

A = Lyy(LagLlas—M33) — Mip(MiaLgz—M 3Mz3) (18.10)
+ My3(M1sMa3—M13L33) # O

It is apparent from these results that the analysis of the three-
winding integrated structure is a great deal more complicated than that
of the original two-winding case. From the exact analysis of the simpler
configuration one could at least obtain a general result regarding
simultaneous zero ripple and a '"matching condition” for zero ripple
~ based upon the familiar coupling coefficient. An analogous relationship
for the integrated structure, however, is certainly not obvious from the
above equations, and at this point it is difficult to draw any general
conclusions at all. The next chapter will bring the physical parameters
into the picture, and, although to do so will not immediately simplify the

analysis, it will permit one to gain insight from the exact solutions.
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CHAPTER 17
SOLUTION IN TERMS OF PHYSICAL QUANTITIES

It was stated in Chapter 15 that the concept of reluctance and
permeance is the bridge between the mathematical abstractions of the
coupled inductor equations and the physical reality of the magnetic device.
This chapter gives a rigorous presentation of the the relationships required
for zero current ripple in terms of the permeances associated with both the
two-winding and three-winding structures. It will be seen that the complete
analysis of even a three-winding structure is quite formidable, and that the
resulting expressions can become impossibly cumbersome and difficult to
interpret. Such an analysis, however, has to be done only once in order to
establish which of the many parameters are important and which can be
safely ignored. The results presented here will not have to be repeated, for
they will become the source of simple practical models for the solution of

similar types of problems.

17.1 The Two-Winding Coupled Inductor Structure

The simple two-winding magnetic structure in the circuit of Fig. 13.3
is illustrated in Fig. 17.1 with the total flux decomposed into four artificial
components: (1) the mutual flux ¢,, which links both windings through the
path defined by the core material and associated air-gap, (2) the flux @,z

which links both windings through the air and is independent of the air-gap,
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Fig. 17.1 The flux of the two-winding structure in the circuit of Fig.
13.3 can be decomposed into four artificial components.
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(3) ¢;1 which links only the input winding and (4) ¢;2 which links only
the output winding. The fluxes in the air are usually called leakage
fluxes. In less general treatments the air flux @;2 is usually not identified
explicitly, but is absorbed into the mutual flux component.

This decomposition is artificial in the sense that the components
identified in the flgure are chosen to represent the general categories of
all possible flux paths as an aid to analysis, and they should not be
confused with a flux map of the actual structure when both windings are
energized. The actual resultant distribution of airborn flux would not
necessarily bear any relationship to the leakages as defined here, because
the actual flux is a function of the distribution of magnetomotive force
between the two windings: Most of the flux lines will link the winding
which has the greater instantaneous mmf.

By Faraday’s law the voltages on the windings can be written in

terms of the time derivatives of the flux components as
vy = Ni(¢m + 912 + @11) (17.1)
vy = Naplgm + 012 + 912)

Under the assumption of an effective mean path-length through the air,
one may define leakage permeances analogous to the core permeance.
All the flux components may then be written as functions of the currents

which produce them.
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P11 = P1Nyiy Y12 = PaN3ziz
12 = P12(Nyiy + Ngaip) (17.2)
¢m = Pm(N1t; + Ngzip)

Differentiation of these quantities with respect to time and substitution

into (17.1) yields the following description, in which the correspondence to

the coupled inductor constants is obvious.

r :
[v, NE@m+p12+p1) NiNa(Bm+p12) r?q
l”z N l NiN2(Pm+p12) N5 (Pm+p12+p2)| [i2 (17.3)

It follows from (16.2) or (18.3) that the conditions required for zero

current ripple on the outfput in terms of the permeances are

Ny, _ Pm + Pi2 L1+ P2
Na Pm t P12 + P, Pm t D12 (17.4)

Several conclusions pertaining to the physical realizability of zero current
ripple are now apparent. First, for zero ripple on the output there must
be a finite leakage on one of the windings. That is, p; and p; cannot
both be zero. Some of the flux produced by the mmf on one of the
windings must be shunted away from the other. Second, the condition
for zero output ripple is independent of the leakage on the output - it
doesn’t matter how much of the flux generated by winding 2 is shunted
away from winding 1. Finally, it is easy to see from symmetry or by

comparison with the analogous conditions for zero ripple on the input
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that, owing to the requirement for nonzero leakage, it is impossible to
have zero ripple on both input and output at the same time. Also, it is
now clear how the output current ripple in the coupled inductor Cuk
converter of Fig. 13.3 can be adjusted to zero by variation of the air
gap. The mutual permeance p,, is a very strong function of the air gap
while the leakages are virtually constant [38, 39]. Zero ripple is achieved
when the air gap is adjusted to make the ratio of permeances in (17.4)
equal to the turns ratio.

Perhaps the most important fact to be learned, however, is that
the zero current-ripple phenomenon depends on the existence of leakage
fluzr which is usually ignored in first analyses of magnetic devices. Here is
a situation in which quantities that are normally considered to be of
second-order are responsible for first-order effects. It is reasonable to
expect similar results for the more complicated integrated structure, and
because it is not intuitively obvious which second-order quantities will be
important, a complete analysis of a multi-winding structure is justified.

One may easily solve (17.4) for p,, in terms of the leakage
permeances and the actual number of turns to determine the required
dimensions of the magnetic core and air gap. (Techniques are available
to control the leakages by construction.) A similar analysis of multi-
winding integrated structures, however, is much more complicated, as the

next section will show.
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17.2 The Three-Winding Integrated Structure

The flux generated by the windings of the three-winding structure of
Fig. 17.2 can be decomposed into eight independent components as
indicated by Fig. 17.3. The leakage fluxes can be written in terms of the

currents which produce them as
¢ = P1V1% P12 = PaNaiz @13 = P3aN3i3
¢12 = P12(N1%) — Nzip)
®23 = P2a(Ngiz + Ngig) (17.5)
®13 = P13(N1iy + Ngis)

The fluxes in the core material can be determined by considering the
structure to be composed of three reluctances as indicated in Fig. 17.4a,
from which the reluctance equivalent circuit of Fig. 17.4b can be drawn.
Solution of the circuit for ¢, and ¢ completes the description of the device
in terms of flux components. To simplify the notation in the resulting

expressions one can define the following siructure permeances or 'leg

permeances” from the reluctances of Fig. 17.4:

(17.8)

from which one can write the core permeances which appear in the

equations as
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Fig. 17.2 The general three-winding integrated structure chosen for
analysis.
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Fig. 17.3 General decomposition of fluzes for the integrated structure of
Fig. 17.2.
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Pig. 17.4 The magnetic paths defined by the core geomefry con be
conveniently divided into three reluctances (a) which are
represented in the reluctance equivalent circuit model (b).
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Ry _ PpoPys

Pey = R\Ra+R,Rs+RRy Py +P1a+P;s

P = Ra - Pp,PL3

c2 R1Rz+RzR3+R1R3 PL1+PL2+PLS (17.7)
Rj Pr1Ppa

Pes = =

R \R;+R3;Rs+R\Rs =~ P +P1+Ppq
By Faraday's law the voltages on the windings are

vy = Ni(py @12+ 913+ 911)

vy = Na(pgs—¢12+923+9;3) (17.8)

vg = Ns(p;+¢@z+@13+ @23 +@r3)

and the coupled inductor constants may be found from the above

equations in exactly the same way as in the two-winding case. If one

further defines the following composite permeances
P, = Pea + pai3 Py, = Pey + pas Py = Peg + p1z (17.9)

then the coupled inductor parameters can be written very compactly in

terms of permeances as
Ly = le(Pz + P, + py)

Lzz = N3(P, + P, + pp)
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Lss = N3(P, + P, + p3) (17.10)
Mz = —N|N,P,
M3 = NyN3P,
Mas = NaN3P,

Note that M;3 is negative for this conflguration, which is a departure
from what is normally found in the description of conventional
structures.

With equal voltages on the three windings, application of

Cramer's rule results in the following conditions for zero current-ripple:

ZERO INPUT RIPPLE (WINDING 1)
NgN3(PyP;+P P, +P, Py +Pyp3+P;p3+P;p2+Pypatpaps)

+ N N3(P;Py+P,P,+FP,P,+P,;p3) (17.11)
- NlNz(PzPy'l'Psz"'PzPy+Pzp2) =0

ZERO OUTPUT RIPPLE (WINDING R2)
NINS(Psz+Psz+PzPy+Pzp3+PzP3+Pyp1+Pzp1+Plp3)

+ N2N3(P,P,+P,P,+P,P,,+P,p3) (17.12)
- N,NZ(P,Py+P,P,+P,Py+Pyp1) =0

with the restriction that the determinant
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A = NENENF(PyPutPPr+PyP,)(P1+P2+P3) (17.13)

+ p1PpaPrtPy) + p1p3(Py+P,;) + p1pa(Pr+P,) + pipaps| # O

In contrast to the much simpler two-winding case, few
conclusions can be drawn from these results. The increased complexity
is compounded when one realizes that many of the terms in the above
expressions are themselves composite expressions of the permeances basic
to the structure. ‘

The only useful information that is readily available from (17.13)
is that at least one of the self-leakages p;, P2 or p3 must be nonzero
for the solutions to be defined, for otherwise the determinant of the
system would be singular. But is this a sufficient condition for zero
current-ripple? How do the second order quantities effect the realizability
of the zero ripple solutions? A general analytic solution for zero ripple in
terms of the core geometry and all the leakages is certainly out of the
question. It is possible to gain insight into the general nature of

solutions, however, by making some simplifying assumptions.

17.3 Simplified Expressions for Practical Cases

Because this method of analysis is quite complicated, it is
appropriate to introduce some reasonable simplifications of the original
problem which will make the algebraic manipulations less cumbersome while
maintaining the main qualitative features of the general solution. The first

reduction in complexity comes from the supposition of symmetry; i.e., the
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case in which the mechanical properties of the input and output windings
are the same. This is a natural starting point since the behavior of
interactive adjustment for zero ripple was first observed on a
symmetrically wound structure. This means that N; = Ny = §N3 and
Py = Pz = P

In addition to the above simplifications, knowledge of the
geometry of a real integrated device permits one to make simplifying
approximations by comparison of the relative magnitudes of the expected
permeances. For example, in the practical structure of Fig. 17.2 the gap-
dominated reluctances K, and KRy of Fig. 17.4 are usually very much
greater than K3 Consequently, Ppg in (17.7) can be taken to be much
greater than Pg; and Pgz. Furthermore, by virtue of the physical
separation of the windings, the mutual leakages p;3 and P33 can be
expected to be much less than p;3 and these should be small in
comparison to the self-leakages p;, Pz and ps3. Thus for Kg and the
mutual permeances sufficiently small, P, can be ignored in comparison
with P, and P,, and hence one can justify setting P, = 0 in equations
(17.11) - (17.13). 1t is important to note, however, that it is not possible
to ignore the self-leakages because the presence of at least one of them
is required to keep the determinant nonsingular.

Under the conditions of Ny = Ny = &N, p; = ps = p;, and
P, = 0, one can solve analytically for loci of zero current ripple in the
two-dimensional permeance space of P, vs. F,, and these results are

sketched in Fig. 17.5. If the mutual leakages can be ignored, the
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LOCUS OF ZERO
INPUT RIPPLE ™~
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\\\LOCUS OF ZERO
OUTPUT RIPPLE

Fig. 17.5 Plot of the loci of =zero mipple in permeance space for the

symmetric three-winding structure where N, = N = N and
p, = Pz = pi. P, is assumed fo be zero. There is zero ripple
on both the input and the oulput where the two curves

intersect., Note that the turns ratio § = _lifi- must be greater
8

than 2 for physical realizabilily of simultaneous zero ripple.
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permeances F, and Py are proportional, respectively, to the reciprocal

gap-lengths i— and i— in the integrated structure introduced in Fig 13.8.

di, dig
a2t and T are hyperbolas which intersect at two points

The loci of

that represent the conditions for which zero current ripple may be
obtained simultaneously at the input and the output. Because the curves
represent the solution te a symmetrical problem, it should come as no
surprise that P, = P, (g = Yys) for zero ripple on both input and
output. Only the point of intersection in the first quadrant is physically
realizable, however, since permeances can take on only positive values.

Several important observations can be made from the solution of
this simplified problem. First of all, the condition for zero ripple on
both sides is indepeﬁdent of the self-leakages of the input and output
windings and depends only on the leakage of the center winding. The
imperfect coupling of neither the input nor the output windings has any
effect on the values of P, and P, required for simultaneous zero ripple.
This fact is analogous to the result found in the preceding section for
zero output ripple with the two-winding structure, in which the leakage
on the output was inconsequential.

Second, for N turns on both the input and output windings,

the ratio & = T{fv_ must be greater than 2. As § approaches 2 from
3

above, the gaps required for simultaneous 2zero ripple get smaller and
smaller until a maximum permeance determined by the core material is

reached at zero gap.
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Finally, the curvature and orientation of the loci predict
interactive gap adjustments which converge to the solution of
simultaneous zero ripple. One can see from the expressions for the
asymptotes that the curvature is a function of the self-leakage permeance
of the input and output windings, and that this will affect the degree of
interaction observed in adjustment for zero ripple. To see if the
simplifications in this analysis have masked any important effects, it is of
interest to extend the analysis to include the effects of nonzero P, and
P1 # P2. An expanded analysis has been carried out with the benefit of
the simpler solutions as a guide, and the results are sketched in Fig.
17.8.

The extended analysis shows that the solution for simultaneous
zero ripple still depends on the leakage of only the third winding and
that the turns ratio still has a lower bound of 2. The presence of a
nonzero F,, however, does modify the gaps Ty and Y, associated with
that solution because now P, and F, are rather complicated functions of

R,, Rz and K3  Furthermore, since P, and F, are no longer
proportional to -:?- and %— owing to the intervention of an assumed non-

negligible finite P,, it is very difficult to interpret these curves in terms
of actual gap lengths. Explicit expressions for the solutions in terms of
the leg permeances Pp; and Ppg for this case, as well as for the more

general case of N; # N, are given in the Appendix.
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Fig. 17.7 For certwin special cases the curves of Figs 17.5 and 178
degenerate into straight lines to predict non-interactive
adjustments for zero ripple.
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A very interesting case is that of p; = ps = 0. Direct solution
of (17.11) and (17.12) in terms of the permeances Pr; and Prs (which
are proportional to the reciprocal gaps) shows that the loci of zero ripple
are straight lines parallel to the axes and intersecting in the first
quadrant as illustrated in Fig. 17.7. The plot predicts non-interactive
adjustments of air gaps to obtain simultaneous zero ripple. Although
such trial-and-error adjustments are no longer required now that the
solutions are known, it is nevertheless interesting to investigate and
understand the causes and ~cures. It turns out that this prediction of
non-interactive adjustment is realizable, and will be explored in greater
detail and confirmed experimentally in subsequent chapters.

Although the analyses performed here were quite painful to
execute, they were successful in providing the answeré to the questions of
which parameters were important and which could be neglected. This
visibility provides the insight necessary for the formulation of the much

simpler and more direct method described in the next chapter.
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CHAPTER 18
SIMPLE DIRECT SOLUTIONS FROM THE MAGNETIC CIRCUIT

IN TERMS OF PHYSICAL QUANTITIES

The preceding chapter served a dual purpose. First, the complete
analysis provided a base from which one could make informed decisions
regarding which parameters must be included in the model and which can
be neglected. Second, the presentation of the resulting equations, even in a
somewhat simplified form, illustrated the complexity of the method and
made clear the difficulty encountered in interpreting the answers. Although
the curves of Fig. 17.6 may be satisfactory solutions for the mathematician,
the designer requires simple answers in terms of turns, areas and air gaps.
This chapter presents the most direct method by which the solutions may be
obtained in the desired form: the reluctance equivalent circuit model. Use
of this technique will not only simplify the calculations but will also enhance
one's understanding of the physical significance of the results.

Because the magnetic devices discussed here are used in power
converters to store energy, some or all of their windings will normally carry
dc currents as well as the ac ripple. Since the main objective here is to
study the effects of magnetic integration on the ac ripple current, it is
appropriate to divide the problem into ac and dc models and study the ac
model in greater detail. This separation is valid under the assumption that

the devices are operated in the linear region.
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18.1 Solutions for the Simplified Two-Winding Model

The reluctance equivalent circuit model for the two-winding
structure of Fig. 17.1 under the assumption that p,, > p3 is shown in Fig.
18.1. The reluctances in the circuit are related to the permeances defined

in Chapter 17 as follows:

1 1 1
Ry = — Ry = — Ry = —
™ Pm "7 py 27 pa (18.1)

As ijllustrated in Figure 1B.2, the assumption of linearity permits one to

decompose the fluxes and currents into dc and ac parts:

1=1+7% (18.2)

]

e
+
)

¥

where the ac parts have 2zero average by deflnition. Since the dc
components (represented by uppercase symbols) are determined by the
operation of the converter and its steady-state load, those quantities are not
germane to this treatment, and therefore all subsequent analyses will
proceed in terms of ac quantilias anly.

i From flux summations at the two nodes in the model of Fig. 18.1
one gets

Niby | Ny + Naip _
R Rm - % (18.3)
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¢!I _ ¢m Rm _ ¢22

Rm% Niip  Naiz %R:z

Fig. 18.1 Simplified reluctance equivalent circuit model for the two-
winding coupled inductor structure.
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® (dc PART)

Y

Ni

——
i (ac PART)

Fig. 18.2 The assumption of linearily permits one to decompose the

fluzes and currents into dc and ac parts. This simplifies both
the notation and the analysis.
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Naia | Nyiy + Naia _
Riz R, - Pa (18.4)

From Faraday’s law one has the flux constraints

_ 1 _ 1
Y1 = Nl fv ldt P2 = 1\]2 fvzdt (18.5)

where no constant of integration is required since the fluxes by definition
have no dec components. Since v; = vy one has ¢; = ¢o/N,,

@92 = @o/ N2 and equations (18.3) and (1B.4) can be easily solved for the

currents:

oo vl N1 1] 1

! A | Ny |Bm Rz | Km (18.6)

oo %l M 1)

2 A ] Nz ‘Rm RHJ Rm (18.7)
where

1 1 1 ]
A = N3N + + # 0
B VP Ri2Rm RyyRp, | (18.8)

Thus it is easy to see that the current ripples at either end may be

made to vanish provided that:

Ny Rig

ZERO INPUT RIPPLE N, Rz + Rp (18.9)
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N,y - Ry
N, - B, + R (18.10)

ZERO OUTPUT RIPPLE

From (18.8), (18.9) and (18.10) it follows that both current ripples
cannot be set to zero at the same time, in agreement with the previous
analyses in Chapters 18 and 17. Note that (18.10) is equivalent to (17.4)
under the assumption that p,, >> p;2.

If the objective is only to find the zero-ripple conditions (18.9)
and (18.10), a shortcut can be made which bypasses the previous lengthy
derivations. For example, setting i3 = 0 in the model of Fig. 18.1
produces the simplified ac model of Fig. 18.3. The constraint of zero
ripple has automatically- shorted the output leakage reluctance K;3, which
then obviously has no effect on the condition for zero output ripple, as

was predicted by (17.4). Now from Fig. 18.3 one obtains by inspection

RBmyz = Ry9q (18.11)

Y1 = ¢u1 t o2 (18.12)
o Yo

where as before, from Faraday's law ¢; = N P2 = J_V'— and
2

Yo = fvdt. Substitution for ¢; and @z in (18.11) and (18.12) results

after simplification in the familiar expression (18.10).
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D A

RQI % Nlil

Fig. 18.3 Simplified model of the two-winding device for the case of zero
current ripple on the output.
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Fig. 18.4 Complele reluctance equivalent circuit model for the three-
winding inltegrated magnelic structure.
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18.2 Solutions for the Simplified Three-Winding Model

The complete reluctance equivalent circuit model for the three-
winding integrated structure is given in Fig. 18.4, where the reluctances are

related to the quantities defined in Chapter 17 as follows:

1 1 1
Ry = — Ry = — Ryg = —
17 p, 27 p, 37 pg (18.13)
1 1 1
Rip = — Rig = — Rgg = ——
12 P12 13 DPis3 23 Pz3

Under the realistic approximations discussed in Section 17.3 one may reduce
the circuit of Fig. 1‘8.4- to the simplified model of Fig. 18.5. The solution of
this model for the conditions of zero ripple on both sides is very simple and
straightforward, since with ©; = i3 = O both input and output leakages are
shorted as shown in Fig. 18.8. This model for the special case of
simultaneous zero ripple reveals that the leakage reluctances K;; and F;p
are completely immaterial to the problem.

From the simplified model of Fig. 18.7 one can write two loop

equations

R.p1 = Ri391s Ry9s = Riseis (18.14)

and the node equation
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RxA ?:x By ‘/\RX,
2 h A 1‘ A a

2, D3 @2 1%2
Nyip Res a Naiz Naiz2 Ryp2

Fig. 18.5 Simplified reluctance equivalent circuit model for the three-
winding integrated structure, Numerical wvalues of the
reluctances encountered in practical structures justify analytic
approzimations which lead to the reduction in complezity.

o

Ry

VWA
VWA

Ry Ry
VWA | VWA

25

Rn% AB, Ry Nsi3 Ag, % Ry2

Pig. 18.6 Simplified reluctance model for the three-winding structure
when there is zero curreni ripple on both input and output.
Because the outer woltage generators become short -circuits
when i, = iz = 0, the leakage reluctances K;;, aond FK;» can
have no effect on the condifions for zero ripple.
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Fig. 18.7 Reluctance maodel for zero ripple on both ends with the
superfluous self leakage reluctances removed,
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Y13 = ¥3 — ¥1 — P2 (18.15)

For the symmetric case of Ny = Ny = N the fluxes are constrained by

the following relationships from Faraday's law:

_ % _ %o _ %0
1 = N 2 = N ¥s = N, (18.18)

where go = f vdt. With (18.18) the node equation simplifies to

s = 90| o — =
87 Y0INs N (18.17)

Substitution of (18.17) into (18.14) leads to the desired solution:

N
R,y = Ry = |— — 2|R,
=TT [Ns ] 13 (18.18)

where the subscript "s" refers to the unique solution for reluctances R,
and R,. The unsymmetrical case of N; # N, is solved just as easily,
and the expressions for the solutions are given in the Appendix. Since a
designer is ultimately interested in the air gaps z; and Yyg as the
solution for zero ripple, it is desired to scale these these reluctance
relations to air gap relations. Under the assumption of infinite -
permeability of the core material these are easily shown to be:

N
s T Us = | — Rt
i Y [N3 ] (18.19)

where ! is the equivalent leakage air gap required if the leakage flux
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path had the same cross-sectional area as the flux paths of the two

main magnetic loops. The gap ! is defined by the reluctance relation

l
Ris = oA (18.20)

This definition permits elimination of the cross section A4 from the
reluctance solution of (18.18) to give the simple easy-to-interpret
geometric relationships of (18.19).

A physical realization of the simple reluctance model can be
constructed with three sets of U-cores as shown in Fig. 18.8, where it is
assumed that all the flux is confined to the volume defined by the cores
and the gaps. Note that the definition of separate left and right
magnetic loops eliminates K; from the reluctance model, even with finite

permeability of the core material.

For the special case of -];JIY— = 3, illustrated also in Fig 18.8, the
3

zero-ripple solution (18.19) simplifies to zg = yg = l. Thus for zero
ripple with this special turns ratio, the air gaps z and y should be
adjusted to the same value as the leakage path air gap l. In practice,
of course, the actual magnitudes of the gaps will be determined jointly
by the dc currents which will be present in the windings and the
dynamic response desired of the power converter. The designer must
choose these values to be consistent with the conditions for zero ripple.
To solve for zero current ripple on only the input, one sets

i; = 0 in the model of Fig. 18.5 to get the reduced model of Fig. 18.9.
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Fig. 18.8 Conceptual realization of the three-winding structure with the
self leakage of the center winding defined explicitly by a
magnetic core and effective air gap L.
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Fig. 18.9 Simple reluctance model of the three-winding structure with
zero ripple only on the input.
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In addition to the loop and node equations (18.14) and (18.15), another
equation from the loop shown in Fig. 18.9 is required to solve the
network. For the symmetric case of Ny = N3 = N one gets from this

loop

Faraday's law for the three magnetic branches yields

- %o _ %o %,
¥3 N3 #1 N ¥z N Py Pi2 (18.22)
Nig
where @3 = 7 Substitution of these flux constraints into the loop
' 2

and node equations yields the following implicit expression for zero ripple

on the input only:

N R, - R
Ba = {J—V? - 2]1?’3 ¥ R: + R; Fas (18.23)

In a completely analogous manner, either by solving the corresponding
reluctance model or by interchanging the subscripts z e ¥y and 1 & 2

in (18.23), one can find the expression for zero ripple on the output

only:
N z — Ry
R — — 2|Ri3 + R
v [Ns ] TR + Ry (18.24)
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Just as was done previously in (18.20), one can define the
equivalent air gaps l; and l; which refer the leakage reluctances K;; and
Rz to the same cross section A as all the other magnetic branches by
the equations

Ly Ly

B = oA Bz = ol (18.25)

With (18.25) and (18.20) the dependence on cross section A4 and
permeability g is eliminated from (18.23) and (1B8.24) to give expressions

in terms of the gaps:

r () — )
z = | _ ol 4+ | X2,
| N3 J ¥ + iz (18.28)
VN 3 yx - 3
y = [— -2/t + |=—H
| V3 ‘ |z + iy (18.27)

As an instructive example, consider (1B.27) given here explicitly

in the form y = f(z).

N

_[(~ |~ L
y—[Ns 2]t+lz 7 2]t

z +1 + 1 (18.28)

It is easily seen from (18.28) that variation of l; generates a family of
curves which pass through the common point

N z]L

z’ =y8= N3

(18.29)

This is illustrated in Fig. 18.10. The intersection point (z4,y,) is the
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Fig. 18.10 Variation of the self-leakage of the input winding generates a

family of curves of zero ouiput ripple which pass through the
same point, the zero ripple solution.
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solution to zero ripple at both ends simultaneously, and this is in
agreement with the previous observation that the solution is independent
of the self-leakages of both the input and output windings. This result is
of great practical significance. The only leakage that must be well-
controlled is that of the center leg of the structure, and this can be
accomplished by introduction of an additional magnetic branch as
illustrated by the structure in Fig. 18.8. The particular arrangement of
input and output windings with their imperfect couplings "does not affect

the solution for zero ripple in any way.
The salient features of the characteristic curves of (18.28) and

(18.27) can be exposed by writing (18.28) as

N N
{Ns 2 + Ns - 2]‘1
= =1
y = /(=) z +1 + 1, (18.30)

and plotting for particular values of leakage gaps ! and l,. Looking at

the extremes of £ = 0 and z - one gets
N Ly N
0) = |=— - = - 2| U
AL N3 L+ N3 e (18.31a)

lim f(z) = [I—f,";-— 1]z

(18.31b)
Using these results and the analogous expressions for zero input ripple,
the two representative curves are sketched in Fig. 18.11 for the case of

!l =1y =1l Because of the non-orthogonal curvature of the zero
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Fig. 18.11 Typical curves of zero current ripple for a symmeitric
structure showing one possible series of iterative gap
adjustments,
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(xg,¥g)

Fig. 18.13 If only one of the outer windings is perfectly coupled to the
core, the adjustment of only one of the gaps will show
interactive behavior. If the oulput winding 1is perfectly
coupled as shown here, no adjusitment of the gap y will affect
zaro ripple on the input, bult adjusiment of the gap z will
upset zero ripple on the oulput.
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ripple boundaries, the gap adjustments are not independent, but after
several iterations converge to the final solution (Zg,Ys)

Several interesting special cases may be highlighted from the
family of curves described by (18.28). For example, for very small self-
leakages of the input and output windings (nearly perfect coupling),
curves of zero ripple become straight lines with very small slopes as seen
in Fig. 1B8.12. Quantitatively, for I3 > Il and I; > z, Eq. (18.30)

reduces to a straight line given by

N N l
— -2 + |5— - 1|—=
Y [Ns [Ns ]h (18.32)

Thus one would expect that fewer adjustments would be required to
achieve simultaneous zero ripple if the leakage on the input and output
windings is low.

Another interesting example is illustrated in Fig. 18.13 in which
the output winding is perfectly coupled to give a vertical line for the
locus of zero input ripple. Hence, in this case, once the input current
ripple is adjusted to zero, it will remain at zero despite any change of
the output gap ¥. If both input and output windings are perfectly
coupled (all the flux linking the center winding) then both boundaries of
zero ripple reduce to straight lines as shown in Fig. 18.14, which is
analogous to the prediction of the previous analysis shown in Fig. 17.7.

Until now the analysis has treated cases where the reluctance of
the center leg of the integrated magnetic structure has been small

enough to be negligible, or even non-existent as for the structure of Fig.
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Fig. 18.14 Analysis of the special case of perfect coupling on both outer
windings predicts noninteractive adjustments. The =zero-ripple
solution should be reached in a single step for sach winding.



201

! i3 i
o—> o> b 4=
I} < S >
PNy N3 | P N2 94|
34— D
o0—— P o —0

Fig. 18.15 Realization of the three-winding infegraled siructure with a
common E-I core. Fach leg has an air gap.
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Pig. 18.16 Simple reluctance model for the zero-ripple E-I structure of
Fig. 18.15. The air gap in the center leg raises the wvalue of
the reluctance of K, such that it can mno longer be ignored
in the model.
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18.8. Often it may be necessary to consider the eflects of this
reluctance, however, as in the practical structure of Fig. 18.15, which is
made from a conventional E-I core combination. The zero-ripple solution
for this configuration can be found from the reluctance equivalent circuit

model of Fig. 18.18, from which one obtains for the the symmetrical case

N
R. = R = |=—-2 R;s - 2R
= vs [Ns ] ¢ (18.33)
Thus the effect of the finite reluctance of the center leg is to reduce the
- previous solutions (18.19) by 2F;. If there were no center gap and one
were concerned only with the reluctance of the core material in the

center leg, the expression in terms of gaps would be

el
Moy (18.34)

where ¢ is the length of the center leg and u, is the relative
permeability of the material with respect to ig. The fact that the center
leg has twice the cross-sectional area of the outer legs has been taken

into account in (1B.34). This result is identical to (18.19) except for the

correction term i—- For a relative permeability of 2000 for a typical

ferrite and for a center length of ¢ R 1 cm, the correction term is
approximately 0.005 mm. In most cases this will be truly negligible in
comparison with the equivalent [ of the center winding leakage, which is
on the order of 1 mm or higher. For the structure illustrated in Fig.

18.15, where the gap in the center is the same as in the outer legs, it is
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easy to show the common gap is

N o _ oL
N3 2 (18.35)

This chapter has shown how one may use the simple reluctance
equivalent circuit model to quickly solve for the zero-ripple conditions in
terms of geometric quantities. The key to the rapid solution is the
realization that the problem can be separated into an ac part and a de
part. Since only the ac problem need be addressed to find the zero-
ripple conditions, one may use a short-cut procedure in which the mmf
generators that represent the windings with zero ripple are replaced by
short circuits in the equivalent circuit model.

The next chapter introduces alternative winding configurations for
the three-winding integrated structure. One new conflguration  will
permit experimental verification of the characteristics predicted here, and
the other is a proposal by which one may reduce the amount or

magnetic material required for the zero-ripple structure.
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CHAPTER 19
ALTERNATIVE WINDING CONFIGURATIONS
FOR THE INTEGRATED STRUCTURE

It has been determined analytically that the interactive behavior
observed in adjusting the two air gaps in the integrated structure for zero
ripple is caused by the self-leakages of the input and output windings. In
addition, the only leakage which determines the gaps at which zero ripple
occurs (to first order) is the self-leakage of the third or non-zero ripple
winding. The surprising prediction that perfect coupling on the input and
output windings would result in independent gap adjustments demands
further attention. With this as the motivation, the zero-ripple structure is

examined to find a way to verify this unusual result.

19.1 The Non-Interactive Configuration

According to the analyses, if one is able to eliminate the self-
leakages of the input and output windings of the integrated structure while
maintaining the self-leakage of the third winding, he can fabricate a
structure for which the gap adjustments are independent. The rphysical
meaning of self-leakage is that some of the flux generated by one winding
does not link any other winding. One should expect that the windings of the
standard zero-ripple configuration would have a great deal of self-leakage

simply because they are so widely separated. One way to reduce or



205
eliminate the self-leakages is to put the windings closer together so that
all the flux generated by a winding links at least one other winding.
This can be accomplished by a simple topological manipulation of the
third winding, as illustrated in Fig. 19.1.

Figure 19.1a shows the usual configuration with a single turn for
the center winding. Figures 19.1b and 19.1c clearly illustrate how the
wire of the center winding can be stretched and maneuvered to the same
locations as the input and output windings, whose self-leakages diminish
as the windings get closer together. If the turns of the former center
winding are tightly woven among those of the others, all the flux
generated by the input and output windings will be coupled to at least
one other winding, and there will be no self-leakage at the input or
output. The converse is not true, however, since some of the flux
generated by the third winding will not link any other, as illustrated by
the leakage flux ¢;5 in Fig. 19.lc. |

Figure 19.2 illustrates how the non-interactive configuration may
be constructed with two sets of U-cores plus an auxiliary U-I core to
control the leakage of the third winding. Note that the auxiliary
magnetic pieces are drawn with a different cross-sectional area than the
main pieces, and the auxiliary turns are designated as N;3. This is to
emphasize that in general the particular combination of turns, area and
air gap of this piece is not important to the operation of the device, but
it is only the flux ;3 which matters. The notation in this thesis is

based on the assumption that N;3 = Ng and all pieces have the same
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The center winding can be topologically manipulated fo reduce
the self-leakages of the outer windings. The sequence shows
how a single turn 1is removed from the center leg and
maneuvered to the outer legs without changing the

fundamental topology of the magnetic circuif.
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Fig. 19.2 Hardware realization of the zero-ripple structure with virtually
zero self-leakage on the input and output windings. The
necessary self-leakage of the third winding is controlled by a
separate auziliary core and air gap.
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Fig. 19.3 General decomposiltion of fluzes for the modified winding
configuration of Fig. 19.1.
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Fig. 19.4 Simple reluctance model for the non-interactive configuration.
This model can be easily oblained from the model of the
standard configuration of Fig. 18.5 for the case of no self-
leakage on the input and output windings.
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area, but it is a simple matter to rescale the parameters used here to
suit the dimensions of other cdnﬁgurations.

Although the flux patterns for the non-interactive configuraton
are different from those of the original structure, the flux still may be
decomposed into the same components as in the original analysis, and
thus the same reluctances and permeances may be deflned. Figure 19.3
shows the general decomposition of fluxes for the winding arrangement of
Fig. 19.1. The self-leakages of the the input and output windings are
shown for the general case of non-bifilar windings.

The same approximations which were used in the analysis of the
original structure are valid here, and thus the simple reluctance
equivalent circuit model for the non-interactive (bifilar winding)
configuration can be easily shown to be that of Fig. 19.4, It is also
easily shown that if the input and output windings are assumed to have
no leakage flux (R;;=R;z==), then the model of Fig 19.4 can be
obtained from the equivalent original reluctance model of Fig. 18.5 via
simple network transformations. Thus all the results of the previous

analyses are valid for this configuraton as well.

19.2 The Minimum-Material Configuration

Just as in the standard configuration, the center leg of the non-
interactive structure must contain the sum of the fluxes of the outer legs.
If the directions of the windings on either the left or right legs were
reversed as illustrated by Fig. 19.5, the flux in the center leg would then be

the difference between the outer fluxes rather than the sum, and this is true
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Fig. 19.6 When the wires on the right leg of the mnon-interactive
configuration are wound in the opposite sense, the fluzes in the
center leg sublract instead of add. Since less core material is
then required in the center leg, this is called the minimum-
material configuration.
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Fig. 19.6 Reluctance equivalent circuit model for the minimum-material
configuration.
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for both the ac and dc fluxes. Figure 19.6 shows the simplified
reluctance equivalent circuit model for this configuration. Note that the
polarities of the sources Njziz and Ngjiy and the direction of gy in the
rightmost branch are the the reverse of those in Fig. 19.4. Because the
center leg does not have to support as much total flux as in the
original configuration, less cross-sectional area is required to maintain the
flux density below the level of saturation. Owing to the saving of
magnetic material in the center leg, this modification is called the
minimum-material configuration.

Can the minimum-material configuration give zero ripple?
Application of the techniques described in Chapter 17 quickly shows that
for the special symmetric case of Ny=Ny;=N, zero-ripple solutions do
exist and are ezactly the same as for the standard configuration with
R =0, namely Eq. (18.18). Moreover, it can be shown by the same
method that for the symmetric case the solutions are independent of the
reluctance of the center leg K,. This does not mean that the center leg
can be removed, however. An exact analysis will show that with no self-
leakages the determinant of the system is singular if K, >« The
solutions for the case of N;# N, are given in the Appendix. |

Several methods have been described in the preceding chapters
by which one may design magnetic components for ripple-free power
conversion. In addition to the switching characteristics, however, the
designer must be concerned with the overall dynamic response of the

system in order that it be properly controlled for the intended
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application. To this end it is desirable to have electric circuit modals
for each component of the system so that the entire converter can be
modelled for frequency domain analysis by familiar techniques. The next
chapter presents some electrical equivalent circuit models of the magnetic
devices discussed thus far and relates the electrical elements in the

models to the geometry of the magnetic structures.
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CHAPTER 20
ELECTRIC CIRCUIT MODELS

Two methods to model magnetic devices have been discussed thus
far. The coupled inductor equations provided a complete but rather
cumbersome and non-physical description while the physically oriented
magnetic circuit model permitted quick and simple solutions for the zero-
ripple conditions. As a bonus, the magnetic circuit description gave physical
insight which suggested a material-saving improvement to the original design.
This chapter presents another type of circuit model in which the physical
parameters of the magnetic device are related to ideal electrical elements
connected in a physically meaningful topology. These electric circuif models
are valuable not only because they permit a relatively unfamiliar magnetic
device to be viewed in a more illuminating form, but also because they
permit a designer to quickly assess the device's performance in the

operating environment of an electronic ecircuit.

20.1 Application of Duality to Magnetic Circuits

In deriving an electric circuit model for a magnetic device, one
hopes to describe the electrical terminal properties of the device by means
of an interconnection of inductors and ideal transformers. Since the
topology of an electrical network is not determined by its terminal

properties, many different circuits are possible.
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There are two principal routes by which one may obtain suitable
models. The traditional course, which was used very successfully to
model transformers in [38], is first to hypothesize a general circuit
topology which contains a sufficient number of variables to describe all
possible terminal relationships. After the voltage and current
relationships are found in terms of the parameters of the model, the
resulting equations are solved to determine the unknown parameters in
terms of either the coupled inductor constants or the permeances. The
main disadvantage of this method is that for unconventional structures a
good choice of topology is not always obvious, and, consequently, the
elements of the model may turn out to be quite complicated and
unilluminating functions of the basic magnetic properties of the device.
Unfortunately, the electric circuit model is not much help unless the
electrical elements can be readily identifled with the important individual
parameters of the magnetic structure.

The other method derives an electric circuit model directly from
the reluctance equivalent circuit model by application of the principles of
dualily. The greatest advantage of this straightforward method is that
the elements of the resulting electric circuit have a one-to-one
correspondence with the reluctances of the magnetic device. Moreovaer,
even if the complete electric circuit is more complicated than one would
like, its basic structure serves as a guide to the selection of a simpler

topology to which the first method may be applied.
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The concept of duality as applied to graphs and electric
networks is well-known, and detailed treatments can be found in many
standard textbooks [40, 41]. Although the analogous application to
magnetic circuits is not as common, the technique has been well
established [42]. The duality method consists of four steps [23]. First,
one draws the reluctance equivalent circuit which has the same topology
as the magnetic device to be modelled. Then a dual of the reluctance
circuit is drawn (as shown by an example in the Appendix) in which the
elements of the dual circuit become permeances. The permeances are
then scaled by the appropriate number of turns to relate the filuxes in
the network to the terminal voltages. Finally, all sz’s are replaced by
L’s to put all the relationships in terms of voltages and currents. Ideal
transformers may then be added as desired for cosmetic scaling
purposes.

The following sections show how these two methods may be used
jointly to derive simple and illuminating electric circuit models of the

rather unusual magnetic devices studied in the previous chapters.

20.2 Electric Circuit Model for the Two-Winding Structure

Figure 20.1 shows an appropriate electric circuit model for the two-
winding coupled inductor structure, which may be readily identified as the m-
model that has been used for decades to model transformers. From the

model one can see that for zero output ripple no voltage will appear across

i
2 = 0, and therefore vy = vg.

the output leakage inductance ;3 because a2t
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Fig. 20.1 FElectric circuit model for the Iwo-winding coupled inductor
structure,
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The condition for zero ripple is then by simple impedance division

N, L
v p—ie
Ny Lp+L,; "1~ "2 (20.1)
or equivalently
Nz Pmtpiz .
Ny PmtPiztp, '~ 2 (20.2)
from which we get
Ny vy PmtPi2
Nz Vz PmtPi12tP; (20.8)

which reduces to (17.4) for the special case of v; = vy Thus from the
electric circuit model it is easy to see why the conditions for zero output
ripple must be independent of the self-leakage of the output winding. It
should be noted for state variable analysis that, although this model
portrays three explicit inductances, the circuit has only two states
because the currents in only two of the inductances are independent.

Equation (20.3) emphasizes the fact that to obtain zero ripple
the voltages which appear on the windings of the coupled inductor do not
have to be equal but only proportional. The fact that those voltages
were equal in the original ‘Cuk converter not only motivated the idea of
coupling the inductors, but also unintentionally promoted the common
misconception that the voltages and the turns must be equal.

An added advantage of having the circuit model is that it is
easy to compute the amount of ripple current which would appear at the

input and output if the conditions for zero ripple were not met. This
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Fig. 20.2 Electric circuit model for the conventional three-winding
integrated structure.
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information is important to a designer, who must be aware of the
sensitivity of his circuit to component tolerances and natural variations

of parameters.

20.3 Model for the Conventional Three-Winding Integrated Structure

In [38] the m-model was shown to be uniquely determined for three-
winding transformers, and the utility of that model in the design and
understanding of such devices was demonstrated in an impressive and
elegant manner. However, since the integrated structure is not a three-
winding transformer, one finds that attempts to use a similar m-model result
in non-physical parameters (like negative inductances) and complicated non-
illurninating expressions. As shown in the Appendix, however, straightforward
application of the principles of duality to a simplified reluctance equivalent
circuit model of the conventional integrated structure yields the more
appropriate topology of Fig. 20.2. It is obvious from the equivalent topology
of Fig. 19.2 that this model bears a proper physical relationship to the
original device. It is easy to see that even the coupled inductor constant
M5 is negative for this circuit.

Solution of this model in tefms of the permeances defined in

Chapter 17 gives the exact e:tpressions

L, = N¥p, Liz = N3p, Lis = Nipg (20.4)

PyP, +P,P, +F, P,
P, (R0.5)

Lml = le
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P,F, +P,FP, +P,P,
= 2 vz y'z zi=z
Imz = N2 P, (20.8)

Nz&a+&a+a&
3 P, (20.7)

Lms

It is easy to show that under the realistic approximations discussed in
Section 17.3 the permeances in the last three expressions simplify to
yield the reduced expressions given below in terms of the reluctances

defined in (18.13).

‘7 Ry 27 Ry Y (0.8)
¥ .MM
L‘"ll - Rz m2 — Y m3 — Rc (20.9)

The reduced expressions for the elements in the model are directly
related to the explicit reluctances of the physical structure. Note that, if
the reluctance of the center leg R, is zero, the inductance L,,3 vanishes
from the circuit model, because an infinite inductance can have no
current if its energy is to remain finite. Also, since there are only three
independent inductor currents the circuit has only three state variables.
Aside from being able to determine the general conditions for
simultaneous zero ripple on windings 1 and 2, one can find the
magnitude of the ripple appearing on winding 3 by simple inspection of

the circuit model. Since under zero-ripple conditions no voltage is
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developed across the leakage inductances I;; and L;p, it is easy to see

that

N3 . Nj
ug — | v T
A U 7

dt Lis (R0.10)

which one can show must be greater than zero. Without the benefit of
the circuit model such computations would be a great deal more difficult.
It is now also easy to see why the gap adjustments are non-interactive
when the self-leakages I;; and ‘ng are zero. Under these conditions the
voltages on the two ideal transformers in the model are flxed and
independent of the adjusted values of L,; and Ln,» Hence, variation of
Lmy will change only i, and adjustment of Ln,p will affect only ip. Note
that the ripple on the third winding will not change when L,; and L,z

are adjusted.

20.4 Model for the Minimum-Material Configuration

The electric circuit model for the minimum-material configuration
of Fig. 19.5 is similar to that of the conventional integrated structure, but
not as easy to use except in certain special cases. As above, application of
duality to a simplified reluctance equivalent circuit model of the minimum-
material configuration leads to the electric circuit model of ﬁg. 20.3. The
anti-parallel orientation of windings 1 and 2 causes the mutual inductance
M3 to be positive for this configuration, and hence the modified topology.

Solution for the elements of the model in terms of the reluctances gives
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Fig. 20.3 Electric circuit model for the minimum-material configuration
of the integrated siructure.
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exact expressions which are too complicated to be useful for design
purposes, but under the realistic restriction that the mutual air leakages
can be ignored they reduce to (20.8) and (20.9). It is comforting to
note that for the case of K, =0 the two models reduce to the same
topology. This outcome should be expected, because with K. =0 the
structure in Fig. 19.2 is eflectively reduced to two separate magnetic
loops whose characteristics should be independent of the relative
orientation of the core pieces which contain the windings as long as the
air gaps remain the same. Since the material in the center of the
device is a magnetic short circuit when K, =0 it is immaterial whether
the fluxes there add or subtract.

This chapter has demonstrated that the development of electric
circuit models for magnetic structures can be very beneficial to the
design of specific devices as well as to one’s understanding of their
peculiar properties. Another important application of these models is in
the understanding of the effects of parasitic quantities, which will be

addressed next.
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CHAPTER 21
EFFECTS OF PARASITIC QUANTITIES

The previous chapters have discussed the phenomenon of zero
ripple in terms of the magnetic properties of an ideal device, and that
treatment has been qﬁite successful in explaining the observed flrst-order
effects. As one experiments with these devices, however, it becomes clear
that there are some rather obvious second-order effects which have not been
addressed. Looking at the sequence of photographs of the zero-ripple
adjustments of Fig. 14.2, for example, one can see that the "zero-ripple”
currents are not really zero. When the currents are studied in greater detail
by increasing the sensitivity of the current probe, one finds that despite the
most painstaking adjustments it is impossible to make the current pure de.
In addition, it is observed that the conditions for zero ripple (actually
minimum ripple) are somewhat dependent on the frequency of excitation.

Since earlier observations of these phenomena were made on power
converters, it was easy to blame this non-ideal behavior on the known and
accepted non-idealities of the converter. As will be shown in the next
chapter, however, the same effects are observed when the converter is
eliminated and the device is driven with ideal voltage waveforms. Therefore,
the observed second-order effects cannot be caused entirely by the non-
idealities of the converter, but must be attributed to some property of the

device itself. This chapter will show that these effects can be explained by
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the presence of natural losses in the real device, and, consequently, that
true =zero ripple may be achieved only under some very special
circumstances. This treatment will be concerned with only the two-
winding structure, as that will adequately illustrate how the techniques

and concepts apply directly to more complicated devices.

21.1 VWinding Resistance

One unavoidable parasitic quantity in practical magnetic devices is
the finite electrical resistance of the windings. If each of the two windings
(1 and 2) has a respective series resistance 7; and 73, then the coupled

inductor equations (16.1) will be modified as follows:

vy =718y + Y, vy = Taipg + vy
so that
. di,y dig
Vy =T + Lll_dt + M""_dt (211)
, . di, dip
vy = Taip + M?t-‘—*. nga—

where v,' and v,' are the voltages applied to the terminals of the device and
v, and vy are the voltages which generate the fluxes. It is clear that now
the dc component of the current cannot be easily dismissed as it was in
Section 18.1, for the presence of a de current will change the voltages which
actually produce the fluxes. The imposition of equal terminal voltages does

not necessarily mean that v; = vy, and thus the conditions for zero ripple
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can change with the operating point of a power converter.
Consider that there is no dc current present in the windings.
Taking the Laplace transform and writing the equations in matrix form

gives

[uy'(s) [r,+sLqy sM [i,(s)
l'vz‘(s) = sM Ta+sLaa| |t

["'z(s ) (21.2)
Solution for is(s) and i;(s) shows after a few lines of algebra that it is
impossible to make either current identically zero for any physically
realizable condition. Furthermore, although it is possible to adjust either
current for a minimum ripple, that condition is frequency-dependent.
The solutions show that the current has both a real and imaginary part,
and, although it is possible adjust either part to zero separately, both
cannot be made zero at the same time. The frequency dependence of
the solutions indicates that the current ripple which results from a
rectangular voltage drive will no longer be purely triangular. In a
lossless device all Fourier components of a rectangular voltage drive
would be phase-shifted by 90 degrees and attenuated by the amount
necessary to produce a triangular current waveform, and all components
could be nulled by proper adjustment of the reluctances. With losses,
however, the nulling property of the magnetic device is frequency
selective, and therefore all frequency components cannot be nulled at the
same time. In the adjustments orb Fig. 142 only one frequency

component is completely removed from the current ripple and the others
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are reduced by lesser amounts. This accounts for the unusual ripple
waveforms which remain after the ripple is adjusted to a minimum.

One easy way to see the impossibility of zero ripple is to use
the electric circuit model. Figure 21.1 shows how the electric circuit
model of the two-winding coupled inductor structure is augmented to
include the resistances of the windings. Under the assumption of zero
de current, zero output ripple necessarily means that i = 0, and thus
vs' appears across the ideal transformer. By simple impedance division
this requires that

sL N
vy'(s) = 2 = wy(s)
7'1 +S(Lll +Lm) Nl (213)

Owing to the phase shift caused by the presence of 74, there is no way
this equation can be satisfled if v;' and vy are in phase. The
impossibility of the satisfaction of (21.3) for the special case of
v, = vp' is obvious.

The electric circuit models and the coupled inductor equations
for the three-winding integrated structures are modified to include the
eflects of winding resistances in exactly the same way as shown above for
the two-winding case, and analysis of these models for conditions of zero
ripple results in similar conclusions. Although the presence of winding
resistance alone is sufficient to qualitatively explain the observed second-
order effects, ‘there is another loss mechanism which can produce similar

results.
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Pig. 21.1 From the electric circuit model of the two-winding coupled
inductor structure it is easy fo see how the resistance of the
windings will change the zero-ripple conditions computed for
an ideal device. I[f identical voliages are applied to the inpuf
and output ports it is impossible to make the current ripple
exactly zero. At best, only a minimum ripple can be obtained,
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Fig. 21.2 The electric circuit model can be used to model the effects of
core losses as well as copper losses. A paraliel resistance is
pul across those inductive elements which are identifled with
fluz contained in magnetic material. In this model the
leakage fluzes are assumed to be entirely in the air, but the
leakage inductances would not be lossless if they were
controlled by cuziliary loops of magnetic material.
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21.2 Core losses

The dynamic losses which result from hysteresis and eddy currents
are conveniently modelled by a resistance in parallel with the inductive
element which models the reluctance of the magnetic material. In the
electric circuit model of Fig. 21.2 this is shown by the resistor 7, in parallel
with the inductance L,,. Here it is assumed that the leakages I;; and L;»
have their fluxes entirely in the air, which is lossless. If these leakages are
added externally or are controlled by means of extra magnetic loops, then
they too would exhibit losses which would be modelled as parallel
resistances. It is easy to see that the core losses can also produce a phase
shift and a corresponding frequency dependence which will prevent the
attainment of true zero ripple.

In real devices both the winding resistances and core losses can
contribute to a second-order residual ripple which normally cannot be
adjusted to zero. The eflects of these parasitic quantities are nearly always
negligible in practice, however, and consideration of the structure as ideal
does indeed lead to excellent results, as will be seen from the experimental

verifications described in the next chapter.
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CHAPTER 22
EXPERIMENTAL VERIFICATIONS

This chapter describes several interesting experiments which were
carried out to verify the results obtained from the previous analysis of
integrated magnetic structures. A great deal of comprehensive testing has
been done on many different structural arrangements, and, although all the
results cannot be reported here in their entirety, several of the basic
experiments which confirm key analytic results have been selected to be

discussed in detail.

22.1 Hardware, Excitations, and Instrumentation

Although the Cuk switching converter may be used to study zero-
ripple phenomena, these experiments were conducted to evaluate the
properﬁies of the magnetic structure rather than the performance of the
converter. Therefore, in order to maintain better control over the
experiments and to provide for greater flexibility in the driving waveforms, a
power oscillator was used instead of a converter to supply the desired
voltage waveforms to excite the windings of the magnetic device. An ac
sinusoidal source was chosen for all the experiments discussed in this
chapter with the exception of the last section which addresses parasitic
effects. The sinusoidal drive has the particular advantage of eliminating the

high-frequency ringing which occurs when a tfast-switching square wave
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excites the parasitic LC resonances of the windings.

The salient features of a typical experimental set-up are shown
in Fig. 22.1. Because a truly integrated magnetic structure as illustrated
in Fig. 18.8 is not commercially available, equivalent variable-gap devices
have been fabricated from ferrite U-cores. The basic structure is wound
symmetrically with Ny = Nz = N and all three windings are driven in
parallel by the same voltage source. This configuration was chosen for
these discussions not only for its simplicity, but also because it
represents a typical device which would be used in a practical power
converter. Several more complicated variations of this construction were
made to emphasize and control specific variables of interest, and these
will be described in detail in the following sections. A two-trace
oscilloscope and twe ac current probes are the only instrumentation
required.

The structures to be studied are mounted on a specially built
test bed which permits one to adjust and measure accurately the two
variable air gaps £ and y¥. The left and right U-cores are mounted on
movable stages whose distances from the fixed center pieces may be
changed independently with the pfeclsion of the two metric micrometer
adjustments. The test fixture is shown in Fig. 22.2 with one of the more

complex structures to be described in the next section.



232

—

OSCILLOSCOPE
WITH
CURRENT PROBES

POWER
OSCILLATOR

Fig. 22.1 The experimental set-up for the study of zero current ripple
consists of a power oscillator, oscilloscope, two current probes
and a wvariable-gap magnetic siructure. For more precise
measurements the magnetic device is ezcited with sine waves
instead of rectangular voliage waveforms.
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Fig. 22.3 Sketch of a three-winding siruciure in which the self-leakages
of all three windings may be varied by changing the air gaps
in the auziliary magnetic loops.
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22.2 Verification of Solutions for the Interactive Case

The analysis has shown that the most interesting characteristics of
these devices are determined by the leakage fluxes of the windings. Because
these leakage paths are not precisely known, it is practically impossible to
design an experimental structure for a particular value of leakage flux.
Although it is extremely difficult to design for a specific leakage, it is very
easy to change the leakage by simply adding to the inherent leakage of the
particular winding arrangement.

Figure 22.3 illustrates how the basic structure is modified by the
addition of magnetic shunt branches to enhance and control the leakage
fluxes of the three windings. The base structure is made from two sets of
Magnetics, Inc. F-42530-UC cores and the leakage enhancement is done with
F-42515-UC cores which are closed by I-pieces with paper spacers. The outer
windings are 24 turns of #24 magnet wire and the center winding consists of
B turns of three parallel strands of the same wire. This particular
arrangement was chosen so that all the windings would cover the same
linear distance and occupy the entire channel of the U-piece, with the hope
that the commonality would help to maintain the symmetry of the structure
and make the results more reproducible.

In the first experiment a sinusoidal voltage of 1.8 V péak to peak at
100 kHz was applied to all three windings. Keeping the center leakage flxed,
the micrometers were then adjusted to find the gaps at which zero ripple
was measured on windings 1 and 2 for several values of leakage reluctance

in the outer windings. Examples are shown in Fig. 22.4 for the cases of two
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Fig. 22.4 Measurements of zero ripple for three different values of self

leakage in the outer legs of a symmeiric device. Note that all
three curves intersect at the same poinf, corresponding to zero
ripple on both input and output.
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different spacers in the outer leakage loops and also for the case of
maximum reluctance with no I-pieces. It can be seen that the curves
have the same general shape as those originally predicted in Fig. 18.11.

Since the actual air gaps in the leakage loops are by no means
the effective gaps discussed in the analysis, it may not be obvious at this
point how one can correlate the experimental data in Fig. 22.4 with the
theoretical predictions. How, for example, can one find an equivalent air
gap for the case when there are no I-pieces in the leakage loops? One
could first measure the voltages and currents for each of the data
points, use the information to compute the coupled inductor constants,
and then work backwards to find the reluctances. Fortunately, there is a
much easier way to obtain the information.

Note that in the theoretical expression of (18.30) one can easily
find the intersection of the locus of zero current ripple (i = 0) with

the y-axis by setting £ = 0 to get

ol N
v = 7, [E- z]z (22.1)
l,
y(0) = T+, Y

From the experimental curve for i3 = 0 one can find the gap y(0) at
which the locus meets the y-axis. Also, the zero-ripple solution (zg,¥s)
can be easily determined experimentally, which can be used to calculate
the value of the eflective gap [ from (18.29). Then by use of the

measured ¥ (0) and the calculated ! one can compute an equivalent gap
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Fig. 22.4.



239

!y from (22.1). This method was used to compute the equivalent air
gaps for l; and l; which are labeled in Fig. 22.4 and to generate the
corresponding theoretical curves of y = f (z) from (18.30). These
curves, plotted in Fig. 225, show very good agreement with the
experimental data. Similar curves for other turns ratios and gap
combinations can be found in the same way, with slightly more algebra
required to compute the eflective gaps for non-symmetrical structures.

To illustrate the special case of very small leakages on the input
and output windings (nearly perfect coupling), the configuration of Fig.
22.8 was used. Here the air-leakages of the outer windings provided the
less than perfect coupling while the leakage of the center winding was
controlled by an extra magnetic path. Figure 22.7 shows that the
experimental curves obtained for zero input and output ripple appreoach

the straight lines predicted by (18.32).

22.3 Verification of Solutions for the Non-Interactive Configuration

The realizability of non-interactive adjustments is verified with a
structure similar to that already proposed in Fig. 19.2. In this experiment
the windings on the left and right U-cores are wound gquadrafilar with
N, = N3 = 24 and N3 = 8. Eight turns of a cable made from 4 strands of
magnet wire twisted tightly together were wound on the core. Then 3 of the
strands were connected in series to make the 24 turns of N; and N, and
the remaining conductor made the 8 turns of Ng. Here again the main
structure is made from F42530-UC cores and the leakage path of winding 3

is an F24515-UC core with an I-piece and paper spacer.
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Fig. 22.6 The auxziliary magnetic loops are removed from the input and
oulput windings to wverify the anaolysis for the case of mnearly
perfect coupling on the outer windings.
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Figure 22.8 shows the experimental results obtained for three
different gaps in the leakage path of the center winding. The actual
spacers used were, of course, different from the effective values of [
given in the figure, not only because of the existence of the natural air
leakage described above, but also because the spacer is half the t-otal air
gap and the area of the external leakage core is half that of the other
U-cores. The remarkably straight lines in the flgure are actually
experimental data. There are no data points explicitly marked on the plot
because there is virtually no variation in the observed ripple over an
enormous range of adjustment. Thus the entire continuum of gap
adjustments qualifies as valid data. These results are in very good
agreement with the predictions of Chapters 17 and 19. The zero-ripple
solution can indeed be obtained after only a single adjustment of each
gap.

The minimum-material structure can be configured very easily
tfrom the above structure by merely reversing the sense of one of the
outer U-cores. In this way one is able to verily quickly that the
predictions of zero ripple are valid for this case as well.

Finally, any combination of the three cases discussed above may
be easily constructed and verified. For example, an experiment was set
up in which the output winding had zero self-leakage while the input and
center windings were imperfectly coupled. As expected, the zero-ripple
curves closely followed the trajectories given by the theoretical predictions

described previously in Fig. 18.13.
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Fig. 22.9 IUlustration of parasitic effects on reduction of current ripple.
In each photograph the top irace is the current and the bottom
trace is the wvoltage drive. Although the current ripple may be
adjusted from positive (a) to negative (d), the magnitude does
not pass through zero. The accepted zero-ripple current seen
in the top trace of (b) is not really zero, but only a
minimum, as can be seen in (c) where the current scale is
expanded 50 times.
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22.4 Demonstration of Parasitic Effects

It has often -been stated [25] that if the slope of a triangular
current ripple can be adjusted from positive to negative it must pass
through zero, thereby verifying the existence of true zero ripple. This
section presents an interesting demonstration showing that this is not
completely true.

Figure R22.9 shows several photographs of current and voltage
waveforms from the non-interactive structure described in the last section
with the windings excited by a square-wave voltage source. In each of the
pictures the top trace is the current in the input winding and the bottom
trace is the voltage applied to the three windings. Figure 22.9a shows the
waveforms before the adjustments, with 22.9b showing zero ripple and 22.9d
negative ripple, all on the same scale. In Fig. 22.9¢ the zero-ripple current
waveform of Fig. 22.9b is magnifled fifty times. Note that the residual ripple
is not triangular in shape, but rather is some combination of square wave
and paraboloid. This is a manifestation of the frequency dependence of zero
ripple described in Chapter 21. Although the triangular component of the
ripple current has been for the most part nulled out, some components of
the square-wave source remain, including one which is exactly 180 degrees
out of phase with the voltage.

One can get a better understanding of what is happening if the
square-wave source is replaced with a sinusoidal drive, as shown‘ in Fig.
22.10. Note that, before the adjustments, Fig. 22.10a shows that the current

in the upper trace lags the voltage by 90 degrees, ’as one would expect with
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Fig. 22.10 Repeat of the adjusiments of Fig. 22.9 but with a sinusoidal
drive. Top traces are currenls and boilom {races are
voltages. As the ripple is adjusted from positive (a) to
negative (d) it does mot pass through zero as it seems to in
(6), but only reaches a minimum as shown by the erpanded
scale in (c).
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an element which is mostly inductive. The negative ripple in Fig. 22.10d
appears as a leading 90 degree phase shift. The "zero-ripple” current of
Fig. 22.10b is magnified as before by 50 times in Fig. 22.10c. Note that
the ripple never really goes to zero, even though there is an overall
change in phase which corresponds to a transition from positive to
negative ripple. Instead, the ripple only reaches a minimum at which
point the current is exactly 1B0 degrees out of phase with the voltage,
after which the magnitude grows and the phase continues to shift as the
ripple becomes negative. When adjusted for minimum ripple, the
imaginary (90-degree-shifted) part of the current is nulled out to leave
only the real part, which may be positive or negative depending on the

values of the various loss mechanisms at that particular frequency.
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CHAPTER 23
CONCLUSION

Recent developments in the field of Power Electronics have raised
the complexity of inductive components used in switching converters from
the level of the common magnetic device to the more sophisticated
integrated magnetic circuit, in which the functions formerly performed by
individual inductors and transformers have been merged into a single
magnetic structure with multiple windings and non-parallel flux paths.
Although these integrated magnetic structures offer a number of advantages
to electrical power conversion, their use was chiefly limited to laboratory
demonstrations owing to a lack of an analytic base from which one could
understand their operation and develop models for design.

The greatest obstacle to the undertaking of this analysis was the
apparent insurmountable complexity of the problem. The source of the
difficulty is that the desired operation of the device is controlled by a
number of second-order parameters which are normally ignored in the
analysis of conventional magnetic devices. Indeed, one can quickly become
discouraged if he attempts to find an exact model of an integrated magnetic
structure. The key to finding a simple and useful solution to the problem is
in the recognition that not aill the characteristic parameters of the
structure are required to model the magnetic device adequately. One of the

major contributions of the treatment given here is the determination of the
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most relevant parameters which control the zero-ripple performance of
these structures.

Although several methods are available for the general analysis
of magnetic devices, some are a great deal more useful than others, and
the utility depends largely on the desired form of the results. This
presentation has demonstrated that the simple reluctance equivalent
circuit model can be used to determine quickly the necessary conditions
for a zero-ripple structure. Apart from solving some particular practical
problems, the greatest contribution of the analysis presented here is that
it offers a methodology of solution for similar structures of much greater
complexity. Moreover, it has been shown how these reluctance models
can be transformed into more illuminating electric circuif models which
bear a topological resemblance to the geometry of the original physical
structure.

Despite the presentation of long-awaited solutions for some
particularly interesting magnetic devices, the single most important result
of this analysis is that it has established a physically oriented method by
which power-processing engineers may easily model and understand the
operation of complex integrated magnetic structures to design high-

performance power conversion equipment.
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APPENDIX

A1 Expressions for Zero-Ripple Solutions

In support of the discussion of Section 17.3, explicit expressions are

given below for the zero-ripple solutions in terms of the leg permeances Fj,

N

and Py, when Ny = N3 = N and § = Vo
3

Prs(@ps—p1s)
(§-2)[Prs+pa2s+p1s] — Rps (A1)

Py =

Prs(p3—pa2s)

Pro =
Lz = (£-2)[Pr3+pa23+pi13] — 2p3 (A.2)

Note that although N; = Nz = N, this does not guarantee that Py = Pjg
unless pi3 = Pgs. However, if the mutual leakage permeances can be

ignored in comparison to larger quantities, one obtains

Ps

Py = Ppp =

Ps3
€-2) -2 5, )

which is equivalent to the reluctance expression of Eq. (18.33).
For the case of N; # Ny under normal conditions where the
mutual permeances may be ignored in comparison to larger terms, one

obtains the solutions



p 2Ny Ps
L1 Ny + N, & - 2) Ps
P Prs (A.4)
P = &N, Ps
Iz = N+ N, & - 2) Ps
» Pr3 (A.5)
where
o NN,
p =2 Ng (A.8)

Note that (A 4) and (A.5) reduce to (A.1) and (A2) when N; = Ny = N.

In terms of reluctances the solutions are

Ry = 2—(1+W [(E? —R2)Ri3 — RR] (A7)
N
Rys = %— (1+'17i_) [(ép -R)Ri3 — RR.] (A.8)

which reduce to Eq. (18.33) for N; = N = N.
For the minimum-material configuration (Section 19.2) the

solutions are

_ 1 N, [ Nz—N,

Rﬂ = 2 (1 + Nz) .(Ep 2)R13 szl +N2‘RC (A.9)
S LNyl (N =Ny

Rys - 2 (1 + Nl L(E‘ﬁ z)RlS 2 ‘Nl +N2‘Rc (AIO)
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A2 Derivation of Electric Circuit Models by Duality

This section shows the derivation of the electric circuit model of
the conventional three-winding integrated structure of Section 20.3 to
illustrate the application of duality to the modelling of magnetic devices.

The procedure, taken from [R23], begins with the reluctance
equivalent circuit of the device. A reference dot, designated in Fig. A.1 by a
circle surrounding an uppercase letter, is placed inside each loop of the
planar network and a reference dot is placed outside the network. These
points will become the nodes of the dual circuit. The nodes of the original
circuit, labeled with triangles in Fig. A.1, will correspond to the loops of the
dual circuit, Fig. A.2.

Next, a line is drawn between any two nodes of the original circuit
to pass through one and only one circuit element. The corresponding dual
element is then constructed between the same two nodes of the dual circuit,
as shown in Fig. A.2. For example, the line drawn from loop 4 to loop B in
the original circuit passes through the voltage source N;i,, which
corresponds to the current source N;i; between the nodes 4 and F in the
dual circuit of Fig. A.2. The orientation of the corresponding dual branches
is obtained by counterclockwise rotation of the original branches until they
coincide with their dual branch directions. That is, when the voltage source
in the original circuit is rotated counterclockwise so that it coincides with
the line drawn from A to B, a positive voltage is encountered in going from
A to B. Thus, in the dual circuit a positive current must go from node A

to node B. This procedure is repeated for each element of the original
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Fig. A1 The loops of the reluctance equivalent circuil are connected by
drawing lines which pass through one and

element.

Nyiy

only one circuil

© Prs
g VW’
N3is A
Ps
VWA
+ gc -

Fig. A2 The loops of the original reluclance equivalent circuil correspond

to nodes in the dual circuit.

Voltage sources are transformed to

current sources and reluctances become permeances in the dual

circuit.
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circuit.

The dual network is scaled by appropriate turns ratios such that
the permeances are multiplied by turns squared. In Fig. A3 the
permeances were multiplied by st. Care should be taken in the choice
of the multiplier, for, although multiplication by N; or Ng would be a
valid operation, the resulting circuit would be more difficult to simplify in
the remaining steps.

Recognition that the time derivative of Ng is voltage permits
one to redraw the dual circuit in the more familiar electrical form of
Fig. A4, in which the Nap’s have been replaced by L’'s to put the
circuit into a v vs. % relationship.

Finally, ideal transformers have been added in Fig. A5 for

cosmetic scaling purposes to produce the same circuit of Fig. 20.2.
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N, Na.
N3 i3 N2 N3 2
3Py3 /‘\
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- C + + C - TN 2 + - o+
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N3 P 3
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N3By N38c N3Bp2 S Na3pp2
* 2 * 4.2 -
N3 Pu% N3@, N1@, % N3 P2
- +

put the permeances in the form of

Fig. A.3 The dual circuit is scaled {to
N?p.
2
N3'Pp3
—ot vy - /00
Nl . Vi3 N2
Ny N3 2
s 00 <IN
2 -
* N3 Ps
N3 2 2 N3
NV N3P N3 P2 N, ‘2
- +
—— 000/ — 00—
2 2
N3 Py N3 Pp2

Fig. A4 Consideration of the time derivatives of the flures and currents

leads to a
inductances,

circuit

in terms

of woltages, currents and
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Fig. A6 Ideal lransformers can be added fo maich the ports of ‘the
' model to the inpuis and ouftpuls of the original magnetic dewvice.



